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The linear and nonlinear theory of resistive magnetohydrodynamic modes is reviewed, with particular em-
phasis on aspects figuring prominently in the behavior of magnetic confinement fusion devices.
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I. INTRODUCTION

One of the most important properties of an ideal mag-
netohydrodynamic plasma is the fact that the plasma is
frozen to the magnetic flux lines. Thus most instabilities
involve motion of field and plasma together, and the
characteristic time scale for the motion is the Alfvén time
74. The magnetic surfaces form topologically distinct re-
gions, with the total magnetic flux in a given region mov-
ing with the plasma. This topological constraint means
that, in general, there may exist inaccessible states of
lower magnetic energy near a given initial state. Magnet-
ic reconnection consists in the growth of one or more re-
gions, in terms of the total magnetic flux in the region, at
the expense of other regions. It allows the plasma to slip
through the magnetic field lines, makes these states acces-
sible, and thus introduces a whole new class of instabili-
ties to those treated by ideal magnetohydrodynamics
(MHD). The physical mechanism responsible for the par-
tial decoupling of plasma and magnetic field lines takes
the form of noninfinite current conductivity o, which is
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traditionally described in terms of the plasma resistivity
n=1/0 occurring in Ohm’s law. The rate at which the
magnetic field lines diffuse through the plasma is propor-
tional to the plasma resistivity, giving rise to a second
time scale defined by 7. Simple resistive diffusion is
generally much slower than the ideal plasma response de-
fined by 74, but special field configurations can give rise
to much more rapid diffusion. In these configurations,
plasma is forced toward a null line, where some com-
ponent of B changes sign. An x point forms, with the
field oriented in the four regions as shown in Fig. 1. In a
resistive layer in the vicinity of the x point the field lines
are reconnected, following the plasma flow in along the x
axis and out along the y axis, as shown by the thick ar-
rows. The nature of the forces driving the flow depend
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FIG. 1. The formation of an x point at a surface where one
component of B changes sign. Reconnection occurs in the shad-
ed area.
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on global magnetic field configuration and boundary con-
ditions. Thus the rate for the reconnection is a hybrid of
the resistive rate 7z related to the diffusion and the rate
at which the plasma and magnetic field are delivered to
and from the x point, given by 7' when this occurs
through ideal MHD processes. The reconnection time is
given by 7=S?r,, where S =7/74 is the Lundquist
number and the power p depends on the self-consistent
geometry and magnetic field determined by the boundary
conditions and the nature of the driving forces, and varies
from zero to one. In present-day fusion research devices
S~ 107, so the reconnection rate can vary greatly depend-
ing on the value of p.

The tearing mode, for example, consists of the growth
of a magnetic island configuration. It occurs when the
current profile causes an increase in island size to lead to
a state of lower magnetic energy. When the perturbation
is small, so that the island itself is smaller than the resis-
tive layer, the driving forces produce reconnection with
p==<. When the island grows to be larger than the resis-
tive layer, nonlinear effects cause the growth to slow until
p =1. In toroidal geometry the value of p depends on the
poloidal mode number m. Ideal driving forces can deliver
magnetic flux to the resistive layer more rapidly for
m =1, giving p =0 in the ideally unstable case, p =+ in
the marginally unstable case, and p :’% in the stable case.
For m=£1, p =+ for small islands and p =1 when the is-
land width exceeds the resistive layer width.

These cases, for which analytic solutions exist, illus-
trate the fundamental role of the global solution and
boundary conditions in determining the reconnection rate.

Much of the history of a typical tokamak discharge is
known, or conjectured, to be due to tearing-mode activity.
In the initial stages of a discharge, the double tearing
mode is thought to play a role in producing rapid current
penetration into the plasma. During the discharge, there
occur sawtooth oscillations and Mirnov oscillations,
which are understood to be due to tearing modes, and the
observed anomalous electron thermal transport is possibly
due to small magnetic islands and resulting stochastic
field behavior produced by microinstabilities. Finally,
abrupt termination of a discharge, through what is re-
ferred to as a major disruption, is understood to be due
primarily to tearing-mode activity. In addition, magnetic
reconnection plays an important but perhaps less well-
understood role in stellar and interstellar phenomena such
as solar flares and the interaction of the solar wind with
the Earth’s magnetic field. This review will focus pri-
marily on laboratory fusion-oriented plasmas, although
much of the analysis is relevant also for astrophysical ap-
plication.

In Sec. II we discuss magnetic surfaces. Section III de-
scribes the way in which plasma resistivity allows mag-
netic reconnection to occur. In Sec. IV the linear theory
of the most important large-scale mode leading to mag-
netic reconnection, the tearing mode, is derived. How this
mode is driven by the magnetic energy differential exist-
ing between the initial and final states is discussed in Sec.
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V. In Sec. VI these results are applied to cylindrical
geometry, and the tearing mode is shown to be closely re-
lated to an ideal MHD mode, the kink mode. Finally,
Sec. VII discusses the nonlinear theory of tearing-mode
development and how this mode influences the evolution
of a toroidally confined plasma.

The equations defining resistive magnetohydrodynam-
ics are Ampere’s law

VxXB=j, (1)
Faraday’s law
3B

VXB=— 3 (2)
and Ohm’s law

E+uXxXB=nj. -(3)
Rationalized Gaussian units with c¢=1 are used

throughout. In addition are needed the equation of
motion for the fluid, including jX B, pressure gradient,
and possibly viscous forces, and an equation of state to
describe the pressure evolution in case plasma pressure
plays a role. '

Il. MAGNETIC SURFACES

The existence of magnetic surfaces in magnetic confine-
ment devices, or at least the existence of approximate
magnetic surfaces over a large fraction of the plasma
volume, is an essential requirement for long-term confine-
ment. The existence of such surfaces has been shown
only under fairly restrictive conditions (Morozov and
Solov’ev, 1963). They are known to exist everywhere or in
all but a small part of the plasma volume only when there
exists a symmetry or approximate symmetry. This is
easily demonstrated in cylindrical geometry for transla-
tional, axial, and helical symmetry. Writing the field in
terms of the vector potential, B=V X A, the surfaces are
defined by A,(r,68)=const in the case when A4 is transla-
tionally invariant in z, and rA4g(r,z)=const in the case
when A4 is independent of 8, and

A,(r,6—az)+arAy(r,0 —az)=const

in the case when A is helically invariant; i.e., the magnetic
surface depends only on the variables » and 6 —az. It is
readily verified that these equations define surfaces to
which B is tangent.

According to a theorem by Kolmogorov (1957), weak
perturbation of a symmetric case leaves well-defined mag-
netic surfaces existing everywhere except in a small
volume proportional to the square root of the perturba-
tion, where the field assumes a stochastic character.

There is a close relation between the equations describ-
ing magnetic fields and Hamiltonian dynamics. Any
magnetic field can be written

B=VyXV0+VoX Vi, (1,0,p), C)
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with 6 and ¢ arbitrary poloidal and toroidal angles
(Boozer, 1983). The toroidal flux inside a constant ¥ sur-
face is 2m, and 2my, is the poloidal flux outside a con-
stant 1, surface. The field lines are given by Hamilton’s
equations with ¢ the time variable and ¢, the Hamiltoni-
an,

dy __ 4%  do _9Y,

dp do ' deo 3
Since

B-Vy=(3¢, /30)(Vp X VO)-V¢,

magnetic surfaces exist and are defined by v, provided ¢,
is independent of 6.

Surfaces are also known to exist in the vicinity of a
closed field line (a fixed point of the mapping defined by
the field) (Poincaré, 1892—1899). Consider a fixed-point
trajectory given by ¥o(@), Oo(e), with Po(27)=14(0),
00(2m)=6y(0)+27m. Consider trajectories near the
fixed-point trajectory and expand the Hamiltonian equa-
tions about the fixed-point trajectory. Writing

V(p)=[¥(@)—o(e),0(p)—O0u(e)] ,

we find a linear first-order differential equation for V
with coefficients periodic in ¢. Suppose two solutions to
this equation, V(¢),V,(@), have been found with the ini-
tial values V(0)=(1,0),V,(0)=(0,1). Then the solution
for the initial condition V(0)=(a,b) is given by
V=aV(@)+bV,(p). Tracing a field line in successive
passes in @ is thus reduced to a finite-difference equation
for the coordinates (x,,y,) of V after n passes,

(5)

x’l
Yn+1 Yn
with a;=[V(27),V,(2m)]. From V-B=0, it follows
that det(a;;)=1. If we attempt a solution of the form

x, =C{A"y, =C,A" we find by substitution the charac-
teristic equation

Xn +1

) (6)

=(a,-j)

}\,2+((111 +a7_2 ))\,+ 1=0 ’

with a general solution of Eq. (6) given in terms of the
two roots by

x,,=a17\.'1'+azk'2' s Yn =b17»'1'+b2}»§ . (7)

The form of the trajectory depends on the magnitude of
the trace of a;;. If |y +axn]| <2, let

cosp=(aj+an)/2,

and the characteristics become A; ;=exp(tip). A typical
trajectory is given by

x, =acos(un) , y,=bsin(un), ¢)]

and the fixed point is referred to as elliptical. The surface
mapped out by Eq. (8) either forms a discrete set of points
or is dense on the ellipse, depending on whether p is a ra-
tional multiple of 7.

If ' a11+a22 I > 2, let

Rev. Mod. Phys., Vol. 58, No. 1, January 1986

coshu=(ay+ay)/2,

and the characteristics become A ,=exp(+pu). A typical
trajectory is then given by

x, =a cosh(un) , y,=>bsinh(un), 9

and the fixed point is referred to as hyperbolic. In either
case the surfaces are well defined. The approximation of
linearizing the equations in the vicinity of the fixed point
assumes that the sum over higher harmonics will not de-
stroy the surfaces found. This has been shown by Arnol’d
(1963) and Moser (1962). They proved that nonlinear
terms lead only to a A dependence of the coordinate, i.e., a
distortion of the surfaces, but not to their destruction.

The first step in determining the degree to which such
surfaces are destroyed is the determination of all instabili-
ties that lead to magnetic reconnection. This was first
carried out in a systematic manner by Furth, Killeen, and
Rosenbluth (1963). Special cases had been considered ear-
lier by various authors cited by them. Numerical confir-
mation of the analytically obtained growth rates was car-
ried out by Wesson (1966).

Furth, Killeen, and Rosenbluth found three basic
modes. The tearing mode is driven by magnetic free ener-
gy determined by the form of the current profile. It leads
to the filamentation of the current and the formation of
magnetic islands. Since the growth rate is largest for
large-scale islands, this mode is the most important in
describing global behavior in magnetic confinement
fusion research devices. The second is the resistive g
mode, driven by the expansion free energy associated with
the pressure gradient and bad curvature. Finally, the rip-
pling mode is driven by resistivity gradients. Both the
resistive g mode and the rippling mode are most unstable
for a small wavelength, and thus, although they may play
some role in fine-scale plasma turbulence, do not contri-
bute significantly to global plasma behavior. For this
reason we shall concentrate our attention on the tearing
mode.

1ll. PLASMA FIELD COUPLING

In ideal MHD [Egs. (1)—(3) with 7=0] the magnetic
field lines are fixed in the fluid flow. Combining Egs. (2)
and (3) we find 8B/3¢t =V X(uXB). Consider a surface
and integrate this equation over it, giving

3% /3t + Pu-(dI xB)=0

with the flux &= f ds‘B, and dl an element of the sur-
face boundary. This equation simply states that the flux
convects with the fluid. Newcomb (1958) has shown
rigorously that if two fluid elements are connected by a
field line at one time, they remain so for all time.

The mechanism by which plasma remains attached to
the field lines for small values of 7 is easily seen. Consid-
er a field B, and attempt to drive plasma across it by in-
ducing a flow u,. Then nj=uXB gives j,=u,B, /7,
which induces a force F =j X B that has an x component
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F,= —-uxB}/n opposing the induced flow. This force is
infinite in the limit 7—0 provided B,s<0. However, if
B, vanishes for some value of x, the opposing force also
vanishes locally, and a field configuration can form about
x =0 which gives rise to a rapid diffusion of the plasma
through the field. Now suppose By(x)=B, for x >>L,
— B, for x <<L, and vanishes along the surface x =0.
Consider the magnetic flux passing through the xz plane,
P(x)= f Bydx. From Maxwell’s equations and Ohm’s
law we find the local flux annihilation rate to be
d® /0t =7 3B, /0x, where we have ignored structure in
the y direction, which we shall see is generally of larger
scale than that in x. At x =0, depending on the nature of
the driving forces, the field strength gradient 3B, /3x can
be made arbitrarily large, and thus an arbitrarily large
reconnection rate can be attained for any finite 7. A
self-consistent solution shows that B, is modified to pro-
duce a sharp gradient in a narrow range of x where the
opposing force is small, | x | <xr, referred to as the tear-
ing layer. The width of this layer and the gradient of B,
depend on the nature of the driving forces. Rapid recon-
nection thus can occur only along surfaces defined by the
vanishing of some component of B. In toroidal geometry
these surfaces are those along which the toroidal and po-
loidal components of B describe a helix that completes an
integer number of poloidal turns while completing an in-
teger number of toroidal turns.

It is necessary to understand the nature of the driving
forces in order to discuss meaningfully the reconnection
rate. If the distant plasma is at rest, the reconnection is
driven by the magnetic energy difference between the ini-
tial and final states, and the time scale for the mode
growth is determined by a combination of the resistive
and Alfvén times. Even so, the growth rate can be sub-
stantially different for different geometries. An inkling
of this can be seen in the nonlinear behavior of certain
ideal modes. The internal kink mode (m =1) nonlinearly
evolves to a state with an infinite gradient of B across the
singular surface. There is no similar phenomenon for
m==1. This tendency of the mode to develop a steep gra-
dient in B leads to a much faster resistive growth rate in
this case than for m > 1.

To discuss this more quantitatively, we represent the B
field through the flux function ¥(x,y) with

B=Vyx2 (10)

and assume steady-state geometry given by Fig. 1. At
large x an incompressible plasma is driven toward the x
point with velocity u, imbedded in a field B=B, . The
configuration is symmetric in both x and y, with recon-
nection occurring in the neighborhood of the x point and
the plasma flowing away in the y direction with velocity v
and field B=B,ox. Since the configuration is steady
state, 1 has the form Y =1(x,y) —at, and ¥y(x,y) has the
shape of a saddle facing the y axis. The plasma pressure
is Byzo /2 larger in the reconnection region than for
| x | >8. This is balanced by the acceleration of the plas-
ma along the y axis, up to kinetic energy 1/2pU_3=By20 /2,
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giving U, =V, the Alfvén speed. Equations (2) and (3)
give '

%%+(U-V)¢=nvz¢+E. (11)
Outside the reconnection region the rate of change of ¢ is
given by convection. Along the x and y axes this gives

& —UroByo=—VuBso (12)
Mass conservation gives Uyo/=V,48 and thus
B,,=06/IB,,. At the x point, where there is no flow,
dy/0dt is given entirely by 7j =nV2¢z2nByd/8, and the
width of the resistive layer 8§ must adjust until this value
equals that determined by the boundary conditions. A di-
mensionless  reconnection rate is defined as
M =(0¢y/0t)B,oV,, and thus M =27/V,8=8/] or
M=(7]/VA1)1/2.

There are two major models for steady-state reconnec-
tion, having to do with the size of the reconnection re-
gion, and in particular depending on the scaling of ! with
m. Writing [ =L /S", where L is a fixed global length, we
find M7, ~S""~1/2, Sweet (1958) and Parker (1963) as-
sumed that / had global dimensions (r=0), giving
M7,~S~Y2  The current in the resistive layer,
j=V4BM/m~S'? is singular in the limit —0. The
model proposed by Petschek (1964) attaches shock fronts
to the diffusion region, which is similar to that in the
Sweet-Parker model, but the length of the diffusion layer
1 is proportional to S~! (r =1), giving M independent of
7. The current is more singular than in the Sweet-Parker
model, going as S for n—0. The introduction of the
shocks, giving a more rapid reconnection rate, was pro-
posed for the description of solar flares and the release of
energy in the Earth’s magnetosphere. For a review of
these models see Vasyliunas (1975), Sonnerup (1979), and
Hameiri (1979).

However, these analytical treatments leave many ques-
tions unanswered. Aside from the problem of smoothly
matching the exterior solution to the diffusive region, the
accessibility and stability of the steady-state patterns are
not addressed by the analysis. This problem has been ex-
amined through numerical simulation with initial value
codes. Simulations have succeeded in finding steady-state
structure of the Petschek type (Ugai and Tsuda, 1977;
Sato and Hayashi, 1979). The flow velocities were limited
only by the local Alfvén speed, and shocks formed which
were identified as slow shocks, satisfying the Rankine-
Hugoniot conditions. However, this type of reconnection
was observed only for an anomalous resistivity of the
form 1~ (j —jo)", where j, is a threshold value and v a
parameter of order unity. All simulations employing a
resistivity that was a function only of position led to
Sweet-Parker-type reconnection, with / independent of S
(Waddell, Carreras, Hicks, and Holmes, 1976; Brushlin-
skii, Zaborov, and Syrovatskii, 1980; Priest, 1983; Park,
Monticello, and White, 1984; Biskamp, 1985). The nu-
merical simulations show that the situation that develops
for small 7, in fact, does not have a smooth transition at
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the end of the diffusion layer. A negative-current region
develops, which slows the velocity considerably below V4.
The simulations show that as 9 decreases, / increases until
it attains the global system size, and a Sweet-Parker-type
reconnection scaling occurs.

These results have also been observed experimentally
(Stenzel, Gekelman, and Wild, 1982). Detailed spatial
and temporal measurements of the vector electric field
and current density during magnetic reconnection experi-
ments were made. It was found that the resistivity was
spatially very inhomogeneous but did not simply maxi-
mize in regions of large current densities, as would be re-
quired to obtain a Petschek-type reconnection.

The behavior of the current at the singular layer,
j~8r+172 a5 50, reveals the nature of the forces driv-
ing the instability. In both the Sweet-Parker and the
Petschek models the plasma is asymptotically driven to-
ward the resistive layer, producing a singular j at this
point. This is also the case for the internal kink mode
(Park, Monticello, White, and Jardin, 1980) and the bal-
looning mode (Monticello ez al, 1981). Thus, we con-
clude that when forces exist, even in the absence of resis-
tivity, driving the plasma toward the singular surface, j
will be singular and the reconnection will proceed at a
rate faster than that given by the resistive time. An ex-
ample of nonsingular behavior is provided by the non-
linear tearing mode for m > 1, which is stable in the limit
7n—0. The absence of driving forces means that j is finite
for »—0 (r = —1), reconnection proceeds at the resistive
rate.

IV. THE TEARING MODE
IN SLAB GEOMETRY

In this section the growth rate for a magnetic island in
slab geometry (Furth, Killeen, and Rosenbluth, 1963) is
derived. The zeroth-order field is fixed in time, and all
perturbations are required to vanish far from the singular
surface. We take the initial field to be of the form

B,y=BF(x), B,>>B, B,,=0, (13)

where F(x)~x for x <<1 and F(x) is odd with F(x)—1
for x >>1. The distance from the singular surface x is
normalized to the width of the current sheet

L~'=(1/B)(dB, /3x) ,

and B, is constant in space. The plasma is initially sta-
tionary, uy=0. Now V-B=0 is used to introduce a flux
function ¥(x,y) with

B=VyX2+B,7 . (14)

The scalar function ¢ satisfies B-V¢=0, i.e., B'is tangent
to surfaces of constant . Moreover, from Eq. (1),

Vip=—j, . (15)
Faraday’s law gives for ¢
Y/3t +(u-Vy=qVY+E , (16)
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where E is any externally imposed constant field which
will be taken equal to zero. For the velocity, the electron
equation of motion is used:

pdu/dt=jxB—-Vp , (17
where (d /dt) is the convective derivative,
(d/dt)=(3/0t)+u-V ,

and this equation is operated on with Z-V X, also using
the incompressibility of the plasma in the xy plane (large
B;) to introduce the velocity stream function
@ with u=VgeXZ. This gives

pld /dt)\Vip= —2-[VY X V(VH)] . (18)

Thus two coupled second-order partial differential equa-
tions are left for the scalar potentials ¢ and v¥. The
zeroth-order state is completely described by
Yo(x)=—BF(x) and @,=0. The initial current-density
profile is given by j,o= —1yg.

Equations (16) and (18) are now linearized, introducing
a perturbation that will “interact” with the singular sur-
face at x =0, producing a periodic pattern of x points,
each one having a magnetic field topology similar to that
shown in Fig. 1. We write

P(x,y) =1ho(x)+1,(x) cosky ,

_ (19)
@(x,y)=(y/kB)p(x)sinky ,

where 1,(x),;(x) are assumed to vary in time as e”. In
Fig. 2 is shown the resulting pattern of magnetic field
surfaces, ¥=const, forming a chain of islands. The value
of ¥ on the separatrix is found easily at the x point
s =1(0)—1,(0), and setting ¥(x,y) equal to this value
for y =0 and expanding ¥y(x) in a Taylor series about
x =0 gives for the island width

W —4(— gy /P> . ' (20)

Substituting Egs. (19) into (16) and (18) gives two coupled
second-order ordinary differential equations for

¢1(X),¢1(x):
P1(x)—F (x)@(x)=(1/y7)[¥1(x)—k*P(x)] , (21)
— ¥4 [@1(x) —k2@y(x) ] =F (x)[#{'(x) — k4 (x)]

—F"(x)(x) , (22)

where the primes denote d/dx and 7,=p'/2/(kB),
Tr=L?%/7m are the characteristic Alfvén and resistive
times for the problem. A number of assumptions are
made at this point concerning the solution of these equa-
tions, which must be verified a posteriori. It is assumed
that the growth rate is intermediate between ideal magne-
tohydrodynamic and resistive, i.e., (1/75) <<y <<(1/74).
Further, it is assumed that the resistivity is relevant only
in a narrow layer x; <<1 where reconnection or tearing
takes place. :

Let us examine first the exterior region, where resistivi-
ty is assumed to be negligible. Assuming that scale
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FIG. 2. A magnetic island. Shown are surfaces of constant .
The width of the island is the distance between separatrices per-
pendicular to the zeroth-order flux surfaces.

lengths for the solution are of the order of the shear
length and using Y74 << 1 gives

Yi(x)=@i(X)F , F(pi—k>)=F"y, (23)

which for the particular profile F(x)=tanhx has the
solution

¥i(x)=exp(Fkx)[1*(tanhx)/k], (24)

where the upper (lower) sign corresponds to x positive

(negative). The function ,(x) has a discontinuous
derivative at x =0, and it is readily found that
¥1(0+4)—91(0—) 1
A= =2\ |- |—k|. 25
4:(0) k @3

Note that A’ is positive for k <1, i.e,, when the shear
length is short compared with the wavelength of the
mode. Now the full resistive equations must be solved in
the interior region and the solutions matched at the
boundary. The fact that xr << 1 is used, so that within
the tearing layer F(x)~x. It is also assumed, from the
nature of the exterior solution, that within the tearing
layer ¥,(x) is approximately constant (the constant ¥ ap-
proximation), although, of course, ¥ must be changing.
Since x7 << 1, one can take ¥ >>k*,, @1 >>k*p;. Thus,
Eqgs. (21) and (22) give
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V1(0)—x1 =91 /YTr » (26)
Yiraer=—xyi, 27
and for the necessary matching to the exterior solution
2 "
Y 7 © @
- —dx =A’ » (28)
oy J-

where an assumption has been made about the asymptotic
behavior of @; to extend the integral to + o0, which will
have to be checked a posteriori. The convergence of this
integral guarantees that, asymptotically, the interior solu-
tion 3, has constant slope and thus can be matched to the
exterior solution. Introducing a new variable z through
x =(y7% /7r)""*z and writing

@1=—(78 /y7%) " (0X(2)
gives

X'z =z, 29)
which has the solution (Rutherford and Furth, 1971)

z 1
X=—Z [ duexp(— 2212, (30)

which can be verified by substitution. The solution is odd
and also asymptotically equals —(1/z). The matching
condition becomes
5/4 3/4_1/2 ® _‘iz_ II=AI
VTR T4 f_w e ) (31

and y7g~S8*’>>1 and yr~S 3% <<1 as assumed.

The integration in Eq. (31) can be truncated at |z | =2
with very little error. Thus, the tearing width will be ar-
bitrarily set as x7=2(y7% /7r)!/%, which is seen to scale
as S ~2/3 times the shear length. -

To evaluate the integral I = f (dz/z)X", substitute
Eq. (30) and integrate over z, giviném

fe———Tearing Layer ——>|

FIG. 3. The first-order fields and flow pattern associated with
a linear tearing mode.
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I==-12L fp,

(1- “2)1/4 ’
which is equal to #T(3)/I'(+). Thus,
I'(+)A'L 2
4 —3/5_—2/5
= |—— TRT . (32)
4 7T(3) ko

Note that long-wavelength modes are the most unstable.
The physical origin of this effect is that the short-
wavelength modes cause too much field line bending,
which is stabilizing, compared to the gain in magnetic en-
ergy associated with island formation. Note that
yrrxr=2A'L?> and the tearing width is
x7r=~2(A")58~2/5 In Fig. 3 are summarized the first-
order fields and flow velocities.

V. MAGNETIC ENERGY
OF THE TEARING MODE

In this section the magnetic energy available due to the
formation of an island in slab geometry is calculated
(Adler, Kulsrud, and White, 1980). The energy gained in
island formation is proportional to A’. In addition to the
net gain, there is a substantial energy transfer from the
tearing layer outward.

The change in magnetic energy, 5 f | B | %dx dy, in
terms of the notation of the previous subsectlon, is given
correctly to second order by

M =7 [ dx[($12+k ¢ +40¢] , (33)
where
PY(x,y)=1ho(x) +1(x) cosky +h0(x ) +1p,(x) cos2ky

and terms linear in ¥,(x) and ¥,,(x) average to zero over
y. Now one must find 1,0(x). Averaging the second-
order part of Eq. (16) over y gives

d _ @2yo(x)
W Ee=(rr) T — 5=, (4

)+
where 77=const has been taken for simplicity. Terms
proportional to Vn can be shown to be neghglble The
solution to Eq (34) is

Yo=—75— f dx'exp(a|x —x | Fyn K(x ) (35)
with
K(x")=2ymt(x)y(x"), a=Q2y7g)"*.
The asymptotic form of Eq. (35) is readily evaluated, giv-
ing :
1d 1/1%(x)
YaX)=— o | T (36)

Unlike the exterior solutions for #,(x),@;(x), this expres-
sion is valid only for x >>(xr/A")!/% i.e., the skin depth
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_ the tearing layer.

of the current sheet, and cannot be used in the vicinity of
XT.

To evaluate the change in the magnetic energy M, first
consider the last term M;= f __Yovhdx and split it
into two parts:

= € ire
My=— [ x¥dx+3 [ Fo= |5

2 2
2[5

where (x7/A")/? «<e << 1. Using F(x) in the interior re-
gion and the asymptotic expression for 1,(x) in the exte-
rior region and integrating by parts, one finds for the total
change in magnetic energy

M=% [T ax (i P+kR+F"/PYi1+R . (39)

Integrating the first term by parts, one finds that the in-
tegral in Eq (38) is equal to —(1/4)A'y2(0). Further,
| R | <<A'$}0) provided e>x3"/(A')*/3, a reflection of
the fact that the asymptotic form of 1, used for x > ¢ is
not valid for € less than this value. Thus

M=—A'Y}0)/4 . (39)

The magnetic energy density can be directly evaluated in
the interior region. Differentiating Eq. (35) gives

ggsz—o f _dx'exp(—
(40)
which, upon integration by parts twice, gives
dipyo/dx ~K (x) (41)

plus terms of order ax, which are negligible provided
x <xr. One then finds for the magnetic energy density

582 _ —A(0)
2 o Xr

which has a value of —(A’/x7)¥1(0) at x =x7. The total

change in magnetic energy within | x | <xr is given by

x@i(x), (42)

M) =25410) [ xgu(xiax 43)
T

Using Eq. (26) gives

M(xp)=—3A"Y}(0) ,
six times the entire change in magnetic energy. In Fig. 4
is shown schematically the change in magnetic energy
density as a function of x, as found numerically using
Egs. (33) and (35). The surface terms in the integrations
for | x | <€ and | x | > € result from the energy transfer
that takes place for | x | >x7. Also shown is the diver-
gent energy density obtained by using the exterior solution
for i for x <.

Furth (1963) has derived a quadratic form that leads to
a variational principle for the full resistive equations. He
shows that this form gives a negligible contribution inside
In the exterior region this quadratic
form is given by



190 R. B. White: Resistive reconnection -

\\/From External ¥,

S
TN 777
VL ot

o

>

5B
2 SO SII5
A
2
X ¥3(0)

FIG. 4. The change in magnetic energy density produced by a
magnetic island. Also shown is the divergent density obtained
by using the asymptotic form of ¥,y for small x. The dotted
line is the “energy” density obtained from a variational princi-
ple for the full resistive equations.

Vo=t [ ax |t +ki+ Togi | (44)

which is equal to M, from Eq. (38). The resulting “ener-
gy” density D, is shown in Fig. 4. It is seen to agree with
the magnetic energy density for large x and also has an
integrated value of —A'y%(0)/4, although it is quite un-
like the magnetic energy density for small x. The quadra-
tic form V¥ is related to the infinite conductivity energy
W . (Bernstein, Frieman, Kruskal, and Kulsrud, 1958) by
a singular term,

W, =Vo+F(e)X0)/2F(g) ,

which is the result of integrating the last term in Eq. (44)
by parts.

The total rate of change of energy inside a volume
bounded by a <x <b is due to the changes in magnetic
and kinetic energy. These quantities have been evaluated
(Adler, Kulsrud, and White, 1980) and shown to be equal
to the work done by the pressure at the two boundary sur-
faces plus the energy radiated through the surfaces.

The kinetic energy 5pu? is readily found from

d b I’

I1r<=%1/<y2r3,) [ L@+ Kphldx . 45)
The change in magnetic energy is given by Eq. (33):

d l b 1 \2 2,42 ’

M =T [ 1@+ Kyt —aFyholdx . (46)

There are two contributions to the energy balance at the
surface, that due to the Poynting flux and that due to the
work done by the pressure. To evaluate the Poynting
flux, we use

Px:(El XBI)X+(E2XBO)x » (47)

Py =y(— 131 cos’ky +2F 1) . (48)

The work done by the pressure is given at each surface
by pu,, since the fluid is incompressible. To evaluate the
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FIG. 5. The second-order eddy current, which produces the
change in the magnetic energy for the mode and is responsible
for the nonlinear algebraic growth.

pressure, we use Vp =(j X B), neglecting the density term
in Eq. (14), which is of order 7/2731, to find

dp _ d (F'v,y)
=— cosky . (49)
dx dx h Y

Evaluating these expressions using the explicit solutions
in the interior and exterior domains, one finds energy con-
servation

%fv(K+M)dxdy=—» [ Pds— [ puds. (50

Shown in Fig. 5 is the second-order y-independent
current density j,= —15,. It arises physically through
uy X B, and opposes j,q inside the tearing layer and rein-
forces it outside. It is responsible for the change in the
magnetic energy density by the induced change in B,

These results have been extended to include the case of
an asymmetric current sheet by Bondeson and Sobel
(1984). They found that there is an additional contribu-
tion to the magnetic energy, Eq. (39). The energy released
takes the form

M =5 930) A +(wF" /F')? /A"]

whether the plasma motion is inertial or viscous.
VI. CYLINDRICAL GEOMETRY

A. Introduction

In this section the equations used for the analysis of
linear and nonlinear tearing-mode behavior in toroidal de-

. vices are developed. An examination of nonlinear

behavior demands that one consider the interaction of the
island both with the tearing layer itself and with the
shear.

As originally pointed out by Shafranov (1970), the ideal
magnetohydrodynamic kink instabilities are so strongly
growing that the toroidal curvature has a very minor ef-
fect on the modes, and they can be analyzed to good ap-
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proximation in cylindrical geometry. The same is true for
the tearing mode, since its behavior is primarily governed
by the magnetic energy driving it. It was shown by
Furth, Rutherford, and Selberg (1973) that the toroidal
curvature, for very small resistivity, does result in a small
reduction of the tearing-mode growth rate. Glasser,
Greene, and Johnson (1976) further showed that toroidici-
ty improves the stability of the mode through the intro-
duction of a threshold.

The effect of curvature, finite pressure, and magnetic
interchange were considered by Kotschenreuther, Hazel-
tine, and Morrison (1985). Although modification of the
threshold and growth rate in the linear regime were
found, these effects were found to be progressively less
important with increasing island width.

B. The reduced equations

As in Sec. II, we begin with Faraday’s law, Ampere’s
law, the simplified form of Ohm’s law, and the equation
of motion. Tearing-mode behavior is governed primarily
by the current profile, but can also be influenced by pres-
sure, density, and resistivity profiles. When one or more
of these is taken into account, equations that describe
their evolution are also needed. Realistic treatment of the
evolution of the resistivity profile requires the considera-
tion of transport, ohmic heating, radiation, and impuri-
ties, and is beyond the scope of this review.

The geometry and notation for variables is shown in
Fig. 6. Tokamaks are characterized by values of the safe-
ty factor g(r)=rB,/(RBg) of order unity and values of
the inverse aspect ratio e=a /R, much less than unity.
The equations are thus expanded in the inverse aspect ra-
tio, allowing the ratio of plasma pressure to magnetic
field pressure B=2p/B? to be of order & or smaller
(Rosenbluth, Monticello, Strauss, and White, 1976;
Strauss, 1976). Choosing B, and g to be of order unity
leads to B, ~O(e). The divergence of the flow, V-u, is
found to be of order €3, which is important numerically
since it eliminates the magnetosonic waves from the sys-
tem, the fastest wave present being the incompressible
Alfvén wave. The following consistent ordering scheme
for resistive magnetohydrodynamic motion is found:

T |D Ro / o lY

FIG. 6. Geometry for the description of a toroidal field.
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O(l): B.;;»P,Vi ’
, o 1 9
O(e): Bl’]qa’ulga'l?ga s
-~ (51)
O(e?): B,,ji,u, ,
o(3): V,-u,,

and the pressure is taken to be either of order € (high-beta
three-dimensional equations) or of order &> (low-beta
three- or two-dimensional equations). Here

V,=7(3/9r)+6(1/r)(d/36) ,

and more generally the subscript 1 denotes perpendicular-
ity to @. The equations have been extended to include
terms up to fifth order by Izzo et al. (1985). These equa-
tions then include toroidal effects (Glasser, Greene, and
Johnson, 1976) and plasma pressure for B of order € or
smaller. They also show that the fifth-order equations are
the minimal reduced equations, in that they form the
highest-order set that does not contain the fast magneto-
sonic waves.

Considerable success has been achieved by restricting
consideration to following the nonlinear development of
perturbations of a fixed helicity, thus reducing the num-
ber of dimensions of the problem from three to two
(Rosenbluth, Monticello, Strauss, and White, 1976). In
tokamaks the nonlinear coupling of modes of different
helicities appears not to play an essential role except in fi-
nal stages of development of large islands, which occur
for particular current profiles. These phenomena, related
to tokamak disruption, will be discussed in Sec. IV.

Fixed helical symmetry, together with cylindrical
boundary conditions and equilibrium, implies that all
quantities are functions of 7, », and ¢ only, where
7=m0O+kz and k=n/R,. Here m,n are the poloidal
and toroidal mode numbers of the initial perturbation,
which has the form

f(r)expli(mb6+kz)],

and the torus has been replaced by the equivalent cylinder
with length L =27R,, and the ¢ coordinate with
z=Rp. The helical symmetry allows the z coordinate to
be eliminated through

9/0z =(k/m)(3/30) .

In addition, this symmetry, together with V-B =0, im-
plies that B can be written in terms of a scalar ¥(r,0):

B=Vyx2z—(kr/m)B,0+B,% (52)

and v is a flux function, i.e., B-V¢=0. In a cylindrically
symmetric state, ¥(r) is the flux through a helical ribbon
defined by the magnetic axis and a helix of constant 7 at
minor radius r (Fig. 7). Vanishing of (3¢/9dr) at r =r,
means that the field through the helical ribbon vanishes at
this point, and this condition determines a singular sur-
face. In addition, ¥ is related to the magnetic vector po-
tential by Y=A, —(kr /m)Ay. The dynamical behavior of
¥ follows from Faraday’s law:
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FIG. 7. The helical ribbon defined by the magnetic axis and a
helix of constant m0+kz, r. At a singular surface the magnetic
field vector is tangent to the ribbon.

Y fuVy=—nj+E, | (53)
where E is an imposed electric field at the tokamak wall.
The z component of the current is related to ¥ through
Ampere’s law,

jo=—V%)—2kB,/m . (54)

Note that for m,n positive we find at a rational surface
(y'=0), from Eq. (52), that B4/B, <0, i.e., j, <0 in this
coordinate system. Incompressibility is again used to
reduce the number of variables through the introduction
of the potential ¢ with u=Vg X2

kB,r
m

Substituting Eq. (52) into the equation of motion and
keeping only lowest order in € gives
2 2 m 2 ]

2 (V !//)2 2sz¢
B 1 1
—+ qul}Vzl/}——O N (55)

pgt—ul-%-vl P+

which gives, upon operation with 2-V X,
(V. pV19) =~ IV VLUTH] (56)

These equations have been used in numerical codes to in-
vestigate the nonlinear development of modes with m >2
(Danilov, Dnestrovskii, Kostomarov, and Popin, 1976;
White, Monticello, and Rosenbluth, 1977; Biskamp and
Welter, 1978; Waddell, Jahns, Callen, and Hicks, 1978;
Monticello, White, and Rosenbluth, 1979) and m =1
(Sykes and Wesson, 1976; Waddell, Rosenbluth, Monticel-
lo, and White, 1976; Dnestrovskii, Lysenko, and Smith,
1977) and to construct analytic models for the nonlinear
behavior of modes with m >2 (White, Monticello, Rosen-
bluth, and Waddell, 1977a).

C. The tearing mode

Evolution of a mode is generally followed by perturbing
a O-independent equilibrium, specified by j(r) or,
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equivalently, g (7). From the definition of the safety fac-
tor we have

’
R[¢Y'(r)+(kr/m)] ~

Using Eq. (32) and expressing the result in terms of the
characteristic Alfvén and resistive times for the torus

T4=(p'%am /B,)=(p'%a®>m /BR) , tr=a’/q,

q(r)= (57)

and using k =n /R,F'=L ~'=1{ gives
,},=[m¢6'(rs )]Z/S(AIG)4/57'§{/ST;2/5 . (58)
To determine A’ and the radial dependence of other

quantities in the linear theory, we linearize Egs. (53) and
(56) through

Y=1p+¢cosmb ,

p=po+picosmb, (59)
@=@;sinm0 ,

Jj=Jjo+jicosméb,
where all first-order quantities are assumed to vary as e?’;
we then eliminate all but ¥;,¢;, obtaining

VY= | | (oYt —m s (60)

Yo@1=1Vmi (61)

m
Y1+ ,

with
Vo =(1/r)(3/3r)r(3/3r)—m?/r? .

Assuming, as in Sec. IV, that y74 <<1, we find that,
away from the singular surface,

djo Y1
ar ¥y

The stability of a cylindrical plasma to tearing modes is
completely determined by the quantity A’, which, as
shown in Sec. III, describes the available magnetic energy
for the formation of an island. Shafranov (1970) calculat-
ed A’ for a constant-current profile of finite extent, and
Furth, Rutherford, and Selberg (1973) carried out a de-
tailed investigation of the dependence of A’ on the profile
shape. The determination of A’ was made by integration
of Eq. (62) in the exterior region. They introduced pro-
files which they called peaked, rounded, and flat, with as-
sociated safety factors

Viy=— (62)

q(r)=q(0)[14(r/ry)?]'?

and p =1, 2, and 4, respectively. From Egs. (54) and (57)
it was found that the current associated with a given ¢
profile is

+-L (63)

J=— qu ’
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which reduces in this case to
J=j(0)/[14(ry)?P] +017P)

Note that in this coordinate system, j is negative. The pa-
rameter ry describes the width of the current channel.
Equivalently, the two free parameters can be chosen to be
g on axis and the location of the singular surface r;. The
peaked model is found to be unstable to m =2 and 3 tear-
ing modes. The rounded model is generally more unsta-
ble, the m =2,3 modes existing over a wider range of 7,
and the m =4 mode also becoming unstable. The flat
profile is even more unstable. The behavior of A’ as
ry—0 is A'—f(m)/r;. Glasser, Furth, and Rutherford
(1977) investigated the optimization of stability for dif-
ferent current profile shapes and showed that it is possible
to achieve simultaneous stability against all modes. For a
review of stability boundaries for different m values and
various profiles, seec Wesson (1978).

D. The resistive kink mode

The free-boundary kink and the tearing mode can be
viewed as two different limits of the same instability. In
the case of the ideal kink the magnetic island must be lo-
cated outside the plasma in the surrounding vacuum re-
gion, and is felt only as a distortion of the plasma-
vacuum boundary. If a resistive plasma is introduced into
the vacuum region, the magnetic reconnection is resistive-
ly limited and the growth rate of the mode accordingly
modified. A simple derivation of the linear growth rate
for the resistive kink mode is presented here, which makes
obvious this close connection (Pogutse and Yurchenko,
1977). ’

Consider an equilibrium with a dense plasma and a
constant current density extending to » =7, and a much
less dense, resistive plasma, and zero current, for r >r;.
The safety factor is then constant for » <r; and parabolic
for r >r,. The singular surface is assumed to lie in the
low-density resistive plasma. We begin with Egs. (60) and
(61). Away from the singular region (r ~r;) resistivity is
unimportant, so V¢ X Vj,=0, or j,=j(¢). Linearizing
this gives

AI

_(m/r){—h +hCa[1—(r1/r, P =14 Cy[ 1+(ry /r, *™]}

djo 1
dr

J (W) =joltho) + ¥, cosm0 (64)
and thus for a constant current equilibrium j; =0, which
along with Eq. (54) gives

19 3 2
‘TE'E_”:T ]¢1=o. (65)

Thus solving for ¢,(r) reduces to matching solutions of
Laplace’s equation in the three regions r <ry, ry <7 <7g,
and r; <r <a. To find the discontinuity in ¢] at r =r,,
one integrates Eq. (60) across the surface r =r, relating
the discontinuity in ¢} to that in ¥i:

poph | 1= Wi | Lty | D) (66)
From Eq. (61), away from the singular surface,
YY1+ (me;Q/R)=0 with Q =(1/q9)—(n/m). Thus also

7/1/1ll+m¢’lQ/R =0 y r<ry, (67)

YYi+m@iQ/R+meQ'/R=0, r>ry, (68)

and Q'= —2/(rq) everywhere outside the current column.
The discontinuity at the singular surface is given by A’.
Writing the solution to Eq. (60) as

(r/r)™, r<ry,
¢1=C1(r/r1 )"’+C2(r/r1)_'” y M<rrg, (69)
Cy(r/r )"+ Cylr/ry)™ ™, rg<r<a,

and choosing for simplicity m/n —gq(0)<<m /n, one
finds that the matching conditions at r =r; give

YA —7%)  yira?
20 mQ?
1 _
, (70)

1—

C,=(m —nqg)~!

y22n?
m 2Q2
where 74+ =pY/?/(nB,) are the characteristic Alfvén times

of the inner and outer regions. Similarly from matching
at r=rg

s

1—Cy[1—(ry/r,)*™]

where

h=[1+(r /a*]/[1—(r/a)"] .
Equation (58), which also relates the quantity A’ to the
growth rate, together with Egs. (70) and (71), now deter-
mines y. The two limits are readily obtained. Letting
A’'=0and 7_ =0,

2
2m? 2m?

(ri/ay™—1  ng

m
ng

m

2 —_— —
Y= g

——1] , (72)
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> (71)

which is the growth rate of the kink mode. In this limit
the island growth is impeded by the inertia of the central
core rather than the resistive tearing. The tearing-mode
limit is found by setting the density discontinuity equal to
zero in Eq. (70), giving C,=(m —ng)~!, independent of
7, and resulting in the tearing mode growth rate. In Fig.
8 is shown the growth rate y as a function of S =713/74.
The close relation between these modes is intuitively use-
ful, and it indicates that for fairly sharply limited current
profiles and with rather large resistivity in the region out-
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FIG. 8. Growth rate of the resistive kink modes as a function
of S. Also shown are the tearing and kink mode growth rates.

side the current channel the nonlinear behavior of the
tearing mode can be expected to be similar to that of the
kink mode (Rosenbluth, Monticello, Strauss, and White,
1976).

E. The resistive internal kink mode

The internal kink mode, like the surface kink mode
described in Sec. VI.D, has a resistive version. Recall that
the ideal surface kink modes are unstable only when the
singular surface k-B =0 falls within the vacuum region.

Instability of the m =1 ideal internal kink mode does
not depend on the singular surface lying within the vacu-
um. For finite resistivity the resulting mode can be ex-
pected to have quite different behavior, depending on
whether the mode is ideally stable, neutral stable, or un-
stable. The linear growth rate can be calculated for the
three cases in a single analysis (Coppi et al., 1976).

We begin with the reduced equations of Sec. VI.B, valid
to lowest order in kr/m, and perform the usual lineariza-
tion, with

Y=1o(r)+¢(r)cosmb , @=¢;(r)sinm6 .

It is also convenient to express the equations in terms of
the radial displacement

E(r)y=[u,(r)/y]=(m /yr)p\r),

and the radial magnetic field b (r)= —(m /r)y(r), giving
two coupled second-order differential equations:

Yo 1d ;d

2
yb= mré'— p_im’=1

r3 dr’ dr’ " 72 (73)

and
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or? ;;r 3—5— (m2—1)§]
2
miyg ‘——d—r—é;(rb) ——;rb]
+ord {—1»—~( w] (74)
where
V(rf cosm@)=[(1/r?)(d /dr)r’(d /dr)—(m*—1)/r]
' X f cosm@

has been used. Recall that i is simply related to the

equilibrium safety factor through
r {1 n

| 2_r 75

Yo R ‘q (75)

The standard method introduced in Sec. VI.C on the tear-
ing mode is followed, i.e., it is assumed that the resistivity
is negligible except in a layer surrounding r =r,, the
width of the layer to be determined in the course of the
calculation.

First consider the exterior region. For zero resistivity,
Eq. (73) gives

m ’
b= |0 ] £ (76)
r
which, upon substitution into Eq. (74), results in
d 1/'0 _§_
o [ pY+ . I—g_é, (77)

with
g =[(myp)*/r+py*rlim?—1).

Thus for m =1 the right-hand side of Eq. (77) vanishes,
so a solution is 1(r)=const. When we neglect py? with
respect to (m1y/r)?, the singular nature of the differen-
tial equation [15(r;)=0] allows a continuity at the point
r =r,, and thus the solution to lowest order in kr /m con-
sistent with the boundary condition ¥(a)=0 is

s r<rg,
Eo(r)= (78)

0, r>rg,
valid in the exterior region (py? negligible).

Notice that the change in £ (and ¢;) of 100% across
the inner region renders invalid the analysis of Sec. VI.C,
based on the constant ¥ approximation.

Now Egs. (73) and (74) must be solved in the vicinity of
the singular surface » =r; and the inner solution matched
to the exterior solution. The matching turns out to be im-
possible to do with the lowest-order solution Eq. (78) be-
cause of the identical vanishing of g. It is necessary to
find the exterior solution to the next order in the basic ex-
pansion parameter kr/m. One writes the solution to Eq.
(77) as §(r)=£o(r)+£&1(r)+ - - -, where the expansion pa-
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rameter is kr/m. To obtain &,(r) one needs to find g(r)
to order (kr/m)*. To do this, one returns to the equation
of motion and linearizes, giving

Y o —Vp1+)1XBo+joX By - (79)
Now one applies B-V X, giving on the right-hand side
B-V(j; XBy)+B-V(joXB;) . (80)

To all orders in kr/m

N ) A kr |a
By=2B, — 60— l;n” l() ,

A1 i) i)
and substituting jo,=VXBy and j; =VXB; with

B, =V, X% gives, to order (kr/m)?,
('/’om)2

(81)
|2
V=¥ lar

2 (o)

+py?r |(m2—=1)+ lm

The solution ¥, in the external region can now be found
by integrating Eq. (77):

e
d§, r(myp)? f gdr, r<r,
= (83)
dr &
WI gdr, F>rg,

from which it is apparent that

1 d§1 Ay
" 84
§. dr 9
near r =r;, where x =(r —ry)/r; and
_— (85)
rs[mrsql(rs)/q]z f 84

Here g =(—gq'/q)(kr/m) at r =r; has been used. The
quantity Az, having the dimensions of an inverse length,
gives the effective width of the second-order exterior solu-
tion.

Now let us consider the interior region. In the vicinity
of x =0, as long as S=7g /74 >>1,

a’x _ | x | |48
dx? 2 dx?

aB
d2

b

B=—&x +(SA)~! l

where B=b (r)(m{), A=q7g, and 75" is the ideal free-
boundary kink growth rate, 7y = p‘/ 2/1§. Now a solution
of Eq. (86) is sought that can be smoothly joined to the
exterior solution, Eq. (83). Combining the equations gives
a fourth-order equation for £:
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A

2A x
Sx

Sx3

21 A?

e rr _n " __ '—=0 . 87
3 G2 £+ x l £'—2&'=0 (87
One solution is £'=0. The asymptotic behavior of the
other three independent solutions for large |x | are
&~1/x%and

& ~exp[ +x2/(41/8)?] .

From Eq. (84) the matching solution is a combination of
the first (£=const) and second (£'~1/x2). Note that
asymptotic behavior of the other two solutions depends
on 7, and they therefore cannot be matched to the exteri-
or solution. We write

E=75E,+Eoda (88)

and impose the condition
lim(x2/2)(Ebaq/Eoaa) = — (Ag /)

for x /A— — o as §ggq—£ o, /2.

A numerical solution of Eq. (86) has been carried out
using £=xS'2. B=BS'3, A=AS'3. The _results
for £,4q are shown in Fig. 9 for various values of A. The
boundary conditions imposed were that B0)=1 and
£0aa(0)=0, and d£(0)/dx was adjusted until Eq. (85) was
satisfied. In Fig. 10 is shown the growth rate as a func-
tion of the ideal magnetohydrodynamic growth rate
measured by Ay. Ideal marginal stability (A5 =0) gives
A=1 or A~S~13 If Axg>>S~'3 then A=Ay,
i.e., the mode has the ideal growth rate. The growth
rate is thus obtained in the following three cases:
ideally unstable, y~(a/R)X1/7y); ideally margin-

ally stable, y~(a/R)’ S~'3(1/ry); ideally stable,
y~(a/R*S 351 /ry).
0 I T T T
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FIG. 9. Odd part, ——%5 «» Of the resistive layer solution £ as a

function of £ =(r —rq)/roS'”? for different values of the nor-
malized growth rate A=AS'7. The eigenfunctions represented
here have been derived by direct numerical integration. These
agree with the analytical representation. Notice the change in
the character of the eigensolutions as A becomes smaller than
unity, corresponding to Ay <O.
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FIG. 10. The solid curve represents the growth rate as a func-
tion of the ideal MHD growth that is measured by Az =A5S /3.
This curve has been obtained by direct numerical integration.

Note that in the case of ideal stability the growth rate
has the usual tearing-mode scaling found in Sec. IV. This
scaling can be obtained, however, only if additional physi-
cal effects are present that can add stabilizing terms to
f g(r)dr. In cylindrical geometry the mode is always
ideally unstable. In toroidal geometry the coupling of dif-
ferent m values produces a stabilizing effect, and the
mode becomes unstable only for sufficiently large poloidal
beta, typically 8, >0.3 (Bussac, Pellat, Edery, and Soule,
1977).

F. High B8 and multiple helicities

If the plasma pressure is taken to be of order e, the
equilibrium is 6 dependent, modes of different helicities
are coupled, and a full three-dimensional analysis is
necessary. To find the equilibrium state, one writes the
field in terms of the poloidal flux and the gradient opera-
tor in terms of the variables of Fig. 5,

B=VAX(@Ro/R)+B,%,

with
Rl d | L4 | 514
V=RIZR |T® | & ||3e |77 |a
One then finds
/\R A
VYxB=—2"2A*4 1 V(RB,)x L, (89)
R R
where
R ER NS
dR oR ay?

Substituting this expression into Vp=jXB and using
p =p(A) gives
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p'VA=—(R}/R*)A*AVA—RB,(1/R)V(RB,), (90)

from which it can be concluded that RB,, is also a func-
tion of A4, in fact, equal to the total p0101dal current. The
equilibrium equation is thus found (Grad and Rubin,
1958; Shafranov, 1966):

, 1I'(A)
A .
Ro p(A)+—5— R2

—A*A= 91)
To lowest order in the inverse aspect ratio €, the operator
A* reduces to (32/3x2)+(3%/3y?)=V?, and the Grad-
Shafranov equation becomes

2x dp _ II'(4)

4
Vit R 94~ R

+p'(4) . (92) -

To lowest order in € the expression for the magnetic field
becomes

B=VAXp+B,p 93)
and j=V XB,
Jo=—Vi4 . (94)

The incompressibility allows the velocity to be expressed
as usual in terms of a scalar,

u=VWx9p. (95)

To complete the description of plasma evolution (Strauss,
1977), a closed set of coupled differential equations is
found for the three scalars W, A4, and p. The toroidal
field B,=I/R, to lowest order, can be written as
B,=By+B¢Ro/R +1,/R,, where the two corrections to
the zeroth-order constant toroidal field are due, respec-
tively, to toroidal curvature and plasma current. To
lowest order in &, Vp=j X B and thus

V(p+B?/2)=(B-V)B,
which implies

V(p +1*/2R})=0. (96)
Applying -V X to the equation of motion then gives

L (VW)= (VAXVjp)+ aiviA

9 sinf@+ — —Acose

ar 36 97)

+2

For the poloidal flux A, one begins with V,-B, =0, or
(0B, /3t)=V X K, which gives (34 /3t)=K-@. But from
Ohm’s law

dB, B, | |ow
— _B A_ s A
EY: VX lu, XB, + [R 3 Mo® | »
and thus

(34 /3t)=(B-V)W +7V?*4

or
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4 _aw

dt = og +7nV°A4 . (98)
Finally, for the pressure,

dp/dt=0. . (99)

These reduced equations have been used in three-
dimensional numerical codes to investigate nonlinear tear-
ing and ballooning modes (White, Park, Monticello, and
Strauss, 1979; Strauss et al., 1980) and in a low-f3 version
(Biskamp and Welter, 1978; Dnestrovskii, Kostomarov,
Pereverzev, and Tarasyan, 1978; Callen et al., 1979;
Dnestrovskii, 1979) to examine the nonlinear interaction
of tearing modes of different helicities. Various numeri-
cal methods have been employed. The most successful
uses Fourier decompositions in 6 and ¢, and a radial grid.
Results obtained using these codes are discussed in the
following sections.

Vil. NONLINEAR THEORY

A. Introduction

Linear stability theory of the tearing mode gives only
an incomplete description of the behavior of the mode,
since in most laboratory plasmas nonlinear effects become
important in the very early stages of development.

There are two separate nonlinear effects. The first, in-
vestigated by Rutherford (1973) and described in Sec.
VILB, occurs when the magnetic island width exceeds the
width of the tearing layer. At this point, nonlinear
currents dominate over the inertia, and the growth slows
from exponential to algebraic, the island width increasing
linearly in time. (The m =1 mode, in cylindrical
geometry, is an exception to this because it is ideally neu-
tral stable.) The second effect occurs when the island size
becomes comparable with the shear length associated with
the initial field. At this point, the behavior of the mode is
dominated by the gross geometry, or equivalently by
external driving forces. Magnetic energy is decreased
within the island, but at the same time the curvature of
the field lines outside the island increases the energy. The
net change of energy for island growth depends on the is-
land width and on the current profile. In cylindrical
geometry with fixed boundary conditions, complete sa-
turation of the mode can occur (White, Monticello,
Rosenbluth, and Waddel, 1977a). The saturation is due to
the existence of a geometry-dependent minimum magnet-
ic energy state for a particular island width.

When the magnetic island is large compared with the
tearing width, the plasma inertia becomes negligible, and
the further evolution of the mode is governed by a non-
linear elliptic equation of state and an equation for the
flux-line averaged time derivative of the magnetic flux.
In this phase, development of the mode and response to
variation of external boundary conditions results in adia-
batic deformation of the state. Postulating that energy
dissipation takes place only in a boundary layer near the
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separatrix, with the interior domains remaining classically
adiabatic, allows the formulation of the problem in terms
of jump conditions across the separatrices, similar to the
Hygoniot conditions for an ideal shock (Grad, Hu, and
Stevens, 1975).

B. Rutherford behavior

In this section the transition from exponential growth
on a hybrid hydrodynamic-resistive time scale to algebraic
growth on the resistive time scale (Rutherford, 1973) is
reviewed. As shown in Sec. IV, there is a y-independent
eddy current §j, which opposes the zero-order current
near the singular surface (see Fig. 5). This eddy current
produces a third-order nonlinear force through §j, X B,
which impedes the growth of the mode, and, since it is
nonlinear, at some mode amplitude it replaces the inertia
as the force opposing growth. To estimate the island
width at which this will happen, consider Eq. (56):

pEVp=—2[VYX V(T .
We shall consider the interior region for simplicity. Us-
ing the notation of Sec. IV we find

V@i =—x¢{ —¢1¥5/B ,

where the first term on the right-hand side is the linear
driving force and the second is due to §j,. Also from Sec.
1v,

Pro~K (x)=(v /1B, .

Substituting this and making use of the constant ¢ ap-
proximation, one finds that the nonlinear term will equal
the left-hand side when y74 =v,/9B? or w~xy. Fur-
thermore, the sign of the nonlinear term is such as to re-
place the inertia term. In terms of Eq. (100), neglect of
the inertia means that

V¢ XVj=0

or j=j(¢). The fluid velocity can also be eliminated
from Eq. (53) for the magnetic flux by introducing the
average along a flux line through

(FY— $ @1/vp)F
Py

Noting that (u-Vy) =0, one finds that the further evolu-
tion of the mode is governed by the two equations

Vip=—j),
(3yY/3t)=—{(n)j(Y)+E .

The approximate evolution of the mode in this regime is
easily obtained. The island can be considered to be arbi-
trarily small (compared with the shear length), the linear
approximations can be used for v,j. Substituting the ex-
pression for the mode, Y =1,+ycosky, and evaluating
Eq. (105) at the O point, where the average over flux lines
consists of the contribution from a single point, gives

(100)

(101)

(102)

-(103)

(104)
(105)
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91,(0) /3t = —n(0);,(0) . (106)

Approximating j; as constant across the island and in-
tegrating Eq. (104) across the island by approximating
V2, cos(ky) with 1;'cos(ky) gives

0Y1(0) /3t =9, A" /wTg (107)

or

(dw/dt)=A"/rg . (108)

A more accurate integration of the flux surface averaged
equations yields a factor of 7/2 on the right-hand side of
Eq. (108).

This analysis was extended to the collisionless (¥ >>v)
and semicollisional (y <<v) regimes by Drake and Lee
(1977). Modification of their results was carried out by
Cowley, Kulsrud, and Hahm (1985). In these regimes the
Doppler shift in the electron response prevents the com-
plete shorting out of the field E, by electron flux. It was
found, however, that the collisionless and collisional
modes evolve nonlinearly into the semicollisional regime,
and that in this regime that mode again assumes the alge-
braic growth found by Rutherford (Monticello and White,
1980; Scott, Hassam, and Drake, 1985).

C. Nonlinear cylindrical modes, m > 1

1. Magnetic island saturation

Even algebraic growth, as discussed in Sec. VIL.B, will
typically produce a magnetic island that, barring some
saturation mechanism, will fill the device in a time short
compared with desired confinement times. The destruc-
tive properties of magnetic islands for confinement are
apparent, magnetic surfaces providing rapid thermal con-
duction across the island and thus removing a large frac-
tion of the insulating volume between the hot plasma
center and the walls. There is, however, a natural satura-
tion of the mode.

The saturation of the tearing mode occurs simply as the
island grows, through the vanishing of the source of mag-
netic energy driving the instability. The saturation de-
pends also on the form of the resistivity, but is rather in-
sensitive to the exact form, provided the resistivity profile
increases radially with approximately the scale length of
the minor radius, as is normal. The fact that nonlinear
coupling to other modes is not important in the saturation
process makes a single helicity analysis possible. An
analytical saturation model (White, Monticello, Rosen-
bluth, and Waddell, 1977a) is obtained as a quasilinear ex-
tension of the work of Rutherford described in Sec. VII.B.
Beginning with the reduced equations for a mode of a sin-
gle helicity derived in Sec. VI, and taking flux surface
averages as in the last subsection, one obtains two equa-
tions that are the equivalent of Eq. (104) and (105) for
cylindrical geometry,

(dY/3t)=—(n)j+E, (109)
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V2= —j()—(2kB,/m) .

For the flux topology of interest (a single island), the
boundary conditions require the value of ¥ at the O point
as well as at the wall, or equivalently, the island width.
The flux contours for an island in cylindrical geometry
are shown in Fig. 11. It is readily verified that the pertur-
bation expansion employed in Sec. IV,

P =10(0)+€yp(r)cosm 6
+eX(P,c02mO+8g)+ -+ +
J=Ja(o+AY)+ei (Pho+AY) - -,

is not applicable in the island interior. Here, j, (1) is the
initial current profile. Note that j,(y) possesses many
harmonics. It is evident from Fig. 12 that the separatrix
is a highly singular point for the function j(4). The har-
monic expansion of ¥ is, however, rapidly convergent for
all 7, even in the case of fairly large islands. We write

_ [ w<w,
B ) ¥>,

where 9, is the value of ¥ on the separatrix, and model
the current in the island interior through

Jp(P)=a+by,

which can be regarded as a truncation of the Taylor ex-
pansion of j(3). The form of the model was arrived at by
examination of results of numerical advancement of the
equations of Sec. VI. It was observed that saturation oc-
curred with significant changes taking place only in the
first and zeroth harmonic in the island vicinity. The
coefficients in Eq. (114) can be determined by matching
the interior and exterior regions, much as in Sec. IV, only
now the interior refers to the island, not to the tearing
layer. In terms of these harmonics Eq. (110) takes the
form

(110)

(111)
(112)

i) (113)

(114)

8=m/m

X point,r=r,
Separatrix, ¢ = ws

a

X2
XI m 6:=0

0 -point, r=r,

FIG. 11. Surfaces of constant y(r,0) for a magnetic island. Re-
gion a, the exterior, and region b, the interior, are bounded by
the separatrix ¥y=1,. The x point and O point are shifted out-
ward and inward, respectively, from the resonant surface.
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FIG. 12. The current profile J(¢) in the presence of an island.
The subscripts refer to the regions of Fig. 11.

g = — (8 /r)—8jo

(115)
{=m*/r¥,— (/)1 —jy
where the harmonics of the current are given by
/)
jo=tm/m [ "dojw,
(116)

/
2m f" mdej(z,b)cosm() ,

Jilr)= o

and 8jo=jo(r)—ja[¥o(r)].

Now we integrate Eq. (115) across the island and match
to the exterior solution. This uniquely determines the
state by determining the constants a,b in terms of the is-
land width, which is a free parameter. This matching
gives

a+by(ry)=jolrs)

and b=~ —wA'(w)/w plus terms of higher order, which
are negligible. Here A'(w) is the equivalent of A’ in the
linear theory,

Aw) =1 —¥1)/h(rs)

where +, — refers to the island edges. Once this state is
determined, Eq. (109) can be used to determine its growth
rate. Subtracting the two values at the 0 and x points, we

find
(dw /dt)=1.667(r,)[A'(w)—aw] , (117)

where a depends on the resistivity profile, but is practical-
ly negligible if this profile is increasing radially with a
scale length given by the minor radius. Note that the
current inside the island is

J=Jjolrs)—m[A'(w)/wly,(rs)cosm O

and thus for a growing island the value of j at the O point
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FIG. 13. Saturation width predicted using the quasilinear
model for m =2. Here J,(r) is given by the peaked current
model and the resistivity 7(r)~J,(r)~!. The points are results
of time-stepping the full nonlinear code for the case ro=0.8.

is greater in magnitude than the value at the x point (re-
call j <0). In a saturated state the current density is ap-
proximately constant within the island. These results are
confirmed in numerical simulations using the full resis-
tive MHD equations.

In the absence of a temperature differential and current
drive, the major role in Eq. (117) is played by the quantity
A’(w), obtained from the exterior solution. For typical
resistivity profiles the mode thus saturates approximately
when A'(w) vanishes, and the saturated island width can
be determined by a numerical evolution of A'(w). As was
shown in Sec. VI, the most unstable modes were those
with low values of m. The largest saturated island states
also correspond to modes with m =2. The dependence of
the saturation width on the island location, 7,, is shown in
Fig. 13. This is to be contrasted with the dependence of
A’ on ry, A'—[f(m)]/r, for small ;. An example of the
dependence on the saturation width on the form of the
current profile is shown in Fig. 14 (Monticello, White,

T T T T T T
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FIG. 14. Maximum island width as a function of the safety
factor on axis g (0) for a variety of current profiles. Only fairly
flat profiles are capable of producing large islands. Here the
g =2 surface is fixed at » =0.7a.
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and Rosenbluth, 1979). Here, it is apparent that the flat-
ness of the current profile, i.e., shear large only in the ex-
terior region near the singular surface, is important for
large-island development. In this figure the island posi-
tion (g =2 surface) has been held fixed at r;=0.7a so
that increasing ¢(0), as well as increasing the parameter
D, corresponds to flattening the profile. As long as the
current profile is not too flat, the state of minimum ener-
gy consists of an island state with island width less than
10% of the minor radius. Inclusion of finite Larmor ra-
dius effects does not change the saturation width of this
state, but causes a mode rotation at the diamagnetic fre-
quency (Monticello, White, and Rosenbluth, 1979;
Biskamp, 1979; Monticello and White, 1980; Scott, Has-
sam, and Drake, 1985). The resulting m =2 oscillations
give a theoretical interpretation of the experimentally ob-
served Mirnov oscillations (Mirnov and Semenov, 1971).
These methods have been extended to toroidal geometry
by Chu and Lee (1983) and Bateman and Morris (1985).

2. Island modification by local heating

Of some interest is the case where the island center has
a temperature significantly different from the surround-
ing plasma, either through local heating or through radia-
tive losses (Yoshioka, Kinoshita, and Kobayashi, 1984).
In this case, using 17~ T ~3/2, the dominant contribution
to a is

_12_j 8T
™ Ygw? T

’ (118)

where 8T is the temperature differential between the O
point and the separatrix. The power balance for the tem-
perature in the island is

~ [k VTds= [Pav, (119)

where P is the net power deposited in the island (ohmic
heating, radiation losses, etc.). For a thin island we have
VT =~ —28T /w. Using the fact that the island volume-

to-surface ratio is dv/ds =w and ¥{= —rq'B;/Rq? we

find »
Jg’RP,
=8 A0 (120)
7w Tk rq'By

Thus excess radiative losses (P, < 0) destabilize the island,
and localized heating has a stabilizing effect.

3. Island modification by current drive

Localized current drive can also modify the island
development (Reiman, 1983). In the presence of current
drive, Ohm’s law is modified and Eq. (109) takes the form

(%%):——(n(j——jd))w,

where j; is an externally driven current. Evaluation of
this expression at the x and O points gives, neglecting a,

(121)
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dyy  mA'Y

dr ” (122)

+00a0—Jax) -
Thus increasing the magnitude of the current at the O
point is stabilizing (recall j <0).

4. Transport due to magnetic islands

Magnetic islands, by creating regions of enhanced
transport, also modify the evolution of the current profile.
Thus, by introducing models for the transport, a coupled
system involving the current profile and magnetic islands
is produced. The exponential growth phase of the islands
occurs only when the island is so small as to be negligible.
These models make use of the nonlinear saturation width
of the island, obtained by setting A'(W)=0. Several in-
teresting qualitative features have been obtained by nu-
merical simulation of tokamak discharges using models of
this type (Wesson and Turner, 1982; Ivanov, Kakurin,
and Chudnovskii, 1984). The occurrence of large islands
is observed when the safety factor g at the plasma
boundary approaches integer values. In the initial stages
of a discharge, when the plasma current is increasing,
magnetic islands are observed to develop to much larger
size if the current is increased slowly than if it is raised
quickly. This is simply due to the fact that A’ remains
favorable to large-island development for a very brief
time during rapid current increase, and the islands do not
have time to develop. In addition, fluctuations in the per-
turbation amplitude and the appearance of negative volt-
age spikes are observed. All of these phenomena are in
qualitative agreement with experimental data. In addi-
tion, it has been proposed that small magnetic islands are
responsible for the anomalous electron heat transport ob-
served in tokamaks. The magnitude of this effect was ex-
amined by Boozer and White (1982) and White (1984) and
the self-consistent effect of the islands on the current pro-
file by Ivanov (1983).

5. Singular current sheets

As discussed in Sec. ITI, the behavior of the current at a
surface where reconnection is occurring depends on the
nature of the driving forces. Generally, a singularity
occurs associated with a finite jump in magnetic field, i.e.,

Jdr across the reconnection layer in integrable and
nonzero as 7—0. In helical symmetry this jump in mag-
netic field can occur only on the resonant surface, but this
constraint is relaxed in general three-dimensional plasma
evolution. Current singularities can occur at unpredict-
able locations, as seen .in ballooning mode simulations
(Monticello et al., 1981). These singularities then cause
rapid reconnection, changing the magnetic topology on a
time scale short compared to 7¢. In such a rapid relaxa-
tion process, the magnetic helicity will change slowly,
since

d/dth'Bd'r~ fnJ-Bd'r~17der~n .
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Thus magnetic helicity is conserved on the time scale of
the topology change, as was assumed by Taylor (1974).

D. The major disruption

The major disruption occurring in tokamak discharges
appears primarily to be due to a large m =2 magnetic is-
land. There are a variety of guises in which the disrup-
tion can appear. At low plasma (8, however, a canonical
sequence is as follows: Some time is spent executing
sawtooth oscillations (see Sec. VILE), after which these
oscillations cease and the so-called precursor oscillation,
an m =2 mode, is observed to grow at a rate consistent
with the Rutherford rate for a magnetic island. As
shown by White, Monticello, and Rosenbluth (1977), a
small change of a current profile associated with sawtooth
oscillations [g(0)~1] can lead from a case in which the
m =2 mode is stable to one in which the saturation width
is a large fraction of the minor radius. Furthermore, the

growing island, by increasing radial transport, decreasing -

the current, and thus increasing the value of g, produces a
profile unstable to even larger island growth, as seen in
Fig. 14. This process, associated with the precursor oscil-
lation, would, of course, result in the termination of the
sawtooth oscillations with the elimination of the g =1
surface. The coupling of the precursor oscillation to oth-
er modes, particularly to m =1 through toroidal cou-
pling, and the sensitivity of this coupling to the current

profile (Bussac, Edery, Pellat, and Soule, 1977) provides
for a wide variety of satellite modes in the predisruptive
phase. The precursor oscillation is followed by the dis-
ruption itself—a rapid drop in central temperature and
often a total loss of plasma. The disruption itself is
thought to be caused by an onset of stochasticity induced
by this m =2 island together with some combination of
nonlinear coupling to other modes (Welter and Biskamp,
1978; Biskamp, 1978; Waddell, Carreras, Hicks, and
Holmes, 1979; Callen et al., 1979; Dnestrovskii et al.,
1979; Kleva, Drake, and Bondeson, 1984) toroidal cou-
pling (Finn, 1975,1977; Kurita, Azumi, Tsunematsu, and
Takeda, 1983), and contact with the limiter or walls (Pol-
lard, Turner, Sykes, and Wesson, 1979; Sykes and Wes-
son, 1980). None of the proposed models gives a com-
plete description of the final stages of the disruption. The
mode coupling calculations, although giving rise to an ex-
plosive growth on a rapid time scale when the
m =2,n =1 island overlaps an m =3,n =2 island, do not
produce a rapid drop of central plasma temperature. The
resulting stochastic region flattens the temperature be-
tween the g=3 and g =2 surfaces, but some further
mechanism is required to destroy confinement in the cen-
tral region. Significant mode coupling occurs for profiles
that are unstable to fairly large m =2 island development,
so the mode coupling model complements this description
of the disruption rather than replacing it. The role of
fine-scale fluid turbulence in the final stages of the dis-
ruption has been studied by Diamond et al. (1984), and
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FIG. 15. Domains of island overlap. The profiles are those of Sec. III with g (r)=g(0)[1+(r/ro)*]'/*, and g, is the value of g at

the limiter.
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preliminary results indicate a qualitative understanding of
the time scales and magnitudes for the toroidal current
diffusion and negative voltage spike. The role of limiter
contact in the disruption is not yet certain. Model calcu-
lations including the interaction of an m =2 mode with
the limiter do show plasma loss, but the time scale for
this process with realistic plasma parameters is not
known. Present experimental evidence makes it very
plausible that there are many different forms of disrup-
tion, involving some combination of these, and perhaps
yet other, processes. An interesting additional complica-
tion is the observation (Bondeson, 1983) that large
m/n =2/1 island states can be ideally unstable to other
helicities.

Current profile parameters for which an overlap of the
m/n =2/1 and 3/2 islands occur, and for which limiter
contact can occur, have been mapped out by White and
Monticello (1980). These are shown in Fig. 15. The evo-
lution of the islands in a case where strong overlap occurs
has been carried out by Callen et al. (1979) and Carreras,
Hicks, Holmes, and Waddell (1980). An example of is-
land widths as a function of time is shown in Fig. 16.
The profile used was that shown by White, Park, Monti-
cello, and Strauss (1979) to give rise to a very large m =2
island, overlapping the g =+ surface. Note that the
m =2 island actually further destabilized the m =3,n =2
island when they overlapped, producing violent nonlinear
growth and stochastic fields.

Control of the disruption by feedback has been studied
both experimentally (Arsenin and Chuyanov, 1977;
Karger et al., 1977; Arsenin, Arkmenkov, Ivanov, and
Kakurin, 1978) and theoretically (Monticello, White, and
Rosenbluth, 1979; Callen et al., 1979).

Experimentally there appears to be a S limit to
disruption-free tokamak discharges (Karger et al., 1979),
given approximately by

Br~3I/aB (123)

with I in A, a in cm, and B in G. Numerically, it is

0.8

0.7

)
[
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FIG. 16. The nonlinear evolution of magnetic islands, showing
interaction of the 2/1, the 3/2, and the 5/3 state when overlap
occurs.
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found that such a limit is provided by the n =1 external
kink mode (Troyon et al., 1984). The highest B is
reached when ¢ on axis is slightly above one. This limit-
ing B increases with the current until the g profile be-
comes flat over most of the plasma and g ~2 at the plas-
ma edge. When this S value is exceeded the external kink
takes the form of a rapidly growing mode with a large
m =2 component. As shown by Rosenbluth, Monticello,
Strauss, and White (1976), in a low-shear plasma the
external kink can lead to large vacuum bubble formation
and severe deformation of the equilibrium surfaces. In
the nonlinear phase in a resistive plasma the effects of
this mode would undoubtedly be very similar to the
development of a large m =2 magnetic island, and hence
would lead to disruption.

This possible role of the external kink in a tokamak dis-
ruption has been examined by Zakharov (1981). The suc-
cess of the Troyon result makes it very plausible that
kinks play a role in high-f disruptions. Simulation of the
formation of vacuum bubbles in low-shear resistive plas-
mas has been carried out by Kurita et al. (1985).

E. Nonlinear cylindrical modes, m =1

If the toroidal current in a tokamak is made sufficient-
ly large that the safety factor is less than one on axis, the
x-ray emission typically shows a characteristic sawtooth
behavior. At the plasma center, the x-ray intensity rises
in a time consistent with ohmic heating, and then sudden-
ly drops. Outside the ¢ =1 surface the sawtooth is re-
versed, i.e., the x-ray intensity rises abruptly and decays
slowly (Sauthoff, Goeler, and Stodiek 1978).

As originally conjectured by Kadomtsev (1975) and
Monticello (1975), the m =1 mode is capable of evolving
nonlinearly through a sequence of states, which ends with
helical flux surfaces forming concentric cylinders, just as
in the original state, but which results in a flattening of
the current profile inside the g =1 surface and releases a
corresponding amount of magnetic energy. Since the fi-
nal state of this process can again acquire a central
current peak through ohmic heating and the ensuing de-
crease in resistivity, the process can in principle be cyclic.
The reconnection sequence proposed is shown in Fig. 17.
The first sketch shows the initial helical flux contours
with the g =1 surface shown as a dotted line. An initial
m =1 perturbation causes the displacement of the central
region, reconnection taking place at the x point. The two
surfaces labeled 1 connect to form one surface, which
withdraws from the x point [Fig. 17(b)]. The subsequent
evolution of the area inside surface 1 does not involve the
resistivity, so this area is conserved, as is the value of ¥,
since (dy/dt) =0 neglecting resistivity. The same process
occurs with the surfaces labeled 2,3 [Figs. 17(d) and 17(e)]
until finally the initial O point (labeled 4) has been ex-
pelled through the x point and the flux contours have
again returned to an axisymmetric equilibrium state. The
resulting changes in the helical flux profile, the g profile,
and the current profile are shown in Fig. 18. The flux
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FIG. 17. The sequence of magnetic flux contours during the
nonlinear evolution of the m =1 mode.

surface labeling in Fig. 18(a) corresponds to that in Fig.
17. The new 3 profile is easily obtained by recalling that
¥ is-conserved following the field in this process and that
surfaces joining in the reconnection process have initially
the same value of ¢. In the final state there is a discon-
tinuity in (dy/dr) at ry. The safety factor profile (Fig.
18) is readily obtained by noting that

(a)

(c)

s & v s r

FIG. 18. The helical flux (a), safety factor profile (b), and
current profile (c) before and after the m =1 evolution.
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q(r=[1+(R/r)dy/dr)]~"'.

In the final state g(0)=1 and g(r) is appreciably flat-
tened out to r,, where it is discontinuous. The current
profile [Fig. 18(c)] is quite flat out to r,, where it
possesses a reverse current sheet. All three profiles are
unchanged for r >r4. The final state has much lower en-
ergy than the initial state, as is readily verified, but it is
not clear from this analysis whether this final state is ac-
cessible nor at what rate it would proceed during its high-
ly nonlinear evolution.

The nonlinear two-dimensional codes described in Sec.
VI were used to investigate the process in detail and

showed (Sykes and Wesson, 1976; Waddell, Rosenbluth,

Monticello, and White, 1976; Danilov, Dnestrovskii, Kos-
tomarov, and Popin, 1976; Dnestrovskii, Lysenko, and
Smith, 1977) that this process was, in fact, nonlinearly
possible as well as energetically favorable. The experi-
mental time scale for the rapid phase of the sawtooth was
consistent with the nonlinear behavior of the mode in
many cases, but some experiments indicated a much more
rapid phenomenon. The sequence of helical flux surfaces
for the process obtained from a numerical code is shown
in Fig. 19. The numerical simulations show that the
mode continues growing at essentially its linear growth
rate for almost the entire nonlinear process. The mode
has a linear growth rate substantially larger than that of
the m =2 mode, because it is ideally neutral stable (Sec.
III). The invalidity of the constant ¥ approximation
makes the Rutherford analysis invalid. Numerical simu-

FIG. 19. Helical flux contours in the poloidal plane at selected
times (normalized to the resistive time). The radius of the
outermost contour is r =0.4c, and the singular surface is at
r=0.2a. The peaked profile was used. Although the final
stage looks very convoluted, the current profile is quite flat at
this point. Inclusion of thermal conductivity allows this state to
relax quickly to a configuration of concentric circles.
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lations show that the current sheet at the x point scales
even in the nonlinear development as S2/°, so as to allow
the entire transition to proceed on the time scale of the
linear growth rate, but the narrow width of the current
sheet makes numerical examination of the full evolution
of the mode for very large values of S difficult. For most
of the evolution no deviation from the linear growth rate
is observed. Biskamp (1981) has shown that for very
large S the island width also grows linearly in time when
w >rg. In this domain the kinetic energy of the mode has
reached its maximum. The time for the subsequent com-
pletion of the evolution scales as 7~ '/, i.e., the reconnec-
tion proceeds at the Sweet-Parker rather than the
Petschek rate, as discussed in Sec. III.

"The very rapid evolution observed in some discharges
remains a mystery and has been addressed by several au-
thors. An ideal MHD analysis (Bussac, Pellat, Soule, and
Tagger, 1984) indicates that a large island state is unstable
to a vertically asymmetric displacement, perhaps resulting
in a more rapid and violent final stage than is predicted
by simulations that assume up-down symmetry. Dubois
and Samain (1979a,1979b) have attempted to explain the
very rapid evolution observed in some discharges by the
development of turbulence associated with the island
separatrix. Inclusion of finite Larmor radius effects can
modify the nonlinear behavior. Biskamp (1981) finds that
a diamagnetic frequency larger than the growth rate can
even produce saturation. Lichtenberg (1984) has exam-
ined the development of large-scale stochasticity sur-
rounding the island in the last stages of the island
development. The stochasticity is generated by the non-
linear interaction of the mode with the m =1,n =0 field
variation present in a toroidal equilibrium. Thus this is a
phenomenon not observable with cylindrical code simula-
tions. He finds that the stochastic mechanism predom-
inates for cases with high shear, with ¢ <0.8 on axis.
The stochastic development modifies the time scale for
the final stage of the disruption.

Further analysis of the complete sawtooth period, in-
cluding the ohmic heating phase, and in particular the
scaling of this period on various plasma parameters, has
been attempted (Callen and Jahns, 1977; Jahns et al.,
1978; Waddell et al.,, 1978; McGuire and Robinson,
1979). No treatment adequately explains all experiments.

F. Multiple tearing modes

In the initial or skin phase of a tokamak discharge, the
current profile often assumes a hollow form, and the safe-
ty factor can have the same rational value of two values
of the minor radius. This leads to the possibility of a pair
of magnetic islands with the same helicity developing in a
sequence of flux contours such as that shown in Fig. 20
for m =2. This is of interest because the mixing of the
two islands produces a complicated flux topology, which
should strongly affect radial heat and particle transport
(Stix, 1973,1976). Redistribution of the plasma current
along the convoluted lines would appear as fast radial
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FIG. 20. The evolution of a pair of coupled magnetic islands of
the same helicity. For this value of S(10*) no Rutherford re-
gime is observed. :

current penetration. Numerical simulation of this process
was carried out by several authors (White, Monticello,
Rosenbluth, and Waddell, 1977b; Carreras, Hicks, and
Waddell, 1979; Schnack and Killeen, 1979).

The constant 1 approximation is not applicable for
these modes for typical plasma parameters, since during
the skin phase of the discharge the tearing layer is quite
wide. For values of S of 10* the islands are observed to
continue exponential growth over most of their history.
In the linear regime, Pritchett, Lee, and Drake (1980)
have shown that y7,~S~!/3, provided the separation &
of the two singular surfaces is small, 8 < (ka)”/°S—1/%,
For larger 8, y74 scales as S ~3/° as usual. The merging
of the two modes as shown in Fig. 20 is not a necessary
conclusion of their development, and Carreras, Hicks, and
Waddell (1979) found a simple condition which the equili-
brium must satisfy for the islands to merge before they
separately saturate through the same mechanism leading
to saturation of the m =2 mode in a monotonically de-
creasing current profile. If S is sufficiently large, the is-
lands are observed to enter a Rutherford regime.

Detailed comparison of the process with the observed
anomalous current penetration in tokamak discharges has
been done by Hawryluk et al. (1980), and Meyerhofer
et al. (1984).

G. Reversed-field pinch

The reversed-field pinch configuration is produced by a
toroidal current caused to flow in a toroidal field. This
current is responsible for plasma compression and con-
finement. After an initial highly turbulent phase the plas-
ma settles into a more quiescent state, which is essentially
the same for all discharges. This state is approximately
given by J=uB (Taylor, 1974). The magnetic field exhib-
its a dynamo effect with field reversal occurring near the
plasma edge. Simulations of the field reversal have been
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carried out by Strauss (1984). The discharge is thus
characterized by a g profile with a value on axis which is
small [q(0)~‘115], monotonically decreasing with minor

radius to become slightly negative at the plasma edge.

Thus the relevant rational surfaces are given by m =1,2
and n large. The nonlinear behavior of these modes is
found to be significantly different from that observed in a
tokamak configuration (Caramara, Nebel, and Schnack,
1983; Holmes et al., 1984). There are typically several
unstable modes in the initial configuration having singu-
lar surfaces within the field reversal surface. Because of
the relatively large resistivity and the close proximity of
these modes, nonlinear behavior becomes important ear-
lier than in a tokomak discharge, and the spontaneous
fluctuations of the magnetic field in the steady state are
much larger than in a tokamak (Antoni and Ortolani,
1983). A double reconnection process.is observed when
the dynamics leads to sufficient 8 and when the singular
surface is close to the center of the plasma. The nonlinear
coupling of different helicities, in contrast to the tokamak
case, is found to be stabilizing. The role of this stabiliza-

tion in the formation of dynamo states has yet to be in-

vestigated.
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