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1. INTRODUCTION

Semiconductor research and the Nobel Prize in physics
seem to be contradictory, since one may come to the con-
clusion that a complicated system like a semiconductor is
not useful for very fundamental discoveries. Indeed, most
of the experimental data in solid state physics are
analyzed on the basis of simplified theories, and very
often the properties of a semiconductor device are
described by empirical formulas since the microscopic de-
tails are too complicated. Up to 1980 nobody expected
that there exists an effect like the quantized Hall effect,
which depends exclusively on fundamental constants and
is not affected by irregularities in the semiconductor like
impurities or interface effects.

The discovery of the quantized Hall effect (QHE) was
the result of systematic measurements on silicon field ef-
fect transistors —the most important device in microelec-
tronics. Such devices are important not only for applica-
tions but also for basic research. The pioneering work by
Fowler, Fang, Howard, and Stiles (1966) has shown that
new quantum phenomena become visible if the electrons
of a conductor are confined within a typical length of 10
nm. Their discoveries opened the field of two-

dimensional electron systems, which, since 1975, is the
subject of a conference series. ' lt has been demonstrated
that this field is important for the description of nearly
all optical and electrical properties of microelectronic de-

vices. A two-dimensional electron gas is absolutely neces-

sary for the observation of the quantized Hall effect, and
the realization and properties of such a system will be dis-

cussed in Sec. 2. In addition to the quantum phenomena
connected with the confinement of electrons within a
two-dimensional layer, another quantization —the Landau
quantization of the electron motion in a strong magnetic
field —is essential for the interpretation of the quantized
Hall effect (Sec. 3). Some experimental results will be
summarized in Sec. 4, and the application of the QHE in

metrology is the subject of Sec. 5.

2. TWO-DIMENSIONAL ELECTRON GAS
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tronic system used for the experiments is a discrete energ'y
spectrum. Normally, the energy E of mobile electrons in
a semiconductor is quasicontinuous and can be compared
with the kinetic energy of free electrons with wave vector
k but with an effective mass m *,

g2E=, (k„+ky+k, ) .2'
If the energy for the motion in one direction (usually the z
direction) is fixed, one obtains a quasi-two-dimensional
electron gas (2DECz), and a strong magnetic field perpen-
dicular to the two-dimensional plane wi11 lead —as dis-
cussed later —to a fully quantized energy spectrum, which
is necessary for the observation of the QHE.

A two-dimensional electron gas can be realized at the
surface of a semiconductor like silicon or gallium arsenide
where the surface is usually in contact with a material
which acts as an insulator (SiO2 for silicon field effect
transistors and, for example, Al„oai „As for hetero-
structures). Typical cross sections of such devices are
shown in Fig. 1. Electrons are confined close to the sur-
face of the semiconductor by an electrostatic field I', nor-
mal to the interface, originating from positive charges (see
Fig. 1), which causes a drop in the electron potential to-
wards the surface.

If the width of this potential well is small compared to
the de Broglie wavelength of the electrons, the energy of
the carriers is grouped in so-called electric subbands E;
corresponding to quantized levels for the motion in the z
direction, the direction normal to the surface. In lowest
approximation, the electronic subbands can be estimated
by calculating the energy eigenvalues of an electron in a
triangular potential with an infinite barrier at the surface
(z =0) and a constant electric field E, for z &0, which
keeps the electrons close to the surface. The result of
such calculations can be approximated by the equation

The fundamental properties of the QHE are a conse-
quence of the fact that the energy spectrum of the elec-
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~This lecture was delivered December 9, 1985, on the occasion
of the presentation of the 1985 Nobel Prize in Physics.

~For a review, see the proceedings of the International Confer-
ence on Electronic Properties of Two-Dimensional Systems,
published in Surf. Sci. 5& (1976), 73 (1978), 98 (1980), 113
(1982), and 142 (1984).

(a) (b)
FICx. 1. Typical structures used for the realization of a two-

dimensional electron gas (2DEG), which can be formed at the
semiconductor surface if the electrons are fixed close to the sur-

face by an external electric field: (a) Silicon MOSFET's; (b)

CiaAs-Al„Cxa& „As heterostructures.
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FIG. 2. Calculations of the electric subbands and the electron
distribution within the surface channel of {a}a silicon MOSFET
and (b) a GaAs-Al„Ga~ „As heterostructure (Stern and Ho-
ward, 1967; Ando, 1982).
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FIG. 3. Typical shape and cross section of a GaAs-
Al„Ga& „As heterostructure used for Hall-effect measure-
ments.
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where k~~ is a wave vector within the two-dimensional
plane.

For electrical measurements on a 2DEG, heavily doped
n+ contacts at the semiconductor surface are used as
current contacts and potential probes. The shape of a
typical sample used for QHE experiments (GaAs hetero-

In some materials, like silicon, different effective masses
m* and m*-' may be present, which lead to different
series EJ and E~.

Equation (2) must be incorrect if the energy levels E/
are occupied with electrons, since the electric field I', will
be screened by the electronic charge.

For a more quantitative calculation of the energies of
the electric subbands, it is necessary to solve the
Schrodinger equation for the actual potential V,', which
changes with the distribution of the electrons in the inver-
sion layer. Typical results of such calculation for both
silicon MOSFET's and GaAs heterostructures are shown
in Fig. 2 (Stern and Howard, 1967; Ando, 1982). Usually,
the electron concentration of the two-dimensional system
is fixed for a heterostructure [Fig. 1(b)], but can be varied
in a MOSFET by changing the gate voltage.

Experimentally, the separation between electric sub-

bands, which is of the order of 10 meV, can be measured

by analyzing the resonance absorption of electromagnetic
waves with a polarization of the electric field perpendicu-
lar to the interface (Koch, 1975).

At low temperatures ( T & 4 K) and small carrier densi-
ties for the 2DEG (Fermi energy EF relative to the lowest
electric subband Eo small compared with the subband
separation E~ —Eo) only the lowest electric subband is
occupied with electrons (electric quantum limit), which
leads to a strictly two-dimensional electron gas with an

energy spectrum

structure) is shown in Fig. 3. The electrical current is
fiowing through the surface channel, since the fully de-
pleted Al„Ga~ „As acts as an insulator (the same is true
for the SiOz of a MOSFET) and the p-type semiconductor
is electrically separated from the 2DEG by a p-n junc-
tion. It should be noted that the sample shown in Fig. 3
is basically identical with new devices which may be irn-
portant for the next computer generation {Mimura, 1982).
Measurements related to the quantized Hall effect which
include an analysis and characterization of the 2DEG are
therefore important for the development of devices, too.

3. QUANTUM TRANSPORT OF A 2DEG
IN STRONG MAGNETIC FIELDS

A strong magnetic field Bwith a component 8, normal
to the interface causes the electrons in the two-
dimensional layer to move in cyclotron orbits parallel to
the surface. As a consequence of the orbital quantization,
the energy levels of the 2DEG can be written schematical-
ly in the form

E„=EO+(n + —, )fico, +s.g.pii 8, n =0, 1,2, . . . ,

with the cyclotron energy fico, =AeB/m*, the spin quan-
turn number s =+—,', the Lande factor g, and the Bohr
rnagneton pz.

The wave function of a 2DEG in a strong magnetic
field may be written in a form where the y coordinate yo
of the center of the cyclotron orbit is a good quantum
number (Laughlin, 1982),

~ikx@ ( )

where 4„ is the solution of the harmonic-oscillator equa-
tion
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, [py+(eB)2y2]4„=(n+ —,
'

)Ra),4„, (6)

and yp is related to k by

yo fi——k/eB .

The degeneracy factor for each Landau level is given by
the number of center coordinates yo within the sample.
For a given device with the dimensions L„L~, the center
coordinates yo are separated by the amount

yo= ~k 2m

eB eB L„
h

eBL„
~xx

so that the degeneracy factor No L~/Ay——o is identical
with No L„L~——eB/h, the number of flux quanta within
the sample. The degeneracy factor per unit area is there-
fore

Np"LL, eB
h

(9)

It should be noted that this degeneracy factor for each
Landau level is independent of semiconductor parameters
like effective mass.

In a more general way one can show (Kubo et al. ,
1965) that the commutator for the center coordinates of
the cyclotron orbit [xo,yo]=i'!eB is finite, which is
equivalent to the result that each state occupies in real
space the area Fo —h/eB corresponding to the area of a
flux quantum.

The classical expression for the Hall voltage UH of a
2DEG with a surface carrier density n, is

B
UH ——

n, e
(10)

A quantized Hall resistance is always expected if the car
rier density n, and the magnetic field 8 are adjusted in
such a way that the filling factor i of the energy levels fEq.
(4

ng
l =

eB/h (12)

is an integer.
Under this condition the conductivity o„„(current flow

in the direction of the electric field) becomes zero, since
the electrons are moving like free particles exclusively
perpendicular to the electric field and no diffusion
(originating from scattering) in the direction of the elec-
tric field is possible. Within the self-consistent Born ap-
proximation (Ando, 1974) the discrete energy spectrum
broadens as shown in Fig. 4(a). This theory predicts that
the conductivity o is mainly proportional to the square

where I is the current through the sample. A calculation
of the Hall resistance RH ——UH/I under the condition
that i energy levels are fully occupied (n, =iN) leads to
the expression for the quantized Hall resistance

B hg~ y l 1p2y3p ~ ~ ~ ~iE.e

/N

—h/e 2

h/2e2
——h/4 e2

FIG. 4. Energy dependence of (a) the density of states, (b) con-
ductivity o. , and (c) Hall resistance RH at a fixed magnetic
field.

of the density of states at the Fermi energy EF, which
leads to a vanishing conductivity o. „ in the quantum Hall
regime and quantized plateaus in the Hall resistance RH
[Fig. 4(c)].

The simple one-electron picture for the Hall effect of
an ideal two-dimensional system in a strong magnetic
field leads already to the correct value for the quantized
Hall resistance [Eq. (11)] at integer filling factors of the
Landau levels. However, a microscopic interpretation of
the QHE has to include the influences of the finite size of
the sample, the finite temperature, the electron-electron
interaction, impurities, and the finite current density (in-
cluding the inhornogeneous current distribution within
the sample) on the experimental result. Up to now, no
corrections to the value h/ie of the quantized Hall resis-
tance are predicted if the conductivity o is zero. Exper-
irnentally, o is never exactly zero in the quantum Hall
regime (see Sec. 4) but becomes unmeasurably small at
high magnetic fields and low temperatures. A quantita-
tive theory of the QHE has to include an analysis of the
longitudinal conductivity o. under real experimental
conditions, and a large number of publications are dis-
cussing the dependence of the conductivity on the tem-
perature, magnetic field, current density, sample size, etc.
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The fact that the value of the quantized Hall resistance
seems to be exactly correct for o.~ =0 has led to the con-
clusion that a knowledge of microscopic details of the de-
vice is not necessary for a calculation of the quantized
value. Consequently Laughlin (1984) tried to deduce the
result in a more general way from gauge invariances. He
considered the situation shown in Fig. 5. A ribbon of a
two-dimensional system is bent into a loop and pierced
everywhere by a magnetic field 8 normal to its surface.
A voltage drop UH is applied between the two edges of
the ring. Under the condition of vanishing conductivity
u~ (no energy dissipation), energy is conserved, and one
can write Faraday's law of induction in a form that re-

lates the current I in the loop to the adiabatic derivative
of the total energy of the system E with respect to the
magnetic flux y threading the loop

(13)

2

I=i eUa/0'o. =i 'Ua
h

(15)

which leads to the quantized Hall resistance R~ ——h /ie
In this picture the main reason for the Hall quantiza-

tion is the flux quantization ii/e and the quantization of
charge into elementary charges e. In analogy, the frac-

If the flux is varied by a flux quantum q&o
——ii/e, the

wave function enclosing the flux must change by a phase
factor 2n. , corresponding to a transition of a state with
wave vector k into its neighbor state k+(2')/(I. „),
where I.„ is the circumference of the ring. The total
change in energy corresponds to a transport of states from
one edge to the other with

b,E =i.e.U~ .

The integer i corresponds to the number of filled Landau
levels if the free electron model is used, but can be, in
principle, any positive or negative integer number.

From Eq. (13) the relation between the dissipationless
Hall current and the Hall voltage can be deduced,

tional quantum Hall effect, which will not be discussed in
this paper, is interpreted on the basis of elementary exci-
tations of quasiparticles with a charge e*=e/3, e/5, e/7,
etc.

The simple theory predicts that the ratio between the
carrier density and the magnetic field has to be adjusted
with very high precision in order to get exactly integer
filling factors [Eq. (12)] and therefore quantized values
for the Hall resistance. Fortunately, the Hall quantiza-
tion is observed not only at special magnetic field values
but in a wide magnetic field range, so that an accurate
fixing of the magnetic field or the carrier density for
high-precision measurements of the quantized resistance
value is not necessary. Experimental data of such Hall
plateaus are shown in the next section, and it is believed
that localized states are responsible for the observed sta-
bilization of the Hall resistance at certain quantized
values.

After the discovery of the QHE a large number of
theoretical papers were published discussing the influence
of localized states on the Hall effect (Prange, 1981; Aoki
and Ando, 1981; Chalker, 1983; Brenig, 1983); these cal-
culations demonstrate that the Hall plateaus can be ex-
plained if localized states in the tails of the Landau levels
are assumed. Theoretical investigations have shown that
a mobility edge exists in the tails of Landau levels

separating extended states from localized states (Ando,
1983; MacKinnon et al. , 1984; Schweitzer et al. , 1984;
Aoki and Ando, 1985). The mobility edges are located
close to the center of, a Landau level for long-range poten-
tial fluctuations. Contrary to the conclusion reached by
Abrahams et al. (1979), that all states of a two-
dimensional system are localized, one has to assume that
in a strong magnetic field at least one state of each Lan-
dau level is extended in order to observe a quantized Hall
resistance. Some calculations indicate that the extended
states are connected with edge states (Schweitzer et al. ,
1984).

In principle, an explanation of the Hall plateaus
without including localized states in the tails of the Lan-
dau levels is possible if a reservoir of states is present out-
side the two-dimensional system (Baraff and Tsui, 1981;
Toyoda et al. , 1984). Such a reservoir for electrons,
which should be in equilibrium with the 2DEG, fixes the
Fermi energy within the energy gap between the Landau
levels if the magnetic field or the number of electrons is
changed. However, this mechanism seems to be more un-

likely than localization in the tails of the Landau levels
due to disorder. The following discussion assumes there-
fore a model with extended and localized states within
one Landau level and a density of states as sketched in

Fig. 6.

4. EXPERIMENTAL DATA

FIG. 5. Model of a two-dimensional metallic loop used for the
derivation of the quantized Hall resistance.

Magneto-quantum transport ineasurements on two-
dimensional systems have been known and published for
more than 20 years. The first data were obtained with sil-
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FIG. 6. Model for the broadened density of states of a 2DEG
in a strong magnetic field. Mobility edges close to the center of
the Landau levels separate extended states from localized states.

trons in the two-dimensional system per unit area) by an
amount ho.xy, which depends mainly on the third power
of the density of states at the Fermi energy (Kawaji et al. ,
1975). However, no agreement between theory and exper-
iment was obtained. Today, it is believed that Ao.„y is
mainly influenced by localized states, which can explain
the fact that not only a positive but also a negative sign
for ho.„y is observed. Up to 1980 all experimental Hall-
effect data were analyzed on the basis of an incorrect
model, so that the quantized Hall resistance, which is al-
ready visible in the data published in 1978 (Englert and
von Klitzing, 1978), remained unexplained.

Whereas the conductivity 0.~ can be measured directly
by using a Corbino disk geometry for the sample, the Hall
conductivity is not directly accessible in an experiment
but can be calculated from the longitudinal resistivity p
and the Hall resistivity pxy measured on samples with
Hall geometry (see Fig. 3):

pxy pxx
Oxy

pxx +pxy pxx +pxy
(16)

icon MOSFET's, and at the beginning mainly results for
the conductivity o.„„asa function of the carrier density
(gate voltage) were analyzed. A typical curve is shown in
Fig. 7. The conductivity oscillates as a function of the
filling of the Landau levels and becomes zero at certain
gate voltages Vg. In strong magnetic fields sr~ vanishes,
not only at a fixed value Vg, but in a range EVg, and
Kawaji was the first one who pointed out that some kind
of immobile electrons must be introduced (Kawaji and
Wakabayashi, 1976), since the conductivity or~ remains
zero even if the carrier density is changed. However, no
reliable theory was available for a discussion of localized
electrons, whereas the peak value of o.~ was well ex-
plained by calculations based on the self-consistent Born
approximation and short-range scatterers which predict
sr~ (n + —,

' -) independent of the magnetic field.
The theory for the Hall conductivity is much more

complicated, and in the lowest approximation one expects
that the Hall conductivity o„~ deviates from the classical
curve o.„~= n, e/B (where n, —is the total number of elec-

Figure 8 shows measurements for p and p y of a silicon
MOSFET as a function of the gate voltage at a fixed
magnetic field. The corresponding o~ and o.„~ data are
calculated on the basis of Eq. (16).

The classical curve o„z—— n, e/B in Fig—. 8 is drawn on
the basis of the incorrect model, that the experimental
data should lie always below the classical curve (=fixed
sign for Acr„z) so that the plateau value cr„z ——const (ob-
servable in the gate voltage region where cr~ becomes
zero) should change with the width of the plateau. Wider
plateaus should give smaller values for

~
cr„~ ~. The main

discovery in 1980 was (von Klitzing, Dorda, and Pepper,
1980) that the value of the Hall resistance in the plateau
region is not influenced by the plateau width as shown in
Fig. 9. Even the aspect ratio L /8' ( L =length,
W =width of the sample), which normally influences the
accuracy in Hall-effect measurements, becomes unimpor-
tant, as shown in Fig. 10. Usually, the measured Hall
resistance AH"~ is smaller than the theoretical value
R~'"——p„~ (von Klitzing, Ebert, et al. , 1984; Rendell and
Girvin, 1984)

(17)

25
= Vg/V

30

FIG. 7. Conductivity o. of a silicon MOSFET at different
magnetic fields B as a function of the gate voltage Vg.

However, as shown in Fig. 11, the correction 1 —6 be-
comes zero (independent of the aspect ratio) if o~-+0 or
the Hall angle 8 approaches 90' (tan8=o„„/cr~). This
means that any shape of the sample can be used in QHE
experiments as long as the Hall angle is 90 (or o~ =0).
However, outside the plateau region (o~-p~&0) the
measured Hall resistance RH"~=UH/I is indeed always
smaller than the theoretical p„„value (von Klitzing,

Rev. Mod. Phys. , Vol. 58, No. 3, July 1986
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FIG. 17. Measured activation energies at filling factors i =2
(GaAs heterostructure) or i =4 (Si MOSFET) as a function of
the magnetic field. The data are compared with the energy
0.5%co, .

FIG. 15. Fraction of extended states relative to the number of
states of one Landau level as a function of the magnetic field.

itudinal resistance p» vanishes. The width of the p»
peaks in the limit of zero temperature can be used for a
determination of the number of extended states, and the
analysis (Ebert et al. , 1982) shows that only a few percent
of the states of a Landau level are not localized. The
fraction of extended states within one Landau level de-
creases with increasing magnetic field (Fig. 15), but the
number of extended states within each level remains ap-
proximately constant, since the degeneracy of each Lan-
dau level increases proportional to the magnetic field.
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FIG. 16. Thermally activated resistivity p„at a filling factor
i =4 for a silicon MOSFET at different magnetic field values.

FIG. 18. Measured density of states (deduced from an analysis
of the activated resistivity) as a function of the energy relative
to the center between two Landau levels. (GaAs heterostruc-
ture. )
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At finite temperatures p is never exactly zero, and the
same is true for the slope of the p„» curve in the plateau
region. But in reality, the slope dp„~/dB at T &2 K and
magnetic fields above 8 tesla is so small that the p~~ value
stays constant within the experimental uncertainty of
6X10 even if the magnetic field is changed by 5%%uo.

Simultaneously the resistivity p~ is usually smaller than
1 mQ. However, at higher temperatures or lower magnet-
ic fields a finite resistivity p„„and a finite slope dp„~/dn,
(or dp„„/dB) can be measured. The data are well
described within the model of extended states at the ener-

gy position of the undisturbed Landau level E„and a fi-
nite density of localized states between the Landau levels
(mobility gap). As in amorphous systems, the tempera-
ture dependence of the conductivity a~ (or resistivity

p„„) is thermally activated, with an activation energy E,
corresponding to the energy difference between the Fermi
energy EF and the mobility edge. The largest activation
energy with a value E, =TAN, (if the spin splitting is

negligibly small and the mobility edge is located at the
center E„ofa Landau level) is expected if the Fermi ener-

gy is located exactly at the midpoint between two Landau
levels.

Experimentally, an activated resistivity

p —exp[ —(E, /k T) ) (18)

is observed in a wide temperature range for different
two-dimensional systems (deviations from this behavior,
which appear mainly at temperatures below 1 K, will be
discussed separately), and a result is shown in Fig. 16.
The activation energies (deduced from these data) are
plotted in Fig. 17 for both silicon MOSFET's and GaAs-
Al„Ga& „As heterostructures as a function of the mag-
netic field; the data agree fairly well with the expected
curve E, = —,fur, . Up to now, it is not clear whether the
small systematic shift of the measured activation energies
to higher values originates from a temperature-dependent
prefactor in Eq. (18) or is a result of the enhancement of
the energy gap due to many-body effects.

The assumption that the mobility edge is located close
to the center of a Landau level E„ is supported by the fact
that for the samples used in the experiments only a few
percent of the states of a Landau level are extended (Ebert
et a/. , 1982). From a systematic analysis of the activation
energy as a function of the filling factor of a Landau level
it is possible to determine the density of states D (E)
(Stahl et al. , 1985). The surprising result is that the den-
sity of states (DOS) is finite and approximately constant
within 60% of the mobility gap, as shown in Fig. 18.
This background DOS depends on the electron mobility
as summarized in Fig. 19.

An accurate determination of the DOS close to the
center of the Landau level is not possible by this method,
since the Fermi energy becomes temperature dependent if
the DOS changes drastically within the energy range of 3
kT. However, from an analysis of the capacitance C as a
function of the Fermi energy, the peak value of the DOS
and its shape close to E„can be deduced (Smith et al. ,

5 —Jk
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cv 4—
E
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E
LaJ 2
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L N~=4. 2xIO cm
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4
~(lO cn r Vs)

FIG. 19. Background density of states as a function of the mo-

bility of the device.

1985; Mosser et al. , 1986).
This analysis is based on the equation

1 1 +const .
e .D(EF)

(19)

The combination of the different methods for the deter-
mination of the DOS leads to a result like that shown in
Fig. 20. Similar results are obtained from other experi-
ments (Gornik et al. , 1985; Eisenstein et al. , 1986), but
no theoretical explanation is available.

Density of States at 4 Tesla

SCBA

2-

I i 1

+~c/2 2 1 0 1

Energy /meV

I

2 h(dL/2

FIG. 20. Experimentally deduced density of states of a GaAs
heterostructure at 8 =4 T compared with the calculated result
based on the self-consistent Born approximation (SCBA).
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FIG. 21. Relation between the slope of the Ha11 plateaus
dp„~ jdn, and the corresponding p value at integer filling fac-
tors.

If one assumes that only the occupation of extended
states influences the Hall effect, then the slope dp„~/dn,
in the plateau region should be dominated by the same ac-
tivation energy as found for p~ ( T). Experimentally
(Tausendfreund and von Klitzing, 1984), a one-to-one re-
lation between the minimal resistivity p„'" at integer
filling factors and the slope of the Hall plateau has been
found (Fig. 21), so that the flatness of the plateau in-
creases with decreasing resistivity, which means lower
temperature or higher magnetic fields.

I. I I

-Q8 ~ ~ %2 0
j„(A/m)

I I

02 0.4 Q6 0.8

FIG. 23. Current-voltage characteristic of a GaAs-
Al„Gal „As heterostructure at a filling factor i =2 (T=1.4
K). The device geometry and the p (B) curve are shown in the
1nsets.

p„„-exp[—(To/T)'~ jj (20)

is expected. For a Gaussian localization the following
dependence is predicted (Pepper, 1978; Ono, 1982):

The temperature dependence of the resistivity deviates
from an activated behavior at low temperatures, typically
at T &1 K. Such deviations are found in measurements
on disordered systems, too, and are interpreted as
variable-range hopping. For a two-dimensional system
with exponentially localized states, a behavior

p ——exp[ —(To/T)'~ ]j. (21)

„-9

I—
Xx 10~0

)011 )0-10

2
' i '

6
'
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T-1/2 ( K-1/2)

I I I I I I

0 ] 2 3
T-1/3 ( K-1/3)

FIG. 22. Analysis of the temperature-dependent conductivity
of a GaAs heterostructure (filling factor i =3) at T ~0.2 K.

The analysis of the experimental data demonstrates (Fig.
22) that the measurements are best described on the basis
of Eq. (21). The same behavior has been found in mea-
surements on another two-dimensional system, on
InP-InGaAs heterostructures (Guldner et a/. , 1984).

The contribution of the variable-range hopping process
to the Hall effect is negligibly small (Wysokinski and
Brenig, 1983), so that experimentally the temperature
dependence of dp„~/dn, remains thermally activated even
if the resistivity p~ is dominated by variable-range hop-
ping.

.The QHE breaks down if the Hall field becomes larger
than about EH ——60 V/cm at magnetic fields of 5 tesla.
This corresponds to a classical drift velocity
UD EH/8=1200 m/——s. At the critical Hall field EH (or
current density j) the resistivity increases abruptly by or-
ders of magnitude and the Hall plateau disappears. This
phenomenon has been observed by different authors for
different materials (Ebert et al. , 1983; Cage et al. , 1983;
Kuchar, Bauer et al. , 1984; Kuchar, Meisels et al. , 1984;
Sakaki et a/. , 1984; von Khtzing, Ebert et al. , 1984;
Stormer et al. , 1984; Pudalov and Setnenchinsky, 1984).
A typical result is shown in Fig. 23. At a current density
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FIG. 24. Nonohmic conductivity o.„„ofa GaAs heterostruc-
ture at different temperatures Tz (filling factor i =2). An in-
stability is observed at source-drain fields larger than 40 V/cm.

of j,=0.5 A/m, the resistivity p~ at the center of the
plateau (filling factor i =2) increases drastically. This in-
stability, which develops within a time scale of less than
100 ns, seems to originate from a runaway in the electron
temperature, but other mechanisms like electric-field-
dependent delocalization, Zener tunneling, or emission of
acoustic phonons, if the drift velocity exceeds the sound
velocity, can be used for an explanation (Trugman, 1983;
Streda and von Klitzing, 1984; Heinomen et al. , 1984).

Figure 23 shows that p~ increases already at current
densities well below the critical value j„which may be ex-
plained by a broad. ening of the extended state region and
therefore a reduction in the mobility gap bE. If the resis-
tivity p „ is thermally activated and the mobility gap
changes linearly with the Hall field (which is proportional
to the current density j), then a variation lnp -j is ex-
pected. Such a dependence is seen in Fig. 24, but a quan-
titative analysis is difficult since the current distribution
within the sample is usually inhomogeneous and the Hall
field, calculated from the Hall voltage and the width of
the sample, represents only a mean value. Even for an
ideal two-dimensional system an inhomogeneous Hall po-
tential distribution across the width of the sample is ex-
pected (MacDonald et al. , 1983; Reiss, 1984; Heinonen
and Taylor, 1985) with an enhancement of the current
density close to the boundaries of the sample.

40

20

6
= B(T)

FIG. 25. Measured Hall potential distribution of a GaAs
heterostructure as a function of the magnetic field.

The experimental situation is still more complicated, as
shown in Fig. 25. The potential distribution depends
strongly on the magnetic field. Within the plateau region
the current path moves with increasing magnetic field
across the width of the sample from one edge to the other.
A gradient in the carrier density within the two-
dirnensional system seems to be the most plausible ex-
planation, but in addition an inhomogeneity produced by
the current itself may play a role. Up to now, not enough

microscopic details about the two-dimensional system are
known, so that at present a microscopic theory that de-
scribes the QHE under real experimental conditions is not
available. However, all experiments and theories indicate
that in the limit of vanishing resistivity p» the value of
the quantized Hall resistance depends exclusively on fun-
damental constants. This leads to a direct application of
the QHE in metrology.

5. APPLICATION OF THE QUANTUM HALL

EFFECT IN METROLOGY

The applications of the quantum Hall effect are very
similar to the applications of the Josephson effect, which
can be used for the determination of the fundamental con-
stant It /e or for the realization of a voltage standard. In
analogy, the QHE can be used for a determination of
h/e or as a resistance standard (von Klitzing and Ebert,
1985).

Since the inverse fine-structure constant a ' is more or
less identical with h/e (the proportional constant is a
fixe'd number that includes the velocity of light), high-
precision measurements of the quantized Hall resistance
are important for all areas in physics that are connected
with the fine-structure constant.

Experimentally, the precision measurement of cz is re-
duced to the problem of measuring an electrical resistance
with high accuracy, and the different methods and results
are summarized in the Proceedings of the 1984 Con-
ference on Precision Electromagnetic Measurements
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(CPEM, 1984). The mean value of measurements at la-
boratories in three different countries is

a '=137.035 988+0.00002 .

The internationally recommended value (Cohen and Tay-
lor, 1973) is

cx
' = 137.03604+0.000 11,

and the preliminary value for the fine-structure constant
based on a new least-squares adjustment of fundamental
constants (1985) is

cz
' = 137.035 991+0.000008 .

Different groups have demonstrated that the experi-
mental result is within an experimental uncertainty of less
than 3.7X10 independent of the material (Si, GaAs,
Ino 53Ga0$7As) and of the growing technique of the de-
vices (MBE or MQCVD) (Delahaye et al. , 1986). The
main problem in high-precision measurements of a is—at
present the cali—bration and stability of the reference
resistor. Figure 26 shows the drift of the maintained 1-Q
resistor at different national laboratories. The very first
application of the QHE is the determination of the drift
coefficient of the standard resistors, since the quantized
Hall resistance is more stable and more reproducible than

2High-precision measurements of the quantized Hall resistance
are summarized in IEEE Trans. Instrum. Meas. IM-34,
301—327.

FIG. 27. Ratio RH!R~ between the quantized Hall resistance
R& and a wire resistor R~ as a function of time. The result is
time dependent but independent of the Hall device used in the
experiment.

any wire resistor. A nice demonstration of such an appli-
cation is shown in Fig. 27. In this experiment the quan-
tized Hall resistance RH has been measured at the Physi-
kalisch Technische Bundesanstalt relative to a reference
resistor R~ as a function of time. The ratio RH/Rz
changes approximately linearly with time, but the result is
independent of the QHE sample. This demonstrates that
the reference resistor changes its value with time. The
one standard deviation of the experimental data from the
mean value is only 2.4&( 10, so that the QHE can al-
ready be used today as a relative standard to maintain a
laboratory unit of resistance based on wire-wound resis-
tors. There exists an agreement that the QHE should be
used as an absolute resistance standard if three indepen-
dent laboratories measure the same value for the quan-
tized Hall resistance (in SI units) with an uncertainty of
less than 2&(10 . It is expected that these measurements
will be finished by the end of 1986.
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