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This paper reviews the basic theory of the mechanical action of light in resonant interaction with atoms.
At present the main application is laser cooling, but the approach is applicable to a broader range of phe-
nomena. It is based on an adiabatic elimination philosophy, which turns out to give the lowest-order quan-
tum corrections to the behavior found when the photon momentum goes to zero. Hence it is called a semi-
classical theory. In this manner a subjective but consistent approach can be presented; other treatments are
incorporated or mentioned ‘at the appropriate places. Both the classical and the quantum-mechanical ap-
proach are discussed. Those readers who wish to obtain only a heuristic overview of the phenomena can
concentrate on Sec. III, which treats both the photon momentum effects and their connection with photon
counting statistics. The detailed theoretical treatment utilizes Wigner functions and Fokker-Planck tech-
niques. The ensuing theory is applied both to the cooling of free particles and trapped ones. The paper
ends with an extensive bibliography, where the author lists most papers of interest for research into the
mechanical manifestations of light. For completeness, many papers are included that are not explicitly

mentioned in the text.
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I. INTRODUCTION

The classical Maxwell theory showed quite early that
the radiation field carries with it momentum. There were
some early experiments in Moscow (Lebedev,
1901,1910a,1910b) and in Hannover (Nichols and Hull,
1901,1903), but at that time these small effects were hard
to observe. After Einstein introduced the concept of a
photon, he showed (Einstein, 1917) that momentum con-
servation was an important aspect of the equilibrium be-
‘tween matter and radiation, and in the full quantum
theory the conservation of energy and momentum in each
microscopic event became an important issue. This was
investigated experimentally by Compton (1925), Compton
and Simon (1925), and Bothe and 'Geiger (1925).

The discussion of the recoil momentum in radiative
processes was intimately tied up with the question of
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quantizing the radiation. It does, however, occur also in
the semiclassical theory, because the momentum change
of matter is enforced by the spatial variation of the radia-
tion field. This is not affected by the quantization, which
only concerns the dynamical time evolution of the field.

A periodic variation of the electromagnetic field in
space will cause scattering between particle states of dif-
ferent momenta, and this fact was stressed by Schrodinger
in 1927, when he showed that one can obtain both energy
and momentum conservation in the Compton effect
without quantization of the radiation field. A similar
scattering process from a standing wave gives rise to the
Kapitza-Dirac effect, which is essentially Bragg scatter-
ing by umklapp processes from the periodic potential.

There are many ways of observing mechanical forces
caused by light fields, but the simplest one is to observe
the scattering from the spatial pattern created by periodi-
city at the wavelength of the light. This changes the
atomic momentum by the wave vector, and the change
can hence be considered as caused by the momentum of
the individual photons constituting the radiation field. It
is the strongest force achievable in a light wave—there
can be no steeper change of the energy density—and
hence it is the one utilized to cool the motion of atomic
particles. In this review we shall concentrate on the man-
ifestations and theoretical treatments of this force. Other
forces exist, and they may be discussed in connection with
various applications, but in this article they will only be
mentioned.

Before we enter into a detailed discussion of the subject
matter, we review briefly in this introduction the history
and the various aspects of the topic of light-induced
forces. The introduction ends with an overview of the
material presented in the main body of the article.

The recoil momentum of light was observed by Frisch
in 1933. The question of photon recoil momentum was
regarded as settled in 1950, according to Cross and Ram-
sey (1950). To obtain better results with thermal light
sources was difficult, and only occasional investigations
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tried to do this, e.g., Picque and Vialle (1972). With laser
light the experiments became much easier to perform, and
the first successful ones were reported in the early 1970s
(Schieder et al., 1972; Jacquinot et al., 1973; Bernhardt
et al., 1974).

Another area where photon recoil had been found to af-
fect the measurements was high-resolution spectroscopy.
As pointed out in Kol’chenko et al. (1969), the spectral
lines of saturation spectroscopy become split; these effects
were first seen in Boulder (Hall et al., 1976) and in Novo-
sibirsk (Baklanov et al., 1981). A strong signal theory for
these cases was first formulated by Stenholm (1974).

The forces acting on an atom in a field consist of gra-
dient forces, discussed by Askar’yan (1962), and resonance
light pressure, discussed by Ashkin (1970b). The effects
of these forces were early considered by Kazantsev (1973)
and Krasnov and Shaparev (1975).

The spreading due to spontaneous emission was also
considered fairly early (Kazantsev, 1975; Pusep, 1976).
The first derivations of Fokker-Planck descriptions are
given in Kazantsev (1975) and in some detail in Baklanov
and Dubetskii (1976). The derivation was made systemat-
ic for a random-phase field by Javanainen and Stenholm
(1980a,1980b), and the coherent contributions were ob-
tained by Gordon and Ashkin (1980), Cook (1980a), and
Minogin (1980b).

The use of lasers for cooling was suggested by Hansch
and Schawlow (1975) and discussed theoretically by Bak-
lanov and Dubetskii (1976) and Javanainen and Stenholm
(1980b). So far no cooling of thermal atoms has been
achieved in this way, but the longitudinal velocity distri-
bution of an atomic beam has been changed by Balykin
et al. (1979,1980), Phillips and Metcalf (1982), Phillips
et al. (1983), and Prodan et al. (1982).

In a standing wave there appears a spreading of the
atomic velocity distribution. This was first observed by
Arimondo et al. (19792a,1979b). When incoherent spread-
ing is dominant, the process is similar to a diffusion, but
when it stays coherent it is diffractive. This has been ob-
served by Moskowitz et al. (1983), and a theoretical treat-
ment of the transition between the two regimes is given in
Tanguy et al. (1984).

The trapping of particles utilizing radiation fields was
discussed by Gaponov and Miller (1958), Letokhov
(1968), and Ashkin (1970a). Related discussions appear in
Kazantsev (1973). The present understanding is that no
trap based on steady resonance forces is possible (Leto-
khov and Minogin, 1978a; Ashkin and Gordon, 1983); for
detailed discussions and suggested traps, see Phillips
(1984). When the atom is placed in an inhomogeneous
magnetic field, the configuration can trap atoms. At the
time of finishing this article, I saw the first report of suc-
cessful magnetic trapping of neutral atoms (Migdall
et al., 1985). By the time this article appears, more suc-
cessful experiments may well have been performed in this
active field; see Chu et al. (1985).

The use of laser cooling acquired new interest when it
was reported (Neuhauser et al., 1978a; Wineland et al.,
1978a) that trapped ions had been cooled by light. This
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work was developed from Dehmelt’s earlier investigations
of single-particle traps (Dehmelt, 1967). The theory for
these experiments was first developed by the experimental
groups, Neuhauser et al. (1978a), Wineland and Itano
(1979), and Itano and Wineland (1981). A strong-signal
approach has been pursued by Javanainen and Stenholm
(1980c,19812a,1981b), and its final results are reported by
Lindberg and Stenholm (1984), Javanainen (1985), and
Stenholm (1985). This approach promises many interest-
ing spectroscopic applications.

Mandel (1979a,1979b) first pointed out the relation be-
tween the atomic momentum distribution and photon
statistics. The connection with the Fokker-Planck theory
was investigated by Cook (1980b,1981) and Stenholm
(1983). The relationship rests on the conservation of
momentum for free particles. Each outgoing photon
leaves a permanent recoil record on the atomic velocity,
and hence the statistical properties of motion and photons
are related. In resonance fluorescence the occurrence of
sub-Poissonian statistics mirrors the presence of coher-
ence effects in the momentum spreading. Such statistics
have recently been seen by Short and Mandel (1983); so
far the relation to atomic momentum lacks direct verifi-
cation. .

This introduction has tried to trace the history of pho-
ton recoil effects and the main aspects of laser cooling. In
each area only the first papers and some of the most re-
cent ones have been mentioned. More detailed accounts
of the various developments are found in connection with
the discussions in this paper. In addition, the reference
section lists most papers of relevance to the topics treated,
including many not explicitly mentioned in the text.
Even here a subjective selection has been necessary. For
instance, questions concerning recoil effects on high-
resolution spectroscopy are referred to only through a few
papers. Moreover, the fields of photon statistics and the
free-electron response form areas of research on their
own, and no complete listing of references has been at-
tempted here. From a few key references the relevant
developments can be traced.

In this review I shall concentrate on laser cooling and
phenomena connected with it. Many related areas of
study will receive only brief discussions. In addition a
certain approach to the theory will be pursued. For
reasons that will become clear later this is called a semi-
classical approach. It is a development of the adiabatic
elimination technique, which has been found so useful in
many areas of quantum electronics. I choose to use this
approach partly because it has been utilized in our own
work, but also because it offers a general point of view
that gives a certain unity to the various treatments, and it
has been arrived at by different workers in the field start-
ing from a variety of points of view. Its physical inter-
pretation is simple, because the classical forces and the
classical conservation laws form the starting point around
which quantum corrections are calculated. Formally it is
an expansion in Planck’s constant #, but for the different
cases this has to be combined with the physical variables
to give a dimensionless expansion parameter. For
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features not covered in this review the reader is urged to
consult the earlier reviews of Kazantsev (1978), Ashkin
(1980), Letokhov and Minogin (1981b), and for trapped
particles Toschek (1984) and Stenholm (1985). A general
overview of the contemporary situation can be obtained
from Phillips (1984).

The organization of the present review is as follows: In
Sec. II the light pressure force is derived from a complete-
ly classical model, which helps us to decide which force
expression to choose; quantum theory can be obtained by
calculating an expectation value of the corresponding
operator (see, for example, Stenholm, 1978b, Sec. 6.2). In
the semiclassical approach of the present paper the same
force expression emerges from the Fokker-Planck equa-
tion.

In Sec. III the physical aspects of laser cooling of free
particles are discussed. Qualitative estimates are obtained
and their physical meaning is discussed. The same prob-
lem is put on a firm theoretical footing in Sec. IV, where
the exact solution and its physical implications are given.
References to related material are given throughout the
treatment. )

In Sec. V the trapped-particle case is discussed. The
physical picture is introduced and its formalization within
quantum theory is presented. In the semiclassical limit a
master equation is obtained and its structure and physical
implications are discussed in detail.

Section VI reviews the present experimental situation.
It is brief, and the reader is urged to consult the refer-
ences for details. Just now there is much interest in laser
cooling experiments, and many new results are expected
in the near future. Any detailed description of present ex-
periments would only become rapidly obsolete, whereas it
is hoped that the main parts of this review will remain
valid, at least as the foundation for future work.

The paper is concluded by a reasonably complete
bibliography on the mechanical effects of radiation on
atomic matter. It includes references to papers on aspects
of the subject not directly discussed in this review. It is
hoped that the bibliography will prove useful to all
research workers in this promising and inspiring field of
laser applications.

|
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m,R—m,r=0Q v

where the reduced mass is
mym,

m,=T . (2.7)

Adding Egs. (2.5) and (2.6) we find for the center-of-mass
motion
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Il. THE CLASSICAL LIGHT PRESSURE FORCE

When a polarizable particle is situated in a classical
field it will acquire a dipole moment, by which the parti-
cle tries to minimize its energy in the external field, and
hence the particle experiences a force. This is one way to
look at the emergence of radiation pressure, and it is of
some interest to pursue this discussion because it is not
obvious what the force expression is like. It differs from
the force on a permanent dipole in the field, and also
from the instantaneous force on the charges, which obvi-
ously is in the direction of the field vector. The net force
in a homogeneous radiation field must be in the direction
of the propagation vector, as follows immediately from a
consideration of photon momentum.

To be able to follow through the derivation we consider
a dipole consisting of two particles of charge Q and — Q,
respectively, situated in the radiation field E(r,t), B(r,?).
Their equations of motion are

m t;=Q[E(r;,t)+1; XB(r,)]+F, (2.1
mz-l.'2=-—Q[E(rz,t)"l-i'sz(fz,t)]'—F . (2.2)

Here F is the mechanical binding force between the two
particles; it is a function of their relative separation

r=r;—r, (2.3)

only. Using this and the center-of-mass coordinate

R mi 4 mj
=—"T+5-1,
M M
(2.4)
M=ml+m2 >

we can separate the internal motion of the dipole from its
center-of-mass motion. We take their distance |r| to be
much less than the wavelength A of the radiation field
and expand in r. This is no restriction, as all our con-
siderations will stay well within the dipole approximation.
We find

B(R,t)+Ter~VB(R,t) +F4+0(?), 2.5)
m;
N4 lB(R,t)——Tl—r-VB(R,t)} —F+0(?), (2.6)

MR=Q[r-VER,)+iXB(R,1)]
+vX[Qr-VB(R,1)], (2.8)

where we have written for the velocity of the dipole
R=v.
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The dipole moment is
p=0r, (2.9)

and the first term is its ordinary energy expression in an
electric field. Here we have, however, two additional
magnetic terms. ,

Subtracting the two equations (2.5) and (2.6), we obtain
the equation describing the internal motion of the dipole,
but we do not need this here. In most cases the internal
time evolution has to be considered quantum mechanical-
ly, and only the center of mass behaves in an essentially
classical way. We introduce the dipole moment from Eq.
(2.9) and rewrite

MR=(u-V)[ER,)+vXBR,)N]+axXB(R,?). (2.10)
The last term can be rewritten as
. d dB
— re— B —_— —_—
pXxXB a (uXB)—p X Jt
d oB
=— — ——+v-VB | . 2.11
ar (”XB) pX Y +v-V ( )
Using the Maxwell equation
—@z—VXE, (2.12)
at

we rewrite this as

,ll><B==—j—t(p><B)+p><(V><E)—(v-V)(;L><B). (2.13)

The last term can be combined with the second term of

Eq. (2.10) to give

(- VIvXB)—(v-V)(uXB)=[(uXV)X V)] XB
=V(uXv-B)—(uXv)V-B
=[V(vXB)]u . (2.14)

When Egs. (2.13) and (2.14) are introduced into Eq. (2.10)
we obtain

Mii=(p-V)E+%(yXB)+(VE)-u—(;L~V)E

+[V(vXB)]-u

=[V(E+v><B)]'p+g;(u><B) : (2.15)

If we consider the slow drift over a long time period,
the total time deriyative of the strictly periodic function
1 XB does not contribute to the drift of the center-of-
mass motion. To disentangle the vector form of the first
term on the right-hand side of Eq. (2.15) we write it in
components, as

. d ‘
J ]

Here the term with v X B is the ordinary correction to the
electromagnetic force, which in a radiation field is of the
order (v/c) and negligiblee. The main force term
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W jOE; /0x; was derived by Letokhov and Minogin (1981b)
using a more formal argument. Its form differs, of
course, from that of the first term in Eq. (2.10). If thé
electric field is in the form of a plane wave, E «< e, the
force will be in the direction of q, as a simple photon
momentum argument suggests.

To obtain an idea of the change of energy, we multiply
Eq. (2.16) by the velocity v and make the order-of-
magnitude estimate 0E /0x ~gE. Then we have

ﬁ~qv,t,LE , (2.17)

dt
where K is the kinetic energy of the particle. We now
need to estimate the magnitude of the average interaction
energy £E. This is not clear from our classical argument,
but a quantum argument tells us that the transition is
nearly optimized when the flipping rate between the
quantum levels (uE /#) is close to the decay rate I, which
is the natural linewidth. For an atom moving with veloci-
ty v, the Doppler shift is gv, and this should not exceed
the linewidth I during the final stages of the cooling.

Hence for the approach to the final stage we obtain
BE~#l ~#iqu , (2.18)

giving from Eq. (2.17) the decay equation for the atom’s
mechanical energy as

dK
—=—£K, 2.
ot ek (2.19)
where the recoil energy (in frequency units) is
_fig’
e=17 (2.20)
The cooling time constant
Tcoolza_I (2.21)

is of the order 103 s for atoms cooled by optical radia-
tion. It provides the slow time scales in the problem; the
fast ones are the internal transition rates of the atom.
These are given by the flipping rate between the levels
(wE /#) and the decay rate I', both of the same order of
magnitude ( ~ 10® s~!). One small dimensionless parame-
ter in the problem is hence

:%~ 10-5. (2.22)

This parameter, which can be used for expansions, was
identified by Javanainen and Stenholm (1980a,1980b) and
Letokhov and Minogin (1981b). For free particles, it is
the important expansion parameter:.

lll. THE PHYSICS OF COOLING BY LIGHT

A. The basic phenomenon

In this section we present an argument which gives a
detailed picture of the mechanical manifestations of the
interaction of optical radiation with matter. The argu-
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ment must be based on a quantum-mechanical approach.
It will be presented in a formally more adequate way in
Sec. IV; here the argument will be based on simple physi-
cal considerations.

We consider a simplified atomic system consisting of
two levels, separated by the energy #iw (see Fig. 1). This is
acted upon by an ideally monochromatic laser field of an-
gular frequency Q traveling along the z direction. The
light causes resonant transfer of population between the
levels when the atomic velocity component along the z
axis causes a Doppler shift that compensates the detuning
of the laser from the atomic resonance, viz., when

p,= 2= : (3.1)

q

where ¢ =Q /c is the wave vector of the light. When the
atom absorbs the energy quantum #(Q from the light field,
it must also compensate for the loss of momentum by the
field. Thus the atom acquires an additional momentum
#ig along the direction of propagation of the light. At a
subsequent induced emission process this momentum has
to be returned to the field and the atomic velocity before
absorption reoccurs. When, on the other hand, the excita-
tion is discharged through spontaneous emission, the out-
going photon possesses no memory of the direction of the

laser beam, and the momentum recoil experienced by the.

atom occurs in a random direction. After the emission
process the final velocity component has a probability dis-
tribution spread over the interval (Mvy,Mv,+ 2%gq), where
M is the atomic mass. The single-photon momentum-
exchange cycle is illustrated in Fig. 2.

From the classical point of view, the spontaneous emis-
sion process is fully random, and even a single excitation
event followed by spontaneous emission implies a descrip-
tion in terms of an ensemble of atoms. On the average
the atom has gained a momentum g, and its velocity has
changed by

fig (32)

U, = H
along the z axis, but the individual atom may end up any-
where within a range of magnitude 2v,. This same uncer-
tainty is imposed upon the direction transverse to the
laser beam. Thus the basic process of interaction between
light and matter can be utilized to effect a change of the
average velocity of an atomic system, but as an inescap-

FIG. 1. Our basic model of the atom with the energy o
separating the states 1 and 2, and the laser photon with frequen-
cy  inducing dipole transitions between the levels.
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FIG. 2. An atom with initial momentum p absorbs a laser pho-
ton with momentum #iq, which later is spontaneously emitted in
a random direction. The final atomic momentum ends up any-
where within a range of 27g in the z direction.

able adjunct we have a broadening of the uncertainty in
the velocity values, which forces us to use a statistical
description in terms of an ensemble of systems. Usually
this is not a serious drawback, because measurements are
carried out on atomic assemblies, which constitute a reali-
zation of the ensemble occurring in the theory.

For optical fields the recoil velocity v, is small com-
pared with the velocity range over which the resonant
condition (3.1) is nearly satisfied. Its width is given by
the natural linewidth I', and each single-photon event
causes a shift of the Doppler tuning

2
qu=%z2s , (3.3)

which is much smaller than T, as found already in Eq.
(2.22). Thus we need to accumulate many basic processes
to achieve an observationally significant change in the
atomic velocity. The problem is thus highly nonperturba-
tive, because we must collect a large number of photon
momenta. The individual photon contribution can be
considered small, and we can assume the exchange of
momentum to be a continuous process. Then the discrete
nature of the interactions becomes smeared, the quantum:
features can no longer be discerned, and a classical
description of the motion is possible. The two-level sys-
tem of the atom must, however, be described by quantum
mechanics. Hence the picture that emerges can suitably
be called semiclassical.

To be able to accumulate many units of photon
momentum on the same atom, we must be able to reexcite
it repeatedly. Hence its spontaneous decay must take
place to the lower level 1 only, and this level must be the
ground state, or at least a sufficiently metastable state.
Otherwise the atoms will escape the cycle we wish to im-
pose on them too soon. If the upper level decays to states
other than the lower one, special arrangements may be
needed to return them to the cycle. In our model we as-
sume the two-level system to be closed; the probability is
conserved as all decay of the upper level ends up on the
lower one.

Let us now proceed to make a perturbation estimate of
the effect of photon momentum deriving from one single
traveling wave. In each single process, the energy must be
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conserved within the uncertainty #I', as I'~! is the aver-
age lifetime of the upper level. We choose to enforce this
by the dimensionless Lorentzian
FZ
LA4+vg)=—"""75"7, (3.4)
? (A+vg)*4T?
where A=w—Q is the detuning and vg is the Doppler
shift.

The number of induced absorption processes is, accord-
ing to perturbation theory, proportional to the square of
the transition dipole u times the field amplitude E. Here
we choose the dimensionless parameter
2
LE | (3.5)

I=
Al

which, according to the argument in Sec. II, is the
squared ratio of the induced flipping rate to the spontane-
ous decay rate. It gives the degree of saturation of the
light-induced processes. For small values essentially no
transfer takes place; for values exceeding unity the effi-
ciency starts to decrease because of saturation. The op-
timum is approximately I ~1. The number of spontane-
ous decay processes per unit time is fixed by the decay
rate I', and when the laser field is large enough this deter-
mines the rate of momentum transfer. Each basic process
of an induced absorption followed by spontaneous emis-
sion transfers, on the average, a momentum of #g to the
atom. The average force can now be estimated from

_ momentum transfer

F -
time

=#igIL (A +vq)T"
FZ
=gl —————— . (3.6)
g (A+vg)?+T?

This is the induced light pressure force derived by Ashkin
(1970a). When the force (3.6) is used to cool atoms the
velocity decreases, and towards the end of the cooling we
can expand the force in the remaining velocity v,

F=Fy—Bv+0?) , (3.7
where
I'\Z
Foz‘ﬁqrfm , (3.8)
4MT €
= [—= |A. 3.9
k [1+(A/T)?? | T @9

The force F, is a steady deflection force, and the part
—Pu is clearly a frictional damping of the motion, when
A is positive, i.e., @ > Q. In that case the transition needs
to extract kinetic energy, and there is a damping force
directed against the motion. The maximum friction
occurs at the detuning A=T"/V'3, which near I~1 gives
the expressions

Fo~#ql ,
B~Me=1#g? .

The first equation just tells us that the photon momentum

(3.10)
(3.11)
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fig is extracted at a rate given by I'; the second gives from
Newton’s equation,

dv
Mdt =—pv, (3.12)
the result
dK 2
—_— =2 .
it Bv ek (3.13)

in agreement with the estimate (2.19).

The randomness of the spontaneous emission process
can be simulated by adding a random force MF to the
equation of motion. The ensuing Langevin equation is
then '

Mi=Fy—PBv+MF(1) . (3.14)

To obtain the effects of the spontaneous emission, we
must estimate the diffusion constant of the velocity due to
the Langevin force F(¢). The number of spontaneous
emission processes from Egs. (3.4)—(3.6) is

N =ITL(A+vg)t , (3.15)

and each one causes the velocity to change by a random
step of size v,. Using an argument familiar from Browni-
an motion, we can estimate the ensuing velocity spread by
setting

(v(t)?)=2Dt=v2N . (3.16)
For I =1 and A~0 we obtain
2 2
p=tyr-fel _eAl (3.17)

M?* M
The random-walk problem characterized by Egs.

(3.14)—(3.17) can be described by the Fokker-Planck
equation

= | 2P+

ap_Foap  aP_ 3 [, ,oP
ot M av oz v [M v (3.18)

The origin and properties of this equation were recently
discussed in detail by Risken (1984). The function
P(z,v,t) describes the probability distribution of atoms in
the phase space of position and velocity (z,v). Here only
the z component is considered; the motion in the trans-
verse directions is a simple diffusive spreading.

To be able to see the general features of this physical
situation, let us assume that the friction 3 can be neglect-
ed and no spatial inhomogeneity needs to be considered.
Then the solution of Eq. (3.18) is

P(v,t) <exp (3.19)

(MU '—‘Fot)z
Dt ’

which describes an ensemble of particles continuously de-
flected by a constant force, but spreading in velocity in a
diffusive manner. This is a simplified version of the
beam deflection experiment used for detection purposes
and isotope separation (see Fig. 3). Such experiments
were first reported by Picque and Vialle (1972), Schieder
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Particle

1 1 1 t

Laser

FIG. 3. A beam of atomic particles is defected by laser light
pressure, but owing to spontaneous emission the beam profile
inevitably spreads diffusively.

et al. (1972), and Jacquinot et al. (1973). Recently laser
deflection has been explored in detail by Bjorkholm et al.
(1981).

The deflection process serves to introduce a new time
scale Tg4eq for transferring a particle out of resonant in-
teraction by the ensuing Doppler shift. A particle origi-
nally at resonance is shifted out of resonance when its
velocity has changed by the amount

Avp=T/q . (3.20)
From the equation of motion (3.14) we estimate
Avp=FqT 4.0 /M . ‘ (3.21)
When this is combined with Eq. (3.20) we find
Tdeﬂ=£2=(2e:)‘1 . (3.22)
fig

Consequently we find that the deflection time scale T4.q
is of the same order as the cooling time scale Ty, as
given by Eqgs. (3.13) and (2.19). This is a remarkable re-
sult because one time scale derives from the friction term
B and the other from the force Fj,.

The averaged light pressure force [Eq. (3.6)] was de-
rived under the assumption that the individual photon
impacts were small enough to lead to a continuously act-
ing average force. In the Brownian motion argument of
Egs. (3.16) and (3.17) we had to use the discrete step size
explicitly to obtain the diffusion coefficient; hence the
diffusion process is an indication of the quantized nature
of the process. Thus the diffusive spreading of velocity is
the lowest-order quantum correction to the semiclassical
force picture. Looking at the force expressions (3.10) and
(3.11) and the diffusion (3.17), we find that they do,
indeed, form consecutive terms in an expansion in #%. As
this, however, is a dimensional quantity it is ill advised to
call it small. The corresponding dimensionless variable is
determined by the number of single photon recoil momen-
ta needed to take a particle across the velocity range of
the interaction, as given by Eq. (3.20). We denote this by

M AUD
hq b
which gives the parameter already found in Eq. (2.22),

g l=2 (3.23)
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5l _E

=t 2MT T’
This is indeed proportional to #. Because spontaneous de-
cay is a pure quantum process, I"' depends on # also, but
the mechanism for spontaneous decay is totally indepen-
dent of the photon recoil effects considered here. Conse-
quently we regard the actual value of T" as accidental and
do not require it to follow when we imagine # to go to
zero.

(3.24)

B. Cooling in a standing wave

The standing laser wave can be decomposed into a pair
of oppositely traveling waves. In perturbation theory we
can assume that these two act on the atoms independent-
ly, and the resulting force is hence the direct superposi-
tion of two waves as described in the previous section.
Because the second wave travels in the opposite direction,
its wave vector points backwards. One consequence is
that the sign of the Doppler shift is reversed, and another
is that the momentum transfer between the field and the
atom occurs in the opposite direction. Adding the two
forces together we obtain, as in Eq. (3.6),

2 2

F=#gIT -
g (A+vg)+T?  (A—vg)*4T?

(3.25)

At zero velocity, this is zero; it is an antisymmetric func-
tion of velocity for all values of v, and when A is positive
its sign is the opposite to that of the velocity. The stand-
ing wave hence provides cooling for all velocities.

When the velocity is small, the force (3.25) assumes the
friction form

F=—Bv+0(?%; (3.26)
here
23
=TT \ 52, (3.27)

(A24T22

where we again use the estimates I =1 and A~T/ V3; see
Egs. (3.9) and (3.11). The spontaneous emission remains
unaffected by the presence of the fields, but as each trav-
eling wave serves to excite the atom, the diffusion coeffi-
cient may be taken to be twice the result of Eq. (3.17).

The Fokker-Planck equation of the system can now be
written in velocity space alone, because no average force is
exerted by the light. We have

(3.28)

9P _3 |Bv opP
ot [MP Dav

This describes how an initially narrow velocity distribu-
tion, centered at an arbitrary initial velocity vg, is forced
to move its average to lower velocities by the friction
term, but at the same time the diffusion process broadens
the velocity distribution. The chain of evolution is illus-
trated in Fig. 4. When the broadening reaches the magni-
tude of the remaining velocity a steady state ensues. In
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cooling force

e

AVAVaN J\ Vo

FIG. 4. When an atomic assembly is cooled from an initial
velocity vy by a standing wave, a steady state occurs when the
diffusive spreading exactly compensates the residual cooling
force.

\'

contrast to the deflection caused by a traveling wave, the
standing wave cools the particles to an ultimate steady
state.

The average velocity decays according to the exponen-
tial law

v=vge P, (3.29)
but at the same time the velocity spreads according to
Av~2Dt . (3.30)

From the equation of motion, the decrease in velocity
during a time interval Az is given by

Av=—PBv At/M .

(3.31)

Towards the end of the cooling process, these velocities -

are of the same order of magnitude as the spreading given
by Eq. (3.30); thus identifying Av and v, we obtain from
Egs. (3.31) and (3.30) the final velocity

172
2DM

B

This same result can be obtained from the final steady-
state distribution implied by Eq. (3.28). We find

_ B’
2MD

(3.32)

P ~exp , (3.33)

which gives a velocity in agreement with Eq. (3.32). The
Fokker-Planck equation (3.28) can also be solved for the
approach to equilibrium if needed.

The final mechanical energy of the atomic particle is
given by Eq. (3.32) as

DM?
5 -

Introducing the estimates (3.17) and (3.27), we find the re-
sult

sfm~ﬁl‘ .

Efn=TMv% ~ (3.34)

This result is of rather general validity. The ultimate
physical limit of the cooling is given by the estimate
(3.35). It can be understood if we remember that there is
an uncertainty in the spontaneous emission time of the or-
der of I'"!, and the energy of the state of the atom cannot
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(3.35) .

be less than the energy uncertainty implied by this. The
resulting lower limit for the energy is precisely Eq. (3.35).
Another way to look at the result emerges if we consider
the spontaneous emission to be caused by the vacuum
fluctuations of the field. Owing to the equipartition
theorem, the equilibrium energy must be determined by
the average fluctuation energy of the dissipating system.
The spontaneous decay rate T is clearly a measure of its
spectral strength at the frequency of the transition, which
again implies the estimate (3.35).

In our calculations we have found a final Maxwellian
distribution (3.33), which may be characterized by a tem-
perature T;. In the atomic case we have I' of the order
10® s=! and then T;~1073 K. Thus we find that the
quantum noise implied by spontaneous emission does not
set a very serious limitation on the cooling by light pres-
sure.

If we go to longer wavelength, the cooling limit de-
creases because in Eq. (3.35) we have

| S Nt (3.36)
Because, however, the cooling time scale from (2.21)

grows like

T oot <A, (3.37)

the efficiency and practicality of the process rapidly de-
creases.

The cooling speed can be increased by going to shorter
wavelength, when each photon carries away a larger
chunk of momentum. The ultimate cooling limit
deteriorates rapidly, however, due to Eq. (3.36). When
fewer processes are needed to cool, the corresponding
noise grows. For small enough A, the photon momentum
#ig can never be regarded as small, and our semiclassical
approach breaks down. This situation is discussed by
Letokhov and Minogin (1981b).

When we consider only the diffusive process, we can in-
troduce a time scale T, Wwhich makes the velocity dif-
fuse over the width [Eq. (3.20)], Avp, which is the range
of velocities interacting with the radiation. From Eq.
(3.30) we obtain

ZDTdiff=AUg N (3.38)
which with (3.20) and (3.17) gives
Tdiff=‘;“ L Teoot - (3.39)

Because I' >>¢, the diffusion process is much slower than
the cooling and deflection, which takes place over times
of the order of T,,. Except for providing the estimate
for the ultimate cooling limit [Eq. (3.35)], the diffusive
motion may often be neglected in the evaluation of cool-
ing schemes. Mathematically this is due to the fact that
the light pressure force and the diffusion are consecutive
terms in a systematic expansion in the small parameter &
of Eq. (2.22). .

When we tune our laser exactly to resonance, A=0, the
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friction coefficient B in Eq. (3.27) goes to zero, and only
the diffusive spreading remains. This can be observed
when a resonant laser beam is made to cross an atomic
beam in the manner shown in Fig. 5. When the interac-
tion time ¢; is so short that no incoherent relaxation pro-
cesses have time to act, the pattern observed corresponds
to the Bragg scattering of the atomic wave from the
periodic potential of the standing electromagnetic wave.
In this limit a comb of discrete peaks is expected, owing
to the interplay between photons emitted and absorbed
from the two traveling waves. Such an effect has been
observed by Moskowitz et al. (1983).

When the interaction time is such that spontaneous
emission can act, the distribution after the scattering ap-
proaches a diffusive process. This was the case in the ex-
periment of Arimondo et al. (19792a,1979b). A naive ap-
plication of the diffusion results (3.30) and (3.15)—(3.17)
would give for the width of the transverse distribution

(v})=2Dt;= —i——t «E%; . (3.40)

M?

In the experiment by Arimondo et al., the dependence on
the interaction time #; was not observed, but the deflec-
tion was measured as a function of the laser intensity E2.
The result was not in agreement with the calculation
(3.40) giving v < E.

The explanation seems to be that for long enough in-
teraction times the atoms are deflected enough to feel the
detuning due to the Doppler effect. This sets a limit to
the transverse velocity v, less than that given by Eq.

(3.40). For large transverse velocities we can use Egs.
(3.15)—(3.17) to write
ﬁ2q2F3I
(vi)= t (3.41)
YT Mg 4T

When the transverse velocity becomes large enough to af-
fect the result of the diffusion process, qu, ~T" and it fol-
lows from Eq. (3.41) that :

v, o (It;) 4 < E1? (3.42)

This estimate is in qualitative agreement with the ob-
served dependence on laser intensity. A more detailed in-
vestigation of this effect is presented in Arimondo et al.
(1981). Unfortunately there are no experiments varying
the interaction time ¢;, which could verify the estimate

Oven Det.ector
G_—_—: === : ===
Atomic
beam

standing
wave
FIG. 5. An atomic beam is made to scatter from a resonantly
interacting standing laser wave. The detector sees an interfer-
ence structure similar to Bragg scattering because of the quan-
tum nature of the single-photon scattering events in the stand-
ing wave.
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(3.42), v, <t!’*. The experiment of Grinchuk et al.

(1981a,1981b) does not provide any detailed analysis of
the dependence on the parameters.

The transition between a coherent scattering from the
periodic potential to a diffusive regime is calculated in de-
tail by Tanguy et al. (1984). They also predict a hitherto
unobserved splitting of the deflection profile (Tanguy
et al., 1983). The theory is further discussed by Dalibard
and Cohen-Tannoudji (1985a). '

C. Connection with photon statistics

The basic interaction under consideration is the ex-
change of energy and momentum between a radiation
field and an atomic system. Each process emits or ab-
sorbs one unit of momentum #g from the field and
changes the photon number by one unit. The accumulat-
ed change of atomic momentum thus corresponds exactly
to the accumulated change in the quantum number
characterizing the field. We start the process in the initial
state |pg,n0,0) with initial atomic momentum p,, the
laser photon number n,, and the state of spontaneously
emitted photons empty. After an interaction period the
state must be of the form

|¥)Y= 3 c1|po+itig,no—11), (3.43)
: 1

where [ is any integer; the situation is illustrated in Fig. 6.
The state |I) really stands for a state with ! photons in
different outgoing modes, as no coherence effects between
them are allowed. The laser state is usually much more
complicated than is assumed in Eq. (3.43), but, on the
other hand, it is not materially affected by the absorption
of a few photons. In the following discussion we shall
make a semiclassical approximation and neglect the
changes in the state of the laser field.

The square of the coefficients, |c; |2, determines the
probability of the momentum change /#ig or, alternative-
ly, the probability for the spontaneous emission of / pho-
tons. Hence these two observable quantities will have the
same statistical properties. The variable / counts the in-
teger number of events required to reach the state (3.43).
Hence the momentum distribution caused by the mechan-
ical manifestations of light mirrors exactly the photon
distribution created by the process. As the former can be

\fj -1 51/ Hl%l/{ -3

P, +hq o B +3hg

p +2hq

FIG. 6. A series of interaction events experienced by an atom
with initial momentum p,, which enters a laser field with ng
photons. The conservation of momentum implies that we can
either count the decrease in the atomic momentum or the num-
ber of spontaneously emitted photons; this shows the reason for
the connection between the atomic momentum distribution and
the photon statistics.
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obtained from a semiclassical theory, so can the latter.
This relationship was first pointed out by Mandel
(1979a,1979b).

The situation is well known in another area of optical
physics, the free-electron laser. There the gain of the
laser photons is the quantity of interest, but instead the
change of electron momentum is calculated. This is par-
ticularly clear from the approach in Bambini and
Stenholm (1979). For a review of this field with further
references the reader is referred to the article of Stenholm
and Bambini (1981).

For the atomic case, Cook (1980b) has connected the
momentum statistics with photon statistics in the follow-
ing manner.

Consider Fig. 2 and write the z component of the atom-
ic momentum after n absorptions followed by spontane-
ous emissions as

p=po+nfig+ >, #ig cos, , (3.44)

=1
where 7ig cosf; is the momentum projection of the spon-
taneously emitted photon. The average of the sum in Eq.
(3.44) is zero, but

(p)=po+Hig{n) . (3.45)

Here, however, both the number # in a given time and the
directions of the outgoing photons are random variables,
and hence for the dispersion

(Ap?)={(Ap)5) +#2q* |[{An?) + 3 (cosB;cos0,, ) | .
Im

(3.46)

Because subsequent photon emissions are uncorrelated, we
have

> (cos6icos0,, ) = 3, {cos’d;) =aln) , (3.47)
im !

where a is a purely geometric factor. We return to this in
Sec. IV.A. We obtain

(Ap?) ={(Ap)}) +#2¢*({An?) +aln)) .

From the calculation of the diffusion coefficient we shall
find that there is a contribution proportional to a owing
to the spreading in each spontaneous emission event.
Writing the diffusion coefficient as

(3.48)

D=Dy(14+Q +a), (3.49)
we may use this to write Eq. (3.46) as

(Ap?)={(Ap)3) +2M*Dy(1+Q +a)t (3.50)
and identify

2M?
<n>:WDOt 5 (3.51)
2
(an?y =22 p1+0x . (3.52)
#i'q
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Using Eq. (3.45) we can obtain
2M?
fig
which together with Eq. (3.14) implies the relation

d
i (p)= Dy, (3.53)

which indeed agrees with Egs. (3.10) and (3.17). The
present derivation is, however, more general and should
be valid for any theory of the type considered.

The correction to Dy has been denoted here by Q, and
it is the task of a more detailed theory to evaluate it. To
see its significance we consider the parameter introduced
by Mandel (1979b). For an ideal Poisson distribution we
would have (An2)=(n), and hence any deviation from
this can be measured through the parameter

(An?)—(n)
(n) =2

as follows from Egs. (3.51) and (3.52). The parameter Q
thus measures the deviations from Poissonian statistics.
When this is negative, the photons appear more regularly
than in a totally random emission process. This is sub-
Poissonian statistics, and the photons appear antibunched.
For positive values of Q we have super-Poissonian statis-
tics, with large fluctuations in the photon distributions.
The physical significance of the parameter Q is thus to
keep track of any coherence between the spontaneously
emitted photons. In the present case this is, of course,
caused by the presence of the strong laser field acting on
the emitting atom.

Cook (1981) used the relation between the momentum
distribution and the photon statistics to evaluate the latter
completely for some special limiting cases.

(3.54)

(3.55)

D. Discussion and conclusion

From Egs. (3.8)—(3.11) and (3.25)—(3.27) we find that
the light pressure force is proportional to Planck’s con-
stant #. This dependence derives from the recoil momen-
tum Mv, =7#gq transmitted in each discrete quantum event,
and it is hence a true manifestation of the quantum na-
ture of the process. In the limit of a small velocity, we
expand in the Doppler shift gv, which provides a second
factor g making the result proportional to &. The
Doppler shift measures the distance traveled against the
wavelength of light, and it is hence a purely classical ef-
fect deriving from the wave aspects of light. In contrast,
the factor 7gq is a photon recoil effect.

The quantum-mechanical formulation of the problem
attributes the exchange of momentum between radiation
and matter to a series of individual events of photon ab-
sorptions and emissions. Such events occur at random
and appear as a stochastic process. The average value
gives the light pressure force, but the statistical spread
will be seen as a spread in the ensuing momentum distri-
bution. In Sec. III.A we saw that such a spread is an un-
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avoidable consequence of the momentum exchange pro-
cess. -

In Sec. IILLA we discussed the discreteness in terms of a
Brownian motion. For N individual events, with N given
in Eq. (3.15), the expected spread is proportional to V'N,
which is assumed to obtain Eq. (3.17). The diffusion
coefficient can be written as

D #q°1°1 .
2MAT2+(A+qv)*]

Except for a factor of proportionality, this is the result of
a more detailed theory for the factor D, of Eq. (3.49). As
we see, this is proportional to #?, and can hence be con-
sidered as a manifestation of the quantized nature of the
basic interaction process. When the velocity goes to zero,
both the diffusion constant and the friction coefficient B
of Eq. (3.11) are proportional to g2, but they depend on #
to different powers. Using a consistent expansion in g,
Dalibard and Cohen-Tannoudji (1985b) have shown that
they are connected by an exact fluctuation-dissipation re-
lation.

In our work we consider the expansion in #, and this
can hence be regarded as an expansion in the quantum na-
ture of the basic interaction processes. This is the basis
for our calling it a semiclassical expansion. It is assumed
to be convergent, and its rate of convergence is deter-
mined by the magnitude of the small dimensionless pa-
rameter used. Because the diffusion terms appear in a
higher order than the drift terms in the Fokker-Planck
equation, the diffusive spreading is assumed to appear as
a smearing only around the classical trajectories. In this
way the theory also avoids any ambiguity of the kind as-
sociated with the names It0 and Stratonovich (see the dis-
cussion in Gardiner, 1983, Chap. 4). As this is mainly
concerned with the position of the diffusion coefficient
with respect to the derivatives, a brief discussion may be
illuminating.

In the straightforward mathematical derivation, the
diffusion coefficient emerges as a sum of different parts,
which occur at various positions with respect to the
derivatives. In the final results of the derivation (see Sec.
IV) these contributions are moved through the derivatives
at will, and the corrections to the drift coefficients are
neglected. In the chain

(3.56)

@ _2a,. 3 [pw]a
D) au2“avD(”)au_ ov ]av
N aDw) | 8
- asz(v)— [ ov ]av
3 | aD(v)
30 [ 30 (3.57)

the first-order derivative terms ought to be combined with
the drift term, but they are of second order in the expan-
sion parameter and hence assumed smaller than its main
terms, which are of first order. Moreover, if they are
added, they provide a contribution «#* to the force ex-
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pression, which is of order «#. This constitutes a quan-
tum correction to the classical force, and hence such
terms must be omitted if the force is to be identified with
the force in Newtonian mechanics. The present argument
was developed in Javanainen and Stenholm (1980a) and
leads us to agree with the conclusion by van Kampen
(1981) that the physics should by itself remove any ambi-
guity of this subtle kind.

The Fokker-Planck equation is an exact one for strictly
Gaussian processes. For others it must be an approxima-
tion where successive terms carry higher and higher
powers of some small parameter, here Planck’s constant
#. The higher-order terms are negligible because of the
smallness of this parameter. In our case we have, to
lowest order, an equation of the type

mv=F«f, (3.58)

and hence the solution V' (¢) must be proportional to #. If
Sv denotes the quantum fluctuations around this classical
path we find

() =([V()+&v]*)
=V(t)+(dv?)

=V(t)?+2Dt < # . (3.59)

Thus we can see that the accuracy O(#) in Eq. (3.58) is
sufficient and necessary to assure consistency with the
Brownian motion approximation, which implies D o #2.
The inclusion of terms of order #* in the force of Eq.
(3.58) is, in principle, inconsistent with the truncation re-
quired to obtain the Fokker-Planck equation. If, on the
other hand, these higher-order terms are included, there is
the theorem by Pawula (1967), which states that they may
give rise to negative probabilities. This agrees with the
conclusion from our semiclassical expansion. Either we
use a classical light pressure force with a spreading in-
duced by quantum mechanics or we solve the full quan-
tum problem. No intermediate procedure can be given a
physical interpretation, but it can at best serve only as a
numerical approximation to the exact quantum-
mechanical calculation (see, for example, Risken, 1984,
Sec. 4.6).

IV. THE THEORETICAL APPROACH

A. Formulation of the problem

We are going to consider the problem of a two-level
atom interacting with a few high-intensity (laser) modes
and decaying by interaction with the continuum of vacu-
um modes. For notational simplicity we choose to con-
fine our system to a large (but finite) box of volume. V. In
some cases this may be a real cavity, but then the spon-
taneous decay may be affected too. In our considerations
the volume ¥V is assumed to go to infinity, but the strong
modes are taken to retain their intensity because they
originate from a distant laser source.
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The Hamiltonian for the laser field is given by

H/#i=3 Q.blb, , (4.1)
q

where qu is the Boson operator creating a photon in the
mode g. The polarization indices are suppressed, but they
can be added whenever needed.

In the dipole approximation the interaction operator
can be written as

Hin=—pE; 4.2)

it is a valid expression at least when the atomic particles
occupy a volume much less than A* and only transitions
between bound states are considered.

A considerable amount of controversy has arisen in
connection with this choice of interaction operator. The
exact quantum-mechanical operator uses the vector poten-
tial in accordance with the minimal coupling prescription.
In the dipole approximation the Hamiltonian (4.2) can be
derived by a canonical transformation representing a
change of classical gauge (see Power and Zienau, 1959).
Even if the choice of gauge should have no observable
consequences, it is difficult to ascertain the validity of the
result in approximate calculations. The controversy con-
cerning this question is reviewed by Schlicher et al.
(1984). The whole question of gauge invariance is clari-
fied by Cohen-Tannoudji et al. (1977); a pedagogical pre-
sentation is given by Savolainen and Stenholm (1972).

We denote the states of the atom by | k,a), when its
translational momentum is #k and its internal state is
a (=1,2). For optical transitions only those that approx-
imately conserve energy are of importance. The emission
of a photon must thus be accompanied by a transition
from an upper level to a lower one, and an upward transi-
tion must occur with the absorption of a photon. Conse-
quently only these terms need be retained in the Hamil-
tonian in atomic physics. Borrowing a term from mag-
netic resonance physics, we call this the rotating-wave ap-
proximation (RWA). Implementing these arguments, we
write Eq. (4.2) in the form

Hiy=—#%2 821(g) | k+4,2)(k,1]b,
kq

+1k—g,2)(k1]b)),  4.3)
where

2, (4.4)

[g2(q) |*= ZEOth
From the g sum over radiation modes in Eq. (4.3) we
separate the strong modes by going to a special “interac-
tion picture” with their Hamiltonians ﬁqu;bq as the
“unperturbed part.” For the field operators we then as-
sume that they can be replaced by ¢ numbers in the spirit
of the semiclassical approach. We have

by () =exp(iQyb b, 1)byexp(—iQyblb, 1)
—Bgexp(—iQ,t),

¥ . 4.5)
b (1)— By exp(iQ,t) .
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With these replacements in the interaction operator (4.3)
we find its component deriving from the classical fields

Hy=—+ S UE,[ |k +¢,2)exp(—iQ,0)(k,1|
kg

+ |k —q,2)expiQ,t)(k,1|], (4.6)
where

274Q
€0 vV

2
q9

I

|B, % 4.7

The phase of B has been incorporated into the choice of
the initial time #=0. The interaction operator (4.3) still
retains its form, but the ¢ sum now excludes the strong
modes. In the continuum limit this implies no conse-
quences except the neglect of quantum fluctuations in the
strong modes.

With the RWA, choice (4.7) corresponds to a field

E(r,t)=E,cos(r-q— Q1) . (4.8)
For a radiation field, the energy density is given by
sd:%soE'Zﬁ—L_B—z:eOE'z R 4.9)
2u0
which with Egs. (4.8) and (4.7) gives
#Q, By B,
ea=veEl= ——i’f,ﬁ—" . (4.10)

From this we can see that B;‘ B, is the photon occupation
number of the mode g.

When the atom is excited to its upper level |2), it will
spontaneously emit a photon, which is irretrievably lost
into the continuum of vacuum modes near the transition
frequency w=(E,—E;)/#%. In this way the quantum
fluctuations in the vacuum field act as a bath that deter-
mines the spontaneous decay rate I'. Eliminating the con-
tinuum of the vacuum modes by the method of Cohen-
Tannoudji (1977), but retaining the momentum depen-
dence of the atomic states, one finds for the density ma-
trix the relaxation terms

—%(k,z;mk,z):—r(k,z]mk,2>, (.11a)

L (k11p1k1)= 3 Gl;a)(k+.2]p| k+4,2) ,
q

(4.11b)

%(k,z lplk,1)=(iA—5T)Xk2|p ]'k,l) , (@.11¢)

where
Gk;q)=27|g(q)|8(Q —0—et4q+er)  (4.12)
and
#k?
€= M . (4.13)

The decay rate is given by
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=3 G(k;q) . 4.14)
q

Its dependence on k is so slight that it can be neglected.

In the limit of V— o« we can replace all g sums by in-

tegrals,

E——) L4 qu.

7 (27)3

(4.15)

We reduce the dependence on momentum to the one
direction singled out by the laser momentum #iq. The re-
sult in Eq. (4.11b) becomes

r +1
[ daGkqpk+a)—=- [ dx Wxlplk +4x) ,

(4.16)

x=ak 417

The function W(x) is the dipolar angular dependence of
the spontaneous emission expressed in terms of the cosine
between the momentum of laser photons and that of the
outgoing ones. It depends on the geometric configuration
of the experiment.

For later use in Fokker-Planck equations we expand in
the variable g in Eq. (4.16) and obtain’

+1 2
5T f_l dx W(x) p(k)+qx9£+%q2x2§£—+ e

ok dk?
(4.18)
1 . aze
=Tp(k)++algq? > - (4.19)
ok
Here we have used the normalization
+1 :
3 [, Wxax=1 (4.20)
and introduced the second moment
1 +1 2
a=3 f_l x*W(x)dx . (4.21)

This is a measure of the spreading introduced in each
spontaneous emission event; see Fig. 2.

If we make the contrafactual assumption that isotropic
spontaneous emission between two levels exists, we have
W (x)=1, giving from Eq. (4.21)

a=7 . (4.22)

This case would require a transition between s states in an
atom, but as this is dipole forbidden it remains a hy-
pothetical case. It is, however, often convenient to neglect
the angular dependence of W (x) in purely theoretical cal-

culations. The ensuing error is never of any great conse-
quence.

For a dipole transition in an ordinary geometry [e.g.,
(L =0)<>(L =1)], we have

W(x)=3(1+x2), (4.23)

as follows from ordinary quantum theory (see, for exam-
ple, Corney, 1977, Sec. 5.2.2).

The normalization agrees with Eq. (4.20), and from
(4.21) we find

(4.24)

2
a=35 .

This is the value to use along the direction of the laser
beam. The transverse emission pattern is slightly more
complicated.

The present approach follows closely our earlier work
(Stenholm, 1974,1978a,1978b; Stenholm and Javanainen,
1978). The spread due to the angular distribution of out-
going photons is discussed by Pusep (1976) and Pusep
et al. (1977); for an arbitrary geometry see Javanainen
and Stenholm (1980a), and for a simple but complete
derivation see Mandel (1979a).

For a free particle we need only its momentum to label
its state, and then there is no information about the spa-
tial dependence of the atomic particle distribution. In
many cases, however, it is of interest to follow the spatial
development, and then the position dependence of the
density matrix becomes important. This is necessary
when the particle sits in an external potential or when
questions concerned with trapping are important.

In the position representation we have, for one particle,
# | 9 a3’

—ZE 2 )<’1|P|"2>

., 0 _
lﬁat<"1|Pf"2)— ar% ar§

+V(r)(r|p|ry)

—(rilp|rViry) . (4.25)

In addition to the spatial labels displayed explicitly, there
may be labels for the internal states of the atom. The po-
tential V' (r) can also be an operator on these indices.

The effects of photon recoil are, however, displayed
most clearly in the momentum representation, and to re-
tain some measure of this feature one can represent the
information contained in the density matrix by the so-
called Wigner function,

p(R,P):—V% [ e=PU/AR 4 Lr|p|R—2r)dr, (4.26)

which was introduced by Wigner (1932). Applying this
transformation to Eq. (4.25), we obtain

9 P o __ 1 . -irwn L 1
3PP+ 37 SR p(RP)=— s Je [V(R+ +1)p(R,1)—p(R,1)V(R—11)ldr
Ly R+ 22 R P)—pR, PV R_AD 4.27)
i% 2 ap P ’ 2 9P ||’
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—
where the derivative /0P acts on the function to its left. When Planck’s constant 7 goes to zero, we find the equation

P, Py W p_  AIVI
3¢t ' M 3R OR 3P 24 3R3 oP? '
The left-hand side here is just the classical transport derivative in a potential ¥V(R), and the right-hand side gives its
quantum corrections. For potentials of the form V « R*, where s =0, 1, or 2, the dynamic evolution gives no quantum
corrections. The only quantum feature is found in the initial distribution, which cannot be too localized in the (R,P)-
phase plane owing to the uncertainty principle.
The Wigner representation is not the only useful one in quantum electronics. For a more detailed discussion see
Stenholm, 1978b, Sec. 3.2.
When the potential is due to a strong semiclassical field of the type (4.8), we have

(4.28)

V="V,exp(iq-R)+H.c. (4.29)
and we find from Eq. (4.27)
. .#i 3 iQR 1
exp |iq- Rit;gl; Pp(R,P)=e'T"p(R,P+ 5 7q) . (4.30)

This is then used in the equation of motion for the density matrix, and we restrict the description of one dimension,

From Egs. (4.11) we obtain

—a—+£‘—a’— aVex i p22(Z P+hq)=—Fp22(ZP+ﬁq)+lK P12 ZP+ﬁq —pP21 ZP-’—ﬁq (4.31a)
ot ' M 3Z 3Z dP ’ ’ T2 T2 ’
~Q‘+£—a-—-gfix—-§- (ZP)+£f+1W(x) (Z,P +xfig)dx +ik ZP+£ — ZP+ﬁ
ar T M oz 3Z op |P14 2 J1 P22\ 4L, p21 |4 59| —P12 |4 2910 |>
(4.31b)
d P 3 9x 3 # . . #i . #i
o +M 3Z 3z 3P |P* Z,P+ 2q =—i(A+qP/M —iy)py |Z,P+ 24 +ix |p1(Z,P)—py |Z,P+ 2q ,
(4.31¢)
[
where the Doppler shift is included. # #
Here the coupling constant is given by Ry(Z,P)=i |p2 Z,P‘F‘i“q —P12 Z,P+~2—q ’
(4.35b)
w=LE (4.32)
2# R3(Z,P)=py,(Z,P +#q)—p(Z,P) . (4.35¢)

which is half the Rabi flipping frequency between the two
levels in the field (4.8). The decay rate y of the off-
diagonal elements is equal to I' /2 if no phase-perturbing
processes act in addition to the spontaneous decay. In all
cases we have

The corresponding equations are straightforwardly ob-
tained from Eqs. (4.31). For later reference we write
down the case with no external potential (V,,=0) and a
velocity small enough that the drift term («<d/9Z) is
negligible. In this case it is simpler to label the state by
the atomic wave vector

y>3T. (4.33)
. . . ) . . k=P/# (4.36)
It is possible to simplify the equations slightly by intro-
ducing the reduced distribution function instead of the momentum, and we find
= = .34
F(Z,P)=Tryup=pn(Z,P +ﬁq,)+/?11(Z’P) (4.34) %_Fz %r exp _anZ —1|(F+R3)
and a three-component optical Bloch vector R with com- d
ponents 1 +1 d
. . ; +<T f_l W(x) |exp xqo0 —1|dx(F+R3),
RI(Z,P)=P21 Z)P+‘_q +P12 Z,P+ ~q1 > (4.35a)
2 2 4.37)
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3R,
—; = TRi+(A+0,k)R; (4.382)
3R, ‘
—E-Z“YR2+2KR3_(A+U’I€)R1 ) (4.38b)
ORs o lrlen a2 | 11|(R, 4P -2k
ar 2 |TP| 7%k ’ ?
ir M we B 111 ]dx(F+Rs)
— ) x) (exp |xq - +1|ax(F+Rj3).

(4.38¢)

By expanding this formally in g3/3x, we generate partial
differential equations for F and R;.

The dependence on k in the density matrix can be no
stronger than that given by the Doppler-shifted Lorentzi-
ans deriving from Egs. (4.38a) and (4.38b). Hence the
largest value of the expansion parameter is given by

. r? (A—v,k)T?
95 3 Tz = 2qvr 2, 1272
3k (A—v, k4T [(A—0,k)2+T7]

€
<= £, (4.39)
where the detuning is assumed to be of the order T", and
the expansion parameter is found to be the same £ as we
introduced earlier.

The properties of the Wigner functions have been re-
viewed by Moyal (1949), Tatarskii (1983), and Hillary
et al. (1984). The particular equations presented here are
derived in Javanainen and Stenholm (1980c). For details
the readers should consult these references.

B. A model problem

The basic observation to make regarding Egs. (4.37)
and (4.38) is that when expanding to second order in g we
find

aF_1.[_, @

gD 12 9

dk?
where we have introduced a from Eq. (4.21). From the
estimate (4.39) we find that the function F can change
only at the rate £T", which is assumed small. The third
component of the Bloch vector R; denotes the population
difference between the two levels. For large light intensi-
ties these populations become equal and R; tends to zero.
In this limit, Eq. (4.40) becomes a Fokker-Planck equa-
tion for F alone, of exactly the form (3.28). We can
directly calculate
ﬁ(—j;(k>=%ﬁqr=Fo , (441)

where we recognize the classical force from Eq. (3.10).
The present estimate is superior, because it derives from
the exact Eq. (4.40). The factor 3 indicates the fact that
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in saturation only half the population is at the upper level
from which spontaneous decay processes may originate.

The velocity diffusion coefficient in Eq. (4.40) is given
by
,’izqz
4M*?
where we can immediately verify the relations (3.54), and
from the form (3.49) we can see that the coefficient Q is
equal to zero. Hence, for a strong enough laser field, the
Mandel parameter (3.55) disappears, and the photon emis-
sion obeys Poisson statistics. Because the field flips from
the atom back and forth at a very large rate, there is no
trace of this seen in the spontaneously emitted photons; in
practice they can leave the upper level at any time.

Is it possible to obtain anything else, or will Q remain
zero for even more detailed solutions? In order to see how
this works out, we shall consider a model case, which at
the same time gives us an opportunity to present the vari-
ous mathematical methods used in laser cooling calcula-
tions.

We consider the case of resonant tuning, A=0, and
neglect the spreading during one photon emission, i.e., we
set a=0. We also neglect the Doppler shift. In addition,
we assume a strongly perturbed phase, so that we can set

(4.43)

D= rl+a, (4.42)

y>T.

In this case the dipole moment is forced to follow the
population difference adiabatically, and from Egs. (4.38a)
and (4.38b) we find

R,= Zy'iR . (4.44)

Inserted into Egs. (4.37) and (4.38¢) this gives

aF 1 d 1 , 3
oF _1pl 9 129 LpiRy), (445
ar 2 | Tak T2 a2 ]( TRy, G4
dR;
= —T'(14+IR;—TF
ot
1 3 1 ,d
— T g2 =2 , (44
where we have introduced the saturation parameter

4c*
I=——o. 4.47

T (4.47)

It turns out that we do not need the second derivative
term in Eq. (4.46).

When there is no recoil (g—0), the function F is con-
served and can be normalized to unity. The variable R,
will change at the rate " due to the first two terms on the
right-hand side of Eq. (4.46). The change of F will occur
at the rate £T°, which is much slower than I', and hence
we have identified two basic time scales in our problem.
This is a general feature of the physical problem. The
internal states will change at the rates T, x, or A, which
are roughly equal. The population summed will change
at a rate that is slower by the factor &.
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If we introduce the Fourier transform of the function F
according to

Fx)= [ e~ ™%F (k)dk , (4.48)

we can see that this generates the moments of the distri-
bution F (k) according to

—ig 2 | Fx) (4.49)

my = (k") = dx

x =0

When the spreading due to spontaneous emission is
neglected, the function F(k) becomes a series of delta
functions that denotes the net absorption of n laser pho-
tons followed by spontaneous emission [cf. Eq. (3.43)].
We then have

F= 3 f.80k —ng) . (4.50)
n=0
Its Fourier transform (4.48) becomes
Fix)= > e f, | (4.51)

n=0

where f,, is the probability of having n spontaneous emis-
sions, and it gives the probability distribution of both the
emerging photons and the ensuing momentum distribu-
tion. Even if F(x) is not the form (4.51), its Fourier
transform is the atomic momentum distribution as well as
the distribution of the outgoing photons.

To get an idea about the distribution we use Egs. (4.45)
and (4.46) to calculate its moments. According to our

normalization we get from (4.48)
F(0)=1. (4.52)

If we define a similar Fourier transform of R;(k), we ob-
tain directly from Eq. (4.46)

%R}(m: —T(1+DR4(0)—T (4.53)
because
—iqu —x—0. (4.54)
The solution to Eq. (4.53) is
1 —T(1+Dt —(14DT
= —1 4.55
t) l+I(e )+Rge (4.55)

where R, is the initial condition. The equations to be
generated follow from the transformed Egs. (4.45) and
(4.46) in the form

_GE__L N

7 (ix NR;+F), (4.56)

dR - - -

a: =—(1+I)FR3—FF—§—(ix —3x2)(R3+F) .
(4.57)

Taking the first derivative of (4.56), setting x=0, and us-
ing the definition (4.49), we find
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iy=—ig | 2L | —4(14R,0]. (4.58)
ax x=0 2
Inserting the result (4.55) and integrating, we find
I+ 1 (1+e—-(1+1)l"t)+R (1 e-—(l+1)I‘t)
_ 141
ml(r,t)—q 2(1+I)
' (4.59)
This process can be continued because if we set
~ " ~
FW= | —F(x) , (4.60)
ox =0
R{"=|=—R;(x) , (4.61)
ox x=0

we obtain from Egs. (4.56) and (4.57) the relations

—a—R‘“ —(14+DIrR{P—

I*F(l)_
ot

~(0)
LRV 4,
2
(4.62)

from which we can integrate R $"(z) when (4.55) and
(4.59) are given. We then obtain from (4.56)

aF(Z)
ot

This gives the second moment, but the expressions are
unwieldy and not very transparent. If we do not truncate
the expansions of the exponents in Egs. (4.37) and (4.38c),
we can, in fact, obtain all moments successively in the
way indicated. Here we are satisfied to investigate the
first moment (4.59). Its behavior for various values of R,
is shown in Fig. 7. We can see that after an initial period
of the order of I'"! the evolution settles to a linear one
with the behavior

=TLHFVP+RP)—+RP+FO)] . (4.63)

! . Il 1 1
OO 2 4 6t

FIG. 7. The emergence of the linear behavior of the first mo-
ment m; of the atomic velocity distribution. Asymptotically
the relationship m, o« ¢ holds, independently of the initial state
of the atom (Ry), after a transient time of the order of the spon-
taneous decay lifetime I'~!. This holds true in the general case
even if the transient behavior is more complicated than in this
model problem.
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1
1+1

ql

) q
r
204D °

T20+D

my(t)= (4.64)

vho .

After long enough times, the initial value is forgotten, the
linear term dominates, and the result is in agreement with
Eq. (3.51). The light pressure force can be determined
from

dm (1) I#g
54 —_—
MA e = 2+D

in agreement with Eq. (4.41), when the intensity I goes to
infinity.

This shows how we approach the diffusive limit after
an initial transient of the order of I'"!. The intercept be-
tween the asymptotically linear dependence in Eq. (4.64)
for t=0 is determined by the initial value R, but for
long times this lacks importance (see Fig. 7). For small
times we have

r, (4.65)

Ro+—— P24 -+ .

141

ml(t)=—r21(1+R0)t—%
(4.66)
At Ry= —1 the curve starts quadratically.

The limiting behavior for large times can be described
by a Fokker-Planck equation. It can be seen that the
spread in the function F (k) becomes large and the func-
tion F(x) is determined by small values of x only. We
choose to expand its logarithm by setting

F(x)=exp[ixA — +Bx?+0(x?)] (4.67)
and from the definition (4.48) we find
1 ; ; 2
F _— —ikx/q,ixA —Bx</2
(k) Y. f e e dx
1 (k —Ag)?
=g exp ———~—2Bq > (4.68)

It turns out that both 4 and B are asymptotically linear
in time, and from Eq. (4.68) we find

(k)=gA=gSt=g(n),
((k—(k))?)=q*B=2¢%S,t =q*(An?) .

This solution thus corresponds to the solution of the
Fokker-Planck equation

(4.69)
(4.70)

AF _ 3

3 — 3k . 4.71)

—siaside|r

In order to determine the Fokker-Planck equation of the
problem or the equivalent first two moments, we need
only obtain the coefficients 4 and B as defined in Eq.
(4.67). »

This we can do in a systematic way from Egs. (4.56)
and (4.57). We make the ansatz

R=0"+xrl4+x%2+ -+ F

and require to all orders that
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(4.72)

dr’
ar (4.73)
To zeroth order we have
F=const=1, (4.74)
~ 1 =
Ry=———F, .

3 o (4.75)
giving = —(14+I)"'. To continue we now need, to
zeroth order, ’

-~ I =
R;+F=——F, .
3+ 141 (4.76)

which is inserted into (4.56) to give the first-order result

\

oF IT -
— | =ix———F . .
( a |, 20140 @7
From this we can immediately identify
IT
=——t=8t, 4.78
200+0 ! “.78)

which from Eq. (4.69) gives directly Eq. (4.65). To obtain
r! we must use Eq. (4.72) in (4.57), but to this order the
time derivative can no longer be neglected. We find

OR _OR g (14nrrixF— 2L
ot oF

(ro+1DF . (4.79)

Introducing F to first order from Eq. (4.77), we obtain
directly
1_ _i_li_ .
201+0°

When this result is inserted into Eq. (4.56) we obtain the
result to second order in x

(4.80)

oF ix? ; x? =~
2l = |22 F
ar |, 2 7T (o)
__x!_IT - - (4.81)
2 201+1) (14-1)? '
Then the coefficient B becomes
Ir 1
— _ 4.82
2(14-1) (14+1)? “.82)

The diffusion coefficient in the Fokker-Planck equation is
now

Ir
4(141)

N
(141

(4.83)

- B
S2=% =

The final contribution in the large parentheses is an
anomalous diffusion contribution. It decreases the dif-
fusion, but it cannot, of course, make it negative. Identi-
fying S, in Eq. (4.69) with the factor in (3.51), we have

_ ﬁ2q2 _ ﬁ2q2 Ir
2M? 4aM? (1+1)°

Dy 1 (4.84)
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and from Egs. (3.52) and (4.70) we have

#q* #2q*IT I
Dy(1 )= S, = _
o= %= pa+n | 1417
1
=D |[1———|. (485
°| (1+D?

The anomalous term turns out to be just the Mandel pa-
rameter

I
(1+n*’

which we find to be negative. This implies from Eq.
(3.55) that

(An?)y <(n),

which is an indication of photon antibunching, i.e., the
photons arrive more regularly than in a Poissonian pro-
cess. If we return to the derivation we find that the
anomalous term follows from the time derivative on the
left-hand side of Eq. (4.79). Thus we find that in the adi-
abatic elimination of the optical Bloch vector R, we must
take into account that the center of mass of the atom to
which it is attached is carried along by the light pressure
force. We indicate this dependence explicitly by writing
for the density of the dipole moment R(k —(k(2))),
where {(k(z)) is the solution ‘to Eq. (4.41). From Egs.
(4.79) and (4.71) we find that

3R 3R 3R IFdk dR dk

ot ~ OF ~ OdF 0k dt 9ok dr’

just as would follow from a straightforward derivation of
R(k —{k(t))) with regard to time. To second order we
cannot neglect the first-order deflection of the atomic tra-
jectory. This gives an anomalous contribution to the dif-
fusion; in the present case it turns out to be the only one.
In the next section we shall develop a formalism that
takes care of this automatically.

We still want to approach the present model problem
from one more point of view. The time evolution of a
linear system like (4.56) and (4.57) can be inferred from
its spectrum in the complex frequency plane. Because we
are here interested in actual time evolution properties, it is
advantageous to use the Laplace transform, which we
denote by a caret, i.e, F and ﬁ3. The definition we
choose is

Q=— (4.86)

(4.87)

(4.88)

Blo)= [ 7 e=*TF(x,ndr (4.89)

which makes s dimensionless. The system then becomes

Ix 1.2 _ix 1o
STt 3 T F| [Fo
1+%—%x2 s+(1+I)+%“%x2 Ry | [Ro]”
(4.90)

where Fy and R, are the initial values. The determinant
of the matrix is
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D=s%4s(1+D+1I (4.91)

ix 1.2
5 ]

If we denote its zeros by s, and s,, we find that the func-
tion F must be of the form

=4, B 4.92)
§—8; S§—8 .
giving the time evolution
F=de""" 1 Be " . (4.93)

From our earlier discussions we can surmise that the
negative real part of one root greatly exceeds that of the
other; in this way the transients die out and the asymptot-
ic slow time evolution derives from the other one. This is
a restatement of the discussion above concerning two time
scales differing by a factor &.

From our considerations in connection with Eq. (4.68)
we concluded that we need to know F as an expansion in
x. Thus we can develop the expansion of the roots of the
time evolution in the same way.

For x=0 we easily find

s9=0, (4.94a)

s9=—(1+D. (4.94b)

These are denoted by crosses in Fig. 8. To obtain the
corrections we write

s =5%ixs!+x2%2. (4.95)

®

SZ
O == =
S‘
-(1+])
51
— e
52

FIG. 8. Behavior of the eigenvalues of the model problem in
the complex plane. With no photon recoil there are two poles of
the response, one heavily damped [at —(1+17)] and one station-
ary (at zero). To lowest order these acquire only the imaginary
parts s!, which give the light pressure force. To second order
the stationary pole acquires the damping s2 because of the onset
of light-induced diffusion. This behavior, found for our simple
model problem, shows what happens in the general case too.
For bound-particle cooling a similar picture is given in Fig. 18.
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Inserting this into Eq. (4.91) and determining the coeffi-
cients, we find to first order

I

[ S 4.9
SIS%0+n @.96a)
, I

SR S .
2= 7504 (4.96b)

These are indicated by solid lines in Fig. 8. They corre-
spond to an imaginary part of the poles and represent the
dynamical evolution; comparing Eq. (4.95) with (4.68), we
see that s} indeed gives the correct light pressure force in
(4.69). To second order we find

X I I
= 1— R (4.97a)
1= 740+ (1+1)?
) I I
_ _ (4.97b)
TE I, (14+1)?

These are indicated by dotted lines in Fig. 8. The correc-
tion to s, is of no significance and only slightly affects
the rate at which the initial fast transients die out. For
the root s,, however, a major change has appeared. Pre-
viously it had a zero real part, signifying a stationary
state, which in this order has turned into a slow
diffusive-type motion. Equation (4.97a) is seen to give
again the result (4.83) when the dimensions are restored
by multiplying with I". The anomalous contribution is in-
cluded correctly. From the earlier discussion in connec-
tion with Eq. (4.38), we can conclude that the time scale
for the force is £I°, whereas the diffusion emerging to
second order must occur over a time scale of order £°I".
This is in agreement with the considerations in Egs.
(2.19), (3.22), and (3.39).

Inserting our results into Eq. (4.93) for times much
longer than ', we find

. I
F(t)=Aexp |ix 20+ | 3
x? I I
— = — t|, 4.98
2 201+D (1+41)? “.98)

which is exactly the same result as given in Egs.
(4.77)—(4.81) from the Fokker-Planck treatment.

We have spent a lot of time on our simple-model prob-
lem because it illustrates the methods that have been used,
gives physically correct results, and provides a general in-
sight into the mechanism and tools of laser cooling calcu-
lations. For more complicated systems the manipulations
become more involved, but the physics and the theoretical
approach remain the same.

When no recoil is considered, there appears a part of
the problem which relaxes at a fast rate of the order of T'.
This determines the initial transients which die out soon.
The asymptotic behavior for long times is determined by
a slow time evolution, which initially, when photon recoil
is turned off, does not relax. This will acquire a slow
time evolution due to the recoil of the photons, and this
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evolution will then be described by a Fokker-Planck equa-
tion or its equivalent. The zero eigenvalue will then be-
come modified, and the system experiences a slow time
evolution which in each order will affect the results of the
following one. Depending on the details of the problem,
the asymptotic evolution goes on forever or it approaches
a stationary state. In the latter case an initially highly de-
generate zero eigenvalue will split by the perturbation so
that only one single zero eigenvalue remains, which deter-
mines the unique steady state approached towards the end
of the cooling process. We shall see examples of these
statements in the following sections of this review.

C. The adiabatic elimination procedure

In this section we carry out a formal procedure that au-
tomatically performs the steps introduced in the previous
section. We choose to work with an abstract vector

R

A=F

> (4.99)

where the subspace R contains fast relaxation rates of or-
der T, and F lies in a subspace that is conserved when
photon recoil is neglected. In the previous example R
corresponded to the optical Bloch vector and F to the
population, but the subspace of F may also have more
than one dimension.

We assume that the time evolution of A is given by a
linear equation of the Schrddinger type. In most cases A
will be a density matrix, and we need a superoperator rep-
resentation to reduce this-to a vector. The earliest use of
this approach, to my knowledge, was by Klein (1952), and
it has been developed further by Zwanzig (1960), Argyres
(1966), and Grabert (1982).

The time evolution of A is expanded in some small pa-
rameter d to give

%A:(M+N3+K62)A. (4.100)
In the cases discussed so far we have
2]
a_an ~& (4.101)

in accordance with Egs. (4.39). When d=0 we have a
steady state

Mr°=0, (4.102)

which is usually highly degenerate with respect to a pa-
rameter, which in the case of (4.101) is the momentum
#ik. If A(k) is a solution for any x, also the state

Ak +xq)=e*3A(k) (4.103)

is one. This mirrors the fact that once a particle is given
the momentum #k, this cannot be altered by interaction
with light as long as photon momentum is neglected.

The time evolution operator M is not self-adjoint, and
there exists a left eigenvector T° which corresponds to the
zero eigenvalue in Eq. (4.102), viz.,
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T'M=0 (4.104)
and

(t%1%)=1. (4.105)
From these we form the projéctors

P=1%7", (4.106a)

Q=1-P, (4.106b)

which project onto two subspaces or arbitrary dimensions.
We now apply conventional partitioning techniques, using
the properties (4.104) and (4.106) to obtain

:%PA:G(PNPA+PNQA+6PKPA) .

Here we have neglected a term PKQ, which will contri-
bute to higher order only. We now introduce the notation

n=FT%PA) (4.108)

(4.107)

and

j=(f%(PNPA+PNQA+3PKPA)) . (4.109)

With these, Eq. (4.107) is described by a local conserva-
tion law of the form

%n=aj : (4.110)
Thus the degenerate zero eigenvalue corresponds to a con-
served quantity 1, whose current j is given by Eq. (4.109).
When 9 can be regarded as small, the time evolution of 7
will remain slow. Equation (4.110) is an exact conse-
quence of our formulation of the problem. It is only
when we want to evaluate j that we need further approxi-
mations.
To proceed we find

—%QA:(QMQ +OONQ)QA+IQNPA+0 () .

(4.111)

Because the subspace Q is assumed to be rapidly relaxing,
the operator QMQ must have a negative real part of or-
der I'. After initial transients, Q A settles down to its
steady-state value, which to order one in d gives from Eq.
(4.111)

QA=—(OMQ) '9QONPA . (4.112)

Corrections of order d* can be omitted because the term
with QA in Eq. (4.107) is already multiplied by 9, and
the expansion in (4.100) does not include higher-order
terms than 2. Inserting into Eq. (4.107), we find the time
evolution operator

—%PA:S{PNP+[PKP —PNQ(QMQ)~'QNP]3} PA .

(4.113)

This is the desired expression. The operator QMQ, which
has to be inverted, is in the subspace without small eigen-
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values, and in principle no problems appear in its evalua-
tion. When 93 is a differential operator, we see directly
from Eq. (4.113) that we have derived an equation of the
Fokker-Planck type. We have felt free to transfer the
derivative operator 9 to any place we want without acting
on any of the operators in between. This is in agreement
with our consistent expansion in 9, as discussed in Sec.
IILLD. From the treatment in Sec. IV.B we can see the
same property in Eqgs. (4.68)—(4.71). The Fokker-Planck
treatment is consistent with the result (4.68) only if the
factors in S, can be moved through the derivative 3/9k.
There are problems where these considerations may be of
importance; they are not discussed here.

The present derivation is based on the work of
Stenholm (1984a,1984b), in which it is also shown (1984b)
how the present approach follows the steps of the previ-
ous section quite closely.

To see this we do not introduce the projection opera-
tors, but make an ansatz for the vector

A=1rF=(r"+r'9+r2%+ --- )F, (4.114)

where we require that all time dependence be in the com-
ponent F, which we here assume to be one dimensional.
Then we have

d
—r=0.
ot T

To zeroth order in 9, it follows directly from Eq. (4.102)

that

(4.115)

(0)
oF -0
ot
as we expected, and the degeneracy property (4.103) ap-

plies to F®. We require the vector » to be normalized ac-
cording to

(4.116)

(t%r)=1, (4.117)

and multiplying Eq. (4.100) by T° and using Eq. (4.104),
we find

oF

ar =3(FO,Nr)F +3%F°,KrO)F . (4.118)
To first order we now find
(1)
a‘; —a(FO,NrO)F ) | 4.119)

which is the linear term in 0 on the right-hand side of Eq.
(4.113). .

To go to second order we need to know r to first order,
as seen from Eq. (4.118). We obtain from Eq. (4.100)

AA _ 9B} rd(rO,NDF =(M+NOKF . (4.120)
Extracting the linear terms, we find ‘

Nr°+Mr'=1%¢° Nr)=PNr° (4.121)
and have to solve r! from

Mr!=—(1—P)Nr®=—QNr° . (4.122)
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Here we have introduced P and Q from Eqgs. (4.106). Be-
cause the inhomogeneous term in (4.122) lies in the Q
subspace, M can be inverted and we find r! in the form

r'=—M~IQNr°. (4.123)
The requirement (4.117) gives

(%0 =F%n+3x%)=1, (4.124)
which with Eq. (4.105) implies

(t%rH)=0. 4.125)

The solution has to be chosen in the subspace orthogonal
to 79, i.e., the one selected by Q. Thus we find to this or-
der

AV=[1-(QMQ)~'QN3I°F , (4.126)

which, inserted into (4.118), gives for the evolution of F
to second order

aF(Z)
at

=8{(?O,Nr0)
+9[(F%,Kr?)

—(f%NQ(QMQ)~ QN |} F? .

(4.127)

It is easy to see that this is exactly the same equation as
(4.113). The operator denoted by (OMQ)~! is the inverse
of M in the subspace selected by Q. In the present treat-
ment the one Q comes from the modification of the slow
time evolution, as seen in Eqs. (4.121) and (4.122), and the
other from the normalization requirement, Egs. (4.124)
and (4.125). In the projection formalism both appeared in
a totally automatic way. It is easy to see the similarity
between the present treatment and that of Egs.
(4.72)—(4.81).

The method presented here brings up quite clearly why
we need to project out the slow subspace—there is a zero
eigenvalue in the dynamic matrix M. This causes trouble
if we try to invert it, which we must do to obtain succes-
sive terms in a perturbation expansion. By including the
first-order slow time dependence in Eq. (4.120), we find
that the singular part is eliminated and the matrix can be
inverted as in Eq. (4.122). The trick of using an ansatz of
the form (4.114) is a special case of the Chapman-Enskog
procedure for treating singular perturbation problems. It
has been applied to statistical mechanics problems like
ours by Titulaer (1978,1980a,1980b). The first to apply
these ideas to laser cooling was Minogin (1980b,1981).

Perturbation theory has long been formulated by pro-
jection techniques (Lax, 1950; Lowdin, 1951), and one aim
was explicitly the removal of degeneracy. This has been
pursued in some detail by Bloch (1958) and Bogoliubov (a
suitable reference is Bogoliubov, 1967, but he used the
method much earlier). The method as presented here is of
interest because it provides a very general scheme for
treating statistical mechanical systems where fast micro-
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dynamics is eliminated to give much slower macrodynam-
ics.

Adiabatic elimination procedures are, of course, well
known in laser physics (see, for example, Risken, 1984,
and Haken, 1977). Recently there has been some progress
in understanding the adiabatic elimination techniques
(Haake and Lewenstein, 1983a,1983b; Casagrande et al.,
1984; Gardiner, 1984; Gardiner and Steyn-Ross, 1984).
For some other applications of the present approach see
Stenholm (1984b). van Kampen (1985) has recently re-
viewed the technique and its applicability in an interesting
way. The adiabatic elimination in a Fokker-Planck sys-
tem is approached in a way equivalent with the present
one by Kaneko (1981); see the discussion in Risken (1984).

D. Cooling of free particles

The smallness of the optical photon momentum g in
comparison with other momentum scales early suggested
the use of a continuum theory for the description of the
atomic velocity distribution. The resonant light pressure
force was derived in the form

1y?

Fo=+1#gr—L
0=27 A2 y2(141)

(4.128)

When we tune to resonance, A =0, this agrees with our re-
sult in Eq. (4.65). The same result has since been derived
by many researchers.

The classical force (4.128) emerges when we regard the
scattering of photons as a continuous stream of momen-
tum. When their quantum nature is considered, we obtain
a diffusive spreading, as explained in Sec. IIL.D. This
was, to my knowledge, first pointed out by Kazantsev
(1974), who also introduced a Fokker-Planck equation to
describe the situation (Kazantsev, 1975). As far as I
know, the first attempts to derive these from microscopic
considerations starting from a density matrix were
presented by Krasnov and Shaparev (1975) and Baklanov
and Dubetskii (1976). Many of the applications have
since used the Fokker-Planck equations, as can be seen in
Kazantsev (1978) and Letokhov and Minogin (1981b).

Detailed derivations of a Fokker-Planck equation for
free atoms was given in the momentum representation in
Javanainen and Stenholm (1980a) and for the Wigner
function in Cook (1980a). The broadband approximation
in Javanainen and Stenholm (1980a) eliminated the
anomalous contributions, which are due to correlation ef-
fects. Their presence was first noticed in a paper by Gor-
don and Ashkin (1980) and were simultaneously found by
Minogin (1980b), who used a method based on the
Chapman-Enskog procedure. In the work by Cook
(1980a) they were also derived by an implicit technique.
These terms acquired great interest because Mandel had
pointed out (1979b) that they were related to the non-
Poissonian character of the spontaneously emitted pho-
tons, as discussed in Sec. IIL.C. Cook (1980b) showed
that the anomalous diffusion could be interpreted easily
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as a non-Poissonian characteristic which depends on de-
tuning.

These considerations were continued in Stenholm
(1983), where the Chapman-Enskog approach was used
and some physical interpretation was attempted. The
projection operator formalism was applied by Stenholm
(1984a), and this method was found to provide the result
in a very simple and straightforward way. After the ini-
tial separation of the slowly developing subspace, no
physical argument is needed along the way. Except for
some care in avoiding the singularities in the problem due
to the zero eigenvalue, no physical or algebraic complexi-
ty is involved.

As a result of these works, the momentum distribution
of a free particle in an infinite plane wave is described by
the Fokker-Planck equation (4.71), where S; is given
directly by Eq. (4.128) as F /7, and we find

2
Sz=£qz%— 1+a+%/7[A2(F—r>—VZ<F+V>1 ’

4
(4.129)
where
D=A’+y¥1+D . (4.130)

If the combination Iy? becomes large, the result ap-
proaches our estimate (4.42) when the diffusion in k space
is transformed to diffusion in velocity space, v =%k /M.
If we introduce the case of no phase-perturbing processes,
we have

y=+T, (4.131)
and the result (4.130) is in agreement with the work by
Cook (1980a,1980b).

From the form (4.129) we can directly identify the
Mandel Q parameter as in (3.49) to be

Q=%[A2(r—y)~y2(r+y)] (4.132a)
2 2
2K2A'§23—L , (4.132b)

where the latter form arises when Eq. (4.131) is used. For
large values of the intensity parameter x this goes to zero
as

Q«k~?, (4.133)

which shows that the deviations from Poisson statistics
disappear, as noted already in Sec. IV.B after Eq. (4.42),
where the physical origin of this disappearance was also
explained.

When the phase-perturbing processes dominate, we
have y— « and we find from Eq. (4.132a) that

ro[oc‘;/—l .

This shows that a large amount of phase incoherence de-
stroys the anomalous diffusion, and Poisson statistics en-
sue. The atoms cannot remember to carry coherence

(4.134)

Rev. Mod. Phys., Vol. 58, No. 3, July 1986

from one spontaneous emission event to the next. This
was the case discussed by Javanainen and Stenholm
(1980a,1980b).

When the intensity becomes small,

Qu«k?,

and the non-Poissonian nature of the statistics is a
higher-order effect not obtainable in lowest-order pertur-
bation theory, where S, o« «? only.

When we go to resonance, A=0, and let ¥ become
dominantly large, we obtain from Eq. (4.132a) exactly the
result (4.86), which shows that our model problem there
gave exactly the right answer within its limits of validity.
The correction terms are of order (' /y), as the adiabatic
assumption (4.43) implies.

At A=0, the result (4.132) was calculated by Mandel
(1979b). For A0 the result was obtained by Cook
(1980b) and by Smirnov and Troshin (1979). For
| A| <V3y the function (4.132b) gives a negative value
and thus implies sub-Poissonian statistics. For larger de-
tunings, a small super-Poissonian distribution is observed.
The function Q is plotted as a function of (A/y) in Fig.
9.

(4.135)

For a standing wave there have been some calculations
that go beyond low-order perturbation theory: Stenholm
et al. (1978), Minogin and Serimaa (1979), Minogin
(1981), and Kazantsev et al. (1985). The cooling is here
approaching a steady state, as considered in Sec. IIL.B.
One issue of controversy is the question whether it is pos-
sible to trap a neutral particle by a resonant standing
wave. The investigations of Letokhov and Minogin
(1978a) seem to show that there is no trapping because the
quantum-mechanical indeterminism of the atomic posi-
tion prevents trapping. A simple argument from
Stenholm (1978b) can be used to see that the spatial

_1 1 [ L !

-2 0 +2 JAY

FIG. 9. Behavior of the Mandel Q parameter as a function of
laser detuning A. When Q is negative, the emitted photons
display sub-Poissonian statistics. The parameter is simultane-
ously a measure of the coherence-induced anomalous diffusion;
negative Q indicates a less-than-random spreading.
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dependence of the standing-wave pattern cannot be easily
observed when spontaneous emission smears the coher-
ences: The particle with velocity v traverses one wave-
length in the time
A -1

At~—v—~(qv) , (4.136)
and the change of velocity achieved by the forces #gI" in
this time is approximately

AL

Av~ .
va

(4.137)
The atoms interacting most strongly have a detuning A of
the order of the Doppler shift qu, and the velocity change

-(4.137) affects this by an amount

i A

M|A| [A]
Thus for the atoms that interact most strongly, the radia-
tion force cannot considerably affect velocity, and hence
it is hard to see how trapping could occur. The argument
is, however, not completely compelling, and some
researchers still express different opinions.

The standing-wave case has not been attacked in a con-
sistent way by the projection operator method described
in the preceding section. Such a systematic approach may
answer some of the question finally. The closest ap-
proach is given by Minogin (1981), and from this we can
see the complexity of the problem. There are no reasons
to doubt the results of this approach, but the complicated
manipulations make it difficult to decide conclusively
that nothing important is omitted. v

Recent work by Dalibard and Cohen-Tannoudji
(1985a,1985b) gives a thorough discussion of these ques-
tions. The relationship between quantum and classical
treatments becomes especially clear in their formulation.
They also prove that there exists a relationship between
the damping factor and the diffusion coefficient, similar
to the well-known fluctuation-dissipation theorem.

When we reject the simplifying assumption of a plane-
wave radiation field, additional force terms appear in the
direction of the gradient of the intensity. The transverse
terms have been included in the calculation in several
works. A discussion is found in Letokhov and Minogin
(1981b). For their inclusion into the general calculation
of light pressure forces, see, for example, Gordon and
Ashkin (1980) and Minogin (1980b). These are usually
small terms, of the order of (A/ay) where ag is the beam
waist, which usually greatly exceeds the optical wave-
length A. This holds for near-resonant tuning. When,
however, the detuning becomes large

qAv ~e<<I. (4.138)

[A] >y, (4.139)

the gradient force can be seen to dominate over the light
pressure force (see the discussion in Letokhov and Mino-
gin, 1981b, Sec. 5.2). There is, on the other hand, a de-
crease in both forces due to the lack of resonant interac-
tion, and trapping solely by the gradient force requires
exceedingly large laser intensities of the order of 10%
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W/m?. There has been some additional discussion about
trapping by pure light fields, but it has centered on tech-
nical questions. Some recent proposals can be found in
Dalibard et al. (1983,1984) and Ashkin (1984). At the
time of this writing it is still an open question whether
light trapping is possible or not. This question may find
an answer in the near future because the interest in it is
great; see Phillips, 1984.

When laser cooling takes place over extended ranges of
position and velocity, the theory can be taken one step
further. The kinetic Fokker-Planck equation can be re-
placed by a hydrodynamic approximation similar to that
of ordinary kinetic theory. One then uses a local velocity
(v(z,1)), a local particle density » (z,t), and a local veloci-
ty square, which defines a local temperature by

2T (z,t)

2 o~
(v(z,0)") = 7

(4.140)
This approach has been used by Zueva et al. (1981) to
describe the atomic beam cooling experiments (Letokhov
and Minogin, 1981a). The validity of the Fokker-Planck
equation is based on the assumption that we consider
times such that I't >> 1, but the hydrodynamic regime re-
quires an even more coarse-grained view of the process.

V. COOLING OF TRAPPED PARTICLES

A. The physical quantities

One of the fundamental limits on spectroscopic mea-
surements is the Doppler shift owing to particle motion.
Laser spectroscopy has developed several methods to
overcome its component linear in the velocity, but the
quadratic term in the velocity still remains. To achieve
the highest accuracy one has to investigate particles that
are definitely brought to a standstill. Because we also
want long interaction times, this implies the use of
trapped particles confined to a limited region of space. If
we want to eliminate the interaction between particles, we
must turn to extremely low densities, and in the limiting
case we consider traps containing only one single particle
at a time. This is the ideal configuration for super-high-
resolution spectroscopy.

In Sec. IV.D we presented suggestions for trapping par-
ticles in pure light fields, but no experimental evidence ex-
ists in this area. The experimental progress in trapping
atomic particles goes back to early efforts by Dehmelt
(1967,1981a) and others to investigate free electrons. It
has been possible to trap and cool singly ionized atoms as
originally suggested by Wineland and Dehmelt (1975).
There cannot exist any static electric traps for charged
particles (Wing, 1985); this is usually referred to as the
classical Earnshaw theorem. One must consequently find
other means. The work by Toschek and his collaborators
in Heidelberg and Hamburg uses a dynamic trap, which
operates through a radio-frequency quadrupole field
(Neuhauser et al., 1978a; Dehmelt, 1981a,1981b; Tos-
chek, 1984). Wineland’s group (Wineland et al.,
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1978a,1978b) uses a Penning trap. Here electric and mag-
netic forces are combined to keep the ionic orbits confined
to a finite volume. In either case the actual motion is
rather complicated. The radio-frequency trapping, how-
ever, tends to confine the particle to a well-defined posi-
tion more efficiently than the Penning trap and hence ap-
pears to be closer to the simplified models we discuss
below. In both cases, however, the trapping fields perturb
the spectra of the particles in a less controlled way, and
there are difficulties in applying the techniques to super-
high-resolution measurements. Not even here can we
achieve the theoretical ideal of a free particle at rest in an
empty universe.

As our model for a trapped particle interacting
resonantly with laser radiation, we take a harmonically
bound two-level system, as shown in Fig. 10. We assume
an ideal one-dimensional trapping potential of the form

V(R)=5MV*R?, (5.1)

where v is the angular frequency of oscillations in the trap
and R is the coordinate of the center of mass of the parti-
cle. The complications due to the radio-frequency micro-
motion and the three-dimensionality of the trap are ig-
nored.

When the motion of the particle is taken to be classical,
its velocity in the potential (5.1) obeys

v (t)=vycosvt . (5.2)

In a traveling wave the radiation pressure force depends
on velocity according to Eq. (3.6), as

FZ
Foao———"——7——
[A—qu(1)]*+T?

and at every instant when the Doppler shift. compensates
the detuning, qu =A, the atom can be excited; this may be
followed by a subsequent spontaneous decay. If the de-
tuning A is such that transitions can occur only when the
motion is towards the source of the radiation, i.e., A>0,
the particle loses the recoil velocity (#ig/M) for every

(5.3)

R

FIG. 10. The basic model for a bound particle. The two-level
atom of Fig. 1 is placed in the harmonic potential with frequen-
cy v. As a function of the center-of-mass coordinate R, the
atomic potential V(R) is assumed to be purely harmonic.
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complete cycle, just as does the free particle. If the orbi-
tal period is long compared with the spontaneous emis-
sion lifetime, v << T, the process takes place at almost
constant velocity and position, and the velocity is damped
towards small values in. the fashion illustrated in Fig. 11.
Each time the particle crosses the resonance it drops one
or several photon recoil velocities. In this case the parti-
cle velocity enters mainly as a parameter, and the situa-
tion differs in no way from the case of a free particle
treated earlier. Because a heavy particle oscillates more
slowly, that is, has a small v, we have called this the
heavy-particle limit. It is treated by Gordon and Ashkin
(1980) and Javanainen and Stenholm (1980c). In order to
assure that the particle changes its velocity and position
as little as possible during the spontaneous emission life-
time I'"! we must have, first, a long oscillational period
as compared with the emission lifetime, giving

v<<I. (5.4)

During the oscillational period ~v~!, the particle goes
through its range of velocity, which is vy given in Eq.
(5.2). It sweeps through its Doppler shifts at a rate of the
order (voqg/v~1), and it thus takes the time (' /wogq) to
sweep through an interaction region of width I'. If we
want the spontaneous emission to take place at fixed velo-
city, we must require its time I'"! to be much shorter
than the interaction time estimated above. This gives the
condition

vuoq <<T'?, (5.5)

which turns out to be a restriction on the energy of the

harmonic motion. Squaring Eq. (5.5), we obtain the con-

dition

2
£
r

v

= Epam << 1 . (5.6

and find that, because € <<I" also here, and we have as-
sumed Eq. (5.4), the condition (5.6) is no essential restric-
tion. This condition is, in fact, the one that allows us to
neglect the influence of the harmonic potential on the
cooling process; it is called the heavy-particle limit in
Javanainen and Stenholm (1980c). This reference gives a
Fokker-Planck treatment along the lines developed earlier.

\Y%
Vres

FIG. 11. When the bound two-level atom carries out periodic
oscillations it can absorb laser photons and be cooled every time
the velocity passes the value v, needed to Doppler-compeﬁsate
the detuning.
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An incoherent approximation is used there, and hence the
anomalous terms are missing; the results would hold for a
broadband light source.

When the orbital motion becomes fast, v>I", the emis-
sion process takes place over an extended portion of the
particle orbit. Then it becomes more instructive to look
at the process in the frequency space instead of time. The
two-level particle with its frequency o is oscillated period-
ically with the velocity v (¢) in Eq. (5.2). In the laboratory
its resonance frequency appears modulated by the
Doppler shift qv(¢), and the atomic dipole moment obeys
the evolution equation

ii=[o+q®Olu+ - , (5.7
which integrates to
. Vo .
p(t)cexp | —i wt+—;}—smvt
. t v ;
=e™ ¥ I 20 | g—ikwt (5.8)
k=—o

Thus the atomic spectrum acquires sidebands spaced by
the oscillational frequency v. In this limit, v>>T, the
sidebands are well separated, and each one in its turn can
be tuned to interact with the radiation frequency Q. The
spectrum of the atomic transition is shown in Fig. 12.
The strength of the sidebands is given by | Ji(quo/v) |2

If we tune the laser below resonance, () <, transitions

can be achieved only when the missing energy is supplied
by the orbital motion. The photon absorption is aided by
the absorption of one or a few quanta from the oscilla-
tional motion in the trap. Because spontaneous emission
preferably occurs at the atomic frequency w, cooling takes
place on the average. This is termed ‘“sideband cooling”
by Dehmelt and his collaborators (Neuhauser et al.,
1978a). When the harmonic motion is described by
harmonic-oscillator wave functions, the change of their
quantum number is given by

vAn =0—Q . (5.9)

When this is multiplied by Planck’s constant #, it mani-
fests the energy conservation condition that each indivi-

105
..lll“l.“lln |||I|.|||I|l..
0

-10 0 1

FIG. 12. The periodically oscillating atom displays a series of
sideband frequencies to the observer in the laboratory. Their
strengths are given by Bessel functions. To cool the atom, the
laser should be tuned below the resonance, and the absorption of
a laser photon can then occur when aided by the oscillational
quanta of the motion.
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dual quantum process has to obey.

For the cooling of free particles, the conservation of
momentum in each individual process is of equal impor-
tance. It is because of this fact that we can use the
momentum distribution to obtain the photon distribution,
as explained in Sec. III.C. Any momentum change im-
parted to the particle will be retained and observed in the
distribution function. For particles in a trap, the momen-
tum is no longer a constant of the motion, and one might
expect that no trace remains of the transfer of the photon
momentum to the particle. This is, however, wrong; we
can follow the process by looking at the matrix element of
a plane-wave field of the type (4.8). The field has to be
evaluated at the position R of the particle, and the transi-
tion matrix element between the harmonic-oscillator
eigenstates | n ) will contain the factor

Upy={n|e R |n") . (5.10)
In the general case, the motion of the particle is not con-
fined to within one wavelength of the light, and we can-
not expand the exponent gR ~R/A. If we use the
momentum representation of the harmonic-oscillator
wave functions in the trap, the position operator R goes
over into the derivative i#id/0p, and the matrix element
(5.10) becomes

U= [ dp ¢}(ple PRy, (p)
= [ dp ¥} (p)nip +7ig) .

The rate of transfer between quantum numbers »n and n’
depends on the overlap of two momentum wave func-
tions, one of which is displaced by the photon momentum
#ig. The shape of the momentum wave functions of the
harmonic oscillator equals the shape of the position wave
functions, and hence the picture is as shown in Fig. 13.
The argument is very similar to that giving a Franck-
Condon factor for the molecular transitions, only here it
operates in momentum space.

We know that, when the oscillator is excited, the wave
functions peak near the classical turning points. Thus the
transition matrix element tends to favor transitions near
the maximum classical momentum p, of the state with
energy #ivn, assuming that energy can be conserved. The
maximum momenta are then related by

(5.11)

In the classical description the maximum momentum
occurs near the origin, where the velocity is nearly uni-
form. Hence the transitions occur preferably at those lo-
cations where the particle motion is nearly that of a free
particle and both energy and momentum conservation can
be satisfied in the individual quantum process. Thus,
even if the momentum conservation is no longer exact, it
still plays an essential role in the interaction events.

When the state of excitation is high, that is the fast-
particle limit, n is large, it can be shown (see Javanainen
and Stenholm, 1981a, Appendix A) that
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]

n

n
FIG. 13. The harmonic-oscillator wave functions in the

momentum representation look exactly like those in the position
representation. Transitions between oscillational quantum num-
bers n,n’ are most likely when the peaks of the probability dis-
tributions have maximum overlap. This leads to approximate
conservation of momentum p—sp t7gq, by a factor analogous to
the Franck-Condon factor of molecular physics.

12
2%n

| Un,n+An ‘ = \Jan |4 My (5.13)

The relation between the average quantum number n and
the maximum velocity vy is

TMvi=tvn , (5.14)

and hence the result (5.13) for the strength of the transi-
tion with the energy change given by (5.9) agrees with the
result in Eq. (5.8).

When the oscillational energy is large, the argument of
the Bessel function is large, and as a function of An the
matrix element peaks at
172
2#%in

My

qVo
v

(5.15)

An~q

For this limit the energy change is mainly taken up by the
kinetic energy, as follows from

2
fivAn ~+M {uo+ﬁ —v3 | =tfigug+ - , (5.16)

M

which agrees with the result (5.15). These considerations
demonstrate the correspondence between a classical
description and a quantum description when the excita-
tion of the oscillation is high. In this case we expect the
cooling to be described by a classical equation of motion

for the center-of-mass coordinate
MR =—M+R +Fy—BR , (5.17)

where F and S are of the form given in Egs. (3.10) and
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(3.11). The velocity approaches zero which, for the har-
monic motion, implies that the displacement approaches
zero. In contrast to the free particle, the trapped particle
is cooled towards a final stationary state. The center of
the motion is shifted to

Fy
T MA
As discussed in Sec. III, we must add a Langevin force to
Eq. (5.17) to simulate the randomness of spontaneous

emission. When the diffusion coefficient D is taken from
Eq. (3.17), we write the Fokker-Planck equation

Fy B P
v P+D

R

(5.18)

3P  oP
ar TVBR

9P _ 9

v | M + dv

(5.19)

The steady state of this can be found when we note that
the drift terms in phase space conserve the Hamiltonian

H=3M[v>4++v* R —R,)*] (5.20)
because
ui+«ﬂ(R0—R)—@— H(R,v)=0 (5.21)
oR D) ’ ’

and hence any P(H) eliminates these terms. Then the
right-hand side of Eq. (5.19) gives

oP_ B
3E = DM?*

P, (5.22)

which integrates to

Pxe —BE/DM?

=exp{ —B[v?++*(R —R,)*]1/2DM} . (5.23)

The final energy of the cooling process is found to be of
the order
DM?

Eﬁn B #l >
where Egs. (3.17) and (3.11) have been used. Thus the
cooling of a trapped particle is also subject to the same
basic limitation as that in a standing wave [see Eq. (3.35)].
The final energy is now found in the vibrational motion
of the particle. In addition, there is energy in the con-
stant deflection R, of the center of mass. If the laser is
switched off suddenly, this energy is released and undoes
some of the cooling. For an adiabatic removal of the
laser, the solution (5.23) is expected to shift slowly over
into the equilibrium position, and the particle stays
cooled.

When the particle is cooled close to the ground state of
the oscillator, the discrete nature of the oscillator quan-
tum states becomes important, but to treat that case we
need not impose any restriction on the ratio v/I". We ex-
press the center-of-mass coordinate by the rising and
lowering operators, a' and g, in the harmonic potential as

(5.24)
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172
R= My (a'+a), (5.25)
and from Eq. (5.10) we obtain
Uy = (n ! e—in(a'f+a) [ nI>A
=8 [1— 3720 +1)]
—in(V RSy 1 +V Sy )+ . (5.26)

Here we have expanded in the assumedly small parameter
7 given by
2

wa
° 1, (5.27)

A

2__ & _
’r’ = =
v

where ao=(2%/Mv)!/? is the size of the oscillator
ground-state wave function. The parameter 7 is small
when the final state of the cooling is extended much less
than the wavelength. Because we can estimate the cooling
time scale to be £e~! from the free-particle result (2.19),
this limit implies that it takes many oscillational periods
to reach the cooled final states. In the discussion that fol-
lows we call this the Lamb-Dicke limit and define it as
the mathematical limit that prevails when 1 goes to zero.

In the next section we shall develop the theory for this

case further.

B. The master equation for cooling

Because the damping rate for the trapped particle can
be taken to be roughly equal to that of the free particle
from Eq. (2.19), we write

(5.28)

If we define a new time scale for the harmonic oscillator
T o5, Which is the time it takes the damping mechanism
to decrease the energy by one oscillational quantum #v,
we find from Eq. (5.28)

#iv
Tose= :E," ’
where E is some typical energy. Towards the end of the
cooling process we can set this equal to #I’ from Eq.
(5.24), and we obtain

Tosc="7_2r—1 s

(5.29)

(5.30)

where Eq. (5.27) has been used. The cooling time scale
for the oscillator is thus slower than the time characteriz-
ing spontaneous emission by a factor 2. In the Lamb-
Dicke limit we can hence use the parameter 7 to separate
the fast internal processes taking place at the rate I from
the slow cooling occurring over times of the order of T
For such times a master equation describes the cooling
processes.

The treatment can actually be dressed in the form of a
very general method for trapped particles. In the traps
the constants of the classical motion are given by the ac-
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tion variables, because all dynamics is periodic and hence
can be referred to angle variables. If the action variables
are denoted by {I;} we find that any function

P=P[I;] (5.31)

remains conserved in time. If we choose to discuss the
time evolution in the action-angle phase plane { I;,@;}, the
stationary distribution is, according to Eq. (5.31); in-
dependent of the variables {¢;}. Instead of the ordinary
closed curves characterizing periodic motion in the phase
plane, any initial state stays unchanged in the action-angle
plane; this is illustrated in Figs. 14(a) and 14(b).

When the particle becomes coupled to the radiation
field, the conserved quantities begin to change owing to
momentum exchange. Suitably arranged, the fields will
start to force the distribution toward the region of phase
space with lower energy; cooling occurs. At the same
time the sharp distribution is starting to spread, as indi-
cated in Figs. 14(c) and 14(d). The cooling stops when the
spreading just compensates the cooling in every time in-
terval, as shown in Sec. III.B. The cooling can now be
described by the master equation ‘

oP

Y =0P,
where 0 is a linear operator that derives from the photon
momentum. It can usually be calculated approximately
by identifying some small parameter of the problem like
the & of Sec. III.

For the one-dimensional trapped particle of the preced-
ing section, the only constant of the motion is energy.
Hence our procedure in solving Eq. (5.19) is an instance
of the present argument. Its right-hand side is like the
operator 6 in Eq. (5.32). If we transform the variables to
the energy plane we obtain an equation of the type (5.32).

For the harmonic motion, the proper action variable is

(5.32)

(a) ® (b)

)

)

EY

| I—
-

FIG. 14. In the phase plane (R,p) the harmonic motion is re-
stricted to an ellipse when no cooling occurs (a). In the action-
angle phase plane (I,¢), the same process appears as a line,
when no phase information is given (b). When cooling sets in,
the ellipse is seen to shrink and diffuse (c), but in the action-
angle plane the same process is seen as a simple decrease of I
accompanied by spreading (d). The adiabatic elimination pro-
cedure is based on the picture presented in case (d).
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H

"= #v ’
which shows that the classical limit of the oscillator occu-
pation number operator a fais just the action. It is hence
advantageous to use the quantum n representation for the
oscillator and write the master equation in this space.
There are problems connected with the limit when {(n ) is
very large (see the discussion in Javanainen and Stenholm,
1981a), but in the Lamb-Dicke limit and toward the end
of the cooling, when the expansion (5.26) holds, the pro-
cess can be carried out systematically (Javanainen and
Stenholm, 1981b; Lindberg and Stenholm, 1984). The re-
striction to the late stages of the cooling forces us to re-
tain the discrete nature of the quantum number n and
describe the time evolution as a series of quantum transi-
tions between these states.

The starting point for the derivation is the density ma-
trix in the n representation, {n |p|n’). Without the in-
teraction with radiation, the n occurs only in the oscilla-
tor Hamiltonian, and this leads to a time dependence

(5.33)

(n|p|n+k)<exp(—ivk) . (5.34)

This oscillation at frequency vk is thus highly degenerate
because it is independent of n. In the internal atomic in-
dices p is a 2 X2 matrix, but of the four eigenvalues corre-
sponding to this, one is zero (compare the argument in
Sec. IV.C). "If we concentrate on this one, it corresponds
to an infinitely degenerate set according to Eq. (5.34).
This degeneracy is the same as that following from Eq.
(5.21) and that discussed in connection with Egs.
(4.100)—(4.127). It can be lifted by using a version of the
method explained in Sec. IV.C (Lindberg and Stenholm,
1984). The degeneracy can be removed in second order by
diagonalizing an effective Hamiltonian operator within
each degenerate subspace. This operator also describes
the time evolution and thus gives the master equation for
the problem.

We do not want to reproduce any of the details of this
derivation. We use only a heuristic perturbation argu-
ment to obtain the rates coupling the populations for dif-
ferent n values; this corresponds to the k=0 degenerate
set. As we see from Eq. (5.26), a given n only couples to
n+1 and n —1 in the lowest order in 1. For oscillator
states these have the factors (n +1) and n, respectively,
and we obtain the picture in Fig. 15. In Fig. 16 we
separate the individual processes. The terms proportional
to the factor a are those coupling the levels by spontane-
ous emission, and a is the spread factor in spontaneous
emission. The induced rate in perturbation theory is of
the form

2
P(Aw)=%1y—27——— (5.35)

+Aw0?®
where I is the dimensionless intensity of Eq. (4.47). The
Lorentzian takes care of energy conservation for each
transition, so that #Aw~0. For n—-nt+l1 we find
Aw=A=xv. From Figs. 16(a) and 16(b) we read off the
spontaneous and induced lowest-order processes,
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n+1
(n+N)A, (n+)A_
n
nA, nA_
n-1

FIG. 15. The processes increasing the oscillator quantum num-
ber n are affected by 4, and those decreasing n by A_. The
transitions are associated with the proper harmonic-oscillator
matrix elements. The stationary state emerges when detailed
balance is imposed between any two levels; the number of tran-
sitions up must equal the number of transitions down.

A, =T[aP(A)+P(A+V)],
A_=T[aP(A)+P(A—v)].

(5.36a)
(5.36b)

This result agrees with that derived by Neuhauser et al.
(1978a). Its corrections require at least two laser photons
and are thus of higher order in I. These processes and the
saturation behavior were discussed by Javanainen and
Stenholm (1981b); Lindberg and Stenholm (1984) derive
the complete expressions for 4, and 4 _.

The rates (5.36) differ only in their second term, and if
we tune to A=v we find

A_>4,, (5.37)
al P(A) ol
n-1 | n n+1
(a)
r P(a-»)  P(a+ r
n-1 n n+!
(b)

FIG. 16. The processes leading to cooling in lowest order of the
Lamb-Dicke theory. They can be regarded as optical pumping
between different n values through the upper atomic state. In
(a) we excite by the resonant laser light [ « P(A)] and spontane-
ous decay at rate I' deposits a fraction « of all excited atoms on
the neighboring quantum levels n+1. In (b) we utilize the oscil-
lational frequency v to excite to the neighboring levels with
probabilities P(Axv), and these subsequently decay with rates
. The cooling occurs because the detuning makes
P(A+v)<P(A—w).
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which implies cooling. If we for simplicity consider the
limit of well-resolved resonances, we find

Y <<v=|A| (5.38)
and estimate

P(A—v)=1I>>3T=P(A)=4P(A+v), (5.39)
where the reduced intensity

_ 2

=1 1. (5.40)

V2

From Egs. (5.36) we obtain

A,=+IT+3ITa, (5.41a)

A_=1IT4+41Ta. (5.41b)

The cooling is due to the first term, which, according to
Eq. (5.40), implies Eq. (5.37); the second constant term
gives the diffusive spreading, as can be guessed from the
presence of the spontaneous emission factor . The addi-
tive term T /2 derives from a spread in induced processes.

The master equation is now written in the form
P(n)=n*{(n +1A_P(n +1)—

+nd P(n—1)} .

[(n+1)A, +nA_]P(n)
(5.42)

The various terms can easily be interpreted from the pro-
cesses in Fig. 15. From this result we can see that the
time evolution occurs at rates given by 5°T", as already
suggested by Eq. (5.30).

Equation (5.42) is the basic equation governing the
cooling process in the Lamb-Dicke limit. It is accurate to
order %%, and from Eq. (5.27) we can see that this is of or-
der 7. Hence the processes described by the perturbation
terms can properly be considered as quantum corrections
to the classically conserved quantities.

C. The final stages of the cooling

We now consider the behavior of the solution of the
master equation (5.42) for long times, meaning the
asymptotic steady-state condition. In this ultimate limit
there can be no flow of probability between the various
oscillator levels, and the rates up can be equated with
rates down in Fig. 15. This is detailed balance, which
gives

A_P(n+1)=A4_ P(n) (5.43)
with the normalized solution
P(n)=(1—s)s" (5.44)
where
Ay
s= T (5.45)

As long as we have the inequality (5.37), i.e., cooling, this
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is an acceptable solution similar to Planck’s blackbody
distribution.

With Eq. (5.44) we obtain the final energy of the
trapped particle
1
Ego=tv({n)++)=%#v 1_ +5 (5.46)
If we introduce a final temperature T by setting
—e P81y (5.47)
we find from Eq. (5.46) the correct expression
Egn=tiv |-ty L (5.48)
fin =7V T +5 .

for a harmonic oscillator.
If we introduce Egs. (5.36) into (5.46), we obtain the re-
sult first derived by Neuhauser et al. (1978a),

_ + 1
Eﬁn——ﬁv A_-—A+ +2 ]
P(A+v)+aP(A) 1
= —|. 4
P(A—v)—P(At+v) T2 J (5.49)
In the limit (5.41) we find
2
Y 1 1
Eg,=%v v (a+73)+~7 (5.50)

If we introduce @=+, we obtain the factor -5 derived
earlier by Javanainen and Stenholm (1981b). For the
more realistic value =% we find the factor ->. Because
the result is derived in the limit ¥ <<v, the excitation en-
ergy is
E;=(a+7) -E iy << fiy , (5.51)

in contrast to the general results found earlier. The total
final energy, Eq. (5.50), is, however, dominated by the
zero-point energy

Eo=~fv>>fiy (5.52)

according to our assumptions.
In the quantum regime the relationship between tem-
perature and energy is given by Eq. (5.47), and we find

fiv

= 5.53

ko Tr=Tat1/s) (5:53)
which in the limit (5.41) gives

kT, =Tv 1 fr (5.54)

2 ln(v/r) 2

Hence, for the final temperature, the general cooling limit
given by the spontaneous emission rate ¥ o« I" holds as we
have always found before.

When saturation corrections to Eq. (5.50) are evaluated,
one finds (Lindberg, 1984) in the limit (5.38)
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2y 4

T (5.55)

2
AE, =twvir|L ]
'y v

The first term here derives from the incoherent rate pro-
cesses. The second, negative term is due to the coherent
processes analogous to the anomalous diffusion terms en-
countered for free particles. These were omitted in
Javanainen and Stenholm (1981b), and hence only the
first contribution was obtained. The interesting observa-
tion is that in the absence of phase-perturbing processes,
v=T7/2, the correction (5.55) disappears exactly. Thus
there are no saturation corrections to the final energy to
first order in the intensity I.

In the opposite limit of broadly overlapping resonances

Y >v (5.56)
we can approximate
2
P(A)=P(A4v)=+I—L— | (5.57a)
Y +A
P(A—v)—P(A4v)—2r— VA7 (5.57b)
(‘}’2+A2)2 4 .
which inserted into Eq. (5.49) give
1+a Y A
Eg,= —_— — 5.58
fin =AY | = At Y (5.58)

which agrees with results derived for free particles
(Letokhov et al., 1977; Javanainen and Stenholm, 1980b)
and for a trapped particle (Javanainen and Stenholm,
1981b) when we set a=+. The optimum detuning is, in
this case, found to be

A=y>v. (5.59)

In this limit the zero-point energy is negligible, and the
classical result of the form (5.24) applies.

Multiplying the rate equation by n and summing over
all n >0, we find from the master equation (5.42) the re-
sult

%(n)=772 A_ i [n(n+1)P(n+1)—n2P(n)]

n=0

— 4, S [n(n + DP(m—nP(n —1)]

n=0

=—nfA_{(n)—A,(n)+1D]. (5.60)

If we neglect the spontaneous emission contribution, i.e.,
assume {n ) >>1, we find the rate equation

d
Z(n)——W(n) (5.61)

with the solution
(n())=(n0))e "4+ {n(e))1—e="), (5.62)

where (n(w)) is given by the solution (5.46) and the
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cooling rate is

W=n"Ad_—A,)=1’4_(1—s). (5.63)

Thus the time scale of the problem is determined by the
factor

n*4_ ~n°T", (5.64)

as seen from Eqgs. (5.35)—(5.41). This agrees with our
original estimate in Eq. (5.30).

It is possible to make an ansatz of the form (5.44) and
let the Planck ratio s be time dependent. This is the cool-
ing of a field which remains of the blackbody type during
the whole cooling process. This proves to be an exact
solution of the master equation (Stenholm, 1985) with the
parameter

A [s(0)—1]+[A4, —A_5(0)]e "

= O 1114, —A4_s O] "

(5.65)

when the initial condition is denoted by s(0). It is also
easy to see that the result approaches the correct limiting
value (5.45) for large times. With this solution the result
(5.62) takes the simple form

Ay

(n(t))=m(l

5(0)

. —Wt
e )+e 1—s(0)

(5.66)

The exact solution (Lindberg, 1984; Javanainen et al.,
1984; Javanainen, 1985), like Eq. (5.58), is of the form
Egp o fivl . (5.67)
A
The singularity at exact resonance is physical and is a pre-
cursor for the heating instability that emerges when the
tuning is turned to the wrong side of the resonance. In
the limit v—0, Eq. (5.67) can be shown to agree with the
free-particle result (4.129), as we expect in this, the
heavy-particle limit. A result of the type (5.49) was first
derived by Neuhauser et al. (1978a), and the result (5.58)
agrees with earlier results for free particles. For the
bound case it was first obtained by Javanainen and
Stenholm (1980c), who considered the case a= % In the
general form of Eq. (5.58), a heavy-particle estimate was
given by Itano and Wineland (1982). Under somewhat
different conditions these authors derive similar estimates
in Wineland and Itano (1979).

The absence of linear saturation for y=+T as in Eq.
(5.55) was first found by Javanainen (1981a,1981b). The
correct form of the final energy (5.67) was first obtained
by Lindberg (1984), using a moment expansion method.
This was later verified by two independent methods
(Lindberg and Stenholm, 1984; Javanainen, 1985), and the
various approximations are discussed in Javanainen et al.
(1984). A perturbation generalization to three dimensions
has been carried out by Javanainen (1980a). In a three-
dimensional trap there are three principal axes of oscilla-
tion. Unless the radiation impinges exactly along one of
these, it is sufficient to have one wave to cool all three
modes. If, however, these are nearly degenerate, correla-
tions appear between the motions, and the cooling process



Stig Stenholm: Semiclassical theory of laser cooling 729

breaks down. Physically this derives from the fact that
for exact degeneracy there are no principal axes, and the
transverse heating can find an eigenmode that is not
damped by the impinging laser radiation. This lies in the
plane orthogonal to the photon momentum.

D. The theoretical description of cooling

The theory of cooling in a trap comprises three charac-
teristic time scales. The first is the spontaneous decay
lifetime "', which is the relaxation time of the internal
levels. The second is given by £~!, which is the charac-
teristic time scale of the light pressure force acting on the
particles, including the cooling due to the friction force.
The third is the period of oscillational motion in the trap
v~l. From these we have formed two dimensionless vari-

ables,

2 13 € :
"= §——F . (5.68)
The third ratio (v/I") has not been given a name. Special
limits appear whenever one of these ratios is small and an
expansion is possible. The possible asymptotic regions are
indicated in Fig. 17. For slow oscillational motion we
saw that we can treat the instantaneous velocity as a pa-
rameter, expand adiabatically in &, and derive ordinary
Fokker-Planck equations. Toward the end of the cooling
we can often use the Lamb-Dicke expansion in 72, as we
did in the preceding section. For large values of (v/TI")
the sideband resonances are well resolved, and cooling can
be achieved by the use of one sideband only. The overlap
between this regime and the Lamb-Dicke regime has re-
peatedly been utilized in this paper. For small values of
the ratio (v/T") we enter the heavy-particle regime, and
this can be treated as a special case of the Fokker-Planck
description. We have also discussed the fast-particle lim-
it, but this is essentially the requirement that the average
oscillator ‘quantum number {(n) be much greater than

I

n-z Well -resolved
v | __resonances
= |
€ Lamb- |
Dicke : Heavy Particles
|
[

Adiabatic regime
Fokker - Planck

N

-1
=5

FIG. 17. In the trapped-particle case there are three basic ener-
gy parameters: the recoil energy €, the spontaneous decay rate
I', and the oscillational frequency v. This (v/g,I'/e) plane
shows the various asymptotic regions treated. The basic limits
occur when € may be regarded as small, but the limits v/T"—
and v/I'—0 have also been given names; they have overlaps
with the two basic limits.

unity. We have not found this limit very useful
(Javanainen and Stenholm, 1981a).

The derivation of the master equation was based on a
diagonalization and the removal of the degeneracy with
respect to n of the states (n |p|n 4k ). This was carried
out in the Lamb-Dicke limit to second order in the pa-
rameter 7. Within each subspace defined by a fixed k
there appeared an effective time evolution operator. We
used the subspace with k=0 to find the evolution of pop-
ulation probabilities (n |p|n). The method (Lindberg
and Stenholm, 1984) does, however, work for an arbitrary
k, and the general master equation is of the form

%(n lpln+k)y=ikv{n |p|n+k)+*{[(n +1)(n +14+0]"?4_{n+1|p|n+1+k)

—(n+14+5k)A4  (n|p|n+k)—(n++k)Ad_{n |p|n+k)

+[n(n +Kk)]"?4 . {n—1|p|n—1+k)}.

Here the coefficients 4,4 _ are the same as for the di-
agonal equation (5.42), which is obtained by setting k
equal to zero.

To treat Eq. (5.69) further, we introduce a generating
function (Javanainen et al., 1984)

Gk(z’t)=e—ivkt z z"

n=0

n+ion |72
%] (n|p|n+k).

(5.70)

To see the utility of this we define for n >0
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(5.69)
|
172
Oln k) =e—*h (i;“—"ﬂ (n|pln+k), (571
which, inserted into Eq. (5.69), gives
%B(n,k)znz[(n+1)A_0(n+l,k)
—(n+14+5k)A4,60(n,k)
—(n++k)A_6(n,k)
+(n+k)4,0(n—1,k)] . (5.72)
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Writing Eq. (5.70) in the form

Gilz,)= 3 z"6(n k) (5.73)
z=0
we can now use the relations
S nz"6(n,k)=22-Gy(z,1) , (5.74a)
o oz
S (n +1)z”6(n+1,k)=58—Z-Gk(z,t) , (5.74b)
n=0 .
S nz"0(n—1,k)=z 3 (n —1)z"~10(n —1,k)
n=0 n=1
4z 3 2710 —1,k)
n=1
, 0
=z S;Gk(z,t)—i—sz(z,t) , (5.74¢)
S 2%6(n —1,k)=2Gy, . (5.74d)
n=0
When these are inserted into Eq. (5.72), we obtain
3Gy
2 — ——
n°A_ |(1—sz)(1—2) oy
ka (11— | |Ge= 22
— 2’—5')‘*'5 +k)(1—z k= ar
(5.75)
where, as before,
A4
Sl 5.76)
s=- (

Following Javanainen et al. (1984), we look for eigen-
values of the time evolution in the form

Gr(z,t)=exp(—n*A4 _At)gi(z) . (5.77)

When this is inserted into Eq. (5.75) we obtain a simple
first-order differential equation for g;(z), which has the
solution

8i(z)=C(1—sz)~k+1+o) (1 _z)o | (5.78)
where
A
o=—1k+ s (5.79)

We require that all derivatives of the function Gy exist at
z=1. This is possible only if o in Eq. (5.78) is a non-
negative integer N. Because s < 1, the other factor in Eq.
(5.78) always behaves properly. Setting o =N, we obtain

from Eq. (5.79) the eigenvalue
A=(1—s)3k+N). (5.80)

Thus we see that for all kK and N the time evolution is

determined by the rate 724 _(1—s), in agreement with |

Eq. (5.63).
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The lifting of the degeneracy of the eigenvalues

Ao= —ikv (5.81)

is shown in Fig. 18. When no cooling is taken into ac-
count, we have a series of denumerably infinitely degen-
erate eigenvalues stretching down to — «0 when k— +
as shown in Fig. 18(a). (A similar discussion can be car-
ried out for negative k.)

When the perturbation sets in, each eigenvalue splits
according to the quantum number N in Eq. (5.80), and

-the oscillations (5.81) acquire a negative real part (damp-

ing), which stretches down to — «, as shown in Fig.
18(b). For a given k the slowest damping rate is given by
5 Wk, and hence the larger k values (those with more off
diagonality) decay faster, but on the same time scale given
by W. Only for k=0 do we get an undamped state,
which of course is the unique steady state remaining after
the lifting of the degeneracy.

For k=0 and the steady-state solution N =0, the gen-
erating function (5.78) becomes

C

T 1—sz

8k ’ (5.82)

which after normalization (C=1—s) agrees with the re-
sult given by Eq. (5.44).

The picture that emerges is thus that, over times of the
order of T, the internal variables relax to their instan-
taneous values. Then the different k values have decou-
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FIG. 18 (a) When recoil is neglected (n=0) the eigenvalue
spectrum is denumerably infinitely degenerate and consists of
pure oscillations (purely imaginary). (b) When recoil is included
(75£0) the degeneracy is lifted, and all poles acquire a negative
real part (i.e., damping) except the k=0 pole, which retains a
nondegenerate zero, giving the unique steady state. Compare
this picture with the simpler case in Fig. 8.
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pled, and on a time scale given by W ™!, the degenerate
subspaces reorganize towards their internal equilibrium;
in addition, the off-diagonal elements decay by an overall
rate + Wk. Finally only the asymptotically stable, diago-
nal steady state remains. These two processes, the ap-
proach to steady state and the decay of off-diagonal
correlations, occur here on the same time scale, deter-
mined by W. There is no possibility of separating the re-
laxation of the populations from the disappearance of the
coherences, as in many problems of nonequilibrium sta-
tistical mechanics.

It is also possible to solve the time-dependent equation
(5.75). For this solution consult Stenholm (1985). Distri-
butions differing from the thermal one (5.65) change
shape during their evolution towards the final distribu-
tion. : :

For k=0 the master equation describes the time evolu-
tion of coherences. These may be of interest, when one
needs to evaluate the spectrum of scattered light from the
trapped particle. This interesting subject has been dis-
cussed only in perturbation theory so far (Javanainen,
1980c), and more work is required. The corresponding
problem of evaluating the resonance fluorescence spec-
trum for a free particle provided much interesting insight
into the physics of spontaneous emission. A complete
solution to the much more complicated problem of reso-
nance fluorescence from a harmonically trapped particle
is hence of great physical interest.

Finally, one word about the applicability of our results.
The quantum-mechanical calculations can refer only to
an assembly of trapped particles, and the master equation
describes the time evolution of an ensemble of classical
ions. We want, however, to apply these results to a single
trapped ion, which cannot easily be prepared repeatedly in
identical initial states. For long time averages, which
determine the steady-state properties, we can assume that
ergodic conditions of some sort prevail; in time even the
single particle goes through most of the states necessary
to simulate the behavior of the ensemble. When real tran-
sient behavior is measured, the system does indeed pro-
vide the chance to observe one single microscopic system
for a long time. It thus may offer some interesting oppor-
tunities to test basic questions in quantum mechanics.
The details of such possibilities are still largely obscure.

VI. THE EXPERIMENTAL SITUATION

First we must conclude that the theoretical situation is,
in many ways, well in hand at the present moment. We
have generally agreed on the formulations of the experi-
mental situations. Particular limits have been treated and
their physical implications elucidated. There exist specif-
ic computational philosophies like the one presented here,
and in specific examples (Dalibard and Cohen-Tannoudji,
1985a) the transition between fully coherent quantum evo-
lution and incoherent Brownian-motion-like behavior has
been clarified in detail. Computational complexities
remain, and there are unresolved questions of real physi-
cal significance. We do, however, believe that these can
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be solved numerically or analytically by the efforts now
being directed to these questions.

On the experimental side the situation is much less
satisfactory. I would say that there are no experiments at
the present time accurate enough to investigate the details
of the manifestations of photon momentum. All experi-
ments until now have served more to verify the existence
of the phenomenon than to provide a detailed fit to the
actual theoretical results; only the main qualitative
features have been seen. One reason for this is the in-
terference of physically irrelevant factors like atomic col-
lisions, optical pumping, stray fields, or gravitation,
which fortunately can be excluded from the theoretical
analysis, but which confuse the experimental observa-
tions. In spite of these, much progress has been made,
and for the moment there appears to be great interest in
these questions, which indicates that the situation may be
rapidly improving (see, for example, the workshop edited
by Phillips, 1984). In this section I shall briefly outline
the experimental evidence available at the time of writing.
This may be expected to become out of date soon, and
hence I do not go into any details; the interested reader
may consult the original works referred to.

The existence of light pressure was seen early in experi-
ments by Lebedev, Nichols, and Hull, but only with the
introduction of coherent laser sources did interest in this
subject grow. The early work was mainly concerned with
beam deflection (Schieder et al, 1972; Jacquinot et al,
1973; Bernhardt et al., 1974,1976a). Applications to iso-
tope separation were investigated in detail by Bernhardt
(1976). The details of the momentum exchange were in-
vestigated by Bjorkholm et al. (1980), who saw heating
due to quantum fluctuations. The beam deflection pro-
cess was investigated by Bjorkholm et al. (1981) in con-
siderable detail.

The gradient force was used to provide focusing or de-
focusing of an atomic beam by Bjorkholm et al. (1978).
Other fields involve the motion of dielectric spheres under
the influence of strong field gradients (see Ashkin, 1980),
but as this case does not involve resonant interactions we
do not enter into its details.

Recoil effects are seen in modern ultra-high-resolution
spectroscopy, but are not really manifestations of photon
momentum. Hence I only mention a few references: Hall
et al., 1976; Bordé et al., 1979; Baklanov et al, 1981;
Hemmer et al., 1981. Further references may be traced
from these and from reviews on frequency standards
(Ramsey, 1983), where the highest spectral resolution is
required.

The deflection of an atomic beam from a standing-
wave laser field is an investigation of fundamental impor-
tance for the basic interaction process. It generalizes the
Kapitza-Dirac effect and depends on the properties of the
atoms. The pioneering work was carried out by Arimon-
do, Lew, and Oka (1979a,1979b). The interaction time in
these experiments was such that it allowed about ten
spontaneous emission events, and the results were nearly
at the diffusion limit (Arimondo et al, 1981). To over-
come this problem, experiments were carried out by a
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pulsed source (Grinchuk et al, 1981a,1981b), but in these
experiments no parameter variation was considered; see,
however, Kazantsev et al. (1981a,1981b,1981c). The ex-
periment has been improved by Prichard’s group
(Moskowitz et al, 1983; Gould et al., 1986), and it now
clearly shows the Bragg peak structure of the individual
photon scattering events. This proves conclusively the ex-
istence of atomic wave packets of the size of at least
about ten optical wavelengths. For particles as heavy as
sodium this is an exciting achievement in itself.

The focus of experimental activity at the present time
seems to be on laser cooling of the longitudinal motion of
an atomic beam. The first experiments were carried out
by Balykin and his collaborators (Balykin et al,
1979,1980; Andreev et al, 1981,1982; Balykin et al.,
1984). In these the laser frequency was swept to push the
atoms towards lower velocities. Phillips and his colla-
borators have used Zeeman tuning to keep the decelerat-
ing atoms at resonance (Phillips and Metcalf, 1982), but
they have also investigated frequency-sweeping techniques
(Phillips et al, 1983). Similar work is being carried out
by Hall and collaborators (Ertmer et al., 1984,1985).
More results are expected to appear in the near future.

Research into light-induced forces is also concerned
with trapped particles. Here both purely optical traps and
ionic ones have been discussed (Phillips, 1984). Quite re-
cently the first reports of stable trapping of neutral atoms
have been published (Migdall et al, 1985; -Chu et al.,
1985). Several suggestions for purely optical traps exist
(Ashkin, 1978; Minogin, 1982a; Minogin and Javanainen,
1982), but there are fundamental reasons why this may
prove difficult (Ashkin and Gordon, 1983). Other trap-
ping configurations have been suggested (Wing, 1980;
Dalibard et al., 1983; Prichard, 1983; Ashkin, 1984), but
so far no experimental results exist to my knowledge.

Ions, on the other hand, have been successfully trapped
and cooled by laser radiation both in Penning traps
(Wineland et al. 1978a,1978b; Drullinger and Wineland,
1979; Drullinger et al., 1980) and in radio-frequency traps
(Neuhauser et al., 1978a,1978b,1980,1981; Toschek and
Neuhauser, 1980,1981). These experiments provide hours
of trapping of a single ion, which is the first time an indi-
vidual atomic particle has been singled out, confined, and
kept under surveillance for such a long time. The ensuing
photographs of a single ion are the first direct views of an
atom that have been reported. These experiments provide
exciting possibilities  for tests of basic quantum-
mechanical phenomena. For a review of spectroscopy of
trapped particles consult Wineland et al., 1983.

The photon statistics of light scattered from a particle
were connected to the momentum distribution theoretical-
ly (Mandel, 1979a,1979b; Cook, 1981a,1981b; Lenstra,
1982; Stenholm, 1983). As far as I know there exists only
one observational investigation of this phenomenon, by
Short and Mandel (1983), and this concerns only the pho-
ton statistics. There has been no direct way to correlate
these experiments with the mechanical manifestations of
the photon momentum.

As we have seen, all the experiments referred to have
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been performed quite recently. The amount of interest is
large, and we may expect new results to become available
in the near future. These will be motivated by applica-
tions, but when accuracy increases they will eventually be
able to investigate the details of the interplay between the
momentum of radiation and atomic matter.
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