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The author explores some of the inherent simplifications of "quantum lattice physics. " He distinguishes
between fermions and bosons and analyzes the n-body problem for each, with n =1,2, 3. . . typically a
small number. With delta-function (zero-range) interactions, the three-body problem on a lattice is
manageable, and some results can even be extrapolated to n & 4. Such calculations are not limited to one di-
mension (where the well-known Bethe ansatz solves a number of n-body problems). On the contrary, stud-
ies cited are mainly in three dimensions and actually simplify with increasing dimensionality. For example,
it is found that bound states of n & 3 particles in d &3 dimensions are formed discontinuously as the
strength of two-body attractive forces is increased, and are therefore always in the easily analyzed "strong
coupling limit. " In the Appendix, an exactly solved example from the theory of itinerant-electron magne-
tism illustrates how a rigorous solution to the few-body problem is capable of yielding information concern-
ing the W-body problem.
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INTRODUCTION

The notion of particles "hopping" on discrete space lat-
tices dates back to Bethe's treatment of one-dimensional
magnetic materials (Bethe, 1931) or, in a different con-
text, to the invention of Wannier functions (Wannier,
1937). In the former case, the stationary states

~
1t ) are

eigenstates of a Heisenberg Hamiltonian H given by

~= —2~x+(S.+S.~1+H c }—J.QS.S.+1.
The reference "saturated ferromagnetic state" denoted

~
0) consists of all spins "down" (i.e., for each n,

S„~0) = —S
~
0)). It thus belongs to Mz —— Ns for N—

spins; together with the state with Mz ——+Ns, to which it
is related by a 180 rotation, this is the state of maximum
total spin. The next highest spin magnitude is
Mz ———Vs+ 1. Eigenstates that have this quantum num-
ber are plane-wave linear combinations of basis states of
the type S„+

~
0), alias "spin waves. " It is natural to visu-

alize an individual basis state S„+
~
0) as representing a

particle (a "magnon") at the nth site. In this picture, the

above Hamiltonian describes the motion of such magnons
from site to neighboring site, as well as their interactions
(Jz) when they are on adjacent sites. There is consider-
able literature on the exact solutions for this problem for
arbitrary Mz (i.e., for an arbitrary number of "particles"}
in one dimension, and the problem of two particles in ar-
bitrary dimensions (do two magnons scatter or bind?) has
also been satisfactorily solved (for bibliography see
Mattis, 1981). This stands in sharp contrast with the
study of eigenstates of three or more particles, on d=2, 3,
or higher-dimensional lattices, which has been almost to-
tally ignored [with the important exception of three mag-
nons in d =2 (Himbergen, 1977)].

Why should we care'& Aside from obvious implications
for ongoing research in two- or three-dimensional magne-
tism, the study of such pseudoparticles provides micro-
scopic insight into the quantum mechanics of the con-
densed Bose-Einstein fluid, of which liquid helium
remains the salient and fascinating prototype. This fol-
lows from the observation that spin operators on different
sites commute, for example, S;+SJ+

~

0)=SJ+S;+
~
0), im-

plying that such pseudoparticles satisfy Bose-Einstein
statistics. Moreover, the spins interactions are similar to
those of rare-gas atoms —attractive for two particles on
nearest-neighbor sites (if Jz & 0), they are essentially
repulsive (for kinematical reasons) when two particles are
on the same site. In the extreme quantum limit s = —,, the
property of the relevant Pauli matrices (S;+}—:0 is tan-
tamount to a "hard-core" zero-range potential. Even for
large s, only a restricted number of particles, 2s —1, is al-
lowed on a given site. Such a constraint has the charac-
teristic of a "soft-core, "zero-range, repulsive potential.

In the case of Wannier functions, one deals with elec-
trons, hence with Fermi-Dirac statistics. %"ithin a given
energy band, Wannier electrons are centered about a given
atomic cell. They are characterized by quantum numbers
a (denoting the band) and R; (denoting the cell coordinate
or "lattice site"). As in the example of the basis set of
spin states introduced above, the %'annier states are not
eigenstates of a one-electron Hamiltonian Ho. Instead,
Ho causes Wannier particles to "hop" from lattice site to
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lattice site, with hopping matrix elements derivable from
the Bloch energy-band structure. The Wannier functions
constitute a most satisfactory basis, often simpler than
Bloch functions, in the analysis of problems in which
interband matrix elements are inconsequential. The hop-
ping matrix elements can be supplemented by an interac-
tion Hamiltonian H', like that which, in Hubbard's model
of an interacting electron gas (Hubbard, 1963), character-
izes the Coulomb repulsion between two electrons-of op-
posite spin on a given site. Hubbard's Hamiltonian has a
general appearance not too different from the equation
above, except that, instead of bosons, a two-component
field of fermions is involved. It, too, is exactly soluble in
one dimension (Lich and Wu, 1968), while resisting exact
analysis on higher-dimensional lattices.

In recent years, lattice field theories have been
developed that benefit from the automatic ultraviolet cut-
off and easy counting properties inherent in a finite Hil-
bert space. Additionally, equilibrium statistical mechan-
ics has benefited from the simplifications of a lattice in
such applications as calculations of the partition function
from a transfer matrix. It has certainly been easier to
treat the lattice gas (Lee and Yang, 1952) than its continu-
um analogs. However, in all cases, those properties
directly related to the topology of space (homogeneity,
isotropy, homotopy) are sacrificed. Aside from the possi-
ble loss of such relevant physics, one additional difficulty
characteristic of lattice theory occurs on the technical lev-
el: the significant simplifying features of differential
equations or operators as opposed to their difference
counterparts are indeed lost. Without any comprehensive
mathematical framework for the solution of nonlinear
difference equations, the equations of statistical physics,
quantum mechanics, or field theory that are formulated
on a lattice are then required to be solved either by purely
numerical means, or (as in current studies of critical phe-
nomena) in the continuum approximation. Thus the lat-
tice theories have difficulties of their own, and there is
generally a need for interplay between various techniques.
The present review is intended only as an introduction to,
and a partial and partisan overview of, one particular
methodology: that of studying a few particles on a lat-
tice.

In treating this topic, it is convenient to distinguish the
number n of particles. In the Hartree or Hartree-Fock
approximations, it is possible to reduce the many-body
problem to a one-body problem; in this case, the differ-
ence equations of lattice physics are hardly more chal-
lenging than the differential equations of the continuum.
Proceeding to n=2 in the case of arbitrary interactions
(subject only to the symmetry of the lattice), it is possible,
by use of the translational invariance, to reduce the calcu-
lation of eigenstates to a tractable one-body problem. Qn
a lattice, the Hamiltonian does not separate into two
parts, one relating to the center-of-mass motion and the
other to the internal degrees of freedom. Rather, the
translational and point-group symmetries allow eigen-
states to be written as product functions. Although the
center of mass can indeed be factored out and the two-

body problem reduced to a one-body problem, the result
differs from continuum problems in that the translational
energy turns out to depend on the internal quantum num-
bers. The result is that composite particles on a lattice
have a "mass excess" related to the internal binding, quite
different from the "mass defect" familiar in special and
general relativity. Following upon the recent theoretical
prediction of this effect (Mattis and Gallinar, 1984), the
mass excess has indeed been observed and quantitatively
measured by Cafolla, Schatterly, and Tarrio (1985) in ex-
periments on excitons (bound electron-hole pairs) in a
number of semiconductors.

For n =3 no general results are available except for
zero-range interaction potentials. (In that exceptional
case, discussed at length below, the eigenvalue problem
reduces once more to a one-body problem. ) For n &4, no
simplifications exist regardless of interactions; neverthe-
less, some general observations may make analysis of such
cases less formidable than it seems at first sight.

It is not yet clear what the most useful applications of
such work will turn out to be. We have already men-
tioned superfluidity. There are applications to the theory
of superconductivity (do Cooper pairs have bound states
of "Cooper molecules"?) and to magnetism (are there
multimagnon bound states, and if so, how does their ex-
istence affect low-temperature .thermodynamics?). Addi-
tionally, a number of applications have already been made
to electron, surface, and exciton physics in semiconduct-
ors. A similar study of the vibrational properties of
anharmonic lattices is not too far behind. For historical
reasons, there is a great deal of satisfaction in solving the
"three-body problem, "or at least in reducing it to quadra-
ture, in any context. This satisfaction will be compound-
ed when the n-body problem (n &4) becomes qualitative-
ly understood. Combined with whatever knowledge al-
ready exists concerning the many-body problem (Pines,
1962), such understanding is bound to have many unfore-
seen consequences. It is in this hopeful vein that I offer
the present review, not as an encyclopedic compendium of
acquired knowledge, but as an open-ended introduction to
a vital new field of study.

In the sections that follow, subjects are presented in or-
der of increasing n, i.e., of increasing difficulty. Various
applications are separately noted, and obvious opportuni-
ties for new research indicated.

I. THE ONE-BODY PROBLEM

)
k)=—(1/N'~ )ge 'aj' ~0), (1.2)

One may investigate a single phonon, magnon, electron,
or hole. Let us consider first a translationally invariant
lattice. One-particle stationary states are often eigenstates
of a Hamiltonian of the type

H =g J(R; RJ)a;*aj—
and take the form of plane-wave states

~

k) of wave vec-
tor k:
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where
~
0} is the zero-particle (vacuum) state. Here,

statistics plays no role; the operators a can create fer-
mions (electrons or holes) or bosons (e.g., magnons). The
normalization of Eq. (1.2) is predicated only on the
presumed orthonormal character of the basis states
a;*

~
0), i.e., on

(0 taj.a;
~

0)=5,J .
\

The eigenvalues are obtained by calculating the action of
Eq. (1.1) on (1.2). ' Thus H

~
k) =E(k)

~
k) yields the

eigenvalues E(k),

1 l&~
' 1&~

~H I

I

I I

' 'mal

I
I l~

FIG. 1. Cleaving a crystal creates surface planes of various
possible orientations, and cuts all bonds extending out of the
surface.

E(k)=g J(R;—R.)e
R

(1.4)

as the lattice Fourier transforms of the hopping matrix
elements J(R).

A formally alternative method will be seen to be both
instructive and useful. Assuming that

iII(R) &ik R (1.2')

(we omit the normalization constant) is an eigenstate in
the first-quantized representation, then the eigenvalue
equation A iP=E(k)% requires A to be an operator of
the form

A —=E( iV)—,

with E the function defined in Eq. (1.4). Conversely, the
eigenfunctions of (1.1'} are the plane-wave states (1.2'},
having eigenvalues E(k} by inspection. There exists one
difficulty, however.

Clearly, A commutes with V, the generator af the in-
finitesimal translations, whereas the space lattice has only
discrete translational symmetry. It is thus necessary to
restrict A to the physical subspace. In three dimensions,
this is easily achieved by requiring three arbitrarily
chosen noncoplanar R's in Eq. (1.2') to agree with three
corresponding, distinct physical lattice sites. Starting
froin these, A can translate a particle only to other physi-
cal lattice sites. '

Newton's equations for the normal modes of harmonic
lattices can be posed as an eigenvalue problem similar to
Schrodinger's equation. They take the farm Wf=cPQ,
where g is a normal-mode amplitude and (in a one-
dimensional, nearest-neighbor example} W is given as

c0 (k) =2(E/M)(1 —cosk)

yield the "dispersion relations*' ro (k) of the normal
modes.

This alternative method comes into its own when the
symmetries of the problem are disturbed, as by some per-
turbation 5H in the Hamiltonian or some change 5W in
W (reflecting a change in mass M or spring constants E
about an impurity), and one finds it simple to construct
the relevant Crreen's functions using the plane-wave
states. Even more interesting is the imposition of new
boundary conditions to replace the periodic boundary
conditions implied by the plane-wave form. We turn to
this important question next.

A. Surface boundary conditions

We pose a modest equation: what happens if, all other
things being equal, simple periodic boundary conditions
(PBC's) are replaced by those appropriate to a surface?
Assume atomic planes at x =a, 2a,3a, . . . ,Na. With
periodic boundary conditions, the atoms at the right-hand
edge Na, (N —1 }a,( N —2)a, . . . also appear to be at
x=0, —a, —2a, . . . and are joined to the atoms at the
left-hand edge x =a,2a, 3a, . . . by the usual bonds.
When a physical surface is introduced at x =0, the atom-
ic planes at x =0,—a, —2a, . . . are replaced by vacuum,
and no bonds are present (see Fig. 1). Because the conse-
quences for Wannier particles differ from those for vibra-
tional normal modes, we shall discuss each in turn.

W =2(K/M)(1 —cosiB/Bx) . (1.5) 1. Wannier particles (electrons or holes)

The g's are thus alsa plane waves of the type (1.2'),
whose eigenvalues

~For a one-dimensional example, suppose E(k)=2A cask,
hence ~=Ae "+Ae ". It follows from the Taylor
series expansion, e+—s~s"f(x)=f(x)+f'(x )+1/2f "(x)+
= f(x +1), that if any wave function f(x) is defined at x =0,

can translate it only to the other, correct, regularly spaced
lattice paints at x =+1,+2, . . .. Coordinates that do not coin-
cide with lattice points, such as x=0.5, do not appear in subse-
quent analysis. In this example, the (nearest-neighbor) hopping
matrix element is A.

As there are no hopping matrix elements to take parti-
cles into the half-space at x &0, the appropriate boundary
condition is /=0 at x=0, —a, —2a, . . .. We call this
"zero boundary conditions" (ZBC's). The eigenvalue
problem is formally the same as for PBC's:

2If N is sufficiently large, we apply ZBC to the second surface
at (N+ 1)a separately. It is also important to note that, in gen-
eral, the spatial axes do not necessarily coincide with the crystal
axes; thus in general a&ao, the "natural" lattice parameter (in
fact, a &ao).
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As the periodicity in the y,z plane is undisturbed, it is
only necessary to take into account the motion perpendic-
ular to the surface. Thus, if the Bloch energies (also
known as the "energy-band structure") in the ath band
are given by E(ki, k2, k3), we can set

~=E(—iB/Bx, k2, k3)

and just consider f=f(x). The wave vectors kz and k3
are just paraxneters in what turns out to be a one-
dimensional problem. We now work out a trivial
example.

Suppose that the band structure at a particular k2 k3
lends itself to the following approximation:
E(k)=A(k 2k )3+28(k 2k )3c soak .iThen

(1.9)

which indicates that particles are transferred only between
nearest-neighbor planes. Thus satisfying the ZBC at
x =0 is sufficient, and

P=(2/N)'~ sink, x for x =O,a,2a, . . .

satisfies both the eigenvalue equation (1.7) and the ZBC at
x =O. Note the important features: for every bulk E
there is an eigenvalue c=E when ZBC's are imposed, but
the wave functions are substantially altered. In particu-
lar, the probability of findin the Wannier particle on the
nth plane is (2/N)sin kina —+1/N, independent of k at
large n, exactly as with PBC's while at the surface, the
probability vanishes at the band edges [(2/%sin kia:0
as ka~O or n].

But the band structure might not lend itself to this
simple-minded approximation. Suppose

E(k)=22 cosak i+28 cos2aki,

with A and 8 again functions of k2, k3. The procedure
for solving the eigenvalue equation (1.7) for a given s,
subject to two ZBC's, g(0) =0 and g( —a ) =0, as e +-'s~s"
connects next-nearest-neighbor planes, is then roughly the
following:

(1}replace exp ik i a by g, and solve the quartic equation

&(/+1/g)+8(g'+1/g') =s

for the four roots. They correspond to four complex
values of ki in general.

(2) Discard any roots having Im(ki) &0, as they result
in non-normalizable, exponentially growing states in the
interior of the solid.

(3) Satisfy the two ZBC's with the remaining waves.
There may remain only one solution, or as many as two
linearly independent solutions. [If s is not in an appropri-
ate range of energies, there may be none. However, if we

set s=E(ki, k2, k3) then g=e ' with real ki will al-
ways yield one solution, at least. Thus, degeneracy aside,
for every eigenvalue E that exists with PBC's there will be
an eigenvalue s found for ZBC's, so the band structure is
essentially unaltered in the bulk. ]

One of the interesting consequences of the ZBC relates
to the amplitudes of waves approaching the surface. As
with the simple example worked out above, in general the
P's must vanish near the surface, whenever s corresponds
to a bulk energy near a band extremum or to a Van Hove
singularity; but even such general conclusions have to be
extensively modified by the presence of surface perturba-
tions M . Such additional complications owing to charge
imbalance (surface dipole moment), bond bending, and
surface reconstruction, all related to the appearance of
surface states, are clearly beyond the scope of the present
section on boundary conditions. The interested reader
will find an extensive literature (of dedicated journals and
books} on all aspects of the electronic properties of sur-
faces except the theory of ZBC. The systematic study of
this boundary condition was undertaken some years ago
by the present writer in a series'of papers reviewed in
Mattis, 1978.

2. Normal modes (phonons, magnons, etc.)

This case is much more difficult than the previous one.
The absence of bonds connecting surface atoms to planes
at x &0 affects W and cannot generally be expressed in
terms of boundary conditions.

There are some simple exceptions. As one soluble ex-
ample, suppose W to be of the form (1.9):

M =A(k2, k3)+8(k2, k3)(2 —2cosiaB/Bx)

everywhere except at the surface plane x=a, where it
takes on the form

W, =2+8(l —e' ~")

reflecting the absence of bonds connecting to x=O. In
this case, W, can be put in the same form as the bulk if
we add 8(1—e ' ~ ")=0 to it, making sure that this van-
ishes by requiring that a boundary condition,

be satisfied. (This is approximately a condition of zero
normal gradient, and certainly differs from ZBC's. We
have no name for it.) It is satisfied by the following

+Ek)x
linear combination of e

g(x) cc (2/N)'~ coski(x —a/2) .

If next-nearest-neighbor bonds are involved, the effects
of the surface cannot be conveniently expressed in terms
of boundary conditions, and the analysis becomes
thoroughly complicated. Fortunately, adequate studies of
surface normal modes by other methods have been under-
taken, and a lot of detailed information is now available.
For a recent review, see Maradudin (1981).

B. Surface potentials

In certain semiconductors, the potentials at the surface
serve to trap one or the other sign of the carrier. The
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1. V(x) =
i qE i

x

All states subject to this potential and to ZBC's are per-
force confined; therefore the energy-level scheme (in the x
direction) must be discrete. We shall assume the simplest
possible band structure (1.9). The eigenstates g(n) (we re-
place the plane coordinates x =na by the plane indices n,
for convenience) satisfy a difference equation:

g(n+1)+g(n —1)=(Fn s—)g(n) . (1.10)

This is precisely the difference equation satisfied by the
Bessel functions of the first kind J„(z) (Abramowitz and
Stegun, 1965), which also display the correct asymptotic
properties permitting the identification

g( n) =DJ„(z),
where D is a normalization constant, v=n s/F, a—nd
z=2B/F. The ZBC, which consists of finding the zeros
of the Bessel functions through varying the subscripts,

motion of Wannier particles in a region of constant elec-
tric field E ( V cc x ) or constant charge density p
( V~x /2) presents an interesting subject of study. With
the imposition of a surface boundary condition, /=0 for
x &0, both problems are well posed. In the continuum
version of this probl'em (A o

———8 /Bx ) the eigenstates
are the well-known Airy and Hermite functions, respec-
tively. On a lattice, the eigenstates can also be obtained,
and they are found to be Bessel and Mathieu functions,
respectively. Let us start with the analysis of the linear
potential (Gallinar and Mattis, 1985b).

A =(p —po) /2 —2A cos(x —xo) . (1.13')

By Floquet's theorem, solutions are of the Bloch type:

gp q(x) =u p q(x)e'e", (1.14)

II. THE TWO-BODY PROBLEM

where u@~(x) has the periodicity of Eq. (1.13')
[u(x+2m. ) =u(x)], and P labels the new bands. Now, the
original condition that x=integer translates into
p=integer, hence q =0. P becomes a quantum label for
the allowed eigenstates. (While the solutions to Mathieu's
equation are well documented, the details of the indicated
calculation have not been carried out in the literature, to

. this author's knowledge, and would serve a useful pur-
pose. )

(Note added. In response to this "challenge, "E. Chal-
baud, J.-P. Gallinar, and G. Mata [J. Phys. A (to be pub-
lished)] have just performed a thorough analysis of this
problem. }

A number of lattice-adapted path-integral methods
have been proposed for the study of one-particle prob-
lems. We refer the interested reader to Wannier (1962)
and Buot (1976) for an introduction to this methodology.

While there are a number of other instances of one-
particle lattice physics that are of widespread interest
(e.g. , the Wannier-Aubry problem of localized or "kinky"
eigeristates associated with potentials that are incommen-
surate with the lattice), further discussion is outside the
purview of the present article. We proceed instead to a
review of n =2 particle states, where a surprise is in store.

J ~,~~~(z) =0, (1.12)

provides the eigenvalue condition. Although the c's are
quantized by this procedure, each level gives rise to a
separate continuum parametrized by kz, k3. Plots of the
energy levels and comparison with the effective-mass ap-
proximation are given in Gallinar and Mattis (1985b). It
is found that the effective-mass approximation is accurate
only in weaks fields, when

~
qEao

~

is less than the elec-
tronic bandwidth.

2. V(x) =x2/2

This problem is best solved by means of an elementary
duality transformation. Suppressing the trivial kz, k3 pa-
rameters, suppose we start with the "discrete Gaussian"
one-particle Hamiltonian:

A = —g(esrs~+e szax)+xz/2

(1.13)

We extend the space to x=O, —1,—2, . . . and satisfy
ZBC's by selecting only odd states. Next, we perform the
canonical (duality) transformation: x —+p —po and
p~ —x+xo, where po and xo are adjustable parameters.
Now A takes on the appearance of Mathieu's equation
(Abramowitz and Stegun, 1965):

On a lattice, no less than in the continuum, the two-
body problem reduces to a standard one-body problem
through the usual decoupling of center-of-mass and rela-
tive coordinates. As one example, the problem of two
particles interacting via a linear potential can be reduced
to Bessel's equation (1.10), with (1.12) J=0, the eigen-
value equation for odd-parity states and a similar condi-
tion, dJ/dz =0, yielding the even-parity states (Gallinar
and Mattis, 1985b}.

In one important and surprising aspect, composite par-
ticles on a lattice differ from those in the continuum. In-
vestigation of the motion of a composite particle on a lat-
tice finds it to depend parametrically on the internal bind-
ing. This is not the case in continuum physics, where, for
example, the mass of a hydrogen molecule is precisely
twice the mass of a hydrogen atom, and the mass of a wa-
ter molecule is the sum of the hydrogen molecule and ox-
ygen masses (all subject to small, relativistic, mass-defect
corrections). In lattice physics, on the other hand, for
n =2 we are able to enunciate a fairly general rule: the
greater the internal binding energy, the greater the total
mass (or translational inertia) of the composite particle.

Qualitatively, the reason is clear: the greater the in-
teractions, the greater the fraction of the Brillouin zone
occupied by the eigenstate, hence the more complete the
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localization in real space. While in general A cannot be
written as the sum of an internal Hamiltonian and of a
Hamiltonian of the center-of-mass motion, nevertheless,
because ~ commutes with the lattice symmetry operators
(including the discrete translation operator), the eigen-
states do factor to reflect these symmetries and so take
the familiar form 4=4(R)E(riz) with R the center-of-
mass coordinate. However, the total energy is not an ad-
ditive function of the internal and translational energy.
For simple band structures, this causes a mass excess
which can approach infinity if the entire Brillouin zone is
involved in the interactions. This state of affairs is in
sharp contrast with the mass defect of relativity theory.
(In relativity, this mass defect is proportional to the bind-
ing energy of a composite particle. In the lattice theory,
the mass excess is related to the amount of kinetic energy
present in the bound state. ) Although in both cases the
nonadditivity of the energies is responsible for the varia-
bility of the total mass, the details differ. We spend the
next few paragraphs elucidating the theory of the lattice-
theoretic effective mass for a two-particle composite. It
should also be noted that (as of the date of writing) a cor-
respondingly general theory has not been worked out for
P1 &3.

Consider the-reasonably general lattice Hamiltonian A,
comprising motional energy (KE) for two particles, not
necessarily of the same species:

MS'=Ei( —iVi)+E2( —i V2) (2.1)

and an attractive interaction potential V(R; —RJ ). If V is
sufficiently attractiue and the statistics permit it, in the
ground state (+o) both particles will reside on the same
site. Taking the translational invariance of the lattice into
account, we see that the (variational) ground state is of
the form

'Po «=(1/N' ) Q e '5(R; —RJ) .
J

(2.2)

Now, a representation of the discrete delta function
(Kronecker delta)

5(R)= (1/N ) g e '"'
k

(2.3)

allows us to evaluate the variational ground-state energy
ao as a function of translational inomentum K:

ao(K) =(i''o
I
A

I
qlo)

=&E, &+&E,&+V(0), (2.4)

where &Ei)=f d k Ei(k)/Q, Q:—f d k=volume of
the first Brillouin zone, and &E2) is given similarly.
Both are independent of K, as is V(0). It follows that, to
the extent that Vo is an accurate variational state, the

bandwidth of the composite particle vanishes in the
strong coupling limit. (One also states more imaginative-
ly, although somewhat less accurately, that in this limit
the translational mass of the composite particle is infi-
nite. )

It is obvious that slightly bound states or unbound
scattering states have a translational mass of approxi-
mately the sum of the two constituents. ~i, the "effec-
tive mass" of the first constituent and rn2, that of the
second, are tensors, the components of which are obtained
by inverting expressions of the form

(1/ );
—=8 E(k)/Bk;Bk

~ k (2.5)

where the derivatives are to be evaluated at the point
where E(k) has its minimum. The effective mass of any
stationary state of energy a(K) of the composite particle
(not just the ground state) is defined by an identical ex-
pression, with a(K) replacing E(k).

For lattices or band structures with cubic symmetry, if
the components k; are picked along principal axes, one
infers that the cross terms (i&j) vanish and that the three
diagonal components (i =j) are equal. In that case, we
can assign a scalar effective mass mi or m2 to the con-
stituent particles and to the composite one, M, as well.
(In the effective-mass approximation, M=mi+m2 as in
continuum theory. )

One important composite particle of solid-state physics
is the exciton. The literature distinguishes between the
highly mobile Wannier-Mott exciton [an electron from
the conduction band and a hole from the valence band of
a semiconductor, interacting by a Coulombic attractive
potential in any of the hydrogenic bound states (Knox,
1963)] and the Frenkel exciton [a localized atomiclike ex-
citation (Davydov, 1962)], which proceeds by diffusion.
To this we must add the "mathematical" exciton (for
want of a better name) associated with itinerant-electron
magnetism, which we treat separately in the Appendix.
[Excitons are not the only objects of study. Among other
two-particle composites of solid-state physics that have
been considered at one time or another, one should also
mention the Cooper pair of the BCS theory of supercon-
ductivity (fermions) and the bound-magnon (boson) pair
of magnetism. ]

We shall now prove that the Wannier-Mott and Frenkel
excitons are merely extreme cases of a "generic exciton"
(highly mobile when weakly bound and localized when
strongly bound) by calculating the effective mass M of
the composite particle (Mattis and Gallinar, 1984). The
present illustration applies specifically to "simple cubic"
band structures although with minor changes it also
works for "body-centered-cubic" band structures (and
should be qualitatively valid for all other "simple" band
structures). The final result is Eq. (2.14) below.

I.et E i (k) =8'i s(k) /3 and E2(k) = 8'z E(k)/3, where

3guantitatively, the range and "shape" of the interactions and
the "statistics" of the particles (which forbid certain eigenstates)
also play nontrivial roles.

s(k) —=3—cosk„—cosk» —cosk, . (2.6)

By conservation of momentum, the interaction scatters
ki ——ilP and kz ——(1—il)P into ki+k and kz —k (mod
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any reciprocal-lattice vector K„) with matrix element
gV(k)/N .We introduce a coupling constant g for con-
venience, setting g =1 at the end of the calculation. P,
the total momentum, is conserved (mod any K„);g is an
adjustable parameter.

All scattering states of A can be written in the form

I
kik2)= Iki k2&+(1/»g«k) Iki+k»z —k&

k
(2.7)

whereas all bound states, labeled by a discrete quantum
number P, take the form

I
p)=(1!N'~ ) QF(k)

I
ki+k, k2 —k& . (2 8)

F(k)= (g/N—) g V(k —k')[E(k', g,P)—E] iF(k'),
k'

(2.9)

where

Sums over k are limited to the first Brillouin zone. Writ-
ing ~

I p) =E
I p) we obtain an integral equation

X~ (P)= —(g/N ) V(k —k') IEi (k'+ gP)

+Ez[—k'+ (1—g)P]

+~p(g) I (2.11)

with b.(g) =Es —E=binding energy (&0 when a bound-
state solution exists), displaying the dependence on cou-
pling constant g explicitly. The bound-state energy con-
sists of two parts: kinetic energy (KE) and potential ener-

gy (PE). By Feynman's theorem, PE= —gh'(g). Thus,
in the bound state,

«= —[~(g)—g~'(g)] . (2.12)

The strategy is as follows: one first sets P=O and as-
sumes a binding energy b,o(g). Choosing an appropriate
direction for infinitesimal P, and an appropriate g, one
manipulates X~ (P) into the form E~ (0). This requires
infinitesimal changes in b, and g. On the other hand, be-
cause the effective mass M is a scalar we have
bz(g)=50 —(1/2M)P + O(P ) with which to defme M.

The following quantities are required: W—:Wi+Wz
[this is the KE in the case of maximum localization, in
the sense of Eq (1.4.); it is not the maximum KE, which is
2 W], P=(p,p,p), and g chosen to cancel odd terms in p
in the denominator of the kernel. This last requires

E(k', g, P) —:E(ki+ k', kz —k') Wisingp = W2sin(1 —g)p . (2.13)

Ei (k'—+gP)

+Ez[ —k'+ (1—ri)P]+ E (2.10)

Now we need to define three new quantities in terms of
the old:

E is the energy gap, the smallest energy required to pro-
duce an electron and a hole in the material. We shall find
only bound states for energy eigenvalues E&Es, while
scattering states occupy the region E&Es. The former
exist only for sufficiently attractive potentials (gV&0).
(The Coulomb attraction qualifies; it always possesses an
infinity of them. ) The principal advantage of Eq. (2.9) is
that it concerns only bound states. If there are none, it
has no solutions. We turn to this equation first, and
analyze scattering states [Eq. (2.7)] last.

To obtain the desired results concerning the total mass
M, we are not required to be able to solve Eq. (2.9), only
to note that it has the form of an integral equation (sym-
bolically F=K F), the kernel of which depends on P and
has matrix elements given by

40n the cubic lattice (where it must satisfy the discrete analog
of Poisson's equation) we take the Coulomb interaction to be of
the form gV(k}=—2~e /ac(k), with c(k) defined in Eq. (2.6)
and sc the dielectric constant. At small k this reduces to the
usual —4me /Ick, while exhibiting the crystal symmetries
V(k+X„)= V(k) at all k. Conversely, in real space, the lattice
Fourier transform of the proposed function exhibits satisfactory
limiting behaviors: V(R)—+ —e /~R at large R, and at R =0,
V(0)= —e /Ica) (where a ( is a constant of the order of the lat-
tice parameter ap).

Mii=(m, +m, )/(1 —KEii/W) . (2.14)

The smaller the spatial extent of a given state P, the
greater KEp. As stated above, the maximum value of KE
in a bound state is 8', in which limit the exciton mass is
M = ao ("Frenkel exciton"). At the opposite extreme, in a
spatially extended state KE can be quite small and
M=m]+m2 in accord with the continuum approxima-
tions to the "Wannier-Mott exciton. " In physically im-
portant cases of Coulomb interactions, if the modifica-
tions imposed by the lattice (see footnote 4) still permit
the virial theorem to remain approximately valid, then
KE„=A'/nz, where A' is the appropriate Rydberg and n
the principal quantum number. Equation (2.14) becomes

M„=(mi+m2)/(1 —c/n ), n =1,2, . . . (2.15)

and c—:9F/W. This result has been confirmed experi-
mentally in a number of semiconducting materials by

a = [ Wi cosgp+ W2cos(1 —g)p]/W,
g'=—g/a, h*—=(1/a)(a, + W) W.

The kernel Kki, (p) can be brought back to the form
E'~ (0) with the substitutions g* for g and b, ' for h~.
After some minor additional algebraic manipulations in-
volving the comparison of b, ' (g') with the expansion of
b~ (g) in powers of P, , one obtains a formula for the to-
tal mass M of the composite particle in each discrete
bound level P:
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Cafolla, Schatterly, and Tarrio (1985). In the Frenkel
limit, there is a two-body (dipolar-resonance) mechanism,
which we have ignored so far, but which allows the entity
to move as a whole. When this modification is made in
Eq. (2.14), one finds a result only slightly more complicat-
ed:

trivial. Their solution in the two cases of interest (V&0
and V & 0) are left as an exercise for the reader. Other in-
formation is available in Rashba and Sturge (1982). Leav-
ing aside other topics in the lattice physics of n =2 parti-
cles, we now turn to n =3.

1/M= [(1—KE/IV)/(mi+m2)]+ 1/~~, (2.16) III. THE THREE-BODY PROBLEM

(ki+k k2 k
I
~—E

I ki k2)

obtaining from the first

E=E(ki,k2)+(g/N ) QL(k') V( —k') (2.17a)

and from the second

L(k)= gV(k)+(g/N) QL(k —k') V(k')
k'

)& [E—E(ki+ k, k2 —k) ] (2.17b)

In the thermodynamic limit (N ~ ao ) one replaces
(1/N)gk by 0 ' f d k, and the singular integral in Eq.
(2.17a) yields a complex energy:

E=E(ki, k2)+ ( I/N )(5e+i /2r) . (2.18)

We indicate the real shift in energy (related to the usual
phase shift) by 5a/N, the imaginary part (related to the
lifetime w) by 1/2'. The calculation of both requires the
solution of the integral equation (2.17b), generally an in-
volved, numerical task.

While the 1/N ensures that the energies of scattering
states are substantially unaffected by the interaction and
interlace the unperturbed energies, this is not the case for
the wave functions, which are significantly affected in the
scattering region.

For the calculation of effects that are sensitive to this
(such as optical matrix elements), Eq. (2.17b) must be
solved for the L(k)'s. Although in lattice physics there
are few of the simplifying features of continuum scatter-
ing theory with central potentials, such as the decomposi-
tion into partial waves, in special cases one finds useful
"tricks" here, too. For example, in the special case
V(k) =const (zero-range potential), Eqs. (2.17) become

where a combination of parameters denoted Mz is then
the (relatively large) limiting mass (for a detailed deriva-
tion, see Gallinar and Mattis, 1985a). In the large-mass
limit, the scattering of excitons by phonons becomes rela-
tively important. Instead of wavelike propagation, one
now expects diffusive behavior. For recent information
concerning the properties of excitons, alone and in
interaction with each other and with such other particles
as phonons and photons, the reader is referred to the com-
pendium by Rashba and Sturge (1982).

We turn now to the scattering states, Eq. (2.7). To ob-
tain algebraic equations, we evaluate

(ki, k2
I

A E
I
ki, k—2)=0

and

"The quantum mech-anical three body-problem corn
pounds the difficulty of the classical problem . . . approxi
mation schemes are based more on physical insight than on
mathematical credential and work far better than they
ought. . . ."

(R. Amado, 1981)

Although this quote concerns the three-body problem
in the continuum (nuclear or atomic physics), the reader
may be reassured to know the following.

(1) The three-body problem in three or higher dimen-
sions for short-range interactions is simpler on a lattice
than in the continuum. Assuming the particles interact
via two-body potentials only, the three-body bound states
(when they exist) are generally in the strong coupling lim-
it, and approximations based on this principle converge
well.

(2) For short-range, attractive, two-body forces of arbi-
trary strength, the number of distinct three-body bound
states with substantial binding energies is small, of O(1).
In three or higher dimensions, such states appear (and
disappear) discontinuously as the coupling constant is
varied. In two (or fewer) dimensions, bound states appear
continuously, for arbitrarily weak attractive forces.

(3) There exists a three-dimensional anomaly: near the
threshold for two-body bound states to form, an infinite
number of extremely weakly-bound three-body states ap-
pear (Efimov, 1970). This phenomenon is known from
continuum theory. Whether in the lattice theory or in the
continuum, it apparently exists only in three dimensions
(Bruch and Tjon, 1979).

This section starts with the zero-range (delta-function)
interactions, the closest to being exactly soluble. In fact,
for delta-function interactions in one dimension, Bethe s
ansatz does essentially resolve the many-body problem, as
shown in a great body of literature, including (but not
limited to) Lieb and Mattis (1966), Yang (1967), Cxaudin
(1967), and Lowenstein (1981). Unfortunately, this
phase-shift approach is inoperative in two dimensions or
higher. Therefore the present review deals only with the
far less well understood (not to say obscure) applications
in two or higher dimensions. They are a recent concern;
the publications we shall review appeared during the
period 1982—1984. Clearly the field is in its infancy and
much work remains to be done.

Following a recapitulation of these recent results for
zero-range interactions, we shall examine the statement of
the problem for arbitrary forces, whether attractive,
repulsive, or mixed, and assess the prospects for a coin-
plete analysis.
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A. Trio n

Consider a Frenkel exciton in the strong coupling limit:
one electron and one hole on the same lattice site. Will it
bind one extra hole? The answer in three dimensions is
yes, if the bandwidth of the electrons is approximately
three times greater than that of the holes. (If the band-
width of the holes is three times that of electrons —an un-

likely situation —then the exciton can bind one extra elec-
tron. If the bandwidths are similar, i.e., if the ratio of
bandwidths lies between —,

' and 3, then no trion is stable
in three dimensions. )

The analysis is straightforward: when the two holes are
neighbors, the electron can hop from one to the other
without loss of potential energy. If the energy gained by
this process is greater than that lost by localizing the
second hole, the trion is stable. Only band energies (KE)
are involved; the potential energy of the exciton is so great
that the energy to ionize it (even virtually) is presumably
unavailable. The original solution in d dimensions was
obtained with the help of lattice Green's functions for
spinless particles (Schilling and Mattis, 1982). Later work
(Schilling and Mattis, 1983a) incorporated the spin vari-
ables and calculated the translational mass of the trion for
all ranges of the parameters, while another paper treated
one hole in the presence of N excitons (Schilling and
Mattis, 1983b).

One of the most interesting results of these investiga-
tions concerns the motility of the composite particle.
While the Frenkel exciton is immobile [see discussion fol-
lowing Eq. (2.4) above] and the extra hole is presumed to
be at least three times more massive than the electron, the
composite does move (in three-dimensional lattices). (For
the calculations and graphical details, see the above-cited
reference. ) This is an instance, which might be considered
somewhat unusual, when the introduction of an extra par-
ticle helps reduce the mass of a composite.

B. Oonor atoms

It is a longstanding premise of semiconductor physics
that a donor atom can bind one electron (of either spin)
but, because of the Coulomb repulsion, not two. Of
course, this depends on the nature and range of the forces.
(Subject to some technical modifications due to band-
structure degeneracies, similar considerations apply to ac-
ceptors and the. holes which reside on them. ) We distin-
guish between short- and long-range forces.

(1) Short range forces: T-he attractive one-body poten-
tial —v of the impurity atom has a bound state that can
accommodate two mobile particles. We have studied the
effects of a repulsive zero-range two-body potential of
strength U on this bound state, estimating the curve
U, (v) above which the two-body bound state becomes un-
stable against ionization of one of the particles. When
this occurs, the one-particle bound state (the ground state)
becomes degenerate, so that at temperature T the effective
binding energy is shifted by a term —kTln2. The diffi-
culty of this particular three-body problem is that one of
the particles (the immobile impurity atom) differs from

TABLE I. Total binding energies of various ions in
rydbergs—=m e /2A ~

Excess valency
Z and number Calculated Eo

of bound particles N (Kalia et al. , 1984)
Experimental Eo

(Moore, 1949)

Z= lq

Z=1,
Z=2
Z=2
Z=2
Z=3
Z=3
Z=3

N=1
N=2
N=1
N=2
N=3
Ã=2
N =3'
N =4'

—1
—1.056

—5.807
—6.10

—14.56
—17.34
—18.05

—1

?
4

—5.807
?

—14.56
—15.0

?

'Calculated Eo is for N bosons (this simulates valence-band de-
generacy for acceptors in germanium). Experimental Eo is for
physical atoms (H,He, Li), with spin- 2 fermions.

5Although the introduction of a parameter A is a mathemati-
cal artifice, there may be additional physical justification if the
dielectric screening (which is frequency and wavelength depen-
dent) affects the two-body (repulsive) potential-differently from
the one-body forces.

the other two; the resultant integral equation is rather
awkward (Rudin and Mattis, 1984). The continuum ver-
sion of this problem studied by Klaus and Simon (1980)
should apply in the effective-mass limit.

(2) Coulomb potentials: In estimates of such quantities
as thresholds for bound states, the effective-mass approxi-
mation (EMA) should prove adequate for the Coulomb
potential, because of its emphasis on long wavelengths
(see footnote 4). We may then appropriate a theorem of
Lieb's (1984) which limits the number of bound electrons
to N ~2Z+1 (e.g., allowing H but forbidding H ).
If the Coulomb attraction is given by potentials
—1Ir ~

—1Ir2 and the two-body repulsion is modeled by
AIr, 2, then at or above some A„ the two-body bound
state is unstable against ionizing one of the mobile parti-
cles [just as in (1) above]. It has been proven (Hoffmann-
Ostenhof, Hoffmann-Ostenhof, and Simon, 1983) that the
two-body bound state has a square-integrable eigenfunc-
tion at threshold (A, ), while above threshold it is just a
scattering state. Thus the bound state forms discontinu
ously, a feature characteristic of the three-body problem,
as we shall see in later sections of this review.

Following the discovery of multiply charged acceptor
states in germanium by Hailer et al. (1983), attention has
focused on what might heretofore have seemed a purely
academic problem. The variational methods of Hylleraas
(Hylleraas and Midtdal, 1956) have been extended by Wu
and Falicov (1984) to a variety of Z and N. An in-
principle exact Green's-function solution of the few-body
problem (based, however, on Monte Carlo sampling tech-
niques and thus necessarily subject to numerical error) has
also been carried out by Kalia, Vashishta, and Lee (1984),
with the results [in general agreement with Wu and Fal-
icov and in excellent agreement with experimental data on
atoms and ions (Moore, 1949)] shown in Table I.
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C. Three bosons

I +P)=( I/» g F«& k»k3)
I
kl k2 k3) . (3.1)

The label (P) serves to distinguish these discrete states
when there are several of them W. e suppress it for typo-
graphical simplicity in what follows. The total momen-

The case of three identical particles in a state sym-
metric under permutations is the simplest of the three-
body problems. It lends itself to a reasonably complete
analysis (Mattis and Rudin, 1984; Rudin, 1984). While
interesting in its own right (e.g. , for the binding or
scattering of three magnons or three phonons), the steps
leading from the analysis of n=2 to 3 to 4, etc. , particles
are presumed helpful in the ultimate understanding of the
X-body problem.

We treat the three-body bound states and the scattering
states separately, starting with the bound states, which
take on the form

turn P=k, +k2+k3 (modK„) is also a good quantum
number, labeling each eigenstate in the cases of interac-
tions which preserve the discrete translational symmetries
of the lattice. The band energies (KE) for the three iden-
tical particles at k~, .k2, and k3 are

E(kl~k2~k3) =E(kl)+G(k2)+E(k3) i (3.2)

where the one-body energies are presumed to have their
minima E(k) =0 at k=0, as in the example of Eq. (2.6).
Thus the energy eigenvalues E are negative for bound
states and positive for scattering solutions. An additional
feature concerns the states in which two particles are
bound and one is free; these also may have negative E, al-
though they are not three-body bound states and cannot
be written in the form (3.1) with a continuous amplitude
I'. %'e shall deal with those later.

The two-body forces scatter each pair individually.
Thus

(A —E)
I k&, k2, k3) =[E(k~,k2, k3) —E]

I kt, k2, k3)+(g/N) g V(k)[
I kt+k, k2 —k, k3}

+ I
kt+k k2 k3 k) + I kt, k2+k, k3 —k) ] . (3.3)

One obtains equations for the amplitudes (F s) by making use of the Schrodinger equation (~ E)
I
4)=—0:

(kt k2k3IAE I%)—0

which yields

(3.4)

F(k&,k2, k3)[E(kt, k2, k3) —E]+(g/%) g V{k)[F(k~+k,k2 —k, k3)+F(kt+k, k2, k3 k)+F(kt k2+k k3 k)]—0 .

(3.5)

If the lattice is in three dimensions, this is an integral
equation in six dimensions, down from nine by conserva-
tion of momentum. We make use of the permutation
symmetry F(a,b, c)=F(b,a,c)= =F(c,b, a) to
rewrite the above in the form

F(kt, k2, k3}[E(kt, k2, k3) —E]

+ [J(kt,k3)+J(k3', k2)+ J(k2, kt)] =0, (3.6)

where

In the continuum theories, conservation of angular momen-
tum and special transformations of coordinates serve to simplify
the equations further, although the generality is subsequently
spoiled by the need to choose separable (and unphysical) two-

body interactions (Amado, 1972; Phillips, 1977). Unfortunately,
aside from the delta-function interaction, we have found no
such simplifications in the lattice theory.

We eliminate k3 by conservation of momentum and assume
that V(k) in the first Brillouin zone, as well as the E's, are
periodically repeated in the second, third, etc., zones (as is au-

tomatically the case for all properly defined lattice functions).
This property, unlike the usual cutoffs, affords the convenience
of arbitrary changes in the origin of the integrations. We also
assume V( —k) = V(k) whenever convenient.

1 k2}=(g/~) g V{k k1)F(k k2 k k2} (3.7)

J(k2) =(U/N) g [J(k2)+J(k)+J(P—k —k2)]

x [E(k,k„P—k —k,)+ W]
—' . (3.8)

The symmetry of the denominator allows one to substi-

Subject to mild restrictions (see footnote 7} on the func-
tional forms of V and F, one finds

J( k$ k3) =J(k2, k3), J(k2,'k) )=J(k3,'k) )

J( k(,k2) =J(k3,'k2) .

Thus there are three distinct J's and three coupled in-
tegral equations [each of type (3.7), with F given in (3.6)]
with which to solve for the allowed three-body bound
state energies E and corresponding amplitudes I. As
E & 0 in these states, we define 8'—:—E=binding energy)0. We start the analysis with the zero-range attractive
interaction, gV{k)=—U, constant in k. J(k~,'k2) then
ceases to depend on the first variable, and we write it as a
function of the second variable alone, J(k2). The integral
equations [(3.6) and (3.7)] become
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tute J(k) for J(P—k —k2) in the numerator. Combining
the terms in J(k2) we obtain

J( kz) [1—UIg (k2) ]
=(2U/N) g J(k)/[E(k, k„P—k —k, )+ W] .

(3.8')

where

R ~(k2)—:[1—UI p (k)]'i

I~(k2)—:(1/N) g 1/[E(k, kz, P —k —k2)+ W] .
(3.10)

Finally, defining S(kz)= J(K2)[1—UI~(k2)]'~2, we ob-
tain

S(k2) =(2U/N) g S(k}IRp (k)Rg (k2)
k

X [E(k,k2, P—k —k2)+ W] I

(3.9)

I~ is a generalized "Watson's integral" (Joyce, 1972;
Glasser, 1972). It is related to the lattice Careen's func-
tions (Katsura et al. , 1971). The derivation of Eq. (3.9)
could have been performed starting with J(k&) or J(k3);
it is thus valid for any k, and we- rewrite it in a more
"natural" form,

S(k) =(2U/N) QS(q)/R~(k)R~(q)[E(q, k,p q k)+ W]
q

=(2U/0) fd q S(q)/Rp (k)R~(q)[E(q, k, P—q —k)+ W] (3.11)

or, more symbolically, in the form of an integral equation,
A,S=K.S, where

K« =(2U/0) IR~(k)R~(q)[E(q, k, P —q —k)+ W]]-'
(3.11')

subject to A, =1. This kernel is positive, invariant under
the cubic group Oq, and compact (integrable) except in
the neighborhood of R~(k)~0, i.e., where the two-body
bound states just start to appear. [The discovery of an
infinite number of Efimov states (Efimov, 1970) near this
threshold starts with the observation of such a divergence
related to a "resonance" in the two-body spectrum. ] We
also note that if the binding energy W for three bodies is
less than for two-body bound states, R~(k) can become
imaginary "ausing the integral equation to fail to have
any acceptable solutions. We therefore seek bound states
in the region W& binding energy of two-particle states.

The integral equation (3.11'} is unusual, in that the
eigenvalue A, is always set equal to 1, while the usual
eigenvalue in quantum theory, the energy parameter S;
appears nonlinearly (in R as well as in the explicit denom-
inator. ) Nor does any simplification result from fixing W
and varying U, as the latter also appears nonlinearly in a
number of places. Thus numerical solution for W(U) is
required. There are at least two systematic approaches to
this: (1) expansion of S(k) in cubic harmonics (Bethe and
von der Lage, 1947), (2) "strong coupling" expansion of
kernel in powers of ( W+b) ', where b is a fixed con-
stant. The first converges faster and is numerically more
accurate —the binding energies are obtained to O(1%).
The second, when the expansion is carried out to leading
terms, is only tolerably accurate (a few percent accuracy),
but qualitatively and intuitively more useful than the
first.

Compare R~——0 with the equation for two-body bound states
(2.9), when —gV= U and, as a consequence, E(k) =const.

To proceed, we must fix the unit of energy, related to
the one-particle bandwidths in Eq. (3.2). In one dimen-
sion, we shall take s(k)=1 —cosk, in two dimensions
e(k) =2—cosk„—cosk„, and in three dimensions

e(k) = 3 —cosk„cosk—» —cosk, . (3.12)

Consider the case of three dimensions and the (strong
coupling} expansion

1/(e+ W) =1/( W+3)

+(cosk„+cosk~+cosk, )/( W+3)

+ 0 ~ ~ (3.13)

4'(Ri )= Q IC(Ri
I RJ )%(RJ.) .

J
(3.14)

The real (lattice) space kernel IC (R
~

R') is

X(R
~

R)=(1/Q ) f fd kd qX~ e'q "' ' (3.14a)

It also is a nonlinear function of Wand U; W( U) has to
be adjusted to yield the desired eigenvalue A, = 1 and corre-
sponding eigenfunction %. The method of expansion fol-
lows upon the realization that (with some exceptions) X
decreases rapidly as each R; and RJ increases from 0, also
varying with the distance Rij between them. Thus a first
approximation yields K(0

~
0)=1, from which we obtain

Note that such expansions converge absolutely, are effi-
cient under an integral sign (many of the trigonometric
terms are projected out, or are small), and are tantamount
to considering the motion of the particle on the lattice as
a sort of perturbation. They are unique to lattice physics:
in continuum theory, c=k and no similar expansion ex-
ists.

The expansion in harmonics also demonstrates the
essentially localized nature of the bound-state problem.
Upon lattice Fourier transformation, Eq. (3.11') takes on
the aspect (Rudin, .1984)
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a first estimate of W(U}. If we now also retain some
smaller terms X(0

~ 51 ), the secular determinant obtained
from Eq. (3.14) yields a more accurate equation:

K(0
i
0)+6 i

X(0
i 5J )

i
=1 . (3.15)

In iteratively adjusting W to satisfy such equations, we
are obliged to evaluate six-dimensional integrals (3.14a) at
each step of the iteration. This causes conflicting require-
ments of accuracy: if integrations take too many steps,
there is not sufficient time for small-step iterations. If
the integrals are inaccurate, it does not help to be able to
take small increments in 8'. Finally, one must determine
the number of shells to be retained in successive improve-
ments of (3.15)—hach successive shell brings in a larger
number of ever smaller integrals. Fortunately, the
Korobov-Hlawaka "quasi-Monte Carlo" procedure (Ko-
robov, 1963) offers an efficient method for evaluating pre-
cisely the type of integrals we need. This method (re-

viewed in English by Stroud, 1971) takes advantage of
periodicity in the integrands' to evaluate integrals with
high precision, and, ultimately, this is what renders our
procedures practical.

In the case of the strong coupling expansion, the expan-

95J may be any of the six nearest neighbors of 0; by symmetry,
at P=O all six X(0

~
51) are equal to each other and to their

conjugates X(5J
~
0).

~OIn our case, the periodicity exists in k space (from Brillouin
zone to Brillouin zone, ) so that, in practice, we carry out our
procedures in reciprocal space and not in "direct" (lattice) space.

5-body continuum

6 5 4W' '5~' 2
1 //i

//, j

~/i
j //

j//

/j

CD/
/p

—7

0/

FIG. 2. Binding energy W of n-body bound state vs strength U
of an attractive two-body potential in three dimensions. The
shaded three-body continuum represents free particles, the shad-
ed two-body continuum represents two-particle bound states
with one (ar more) free particle. The fundamental three-boson
bound state labeled n=3 is asymptotic to the straight dashed
line of slope 3. The excited bound state and/or "Efimov states"
all lie within a point of radius 0.1 at the "tricritical point"
U, (2)=3.96. There are no three-fermion bound states for this
zero-range interaction. Dot-dashed lines labeled n=4, 5,6,7 are
binding energies estimated from scaling arguments, with

U, (n) =7.92/n. From Mattis and Rudin, 1984.

sion parameter is ( W+9) ' for three particles, rather
than ( W+3) ' as indicated in Eq. (3.13). Thus conver-
gence is inore rapid than it might have seemed at first
sight. [It may be even more rapid for n & 3 particles or in

d & 3 dimensions, where the expansion parameter is
( W+nd) ' for n particles in d dimensions, allowing rel-

atively primitive strong coupling methods to ".. . work
far better than they ought, "as we shall argue below. ]

In the accompanying figures we show graphically a
summary of the original results (Mattis and Rudin, 1984).
The numerical and error analysis, with additiona1 com-
mentary, are to be found in Rudin (1984). In Fig. 2, the
three-body binding energy in three dimensions is plotted
(solid curve). The infinite number of Efimov states have
energies all lying within the indicated dot.

Although the estimates for n =4,5, . . . (dot-dashed
curves) come from scaling-type arguments, they agree
very well with zeroth-order strong coupling analysis of
the respective bound-state equations ( Uide infra).

Figure 3 shows the binding curve or three bosons in
d=2 dimensions. (As in one dimension, there is always a
bound state for potentials in two dimensions, provided
merely they are attractive on balance. )

The surprise comes in Fig. 4, which indicates that at
threshold, the three-body bound state in three dimensions
is formed discontinuously. (While the total binding ener-

gy W increases smoothly from zero as U is increased
beyond threshold, its constituent KE and PE jump to op-
posite, finite values at threshold. ) This is the consequence
of the finite slope (recall Feynman's theorem) of W( U} at
U„and is found to be a property of all n &3 particle
bound states for all dimensions d &3 (and, conceivably,
for n &4 in two dimensions, " although this has not yet
been established).

Finite KE at threshold indicates that when the bound
state forms, it has finite size [and presumably, a total
mass M greatly in excess of the effective-mass value,
M »nm; the first study of the dependence of M on U
for three-body complexes has been undertaken only re-
cently (Rudin, 1985b), and much remains to be done].

Because the maximum size at threshold is finite, es-

~ The failure of Eq. (3.17) to predict the correct U, for n=2
(it yields U, =6, far from the correct value 3.96) is just further
evidence that, unlike n &3, the bound-state threshold for the
two-body problem is not yet in the strong coupling limit in three
dimensions. One estimates the number of dimensions at which
the two-body problem becomes strongly coupled at threshold by
calculating when the threshold KE, becomes finite. If U, is fi-
nite (as it must be for short-range farces in d&2 dimensions),
then KE, ocdW/dU

~
s 0, i.e., both are finite or both vanish.

It is simple to see that the latter is proportional to
( dkk ) ', with 0&k &k,„t ff so that KE, =O for d(4
and is finite for d&4. It follows that the strong coupling ex-

pansions will converge even for the two-body problem, on lat-
tices in d & 4 dimensions. A rigorous analysis of such questions

has been given by Klaus and Simon (1980) in the cantinuum

theory (i.e., in the EMA for lattice theo6. es).
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3-body continuum

I --0

found to be reasonably accurate in the strong coupling
limit, and let us use it to estimate the binding energy for
n & 3 in d & 3 dimensions. The quantity (Ei ) =d for hy-

percubic lattices in d dimensions. Thus, on such lattices,
the variational procedure yields estimates of the binding
energy W;

W= —(PE;„)—nd (n, d both&3) (3.16)

for arbitrary interactions. Comparison with the zero-
range calculations is encouraging; there, Eq. (3.16) in
three dimensions reduces to

W = ,' n (—n —1)U 3n—, (3.17)

timated at no more than two lattice constants, the bound
state of n & 3 particles is borne into the strong coupling
regime. (By way of comparison, at threshold, the two-
body bound state is infinitely large; crossover to strong
coupling occurs at W»1.} Now, let us recall the varia-
tional ansatz for the Frenkel exciton, Eq. (2.4), which was

3.2 5.I ~.O 2.9 2.8 2.7

-7
-6
-5
-4
-2
—

I~O
--2

--5
--6
--7

FIG. 4. Kinetic and potential energies in the three-body bound
state vs strength U of an attractive two-body potential in three
dimensions (Mattis and Rudin, 1984). As U is increased (note
break in horizontal scale) the three-boson threshold is ap-
proached at U, (3)=2.60. There, the kinetic and potential ener-
gies jump discontinuously, although their algebraic sum (8')
grows continuously from 0. Finite kinetic energy at threshold
implies that the bound state has a small size (estimated at &2
lattice constants at threshold and decreasing to 0 with increas-
ing U). While appearing anomalous, such discontinuity is in
fact a normal consequence of finite-range forces and of lack of
available phase space near k=0, occurring for bound states of
n &2 particles in d &2 dimensions, provided (by extension of
the arguments in footnote 11) that nd & 8.

—7
ll

N

FICz. 3. Binding energy S' vs strength of an attractive two-
body potential U in two dimensions. Here, all thresholds for
n &2 are U, (n)=0. There is no Efimov point in two dimen-
sions, nor have three-fermion bound states been found for any
value of the zero-range interactions (Rudin, 1985a).

W =n Ui d nd (near—est-neighbor attraction), (3.18)

and Ui, -l independent of n, d (when n »2d »1}.Be-
cause of the hard cores forcing particles to be a finite dis-
tance apart, in this case the energy is extensive, the energy
per particle, W/n =d(U —1), is finite and, unlike the
zero-range attraction, this model has a proper thermo-
dynamic limit. For n not so large, where many of the
particles are at the surface of a solid droplet of small ra-
dius, one should estimate W more closely by studying the
"surface particles" more carefully.

D. Fermi' ns

Obviously, zero-range interactions have no effects on

spinless fermions, nor among fermions of parallel spin, as

4 always vanishes where the interaction is nonzero. But,
surprisingly, even with spin there are no bound states rela-

tive to two bound fermions and one free particle, for three

fermions. In strong coupling, this result can be seen to be

a direct consequence of the lack of binding of trions made

of particles of equal mass (substitute fermion of spin "up"
for hole, fermion of spin "down" for electron, in Sec.
III.A above, or in Schilling and Mattis, 1982). It is less

obvious in weak coupling.
An integral equation for the bound state of three fer-

mions can be obtained by analogy with the bosons. The
wave functions are totally antisymmetric in space and

spin, but as spin does not occur in H, we can deal with

functions in direct-lattice (or reciprocal) space alone. For
each irreducible representation of the permutation group

S3 there is a corresponding Young tableau. We have al-

which, for W=O threshold, yields U, =6/(n —1). These
estimated values ( U, =3 for n=3,2 for n =4, . . . , 6/n
for n —+ ao ) agree quite satisfactorily with the exact value
2.60 for n =3 and remarkably well with the values shown

in Fig. 2 (see footnote 11), obtained from quite indepen-
dent arguments (Rudin, 1984) for n &4. The slopes at
W&0 are given by dW/dU =(1/2)n (n —1).

For nearest-neighbor interactions —U, (and hard-core
zero-range repulsion), the minimum potential energy for
use in Eq. (3.16) is that of a compact "solid droplet. "
Neglecting surface terms, for n »2d the potential energy
of an n-particle solid rapidly approaches —n Uid; thus
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ready argued that the eigenstates that can be written as
one-column Young tableaux, partners of the states of spin
—,
'

(all spins up), cannot "feel" the zero-range interactions.
Turning to the space functions transforming as two-
column Young tableaux, we observe that the totally. sym-
metric function F(k„k2,k3) in Eq. (3.1) is here replaced
by - a function F(ki, k2 I k3), symmetric (or antisym-
metric) in the first two variables, but not in all three.
After algebraic manipulations mirroring Eqs. (3.2)—(3.9),
for the soluble case of the delta-function attractive poten-
tial —U we finally obtain an integral equation quite simi-
lar to Eq. (3.11'), albeit with significant changes:

A, S=K S,
where

Ki,q
———(U/0)((Rp (k)Rg (q)[E(qk, P, —k —q)+ W]]

(3.19)

subject to A, =1. All our investigations have led to the
conclusion that, whatever the choice of U and W& 0, out-
side of the region of two-body bound states one has A, & 1,
and therefore this equation can never be satisfied.

This can be seen qualitatively through the expansion of
the denominator:

[E(q,k, P—k —q)+ W]

=(9+W) '+[C(q)+C(k)

+C(P —K—q)](9+ W) +
(3.20)

where C(k) =cosk„+cosk„+cosk, . If we just retain
these leading terms in the expansion, we see that E~q is
the sum of seven separable kernels —the term in
(9+ W) ' and the six summarized by C(k)+C(q)—plus
the following separable kernels which we shall discuss'in-
dividually:

—( U/Q)[R ir(k)R ir(q)(9+ W) ] '[cos(P„/2 k„)—cos(P„/2 —q„)+ . +cos(P, /2 k, )cos(P,—/2 q2)—
—sin(P„ /2 —k„)sin(P„/2 —q„)+ +sin(P, /2 —k, )sin(P, /2 —q, )] . (3.21)

The aforementioned first seven terms plus the first three
in Eq. (3.21) all yield intrinsically negative contributions
to A,. The only possible positive contributions to A, are
those arising from the last three terms involving the sine
functions in (3.21). Taking S(k) to be "p wave, " i.e.,

S ( k ) =sink /R g (k), (3.22)

where a=x, y, or z, we find that 12 of the 13 separable
kernels vanish, with the remaining one yielding

A, =U(9+W) 'T(U, W), (3.23)

where T is an integral:

T( U, W) =(1/0) fd3q sin2q„[1 —UIir(q)] ' (3.24)

and I given in Eq. (3.10). Near the curve W2(U) that
designates the threshold for two-body bound-state forma-
tion (given by the vanishing of the denominator,
1 —UI= 0), numerical evaluation indicates the right-hand
side of Eq. (3.23) to be always & l. [The likeliest candi-
date for a solution is the neighborhood of the Efimov
point, W=O, U=3.96. But, because of the numerator

sin q, T remains finite at this point while U(9+ W) is
quite small there, 3.96/81=0.049. Thus it is theoretically
possible, but seemingly unlikely, that a three-fermion
bound state exists in the immediate neighborhood of the
Efimov point. ] Far from this region, T & —,

' and we esti-
mate the right-hand side to be always &0.04. Thus,
within the expansion (3.20), we are unable to obtain A, = 1,
as required in a bound state. In two dimensions, similar
calculations exclude such bound states at small U, while
in one dimension Bethe's ansatz allows exact analysis
which here precludes three-fermion bound states for all U
(Takahashi, 1970; also discussed by Rudin, 1984). Final-
ly, to the extent that all U in d &4 can be considered
strong coupling, by analogy with the trion we conclude:
no binding. In conclusion, we remark that while this
shows the BCS concept of "Cooper pairs" (as a stable
composite particle of fermions with attractive forces) to
be a sound idea in all dimensions, it does riot necessarily
exclude formation of composite Cooper-pair molecules.
This problem remains open at the time of writing.

IV. SCATTERING THEORY

For repulsive potentials, all low-lying states lie in the continuum. Even for attractive forces, most states lie there too.
We can immediately see the complications arising in the latter case by comparing two possible scattering events.

(I) A bound two-particle state
I %ti) fe.g., Eq. (2.8)J, momentum P, scatters from a third particle. Ignoring permutation

symmetry for the moment, the (exact) scattering states
I p, k3) are of the general form

I
0(P) k3) —

I
p(P ) k3 & + ( 1/&)QFpti(q) I

0(P+q) k3 —q &

(4.1)

+(1/~)+[Fly(q) I r«2+k3+q»ki —q&+F2r(q) I ) «i+k3+q»k2 —q&+F»(q) I 1 «i+k2+q»k3 —q&]

+I/~ g 2 XF(k»k2~k3)13(kl+k2+k3 P k3)
I
k»k2 k3&
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with sums over all two-particle states (y) and various wave vectors.
(2) Three particles scatter. The incoming state is what, in the preceding expression, was one of the scattered com-

ponents. Again, without regard to permutation symmetry, the general eigenstate of this type is

I ki kz k3)=
I
ki 4k3&+(I/N}+Pip(q) Ili)(kz+k3+q»ki —q&

++2@(q) I ~(kl+k3+q) k2 q&++3p(q) I pki+k2+q) k3 —q&]

+1/N g g QF(k'i, k3, k3)5(ki+k3+k3 —ki —k2 —k3)
I
ki, kz, k3& . (4.2)

As Faddeev has shown in the continuum theories (Faddeev, 1960; Lovelace, 1964), care must be taken to sort out the
various scattering channels. Permutation symmetry must also be included in the above, if the "particle-exchange"
scatterings are to be correctly incorporated. (Details can be found in recent books on scattering theory, e.g., Joachain,
1975.) It is unlikely that lattice physics simplifies the problem in general, as our lack of conservation of angular momen-
tum is not helpful. As usual, however, the one remarkably simplifying exception is the delta-function interaction. We
concentrate on it in the following analysis.

We assume two-body point interactions of strength U (here U& 0 for repulsive forces and U& 0 for attractive),

=(U/2) g g 5(Ri —RJ)
l J+l

(4.3)

and the absence of two-body bound states P. The scattering-state equations are least formidable in appearance when ap-
plied to the case of bosons labeled by ki ——k3——k3 ——P =0. (The related eigenvalue is automatically symmetric under per-
mutations. ) The calculations of scattering amplitudes and energy Eo are as follows:

(m —Eo) IOOO&=(3U/N —Eo) IOOO&. +(U/N) g [ Ik k, O&+ I Ok
—k&+

I

—k 0 k&1

(A —Eo)
I
k, —k, O& =(U/N)

I
000&+[2E(k)+3U/N —Eo] I

k, —k, O&

+(U/N)[
I

—k, k, O&+
I
0, —k, k&+

I
k, O, —k&]

+(UIN) g [ lk', —k', 0&+ lk —k', —k, k'&+
I
k, —4+k', —k,'&],

(4.4a)

(4.4b)

and

(~—E, ) lk —k; —k, k &=(U/N)[lo, —k, k&+ IO, —k, k &+
I

—k,o,k &+ lk —k,o,k —k

+ I
k, —k, o&+

I
k —k,k' —k, O&]

+[a(k)+s(k')+E(k —k'}+3U/N —Eo]
I
k —k', —k, k'&

+(U/N)[
I

—k, k —k', k'&+
I
k', —k, k —k'&+

I
k —k', k', —k&]

+ ( U/N) g' [ I
k —k", —k, k" &+ I

—k' —k",k",k' &+
I
k —k', k",k' —k —k"

& ),
ktI

(4.4c)

where a prime over the last sum indicates that k" must avoid those points that have already been explicitly included in
preceding terms (e.g., &k,k', etc.). We now write the scattering eigenstate

I
%'0) as follows:

000&+(I/N}X~(k}[
I

—k, k, o&+
I
0, —k, k&+ lk, O, —

+ (1/N )g g g~(ki, k2, k3)5(kj+k3+ k3)
I

ki&k2&k3 & (4.5)

We note that e(k) is given in Eq. (3.12) and that the (un-
symmetrized) states

I ki, k2, k3 & are shorthand for normal-
ized plane-wave product states: N ~ expi (k, R,
+ k2 R2 +k3 ' R3 ). The eigenstate 'po will belong to

whichever symmetry class is chosen for the incoming
wave (in this case, totally symmetric, corresponding to
spinless boson statistics}.

The coefficients (W,~) are obtained through the
Schrodinger equation, which is reformulated into the
statement: the right-hand sides of Eqs. (4.4a) (4.4c) are-
orthogonal to

I
%0). Applied to Eq. (4.4a), this statement

implies

Ec 3/N U 1+(1/N)QW——(k) (4.6a)

If we proceeded straight to the thermodynamic limit,
there would be no effects of the scattering, and Eo ——0.
The interesting effects are O(1/N) and even O(1/N2).
[For n particles, the above expression is simply modified
by replacing the prefactor 3/N by n (n —1)/2N; the value
of the function W is also affected, but only to O(n/N).
To see precisely how, . one compares the solutions of Eqs.
(2.6)—(2.9) (n=2) with those for n=3.] We now proceed
with Eq. (4.4b):
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0= U+ [2e(k)+6( U/N) —Ep]W(k)

+(U/N)[ y ~(k')]+(UIN)[~( —k)+P'(k)],

(4.6b)

where

W(k)—:(1/N) g~(k' —k, k, —k') .
k'

The equivalent for n =2 is 0= U+ [2s(k)+ ( UIN)
Eo]L—(k)+[(U/N) g&.L(k')]. We have used the in-

variance of ~ under permutations to arrive at Eq. (4.6b),
as we now do to obtain the last equation, from (4.4c):

0=2U[W(k)+ W(k')+ W(k —k') ]

+[e(k)+e(k')+ E(k —k')

+6U/N —Eo]~(k—k', —k, k')

+ U[P'(k')+W( —k)+W(k —k')] .
V. CONCLUSION

4.6c

is a quantity O(n ) and Eg is the unperturbed Fermi en-

ergy ( U=O). While superficially this procedure has the
appearance of the "random-phase approximation" (Pines,
1962), Eq. (4.9) is an exact result provided the appropriate
choices of nt and nt (not necessarily equal) are made.
The real difficulty consists in obtaining L(q), a task that
requires explicit knowledge of all the terms (. ) in

~
4F). Nevertheless, estimates (as well as upper and/or

lower bounds) of this function inay ultimately prove of
some use.

If the total number of particles is large [O(N)], a dif-
ferent approach may be more appropriate. Starting from
the ferromagnetic state, one examines the effects of a
small number n of "spin flips. " The analysis is carried
out in the Appendix for arbitrary short- or long-ranged
forces. It demonstrates an interesting analogy between
magnons and excitons.

where

Io ——(1/0) J d k[2e(k)]

(4 7)

Insertion of this into Eq. (4.6c) yields an inhomogeneous
integral equation for ~, hence W, and, together with Eq.
(4.7), determines BIO.

As long as there is no three-body bound state, Eq. (4.6a)
yields the ground-state energy of three particles. By as-
sumption following Eq. (4.3), U & —3.96, and the denom-
inator (1 + UIO) cannot vanish. It follows a fortiori that
it cannot vanish for U ~ —2.60, the three-body threshold.

In principle, one can study the scattering states of n & 3
fermions by similar means. [The relevant Hamiltonian of
hopping electrons interacting by zero-range, two-body
repulsive forces, originally investigated by Hubbard
(1963), now bears his name. ] Starting from

~

I" ), the
"Fermi sea" for n t fermions of spin up and n J. fermions
of spin down, one writes the expansion for an exact eigen-
state ~%'z):

~

'p~)=
~
F)+(1/N) g L(q)pt(q)pt( —q)

~
+)+

q+0
(4.8)

in which stands for the remaining configurations, all
presumed orthogonal to those written explicitly above and
to one another. The operators p (q)= gkc k+qc
(m = t or t) are density-fluctuation operators. By analo-

gy with the boson case, the exact eigenvalue is expressed
as

Ep Eg+ Un tn t/N+(U/N ——)QL(q)P(q), (4.9)

in which

P(q) = (+
~
pt( —q)p J (q)pt(q)pt( —q) ~

I' ) (4.10)

If we neglect terms 0 (1/N) in (4.6b) (i.e., let W =L), we
trivially obtain

W(k) =—U [1+UIO] '/2e(k),

Lattice physics has great current appeal, although most
contemporary investigations center on the many-body
problems (and the use of numerical techniques in their
resolution). Undoubtedly such studies will become in-
creasingly popular as the cost of computation continues
to drop further. The approach described in the present
brief review is, philosophically, quite different. Here one
seeks closed-form solutions (sometimes equated with
"understanding") of models of one-, two-, . . . , n-body
behavior. We have learned, for example, that when a
bound state of three or more bosons is formed at a critical
interaction U, in three dimensions, this occurs in a
discontinuous way. The Appendix illustrates a specific
"many-body" problem, which can be manipulated into a
"few-body" problem and consequently better understood.
This is presented in the belief that there must be a number
of other such cases where rigorous understanding of the
few-body problem leads to the unveiling of useful physi-
cal principles.

Our review has concentrated on aspects of the n-body
problem that are presently known or easily knowable. %'e
have omitted discussions of lengthy technical questions
and managed to avoid the explicit study of n )4 particles.
Although it is possible to estimate some properties for
n )4 by extrapolation from n=3, a rigorous formulation
would facilitate several studies of great potential interest.

For example, it has been known for a while that two
excitons, made of electrons and holes interacting via the
Coulomb interaction, bind into a four-particle "biexciton-
ic molecule" (Akimoto and Hanamiura, 1972; Brinkman,
Rice, and Bell, 1973).' As these results are all anchored
in the effective-mass approximation (i.e., in continuum
theory), the question of whether, in the lattice theory, the

Recent improvements {Lee, Vashishta, and Kalia, 1983) over
these early variational methods have allowed good agreement
with experiment in silicon (Thewalt and McMullan, 1984).
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biexcitonic molecule is bound remains unanswered and is,
of course, relevant in many insulators and semiconductors
other than silicon (see footnote 12).

Other problems that would benefit from a lattice
analysis include the possible bound state of two Cooper
pairs on a two-dimensional lattice, the ground state of
four bosons, multiphonon bound states, etc. While in the
continuum theories, the four-body problem can be re-
duced to an "effective, " rather complex three-body prob-
lem (Grassberger and Sandhas, 1967; Alt, Grassberger,
and Sandhas, 1970; Kroger and Sandhas, 1977), in the lat-
tice theory there is at present no simple integral equation
with which to formulate explicitly such problems in the
manner of the n=3 body problem treated above. Just
having such an equation would be of great benefit, be-
cause in many instances the strong coupling expansion
[see the development surrounding Eq. (3.13)], unavailable
in the continuum theories but central to the lattice theory,
will, we hope, generate accurate solutions.

APPENDIX

Ep,~, N(s)+(g/2——) g g' V(Ri —RJ), (Al)

with a prime on the sum indicating j&i (i and j span all
N sites}, while the factor —,

' takes care of double counting.
The one-particle energies s(k) are as in Eq. (2.6} with
8'=3, with the averages (e.) over the Brillouin zone de-
fined as in Eq. (2.4).

To this translationally invariant system (under the
group of discrete lattice operations) we add one electron
in a plane-wave ("Bloch") state characterized by k. It has
spin down, necessarily, and energy E,(k) relative to
Ep, , in Eq. (Al):

In this appendix, we determine the stability of the fer-
romagnetic state of interacting fermions, by studying the
spcx:trum of elementary and not-so-elementary excitatrons
associated with it. Although this method cannot deter-
mine the ground state in the N-body problem, it is a sim-
ple procedure which, at least, suggests the likely instabili-
ties.

In our example, we deal with elementary excitations
(ferinions) and their excitonlike bound states (bosons) and
scattering states. We start with N electrons in a conduc-
tion band of a.n itinerant ferromagnetic metal, assuming
the conduction band accommodates precisely N electrons
of' each spin direction. In the totally ferromagnetic state,
the spin-up band is filled, while the corresponding spin-
down band is empty. The energy is

mentary excitations or "quasiparticles" of the N-body
system in an external field B.

The action of flipping the spin of a single electron
among the N originally present explicitly lowers the total
spin angular momentum M, by A', while simultaneously
creating two quasiparticles, one of each type. Their joint
energy is the eigenvalue of a two-particle Hamiltonian:

A =s( —i V, )—s(iV2)+g [V(0) V—(R, —R2)]+pB,
(A4)

where p,B is the extra energetic cost of lowering M, in a
magnetic field B. Out of N possible eigenstates of this
two-particle system, as few as N are bound states. The
majority are scattering states, of the form given in Eqs.
(2.7), (2.17), and (2.18). Their energies interlace the con-
tinuum E =Ei +E2. if some E are negati Ue, the ferromag
netic state is unstable. We leave the study of these scatter-
ing states to the reader. Here, we concentrate on the
bound states The. y take the form

~

4)=(1/N' )QF(k)
~
k+Q/2, —k+Q/2), (A5)

where Q=(Q„Qz, Q&) labels the total momentum of the
pair. As 4 satisfies the Schrodinger equation, we use
(A E)4=0 t—o obtain equations for the amplitudes:

O=F(k)[s(k+ Q/2) —e(k —Q/2)+g V(0)+pB —E]
(g/N—)g Vq F(k+q'), (A6)

where Vq is the lattice Fourier transfolia of the two-body
interaction,

V(R) = I/Ngv e'q'R

=(I/O) fd q'Vze'q' (A7)

At Q=O, Eq. (A6) [with V(0) computed with the aid of
(A7)] has the solution F=const, corresponding to energy
eigenvalue E =pB.

For Q&0 we have to investigate specific interactions.
It would be helpful to be able to study Eq. (A6) for arbi-
trary interaction, such as the screened Coulomb interac-
tion for various screening lengths, but this is too difficult.
So we investigate several model interactions, in order of
increasing complexity. The simplest is Hubbard's zero-
range interaction, Ve ——const = V(0)= 1 [and V(R) =0 for
R&0], absorbing the strength of the interaction into the
parameter g. For this case, we see by inspection that

Ei(l ) =E(k)+g g V(R; RJ )+pB/2 . — (A2) F(k) ac [s(k+Q/2) —s(k —Q/2)+g +pB —E] ' (A8)

We can as well take away one electron (add one "hole"),
at an energy E2(k) relative to Ep,~, in (Al):

E2(k) = —s( —k) —g g' V(R; RJ )+pB/2 . (A3)—

solves Eq. (A6), reducing it into a transcendental equation
for E:

I /g = ( I /N) g [e(k+Q/2) —s(k —Q/2)

(Note the prime. ) These are the two relevant types of ele- +g+VB —E] '. (A9)
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This equation is explicitly soluble' in the case
Q2 —Q3 —0, Q i +0 (or any permutation). After trivial
integration, the solution is found to be

E(Qi)=g —[g +4sin (Qi/2)]'~ +pB . (A10)

The lowest E(Qi ) belongs to Qi ——m, which characterizes
a state with antiferromagnetic correlations. In the ab-
sence of an external magnetic field [or in general for

~

p8
i &(g +4)—g] the energy of the bound state is

lower than that of the ferromagnetic configuration froin
which it was derived. It follows that large numbers of
such antiferromagnetically correlated "excitons" (possibly

of thein having Q;&0 in each of the three principal
directions) must be present in the ground state, so that the
latter turns out to be rather complex layered antifer-
romagnet, rather than the simple ferromagnet' assumed
initially.

Having established that a zero-range interaction of ar-
bitrary strength g is not conducive to ferromagnetism for
N electrons, it makes sense to see what happens when
nearest-neighbor forces gi (typically associated with a
Heisenberg model of magnetism) are introduced. We let

gVq =g +gi(cosq„+cosqy+cosq, ), (Al 1)

which allows the kernel in the integral equation to be
written as the sum of 2d+ 1 separable kernels on the hy-
percubic lattice in d dimensions. In three dimensions,

(1/N) g Vg gF(k') =gbo+gi(C. E+S.I ), (A12)
k'

where C„—:cosk„, b,„=(1/N)g cosk„'F(k'), S„=sink„,
I „—= (1/N) g sink„'F (k'), etc., and b o

—= (1/N) gF (k').
With Qz ——Q3

——0 and Q i &0, many of the quantities van-
ish or simplify, and one can obtain the energy eigenvalues
E explicitly as solutions of a cubic equation. Leaving
algebraic details aside, we find that when the external
field is set at zero (8=0), any choice of gi &0, together
with any choice of g&0, leads to an energy lower than
that of the ferromagnetic state, with Qi ——ir being inevit-
ably favored. Introduction of more distant repulsiue in

teractions can'not change this state of affairs, as we may
use the bound-state energies of the Hamiltonian with
zero-range or nearest-neighbor repulsive interactions as
variational upper bounds on the solutions to an arbitrary-
range repulsive potential. Omitting details of a formal
proof, one states the resulting theorem.

The saturated ferromagnetic state of N electrons in the
N available Wannier states of a single conduction-band
model of an itinerant ferromagnet [in arbitrary dimension
d, for arbitrary repulsive interactions gV(R) &0] is al
ways unstable against some state with less than maximum
magnetization. (While we can only conjecture that the
true ground state has Mz -0, we can be certain that some
nontrivial antiferromagnetic correlations do exist in the
ground state. )

The ground state of N —1 electrons in the N available
Wannier states of a single conduction-band model of an
itinerant ferromagnet in the Hubbard model (zero-range
repulsion U) is known, in the particular limit U~co
(Nagaoka, 1966). This problem is equivalent to that of a
single hole moving in a medium in which each site is oc-
cupied by t or 1; the motion of the hole creates a "wake"
in the sea of localized spins, from which it follows that
the ferromagnetic sta, te (all spins 1 or all spins t) has the
lowest energy (Nagaoka, 1966). Combining the tendency
for antiferromagnetism at a half-filled band with the ten-
dency for ferromagnetism associated with a few holes at
large U, one can construct a reasonable phase diagram in
the U, n plane of the Hubbard model (see, for example,
Mattis, 1981, p. 256) and a reasonable picture of the ori-
gins of itinerant-electron magnetism.

The point of this appendix? Simply that, however in-
complete it may be, the examination of n=1 and 2 prob-
lems yields information on the many-body ground state
which might be difficult to obtain by other than
numerical-experimental means. Pursuit into the n =3 and
4 problems. may be even more helpful, although, as we
have seen, the difficulties increase rapidly with n.
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