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A single charged particle in a Penning trap is a bound system that rivals the hydrogen atom in its simplicity
and provides similar opportunities to calculate and measure physical quantities at very high precision. We
review the theory of this bound system, beginning with the simple first-order orbits and progressively deal-
ing with small corrections which must be considered owing to the experimental precision that is being
achieved. Much of the discussion mill also be useful for experiments with Inore particles in the trap, and
several of' the mathematical techniques have a wider applicability.
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. . .Euen the best of them fmathematical physicistsg haue a
tendency to treat physics as purely a matter of equations. I
think this is shown by the pouerty of the theoretical corn
munications on the problems which face the experimenter
today Iqu. ite recognize that the experimenter is inclined
to drop his mathematics also. . . . As a matter offact it
is extremely difficult to keep up the latter when all your
energies are absorbed in experimentation.

Letter from Ernest Rutherford to Sir Arthur Schuster,
27 January, 1907

I. lNTRODUCTION

The original use of magnetic and electric fields to in-
crease the tirDe that electrons remain within a discharge
(Penning, 1936) has been greatly refined. A single particle
can now be trapped indefinitely in the combination of a
homogeneous magnetic field and an electrostatic quadru-
pole potential, which has come to be known as a Penning
trap. A small cloud of stored particles is akin to a many-
electron atom, but with the atomic nucleus replaced by an
external trapping field that cari be adjusted. Thus such a
system may be called a "geonium atom, "' since the bind-
ing is to an external apparatus residing on the Earth. In
this review we shall be concerned with the simplest such
"atom, " in which only a single charged particle is bound
to a Penning trap. This is the analog of the hydrogen
atom and, just as in the simplicity of the one-electron hy-
drogen atom, the properties of this single bound particle
can be measured and calculated with extraordinary pre-
cision. And, just as in the hydrogen atom, such simple
systems provide exceedingly precise tests and probes of
the laws of nature.

To date, the most accurate measurement with a single
trapped particle is of the magnetic moment of the elec-
tron, or rather its g factor (Van Dyck, Schwinberg, and
Dehmelt, 1984)

g/2= 1.001 159652 193(4) .

The name is due to H. G. Dehmelt.
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This is nearly 900 times more accurate than previous
measurements by other techniques and is surely one of
the most precise measurements of the properties of an ele-
mentary particle. The great increase in accuracy comes in
large part because the g value is measured essentially as
the ratio of two frequencies of the saine "atom. " The
measured value can be compared to a theoretical value
that is also of exceptional precision,

g/2= 1.001 159652 459(135) . (1.2)

This value includes the quantum-electrodynamic (QED)
corrections in eighth order (see the review by Kinoshita
and Sapirstein, 1984). The "theoretical" error of
135)&10 ' is largely due to uncertainties in present mea-
surements of the fine-structure constant a. Indeed, at the
present time, one can use the measured g value and the
QED calculation to obtain the most precise determination
of the fine-structure constant,

a = 137.035 994(10) . (1.3)

m~ /m, = 1836.152470(76), (1.4)

with large increases in precision expected. Previous direct
measurements of this ratio (Gartner and Klempt, 1978;
Graff, Kalinowsky, and Traut, 1980), using small clouds
of particles in a Penning trap but with a different detec-
tion technique, had an uncertainty that was larger by
about an order of magnitude. Both groups are setting up
to measure the H- He mass difference in improved ap-
paratus. This is an important quantity, whose precise
measurement will be a significant contribution to the ef-
fort to measure the mass of the electron neutrino.

The g factor of the positron has also been measured
with an accuracy comparable to that attained with an

2A long series of measurements by Crane, Rich, and colleagues
culminated in g/2= 1.001 159657 700{3500). Final reviews of
this and related work are given by Rich and %"esley (1972) and
by Conti, Newman, Rich, and Sweetman {1984).

The effect of muonic and hadronic vacuum polarization
is slightly smaller than the present experimental accuracy,
and the effect of the weak interaction is much smaller yet.
For comparison, the g value of the muon, measured in a
storage ring (see the review by Field, Picasso, and Comb-
ley, 1979), is less precise by nearly a factor of 3000. How-
ever, the distance scale given by the Compton wavelength
of this heavier lepton is also smaller by a factor of 207, so
that the measured g value of the muon is already very
sensitive to hadronic vacuum polarization.

A geonium atom may also be formed with a single pro-
ton. A single trapped proton has been observed, but as
yet the cyclotron frequency has been measured only for a
small cloud of protons (Van Dyck, Moore, Farnham, and
Schwinberg, 1985). Comparing this cyclotron frequency
with that of a small cloud of electrons yields the proton-
electron mass ratio

electron (Van Dyck, Schwinberg, and Dehmelt, 1984). Its
agreement with the electron value provides a stringent test
of CPT symmetry for leptons. All quantum field theories
are invariant under the CPT transformation, which
simultaneously charge-conjugates, inverts in space, and
reverses the direction of time. This transformation inter-
changes particle and antiparticle so that they must have
the same magnetic moment (but with opposite sign), the
same mass, and the same mean life. Experimental tests of
CPT invariance are now tabulated by the Particle Data
Group (1984). At present, 17 tests are listed. Of these,
the most precise measurements with leptons are the com-
parison of the electron and positron g values in geonium
and the comparison of the g values of positive and nega-
tive muons in the storage ring. The only other test of
CI'T of comparable precision is derived from the famous
kaon mass oscillation experiment, which can be interpret-
ed as comparison of the masses of the E and X
mesons. No precise test of CPT has yet been done with
baryons. However, a precise comparison of the cyclotron
frequencies of a trapped proton and antiproton is tan-
tamount to a comparison of their masses and thus would
provide a high-precision test of CI'T symmetry for
baryons. A program is now under way to capture an-
tiprotons in a Penning trap, with the study of a single an-
tiproton as its goal (Gabrielse, Kalinowsky, and Kells,
1985). This will also open up a new variety of experi-
ments with a single particle of antimatter essentially at
rest.

The accuracy of the measurements on electrons and
positrons may yet be improved, and interesting physics is
emerging from an attempt to do this which exploits the
minute relativistic shifts on a very slow electron. Al-
though the g factor has yet to be measured by this
method, the nonlinear cyclotron resonance brought about
by the relativistic mass increase has been accurately
traced out (Gabrielse, Dehmelt, and Kells, 1985). The ob-
servation of this resonance, which is bistable and exhibits
hysteresis, is of interest in its own right. Another in-
tere ting phenomenon observed with a single trapped elec-
tron is a change in the radiative lifetime of the cyclotron
motion caused by the effective microwave cavity formed
by the Penning trap electrodes (Gabrielse and Dehmelt,
1985). This was the first observation of such inhibited
spontaneous emission within a cavity and demonstrate
the promise of this system for radiative physics.

We conclude this Introduction by giving a brief over-
view of the electron geonium experiments, which also in-
troduces the topics covered in the subsequent sections.
Because of the importance of the siinplest system for fun-
damental measurements, and in order to confine our re-
view, we restrict our discussion to the theory attached to a
single trapped particle, the hydrogenlike geonium atom.
Much of what we shall describe, however, is also useful
for the understanding of the physics of trapped ion

3A cavitylike effect was observed earlier by Drexhage {1974).
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FIG. 1. Scale drawing of an experimental Penning trap (Ga-
brielse and Dehmelt, 1985).

clouds, which are used in many recent interesting experi-
ments (see the reviews by Wineland, Itano, and Van Dyck,
1984; Wineland, Itano, Bergquist, Bollinger, and Prestage,
1984). Moreover, although we concentrate on a particular
physical system, the results we describe and the
mathematical methods we employ often have a much
more general applicability. A more complete collection of
references is provided in the subsequent sections. We
have endeavored to make our sections complete and ac-
cessible to anyone with a background in physics. We
hope the reader will often be as charmed by the beautiful
physics in this simple system as we have been.

A typical Penning trap configuration is shown in Fig.
1. Electrons are initially introduced into the trap by ap-
plying a high voltage to the field emission point. This
produces a beam of energetic electrons that collide with
the very sparse residual gas atoms to produce slow elec-
trons, which are then captured in the trap. The electrodes
of the trap are hyperbolas of revolution which produce an
electric quadrupole field as indicated in Fig. 2. Superim-
posed along the axis of the trap is a strong uniform mag-
netic field, The resultant motion (Sec. II) consists of a
fast circular cyclotron motion with a small radius carried
along by a slow circular magnetron drift motion in a large
orbit. This results in an epicyclic orbit in the xy plane.
In addition, the electron oscillates harmonically along the
z axis perpendicular to the xy plane, the axis of the mag-
netic field. The total motion is depicted in Fig. 3. In gen-
eral, the particle is captured in large orbits. The radius of
the cyclotron submotion shrinks rapidly under the emis-
sion of synchrotron radiation (Sec. II), while the axial os-
cillation is coupled, as outlined in the next paragraph, to
an externaI detector at low temperature. Its amplitude

quickly decreases as it comes into thermal equilibrium
with this external circuit (Sec. III). The large magnetron
motion is a circle about an effective potential hill, and al-
though this motion is unstable, it is slow and weakly cou-
pled to its environment and is thus effectively stable. A
clever refrigeration technique is used (Van Dyck, Schwin-
berg, and Dehmelt, 1978) to shrink the magnetron radius
(Sec. IV) so that the total motion occupies only a very
small spatial volume where the fields are most homogene-
ous. Otherwise large linewidths resulting from the non-
linearities would make precise measurements impossible.

The axial oscillation is monitored (Sec. III) by the
method illustrated in Fig. 4. The moving electron induces
alternating image charges in the endcap and ring elec-
trodes, which in turn cause an oscillating current to flow

cyclot
moti

FIG. 3. Orbit of a charged particle in a Penning trap. The
dashed line is the large and slow magnetron circle component of
the motion. This, added to the axial oscillation, produces the
guiding-center motion shown by the solid line. The total motion
is given by adding the fast but sma11 cyclotron circular motion
about this moving guiding center. (Adapted from Ekstrom and
Wineland, 1980.)
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FIG. 4. Sketch indicating the detection and drive of the axial
harmonic oscillation.

through the detector. Although the current induced by
the undriven axial oscillation of the electron is generally
too small to detect, this oscillation may be driven by ap-
plying an alternating voltage to the other endcap and ring
electrode, as shown in Fig. 4, and the resulting driven os-
cillation is observed by phase-sensitive detection. The
detected current plotted as a function of time in Fig. 5
shows a vivid step structure. This particular example is
the first demonstration of a single-particle oscillator
which initiated single-particle spectroscopy in a Penning
trap (Wineland, Ekstrom, and Dehmelt, 1973). Several
electrons were loaded and then, one after the other, they
were driven from the trap with a strong driving force.
The final excitation level of one step signals the presence
of a single trapped electron.

The cyclotron resonance can be excited by introducing
microwaves into the trap via an inlet, as shown in Fig. I.
Detection of the electron cyclotron resonance, however, is
very subtle. One method currently employed (Dehmelt

I
I

IOO sec

i I I i I I I l I I t

TlME ~
FIG. 5. Steps in the detected axial signal that appear when the
axial drive is increased sufficiently to drive one electron at a
time out of the trap. It is evident that there werc initially seven
electrons in the trap. The initia1 and final signal level is the
noise floor 4,'Wineland, Ekstrom, and Dehmelt, 1973).

and Ekstrom, 1973) is to deliberately place a small distor-
tion in the strong uniform magnetic field, a magnetic
"bottle" which provides a small axial magnetic field com-
ponent that varies as z . The magnetic moment associat-
ed with the cyclotron circle couples to this bottle field and
thus changes the "spring" constant of the axial motion,
which in turn alters the frequency of the axial oscillation.
These changes in the axial frequency measure the size of
the cyclotron excitation, and thus the cyclotron resonance
frequency can be determined.

The g factor of the electron equals 2 to within about
one part in 10. Rather than measuring the g factor,
which is twice the ratio of the spin frequency (co, ) to the
cyclotron frequency (co, ), the experiments measure direct-
ly the much smaller anomaly a =(g —2)/2. A similar ap-
proach was taken in the earlier muon and electron g —2
measurements to gain a considerable increase in accuracy.
The electron is driven with an inhomogeneous magnetic
field in the xy plane whose amplitude alternates at the
anomaly frequency co, =co, —co, (Sec. V). This simultane-

ously flips the spin and changes the cyclotron excitation.
(The inhomogeneous radial variation of the field is also
alternated by the motion of the electron at the cyclotron
frequency co, . Thus the product of this additional oscilla-
tion with the basic drive oscillation produces a frequency
component at co, =co, +co, which flips the spin. ) After
the cyclotron motion comes back into thermal equilibri-
um, the spin state is observed via the coupling of the spin
magnetic moment to the bottle field, just as in the deter-
mination of the cyclotron resonance, and the anomaly de-
rived from a =co, /co, . This result is slightly modified by
the electrostatic trapping field (Sec. II), but this is easily
accounted for in a measurable way.

The rates at which the cyclotron and spin resonances
can be excited and the corresponding line shapes are dis-
cussed in Sec. V. Although at present the magnetic bottle
is crucial for detection, it does have the untoward side ef-
fect of producing non-negligible linewidths (Sec. VI).
These widths originate from the random thermal oscilla-
tion of the axial motion (Sec. 111), which are coupled into
the spin and cyclotron motions by the inhomogeneous
field produced by the bottle. The resulting line profile
(Sec. VI) has been calculated (Brown, 1984,1985), and the
lines are accordingly being split to determine accurately
the cyclotron and anomaly frequencies. Nonetheless, the
experiments would be improved with the removal of the
magnetic bottle. One promising method employs a vari-
able bottle (Sec. VI). Another method exploits very small
relativistic shifts (Sec. VII).

Since the experiments have obtained such extraordinary
precision, one must be very careful to consider possible
sources of systematic error. This we do throughout our
work. For example, the effects of misalignment are treat-
ed in Sec. II and relativistic corrections in Sec. VII. The
surrounding Penning trap electrodes form a crude mi-
crowave cavity. As we have already mentioned, the al-
teration of the radiation field from its free-space form in
such a cavity changes the cyclotron radiative decay time,
an effect that has been observed with an electron. The
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presence of the cavity can also result in shifts of the elec-
tron and positron cyclotron frequencies (Sec. VIII), which
may be important already at the present level of precision
(Brown, Crabrielse, Helmerson, and Tan, 1985a,1985b).
The geonium atom is unlike an ordinary atom in that the
binding potential is provided by an external apparatus.
Thus it is very important to understand the electrostatics
of the Penning trap (Sec. IX). It is now understood quan-
titatively (Gabrielse, 1983) how the unwanted effects of
trap imperfections are corrected by the addition of com-
pensation electrodes (Van Dyck, Wineland, Ekstrom, and
Dehmelt, 1976), which are tuned so as to minimize the
anharmonic perturbations to the axial oscillation (Sec.
III}. The experiments with a single trapped elementary
particle could not have been done without such tuning.
We summarize and compare the effects of the small elec-
trostatic, relativistic, and magnetic bottle perturbations in
Sec. X.

For clarity, we have just outlined the electron geonium
experiments. Throughout the review, however, we also
deal with single protons and heavier ions in a Penning
trap. The ion experiments proceed in a similar fashion,
with the major difference being that the cyclotron fre-
quency is at a much lower and more accessible radio fre-
quency. The ion cyclotron motion can therefore be
directly coupled to a detector in a manner (Sec. III) simi-
lar to the coupling of the axial oscillation. A magnetic
bottle is not needed or useful for experiments with ions.

Finally, we mention relevant reviews. Ekstrom and
Wineland (1980) have provided an excellent and colorful
introduction to the g-value measurements with a single
trapped electron. More details are given by Dehmelt
(1983), and the measurements are reported by Van Dyck,
Schwinberg, and Dehmelt (1978), with recent updates by
the same authors (1984,1985). Wineland, Itano, and Van
Dyck (1984) also discuss these measurements and include
measurements of the ratio of the proton and electron
masses as we11. This latter review a1so summarizes the
experimenta1 developments involving microwave and laser
spectroscopy of trapped ions. The most recent general
surveys of fundamental measurements with leptons are
given by Field, Picasso, and Combley (1979) and by Con-
ti, Newman, Rich, and Sweetman (1984). The most re-
cent theoretical work is reviewed by Kinoshita and Sapir-
stein (1984).

F«an ~le~t~on in a 60-kG field the cyclotron frequency
is at a very high microwave frequency, v, =co,/2m =164
CxHz, and the wavelength is only 2 mm. A proton in the
same field oscillates at the much more accessible radio
frequency of 89 MHz. Trapping and orbit parameters for
an electron and proton are provided in Tables I—IV in
Sec. II.F below.

A charged particle in a magnetic field is bound radially
to a magnetic field line, but it is not bound axially, so that
the slightest disturbance will move it along the field line.
In an ideal Penning trap, the particle is bound axially by
superimposing the electrostatic restoring force given by a
quadrupole potential, which we write in the form

z 2 p2/g
0 (2.2)

The axial z motion is a bound, harmonic oscillation when
eV0 ~0. The radial coordinate p must appear in the po-
tential as it does in order for the potential to satisfy the
Laplace equation.

The quadrupole potential can in principle be produced
by placing (ideal) electrodes along equipotentials of V.
Three electrodes are required, as shown in Fig. 6: two
endcap electrodes along the two branches of the hyperbola
of revolution

z =zo+p /2 (2.3)

The constants zo and po are the minimum axial and radial
distances to the electrodes. We choose the characteristic
trap dimension d to be given by

dz= —,
' (zo+Po/2) (2.5)

so that Vo is the potential difference between the endcap
and the ring electrodes.

The axial motion of a charged particle in an ideal Pen-
ning trap is decoupled from the magnetic field. It is a
simple harmonic motion

z+Q)hz =0 ~

with frequency

(2.6)

and one ring electrode along the hyperbola of revolution

(2.4)

ll. NONRELATlVISTIC MOTION eVO

m6f
(2.7)

A. Classical motion

A particle of charge e and mass m in a spatially uni-
form magnetic field B travels in a circular cyclotron or-
bit. %'e choose the z axis to be para11el or antiparalle1 to
the magnetic field, with the positive z axis indicating the
sense of rotation for the cyclotron orbit by the right-hand
rule. The positive z axis is thus in the direction of —eB,
and the cyclotron frequency is given by

'Typically the quadrupole potential superimposed upon
the magnetic field is a relatively weak addition in the
sense that

4Throughout this paper we shall quote either a frequency v or
an equivalent angular frequency co =2+v, depending upon which
is more convenient in the immediate context.

Rev. Mod. Phys. , Vol. 58, No. 1, January 1986
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angular frequency co as represented in Fig. 7(a). The re-
sulting compound motion in the xy plane has the epicycle
form shown in Fig. 7(b). The complete motion of a parti-
cle in a Penning trap is the superposition of such epicycles
with the harmonic axial oscillation, as suggested in Fig. 3.
None of these figures is to scale.

To see how the magnetron motion comes about, we ob-
serve that the perpendicular fields E and B comprise a
velocity filter for a charged particle. That is, a charged
particle with a drift velocity u=cE&&B/B will move
through these fields unimpeded, since u/c )&B will cancel
E in Eq. (2.9). This is strictly true only for constant
fields, which give a constant drift velocity u. It is ap-
proximately true for the slow magnetron motion, where

FIG. 6. Axially symmetric electrodes are used to produce a
quadrupole potential of the form given by Eq. (2.2). The dashed
lines represent the cones that are the asymptotes of the hyperbo-
las of revolution.

co, g&co, . (2.8)

For the typical electron conditions listed in Table I below,
a trapping potential Vo ——10 V is applied to electrodes for
which d =0.3 cm. This yields an axial frequency
v, =co,/2m =62 MHz, which is a convenient and easily
monitored radio frequency and which is smaller than the
cyclotron frequency by a large factor of 3)& 10 . For the
proton experiment described in Table II below, the trap-
ping potential is increased and the trap dimension is re-
duced in order to compensate partially for the much
larger proton mass, keeping co, in the convenient radio-
frequency range, and to permit adequate axial damping
(Sec. III). An additional result of these choices is that the
proton cyclotron frequency is larger than the proton axial
frequency by only a factor of 8.

With the addition of the electrostatic potential, the ra-
dial motion is described by

mp=e[E+(p/c) XB],
where

E=(VO/2d )p . (2.10)

Writing the equation of motion in terms of the axial and
cyclotron frequencies co, and co, gives

(2.11)

For co,—+0, this reduces to the equation for uniform cir-
cular motion at the cyclotron frequency m, . The addi-
tional term ——,

'
co,p comes from the repulsive radial term

in the electrostatic potential [Eq. (2.2)j. Before solving
this radial equation of motion, let us consider two conse-
quences of the repulsive radial potential. First, the fre-
quency of the cyclotron rotation is reduced from co, to co,

'

because the repulsive radial potential reduces the centrifu-
gal force. Second, the fast cyclotron orbit is superim-
posed upon a much slower, circular magnetron orbit, with

FIG. 7. Projection of the motion of a particle in a Penning trap
upon the xy plane. The motion is the superposition of (a) circu-
lar magnetron and cyclotron motions producing (b) epicycles.
The orbits are not to scale.
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the time derivatives of u can be neglected. As is charac-
teristic of such crossed-field velocity filters, this velocity
does not depend upon the charge or mass of the particle.
Substituting for the radial electric field E from Eq. (2.10)
shows that the drift or magnetron motion is a circular
motion with the same direction of rotation as the cyclo-
tron orbit (see Fig. 7) but with the much smaller magne-
tron frequency co~ =co,/2'„which is independent of e
and m. We thus have the hierarchy

COpg (&COz « COg ~ (2.12)

V +-=p —a)+z~p,(+)

where

(2.13)

This hierarchy is very pronounced for an electron in a
large magnetic field, as is evidenced by the electron fre-
quencies 12 kHz, 62 MHz, and 164 6Hz from Table I.
For more massive particles in magnetic fields of similar
size, the hierarchy is much less pronounced, as illustrated
by the proton frequencies 663 kHz, 10 MHz, and 76 MHz
from Table II.

The magnetron motion differs from the other motions
in other respects as well. The energy in the cyclotron
motion is almost exclusively kinetic energy. The energy
in the harmoic axial oscillation alternates between kinetic
and potential energy. Reducing the energy in either of
these motions reduces their amplitude; they are stable. In
contrast, the energy in the magnetron motion is almost
exclusively potential energy. For the typical electron trap
parameters of Table I, an increase in the magnetron ra-
dius from p=0 to p=po —0.5 cm (the radius of the ring
electrode) involves an increase in kinetic energy of only
3)&10 eV (corresponding to a maximum velocity of
only 3 X 10 cm/sec), but the potential energy decreases by
5 eV. The magnetron motion is thus an orbit about the
top of a radial potential hill. Exciting the magnetron
motion causes the particle to roll down the radial hill.
The magnetron motion is unbound, since any dissipative
process that removes energy from the magnetron motion
increases the magnetron radius until the particle strikes
the ring electrode and is lost from the trap. Fortunately,
the damping time for the magnetron motion is typically
on the order of years (Sec. II.E}, so that the magnetron
motion is more than adequately metastable.

Now that the major features of the radial motion have
been described, let us turn to the analytic solution of the
equation of motion (2.11). The cyclotron and magnetron
components of the motion are separated by introducing
two vectors V'+' and V' ', defined by

write this frequency as

(2.16)

In view of the typical hierarchy of Eq. (2.12), the magne-
tron frequency is generally very small and the modified
cyclotron frequency in Eq. (2.16) is only slightly smaller
than co, .

The difference V'+' —V' ' is proportional to z &&p, and
taking the cross product of this difference with z we find
that the solution to the radial equation of motion may be
expressed as

z~~ (V(+) V( —))

+ —CO
(2.18)

A uniform circular motion with angular frequency coz
and velocity v is described by cop= —z &v. Thus the ra-
dial motion is the epicyclic superposition of two uniform
circular motions, as shown in Fig. 7. Differentiating Eq.
(2.18) yields the velocity

co+V —co V(+) ( —)

P= (2.19)

Since m «~+, the vector V'+' is essentially equal to the
velocity of the trapped particle in its cyclotron orbit. The
vector V' ', however, is much larger than the magnetron
velocity by the ratio co+/co

The Hamiltonian for the radial motion Hz is the sum
of the kinetic energy and the repulsive electrostatic poten-
tial energy,

1 ~ 2 1 2 2Hz ———,m(P ——,co,P } . (2.20)

Using Eqs. (2.18), (2.19), and (2.14), we may write the ra-
dial Hamiltonian as

(2.21}

which exhibits the separation of the system into the two
decoupled subsystems described by V'+' and V' '. Note
that V' ' gives a negative contribution to the energy, as it
must, since the magnetron motion is unstable.

It is sometimes convenient to use the gauge in which
the vector potential for the uniform magnetic field 8 is
given by

The vector V' ' rotates about another circle at the mag-
netron frequency co . Since co+co =co,/2,

(2.17)

(2.14) A= —,B~P .1 (2.22)

Equations of motion for V'+-' are obtained by taking the
time derivative of Eq. (2.13) and substituting the radial
equation of motion (2.11) for p in this expression to yield

(2.15)

We see that V'+' rotates about a circle with the corrected
cyclotron frequency cu,'. Since ~++u =cu„we may

5The notation co+ and cu yields more compact formulas, while
the notation co,

'
and co has often been used in the literature.

We employ both notations, with u,',co used in comparisons
with experiment and co+,co in the more mathematical develop-
ments.
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240 L. S. Brown and G. Gabrielse: Geonium theory

It is easy to check that in this gauge the canonical hnear
momentum

p=mp+(e/c)A

becomes

[a„a,]=1 .

Equations (2.30) are easily inverted to give
' 1/2

(a, +a, )

(2.31)

(2.32a)

p= —'m(V'+~+V~ ~) . (2.24)

Moreover, there is rotational invariance about the z axis
in this gauge, so that the z component of the canonical
angular momentum

1/2~~z
2

(a, —ag) . (2.32b)

I =z.p&p

is conserved,

d 1.,=0 .
dt

This angular momentum may be expressed as

(V'+"—V'-")
2(co+ —co )

B. Quantum motion

(2.25)

(2.26)

(2.27)

Substituting Eqs. (2.32) into the Hamiltonian of Eq. (2.28)
and using the commutation relation (2.31), we obtain the
familiar result that

H, =%co,(a,a, + —, ) . (2.33)

a, ~0&=0,

and which is a state of unit norm,

(2.34)

Qrthonormal energy eigenstates
~

k &, k=0, 1,2,
built from the ground state

~

0&, which is destroyed by
the annihilation operator,

(ohio&=1.

(2.35)

The classical equations of motion that we have just
described are all linear. Hence they are all essentially har-
monic oscillator equations that are easily quantized. A
straightforward solution of the appropriate Schrodinger
equation has been presented by Sokolov and Pavlenko
(1965). The treatment provided here relies instead upon
raising and lowering operators and greatly facilitates the
computation of matrix elements. The axial motion is
governed by the harmonic oscillator Hamiltonian

(at)k
ik&= '

iO& (2.36a)

with Hermitian corrugation giving

(k
/
={0/

)k
(2.36b)

The general state
~
k& may be constructed from the

ground state

2 2 2p, mmz
Hz ——

2m 2
(2.28) Using the commutation relation (2.31) to pass a, through

the k factors of a„ it is easy to prove that

and the canonical commutation relation a, ik&=vk ik —1&, (2.37)

[z,p, ]=i' . (2.29)

We shall review this familiar quantum system in some de-
tail, since it is also the prototype for the radial motions.
Creation and annihilation operators are defined, respec-
tively, by

(2.38)

H,
~

k&=
( k&E„, (2.39)

while it follows directly froin the definition (2.36a) that

a,"
~

k & =&k+1
~
k+1& .

1/2
1' '2mB, (2.30a)

with

Ek —fico,(k+ —,
' ), — (2.40)

and

mco,

2A
J

1/2
1Z+l (2.30b)

and we see that
~

k & are indeed energy eigenstates. More-
over, using the explicit construction (2.36b) and the lower-
ing operator property of a exhibited in Eq. (2.37), it is
easy to confirm that these states are orthonormal:

These operators obey the commutation relation

Other quantum-mechanical treatments include those of Griff
and Klempt (1967), Griff, Klempt, and %'erth (1969),and Itano
and Wineland (1982).

(2.41)

In electron and proton experiments carried out so far, a
classical description of the axial motion is entirely ade-
quate. The axial motion in these experiments is coupled
to an external circuit at a temperature slightly greater
than the helium bath temperature of T=4.2 K (see Sec.
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mp=p ——A,
c

(2.42)

where A is a vector potential for the uniform field B.
The canonical commutation relations

III). As shown in Table III, this corresponds to an energy
k&T=3)&10 eV, which is much greater than both the
energy (rico, =3 X 10 eV for the electron conditions listed
in Table I and the smaller value that applies to the proton
experiment of Table II. Thus the average axial quantum
number k from fico, k=ki)T is equal to 1X10 for the
electron example, and it is even larger for the proton ex-
ample. In both cases, k »1, so that a classical descrip-
tion suffices. We note that the axial motion is typically
driven to an excitation energy somewhat larger than the
thermal excitation level. For an electron that is axially
excited to 9&10 eV, the velocity and displacement are
given by u, /c =10 and z=10 cm. A proton excited
to the same energy has a smaller velocity by a factor of
approximately 40, and the rms displacement is smaller by
approximately a factor of 10 for the conditions specified
in Table II. If the axial motion is not coupled to a tuned
circuit and is not driven, the situation is quite different.
As we shall see in Sec. II.E, the axial motion is coupled to
the radiation field only very weakly, with a time constant
on the order of days. Under these conditions the axial
motion could presumably be cooled enough so that a
quantum-mechanical treatment would be required.

The radial cyclotron motion of an electron trapped in a
large magnetic field, on the other hand, is often near its
quantum-mechanical ground state, so that this motion
must be treated quantum mechanically. The kinetic and
canonical radial momenta, mp and p, are related by

2()i(co+ —co )

' 1/2

(2.48a)

and
1/2

(
v(+)+.v(+))m

2()i(c0+ —co )

which are normalized so that

(2.48b)

[a+ &a ~ ]= 1 (2.49)

where

E„=%co+(n+ ,' ) =R—co,'(n+ —,
'

) (2.52)

Ei = —fun (l+ —,
'

) = —()ico (I+—,) . (2.53)

The raclial creation and annihilation operators operate
upon the radial energy eigenstates

i n, l & in the same way
that the axial creation and annihilation operators operate
upon the axial eigenstates. The cyclotron eigenstates are
lowered and raised by a+ and a+,

with all other commutators vanishing. In terms of these
operators, the radial Hamiltonian (2.21) is given by

Hp %co+——(a+a++ —,
'

) %co—(a a + —,
'

) . (2.50)

Thus the energy eigenstates of the radial Hamiltonian are
direct products of two harmonic oscillator states

i
n, l&=

i
n &

i
l&, with the radial energy eigenvalues

given by

(2.51)

[Pk&PI] =1 i~kl (2.43)

with k and l, representing the x or y components, give

a+ i
n, l & =v n

i
n —1,1&,

a',
I
n, i& =«+ 1

I
~+ l, i &,

(2.54)

(2.55)

iA
I.Pk&P1] ~k1 &

m
(2.44)

while the magnetron states are lowered and raised by a
and a

and

ieg ()Ay c)Ax
p"py —

2 Bx a
ifiieB

i

— .~c
m c m

(2.45)
These commutators in turn can be used to establish that

[Vk+' Vi (2.46)

so that V'+' and V' ' are kinematically uncoupled.
Similarly, one finds that

+
[ v'+-', v'+-'] =is,

CO+ —CO

(2.47)

so that with proper normalization V„' —' and V&
—' behave

as a canonically conjugate pair (q,p).
Accordingly, we can treat the radial motion analogous-

ly to that given above for the axial motion by construct-
ing annihilation and creation operators from these conju-
gate pairs,

a
i
n, l&=v 1

i
n, l 1&, —

a
i
n, l &=v'1+1

i
n, l+1& .

(2.56)

(2.57)

These operators are very convenient for evaluating matrix
elements.

A quantum-mechanical description is generally re-
quired for the undriven cyclotron motion of an electron
trapped in a large magnetic field, as in the typical condi-
tions listed in Table I. Under these conditions, the cyclo-
tron motion is coupled to the radiation field with a time
constant of less than a second (see Sec. II.E). The cyclo-
tron motion thus rapidly comes into thermal equilibrium
with the blackbody radiation of the trap, which is at
liquid-helium temperature (4.2 K) in present experiments.
As summarized in Table III, k&T=3&(10 " eV is com-
parable to Ace, =7&10 eV. A Boltzmann distribution
of excitation energies applies, and the cyclotron ground
state n =1 is occupied about 90% of the time. In the
ground state we have the rms values u, /c =4X10 s and
p, =1X10 cm. By contrast, the cyclotron motion of a
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242 L. S. Brown and G. Gabrielse: Geonium theory

proton in a similar magnetic field can usually be
described classically. The proton cyclotron frequency is
reduced by the ratio of the electron and proton masses.
Instead of an average cyclotron excitation number of or-
der unity, we have n »1. As we shall discuss in Sec.
II.E, however, the coupling to the radiation field is also
greatly reduced, so that the proton cyclotron motion will
come into thermal equilibrium only when it is coupled to
an external circuit (Sec. III). Decoupling from the tuned
circuit might allow cooling to a point where a quantum
description is required.

Finally, the magnetron motions can usually be
described classically for both an electron and a proton.
The radiative decay time of the magnetron motion is so
long (Sec. II.E) that this motion is always uncoupled from
the blackbody radiation of the trap and is never in
thermal equilibrium. The cooling of the magnetron
motion is discussed in Sec. IV, where it is shown that
with the maximum axial sideband cooling possible, the
motion has an average energy of

~Er ~ = (co~/m,—)kgT,

where T is the temperature of the axial oscillation. In
this case, the average quantum numbers of the magnetron
and axial motions are equal, I =k. Recalling that
k = 1 X 10 for present electron experiments, we see that
the magnetron motion can similarly be treated classically.
With 1=1&10, the magnetron energy for an electron
trapped under the conditions summarized in Table I is
about —7& 10 eV. As discussed earlier, the magnetron

energy is almost entirely due to the radial potential hill, so
that EI = —mco, p /4. Hence the rms value of the mag-
netron radius is given by p~ =6&10 cm, and since

u~ =p~co~, we have u~/c= 1 X 10 ' . Qrbit sizes, veloc-

ities, and energies are summarized at the end of this sec-
tion for an electron (in Table III) and a proton (in Table
IV).

]0—3

2 2m
(2.60)

which is due entirely to radiative corrections. Protons,
however, owing to their more complicated hadronic struc-
ture, have g =5.59, which is much larger than 2, so that
the anomaly is a less useful parameter.

The spin Hamiltonian —p.8 may be written as

H, =—fm, —,o.,g
S (2.61)

If we designate the eigenvalues of o, by s, the energy
eigenvalues are given by

E =—%co —.g 5
s 2 c (2.62)

For particles of spin —,
' there are two energy levels, corre-

sponding to s =+1. The separation of these two energy
levels can be written as fico„with the spin precession fre-
quency cog given by

(2.63)

Since g is only very slightly larger than 2 for the electron
and positron, the spin precession frequency is only slight-

ly larger than the cyclotron frequency. Geonium energy
levels are plotted in Fig. 8. The levels, which would be
degenerate if co, =co„are split by the anomaly frequency

(2.64)

Notice that an anomaly transition at this frequency corre-
sponds to the spin's flipping from up to down, along
with a simultaneous, upward cyclotron transition or vice
versa. The splitting is greatly exaggerated in the figure to
make it visible.

C. Spin motion

A trapped particle with spin —,Ao. interacts with the

magnetic field via its magnetic moment

(2.59)

The constant equi/2mc is the Bohr magneton. The mag-
netic moment of a charged particle in a cyclotron orbit is
well known to be given by this expression with g = 1 and
with the kinetic orbital angular momentum vector r& mv
replacing the spin operator —,'Aa. The dimensionless g
value is a measure of the size of the spin magnetic mo-
ment compared to the orbital case. As discussed in the
Introduction, the primary motivation for the single-
particle trapping experiments we are describing has been
the precise measurement of the g value of the electron
and positron. Since g=2 for these leptons, g is often
written in terms of the anomaly a defined by

FIG. 8. Splitting of geonium energy levels for an electron (not
to scale). The ladder on the far left represents the basic cyclo-
tron energy levels. Progressing to the right, these levels are split
first by the spin ( = z ), then by the axial binding, and finally by

the magnetron motion. The magnetron levels are inverted, since
the motion is unbound.
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It is often convenient for experimental purposes to in-
vert Eq. (2.63) in order to define operationally the g value
of a spin- —, particle as the dimensionless ratio of two
measurable frequencies,

COs
(2.65)

c

In a similar manner, the anomaly can be operationaBy de-
fined by

COs —a)c CO~

(2.66)
COc a)c

Since co, —co, =10 co„ large errors are incurred if co,
and coc are measured separately and then subtracted to
form co, . The geonium experiments therefore follow an
earlier tradition (Wilkinson and Crane, 1963) and measure
co, directly.

%Rile both co, and co, are measurable frequencies for
an electron or positron if only a magnetic field is present,
the electrostatic field, which is added to confine the parti-
cle, modifies the measured frequencies slightly to the
values co,

' and co,', respectively, with

misalignments in the electrodes of a real trap cause depar-
tures from the ideal electrostatic quadrupole potential
which are of higher order in the position coordinates than
are the quadratic terms we consider here. However, as
discussed in Sec. IX, compensation electrodes may be in-
troduced which greatly reduce these effects. The effects
of magnetic field inhomogeneities are considered in Sec.
VI.

The general, quadratic electrostatic potential may be
expressed as

3

Y g ~klxkxI ~ (2.70)
k, l =1

where x~ ——x, x2 ——y, x3 ——z, and AkI is a symmetric ma-
trix. Laplace's equation requires that Akr be traceless. A
rotation of the coordinate axes produces the transforma-
tion A~RAR ', where R is an orthogonal matrix. We
use such a rotation to work in the "principal-axis coordi-
nate system, " where RAR ' is diagonal but still, of
course, traceless. In this coordinate system the potential
energy U has the form

I I
COa =a)s —a)c ~ (2.67) U= 2 ma), [z ——,(x +y )——,c(x —y )] .1 2 2 & 2 2 & 2 2 (2.71)

Since co,'=co, —co according to Eq. (2.16), the anomaly
can be written as

COa —COmQ=
COc +COm

(2.68)

Alternatively, we can use the fact that co~ =co,/2', ' ac-
cording to Eq. (2.17) and write the anomaly as

co —co /2a)

a) +co /2co
(2.69)

Both of these expressions apply for a perfect quadrupole
potential and a homogeneous magnetic field that is per-
fectly aligned with the quadrupole axis. In the following
section we present an invariance relationship to be used in
place of Eqs. (2.68) to completely circumvent the effect of
many trap misalignments and imperfections. We shall
show that the use of the measured eigenfrequencies of a
trapped particle in the alternative expression for the
anomaly in Eq. (2.69) largely circumvents these effects for
the electron and positron.

D. An invariance theorem

Real Penning traps have a variety of small imperfec-
tions. We consider here the unavoidable imperfections in
a trap which alter the quadratic terms in the electrostatic
potential (Brown and Gabrielse, 1982). These arise from
misalignments of the trap electrodes both internally and
with respect to the magnetic field direction, and from
departures from ideal geometry in the trap electrodes. We
shall provide an invariance theorem that makes it possible
to determine precisely the cyclotron frequency co, and
hence the anomaly from the measured eigenfrequencies of
a laboratory trap, even though the trap suffers from these
imperfections. The effects of other small imperfections
are considered in other sections. Imperfections and

8,=8 cos8,

9„=8sin8 cosy,

9z ——8 sin8 sing,

(2.72)

in the principa1-axes coordinate system. To be consistent
with our convention for choosing the z-axis direction, we
choose thc sign of B here to make eB positive, so that the
cyclotron frequency co„ in the absence of the Penning
electrodes, is given by

(2.73)a), =eB/mc
and is explicitly positive.

Three coupled, linear second-order differential equa-
tions of motion are easily deduced by computing the
Lorentz force and using Newton's second law. Since the
equations of motion are linear, they also apply to the
transition matrix elements of the Heisenberg quantum-
mechanical operators. Thus the relations amongst the
frequencies that we shall obtain are also valid in the
quantum-mechanical case. Assuming a time dependence
of the form exp( icot) yields a set of—three homogeneous
algebraic equations, with the determinant

We see that the harmonic imperfections are represented in

a completely general way by the single asymmetry param-
eter c.. Projections of equipotentials upon the xy plane are
elliptical. For small c this asymmetry parameter is the
fractional difference in length of the principal axes of
these ellipses.

When the magnetic field B is aligned perfectly along
the positive or negative z axis, the motion along this axis
is uncoupled from the motion in the xy plane. The
overall multiplicative constant in Eq. (2.71) has been
chosen such that co, is the axial harmonic oscillation fre-

quency in this ideal limit. We shall treat the general case
with a misaligned magnetic field given by
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F(co )=
co + —,'co, (1+a)

l COCoc COSL9

—icoco, sin8 sing

l COCoc COS(9

ci) + —,'co, (l —E)

l COCOc S1n COS

+ l coco sln8 slntp

—l COCOc Sln8 COSQ

2 2
CO —Coz

(2.74)

This set of equations has a solution only if the frequency
is an eigenfrequency co determined by the characteristic
equation

F(co )=0. (2.75)

F(co ) =(co a), )(—co —co, )(co —co ),
where co„co„and co are, respectively, the observable cy-
clotron, axial, and magnetron frequencies of the
misaligned trap. The determinant (2.74) is easily calculat-
ed. Expanding the result in the powers co, co, co and
comparing the coefficients with the corresponding expan-
sion of Eq. (2.76), we find that

(2.77)

Therefore the determinant (2.74) is a cubic polynomial of
the form

I

In this case, a simple expansion of Eq. (2.79) suffices.
The axial motion is uncoupled for a perfect trap. In this
limit co, =~„and Eq. (2.77) gives co =co, where we de-
fine co by

Com = (2.82)
2COc

[cf. Eq. (2.17)]. It is convenient to add co ~ to both sides
of Eq. (2.79) to obtain

—2 2
2 ~2 2

Co

Coc+ Coc +Co m Co m
2Coc

(2.83)

Coc ] COz

+
Coc 2 COc

'2
CO,+
Coc

4

Com

(2.84)

%'e can now expand in the small quantity corn —
corn to

secure

—2 —2 —2 2
Coc+COz+CO m =Coc

—
~ co,(1+—,

'
E ), (2.78)

(2.79)

——,
' e sin 8 cos2y )

With the neglect of the third term on the right-hand
side of Eq. (2.84), we obtain the relation for the corrected
cyclotron frequency co, =co,' =co+ for an ideal trap given
in Eq. (2.14). We find that the correction for trap imper-
fections involves the very small quantity (co,/co, ) . It suf-
fices to work to leading order in the small ratio (co, /co, )

to compute this second correction in Eq. (2.84). In this
order co,=co„and Eq. (2.78) reduces to the statement

Equation (2.79) is the invariance theorem mentioned
above. It gives an exact prescription for obtaining the cy-
clotron frequency co, in the absence of the Penning elec-
trodes, in terms of the measurable eigenfrequencies of an
imperfect trap. This prescription is completely indepen-
dent of the misalignment angles (O, y) and the distortion
parameter s. To take complete advantage of the invari-
ance relationship for measurements of the anomaly, we
write the anomaly as

co,=co,[1——', sin 8(1+—,
' scos2y)] .

Equation (2.77) now informs us that

=co (1—e )'~ [1——', sin 8(1+—,
' scos2y)]

(2.85)

(2.86)

2
, 4

and thus for small imperfections with 8 « 1 and
/ef «1,

CO+ —Coc +Coc
(2.80)

COc 1—1+—
Co 2 CO Coc

(8 ——', s ) . (2.87)

—2 —2 —2
Coc ))Coz ))CO m (2.81)

The observed anomaly frequency co, is equal to co, —co, .
The cyclotron frequency co, in general must be deduced
from the invariance relationship.

In the present and proposed single-particle spectros-
copy experiments, the cyclotron frequency co, is deter-
mined by the measurement of co, to great precision, with
CO, and Com meaSured With leSSer aCCuraCy. In SOme CaSeS

need not be measured. This is possible because, as we
have discussed before [Eq. (2.12)], the Penning electrodes
typically contribute only a weak perturbation to the cy-
clotron motion of the charged partic1e in a strong magnet-
ic field, giving

Either Eq. (2.85) or (2.86) can be used to study the imper-
fections described by 8, y, and e and thereby to align Pen-
ning traps. The magnetron frequency co~ has been ob-
served in a variety of traps (Van Dyck, Schwinberg, and
Dehmelt, 1978; Van Dyck and Cxabrielse, 1982) to be
larger than co . This is in accord with Eq. (2.86) and
with the expectation that the angular misalignment of the
magnetic field, 8, is larger than the asymmetry in the
Penning electrodes,

~
e ~,

The imperfection corrections will probably be com-
pletely negligible for trapped electron experiments, with
the consequence that the magnetron frequency co need
not be measured. Using the typical electron conditions
from Table I, we have (co,/co, ) =10 ' . Even for an an-
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gular misalignment as large as 8=1' or for an electrode
asymmetry as large as

~

e
~
=1%, the net correction in

Eq. (2.87) is only on the order of 10 ' . The electron and
positron anomalies can therefore be deduced from the
simpler formula for the anomaly

co+ —co z /2co~

co~+coz/2'~
(2.88)

which is an approximation that should suffice for foresee-
able improvements in measurement accuracy. This for-
mula is identical in form with Eq. (2.69) except that the
measured frequencies are used.

The imperfection corrections becoine much more sig-
nificant for more massive particles, which have much
lower cyclotron frequencies. For example, the frequency
ratio (co,/co, ) is 3X10 for the proton parameters in
Table II. In this case, for 8= 1' or

~

e
~

= 1%, the second
correction in Eq. (2.87) is about 5X 10, an important
correction compared to the goal of an accuracy of 10
The prescription for the cyclotron frequency in terms of
the ineasurable eigenfrequencies given in Eq. (2.79) is
proving to be useful for such experiments (e.g., Wineland,
Bollinger, and Itano, 1983; Van Dyck, Moore, Farnham,
and Schwinberg, 1985).

Since

dE 2e ..z

dt =33P (2.89)

E. Radiation damping

An accelerated charge radiates electromagnetic waves,
and there is a corresponding reaction that damps the
motion of the charge. As is well known, the transition
probability for such electric dipole radiation is propor-
tional to a high power of the transition frequency; appre-
ciable radiative decay occurs only for high transition fre-
quencies. For protons or heavier ions in a Penning trap,
the frequencies of the motion are generally in the radio-
frequency range, and the radiative decay is negligibly
small. This is also the case for the axial and magnetron
motions of a trapped electron. The spin motion decays
via magnetic dipole radiation at a rate that is exceedingly
small. However, for the cyclotron motion of an electron
in a strong magnetic field, radiative decay is the dominant
decay mechanism, and we shall investigate it in more de-
tail.

The energy in a classical cyclotron orbit is decreased by
the power radiated, according to the familiar Larmor for-
mula (see, for example, Jackson, 1975, Sec. 14.2)

in which

4e co,
Yc

3mc
(2.93)

is, the cyclotron damping constant. Thus the cyclotron
energy decays as

E(t)=Eoe (2.94)

It is convenient to introduce the classical radius rp of the
charged particle defined by

PO
mc

(2.95)

and write

cue ~ (2.96)

Xg [ (N'
~
e„a v

~
N) [ (2.97)

where E~ & E& E& is the——energ—y release of the decay
Here, to conform to modern field theory notation, we
have temporarily reverted to natural units and used the
charge e„/4n. =e . Carrying out the integration, using
the polarization sum g, ~

e v~ =—', v, and passing to
conventional units, we obtain

For the electron rp-2. 8 )& 10 ' cm, and with
co, /2@=160 6Hz we have y, '=8 X 10 sec. Thus radi-
ation damping is fairly fast for the cyclotron motion of an
electron, and it is by far the most important damping
mechanism for this motion. The cyclotron frequency co,
is proportional to the inverse mass of the charged particle,
as is the classical radius ro. Therefore the cyclotron
damping constant scales as y, —1/(mass), and we see
that for a proton in the same magnetic field we would
have y, '=5X10 sec. Radiation damping of the cyclo-
tron motion of protons is completely insignificant. As we
shall discuss in Sec. III, the cyclotron motion of a heavy
particle is usually damped to a much greater degree by its
interaction with an external circuit.

Essentially the same result follows from the quantum-
mechanical treatment of the cyclotron motion modified
by a Penning trap. The quantum-mechanical decay rate
I'~ ~ for the N —+N transition of a nonrelativistic atomic
system is given by

and

OO 0P=~c XP (2.90) 4 e' Ewe
(2.98)

E=—,
' mp',

we have

dE =—y E
dt

(2.91)

(2.92)

We may use Eq. (2.19) to express v=p in terms of the
V' +—' operators and then use Eqs. (2.48) to express this in
terms of the creation and annihilation operators a+ and.
a+. In this way we find the quantum formula for the cy-
clotron decay rate:
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2
fi(co+ —co )

But

X i
(n —1

i a+ i
n ) [

'=y,'n, (2.99)
67

YC (2.108)

4e co+ Q) +
2 2

VC
3mc

(2.100)

The quantum-mechanical result applies to the exact, non-
relativistic motion in a Penning trap, including the effect
of the electrostatic quadrupole potential. The damping
constant y,

' is simply the classical damping constant for
the modified cyclotron motion. It differs only very
slightly from the damping constant for the simple cyclo-
tron motion [y, of Eq. (2.93)] in that co, is replaced by
r0+ ——to,

' and there is an additional factor co+/(co+ —co ),
which is typically very close to unity in view of the
hierarchy given in Eq. (2.12). The modified result could
be deduced from a classical procedure similar to that em-

ployed above to compute y, .
To demonstrate that the y,

' defined by Eq. (2.99) is
indeed related to the classical decay rate, consider a quan-
turn ensemble with a density matrix that is diagonal in
the number representation. Then, with P„denoting the
probability for finding the nth state, Eq. (2.99) implies
that

1 e
S

g~ '
~S ~

mc mc
(2.109)

and since typically (co /co+) =3X10 ', y~'=3X10'
sec for a trapped electron, corresponding to a "decay"
time of 10 yr. The time constant for a proton is, of
course, much longer. The magnetron motion is effective-
ly stable against radiation damping. Imperfections in the
trap are far more important in triggering the instability of
the magnetron motion.

A particle with its spin in the upper level will decay
into its lower level by emitting a photon. Since this is a
magnetic rather than an electric dipole transition, the rate
is much slower than that for the cyclotron decay. The
spin interaction is —p B rather than —e ( v/c ).A.
Remembering the definition (2.59) of p, we see that the
decay rate is calculated by replacing a. v in Eq. (2.97) with
(gR/4m )a kX o. Since a is orthogonal to k, the polariza-
tion sum is now given by g, ~

a kXo
~

=(kXo) . Fol-
lowing the calculation of the cyclotron decay rate, one
finds that the spin-flip decay rate is given by

d
dt

P„=y,'[(n+1)P„+i—nP„] .

Hence the average quantum number

(n) =gnP„

(2.101)

(2.102)

Since (%co,/mc ) =10 ' while y, '=0. 1 sec, we see that
I,=10 "sec ', corresponding to a decay time of 10 yr.
The-spin is effectively stable against radiative decay.

The radiation process also darnps the axial motion,
with the energy loss given by replacing p with i in Eq.
(2.89). Using z = —co,z and averaging over a cycle so that
we may use the virial theorem to write

d(n)
dt

= —y,'(n )

and thus exponentially decays
I

( n (t) ) = (n(0) )e (2.104)

&=~~zi
we see that

dE
dt

'Vz, I'adE

(2.110)

(2.111)

The magnetron motion is unstable. Its energy is de-
creased by increasing its quantum number I. Hence for
this motion

d (I ) =+y (I) (2.106)

and

which is the simple quantum analog of the classical result
(2.94).

The magnetron motion is formally identical to the cy-
clotron motion. All that we need do is to replace co+ by

to obtain the "damping" constant for the magnetron
motion from that for the cyclotron motion:

4e co
(2.105)

3mc

with the damping constant being given by

Vz, rad
2l'067z

3c
ez. (2.112)

This is exactly analogous to the cyclotron decay constant
except for a factor of 2, which appears because the cyclo-
tron motion is equivalent to the superposition of two har-
monic oscillators. For an electron with m, /2m =60 MHz,
we have y, ,',d-1 &(10 sec. The corresponding damping
constant for a proton is yet much smaller. As we shall
discuss in Sec. III, the axial motion is generally damped
to a much greater degree by its interaction with an exter-
nal circuit.

The results that we have described Apply when the
charged particle radiates into free space. If, on the other
hand, the charged particle is confined inside a conducting
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TABLE I. Trapping parameters for an electron. The numerical values are those used in the trap shown
in Fig. 1 (Gabrielse and Dehmelt, 1981a). They differ from those first used to trap a single electron
(Wineland, Ekstrom, and Dehmelt, 1973) principally in that the magnetic field is about 7 times larger.
The parameters are essentially the same as those used more recently to measure electron and positron g
values (Schwinberg, Van Dyck, and Dehmelt, 1981b), except that they use a slightly lower 50.50-kG
magnetic field. The measured axial frequency is only approximately related to the potential and size of
the trap by Eq. (2.7) because of electrostatic effects discussed in Sec. IX.

External parameters

Trap potential
Trap sizes
Field strength

Vo ——10.22 V
d =zp =pp/V 2=0.335 cm
B =58.72 kG

Measured eigenfrequencies and energy-level spacings

Cyclotron
Axial
Magnetron

v,'=164.4 GHz
v, =64.42 MHz
v =11.85 kHz

fico,
' =6.799& 10 eV

fico, =2.581&10 7 eV
Rcu =4.901)&10 " eV

Cyclotron

Axial

Magnetron

Measured damping widths

yc/2m' 0.5 Hz
(radiative damping modified by trap cavity)
yz/2m=6 Hz
(coupling to external circuit)

y = unmeasurably small

cavity, it can radiate only at frequencies within the
linewidth of a cavity mode. A charged particle in har-
monic motion can radiate only at the frequency of its os-
cillation. If this natural frequency lies outside the
linewidth of any cavity mode, the radiation process is
greatly inhibited and the corresponding damping constant
reduced accordingly. The electrodes of the Penning trap
form a lossy microwave cavity with a typical dimension
of about 1 cm. The cyclotron radiation has a wavelength
of about 0.2 cm. It could happen that the modes within
the Penning trap are sufficiently sharp and widely spaced

to inhibit the damping of the cyclotron motion. Recent
measurements in the trap represented in Fig. 1 (Gabrielse
and Dehmelt, 1985) gave y, ' 0.3 sec rather than the
value y, '=8&10 sec that we have calculated. Subse-
quently, y, '=1 sec was measured for a trap whose mi-
crowave properties differ principally in that its electrodes
have fewer slits (Van Dyck, Schwinberg, and Dehmelt,
1984). These experimental results indicate that the trap
electrodes act as a microwave cavity in the manner we
have described. These cavity effects are discussed in de-
tail in Sec. VIII.

TABLE II. Trapping parameters for a proton. The numerical values are for one version of the
electron-proton mass ratio experiment (Van Dyck and Schwinberg, 1981). The measured axial frequen-
cy is only approximately related to the trap potential and trap size of Eq. (2.7) because of electrostatic
effects discussed in Sec. IX.

Trap potential ~

Trap sizes
Field strength

External parameters

Vp ——53. 10 V
d =zp=pp/V 2=0.112 cm
8 =50.50 kG

Measured eigenfrequencies and energy-level spacings

Cyclotron
Axial
Magnetron

v,'=76.34 MHz
v, =10.06 MHz
v =662.8 kHz

%co,
' =3.157&(10 eV

ficoz ——4. 160&& 10 eV
%co =2.741 & 10 eV

Estimated damping widths (Secs. III.A and III.E)

Cyclotron

Axial

Magnetron

y, /2n. = 10 Hz
(coupling to external circuit)
y, /2m = 10 Hz
(coupling to external circuit)
y = unmeasurably small
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TABLE III. Orbit parameters for a trapped electron.

Cyclotron motion in thermal equilibrium
with radiation field at 4.2 K

Radius
Velocity
Energy
Quantum number

p, =1&(10 cm
u, /c =4/ 10
E„=3X 10 eV
n&1

Axial motion in thermal equilibrium
with external circuit at 4.2 K

Amplitude
Velocity
Energy
Quantum number

z =3)& 10 cm
z/c =4& 10
Ek -3&10 eV
k =1~10'

Magnetron motion cooled to limit [Eq. {2.58)]

Radius
Velocity
Energy
Quantum number

p =6& 10 cm
u /c=l&10
EI-—7X 10 eV
1=1~10'

F. Numerical summary

Tables I—IV summarize the various trap and orbit pa-
rameters that we have encountered in this section.

II I. DETECTION AND DAMPING
WITH AN EXTERNAL CIRCUIT

TABLE IV. Orbit parameters for a trapped proton.

Cyclotron motion in thermal equilibrium
with external circuit at 4.2 K

The axial resonance is of particular importance in the
experiments with one electron or positron. It is at a radio
frequency, which is relatively easy to use in the laborato-

ry, while the cylotron and spin resonances are at very
high microwave frequencies, which are much less accessi-
ble. As a result, all information about cyclo-
tron and spin excitations is detected via small couplings,
which produce corresponding small shifts in the axial res-
onance frequency. Fractional shifts bco, /co, =2&10
are routine1y measured. %'e thus treat the axial motion in
particular detail, beginning with its damping and detec-
tion in Sec. III.A. Thermal Johnson noise, which itself
drives the axial motion, is discussed in Sec. III.B. The
trapping potential is often frequency modulated for exper-
imental convenience (Wineland, Ekstrom, and Dehmelt,
1973). Although this is useful, we show in Sec. III.C that
it does not alter essentially the simple model of Sec. III.A.
Laboratory Penning traps do not produce a pure quadru-
pole electrostatic potential, but they can be tuned to im-
prove the potential (Van Dyck, Wineland, Ekstrom, and
Dehmelt, 1976). The axial oscillation in a potential that
deviates slightly from a pure quadrupole potential can
provide an illustration of an anharmonic oscillator that is
of textbook clarity. However, it is extremely important to
make the axial oscillation as harmonic as possible if small
shifts are to be detected. This is done by monitoring the
shape of the axial resonance, which we discuss in Sec.
III.D, while making small adjustments to a compensation
potential (discussed later in Sec. IX). The cyclotron fre-
quency is also an accessible radio frequency for protons
and heavier ions. In Sec. III.E we describe how the ion
cyclotron motion can be damped and detected in a similar
way.

A. Axial motion

The axial oscillations of a particle bound to a Penning
trap are usually in the radio-frequency range. The radio-
frequency structure of the trap may be represented by the
idealized circuit shown in Fig. 9 (Walls and Dehmelt,
1968). The oscillating charged particle induces alternat-
ing image charges in the electrodes, which in turn cause

Radius
Velocity
Energy
Quantum number

p, =5X10 cm
u, /c =9&(10
E„=3&10 " eV
n =1&10

endco Yl Ag a epgcopz

I o
I I~

Axial motion in thermal equilibrium
with external circuit at 4.2 K V, signaI

O
Amplitude
Velocity
Energy
Quantum number

z =4& 10 cm
z/c =9~ 10
EI,=3&&10 eV
k =8&&10'

VD

Radius
Velocity
Energy
Quantum number

p = I X 10 cm
u /c =2)& 10
EI = —2)& 10 eV
1=8X10'

Magnetron motion cooled to limit [Eq. (2.58)] FIG. 9. Idealization of the radio-frequency circuit used to
damp and detect the axial oscillation of a trapped particle. A
charge e moving toward the right induces a current I through
the resistor. The axial motion is driven by the oscillatory poten-
tial V~ and by the Johnson noise from the resistor u, while the
signal voltage V& is detected.
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an oscillating current I to flow through a resistor R. In
practice, a pure resistive impedance is realized at radio
frequencies near co, by tuning out the trap capacitance,
which is parallel to R, with an appropriate parallel induc-
tor. The voltage v represents the thermal noise in this ef-
fective resistor, which is at temperature T. The axial
motion is monitored by amplifying and detecting Vs, the
voltage between one endcap electrode and the ring elec-
trode. It is the sum of the noise voltage U and the IR
drop across the resistor. The detected signal is so small
that it is most often necessary to drive the axial oscilla-
tion with an external drive potential VD applied between
the opposite endcap and the ring to increase the oscilla-
tion amplitude to a level where it can be detected above
the noise.

Energy lost in the effective resistance R damps the axi-
al oscillation. To understand this damping, let us consid-
er the situation where there is no external drive potential
( VD ——0) and where the temperature T of the resistor is so
low that the noise voltage is negligible (T=O, U=O). A
trapped particle of charge e moving with velocity z to-
ward the endcap connected to the resistor causes a current
I to fiow through R, and hence a voltage IR is induced
between this endcap and the ring. Near the center of the
trap, this potential produces an axial electric field
x(IR)/2zo, where 2zo is the spacing of the endcap elec-
trodes along the z axis and ~ is a dimensionless constant
of order unity. This constant, which would be exactly
equal to 1 if the endcaps were infinite flat plates with the
ring removed, is discussed in Sec. IX.D. The electric
field produces an axial force on the trapped particle given

by

f= eaIR /2zo, — (3.1)

which opposes its motion. The energy of the charged par-
ticle decreases at the rate zf, and this power is dissipated
in the resistor:

zf=I R. — (3.2)

7The resistance R is generally made as large as possible to im-
prove signal-to-noise [see the discussion below Eq. (3.13)j. In
fact, the effective R often results from the very small radio-
frequency loss still present when the tuned circuit is submerged
in liquid helium, with R being proportional to the inverse of
this series resistive loss. The Q =10 of the tuned circuit is
much smaller than the Q =107 of the axial resonance. Hence,
after the resonant frequency of the LCR circuit has been adjust-
ed to coincide with that of the axial oscillation, it acts as a pure
resistor throughout the range of the axial resonance.

SAs mentioned in the introductory paragraph, the actual drive
may involve frequency modulation, so as effectively to eliminate
the rf feedthrough from one endcap to the other. This modifi-
cation is discussed in Sec. III.C below. It does not modify sig-
nificantly the results of the simple model analyzed here.
9Section IX describes the electrostatics of the trap more pre-

cisely, as we11 as treating higher-order, nonlinear terms in the
potential.

Comparing this pair of equations yields (Shockley, 1938;
Sirkis and Holonyak, 1966)

I=a(e/2zo)z . (3.3)

The current I is proportional to the velocity z as one
would expect, and therefore the force given in Eq. (3.1) is
a dissipative force,

f= m—y,z, (3.4)

with the damping constant for the axial motion, y„given
by (Walls and Dehmelt, 1968; Wineland and Dehmelt,
1975b)

ei
2zp

(3.5)

Note that the damping constant is inversely proportional
to the mass. A proton or heavier particle is much less
damped than is an electron.

To obtain convenient experimental units, we express the
damping constant as

, rp~ 4~R
Pg =K

4zp p
(3.6)

rp=
4&FpNlc

is the classical radius of the charged particle, and
' 1/2

1 Pp =377 Q

(3.7)

(3.8)

~ the effective radio-frequency resistance R is determined in-

directly from a measurement of the inductance L, which cancels
the trap capacitance, together with a measurement of the Q of
the tuned circuit, with R =Qco,L.

is the usual impedance of the vacuum, in mks units. For
the electron, rp ——2.8)&10 ' cm, and using the typical
values 2zo ——0.67 cm (Table I), a=0.80 (Gabrielse, 1984;
see Sec. IX.D), and' R=1.6&&10 0, which pertain to
the trap shown in Fig. 1, we have y, /2n =10 Hz. This
should be compared to v, =62 MHz; the axial motion is
only very slightly damped, with a quality factor
Q=co, /y, =10. The much more massive proton in a
trap three times smaller (Table II), with R =6.5 X 10" 0,
has a much smaller damping constant y, /2m =50 mHz.
The correspondingly higher Q =10 allows a more accu-
rate measurement of the axial frequency co, . On the other
hand, the more massive proton moves with a much slower
velocity, the induced current I is much smaller, and the
signal IR is quite small, making it more difficult to ob-
tain a good signal-to-noise ratio.

Let us now include the effect of the drive and noise.
Placing the damping term on the left-hand side of the
equation of motion, we have
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m +yg +co, z(t)=F(t),
dt

(3.9)

where co, is the axial frequency of Eq. (2.7), a parameter
that specifies the strength of the restoring force of the
electric quadrupole potential. Referring to the discussion
of Eq. (3.1), we see that the nondissipative force is given
by

F=(ev/2zo)(V~ —u) . (3.10)

The two voltages appear with opposite signs because they
are applied to opposing endcaps.

In view of Eq. (3.3), the detected voltage Vs, the volt-
age between the ring and one endcap is given by

e~
Vg ——u+ — Rz .

0
(3.11)

Fourier-transforming (z-e '"') the equation of motion
(3.9) gives

V~(co) —u(co)
z(co) =

2zpm co, —u —i cuyz
(3.12)

and, remembering the definition (3.5) of y„
(co, cu )u(c—o) icoy, V—~(co)

Vs(~) =
CO —6) —E CO+

(3.13)

A good axial resonance curve is shown in Fig. 10. %'e
shall discuss the observed signal in more detail in Sec.
III.B, but it is worth making several comments now.
First, we see that as the drive Vn(co) sweeps over frequen-
cy we have a Lorentzian response with a f'ull width y, at
half maximum. This leads to the measured value

y, /2n. =6 Hz for the trap shown in Fig. 1, to be com-
pared with the theoretical value y, /2n =10 Hz discussed
above. The discrepancy between these two numbers is

typical of several traps (Crabrielse, 1984), and it is as yet
not understood. Second, we note that the resistor noise
u(co) corresponds to the familiar Johnson noise, which we
shall discuss in detail in Sec. III.B. As is well known,
u(co) is proportional to R ', while y, is proportional to
R. Equation (3.13) therefore shows that the signal-to-
noise ratio is improved by increasing the resistance R. Fi-
nally Eq. (3.13) shows that the noise is "shorted out" on
resonance" co=co„with Vs(co, )= V~(co, ). It is evident
from Fig. 10 that very little "shorting out" is observed.
This is, presumably, the result of nonlinearities and other
imperfections in the trapping system. For example, elec-
trostatic anharmonicities make the instantaneous value of
co, depend upon the amplitude of the axial oscillation, and
thus upon the noise that is, in part, driving the oscillation.
Hence co, jiggles, keeping co=co, from being precisely de-
fined.

B. Axial noise

d d
di+y, +co, G, (& t')=5(t—t') . — (3.14)

Fourier-transforming Eq. (3.14) with

We turn now to an analysis of the Brownian motion
undergone by the axial oscillation in response to the noise
voltage u(r). We shall need the results of this analysis in
order to discuss more fully the noise in the axial reso-
nance as well as for our later discussion of the cooling
limit of the magnetron motion and of the line shape of
the cyclotron and anomaly resonances. Many of the re-
sults that we shall describe contain elements that are well
known in the theory of the Johnson noise of a resistor.

First, we obtain the general solution of the equation of
motion (3.9) by introducing the corresponding retarded
Green's function G, (t r'), w—hich obeys

G(t r')= —G( ) (3.15)

5xi0 8
gives

G, (co) =(co, icoy, —co —) (3.16)

a
X0

The integral in the Fourier transform (3.15) is easily per-
formed by standard contour methods. Neglecting the
very small quantity (y, /co, ), one finds that

G, (t t') = e —* since, (t —t'), (3.17)
g(t —t ) y(r t')f2 . — —

in which 6(t —r') is the usual unit step function. [One

40 45 60

FIG. 10. Two observations of the axial resonance of a single
electron. The absorption and dispersion profiles correspond to
y=0 and to y= —m/2 in Eq. (3.36). Notice that the noise de-
creases by approximately a factor of 2 on resonance (Van Dyck,
Schwinberg, and Dehmelt, 1978).

~~This effect was derived by Wineland and Dehrnelt (1975b),
who observed that a trapped particle obeys, with a suitable defi-
nition of parameters, the differential equation of a series LCR
circuit. The trapped particle can thus be replaced by a series
LCR circuit connected between the endcap electrodes. On reso-
nance, the L and C cancel, shorting the endcaps.
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can, of course, verify directly that Eq. (3.17) does indeed
obey Eq. (3.14).] The axial motion is driven by the sum
of the noise u(t) and the coherent drive VD(t), and since
the equation of motion is linear we may write correspond-
ingly

z(t)=z~(t)+zn(t) . (3.18)

(v(t, )u(tz))=0, t, &tz . (3.20)

Within the time resolution of the oscillation, the average
correlation of two noise voltages is a sharp 5 function in
time, 5(t& tz). Thus t—he voltage U(t) is effectively white
noise, which is uniformly distributed in frequency since
the Fourier transform of the 5 function is a constant.
The only parameters available to characterize the effective
resistor that represents the external detection circuit are
its resistance R and temperature T. The con,bination
k~TR has the dimensions of voltage squared multiplied
by time. Therefore the coefficient of the 5 function is
k&TR multiplied by some purely numerical factor, since
the 5 function has the dimensions of inverse time. We an-
ticipate this number in writing

Neglecting transient effects which decay in a time 1/y„
we have

z~(t) = (e—~/2zom ) f dt&G, (r t—, )U(t, ) (3.19)

and a similar formula for zD(t) with —VD replacing U.

The noise voltage u (r) is a random, fluctuating variable
with a vanishing average value, (U(t))=0. This noise
voltage arises from atomic processes in the external cir-
cuit which are much faster than the time scale co,

' of the
axial oscillation. Hence, on the time scale of the axial os-
cillation, the noise voltages are effectively uncorrelated at
different times, with

neglecting the small ratio (y, /co, ), we find that

/2
C(t —t')=(k+T/me@, )e ' cosco, (t t—') . (3.26)

We may now justify the numerical factor of 2 on the
right-hand side of Eq. (3.21). The equal time limit of Eq.
(3.26) gives

(3.27)

and we see that the factor of 2 is necessary to obtain the
thermodynamic equipartition of energy.

With these results in hand, we can discuss in more de-
tail the signal produced by the axial osciOation. The
motion driven with a single frequency

VD(t) = Vd coscot

gives the response

(3.28)

zD(t) = Vg Re[6,(a))e '"'],
2zpm

(3.29)

~s= ~s,D+ ~s,~
in which, according to Eqs. (3.5) and (3.9)—(3.11),

r

eK
~s,a = AzD ——

2zo

~om
Vz~Dex

(3.30)

(3.31)

and

where Re denotes the real part. The noise component
(3.19) adds to this to produce the full motion (3.18). Re-
calling that the signal voltage is given by Eq. (3.11), we
see that we may also write Vs as the sum of terms corre-
sponding to the external drive and the noise,

( U(t, )u(t2)) =2k~TR5(t, —tz) . (3.21) ~s,x =— 2zpm d
dt 2 +~z (3.32)

The average correlation of the oscillator coordinates in
the absence of a coherent drive ( VD ——0),

C(t —r') = (z(r)z(r') ), (3.22)

is important for our later work Using .Eqs. (3.19) and
(3.21) we have

'2

The signal is often measured using phase-sensitive detec-
tion so as to substantially reduce the effect of the noise.
The voltage Vs(t) is multiplied by (mixed with) a voltage
that oscillates at the drive frequency co but that is shifted
by a phase qr. The product is sent through a filter with a
narrow bandwidth d co. This process produces a signal

C(t t') =2k& TR-
2~om

&& f dt, G, (t —r, )G,(t' —r, ) . (3.23)

S= tF t Vst

in which

F(t) =F(co,Leo, q&;t)

(3.33)

Writing the correlation function as a Fourier transform d~'=2 cos co+a' t —g (3.34)

C(r rt) C( ) EctP(t —1 )

2m'

and recalling the definition (3.5) of y„one obtains

C(co)=(2k' Ty, /m)
~
G, (co)

~

(3.24)

(3.25)

To verify this, we note that if V~(t) in Eq. (3.33) is re
placed by cos(co&t —f), one obtains S =cos(p —g) if
co —b,co/2 &co~ &co+5,co/2 but zero otherwise. As in Eq.
(3.30) we write

The correlation function C(t t') may now be evalua—ted
by inserting Eq. (3.25) in Eq. (3.24), using Eq. (3.16), and
calculating the integral by contour integration. Again

S=SD+S~ . (3.35)

Using Eqs. (3.29), (3.31), and (3.33), we find that near res-
onance the drive produces a signal given by
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(y, /4)cosy+(y, /2)(co —co, )sing
SD ——Vg 2 2(to —tU, )'+y, /4

(3.36)

Choosing p=0 or y= —m. /2 gives the familiar absorptive
or dispersive Lorentzian line profiles. Both choices are
used experimentally, as shown in Fig. jj0.

To include the effect of the noise, we imagine perform-
ing the experiment a large number of times, so as to pro-
duce an ensemble average, the average we have previously
used in deriving the correlation function C(t t ). S—ince
(U ) =0, the average value of the signal is due entirely to
the coherent drive,

(S)=SD . (3.37)

X I dt dt'F(t)F(t')C(t t')—

(co, —to ) J iF(G)
i

C(co) . (3.39)
eK 2'

In the first line we have integrated by parts so as to re-

place double time derivatives by the factor —co, which

appears when these derivatives act on the filter function F
in the narrow bandpass limit that we assume. In the
second line we have replaced the time convolution by the
equivalent Fourier transform. In the narrow bandpass
limit, it is not difficult to see that we have, effectively,

i
F(UT)

i
=hco[5(co —co)+5(co+co)] . (3.40)

Since C(co) is an even function of co, we now find that
r

ES2= (co2 —co, ) C(co) .
eK

(3.41)

Recalling the definitions of y, [Eq. (3.5)] and the relation-
ship of C(co) to G, (co) [Eq. (3.25)], we may write Eq.
(3.41) in the form

The magnitude of the noise fluctuations is assessed by

(3.38)

Thus b.S is the rms noise fluctuation in S. Employing
Eqs. (3.32), (3.33), and (3.22), we have

2

which is the familiar result for the squared Johnson noise
voltage for a resistance R at temperature T in a band-
width Av.

The size of the Johnson noise voltage sets a rough lower
bound on the magnitude of the coherent excitation of the
axial motion necessary in order to observe an axial reso-
nance. Without a coherent drive, the electron absorbs
power from the noise and comes into thermal equilibrium
with an axial energy of k~T. The coherent drive in-
creases the energy in the axial oscillation by an amount
we shall call the coherent energy in the axial oscillation,
E. To estimate how large E must be to be detected, we
examine the minimal condition that the coherent signal be
larger than the rms signal fluctuation, SD & LS'. %'e use
the off-resonance Johnson noise, M =4kJ3TRb, v, since
little shorting of the noise is yet observed in present exper-
iments. For the signal SD, we use the peak of the absorp-
tion signal (q& =0, co =co, ), SD ——Vq, as given by Eq. (3.36).
Recalling Eqs. (3.29), (3.16), and (3.5), it is easy to see that
on resonance E =(V~/2y, R). Thus we obtain the rough
estimate

E & kg T(2hv/y, ) (3.43)

for the excitation level necessary to observe the axial reso-
nance. Note that the phase-sensitive detection with a
narrow-band filter makes it possible to observe coherent
energy excitations that are less than the thermal excita-
tion, E ~k2iT, when the filter bandwidth is less than
—,'y„as is most often the case in the geonium experi-
ments. For typical electron values of y, /2m. =6 Hz and
b,v=1 Hz, Eq. (3.43) yields E&5&&10 k~T. Even when
additional amplifier and detector noise (which are beyond
the scope of this paper) are included, one can estimate
that coherent excitations with an energy E =k~T are still
observable. To provide an estimate of the size of the
detected signal potentials, we take T=10 K, R =10 Q,
and hv=1 Hz. Using AS =4kTRhv, we have AS
=10 V, or a detected power of hS /R =10 ' W.

Correlation functions for arbitrary products of z(t) at
different times are needed for the calculation of line
shapes, which we shall discuss later in Sec. VI.C. These
are the correlation functions for z(t) in the absence of a
coherent drive. They are given by a Cxaussian factoriza-
tion. Thus, for the four-time correlation function, we
have

(z(ti )z(t2)z(t3)z(t4) ) =C(ti t2)C(t3—t4)
b.S = (2hcokJ3TR /m. )(co, —co2)

i G, (co)
i

hco (~z=4k' T
(co,' —co ) +(~y, )' (3.42)

+C(t, —t, )C(t, t4)—
+C (t i t4) C(t2 t 3), — —(3.44)

This explicitly displays the "noise shorting" on resonance
for the idealized model that we have discussed previously.
Far away from resonance we have LS' =4k~ TR Av,

with a similar factorization in terms of all possible pair-
ings holding for the higher correlations. This factoriza-
tion follows from that of the noise voltage driving terms
where, for example,

( U(ti )U(t2 )U(t3 )U(t4) ) = ( U (tl )U(t2) ) ( U (t3 )U(t4) ) + (U (ti )U(t3 ) ) ( U(t2)U( t4) ) + (U(ti )U(t4) ) ( U(t2 )U(t3) ) (3.45)
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The factorization follows in turn from simple dimension-
al analysis and the fact that the voltage U (t) is effectively
white noise. For example, there is no intrinsic four-time
correlation for U(t) because the noise is white, and such
an intrinsic correlation would involve

Zffl =(exP h f Chf(hhh(hh (3.46)

5(r, -r, )5(r, —r3)5(t3 r4),

but this product of three 5 functions cannot be adjusted to
have the correct dimensions by multiplying it by any
powers of k&T and R. The Gaussian factorization is
most simply expressed in terms of the generating func-
tional

place co, by the frequency-modulated form

co z(t) =co@(1+a coscoir), (3.50)

where s «1 is the relative amplitude of the modulation.
The only modification of our previous work brought
about by this new drive is the replacement of the Green's
function G,(t —r') with the function G, (t, t') defined by

, +y, +co,(r) G, (t, t')=5(r t')-
t2 zd (3.51)

and the same retarded boundary conditions. Since the
inodulation is weak (E «1) and slow (coi «co, ), a simple
generalization of the construction of G,(t t') g—iven by
Eq. (3.17) suffices:

Z[f]=exp ——,
' f dr dt'f(t)C(t t')f (—t') (3.47)

The coefficient of the expansion of Z[f] in terms of n
factors of f ( t) is simply related to the n-time correlation
function. In terms of the generating functional, the
Ciaussian factorization is expressed as

G, (r,r')=, e
8(t t') — —y, (i —t')I2

[co,(t)co,(t')]'

t
Q sin d tco, (t )t' (3.52)

Clearly the term involving two powers off ( t) agrees with
Eq. (3.23), while that involving four powers off ( t) repro-
duces Eq. (3.44), and so forth.

We have yet to explain why the overall constant in the
factorization illustrated by Eq. (3.44) is unity. (The ap-
pearance of the sum of terms is necessary to represent the
symmetry of the n-time correlation. ) To prove this, we
compute the probability P(z) to observe the oscillator to
have the coordinate z,

Substituting this into the Green s-function equation
(3.51), one finds that the equation is obeyed except for
terms of order co, (t)/co, (t) and [co,(t)/co, (t)] . For our
case, these are terms of relative order s coi/co„which are
negligibly small. An additional term of order scoi/co, is
removed by an insignificant renormalization of the cou-
pling strength c.

Expanding the square root defining co, (t) in powers of
s, we see that the phase of the Careen's function defined by
Eq. (3.52) is given by

P(z)=(&[z —z(r)]) . (3.48)

Using the Fourier representation of the 5 function along
with Eqs. (3.46) and (3.47), we get

P(z)= f e ' exp[ ——,'C(0)k ]

f,d t co,(t)=co, 1 — (t t')—
16

+p(slncoir —slncoir ),

—C(0) is2/2

3/2n C(0)
1/2

Nl CO

2m' T exp( —,'mco, z /ksT) . —(3.49)

This is precisely the required Boltzmann distribution, and
to obtain it the generating functional must have the form
given in Eq. (3 47).

C. Frequency-modulated trapping potential

The trapping potential Vo is often weakly modulated
with a frequency coi which is much lower than the axial
resonance frequency co, . Typically coi/co, is about 10
With this addition, the axial motion can be driven at the
sideband frequencies co, +co i. The advantage of this
method is that, coupled with appropriate tuned circuits
and radio-frequency filters, it virtually eliminates the
direct feedthrough from the drive endcap to the detector
endcap (Wineland, Ekstrom, and Dehmelt, 1973).

The effect of the modulated trapping potential is to re-

where

2co )
(3.54)

(3.55)

In the experiments, this shift is used to calibrate the
strength of the modulation. After the calibration, the
modulation is reduced until the shift can no longer be ob-
served. In the electron geonium experiments, for exam-
ple, where v] ——1 MHz, the modulation drive strength is
often reduced until the axial resonance frequency is shift-

The parameter p is commonly referred to as the modula-
tion index in the literature on frequency modulation. It is
the ratio of the frequency excursion amplitude Eco, /2 to
the modulation frequency coi. In the geonium experi-
inents s is kept small enough so that P«1 even though
co, &&coi. We see from Eq. (3.53) that in the presence of
the frequency modulation the fundamental axial reso-
nance frequency is shifted to
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exp(iPsin8)= g e'" J„(P) . (3.56)

We obtain

sin f d t co,(t) = g J„(P)J„(P)sin[(co,'+neo))t
n, n'

—(COz +n CO ] )t ]

(3.57)

Thus a drive at frequency co,'+n. 'co& produces a response
at frequency co, +neo&, where n' and n are arbitrary posi-
tive or negative integers. We are particularly interested in
the situation of a small modulation index p. In this case
only the fundamental with n =0 and the sidebands at
n =+1 are of an'y importance, since J„(p)-p~" ~, and we
may use

ed by less than 1 Hz out of 60 MHz. This corresponds to
s & 5 X 10 and P & 1.5 X 10

Again examining the phase integral in Eq. (3.53), we
see that the frequency modulation also produces small
sidebands, overtones, and undertones at the modified fre-
quency co,

'
plus or minus an integer times the modulation

frequency co~. The corresponding Fourier components are
identified by the use of the generating function for the
Bessel functions

pm 2cuz

e —l @Of

COz —CO —t Pz /2

(3.61)

Except for the factor +p/2, this result is identical to the
resonant terms in Eq. (3.29), which gives the response for
the unmodulated case. Therefore the effect on the detect-
ed signal of the modulation of the axial frequency is sim-

ply to make the replacement

~D + zp~a. (3.62)

2zp Pal f dt dt'[co, (t) co ][co,—(t') —co ]

XF(t)F(t')&(t, t'), (3.63)

in which now

For the same applied endcap drive amplitude Vd, there is
no effect on the signal other than reducing it by an overall
factor of the modulation index p/2 and changing its
phase by 180' for a drive on the lower ( —) sideband.

Following the derivation of the noise fluctuations given
in Eq. (3.39) for the unmodulated case, the effect of the
modulation may be accounted for by writing

2

and

Jo(p) =1

J)(P)= —J )(P)=—,P

(3.58a)

(3.58b)

AT 1 —y, I
t —t'

I /2
C(t, t')=,, e

ntCOz [CO, (t)CO, (t')]'

Xcos, d t co,(t) (3.64)

With this review of some general aspects of frequency
modulation in hand, we return to the geonium experi-
ments in which there is a potential applied to an endcap,

VD '(t)= icos(co+coi)t .

The various overtones and undertones give negligible,
nonresonant corrections. However, since we do have a
sharp resonant denominator, small secular frequency
shifts could be important. Thus we need only retain the
time averages

Here u is near ~„and thus the + and —denote upper
and lower sidebands adjacent to cu, . This drive produces
the response [cf. Eq. (3.19)]

and

(
CO z(t) —CO COz —CO

[,(t)]' ' (co')' ' (3.65)

z(+)(t)
2zp7tl

Vd f dt'G, (t, t')cos(co+coal)t . (3.60)

Since the modulation amplitude is very small (E «1), we
approximate co,(t)=co,=co,(t') in the square root factors
in the Green's function defined by Eq. (3.52) and use Eq.
(3.57) for the sine appearing in this Green's function. We
retain only the component at frequency co, +co

&
(or

co, —co&) in the t' dependence of the Green's function,
since the other components are nonresonant and give very
small contributions. On the other hand, we need keep
only the components at frequency co, in the t dependence
of the Green's function. The amplitudes for other fre-
quencies are smaller by at least a factor of p, and these
frequencies also do not pass through the rf filter. Using
Eqs. (3.58) for small p, we find that

(3.66)

Therefore the only effect of any appreciable size caused
by the modulation is to replace the resonant frequency co,
in the result (3.42) for the unmodulated case by the per-
turbed resonant frequency co,

'
given in Eq. (3.55). In par-

ticular, we see that the noise is still "shorted out" at the
slightly shifted resonance frequency.

D. Anharmonic axiai resonance

The axial motion of a trapped particle in a laboratory
Penning trap can provide a vivid illustration of an anhar-
rnonic oscillator. The anharmonicity arises because actual
Penning traps do not produce a pure quadrupole poten-
tial, since their electrodes are not infinitely extended, per-
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feet hyperbolas of revolution. Even when the anharmoni-
city in the potential is very small, its effect on the axial
oscillation can be large because the quality factor Q of the
oscillation is so large —small nonlinear forces on a very
weakly damped oscillator produce large perturbations.
The amount of anharmonicity can be altered by changing
the voltage on compensation electrodes (see Sec. IX). Ad-
justments are made to minimize the anharmonicity by
monitoring the shape of the axial resonance, which we
consider here. This anharmonicity compensation process
is crucial in precision experiments. .It makes possible the
observation of the small shifts in this axial frequency (of
order 10 ) which arise from cyclotron transitions, spin
flips, and magnetron excitations, so that these are detect-
able.

Traps for precision work are constructed to maintain
carefully the basic symmetries of the quadrupole poten-
tial: invariance under rotations about the z axis and in-
variance under the refiection z~ —z. Thus a small octu-
pole potential

4

Neglecting the overtones gives

z (t)'= —,
' a'z (r), (3.71)

Q
co,(a)= 1+A, co, . (3.72)

This effectively linear equation has the familiar solution

eKVd 2 ~ 2 —1ae'"= [co,(a} i coy, ——co ]
2Zp m

(3.73)

The absolute square of Eq. (3.73) yields, in the narrow
resonance approximation,

where

2 2a max)'s/4

[co co, (a—)] +y, /4
(3.74)

and reduces the nonlinear equation of motion (3.68) to a
linear equation with an amplitude-dependent resonant fre-
quency

b, V= —,
'

VOC4 — P4,(cos8)
d

eV Vd
~max =

2zomyz~s
(3.75)

1=
2 VOCE (z —3z p +3p /8)I 4

d4
(3.67)

gives the leading anharmonic correction. Higher-order
terms are less significant for a particle that occupies only
a small volume at the center of the trap. The z p term in
the octupole potential (3.67) couples the axial and radial
motions. Replacing p by its average value produces a
slight shift in the axial frequency, which remains fixed as
long as the magnetron radius is not disturbed. Otherwise,
the effect of this coupling is insignificant, since the fre-
quencies of. the radial and axial motions differ greatly and
the coupling parameter is very small. Thus we need con-
centrate only on the z" term in the octupole potential,
which modifies the previous axial equation of motion
(3.9) to read

I I I
j

& ) I I I I I

(
! I I 'I

This nonlinear resonance is nicely discussed by Landau
and Lifshitz (1976, Sec. 29), and we follow their ap-
proach. Since co,(a) depends linearly on a [Eq. (3.72)],
the resonant form (3.74) gives a cubic equation for the
squared amplitude a . In general, the maximum amph-
tude a =a,„ is obtained at a shifted resonant frequency
co=co, (a~,„). With a small drive the maximum ampli-
tude a,„ is small, the nonlinear correction is negligible,
and the resonance curve has a Lorentzian shape, as shown
in Fig. 11. In this case, two of the roots of the cubic are
always complex and a is a single-valued function of the
drive frequency co. With a large drive, however, the cubic

8Z2

2 +P +6) 1+A,
dt dt 3d

Z=F . (3.68) O.S—

E(t}= V~coscot . (3.69)0
This drive produces a response at the drive frequency co

plus overtones at odd-integer multiples of co. The over-
tones involve powers of the very small coupling I, and

may be neglected. Hence the driven oscillation is still ba-
sically harmonic, with. the response

z(t) =a cos(cot f) . — (3.70)

Recalling that co, =eVO/md [Eq. (2.7)], we see that
A, =(3/4)C4. As will be discussed in Sec. IX,

~

A,
~

ranges
from about 10 for a good but uncompensated trap to
10 for a compensated trap.

With a sufficiently strong drive such that the noise is
relatively small, we may approximate the total force by
that of the coherent drive

06
O

O 04—

0 0
2 ((u —(u, )/y,

FIG. 11. Squared amplitude of an anharmonic oscillation vs
the frequency of the driving force for three values of the anhar-
monicity parameter N defined by Eq. (3.79b). For N=0 the
response curve is the familiar Lorentzian. For the critical value

N =1, the response is skewed to the right but remains single
valued. %"ith N ~ 1 the response has a triple-valued region, as
illustrated by the curve for N = 10.
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has three real roots for a certain range of the drive fre-
quency m, and a is a triple-valued function of co in this
range. Figure 11 also shows a plot of a vs co for this
case of large drive. '

The triple-valued region is the range in u between the
points labeled by 3 and 8 in Fig. 11, the two points
where the slope of the graph is infinite, da /dco= ao. In
general, differentiating Eq. (3.74) with respect to co, using
Eq. (3.72), and rearranging the terms, one finds that

dQ = —2a [(co—co, ) —~,a /d ]

o 0.6—
CU E0

04—

0.2—

I I 4 I
I

I I I I

J
1 I / 1

I
I I l 1

&([(co co, ) —4(co —co, )A—co,a /d

+3(A, coa /d )z+y, /4j (3.76)

At the points A and B, the second quantity in square
brackets in Eq. (3.76) vanishes, giving a quadratic equa-
tion for (co —co, ) which has two solutions. These roots to-
gether with Eq. (3.74) determine the positions of points A
and B. The oscillation corresponding to the portion of
the resonance curve between points A and B is
unstable —a small disturbance gives rise to a correction
which grows exponentiaHy in time. ' Thus -the nonlinear
resonance exhibits hysteresis: If the resonance is excited
by starting at a low drive frequency and then slowly in-
creasing the frequency, the amplitude of the response in-
creases until point B is reached, at which point the ampli-
tude discontinuously drops to the lower branch of the res-
onance curve and stays on this branch as the frequency is
further increased. On the other hand, starting with a high
drive frequency and then lowering the frequency gives a
response which follows the resonance curve until point 3
is reached, at which point the amplitude discontinuously
jumps to the upper branch and continues along this
branch as the frequency is further decreased. This
phenomenon is illustrated by the theoretical curves in Fig.
12 and by the experimental results in Fig. 13.

The threshold for this nonlinear behavior is defined by
the condition that the two points A and B coincide, the
condition that the second quantity in square brackets in
Eq. (3.76) has a double root in (co —co,):

Inserting these constraints into the nonlinear resonance
formula (3.74) gives a = —,

' a,„, and Eq. (3.77) now yields
the condition for the threshold

/% f)l,
where

+max
2

(3.79a)

(3.79b)

I I I

0
p (cu-(u, )/y;

FKy. 12. The resonance profiles that would be observed experi-
mentally by sweeping the frequency of the driving force up or
down through the anharmonic axial resonance given for X =10
in Fig. 11.

j
A,

~
co,a /d =y, /2 .

The double root appears at

(3.77) 0 l 2
oxiol drive frequency

(kHz above v, ~62MHz)
co —co, =2k,co,a /d=+y, .

Note that it is simpler to plot cu as a function of a2 first, for
this entails only the solution of a quadratic rather than a cubic
equation.

~3This can be shown by examining the first-order perturbation
of the equation of motion (3.68) about the steady-state solution
(3.70). The resulting linear equation contains a parameter that
varies as cos2cot, producing parametric amplification if the
steady-state solution belongs to the resonance curve between A
and B.

FICs. 13. Anharmonic axial resonance of a single trapped elec-
tron in the trap of Fig. 1 observed under detection conditions
which correspond to y=0 in Eq. {3.36). The axial oscillation
was made deliberately anharmonic by adjusting the potential
applied to the compensation electrodes, and the frequency of the
driving force was swept in opposite directions (indicated by the
arrows) through resonance. When the trap was tuned to be as
harmonic as possible, the axial linewidth was only 6 Hz out of
62 MHz, so that this figure shows the resonant frequency being
shifted by approximately 700 linewidths. The shape of these
resonances is somewhat different from that of those of Fig. 12
because the detection electronics was saturating due to the large
oscillation being observed {Gabrielse and Dehmelt, 1982).
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As we noted at the beginning of this section, even for a
small anharmonicity

~

A,
~

and a small maximum driven
amplitude a,„, a nonlinear resonance can appear, since
the damping constant y, is so small. To put this in clear
experimental parameters, we rewrite Eq. (3.79a) in terms
of the energy in the axial oscillation at maximum ampli-
tude, Em» ———,

' m co,a m,„, and the quality factor
Q =co, /y, . Remembering that co, =eVO/md, where Vo
is the voltage applied between ring and endcaps, we get

eVo

2ik, iQ
(3.80)

We recall from Tables I and III that, even for a thermally
excited axial oscillation, E/eV0-10, while Q=10".
Hence, even at this minimal level of axial oscillation, the
motion will be in the nonlinear regime unless

~
A,

~
& 10

In general, the dimensionless parameter iV completely
describes the shape of the nonlinear resonance. To see
this all we need do is to use Eqs. (3.79b) and (3.72) to
write the resonance form (3.74) in terms of scaled vari-
ables.

Q

2~ max
1+4

CO COz Q
2

yz + max

2 —1

(3.81)

E. ion cyclotron notion

The cyclotron oscillation of a trapped proton or a
heavier ion is typically at a radio frequency. Unlike the
cyclotron motion of an electron in a strong magnetic
field, this motion can be interrogated in a way very simi-
lar to that we have discussed for the axial oscillation.

With N =0 we get the familiar Lorentzian profile. As N
increases we obtain a family of resonance curves, as
shown in Fig. 11. With

~
N

~
large, the curve is, for the

most part, a narrow sheaf of thickness 5rv=y, about the
line (co —co, )/y, =Na /a, „,as shown in Fig. 14.

Moreover, the radiative damping that was significant for
the case of the electron is negligible for a cyclotron
motion at a radio frequency. Thus an external circuit
must be used to damp the cyclotron motion. To allow the
cyclotron motion to induce a current through an effective
resistor that represents the external detection circuit, it is
necessary to split the ring into at least two parts, which
are then connected with the resistor. To emphasize the
analogy with the axial detection and damping circuit in
Fig. 9, we show a possible idealized circuit in Fig. 15.
The ring electrode is divided into 4 quadrants, as was
done by Van Dyck, Schwinberg, and Bailey (1980), but
with somewhat different electrical connections. The left
quadrant is driven, and the resistor is connected to the
right quadrant, in direct analogy to the endcaps in Fig. 9.

. The upper and lower quadrants make up the current re-
turn paths for both the drive current and the induced
current I, in direct analogy to the ring electrode in Fig. 9.

The radial cyclotron and magnetron motion p(t) follow
from an argument that parallels the discussion of the axi-
al motion given in Sec. III.A. The electric field induced
by the signal and drive voltages produces a force on the
1on:

I

F= (VD —Vg)x .
2pp

(3.82)

where, as before, v is the Johnson noise voltage in the ef-
fective resistor R. As described in Sec. III.A, the conser-
vation of energy requires that the radial motion induce a
current I given by

Here ~ is a dimensionless constant of order unity, which
depends on the specific geometry of the trap. This con-
stant would be exactly equal to one if the opposing ring
sections were flat plates with no screening from the other
electrodes. The signal voltage is given by

(3.83)

l.O

I

/

I

segmented
rfng

electrode

0.8

06
O

04

04
VD

- drive
noise

Vs signal

20 40 60

2 (ld QJZ)/yz

80 l00

FICx. 14. Squared amplitude of an anharmonic oscillation vs
the frequency of the driving force for a large value of the anhar-
monicity parameter, N =100.

FIG. 15. Idealized radio-frequency circuit, which could be used
to damp and detect the cyclotron oscillation of a trapped parti-
cle when this frequency is a radio frequency. The x component
of the cyclotron motion induces a current I through the resistor.
The cyclotron motion is driven by the oscillatory potential VD

and by the Johnson noise from the resistor v, while the signal
voltage Vz is detected. This circuit is directly analogous to the
circuit in Fig. 9 for the axial motion.
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e~'
px .

2po
(3.84)

Looking back over the derivation of the equation of
motion (2.15), and recalling the formula (2.19) for p„, it is
easy to see that with the addition of the force F we now
have

Ie~+ ( V~ —v)x,
2pom

(3.85)

where

I 2
etc' R
2pp m Q)+ —Q)

(3.86)

The cyclotron and magnetron motions are coupled togeth-
er by the first term in parentheses in Eq. (3.85). Since the
two motions have very different resonant frequencies, this
coupling is proportional to a very small parameter
y+/(co+ —co ), and it may be neglected. Omitting this
nonresonant contribution of V' ' to the cyclotron equa-
tion of motion for V'+', taking the time derivative of the
x component of this equation, and substituting the equa-

tion of motion for V»+' yields the second-order equation
of motion

d
2+y+ +~+ &„+ = (Vg) U) . (3.8—7)

This result is a precise analog of the axial equation of
motion, Eqs. (3.9) and (3.10). In particular, y+ is the
damping constant for the energy in the cyclotron motion.
Taking sc'=1 and using R =1.6&10 Q and the proton
parameters listed in Table II, we obtain y+ /2m

=y, /2m=10 mHz, which was listed in Table IV. As
was the case with the axial resonance, the noise is "short-
ed out" on resonance.

A similar second-order equation of motion describes
the rnagnetron motion V' ' but with the damping con-
stant y+ replaced by —y . This equation produces an
exponential increase in the magnetron radius, since re-
moving energy from this motion causes the ion to run
down the radial potential hill. The rate of exponential in-
crease y is, however, smaller than y+ by a factor
co /co+. This factor is the ratio of the magnetron to cy-
clotron velocities for equal radii and thus is the ratio of
the currents that these two motions induce. In addition,
since the detector consists of a tuned circuit, the effective
resistance R is generally very different at the cyclotron
and magnetron frequencies. If the circuit tuned to detect
and damp the cyclotron motion has a quality factor Q,
then the effective resistance for a magnetron motion far
below this resonance is the much smaller series resistance
of the circuit, r =R/Q, and the rate of exponential in-
crease of the magnetron motion can be very small,
y =y+co /co+Q . Using the typical values for the pro-

ton co /co+-10 and Q =10,we have a very long tiine
constant 1/y =10' sec, which is, nevertheless, much
shorter than the time constant for radiative' "decay" de-
rived in Sec. II.E. This illustrates how the trap imperfec-
tions can be more important in heating the magnetron
motion than is the radiative "decay. "

The illustrative circuit in Fig. 15 suffers from the same
experimental difficulty as does its axial analog in Fig. 9:
the drive signal VD is capacitively coupled to the detec-
tion electronics. This direct feedthrough can be reduced
in the axial case by modulating the trapping potential (as
discussed in Sec. III.C). The axial drive is then applied at
a frequency different from the oscillation frequency of
the trapped particle that is detected. An analogous fre-
quency modulation in the cyclotron case is a modulation
of the magnetic field, but this is difficult to implement
experimentally. A detailed discussion of alternative ex-
perimental techniques for reducing the direct feedthrough
is beyond the scope of this work, but these techniques do
not modify our previous discussion in any essential way.
For example, a sample of the drive signal can be fed
directly to the top of the resistor (as has been done in the
axial case by Wineland, Ekstrom, and Dehmelt, 1973).
The amplitude and phase of this sample are adjusted to
cancel the direct feedthrough. A variation being used in a
current proton experiment is to drive the opposite seg-
ments of the "quad ring" on the y axis and connect the
effective resistor across the segments on the x axis (Van
Dyck, Schwinberg, and Bailey, 1980). Proper adjustment
of the phases of the driving signals causes the directly-

. fed-through signals to cancel exactly. A third possibility
is alternately to drive and detect, as is done in pulsed
NMR experiments.

IV. COOLING THE MAGNETRON MOTION

Precision experiments on geonium require that the
charged particle go about very small orbits. The inhorno-
geneities in the electrostatic potential and in the magnetic
field broaden and shift the observed lines if the orbits are
large (see Secs. III.D and VI.C). The axial and cyclotron
motions are rapidly cooled to the ambient temperature by
resistive and radiative damping (see Secs. II.E, III.A, and
III.E). On the other hand, the magnetron motion must be
cooled separately. This motion is unstable, and any dissi-
pative process that removes energy from it increases the
magnetron radius until the particle strikes the ring elec-
trode and is lost from the trap. Fortunately, the damping
time is very long, so that the magnetron motion is essen-
tially stable. This same stability, however, implies that a
charged particle injected into a large magnetron orbit (as
often occurs) remains in that large orbit. Thus it is cru-
cial that an external mechanism for cooling the magne-
tron motion be employed. This has, in fact, been done
(Van Dyck, Schwinberg, and Dehmelt, 1978) with the
method of "motional sideband cooling" (Wineland and
Dehmelt, 1975a). The method is described in this section.
Related theoretical work is given by Vyatchanin (1977)
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and by Wineland (1979). We do not discuss laser cooling
of ions. '

Since the magnetron motion is unstable, this cooling in-
volves adding energy to move the. particle to the top of
the repulsive radial potential hill. Although this is entire-
ly a classical process, we first outline the cooling mecha-
nism using the language of quantum mechanics and ther-
modynamics (Sec. IV.A), since this provides a simple,
basic description. %'e then discuss cooling and heating
rates (Sec. IV.B). The prototype used in both of these sec-
tions is the cooling and heating of the magne-
tron motion via a coupling to the axial motion. In Sec.
IV.C we extend these results to include heating and cool-
ing of the axial motion as well as the magnetron motion,
via couplings to the cyclotron motion. Finally, in Sec.
IV.D, we return to the prototype. A rigorous mathemati-
cal treatment using the Green's-function technique shows
how the cooling limit is achieved and demonstrates that
the axial motion is decoupled from a resonant axial drive
when the cooling drive is exactly resonant. This decou-
pling phenomenon is useful for measuring the magnetron
frequency.

axial
levels

fl ( QJz + QJ )

mag netron
I eve ls

A. Cooling limit

The energy levels for the combined axial and magne-
tron harmonic oscillations (with quantum numbers k and
I, respectively) are sketched in Fig. 16. Suppose that a
system initially in the (k, l) level interacts with a photon
of energy fi(co, +co~). The interaction proceeds in two
ways. On the one hand, the magnetron motion is cooled
when the photon is absorbed via the transition
(k, l)—+(@+i, l —1), since the magnetron quantum num-
ber is reduced. The transition rate for this cooling pro-
cess involves the square of the matrix element of the
operator a,a, and thus it contains the factor (k+1)I.
On the other hand, the magnetron motion is heated when
the photon stimulates the transition (k, l)~(k —1,/+1).
The transition rate for this heating process involves the
operator a,a, and thus it contains the factor k(l+1).
Except for these different factors, the two rates are other-
wise identical.

The cooling rate dominates if l &k. This is the situa-
tion that pertains for a large magnetron radius. Cooling
of the magnetron motion continues as additional photons
of energy A'(co, +co ) are supplied, until I =k, at which
point the cooling and heating rates are equal. No long-
term change in the level of axial excitation occurs in this
process as long as the axial oscillation is in contact with a
thermal reservoir, which removes the excess energy (the
reservoir is the external circuit that acts as a resister at

4Photon emission also causes recoil heating of trapped ions.
In the case of laser cooling of ions, the cooling limit provided by
such recoil heating is larger than the thermodynamic limit dis-
cussed in this section (Wineland and Itano, 1979).

FIG. 16. Energy levels for combined axial and magnetron oscil-
lations, with quantum numbers k and I, respectively.

temperature T,). Because a thermal distribution of ener-
gies is involved, the cooling continues until the thermal-
averaged quantum numbers are equal, (I & =(k &. Since
the axial and magnetron energy levels are given by
Ek=fnu, (k+ —,') and EI = %co~(1+——,'), this corresponds
to a maximum magnetron energy

This is the result quoted in Eq. (2.58), and it was used to
obtain the magnetron orbit parameters displayed in
Tables III and IV. This limit was discussed by Vyatcha-
nin (1977) and Wineland (1979).

The magnetron motion is always heated if the system
interacts with a photon of energy fi(co, —co~). In this case
the "upward" transition rate for (k, l)~(k+1,l+1) in-
volves the square of the matrix element of the operator
a, a and thus contains the factor (@+1)(l+1),while
the "downward" rate for (k, l)~(k —l, l —1) involves
a,a and contains the factor kl. Hence the "upward"
rate a1ways exceeds the "downward" rate, resulting in a
net heating of the magnetron motion.

The cooling limit for the magnetron motion, Eq. (4.1),
can also be obtained from a thermodynamical argument
(Wineland and Itano, 1979). The absorption of a photon
of energy A'(co, +co ) may be thought of as adding heat
b,g, =fun„hQ =Ace to the axial and magnetron
motions, which are at the temperatures T„T . Since
(E,s & =k&T &0, the magnetron "temperature" T is
negative. The net entropy change in this process is given
by
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b,Q, b,QES=
g m

(4.2)

The cooling can continue until a reversible cycle is estab-
lished where AS=0. Thus the magnetron temperature
can be cooled to the limit

b,Q
1S gQ Z (4.3)

which is equivalent to Eq. (4.1).
Planck's constant R does not enter into the cooling limit

[Eq. (4.1)]. Moreover, the quantum numbers even in the
cooled limit are very large (k =1=10 ). Hence the cool-
ing process can be described by an entirely classical treat-
ment, which has the advantage of providing complete in-
formation on this process in a relatively straightforward
way. This is done in the following sections. Here we note
that although the simple argument used to derive the
cooling limit [Eq. (4.1)] assumed that the drive was exact-
ly on resonance, co~ ——co, +m . We show in Sec. IV.D
that this limit is achieved even when the drive is off reso-
nance by many line widths y„and even if the amplitude
of the cooling drive is large.

A very clear demonstration of sideband cooling and
heating is given in Fig. I7. The axial oscillation frequen-
cy (vertical scale) was monitored as a function of time
(horizontal scale). The magnetron motion was first
cooled for a.long period by the application of an inhomo-
geneous electric field at frequency co, +co~. The frequen-
cy of this field was then changed to co, —co~, giving a
heating drive. As we shall explain in the next section, the
magnetron radius grows exponentially, and this growth is
observed as an exponentially increasing shift in the axial
frequency because the magnetic bottle used in this experi-
ment makes Aco, -p~ (see Sec. VI.A). When the heating
drive was turned off, the exponential growth stopped. Fi-
nally, the cooling drive was reapplied to return the mag-
netron motion to its original size. By fitting the exponen-
tial, the minimum value of the magnetron radius was

determined to be p =1.4&&10 cm. This is a factor of
20 larger in radius and a factor of 400 larger in energy
than the cooling limit from Eq. (4.1) that was listed in
Table III. More recently, another measurement (Ga-
brielse and Dehmelt, 1982) was carried out in a different
trap that had no magnetic bottle. The calibrated electro-
static anharmonicity (see Sec. IX.B) was used to make
changes in the magnetron radius observable as shifts in
the axial frequency. The same value of the minimum
magnetron radius was measured.

B. Cooling and heating rates

The cooling or heating of the magnetron motion is ac-
complished by the introduction of an inhomogeneous, os-
cillatory electric field, which couples the otherwise isolat-
ed magnetron motion to the axial motion, which in turn is
in contact with a thermal bath. Such a drive can be pro-
duced by applying an oscillating voltage between a seg-
ment of a compensation electrode and the ring electrode
of the Penning trap (cf. Fig. 1) or between other probes
introduced into the trap and the ring electrode. The ap-
plied drive at frequency cod produces a potential near the
center of the trap given by

V=/c ( Vd ld )xz coscodt . (4 4)

V=a ( m co, le)xz coscoqt,

in which

(4.5)

a =z"Vd/Vo

Here Vd is the amplitude of the drive voltage, d is the
characteristic trap dimension [Eq. (2.5)], and a" is a di-
mensionless constant that depends in an essential way on
the electrode geometry and that is, therefore, difficult to
estimate. Recalling that co, =eVO/md [Eq. (2.7)], we
find that it is convenient to write this oscillating potential

E
E

0.2—
2
Z3o

a O. I—
o

o—

off, =I

SB —drive
I(v, —y~) on & off ~(v, +u~)on

—50

—20 ~

—IQ—

I

2
Time ( minutes)

is a dimensionless parameter. Including the oscillating
potential (4.5) and an extra external force, mf, (t), in the
axial equation of motion gives

z +y, — +co, z(t) = —aco,x (t)coscodt+f, (t) .

(4.7)

Looking back over the introduction of the vectors &' +—'

[Eqs. (2.13)—(2.15)], it is easy to see that the effect of the
oscillatory potential on the radial motion can be conveyed
by

(+) (+)V„—(t) = —co+ V~
—(t) aco,z (t)coscodt+ f„(t)lc—o2

FIG. 17. Demonstration of sideband cooling and heating by
Van Dyck, Schwinberg, and Dehmelt (1978). Changes in the
axial oscillation frequency (vertical scale) are proportional to the
square of the magnetron radius because of the presence of a
magnetic bottle and are monitored as a function of time (hor-
izontal scale).

along with

(4.8a)

(4.8b)
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which is identical to Eq. (2.15). Here we have reverted to
the notation ~+ ——cu,', co =co~ and included an extra
external force, mf„(t)/co, for the x component of the
motion. According to Eq. (2.18) we can write the coordi-
nate x(t), which appears in the axial equation of motion
(4.7), in terms of V' +—',

t t I I

y(+)(r) y( —)(i)
x(r)=

N+ —CO
(4.9)

and thus close the system of equations. We shall assume
that the drive frequency co& is near to one of the two fre-
quencies co, +~ . Since the velocities V'+—' resonate at the
frequencies co+, we see that only the magnetron motion
V' ' contributes terms close to the resonant frequency
co, . The off-resonance terms produce a negligible
response. Thus we write the axial equation of motion as

QCO
2

0
CP

L
O

2 +y, +co, z(t) =
dt2 dt V» ( r)coscog i

+f,(r) . (4.10)

Taking the time derivative of Eq. (4.8b) and substituting
the result in Eq. (4.8a) yields a second-order equation for
the magnetron motion:

+co V' '(r) = aco co,z—(t)coscoqt+ f„(t) .
dt2

(4.1 1)

Equations (4.10) and (4.11) are the basic equations that we
shall use to describe the magnetron cooling and heating.

Before solving these coupled equations, it is worthwhile
to comment on some of their general features. Note that
there is no dainping on the left-hand side of the magne-
tron equation of motion (4.11). Hence if there were a
nonvanishing effective force on the magnetron motion
[the right-hand side of Eq. (4.11)] oscillating at the
resonant frequency co, the amplitude of the magnetron
motion would increase without bound. An axial oscilla-
tion z(t) driven by an extra force mf, (t) at the frequen-
cies co=coq+co would produce such resonance force on
the magnetron motion. As we shall show in detail in Sec.
IV.D, however, an extra force mf, (t) at the frequencies
co=co~+co actually produces no response in the axial os-
cillation, and thus the magnetron motion is not blown
away by this mechanism. This decoupling of the axial
motion provides an accurate method of measuring the
magnetron frequency. The axial motion is monitored, as
is often the case, by measuring the feedback voltage that
must be added to the trapping potential to keep the axial
oscillation at a fixed frequency co, . When the drive fre-
quency co& is swept through co~+co =co„ the amplitude
of the axial oscillation vanishes, and the feedback system
becomes unstable since it receives no signal. This
behavior is iBustrated in Fig. 18.

The cooling or heating occurs in the absence of extra
external forces. Thus we set f,=0=f„ in Eqs. (4.10) and

I I I

p + g/
Z

cooling drive frequency, y (Hz)
FIG. 18. Narrow feature arising from the decoupling of an axi-
al drive at v, when a cooling drive at v, +v~ is applied (Ga-
brielse and Dehmelt, 1982). Because the axial motion is decou-
pled from its drive, the shape of this feature depends on the
electronics of the locking loop. The width of this feature is at
least as narrow as the 0.1-Hz resolution in the drive frequency.
Such measurements give a precise determination of the magne-
tron frequency.

(4.11). The differences in the signs of the oscillatory cou-
pling terms on the right-hand sides of Eqs. (4.10) and
(4.11) reflect the instability of the magnetron motion,
which has a negative Hamiltonian. It is this difference in
sign in the classical equations of motion that causes the
heating to occur at -co~ -co, —co and cooling to occur at
mg-~, —co rather than the other way around. To see
how this happens, let the drive be exactly on resonance,
m~ ——cu, +co, and replace the exact magnetron motion
by the approximate short-term behavior Vy
—exp( iso t) Inser—ting this. on the right-hand side of
Eq. (4.10) gives a driving force at the axial
frequency and thus a resonant axial response z ( t)
—+i exp(+ice, t). Inserting this in turn on the right-hand
side of Eq. (4.11) produces a resonant force proportional
to +d V» '(t)/dt, which drives the magne-
tron motion. With a cooling drive (lower —sign) this is a
viscous, damping force; a heating drive (upper + sign)
gives an antidamping force.
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I.et us now derive the rate at which the magnetron
motion is heated by a drive at the frequency ~~ -~,—co

or cooled by a drive at cod -co, +~ . The formulas are
simplified by writing

I I i i
]

/ I i I I I I I
I

I I I I

Q)d =Q) +CO +E (4.12)

with the upper sign in what follows always referring to
heating, the lower to cooling. We look for a solution in
which V» '(t)-exp( irot)—, where co=co . Neglecting
the nonresonant part, the coupling of V„' '(t) in Eq. (4.10)
leads to an axial oscillation

z ( t)-exp I +i [ro, + (ro ro)—+e]t I .

Again neglecting the nonresonant part, the coupling of
z(t) in Eq. (4.11) reproduces the exp( —irot) behavior. In
this way the pair of coupled differential equations (4.10)
and (4.11) are reduced to a pair of simultaneous, homo-
geneous, algebraic equations. Such equations have a solu-
tion only if their determinant vanishes. In the narrow res-
onance approximation, the determinant here is given by

p
-IO IO

FICx. 19. Line shapes of the cooling rate y'+', as given by Eq.
(4.15) for several values of yp/y, . With appropriate interpreta-
tion, these line shapes apply to the analogous decay constants of
Sec. III.C as well.

+(ro —co ) —e+iy, /2 ——„'aro, /(ro+ —co )
V' '(t)-exp[ —,' y'+ (e)t], — (4.17)

D+(ro) = 2
4 amz

(4.13)

The condition D+(ro)=0 is a quadratic eigenvalue equa-
tion fol' co.

The two roots of the eigenvalue equation give the two
normal modes of the coupled system. With the coupling
constant a small, one solution is co =~, corresponding to
an excitation of the magnetron motion V» '(t)
-exp(iro t), the other solution is ro=co +e correspond-
ing to an excitation of the axial motion z (t)-exp(+iso, t).
We are interested in the normal mode that corresponds to
magnetron excitation in the limit a —+0. (The other nor-
mal mode, corresponding to axial excitation in this same
limit is discussed in Sec. IV.D.) A short calculation
shows that this normal mode has the complex eigenfre-
quency 3.5 I f & I i

I
i I t l i I I f

I
i I f t

where the upper —sign denotes the heating drive and the
lower + sign denotes the cooling drive.

The line shapes for y~—'(E) from Eq. (4.15) are plotted
in Figs. 19 and 20. This line shape is more general than
the specific coupled equations used to derive it. It will
reappear repeatedly in Sec. IV.C, with y, replacing y„ to
describe cooling and heating of axial and magnetron
motions via various couplings to the cyclotron. motion.
The rate yo, however, will depend upon the specific cou-
pling. To see its significance, consider drives that are suf-
ficiently gentle, 4yo«y„so that energy is transferred
into the axial motion at a rate much slower than the axial
decay rate. Expanding the square root in Eq. (4.15) gives
the Lorentzian profile .

(4.14)
2.5

where

y
+ (s)=Im (E+iy, /2) 1 — 1+(+) .- XoYs

(a+i y, /2) i

2.0
phd

I.5

l

with

(4.15)

4y, (co+ —ro )
' (4.16)

while broi~+'(s) is a small frequency shift roughly of order
y'+'(e), which we do not write down explicitly since it is
of less experimental interest. The magnetron amplitude
behaves as

0
-IQ -5 0 5 IQ

Z&ryz

FIG. 20. Line shapes of the heating rate —y' ', as given by
Eq. (4.15) for several values of yp/y, . With appropriate inter-
pretation, these line shapes apply to the analogous decay con-
stants of Sec. III.C as well.
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(4.18)

Thus yo is the rate of heating or cooling on resonance
(a=0) for a weak drive. Figures 19 and 20 show that
both y'+'(s) and y' '(s) have a nearly Lorentzian line
shape for yo/y, =0.1. For higher drive powers the exact
formula (4.15) is required. The cooling rates (Fig. 19)
differ substantially from the heating rates (Fig. 20) in
both magnitude and shape. The most pronounced differ-
ence is that the maximum cooling rate y~+'(s=-0) satu-
rates at exactly y, /2 for yo) y, /4, while no such satura-
tion occurs for stron~ heating drives. The corresponding
frequency shifts he@~ '(s) are about the same size but
have a dispersive rather than an absorptive profile.

The Lorentzian shape of y~ '(s) and the broadened
shapes for higher-power drives were directly observed
with a single electron as illustrated in Fig. 21. The mag-
netron motion was first cooled as much as possible by a
strong inhomogeneous drive at co, +~ . The drive was
then decreased in amplitude and applied near the heating
sideband, at frequency co, —co +s. This weak heating
drive caused the magnetron radius to increase exponen-
tially until, after a time on the order of 10 sec, the mag-
netron radius was large enough that the electron was sam-
pling the anharmonic electrostatic potential away from
the center of the trap. The axial frequency (which was
being monitored throughout this process) shifted, and the
time required to produce a shift b,co, /co, =10 was
recorded. This process was repeated as a function of the

j ~ l a S

0.0 l5-

Ch

Os 0.0 Io—

0
2 e/7;

FICx. 21. Experimental observations of the heating line shapes
y' '(c, ) by Cxabrielse and Dehmelt (1982), as described in the
text. The error bars are statistical, and smooth curves are in-
cluded to aid the eye. The vertical scale is the inverse of the
time required to heat the magnetron motion from. the smallest
obtainable magnetron radius to the larger, observable radius.
Such measurements are rather time consuming, taking about 3
h of averaging time for each of the points farthest from the
center. The upper, broader curve corresponds to a higher
power, so that power broadening is clearly demonstrated, but
the power ratio is not well calibrated, owing to the very small
amplitude of the drives and the presence of radio-frequency
leakage paths. Moreover, it is difficult for the existing electron-
ics to follow the fast increase in the magnetron radius near reso-
nance, making the heights of the center points somewhat
suspect.

heating drive frequency co~ ——co, —ro +s. For a weak
drive, the observed width of the Lorentzian is the same as
that observed by sweeping out the axial resonance with a
drive near co, . As the drive was increased, the resonance
width was significantly power broadened, as illustrated by
the upper curve in Fig. 21. At these strong drives, yo-y,
(or larger). Using the parameters in Tables I and II, we
see that this corresponds to yo/2~=6 Hz, which implies
that a =10 . This is realized experimentally in the trap
shown in Fig. 1 with a drive amplitude V~ on the order of
microvolts.

C. Cooling and heating
via the cyclotron motion

%'e have seen how the axial and magnetron motions
may be coupled to cool the magnetron motion. In a simi-
lar fashion, oscillatory fields at the cyclotron sideband
frequencies ~+ —co, and co++co can couple the cyclo-
tron motion to the axial and magnetron motions to cool
them. The attractive feature of using the cyclotron
motion is that very low cooling limits,

TC (4.19)

C (4.20)

apply in light of the typical hierarchy of eigenfrequency
magnitudes [Eq. (2.12)). We should note that these limits
again correspond to equal quantum numbers. For the
electron parameters in Tables I and III, for example, the
cyclotron motion is in equilibrium with the blackbody ra-
diation of the trap, so that T, =4.2 K and n & 1. The ax-
ial cooling limit temperature is thus T, =2 X 10 K, pro-
vided that the axial motion is decoupled from its external
resistor (Sec. III) during the cooling process. For the
magnetron motion, the cooling limit is T~ = —3&10
K, which is many orders of magnitude lower than what is
attainable using the axial sideband. For the proton pa-
rameters in Tables II and IV, the cyclotron temperature is
again T, =4.2 K when this motion is coupled to the
thermal bath via an external resistor. The axial and mag-
netron limits from Eqs. (4.19) and (4.20) are still well
below the temperature of the thermal bath, with T, =0.6
K and T = —0.04 K, but are not nearly so low as in the
electron case, since the eigenfrequencies are much closer
to each other.

%'hile these coohng limits are very low, the rates for
achieving these limits are also very slow in some common
situations. To discuss the rates we must distinguish two
cases. For protons and heavier ions, the cyclotron fre-
quency (and hence the sidebands we are interested in here)
are radio frequencies. The wavelengths A,,=c/v, associ-
ated with these frequencies are thus much larger than the
dimensions of a trap, d. Just as for the axial sidebands al-
ready considered (Sec. IV.B), electric fields with sufficient

Rev. Mod. Phys. , VoI. 58, No. 1, January 1986



L. S. Brown and G. Gabrielse: Geonium theory

gradients can be produced by applying oscillatory poten-
tials to trap electrodes or electrode sections, since the
center of the trap is in the "near-field" region. For an
electron in a high magnetic field, as in Table I, however,
the cyclotron wavelength is A,,=0.2 cm, which is on the
order of the trap dimension d =0.34 cm, so that mi-
crowave drives directed between trap electrodes or
through slits in these electrodes are required. Coupling of
the motions to achieve cooling thus depends upon gra-
dients in the radiation electric fields and upon magnetic
forces that turn out to be of similar effectiveness. The
microwave cavity produced by the trap electrodes may
also significantly modify the radiation fields when A,, =d
(Sec. VIII).

For a cyclotron motion at a radio frequency, the cool-
ing of the axial motion via a coupling to the cyclotron
motion is very much like the magnetron cooling described
in the previous sections. The same oscillatory drive po-
tential [Eq. (4.4)] couples the motions except that the
drive frequency is now given by

cod =67++6) +6, (4.21)

with the upper and lower signs again referring to heating
and cooling, respectively. The signs here are reversed
compared to Eq. (4.12), which involves the inverted mag-
netron motion. The axial equation of motion,

d
+co, z(t) = aco,x(t)—coscodt,

t2
(4.22)

with

co=co +hco,'+ (e) ——y (s)
2

(4.24)

differs from Eq. (4.7) for magnetron cooling only insofar
as there is now no damping. The axial motion is assumed
to be decoupled from the effective damping resistor when
the oscillatory potential is applied, in order to allow this
motion to be cooled below the temperature of the resistor.
The first-order cyclotron equations (4.8), with the in-
clusion of cyclotron damping, yield the second-order
equation

d2
+y, +co+ V&+'(t) = aco+co,z(t)c—osco~t .

df

(4.23)
No additional external forces are included here.

The solution of this pair of coupled, second-order equa-
tions exactly parallels the solution of the earlier coupled
oscillator equations (4.7) and (4.11). The normal mode
that corresponds to the axial oscillation in the limit where
the coupling is removed (i.e., a —+0) has a complex eigen-
frequency

70 0

4y, (co+ —co )
(4.26)

These latter two expressions differ from their counter-
parts in Eqs. (4.15) and (4.16) in Sec. IV.B (for magnetron
cooling and heating via a coupling to the axial motion)
only insofar as y, replaces y, . For weak axial drives such
that 4ye«y„an expansion of Eq. (4.25) [just as in Eq.
(4.18)] yields a Lorentzian, and yo is the rate of cooling or
heating exactly on resonance (a=0). Again, the cooling
rate y,' ' saturates at y, /2 for increasingly strong drives,
while the heating rate continues to increase.

Although the cooling 1imits are much lower for an elec-
tron in a high magnetic field, it may be difficult to apply
a strong enough microwave drive to achieve reasonable
cooling rates. Since A., =d, the analysis of this case is
complicated because the propagation direction of the ap-
plied drive must be taken into account and because it has
been demonstrated that the trap electrodes act as a mi-
crowave cavity, which modifies the microwave fields To.
illustrate the principal features of cooling with a mi-
crowave drive, we neglect the cavity effects and consider
the coupling of the cyclotron and axial motions by means
of a microwave field traveling along the z axis,

E=x 8' sincod(t —z/c),
B=y 8'

sincod (t —z /c),

(4.27a)

(4.27b)

(4.28)

Notice from the right-hand side of this expression that if
the axial oscillation z(t) is directly on resonance at co„an
effective cyclotron drive near resonance at co+ is produced
with effective strength reduced by the factor
zcod/c=10 '. The axial force is the magnetic Lorentz
force, (e/c)pXB. Using Eq. (2.19) to write p„ in terms of
m+ V„'+'=V~+', the axial equation of motion is given by

with cod again given by Eq. (4.21). Plane waves propaga-
ting in other directions generally give cooling and heating
effects of the same order. Referring to Tables I and 111,
one finds that an electron initially in thermal equilibrium
at T, =1.0 K has an axial oscillation amplitude that is
small compared to A, In particular, zcod/c =10 ' and
the plane wave in Eq. (4.27) can be expanded in powers of
this small ratio, and all but the leading terms that couple
the cyclotron and axial motions can be neglected. Includ-
ing the radiative damping of the cyclotron motion and
proceeding in a manner that closely parallels the deriva-
tion of Eq. (4.11), one finds that the cyclotron equation of
motion 1s g'1ven by

T

2 ~+~ e8'co+co&
, +r. +co+ V, (t)=- z (t)coscodt .dt mc

y,' —'(E)=Im (s+t'y, /2) 1 — 1+
(E+iy, /2)

d q eS' ~+~+co, z(t)= Vy (t)sincodt .
dt tttc co+ co— (4.29)

(4.25)
As in Eq. (4.22), no axial damping constant is included
here corresponding to the requirement of decoupling the
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axial motion from an external resistor. The coupled pair
of equations, (4.28) and (4.29), are very similar to those
we have been discussing, and it is easy to show that the
coupling of the axial and cyclotron motions by the plane
wave in Eq. (4.27) produces an axial "damping" constant

y,' —'(e, ) given by the earlier Eqs. (4.24) and (4.25) but with

e O' Co+Cod
2 2

3 0
4y, m c co,(co+ —co )

(4.30)

as the basic rate constant.
Relatively higher-power microwave drives are required

for heating and cooling than for direct cyclotron excita-
tion. To illustrate this we note that a direct cyclotron
drive on resonance,

E=x 5' cosco+t,

produces a cyclotron excitation energy

mCO+ e g
2 6)+—6) p Ptl

(4.31)

(4.32)

This can be used to eliminate 8' in the rate yo, yielding

Ec COd

VO 2 Xc me' ~,
(4.33)

Using the typical electron parameters, we see that achiev-
ing yo-y, requires a microwave drive that would pro-
duce a cyclotron excitation energy E,=1 keV if directly
applied. The largest excitation measured so far, however,
is only 10 eV (Gabrielse, Dehmelt, and Kells, 1985).
However, slower rates could still be useful and higher mi-
crowave powers can certainly be generated.

The magnetron motion can also be heated or cooled
with an oscillatory drive at frequency

Cgg =CO++CO +6, (4.34)

z 2 p2/2V= Vo (1+a coscodt} .
2d

(4.35)

The cyclotron and magnetron motions are coupled by the

p term. However, closer scrutiny shows that the driving
field rotates in such a way as to produce only heating but
no cooling of the magnetron motion. On the other hand,
the ring electrode can be split and oscillatory potentials
applied so as to produce the potential

which couples the magnetron and cyclotron motions. As
before, the upper —sign appears for heating, the lower
+ sign for cooling. Let us first consider the case of an

ion in which the cyclotron motion is at a radio frequency,
so that the wavelength A., associated with the cyclotron
frequency is much larger than a typical trap dimension d.
The inhomogeneous field can be produced by applying an
oscillating voltage to trap electrodes. It might seem that
one could cool and heat the magnetron motion by simply
modulating the trapping potential,

of motion are akin to those already considered. Now one
finds that only a cooling drive can be produced. The
solution of the equation of motion yields a complex eigen-
frequency (4.14), in which cooling rate y~+'(E) is given by
Eq. (4.15) with the lower + sign in the square root, with

,y, replaced by y„and with

4a co,
"

, (4.37)'Vo=
P~ (Co+ —CO )

This is the damping rate for a weak, on-resonance drive.
To understand the case when the wavelength corre-

sponding to the cyclotron motion A,, is on the order of the
trap dimension d, we again use plane waves similar to
those given in Eq. (4.27), but with oscillation frequency
cod given by Eq. (4.34) and with the roles of z and y inter-
changed. Expanding the plane waves and solving the re-
sulting coupled equations, with the neglect of small terms
of order co /co+, yields again the complex eigenfrequency
given in Eqs. (4.14) and (4.15). The basic rate, however, is
now given by

1 e
VO 4 Vc PzC

(4.38}

Comparing this rate to that for the axial motion in Eqs.
(4.30) and (4.33) shows that it is smaller by approximately
the ratio co, /co+, which is less than 10 for the electron
parameters in Table I. Such a rate would be very difficult
to observe with the relatively weak microwave sources
presently used in the precision experiments.

D. Detailed calculation

We now return to the prototype problem of cooling and
heating the magnetron motion via the coupling in Eq.
(4.4), which was discussed earlier in Sec. IV.B. The
rigorous mathematical treatment provided here shows
directly how the cooling limit is approached and demon-
strates the decoupling of the axial motion from a resonant
axial drive which occurs when the cooling drive is exactly
resonant. We solve the driven, coupled pair of equations
(4.10) and (4.11) by the Green's-function technique and
use operator methods to simplify and clarify the overall
procedure. To introduce the notation, consider first the
uncoupled case with a =0. In this case, the Green's func-
tion for the axial equation of motion (4.10) is the function
G,(t t') defined by—Eq. (3.14}. In the operator notation

G, (t —t') =(t
i G, i

t'),
5( t t') =(t

i
1—

i
t'),

(4.39)

(4.40)

in which

the Green's-function equation (3.14}appears as simply

(4 41)

V= a (mco, /e)xy coscozt . (4.36)

The corresponding pair of coupled differential equations
(t iG, 'it'&= (4.42)

2 +y, +CO, 5(t t') . —
dt
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The ordinary Green s-function equation (3.14) is obtained
by taking the (t i i

t') matrix element of Eq. (4.41) and
inserting the resolution of the identity

and

2a o),u
G~ + coscod tGZ coscod t Gppgyyg 1 o (4.50b)

1= f dtidT)(dti (4.43)

between the two operators 6, ' and 6, . The uncoupled
magnetron Green's operator G~ is defined by

G~ 'G~ =1, (4.44)

where

The cooling potential appears in these equations in the
fol m

(t
i

coscod tg costumd t
i

t')

1 &~g(t —t') —ice&(t —t')
e

d2
(t

i
6 ' it')=,+co' l(t t') . — (4.45) (

I i (t

Gm. 6
j f„ (4.46)

To make sure that our notation is understood, let us write
out explicitly that Eq. (4A6) gives

z(t)= f dt'G (t, t')f, (t')+ f dt'G (t, t')f„(t')

(4A7a)

and

V„' '(t) = f dt'G (t, t')f, (t') + f dt'G (t, t')f„(t') .

The steady-state solution to the driven, coupled pair of
equations (4.10) and (4.11) is obtained by a 2 X 2 matrix of
Green's operators,

6 f,

g ( i) g( )
iso(i z—')—

2n
{4.52)

to secure
4

Gz '(~)+
4 [Gm(~+~a)+6~(~ —~d)]4 co+ —co

where 6 is either G, or 6 . The effects of the terms in-
volving exp[+icod(t+t')] are very small. Treating these
terms as a perturbation, one finds that they give rise to
sideband oscillations displaced in frequency by
+2nd, +4md, . . . , with these sidebands suppressed by
large, nonresonant denominators. We neglect them. The
remaining terms are invariant under time translations.
Hence we may Fourier transform according to the generic
formula

The matrix form (4.46) gives the solution to a coupled
pair of equations if the 2X2 matrix Green's operator
obeys

G
—1

Xg (co)=1 (4.53a)

G ~ '(co) + [6,(co+cod ) +Gz(co —cod )]4 ci)+ —co )

aco co,cos~d t2

G G, I O
X g g =

0 1
~ (44&)

NRZ NlNl 6 z (Cg) =CO+ —11'zCO —CO (4.54a)

X G ~(ap)=1 . (4.53b)

The Fourier transforms of the uncoupled Green's func-
t&ons that appear here are gIven by

Here t denotes the operator for the time coordinate,
t

i
t') =

i
t')t', ( t

i
t = t (t

i
. Multiplying out the matrices,

it is easy to solve for the off-diagonal elements in terms of
the diagonal, elements,

QQP
2

Gzm Gzcosct)d tGmm (4.49a)

and

and

6 ~ ( co ) =co —co (4.54b)

Gzz(co) = coz —t 1'zco —co
2 ~ 2

The structure of the axial Green's function is rather
simple. Using Eqs. (4.54) in Eq. (4.53a), we find that

G~ = —@co cozG~coscodtGzz . (4A9b)

4a 6)zoo
G, + cosco~tG cosmd t G (4.50a)

Using Eqs. (4.49) to ehminate the off-diagonal elements in
Eq. (4.48), we secure a pair of uncoupled equations for the
diagonal elements:

a mZ~
2 4

I+ '
24(ciP+ —co ) ~ —(~+~d )

2

+ 2
CO —{CO—COd )

(4.55)
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YOYz
=COz —t yz /2+

E+Eyz 2
(4.56)

Here the upper signs correspond to heating, the lower to
cooling. As before, we have written the heating/cooling
drive frequency as cod ——cu, +co +e, and yo is the measure
of the strength of this drive given by Eq. (4.16). The ap-
proximate equality in Eq. (4.56) obtains when yo«y, .
We see that a weak drive produces small shifts in the axi-
al resonance frequency [the real part of Eq. (4.56)] and
small changes in the axial decay constant [the imaginary
part of Eq. (4.56)]. The second root is at

1/2

co,'~ =co, +e——,
' (s+iy, /2) 1 — 1+

(a+i y, /2)

yoyz/4
+E+ s+iy, /2

(4.57)

This is an axial resonance induced by the coupling to the
magnetron motion. In the narrow resonance approxima-
tion, the Green's function

(coz +s —co )/2coz

(CO CO.,z )(CO COz, m )—— (4.58)

relates the response of the axial oscillation to an axial
drive at frequency co when a cooling or heating drive with
frequency specified by s is simultaneously applied. With
a weak heating/cooling drive, Eq. (4.58) shows that the
response to an axial force at frequency ~ near co,' —' is al-
ways small; the amplitude is reduced relative to the nor-
mal axial response by a factor that is at most yo/2yz. On
the other hand, so long as

~

e
~

)y„Eq. (4.58) shows that
the response to an axial force at a frequency co near co„','

is given by the usual form

According to Eq. (4.47a), the Fourier transform of this
function gives the axial response z(t) to an axial force
f,(t). A term in the large parentheses in Eq. (4.55)
diverges when co=cod+co or co=cod —co, and G (co)
vanishes at these frequencies. Thus an axial drive at the
frequency co=co~ —co or at the frequency co=cod+co
applied along with the sideband drive at cod, produces no
response in the axial motion. This is the decoupling
phenomenon mentioned in Sec. IV.B, which is used to
measure the magnetron frequency.

The roots of the denominator in the Careen's function
(4.55) determine the frequencies that give the resonance
responses to axial forces applied in addition to the
cooling/heating drive. Since y, «co„ the narrow reso-
nance approximation suffices. In this approximation
there are two roots. Except for a displacement by the fre-
quency cod, these are essentially the two roots of the deter-
minant D+(co) defined in Eq. (4.13). . The root attached to
the ordinary axial oscillation in the limit where the
cooling/heating drive vanishes (a —+0) is given by

r 1/2

co„+, =co, +s—
2 (a+i yz/2) 1+ 1+

(a+i y, /2)

1 1G ( )= ()2~z N —co
(4.59)

Insofar as a weak and off-resonance cooling drive (or no
cooling drive at all) is typically applied during precise
measurements of the axial frequency, the condition

~

E
~ &y, is most often satisfied. With

~

s
~ &y, the

response is more complex, with the decoupling
phenomenon described above appearing when co =co,+c..

The Green's function for the magnetron motion,
G~~(co), is large only when co is near resonance, say
co = +co . The effect of the drive will be appreciable only
if G, (co+cod) or G, (co —cod) is large. This requires that
cod co —co 01 cod' co +co, corresponding to a heating
or cooling drive as discussed in Sec. IV.B above. Thus we
retain only

1 1
Gz(CO+COd )~

2co +(co—co )—s+ty /2

in Eq. (4.53b) to obtain

(4.60)

G (CO) =
4cu, co

G, (CO+COd )

D-(CO)
(4.61)

where D+(co) is the determinant defined by Eq. (4.13).
Thus G~~(co) has a pole when this determinant vanishes.
Recalling the discussion of Sec. IV.B, we see that with a
small coupling constant ct, G~~(co) has one pole at
co=co, corresponding to a basic magnetron excitation,
and another pole at co=co +c, corresponding to a basic
axial excitation. Examining Eq. (4.61) one finds that the
residue of the pole at co=co is approximately 1/2'
while the residue of the pole at co=co +c is much small-
er. This just reflects the trivial fact that when a is small
the magnetron motion is weakly coupled to the axial
motion. The imaginary part of the position of the pole
near co gives, of course, precisely the rate constant
y'+'(E) defined by Eq, (4.15).

We should note that one can also arrange G (co) given
by Eq. (4.55) in a form similar to that given by Eq. (4.61)
for G (co), but with the roles of the residues of the two
poles interchanged. For example, with ~ near —co, and
for a cooling drive, we have

G~(~+~~) '
G (co)=

4COzCO D+ (CO+ COd )
(4.62)

We shall soon make use of this result.
Since the axial and magnetron motions are coupled,

driving the axial motion also produces a magnetron
response, as is evident from Eq. (4.47b). The case in
which the axial force f,(t) is the random, thermal drive
on the axial motion is of particular interest. This yields
the lowest floor of average magnetron excitation to which
the system can be cooled. Thus an initially excited mag-
netron motion will be damped out after a time long in
comparison to y' '(cod) ', leaving the random motion
produced by this force, which comes from the external,
effective resistor that plays the role of a heat bath at tem-
perature T. Referring to our previous discussion of the
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axial noise, Sec. III.B [particularly Eqs. (3.19)—(3.24)], we
see that in this limit we have the ensemble average

2k~ T,
(V„' '(t)V„' '(t'))= J dt G, (t, t)G, (t', t) .

m

(4.63)

To evaluate the integral, we use Eq. (4.49b) for the off-
diagonal Green's function 6, and neglect small sideband
terms to obtain

( V„' '(t) V„' '(t') ) = (oco co, )
m

V. ELECTRON TRANSITION RATES

A. Spin resonance

To set a foundation and introduce the notation for our
discussion of spin flips and cyclotron and anomaly
(g —2) transitions for an electron or a positron, we first
review the familiar Rabi description of an idealized spin
resonance. The spin 1/2A'cr moves under the joint action
of a large, uniform field B, which is constant in time, and
a small, perpendicular, oscillatory field b(t) that lies in
the xy plane. Thus the spin motion is governed by the
Hamiltonian

X
"" G. -6 ---. '
2m H = —g —o"[B+b(t)] .eA 1

2mc 2
(5.1)

Xcost@(t t ) . — (4.64)
With our sign convention for the direction of z, the uni-
form field 8 alone causes the spin to precess in a positive
sense about the z axis at the angular frequency

y
de cosco(t t')—
2'

i D+(rg))
i

(4.65)

Although the algebra is a little tedious, this integral is
readily evaluated by the standard contour method. We
shall not present the result here, since it has a cumber-
some form. But the structure of this result is clear: It is
the sum of two damped, oscillatory correlations, one cor-
responding to the basic magnetron excitation, the other to
the basic axial excitation. In the limit of weak coupling
and an on-resonance drive, c=O, there is no contribution
from the axial excitation, while as the drive goes off reso-
nance and/or the coupling is increased, the axial excita-
tion begins to contribute.

The equal time limit of Eq. (4.65) yields the average
squared magnetron velocity and thus the thermal excita-
tion level of the magnetron motion. It is worthwhile to
compute this limit, since it provides a rigorous justifica-
tion of the heuristic arguments given in Sec. IV.A. Using
the standard contour method, one finds after some calcu-
lation that

Examining the integral in Eq. (4.64), one finds that the
poles near co=co and co=co +c dominate in the narrow
resonance approximation. Hence we can use Eq. (4.62) to
obtain

( y( —)(t) y( —)(t ) )
k~Ty, a co,

8m

/e8
/~s =8

2mc
(5.2)

In general, any perpendicular oscillating field b(t) can be
decomposed into components that co-rotate and counter-
rotate with respect to this spin precession. The counter-
rotating component is nonresonant, and it makes a negli-
gible contribution. ' Thus there is no essential loss in
generality in taking the oscillatory field to be purely a co-
rotating field

b(t) =ho(x coscot +y sincot) . (5 3)

The effect of this driving field is most easily seen by
passing to a coordinate frame that co-rotates at the driv-
ing frequency M. This is accomplished by first writing

H =Ho+H),
where

Ho ——Rcu —'a

(5.4)

(5.5)

and

ebo
Q, =g

2mc
(5.7)

Hi = —,'&(cog ~) 2o + 2RQ [o' coscot+oysincot]'

(5.6)

Here we have introduced the Rabi frequency

(V„'-")=k,T +
mco,

(4.66)
We go into the rotating frame by working in the interac-
tion picture, where

Since to within a very good approximation
(V» )=(V~ ), this result in conjunction with Eq.
(2.21) shows that ( E,s) =(co /co, )kr)T, th—e limit dis-
cussed in Sec. IV.A. It should be emphasized that this
limit holds even if the drive is far from resonance,

)
e,

~
&&y, (so long, of course, as

~

e
~

&&co ) and even if
the drive is strong.

~5The major effect of the counter-rotating part is to shift the
resonant frequency by an amount on the order of 0, /co„where
0, is the Rabi frequency defined in Eq. (5.7) (Bloch and Siegert,
1940). Since 0, &10/sec, while co, & 10"/sec, this is indeed a
negligible correction.
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iHot/fi iH—ot/RH, r=e ' H, e

,' —A[(cog c—o)erg+ Q, cr„] . (5 8)

We see that, in this new frame, the spin rotates with an-
gular frequency

Q=[Q, +(a), —co) ]'

about the axis in the xz plane

s es eQn= x+ z.

(5.9)

(5.10)

This is illustrated in Fig. 22. With the drive on reso-
nance, co=co„ the axis of rotation is the x axis, and an in-
itial spin-up state (along the z axis) can be maximally ro-
tated into a spin-down state. This takes place at the Rabi
frequency 0, .

The finite spin rotation about the axis n produced in
the preceding idealized description is usually not directly
applicable to the geonium experiments. In these experi-
ments, small fluctuations spread the spin precession fre-
quency co, over a range 5', . The frequency spread 5', is
always much greater than the Rabi frequency Q„
5', &&Q, . Hence, after an infinitesimal spin rotation
(correctly described by the previous discussion), the
coherent rotation of the spin is destroyed and a linewidth
is introduced. The fluctuations arise, for example, from
the Brownian motion of the axial oscillation, which is
coupled to the spin motion either via special relativity
(Sec. VII) or by the slightly inhomogeneous field intro-
duced by a magnetic bottle (Sec. VI). In either case, the

with

Hp ficoi(t) ,'——o, , — (5.1 1)

coi(t) =co,[1+g(t)], (5.12)

where g(t) is a small random variable. The application of
oscillatory drive in the time interval t2 & t & t& produces a
first-order transition amplitude given by

f2

( r, t+—t, )= f dt( —tH, (t) t+), (5.13)

where

~i(t) = —g —~(t) b(t),eA 1

2plc 2
(5.14)

fluctuations can be represented by effective fluctuations in
the uniform field 8. Fluctuations in the magnetic field
also occur with components that are perpendicular to B.
However, these fluctuations, which take place with time
scales slow in comparison to the spin precession time
1/co„are averaged to zero by the fast precession, and they
may be neglected.

We begin our treatment of the line shape (which is that
given by Brown, 1984,1985) by considering the limit in
which the Rabi rotation frequency Q, is very small. In
this limit we compute the probability that the spin is
flipped from up to down using first-order perturbation
theory. To do this, we must now use the interaction pic-
ture in which the unperturbed Hamiltonian Ho includes
the fluctuation

with the time dependence of cr(t) governed by Ho. Only
the component

o (t) = —,
' [cr„(t)—imari, (t)]

t
=o (0)exp i f dr—'co, (r') (5.15)

contributes to the ( —
t t +) matrix element, and so we

have, recalling Eqs. (5.3) and (5.7),

( tz
t
+ti)= ——,Q—, f dte'" exp i f dt—'cubi(t')

1

(5.16)

The transition probability for a specified history of the
time dependence of co&(t) is given by the absolute square
of the amplitude (5.16). With a fluctuating angular fre-
quency cubi(t), an average over such histories must be per-
formed. Hence the transition probability is given by

f2 f2
I' =—'Q' dt f 1Te'""

4 S ti

exp —i dt'~& t' (5.17)

FIG. 22. The axis n defined by Eq. (5.10) is stationary in the xz
plane of the coordinate system which co-rotates with the drive
at the angular frequency co. The spin rotates with angular ve-
locity 0 about this axis.

The classical, statistical average denoted by the angular
brackets in Eqs. (5.17) is invariant under overall time
translations and so defines
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which includes an ensemble average over the fluctuating
phases. With p++(t) and p (t) giving the probability
for finding spin-up and spin-down, respectively, we have

p (t) =4R [p++(t) p— (t)] (5.24a)

This correlation function vanishes for time differences
t t tha—t are large in comparison with 1/5'„a time that
is very short in comparison with the time interval t2 —t]
during which the drive field is applied. Hence we may
change integration variables to T = —,(t+t},~=t t a—nd
integrate + Oo ~ v ~ —0o to secure

p++(t}=4R[p (t—} —p++(t}] (5.24b)

(The rapidly fluctuating random phases keep

p + ——O=p+ . ) These coupled rate equations preserve
the total probability

p++(t)+p (t) =1 . (5.25)
(5.19)

Starting with (say) spin-up at t =0, we have the solution

We see that we have a time-independent transition rate
R =P/(tp t(). The—line profile X (cg) ls given by the
Fourier transform of the correlation function:

p (t) = —,
' (1—e ') (5.268)

X,(~)=f e'"'X, (r) . (5.20) p++(t) = —,
' (1+e ' ') (5.26b}

Since

X,(0)=1,
we have the normalization

(5.21)

taking the limit of small t, we see that the rate R is given
by R =P/(t2 t~ ), with—P defined by Eq. (5.19). Thus, in
general, the probability P for the spin to fiip (up to down
or vice versa) is given, in view of Eq. (5.26a), by the ex-
ponential form'

I dcoXz(c0) = 1 (5.22) P = —,
'

I 1 —exp[ —m-Q,'( t, —t, ) X(co)] j . (5.27)

Roughly speaking, the line profile is peaked at m=m„
and this peak has a width 5co, . The normalization (5.22)
informs us that the peak has a height 1/5co, Thus the
resonance transition rate is approximately given by

P/(t2 ti)= ——(Q, /5', )Q, .S (5.23)

The fluctuations reduce the Rabi rotation rate Q, by the
smail factor Q, /5', .

The result (5.19) that we have just derived applies only
for drives that are sufficiently weak and that are applied
for time intervals sufficiently short to keep the transition
probability well below unity, P && 1. Although the drive
is generally quite small, in the sense that Q, /5', && 1, it
is often applied for a sufficiently long time interval
(t2 t~) to violate t—his restriction. To deal with this gen-
eral case, all orders of the drive field perturbation must be
taken into account. However, in the geonium experiments
the drive rate 0, is small in comparison with the
linewidth 5co, . Moreover, the spin rotation time 1/Q, is
small in comparison with the noise correlation time'
j. /y, so that the statistical average of a product of ex-
ponentials with fluctuating phases can be replaced by a
product of averages [cf. Eq. (5.56) below]. With these
conditions met, spin transitions may be described by a
simple evolution equation for the spin-density matrix p,

Applying a drive near resonance for a long time interval
will saturate the transition with P = —,'.

B. Cyclotron resonance

The line profile function X(co) describes the cyclotron
resonance as well as the spin resonance, as we shall now
demonstrate.

Microwaves near the cyclotron frequency co, are intro-
duced into the trap via a microwave inlet, as shown in
Fig. 1. Thus, including the radiative damping, we have
the driven cyclotron equation of motion

U(t)=it@2(t)u(t) ——,'y, u(t)+ 8'(t) . (5.28)

Here, to simplify the analysis, we have utilized the corn-
plex notation

U (t) =u„(t)+iu~(t) . (5.29)

Since the cyclotron orbit is very much smaller than the
wavelength of the microwave radiation, the dipole ap-
proximation suffices, and we neglect the spatial variation
in writing 8'(t). Regardless of the state of polarization of
the microwave field, only the co-rotating component can
be in resonance, and so it also suffices to take

When the 'Auctuations result from those of the axial motion,

y =y, is the decay rate of the axial motion. See Sec. VI.
~7A more rigorous derivation of this result is given in Brown

(1985).
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I'( t) = 8'pe™. (5.30)

The time-dependent angular frequency toz(t) arises from
fluctuations in the effective magnetic field, just as was the
case for the spin resonance, and we have

cpz(t) =to,'[1+g(t)], (5.31)

where g'(t) is a very small, random variable. We have
simplified the discussion by neglecting the quadrupole
electrostatic trapping potential. Its only effect is to re-
place the cyclotron frequency to, by co,'=co, —co~ =to+
defined in Eq. (2.14). We should note that our discussion
should hold for the quantum as well as the classical case,
since the quantum Heisenberg equations of motion are
linear. On the other hand, our discussion does not apply
to the highly nonlinear relativistic cyclotron resonance
that has recently been observed by Gabrielse, Dehmelt,
and Kells (1985).

In the geonium experiments, cyclotron excitations are
observed by measurements of the cyclotron orbit at a time
T after the microwave drive, which was on for an interval
—Tp &t &0, has been turned off. The drive is on for a
time Tp, which may be on the order of the cyclotron re-

U(T) = N'pe
P7l

0
~c ~~2 icut t/TX I dt exp i dtico2(ti) e ' e'"'e'~

(5.32)

Thus the adiabatic switching simply replaces y, in the in-
tegrand by y,', where

2
yC yC+ (5.33)

The experiments measure the magnetic moment of the cy-
clotron orbit or, equivalently, the energy

E,(T)= —,
'

m
i
U(T)

i

Taking the statistical average, we have

(5.34)

laxation time 1/y, . It is convenient to replace this abrupt
initial switching on of the cyclotron drive by an adiabatic
damping factor exp( t /T) for t & 0, with the drive sudden-
ly switched off for t &0. As we shall see, this modifica-
tion of the drive is not significant. With this drive Eq.
(5.28) has the solution

e2 2

(5.35)

The quantity with the angular brackets of the statistical
average is just the correlation function X,(t —t') defined
in Eq. (5.18) except, of course, that co, is replaced by tp,'.
The time integrations in Eq. (5.35) can be evaluated by in-
verting the Fourier transform (5.20),

Icos cu t

exp —i t~co2 t~ —— . dm'e

(5.36)

The time integrations are now elementary, and they give

2 f72
E,(T)=, e

myc

I
00 yCX dc'', , 2 Xc(~') .

(co' —to) +y', /4

(5.37)

e 8'p r T
2 2

Ec(T)= e ' 2mXc(tp) .
2myc

(5.38)

In general, we see that the response to a cyclotron drive is
given by the convolution of the line profile function
Xc(co), with the Lorentzian line shape of a noise-free but
damped cyclotron resonance with the modified damping
constant y,'. In the geonium experiments, however, the
decay rate y,

' is much smaller than the linewidth parame-
ter Bto, . In this case Xc(co') is slowly varying in the inter-
val y,', and the limit y,

' —+0 may be taken in the term in
large parentheses in Eq. (5.37) to produce 2m5(co' —co).
Thus we secure FIG. 23. Effective current loops, which produce the alter-

nating magnetic field near the center of the trap given by
Eq. (5.39), with the constant b i having the value 6 &

=(m.a I/c)3d(a +d /4) ' (in Gaussian units).
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The only effect of the initial abrupt switching is to re-
place the large parentheses in the convolution in Eq.
(5.37) by a more complicated expression, which has, how-
ever, the same properties. Thus the result (5.38) describes
the experimental line shape except for an insignificant al-
teration of the overall factor.

C. Anomaly resonance

We have now described the line shapes for spin flips
and cyclotron excitations. As in earlier g —2 experiments
(Schupp, Pidd, and Crane, 1961), the geonium experi-
ments do not measure the spin transition frequency and
subtract from it the cyclotron frequency co, =co, —ro, .
This would entail the subtraction of large numbers to
determine a number 10 smaller, resulting in a loss of
accuracy. The anomaly transition (a spin flip increasing
the energy accompanied by a cyclotron transition decreas-
ing the energy or vice versa) is observed directly in the
geonium experiments. This is accomplished by splitting
the upper and lower portions of the trap electrodes so as
to obtain two effective current loops. The loops are
driven with oppositely directed currents at the anomaly
drive frequency co~, as shown in Fig. 23. This produces a

small ilternating magnetic fiel near the center of the
trap,

b(t) =bip(t) cost@,~t, (5.39)

which is perpendicular to the main, constant magnetic
field. Since p(t) goes about a circle at the modified cy-
clotron frequency ei,'=co, —co, b(t) has a component at
the frequency co,

' +co~ which flips the spin when
co', +co,~ ——co„or when the drive frequency equals the
modified anomaly frequency co~=to,'=co, +to~. The
small magnetron frequency to is then subtracted to ob-
tain the true anomaly frequency [cf. Eq. (2.88) and the
discussion leading to it]. The use of a field with this sym-
metry to make g —2 transitions was discussed by Graff,
Klempt, and Werth (1969) and by Walls (1970).

This simple situation is altered by the fluctuations
which can be represented by an effective strong axial
magnetic field with a small fluctuating component. In-
troducing the complex notation where, for example,

(5.40)

and following the development that led to Eq. (5.17), we
see that in the limit of a very weak driving field applied
during the time interval ( t2, t, ), the spin transition proba-
bility is given by

1 egP=—
4 2mc

2
t2 t2 tf dt f dt b(t)s px—( f~d(im&((i) b(()') . (5.41)

Here, we recall,

coi(t) =to, [1+/(t)] (5.42)

in which g(t) is a random, fluctuating variable.
The (complex) magnetic field b (t) is linearly related to (the complex) p(t) This ra.dial coordinate is maintained in ex-

citation by driving the cyclotron motion with a microwave field N'(t), as described by Eq. (5.28). We can neglect the very

small variation in factors involving

co&(t) =to', [1+g(t)],
since only accumulated phases are important in Eq. (5.41). Hence we may write

p(t)=, U(t)
c

with
t —y, (.t —t')/2

U(t)= f dt'exp i f dt2c02(t2) e ' 8'(t'),

(5.43)

(5.44)

(5.45)

the solution of Eq (528) Using Eq. (5.39) and Eqs. (5.44) and (5.45) in Eq. (5.41) and keeping only the significant
resonant terms gives an explicit formula for the transition probability p. In the experiments, the time interval t2 —ti
during which the anomaly drive is on is much longer than any relaxation time. Hence we may change integration vari-
ables' to T= —,(t+t) and r=t t, and integrate —over —0() &r&+co. The resonant contributions to P are time-
translationally invariant; they are independent of T. Hence the T integration simply produces an overall factor of
t2 —t1, and we find that the transition rate is given by

r

eg e~ 1

X f dr e'" f dt'8'(t') f dt'I'(T')'e
r

exP —i dt&~3 t1 exP —i dt2co2 t2
0 t' (5.46)
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Here The ratio

co3(t) =co,
' [1+g'(t) ] (5.47)

8'( t') 8'(t')'~ 8'~5(t' t')— (5.48)

in Eq. (5.46). Referring back to Eq. (5.45), we see that
this white noise produces an average cyclotron excitation
given by

describes the fiuctuating anomaly frequency.
The statistical average appearing in Eq. (5.46) is a gen-

eralization of that encountered previously [Eq. (5.18)] in
the derivation of the line profile function. There are,
however, two situations in which this more complex sta-
tistical average reduces to the previous correlation func-
tion, and these are the cases of experimental importance.

The first case is that in which the cyclotron drive is
white noise. In this case one makes the replacement

r2
C

(5.52)

defines an average cyclotron radius. Remembering that
the driving field (5.39) corresponds to linear, not circular,
polarization, we see that

P

eg l(P )
( 2)

2mc 4
(5.53)

defines an effective squared Rabi frequency, with the ad-
ditional factor of ~ arising from the circular component
of the linear polarization. Finally, we note that the
Fourier transform of a product is the convolution of the
separate Fourier transforms. Therefore

P/(t, t, ) = —,
'—(Q.')

2 2

(E,)=—,m( (U
~

)=. 1

mac

P/(t2 —ti) =

Inserting Eq. (S.48) in Eq. (5.46), we find that

Q2

2PtC 8~Q7

(5.49)

(5.50)

00 yc
X d~,

& &
Xg(~)

(~a~ ')'—+)'e /4

(5.54)

If the cyclotron decay rate y, is much smaller than the
linewidth parameter 5'„X&(co') is slowly varying in the
interval y„and the limit y, —+0 may be taken in the term
in the large parentheses to produce 2m5(co~ —t0'). In this
case

where
P/(tz —t i )=—(0, )Xg (co,d ),

2
(5.55)

X„(x)=(exp —i f d(c03(t)
x x

(5.51)

is identical to the previous correlation function except
that the cyclotron frequency co,

' is replaced by the anoma-
ly frequency co,'. The factors out front in Eq. (5.50} for
the transition rate can be placed in a perspicuous form.

which is exactly the form of the simple spin resonance re-
sult, Eq. (5.19).

The second case is the situation when the cyclotron de-
cay time 1/y, is much longer than the noise correlation
tiine 1/y. In this ease, the statistical average in Eq. (5A6)
may be replaced by the factored form

t'
exp i dt—ico3(ti) exp i dt's—t02(t2) ~ exp i d—tico3(ti) exp i d—t2m2(t2)0 t' 0 t'

=X&(~)Xe(t' t' ). —
. (5.56)

8'( t) = N'Oe (5.57)

to drive the cyclotron motion, we have, with y, /5', « 1,

The correction to this approximate factorization is gen-
erally exponentially damped in a time 1/y. The differ-
ence of the times t' and t' in Eq. (5.46) is limited by

~

t' t'
~
&1/5', . —On the other hand, the extent of the

average time , (t'+t') in Eq. (5A6—)is limited by the large
cyclotron decay time 1/y, . Hence the bulk of the time
integrations in Eq. (5.46) is in a region in which

—,'(t' —t')
~

is larg—e on the scale set by 1/y, and the
factorization shown by Eq. (5.56) may be employed. The
correction to this approximation is of the order y, /y.
Using now a rotating, coherent field

P/(t, t, )=-eg
2' c

eb)

O)C

'2

2~Xg (~,d )

X 8('OX, (co,d ) .
XC

(5.58)

e I'
E,= 2m.X,(co,g)

2~TC
(5.59}

defines the excitation energy of the cyclotron motion.
Moreover,

The factors appearing in Eq. (5.58) may also be put in
perspicuous form. Remembering Eq. (S.38), we see that
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2Pc=
2m' c

I2

defines the radius of this excitation, and so again we en-
counter an effective Rabi frequency

. 2 22
&iPc

4

with Eq. (5.58) now reading

P/(tz t)—)= Q,X—g(co,b) (5.62)

just as before.
We have seen that the rate of anomaly transitions for

very weak drives is proportional to the line profile func-
tion X~(co~). When the drives are strong, one may use
statistical arguments similar to those outlined in Sec. V.A
to prove that the probability exponentiates, giving the
anomaly line shape

[(g —u /c )B+(I+2a)EXv/c
2 fnc

—a(B v)v/c ] . (5.64)

ingredients and state the final result.
(i) The constant electric quadrupole potential also acts

on the particle. If this field were strong, the particle
would be bound to a point where the total electric field
vanished, and the motional magnetic field disappeared.
In general, this effect produces an overall factor of
co~/(co~ —co, ) in the spin precession frequency Q .

(ii) Relativistic corrections are more important. They
arise both from the kinematic Thomas precession and
from relativistic velocity-dependent torques. These ef-
fects are described by the spin-dependent part of the 1/c
correction to the Hamiltonian given in Sec. VII.B. In-
cluding the nonrelativistic limit, the spin total precession
frequency is given by

P = —, I 1 —exp[ nQ, —(t2 —. t, )X~(co~)]J .

D. Motional fields flip spin'P

(5.63)
It is convenient to analyze the spin precession in the
frame that rotates at the unperturbed spin frequency
co, = (eg/2mc)B. In this frame, the major motion is given
by v = —a (eB/mc)z Xv. Thus adding a total time
derivative

In the previous section we described one m«hod «r in-
ducing anomaly transitions. This entailed the technical
complication of splitting electrodes so as to obtain effec-
tive current loops. The experiment would be simplified if
the transition could be produced by simply driving the
endcaps at the anomaly frequency. Motional magnetic
fields might appear to provide such an alternative mecha-
nism to flip the spin.

The idea (Dehmelt and Ekstrom, 1973) is as follows.
Suppose that an additional alternating voltage is applied
between the two endcaps of the Penning trap. This gives
an additional electric fidd 8'(t) = 8'o coscod t near the
center of the trap, which is directed along the magnetic
field, 8'o~~z. We may neglect the slow magnetron drift
for our present purpose, with the charged particle simply
moving about a circle at the cyclotron angular frequency
co, . Thus there is a small alternating magnetic field
b(t)=c 'v(t) X 8'(t) in the particle's rest frame, which is
perpendicular to the large constant magnetic field. This
alternating magnetic field has a frequency component at
co, +cod, and so a spin-flipping resonance occurs at
co, +cod ——co, = —,'geo, or when the drive frequency equals
the anomaly frequency, coq = —,

'
(g —2)co, =ace, . On reso-

nance, the rate at which the spin flipping proceeds is '

given by the Rabi frequency Q, = ,'(eg/2mc)(u/c—)S'p
Recalling from Sec. II that for the electron u/c=10
and using 2mc /e =10 V, we see that to obtain a usable
rate, Q, /2m =1 sec ', a rather strong but still accessible
electric field is required g'o-2 V/cm.

The scenario we have just presented is, unfortunately,
not the whole story. Other effects conspire to reduce the
spin-flip rate to an inaccessible value. Since our answer is
a negative one, we shall not present the details (Brown,
1983) of its derivation here, but simply outline its physical

(z.vz Xv/2c )

2

Q =, , I'(r)X (t) .
4' C COd —Mz

(5.65)

The overall factor of a=10 makes this spin-flipping
rate too low to be useful.

Vl. MAGNETIC BOTTLES

A magnetic bottle is a particular kind of distortion of
the homogeneous magnetic field. While such a distortion
is not part of a Penning trap as such, it is difficult to
overstate the importance of magnetic bottles for measure-
ments of the g value of the electron and positron. The

to the spin precession frequency given in Eq. (5.64) re-
moves the last term from this equation and also adds

z.vzXv/2c = —(e/2mc )z-EzXv,

which essentially cancels the unity in the (1+2a) factor
in the third term in Eq. (5.64). The total time derivative
can be neglected, since it does not give rise to a persistent,
secular perturbation. We see that the effective spin-flip
frequency is reduced by an overall factor of the small
anomaly a.

(iii) The axial alternating field 8'(r) produces, via the
Maxwell displacement current, a perpendicular alternat-
ing magnetic field. This magnetic field also causes spin
flips at a rate comparable to that given by the relativisti-
cally corrected motional field effect, with the rate involv-
ing an overall factor of the anomaly a.

The net result of the effects we have described is to
produce a spin rotation (Rabi) frequency given by
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use of magnetic bottles for the detection of cyclotron
transitions and spin flips was proposed early in the histo-
ry of these experiments (Dehmelt and Ekstrom, 1973),
and all measurements of these lepton g values completed
so far with a Penning trap have depended in a crucial way
upon a magnetic bottle (see, for example, Van Dyck,
Schwinberg, and Dehmelt, 1978). How this detection
scheme works and the way that the motion of a trapped
particle in a Penning trap is modified by the addition of a
magnetic bottle is discussed in Sec. VI.A. How the mag-
netic bottles have been produced in the laboratory is the
subject of Sec. VI.B.

The distortion of the inagnetic field by a magnetic bot-
tle does, unfortunately, limit the accuracy of measure-
ments by broadening the observed resonance linewidths of
the cyclotron, spin, and anomaly transitions. Further in-
creases in the experimental accuracy of the measured g
values make it necessary to deal with this broadening.
One approach now being taken (Gabrielse and Dehmelt,
1981a) is to eliminate the magnetic bottle entirely and in-
stead make use of very small relativistic couplings (see
Sec. VII.B). Although this is difficult, progress has been
made (Gabrielse, Dehmelt, and Kells, 1985). A second
approach being used is to calculate the line shapes that
pertain when a magnetic bottle is present (Brown,
1984,1985) and use these calculated line shapes to split the
measured lines (Van Dyck, Schwinberg, and Dehmelt,
1984). The line shape calculation is reviewed in Sec.
VI.C. A third approach now being tested (Van Dyck,
Moore, Farnham, and Schwinberg, 1986) is to utilize a su-
perconducting current loop to forin a superconducting
flux transformer, which provides a magnetic bottle whose
strength can be varied during the experiment. This is
described in Sec. VI.D.

A. Modification of the motions

For our purposes, a "magnetic bottle" is a particular
kind of inhomogeneous magnetic field given by

AB =B2[(z p /2)8 —(8 z—)p], (6.1)

~ %'e assume that 68 changes sign when the direction of the.
main magnetic field B is reversed, as is the case for a bottle
made with magnetic materials (Sec. VI.B).

where 8 is the direction of the homogeneous magnetic
field to which the bottle is added. 's In the successful
measurements of the lepton g values, the constant Bz is
approximately equal to 150 G/cm (Van Dyck, Schwin-

berg, and Dehmelt, 1978). To understand why this field
distortion is called a "bottle, " consider the effect of 5B
upon a magnetic moment p, that is aligned along 8 and
that for convenience is located on the z axis. The interac-
tion Hamiltonian —p, b,B for this special case is given by

EH(p=O, z) = —p8zz

With Bz &0, the magnetic moment is axially confined (as
if it were in a "bottle"}, and it will oscillate harmonically
along the z axis.

The magnetic bottles used in the geonium experiments
are very weak. The axial confinement provided by the su-
perimposed, electrostatic quadrupole potential discussed
earlier is very much stronger than that associated with the
magnetic bottle. A magnetic bottle (or a suitable replace-
ment) is required for detection. This requirement arises
because of the large magnetic fields used and because of
the small mass of the electron. An electron trapped in
such a large magnetic field has a large cyclo-
tron frequency, co, /2@=160 GHz for 8=60 kG. The
difficulty is that such large cyclotron (and spin} frequen-
cies are high microwave frequencies, which are not easy
to observe directly. The large magnetic fields are desir-
able because the small fluctuating fields present in the
laboratory (including fluctuations in the Earth's field} are
relatively smaller. Moreover, the large field separates the
cyclotron energy levels enough that the 4-K blackbody ra-
diation (from the trap electrodes, which are in thermal
equilibrium with a liquid helium bath) excites the cyclo-
tron motion out of the lowest quantum state less than
13% of the time.

The axial frequency of a trapped particle is a radio fre-
quency (co, /2n =60 MHz), which can be monitored much
more easily. Extremely small shifts in this frequency
(he@, /co, &2&(10 ) can be routinely observed. For an
ideal trap without a magnetic bottle, however, the only
coupling of the cyclotron and spin motions to the axial
oscillation is by way of the extremely small relativistic
couplings discussed in Sec. VII. The magnetic bottles
that were added to the electron and positron experiments
increased the coupling of the spin and cyclotron motions
to the axial oscillation frequency by approximately a fac-
tor of 30 over the relativistic couplings. How the cou-
phng comes about is already evident in the interaction
Hamiltonian in Eq. (6.2) for a magnetic moment on the z
axis, since the spin, cyclotron, and magnetron motions are
each associated with a magnetic moment, which is paral-
lel or antiparallel to the z axis because of the strong mag-
netic field along this axis. By Eq. (6.2), a change in any
of these magnetic moments changes the axial restoring
force slightly and produces a measurable shift hco, in the
axial oscillation frequency. The shift, as we show below,
is given for an electron and positron by (approximately)

(6.3)

where hen, is a constant to be described presently. The
spin and cyclotron quantum numbers, s/2 and n, enter
this expression on an equal footing when g =2 because in
this case the spin and cyclotron moments are proportional
to the energy in these motions with (essentially) the same
constant. The magnetic moment associated with the
magnetron motion, however, is proportional to the kinetic
energy in this motion. The kinetic energy in the magne-
tron motion is smaller than the total energy in this
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motion by the very small ratio co /to,', which multiplies
the magnetron quantum number l in Eq. (6.3).

The constant hco, is the axial frequency shift that re-
sults from either a spin flip or a unit change in the cyclo-
tron quantum number. It is a convenient measure of the
strength of a magnetic bottle. For the electron and posi-
tron measureinents referred to earlier, Aco, /2m =1 Hz.
Changes in the axial frequency of this size could be ob-
served, so that a single flip was observed (Van Dyck,
Wineland, Ekstrom, and Dehmelt, 1976). In general,

A A= , 82(z—p/4—)8 Xp, (6.5)

which must be included in the perturbation Hamiltonian

proportional to the mass of the trapped particle. This
makes it very difficult to use magnetic bottles in the same
way with particles more massive than the electron.

The preceding results and more details are obtained by
evaluating the consequences of 58 using first-order per-
turbation theory. The vector potential for the homogene-
ous magnetic field is modified by the addition of

B2 CO~

2mco~
i
8

i

(6.4) b,H= — o"b,B ev/c b.A—,
geA
4mc

(6.6)

Three aspects of this formula should be noted. First, b,m,
is independent of the charge of a trapped particle. An
electron and a positron interact identically with the mag-
netic bottle. Second, he@, is independent of the magnetic
field (since co~-8 '), except insofar as the magnetic
field may affect the size of Bz. Finally, hco, is inversely

where v is the velocity operator. Matrix elements

AE (nkls) = (,nkls
~

bH
~

nkls )

are most easily evaluated using the raising and lowering
operators introduced in Sec. II.B. The result is that

AE(nkls) =fiasco k +——1
z 2

to, (n +I +1)
2(to,

' —co )

1 ~mn+ —+, (l+ —, )
2 Qj

t

[(n + —, )(l + —,
' )+ —,

' ]+ —,™k+ ——
2coc (toe tom ) 4 I~c —mm

(n +l +1) (6.7)

Shifts in the eigenfrequencies that occur because the mag-
netic bottle is present can be obtained from this expres-
sion by evaluating the appropriate differences of the
energy-level shifts. The axial frequency shift, for exam-
ple, can be obtained by taking the difference of
EE(n, k+1,l,s) and &&(n,k, l,s) This .gives the earlier
expression for the axial frequency shift in Eq. (6.3), except
that there we used the very good approximation that
co,

' —co~=co,' [cf. Eq. (2.12)]. We shall return to such
shifts in the eigenfrequencies in Sec. X, where we contrast
the shifts produced by magnetic bottles with those due to
electrostatic anharmonicity shifts and those due to relativ-
lstlc corrections.

M (Cu) = —0.05,
M (Mo) = +0.96,

(6.10)

(6.11)

I

sic bottle has been as large as 20% of the deliberately in-
troduced ferromagnetic bottle. The magnetizations of
paramagnetic ( &0) and diamagnetic ( &0) materials are
much smaller than those for iron and nickel, and they
also vary with temperature. At 8 =60 kG and T =4.2
K, the magnetizations for the commonly used trap ma-
terials, copper, molybdenum, and MACOR are given by'
(in cgs units)

B. Laboratory bottles M(MACOR) =+0.78 . (6.12)

M (Fe)= 1714 (6.8)

The magnetic bottles that were central to the measure-
ments of the electron and positron g values were realized
by placing a small loop of ferromagnetic material in the
xy plane of the Penning trap, centered on the z axis. The
ferromagnetic materials saturate when strong magnetic
fields are used (8 & 20 kG). Iron and nickel, for example,
have the saturation magnetizations, in cgs units, of

To establish the relationship between the quantity and
location of magnetic material near the center of a Penning
trap and the magnetic bottle that is produced, we first ex-
amine the magnetic field produced by a thin ring of mag-
netic material, which is axially symmetric about the z
axis, following Gabrielse and Dehmelt (1981b). This ring
of uniformly distributed dipoles is characterized by a
magnetization dipole moment per unit volume M, a ra-
dius p', and a small cross-sectional area dp'dz'. As shown

and

M (Ni) =485 . (6.9)

At the same time, the paramagnetism and diamagnetism
of the trap electrodes themselves produce a magnetic bot-
tle. Owing to the strong magnetic fields used, this intrin-

The values for copper and molybdenum are from the Hand-
book of Physics and Chemistry (1983), and the MACOR value
was measured by Thompson (1982).
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'Il(z) = M2n—p'dp'dz' [p' +(z' —z)z]
Bz

(6.14)

To obtain the magnetostatic potential near the center of
the trap (but not necessarily on the z axis), we expand Eq.
(6.14) in powers of z and identify the coefficients Bi of
the general multipole expansion

ql(r) = —g I 'Bi,r'Pi(cos8) .
1=1

(6.15)

This is an easy task, since the inverse square root in Eq.
(6.14) is the generating function for Pi(cos8). We now in-
clude an integration over rings that represent the actual
axially symmetric magnetic material in the trap, to obtain
the general formula

BI=(l+1)(l+2)2m. f p'dp'dz'M(p', z')(r')

XPi+z(cos8') . (6.16)

The integrand decreases very rapidly with increasing dis-
tance from the center of the trap, r'. Only magnetic ma-
terials that are close to the center of the trap will contri-
bute appreciably to 68.

in Fig. 24, the ring is located at r' and 8' in spherical
coordinates, or equivalently at p', z' in cylindrical coordi-
nates.

Because VXKB=O, the magnetic field perturbation
can be written as the gradient of a scalar potential 4,

4B(r)= —V4'(r),

and 4 satisfies the Laplace equation since V b,B=O. On
the z axis, the scalar potential for a dipole can be written
as the derivative of the familiar potential of a monopole,
so that

A little calculation using familiar relations among
Legendre polynomials shows that the gradient of the mul-

tipole expansion for %(r) given in Eq. (6.15) produces the
magnetic field perturbation

b, B(r)=g Biri[P~(cos8)z (1—+1) 'P~'(cos8)p],
l=O

(6.17)

where Pi'(cos8)=sin8dP&(cos8)/d cos8 is an associated
Legendre polynomial. The leading term in the multipole
expansion is a constant magnetic field, bB=Boz, which
adds to the basic homogeneous magnetic field. The mag-
netic material in the trap is usually symmetric under the
reflection z~ —z in addition to being axially symmetric.
In this case, the next term in the multipole expansion (the
dipole term with l = 1) vanishes, and the leading nonuni-
form field perturbation is the quadrupole field of a mag-
netic bottle, exactly as in Eq. (6.1) because of our normali-
zation.

Experimental advantage can be taken of the symmetry
of the integrand. In particular, magnetic material placed
on the quadrupole asymptote where Pz(cos8') of Eq.
(6.16) vanishes will not shift the homogeneous magnetic
field. Similarly, magnetic material placed at the zeros of
P4(cos8'), at 8'=30 and 8'=7l', will produce no mag-
netic bottle. Moreover, since the signs of P2(cos8') and
P4(cos8') change at their zeros, the effect of magnetic
material in producing either Bo or 82 can be cancelled by
placing additional magnetic material in the region where
the sign of the appropriate Legendre polynomial is oppo-
site. Figure 25 shows the zeros of P4(cos8') superim-
posed upon a representation of the Penning trap of Fig. 1.
Both the ring and endcap electrodes are located primarily
in a region where P4(cos8') ~ 0, and the possible

Zi(

FIG. 24. Coordinates for a little ring of magnetization.
FIG. 25. The zeros of P~(cosO') superimposed over the Penning
trap of Fig. 1.
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paramagnetism of these electrodes therefore contributes to
a magnetic bottle with 82 &0. This residual bottle could
be cancelled by placing additional ferroinagnetic material
in the asymptotic region where P4(cosl9') &0.

Let us consider several numerical examples. First, a
nickel ring of radius p'=0. 55 cm and cross-sectional area
2.0&(10 cm was included in the electron trap reported
by Van Dyck, Schwinberg, and Dehmelt (1978), giving
Bo——20 G and B2——150 G/cm, which in turn makes
he@,/2m=1 Hz. Paramagnetic contributions are much
smaller. Numerically integrating over the endcap and
ring electrodes of the trap represented in Fig. 1, for exam-
ple, yields Bz/M= —30/cm . For molybdenum quadru-
pole electrodes at 4.2 K in a magnetic field of 60 kG, this
means that B2 = —29 G/cm and thus that bc@,/2m =0.2
Hz. While this is somewhat smaller than the b,co, /2m =1
Hz for the nickel rings, it is still much larger than the
analogous relativistic coupling discussed in Sec. VII, for
which hco, /2m =0.05 Hz. Such a large intrinsic magnet-
ic bottle would have masked the relativistic couplings that
have been observed (Gabrielse, Kalinowsky, and Kells,
1985). While the intrinsic bottle could be canceled with
additional magnetic material, as outlined above, it is
cleaner and simpler to use copper quadrupole electrodes
instead, since copper is diamagnetic with a small magneti-
zation. The trap represented in Fig. 1 is made of copper.

C. Line profiles

In Sec. V we presented the general framework for the
line shape brought about by small fluctuations in the large
uniform magnetic field B. The random, Brownian
motion of the axial oscillation of the charged particle in
the magnetic bottle field described by Eq. (6.1) causes
such fluctuations. Thus a spin, cyclotron, or anomaly fre-
quency, which we denote generically by co0, is modified by
the fluctuating variable z (t) to become

co(z) =coo(l+sz ) . (6.18)

With the typical values Bz 150 G/cm and B——=51 kG
for the recent experiments utilizing the bottle, we see that
s=Bz/B 0.003/cm . The fluctuating axial motion z(t)
has been explained in some detail in Sec. UI.B. Here we
recall that the harmonic axial motion of the electron of
mass m and frequency co, is coupled to an external cir-
cuit, and thus put into thermal equilibrium at tempera-
ture T. Hence the axial motion fluctuates, with the
equipartition of energy giving

stood if use is to be made of this precision.
According to the development of Sec. V, the line pro-

files in geonium are described by the Fourier transform

X(~)= f e'"X(t)2'
of the correlation function

(6.21)

X(t)=e exp i—coos f dt'z(t') (6.22)

z(t) ~z 2mao,
(6.23)

where E is the total energy of the axial oscillation. This
amplitude remains constant over the time required to per-
form a single, idealized experimental "run. " The line pro-
file is obtained by averaging over a large number of such
"runs, " with the axial motion allowed to come into
thermal equilibrium between the "runs. " Thus the hne
profile is given by a sharp 5 function averaged over the
Boltzmann distribution of axial energies,

r

X(co)=f dE5 co —coo 1+
0 mes,

—E/k& T
kg Te

8(co —coo) co —coo
exp (6.24)

Here we have used Eqs. (6.19) and (6.20) to identify b,co,

As described in Sec. III.B, the axial motion z (t) is basical-
ly harmonic, but it is also coupled to an external circuit at
temperat;ure T. Since the atomic processes in the external
circuit are very fast in comparison with the basic harmon-
ic motion, this thermal bath drives the oscillator with a
force that is uniformly distributed in frequency ("white
noise"). Thus there are only two parameters in our prob-
lem: The axial damping constant ' y, and the tempera-
ture T or, equivalently, in view of Eqs. (6.19) and (6.20),
the linewidth parameter he@.

Although the line profile X(co) is not a simple function
for general values of the parameters b,co and y„ it is sim-

ple in the two limits.
(i) The axial motion z(t) is loosely coupled to the

thermal bath, y, «hey. In this case, the amplitude of
z (t) remains constant during the time —I/b, co required to
establish the frequency co. On the other hand, co, »he@,
and so z(t) may be replaced by its average over an oscil-
lator cycle,

—,'mco,'(zz) = ,'k~T, — (6.19)

and a linewidth parameter

Eco =coos(z ) (6.20)

Using the value (z ) =9&&10 cm from Table III and
a=0.003/cm, one has b,co/coo —10X 10 . In view of the
precision of 4)& 10 of the recent experiments (Van
Dyck, Schwinberg, and Dehnielt, 1984), we see that the
linewidth is a significant effect, which must be under-

2 The axial frequency co, is another parameter that could pos-
sibly enter into the line profile. However, as shown in Brown
(1985), it gives modifications on the orders (y, /b, ~, ) and
(Ace/co, ), which are very small. There are also sidebands at
coo+4u„. . . , but these are far away and small in amplitude.

It follows from Eqs. (3.47) and (3.26) that 1/y, is also the
noise correlation time used in Sec. V.
22This line shape was presented in Dehmelt (1981).
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X(t)=exp[ i—cop(1+a(z ) )t] .

This gives a sharp but displaced hne,

(6.25)

(6.26)

and g(x) is the step function 8(x)=0 for x &0, 8(x)=1
for x &0. Thus there is no response below co=cop. The
response jumps discontinuously as ~ passes coo and then
decreases exponentially with increasing co.

(ii) The axial motion z(t) is tightly coupled to the
thermal bath, y, »b, co. In this case z(t) relaxes quickly
to its average value, and Eq. (6.22) becomes

—(hco2/y )
~

t'I —I(coo+6,co)tX(t)=e ' e (6.32)

I I I
J

I I I } I I I
}

I I I
[ I I I

I.O—

whose Fourier transform produces the limiting form
(6.27).

The line profile for arbitrary values of y, /hco is given
by the Fourier transform (6.21) of the correlation function
(6.28). Expanding out the denoininator and then per-
forming the time integration, one finds that

As we shall show below, this limiting distribution is ap-
proached through a sequence of Lorentzian profiles of the
orm

3
c3

0.5—3

b,to /m. yg
X(to) = 2 2 2(to —cop —4to) +(bto /y, )

(6.27)

To obtain the form of the line shape that interpolates
between the limits (6.24) and (6.27), use must be made of
the general formulation of the Brownian motion of the
axial oscillation given in Sec. III.B, particularly Eqs.
(3.46), (3.47), and (3.26). Since this entails considerable
mathematical calculation, which is presented in detail
elsewhere (Brown, 1985), we shall simply state the method
and the result. The.statistical average displayed previous-
ly in Eqs. (3.46) and (3.47) may be expressed as a func-
tional or path integral. The path-integral representation
of the correlation function (6.22) produces a Fredholm
determinant, which is related to the Green's function of a
simple quantum-mechanics problem, the scattering on a
square barrier. Thus the infinite determinant can be
evaluated with the result

I.O—

3
CI

3
x 05

0
-I

I 2
(4P —GUo )/+0)

0 I 2
(GO- QP )/6, CU

I I I
]

I I I-

[
I I I

(
I I I

(
I I I

e '/F(t), t &0

e /F( —t)*, t &0,
(6.28) I } ]

I I

where

F(t)=, [(y'+y. ) e
4X'Xz

(y'+y, )tlz~— (6.29)

y, /b, pu= Io

with

(6.30)

Let us first note that this result reproduces the previous
limits.

(i) With y, «hco, we may take the limit y, —+0 to ob-
tain

—s aloof

X(t)= 1+1scot
(6.31)

0
The Fourier transform (6.21) of Eq. (6.31) produces the
limit (6.24).

(ii) With y, »b.to we have

( Qi —(alp }/6 QP

FIG. 26. Line profiles for various values of y, /he@.
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4 'V Xs
X(co)= —Re

(y'+y, )~

(6.33)

8
N

+ma

6
tA

~2 kHz+

where Re denotes the real part. This general result is
displayed in Fig. 26 for a wide range in the ratio y, /b, co.
The curve for y, /b, co=0.001 is very close to the limit
(6.24), and the curve for y, /b, co=10 is very close to the
limit (6.27).

The cyclotron resonance is measured by driving it with
various frequencies co for a fixed time interval and then
turning off the drive and measuring the cyclotron mag-
netic moment at a time T later. The moment is deter-
mined by the technique discussed in Sec. VI.A. The mo-
ment is proportional to the energy in the cyclotron
motion. As discussed in Sec. V.B, this excitation energy
is in turn proportional to the line profile function, with
Eq. (5.38) giving

m.e 5'
E,(T)=, e ' Xc(co) . (6.34)

~Xc

Here 8'o is the amplitude of the drive field, y, the cyclo-
.tron decay constant, and 1/y,' a time interval over which
the drive is effective. The line profile function Xc(m) is
obtained by replacing the generic coo by the (trap modi-
fied) cyclotron frequency co,'. Since v,

' = 150 GHz and the
linewidth is about a part in 10, we have 6~, =1&10
sec ', which is much larger than (Table III) y, =40
sec . Hence the limit (6.24) applies to this transition.
Figure 27 shows a typical experimental measurement of
the cyclotron line profile. Note that the cyclotron fre-
quency is determined by the sharp left-hand edge of the
profile, and no fitting to the line is yet required.

The nature of the anomaly resonance was discussed at
some length in Sec. V.C. An anomaly drive at various
frequencies co is applied for a fixed time interval Tq, and
then spin is measured by the bottle shift of the axial fre-

co I2—
Cl

0
IO

OP
Ol

O 8—

CAa.

«t, + 0.25Hz
IO ppb

CL
Ch

O

22 26

VR F
l 65, 9 I 9, I OO Hz

I

30

FIG. 28. Experimental anomaly resonance that is not saturat-
ed. The solid curve is a fit to the line profile function (6.33)
(Van Dyck, Schwinberg, and Dehmelt, 1984).

Here Q, is an effective Rabi frequency, which involves
the product of the average cyclotron excitation energy and
the square of the amplitude of the anomaly drive. The
line profile function X~(co) is obtained by replacing the
generic coo with the (trap modified) anomaly frequency
co,'. Since ci,' = 10 co,', we now have y, /b co =4. We see
that a precise determination of the anomaly frequency al-

ready requires a fitting to a general line profile function,
whose shape is approxiinately that in Fig. 26(b), which
corresponds to y, /hco= l. A recent experimental fit to
the anomaly line profile is shown in Fig. 28. For this run,

CA
8

C)

C3

qp 6
C/l

C4

CA 4

C,
CL
EA

p

CP

E

L

fit, + I.0Hz

I I I I

50 55 60 65

vR&
—l63,9IO, BOO H z

quency. According to Eq. (5.63), the probability that the
spin is flipped is given by

(6.35)

I l l

2 4 6
~„-l4I,338, 78O kHz

FIG. 27. Experimental cyclotron resonance. The solid curve is
that given by Eq. (6.24) (Van Dyck, Schwinberg, and Dehmelt,
1984)-

FIG. 29. Experimental anomaly resonance that is saturated.
The solid curve is a fit to the line profile function (6.33), includ-

ing the exponentiation given in Eq. (6.35). The g value deter-
mined from this fit and a simultaneous measurement of the cy-
clotron frequency is consistent with that deduced from the run
shown in Fig. 28 (Van Dyck, Schwinberg, and Dehmelt, 1984).

Rev. Mod. Phys. , Vol. 58, No. 1, January 1986



L. S. Brown and G. Gabrielse: Geonium theory 28't

the transition has not been saturated, the exponential in
Eq. (6.35) can be expanded to first order, and the proba-
bility is proportional to Xz(co). Figure 29 shows an ex-
perimental anomaly resonance at higher drive power, re-
sulting in a strong saturation on the peak. In this case,
the full exponential form of Eq. (6.35) must be employed
to describe the resonance. Fitting such saturated anomaly
resonances to the exponentiated form removes a previous
systematic power shift in the anomaly frequency (Van
Dyck, Schwinberg, and Dehmelt, 1984).

Finally, we should note that the axial drive should be
removed during cyclotron or anomaly excitation. %'ith
the drive on, the lines are broadened and shifted, although
the sharp leading edge of the cyclotron profile remains.
Since in the experiments the axial drive is removed during
these excitations, we shall not give the details of the shifts
and broadening here. An account of these effects does
appear in the literature (Brown, 1985).

A=A&(p, z)z &&p,

where

4I,R,
A~(p, z) =

c(R, +z +p +2R,p)'i

(6.36)

(2—k )IC(k) —2E(k)
2 (6.37)

with

4R,pk =
R.z +z +p +2R&p

(6.38)

AS=VX A

=~oz+B2[(z —p )z —zp] . (6.39)

Near the center of the trap, the loop produces a magnetic
field given by

D. Variable bottle

We have just seen that currently the magnetic bottle is
crucial for detecting spin and cyclotron transitions, but
that it does introduce an unwanted linewidth. Although
the line shape has been calculated, the experiments would
be improved if the line were narrowed, avoiding the line
splitting. The purpose of this section is to examine the
possibility of substituting a current-carrying loop for the
ring of magnetic material, to produce a bottle that could
be switched on and off. Transitions could be induced in
the purely hoinogeneous field with the current off, and
take place with no bottle-generated linewidth. The transi-
tions could then be detected by turning the current on and
measuring the axial frequency change in the resulting bot-
tle field. We shall first consider the bottle produced by
a simple current loop, and then examine the desirability
of using a superconducting loop with current induced in it
by a flux transformer (Schwinberg, Van Dyck, and
Dehmelt, 1979). Finally we discuss an improved two-loop
variation suggested and demonstrated by Van Dyck,
Moore, Farnham, and Schwinberg (1986).

A magnetic bottle can be made in principle by sending
a current I, through a loop, which is a circle of radius R,
about the center of the trap in the xy symmetry plane.
The magnetic vector potential A produced by this loop
can be expressed in terms of the complete elliptic integrals
X and E [see, for example, Jackson (1975), Sec. 5.5]. By
virtue of the cylindrical symmetry, the vector potential
points in the azimuthal direction y, and using cylindrical
coordinates one has

The change in the uniform field is given by

2+I,
580 ——

cR,
(6.40)

in terms of which the bottle coefficient may be written as

368o
82 ———

2R
(6.41)

aa = —cVXE
Bt

(6.42)

over such a surface and uses Stokes's formula to obtain

JdS8

= —c (ti dl.E, (6.43)

To obtain B2-150 G/cm with a typical trap dimen-
sion R, =1.0 cm, we see that ~o-100 G, which re-
quires that I, =20 A turns. Even for a coil of many
turns, there are large experimental difficulties involved in
transporting such a current down into a helium Dewar
and into the vacuum enclosure of a trap. In particular, a
large current could entail unacceptably large resistive heat
losses into the helium bath. But this difficulty is largely
circumvented if the current loop is a closed superconduct-
ing loop, with the current induced by a flux transformer.

To see how this works, we first need to recall a general
theorem about closed superconducting circuits in magnet-
ic fields: The magnetic flux through any surface bounded
by the circuit cannot be changed. To prove this theorem
one integrates the Maxwell equation

23Alternatively, it may be possible to put an oscillating current
in the coil, modulating the bottle and thereby also modulating
the detected shift in the axial frequency (Schwinberg and Van
Dyck, 1981). Narrow-band detection techniques could thus be
used to minimize the effect of the noise and the effect of trap-
ping potential variations that change the axial frequency.

where the line integral runs over the complete circuit with
the contour running on and parallel to the surface of the
superconducting wire. Since the electric field vanishes
within the superconductor and the tangential electric field
is continuous across the surface of any conductor, the line
integral vanishes. Thus if an external magnetic field is
applied to a closed superconducting circuit, a super-
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current is induced that gives rise to an additional magnet-
ic field, which precisely cancels the applied flux, giving
no change in the total flux: "

~(ext) g2
~&o =—7T Q

ln(8R /a) —2
(6.48)

Since the topology of the surface can be complex, it is
often conceptually convenient to write the change in the
magnetic field in terms of the change in a vector potential
and once again use the Stokes formula to write the condi-
tion as

dl. LA=0, (6.45)

where again the line integral runs over the closed circuit
just outside the surface of the wire. This line-integral for-
mulation is also of practical utility, since it involves a
simple one-dimensional integral rather than a two-
dimensional surface integral.

We can now see how the superconducting flux
transformer operates. The system is warm and not super-
conducting when it is inserted into the large main mag-
netic field B. Hence at this stage there is no induced su-

percurrent. The loop is then cooled and made supercon-
ducting. A current I, is induced in the small supercon-
ducting loop of radius R by applying an additional mag-
netic field h&0'"". This field could be produced, for ex-

ample, by a solenoid outside the trap that is not supercon-
ducting. To compute the current I„we recall that Eq.
(6.37) gives the vector potential for a circular loop of wire
of infinitesimal thickness. Evaluating this expression at a
distance a from the infinitesimal wire gives an approxi-
mation for the vector potential at the surface of a finite
wire of radius a. If the wire were straight, this would, by
symmetry and Ampere's law, be exact. Hence this ap-
proximation entails an error of order a/R. Since a/R is
quite small, this is a good approximation. Using Eq.
(6.37) one finds in this way that the vector potential on
the surface of the superconducting wire due to the super-
conducting current itself is given by

3~~o(&)

82
2R

(6.49)

Taking a typical value a/R +0, we have b,BO(s)

= —~0'""/2 and BP'/B2'"" ——,' (R, /R—). We see

that with a radii ratio R, /R =10, the bottle field is in-
creased by about a factor of 50 with a corresponding
reduction in the current needed to drive the solenoid.

Although the presence of the superconducting loop
does cancel about half of the uniform component of the
applied field, there does remain a change in the field,
about 2 G in comparison to the main magnetic field of
about 50 kg—an effect of order 4X10 . This might not
be too serious if both the spin and cyclotron transitions
were made with the bottle turned off and then measured
with the bottle turned on. But the cyclotron decay time is
too short for this to be done with the cyclotron resonance,
and it must be measured in the presence of the bottle.
Thus one needs a coi1 arrangement that does not alter the
uniform component Bo when it is switched on. This can
be done by having two concentric superconducting rings
of radii R, &R2 connected so as to have a common
current in both rings, flowing in the same direction, as
sllowil 111 Fig. 30 (Van Dyck, Mool'e, Farnham, alld
Schwinberg, 1986). Because of the 1/R dependence of

A~ —— ln(g) 21s 8R —2 (6.46)

The supercurrent I, is determined by inserting this in the
flux cancellation condition (6.45) along with the field pro-
duced by the solenoid. For simplicity, let us assume that
the field produced by the solenoid is a uniform field
b.BO'"", reducing the flux cancellation condition to

2wRA+ +mR LBo'"' ——0 . (6.47)

Using Eq. (6.46), this determines the supercurrent I„.then

Eqs. (6.40) and (6.41) give the alteration in the uniform
and bottle fields at the center of the trap caused by the su-

perconducting loop:

240wing to the large magnetic fields involved, the loop must be
made of Type-II material, which permits some flux penetration.
We neglect this.

FIG. 30. Two-loop superconductor schexne of Van Dyck,
Moore, Farnham, and Schwinberg (1986). With the "magic"--

ratio of R2/R i {which depends on the wire radius a), switching
on a perpendicular uniform magnetic field does not change the
value of the magnetic field at the center, but it does induce a
bottle field. (We assume that the wires connecting the two loops
are close together in comparison with their radius, so that their
effects can be neglected. )
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the bottle strength, the additional outside loop of radius
Ri has little effect on the bottle. On the other hand, it
can add a sufficient uniform field component so that both
loops together now cancel the externally applied field at
the center of the trap. Again for simplicity let us assume
that an external uniform field change &Ro'"" is imposed
upon this configuration, say by a pair of Helmholtz coils
outside the trap. The supercurrent I, is determined by
the no-flux-change condition (6.45), but this supercurrent
I, can be varied by varying the radii ratio R i/R2. Thus
a radii ratio can be found such that the uniform field pro-

duced by the superconducting loops precisely cancels the
applied uniform field,

1 1 (ext)=—Bp (6.50)

while maintaining the no-fiux-change condition. Using
Eqs. (6.50) and (6.37) for the vector potentials produced
by the superconducting loops, one finds that the no-flux-
change condition (6.45) may be expressed as

r

8R)
2 K(k) —(R, +R, )E(k) +R, ln

R)+Rg a
SR2—2 —Rg ln —2 =— + (R i+R2),1 1

(6.51)

k = 4R iR2

(R i+Re)
(6.52)

5.5

Equation (6.51) determines the radii ratio Rz/Ri as a
function of, say, the ratio of the wire radius to the radius
of the inner loop, a/Ri. The result is plotted in Fig. 31.
For example, with a/R i

———„,we have the "inagic" ratio
R2/R i ——2.58.

Some final comments need to be made. First of all,
even if there were no need for a variable magnetic bottle,
the introduction of the two-loop superconducting configu-
ration with the "magic ratio" into the trap is still useful,
since it keeps the magnetic field at the center of the trap
stable, even though the main magnetic field may be
changing slightly. Second, we should emphasize that the
present experimental precession requires that the cyclo-
tron frequency be measured to an accuracy better than a
few parts in 10 . This requires a corresponding stability
in the magnetic field. As discussed at the beginning of
the previous paragraph, a single superconducting loop

I

gives rise to a field change (when the bottle is turned on
and off) on the order of a few parts in 10~. Allowing for
the error in the theoretical calculation of order a/R and
for errors in construction, even if the theory were im-
proved, an actual double-loop system gives a residual field
change on the order of 10 . This is much too large to be
acceptable. However this residual field change can be
tuned out by the addition of a circular trim coil in the
symmetry plane of the trap (Van Dyck, Moore, Farnham,
and Schwinberg, 1986). Such a coil, with a radius R, not
too much larger than R2, does not produce a uniform
magnetic field over the double-loop superconducting ar-
rangement. Hence its contribution to the central field Bo
will not be cancelled by loops with the "magic" Rq/Ri
ratio. The proper current I, in the trim coil can be deter-
mined by making it a constant fraction of the current Id
in the "Helmholtz" coils that drive the bottle, I, =A,I~,
with the constant of proportionality A, set by the condition
that the observed cyclotron frequency not change when
the drive current Id is varied. Finally, we note that the
actual effect of such a trim coil can be computed by the
use of Eq. (6.37) for the vector potential of a single loop.
Moreover, this formula may also be used to calculate
more accurately the effect of nonideal "Helmholtz" and
trim coils by representing these coils as a sum of loops.

VII. RELATIVISTIC EFFECTS

—4.0

~ 3.5

3.0

2.5

2.0
I

0.02
I i I

0.04 0.06
a t'RI

0.08 O. IO

FIG. 31. "Magic" ratio R2/R~ for the two-loop scheme as a
function of the scaled wire radius a /R ~.

Our discussion of the motion of a particle in a Penning
trap has so far been nonrelativistic. We now examine the
modifications to the motions that are due to special rela-
tivity. The relativistic effects are extremely small because
(v/c)~ is usually less than 10 . Nonetheless, the high
precision being achieved with a single trapped electron
has made it possible to observe relativistic couplings be-
tween the cyclotron and axial motions (Gabrielse and
Dehmelt, 1981a) and to observe a resulting bistability and
hysteresis in the cyclotron motion (Gabrielse, Dehmelt,
and Kells, 1985). In fact, special relativity makes possible
the best signal-to-noise ratio ever observed with a trapped
particle. We review the theory of these experiments in
Sec. VII.A. In Sec. VII.B we discuss the quantum-
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relativistic energy levels starting with the Dirac Hamil-
tonian. We obtain essentially the same results given by
Graff, Klempt, and Werth (1969). Relativistic shifts to
the energy levels and eigenfrequencies must certainly be
included in the analysis of present measurements of the
magnetic moments of the electron and positron (We con-
trast these shifts with the shifts due to other important
perturbations in Sec. X.) We consider the related "Lamb
shifts" in Sec. VII.C. These shifts are large, but all the
energy levels shift together, giving no measurable shift in
an eigenfrequency.

A. Nonlinear, relativistic cyclotron
motion

The nature of an anharmonic axial resonance was dis-
cussed in Sec. III.D. As was explained there, even small
nonlinear corrections can have substantial effects if the
damping of the motion is very small —a periodic motion
with very small "viscosity" can be significantly affected
by small perturbations. This is dramatically evident in
the cyclotron motion of an electron, which has a quality
factor Q, =to, /y, =3X10" (Table I). In this case the
nonlinearities in the motion arising from relativistic
corrections even for v /c =10 put the resonance curve
well into the nonlinear regime. This possibility, which
was under experimental investigation for several years,
has now been very clearly demonstrated by Ciabrielse,
Dehmelt, and Kells (1985). While the experiments were
in progress, the theory of such a nonlinear motion was
discussed independently by Kaplan (1982). We review
this effect here. A classical description is entirely ade-
quate for the large excitation that has been observed.

Including relativistic corrections, the driven and
damped cyclotron equation of motion is given by

=to,'z Xv(t) —, y, v(t)+ —'(t) .
d v(t), ) e

U 2/c 2
)
1/2

(7.1)

Here the use of the modified cyclotron frequency to,
' de-

fined by Eq. (2.16) takes account, to sufficient accuracy,
of the effect of the electrostatic quadrupole trapping po-
tential. We also use the dipole approximation for the
driving electric field N'(t), which often has some rather
complex form of polarization. However, as usual, we can
write this field as a sum of co-rotating and counter-
rotating components and neglect the counter-rotating
component, since it is nonresonant. That is, there is no
essential loss of generality in assuming that gt'(t) is co-
rotating. We use complex coordinates where, for exam-
ple, U(t) =u„(t)+iu„(t), and assume that the drive is of
high spectral purity, so that it may be represented by a
single Fourier component,

+ —,
'
y, u (t) = 8'p . (7.4)

Pl

We are mainly interested in the steady-state solution
where u(t)=0. In this case the cyclotron equation of
motion (7.4) is identical in form to the nonlinear oscillator
equation (3.73) of Sec. III.D. The only difference is that
with a purely rotating drive, Eq. (7.4) entails no approxi-
mation (other than the neglect of higher orders in u /c ),
while Eq. (3.73) required the omission of higher over-
tones. Since the nonlinear cyclotron problem is essentially
identical to the nonlinear oscillator problem that was dis-
cussed at some length in Sec. III.D, we shall give only a
brief treatment here and refer the reader to Sec. III.D for
further details. The maximum response is obtained at a
drive frequency to, which makes the curly brackets in Eq.
(7.4) vanish, giving

2

+max (7.5)

It is convenient to scale the amplitude in the general case
by this maximum amplitude, and to define

~ max
(7.6)

In terms of this variable, the absolute square of Eq (7.4).
[with, of course, u(t) =0) gives

t '2 —1
N —

COC1+4 —Xta (7.7)
7 C

where now

1 ~c

7C

I umax I

C2

Equation (7.7) is identical in form to Eq. (3.81), and thus
the response curves for w are just as those given in Fig.
11, except that since N is negative they tilt to the left
rather than to the right as

I
X

I
increases. The onset of

the triple-valued region appears at N = —1. As remarked
in Sec. III.D, the portion of the resonance curve between
the points labeled by A and 8 in Fig. 32 is a region of
unstable motion. This is simple to prove for the cyclotron

writing the four-velocity as

U(t) =u (t)e'"' . (7.3)
[ 1

I
p (t)

I
2/c 2] 1/2

Since u /c is very small, it suffices to solve for the u(t)
in terms of u (t) only to second order in u /c, when the
velocity appears multiplied by the large cyclotron fre-
quency co,'. Thus, in the rotating frame, the equation of
motion (7.1) can be written as

u(t)+i Ito to,'—[1——,
'

I
u(t)

I
/c2]Iu(t)

I'( t) =8'pe'"' (7.2)

The equation of motion (7.1) is now simplified by passing
to a frame rotating at the drive angular frequency to by 25This figure is the mirror image of Fig. 12, since N = —10.
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W

—[co—co', (1—3u /2c2)]

co —co,'(1—uz/2c )

0

(7.14)

O.+—

0.2-

The square of this matrix is proportional to the unit ma-
trix, with

Q = —[a)—co,'(1—u /2c )]

X[~—co', (1—3u /2c )] . (7.15)
0- s l i )» I

—IQ -5 0 5
2 ((d —

(U& ) /gc

FIG. 32. Nonlinear, relativistic cyclotron resonance.

(This is the easy way to plot the resonance curve; rotating
the result by 90' and reflecting gives w vs co —m,'. ) The
lower branch of the curve in the w, co —co,

' plane corre-
sponds to the minus root. Next we note that the slope of
the curve as a function of w is given by

—1/2
1 1S =X+ ——1

M
(7.10)

The points A and 8 are determined by setting S =0 [cor-
responding to infinite slope in the w vs (co —to,') plot] and
by solving this constraint simultaneously with Eq. (7.9).
This is done with the plus sign in Eq. (7.10), which ap-
plies to the lower branch. The slope S is negative between
the two roots given by A and 8. We now study the small
oscillations about the steady-state solution and show that
they are unstable in this region of negative S between A
and 8.

To do this we write

u (t) =u +ui(t), (7.11)

where u is the previous steady-state solution, and ui(t) is
a small perturbation. Without any loss of generality, we
may take u to be real with, in vector notation, u lying
along the x axis. We insert the decomposition (7.11) into
the equation of motion (7.4), keep only the first-order
terms in u, (t), and identify real and imaginary parts cor-
responding to the x and y components. Writing the result
in matrix form gives

case. First we note that Eq. (7.7) is easily solved to give
the frequency difference to —to,

' as a function of normal-
ized squared amplitude w:

1/2

If Q is negative, the eigenvalues of Q are imaginary, and
Eq. (7.12) shows that the perturbations Ui oscillate and
damp in time. If Q is positive, there are two equal but
oppositely signed real eigenvalues. With Q &y, /4, the
positive eigenvalue is less than y, , and each of the two
solutions of Eq. (7.12) decay in time. However, for
Q & y, /4, the positive eigenvalue exceeds y, /2, and Eq.
(7.12) has an unstable solution that increases exponential-
ly with time. Using Eqs. (7.9) and (7.10) one finds that

' 1/2

S.—
4 Xc =+'VcW2 & 2 2

W
(7.16)

Along the resonance curve between A and 8, the negative
root applies. Since S is negative in this region, the right-
hand side of Eq. (7.16) is positive. We conclude that the
cyclotron motion is unstable along the portion of the reso-
nance curve between the points labeled by A and 8.

Since the region between A and B is unstable, the cy-
clotron resonance exhibits hysteresis: Sweeping down in
frequency, the amplitude follows the resonance curve un-
til point 8 is reached, at which point the amplitude
abruptly falls to the lower curve, as indicated by the
dashed line in Fig. 32, and then continues along this curve
as the drive frequency is further decreased. Gn the other
hand, sweeping up in frequency, the amplitude follows
the lower branch of the resonance curve until it reaches
point A, at which point the amplitude jumps discontinu-
ously to the upper branch, as indicated by the dashed line,
and then continues along this branch as the drive frequen-
cy is further increased.

This hysteresis phenomenon has been very clearly
demonstrated in an experiment (Gabrielse, Dehmelt, and
Kells, 1985) from which the magnetic bottle was carefully
eliminated. See Fig. 33. The method for measuring the
level of the cyclotron excitation is itself novel, since it also
relies on the effects of special relativity. The compara-
tively fast cyclotron motion gives an effective mass in-
crease mm (1+v~/2c ), which alters the axial oscilla-
tion frequency co, . Since co, —1/m, we have a change in
this frequency given by

Ui (t)= (Q ——,
'
y, ) Ui (t), (7.12) b,a), = ——,'(v /c )co, . (7.17)

where
T

+1x
Ui(t)=

u1y
(7.13)

Changes of hco, /2~=1 Hz out of co, /2n. =62 MHz can
be observed, so that cyclotron velocities with
v le )7&10 can be detected. This corresponds to a
cyclotron energy of E, & 2 & 10 eV. Since the
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FIG. 33. Experimental observation of the relativistic cyclotron
resonance (Gabrielse, Dehmelt, and Kells, 1985).

The theory of the nonlinear, relativistic cyclotron reso-
nance that we have presented is incomplete in two impor-
tant aspects: We have neglected the effects both of quan-
tum mechanics and of noise. %'e have treated the drive as
a perfect, monochromatic force. In reality, the cyclotron
drive does have a small, broad noise pedestal, which
proves to be very important experimentally. Moreover,
the cyclotron motion interacts with the 4-K blackbody ra-
diation in the trap. Although these noise sources are
quite sma11, they cannot be treated as first-order perturba-
tions, since the basic motion is highly nonlinear. With re-
gard to the quantum aspect, we noted in the previous
paragraph that the cyclotron quantum number must be
large, n & 30, for the resonance to be detected. Although
a classical description is entirely adequate in this region,
the excitation of the cyclotron motion starts in the quan-
tum regime, since initially n =1. Even for n =1 the cor-
responding classical motion is highly nonhnear, since the
anharmonicity parameter is large, N= —300. The rela-
tivistic, quantum-mechanical level structure is derived in
the next section. Nonetheless, we do not have a detailed
description of the initial stages of the anharmonic excita-
tion. Such a detailed description is needed in order to
understand fully the precise measurements of the cyclo-
tron frequency that are necessary in experiments that do
not employ a magnetic bottle. The two outstanding prob-
lems of n'oise and quantum effects are difficult problems
that very much deserve father investigation.

quantum-mechanical energy level spacing is given by
Rco, =7&&10 (Table I), we see that the cyclotron quan-
tum number is large, n & 30, and that our classical treat-
ment applies to this experiment. Moreover, the anhar-
monicity parameter is very large in magnitude

~
N

~
& 1&(10 . Thus, in view of Eq. (7.7), the resonance

curve for the most part is a narrow sheaf of thickness
5co=y, about the line (cf. Fig. 14),

(co —co,')/y, =Nw = —co,'(U /c )/2y, . (7.18)

As shown in Fig. 33, only the upper branch of this nar-
row sheaf is observed, the branch that appears when the
drive frequency is swept from high to low frequencies.
The maximum observed axial frequency shift in Fig. 33,
hen, /2m= —. 50 Hz, corresponds to u,„/c =4X10
and E, =0.8 eV, which gives X=—5&10 . Excita-
tions as large as E, '"=10 eV have been observed.

Comparing the slope of this line with that of the axial fre-
quency shift given in Eq. (7.17) gives [(co—co,

'
}/co,']/

[hco, /co, ]=2. A shim of the superconducting magnet is adjust-
ed so that the observed ratio of slopes is within 0.5% of this
factor of 2. Referring back to Eqs. (6.3) and (6.4), it is easy to
find that the presence of a magnetic bottle would alter this ratio
by the factor [1+(2c~/co, )(B2/B)]. Thus, for this experiment,

l
Bq/B

l
&5X10 /cm, which is about a factor of 5000 small-

er than the bottle field discussed in Sec. VE.C.

B. Reiativistic quantum mechanics

H =a.IIc +Pmc +eA 13o"—"F„„,
4m'

(7.19)

Although the effects of special relativity are exceeding-
ly small for the slowly moving particle in a Penning trap,
the geonium experiments are exceedingly precise, and as
we have just seen, these effects are measurable. Moreover,
it may be that the relativistic effects can be exploited so as
to provide a measurement of the state of the particle,
thereby dispensing with the magnetic bottle, which
hinders the precision of the experiments. In this section
we shall derive the quantum level structure of a particle
in a Penning trap, starting with the fu11 Dirac Hamiltoni-
an and then performing a nonrelativistic reduction includ-
ing also the 1/c corrections. We do this in some detail
for two reasons. First, although the results we derive
have been obtained previously by Graff, Klempt, and
Werth (1969), that paper contains a few misprints.
Second, and more importantly, the relativistic motion of a
spin is subtle and warrants a careful exposition. We shall
show that the Foldy-Wouthuysen nonrelativistic reduc-
tion produces a Hamiltonian accurate to order 1/c,
which is identical to its classical counterpart if the spin
operator is identified with the spin observed by perform-
ing a Lorentz transformation to the particle's rest frame.

The Dirac Hamiltonian for a charged particle with an
anomaly a =(g —2)/2 in a Penning trap has the form
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in which

eII=—P——A
I C

(7.20)

order 1/c corrections to this limit. The transformed
wave function l(i obeys

(7.32)

is the kinetic momentum operator and A is the scalar
potentiaL The Dirac matrices ak and p are Hermitian
and obey the rules a =U-'aDU . (7.33)

I ak~al } 2~kl ~

IP,akI =o,
(7.21a)

(7.2 lb)

To our stated accuracy, it suffices to take U to be a uni-

tary operator formed from the anti-Hermitian operator
Pa. II'/mc,

(7.21c) Th

U = U(Pa II'/mc) . (7.34)

with

20.""I „=CT B—Eo, .E, (7.22)

where the curly brackets denote the anticommutator.
Writing out the field strength tensor F» in terms of the
electric and magnetic fields gives

U '= U = U( —Pa.II'/mc) .

Since H i anticommutes with Pa. II', we have

U 'Hi U=Hi U (Pa II'/mc) .

Accordingly, taking U to be the unitary operator

(7.35)

(7.36)

o"=—(i/2)sk a,a
%'e shall use the representation where

T

o' 0
o'

0 o.k

(7.23)

(7.24)

U = mc —Pa II'
[m'c +(a.lI') ]'

yields

U —lHDU pc [m2c2+(a. ll~)z]in (7.38)

in which the matrix entries are the ordinary 2&2 Pauli
matrices and where

1 0
0 —1

(7.25)

in which the unit entries are now 2&2 unit matrices. Us-
ing the decomposition (7.22) in the Dirac Hamiltonian
(7.19), we may write

with

HD=a~+aD,

Hi ——a II'c+Pmcz,

(7.26)

(7.27)

where

ieaA ~
2mc

(7.28)

Hz =ed — Pcr 8 .
eaA'

2Nzc
(7.29)

As it stands, the Dirac Hamiltonian couples "large"
and "small" components of the wave function 4 in the
Dirac equation

E%=H (7.30)

to exhibit the nonrelativistic limit, as well as to obtain the

and the nonrelativistic limit is not evident. We perform a
unitary Foldy-Wouthuysen transformation,

(7.31)

This piece of the transformed Hamiltonian has the
desired structure: it does not couple "large" and "small"
components, and the nonrelativistic limit is evident.

The remaining part of the Dirac Hamiltonian Hz is al-
ready of order 1 in the 1/e expansion. Hence to our ac-
curacy 1/c z we may use

U=exp( —Pa.II/2mc), (7.39)

which is an approximate square root of the expression in
Eq. (7.37), including terms of order 1/c . Note that since
the Bohr magneton eA'/mc multiplies the magnetic field
8, it should be counted as a dipole moment, not as a term
of order 1/c. We now specialize to the case relevant to
the Penning trap where the magnetic field is constant and
the electric field is divergence free (V E=O). Expanding
through second order in 1/c, we find after a little calcula-
tion that the. terms remaining in Eq. (7.33) are now given

by

U Hz U=eA — Pn 8 cr E&&II—p ac%' eA

2mc 4M c

IIB II ""
P E

4m 3c3 2PPlc

ieafi+, , ys& &.
Zm c

Here the operator products are implicitly understood to
be taken in a symmetrized, Hermitian form. The Dirac
matrix y5 is defined by ys ———a'a a . The last two terms
on the right-hand side of Eq. (7.40) couple large and small
components of the Dirac wave function. They are of
higher order and may be deleted.

We may now expand out Eq. (7.38) to order 1/c
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where HNR is the usual nonrelativistic Hamiltonian and
HRC contains the 1/c corrections to this nonrelativistic
limit. Using

, 2 2

esca

2
2 2 2

{u.II') =ll + E —eficr 8+ Pcr.IIXE,esca

4m'c' mc

(7.42)

it is easy to see that the nonrelativistic Hamiltonian

II 0 eA
HNR —— +ed —g u.B

2m 4mc

is supplemented by the 1/c correction

( II —eficr. 8/c)
Sm c

HRc

{7.43)

—(1+2a), , cr.EXII+, , a IIB II .equi eafi
4m c 4m c

(7.44)

Here we have deleted the rest energy mc from H and re-
placed the matrix P by its appropriate eigenvalue

'=+1.
The presence of the first term in Eq. (7.44) is clear. It

results from the expansion of the relativistic form for the
energy e(m c +II )'~, with II /2m augmented by the
magnetic energy —efio"8/2mc. Note that this is the
magnetic energy for g =2. The relativistic effects of the
anomaly a =(g —2)/2 are rather subtle. Our method of

[remembering the definition (7.28) of II'] and combine
the result with that given in Eq. (7AO) to arrive at the
structure

(7A1)

+fico+(n + —,
' )+ —,gfico, —,s .

Including the 1/c relativistic corrections, we have

(7.45)

NR RC
Eklns Eke +Eklns ~

where, according to first-order perturbation theory,

Eki~= &kins
I ~Rc

I
kins) .

(7.46)

(7.47)

This expectation value is easily evaluated if we make use
of the formalism developed in Sec. II.B. Using this for-
malism, we find, after some calculation, that

derivation of Eq. (7.44) directly from the Dirac equation
is conceptually straightforward. The spin-dependent part
of the Hamiltonian HRc given in Eq. (7.44), however,
must also follow from a purely classical argument for the
precession of the spin vector ,'R—n, since this precession
equation does not explicitly involve Planck's constant fi.
Moreover, the spin precession equation for constant fields
suffices to determine the spin-dependent terms in HRC,
and the classical equation for this is on firm footing. It
is, in fact, not difficult to check that the spin-dependent
terms in Eq. (7.44) do indeed agree with the 1/c terms in
the classical expression for the spin precession in the
particle's rest fraine [see, for example, Jackson (1975), Eq.
(1 1.170)].

As we discussed in Sec. II, the quantum state of a parti-
cle bound to a Penning trap is described by the quantum
numbers: k =0, 1, . . . , axial oscillation; n =0, 1, . . . ,
cyclotron motion; I =0, 1, . . . , magnetron motion;
s = + 1, spin; the nonrelativistic energy eigenstate is
denoted by

I
kins ). The nonrelativistic energy eigenvalue

is given by

Eki ——fico (k+ i ) —fico (l+ i )

RC
Eklns

2mc

co+(n+ —,
' )+co (l+ —,')

+ & co+(k + & )+coc. &
s

CO+ —M

4 g2
2 [(n + —,

' )(l + —,
'

) ——,
'

) — 2 cog [(k + —,
' )'+ —', ]

4mc (co+ —co ) 16mc

, co+(n+ —,')+co (l+ —,')
+(1+2a) co,s

4mc
—a co, co,s(k+ —,

'
) .

4mc
(7A8)

Here we use the notation co+(=co,') and co (=co~) for
the cyclotron and magnetron frequencies.

As a check on the calculation, we note that the relativ-
istic correction (7.48) of the geonium energy levels yields
the cyclotron and axial frequency shifts used above in Sec.
VII.A. In the classical limit and neglecting a magnetron
motion correction, we have (n+ ,' )fico,'/mc =U /2c-,
and the derivative of Eq. (7.48) with respect to nfi pro-
duces the cyclotron frequency shift given in Eq. (7.18),
while the derivative of Eq. (7.48) with respect to kiii pro-
duces the axial frequency shift given by Eq. (7.17). A de-
tailed discussion of the relativistic eigenfrequency shifts
in the classical limit is presented in Sec. X.

5co,
' = —5(n + 1+—,

' s), (7.49a)

5=co, (fico, /mc ) . (7A9b)

In contrast to the classical limit, the low-lying spin and
cyclotron energy levels are sketched in Fig. 34. There are
two spin ladders, the left corresponding to spin-down, the
right to spin-up. Only the first line of Eq. (7A8) makes a
significant contribution, and it suffices to set co =0,
co+ ——co, . Thus we obtain a state-dependent cyclotron fre-
quency shift given by
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For the electron experiment (Table I), we have 5/2m. =200
Hz out of v,'=160 CzHz. Experiments to observe this
small shift are very close to success (Gabrielse, Dehmelt,
and Kells, 1985). Once sufficient resolution is achieved,
so that the individual cyclotron frequencies can be
resolved, it will bc possible to distinguish the spin state as
well. QJ P,

I
C 2

QJ
C

C. Radiative corrections Q) ——8
Q 2

There are radiative corrections to the. energy-level
structure of the geonium "atom." These are analogs to
the Lamb shift in the hydrogen atom. In leading order,
the radiative level shifts are simply the dispersion associ-
ated with the absorption that gives the radiative decay.
The radiative effects shift the energy by the complex
amount bE —i(A'/2)t', where I is the radiative decay
constant. The real energy shift AE and the decay width
—(R/2)I are the real and imaginary parts of the same
analytic function. Using the lowest-order formula for the
decay width, Eq. (2.98), we can therefore immediately
write down the leading radiative correction:

n= I

s=—
I

FICz. 34. Relativistic shifts of the spin-cyclotron energy levels
for an electron.

b, E —(i'/2)I =—2 v H —E va kins —(H E)ln ——kins) .
3m' c K c

(7.50)

Here a =e /iric = », is the fine-structure constant and K
is an ultraviolet cutoff, which must be introduced to make
the nonrelativistic calculation converge. Including rela-
tivistic kinematics gives convergence, and so K=mc .
The Hamiltonian H is the nonrelativistic form given by
Eq. (7.43). An additive constant has been arranged so
that AE vanishes for a free particle —the energy shift has
been properly renormalized. Finally, we note that since
Imln(FI E)= —m. for —an excited level, we recover Eq.
(2.98) for the decay width I'.

The radiative level shift is of order a(U/c} relative to
the basic level splittings. Since (v/c) =10 for the elec-
tron in the geonium atom, the shift is very small, of rela-
tive order 10 ' . The observable shifts are, in fact, yet
smaller because all the motions in geonium are basically
harmonic. Thus the velocity operator v can be expressed
in terms of various creation and annihilation operators a
and a, and the operator in the matrix element in Eq.
(7.50) is a sum of terms, each of the form

a (H E)ln—H —E ' H —E
K

a+a(H E)ln—
K

a

Using the properties of the creation and annihilation
operators it is easy to show that (in the real part} such ex-
pressions are constants, independent of the quantum state.
Hence the b,E given by Eq. (7.50) is a common shift for
all the levels, and it cancels in the transition frequencies.

There are, of course, state-dependent radiative correc-
tions in higher order, corrections both to the orbital
motion and in the anomalous magnetic moment. These
have been worked out in detail for the motion in a con-
stant magnetic field, which gives the major effect since
this cyclotron motion is by far the fastest (Newton, 1954;
Tsai and Yildiz, 1973). These corrections are of relative
order a(fuu, /mc ) =a(u/c) . We conclude that the radi-
ative level shifts in geonium are certainly negligible.

VIII. CAVITY SHIFTS

We consider here the shifts in the cyclotron frequency
and decay time of an electron or positron that are brought
about by the presence of a microwave cavity formed by
the trap electrodes themselves. As mentioned earher, the
first observation of the inhibition of the spontaneous de-

cay of a radiating system because of a surrounding mi-

crowave cavity was for the cyclotron motion of a single
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~~c =~c —~c (8.1)

is not accounted for, it leads to a systematic error in the
anomaly given by

ba 1 ~~c
a a)c

(8.2)

Since the present precision in the anomaly is
ha/a=4X10 (Van Dyck, Schwinberg, and Dehmelt,
1984) and a =1.2X 10, we see that the current experi-
mental precision is upset if the cavity shift is larger than
hco, /co, =5X10 ' . As we shall see, the shift in the cy-
clotron frequency can easily be much larger than this fig-
ure. Calculations have been published (Barton and

That the radiation of an accelerated charge can be substan-
tially modified by enclosing it in a microwave cavity was point-
ed out long ago by Purcell (1946). Cavitylike effects on the radi-
ation of a molecule separated from a single conducting plate by
a thin dielectric layer have been reviewed by Drexhage (1974).
A variety of theoretical techniques have been used to study the
radiation of an atom near a plate or between plates: Morawitz
(1969), Kuhn (1970), Stehle (1970), Philpott (1973), Milonni and
Knight (1973), Chance, Frock, and Silbey (1975). More recent-
ly, Kleppner (1981) discussed the radiative properties of an
atom in a cavity, and the inhibition of the radiation of a Ryd-
berg atom between closely spaced plates was observed by Hulet,
Hilfer, and Kleppner (1985).

electron in a Penning trap (Gabrielse and Dehmelt,
1985). This observation was subsequently confirmed in a
second trap (Van Dyck, Schwinberg, and Dehmelt, 1984).
The hyperbolic shape of the Penning trap electrodes,
along with the holes and slits in the electrodes, make it
difficult to calculate the mode structure for these traps.
A cylindrical cavity, however, is a tractable problem. It is
of direct experimental interest both as a model of the hy-
perbolic electrodes and also because this geometry may be
sufficient to produce an adequate quadrupole electrostatic
trapping potential. Such a trapping configuration (Ga-
brielse and MacKintosh, 1984) is reviewed in Sec. IX.
Thus we describe the alteration of the cyclotron motion
brought about by a cylindrical cavity. In this we follow
the work of Brown, Gabrielse, Helmerson, and Tan
(1985a,1985b). The frequency shift can easily be so large
as to have important consequences for the g —2 measure-
ments, and this systematic effect warrants a thorough ex-
perirnental investigation. As a byproduct, we shall also
discuss the corresponding alterations in the cyclotron
motion of a particle in the midplane between two infinite
parallel conductors.

To assess the accuracy needed in the theoretical formu-
la that relates the observed cyclotron frequency co, to the
cyclotron frequency co, in the absence of the cavity, we
note that the anomaly involves the difference of the free-
space values of the spin and cyclotron frequencies, as
shown in Eq. (2.66). Thus if the cavity frequency shift

Grotch, 1977; Fischbach and Nakagawa, 1984,1984b;
Svozil, 1985) which imply that there are also large
cavity-induced corrections to the spin frequency, correc-
tions that are large enough to modify the results of the
present experiments. This work, however, led to a
demonstration by Boulware, Brown, and Lee (1985) that,
to within a high order of accuracy, the exact apparatus of
quantum electrodynamics yields the classical result, with
a negligible effect upon the spin frequency. (See also
Boulware and Brown, 1985.) Thus the classical develop-
ment of Brown, Gabrielse, Helmerson, and Tan suffices.

Neglecting insignificant image magnetic forces, the
presence of a surrounding metallic cavity alters the
charged-particle equation of motion to read

v —co, Xv+ VV(r)+ —,
'
y, v= E'(r) .

Pl ?n
(8.3)

Here E'(r) is the electric field at the position r(t) of the
charged particle which is produced by the effective image
charges that represent the cavity walls. It is the electric
field acting on the particle, omitting the trap field
[ VV—(r)] and also excluding the proper field of the par-
ticle itself. This proper field is accounted for by using the
observed (free-space) electron mass m and by employing
the free-space damping constant y, (co, )=4e co, /3mc
discussed in Sec. II.E. It is convenient to split the field E
into longitudinal and transverse parts,

E~ (L )E~+(T)p~ (8.4)

The longitudinal part ' 'H' is the gradient of the
radiation-gauge scalar potential, while the transverse part
' 'E' is the time derivative of the radiation gauge vector
potential. As we shall soon see, the major effect of '~'E'
is to alter the electrostatic binding field by an insignifi-
cant amount (in agreement with the previous estimate of
Wineland and Dehmelt, 1975b), while it is the effect of

'E', which corresponds to the effects of the dynamical
cavity modes, that can have significant consequences.

The longitudinal piece ' 'E' is obtained from the altera-
tion brought about by the trap electrodes on the static sca-
lar potential produced by the charged particle. Thus

'E'(r) = —Ve&'(r, r') ~, (8.5)

Here &'(r, r') is a solution to the homogeneous Laplace
equation. Adding it to the free-space Green's function
1/~ r —r'~ produces the Coulomb Green's function ap-
propriate to the cavity, a function that vanishes when ei-
ther r or r' lies on the electrode surface. Since the
charged particle moves about a small orbit near the center
of the trap, the first nontrivial term in the power-series
expansion of ' 'E'(r) suffices. The symmetry of the Pen-
ning trap electrodes gives ' 'E'(0)=0. Small trap imper-
fections make ' 'E'(0) nonvanishing, but this very small
constant electric field is canceled by a very small shift in
the equilibrium position of the harmonic trapping poten-
tial. Thus the first nontrivial term is given by

3-' 'Ek«)= g &kiri (8 6)
l=1
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where

2

&kt = — [Vk Vt&'(r, r') ~, ,+Vk V'i &'(r, r') ~, ,] .
NZ

with

(8.15)

The first term in the square brackets is symmetrical in the
vector indices k, l and traceless, since &'(r, r') obeys the
Laplace equation. Moreover, this term shares the axial
symmetry of the trap electrodes. Hence its effect is ab-
sorbed by a small redefinition of the trapping potential.
Since the Green's function is symmetric,

&'(r, r') =W'(r', r), (8.8)

the second term in the square brackets is symmetrical in
the vector indices k, l. This second term also has axial
symmetry, but it is not traceless. The scalar part

+kl ~kl ~

3

3 g +Nlltl

(8.9)

(8.10)

cannot be absorbed by a redefinition of the trapping po-
tential. This part upsets the relation amongst the magne-
tron, axial, and cyclotron frequencies co~ =co, /2co,' dis-
cussed in Sec. II. The correction is, however, very small:
The double gradient of &'(r, r') is of order 1/d, where d
is the characteristic trap size. Hence

ap

nod

e 1

ap md
(8.11)

Here we have introduced the Bohr radius ap-5 & 10
cm, since the binding energy of the hydrogen atom
e /2a0=14 eV is about e times the voltage on the trap
electrodes (a voltage produced by batteries). Therefore

ap
Q = a)z -10 cog, (8.12)

and we see that this correction is negligible.
The transverse electric field may be expressed as

3

Ek (t, r) = — dt' g Dkt(t t', r, r(t'))eut(t') Ic-
c)t

(8.13)

Here Dkt(t —t';r, r') is the retarded, transverse, radiation
gauge Green's-function alteration brought about by the
trap electrodes. Adding it to the free-space Green's func-
tion produces the full Green's function, which obeys the
relevant boundary conditions on the trap electrodes that
behave as cavity walls. Since the charged particle is con-
fined to a small region near the center of the trap, it suf-
fices to set r=O=r(t') in Eq. (8.13). Only the fast cyclo-
tron motion has any significant correction from this field.
Adopting complex coordinates and Fourier transforming
according to

one finds that inserting the field (8.13) into the equation
of motion (8.3) yields the condition

co —co,'+iy, l2= coro—D ~(co;0,0), (8.16)

where ro e ——/mc is the classical electron radius. The
effect of the trapping potential is to replace the cyclotron
frequency co, by the modified frequency co,

' defined in Eq.
(2.16), which appears on the left-hand side of Eq. (8.16).
The simplicity of the right-hand side of Eq. (8.16) results
from the axial symmetry which implies that D (co;0,0) is
proportional to the unit dyadic in the xy plane, with the
proportionality constant D '

(co;0,0)=D ~(co;0,0).
In general, the Green's-function modification

D '
(co;0,0) is a complex number, and thus the presence

of the cavity modifies the cyclotron decay constant away
from its free-space value y, . In the limit of a perfect cav-
ity with perfectly conducting walls, the imaginary part of
D' (co;0,0) cancels y, exactly In .this limit there is no
decay of the cyclotron motion because there is no dissipa-
tive process to absorb the energy.

To assess the size of the correction to the cyclotron fre-
quency given by the right-hand side of Eq. (8.16), we note
that simple dimensional analysis informs us that

D ~(co;0,0) =F(cod lc)ld, (8.17)

where d is the characteristic trap size and E is a dimen-
sionless function of the dimensionless ratio cod/c =d/k.
This function describes the retarded propagation of the
radiation field emitted by the motion of the image charges
that represent the cavity walls, and thus one expects that
F(codlc) will be roughly of order unity even for a large
argument. For the typical trap parameters given in Table
I, we have roid = 1 && 10 ' and cod Ic = 10. Taking
F(cod/c) =1, we see that the correction to the cyclotron
frequency is roughly on the order of 10 ', which is al-
most as large as the current precision of the experiments.
Clearly this effect warrants a more careful examination.

Such an exainination has been made for a cylindrical
cavity, as shown in Fig. 35, in the work of Brown, Ga-
brielse, Helmerson, and Tan, which we are summarizing.
The results for this geometry should give a good indica-
tion of the size of the effects in the hyperbolic traps.
Moreover, as we shall discuss in Sec. IX, a trap with a
cylindrical shape can be used as a Penning trap. But be-
fore passing to the quantitative treatment, some more
qualitative, clarifying remarks are in order. We first ig-
nore the renormalization problem so that the Green's-
function correction D '

(co;0,0) on the right-hand side of
Eq. (8.16) is replaced by the full Green's function, and the
decay constant y, is omitted on the left-hand side. In this
case we may express the Green's function by a mode sum
to obtain

u (t)=u„( t) i u„(t)-e— (8.14)
(8.18)
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I

I

FIG. 35. Cylindrical cavity of radius 8 and length 21.. A uni-

form magnetic field 8 is aligned along the axial symmetry axis
of the cavity, and the charged particle is in a small orbit in the
center of the cavity.

Here co& is the eigenfrequency of the Nth mode and I'~ is
the decay constant of this mode with Q~ =co&/I z the
corresponding quality factor of the mode. The coupling
constant A,~ in the numerator is related to the square of a
wave function, and so it is a positive number, while the
sign of the damping term +it@I ~ in the denominator is
dictated by the causal requirement of decay rather than
growth in time. Equation (8.18) expresses the frequency
shift of the cyclotron motion, which is essentially har-
monic, in terms of its interaction with the infinite number
of cavity modes of the radiation field, each of whose am-
plitudes is a harmonic oscillator. Thus Eq. (8.18)
represents the cyclotron frequency shift in terms of the
solution of an (infinite) set of coupled harmonic oscilla-
tors. A simple dimensional argument shows that A,~ is of
order (ro/d )c -(ro/d)co&. Therefore, away from any
cavity resonance co=co~, we have a small frequency shift
of the order (co —co,')/co-ro/d, in agreement with our
previous estimate. However, near a cavity resonance, we
have a frequency shift (from this one mode) as large as
(co —co,')/co-+(ro/d)(coN/I x)=+(ro/d)Qx which is
much larger. This frequency shift disappears exactly on
resonance, but in this case there is a large change in the
cyclotron decay constant of order (ro/d)Q~co-y, Q&.

co —co,
' = ——I(cg)+R (co)

= ——y, (co)+co Xp o)+ —I

+Xg co+—
2

(8.19)

where Xp is the parallel plate contribution to Eq. (8.16),
including the imaginary cyclotron decay contribution, and
Xz is the correction due to the cylindrical side of the cavi-
ty. In the first line of Eq. (8.19) we have separated out

(In these last two estimates we have neglected purely nu-
merical factors, which may be fairly large. )

The story we have just told suffers from a serious omis-
sion, the omission of the necessity of a renormalization.
Replacing the cavity walls with an absorbing material and
taking the limit of an infinitely large cavity must yield the
free-space limit. In this limit, the imaginary part of the
right-hand side of Eq. (8.18), the absorptive contribution,
must reproduce the free-space decay constant —iy, /2
But in this limit, the real part of the right-hand side of
Eq. (8.18) is infinite, since it contains the reactive effect
of the proper field of the charged particle. Clearly, this
divergence also appears in the original cavity configura-
tion. As is well known, this infinity is correctly dealt
with by removing the free-space reactive contribution of
the charged particle's proper field and employing the ob-
served free-space value of the charged particle's mass.
Thus the formal mode sum in Eq. (8.18) diverges, and it
must be renormalized by subtracting out the real part of
the free-space limit. Since this is a delicate operation, we
shall instead return to the previous equation (8.16), which
expresses the (complex) frequency shift in terms of the al-

teration D '
(co;0,0) of the Green's function brought

about by the presence of the cavity.
To have a tractable problem, but one of direct experi-

mental interest, we are considering a right-cylindrical cav-
ity, as illustrated in Fig. 35. The magnetic field B is
aligned along the cavity axis, and the charged particle
moves about this field in a small orbit at the center of the
cavity. We take account of dissipation by replacing the
individual cavity widths I ~ with an average value I.
Referring to the (formal) mode sum (8.18), we see that
since I «co~, this is tantamount to dropping the i~I z
term and replacing the frequency co by the complex num-
ber co+iI /2. To determine unambiguously the renor-
malized alteration D ~(~;0,0), we note that the limit in
which the cavity radius R is taken to infinity, with the
cylindrical side replaced with an absorbing material,
yields a geometry with two parallel, infinite perfectly con-
ducting planes a distance 21. apart. Thus we express the
Green's function as the sum of the Green's function for
the parallel plate problem and the solution to the homo-
geneous wave equation, which corrects for the presence of
the cylindrical wall. This gives
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the real and imaginary parts, with I(co) being the cavity-
modified cyclotron decay rate at frequency co and R (co)
the cavity frequency shift. Since these changes are very
small, co can be replaced by co,

' on the right-hand sides of
Eq. (8.19). Now since the Green's function for the two-
parallel-plate geometry can be expressed as an infinite
sum of image contributions, the removal of the proper

I

field term is now trivial: One simply omits the direct
contribution from the sum.

The parallel plate problem has some interest in its own
right (see footnote 27), and we pause to describe briefly
the results for this case where the charged particle moves
about a cyclotron circle in the midplane between the two
conductors. Using the method of images one obtains

l'p Tp 00

ln( I +&2imL/c) y ( 1)n e2inruL/c
L L „

EC

2n Lu
C C

2 2

4n 3L A@2 4n 3L A@2
(8.20)

&C
(8.22)

which is the (fractional) number of wavelengths at fre
quency tu that fit between the plates. The decay constant
Iz(co) for perfectly conducting plates (I =0) given by Eq.
(8.20) is plotted in Fig. 36. With g& —,', less than half a
wavelength fits between the plates. In this case elec-
tromagnetic waves cannot propagate between the plates,
the charged particle cannot radiate, and Ip(co)=0. The
decay constant Ip(co) jumps discontinuously to 3y, and
then decreases as g increases past g'= —,', which is the first
threshold for propagating waves. Further discontinuous
jumps take place as g passes through thresholds at odd
half-integers. (There are no thresholds at the integers,
since there is a node at the midplane position of the

The cavity dissipation can be modeled by writing the cav-
ity width as

(8.21)

where 5 is the skin depth of the conducting plates and 2L
is the distance between the plates. Since there is only one
scale in this problem, L, it is convenient to introduce the
dimensionless variable

I

charged particle when an even number of wavelengths fits
between the two plates. ) As g becomes large, there is no
obstacle to the radiation of the charged particle, and
Ip(co) approaches the free-space value y, . The effect of
non vanishing dissipation of a common size (say
5/L =10 ) is only to smooth the sharp discontinuities
and to produce a very small contribution below the first
threshold g= —,

' . In Fig. 37 we plot Ri (co), taking
6/L=1)&10 . Note that this frequency shift vanishes
at two points between successive odd half-integer values
of g, while Rp(co,')L/coro approaches —,

' ln2 when co~0
and vanishes when co—+ Oo. The large peaks appear when

g is an odd half-integer because for these values of g the
retardation phase exactly cancels the alternating signs of
the image charges, and the resultant infinite image sum
would be the divergent sum of I/n if it were not for the
damping of this sum resulting from cavity dissipation,
which produces instead a large logarithm.

We turn now to the problem that is our major interest,
the frequency shift and modification of the did:ay rate for
a small cyclotron orbit bound to the center of a cylindri-
cal cavity, as i.llustrated in Fig. 3S. We denote the radius
of the cavity by R, the length by 2L. The alteration of
the Green's function brought about by the presence of the

f
'

I
'

I
'

I
'

I
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3

0
0

I t I i I ) I ) I ) I ) I
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(' = ~ L/7rc = 2L/X

FIG. 36. The decay constant Ip(~ )/y, (~ ) for a charged parti-
cle moving in the Inidplane between two perfect conducting
planes. The abscissa is in units of g, the number of wavelengths
at frequency co that fit between the planes.
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FIG. 37. Plot of the frequency shift (L/coro)Rp(co) vs g' f—or
the cyclotron motion of a charged particle in the midplane be-
tween two imperfect conducting plates with 5/I. = 1 &(10
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circular side can be expressed in terms of an infinite sum
over the axial standing waves that fit between the two
endcap planes. The wave numbers of the waves that do
not vanish at the midplane location of the charged parti-
cle are given by

(8.23)

p„=(k„'—co /c )'i (8.24)

In terms of this decomposition, the cavity side addition to
the complex frequency shift (8.19) is given by

where n =0,1,2, . . . . With co below the first axial
threshold, g' & —,', the radial waves are exponentially

damped with the damping constant

ro IC i (p„R) k„c IC, (p„R)
&s(~)= — g, +I', (p„R) co' I&(p,R)

Ki(k„R)
Ii(k„R)

(8.25)

40 I
I

I
I

1 [ I ) l (
I

I

where the prime denotes a derivative. The first ratio of
Bessel functions is the TE contribution, the terms in the
large parentheses are the TM contribution. When co is
near the nth threshold, p„becomes small, and the nth
term in the sum (8.25) has a large logarithmic contribu-
tion that cancels the large logarithm in the parallel plate
term. As co passes the threshold, p„becomes a negative
imaginary number. In the limit of vanishing dissipation
(I =0), the imaginary part of the Bessel function ratios
cancels the imaginary part of the parallel plate term. Past
a threshold, the Bessel functions in the denominator can
vanish, producing poles corresponding to the normal
modes of the cavity. The replacement ra~co+i 1 /2
changes these poles into Lorentzian forms of width 1.
The sum in Eq. (8.25) converges very rapidly: for large n,
p„-k„-nm/L, and . it is exponentially damped. Thus
the sum is easily calculated on a digital computer. Add-
ing the result to the previous parallel plate contribution
gives the complete shift of Eq. (8.19).

We use the aspect ratio R/L = 1.186 for the cylindrical
cavity, the aspect ratio for the cylindrical trap discussed
in Sec. IX. So as to exhibit the general features of our re-
sult, we first choose a low quality factor Q =50 and ex-
amine a large range 0 & g & 7.5. The decay constant I (co)
is plotted in Fig. 38. At lower frequencies it has distinct

I

peaks corresponding to the cavity normal modes, but
these merge as the frequency increases into the region
where the mode spacing is less than the cavity width. At
large frequencies, I(co) approaches the free-space value

y, (co). The corresponding frequency shift R (co) is shown
in Fig. 39. There are dispersive structures in the low-
frequency region that correspond to the absorptive peaks
in Fig. 38, but as the frequency increases these structures
become less distinct.

Experiments are generally performed in the region
3.5&/&4. 5, and we illustrate the results in this region.
But before passing to this, we note that the various cavity
modes have different quality factors. In the region that
we are considering, the quality factors for perfect cylin-
drical geometry for the TE modes Qz are, to within about
10%%uo, twice the quality factors QM of the TM modes. We
approximately account for this difference in cavity widths
by using the complex frequency co(1+i/2Qz) in the TE
denominator function I'i (p„R) in Eq. (8.25), while all the
other complex frequencies are given by co(1+i/2QM),
with Q~ ——Q@/2. (By keeping all the other complex fre-
quencies the same, we preserve the threshold cancellation
discussed above, as we must. ) Actual cylindrical Penning
traps contain holes and slits, and their quality factors are
difficult to calculate accurately. Thus, although one
could alter the individual modes in the interval
3.5 & g &4.5 by putting in the exact widths, this is not

30
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FIG. 38. The decay constant l(co)/y, (co) for a charged particle
moving in a small-orbit about the axis and centered in the mid-
plane of a cylindrical cavity with Q =SO and an aspect ratio
R /L = 1.186. The ticks denote the positions of the TE and TM
modes.
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FIG. 39. Frequency shift corresponds to the decay constants of
Fig. 38.
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of Eq. (2.2) produced by the electrodes of a Penning trap.
Just as perturbations of the Coulomb potential determine
the fine details of atomic energy levels, the deviations
from a quadrupole potential make small modifications to
the equally spaced energy levels shown in Fig. 8. Such
deviations are always present in a laboratory Penning trap
and are the subject of this section. They are extremely
important because of the high precision achieved and
sought in geonium experiments.

The geonium trapping potential also differs from that
in an ordinary atom in that it can be directly modified.
The potential on extra compensation electrodes is adjust-
ed, while an experiment is in progress, to improve the
trapping potential. Without such adjustments, the elec-
tron, positron, and proton experiments mentioned earlier
could not have taken place. A theoretical description of
anharmonicity compensation is simplified by the fact that
only four parameters are generally required to describe
the potential in the center of the trap, where particles are
located (Sec. IX.A). A complication is that these parame-
ters must be calculated via a numerical solution of
Laplace's equation. Electrostatic screening (by the endcap
and ring electrodes) primarily determines the values of
these parameters. We pay particular attention to the con-
figuration of hyperbolic electrodes used in all of the exist-
ing traps for high-precision geonium measurements (Sec.
IX.B) and to an improved configuration of electrodes that
has been proposed (Sec. IX.C). Our discussion and exam-
ples are based on a more detailed discussion and calcula-
tion by Gabrielse (1983), whose numerical techniques are
beyond the scope of this review.

Additional small potentials can be added to the elec-
trodes to translate the center of the axial oscillator or to
drive this oscillation (see Sec. IX.D). Although the latter
additions are oscillatory potentials at radio frequencies,
the interior of the trap is in the "near field" of the oscilla-
tory radiation, since the wavelength of the electromagnet-
ic radiation is much larger than the dimensions of a trap.
The potential within the trap at any particular time is
thus the electrostatic potential produced by the instan-
taneous boundary potentials. A numerical solution to
Laplace s equation is again required, by a technique simi-
lar to that used for the trapping and compensation poten-
tials (Gabrielse, 1984). The possible use of a simple,
cylindrical geometry for the trap electrodes of precision
traps is reviewed in Sec. IX.E (Gabrielse and MacKin-
tosh, 1984). This electrode configuration is a promising
alternative for studies of the interaction of an electron cy-
clotron oscillator with a surrounding microwave cavity
discussed in Sec. VIII. Finally, holes and slits in the
quadrupole electrodes contribute to trap anharmonicity.
These are treated as perturbation multipoles in Sec. IX.F
in order to provide estimates that are useful for trap
design.

A. Potential in the center
of a compensated trap

The idealized electrodes of Fig. 6 are located on hyper-
bolas given earher for the endcap electrodes by

z =zo+p /2,
and for the ring by

z'= -'(a' —ao') ~

(2.3)

(2.4)

These electrodes are fiawless and infinitely extended. Po-
tentials Vo/2 and —Vo/2 applied to these electrodes pro-
duce the quadrupole potential

V2=VO
'

+VOC.2d2
(9.1)

Distances are scaled by the characteristic trap dimension
d defined earlier by

d'= —,
' (zo+po/2) (2.5)

00

V= V2+ 2 Vo g Ck Pk(COSH) .
k=o

(9.2)

Terms which go as odd powers of the coordinates are
smaller because of the symmetry under the refiection
z~ —z that is carefully maintained in the construction of
precision traps, and hence these terms are not considered
here. The actual potential V differs from V2 principally
by a modification of the strength of the quadrupole po-
tential ( k =2) and by the addition of a term that is quar-
tic in the coordinates (k =4). We thus focus upon C2
and C4.

The coefficient C4 quantifies the most significant

The constants zo and po are the distances to the endcap
and ring electrodes along the z and p axes, respectively.

Although great care is taken in the construction of
high-precision traps, the potential V that is realized
differs from Vz for several reasons. In the first place, it
is generally necessary to put holes and slits in the quadru-
pole electrodes to admit particles and various radio-
frequency and microwave drives, as illustrated by the
cross section of an actual trap represented in Fig. 1. In
the second place, the quadrupole electrodes are slightly
imperfect, misaligned, and truncated. In the third place,
the potential on extra electrodes introduced into the
asymptotic region of. a compensated Penning trap contri-
butes to V and allows V to be changed.

Near the center of the trap, where particles are located
[at position ( r, H, q&) in spherical coordinates with
r/d && 1], the potential is given by

2 The first compensated trap was reported by Van Dyck,
Wineland, Ekstrom, and Dehmelt &1976).

9The constant C is unobservable. However, to produce the
simple boundary conditions introduced later in Fig. 44(b) we
must take C=(21P20 z20)/4d2
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anharmonicity. A nonzero C4 produces highly undesir-
able shifts in the oscillation frequencies of a trapped par-
ticle which depends upon the oscillation amplitudes.
These shifts will be discussed in more detail in Sec. X. Of
greatest importance, the axial oscillatory frequency is
shifted by an amount b,co„which is proportional to the
classical energy E, in the axial oscillation,

z2
2C4 2 ~2C4

eVp
(9.3)

This follows from the work in Sec. III (with A, in the
equations of Sec. III.D given by A, =3C4/4). A fluctua-
tion in the axial excitation energy E„when the axial
motion is kept in thermal contact with the effective detec-
tion resistor, produces a fluctuation in the axial frequency
and hence an additional axial linewidth. The anharmoni-
city thus limits the detection of small shifts in the axial
frequency that are crucial for precision geonium measure-
ments. It is extremely important to tune the trapping po-
tential to make C4 as close to zero as possible. Without
such anharmonicity compensation, in fact, the precision
electron, positron, and proton experiments described ear-
lier would not have been possible. The most common
method for reducing C4 is to adjust a compensation po-
tential V„which is applied to extra compensation elec-
trodes introduced into the trap to minimize the axia1
linewidth or the axial frequency shift that occurs in
response to changes in the axial excitation energy E,.
Based upon the observed linewidths and shifts, Eq. (9.3)
can be used to estimate the residual value of C4. Without
anharmonicity compensation, C4 is typically between
10 ' and 10, with the lowest

~

C4
~

realized being
about 10 (Gabrielse and Dehmelt, 1981a). Compensat-
ed traps reduce this by about a factor of 20 (Van Dyck,
Wineland, Ekstrom, and Dehmelt, 1976) to

~
C,

~

&5X10-'.
The effect of a nonvanishing coefficient C2 is much

less important in principle, but it has important conse-
quences in practice. It represents an addition to the quad-
rupole potential for an idealized trap with the same po
and zo, so that Eq. (2.7) for the axial frequency is modi-
fied to read

make C4 as small as possible, therefore produce corre-
sponding shifts in the axial frequency which are highly
undesirable [cf. the discussion following Eq. (9.13)].

To understand anharmonicity compensation in hyper-
bolic traps, consider the electrode model represented in
Fig. 43. The hyperbolic endcap and ring electrodes are at
potentials Vo/2 and —Vo/2, respectively, and the com-
pensation electrode is at potential V, . Gaps between elec-
trodes are taken to be negligibly small. The model com-
pensation electrode is symmetric about the asymptote and
is characterized by the opening angle a, but this angle is
not crucial. Axial symmetry about the z axis is assumed,
as is symmetry under the reflection z~ —z. Holes and
slits in the electrodes are not yet included (see Sec. IX.F).
The boundary conditions just described are the superposi-
tion of the boundary conditions for Vz and the boundary
conditions in Figs. 44(a) and 44(b), so that

V= V2+ Vegan+ Volvo . (9.5)

Here y, is the dimensionless potential produced by the
compensation electrode boundary at value 1 and the end-

cap and ring boundaries at 0, as shown in Fig. 44(a). The
potential hyo satisfies the boundary conditions shown in
Fig. 44(b), which differ only on the compensation
boundary. The sum of hyo and Vz/Vo corresponds to a
compensation boundary at value 0 and the endcap and
ring boundaries at —, and ——,, respectively. The potential
at each point on the dashed compensation boundary in
Fig. 44(b) is thus equal to —Vz/Vo, and this dashed
boundary is not an equipotential. The potential V for
traps with a certain relative geometry are fully character-
ized by only these two solutions to I.aplace's equation (in
addition to Vz) for all Vo, V„and d.

Near the center of the trap
k

b,go=-,' g Ck
' — Pk(cos8) (9.6)

k=0

eVp (1+C,) .
PPZ

(9.4)

This modification is not particularly serious as long as C2
is stable, because changes in m, are the crucial observables
for precision experiments, and the absolute values of Vo
and d are not known very precisely in any case. The
complication in practice is that Cz is generally a function
of the compensation potential, as we shall discuss. The
required adjustments in the compensation potential, to ZQ

The small effects arising from nonzero C6 and departures
from symmetry under the reflection z~ —z are discussed by
Gabrielse (1983) and in more detail by Gabrielse and MacKin-
tosh (1984).

FIG. 43. Model of a hyperbolic Penning trap, which is invari-
ant under rotations about the z axis and under the reflection
Z + ZI
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BCk
Dk= Vo av, (9.9)

Since Cz is related to the net trapping potential by Eq.
(9.4),

a~, /a V,

e~, /BV, ' (9.10)

O=- V, /VO

FICi. 44. Boundary conditions that uniquely determine the
solutions to Laplace's equation, y, in {a) and htpo in {b). The
boundaries are invariant under rotations about the z axis and
under the reflection z~ —z. The dashed boundary in (b), locat-
ed at the compensation electrode, is not an equipotential. The
potential at each point on this boundary is given by the value of
—V2/Vp at this point.

k

BC4
D4= Vo

C

(9.11)

is also desirable to ensure that C4 can be made to vanish
with a reasonable compensation potential. It is thus desir-
able to minimize the ratio

D2

4
(9.12)

which may be defined as a quality factor for compensated
Penning traps.

so that Dz is the relative sensitivity of the axial frequency
co, to variations in the compensation and trapping poten-
tials, V, and Vo. Less stability is required in the compen-
sation potential V, than in the trapping potential Vo by a
factor of D2. This relative sensitivity is easily measurable
and has ranged from 10 to 10 for useful traps. In
the precision experiments mentioned earlier, standard
cells are used for Vo to provide a sufficiently stable and
noise-free axial frequency. A stability of hvo/Vo better
than 10 is required to permit the observations of 1-Hz
shifts in an axial frequency of 62 MHz that are often
made.

While a Dq of sinall magnitude is clearly desirable to
minimize the dependence of the axial frequency on the
compensation potential, a large

00

g Dk — Pk(cos8),
k=o
even

(9.7) B. Anharmonicity compensation
in asymptotically symmetric traps

with the expansion coefficients Ck
' and Dk independent

of particular values of Vo, V„and d. These expansion
coefficients can be calculated by solving Laplace's equa-
tion for the appropriate boundary conditions and then fit-
ting the potential near the center to the above. series.
Comparing the expansion for V in Eq. (9.2) with the
above expansions shows that

Ck=Ck +&k(o)

Vo
(9.8)

Anharmonicity compensation occurs when the compensa-
tion potential V, is chosen so that the two terms on the
right cancel each other for k =4. The major part of the
trap anharrnonicity is tuned out, since the net C4 vanishes
(see footnote 30).

Notice that the Dk are not only dimensionless expan-
sion coefficients for qv„but also Ineasure the amount that
the net Ck is changed by a given change in the normal-
ized compensation potential V, /Vo. To emphasize this,
the Dk may be written as a derivative of Ck,

All of the precision measurements that we have re-
viewed were carried out in Penning traps such as the elec-
tron trap in Fig. 1, with electrodes along hyperbola of re-
volution [Eqs. (2.3) and (2.4)], that are related by

pp =v 2zp. Far from the center of the trap, such elec-
trodes become symmetric about the quadrupole asymp-
tote. While a better electrode configuration is discussed
in the next section, we shall use this asymptotically sym-
metric configuration of electrodes to illustrate the simple
physics principles involved. Details of the numerical cal-
culation are given in Gabrielse (1983) and will not be re-
viewed here.

The most important phenomenon involved in compen-
sated Penning traps with hyperbolic electrodes is the
severe electrostatic screening of the compensation poten-
tial by the endcap and ring electrodes. The screening is
dramatically demonstrated in Fig. 45, where D2 is plotted
versus the normalized distance to the compression elec-
trodes from the center of the trap, r, /d. Notice that the
logarithmic vertical scale covers nearly 7 orders of magni-
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tude, while r, /d on the horizontal scale changes only by a
factor of 4 as it covers the range over which compensated,
asymptotically symmetric traps have been built. The ra-
pid fall is due to the severe screening of the compensation
potential by the endcap and ring electrodes. As is well
known, the potential at a large distance r from a line of
charge or from a fiat electrode is reduced by a factor of
exp( —mr/l) when grounded, perfectly conducting plates
spaced a distance l apart are located as shown in Figs.
46(a) or 46(b), respectively. Locally, the slopes of the
curves in Fig. 45 are approximately described by this ex-
ponential factor, with r =r, and l taken to be the separa-
tion of the endcap and ring electrodes at r =r,

The solid line in Fig. 45 represents the tunability D2
for fiat compensation electrodes perpendicular to the
asymptote (a = 180' in Fig. 43). The dashed line
represents a=30. These two choices are plotted to allow
comparison with three available values measured using
Eq. -(9.10). The comparison is encouraging considering
that the traps are imperfectly modeled and especially con-
sidering the steep fall with increasing r, Id. For the pro-
ton trap (the smallest of the three traps in Fig. 45), a
change in the location of the compensation electrode by
only 2.5 X 10 cm changes D2 by a factor of 3.

The strong electrostatic screening not only causes the
rapid fall of D2 with increasing r, Id but also completely
shapes the potential that penetrates to the center of the
trap The.result is that the ratios of the Dk are essentially
independent of r, /d. To illustrate this, the ratios of D4,
D6, and D8 to D2 are plotted in Fig. 47 versus the loca-
tion of the compensation electrode r, ld, although we
shall discuss only D4 here. The ratios (and hence the

~ ling of chQrge
r

V=
(o)

V=

V=V—
C

V=
(b)

FIG. 46. Two-dimensional screening models. Parallel flat plate
electrodes screen the potential produced (a) by a line of charge
and (b) by a perpendicular electrode. In both cases, for r » l, a
screening of the potentials by a factor of exp( —m.r/l) results.

2.0 ~,
a= 30.80

l30

shape of the potential near the center of the trap) con-
verge with increasing r, /d to values that are strikingly in-

dependent of both the location of the compensation elec-
trodes (represented by r, /d) and the shape of the compen-
sation electrode (as modeled by a). Even for compensa-
tion electrodes extending as far into the trap as r, Id = 1.5

(80

IO =

-2-
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C5

a
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"c /d

FIG. 45. The steep dependence of D2 upon r, /d, the normal-
ized distance of the compensation electrode from the center of
the trap. Dashed and solid lines are for a=180' and a=30,
respectively, and several experimental values (from Gabrielse,
1983, and Van Dyck et al. , 1985) are indicated.
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FIG. 47. Ratios of the Dk for asymptotically symmetric Pen-

ning traps, with po
——~zq. The Dk individually change by near-

ly 7 orders of magnitude over the range of r, /d plotted here.
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the dependence on the opening angle of the compensation
electrodes a is slight enough to allow plotting the ratios
on a linear vertical scale (in Fig. 47), despite the fact that
the Dk are individually changing by 7 orders of magni-
tude over the range of r, /d covered in this figure. For a
particular r, /d, changing from a=180' to 0' reduces
each Dk by roughly a factor of 2. The choice of a for the
compensation electrode is therefore only important in-
sofar as it establishes an effective r, /d for an equivalent
flat compensation electrode.

The quality factor y in Eq. (9.12) is the inverse of the
ratio plotted as the upper curve in Fig. 47. As we have
discussed, it represents the undesirable change he@, /co,
per unit change AC4 brought about by adjusting the corn-
pensation potential. The successful compensated traps re-
ferred to earlier all have r, /d & 2 and thus share the same
quality factor

y =0.56, (9.13)

Da =De/y . (9.14)

For example, the first compensated trap ' has ring and
endcap electrodes truncated at r/d =2.2. Its compensa-

Figure 9 of Van Dyck, Wineland, Ekstrom, and Dehmelt
(1976).

which is independent of the location and shape of the
compensation electrode. Innovations in the shape and lo-
cation of the compensation electrodes clearly have not im-
proved and cannot improve the quality factor for asyrnp-
totically symmetric traps. This means that a rather com-
mon change of b, C4 ——10 made by adjusting the com-
pensation potential is accompanied by a shift in the axial
frequency of 2 kHz out of 60 MHz. This is very much
larger than an axial resolution of 1 Hz. Each small ad-
justment of the compensation potential must thus be ac-
companied by a relatively large and troublesome adjust-
ment of the trapping potential to keep the axial frequency
constant.

Once D4 is accurately known for a particular trap, the
net C4 can be changed in calibrated increments by ap-
propriate changes in the compensation potential. The
sensitivity of axial linewidths and frequency shifts to such
incremental changes gives a good indication of the
minimum residual C4 that can be obtained. For traps
that are well modeled by Fig. 43, the calculated values of
the D4 can be used directly. For example, a value of
D2 ———1 X 10 and D4 —2X 10——is calculated for the
electron trap represented in Fig. 1, so that a change in

V, /Vo of approximately 5% is required to produce a
change EC4, =10 . A value of D2 ———1X10 is also
ineasured in this trap. For hyperbolic traps with compen-
sation electrodes that are not well modeled by Fig. 43, ad-
vantage may be taken of the insensitivity of y to the loca-
tion and shape of the compensation electrode. The mea-
sured value of Dz and the calculated value of y may be
used to deduce D4, with

tion electrodes are located much further back at
r, /d=2. 7 and are not symmetric about the asymptote.
Because y is essentially independent of the shape and lo-
cation of the compensation electrodes for r, /d &2.2, the
calculated value of y =0.56 for asymptotically symmetric
traps along with the measured value of Dz- —3X10
suggests that a change in V, /Vo of 2% produces a
change bC4=10, just as occurs for a trap with flat
compensation electrodes at r, /1 =2.6.

So far we have concentrated upon anharmonicity com-
pensation, rather than upon sources of anharmonicity,
and we shall continue this emphasis until Sec. IX.F. We
thus have studied y, and its expansion coefficients Dk,
rather than b, tpo and its expansion coefficients Ck '. The
reason is that hyo as defined by the boundary conditions
in Fig. 44(b) provides an unrealistic picture of a laborato-
ry trap insofar as holes and slits in the quadrupole elec-
trodes are neglected, along with electrode misalignments
and imperfections. According to Eq. (9.8), the net C4 can
be made to vanish in a compensated trap by applying a
compensation potential V, /Vo given by —C'4 '/D4. This
ratio must be very small when there are no holes, slits, or
misalignments. To see this, recall that the boundary con-
ditions for Ago and y, (in Fig. 44) differ only on the com-
pensation electrode boundary. On this boundary, y, =1,
but hyo varies from hyo ————,

' at the endcap to 4yo ———,

at the ring. The strong electrostatic screening discussed
earlier similarly shapes the equipotentials that penetrate
from the compensation electrode to the center of the trap
for both b.yo and y, . The substantial dipole character of
bqro on the compensation boundary (as viewed from the
center of the trap), by contrast to the monopole character
of y, on the same boundary, makes b,yo much smaller
than q&, near the center of the trap. Thus, for the
boundaries in Fig. 44, C4 ' is much smaller than its coun-
terpart D4 and

~
V, /Vo

~
&& l. For asymptotically sym-

metric traps, this ratio is less than several percent.
For perfect electrodes like those shown in Fig. 43,

which are hyperbolic except for truncation and the pres-
ence of compensation electrodes, the compensation poten-
tial required to tune the trap optimally would therefore
always be very close to V, =0, which is midway between
the endcap and ring potentials. In actual traps, however,
the situation is much different. Existing traps tune up at
much larger values of V, /Vo, ranging from —2 for the
trap in Fig. 1 (Gabrielse, 1983) to —0.1 for a positron
trap and 10 for a proton trap (Van Dyck, 1982). These
compensation potentials correspond to values of C4 ' of
—4&(10, —2& 10, and 5& 10,which are consider-
ably larger than the truncation effects. Possible sources
of the additional anharmonicity include holes and slits in
the electrodes (which we consider in Sec. IX.F) and
misalignments of the electrodes, which we shall eventual-

ly conclude are more important.

C. Orthogonalized hyperbolic
Penning trap

Once the dominant role of electrostatic screening is ap-
preciated, it becomes clear that the quality factor y =0.56
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y, =const+ —,D2 — Pq(cos8)+P (9.15)

The leading nonconstant term is proportional to the
Legendre polynomial P2(cos8), which vanishes on the

5V
(o)

0

realized in all of the existing, compensated Penning traps
is not at all optimal and could be improved. For an
asymptotically symmetric trap, with po=W2zo, the end-
cap electrodes are closer to the center of the trap and to
the asymptote than is the ring. The endcaps thus screen
the compensation potential more strongly than does the
ring. Equipotentials for y, which penetrate near the
center of the trap thus are not symmetric about the
asymptote z = —,

' p, but are shifted lower in the trap. On
the other hand, for a trap with po ——zo, the ring screens
more strongly than the endcap, so that an equipotential
penetrating near the center of the trap is shifted above the
asymptote.

Intermediate between p =V 2zo and po=zo (at
po-1. 16zo, as we shall soon see), the screening of the
compensation potential by the endcap and the ring elec-
trodes are equal in the sense that an equipotential
penetrating near the center of the trap is symmetric about
the asymptote near the center of the trap. To appreciate
the importance of this symmetry, recall that near the
center of the trap

2.0

l. 5

=p /22

O
1.0

N

0.5

0
0

p /zo

al ly
trap
o~,

asymptote. Therefore y, is antisymmetric for small in-
creases and decreases in 0 about this asymptote. Thus
symmetry about the quadrupole asymptote near the center
of the trap corresponds to Dz-0. The Legendre polyno-
mial P4(cos8), on the other hand, changes very little
across the quadrupole asymptote. Thus symmetry about
the asymptote near the center of the trap corresponds
roughly to the desired condition, y =0.

An illustration of the vanishing of Dz, and hence of y
as well, is shown in Fig. 48. Both D2 and D4 are plotted
as functions of po/2zo ranging from —,

' (corresponding to

po ——zo) to 1 (corresponding to an asymptotically sym-
metric trap with po ——W2zo). The choice of abscissa was
made because D2 varies linearly with po/2zo (for reasons
not completely clear), going through zero at
po/2zo=0. 674 [Fig. 48(a)]. By contrast, D4 [Fig. 48(b)]
varies only slightly, as might be expected since P4(cos8)
varies only slightly across the asymptote. The different
electrode contours are plotted together in Fig. 49.

The location of the zero crossing point is represented in
Fig. 50 as a function of the normalized location of the
compensation electrode, r, /d. Notice that for r, /d &2,
the value of po/zo required to produce @=0 varies from

FIG. 49. Contours for the hyperbolic electrodes for a trap with
po=zp an optimal trap, and an asymptotically symmetric trap.
The endcap contour is shared by all three configurations.

po/zo = 1.16 (9.16)

by less than 0.1% (Gabrielse, 1983). Higher-order Dk
(with k & 2) for this electrode configuration are essential-

-5
(b)

-9
0 0.5 0.6

l

0.7 0.8 0.9

p /2z

FICs. 48. Illustration of the different dependence of D2 and D4
upon the choice of hyperbolic surfaces represented by p /2zo.
The optimal electrode configuration with y =D2 ——0 is indicat-
ed.

0.64 ~ (

0 I

rc /d

FICx. 50. Gptimal value of po/2zo which makes y =0 as a func-
tion of r, /d for a=180'.
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ly the same for a particular r, /d as those represented ear-
lier for asymptotically symmetric traps in Figs. 45 and
47. In practice, it will be impossible to achieve y=0 be-
cause of imperfect mechanical tolerances. A factor of 20
or more improvement over the y=0.56 currently being
achieved in asymptotically symmetric traps seems to be
quite possible given the tolerances that are presently
achieved.

0.9M

0.8—

07—

0.6-

I I I I i I i I ] I 1
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D. Additional axial forces 0.5—

If a potential —,
'

V„ is added to the upper endcap elec-

trode and a potential —
2 Vz is added to the lower end-

cap, the trapped particle experiences the additional poten-
tial

(9.17)

Ck 04,—

0.2—

180
130
80O
50

where yz is a solution to Laplace's equation that is an-
tisymmetric under the reflection z~ —z and satisfies the
boundary conditions shown in Fig. 51. The added poten-
tial V~ can be static or it can oscillate, provided that the
wavelength associated with the oscillation is large com-
pared to the trap dimensions. An additional static poten-
tial is sometimes used to translate the center of the axial
motion. Oscillatory potential additions are used to drive
the axial oscillation and to describe the resistive damping
of the axial oscillation.

Near the center of the trap, y~ can be expanded in the
small ratio r/zp so that

00 r
O'A 2 g ck

k=1 0
Odd

k

Pk(cos8) . (9.18)

This expansion differs from the earlier expansions for y,
and Agp in that only terms with odd k are included, be-
cause yz is antisymmetric under the reflection z~ —z,
and in that distances are scaled by zp rather than by d.

—0;Ig~ '

180

50 =
180

C7

I I I I I I I I I I I

FIG. 52. The coefficients ck for asymptotically symmetric Pen-

ning traps as a function of normalized distance to the compen-
sation electrode for various a.

This latter choice makes it much easier to consider limit-

ing cases, as we shall see. Figure 52 shows c& through c7
for asymptotically symmetric traps. The coefficients are
plotted as a function of the location of the compensation
electrode ( r, /zp in Fig. 43) for variously shaped compen-
sation electrodes (a in Fig. 43). The coefficients converge
to limiting values,

ci -0.80 (9.19)

c3 -0.20, (9.20)

FICx. 51. Boundary conditions satisfied by y~. The boundary is
invariant under rotations about the z axis and is antisymmetric
under the reflection z~—z.

that are independent of both a and r, /zp in the region
r, /zp&2. 2 where precision traps have been built. A
surprise here is that ci+c3-1.00 and that cs and c7 are
significantly smaller. This means that yz is described
very well over much of the trapping volume by just the
first two terms of expansion (9.18). The relaxation calcu-
lation of these coefficients is given in Gabrielse (1984).

Nearest the center of the trap, pre-ciz/2zp. This is
the potential of a spatially uniform electric field, and the
constant ~ used in Sec. III.A is equal to c&. Parallel plate
endcaps at z =+zp aIld a ring pulled back to pp &&zp are
thus described by c~ ——1 with all other ck vanishing. In
Fig. 53, values of ck are Plotted as a function of Pp/2zp.
The dashed curves pertain to flat endcaps at z =+zp and
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a cylindrical ring of radius pc (Fig. 54, discussed in Sec.
IX.E below). The parallel plate limits are approached in
the limit of large ring radius at the right of the figure.
For decreasing ring radius, the ring screens the field
through the center of the trap, so that ci is increasingly
reduced from unity. In the limit of pa~0, the ck for the

FICs. 53. The coefficients cg, for a hyperbolic Penning trap
(with r, /d =2.5 and a=180 ) arid a cylindrical Penning trap.
AST and OHT designate asymptotically symmetric and orthog-
onalized hyperbolic traps, respectively.

+C3
zp

cylindrical trap vanish because of the onset of exponential
screening.

The situation is qualitatively the same for hyperbolic
electrodes, as illustrated by the solid curves in Fig. 53, but
with slight quantitative differences. Hyperbolic endcaps
are pulled back farther from the center of the trap than
are flat endplates. The electric field through the center of
the trap is therefore reduced (compared to the fiat plates),
so that the limiting value of ci is below unity. As the ra-
dius of the ring is decreased, more and more electric field
lines from the endcap terminate on the ring instead of
penetrating through the center of the trap and terminat-
ing on the other endcap. Thus c~ decreases and both c3
and c5 increase in magnitude to compensate. These
changes are much less severe for the hyperbolic t:rap be-
cause the hyperbolic ririg screens less severely than does
the cylindrical ring. The compensation electrodes per-
taining to Fig. 53 are flat (a=180') and are located at
r, /d =2.5. These choices ensure that the calculated ck
are essentially independent of both a and r, /zo for each
pc/zo. The asymptotically symmetric configuration
(po ——W2zo) and the proposed, orthogonalized configura-
tion reviewed in Sec. IX.C (with pa= 1.16zo) are both in-
dicated by arrows. A much wider range of po/2zo is plot-
ted than is immediately useful for trap construction to
display the limiting values of the ck.

The shift of the center of the axial oscillation is an im-

portant diagnostic tool for measuring the size and loca-
tion of a magnetic bottle (Sec. VI; Van Dyck, Schwinberg,
and Bailey, 1980). A small static potential V~ shifts the
center of the axial oscillation, but also shifts the frequen-

cy of this oscillation. Including this small antisymmetric
potential, the total potential along the axis of the trap is
given to a good approximation by

2 3
z z zV= —, Vp — + —, Vg c) +const .

(9.21)

(9.22)

This potential has a minimum at an equilibrium position
z =z„which is the new center of the axial oscillation. To
a good approximation,

z, 1 d Vg
C)

z, 2 z, Vp

FIG. 54. Boundary condition satisfied by g~ in the case of a
cylindrical Penning trap. The boundaries are irivariant under
rotations about the z axis and are antisymmetric under the re-
flection z~ —z.

Q
2 Vg z~d 2

V= 2 Vp 2 1+3c3
d p Zp

+const . (9.23)

Hence the axial "spring constant" is also altered by the

For the special case of an asymptotically symmetric trap,
z, = —0.40zo( V~ /Vo). For example, an antisymmetric
potential of Vz ——1 V applied to the trap shown in Fig. 1

with Vp ——10 V yields z, =4& 10 zp which is a displace-
ment of 10 cm.

The product c~c3 can be measured easily. Expanding
the potential (9.21) about the equilibrium position by writ-
ing z =z, +u yields
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addition of the antisymmetric potential Vz, and the axial
frequency co, is changed to co, +hco„where

Acing 3 d Vg
CiC3 (9.24)

co& 4 zp Vp

LZc

Zii
V= —VO

I

2

The product cic3 is measured by observing the quadratic
dependence of the axial frequency shift upon Vz. The
measured and calculated values agree in several traps
where they have been measured.

E. Cylindrical Penning traps

ZO

V =-VI

0

~~gee

I

~a~
V=-- Vo2

~v-v,

A simple cylindrical ring with flat endplates has often
been used (with a magnetic field) to contain large clouds
of particles. We examine here the possibility of including
compensation electrodes in such a configuration to make
the trapping potential sufficiently harmonic for precision
single-particle spectroscopy. The compensated Penning
trap of Fig. 55 is an analog of the hyperbolic electrodes
modeled in Fig. 43. The ring and compensation elec-
trodes are stacked cylinders of radius po, and the endcap
electrodes are flat plates located a distance zo from the
center of the trap. Cylindrical compensation electrodes of
width M„adjacent to the two endcaps, are used to tune
the trapping potential. This electrode configuration is
much simpler to construct than are hyperbolic electrodes.
The cylindrical electrodes also form a microwave cavity
with well-known properties, a feature we made use of in
Sec.- VIII. Over a small trapping volume at the center of
the cylindrical trap, the potential can be made to be a very
good quadrupole potential. The key idea, which makes
the cylindrical electrode configuration potentially useful
for precision work, is that a judicious choice of the rela-
tive dimensions of the electrodes can make the axial oscil-
lation frequency of a trapped particle coinpletely indepen-
dent of the necessary adjustments in the compensation po-
tential. In the notation we used earlier, this corresponds
to y =0. For large-amplitude oscillations within the trap,
however, cylindrical electrodes will clearly be inferior to
electrodes. located on the equipotentials of the desired
quadrupole potential. This may lead to difficulties in ini-
tial adjustments of the compensation potential, where
larger-amplitude oscillations of the trapped particle can

FICr. SS. Electrically compensated cylindrical trap.

V= V&qo+ V,V . . (9.25)

Near the center of the trap,

r
g 0 2 g ('5k2+Ck ) +k(cos8),

k=o d
even

(9.26)

and the potential g, is expanded exactly as for hyperbolic
electrodes in Eq. (9.7). This choice, and the continued use
of the trap dimension d =[(zo+po/2)/2]'~z from Eq.
(2.5), make the expansion coefficients Ck

' and Dk used
here directly comparable to the coefficients used in previ-
ous sections for the hyperbolic traps.

One nice feature of a cylindrical Penning trap is that
the potential within a trap can be obtained analytically us-
ing standard boundary-value techniques (e.g., Chap. III of
Jackson, 1975). The nonvanishing expansion coefficients
(k even) are given for k&oby

be required. Our discussion is based upon the detailed
treatment by Gabrielse and MacKintosh (1984).

The boundary conditions for the potential V within a
cylindrical trap are shown in Fig. 56(a). These boundary
conditions can be written as the sum of the boundary con-
ditions for yo in Fig. 56(b) and those for y, in Fig. 56(c).
Invariance under rotations about the z axis and under the
reflection z~ —z is assumed. Thus

( 1)k/2 k —i d
" ~ ( —1)"+'(2n + 1) ' cos [—,(n + —,

'
)mM, /zo]

Ck 42+
( k 3 X2k —3 Io[(n + —,

'
)vrpo/zo]

(9.27)

and

( —1)kn ~ ' d I)"(2n+1)" '2sin [—,(n+ —,)irM, /zo]
2k —3 10[(&+ 2 irpo/zc]

(9.28)

The product cIc3 has been measured by Van Dyck for a positron and a proton trap and by Cxabrielse for the trap represented in
Fig. I.
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FIG. 57. Lowest-order Ck for a cylindrical trap in the limit of
a vanishing compensation electrode, M, ~0.

Ac=a

Po

cannot be electrically tuned. The coefficients DI, in Eq.
(9.28) vanish term by term, so that the potential near the
center of the trap is given by just the Ck=Ck ' of Eq.
(9.2&). The lowest-order coefficients are plotted in Fig. $'7

as a function of po/zo. Not surprisingly, these coeffi-
cients are much larger than those typically obtained in
hyperbolic traps, where C4-10 has been obtained
without anharmonicity compensation. However, the lead-
ing anharmonicity coefficient, C4, vanishes at
po/zo = l.203. For lower-precision applications, a
cylindrical trap with such dimensions might well suffice.

The potential within such a trap can be improved dur-
ing an experiment by mechanically adjusting po/z~ about
this value, by sliding an endcap in or out of the ring
slightly. Such mechanical anharmonicity compensation
has the very respectable quality factor y =—0.095. Here
we have generalized the definition of y slightly to be

EC2

EC4
' (9.29)

PO P
FIG. 56. Boundary conditions for the cylindrical trap in Fig.
55: (a3 full potential V; (b) trapping potential yo,' (c) coxnpensa-
tion potential y, . Invariance under rotations about the z axis
and under the reflection z~ —z is assumed.

The coefficients are functions of only po/zo and M, /zo.
The modified Bessel function Io ensures convergence with
increasing n, since, for large arguments, Iq(x) goes as
e"/(2+x)'~ . The choice to scale distances with the trap
dimension d (to allow direct comparis'on of the hyperbolic
and cylindrical electrode geometries) slightly complicates
these latter two expressions, since scaling by zo would be
more natural here.

We first consider the simplest case with no compensa-
tion electrodes, M, ~O. This corresponds to a trap with
only three electrodes, and the potential within this trap

where ECz and EC4 are small changes in the expansion
coefficients Cz and C4 that result from the same adjust-
ment of zp/po. Achieving a reduction in anharmonicity
comparable to that achieved in electrically compensated
traps with hyperbolic electrodes requires very precise ad-
justment of z0/po to within 10, since dD4/
B(zo/po) 0.8.

Electrical anharmonicity compensation requires a non-
vanishing width of the compensation electrode, bz, . Al-
though the electrodes correspond to those for an electri-
cally compensated trap with hyperbolic electrodes, the sit-
uation differs significantly because the strong electrostatic
screening is not present. However, for a given choice of
bz„a proper choice of po/zo will still make Dz ——0, and
hence the quality. factor y will vanish as well. In fact, the
discussion associated with Eq. (9.15) can still be used to
understand why this happens. The difference is that the
relative proximity of the cylindrical ring and the flat end-

caps shapes the equipotentials of y, near the center of the
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FIG. 58. The ratio po/zo required to make y =0, for a cylindri-
cal Penning trap, as a function of the width of the compensation
electrode.

width of compensation electrode,
azc /zo

FIG. 59. The coefficients D4 and D6 as a function of the width
of the compensation electrode, for a cylindrical trap with po/zp
chosen to make y =0.

trap instead of the exponential screening. The ratio po/zo
required to make y=0 is plotted in Fig. 58 as a function
of the width of the compensation electrode. It varies only
10% for M~/zo ranging from 0 to —,

' and varies about the
value required to make y vanish in a hyperbolic trap in
Eq. (9.16}. Mechanical imprecision in pp/zp will, of
course, prevent @=0 from being realized exactly. For
traps with po/zo near the optimal value given in Fig. 58,
the quality factor varies as By/B(po/zo)=3 over the
range plotted. With- achievable mechanical precisions in
po/zo of order 10, it should thus be possible to do much
better than in the case of the existing hyperbolic traps
with asymptotic syHlmctry.

The lack of the exponential electrostatic screening
causes the coefficients Dk for k & 2 to be several orders of
magnitude greater than for hyperbolic traps. This is illus-
trated in Fig. 59, where Dq and D6 are plotted as a func-
tion of the width of the compensation electrode, for
cylindrical traps with po/zp cbosen to make y=O. As a
result, a much smaller change in the compensation poten-
tial is required to change D4 by a given amount. The ra-
tio of D6 to D4, however, is of the same order as for a hy-
perbolic trap.

Additional axial forces have already been discussed in
Sec. IX.D. The coefficients ck that pertain to a potential
y~, which satisfies the boundary conditions in Fig. 54,
were discussed and plotted in Fig. 53. These coefficients
are obtained by solving for pz —z/zo using standard elec-

trostatics techniques. The result for k & 0 and odd is

2Q —i( 1 )(k —I)/2 ao
( 1 )nn k —i

Ck 5k i+ k! „,Ip(nmpo/zo)

(9.30)

This expression was evaluated to produce the dashed
curves in Fig. 53. There is no qualitative difference from
the hyperbolic case.

A compensated cylindrical electron trap is now being
tested (Gabrielse and Helmerson, 1985). The relative
width of the compensation electrode is given by
bz, /z0=0. 2, and thus po/zo ——1.186 was chosen to make
y small. A trap size given by zo ——0.385 cm was selected
to obtain the same relationship between the axial frequen-
cy and the applied trapping potential as pertains to the
hyperbolic trap shown in Fig. 1. These dimensions are
used in Sec. VIII because thi, s trap is intended to be used
in a study of the interaction of an electron cyclotron
motion with the surrounding cylindrical microwave cavi-
ty. The cavity is formed by the electrodes of the cylindri-
cal trap.

33A misprint in Gabrielse and MacKintosh (19843 omitted the
( —13"that appears in Eq. {9.30).
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F. Holes and slits

In previous sections we focused upon the way that
departures from a quadrupole potential within a trap
could be tuned out by adjusting the potential on compen-
sation electrodes. One source of the anharmonicity i.s
holes and slits put into the electrodes to admit particles
and various microwave and radio-frequency drives. In
the notation of Sec. IX.A, these additions contribute to
Cq '. An estimate of the magnitude of these contributions
is useful to determine whether D4 is large enough so that
C4 ' can be canceled with a reasonable compensation po-
tential [see Eq. (9.8)].

As a model, consider an infinite, parallel-plate capaci-
tor. We designate the charge density on one plate by o.
If a hole of radius h is put into this plate, with h much
smaller than the plate spacing, the charge distribution on
the plate is modified only near the hole. The modifica-
tion of the potential between the plates can thus be
described by perturbation multipoles located at the small
hole. There will be no monopole component to this
charge distribution, since a monopole potential cannot
satisfy the boundary condition that the potential be con-
stant along the plate. The leading perturbation multipole
that satisfies this boundary condition is a dipole, p. At a
distance r from the hole, the leading modification of the
potential between the plates is thus given by

per

r
(9.31)

p/1 =P(cr2s)s, (9.33)

with P a constant of order unity. 3

'
A simple qualitative argument establishes the direction

of the dipole. Consider a conducting plate with a surface
charge density o., which we shall take to be positive for
this illustration. Suppose now that a deep hole of radius

For a very thin conducting plate with a hole of radius h, the

problem can be solved exactly in prolate spheroidal coordinates

(e.g., Chap. V of Smythe, 1950), with the result that
a=4/3m =0.424. For a very deep hole, a=0.356 was calculat-

ed by a numerical, relaxation technique (Gabrielse and MacKin-

tosh, 1984).
The potential for an infinitely deep slit in one of the conduct-

ing plates, of width 2s, can be solved by a conformal mapping
to give P=2/m =0.637.

The dipole is perpendicular to the plate and has a magni-
tude scaled by the charge displaced by the small hole,
am.h, and by the radius h. Thus

p =a(omah )Ii,

with a a constant of order unity. Similarly, a slit of
width 2s in one of the plates, with s small compared to
the separation of the plates, makes a dipole moment per
unit length that can also be scaled in terms of the dis-

placed charge so that

Ii is put into this plate. As a first approximation, we can
model the hole by superimposing a negative charge
—om.h at the surface of the hole. This perturbation
monopole distribution must be canceled, however, by the
additional positive charge that is attracted to it and builds

up around the outside rim of the hole and within the hole.
A dipole remains, originating on the negative charge and
pointing into the hole along its axis. A deep hole in a
positively charged plate thus can be modeled by a dipole
that points into the deep hole. A similar argument holds
for a slit.

For a first quantitative estimate, we assume that the
flat-plate model is appropriate. From Eqs. (9.31) and
(9.32), we deduce that the hole of radius h makes a contri-
bution to C~ of order

3

d
(9.34)

with the assumption that the hole is away from the center
of the trap by a distance of order of the trap dimension d.
This contribution is typically rather small. In the electron
trap represented in Fig. 1, for example, there is a small
hole in the endcap, on the z axis, and the contribution to
C4 from Eq. (9.34) is of order 10 . This trap also has a
slit in the ring electrode that is centered on the xy plane.
We observe that the length of this slit is of order d and
use Eqs. (9.31) and (9.33) to conclude that the contribu-
tion to C4 is of order

r

(9.35)

For the example trap this contribution is of order
5~10—4.

The electrodes of a hyperbolic Penning trap are not
plane surfaces, of course. ' We might expect, therefore,
that a perturbation monopole is present and important be-

cause of the curvature of the electrodes. On the other
hand, the hole diameter h (or the slit width 2s) is typical-

ly very small compared to the radius of curvature for the
electrodes, which is of order of the trap dimension d.
Since the effective monopole must vanish in the limit
where the radius of curvature is very large, we expect that
the naive monopole strength of a hole, —ere.h, must be
reduced by at least a factor of h/d. This additional fac-
tor causes the possible monopole contribution to be of the
same order as was estimated for the dipole in Eq. (9.34).
Similarly, an additional factor s/d reduces possible slit

monopole contributions to the order estimated in Eq.
(9.35).

The contributions to C&
' estimated here are signifi-

cantly smaller in magnitude than the measured values dis-

cussed at the end of Sec. IX.B. Holes and slits thus seem

not to be the most important sources of anharmonicity in

traps with dimensions comparable to those for the elec-

tron trap represented in Fig. 1. The source of the anhar-

monicity being tuned out seems to be located instead in

electrode misalignments, rather than in the very small
holes and slits being used. For larger holes and slits, how-
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ever, and for smaller trap dimensions, the contribution to
C4 ' could be very significant.

be expressed as a derivative with respect to the quantum
QUIQber~

X. PERTURBATIQN SUMMARY

JEg
da

(10.5)

As we discussed at length in Sec. II, the energy levels of
an ideal Penning trap are given by the sum of the energies
of the independent, noninteracting submotions

E' '(nkls) =E„+Ek+E(+E, .

Here

(10.1)

E„=(n + —,)@co,',
EI, ——(k+ —,

'
)%co, ,

Ei ———(1+—,
'

)Rco~ -,

SE =—RcuS 2 J

(10.2a)

(10.2b)

(10.2c)

(10.2d)

are the energies in the cyclotron, axial, magnetron, and
spin motions, respectively. The quantum numbers (n, k, l)
take on non-negative integer values, while s =+ 1 is twice
the spin projection eigenvalue. In sections subsequent to
II, we considered small additions and corrections to this
ideal trap model due to departures from an electrostatic
quadrupole potential (Secs. III.D and IX), the addition of
a weak magnetic bottle (Sec. VI.A), and to relativistic
corrections (Sec. VII.B). Thus the energy level E' '(nkls)
in Eq. (10.1) is corrected to

where E„,EI„E~ are the energies of the independent, un-
perturbed motions. Hence

QAF. '

BE,
(10.6)

This is purely a classical result but, as we have just seen,
its derivation is easy using quantum mechanics. Indeed,
the frequency shifts could, of course, be computed in an
entirely classical fashion, but they are most easily derived
from the classical limit of the more familiar quantum en-
ergy shift formula, which is the path that we are follow-
ing. In general, Eq. (10.6) implies that

Ebb B ECO+
(10.7)

~Eh COaEa COb

The particular perturbations that we are considering give
energy shifts b.E in the classical limit that are quadratic
forms in E,Eb. Hence Eq. (10.6) yields

b =n, k, l
M,bEb (10.8)

with Eq. (10.7) requiring that the response matrix M,b be
symmetrical,

(10.9)
E( nkls) =E' '(nkls) +KE(nkls), (10.3)

where EE(nkls) is the sum of the small perturbations.
Shifts in the energy levels produce corresponding shifts

in the measurable eigenfrequencies co~co+hco, which we
display in this section in a simple form. This simple form
permits a ready comparison of the perturbations, which
can be very useful when planning an experiment and
when evaluating possible systematic effects. We shall
evaluate the frequency shifts in the classical limit. This
gives manageable expressions and is justified, since the
shifts are nearly always too small to observe unless the
quantum numbers are enough to warrant a classical
description. Thus with co~ denoting generically the fre-
quency corresponding to the motion with the quantum
number a ( a =n, k, l), we have

QAF
Erg' =

Ba

In the classical liznit, the unperturbed frequencies can also

36There is actually an additional negative sign on the right-
hand side of Eqs. {10.4) and (10.5) for the magnetron frequen-
cies, a =m. This negative sign in the definition for hcom and

derives from the inverted energy levels for the magnetron
motion. The sign difference, however, cancels in the ratio in
Eq. {10.6).

The spin motion has not yet been included, since it is
intrinsically quantum mechanical, with the spin frequen-
cy perturbation given by

ha), =—f~&(nkl, +1) AE(nkl, ——1)] .1
(10.10)

In the classical limit for the other motions, the leading
contributions to Ace, are linear in the E, . Including these
in the matrix formulation, we have

Eco~ /coq

Ecoz /co+
=M Ek (10.11)

Ecoz /co&

The matrix M is now extended to a 4&3 matrix, with the
upper 3X3 part the previous symmetrical 3)&3 matrix.
The matrix element M,b gives the fractional frequency
shift in the motion labeled by a in terms of the energy of
excitation of the motion labeled by b. The matrix is not
square because the spin energy is neglected in the classical
approximation. This matrix formulation displays a con-
siderable amount of information in a compact fashion:
Each of the three perturbations (electrostatic, magnetic
bottle, and relativistic) produces shifts in each of the four
eigenfrequencies. Each of these shifts, in turn, is linear in
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the three classical excitation energies.
As the first application of this formalism, we consider

the leading deviation from a pure quadrupole potential
given by EE(nkls) =(,nkls

~
eb V

~
nkls ) (10.13)

Although some consequences of this perturbation were
discussed in Secs. III.D and IX, the resulting energy shift

z4 3zip2+ 3(pz)2/g

2d
(10.12)

has yet to be calculated. Using the operator methods in-
troduced in Sec. II.B, one finds that

VOC4
EE(nkls) =e

2d4
3 2 ) 1 1
, (k'+k+ —, )—3

2co~ coz co~ —

corn

(2k+1)(n +l +1)

+ —, , [(n + —,
' )'+(l + —,

' )'+4(n + —,)(l + —,)+—,] (10.14)

In the classical limit, this perturbation is described by the response matrix

& (co~/oi~ )

4

e Vo —(~,/oi,')
0 0 0

(10.15)

6C4

V
(4Ek+Ei»

eVO
(10.16)

neglecting the small cyclotron contribution. The term
proportional to the axial excitation energy EI, is used to
monitor and minimize C4 as part of the anharmonicity
compensation procedure (Sec. IX). The term proportional
to the magnetron energy E~ has been used to monitor the
magnetron energy as sideband cooling and heating drives
were applied (see Fig. 21 and the related discussion in Sec.
III.B). These uses require that the corresponding matrix
elements for the other perturbations be much smaller, as
they are. The cooling and heating experiment was done in
a trap without a magnetic bottle.

Because it. is generally true that co «co,', factors of
co,

' —co~ have been approximated by co,
' to simplify this

matrix. The spin frequency co, is not shifted by an elec-
trostatic potential, and hence the row of zeros. The ma-
trix elements are, of course, proportional to the strength
of the perturbation C4, and they are scaled by the quadru-
pole well depth e Vo.

All matrix elements which involve the cyclotron fre-
quency are smaller by an additional factor (co, /co,') . For
the typical electron and proton conditions in Tables I and
II, this factor is 1X10 and 2X10, respectively. The
electrostatic perturbation in Eq. (10.12) is of much less
importance for the cyclotron motion than for the axial
and magnetron motions. The cyclotron motion is much
more tightly bound, and it is much more difficult to ex-
cite it enough to make a cyclotron radius that is appreci-
able compared to the trap dimension.

As an illustration of how the matrix (10.15) can be
used, we notice that the electrostatic anharmonicity pro-
duces a shift in the axial frequency

The addition of a weak magnetic bottle adds

KB=82[(z —p /2)8 —(B.z)p] (10.17)

to the spatially homogeneous trapping field 8 of an ideal
Penning trap, as discussed in Sec. VI.A. The correspond-
ing energy shift 5& is given in Eq. (6.7), whose classical
limit yields the matrix

—(co, /co,')
0 —1

(10.1g)

where

—(oi, /oi,')

Aco

fico,
'

82 1 s,d'
«o

(10.19)

is purely a classical coefficient. Again the very good ap-
proximation that co «ei,' is used to simplify this matrix.
The perturbation matrix is scaled by the small ratio
hoi, /co„and the energy scale is set by fm,' The consta. nt
b,co, is a measure of the strength of the magnetic bottle,
which is defined more precisely in Eq. (6.4). To recall the
significance of this parameter, we observe that

(10.20)
fico,

'

A change in the cyclotron excitation by an energy %co,
' or

one quantum number yields a shift in the axial frequency
equal to waco, . This shift is the primary detection mecha-
nisin used in the measurements of the lepton g values that
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1

2

1

2

3
8

—(co~ /co, )

—
4 (co@/co~ )

(co, /co,
' )' —, (co, /co', ) ——,(co, /co,

'
)

1

2
—(co, /co,

' )'

(10.21)

To simplify this matrix we have made use of the hierar-
chy um «m, «co,'. The energy scale is set by the rest
energy of the trapped particle.

Many of the elements in this matrix can be understood
very simply when the leading relativistic correction acts
as a mass shift. For example, increasing the energy in the
cyclotron motion from 0 to E„effectively increases the
mass of the trapped particles from the rest mass m to
m +Am, where

(10.22)

The axial frequency is inversely proportional to the
square root of the mass of the particle [Eq. (2.7)] and thus
shifts down by

2mc
(10.23)

which corresponds to the M2& element in the relativistic
response matrix (10.21). This relativistic mass increase is
being used to detect cyclotron excitations in the recent ex-
perirnents discussed in Sec. VII.A. The cyclotron fre-
quency, on the other hand, is inversely proportional to the
mass [Eq. (2.1)]. Thus a cyclotron excitation energy E„
and the resulting relativistic mass increase cause the cy-
clotron frequency to shift as well, giving

make use of a magnetic bottle (Sec. VI.A). Again, the
calibrated use of this effect presupposes that correspond-
ing matrix elements of the other perturbations are much
smaller. Comparing Eqs. (10.16) and (10.20) shows that
the anharmonicity constant C4 must be tuned out to be
much smaller than 4&&10 for an electron if the shift
due to the magnetron energy Ei is to be unaffected by
electrostatic anharmonicity.

The axial frequency is not shifted by an axial excitation
because there is no coupling to any magnetic field in this
case; hence the zero in the matrix in Eq. (10.18). In the
very good approximation that ~ &&co, &&~,', the mag-
netic bottle produces identical shifts in the spin and cy-
clotron frequencies. The shifts from cyclotron excitations
are weaker by the very small factor (co, /co,') .

Finally, we turn to relativistic corrections. These are
different from the electrostatic and magnetic bottle per-
turbations insofar as they are not under experimental con-
trol. The relativistic corrections thus provide a fixed lim-
it upon the sizes of elements in the response matrix. The
relativistic corrections to the energy levels were derived in
Sec. VII.B. The classical limit of Eq. (7.48) yields

(10.24)

which corresponds to Mii. This shift makes the observed
cyclotron motion for a single trapped electron anharmon-
ic, as discussed at length in Sec. VII.A.

We close this discussion with two observations. First,
the kinetic energy in the magnetron motion is very low.
Thus the relativistic mass increase and resulting frequen-
cy shifts are also very low, as evidenced by the very small
ratios (co, /co,') that appear in the response matrix when-
ever a shift in the magnetron frequency or a magnetron
excitation energy is involved. Second, the rest energy mc
sets the scale and it will be difficult to observe relativistic
shifts for trapped protons or heavier particles. The other
perturbations will typically dominate.
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