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The authors present an analysis of all extant data on isospin mixing in statistical compound-nucleus reac-
tions. The analysis is based on a generalization of the Hauser-Feshbach formula allowing for isospin mix-

ing. The strength of the mixing is described by a single parameter z. The theory is applicable when all

compound-nucleus resonances overlap strongly. It is derived from a statistical theory of nuclear reactions

allowing for the mixing of two classes of states. The parameter z comprises both internal mixing (via the
Coulomb interaction} and external mixing (via the channels). The theory contains-both the static criterion
(Coulomb matrix elements compared with spacings) and the dynamical criterion {spreading widths com-

pared with decay widths) for isospin symmetry breaking. The theory yields the dependence on z of observ-

ables like average cross sections, and auto- and cross-correlation functions. The data show that isospin

symmetry breaking is neither so weak as to be altogether negligible, nor so strong as to reduce our theory to
a Hauser-Feshbach formalism without any reference to the isospin quantum number. The authors argue in

favor of a parametrization of isospin symmetry breaking in the data in terms of a spreading width rather
than a Coulomb matrix element. They find that internal mixing dominates, and that the associated spread-

ing width is nearly independent of mass number and excitation energy.
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l. INTRODUCTlGN

From a comparison of (y,p) and (y, n) cross sections,
Morinaga inferred in 1955 that isospin is at least partially
conserved in statistical nuclear reactions. Since then,
many experimental and theoretical investigations have
been devoted to the study of isospin symmetry in
compound-nucleus reactions. This problem forms the to-
pic of the present review.

Since me do not in this paper address the general sub-
ject of isospin mixing in nuclei [we refer the reader to
Wilkinson (1969), Anderson et al. (1969), Auerbach
(1983) and the numerous papers cited therein], it is
perhaps useful to define the concept of a statistical nu-
clear reaction (or, equivalently, a compound-nucleus reac-
tion) at this stage. We consider reactions in which an in-
termediate compound nucleus is formed at such a high
excitation energy that the auerage width of the compound
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FIG. 1. Isobaric analog resonance {with spin and isospin
J;T2 ——2, '2 ) and fine structure (with isospin T) ——'2' ) in the

compound nucleus Y, excited by elastic proton scattering on
8'Sr [from Cyenz et al. (1975)].

nucleus resonances is larger than their average space'ng.

The implications of this definition are borne out as we
consider Fig. 1. This figure shows an isolated isobaric
analog resonance (Genz et al. , 1975) with J = —,

' in the
compound nucleus Y. The resonance has isospin
T2 ———", . The fine structure visible in the excitation func-
tion of Fig. 1 is due to states with isospin T& ———, (the
same isospin as the ground state of Y). . We refer to
these states as class one states. The mean width of the
class one resonances is larger than their mean spacing,
and the fine structure visible in Fig. 1 can therefore not be
resolved into the contributions of individual resonances.
Rather, it is the manifestation of statistical fluctuations
(Ericson fluctuations) of the cross section [see Ericson
and Mayer-Kuckuk (1966)]. As the excitation energy of
the compound nucleus Y is increased beyond the
domain shown in Fig. 1, the average spacing of the states
with isospin T2 ———,' (the "class two states") decreases,
and their average width increases. A few MeV above the
excitation energy of Fig. 1 we encounter a situation where
the average spacing of the class two states is also smaller
than their average width, This is the domain of statistical
nuclear reactions reviewed in this paper: The compound-
nucleus resonances in classes one and two overlap strong-
ly. The cross section for any reaction then no longer
displays isolated resonance features but only statistical
fluctuations.

In a statistical nuclear reaction, the spectroscopy of iso-
lated levels is impossible by definition, and a statement on
isospin symmetry breaking relates to average properties of
the levels. Such a statement can, for instance, be inferred
from a comparison of average cross sections of an
isospin-forbidden and an isospin-allowed reaction which
populate the same compound nucleus. One of the first
comprehensive studies of this kind was published by Biz-
zeti and Bizzeti-Sona in 1968. These authors found a siz-
able suppression of the isospin-forbidden reaction, con-
firming Morinaga s conjecture. At first sight, this result
is astonishing, for the following reason. The compound
nucleus Al studied by Bizzeti and Bizzeti-Sona (1968) at
20 MeV excitation energy has an average level spacing of

about 1 keV for either class of states. Partial conserva-
tion of isospin symmetry seems to require that the
isospin-breaking matrix elements have a root-mean-square
value smaller than 1 keV. In actual fact (see Sec. VII),
the root-mean-square value is about 2 keV in this case.
That this is compatible with partial isospin conservation
in spite of the small average level spacing was intuitively
and correctly ascribed by Morinaga to the short lifetime
of the compound nucleus, which prevents the states in one
class from completely mixing with those in the other.

Statements such as this cannot be quantified, and the
analysis and interpretation of the data remain incomplete,
without an appropriate theory of isospin mixing in statist-
ical nuclear reactions. Such a theory was first formulated
by Grimes et a/. in 1972. Since then, several groups have
contributed to the growth of the theory in both complete-
ness and complexity.

It is the primary purpose of the theory to describe the
dependence of average cross sections and of cross-section
correlation functi. ons on level densities, compound-
nucleus lifetimes, and the root-mean-square of the
isospin-mixing matrix elements. However, recent theoret-
ical developments in areas beyond the realm of nuclear
physics have given the theory of statistical nuclear reac-
tions a wider perspective. From the study of classical
chaotIc dynamIcal systems and their quantQIH counter-
parts, it now appears that the spectral fluctuation proper-
ties of nuclei (the fluctuations of level spacings about
their average value) are manifestations of chaotic behavior
[see Bohigas et al. (1984)]. Moreover, the same statement
appears to apply [see Verbaarschot et al. (1984,1985);
Weidenmuller (1984); Mello et al. (1985)] to the fluctua-
tions in energy of the elements of the nuclear scattering
matrix about their mean values —the very phenomenon
studied in a statistical nuclear reaction. This connection
suggests that fluctuation properties of nuclei are indepen-
dent of specific details of the nuclear dynamics, are gener-
ic for small systems, and are therefore of general interest.
In the light of these developments, the study of isospin
symmetry breaking in statistical nuclear reactions gains a
new dimension because it shows how a partially conserved
quantum number affects the dynamics of an otherwise
chaotic quantum system.

The theoretical framework used in this revie~ was laid
down in several publications (Harney et al. ,
1977,1980,1983; Weidenmiiller et al. , 1978). It is based
on a diagrammatic expansion technique, the results of
which are consistent with, but generalize, earlier findings
(Grimes et al. , 1972). The expansion technique applies in
the case considered here of strongly overlapping
compound-nucleus resonances. Our faith in the results
obtained by this method has been strengthened recently by
developments in the (simpler) case of compound-nucleus
reactions without isospin mixing. There, it has been pos-
sible to derive analytically closed-form expressions for
average cross sections (Verbaarschot et al. , 1984,1985). It
was then shown that the asymptotic expansion (valid for
strongly overlapping resonances) of these formulas gives
the same results as the diagram expansion technique of
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Agassi et al. (1975). We expect that an analogous rela-
tion exists between the exact solution of the isospin-
mixing problem in compound-nucleus reactions (which
has not as yet been derived) and the diagram expansion
results which we use.

In view of these facts, and since our theoretical frame-
work yields expressions for all observables investigated so
far to detect isospin mixing, we feel that this review is
timely. In particular, we include some details of the
theoretical derivation that have not been published before.

For pedagogical reasons we begin in Sec. II with an ex-
tension of the standard statistical model. We consider
two classes of compound-nucleus states, differing in iso-
spin, but we do not allo~ for any isospin mixing. Experi-
mental data presented in Sec. III serve to illustrate some
features of this theory. The data to be analyzed in Sec. VI
show, however, that isospin mixing cannot be neglected in
general. A suitable extension of the theoretical frame-
work that allows for isospin mixing is described in Sec.
IV. We pay particular attention to the statistical assump-
tions that we introduce. Relegating details of the theoret-
ical derivatio~ to Appendix A, we conclude Sec. IV with
the general expression for the correlation function of a
pair of elements of the nuclear scattering matrix. This re-
sult is discussed in Sec. V, where we devote special atten-
tion to the distinction between external and internal iso-
spin mixing. In Sec. VI we discuss all experimental data
known to us in the framework laid down in Secs. IV and
V. This is done by specializing the general expressions of
Sec. IV to seven different types of experiments. In Sec.
VII the results are condensed into tables and figures. As
stated above, we are concerned only with statistical reac-
tions. We do not relate mixing parameters and matrix
elements to nuclear structure properties. Rather, it is our
purpose to organize the information available from the
experiments in such a way that it can be compared for
different nuclei and/or different excitation energies and is
available for future nuclear structure studies. In spite of
these self-imposed limitations, we note that the results
given in Sec. VII nicely complement the information on
isospin mixing obtained from studies of bound states and
of isobaric analog resonances, which causes us to draw at
least some qualitative conclusions on nuclear structure as-
pects.

The aim and layout of this article —a thorough exam-
ination of the experimental results in the framework of a
single comprehensive theory —has prevented us from
presenting in detail the theoretical work of Grimes et al.
(1972), Shikazono and Terasawa (1975), Feinstein (1977),
and Friedman et al. (1981), who have addressed various
aspects of the problem. We apologize to these authors
and to all those whose work we have overlooked.

II. ISOSPIN AS A CONSERVED QUANTUM NUMBER
. IN COMPOUND-NUCLEUS REACTIONS

Before discussing the subject proper of this review-
isospin symmetry breaking in compound-nucleus

reactions —it is advantageous to consider the idealized
case of complete isospin conservation, as treated by Rob-
son et al. (1973). This is done in the present section. We
use the opportunity to introduce some basic notations and
definitions. More importantly, we derive and/or display
some fundamental physical concepts which pervade
everything that is to follow.

A. Isospin in compound-nucleus reactions

We consider a reaction that leads from channel a to
channel P via compound-nucleus formation. All states of
the compound nucleus are assumed to have pure isospin
T. The ground state has T =T~ and isospin projection
T, =T&. We consider excitation energies such that the
average level spacing D~ of levels with isospin T& ("class
one" levels) is very small in comparison to the average
width I

&
of such levels. (A precise definition of I

&
is

given below. ) We make the same assumption for levels in
class two with isospin T2 ——T& + 1 so that

D &&I m, m =1 2. (2.1)

where T and t, are the isospin values of heavy and light
fragments, respectively. In what follows, only light frag-
ments with t, =0 (deuterons, alpha particles, etc.) or
t, = —, (protons, neutrons, tritons, etc.) will be considered.
For t, =0, the coefficient (aT

~

at ) is either
'

unity or
zero, depending on whether T, = T or T,&T. For
t = —,', the coefficients (aT

~

at ) can be found in Fig. 2.
For t, = —,', the physical channels may be grouped into

We neglect altogether compound-nucleus levels with iso-
spin T & Tz. This assumption is reasonably realistic for
those nuclei for which actual data exist; it simplifies the
problem to a treatment of two classes of compound-
nucleus levels.

If isospin is conserved, the reaction channels can also
be labeled in terms of T. We accordingly write the chan-
nel labels in the form (a, T), where a comprises all quan-
tum numbers necessary to characterize relative motion
and internal structure of the two reaction partners (in-
cluding their individual isospin values), and T is the total
isospin, which, by assumption, is restricted to the two
possible values Tj, T2.

The channels (a, T) just introduced differ from the
physical channels which are characterized by isospin pro-
jections of the reaction partners rather than by total iso-
spin values. (For instance, a proton plus a target with iso-
spin T, is described by a linear combination of states with
isospins T, + —,'. ) We label the physical channels by (a, t),
where t is the isospin projection of the light fragment.
[The fixed value T, = T& of the isospin projection of the
compound nucleus then fixes the isospin projection of the
heavy fragment to be ( T& —t). ] The transition from the
(a, T) representation to the (a, t) representation obviously
involves an orthogonal transformation, the elements
(,aT

~

at ) of which are the Clebsch-Gordan coefficients,

(2.2)
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1-,,;&1T,-;,Tt--, &

neutron or t
channels

proton or 3He
channels

symmetry, we consider a general S-matrix element
S~ ~(E) characterized by a complete set of quaritum num-
bers, with E the excitation energy of the compound nu-
cleus and a,P a pair of channels. In this review we deal
exclusively with situations in which neither individual
resonance structures (doorways) nor precompound pro-
cesses obscure the pure compound-nucleus process. Then
S ~(E) can be written as the sum of two terms:

S~p(E) = (,S p(E) ) +S~p(E), (2.5)

pairs of mirror channels. Except for the sign of r these
channels carry identical quantum numbers. In the ab-
sence of all isospin-breaking forces, the threshold energies
of a pair of mirror channels are equal. In physical reality,
there is a Coulomb energy difference between the
ground-state energies of fragments forming a pair of mir-
ror channels, as indicated by the wavy lines in Fig. 2. In
consequence the threshold energy of a proton channel lies
below that of its mirror neutron channel. This is disre-
garded in the present section. The actual error incurred
in this way is not as serious as one might suspect because
the energy of the Coulomb barrier of the proton precisely
compensates for the difference in threshold energies.
(This argument does not, of course, apply to mirror chan-
nels involving He and H, or heavier pairs with isospin
—,'. At moderate excitation energies, however, the number
of such channels is very small. )

Since isospin is conserved, the nuclear scattering matrix
(S matrix) in the (a, T) representation is diagonal with
respect to isospin,

~ T
SaT,bT' ~TT"~a, b (2.3)

Usually the S matrix is written in a representation in
which the physical channels (a, t) are used. The two S
matrices S«b, and S,"b are related by

Tl+1S„,= g (aT ~at)S, (,bT
~

bt') . (2 4)
T T]

compound
nucleus

FIG. 2. Nucleon (or more generally t, =
2 ) decay channels

from a compound nucleus having states with isospin configura-
tions

~
T, T, ) =

~
T~, T~ ) and

~
T, + 1,T, ). The arrows indi-

cate transitions to channels for which the Clebsch-Gordan coef-
ficients (aT

~

at )&0. The values of these coefficients are given
on the arrows. In all three nuclei, states with isospin Tl+2 or
greater are neglected.

(S~p(E))ssr(E2)) =0, (2.7)

(S" (E, )S"*(E,)) =(5 5 +5 5 ) X+2in.s/D
The first equation follows from the definition of S &(E);
the second equation expresses the fact that all poles of
S~p he on the same side of the real E axis. The transmis-
sion coefficients T in the third equation measure the
unitarity deficit of the average S matrix and are defined
by

(2.8a)

The symbol e denotes the energy difference E2 —E], and
the "effective number of open channels" N is defined by

(2.8b)

where the angle brackets denote an average with respect
to energy over an interval of length I» I, with I the
average width of the compound-nucleus resonances. The
average S matrix (S p(E)) describes the fast processes
(shape elastic scattering, or direct reactions), while the
fluctuating part S"p(E) stands for that part of the reac-
tion amplitude due to the long-lived compound system. It
is assumed that the separation (2.5) uniquely and com-
pletely describes the system, i.e., that no intermediate
structure exists. %'ithout loss of generality we assume
that (S p(E)) is diagonal,

(2.6)

If (S~p(E)) does not obey Eq. (2.6), a unitary transfor-
mation can be found [see Engelbrecht and Weidenrniiller
(1973), Hofmann et al. (1975), and Nishioka and
Weidenmiiller (1985)] such that Eq. (2.6) is obeyed by the
transformed matrix.

For I »D where D is the average compound-nucleus
level spacing, it is also known that S~p(E) is a randomly
fluctuating function of energy with a Gaussian probabili-
ty distribution [see Agassi et al. (1975)]. This distribu-
tion is completely characterized by the first two moments:

B. Compound-nucleus reactions
vrithout isospin breaking

We first recall a few general facts and results of
compound-nucleus theory [see Mahaux and Weidenmiiller
(1979)). Ignoring, for the moment, the question of isospin

The width I of the compound nucleus is given by.

DI = E
2m'

(2 9)

it is the correlation width of the S matrix. The quantity
A/I is the average lifetime of the compound nucleus.
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Equations (2.7) and the fact that S"p is Gaussian distri-
buted allow us to evaluate average compound-nucleus
cross sections, as well as auto- and cross-correlation func-
tions of nuclear cross sections. In particular, the com-
bination of Kronecker symbols in the last of Eqs. (2.7)
leads to an elastic enhancement factor of 2 (Kretschiner
and Wangler, 1978; Mahaux and Weidenmiiller, 1979).

We disregard all kinematical factors and define cross
sections as squares of S-matrix elements:

o p(E) =
i
S p(E) 5p—

i
(2.10)

Using Eqs. (2.5) and (2.6) arid the first of Eqs. (2.7), we
write the average (o p) of o pas the sum of a shape elas-
tic part o. and a compound-nucleus part o.

( (E) ) 5 SE+ cN (2.11)

with

o':p= I(S..&-1 I', o.', =& IS.",(E) I') . (2.12)

T.,=l-
I (S.'. ) I'; (2.14)

by a straightforward exterision of the last of Eqs. (2.7) we
have

&S, b(Ei)S, d"'(E, ))=5~.(S„5~+5,da„)
+CfT

X
NT+2inc. /DT

(2.15)

Here, DT is the average level spacing of states with iso-
spin T, c.=E2—E~, arid

+cT (2.16a)

is the effective number of decay channels open to the lev-
els of class T. We note that Eq. (2.15) allows for the ex-
istence of different average widths

The cross-correlation function C~p rs(s) of the cross sec-
tion is defined by

C p,, (s)=( p(E),s(E+s) &
—

&

=
I
(S p(E)sys(E+s)) I

. (2.13)

The last equality follows from the Gaussian distribution
of S-m.atrix elements and froin Eqs. (2.7).

We now apply Eqs. (2.5)—(2.9) to the case of isospin-
conserving coinpound-nucleus reactions. In keeping with
tlie statistical model, we postulate that for T» T2,

I T2S,b (Ei), and S, b (E2) are uncorrelated random func-
tions, each individually characterized by relations of the
type (2.5)—(2.9). The transm. ission coefficients T,T are
now defined by

j DT.&T
AT

(2.16b)

We have introduced the quantities

w,"T (aT
I

——at )T,T(aT I
at') . (2.18)

These will also be referred to as transmission coefficients
in the sections that follow, although this term is a misno-
iner: The coefficients T,"T are not related to the unitarity
deficit of (S„b,), in contradistinction to Eq. (2.14) con-
necting (S,, ) and the v, T. The effective number of
channels is now written as

C, t

C. Observables in compound-nucleus reactions
vrith conserved isospin syrnrnetrY

(2.19)

Equation (2.17) shows that the average compound-
nucleus cross section connecting two physical channels
(a, t) and ( b, t') is given by

CN ~ —1 tt t't' tt' tt'
oat, bt' ~NT (ToTrbT+5abTaTTaT )

T
r

gNT T TTbT(aT
I
«&'&bT

I

bt'&' (I+5.b) .
T

(2.20)

The last factor reveals that elastic scattering (a =b, t =t')
is characterized by an elastic enhancement factor of 2. At
the same time, however, Eq. (2.20) shows that an
enhancement factor of 2 arises also in a charge exchange
reaction populating a mirror channel (a =b, t = t'); see-
Harney et al. (1980). This is a natural consequence of the
fact that, without isospin symmetry breaking, the reaction
amplitudes populating mirror channels are identical, ex-
cept for geometrical factors.

We turn now to the cross-section fluctuations. Special-
izing the cross-correlation function (2.13) to our present
situation, and using Eq. (2.17), we find

for the two classes. We also use the notation N and D
with m =I,2 replacing the indices Tj and T2.

Using the transformation (2.4), we can express Eqs.
(2.7) in terms of the S-matrix elements relating to the
physical channels (a, t). We find

tttl tttltt

abbr ('1) .i ,d&"'"( z)& —«bd X N, NT+2t~s D,
ttltl tltll

+5~5b,
aT VbT

N„+2i ~c/DT

(2.17)

c.~,.i',.~-,d-(s)= g . &aT I«&(bT I
bt'&(5«5bd(aT I«"&&bT Ibt'"&

I T+&

+5,d5b, (aT
i
at"')(bT

i
bt")) (2.21)
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Cat, bt'( e ) Cat, b t'( e ) Cat, bt'; at, b——t'( e ) (2.22)

We observe that the correlation function (2.21) is a
coherent superposition of two Lorentzian terms. One re-
trieves a single Lorentzian —the result of Ericson's origi-
nal theory of cross-section fluctuations (Ericson and
Mayer-Kuckuk, 1966; Richter, 1974)—in two cases: (i) if
the two classes of levels have the same correlation width
and (ii) if the reaction proceeds via one of the two classes
of levels only.

It is clear that the present way of including isospin in
the statistical model applies to any conserved quantum
number, e.g., the total angular momentum J of the sys-
tem. The J dependence of the correlation width I was,
however, always neglected in the analysis of fluctuating
excitation functions. This can be justified by numerical
calculations performed by Eberhard et al. (1969), Ernst
et al. (1969), and Eberhard and Richter (1972). Hence
Eq. (2.21) has been discussed by Robson et al. (1973), but
not used, in connection with angular momentum conser-
vation. In contradistinction, the two widths I i and I 2

may be very different in reactions involving two different
isospins, owing to,the fact that both the mean level spac-
ing D~ and the effective numbers of open channels X~
often are very different for the two classes (see Secs. III
and VI).

A basic result of fluctuation theory remains untouched
by the present extension: The variance of compound-
nucleus cross sections, i.e., the value of C(e=0), is equal
to the square of the average compound-nucleus cross sec-
tion. This follows from a comparison of Eqs. (2.20) and
(2.21).

Equation (2.21) contains the autocorrelation function
C«bt(s) as a special case, obtained by setting c=a,
d =b, t"=t, and t'"=t' For a pa. ir of mirror channels
(b, t') and (b, t'), Eq. (2.21) —implies that the cross-
correlation function C„b,.„b,(E) is different from zero.
This is most clearly exhibited by a special example. Let
the entrance channel (a, t) populate only the class one
states and let T& ——0. Then we find from Eq. (2.21) and
Fig. 2

it of strong isospin symmetry breaking, on the other hand,
one would expect S«b &i2 and S„b &i2 to be uncorrelated,fl fl

and this is indeed what we shall find (see Sec IV).

III. REACTIONS IN WHICH ISOSPIN
SEEMS NEARLY CONSERYED: THE CASE
OF TWO CORRELATION WIDTHS

tI) $ 5

wqo
cf
L
+p
Cl

0

96

Tl(P, ~ )

tits l II

999.7 9.S
Bombarding Energy (MeV)

The experimental data presented in Sec. VI show con-
vincingly that the theory developed in Sec. II is too sim-
ple, and that isospin mixing cannot be neglected altogeth-
er. However, some data can be understood semiquantita-
tively with the theory of Sec. II, as we now demonstrate.

Robson et al. (1973), Kildir and Huizenga (1973), and
Kreische et al. (1976) noticed that (p,p') and (p,a) reac-
tions on the same target nucleus and at the same bom-
barding energy may have widely differing correlation
lengths I z and I, respectively. An example is shown in
Fig 3. .An explanation of this observation in terms of a
difference of angular momenta in the exit channels can be
ruled out. The effect has been interpreted with the help
of the theory in Sec. II as a manifestation of the different
isospin states contributing to the two reactions.

As an example [analyzed by Robson et al. (1973) and
Kildir and Huizenga (1973) on the basis of data reported
by Ernst et al. (1969) and Katsanos et al. (1970)], we
consider the reactions

Hence, in this case, the autocorrelation functions of a pair
of mirror channels are equal. Moreover, the cross-
correlation function between the pair of mirror channels
is different from zero and equal to either of the two auto-
correlation functions. Such cross-correlation functions
were first measured experimentally by Detraz et al.
(1971) and by Simpson et al. (1978), and treated theoreti-
cally by Weidenmuller et al. (1978; see Sec. VI of the
present paper).

The discussion in this section shows that any use of the
statistical model requires a careful analysis of the under-
lying statistical assumptions. Assuming isospin to be a
conserved quan. turn number, we are naturally led to con-
sider S-matrix elements pertaining to different isospin
vaIues as uncorrelated. This in turn implies a strong
correlation of fluctuations in mirror channels. In the lim-

O.O 3

CL
O

O.O 3

0
4L

c (keV) e(keV)

FICx. 3. Cross-section fluctuations in the reactions
' Ti+p~5'V*~' Ti+p and OTi+p~"V*~ Sc+ a, mea-
sured by Kreische et al. (1976). The correlation widths are dif-
ferent in the proton- and alpha-particle channels. This is obvi-
ous from the excitation functions and is measured by the width
at half maximum of the autocorrelation functions C(c).
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'4Cr(T=T, + ,')-+p',
5 Cr+p~ Mn

'V(T=Ti)+a . (3.1)

(3.3)

We note that C~~ (s) depends upon both I"i and I 2, in
contrast to C~ (e). Because of finite-range-of-data errors,
it is usually not possible to extract more than one datum
of information from the correlation function, typically
the width at half maxiinum' (see Fig. 3). For the (p,a)
reaction, this yields I =I 1. The width I 2 can then be
obtained from the width at half maximum of C~~ (e), pro-
vided the ratio (~~2r~2/Nz)/(v~i~~, /Ni) of compound-
nucleus cross sections is known. This ratio can be deter-
mined semiempirically by calculating the transmission
coefficients wz, (i =1,2) and a~i for the actual reaction
channels (see footnote 2 in Sec. VI.A), and by determining
Ni and Nz from the measured cross sections

Tp1 Val
pQ

1

(3.4)

1 2
(3.5)

For the case of the reactions (3.1), the excitation energy of
Mn* was 17.6 MeV, and the correlation widths were

found (Robson et al. , 1973) to be I i
——I =8.2+0.6 keV

and I z
——13.9+0.7 keV. [The quantity I z is the width at

half maximum of C~~(e). ] From these values and with
the above-mentioned analysis, the correlation width I'2 of
class two levels was calculated as I 2

——19+1 7 keV. In the
analysis, the effective numbers of open channels were
found to be Ni ——890+ iso and N2 11+5 . The level d——en-

Although there exist more precise ways to obtain the correla-
tion length —see Ernst et al. (1969) and Spijkervet (1978)—
simplicity and general use favor the method applied here.

The target nucleus "Cr has isospin T =3, so that T1 ———',
and T2 ———', . The states populated in the (p,a) reaction
have the isospin —', of the 'V nucleus. Under strict iso-
spin conservation, the (p,a) reaction therefore proceeds
only via compound states with T =T, = —,

' (the class one
states), while the (p,p') reaction populates both class one
and class two levels. Adapting Eq. (2.21) to these two sit-
uations, we find, using a simplified notation

C~ (e)= ~pl Cl 11
(3.2)I 1+lE,

Here, ~~i ——~~i
' and correspondingly for ~ i. Analo-

gously, the expression for C~~ (e) reads
2

1 1+le 2 2+i&

sity for either class of states can be calculated from I
and N~ using Eq. (2.16b).

In the example of Mn*, we thus have I 2& I i (or
N2Dz &NiDi) in spite of the fact that Nz «Ni. This is
typical for systems with Ti & 0: The inequality
N2 «Ni, caused by the fact that there are many more
open neutron channels for class one states than for class
two states (see Fig. 2), is overcompensated by the differ-
ence between the level densities of the two classes. For
T1 &0 we h@ve, D2 »D1. We thus expect that in heavy
compound nuclei we have I 2» I'i. This feature is in
fact observed in isolated isobaric analog resonances with
widths typically 100 keV for nuclei with mass numbers
A & 100, while the fine structure due to the T =Ti levels
is so narrow that it usually escapes. detection.

This large difference between I i and I 2 is expected to
disappear when isospin mixing is complete. Conversely, a
large value of I i alone suffices to demonstrate qualita-
tively the (approximate) conservation of isospin in the
domain of overlapping isobaric analog resonances (Berg
et al. , 1975). In proton scattering on Zr, the compound
nucleus 'Nb* was excited to about 20 MeV, and the
correlation width 1~=13.6+2.0 keV was found. For
complete isospin mixing one estimates, following
Eberhard et al. (1969) and using Eq. (5.6) below, the
correlation width to be about 0.2 keV. This suggests that
I » is close to the correlation width I 2 of the pure class
two states.

IV. COMPOUND-NUCLEUS REACTIONS
WITH BROKEN ISOSPIN SYMMETRY

The presentation in Sec. II, based on isospin conserva-
tion, is at variance with many data. This calls for an ex-
tension of the statistical theory that would allow for iso-
spin mixing and would permit us to deduce the relevant
Coulomb mixing matrix elements from the data. Such a
theory is presented in the present section, We confine
ourselves here to a discussion of the underlying physical
assumptions and a presentation of the resulting formulas,
and relegate the formal derivation to Appendix A. For-
mulas for compound-nucleus reactions with isospin sym-
metry breaking were first suggested by Grimes et al.
(1972) and later derived from a quantum-statistical model
by Harney et al. (1977) and Weidenmuller et al. (1978).
In describing the physical input, we start with the
compound-nucleus resonances and subsequently turn to
the channel wave functions.

A. Isospin mixing between compound-nucleus
levels: physical assumptions

For the compound-nucleus levels, we introduce a basis
set of states

~
mp, ) with pure isospin. Here m =1,2 la--

bels the two classes, and p is a running index labeling the
levels in a given class. The states

~ my) are orthogonal.
We assume the full Hamiltonian H (including all isospin-
symmetry-breaking terms) to have been diagonalized
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within each class; the resulting eigenfunctions are the

I
mp). The eigenvalues are denoted by E &. The mean

spacing of the E~„with m fixed is denoted by D~,I =1,2, in keeping with the notation of Sec. II. Finer
details of the distribution of the E

„

turn out to be unim-
portant (Hofman et al. , 1981; Weidenmiiller, 1984;
Muller and Harney, 1985). For the statistical reaction
theory in the domain of strongly overlapping resonances,
see condition (2.1).

We denote by Hc (where C stands for Coulomb) the to-
tality of isospin-symmetry-breaking terms in the Hamil-
tonian, and we consider the matrix elements

( 1p
I
K

I
2v) = ( 1p

I
Hc

I
v) Fo lowing arguments

given, for example, by Krieger and Porter (1963), these
matrix elements, taken as functions of the index p or the
index v, are assumed to have a Gaussian distribution cen-
tered at zero. It is advantageous in the statistical theory
to replace running averages (over the index p) by ensem-
ble averages (over a distribution of Hamiltonian matrices).
This is permissible in view of an ergodicity theorem con-
sidered by Moldauer (1964), Richert and Weidenmuller
(1977), and French et al. (1978), and will be done
throughout this review. Denoting the ensemble average
by a horizontal bar, we thus assume

(Ip IHc
I
2v) =0,

(,
'

Ip I Hc
I
2v) ~ lp

I
Hc

I

2v') =&pp & Hc . (4.1)

Sat, bt' ~abbott'exp(2tg'ai) .(o) (4.2)

Here, y« is the elastic scattering phase shift. We em-
phasize that differences in threshold energies of mirror
channels, as discussed in Sec. II, are contained in the defi-
nition of the channel wave functions

I
at) and of the as-

sociated phase shifts y„.

Using time-reversal invariance, we have assumed that the
matrix (1p

I
Hc

I
2v) is chosen to be real and symmetric,

( 1p
I
Hc

I
2v) = ( 1p I

Hc
I
2v) ' = (2v

I
Hc

I
1p ) .

The average Hc of (1p
I
Hc

I
2v) measures the strength

of isospin mixing. The square root of this expression is
generally called the average Coulomb matrix element and
is the quantity of spectroscopic interest. As displayed
below, the matrix elements ( 1p

I
Hc

I
2v) are not the only

source of isospin mixing in compound-nucleus reactions.
To distinguish this source from symmetry-breaking ef-
fects caused by coupling to the channels, we refer to iso-
spin mixing due to H~ as "internal mixing, " a term first
coined in the theory of isobaric analog resonances.

We now turn to the channels and introduce the channel
wave functions

I
at ), which denote, in contrast to Sec. II,

the physical channels including all the isospin mixing not
caused by coupling to the compound nucleus.

Let S' ' denote the S matrix that describes nuclear
scattering without intermediate compound-nucleus forma-
tion. We assume that direct reactions do not contribute
and that accordingly S' ' is diagonal in the physical chan-
nels,

We pause a moment to reflect upon what assumption
(4.2) implies in the limit in which all isospin-breaking
parts in the Hamiltonian tend to zero, H~ —+0. Continui-
ty shows that S' ' remains diagonal in this limit. On the
other hand, for Hc 0, —t—he considerations of Sec. II ap-
ply, and S,"b is the proper S matrix to use. A glance at
Eq. (2.4) shows that S' ' can be diagonal for H'c ——0 only
if S, b is independent of T. This is the limitation im-
posed by assumption (4.2), and it is not completely realis-
tic. Indeed, we recall the existence of the Lane potential
(Lane, 1962a, 1962b), a term in the optical-model potential
that accounts for direct transitions between mirror chan-
nels. This potential depends explicitly on total isotopic
spin. In the absence of all isospin-breaking forces, it will
yield an S matrix S that is different for different values
of T. The argument just given can be made less round-
about by observing that the diagonality assumption (4.2)
is at variance with the existence of the Lane potential.

Why do we use assumption (4.2) if it is not totally real-
istic? Because a more general theory which would allow
for both a direct coupling between channels t, t' with t&t'
and isospin mixing in the compound nucleus has not yet
been worked out. We point to this gap as an opportunity
for further investigations. How serious is the neglect of
direct transitions between mirror channels for applica-
tions of the theory? This neglect probably has little im-
portance for general inelastic compound-nucleus reac-
tions. For the specific case of transitions or correlations
between mirror channels, however, we expect that direct
isospin-conserving reactions (i.e., transitions caused by the
Lane potential) between such channels reduce the effect of
isospin-breaking forces. Put differently, when we apply
the formulas of this review, derived under the neglect of
such direct reactions, to the analysis of reactions involv-
ing mirror channels, we expect to obtain an underestimate
of the actual strength of isospin-breaking forces.

Returning to the formulation of our problem, we have
to specify how the physical channels

I
at ) are coupled to

the compound levels
I mp). We denote the relevant ma-

trix elements by

V"„=(at
I

V
I mp) . (4.3)

Vat (P )
1/2 V at (4 4)

It will become apparent later that a precise definition of
P« is not needed. All we have to assume is that P«can
be chosen in such a way that the statistical properties of
the matrix elements V ~& can be taken to be independent
of energy. We notice that the elements V "& are defined
and different from zero even below the threshold of chan-
nel (a, t), where P„and therefore V"~ both vanish.

The statistics of the V"„arenow defined by making

These are evaluated by assuming what might be called
"minimal isospin violation'* as follows. Let P«be a suit-
ably defined penetration factor in channel

I
at ). We takeP„to be a slowly varying function of energy which takes

account of the threshold and Coulomb barrier effects dis-
cussed in Sec. II, and we write
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statistical assumptions on the distribution of the V"„.
These latter assumptions strictly follow the reasoning of
Sec. II and therefore do not invoke breaking of isospin
symmetry. We transform from the (a, t) representation to
the representation involving total isospin,

V' „=g (aT
~

at & V "~; (4.5)

we assume that V' „vanishes unless isospin is conserved,

aT aT
Vmp ~TT V mp=~TT Vmp ~ (4.6)

and we assume —following Krieger and Porter (1963)—
that the V'@ are Gaussian-distributed random variables
with zero mean and with a second moment given by

VmpV«v 5ab5mn5pv( Vm } (4.7)

Here and in Eq. (4.1) the assumption of Gaussian statis-
tics is consistent with the results of Brody et al. (1981)
and Harney (1984) from statistical spectroscopy. The in-
dependence of the right-hand sides of both Eqs. (4.1) and
(4.7) of the running indices p and v is necessary to ensure
stationarity of the statistics with respect to energy [see
Agassi et al. (1975)] and, ultimately, ergodicity [see Mol-
dauer (1964}, Richert and Weidenmiiller (1977}, and
French et al. (1978)j.

Since the transformations (4.4) and (4.5) are both linear
and homogeneous, it follows that the matrix elements
V"„and Vm'„also have Gaussian distributions with
mean values zero. The second moments are given, respec-
tively, by

V"„V„',=5,b5 „5„„(aT
~

at)(aT
~

at')(V' )

(4.8a)

X (aT
l

«'&( V' }' (4.8b)

Equation (4.8a) suggests that the present approach
predicts correlations between mirror channels very similar
to those in Sec. II. Equation (4.8b) indicates that the only
source of isospin symmetry breaking in the matrix ele-
ments V"& is the penetration factor P«(hence the term
"minimal isospin violation" ). It is shown below that this
symmetry breaking leads to an additional mixing of the
compound levels of different isospin over and above that
caused by the matrix elements of Hc in Eq. (4.1). Since
this mixing comes about by an intermediary transition to
the channels, it is referred to as "external mixing, " again
in analogy to the situation encountered in isolated isobaric
analog resonances. If one wishes to obtain information on
the matrix elements of Hc from the data, it is necessary
to have reliable theoretical estimates on the magnitude of
external mixing, since, as shown below, external and inter-
nal mixing always appear jointly in the formulas. In the
framework of the assumptions specified above, Harney
and Tang (1981) have estimated the size of external mix-
ing effects. It was found that these are usually small in

comparison with internal mixing (see Sec. VII}. This sup-
ports the hope that other isospin-mixing effects neglected
in the analysis given above may be negligible, too: as-
sumption (4.6), for instance, excludes processes in which a
T =0 channel wave function is coupled, via Hc, to T =1
compound levels or vice versa. (Scattering of an alpha
particle by a T =0 target nucleus with the population of
intermediate T=1 compound-nucleus resonances would
be a case in point. ) Although low-lying states of isolated
nuclei are known to have rather pure isospin, it does not
follow that assumption (4.6) holds true, and estimates of
the relevant matrix elements do not seem to exist.

We turn now to the form of the S matrix with the in-
clusion of coupling between channels and compound-
nucleus levels. We recall Eq. (4.2) and define the diagonal
matrix Q (in the physical channels) by

&.~, bi =5.b5«exP(te. i) (4.9}

Using matrix notation and applying techniques explained
by Mahaux and Weidenmuller (1969), we find that the
nuclear scattering matrix S has the form

S=0 —2iQtQ,

with t given by

at —] bt'
tat, bt' tr g Vmp(D )mp, nvV«v

mpnv

(4.10)

(4.11)

The matrix D is a level matrix and is given by

D p, =5 5p (E Ep) (mp I—Hc Inv—& (1—5 )

+in g V~~V„"„ (4.12)

The reader will observe that in Eq. (4.12) the shift func-
tions have been suppressed. This is done bemuse in prac-
tical applications they have never been evaluated, but
rather have been put equal to zero relying on arguments
given by Mahaux and Weidenmiiller (1969) and Harney
and' Tang (1981). They are included in the formulas of
Weidenmuller et al. (1978).

The S matrix (4.10) is a function of the matrix elements

V~& and (mp
~
Hc

~
nv&, both of which are Gaussian-

distributed random variables. We assume these two sets
of random variables to be uncorrelated, so that, for in-
stance,

V~&(m'p'
~
Hc

~
nv& =0, (4.13)

again in keeping with the statistical model. By virtue of
the ensemble character of the matrix elements V~& and
(mp,

~
Hc

~

nv&, we also deal with an ensemble of S ma-
trices of the form (4.10), and it is our aim to calculate en-
semble averages of the S matrix, of cross sections, and of
cross-section correlation functions in a manner analogous
to the scheme sketched in Secs. II.B and II.C. This prob-
lem is similar to, but not the same as, the problem solved
by Agassi et al. (1975) because, in the present case, the
statistimlly uncorrelated quantities are not the coupling
matrix elements between compound levels and physical

Rev. Mod. Phys. , Vol. 58, No. 3, July 1986



Harney, Richter, and WeidenmQIler: Breaking of isospin symmetry. . .

channels [this is the assumption used by Agassi et al.
(1975)], but rather the transformed matrix elements Vm&
[see Eqs. (4.4)—(4.8)]. This situation requires a generali-
zation of the work of Agassi et al. , which was given by
Weidenmiiller et al. (1978). Results obtained in this way
are presented in Sec. IV.B; the details of the calculation
are given in Appendix A.

Vfe conclude this section with a comment on the origin
of isospin mixing in the frainework of the present ap-
proach. We have already commented on the important
role of internal mixing caused by the matrix elements of
Hc that couple directly compound states of different iso-
spin symmetry [see Eqs. (4.1)]. The role of "external mix-
ing" is somewhat more subtle in that it is not caused
directly by mixing elements of Hc, but rather by the
difference between threshold energies and penetrabilities
in mirror channels. This is seen most clearly by combin-
ing Eqs. (4.4)—(4.6),

B. Isospin mixing between compound-nucleus
levels: formal results

In this section we present the results of the model for-
mulated in Sec. IV.A. The derivation is given in Appen-
dix A. We confine ourselves here to a display of the
relevant formulas. A thorough discussion of these results,
and a physical interpretation, are given in Sec. V.

We recall Eqs. (4.2) and (4.9) and define a transforma-
tion of the S matrix

(4.17)

which removes the elastic background scattering phase
shifts. Decomposing S into an average and a fluctuating
part in complete analogy to Eq. (2.5), we find for the
second moment of S"the result

(S„b;(E)S„-d;(E+e.))=5„5bdQr, II „rb„
V"„=(P„)'/(aT

i
at) V'„. (4.14)

m, n

tt Ill tltI I

+~ad'5bc g ram IImnrbn
One might consider introducing another set of matrix ele-
ments V'„by

m, n

(4.18)

V"„=g(aTiat) V„"„=X.-.V', .
t

(4.15) The matrix IImn with plyn 1p2 is a 2&2 matrix in the
space of isospin classes, the inverse of which is given by

We have used Eq. (4.14) and the definition

X, = g (aT ~tat)PI/'(aT
~

at) .
t

(4.16)
X, +z+2ime/Di

N2+z +2ime/D2. (4.19)

The effective numbers Km of open decay channels are de-
fined in terms of the transmission coefficients r,"m as in
Eq. (2.19). The transmission coefficients themselves,
however, are now given as follows:

tt' t
+0m ~a ~gm (4.20)

with (m =1,2)

/Iam=2 E, .(aTm
~
at) (x mP„)'/ .(1+x 3 P, , ),

(4.21)

where

x ' =m. ( V' ) /D (4.22)

OtThe quantity X, is nondiagonal in isospin. This fact
causes the matrix elements V „and V @ to be corre-
lated, and this is the cause of isospin symmetry breaking
via external mixing [see also Eq. (4.8b)]. The matrix

X, is nondiagonal and is isospin breaking only if the
penetration factors P, +1/2 and P, 1/2 are not equal; oth-
erwise, the orthogonality of the Clebsch-Gordan coeffi-
cients in Eq. (4.16) yields Tm =T. We therefore expect
that isospin-breaking effects due to external mixing van-
ish together with the difference (P, +1/2 P, 1/2), and-
this is indeed what we shall find. External mixing in the
present framework is thus identified as a threshold
phenomenon.

Statistical assumptions that differ from those intro-
duced above have been discussed by 'Weidenmuller et al.
(1978) and have been shown to be less plausible.

Pa 1+(2T1+ ) IPa1/2[x 1+(2T1+1)x 2]+Pa —1/2[x 2+(2T1+1)x 1]I +x 1x 2Pa1/2Pa —1/2 ~ (4.23)

The isospin-mixing parameter has the form

z =4m .Hc/(DiD2)

2T1 1)
+4 g Pa ' x 1x 2 (Pa 1/2 a —1/2)

a 1+
(4.24)

where the restricted sum g' in the last term extends only

over pairs of mirror channels. For channels with t =0,
both P, ]]2 and P ~~2 have to be replaced by P,o in Eqs.
(4.21) and (4.23).

A great simplification can be achieved by introducing
an assumption that has been used at least implicitly in all
investigations of isospin mixing published so far, and that
is discussed in Sec. V: %'e assume the quantities x ' to
be independent of the class index m, so that
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~g ~g gX )=X 2—=X

It is then convenient to define the quantities
—g~

Xgt X L gg o

In this way, the definitions (4.20)—(4.24) simplify to

4(x„x„)'/=(aT
~
«)(~&~

~

«') 1+x„1+x„
and

(4.25)

(4.26)

(4.27)

z =41r Hc/(D, D2)

2T1 + 1 (xa 1/2 xa —1/2)+4
(2T1+2) (1+xa1/2)(1+x' —I/2)

(4.28)

Equations (4.18), (4.19), (4.27), and (4.28) form the basis
of our comparison with experimental work.

Y. DISCUSSION OF THE THEORETICAL
FRAMEWORK

A. The isospin-mixing parameter z

Equation (4.18) shows that the amount of isospin mix-
ing in a compound-nucleus reaction is governed by the
nondiagonal element II~2 ——II2& of the matrix II. The

In this section we give a physical interpretation of Eqs.
(4.17)—(4.19), (4.27), and (4.28), as well as of assumption
(4.25). We mention once again that formulas for isospin
symmetry breaking in compound-nucleus reactions were
first given by Cxrimes et al. (1972), without, however, any
detailed theoretical justification. This work was followed
by the work of the present authors (Harney et al. , 1977;
Weidenmuller et al. , 1978), in which a derivation was
given that essentially is reproduced, with minor modifica-
tions, in Appendix A. A third approach, stimulated by
the question of isospin mixing in giant resonances, was
formulated by Shikazono and Terasawa (1975). It was
shown by Lane (1978) that all three approaches are for-
mally equivalent in the sense that if one identifies the
mixing parameters of the three approaches, the cross-
section formulas can be transformed into one another.
This, of course, leaves open the question of any micro
seopic equivalence between the three theories.

We begin with assumption (4.25). Aside from the fact
that it is badly needed in order to reduce the complicated
expressions (4.20)—(4.24) to the simpler forms (4.27) and
(4.28), and in order to reduce the number of independent
parameters to obtain an unambiguous fit to the data, this
assumption is also physically eminently reasonable.
Indeed, the average level spacings D may be very dif-
ferent for the two classes, and so may be the values ( V~ )

of the averaged squares of matrix elements. However, the
ratio ( V' ) /D is nearly independent of m since, as D
gets smaller, the square of each matrix element will get
correspondingly smaller, too, because the strength is
spread over a larger number of states.

latter, given by Eq. (4.19), becomes diagonal for z =0.
Therefore z, as specified in Eq. (4.28), is referred to as the
isospin-mixing parameter. According to Eq. (4.28), it
consists of two contributions: the term 4' Hc/(DrD2),
which represents internal mixing and which is the quanti-
ty of spectroscopic interest in the study of isospin-
forbidden reactions, and a second term given by the sum
over mirror channels, which represents external mixing [it
disappears when we set P, i/2 P, 1——/2, see Eq. (4.26)].
We observe that internal mixing and external mixing both
contribute to z. From the analysis of the data, it is possi-
ble in many cases to determine z. In order to obtain in-
formation on Hc, it is necessary to estimate theoretically
the amount of external mixing and the level spacings Di
and D2. Estimates of these parameters are presented in
Sec. VII.

It turns out that internal mixing dominates over exter-
nal mixing. The sum g' in Eq. (4.28), which yields
external mixing, extends over all pairs of mirror channels.
These are the channels marked by wavy lines in Fig. 4.
The neutron channels

~

—,—, )
~
Ti ——,, Tr ——, ) leading to

the lowest possible isospin in the residual nucleus formed
by neutron emission are, however, not included in the
sum, since they have no mirror images. There are only
relatively few channels that significantly contribute to the
sum. For those pairs of channels (a —,

'
),(a ——,

'
), where the

channel energy is much larger than either threshold ener-

Ex
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FIG. 4. Nuclear decay channels and their contribution to exter-
nal isospin mixing. We consider the proton channels leading to
states in the residual nucleus which lie between the ground state

~

T1+T~, T1+ z ) and the energy so. For every one of them

there is an open mirror channel. The final nuclear state

~
T1 + z, T1 —

z ) reached by neutron decay is the isobaric ana-

log state Of the state
~

T1 + 2, T1 + z ) formed by proton decay.
These pairs of states are separated by the Coulomb energy
difference E~. Such pairs of channels do not contribute to
external mixing, since their absorption coefficients x, &/2 and
x, I/2 are equal. For the states with energy above co reached
by proton decay, the neutron mirror channel is closed, i.e.,
x, &&2

——0 and x, I/2&0. These channels —indicated by the
shaded area—essentially contribute to external mixing. The de-
creasing intensity of shading indicates the decreasing penetrabil-
ity due to the Coulomb barrier.

Rev. Mod. Phys. , Yol. 58, No. 3, July 1986



618 Harney, Richter, and Weidenmuller: Breaking of isospin symmetry. . .

gy, the transmission coefficients ~, I&z and r, »z will
both be close to unity, hence xa]&2-xa 1~2 and these
terms are negligibly small. On the other hand, there are
pairs of channels with threshold energies so large that the
channel with t = —,

' is closed, while the channel with
t = ——,

' is open. The difference between the two thresh-
old energies is the Coulomb energy difference between the
residual states

~
Ti+ —, , Ti ——,

' ), and
~
Ti+ —,', Ti+ —,

' )
(see Fig. 4). This is roughly equal to the Coulomb barrier
for proton emission from the compound nucleus. There-
fore the nucleon channels contributing to the sum in Eq.
(4.28) essentially comprise the proton channels with chan-
nel energies below the Coulomb barrier. This is also the
most important class of channels responsible for external
mixing, since there are very few channels with isospin- —,

particles heavier than nucleons. The channels dominating
the sum in Eq. (4.28) are indicated by the shaded area in
Fig. 4. If the Coulomb interaction were turned off, one
would have P, iqz P, I~z

——for all a, and external mixing
mould vanish together with internal mixing.

We recall that Ni, the effective number of open chan-
nels for states in class one, can also be written as
2n.ri/Di [see Eq. (2.16)], in keeping with the standard
notation of compound-nucleus theory [see, for example,
Agassi et al. (1975)]. Here, I I is the "escape width" for
the decay into the open channels. Looking at the contri-
butions to z from internal mixing, we note that 2IrHc/Dz
is the usual expression for the "spreading width" I'I;„,
(due to internal mixing) of states in class one, so that the
internal mixing contribution to z can be written as
2Irl z;„,/Di. Analogously, the external mixing contribu-
tion to z is formally written as 2Irri,„,/Di, and the (1,1)
element of the matrix in Eq. (4.19) acquires the simple
and obvious form 2Ir(I I+I I;„,+I I,„,+2iEm)/DI. An
analogous form holds for the (2,2) elements because of the
symmetry of z in the class index.

B. The correlation functions

For z =0, the correlation function (4.18) becomes diag-
onal in the isospin indices, as it should, and agrees with
the results given in Sec. II [see Eq. (2.17)], except for the
transformation (4.17) from S to S, which involves the
physical phase shifts in the channels. This point was dis-
cuss'ed extensively in Sec. IV.A. Both for z =0 [where
Eq. (2.17) demonstrates this fact explicitly] and for z&0,
the correlation function (4.18) contains two Lorentzians.
The correlation lengths XI,A,z are found. as the roots at
a=i A„iAzof the d,eter.minant of II '. We obtain

(5.1)

Here, I ' is the sum of the internal and external spread-
ing widths I m, int and I m, ext 1ntroduced above. For z =0,
i.e., I ~

——I 2
——0, this yields A, =I', as it should. Note

that A,~ & 0 for all values of I' & 0, as is to be expected.
Gnly for z »N I and z »Nz, i.er r I ~ &&I ~, do we en-

counter an unexpected situation: one of the roots of
det(II ') remains finite,

(5.2)

while the other one tends to infinity as

Xz —+ z(NI+Nz)/2' . (5.3)

+5~5b 5 -5 -)

I corr +at+bt'
X

rcorr+I s g res

(5.4)

where s=Ez Ei. Th—e transmission coefficients r«are
given by

tt'
+am ~tt'+at ~ (5.5)

and the correlation width I „„by
I „„=(2Ir)'(Ni+Nz)(Di '+Dz ')

We note that

Ni+Nz= +&a'm= grat .
amt at

(5.6)

(5.7)

The result (5.4) is to be expected, as for z —+ oo the mixing
between the classes becomes so strong as to make any dis-
tinction between them physically meaningless. We note
that Eq. (5.6), too, has the expected form in view of Eqs.
(5.7) and the fact that Di +Dz equals the total level
density. The coefficients

4x,
(1+x„) (5.8)

have the form of physical transmission coefficients.
Complete isospin symmetry breaking is also refiected in
the arrangement of Kronecker symbols appearing on the
right-hand side of Eq. (5.4): It leads to uncorrelated am-
plitudes in physically different channels, and it leads to an
enhancement factor of 2 in elastic, but not in charge ex-
change, reactions.

Since our results essentially reduce to those of Sec. II
for z~0, we expect that the general case (z&0, but z Ilot
large in comparison to Ni and/or Nz) also has the pecu-
liarities displayed in Sec. II: an "elastic" enhancement for
charge exchange reactions, and correlations in mirror
channels. This is dealt with in Secs. VI and VII. In Sec.
VI we show how z can be determined experimentally.

Further analysis of this limit [see Harney et al. (1983)]
shows that the correlation function (4.18) is characterized
by a sirigle Lorentzian, and that it attains the form of a
standard Hauser-Feshbach expression, generalized to
EI&Ez, namely,

( ~ at, bt'(Ei )~ ct",dt"'(Ez ) ) ~ (5ac5bd5tt"5t't"'fl Qg
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Yl. EXPERIMENTAL EXAMPLES OF ISOSPIN MIXING

In the first part of this section four groups of experi-
ments are discussed, which all have one point in common.
The average cross section of a reaction forbidden by the
isospin selection rule is compared to the cross section of
an allowed reaction. This results in a reduction factor f,
which can be related to the average decay probability of
the isospin class two levels into the levels of class one.
Because of its conceptual simplicity, the first example
below is used to define the reduction factor. Three fur-
ther possibilities of investigating isospin mixing are
presented in Secs. VI.E—VI.G. Here, we deal with corre-
lations between mirror channels, with the correlation
widths I m, and with the enhancement factor in charge
exchange reactions.

A. First example: isospin-allowed
and isospin-forbidden average cross sections
in the reaction 288i{d,a) 28Ai

The comparison of allowed and forbidden reactions of
the type A +a~C'~8+6 is illustrated with the help

I

of experimental data by Bizzeti and Bizzeti-Sona (1968)
and by Richter et al. (1970). The reaction

i+d ~ oP*~ A.1+a (6.1)

leading to a residual state with isospin T~ ——TI, ——0 is iso-
spin allowed, since the total isospins in the entrance and
exit channels agree (T~ ——T, =O). The compound nu-
cleus P has Ti ——0 and T2 ——1. The entrance channel
couples only to class one states with T~ ——0 and so does
the exit channel labeled u:

rdi&0, ~ i&0, wdz
——0, r z ——0. (6.2)

tt
+am +at, m (6.3)

and indicate the physical channel (a, t) by the symbol for
the light reaction partner, e.g., p, d, or a.

To calculate the average compound-nucleus cross sec-
tion, we invert the matrix of Eq. (4.19),

As long as the upper indices t and t' are equal, we use a
simplified notation for the transmission coefficients of
Eq. (4.27). (Coefficients with t&t' will appear only in
Sec. VI.E, and the full notation is used there. ) We ac-
cordingly write

Nz+z +2rri e/Dz z
1

Ni+z+2~i E/Di (%i+z+2mi e/Di )(Nz+z+2mi e/Dz) z— (6.4)

and obtain from Eq. (4.18) d r+i0, 'r i =0, 7rd2=0, 1 2+0 . (6.8)

1+z/Nz 1o (allowed =rdc'' d 1
1 /~ /~ ~ col

We recall that isospin Inixing is controlled by the pa-
rameter z. In the limit of no mixing (z~O), Eq. (6.5) be-
comes the usual Hauser-Feshbach formula

1o d ( allowed, no mixing )=ed i a (6.6)

1
od (complete mixing)=~d i +a1 ~ (6.7)

where the levels of class two do not occur. In the limit of
very strong mixing (z~ oo ), Eq. (6.5) tends toward

Equation (4.18) then gives

z/Ni
crd~(forbidden) =rd i (6.9)1+2/X)+z/X2 X]

Bizzeti and Bizzeti-Sona (1968) have measured the
cross sections a~ between 7 and 11 MeV incident energy
corresponding to a mean excitation energy of 20 MeV in

P. They are reproduced here in Fig. 5 for seven dif-
ferent final states as functions of the scattering angle.
The expressions r~~~«with m =n =1 for the allowed
reaction and m =1, n =2 for the forbidden transition
were calculated. Subsequently, the factor (1+z/N2)(1
+z/Ni+z/Nz) 'Ni ' was adjusted in such a way that

which is the Hauser-Feshbach formula without distinc-
tion between the levels of class one and class two an ob-
vious result. For arbitrary z, the interpretation of Eq.
(6.5) is also straightforward: only the fraction
(1+z/N2)(1+z/Ni+z/N2) ' of the levels of class one
is available for decay into the exit channel u1, which is
populated with the probability ~ j/N&.

Consider now the excitation of the first excited Tz ——1
state of Al through the reaction (6.1). This reaction is
isospin forbidden. Again the entrance channel couples to
the class one states, but the exit channel only to the class
two states, i.e.,

Note that the actual Hauser-Feshbach cross sections are sums

over terms like those of Eqs. (6.5) or (6.9), weighted with Racah
coefficients and angular functions. The sums extend over orbi-
tal angular momenta and channel spins of both entrance and
exit channels, and over the total spin of the system. The expres-
sion is given explicit1y, for example, by Bizzeti and Bizzeti-Sona
(196S) and von kitsch et al. (1966). Figure S shows that the
transition to the first excited 0+, T~ ——1 state in Al is weaker

by about a factor of 30 than the transition to the 3,T~ ——0
ground state. Most of this suppression is due to the different
spins of the final states, as is borne out by the solid curves.
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Si (d, e) Al

E =9MeV

The complementary expression

z

1+z/Xi +z/192
(6.12)

0.5—
C
cA

Q

E
Cl ~QXJ

O
Xl

0.5—

&0~&

allowed

allowed aliow ed

—0.1

is a measure of the fraction of states in class two decaying
into class one. The quantity v agrees with the one intro-
duced by Lane (1978). If the number N~ of decay chan-
nels is much larger than Nz, Eq. (6.12) approaches the
definition off in Eq. (6.10). This is always the case if the
lowest possible isospin T& in the compound nucleus is
larger than zero. For self-conjugate nuclei X]-%2, and
therefore the expression v in Eq. (6.12) can be converted
into Eq. (6.10)~

We interpret the quantity z/N2 in the following way.
As in Sec. V we define the mixing or spreading widths

1.0—
allowed

—1.Q I"~=D.z!2~ . (6.13)
0.5—

6
0

I I a a

Qo

allowed
forbidden

~&i~ —o.s

I I i ~ I I I I I I I I 4 I I I I l I I I I 4 I I ~ ~ I I I I I 090 1804 Qo 90' 180

FIG. 5. Average differential cross sections of Si(d, a) Al.
The label ao designates the transition to the ground state of

Al, the labels ak, k = 1, . . . , 8 the transitions to the kth excit-
ed state. Both the data points and the curves are from Bizzeti
and Bizzeti-Sona (1968). The transitions to the sixth and
seventh excited states are experimentally unresolved. The solid
curves are Hauser-Feshbach calculations normalized to the set
of isospin-allowed transitions. The dashed curves for the
isospin-forbidden cases a~ and a& result from a suppression of
the Hauser-Feshbach calculations by a factor of f=0.25. Note
the expanded scale for a~.

all allowed transitions described by Eq. (6.5) were simul-
taneously reproduced. This resulted in the solid curves in
Fig. 5. If isospin mixing is complete, one expects to
reproduce all transitions with this normalization. The ex-
perimental results for the forbidden transitions a& and a7
in Fig. 5 are, however, suppressed with respect to ihe
solid curves by the factor f=0.25+0.05. Inspecting Eqs.
(6.5) and (6.9), we see that this suppression factor is

z N2

1+z/N,
(6.10)

z N)
1+z/Ni+z/Np

(6.1 1)

In principle the quantities z/N ~,z/N2 could depend upon
spin and parity of the compound nucleus. This depen-
dence was neglected by Bizzeti. We discuss this assump-
tion in Sec. VII.

The suppression factor f is the central quantity of this
article. It is related through Eq. (6.10) to the microscopic
theory described in Sec. IV. As Eq. (6.5) shows, the frac-
tion of states of class one that decay into the levels of
class two is given by

They govern the decay rate of the levels of class m into
those of class n&m [see Agassi et al. (1975) and Harney
et al. (1977)]. The quantity

(6.14)

is then seen to be the ratio of decay probabilities of the
class two levels into class one and into the open channels.

One may wonder why the suppression factor of a for-
bidden reaction depends upon the parameters of the class
two levels rather than depending symmetrically on both
classes. This is due to an "asymmetric definition" of f.
It measures the strength of a forbidden reaction relative
to an allowed one that passes through the class one levels.
This is brought about by the experimental situation: An
allowed reaction proceeding through the class two levels
is—in the above example (6.1)—not accessible.

The structure of the quantity z/N2 and the size of Hc
that can be deduced will be discussed in detail in Sec. VII.
We note that the example just given stands for a whole
class of (d, a), (d, d'), (a,a'), ( Li,a), . . . reactions. The
most extensive experiment is the study of S(d,a) P by
Spijkervet (1978), including more than twenty final states
with five forbidden transitions (see Fig. 10 below and the
discussion in Sec. VI.F)~ Two relatively recent examples
are the reactions ' C( Li,a) ' N and ' N(d, d') ' N. In
both cases the isospin-forbidden excitation of the first ex-
cited (J;T)=(0+;I) state in ' N has been investigated
[see Schwenzel et al. (1981) and Aoki et al. (1979)]. For

This argument can be verified with the help of Fig. 2. If
T& ——0, the residual states reached by neutron emission all have
their isobaric analog among the states reached by proton emis-
sion. Due to the Coulomb barrier in the proton channel there is
essentially a one-to-one correspondence between the states popu-
lated by emission of either nucleon (see Sec. V). Within the ap-
proximation that the nucleon channels exhaust the decay chan-
nels, one obtains X~-X2.
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further references, the reader is referred to these papers.
The results4 for the suppression factor f are listed in
Table I in Sec. VII below. They are 0.3—0.5 for excita-
tion energies relatively close to neutron threshold and ap-
parently decrease to only a few percent at high excitation
energies. This fact, which was first observed by Richter
et al. (1970) in the reaction 2 Si(d, a) Al, is discussed in
Sec. VII in more detail. It shows that in compound-
nucleus reactions isospin symmetry seems to be restored
at high excitation energy.

B. Second example: isospin-forbidden

dipole radiation from alpha and heavy-ion

capture reactions

As in the preceding section we consider a nuclear reac-
tion A +a~C'~B+b, but this time b refers to an elec-
tric dipole y ray carrying the isospin Tb ——1. (Recall that
the selection rule for El transitions is ET=0, 1, with
transitions from T =0 to T =0 being forbidden. } We
treat two cases.

1. Alpha capture reactions

yalWOt yy1%0~ ya2 0~ yy2+0

With the help of Eqs. (4.18) and (6.4) one then finds

(6.15)

We compare (a,y) cross sections for two reactions, one
with a self-conjugate target nucleus, the other with a tar-
get nucleus that has isospin Tz&0. In the first case, the
El y decay is isospin forbidden; in the second, it is not.
By comparing the y yields one can deduce the suppression
factor f. Examples are the (a, y) reactions on the pairs

Ne- Ne and Mg- Mg [see Kuhlmann (1979} and
Kuhlmann et al. (1983)].

It was noted that the integrated El strength of the
(a, yo) ground-state transition in self-conjugate nuclei in
the region of the El giant resonance is systematically
weaker than in non-self-conjugate nuclei, while the com-
peting E2 strength is about the same and can be disentan-
gled from the El strength. Furthermore, the a capture
reactions are shown to be predominantly of compound-
nucleus character.

We first write down —in keeping with Sec. VI.A—the
capture cross section for the predominantly isospin-
allowed reaction on Tz ——1 targets, for instance, on Ne,

Mg, Si. We label the entrance and exit channels a and

y, respectively. The a channel couples to the class one
levels only, while the y channel couples to both classes.
The transmission coefficients are therefore

1+z/N2
o y(nonconjugate) =1 i 'Tyi

+Z 1+Z/ 2 1

z/N2

1+z/N, +z/N, N,

(6.16)

yalWO» yy i 0~ ya2 0~ yy240 . (6.17)

Note that we have to distinguish the parameters entering
the Hauser-Feshbach expression for self-conjugate targets
by a tilde, since target, compound, and residual nuclei are
different in the a capture on self-conjugate and non-self-
conjugate nuclei. The cross section is then [as in Eq.
(6.9)]

z/N2
o „(self-conjugate}=7 i yy2 .

1+z/Ni+z/N2 Ni

(6.18)

Certainly, to a good approximation, isospin mixing is
the same in the different compound-nucleus pairs, for in-

stance, Mg- Mg, Si- Si, S- S, and we therefore
omit henceforth the tildes in the expression (z/Nz)/
(1+z/Ni+z/N2). The numbers Ni and Ni of open
channels are, however, different in the two compound nu-

clei considered. This is taken care of by calculating nu-

merically the following Hauser-Feshbach expressions

1oHF(non-self-conjugate) =y
& y

1—o HF(self-conjugate) =7. 2 7y2 . (6.19)

The measured cross sections o~y and the calculated cross
section o.HF are then combined in the ratio

This formula has two terms. The first term is entirely
analogous to the isospin-allowed expression (6.5) dis-
cussed in Sec. VII.A. The second term is analogous to the
isospin-forbidden case (6.9). Here, both terms appear to-
gether, since the y ray couples to both classes of levels in
the compound nucleus.

The isospin forbid-den capture cross section on self-
conjugate T~ ——0 targets, such as Ne, Mg, Si, has the
transmission coefficients

The suppression factor in the reaction ' C( Li,a) '4N has been
estimated from Fig. 6 of Schwenzel et al. (1981): It is the ratio
of the data to the Hauser-Feshbach calculation labeled ai. In
the case of the ' N(d, d') ' N reaction by Aoki et al. (1979), the
quantity s given in their Table 2 is identical with our factor f.

5Actually, Kuhlmann (1979) used the total number of decay
channels N~+N2 and N~+N2 instead of N~ and Ni. From
Fig. 8 of Kuhlmann et al. (1983) one finds Ni+N2-1. 7Ni.
%e assume Ni &pN2, since these numbers refer to non-self-.
conjugate nuclei [see the discussion following Eq. (6.12}]. The
suppression factors derived in the paper by Kuhlmann (1979)
and Kuhlmann et al. (1983) should then be divided by 1.7.
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o~&(non-self-conjugate) /crHF(non-self-conjugate)

cr z(self-conjugate)/O. HF(self-conjugate)
(6.20)

The first term on the right-hand side of this equation is the inverse of the suppression factor f defined in Eq. (6.10). The
second term can be expressed by the ratio of isospin Clebsch-Gordan coefficients [see Eq. (4.27)]. In the particular cases
considered here one has

&y2 (1,1;1,0 i 2, 1)
(1,1;1,0

~

1, 1)

Note that in the analysis of Kuhlmann (1979) the term r&2/rz& is absent. In order to convert the suppression factor
quoted there in Table 1, we use the inverse of Eq. (6.20),

o~z(self-conjugate)/crHF(self-conjugate)
o. z(non-self-conjugate) /o HF(non-self-conjugate) 1+f

The left-hand side of this equation was named f by
Kuhlmann (1979). Using the figures given in this refer-
ence, applying the correction factor explained in footnote
5, and calculating our factor f, we find f=0.16+0.07 for

Mg- Mg at E„=17.6 MeV, and f=0.14+0.06 for
S- S at E~ =15.7 MeV. These suppression factors are

of the same magnitude as the one derived in the
Si(d, a) Al reaction at a similar excitation energy of

the compound nucleus P.

2. Heavy-ion capture reactions

The second case involves radiative capture of self-
conjugate heavy ions A and a, leading to the statistical
emission of high-energy y rays into T~ ——0 final states
(Snover, 1984; Harakeh et al. , 198S). These El y rays are
strongly inhibited with respect to isospin-allowed El y
rays of lower energy feeding Tz ——1 final states. This
again can be related to the suppression factor f.

In order to explain this Inore in detail, we consider the
heavy-ion capture reaction ' C+ ' Q leading to the high-
ly excited compound nucleus Si*. In the specific exam-
ple by Snover (1984) and Harakeh et al. (1985), Si is ex-
cited at E~ =34 MeV. The y-ray spectrum observed after
capture is shown in Fig. 6. Two parts of the spectrum
can be distinguished, a low-energy part including y rays

10

105
C+ ~6O

MeV

104

10

0 2

up to about 12 MeV energy and a high-energy part. The
low-energy spectrum is composed of y rays emitted from
the compound nucleus Si and of secondary y rays from
residual nuclei formed by first chance particle emission.
The high-energy part, however, results only from y rays
emitted from the compound nucleus. Those transitions
feed almost entirely T=0 final states. The El part of
the high-energy y rays is suppressed through the isospin
selection rule, and the emission of such y rays is only pos-
sible via isospin mixing.

The amount of isospin mixing is estimated by compar-
ing the measured y-ray spectrum with a CASCADE
model calculation [see Puhlhofer (1977)], modified by
Harakeh et al. (198S) to include isospin. The modifica-

10

Indeed ~y2/wyl ——1 is the upper limit of this quantity, since in
the non-self-conjugate nuclei the giant dipole resonance is split
into a T, and a Tq component [see Fultz et al. (1971)]. This
causes the ratio wy2/~yl to be different from the corresponding
ratio of vector coupling coefficients, since the assumption (4.25)
no longer applies. Since the experiments on the non-self-
conjugate nuclei by Kuhlmann (1979) have covered more the lo-
cation of the Tl component than that of the T2 component of
the giant resonance, one expects 'Ty2/1 yl & 1 However, the split-
ting is not large when compared to the widths of the com-
ponents; we therefore expect ~y2/~yl-1 to be a reasonable ap-
proximation. Note that the situation is different in the example
discussed in Sec. VI.C.

1OO

0 10 20
E~ {MeV)

Jam il 3 Ls
30 40

FIR. 6. Spectrum of y rays following capture of ' O by ' C
leading to Si at E =34 MeV excitation energy. The data and
CASCADE calculations are from Snover (1984) and Harakeh
et al. (1985). The dashed curve shows the E1+E2 intensity if
lsospln ls conscr'vcd. Thc solid curve ls obtained w1th cornplctc-
ly mixed isospin, while the dotted curve (adjusted to fit the data)
requires —as explained in the main text—an isospin-mixing pa-
rameter f &0.05.
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1 —a2 (6.22)

The small value of f&0.05 implied by a &0.05 for iso-
spin mixing in the compound nucleus Si excited at
E =34 MeV supports the statement made at the end of
Sec. VI.A that isospin is quite pure at high compound-
nucleus excitation energies.

The arguments just given ascribe the isospin mixing
only to the compound-nucleus levels at 34 MeV. The
high-energy y decay with typical energies around 15 MeV
populates states in the same nucleus around 20 MeV exci-
tation energy. It was argued in Sec. VI.B.1 that these
latter levels are isospin-mixed with a parameter f around
0.15. This in turn should enhance the high-energy y rays.
This fact is presently not understood, but is perhaps relat-
ed to the difference in total angular momentum governing
the two reactions.

tions are threefold. First, the transmission coefficients
are factored into an isospin Clebsch-Gordan coefficient
and an isospin-independent transmission coefficient en-
tirely consistent with our Eq. (4.27). Second, y-ray
strength functions for El isovector, E2 isoscalar, and E2
isovector giant resonances are incorporated into the
transmission coefficients. Third, isospin-dependent level
densities are introduced for the compound nucleus and
the residual nuclei [see, for example, Jensen (1977)].

These modifications are appropriate to describe the y-
ray spectrum under the assumption that isospin is con-
served (dashed curve in Fig. 6). The calculation satisfac-
torily describes the low-energy part of the spectrum as
well as the low- and the high-energy parts of the spectrum
of y rays following the capture of He + Mg, where
both classes of levels with isospins T& ——0 and Tz ——1 are
populated. These results strongly suggest that —apart
from a small isospin mixing —the standard statistical
model correctly describes the process. The small isospin
mixing is reflected in the difference between the dashed
curve and the data in the high-energy part of the y-ray
spectrum in Fig. 6: The calculation that assumes isospin
conservation underestimates the high-energy part of the
spectrum. To cure this problem, a parameter n has been
introduced in the level densities entering CASCADE,
which measures the fraction of states of a given isospin
class that decays via mixing into the other class. The
value a =0.05 is necessary to bring the calculation into
agreement with the data (dotted curve in Fig. 6). This is
an upper limit for isospin mixing in the highly excited
compound nucleus, since some mixing may occur also in
the final states reached by its decay.

The quantity a may be equated with Eq. (6.12):

z Ng=V= (6.21)I+ziN, +z/N, '

since we have argued in Sec. VI.A that this is the fraction
of states of class two decaying into class one. In the
present example, Eq. (6.21) becomes symmetric in the two
classes, since we have N~-Nz in self-conjugate nuclei.
Transforming a into the suppression factor f yields

C. Third example: isospin-forbidden
neutron decay of the giant dipole resonance

In the previous section we discussed two examples for
the determination of isospin mixing in the giant dipole
resonance in self-conjugate nuclei. For nuclei with a neu-
tron excess (T~&0), the giant dipole resonance is split
into a component with isospin T] and a higher-lying one
with isospin T2 ——T&+1. If both components are excited
by photon absorption, the isospin selection rule forbids
neutron decay of the T2 component to the low-lying
residual states [see Morinaga (1955)] labeled

~
T, ——,', T& ——,

' ) in Fig. 2. Moreover, neutron decay
into the

~
T~+ —,, T~ ——,

' ) states is hindered: Because of
the nuclear symmetry energy, such states occur at fairly
high excitation energy in medium-weight nuclei. The
proton decay of both classes with isospin T~ and Tz into
the states

~
T~+ —,, T&+ —,

' ) is allowed. This fact is well
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FIG. 7. Photoproton (upper part) and photoneutron (lower
part) cross section of ' Y measured by Van Camp et al. (1984;
Cshent data), Leptretre et al. (1971; Saclay data), and Berman
et al. (1967; Livermore data) in the region of the giant dipole
resonance. The resonance is split into components with isospin
T~ at E~ ——16.8 MeV and T2 at Eq ——21.5 MeV. Gnly the lower
component decays strongly by neutron emission. The solid
curves are Lorentzians fitted to the data.
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illustrated by the example of the photonuclear cross sec-
tions measured in the Y(y, n) reaction by Herman et al.
(1967) and Lepretre et al. (1971)and the Y(y,p) reaction
by Van Camp et al. (1984) (Fig. 7). The double hump in
the (y,p) cross section refiects the two isospin components
of the giant dipole resonance located at excitation energies
E& ——16.8 MeV and Ez ——21.5 MeV. The (y, n) cross sec-
tion, however, peaks only at the lower energy and exhibits
a small amount of cross section at Ez, just visible as a de-
viation from the Lorentzian curve fitted to the T& com-
ponent of the giant dipole resonance.

For a quantitative estimate of isospin mixing at the ex-
citation energy Ez ——21.5 MeV of the Tz state in Y we
follow Van Camp et al. (1984). The recipe is again —as
in the two foregoing sections —a comparison of an
isospin-forbidden and an isospin-allowed cross section,
i.e., of the photoneutron cross section and the photopro-
ton cross section from the Tz component. The method is
based on the assumption that the giant dipole resonance
mainly spreads into the underlying compound-nucleus
states. That this is the case was shown for Y by Van
Camp et al. (1984).

As in Sec. VI.B, the predominantly isospin-allowed
photonuclear proton cross section for the isospin class Tz
levels -"alled here o.

&2 p
—is written as

1+z/N )
rryz z(allowed) =ryz 1+z N)+z/Nz Nz

/F2
y 1+z/X, +z/X, X,

(6.23)

Note that we have totally omitted the part of the reaction
corresponding to the absorption of the photo»nto the
class one states. We have therefore deliberately chosen
the transmission coefficients as follows:

r»=0, r»~0 ry2~0 r»~0. (6.24)

rye 0& rp 1%0& ry2%0» n2 (6.25)

The compound-nucleus photoneutron cross section then
reads

Correspondingly, the transmission coefficients for the
photoneutron channel are

1
O'HF(allowed) =ryz

oHF(inhibited)=ryz rs, .

(6.27)

Vfe emphasize here that unlike all reactions considered so
far, the allowed reaction proceeds primarily through the
class two levels. The experimental and the calculated
cross sections are lumped together in the ratio

o'yz z ( allowed) /a HF( allowed)

o yz „(inhibited) /o HF(inhibited)

1+z/N ( +
z/N) F2

D. Fourth example: ratios of evaporation spectra

An important part of the existing information on iso-
spin mixing in highly excited compound nuclei is derived
from studies of evaporation spectra of (a,a'), (p,p'),
(p, a'), and (a,p') reactions (Vaz et al. , 1972; Wiley et al. ,
1973; Lux et al. , 1977) proceeding through the same com-
pound nucleus. The idea behind these studies is as fol-
lows. If the isospin selection rule does not play any role,
theo the experimental ratio

R= aa'~pp'
(6.29)

~up'pa'

is approximately unity because of Bohr's hypothesis: For-
mation and decay of the compound nucleus are indepen-
dent. Using the Hauser-Feshbach expression (6.7) for
complete isospin mixing one may write R in this case

(6.28)
In contradistinction to Eq. (6.20), the first term on the
right-hand side depends upon z/N~ and the second term
is determined by the ratio of the respective Clebsch-
Gordan coefficients, which are given in Fig. 3, i.e.,
vq i/rpz 2Ti+——l.

The quantity z/Ã& can be converted into z/Nz if the
ratio Xz/N~ is calculated. This has been done by Van
Camp et al. (1984) for Y and for Ni, Sr, Zr, and

Mo. The corresponding suppression factors —listed in
Table I in Sec. VII—range from f=0.48 to 0.84, indicat-
ing a fairly large isospin mixing at excitation energies
E„=20MeV. The Coulomb matrix elements derived
from this study are listed in Table I.

Z/Nz
o yz „(inhibited) =ryz (6.26)

As in Sec. VI.B [see Eq. (6.19)], the measured cross sec-
tions have to be normalized to the foBowing Hauser-
Feshbach cross sections:

In Fig. 7, 9Y(y, n) Y cross sections from Livermore (Herman

et al. , 1967) and Saclay (Lepretre et al. , 1971) are shown in or-

der to demonstrate the strong suppression of the T2 component
in two independent experiments. For the estimate of isospin

mixing, the Livermore data have been used.

8The isospin-mixing parameter is called p by Van Camp et al.
(1984). It is related to the quantities defined in the present pa-
per through @~=v [see Eq. ($.12)]. Since for all compound nu-
clei studied X~ &&X2, we have pz=f, i.e., p nearly equals the
suppression factor used throughout this review.

W'e have changed the values of the Coulomb matrix elements
given by Van Camp et pl. (1984) in their Table II. Their values
follow from Eqs. (2.16), (4.28}, and (6.14) if z/N2 Dj and I 2

are known and external mixing is neglected. Van Camp et al.
(1984) calculated I 2 and D~. We have inferred I 2

——20 keV
from the work of Berg et al. (1975}for 8 Sr, 9Y, Zr, and Mo
(for Ni there is no measurement of 1"q) and recalculated D&

with the help of Gilbert and Cameron (1965).
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R (complete mixing)—:RcM
—1

1
—1

7a 1P N, +N
(6.30)

Here, ~ and rz are the usual transmission coefficients as
defined in Eqs. (5.8). The quantity RcM in (6.30) is not
expected to be exactly unity because the angular momenta
involved in the four reactions may not be the same, even
though the excitation energy of the compound nucleus is
chosen to be the same in the four reactions. One can,
however, calculate R cM using the full angular-
momentum-, dependent Hauser-Feshbach expression (see
footnote 2).

In the opposite case, when isospin is conserved, R is
larger than RcM since the (p,p') reaction can proceed
through both classes of levels, while the other three reac-
tions are restricted to the levels of class one. From Eq.
(6.6) one obtains now

R(no mixing)—:RNM

The results are listed in Table I of Sec. VII, together with
the results of all experiments discussed in the present sec-
tion. The isospin-mixing parameter extracted by Lux
et al. (1977) is different from the one in Eq. (6.33). The
relations between the various mixing parameters used in
the literature have been given by Lane (1978), together
with a discussion of the similarities and differences be-
tween the corresponding theories treating isospin mixing
in the highly excited compound nucleus.

E. Fifth example: cross-section fluctuations
in isobaric mirror channels

It was pointed out in Sec. II that the cross sections for
the pair of reactions '

1 1 1
+a1 N

+a'1 +p 1 N
+p'1+ +p'2 +p'2 (a, t)~(compound nucleus) (6.35)

1
X &a1

N
&p'1

1

—1
1

+p1 ar
IV 1

(6.31)

RNM RcM 1+
(2T)+1)

(6.32)

With Eqs. (4.18) and (4.27) the general case of arbitrary
mixing can be worked out (see Appendix B):

Introducing the values of the Clebsch-Gordan coefficients
that appear in the transmission coefficients ~~~,v&~ [see
Eq. (4.27) and Fig. 2], one can relate RNM to RcM and
finds

(b, ——,
' ),

leading to the isobaric mirror channels (b, —,
'

) and (b, ——,
'

)

are correlated, if isospin is a good quantum number.
Indeed, the cross-correlation function of the two cross
sections o.„61'and o.„b1' Is expected from Sec. H to
be nonzero. If isospin is disregarded, one would expect
these two cross sections to fluctuate in an uncorrelated
way, as does any pair of cross sections pertaining to dif-
ferent final states [see Ericson and Mayer-Kuckuk (1966)
and Richter (1974)]. Figure 8 qualitatively shows that
isospin conservation introduces the expected correlation.
Excitation functions by Detraz et al. (1971) of the reac-
tions

r

N1
R/R M

——1+ (1—v)C
N2

N2
X 1 —v (2T&+1)+v

—2

(6.33)

He+ ' F~ Na*~
t

15o+'I.i,

'N+ Be,
(6.36)

G=R/RcM and G,„=RNM/RcM (6.34)

Here, the quantity v of Eq. (6.12) has been used. Equa-
tion (6.33) may be employed to determine v from experi-
mental data, provided the ratio N&/N2 is obtained from
level densities and RcM from Hauser-Feshbach expres-
sions [see Vaz et al. (1972), Wiley et al. (1973), Lux et al.
(1977), and Li and Harney (1982)]. We have calculated
the quantity v from the information given by Lux et al.
(1977) in their Table II for 17 cases by observing that the
quantities G and G,„ofthat paper are related to the ex-
pressions of the present article via

are displayed. Apparently, the pair of mirror reactions
leading to ' O(ground state) + Li(ground state) and
' N(ground state) + Be(ground state) reveals correlated
structure. This is also true for the mirror reactions with
the exit channel ' O(ground state) + Li (E„=0.48 MeV,

) and ' N(ground state) + Be (E„=0.43 MeV, —, ).
Correlations between any other pair of the four excitation
functions seem to be absent. The quantitative analysis
confirms this, although the finite-range-of-data errors are
large due to the short energy range covered [see Richter
(1974)].

A considerably more extensive investigation has been
published by Simpson et al. (1978) on the reactions
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FIG. 8. Excitation functions of two pairs of compound-nucleus
mirror reactions from Detraz et al. {1971).The entrance chan-
nel He+' F leads to the compound nucleus Na at the mean
excitation energy of 53.6 MeV. The exit channels form pairs of
mirrors, ' 0+ I.i and ' N+ Be. The cross sections of mirror
reactions are visibly correlated.
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FIG. 9. Excitation functions of two pairs of mirror reactions
from Simpson et al. (1978}. The entrance channel ' N+' C
leads to the compound nucleus Al at a mean excitation energy
of 35.7 MeV. The exit channels form pairs of mirrors,

Mg+ H and Na+ He. The curves show a long-range varia-
tion of the excitation function that has to be removed before the
correlation coefficients are evaluated. The normalized correla-
tion coefficient is 0.23 for the upper pair and 0.41 for the lower
pair of reactions.

In Fig. 9 the excitation functions for the pair of mirror
channels Mg (E„=0.45 MeV, —', ) + H and Na
(E„=0.44 MeV, —, )+ He, as well as for the pair Mg
(E„=2.05 MeV, —', )+ H and Na (E„=2.08 MeV,

) + He, are shown. The correlations are less apparent
than in the previous example. They may, however, be
determined quite precisely from the excitation functions
of Fig. 9 and those of several more final states. We use
the reactions in Eq. (6.37) as the inodel case for a discus-
sion of cross-section fluctuations in isobaric mirror chan-
nels.

The analysis of the data is carried out in terms of the
correlation coefficients,

&tt' =Ctt'(0)

=( . ,(E) . , (E))—( . ,(E))( . , (E))
=

i (S.",„(E)S.",'„,.(E)) i'.
Here, the entrance channel a is composed of ' N+ ' C.
The exit channel (b, —,

'
) denotes one of the residual states

of Mg+ H. The channel (b, ——,
'

) characterizes the
mirror residual states in Na+ He. Note that the values
+ —, and ——, that the indices t, t' can assume will simply

be written as plus and minus in what follows. For t =t',

the quantity of Eq. (6.38), i.e., C++ or C, is the vari-
ance of the excitation function cr, b, (E). For t+t', C+
measures the degree of correlation between o, b+(E) and
tr, , b (E).

The experiment yields the normalized correlation coef-
ficient

C+
r (mirror) =

)i/2 (6.39)

which ranges between zero and unity. From altogether
six pairs of mirror excitation functions, Simpson et al.
(1978) find

r (mirror) =0.41+o'o~v . (6.40)

This value is significantly larger than the correlation be-
tween cross sections that do not belong to mirror reac-
tions. For these pairs, it was found that on the average

r(random) =0.10+0.04 . (6.41)

We turn now to the interpretation of this result. The
transmission coefficients for the entrance channel couple
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to the levels of class one with T, =0 only, i.e.,

W, 2 ——0. (6.42)

of S-matrix elements [see Ericson and Mayer-Kuckuk
(1966)]. Therefore the cross section cr, is not just of the
form of Eq. (2.12), but rather an expression like

The transmission coefficients for the exit channels, how-
ever, couple to both classes of levels and one has—with
the proper Clebsch-Gordan coefficients from Fig. 2 al-
ready inserted into Eq. (4.27)—for the triton channel

b1 2 3H b2 (6A3)

Note that we are using the convention (5.8), with the
channel index (at) replaced by the symbol for the emitted
light particle. Then v3 is the usual isospin-independent

transmission coefficient for the channel Mg + H. For
the He channel one finds similarly

2

Q g'bS.",b~ «)
p a, b

(6.51)

2

cia= g zg"sl4r(s,"~,(E)s,"b, (E)
pv ab

(6.52)

Here, the g,"b are geometric coefficients and angular func-
tions, and p denotes the spin projections of the reaction
partners. Using Eq. (6.38) and the statistical indepen-
dence of any two S-matrix elements differing in the in-
dices a, b, one finds the correlation functions measured in
the experiment,

+b1 2 +3H +b2

Equations (4.18) and (6.38) yield for the variance

(6.44)
This expression replaces Eq. (6.38). It gives for t = t'

C++ —
I 2 ~a(II»+ IIiz)~3„

I
~ (6A5) Ctt g Y g gabgab ra(Ill i +II12)'rbt

pv ab
(6.53)

The result for C is the same, with ~3H replaced by

3He'

In order to express C+, one needs the "off-diagonal"
transmission coefficients of Eq. (4.27), namely,

and for t&t'
r 2
+11 +12

+11++12
+ — & I i1/2 +-

+b 1
—T(&3H+ H b2

and finds

C =
I

—,'~.(11„—II„)(~,„r,„,)'"I'.
Hence, the correlation coefficient of Eq. (6.39) is

(6.46)

(6.47)

Y g gabgab ra(+11++12)
pv ab

X(&3Hr3H )' expi(y, H
—y,H ) . (6.54)

II11—012
r (mirror) =

11+ 12

2

(6.48)

Taking the elements of the matrix II from Eq. (6.4), we
express this result in terms of z/N2,

2

r (mirror) =
X2+ 2Z

=(1+2z /N2 ) (6.49)

f=(1 Mr )/(1+~r—) . (6.50)

The result is given in Table I of Sec. VII.
This analysis contains a simplification that is not obvi-

ously correct, but that has been shown by Li and Harney
(1982) to be justified. As mentioned in footnote 2, the ac-
tual cross sections are not simply squares of a single S-
matrix element. In general, they are an incoherent sum of
terms, each of which is the square of a linear combination

As expected, the correlation coefficient r(mirror) is unity
if isospin is conserved, i.e., z =0, and it approaches zero
for very strong mixing, i.e., z/N2~0o. In this case we
recover the conventional theory of nuclear cross-section
fluctuations.

Through Fq. (6.49), we can relate the experiment on
correlations in mirror channels to all the other experi-
ments described in the previous sections by calculating
the suppression factor of Eq. (6.10),

The phases y3H and y3H are the potential scattering phase
shifts appearing in Eqs. (4.9) and (4.10). In Eq. (6.54) we
have introduced the assumption that the mixing parame-
ter z/N2 does not depend on spin and parity of the
compound-nucleus levels and that therefore (II i i—IIi2) /(IIii+IIi2) can be factored out of the summa-
tions [see Eqs. (6.48) and (6.49)]. This assumption is ubi-
quitous and is to some extent confirmed by the results
compiled in Sec. VII, showing that z!Nz does only weak-
ly depend ori the compound-nucleus level density. Equa-
tion (6A9) must now be replaced by

r (mirror) = 1

1+2z/N, (6.55)

%2+2Z

N, N2+z(Ni+N2) Ni
(6.56)

where r is formed by the ratio of the sums in Eqs. (6.53)
and (6.54) according to the definition of r(mirror) in Eq.
(6.39). The quantity r can be calculated, and Eq. (6.55)
again allows one to extract the isospin-mixing parameter
from the measured correlation coefficient r(mirror). We
note that r does not depend on the isospin-mixing param-
eter, since one has in the self-conjugate compound nucleus

Al about equal numbers of decay channels for both
classes of levels, Ni —N2, and therefore
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i+' Q~ Na~~
'Na+ n,

21+e+~
(6.57)

at an excitation energy of 18.9 MeV in 2 Na. They obtain
r(mirror) =0.49+0.09 and set r =1 to extract the isospin-
mixing parameter. This should be a very good approxi-
mation in their case, since they have o.+-o. , which sug-
gests ~b+ ——wb for all nucleon channels b in Eqs. (6.53)
and (6.54), whence r= l. Finally, Assmann (1981) .and
Evers (1982) have studied the compound nuclei Mg
(E„=27.1 MeV) and Si (E„=29.8 MeV) via nucleon
decay as in the reactions (6.57). In their cases the average

In order to estimate r, we neglect momentarily the phase
differences in Eq. (6.54). The cross sections o& are

larger by about a factor of 2 than the cross sections o.
3

for the corresponding mirror channels. Assuming that all
transmission coefficients r3 are larger than v3H by a coll-

stant factor, one immediately finds r= 1. The full nu-
merical calculation carried out by Li and Harney (1982)
yields r =0 93.and thus essentially confirms this estimate
and the simplified discussion leading to Eqs. (6.49) and
(6.50).

In their original papers, Simpson and co-workers
(1978,1979) arrived at a different estimate of r starting
from a different assumption. ' Since they did not per-
form a numerical calculation of r, we believe that their
original analysis should be modified in this respect.

We have found three more examples of measured mir-
ror correlations in the literature. Glasner et al. (1983)
have studied

proton cross sections o. are larger than the average neu-
tron cross sections o+ by about a factor of 2. This is
similar to the reactions (6.37). The quantity r has not
been calculated. We have included their results in Table I
of Sec. VII assuming that the calculation reported by Li
and Harney (1982) is representative and we may put r = 1

here, too.

F. Sixth example: correlation widths

det(ll ) = — (e—iA, ~)(e —iA2) .
4m

D1D2
(6.58)

The roots A~ are given in Eq. (5.1). From Eqs. (4.18),
(6.4), and (6.13) one finds the general form of the auto-
correlation function [see Harney et al. (1983)]:

We have emphasized in Sec. V that the familiar
Lorentzian form (5.4) of the correlation function is only
obtained in the limit of very strong isospin mixing. In the
case of strict isospin conservation, one finds a superposi-
tion of two Lorentzians. This case was considered in Sec.
III. We now give the general result. It has a complicated
structure, and we therefore discuss it in the limit of small
isospin mixing. We apply it to the analysis of measured
correlation widths. Here, the aim will not be to extract
the isospin-mixing parameter z (which is known from ex-
periments described above), but rather to see whether the
data confirm the structure of the correlation function ob-
tained theoretically.

The determinant of the matrix II ' in Eq. (4.19) is a
quadratic form in e and can be written as

(S„p;(E)S„'b,(E+a))=[(1)+iE)(A2+ie)]

pt ~2~1 ~1~2
ral + (I 2+1 2+is)rln+'r $ 'rfQ+'r 2 'rp)+'r 2 (I I+I I+le)T(r2

1

(6.59)

Equation (6.59) applies for a+b; the right-hand side has to be multiplied by 2 for elastic scattering, i.e., a =b, r =t .
The case of charge exchange scattering, i.e., a =b, t&t', will be considered in Sec. VI.G.

To simplify the discussion, we assume z «N ~,X2, expand the matrix II in powers of the matrix

0 z

and keep only terms of up to first order. The result is
r

r', +I', +-~& &2
' '

&1
' ' I ~i+r', +i~ r2'+r2'+is

& 2&Pa I z+ r2+I 2+iv.
(6.60)

In Eq. (4) of Simpson et a1. (1978) and Eq. (6) of Simpson and Wilson (1979), the difference between the He and H cross sections
is accounted for by splitting the He reaction amplitudes f(3He) =f(3H) + g into the triton reaction amplitudes f( H) and a statistically
independent term g. This results in r =cr+/o, which is given by experiment as 0.54+0.02. The present discussion then suggests
that g is not independent off.
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Cr„b(E)= +a1+P2

N2

This expression contains four terms. The first and the
last—proportional to ~ ~p —are due to the allowed re-
actions via classes one and two, respectively. Their form
is familiar. The other two terms —proportional to r~~wp„
with m&n a—re connected with a forbidden change of
isospin. In the limit z —+0, i.e., I ~ ~0, Eq. (6.60) agrees
with the isospin-conserving version (2.17). For z&0 and
z small, the autocorrelation function of an isospin-
forbidden reaction is proportional to the product of the
Lorentzians of both isospin-allowed transitions —a result
already anticipated by Bizzeti (1964). If a case could be
found in which the transitions Ti~Ti, T2~Tz, and
Ti —+Tq were measured separately, this behavior could be
observed, since the autocorrelation functions of the al-
lowed reactions would have the form of Eq. (3.2) and the
one of the forbidden reaction would be given by

'2 2

E

S
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C
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(6.61)

The experimental precision is usually not sufficient to dis-
tinguish the form (6.61) from a pure Lorentzian; however,
we would certainly expect the width at half maximum of
Cforb to be smaller than the correlation widths of both
isospin-allowed reactions.

There are indeed two sets of data which corroborate
this claim. We discuss them in turn.

aosI

0.19

ti30I

0.

2(I
2.0 3,0 4.0

Ed {MeY}

435 5

'

4.42 2'

&l A 4.47
wr.~

4„51

4.63

4.74

Ia.g ~~@gi 4.93i.b I

aU 494

5.0

O';T =1

1. The reaction '2S(d, a) MP

Spijkervet (1978) has studied the isospin-allowed reac-
tion S(d,a) P (T =0) for 18 final states and the forbid-
den reaction S(d,a) P (T=1) for five final states in
the range 2.0&Ed &5.7 MeV of incident energy Ed at
five different scattering angles. Unfortunately this exten-
sive work has never been published. In Fig. 10 we repro-
duce a set of Spijkervet's excitation functions. The coher-
ence width I,s found in the allowed transitions is indeed
somewhat larger than the coherence width I f,b in the
forbidden transitions (see Fig. 11). (The precise defini-
tions of I,u and I r„bare given below. ) We now investi-
gate whether the ratio I',

1&jl r„b is in agreement with
theory.

The analysis described in Sec. VI.A yields the suppres-
sion factor f displayed in Fig. 12. This value is one of the
largest found. Adopting the value f=0.41+0.02, one
finds" [see Eqs. (6.10) and (6.14)]

FIG. 10. Excitation functions. of S(d,a) P from Spijkervet
(1978). Twenty-five transitions are shown. In two of them
(denoted by an asterisk), the spin-parity assignment to the final
state is uncertain. They have been omitted in the analysis. The
smooth curves are average cross sections calculated with the
help of Eq. {4.18).

(6.63)

and

50-

40-

32S (d, )30p

- 50

Computing I' and N, m =1,2 from level-density ex-
pressions, Spijkervet gets

Z

N2 „,=0.69+0.05 .
2

(6.62)

20-

10" 14
I

15
I

16 E IMeV) - - 14X I

~ I

3

Fd(MeV)

15
I

-20

16 E„(MeV)- 1 0

We note that there is a misprint in Table II.10 on p. 2-49 of
Spijkervet's (1978) work, where the last entry should read
I z,~nt=o. 59I

FIG. 11. Coherence widths of the isospin-allowed transitions
S( d, o, ) op ( T =0) and of the isospin-forbidden transitions
S(d,a) P ( T =1) as functions of the excitation energy E„in

the. compound nucleus Cl. The data are from Spijkervet
(1978). The dashed lines fit the data points on the left-hand
part. The solid line on the right-hand part indicates the predic-
tion of Eq. (6.71).
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0.4—
fexp

0.3—

I forb, „p,
= 1.22+0.06,

in satisfactory agreement with the result (6.71).

2. Reactions populating the compound nucleus "P

(6.72)

0.1—

14.0
I

3.0

Ex in 3~Ct (MeV)
1

16.0

Ed (MeV)

17.0

FIG. 12. The suppression factor f defined in Eq. (6.10) for the
compound nucleus ' Cl. Results from Spijkervet (1978). I,))——75+5 keV . (6.73)

The second available set of data consists of three dif-
ferent reactions populating the compound nucleus P at
20 MeV excitation energy.

(a) In the reaction Si(d, a) Al (T =0)—already dis-
cussed in Sec. VI.A—the correlation length was found by
Bizzeti and Bizzeti-Sona (1968) to be

X) ——1.30%2 (6.64)

r',
=0.53+0.04 .

r',
(6.65)

For the allowed reaction with transmission coefficients as
in Eq. (6.1), one finds from Eq. (6.59) the autocorrelation
C,)) to be

~.,r., r,'(r,"+r,'+i. )
C,u(s) =

N& (k&+is)(A2+i c), (6.66)

[see Sec. II.2 of Spijkervet (1978)] and introduces these re-
lations as reasonably well-established assumptions into the
further analysis. This yields

This reaction represents the allowed transition T& ~T&.
The definition of r,u is given in Eqs. (6.66) and (6.69).

(b) Kildir (1980) investigated the reaction Si(p, a) Al
(T= 1). This essentially represents the allowed transition
T2~ T2. The transmission coefficients are

r~)&0, ~p)&0, r~( ——0, r 2&0 . (6.74)

I b ——104+35 keV . (6.75)

(c) The correlation width I t„bof the forbidden reaction
Si(d, a) Al (T =1) was measured by Bizzeti and

Bizzeti-Sona (1968) to be

With the help of Eqs. (6.59) and (6.74) one can write
down the autocorrelation function Cb(E) and define the
coherence width I b in analogy with Eq. (6.69). The ex-
perimental result is

C,s(s) = r(r+ r,'+ is)

(I +is)(r+rI+ I z+iE)

Equations (5.1) and (6.63) yield

A, i ——I, A,2 ——I +I i+I 2,
hence

(6.67)

(6.68)

I fo b —55+6 keV (6.76)

This value is indeed smaller than the correlation widths
(6.73) and (6.75) of both allowed reactions as expected
from Eqs. (6.59) and (6.60). One can predict I t„busing

Eqs. (6.70), (6.73), and (6.75), the isospin-mixing parame-
ter z/N2 given in Sec. VI.A, and the assumption

(6.77)
The quantity taken from experiment is the width at half
maximum r, ~&

of this curve:

c„,(r„,) = —,
' c„,(0) . (6.69)

We turn now to the forbidden reaction. With transmis-
sion coefficients as in Eq. (6.8), one obtains from Eq.
(6.59) the autocorrelation function

theory

= 1.32+0.01 . (6.71)

The average experimental ratio of the results of Fig. 11 is

+a1+a2
Cto,b(s) = . q q . (6 70)(I"+iE)(I +I ', +I,'+iE)

The width at half maximum I f b of this curve is defined
in analogy with Eq. (6.69). Using the results (6.62) and
(6.65), it is straightforward to calculate

(see footnote 3 in Sec. VI.A). The details have been
described by Harney et al. (1983). This yields

I f b(predicted) =65+s keV (6.78)

in reasonable agreement with Eq. (6.76).
We conclude that the experimental results described

under (a) and (b) at least do not contradict the structure of
the correlation function (6.59).

G. A suggested experiment: enhancement
of charge exchange scattering

Charge exchange reactions like (p, n) or ( He, H) that
lead to the isobaric analog state of the target can be con-
sidered as a form of elastic scattering in isospin space if
isospin is conserved. Compound elastic scattering is
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enhanced over inelastic channels: Statistical theories —as
reviewed by Mahaux and Weidenmuller (1979)—show
that the elastic enhancement factor 8' is equal to 2 in the
limit of strongly overlapping resonances. [This has been
confirmed by an experiment of Kretschmer and Wangler
(1978), who find. W =2.09+0.14 in the scattering of pro-
tons on Si.] Through the combination of Kronecker
symbols in Eq. (4.18), the formalism of Sec. IV also yields
an elastic enhancement factor of 2: The compound nu-
clear cross section of a reaction going from channel (at)
to channel (bt') is

~.i, br =
&

I ~.~, b~ I
&

fl

=[1+5,b(W« —1)]gr« II „rb„', (6.79)

(2T&+2) z
2Ti + 1 Ni +N2

for t&t',

where for r =t' one has 8'« ——2. But what about the case
of charge exchange scattering, when a =b but t&t''z We
expect that 8'« takes the value of 2 if there is no isospin
mixing and that it drops to unity for very strong mixing,
when the conventional statistical theory applies. The re-
sult of Harney et al. (1980),

r r,'/r, '=z/N, =r,',„,/r,'+ r,',„,/r,',
where

(7.1)

values of f, v, and r [as defined in Eqs. (6.10), (6.12), and
(6.55), respectively] determined from the data. In the
seventh column one finds the values of the isospin-mixing
parameters I 2/I 2 ——z/Nz deduced from the values of f,
v, or r W. e note that, in all cases, I 2/I z is neither negli-
gibly small nor very large compared to unity. This shows
that isospin mixing is neither negligible nor so strong that
the standard compound-nucleus theory is applicable. A
theory allowing for partial isospin symmetry breaking like
that formulated in Sec. IV is obviously necessary to ac-
count for the data.

In order to deduce further information from the ratio
I'2/I z

——z/Nz we recall that the isospin-mixing parame-
ter z contains contributions from both internal and exter-
nal mixing. As described in Sec. V, internal mixing is due
to the direct mixing of states in the two classes via
isospin-breaking forces (essentially the Coulomb interac-
tion), while external mixing is caused by an indirect cou-
pling of the states in the two classes via channels in which
isospin symmetry is not conserved. We accordingly have
[see Eqs. (2.16), (4.28), and (6.13)]

(6.80) r,',„,/r, '=2~a,'/(a, r,') (7.2)

indeed shows this behavior. The proof of Eq. (6.80) is
given in Appendix C.

In all the examples given so far, the effects of isospin
conservation are destroyed whenever the mixing parame-
ter z of Eq. (4.24) becomes large compared to
min(N~, N2)=N2. Equation (6.80), however, shows that
8'+ approaches unity only if z becomes large compared
to both N& and N2. This practically never happens, as
one can see from the results compiled in Table I below.
Put differently, measurements of W+ are inadequate to
determine the amount of isospin mixing, since 8'+ de-
pends on z very weakly; they would, however, be stringent
tests of the theory, since 8'+ is almost invariably
predicted to be close to 2. This is borne out by the predic-
tions for JY+ listed in Table I.

No experimental study of the enhancement factor
8'+ in compound-nucleus charge exchange scattering
has as yet been published.

Vll. SUMMARY OF EXPERIMENTAL RESUI TS

A summary of all the data on isospin mixing in highly
excited compound nuclei which have come to our atten-
tion is given in Table I. In this section, we discuss the en-
tries in this table and draw conclusions on isospin mixing
in nuclei.

The first column of Table I characterizes the com-
pound nucleus, the second the excitation energy at which
the experiment was performed. In the third co1umn we
list the value of T~, the isospin of the compound nucleus
in its ground state. In the next three columns we list the

and

4 2T 1 + 1 (xa 1/2 xa —1/2)
rz, ex~/re =

Nz, (2T, +2) (1+x,)/2)(1+x' )/2)

(7.3)

Experimental investigations aim at the determination
of the strength of internal mixing and of the associated
Coulomb matrix elements Hc. This is possible provided
I 2,„,/I z can be estimated reliably. Harney and Tang
(1981) have calculated both the sum over pairs of mirror
channels and Nz, the effective number of open decay
channels for class two levels appearing in Eq. (7.3), for
many of the cases listed in Table I. The results are given
in column eight. Comparing this with the previous
column, we note that, in most cases, internal mixing dom-
inates over external mixing. The calculations listed in
column eight have a universal feature which, following
the discussion in Sec. V, should be intuitively obvious:
External mixing attains its maximum value for energies at
or close to the threshold of the (p, n) charge exchange re-
action. This is exemplified in Fig. 13. Indeed, the main
contribution to the sum in Eq. (7.3) arises from those pro-
ton channels the isobaric mirror channels of which are
closed. , as indicated by the shaded area in Fig. 4. On the
other hand, all open channels contribute to I"z, which
therefore grows monotonically with excitation energy.
Therefore I z,„,/I 2 is maximal at or near the threshold of
the (p, n) charge exchange reaction, i.e., of the channel
n + I T, + —,', T, ——,

'
&.

Values of the root-mean-square Coulomb matrix ele-
ment (Hc)'/ are listed in column nine. These are ob-
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TABLE I. Summary of the experiments discussed in Sec. VI. Given are the compound nucleus, its excitation energy E„,and the iso-

spin T~ of the class one states; the quantity f, v, or r [see Eqs. (6.10), (6.12), (6.55)j, whichever was primarily determined from experi-

ment, and the isospin-mixing parameter I"2/I 2 derived from it; the external mixing I 2,„,/I 2 whenever it has been calculated; the
average Coulomb matrix element (H~)' and the spreading width I 2;„„bothdeduced from internal isospin mixing; the enhancement
factor W+ predicted for charge exchange scattering [see Eq. (6.80)]; the reference to the experiment; and finally the place in the

present review where this experiment is discussed. Blanks in the column of references mean that the last reference above is relevant.

Compound
nucleus

18F

Na
Mg

(MeV}

29.60
30.93
39.71
33.39
15.84
16.78
21.56
26.55
18.90
27.10

0

0

0
0

0.025
0.017
0.008
0.005
0.29+0. 15
0.10+0.05
0.06+0.03

(9+4)X 10-'
0.49+0.09
0.33+0.OS

0.026
0.017
0.008
0.005
0 41—o.25

0.11+0.06
0.07+0.04

(9+4)X10-'

0-37+—o.o6

2 Mg
2Mg

Al

17.60

35.70

29.80 0

O. 16+0.07

0.41+0 07

0.32+0.06

0 19+0.11

0 25+0.07

0 38+o o7

34 0 0.05

'SSi
30S1

30p

34S f

34Gl

49@

s2G

"Mn
Fe

63Gu

Zn

"Zn
Ga

88Sr
89Y

90Zr
92Mo
"'In

18

20.4
25.4

15.7

15.4
20.5
24.2
21.8
23.9
21.0
23.3
19.9
17.6
19.0
20.5
22.0
23.5
22.7
17.4
18.4
20.4
22.4
21.6
21.8
20.4
20.5
20.9

0
1

0

0
1

0
3

2
5
2

2
2

6
11
2

5

13
2

0.17+0.07

0.25+0.OS

0.06+0.03

0.14+0.06

0.41+0.02
0.20+0. 17

0.37+0.07
0.33+0.20
0.44+0.22
0.86+0. 10
0.37+0.21
0.46+0.21

0.70+0. 15
0.55+0. 16
0.44+0. 11
0.34+0. 15
0.40+0. 12
0.68+0. 10
0.41+0.04
0.45+0.03
0.39+0.10
0.34+0.09
0.73+0. 1

0.63+0.1

0.62+0. 1

0.48+0. 1

0.68+0. 14

0 20+0.11

0 33+—o.o8

0.63+0.03

0.17+0.08

0.69+0.05

0 59+0.29

0 49+0.64

0.81+0 g2)3.2

0.86+0'52

2 70+'-'

2.20+01-'80

0.70+0.12

0.82+0. 10
64+0.33

52+0.24

1.6+0 5

0 92+0.46

2 1 —0.8

tained as follows. From the values of I q/I 2 listed in
column seven we subtract the corresponding entry in
column eight whenever it, is available. Otherwise,
I q,„,/I q is neglected. The result is identified with

2~~c/(D ~
I q). The parameters D

&
and I z were either in-

ferred from experimental data or inferred from calcula-
tions. They differ strongly for different entries. Details
of their estimation may be found in the original articles.
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TABLE I. (Continued. )

(~2 )1/2

(eV)
I z, .t
(keV) Ref.

Aoki et al. (1979)

Discussed
in Section

VI.A

Schwenzel et al. (1981) VI.A,VII

0.04

8500+2200

1 100+100 44+ 16 1.75

Sokol and Browne {1978)
Cylasner et al. (1983)
Assmann (1981)
Evers (1982)

Kuhlman (1979)

Simpson et al. (1978)
Li and Harney (1982}
Assmann (1981)
Evers (1982)
Snover (1984)
Harakeh et al. (1985)
Kuhlmann et al. (1983)

VI.E
IV.E

VI.B

VI.E

VI.E

VI.C

0.073
0.079

0.10
0.075
0.089
0.095

0.095

0.099
0.10
0.10

0.097
0.094
0.099
0.11
0.10
0.095
0.092
0.090
0.10

0.029

1660+640

3800+800

3970+ 160
66+48

98+18

100 46

114
26+ 15

0+220

160
100
70+34
6] +23

50+"
22k2

18.1+1.3
8.2+2.0
4.2+ 1.0

10+,"
3.8+0.8
9.0+2.0
6.4+1.5
0 18+o.04

33+16

4.4+2. 1

20.7+ 1.8
5 5+10.7

13.6+5.4
8.0+,"
29+20

21+38
13+21

57+ 117—31

42+21
42+ 28

79+69

133+",,
9.2+ 1.5
11.8+ 1.6
10.1+
8.9+4.2

54+~20

34+20

32+20

18+10

13.5+6

1.60
1.89

1.77
1.95
1.92
1.97

1.82

1.87
1.90
1.51

1.70
1.79
1.84
1.81
1.83
1.97
1.97
1.97
1.97

1.93

Bizzeti and Bizzeti-Sona (1968)
Richter et al. (1970)

Kuhlman (1979)

Spijkervet (1978)
Porile et al. (1975)

Wiley et al. (1973)
Van Camp et al. (1984)
Wiley et al. (1973)
Wiley et al. (1973)
Lux and Porile (1975)

Wiley et al. (1973)
Porile et al. {1974)

Van Camp et al. {1984)

Lux et al. (1977)

VI.A

VI.B

VI.A,VI.F
VI.D
VI.D
VI.D

VI.D
VI.C
VI.D
VI.D
VI.D

VI.D
VI.D

VI.C
VI.C
VI.C
VI.C
VI.D

Blanks in column nine indicate that the available infor-
mation on D~ and/or I z is insufficient to calculate
(Hc)'~2. The errors given in column nine refer only to the
experimental uncertainty in I 2/I z but not to the uncer-

tainties in the theoretical estimation of D~ and I 2. These
latter uncertainties are difficult to assess and may be im-
portant.

It is obvious that the values of (Hz)'~ span a range of
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FIG. 13. External isospin-mixing parameter of Eq. (7.3) as a
function of the excitation energy of the compound nucleus ' P.
The calculation is taken from Harney and Tang (1981). It was
done for the states of spin three, which dominate the reaction of
Bizzeti and Bizzeti-Sona (1968) cited in Table I. The spin
dependence of this function is, however, quite weak.
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I

50

many orders of magnitude and do not scatter around a
"typical" value. This is a consequence of the fact that
I z/12 lies essentially between zero and one: (Hc)'~
therefore reflects the exponential dependence of the level
density D ~ on excitation energy and mass number. This
suggests plotting (Hc)' vs [A (E„—b.)]'~ where A is
the mass number of the compound nucleus, E the excita-
tion energy, and 6 the pairing correction taken' from
Gilbert and Cameron (1965). Such a plot, originally sug-
gested by Kuhlmann (1979), is shown' in Fig. 14, which
also includes some Coulomb mixing matrix elements from
the spectroscopy of isolated levels (references are given in
the figure caption). The dashed line is the fit function
proposed by Kuhlmann. It has a slope of —(7.5
MeV) '~, and it reproduces the overall behavior of
(Hc)' very well. Now, if Hc is roughly proportional to
the level spacing D&, then

(Hc)'~ cc exp[ (a(E» —6))'~—],
where a is the level density parameter and a-A. The
slope of —(7.5 MeV) '~ yields a =A/(7. 5 MeV), a
reasonable result [see Richter (1974)].

Figure 14 suggests that the characteristic parameter for
internal isospin mixing is not the rms Coulomb matrix
element (Hc)'~, but rather the spreading width for inter-
nal mixing, 12;„, 2mHc/D&, and th——at I 2;„,changes
only slowly (if at all) with mass number and excitation en-

ergy. This supports the assumption introduced in Sec.

FIG. 14. Coulomb matrix elements as functions of the square
root of compound-nucleus mass number and excitation energy.
The triangles are data from Table I. The circles are from spec-
troscopic investigations of isolated states: see Oodthoudt and
Garvey (1977) for Be; Adelberger et al. (1976) for ' C; Rolfs
and Rodney (1974), Miska et al. (1975), Barney (1977), and
Wagner et al. (1977) for ' 0; Rolfs et al. (1973) and Berka
et al. (1977) for ' F; Graf et al. (1977) for Ca; Spangenberger
et al. {1985)for Ni; Atkinson et al. (1968) for Ni and Cu.

VI.A that I 2/I 2 is also nearly independent of spin [the
escape width I 2 is only weakly spin dependent; see Ernst
et al. (1969)]. ~e list I 2;„,in column ten of Table I. It
has been calculated from I 2/I 2, whenever I 2 was avail-
able. If I 2,„,/12 was known, we subtracted it from
I z/I q,'if it was not available, we neglected it. Following
a suggestion by Kuhlmann (1985), we plotted the result-
ing data on I 2;„,in Fig. 15, together with many spread-
ing widths I 2(IAR) of isolated isobaric analog resonances.
The data concerning 1 2(IAR) and references to the pub-
lished literature are given in Table II. The quantities I 2

and I q(IAR) are physically equivalent, as one can see
from theories of isobaric analog resonances (e.g., Mahaux
and Weidenmuller, 1969). Figure 15 contains data from
light to heavy nuclei with extremely different level densi-
ties and yet I 2 lies essentially between S and 80 keV.
This near constancy in turn can be understood semiquan-
titatively as the manifestation of a sum rule: The expres-
sion

g I & IP I
Hc

I
»&

I
= &» IHc I

»& (7.4)

~ For the mass numbers A =8, 12, 16 the value 6=5. 13 MeV
suggested by Kuhlmann (1979) was used.

Figure 14 differs from Fig. 2 of Kuhlmann (1979) because he
used another set of pairing corrections. The values from Gilbert
and Cameron {1965)have a better justification, although they
lead to a wider scatter of the results.

2 I &li IHcI»& I'= Jsi(E)«Hc

=(Hc/Di) L, (7.5)

when averaged over a group Iv] of class two states, is
constant. On the other hand,
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FICx. 15. Spreading widths I 2 plotted against the mass number A of the compound nucleus. Triangles represent I q;„,from statistical
reactions (see Table I), and circles represent I 2(IAR) from isobaric analog resonances (see Table II). Points without error bars do not
imply that the error is small, but rather that this information is missing in the original publication.

where L is the length of the energy interval over which
coupling between class one states and class two states
occurs. We see that the main energy and mass-number
dependence of Hc arises from the exponential dependence
of Di.

Table I also contains evidence that isospin mixing (or
I z/I q) decreases with increasing excitation energy E„.
(Qualitatively, this would be expected if I 2 were indeed
constant, since I z increases strongly with increasing E„.)
Figure 16 further illustrates this statement and the limita-
tions of the data presently available, for the case of the
compound nucleus ' F*. We reproduce the excitation
functions by Schwenzel et al. (1981) and by Sokol and
Browne (1978) of the isospin-allowed reactions ' C( I.i,a)
populating the ground and second excited states of ' N
(upper part of the figure). The cross sections for both
transitions are about equal, and are reasonably well repro-
duced by Hauser-Feshbach calculations (Kuhlm ann,
1984) (uppermost solid curve). The lower solid curve is
the prediction of Hauser-Feshbach theory with full break-
ing of isospin symmetry for the transition to the first ex-

cited state in ' N. This transition is isospin forbidden,
and the data accordingly lie below the Hauser-Feshbach
prediction. The distance from the data to the Hauser-
Feshbach curve is an indicator of isospin conservation:
The larger the distance, the better isospin is conserved.
The dashed line merely summarizes the trend of the data.
There is a gap that widens with excitation energy, espe-
cially at the data point with highest excitation energy. A
similarly strong effect was observed by Richter et al.
(1970) in the compound nucleus P. A quantitative
analysis of this behavior in terms of the expected depen-
dence of I 2 has not been performed, however.

Vill. CONCLUSlONS

In this review we have compared the statistical theory
of isospin breaking in statistical compound-nucleus reac-
tions developed in Secs. IV and V, and in Appendix A,
with the available body of data. As emphasized in the In-
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TABLE II. Spreading widths I 2(IAR) from isobaric analog resonances. Given are nucleus and excitation energy E„where the reso-
nance is found; the isospin T1 of the class one states (we note that the isospin of the isobaric resonance is T1 +1); spin and parity of
the resonance, ' the nuclear reaction in which it was observed; the spreading width r2(IAR); and the reference to the publication.
Blanks in this column mean that the last reference above is relevant.

Nucleus (Mev)
Spin

parity Reaction
I 2(IAR)

(keV) Reference

Na

43SC

4'Sc

4'Sc
49V

51V

' Mn

"Mn
57Co

"Co

"Cu .

89Y

93Nb

93T

111S

'"Sn

'"Sn

117Sn

119SQ

121Sn

10.94
11.37

9.68

10.26

6.75

8.54

8.93
9.13

9.52

11.59

9.61

9.71

10.60

9.33

10.68

8.56

9.59

9.89

10.27

9.17

12.12

13.13

14.06
14.13

11.99

9,.40
10.507

11.076

11.339
11.826

12.254

12.513

13.317
13.694

13.948
14.151

14.496
14.773

14.995
15.329

15.622

15.953
16.304
16.610

3
2

1

2
3
2

7
2
3
2

5
2
3
2
5
2
3
2-
5
2

5
2
11
2

11
2
7
2
11
2

13
2

15
2

17
2

19
2

21
2

3
2
3+
2
3
21+
2
1

2
3
2

1

21+
2
3
2
3
2
1

2
3
2
1

2
3
2
3
2
1

2
3
2
1

2
3
2
3
2
5 +
21+
2
5 +
23+
2
3+
2

+
2
9 +
2
1

2
3
2
9 +
2
1

2
3
2

+
2
1

2
3
p

9+
2
1

2
3
2
9 +
2
1

2
3
29+
2
1

2
3
2

Ne(p, p}; E =2.15 MeV

=2.58 MeV

Ar(p, p); E =1.87 MeV

=2.45 MeV

Ca(p, p); E =1.82 Mev

Ca(p, p); E~ =1.65 MeV

=2.04 MeV

=2.24 MeV

=2.63 MeV

Ca(p, p); K~=1.97 MeV

'Ti(p, p); E~=2.86 MeV

=2.95 MeV

"Ti(p,p };
"Cr(p,p);

Cr(p, p);
56Fe( p p ) ~

"Fe{pp}

Ep ——2.55 MeV

Ep ——2.77 MeV

Ep ——2.61 MeV

Ep ——2.53 MeV

E~=2.22 MeV

=2.52 MeV

Ni(p, p); Ep ——3.05 Mev

Sr(p,p); E =5.06 Mev
=6.02 MeV

"4sn(p d)

'"Sn(p d}

'"Sn(p, d)

Sn(p, d)

122S

Zr(p, p); E~=5.95 MeV

"Mo(p,p); E, =5.30 MeV"Sn(p, d}

150

100

45+ 10

15+3
1.3+0.4

5+3.5

4.5+0.5

3.5+0.5

1.0+0.5

12+2
4.5+1
14+2

39

37+3
16.5+3

19+4
23+3

22+ 10

20+ 8

25+9
22+8
22+8
23+6
22+8
38+13
27+9
36+9
36+10
36j:8
40+ 8

36+7
37+4

Keyworth et al. (1968)

Bilpuch et al. (1976)

Browne et al. {1968)
B1lpuch et al. (1976)

Wilhjelm et al. (1969)

Bilpuch et al. (1976)

Cosman et al. (1966)

Cosman et al. (1966), Genz et al. (1975)
Cosman et al. (1966)

Robson et al. (1965)

Bilpuch et al. (1976)
Taketani et al. {1980)
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TABLE II. (Continued. )

Nucleus

123S

113sb

115Sb

117Sb

119Sb

121Sb

123Sb

125I

127I

129I

208B

209Bi

Ex
(MeV)

16.943

17.306

17.656

13.629

13.593

13.473

13.670

13.720

13.780
13.779

13.905

14.050
14.079
14.140

14.105

14.285

15.21
18.63

19.19

20.10

20.19

20.68

23
2

11
2
13
2
15
2
17
2
19
2

21
2

19
2

21
2

23
2

21
43
2

Spin
parity

9 +
2
1

2
3
2

+
2

+
21+
21+
23+
2

+
2
3 +
2

+
21+
23+
2
1 +
23+
2

+
2

0+
9 +
2
11+
2
15
2

+
2
1 +
2

Reaction

Sn(p d)

112,114Sn(3He t)
114,'116Sn(3He t.)

'"Sn('He, t)" Sn('He, t)
120,122Sn(3He t)

Sn{'He, t)

'2'Te(3He, t)
126, 128Te(3He t)

Pb(p, p); E =11.49 MeV
Pb(p, p); E~=14.83 MeV

=15.38 MeV

=16.30 MeV

=16.39 MeV

=16.87 MeV

I 2(IAR)
(keV)

39+8
45+7
39+15
17+5
22+5
30+5
29+5
32+5
32+5
34+5
34+5
23+5
24+5
24+5
28+5
28+5
78+8
75+5
66+ 19

48+25
86+9

96+16

Reference

Becchetti et al. {1976)

Lenz and Temmer (1968), Melzer et al. (1985)
Melzer et al. (1985)

troduction, this theory is based on our present under-
standing of chaotic motion in quantum systems in the
presence of a partially conserved quantum number. The
theory is accordingly footed on a set of statistical assump-
tions. The degree of isospin symmetry breaking is charac-
terized by a single parameter z. This theory is, to the best
of our knowledge, the only one presently available capable
of accounting for a large number of different experimen-
tal observables —cross sections, correlation functions, re-
actions populating mirror channels, etc.—in terms of this
single parameter.

From the theoretical point of view, it is of course very
interesting to query whether this theory is consisterit with
observation. This question is all the more important since
the field of isospin symmetry breaking seems to provide
the most stringent testing ground for any statistical
theory that goes beyond the pure compound-nucleus reac-
tion. [Due to its greater complexity, the field of precom-
pound or nonequilibrium reactions, for which a similar
transport theory has been formulated by Agassi et al.
(1975), appears to be less suitable. ] While all the data dis-
cussed in Secs. VI and VII can be understood in the
framework of the theory, a stringent test like the one pro-
posed in Sec. VI. G has not as yet been performed, al-
though the analysis of correlation lengths in Sec. VI. F
goes a long way in this direction. Such a stringent test

would consist in the comparison of an experiment with a
theoretical prediction based on the present theory and in-

put data obtained solely from other observables. The
column in Table I containing the W+ values offers such
a possibility.

The mixing parameter I'2/I'2 incorporates both the
static and the dynamic criterion for isospin mixing and
consists of two contributions. These are due to external
and internal mixing, respectively. Whenever isospin mix-
ing is important overall, external mixing is comparatively
small, and the knowledge of I z/I z allows the determina-
tion of the internal mixing parameters (Hc)' or I 2;„,.
The rms Coulomb matrix element (Hc )'~ has been found
to change drastically with excitation energy and mass
number, and does not appear to be a suitable measure for
isospin mixing. A better measure by far is provided by
the internal spreading width I 2;„,. This quantity appears
to be fairly independent of excitation energy and mass
number. We have given qualitative arguments why this
should be so. These arguments also lead us to expect that
isospin symmetry breaking decreases with increasing exci-
tation energy, owing to the growth of I 2 with energy.
The available data seem to support this expectation.

The internal spreading widths I 2;„,derived from sta-
tistical reactions are consistent with the spreading widths
found in isolated isobaric analog resonances, where again
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210

I ~ ~ I I t ~ I t
/

. t

12 6 . 18 ~ 14
C + Li —F —N+0

To avoid a cumbersome notation with many indices, we
write the matrix t of Eq. (4.11) in the form

(A 1)
E

C &00

th

/0 0

I 10
U

S
Ql

C
10

0
Ch
C

-3
10

I so spin-al I o wed t ran sit i ons

er-Feshbach curves

forbidden transition

where V is the rectangular matrix with elements

at
~in@,at = ~my (A2)

and V+ is its transpose. The level matrix D of Eq. (4.12)
1S

D =E —II—a~+i' VV+, (A3)

V= VP'", (A4)

where H denotes the diagonal matrix of the compound-
nucleus level energies E „,and Hc is the Coulomb ener-
gy matrix with elements (mp

~
Hc

~
nv) breaking isospin.

We rewrite Eq. (4.4) in matrix form,

2015
~rl t s t t I t t t t ( t t I

where the notation is obvious. We introduce the matrix C
of an orthogonal transformation from the physical chan-
nels ( at) to the isospin channels ( aT) with elements

FIG. 16. Comparison of isospin-allowed and isospin-forbidden
' C( Li,a}' N reactions. Circles stand for the allowed reaction
populating the T =0 ground state of ' N and triangles are for
the allowed reaction leading to the T=0 state at 3.95 MeV.
Squares indicate the forbidden reaction that leads to the T =1
state at 2.31 MeV. Circles with crosses are from Schwenzel
et al. (1981), and open symbols from Sokol and Browne (1978).
There is a common Hauser-Feshbach curve for the allowed re-
actions, since their cross sections are very similar. The lower
solid curve is the prediction of the isospin-independent Hauser-
Feshbach theory for the forbidden transition (maximum isospin
symmetry violation). The dashed curve is to guide the eye.

Cttt, bT 8ttb (ar
~

aT ) (AS)

[see Eq. (2.2)]. We calculate the first and second mo-
ments of the matrix

t'=C+P ' tP ' C =mC+ V+D ' VC (A6)

y „,T vn(VC) „——,T =. v m5TT V~„
[see Eqs. (4.S) and (4.6)], we have for t'

t'=y+D-'y .

The matrix D can be written

(A7)

(A8)

and transform back afterward. Defining the rectangular
matrix y with

I 2;„,is fairly constant over a wide range of excitation en-

ergy and mass number. The detailed understanding of
this behavior of I 2;„,and of its mean value is a challenge
for nuclear structure theory.

D =E -II —Hc+ &n'y+

where

y =C+PC .

(A9)

(A10)
ACKNOWLEDGMENTS

In the course of this work we have benefited from help-
ful discussions with many colleagues. In particular, we
are grateful to the following persons for providing us with
relevant data (partly unpublished): W. Assmann, E. Van
Camp, D. Evers, E. Kuhlmann, S. Skorka, K. A. Snover,
and A. L. Spijkervet. A.R. was partly supported by a
Errant from the Bundesministerium fiir Forschung und
Technologie.

APPENDIX A: TECHNICAL DETAILS
OF THE THEORY OF ISOSPIN MIXING
IN THE COMPOUND NUCLEUS

In this appendix we outline the derivation of Eq. (4 18),
since it cannot be found it the published literature.

The structure of r' is similar to that of Eqs. (3.9) and
(3.10) of Agassi et al. (1975), except that the present ma-
trix y is not diagonal. This is the reason why one cannot
immediately use their results. [We note that y becomes
diagonal if P, &&2

——P, &&2,
' see the discussion following

Eq. (4.16).] We can, however, calculate the quantities of
interest by application of the ideas of the contraction
technique used by Agassi et al. (1975). Since a general-
ized version of this technique has recently been described
by Miiller and Barney (198S) in detail, we shall often
refer to the latter work.

We note that inclusion of the shift functions defined by
Weidenmiiller et al. (1978) results in a complex matrix y.
The subsequent formalism is entirely suited for treating
this case, too. For notational simplicity we restrict our-
selves to a real matrix y.

The decay amplitudes y are assumed to be Gaussian
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random variables with properties described in Sec. IV.
We still have to specify the statistics of the energies E

„

and use the "disordered picket fence" introduced by
Miiller and Harney (1985): The average values e z of
E

„

form a regular lattice,

)aT, bT' ~ Ymp, aj'3 mp, bT'bmp
+

my.

t~ab Q (Ymp, aT) ~TT ~T'T g bmp ~

m P

~m p Emv= (P &)Dm (Al 1)
(A18)

gp (e „—E)= f p (s E)dE=—1/D
I

m mp (A12)

with level distance D, the E & are statistically indepen-
dent of each other, and their distribution is given by
pm(em& —E „).The function pm is even and has a max-
imum at zero. The experimentally observed rigidity of
nuclear spectra requires that the variance cr of E z be
of the order of the mean level distance D, as discussed
by Miiller and Harney (1985). We shall see that this is the
only information needed about p . The approximations

where Eq. (A7) was used. Note that, due to Eq. (4.7), the
second moment of Y „,T is independent of p. Because
of Eq. (A12), the sum over the b is

g bm„=g 1 f (E' E+—) 'Pm-(em„E')—dE'
P

=iD ' f (E' E+) —'dE'= n./D— , (A19)

where we assume that E is sufficiently close to the center
of the lattice em& to make logarithmic terms that arise
from edge effects negligible. One defines a matrix x,
which is diagonal in the channels (aT) and has the ele-
ments

and xT lr(Ymp aT) /Dm with Tm T . (A20)

gp (e„El).p —(e „—E2)

f p (s—E, )p (e—E2)de
1

m

(E, —E2) (A13)

b =i (H E)— (A14)

is introduced, and D is written in the form

iD =b '(1+ibHC byy Y+ ) . — (A15)

In order to avoid the singularities of b, one goes to the
complex energy

E+=E+ig
and takes the limit 7)—+0, after the ensemble average with
respect to all statistical variables is carried out. The limit
will be trivial, since the statistical assumptions have been
chosen such that the problem is stationary, i.e., the aver-
age is independent of E+. One finds the expansion

will be used. The distribution gm has the variance
V 2cr; the integral over g (z) is equal to D

Let us first calculate the average S matrix. This and
the subsequent calculation of the correlation functions are
done by expanding S into a geometrical series, averaging
term by term, and resumming afterward to obtain a
closed expression. The propagator

This is the same as the quantity of Eq. (4.22). For simpli-
city, the tildes are suppressed here. Orie obtains the aver-
age

bY)aT, bT' ~ab~TT'xT . (A21)

With the arguments used in Sec. III of Miiller and Har-
ney (1985) one shows that all terms of Eq. (A17) contain-
ing factors Hc vanish and the remaining terms factorize:

Y'b[YyY']'bY=Y+bY [yY'.br]'.
Hence one obtains

(A22)

it'= Y+bY g—[yy+by]t=x(l+yx)
q)0

(A23)

and inverts the transformation (A6) to find the average S
matrix

S=Q[1—2i t]Q

=Q[1 2P' CX( 1+y—x) 'C+P' ]Q (A24)

The matrix S«b, is diagonal in a and b, since C and
therefore also y have this property; it therefore decom-
poses into blocks of 2 & 2 matrices for the channels a with
an emitted particle of isospin —, and into "blocks" of di-
mension 1 for the channels a with an ejectile of isospin 0.
The transmission matrix has these properties, too. It can
be expressed as

1 —SS + = 4QP' C(1+xy)

Xx [QP C(1+xy)x ~ ]+
—t'= g Y'[b(YyY' H)l'b—Y .

q&0
(A17) If one inserts the explicit form of C for the 2 X 2 blocks,

Here, the overbar denotes the ensemble average with
respect to all statistical variables. It is assumed that the
problem is ergodic, i.e., that the ensemble average is equal
to the desired energy average. We calculate the simplest
term of Eq. (A17) with q =0 and obtain

C=(Cai, bT)

~ob(2T1+2) (2T 1)1/2]+
(2T1+ 1)'

(A26)
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for t =+—,', ——, and T=T&, T, +1 (in this order), then

one obtains by a lengthy but straightforward calculation
the elements of the transmission matrix,

(1—SS +)„b,——b,bexp[i(y„—y„)]g z,", (A27)

with the coefficients r defined by Eqs. (4.20)—(4.23).
We turn now to the calculation of the correlation func

tions of Eq. (4.18). Again one expresses the elements of S
by the elements of t' [see Eq. (A6)] and inverts the
transformations after averaging. Hence one has to calcu-
late

tfl f})fc

taT, bT' (E)tcT",dT"' (E+E )

I ~ t Q= tgT bT'(E):t~T ' dr '(E+e) —tgT bT' t~T dT"

(A28)

The technique described by Agassi et al. (1975) and by
Miiller and Harney (1985) is used: The t-matrix elements
are expressed by their expansions (A17); both terms on the
right-hand side of Eq. (A28) are multiple sums over chan-
nels and levels. The sums are averaged term by term and
subsequently resummed to obtain Eq. (4.18). This is done
under the assumption that the effective numbers N& and

%2 of open channels [see Eq. (2.16) and note that we
write the index m for T ] are large compared to unity.
Hence Eq. (4.18) is the leading first-order term of an ex-
pansion in powers of 1/N, I =1,2. Physically speak-
ing, it is assumed that in both classes of levels the reso-
nances strongly overlap —as pointed out in the Introduc-
tion.

Keeping track of the terms to be averaged is greatly
simplified by the following observation. In the first term
on the right-hand side of Eq. (A28), a dotted line has been
inserted between the elements of t' and t'*, called the
center line. Imagine it in every term of the multiple sum.
Note that, whenever the parameters occurring to the left
of the center line are statistically independent from the
parameters to the right, the term is canceled by the ap-
propriate term within the second expression on the right-
hand side of Eq. (A28). This independence is given when-
ever all level indices that occur to the left of the center
line are different from the ones occurring to the right.
The contrary is true if at least one factor b to the left of
the center line [see expansion (A17)] carries the same in-
dex as at least one factor b to the right. The two parts of
Eq. (A28) then do not cancel each other. The simplest
term in which this arises is

)fc

gamp, aTbmpXmp, bT'. }' mp, cT'"~mp Vmp, dT"

Ymp, aTbmpXmp, bT'gamp, cT"'bmp Vmp, dT" .

We call this expression, when summed over m and p, a
contraction and introduce the notation

where we have simplified the channel indices via
A =(aT), 8 =(bT'), C =(cT"), D =(dT'") In. these ex-
pressions, the energy arguments that appear in Eq. (A28)
have been suppressed. One must keep in mind that b is
taken at E+ and b* at (E++e)*.

The task is now to sum all contractions that cross the
center line. This is done in three steps, as described by
Miiller and Harney (1985); details are discussed here only
insofar as they are specific to the problem at hand.

(i) The contraction pattern of Eq. (A29), as well as any
other one, may carry statistically independent end factors
leading, for example, to

g ([r+brx]'y+by )
q&0

= ([1+xy]-'r by)» :(y .b*y),.
}

' }
(A30)

by using the results obtained when averaging t'. One de-
fines the matrix

(A31)

and the suin of the simple contractions (A29) with all
possible end factors becomes

(y +by )„a.:(y +b*y )cD .
I

From the statistical properties of the y's one derives the
second moment of y,

n—~~m 7 mp, aT7 mp, bT'

=~abxm ( 1+3'x)aT,aT( I +Ex)gz, gT i (A32)

and the fourth moment

7 mp, aT7 mp, aT"'Xmp, bT'V mp, bT"

( 1 + 2'5ab ) Ymp, aT Ymy, aT"' ymp, bT'l mp, bT"

(A33)

In the last equation, the term with a =b is enhanced by a
factor of 3 over the term with a&b because we require
Gaussian statistics for the y's.

(ii) The next step is the summation of all contractions
upwith branchings [see Sec. IVC of Miiller and Harney
(1985)]. The simplest term contains one "branch, " i.e.,
two connected b's on the left-hand side with any number
of independent factors bracketed by the branch:

(r+br)~a :l.r+b*r)cD —(r+br)~a(r+b'r)cD

=(r by)~a. (y+b*y)cD (A29)
l

g (y+b(mr+ iHc)[b(y3—'r+ —'~c)] br)~a':(y+b*y)cD ~

q&0 } I
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It turns out that the matrix elements of Hc contribute
only to the term with q = l. If q =0, only the diagonal
elements of Hc are required, and these vanish (see Sec.
IV.A). If q & 1, the average removes all Hc because the
b's in the square brackets are independent of each other
and of the contracted b's A. s a result, one finds Eq.
(A34) to be equal to

where the "dressed propagator"

b=b(1 ——,I b)

with the elements

b „=i(E~ E+—i—l „)

(A36)

(A37)

(y+b i I by)gati:(y+b*y)cD,
I I I

where we have introduced the diagonal level matrix I
with elements

has been introduced. Since.I & involves a sum over all
open channels, the number of which we assume to be
large, We rePlaCe rm& by itS aVerage,

I p
——2[yy ( 1+x ) 'y+ ] p „+2mHc/D3

The sum over all branches is found as

(A34)
~m =~m~ (A38)

(r+b[ ,
' rb]'y—)„:(y+b[, rb*]—"y)

qr&O t l.

=(r+by )~a':(y+b "r )cD (A35)

The dressed propagators b are then statistically indepen-
dent of the y's very much as are the propagators b.
Evaluation of Eq. (A35) yields zero unless the indices
a,b, c,d coincide pairwise. For the case a =d, b =c, one
finds

r, br' (y +b 'r )br",or"' 2' Q 7, ry, r"'y, br'y, br"D (r +

—g ym arym br ym br ym ar-2m& f g (z)(z —e+ir )-'dz
m

—( ) +~ah )rm arym, ar"'2trDm ( m + i s) ym, br'ym, br" (A39)

The subscript p at the quantity y has been suppressed, since the averages do not depend on it. The last part of this equa-
tion is obtained with the help of the statistical properties (A32) and (A33) of the y and from the fact that the present
theory applies to the regime of overlapping levels, characterized by I m »Dm. Therefore the width of the function gm is
small compared to D fsee Eq. (A13) and the discussion there].

The case with a =c,b ~d is covered by Eq. (A39) because of the symmetry of (y by)gati with respect to A and 8.
The contraction (A35) yields zero for a =b, c =d [see Sec. VI of-Miiller and Harney (1985)]. These statements hold also
for the subsequent multiple contractions.

(iii) The last step of the contraction procedure is to sum over all multip/e contractions [see Sec. IVD of Muller and
Harney (1985)]. The simplest term is

(y +b(yV y+ tHc)by—)~a '(y +b '(n. 'r++tHc)b "y)cn
l

It differs from any of the branched contractions in that the common summation index of the first and the last b is in-
dependent of the common summation index of the second and the third b. We hope by now to have given enough expli-
cit details of the technique so that the interested reader can verify that the sum over all double contractions for
a =d, b =c is

b(rSr+ t'Hc)fbi r—+1 by)ar t r' (y +b, *(rry++tHc)fbrsr+]"b 'y)br", ar"
q, r&0 I

—1 ]w
rm, ar Ym, ar"' mnDm (rm +is) yn, br'1 n, br" .

m, pl

Here, the 2X2 matrix A in the class indices has been introduced, with the elements

(A40)

Amn =2~Dm '(rn+«) ' Q rm, cr [(1+Xv)&]cr,cr ) n, cr +(1 &mn)Hc— (A41)

If Eq. (A40) is contracted in the following way

(y+b . by)orbr" (y+b*. '. b*y)br, ar" ~

l

Rev. Mod. Phys. , Vol. 58, No. 3, July 1986



Harney, Richter, and Nleidenmuller: Breaking of isospin symmetry. . .

which we call an "interlaced contraction, " then for a &b the result is of higher than first order in 1/N &, 1/Nz and can be
neglected. Compare the discussion of Sec. IV D of Miiller and Harney (1985). However, if a =b, the interlaced contrac-
tion can be converted into one of the type of Eq. (A40) by reversing the order of the factors on one side of the center line.

The final result is obtained by summing over the q-fold contractions that are not interlaced. This sum can be ex-
pressed ag a geometric series in the matrix A:

ra j,bT'(E)rcT",dT"'(E +S) 5ac5bd g (y b by)aT, bT'. (y b b y)bT"', aT"
q)i

+5ad5bc g (y b b3 )aT, bT".(3 b b y)bT", aT"'
q) 1 l l

ac bc ~~ ym, aTym, aT"(( —A) )m nD, (I n+sE) y„bTyn bT, ~

mn

+5ad5bc2~ y ym, aTym, aT ((1"'A) )m, nDn (~n +~S) yn, bT'yn, bT"
mn

(A42)

Now one uses the transformation (A6) to convert from
the transition matrix t to the transition matrix t [Do.
not confuse this matrix with the isospin projection t that
appears in the channel indices (at), etc.j This transforms
the factors ny, Ty, T /Dm, etc. , into the transmission
coefficients ~a", etc. , of Eq. (4.20), and one obtains

S,", b;(E)S,",' „,(E+ )=
mn

tt f't'
+5ad5bc g rain +mnran

1+z/N2
N, 1+z/N, +z/N

2T& + 1 ] 1+z/X2
2T)+2 ~ N) 1+z/N)+z/N2

(83)

2(2T)+ 1) 1 z/N2+ 2(2T, +2)2 ~ N) 1+z/N)+z/N 2

From Eqs. (4.18), (4.27), and (6.3) one obtains for the
cross sections

mn

(A43)
&+«&~+ I

(2T, +2)2 ~ Nz 1+z/N~+z/N2
(84)

Here the matrix H has been introduced. Its inverse has
the elements

(II ') „=2'(I +is)(5 —A„„)D„'.

A straightforward calculation shows that Eq. (A44) yields
Eq. (4.19). This completes the proof of Eq. (4.18).

APPENDIX 8: THE RELATION BETWEEN RATIOS
OF EVAPORATION SPECTRA AND

THE ISOSPIN-MIXING PARAMETER
lO, O&1T,.), T,

In the following we derive Eq. (6.33).
It is assumed that the alpha-particle channels couple to

the levels of class one only, i.e., one neglects possible tran-
sitions to states in the residual nucleus B after o. emission
that have an isospin larger than the isospin Tz ——T& of
the ground-state of B (see Fig. 17). The transmission
coefficients then are

10.0) l T&.T&)

alpha-particle
channels

compound
nucleus

l~, -))lT)+),T) 2)

proton channels

+a1 +a~ w p ——0. (81)

~~, =r~(2T) + I)/(2T) +2),

rp2 ——rq/(2T)+2) .
(82)

The proton channels couple to both classes of states, al-
though a similar approximation is introduced. The
transmission coefficients read

FIG. 17. Proton- and alpha-particle decay channels of a com-
pound nucleus having two classes of levels with different iso-
spins. The values of the Clebsch-Gordon coefficients coupling
the compound-nucleus levels to the channels are given on the ar-
rows. In the analysis of evaporation spectra, transitions to resi-
dual states that have isospins larger than those of ihe corre-
sponding ground states are neglected. There are relatively few
such states available if TI ~0.
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O'ap' = 2Ti + 1 1 1+z/N2
2Ti+2 Ni 1+z/Ni+z/Nq

z/N2

2Ti+2 N& 1+z/Ni+z/N2
(8S)

Finally, ozg is obtained from oat if one replaces r by ~z
and ~p by ~a in the last equation.

The (a,a') reaction is an allowed one, proceeding
through the class one levels, and Eq. (83) therefore has
the same structure as Eq. (6.5). . Several processes contri-
bute to ozz. The first term on the right-hand side of Eq.
(84) describes the allowed part of the reaction, where the
channels are coupled to the class one levels. The second
term takes care of the forbidden part, where the isospins
in the entrance and exit channels are different —very

1 1 1

a~ a p~ p a~ p
1 1 1

1
7 p VjQ

1

is equal to RCM defined in Eq. (6.30). Inserting Eqs.
(83)—(85) into the definition (6.29) or R, we get

much as in Eq. (6.9). The third term gives the allowed re-
action coupled to the class two levels. The three terms
appear since both entrance and exit channels couple to
both classes of levels. The (a,p') and (p,a') reactions are
analogous to the (a,y) reaction of Eq. (6.16).

If one assumes that N~ and X2 have the same depen-
dence on the total spin [which, for the example of Fig. 2
of Li and Harney (1982), has been numerically shown to
hold], then

R =RCM(1 vNz/N—i)[(2Ti+1) (1 vNz/N—i)+2(2Ti+1)v+(1—v)Ni/N2][(2Ti+1)(1 vN2/—Ni)+v] (86)

where the isospin-mixing parameter v defined in Eq. (6.12) ha, s been used. Equation (6.33) follows immediately from Eq.
(86).

APPENDIX C: THE ENHANCEMENT FACTOR OF CHARGE EXCHANGE SCATTERING

We prove Eq. (6.80) of Sec. VI.F. With Eq. (4.18) and the explicit form of the matrix II as given in Eq. (6.4), one finds
the cross section of Eq. (6.79) to be

tjat bt —[(N i + z)(N2 +2 ) —z ] [ N2 ra 1 rb i +N i ran2'rb i +5ab (N2'ra &'ra i +N i ran2'ra 2 )

+Z('ra i+ra2)( rb i +rb2 )+~abZ(+a 1++a2)(ra i+ra2)1 . (Cl)

Using the assumption introduced by Eq. (4.2S) and the expression (4.27) for the transmission coefficients, one observes
that with t&t the last term in Eq. (Cl) vanishes due to the orthogonality of the vector coupling coefficients. The
remaining terms give

cJ«b, [(Ni+z)(Nz+z——)—z ] '[(1+5 b)(aNi+Ni)(2Ti+1)(2Ti+2) +z]7ratrbt (C2)

where the notation of Eq. (5.8) and the explicit form
(A26) of the vector coupling coefficients have been used.
This yields the enhancement factor

W« ——[2(Ni+Nq)(2Ti+ 1)(2Ti+2) +z]
X[(Ni+N2)(2Ti+1)(2Ti+2) +z] ', (C3)

which is the same as Eq. (6.80).
If we were not to use assumption (4.25), the last term in

Eq. (Cl) would not vanish. Let us consider the limit of
very strong isospin mixing and retain only the terms pro-
portional to z. The enhancement factor then becomes

1+(ra"i+ran2) (r", i+Tan2) (ra'i+ra'2) ') 1

and therefore does not tend to unity. Since this seems
physically unreasonable, we believe that Eq. (4.25) is the
proper choice.
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