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This review. on some aspects of waves in gases concentrates first (Part I) on modern research in the acous-
tics of fluids at rest or in steady or turbulent motion, in free space, in the presence of obstacles, or in ducts.
The study of sound, for which the sole restoring force is'pressure, will be extended in a later paper (Part II)
to include the other three restoring forces, namely, gravity, electromagnetic, and Coriolis forces, leading to
current research on internal, magnetic, and inertial waves and their couplings. The Introduction at the be-
ginning of Part I, and the discussion at the end of Part II, concern all four types of waves in gases, and
their relevance in physics and engineering. In Part I, the following areas of acoustics are addressed: the
generation of noise by turbulence, inhomogeneities or bubbles, in natural and engineering flows, e.g., wind
or jets; the scattering of sound by interfaces and diffraction by turbulence, and their effects on spectral and
directional redistribution of energy; propagation in ducts, without or with mean flow, e.g., the horns of mu-
sical instruments and loudspeakers, and inlets and exhausts of engines; the effects of dissipation and non-
linearity on waves, e.g., in laboratory and engineering shock tubes, and in geophysical and astrophysical
conditions. Underlying these topics is the interaction of acoustics with mankind, ranging from the process-
es of human hearing and speech to the reproduction of desirable sounds (music) and reduction of undesir-
able sounds {noise).
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I. INTRODUCTION

The subject of the present review is waves, in the usual
sense of disturbances in a medium, which depend on
space and time and can propagate, at a finite velocity,

from one region to another; a wide variety of waves is
studied in different branches of physics, from electromag-
netic waves in uacuo (Maxwell, 1873; Bateman, 1915;
Stratton, 1941; Reitz and Milford, 1967) to probability
waves in quantum mechanics (Dirac, 1927; Heisenberg,
1930; Schiff, 1949), and from gravitational waves in gen-
eral relativity (Eddington, 1923; Tolman, 1934; Muller,
1952; Synge, 1960; Misner, Thorne, and Wheeler, 1973) to
waves in continuous media (Rayleigh, 1889; Bre-
khovskikh, 1960), such as vibrations in solids (Love, 1927;
Achenbach, 1973; Hudson, 1978) and oscillations in fluids
(Whitham, 1974; Lighthill, 1978a). We shall restrict our-
selves to waves in gases, thus excluding both plasmas and
liquids; this implies the use throughout of the continuum
description of matter, assuming that the number of parti-
cles per unit volume is sufficiently large. This is some-
times referred to as the cold plasma (Spitzer, 1956; Stix,
1962). The exclusion of waves in liquids (Stoker, 1953;
Philips, 1960a), is not essential, since most properties, not
depending on the form of the equation of state, are simi-
lar to gases.

A. Hearing, music, audio, and noise

Acoustics (Mason, 1964—1973) interfaces with the bio-
logical and medical sciences in the areas of speech and
hearing, with the arts in connection with music, and with
technology both in these traditional areas and in the
current concern with noise reduction. Acoustics has his-
torically accompanied the evolution of science, from the
speculations an the relation of sound to music in classical
and ancient civilizations, to the dawn of the age of
modern, quantitative science (Newton, 1686; Euler, 1772),
and it remains today the suitable introduction (Kinsler
and Frey, 1950; Beranek, 1954; Morse and Ingard, 1968;
Levine, 1978; Pierce, 1981; Dowling and Ffowcs-
Williams, 1983) to the various active research areas of
waves in gases.

Physics of music

The relationship between sound and music was clearly
established at the beginning of the nineteenth century
(Euler, 1818) and has remained a topic of consistent in-
terest since then (Jeans, 1937; Woods, 1944), to which
modern technology has added high-quality sound repro-
duction (Qlson and Massa, 1934; Olson, 1940,1952,1972;
Moir, 1961), or audio for short. In spite of this long his-
tory, the acoustics of musical instruments (Qlson, 1952;
Benade, 1976,1980; Berg and Storck, 1982) is only partial-
ly understood, e.g., performing techniques and the con-
struction of instruments are based mainly on empirical
experience, with some progress from qualitative to quanti-
tative modeling (Brindley, 1973; Howe, 1975a,1981; Ker-
gomard, 1981;Causse, Kergomard, and Lurton, 1984).
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2. Hearing and speech

The perception of sound and the intonation of speech
relate music to physiological acoustics (Wever and
Lawrence, 1954). Physical aspects of hearing (Bekesy,
1960; Viergeuer, 1980) have been the subject of recent
research, e.g., as concerns the energy flow in the cochlea
(Lighthill, 1981), the determination of the shape of the
outer canal (Hudde, 1983), and the modeling of the ear re-
flex (Stevin, 1984). While the outer ear canal is a nearly
straight tube of varying cross section, the vocal tract is
curved as well (Mermelstein, 1966; Schroeder, 1967), with
branches off toward the lungs (Ishizaka, Matsudaira, and
Kaneko, 1976; Jackson, Butler, and Pyle, 1978).

3. Horns and nozzles

Ducts of varying cross section are used in certain types
of loudspeakers (McLachlan, 1934b,1935,1936; Jordan,
1963) and have analogs in other technological areas, such
as (i) the "solid" horns, or tapering bars, used as displace-
ment amplifiers (Merkulov, 1957; Eisner, 1963) in power
tools; (ii) the "water hammer" in the hydraulics of tubes
(Paynter and Ezekiel, 1958); (iii) electromagnetic horns
(Stevenson, 1951a) and nonuniform transmission lines
(Schwartz, 1974). The extensive literature on the acous-
tics of horns (Eisner, 1966; Campos, 1984a) which dates
back to the beginnings of wave theory (Truesdell,
1955,1960), is extended by modern research on sound in
nozzles (Nayfeh, Kaiser, and Telionis, 1975a; Campos,
1985a), i.e., ducts carrying a mean flow (Lighthill, 1972;
Swinbanks, 1975; Campos, 1984b).

4. Aircraft and engines

The propagation of sound in nozzles is relevant to the
reduction of the noise of jet engines and aircraft, which
has been an important motivation for the study of aero-
dynamic acoustics. The analysis of the noise of jets logi-
cally starts with the modeling of sound sources, and the
"acoustic analogy" (Lighthill, 1952,1954) has been the
subject of substantial research, including estimates of ra-
diation intensity (Curie, 1955; Lighthill, 1964; Crighton
and Ffowcs-Williams, 1969; Howe, 1975a; Campos,
1978a; Adam, 1982). This model approach to the genera-
tion of sound has been regularly summarized in reviews

(Lighthill, 1961,1963; Ffowcs-Williams, 1969,1984a;
Crighton, 1975,1981; Campos, 1983a; Mohring, Muller,
and Obermeier, 1983), and books (Goldstein, 1976;
Lighthill, 1978a; Dowling and Ffowcs-Williams, 1983).
The inverse process, of fIow induced by sound, is known
as acoustic "streaming" (Lighthill, 1978b).

5. Signal "clutter"

The sound generated by a source in a jet is modified,
both in directivity and spectrum (Candel, Guedei, and Ju-

lienne, 1976; Munt, 1977; Beyer and Korman, 1980; Cam-
pos, 1984c), by propagation within the flow, which is gen-
erally turbulent, and by transmission across the interface
separating the jet from the atmosphere. The scattering of
waves by interfaces, generally irregular in nature, causes
the contamination of a signal, e.g., the cases of "clutter"
in radar echoes (Sholnik, 1962), electromagnetic waves in-
cident on rough surfaces (Beckmann and Spizzichino,
1963), sonar waves reflected by the sea bottom (Clarke,
1973) or surface (Essen, 1974; Gazanhes and Leandre,
1974), radio waves used to sean glaciers (Berry, 1973), or
sound transmitted across impedance layers (Howe, 1976b)
and shear layers (Campos, 1978c). Broadly similar effects
occur for waves propagating in random mmiia (Uscinski,
1977; Ishimaru, 1978), such as electromagnetic waves in a
perturbed atmosphere (Tatarski, 1965), light in glass with
optical impurities (Chernov, 1967), and sound in tur-
bulence, which may be, in the mean, at rest (Lighthill,
1953), in free convection (Campos, 1978b), or confined
within a pipe (Howe, 1984b).

6. Sonar and ultrasonics

Ordinary sound, even at the thresh'old of pain to the
human ear (110dB), involves rather little energy, and may
be considered a linear disturbance of the atmosphere.
Nonlinear effects can occur near the apex of an acoustic
horn (Goldstein and McLachlan 1935), where the cross
section is small, and near the drivers of high-power sonar
arrays (Westervelt, 1963), emitting underwater sound
(Brekhovskikh and Lysanov, 1982). Noise can reach non-
linear levels in the interior of jet and reciprocating engines
or near them, and, in the extreme case of rocket engines
that power satellite launchers and the space shuttle, can
cause structural damage. Acoustics does have positive
applications in materials science, viz. , in ultrasonic in-
spection and nondestructive testing, and similar scanning
techniques are used medically to observe the interior of
the human body; since ultrasound easily reaches nonlinear
levels, (Blackstock, 1972; Bj@rnai, 1974), small amplitudes
are used. Nonlinear acoustics lie close (Campos, 1985b)
to the subject of unsteady, high-speed gas dynamics
(Howarth, 1953; Shapiro, 1954; Emmons, 1958; Von
Mises, 1958; Miles, 1959), which is relevant to aircraft
aerodynamics (Carafoli, 1969; Krasnov, 1971; Schlichting
and Truckenbrodt, 1979).

7. "Sonic boom"

Acoustic waves of large amplitude tend to steepen their
wave fronts (Riemann, 1860), leading to the formation of
discontinuities or shocks, which actually have a small but
finite thickness, determined by dissipation effects (Taylor,
1910); shocks can be demonstrated in laboratory tubes
(Stollery, Gaydon, and Owen, 1971) and are observed as
the "sonic boom" of high-speed aircraft (Hayes, 1973).
Dissipation plays a major role in delaying the formation
of shocks (Lighthill, 1956; Campos, 1984d) and in provid-
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ing for their ultimate decay (Beyer, 1974; Rudenko and
Soluyan, 1975). One form of the growth of wave ampli-
tudes from linear to nonhnear is propagation in a rarefied
medium, e.g., upward in an atmosphere for which the
density decreases with height (Yeh and Liu, 1974; Cam-
pos, 1983b); the wave can become nonlinear (Yanowitch,
1969; Crighton, 1979), or the amplitude can be limited by
dissipation (Yanowitch, 1967a; Campos, 1983c).

We sunimarize in Table I(a) some of the applications of
modern acoustics.

B. Restoring forces and types of waves

Acoustic waves were the first to be studied, since sound
is a commonplace human experience and relevant to our
immediate environment. As man's knowledge extended
to the study of the oceans, atmosphere, and interior of the
Earth, and to astronomical bodies, and as 1aboratory tech-
nology and industrial capability advanced, other types of
waves in fluids became the subjects of increasing atten-
tion, viz. , internal, inertial, and magnetic modes. To each
of the four restoring forces that apply in classical (non-
quantum, nonrelativistic) fluids, namely, pressure gra-
dients, gravity, Coriolis force, and magnetic (or electric)
forces, corresponds one type of wave, respectively, acous-
tic, internal (or gravity), inertial (or "Kelvin" ), and mag-
netic (or Alfven); all these waves result from a balance be-
tween inertia and restoring forces, and if more than one of
the latter is present, then wave coupling results, leading to
the modification of the basic modes and the possible ap-
pearance of new ones.

1. Stratified media

A stratified medium, e.g., a fluid of nonuniform densi-
ty, under a gravity field, has two possible conditions,
separated by the state of marginal stability: (a) if it is un-
stable, e.g., a heavy liquid on top of a light one, a small

disturbance can trigger a large change in the mean state,
viz. , inversion of the two fluids; (b) if it is stable, e.g., an
atmosphere with entropy increasing with height (Landau
and Lifshitz, 1953), then a small disturbance will not
change the mean state, but may persist as an oscillation.
Thus instabilities and waves are two effects of buoyancy,
in an inhomogeneous fluid under gravity. Internal waves
(Rayleigh, 1890) are produced in a stably stratified fluid
when a fluid parcel is disturbed relative to its position of
equilibrium, if it is moved upward (downward), it finds it-
self in less (more) dense surroundings, and its weight
(buoyancy) causes it to sink (rise), back to the mean posi-
tion, generally overshooting due to inertia, so that an os-
cillation results. Internal waves are a common observa-
tion in stratified fluids (Eckart, 1960; Yih, 1965; Turner,
1973), e.g. , the oceans (Philips, 1960a; Kraus, 1977) and
the atmosphere (Beer, 1974; Cxossard and Hooke, 1975).

2. Rotating globe

Waves for which the sole restoring force is associated
with rotation (Greenspan, 1968) are designated inertial or
"Kelvin" (1880) modes. In the case of nearly uniform ro-
tation, as applies to the Earth, of the two force com-
ponents, the centrifugal term can be incorporated as a
modification of the fluid pressure gradient, and the
Coriolis term acts as the restoring force. Inertial waves
are important for phenomena with periods comparable to
or exceeding the period of rotation, i.e., one day. Inertial
modes can be visualized as large-scale tidal waves (Miles,
1972), which are scattered by continents (Haines, 1981),
producing currents parallel to the coastline and along
depth discontinuities (Longuet-Higgins, 1968). If the
waves are small on the scale of the Earth, and not too
close to the poles, the Coriolis parameter may be taken as
a constant; otherwise, its variation with latitude becomes
an important effect for large-scale or near-polar inertial
waves (Rossby, 1939; Longuet-Higgins, 1964).

TABLE I. Outline of waves in fluids: (a) modern acoustics: simplified diagram showing main applica-
tions and motivations for its study; (b) list of four restoring forces and of their respective wave types,
which are single-mode when only one effect is present and three-mode interactions when only one effect
is absent.

Acoustics

(a) Applications of acoustics

Physiological

Physical

Engineering

(b) Four restoring forces

Hearing
Speech
Music
Audio

t
Noise

~

Detection

Effect
Compressibility
Stratification
Rotation
Ionization

Medium
Restoring force

Pressure
Buoyancy
Coriolis
Magnetic

Present
Acoustic
Gravity
Inertial
Magnetic

%'ave
Absent

Magneto-gravity-inertial
Magneto-acoustic-inertial
Magneto-acoustic-gravity
Acoustic-gravity-inertial
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3. ionized fluids

The simplest wave motion in an ionized, perfectly con-
ducting fluid is a balance between the fluid inertia (always
present) and the magnetic restoring force. These magnet-
ic waves were predicted theoretically (Alfven, 1942) be-
fore being observed experimentally (Lundquist, 1949), and
became subsequently common observations in astrophysi-
cal plasmas, e.g., in the solar wind (Belcher and Davis,
1971; Denskat and 8urlaga, 1977) and atmosphere
(Giovaneili and Beckers, 1982; Campos, 1983d). Magnet-
ic waves (Alfven, 1948) appear as oscillations, traveling
along magnetic field lines, similar to the transverse oscil-
lations of stretched elastic strings. The "elastic" tension
is replaced by the "magnetic" tension, and the transverse
displacement (or velocity) is associated with a magnetic
field perturbation. Thus purely magnetic waves are one-
dimensional or unidirectional oscillations, even for emis-
sion from a point source, in a three-dimensional space.

4. Weather and climate

Having considered all four types of uncoupled waves,
obtained by balancing inertia force against each of the re-
storing forces in isolation, we turn to the inverse situation,
viz. , the four cases of three-wave interactions, obtained
[Table I(b)] by excluding one restoring force and allowing
for the presence of the other three. In the bodies of natur-
al fluids closest to mankind, the oceans and low atmo-
sphere, the magnetic field plays a minor role, and thus the
main restoring forces in geophysics (Pedlosky, 1960) are
buoyancy, Coriolis force, and compressibility, leading to
(Tolstoy, 1963) acoustic-gravity-inertial waves. These
tend to separate into acoustic-gravity waves for periods
small relative to one day and gravity-inertial waves for
periods comparable to or larger than one day', these waves
affect, respectively, local and global weather, through the
transport of mass, energy, and linear or angular momen-
tum (Massey, 1980).

5. Conducting atmospheres

Outside a layer surrounding the surface of the Earth,
i.e., apart from the Earth's crust, oceans, and low atmo-
sphere, matter is mostly ionized, viz. , in the core and the
magnetosphere of the Earth. In the magnetosphere, ion-
ized particles in the solar wind are trapped by the Earth' s
magnetic field. These particles bear witness to the fact
that the sun and other stars (Schwarzschild, 1958; Chan-
drasekhar, 1983) are self-gravitating, ionized gas masses,
to which classical physics may be applied, except in radia-
tive and thermonuclear cores and at late stages of evolu-
tion (Chandrasekhar, 1984). Thus the problems of mass
and energy transfer by waves in solar and stellar atmo-
spheres (Bray and Loughhead, 1974; Athay, 1976; Bruzek
and Durrant, 1977; Campos, 1984e) involve compressibili-
ty, gravity, and magnetic field as the restoring forces,
leading to the study of magneto-acoustic-gravity waves

(Priest, 1982; Campos, 1983e; Thomas, 1983; Spruit and
Roberts, 1984).

6. Earth's magnetic field

The existence of the Earth's magnetic field raises the
question of its origin. The temperature of the interior of
the Earth is above the ferromagnetic point, so that "per-
manent" magnetization is not possible; a primordial mag-
netic field, dating from the formation of the Earth, would
have "leaked" through the crust, leaving no significant
remnant. Thus the Earth's magnetic field must be con-
tinuously regenerated, a suitable mechanism being the
dynamo effect (Roberts, 1971; Moffatt, 1976,1978; Park-
er, 1979; Cowling, 1981) coupling rotation and magnetic
fields in the molten inner core of the Earth. The two-
scale mean-field electrodynamic approach to the dynamo
effect requires small-scale motions, such as turbulence
and waves, to feed energy to the large-scale magnetic
field; suitable wave motions, under the influence of
Coriolis and magnetic forces, in an inhomogeneous fluid,
are magneto-inertial-gravity waves; these can be simpli-
fied, for motions on a scale small compared to that of
stratification, to magneto-inertial waves.

7. Solar and stellar dynamos

The Earth and the sun may be considered as typical of
planets and stars, respectively, and this larger sample of
celestial bodies suggests that faster rotation is associated
with stronger magnetic fields. The Earth's and the sun' s
magnetic fields differ significantly (Akasofu and Chap-
rnan, 1972), in the greater strength and variability of the
latter (Golub, Rosner, Vaiana, and Weiss, 1981; Labonte
and Howard, 1982) compared with the former (Barra-
clough, Harwood, Leaton, and Malin, 1975). An impor-
tant physical difference is that the Earth s core is basical-
ly a liquid, molten metal, and hence practically in-
compressible, i.e., acoustic time scales are short compared
with those of the dynamo; in the solar case, dynamo ac-
tion takes place in a rotating, ionized gas, so that, neglect-
ing the effects of stratification, for small-scale motions,
the relevant waves are magneto-acoustic-inertial, i.e.,
compressibility cannot be reasonably neglected.

C. Two-, three-, and four-wave
coupling s

We have considered the four basic types of waves to be
found in the interior of fluids (i.e., excluding surface or
interfacial modes), namely, acoustic (Sec. I.A) gravity
(Sec. I.B.1), inertial (Sec. I.B.2), and magnetic (Sec. I.B.3),
corresponding to the presence of one restoring force in
isolation. The exclusion of one restoring force, and al-
lowance for the presence of the other three, leads to four
three-eave couplings, namely, acoustic-gravity-inertial
(Sec. I.B.4), magneto-acoustic-gravity (Sec. I.B.5),
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magneto-gravity-inertial (Sec. I.B.6), and magneto-
acoustic-inertial (Sec. I.B.7). Besides these cases (indicat-
ed in Fig. 1), in order to complete the outline survey, we
have to consider (2)=6 cases of two-wave interactions,
namely, acoustic-inertial (Sec. I.C.1), gravity-inertial (Sec.
I.C.2), acoustic-gravity (Sec. I.C.3), magneto-acoustic
(Sec. I.C.4) magneto-inertial (Sec. I.C.5), and magneto-
gravity (Sec. I.C.6) waves, concluding with the most gen-
eral case, the single four-wave coupling, viz. , magneto-
acoustic-gravity-inertial waves (Sec. I.C.7).

1. Oissimilar periods

The four basic types of waves in fluids, can be ordered
according to their propagation properties: (i) acoustic
waves are isotropic and nondispersive; (ii) magnetic waves
are nondispersive but anisotropic; (iii) inertial and gravity
waves are both dispersive and anisotropic. In the cou-
pling of several waves, the anisotropy and dispersion may
be expected to predominate, viz. , (a) the coupling of iso-
tropic and anisotropic waves is anisotropic —there are no
isotropic two-wave couplings in fluids; (b) the coupling of
dispersive and nondispersive waves is dispersive —the only
nondispersive two-wave couplings are magneto-acoustic
waves, which are anisotropic. All of the six two-wave
couplings occur more or less widely in nature and en-
gineering. Perhaps the least common are acoustic-inertial
modes, since on the Earth, sound has periods of minutes
or less, and inertial waves have periods of a day or more.
This coupling occurs for particulate disks, e.g., Saturn's
rings, and can be produced by spinning rapidly a vessel
containing a compressible fluid.

2. Large-scale circulation

Acoustic waves are the only isotropic mode, because
pressure is independent of direction, whereas the other
three modes are anisotropic, since they have a preferred
direction, determined by the force of gravity, the axis of
rotation, and the magnetic field, respectively, for gravity,
inertial, and magnetic waves; to be more precise, the wave
fronts, for emission from a point source, are spherical for
sound, plane for magnetic waves, and biconical for iner-
tial and gravity waves, the latter corresponding, in the
plane case, to a "Saint Andrew's cross" (Mowbray and
Rarity, 1967). Acoustic and magnetic waves are non-
dispersive, i.e., different wavelengths propagate at the
same speed and arrive at an observer at the same time, if
emitted simultaneously; in the case of sound, this explains
why speech and music, consisting of various frequencies,
remain intelligible regardless of distance from the source
(apart from dissipation effects). Gravity and inertial
waves are dispersive, and thus a "packet" of different
wavelengths spreads out as it propagates, distorting the
"signal" and allowing the sequence of reception to differ
from that of emission. The coupling of the two dispersive
"basic" modes as inertial-gravity waves is important for
Kelvin and Rossby waves in stratified fluids, an addition-
al effect being wind or shear flow (Varley, Kazakya, and
Blythe, 1977; Ahmed and Eltayeb, 1980); these waves af-
fect the large-scale circulation patterns in the atmosphere
and oceans, which play a major role in determining the
weather (Lighthill, 1969; McIntyre and Palmer, 1983;
Peixoto and Oort, 1984).

TETRAHEDRON OF WAVES IN FLUIDS
3. Atmospheric phenomena

magneto
acoustic
gravity

magneto
acoustic
incr tiaI

ACOUSTIC INE RTIAL

acoustic
gravity
inertial

magneto
g ravity
inertial

FICx. 1. The tetrahedron of waves in fluids: four single-wave
modes at the vertices, six two-wave eouplings along the edges,
four three-wave couplings on the faces, and one four-wave cou-
pling in the interior.

Acoustic and magnetic waves are nondispersive, which
implies that there can be no filtering, i.e., waves of all fre-
quencies, however small or large, can propagate. This
reasoning does not apply to gravity and inertial waves,
which are dispersive, and in fact have cutoff frequencies
at the Brunt-Vaisala and the rotation frequencies, respec-
tively. Gravity and inertial waves are both anisotropic,
e.g., gravity waves cannot propagate in the direction per-
pendicular to gravity, and inertial waves cannot propagate
along the rotation axis. Gravity waves, propagating or
standing, are commonly observed in the interior of the
oceans, e.g., scattering sound or sonar waves (Uscinski,
1980) and exerting forces on offshore structures (Osborne
and Burch, 1980). Equally common in the atmosphere
are acoustic-gravity waves, which can scatter and other-
wise affect electromagnetic signals in the high atmosphere
(Delloue and Halley, 1972; Hines, 1974); in low atmo-
sphere, these internal waves are associated with clear air
turbulence (Pao and Goldburg, 1969), which causes velo-
city shears affecting aircraft flight (Campos, 1984f).
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4. Cold plasmas

The only nondispersive two-wave couplings in fluids
are magneto-acoustic waves in ionized gases, which are a
generalization of Alfven waves (Herlofson, 1950; Banos,
1955; Lighthill, 1960; Campos, 1977), discussed in most
books of magnetohydrodynamics (MHD) (Landau and
Lifshitz, 1956; Cowling, 1957; Alfven and Falthammar,
1962; Ferraro and Plumpton, 1963; Jeffrey and Taniuti,
1964; Cabannes, 1970). They are a particular case of plas-
ma waves, corresponding to high particle densities and a
near balance of ions and electrons; this "cold plasma"
model does not apply to the important problem of nuclear
fusion (Bruecker and Jorna, 1974; Ribe, 1975), although
MHD can be used to study the basic types (Jeffrey and
Taniuti, 1966) of instabilities in "pinches" (ionized fluids
confined by magnetic fields, e.g., in toroidal geometries
such as tokamaks), which have been limiting progress in
this area for over three decades. MHD is adequate to
describe (Hunt and Shercliff, 1971) many interesting en-
gineering processes (Shercliff, 1965) involving ionized
fluids, ranging from energy generators (Shermann and
Sutton, 1965) to metallurgical applications (Moffat and
Proctor, 1982), and including special processes such as
ionic propulsion for artificial satelhtes, which require low
thrust for long periods in extended space travel.

5. Magnetic field generation

The coupling of two basic types of waves in fluids can
result in (a) their separation, (b) their interaction, or (c)
creation of new modes. As an .example of (a), we give
acoustic-gravity waves (Moore and Spiegel, 1964; Cam-
pos, 1982), which have two modes, namely, (i) gravity
modes modified by compressibility, below the Brunt-
Vaisala frequency and (ii) acoustic modes modified by
gravity above another, higher cutoff, leaving a spectral
band of evanescent waves to separate the two modes. At
the opposite extreme (c) are magneto-acoustic waves,
which have three modes, namely, (i) Alfven waves, as in
the incompressible case, uncoupled from the (ii) slow
modes and (iii) fast modes, which are acoustic waves
modified by the magnetic field and propagating at speeds
lower and higher, respectively, than the speed of sound.
An intermediate case (b) is that of magneto-inertial waves
(Lehnert, 1954,1955), which have two modes, due to split-
ting of Alfven waves by rotation, and are relevant to pro-
cesses in the interior of planets and stars (Acheson and
Hide, 1973), e.g., generation of the Earth's and the sun' s
magnetic flelds.

6. Magnetic flux tubes

The most interesting of the six two-wave couplings in
fluids are magneto-gravity waves, viz. , Alfven waves in a
stratified, ionized fluid (Ferraro and Plumpton, 1958;
Hollweg, 1972; Leroy, 1980,1982; Campos, 1983f). The

reason lies in the dependence of the propagation (or
Alfven) speed on the magnetic field strength and mass
density, leaving as the "simplest" possible cases two alter-
natives: (a) the Alfven speed is constant if the gas and
magnetic pressure balance, i.e., if the fluid is magnetically
structured (Rae and Roberts, 1983; Heyvaerts and Priest,
1983); (b) the propagation speed varies rapidly with alti-
tude, and waves are not sinusoidal, if the magnetic field is
constant (Zhugzhda and Dzhalilov, 1981; Campos,
1985c), Both of these cases correlate with recent observa-
tions of the structure of magnetic fields in solar and stel-
lar atmospheres: (a) in the lower layers, i.e., photospheres
and chromospheres, the magnetic flux is concentrated in
narrow magnetic flux tubes (Stenflo, 1982), filling a small
fraction of the disk; (b) these flux tubes fan out with
height, and the magnetic field becomes nearly uniform as
they merge in the upper layers, i.e., transition regions and
coronas (Gabriel, 1976). Magnetic structures such as
'*holes" and "arches" are also visible in satellite observa-
tions of the corona (Bonnet and Dupree, 1980).

7. General waves in fluids

The features of magneto-gravity waves, such as variable
propagation speeds and damping rates (Campos, 1983g),
are inherited by magneto-acoustic-gravity and magneto-
inertial-gravity waves, as well as by the most general
waves in fluids, viz. , magneto-acoustic-gravity-inertial.
The latter are seldom, if ever, considered in physical and
engineering applications, since acoustic and inertial modes
are often decoupled (Sec. I.C.1), implying that, at most,
only three-wave couplings need be considered, and often
two-wave or single-wave models are used with success.
On the other hand, magneto-acoustic-gravity-inertial
waves do hold an interest, as a fundamental study of all
four restoring forces and their couplings in fluids. At
present, the substantial literature on the various types of
waves in fluids, in spite of some broad surveys (Tolstoy,
1963; Lighthill, 1978a), is mostly scattered through the
vast literature on physics and engineering, according to
area of application, e.g., physiological acoustics, musical
sound, noise reduction, oceanography, atmospheric phys-
ics, other aspects of geophysics, astrophysics in general,
etc. , plus diverse technological processes. The aim of the
present review is to stress the fundamental unity of all
waves in fluids and to point out the peculiar features of
each of the four modes, so as to understand the various
possible interactions, which become ever more important
as modern physics tends to blend formerly separate areas
into interdisciplinary fields.

On a purely illustrative level, we note that the various
types and couplings of waves in fluids may be represented
(Fig. 1) on a "tetrahedron of waves in fluids, " as follows:
(i) the four vertices represent the basic waves ( A—
acoustic, G—gravity, I—inertial, M—magnetic); (ii) the
six edges joining pairs of vertices represent two-wave in-
teractions (AG, AI, MA, MG, MI, GI); (iii) the four tri-
angular faces, each limited by three edges, and with three
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vertices, represent three-wave couplings ( AGI, MAG,
MAI, MGI); (iv) the interior limited by the four faces
represents the most general four-wave coupling (MAGI).
In addition, we could use the position of a point in the
tetrahedron, relative to vertices, edges, or faces, to indi-
cate the proximity to single-, two-, or three-eave modes,
i.e., to compare the importance of compressibility, buoy-
ancy, rotation, and magnetism, in a particular apphcation.

8. Acoustics of jets, turbulence, and ducts

When considering an acoustic or "noise" problem, the
first issue to be dealt with is often that of generation, i.e.,
the modeling of the sources of sound; thus we start our
account of some aspects of modern acoustics, with a dis-
cussion of the "acoustic analogy" for sound generation in
media at rest, and in low- and high-speed jets, in the pres-
ence of turbulence and inhomogeneities. The modeling of
acoustic sources, although an essential first step, may not
be sufficient if "masking" occurs, e.g., if the sound is
scattered by interfaces, possibly irregular and/or in
motion, or propagates through turbulence; these effects
(Sec. III) can change significantly the directional and
spectral distribution of acoustic energy received by an ob-
server, relative to that emitted by the source, due to
scattering and diffraction in the medium separating them.
In many applications, the source of sound is not in free
space, but rather at the end of a duct, e.g., the "driver" of
a loudspeaker horn, the blowing of a musical instrument,
or the noise coming from the inlet or exhaust of an en-

gine; the effects of ducting of waves are important (Sec.
IV) in the acoustics of horns, and are coupled to convec-
tion by the mean flow in the case of nozzles. We con-
clude (Sec. V) with a brief m'ention of the interaction of
sound with the supporting medium, through dissipation,
which extracts energy from the wave and deposits it in
the fluid, and through nonlinear effects associated with
perturbations of large amplitude, which can change the
mean state; the effects of dissipation and nonlinearity are
often competitive, e.g., in the growth of atmospheric os-
cillations and in the formation of shock waves. Since the
range of subjects to be covered is extensive, we shall, in
each section, mention by means of references some of the
current research areas, before selecting a fundamental to-
pic for more detailed consideration.

II. SOUND PRODUCTION BY TURBUI ENCE
AND INHOMOGENEITIES

Sound can be produced "artificially" by man-made de-
vices, such as sirens, whistles, musical instruments, vi-
brating bodies, etc., and it is also generated "spontaneous-
ly" in natural and engineering flows, e.g., the whistling of
the wind, the rumble in aerodynamic tunnels, the noise of
jets. Aeronautics provides a number of examples of
"noise" sources, such as jet exhausts (Laufer and Yen,
1983; Long and Amdt, 1984; Whitaker and Morrison,
1984; Seiner and Yu, 1984), and of efforts to reduce the

acoustic "signature" (Nagel, Denham, and Papathanasiou,
1983; Norum, 1984); other subjects of current research on
aircraft noise (Yeow, 1984) include the generation of
sound by airfoils (Arbey and Bataille, 1983), corners and
flaps (Meecham, 1983), turbulent wakes (Hardin and
Lamkin, 1984; Johnson and Loehrke, 1984), tur-
bomachinery (Schulten, 1984), and rotors (Aggarwal,
1984). A central consideration in these and other prob-
lems is the modeling of the sources of sound, which al-
lows classical wave theory to be applied to the calculation
of the radiation field, e.g., in the presence of convection
(Dowling, 1976) and walls, viz. , compliant (Dowling,
1983), solid (Hoop and Hijden, 1984), or with a bump
(Rabinovich, Reutov, and Rybushkina, 1984).

A. Generation processes and multipole
sources

The modeling of the generation of sound by flows has
been the subject of an "acoustic analogy" (Lighthill,
1952,1954); this important concept has been reviewed reg-
ularly (Lighthill, 1961,1978a; Ffowcs-Williams, 1969,
1984; Crighton, 1975,1981; Goldstein, 1976; Dowling and
Ffowcs-Williams, 1983; Campos, 1983a; Mohring,
Miiller, and Obermeier, 1983), both in its original form
and in extensions to include scattering by solid (Curie,
1955; Howe, 1984a) and fiuid (Philips, 1960b; Ffowcs-
Williams, 1964) boundaries, and convection of sources
and mean flow effects (Ffowcs-Williams, 1963; Ffowcs-
Williams and Hawkins, 1968; Dowling, Ffowcs-Williams,
and Goldstein, 1978). The inverse problem, to the genera-
tion of sound by flows, that is, the flow induced by sound
(Pickering and Sozou, 1982), is also a subject of reviews
(Lighthill, 1978b). Another example of a dual problem is
the generation of sound by flames (Jones, 1979) and the
use of acoustics as a diagnostic of combustion
(Ramachandra and Strahle, 1983). Acoustic methods
have also been used to determine fluid properties, such as
the gas constant (Quinn, Collough, and Chandler, 1976).
Another set of related problems is the detection, by acous-
tic methods, of the presence of gas bubbles in a liquid
(Cxazanhes, Arzelies, and Leandre, 1984), possibly associ-
ated with cavitation (Trevena, 1984), and the oscillations
of gas bubbles (Fanelli, Prosperetti, and Reali, 1984; Fran-
cescutto and Nabergoj, 1984), acting as monopole sources
(Sornette and Lagier, 1984) of sound in two-phase flow
(Crighton and Ffowcs-Williams, 1969; Whitfield and
Howe, 1976). We shall now consider the "wave analogy"
in a form that applies to the original acoustic problem
(Lighthill, 1952,1954) and allows extensions to account
for the effects of inhomogeneous mean flow (Howe,
1975a,1975b; Campos, 1978a; Sec. II.B and II.C) and the
presence of restoring forces other than gas pressure (Stein,
1967; Campos, 1977; Sec. VI.B in Part II).

1. The wave analogy

In classical acoustics (Rayleigh, 1879), the sources of
sound, such as strings, membranes, sirens, etc., were iden-
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tified a priori as distinct from the medium of propagation
and rad. iating into it. Modern acoustics has also con-
sidered the generation of sound by flows, in which case
the sources and medium of propagation are not a priori
distinct, and physical modeling of the noise production
mechanism is necessary. A method of addressing this
question is the "acoustic analogy" (Lighthill, 1952), which
may be applied to other types of waves in fluids and thus
may be formulated generally as a "wave analogy" (Cam-
pos, 1977), in the following conceptual framework: (i) we
start from the fundamental equations of fluid mechanics,
including all effects (e.g., presence of turbulence, inhomo-
geneous flow, external forces) to be considered; (ii) the to-
tal fluid variables T =M+P are split into a mean state
M plus a perturbation P, the latter not necessarily small
everywhere; (iii) when substituting into the fundamental
equations, we can subtract out the terms involving the
mean state M, leaving only terms linear I.P and nonlinear
NP in the perturbation, so that the equations can be writ-
ten in the symbolic form

hand side are interpreted as modeling the sources of
sound: (i) the mass flux Q, which is a scalar, acts as a
monopole source, if it varies in time, i.e., is unsteady
BQ/Bt&0; (ii) the force Fi, which is a vector, acts as a di-
pole source, if it is nonuniform and not divergence free
V F&0; (iii) the stress, which is a tensor, acts as a quad-
rupole, if its double divergence does not vanish
B Tij/Bxg Bxj&0

3. Lighthill's stress tensor

The original example of the acoustic analogy is based
on modeling the sound sources by a quadrupole term.
The viscous momentum equation, in the absence of exter-
nal forces, can be written (Landau and Lifshitz, 1953)

B(pv;)/Bt+B(pv;vj)/Bxj+Bp/Bx; =Bo j/Bxj,
where o,j are the viscous stress. Equation (6) can be writ-
ten in the form (4), with F; =0, and TJ given by

linear terms = —nonlinear terms;
2

Tij pvi vj +(p COp)5ij ——oij (7)

(iv) suppose that the large perturbations, for which the
nonlinear terms are important, are concentrated in a small
region D; then (v) outside D, Eq. (1) reduces to

linear terms =0, (2)

which describes the propagation of waves of small ampli-
tude throughout the fluid; (vi) we can now interpret the
nonlinear terms, which are "forcing" the wave equation
(1), as modeling the "sources" of waves contained in D.

2. Monopoles, dipoles, and quadrupoles

The paradigm of the preceding general procedure is the
"acoustic analogy, " for which the starting equations are
those (Batchelor, 1967) of an homogeneous, viscous fluid,
in a mean state of rest. The equation of continuity, stat-
ing the conservation of mass, is

Bp/Bt+B(pv;)/Bx; =Q, (3)

where p is the mass density and v; the velocity, and Q is
the output (per unit time) of mass sources. The momen-
tum equation can be written in the form

B(pv;)/Bt+coBPIBxi+Fi+BTij/Bxj =0
~ (4)

where the left-hand side is the classical wave equation for
a medium at rest, and the "forcing" terms on the right-

where cv=(Bp/Bp), denotes the adiabatic sound speed,
and we have replaced the pressure gradient Bp/Bx; linear-
ly by coBplBx;, including all nonlinear corrections and
other terms in the force F; and stress Tj. Eliminating
between Eqs. (3) and (4), we obtain

B plBt —coB plBx =BQ/Bt +BFi/Bxi+B Tij/Bx Bxj

(5)

if there are no mass sources, Q=O in Eq. (3), and. Eq. (5)
simplifies to

C) p =B Tij /Bxq Bxj
Cl—:B /Bt —coB /Bx;,

(8a)

(8b)

where 0 is the acoustic wave operator (8b), and according
to (8a), the model source of sound is the Lighthill (1952)
stress tensor Tij [Eq. (7)]. It consists of the following
terms: (i} the leading contribution is the Reynolds's stress

pv;vj (or convective momentum flux), modeling the gen-
eration of sound by turbulence; (ii} the second term would
vanish for a linear, homentropic perturbation, since the
equation of state P =p(p, s) implies Vp —c&Vp=O with
co=(Bp/Bp)„so that, in general, it models the genera-
tion of sound by fluid inhomogeneities and has a dipole
character, since

B[(p cop)5;;]IB—xj =B(p —cvp)/Bx;;

(iii) the last term, representing the viscous stresses,

(9)

4. Radiation field

The solution of Eq. (Sa) is given by the classical
Kirchhoff integral:

p(x, t) =(4mco) 'B /Bx;Bxj

X I i
x y i

'T; (y, t —
i
x —y i

/c—o)d'y, (11)

which specifies the density perturbation p, observed at a
position x, due to a distribution of model quadrupole
sources Tij(y, v), at positions y in a region D; note that

o; =g, (Bv;/Bxj+Bv /Bx;)+g (Bv„/Bx„)5;, (10)

where g~, q2 denote, respectively, the incompressible and
compressible kinematic viscosities, is linear in the rates of
deformation, and models the dissipation of sound.
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p(x, t)-(4mcp) . 'x;xj r

x f [d TJ(y, t —
l
x —y l /co)/dt ]d y, (12)

the sources are evaluated at the "retarded" time of emis-
sion r=t —

l
x —y l /cp, differing from the instant of re-

ception t by the time
l
x—y l

/cp taken by sound to trav-
el, at speed cp, the distance

l
x —y l

from source y to ob-
server x. For an observer in the far field, the derivatives
8 /Bx;Bxj. may be applied only to the source T~~ (and . not
to

l
x —y l

', which would lead to asymptotically negligi-
ble terms like

l
x —y l

), so that we obtain

P~(x, t)-Po(l/r)(uplcp) Pp(l/r)MO, (13)

wg (cp/Pp) l P(x, t)
l

-pp(llr) Mouo

po(llr) co Uo (14)

satisfies, for quadrupoles, the famous (Lighthill, 1954)
eighth-power law on meari turbulent velocity.

through the Mach (1926) number Mp =up/cp i.e., its ra-
tio to the sound speed. The intensity of acoustic radia-
tion,

where we have replaced x; —y; and lx —yl by x; and
r =

l
x l, respectively. From Eq. (12) we can deduce a di-

mensional scaling law, by noting that T,J-povo, where

po, Uo are the mean density and velocity, the integration
over a "compact" source region is equivalent to multipli-
cation by its volume l (where l is the length scale), and
derivation with regard to time corresponds to multiplica-
tion by the Strouhal (1878) frequency Blat-co-Up/l.
Thus the acoustic density perturbation due to a quadru-
pole source scales as the fourth power of velocity:

5. Effect of solid boundaries

The presence of solid boundaries can substantially af-
fect the generation of sound by turbulence; for example,
the sound from flow in a wind tunnel is considerably am-
plified if there is a loose panel, to the extent that the latter
may produce more noise than the flow itself. In the pres-
ence of reflecting boundaries, the Kirchhoff solution has,
in addition to the volume integral [Eq. (11)],a surface in-
tegral (Curie, 1955; Lighthill, 1961); for the purpose of
comparison with the case of turbulence in free space, viz. ,

p(x, t)-(4ncp) 'c}Idx, f l
x —y l

'[dTJ(y, t —
l
x —y l

Icp)/c}y, ]d'y, (15)

we note that, in the presence of a boundary surface S, application of the divergence theorem to Eq. (15) leads to the sur-
face integral

p(, t)-(4 l)-'&/&; f l
—yl-'[, T;,(yt —

I

—yll o)]dS (16)

where n is the normal to S. Comparing Eq. (16) with the
case of a dipole source, BF~/Bx; in Eq. (5), we conclude
that

I';(y, ~) l, =ntT; (y, r),
lx —yl /co. (17b)

The turbulent stresses T,J induce on the solid surface a
stress force I';, which acts as a dipole source of sound.
Applying to Eq. (16) a dimensional scaling similar to the
quadrupole case [Eqs. (13) and (14)], we conclude that for
a dipole, the acoustic density perturbation (18a) scales as
the cube of the Mach number:

fraction of entrained air. Two-phase flow can radiate
noise as a monopole, due to the change in the volume oc-
cupied by one of the phases. The acoustic field due to a
monopole Q is given by the Kirchhoff integral

p(x, t)=(4mco) 'Blat f l
x —y l

'Q(y, r)d y, (19)

which simplifies, for an observer in the far field, to

p(x, t)=(4mcp) 'r ' f [BQ(y,r)/Qr]d y .

Bearing in mind that the mass flux scales as Q-popo/l,
the acoustic density perturbation (21a) due to a monopole
scales as the square of the Mach number,

pD(x, t)-po(llr)Mo ~

8'D-po(l/r) Mouo-pt(l/r) co Uo,

(18a)

(18b)

and the energy flux (18b) as the sixth power of velocity.

PM(x, t) —Po(l/r)MO,

8'~ -po(l lr)'Mo ~o -po(l lr)'c, '0', ,
-

(2 la)

(21b)

6. Two-phase flow

and the radiation intensity (21b) as the fourth power of
velocity. Comparing monopoles [Eqs. (21a) and (21b)]
with dipoles [Eqs. (18a) and (18b)] and quadrupoles [Eqs.
(13) and (14)], it follows that

The presence of gas bubbles in a liquid can significantly
increase the generation of sound, e.g., when water flows
out of tap, there is a louder noise if there is a significant

pg (x, t) -MppD (x, t) -Mop~(x, t),
8'g(x, t)-Mo Wg)(x, t) -Mo W~(x, t),

(22)

(23)
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for the generation of sound by disturbances of low Mach
nuinber Mo « 1; the acoustic fields become weaker by a
factor of Mo, and the intensity by a factor Mo.

140

(a) turbulent jet noise

7. A hierarchy of sources

Equation (23) establishes a hierarchy of sound sources:
(i) the most effective is the monopole, e.g., cavitation
noise, which is equivalent to a volume change, like a
sphere pulsating radially; (ii) if there are no monopoles,
the most effective radiators are dipoles, e.g., forces acting
upon inhomogeneous patches of fluid, in analogy with a
sphere building out one hemisphere and contracting the
other, so that there is no net volume change, but a
nonzero force results; (iii) if there are no monopoles or di-
poles, i.e., volume is conserved and forces balance, then
the sources are quadrupoles, associated with internal
stresses, e.g., turbulence, in analogy with a sphere pulsat-
ing in opposition in alternate quarters, so as to produce no
volume change or force, leaving only stresses. This
hierarchy, for sound sources in free space, is modified by
the presence of solid boundaries, which always radiate as
dipoles associated with the induced force. Thus the fol-
lowing cases arise: (i) a monopole source is not affected
by the presence of boundaries, as the latter are dipoles
which are negligible, by comparison, in the far field; (ii)
for a dipole source, the presence of a solid boundary adds
another dipole, i.e., gives a comparable contribution; (iii)
for a quadrupole source, the introduction of a boundary
enhances sound emission to dipole level, so that the far-
field noise is due to the "induced" dipoles on the
boundary, and direct source emission is negligible by com-
parison.
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8. Combustion and jet noise

We compare the predictions of the theory of aero-
dynamic sound with experiments, for (i) monopoles and
(ii) quadrupoles, leaving for more detailed consideration
later (Sec. II.C) the case of dipole sources. For the quad-
rupole case, the radiation law [Eq. (14)] involves the
eighth power of the flow velocity and is consistent [Fig.
2(a)] with the total acoustic power output measured for
small (half-inch) air jets (Waterhouse and Berendt, 1958).
For the monopole case, the calculation of the noise emit-
ted by a flame, modeled as an assemblage of monopoles
expanding in accordance with the rate of burning of the
gas, also shows good agreement with experimental mea-
surements [Fig. 2(b)].

B. Wave equations in moving media

The original form of the "acoustic analogy" is based on
the classical wave equation, with forcing terms modeling
the generation of sound by dynamic disturbances, con-
tained in a region D, in a fluid otherwise at rest, e.g., the
noise of a flame in a quiescent medium. There are other

FIG. 2. Comparison of theory and experiment on aerodynamic
sound: (a) compirison (Lighthill, 1961) of the eighth-power law
(Lighthill, 1952) of velocity [Eq. (14)] for the total acoustic in-
tensity of a quadrupole source (straight line) with noise mea-
surements (Waterhouse and Berendt, 1958) for air jets of half-
inch diameter, equal thrusts, and two types of nozzle: o,
cylindrical and Q, oblong; (b) comparis'on of the acoustic pres-
sure, plotted as a function of time, as measured for combustion
noise (dotted line), with the prediction (solid line), based on
modeling the flame as an assembly of monopoles, with volume
changes determined by the rate of burning of gas (Hurle, Price,
Sugden, and Thomas, 1968). For dipole sources, see Fig. 3.

situations, also of practical interest, in which sound is
generated in a medium moving nonuniformly, e.g., noise
production in a jet; in these cases the classical wave equa-
tion needs to be generalized to account for the acoustic ef-
fects of the presence of a mean flow, generally nonuni-
form. The generalization of the classical wave equation
for three-dimensional sound, in a medium at rest (Pois-
son, 1807), to a flow of low (Taylor, 1978) or high Mach
number (Howe, 1975a; Campos, 1978a) leads to the con-
vected and high-speed wave equations; these are deduced
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for an inhomogeneous fluid, and thus include, as particu-
lar cases, the wave equations for quasi-one-dimensional
sound propagation in nonuniform ducts, either horns
(Rayleigh, 1916; Webster, 1919), or low-speed (Campos,
1984b) or high-speed (Huerre and Karamcheti, 1973;
Lumsdaine and Ragab, 1977) nozzles, which are progres-
sive generalizations of the one-dimensional wave equation
(d'Alembert, 1747). All these linear wave equations can
be deduced from an acoustic variational principle (Cam-
pos, 1985b), which extends those of classical acoustics in
free space (Levine, 1978) and in horns (Weibel, 1955) to
include the effects of potential mean flow, of arbitrary
velocity.

2. Inhomogeneous classical equation

The variational principle applies, in general (Bolza,
1904; Caratheodory, 1935), to a Lagrangian that may de-
pend on the potential qv and its space Vq and time y
derivatives, and also, explicitly, on position I and time t;
it requires that the acoustic action, defined as the integral
of the Lagrangian over space-time, be stationary,

d fW(q2, q2, vq2;x, t)d xdt =0, (28)

and leads (Forsyth, 1926; Pars, 1960; Esgolts, 1970) to the
Euler-Lagrange equation, in the form

a(aw/aq )/at +v.[aw/a(v q)]= 0, (29)

1. Acoustic Lagrangian

A variational principle can be formulated for vortical
flows (Seeliger and Whitham, 1968) in terms of Clebsch
(1857) potentials, which are integral, nonlocal properties
of the flow; since the acoustics of vortical flows has been
the subject of a recent review (Mohring, Muller, and
Obermeier, 1983), we shall concentrate on potential flows,
for which the variational principle (Bryan, 1918; Bate-
man, 1929) takes a local form We.choose as variable the
potential q2(x, t), in terms of which the acoustic velocity v
and pressure p are given, respectively, by

v= Vy,

p = podq'/d—t .

(24a)

(24b)

Equation (24a) for the velocity is a consequence of assum-
ing irrotational (mean and acoustic) flow VXv=0; from
the equation of momentum (e.g. , in Bernoulli's form), it
follows (24b) that the pressure is proportional to the ma-
terial derivative of the potential:

dq&/dt=ay/at+vo. aq&/ax: j&+v Vg . — (25)

Ep =p /2poco=(po/2co)(dy/dt)

for a linear acoustic wave, leading to an acoustic La-
grangian

-F(y, Vy;x)=E„E~-
,'po[(Vq ) co (d—q2/dt) ], — (27)

which is bilinear in the temporal p=aq2/at and spatial
Vq2—:aq2/ax derivatives of the potential q2, and may de-
pend explicitly on position x, for a fluid of nonuniform
density po(x) or sound speed co(x), or a nonuniform mean
flow of velocity Uo(x), appearing in the material deriva-
tive (25).

Thus the kinetic E„and compression Ez energies, per
unit volume, are given, respectively, by

E = 2PQU = 2Po(Vq')

which, on substitution of the Lagrangian, becomes the
wave equation. A simple example is the case of a medi-
um at rest, for which the acoustic Lagrangian

Wo(q2, Vp;x) = ,
'

pof(vq2—)' co q) —)
leads, through Eq. (29), to the wave equation

c,'V'q q+co—Vq. V i~o=O(M„(aq )'),

(30)

where the right-hand side reminds us that nonlinear terms

[(aq2) =q2, (vq2), q ~
Vq ~, etc.] have been neglected and

mean-flow effects omitted 0 (Mo). The linear wave equa-
tion in a medium at rest [Eq. (31)] coincides with the clas-
sical wave equation (first two terms) for a fluid of con-
stant density po-const, and adds an extra term (the third)
in the presence of density stratification Vpo&0.

3. Horn wave equation

c,'[q "+(W'/a)q ']—q =O(M„(aq)') . (33)

Equation (33) can also be deduced from the one-
dimensional Euler-Lagrange equation (29), viz. ,

a(aW'/aq )/at+a(BW*/aq')/ax =0,
using the duct Lagrangian

(34)

The inhomogeneous term [last on the left-hand side of
Eq. (31)] will be considered subsequently (Sec. V.A) in
connection with sound propagation in an atmosphere; we
illustrate the meaning of this term by considering quasi-
one-dimensional sound propagation in a duct of varying
cross section A(x), i.e., the fundamental, longitudinal
acoustic mode. This is described in the absence of mean
flow, i.e., for a horn, by the one-dimensional form of Eq.
(3.1), viz. , V' g becomes q"=—a y/ax, where the density
per unit volume po is replaced by the density per unit
length POA, so that Vlnpo becomes [1n(pod)]'=A'/A, for
a homogeneous fiuid po-const; thus Eq. (31) includes, as
particular cases for fluids of constant density, both the
classical wave equation in free space,

co V'
q2 —jp =O(MO, (aq2), V lnpo), (32)

and the horn wave equation (Rayleigh, 1916; Webster,
1919),
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coy&" —ij —2vojb '+co(A '/A)y'= 0{{dy+Mo)z), {40)

The latter W' is the Lagrangian per unit length of duct,
and thus equals W' =A W, viz. , the cross-sectional area
A (x) times the Lagrangian W per unit volume [Eq. (30)].

4. Convected wave equation

5. Duct wave operator

For the fundamental, longitudinal acoustic mode in a
low-Mach-number nozzle, i.e., a duct of varying cross sec-
tion A(x) containing the low-Mach-number flow of an
homogeneous fluid, we may, with equivalent results, ei-
ther transform the three-dimensional wave equation (37)
or apply the one-dimensional Euler-Lagrange equation
(34) to the duct Lagrangian

~1 (g if' ) ~0(f ig ) APOco uof f (39)

which differs from the case Wo of a horn (35), by the ad
dition of a low-Mach-number convection effect [last term
in Eq. (39)]. The wave equation for linear sound in a
low-Mach-number nozzle,

Consider the effects of a nonuniform mean flow of
velocity Uo(x) on three-dimensional sound, in the case of
low Mach number Mo =—uo/co ((I, when the Lagrangian
[Eqs. (27) and (25)] simplifies to

~,(jp, Vq);x)=WO(j, Vq&;x) pocp —j(vp V(p) . (36)

This case differs from the case Wo of a fluid at rest [Eq.
(30)] by the presence of the last term on the right-hand
side of Eq. (36), which is small O(MO) but not negligible.
Substituting in the Euler-Lagrange equation (29), we ob-
tain the wave equation for linear sound in an inhomo-
geneous, low-Mach-number potential Qow:

Co V p —g —2Up 7++C 0V+ p 1Hpo

+cavo V'lnco ——O((MD+By) ) . (37)

The homogeneous terms (first three) consist of the classi-
cal wave equation [first two, Eq. (32)], plus an effect
—2vo'Vjb of convection by the mean flow; in the case of
an inhornogeneous fluid there are two extra terms, a static
one (fourth term) associated with nonuniform density po
and a convected term (fifth) involving a nonuniform
sound speed co. If the fluid is homogeneous, both po and

co are constant, for a nonuniform flow vo(x) of low Mach
number, and Eq. (37) reduces to the first three terms,
which may be written as the convected wave equation

co2V2y —d2@/dt'=O{(MO+Bq), V{npg, V»&0) .
This equation is similar to the classical wave equation
(32), replacing local time derivatives ij:dp/dt by m—a-
terial derivatives d p/dt, which include [Eq. (25)] the ef-
fect of linear convection of sound by the mean flow
vo Vp.

consists of the classical wave operator (first two germs)
f«a medium at rest [Eqs. (32)], with a mean flow effect
(t»rd term), as in the convected wave equation (37), and a
scattering term due to changes in cross-sectional area
(third term), as for a horn [Eq. (33)]. The low-Mach-
number nozzle wave equation (40) can be written in the
compact form

coA '{Af')' dy/—dt =O((Mo+Qqr)z), (41)

which can be obtained by transforming the classical wave
equation (32) as follows: (i) in the first term, the Lapla-
cian V y for three-dimensional sound in free space is re-
placed by the duct operator A '(Ap')' for quasi-one-
dimensional propagation in a horn of varying cross sec-
tion A'&0; (ii) in the second term, the local time deriva-
tives j&—:8 p/Bt for a medium at rest are replaced by
material derivatives d y/dt, including the effect of
linear convection by the mean flow.

6. High-speed wave equation

In the case of a high-speed flow, i.e., of Mach number
of order unity, the mass density po and sound speed co de-
pend on the fiow velocity vo and thus are not constant in
a nonuniform flow vo(x), even if the fluid is homogene-
ous at rest. The complete acoustic Lagrangian [Eqs. (27)
and (25)],

coV p —y —2vo Vp —(vo. V') p+coVp Vlnpo

+(jv+vo'Vp)vo V inca =0((BK)2) i (43)

which differs from the low-Mach-number case {37) only
by the addition of two terms, —(vo. V) y and
(vo Vy)vo Vlnco, both of order Mo. The high-speed
wave equation (43) may be written in the compact form

V p d(co dq&l—dt)/dt+Vy Vinpo ——O{(Bp) ), (44)

which coincides with the classical wave equation (32) in
the first term only. In the second term, co 8 p/Bt, lo-
cal derivatives are replaced by material derivatives (25), as
for low-Mach-number convection (38), with the additional
difference that the sound speed co(x) is not uniform, and
co appears between the material derivatives; there is, in
addition, a new term [the last in (44)], which for a homo-
geneous fluid is O(MO), and which only appears for
high-speed flow.

f

adds to the low-Mach-number Z~ form (36) an extra
term [the last on the right-hand side of Eq. (42)], of
O(M~). Substitution of Eq. (42) into Eq. (29) yields the
wave equation for linear sound in a steady potential flow
of arbitrary velocity:
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7. High-Mach-number nozzle

In the case of linear sound in a nozzle containing irro-
tational flow of arbitrary velocity, the complete duct La-
grangian,

(Ip~ip'ix) =My (Ip~(p') —
2 poco (uolp" +upuolp'), (45)

differs from Z~, the low-Mach-number version [Eq.
(39)], in having two extra 0 (Mo) terms, one involving the
mean flow velocity uo only, and the other the rate of
strain uo, which does not vanish, bemuse changes in
cross-sectional area imply a nonuniform velocity Su. bsti-
tution of Eq. (45) into Eq. (34) yields

coy" rp—2u—op uo—qo" 2uouo—y +co(A /A)y

+2Moco(y+uoy')=O{(By) ), (46)

where the new, high-Mach-nuxnber terms, not appearing
in Eq. (40), are the third, fourth, and sixth .The high
speed-nozzle wave equation (46) can be written [compare
with Eq. (44)] in the compact form

A '(Ap')' d(co d—rp/dt)/dt +y'(po/po) =O((Bq&) ),

which includes all the modifications, relative to the classi-
cal wave equation (32), that may be needed for linear
sound in steady potential flows, viz. , from left to right, (i)
replacing the Laplacian T y by the duct operator
A '(Atp') =g&"+(A'/A)y', (ii) substituting local B/Bt by
material d/dt derivatives (25), and putting co between
them, if the sound speed co is nonuniform; (iii) adding a
term y'(po/po) in the case of either a nonhomogeneous
fluid (even at rest), or a high-speed nonuniform flow (even
if the fluid is homogeneous).

8. Alternate wave equations

We give in Table II(b) a list of the various forms of the
linear wave equation (Sec. II.B), to be compared below
(Sec. V.B) with Table III, the nonlinear case. We also in-

dicate in Table II(a) the formulas for the bilinear acoustic
Lagrangian [Eqs. (25) and {27)]. These are given for two
cases: (i) for three-dimensional sound, in an inhomogene-
ous fiuid, in free space, and (ii) for quasi-one-dimensional
sound, in a homogeneous fluid, in a duct of varying cross
section. In each case a Lagrangian is shown for three
types of medium —steady potential flow of arbitrary velo-
city~ 10w-Mach-QQHlber convection, and KedluID at
rest—making in all a total of six combinations.

C. Analogy of hydrodynamic
and electromagnetic forces

In order to apply the wave analogy in a reliable
manner, it is ncx:essary (i) to know a linear equation
describing the propagation of waves in the medium under
consideration; (ii) to establish an exact equation, coincid-
ing with the wave equation (i) in the linear terms, whose
nonlinear terms may be interpreted as model sources forc-
ing the generation of waves. The original "acoustic anal-
ogy" met these requirements by using (i) the classical
wave equation for sound in a homogeneous fluid at rest,
forced by (ii) the Lighthill tensor, whose leading term is
nonlinear. In order to consider the generation of sound in
an inhomogeneous flow, we take the same two steps in a
generalized form: (i) the wave equation, for linear sound
in an inhomogeneous potential flow of arbitrary velocity,
has been derived using a variational principle (Sec. II.B);
(ii) using an independent method, viz. , elimination be-
tween the equations of motion, we establish an exact
equation, coinciding with the high-speed wave operator in
the linear terms, with extra forcing terms representing the
generation of sound by voiticity (Powell, 1961,1964;
Howe, 1976a) and inhomogeneities (Morfey, 1973;
Ffowcs-Williams and Howe, 1975; Marble and Candel,
1977). These mechanisms are relevant to the noise of
nozzle flows (Howe, 1979a) and of vorticity in free space
(Mohring, 1978a), or shed from a sharp body (Howe,
1978) or blunt bodies (Blevins, 1984) or slots (Howe,
1979b). If, in addition to pressure forces, electric and

TABLE EI. Linear acoustics of media at rest, in low-Mach-number convection and in high-speed jets,
both for three-dimensional sound in inhomogeneous flow and for quasi-one-dimensional sound in a duct
of varying cross section. For each of these six combinations, we indicate (a) the quadratic acoustic La-
grangian for linear sound; (b) the linear wave equation, describing sound of small amplitude.

Three-dimensional sound in Quasi-one-dimensional sound in
Case inhomogeneous fluid variable-area duct

(a)
Medium
At rest
Low-Mach-nuxnber convection
High-speed, steady potential flow

Wp, Eq. (30)
W), Eq. (36)
W, Eq. (42)

Wp, Eq. (35)
WI, Eq. (39)
W*, Eq. (45)

Medium
At rest
Low-Mach-number convection
High-speed, steady potential Aow

Eq. (31)
Eqs. (37) and (38)
Eqs. (43) and (44)

Eqs. (33)
Eqs. (40) and (41)
Eqs. (46) and (47)
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magnetic fields are included, the "wave analogy" leads to
a close correspondence (Campos, 1978a} between the hy-
drodynamic and electromagnetic forces, appearing as di-
pole sources of sound.

d(co dq/dt)ldt —(poco) 'VP Vq —V q

=(pleo) 'VP-A V—.A+A+d(F v/ppco)/dt,

(49)

). Stagnation enthalpy

where the first term is the kinetic energy per unit mass
—,
' V, with V the total (mean flow plus acoustic) velocity,

and the remaining terms specify the enthalpy, as follows:
(i) I 'dP, with I',P the total mass density and pressure,
respectively, is the Legendre transform of the work; (ii)
T ds, with T the temperature and s the entropy density, is
the heat; (iii) p, dN, with N the mole number and p, the
chemical affinity, is the chemical energy; (iv) E dD,
8-dH are, respectively, the electric and magnetic energy
(per unit volume), with E,D the electric field and dis-
placement, and B,H the magnetic induction and field.
We have used upper-case letters to designate total fluid
variables, i.e., mean flow plus acoustic perturbation, and
lower-case letters to designate the acoustic perturbation
alone [see Eq. (254)]. We may divide the domain of the
flow into two regions, namely, (i) a source region D, occu-
pied by ionized inhomogeneities, with composition, densi-
ty, and temperature possibly distinct from the fluid's and
acted upon by electromagnetic forces; (ii) outside D, an ir-
rotational, homogeneous, nonionized flow, hence homen-
tropic, for which the 8ernoulli equation (Curie and
Davies, 1968), holds

const—:—,
' V +@+f I 'dP =q+ jr, (48')

showing that the stagnation enthalpy q scales as minus
the time derivative of the total potential @,and that for a
steady mean flow @=jo,where p is the acoustic potential.
Since q is associated with the presence of inhomogeneities
in the source region D, and reduces to an acoustic variable
outside D, we choose it as the wave variable.

2. Forced wave equation

Rewriting the fundamental equations of fluid mechan-
ics in terms of the velocity V and stagnation enthalpy q
(instead of density I or pressure P), and eliminating for
the latter, leads to the exact equation (Howe, 1975a; Cam-
pos, 1978a),

In order to describe the generation of sound in a steady
flow, we need to choose a wave variable q(x, t) that has a
simple acoustic meaning in the far field; also, since fluid
inhomogeneities appear as nonuniformities in the distri-
bution of energy in the flow, the wave variable should be
related to the energy balance. The energy equation in a
fluid (Landau and Lifshitz, 1953) involves, in the convect-
ed flux, the stagnation enthalpy q, which is generally
(Landau and Lifshitz, 1967b) given by

dq =V dV+I 'dP+Tds+pdN+(E dD+B.dH)/I',

A:—(l p
—p] )[d(lnpo)/dij(n'v) (50)

corresponding to blobs of ratio of specific heats y&, dis-
tinct from the fluid's yo, when subjected to a mean flow
pressure gradient Vpo, which causes a variation in the
norinal velocity n.v (positive/negative, respectively, for
an expansion/contraction); (ii) a dipole term

A =F/pi+ Ci/po, (51)

which is the sum of the electromagnetic force F per unit
inass of a blob of density pi, and the hydrodynamic force
Cx per unit mass of displaced fluid of density po.

3. Electric and displacement forces

In a low-Mach-number mean flow, the high-speed wave
operator (44) reduces to the convected wave operator (38),
and the sole remaining source is the total force dipole
(51), so that the wave equation

Vq —co dq/dt =7 A, (5&)

emphasizes the similar roles played by the two dipole
sources, namely, the electromagnetic F and hydrodynam-
ic Cx forces. It is well known in the classical theory of
electricity (Jeans, 1908) and irrotational flow (Milne-
Thomson, 1958) that the electrostatic field E due to elec-
tric charges q„in a dielectric of permeability e,

V~K=0,
V E=4mq, /s,

(53a)

(53b)

and the velocity v, in an irrotational flow, due to volume
sources q

VXv=0,
V'.v =4mqm,

(54a)

(54b)

satisfy similar equations, i.e., the electric field lines are
congruent to streamlines. The electric-to-dynamic analo-
gy is extended from fields to forces by comparing the
electric F~ with the displacement Cx~ forces

(ssa)

(55b)

where all the terms on the right-hand side vanish outside
D; exterior to D q = —By/Bt and

(poco) 'Vpo =po 'Vpo ——V(lnpo) ~

and the left-hand side of Eq. (49) coincides with the
high-speed wave equation (44). Thus we may interpret
the terms on the right-hand side as the sources of waves,
which are concentrated in fluid inhomogeneities (blobs)
and consist of (i) a monopole term
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4. Magnetic and vortical forces

The magnetic induction B due to electric currents J, in
a conductor of magnetic permeability p (the speed of light
in uacuo is denoted by c~ ),

V)& B=(4irp/c~ )J,
V'.8=0,

(56a)

(56b)

is analogous to the velocity v in an incompressible flow,
due to vorticity m,

+Xv=M,

7 v=0, (57b)

i.e., the magnetic induction lines curl around the electric
currents, in shapes congruent with the streamlines of ed-
dies. This analogy is extended from fields to forces, com-
paring the magnetic F2 and vortical (52 forces:

The pressure gradient Vpo in Eq. (55b) is replaced in (55a)
by the electric field E, which is, by (53a), also a gradient,
E=Vy„ofthe electrostatic potential y„the electric
charge q, is replaced by a dimensionless ratio of the den-
sities of fluid po and blob pi, so that a positive q, )0 (neg-
ative q, ~0) charge corresponds to a blob less dense

pi &po (more dense pi &po) than the fluid, i.e., the blob is
acted upon by a force along (opposite to) the pressure gra-
dient, as a positive (negative) charge moves along (oppo-
site to) electric field lines. The analogy between electro-
statics and irrotational flow extends from the fundamen-
tal equations to boundary conditions, e.g., an insulator
corresponds to a rigid wall, and a moving wall with nor-
mal velocity v„corresponds to a conductor with surface
charge density 4m.q. In the other classical analogy, be-
tween magnetostatics and incompressible flow, the
correspondence of boundary conditions, e.g., the surface
current on a conductor (4mp/c, ) j and a surface vorticity
to, is less satisfactory, since it is not usually possible in a
flow to specify the vorticity at the walls a priori; the
specification of normal velocity is a different boundary
condition from the tangential current.

tromagnetic (or Laplace-Lorentz) F and the two terms
[(55b) and (58b)] of the hydrodynamic (or Lamb) Cx

forces.

5. Generalized Kirchhoff integral

X=x+@(x),
vo=V'(v .X),

(61a)

(6 lb)

where v is the velocity of the uniform incident flow at
infinity, i.e., the presence of the scattering body is
equivalent to changing the space geometry; (ii) the retard-
ed time is changed from that of Eq. (17b) to

Since the dipole sources of sound are forces, radiation
occurs only when the blobs move across nonuniform
fields. That is, (i) vorticity emits sound [Eq. (58)] only
when eddies move across streamlines, viz. , as a body is
acted upon by a magnetic force when it cuts induction
lines; (ii) a blob emits sound [Eq. (55a)] if its density is
distinct from the surrounding fluid s and it is in the pres-
ence of a pressure gradient, viz. , as an electric charge is
acted upon by a force in the presence of an external elec-
tric field. The pressure gradients may be due to the de-
flection of flow around an obstacle, which may also shed
vorticity, and if it contains electric charges and/or
currents, also create electromagnetic fields. The frequen-
cy to of the sound radiated by the dipole sources is then
determined by the Strouhal (1878) number St=col/uo oil
the basis of mean flow velocity uo and body scale l; the
corresponding wavelength A, =2m.co/t0-2nl/Mo is much
larger than the body scale /, for low-Mach-number flow,
i.e., the obstacle is a compact scatterer of sound, of dipole
character as the blobs or vorticity. The solution of the
forced, convected wave equation (52) in the compactness
limit is given by the generalized Kirchhoff integral,

q(x, t)=(1/4m) I I
X—Y

I
'[V A(Y, r)]d y, (60)

which differs from the free-space form in two related as-
pects: (i) the positions of the observer x and source y are
corrected to X,Y, in agreement with the unit flow poten-
tial i',

F2——(1/c~ )JX8,
6'2=pIciP Xv ~

(58a)

(58b) 7 = t —
I
X—Y

I
/U = t —

I
X—Y

I
/co+ Mo ~ (X—Y),

2
Jv 2 plV

p =@BE/8m . (59b)

Besides this last analogy, we have established a correspon-
dence between the two terms [(55a) and (58a)] of the elec-

the latter being also known as Lamb's (1879) vector. The
velocity v corresponds to the magnetic induction 8, and
the vorticity co=7 Xv to the electric current J, which is
also a curl [by the induction equation (56a)]. The mass
density pi of the blob corresponds to p/4m, where p is the
magnetic permeability, in agreement with the analogy of
dym. mic p, and magnetic p~ pressures

(62a)

U =co+vo.m=co[1+Mo'(X —Y)/
I
X—Y

I ] (62b)

since the group velocity U of propagation of sound is the
sound speed co plus the component of the mean Qow
velocity vo in the direction m from observer to source.

6. Reciprocity theorem and floe reversal

The generalized Kirchhoff integral (60) applies to the
acoustics of low-Mach-number potential flows in the
presence of scattering bodies, provided that the observer
be in the far field and the source in the near field, or vice
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versa, since the reciprocity theorem holds. In order to
formulate the latter, it is convenient to consider the
Green's function G, defined as the sound field due to a
point source, at position y and time v.,

t a'/ax' —c,-'[a/at+ U, (x).a/ax]'I

)& G(x,y;t, r) =5(x—y)5(t —r), (63)

where 5 denotes Dirac's (1927) delta function. Substitut-
ing the right-hand side of Eq. (63) into (60) and (62a), we
obtain the explicit form of the Green's function:

G(x,y;t, r) =(4m.
(
X—Y

~
)

X5(t r~—X—Y
~

/co+Mo'(X —Y)) .

In the case Mo ——0, X=x, Y=y, of a point source in free
space at rest, Eq. (64} simplifies to the Green's function
for the classical wave equation,

Go(x, y;t;r) =(4~
~

x—y ~
) '5(t r~ x——y ~

/co),

(65)

whose symmetry in (x,y) implies the reciprocity theorem:
the sound field Go(x, y) observed at x due to a source at y
is equal to the sound field Go(y, x) observed at y due to
the source at x. In the presence of a low-Mach-number
mean flow, the Green's function (64) is symmetric in X,Y
if the mean flow direction Mo is reversed, i.e., the recipro-
city theorem is stated GM (x,y)=G M (y, x}, i.e., the po-
sitions of source y and observer x can be interchanged
(x,y)~(y, x), provided that the direction of the mean
flow be reversed Mo~ —Mp. The reason for the latter re-
quirement is that the convection of sound by the mean
flow affects the speed of propagation [Eq. (62b)] and thus
the retarded time [Eq. (62a)]; if the flow convects sound
from source to observer, when the latter are interchanged
the mean flow velocity must be reversed for the propaga-
tion velocity and retarded time to be the same.

?. Emission due to activity of forces

The sound field q(x, t) due to an arbitrary source, say
V.A(y, r), is given by the convolution in space-time with
the Green's functions (64),

along the blob's path u, =dy/dr, of the mass of fluid po
displaced by the blob's volume v, multiplied by

W = F/p, +Cr/po) w,

w =cpa[
~
X—Y

~
+Mo (X—Y}]/ax,

(68a)

8. Signals originating from a blob

As an example, we illustrate in Fig. 3 the case of a po-
tential flow rendered nonuniform by the presence of a
spherical obstacle; in Fig. 3(a) a blob, i.e., a patch of fluid
of density different from the fluid's, is convected past the
sphere, along (b) the streamline of impact distance one-
half the radius. As the blob Inoves past the sphere it
emits a sound pulse, which is symmetric (c) for an ob-
server in the sideline direction, i.e., in the far field, in the
direction perpendicular to the flow through the center of
the sphere. The shape of the sound pulse may be inter-
preted as follows: as the blob approaches and moves
away from (is near) the point closest to the sphere, the
streamlines diverge (converge), the pressure reduces (in-
creases), the blob expands . (contracts) and emits a
compression (rarefaction), thus yielding a pulse consisting
of two compression waves separated by a weak rarefac-
tion wave. An observer downstream in the far field (d) re-
ceives, from the same blob, a distorted pulse, no longer
syinmetric, due to the different scattering effects on the
two (approach and retreat) sides of the sphere; the com-
parison of (c) and (d) points to the importance of sound
scattering effects, to which we now turn.

which is the activity or work per unit time [Eq. (68a)] of
the total force per unit voluine [Eq. (51}]at the propaga-
tion velocity [Eq. (68b)]. Thus, if the blob moves far
from the bodies, where the mean flow and force fields are
nearly constant, the activity of forces is not changed, and
no sound is emitted, i.e., it is convected silently; as the
blob is swept in a pressure gradient past a body, or acted
upon by nonuniform forces, the change in their activity
leads to an excess (or default) of energy, which, in the ab-
sence of dissipation, must be liberated (absorbed) by emit-
ting a compression (rarefaction) wave, i.e., sound. Thus
the passage of a blob near an obstacle or a field source is
testified to by the emission of a sound pulse.

q(x, t) =I [V.A(y, r)]G(x,y;t, r)d y dr . - (66) II I. SPECTRAL AND DIRECTIONAL
BROADENING OF SOUND

The stagnation enthalpy q ——j&—[po(1+Mo m)] ip
scales as the acoustic pressure [Eqs. (24b) and (25)] in the
far field, and in the case of a small blob of volume v, it is
given by Eqs. (66) and (64),

p(x, t)-[4mco(
~

x
~
+Ma x))

x [(a/ar+u~. a/ay)povkvj;

the acoustic pressure decays as the inverse of the distance
~

x
~

', as a radiation field, involves an inverse Doppler
factor 1 + Mo m, and is proportional to the rate change,

The modeling of noise sources may not be sufficient to
calculate the acoustic radiation field in those cases when
source "masking" occurs, that is, when the directivity and
spectrum are changed by scattering and diffraction (e.g.,
turbulence and interfaces) in the medium separating ob-
server from source. An example is the problem of relat-
ing (i) static sound measurements on a test bench with (ii)
acoustic experiments in a wind tunnel and (iii) noise
records of aircraft in flight; the discrepancies between
these three sets of data (Michalke and Michel, 1979;
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FIG. 3. Sound pulse emitted (Cam(Campos, 1978a) by a fluid inhomogeneity, convected (b) b a ot
t 1' of td' t o -h lfth di

' db ob
directions.

- a e ra &us, as received by an observer in the far field, in the (c) sideline and (d) downstream

McGowan and Larson, 1984) can be attributed to differ-
ences in the modeling of sources and effects of scattering
by the mean flow. The acoustic analogy has b d'

fied to apply to rotational mean flows (Lilley, 1973; Tes-
ter and Burrin, 1974) by using a forced third-order wave
equation, coupling sound and vorticity; this equation
should be relevant to the experimental demonstration
(Bechert and Pfizenmaier, 1975; Moore, 1979) that the
noise of jets can be substantially increased by discrete
acoustic excitation of unstable modes. This phenomenon
is not yet fully understood and is probably related to the
interaction between acoustic and instability waves; the
latter (Schlichting, 1951; Lin, 1955; Chandrasekhar, 1961;
Drazin and Reid, 1981) are described in the inviscid case
by the Rayleigh (1887) equation, and in the viscous case
by the Orr (1907) -Sominerfeld (1908) equation h' h

'

usuall 1

equa j.on, w ic rs
usua y so ved by expansion procedures (Heisenberg, 1924)
or in a truncated form (Tollmien, 1929; Schlichting,
1933). The Lilley equation has been used (Mani,
1976a,1976b; Balsa, 1976a,1976b) to calculate the direc-

~ ~

tivitres of jet noise, using some ad hoc assumptions. We
adopt an alternative approach, which retains the modeling
of sound sources (Sec. II) by the original acoustic analogy
(Lighthill, 1963; Howe, 1975a; Campos, 1978a) and uses
scattering and diffraction theory (Sec. III) to obtain direc-
tivity patterns and spectra (Lighthill, 1953; Howe, 1976b;
Cam os 1978b&p, &; the combination of these two procedures
leads to a modeling of jet noise (Munt 1977 C
1978c

ampos,
c; Cargill, H82) consistent with observations, as re-

gards both directivities (Bechert, Michel, and Pfizen-
maier, 1977; Plumblee and Dean, 1983) and spectra (Can-
del, Julienne, and Julliand, 1975; Candel, Guedel, and Ju-
lienne, 1976).

A. Directivity for transmission
across vortex sheets

The simplest example of scattering is sound incident on
a plane interface, separating two media, which, in the case
of a jet and an ambient medium at rest, is a surface of
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discontinuity not only of mass density and'sound speed,
but also of tangential velocity, i.e., a vortex sheet. Thus
the basic model of sound transmission from the interior
of a jet considers scattering by a vortex sheet (Miles,
1957,1958; Howe, 1970,1975c). This is an instance of the
scattering of sound by vorticity (Fabrikant, 1983; Howe,
1983a), and just as sound can destabilize vortices (Broad-
bent and Moore, 1979), acoustic waves incident on a vor-
tex sheet can trigger instabilities (Jones and Morgan,
1972,1974). A model more elaborate than the vortex
sheet, across which the velocity has a discontinuity, is the
simple layer (Jones, 1977), i.e., a slab of a small but finite
width, in which the velocity of the jet is matched smooth-
ly to the atmosphere, leading to the problem of sound
propagation through a shear flow (Lighthill, 1972;
MacGregor, Ribner, and Lam, 1973; Candel, 1983; Han-
sen, 1984), which has been reviewed elsewhere (Nayfeh,
Kaiser, and Telionis, 1975a; Mohring, Muller, and Ober-
meier, 1983). Jets issue from pipes, and thus there is a
contribution to the radiation field due to diffraction by
the solid surface (Leppington, 1972; Jones, 1973; Crighton
and Leppington, 1973; Levine, 1975; Rienstra, 1981; Lep-
pington, Broadbent, and Heron, 1984); this an extension
of the classical diffraction problem (Sommerfeld, 1896),
to which the Wiener-Hopf technique (Noble, 1958) is well
suited, both for plane and cylindrical geometries. The
directivity of the noise of jets has been modeled success-
fully by considering diffraction from a semi-infinite
cylindrical pipe, with a trailing vortex sheet (Munt, 1977;
Cargill, 1982) and internal shock structure (Howe and
Ffowcs-Williams, 1978).

sembly of flat, horizontal facets, displaced from the mean
position by g(x(( —ut, t), i.e., at the correct height for each
horizontal location xt~ and time t, and convected at velo-
city u.

2. Choice of boundary conditions

If we consider a plane wave incident on such an inter-
face, it gives rise to transmitted and reflected waves with
the same horizontal wave vmtor k(( and frequency co, and
distinct vertical wave numbers, viz. , kz for the incident,
—ki for the reflected, and Ki for the transmitted wave.
Omitting the cominon factor exp[i(k(( x(( —cot)), the con-
dition of continuity of acoustic pressure reads

exp(ik~g)+R exp( =ikig) =T exp(iKig), (69)

—po '/Vp =dv/dt =d g!dt (70)

where d/dt denotes the material derivative [Eq. (25)]; for
a plane, monochromatic wave -exp[i(k. x—cot)], it im-
plies the following relation between acoustic pressure p,
normal velocity u„,and displacement g„onthe interface,
e.g., for the incident wave,

where we have assumed amplitude unity for the incident
wave, so that the amplitudes of the reflected and
transmitted waves specify, respectively, the reflection R
and transmission T factors. The second boundary condi-
tion at the interface, which, together with Eq. (69), deter-
mines R, T, applies to the acoustic velocity u„=vn or
displacement g„=g.n the normal direction n; the equa-
tion of momentum, relating acoustic pressure p and velo-
city v or displacement g, reads

Rayleigh-Born approximation (p/po)ki ——(co —k((.vo)u„=—i(co —k((.vo) g„ (71)

We consider the transmission of sound across an inter-
face separating media moving with uniform velocity. A
Galilean frame can be chosen so that the "upper" medium
of transmission or "ambient" is at rest, and the "lower"
medium of incidence or "jet" moves at the relative veloci-
ty vo. Thus we have sound incident from a jet, of mass
density po and sound speed co, moving at Mach vector
Mo ——vo/co, and transmitted to the ambient at rest, with
mass density pi and sound speed ci. If we denote by
x =(x((,z) the position vector, where x(( is the horizontal
projection and z the vertical coordinate, the position of
the interface is given by z =g(x((, t), where g is a function
of x(( for an irregular interface and of t for an unsteady
one; if the interface is convected at velocity u, then
z =g(x(( —ut) if it is irregular, and z =g'(x(( —ut, t) if it is

unsteady as well. The simplest approach to the scattering
of sound by irregular, unsteady, or moving interfaces is
the Rayleigh-Born (Rayleigh, 1889; Born and Wolf, 1959)
approximation, that (i) the radius of curvature R is much
larger than the wavelength k, and thus the interface is lo-
cally flat R »A, ; (ii) the slope Vg of the interface has zero
incan (Vg) =0, and its variance ((Vg) ) is negligible, so
that it is locally horizontal. These assumptions are
equivalent to replacing the irregular interface by an as-

and similarly for the reflected and transmitted waves.
For a medium at rest vo ——0, bearing in mind that the fre-
quency cu is continuous across the interface, it is imma-
terial whether the continuity of normal velocity u„ornor-
mal displacement g„is chosen as the second boundary
condition; not so for a jet, since the convection effect in
Eq. (71), essentially a Doppler factor, appears to the first
power for the velocity and to the second power for the
displacement, so that they cannot both be continuous.

3. Continuity of velocity or displacement?

The literature on the acoustics of jets is divided on the
matter of the boundary condition to be applied, with early
references using the continuity of normal velocity (Ray-
leigh, 1879; Esclangon, 1917; Rudmck, 1946; Franken
and Ingard, 1956), and, more recently, a preference for
the continuity of displacement (Miles, 1957; Ribner, 1957;
Ingard, 1959; Gottlieb, 1959). The controversy on this is-
sue has been fueled by mathematical proofs that are
claimed to lead to the continuity of velocity (Keller, 1955;
Myers, 1980) or to the continuity of displacement
(Mungur and Plumblee, 1969; Poiree, 1982), the two re-
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suits being incompatible. From a physical point of view,
an acoustic wave requires a material medium to support
it, i.e., the fluid particles must remain attached to the in-
terface, so that the normal component of displacement
must be continuous; it follows that the normal component
of acoustic velocity will be discontinuous, if the convec-
tion effect is different on the two sides of the interface,
e.g., for a jet in still air. Although the issue of the correct
acoustic boundary condition at an interface between mov-
ing media was considered to be in doubt (Nayfeh, Kaiser,
and Telionis, 1975a) until recently, the good agreement
with observation of later theories of jet noise (Munt, 1977;
Campos, 1978b,1978c; Cargill, 1982) substantiates the
choice of continuity of normal component of displace-
ment g„.From Eq. (71) this implies 25—

(a) sound source in a jet

(b) inf inite, plane vortex sheet

I I I I I I I I I I I I I I I I 'I

Uo

(x- Uii, t)

[exp(ikq g) R—exp( —ikqg)](kq /pp)(1 —Mp. n)

= T(Ki /pi )exp(iKi g), (72)

where n=k/k is the direction normal to the incident
wave front.

20

100)
Q

0D
oi

CV 1p

Source ~UR

4. Reflection and transmission coefficients

The angles of incidence 8 and transmission 8 (with the
mean position of the interface) are related by the continui-
ty of the horizontal component of the wave number kii.

-20

-30

4p' I I I I I I I I I I I I I I I I

0 20 40 60 80 100 120 140 160
e (degrees)

(c i /co )k
i I

=cos8 = (c i /c p )Mr cos8 ~

M„=—1 —Mp cos8 cosf,

(73a)
(c) semi-infinite, cylindrical vortex sheet

where M„is the Doppler factor associated with the jet
Mach number Mp, and f is the angle of the flow velocity
with the plane of refraction [Fig. 4(a)]. The normal com-
ponents of the incident ki and transmitted K& wave vec-
tors are given, respectively, by

Ki ——(co/c I )sine,

ki ——(ro/cp)sin8M, ' .

(74a)

Thus all quantities appearing in Eqs. (69) and (72) can be
expressed in terms of the angle of incidence 8 and of the
jet velocity P; for a plane interface /=0, solving Eqs. (69)
and (72) we obtain the reflection Rp and transmission Tp
coefficients,

10—

10—

0

10—
0

ui

10—

Rii ——(1—B)l(1+B),

Tp =2I(1+B)

(75a)

(75b) 10 30
I I I I I I

50 70 90 110 130 150 170
Angle from jet axis (deg)

where B is given by Eq. (76a) for a medium at rest and by
(76b) for a jet:

Bp (pplpi)(Ki Iki ), ——
B=BOM„. (76b)

Nate that 1+ Ro ——To, so that energy is conserved during
scattering by an interface at rest [Eq. (76a)] or a vortex
sheet [Eq. (76b)].

FIG. 4. Sound emitted by (a) a source moving at speed uo in a
jet of velority vo and received by an observer outside; the direc-
tivity is plotted for two interface models: {b) a plane, infinite
vortex sheet (Howe, 1975c); (c) a cylindrical, semi-infinite vortex
sheet (Munt, 1977). The latter theory (O, dotted line) is com-
pared with experimental measurements (4, solid line; Pinker
and Bryce, 1976) for jets of Mach numbers ranging from sub-
sonic to near sonic.
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5. Moving sound sources

If we consider a homogeneous jet of uniform velocity
vo, the classical wave equation [first two terms in Eq.
(32)] is valid in a frame of reference moving with the
fluid; returning to a frame at rest corresponds to the
transformation x~x v—pt t~t so that spatial deriva-
tives are unchanged B/Bx —+B/Bx, but local time deriva-
tives B/Bt —+B/Bt+vp V:.d/—dt become material deriva-
tives [Eq. (25)], and we obtain the convected wave equa-
tion (38). Thus we conclude that the convected wave
equation (38) describes the linear propagation of sound in
homogeneous fluids in two cases; (a) nonuniform poten-
tial flow, of low Mach number, as proved before (in Sec.
II.B.4); (b) uniform flow of arbitrary Mach number, as
proved here (in Sec. III.A.5). We consider the convected
wave equation

[cp (B/Bt+vo V) .V]p—(x, t)

=S(B/Bx,B/Bt) exp( icopt—)5(x xp —upt)—,

forced by a term with arbitrary multipolar character, to
model the various sources of sound (Sec. II.A), e.g., a
monopole Sp gB/Bt——, a dipole Si ——F~B/Bx; =F.V, a
quadrupole Sz ——T;iB /Bx;Bxi, etc. The delta function in
Eq. (77) shows that we consider a point source following
the trajectory x=xo+upt, i.e., moving uniformly at velo-
city uo, from an initial position xp, the source is also as-
sumed to be harmonic, with frequency cop, so that the
solution of Eq. (77) is a harmonic Green's function
p(x, t) =G(x, t;y, cop) with y=xo+upt. In the general case
of (y, co) of a source distribution D in space y, with fre-
quency spectrum co, the acoustic pressure is given by a
Fourier integral in m and convolution in y:

+ 00

p(x, t)= f G(x, t;y, co)f (y, co)e '"'dydco . (78)

Thus the method applies to arbitrary sources, in spec-
trum, spatial distribution, and multipolar character.

6. Harmonic Green's function

When we substitute Eq. (80) into (79), Dirac's delta
function performs the dco integration, setting the frequen-
cy equal to

cos =coo/Ms ~

the source's cop, with a Doppler factor

M, =—1 —(up n)/cp,

(8 la)

(81b)

due to its motion. The factor in square brackets in Eq.
(80) vanishes for co=+cpk —k vp, which is the dispersion
relation for acoustic waves in a moving medium; this cor-
responds to a pole in Eq. (79), so that the dki integral can
be evaluated by residues, and we are left with

Since the wave equation (77) has constant coefficients,
namely, the sound speed cp and flow velocity vo, it can be
solved by Fourier analysis:

p(x, t)= f p(k, co) exp[i(k x cot)—]d kdco, (79)

where we denote (Crighton, 1975) the pressure perturba-
tion p(x, t) and spectrum p(k, co) by the same symbol p,
distinguishing them by the arguments. Bearing in mind
that space and time derivatives applied to Eq. (79) are
equivalent to multiplication, respectively, by the wave
vector k and frequency co, viz. , (B/B xB/Bt)~i(k, —co),
the acoustic pressure spectrum is given by

pi(k, co) =(2m) S(ik, ico)—exp( —ik xp)

X[(co—k.vp) /cp —k ] '5(co —cop —k up) .

(80)

+ 00

pi(x, t) =(8m. )
' (ki) 'S(ikil, iki, ico, ).exp[—ikii (x—xp) —ico, t))d kll,

an integration over the horizontal wave vector kll, specifying the harmonic Green s function for an arbitrary multipole
point source of frequency cop, moving at a speed up, in a jet of velocity vp.

7. Zone{s) of silence

If we consider the sound field [Eq. (82)] in the jet, incident upon a vortex sheet, the transmitted field pz in the ambient
is obtained multiplying by the transmission factor T [Eqs. (75b), (76a) and (76b)]. The acoustic energy flux W, radiated
across a horizontal plane above the vortex sheet z —=const & 0, is defined by

(83)
+ 00

2W= pz(x, t)uz, (x, t)d xii,
where the vertical component of the acoustic velocity uz, is related to the transmitted pressure pz by the momentum
equation (70), viz. , pz(x, t) =picpM uz, (x,t); thus the acoustic energy flux is given by

W=(32m piciM, )
' f (To/ki ) [S(ikil,ik jico, )

~ ~

exp[2iVC&(z —b)]
~

d kll,
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where the integration over the horizontal wave vector
d2k~~ has two parts: (i) for X~ real, we have propagating
waves, and the energy fiux is independent of height z
above the shear layer; (ii) for evanescent waves, .Ki is
imaginary Ei =i—k„and the energy flux decays exponen-
tially hke exp[ —2k~(z —h)], on the distance z —Ii from
the source, faster for shorter vertical wavelength
A, =2ir/k, . For an observer distant from the source
k, (z —h) »1, no sound is received from the directions
for which ki is iinaginary, and thus a "zone of silence" is
formed. The vertical transmitted wave number Xz is
given by [Eqs. (74a), (73a) and (73b)],

(ciKi /co) =1—(ci/co) [cos 8/(1 —Mo cos8cosg) ],
(85)

and it changes from real to imaginary when Eq. (85) van-
ishes, thus specifying the limits of the zone of silence,

8+——sec '(Mo+ci /co),

for jet velocity in the plane of refraction /=0. For a cold
air jet ci ——co, a "zone of silence" 0 & 8 & 8+ always exists
in the downstream arc, it also exists in the upstream arc
8 & 8 & ir if the jet speed is over bisonic Mo & 2, when
the "zone of silence" in the forward arc extends to
8+——70.5'.

8. Radiation pattern of a jet

The directivity, i.e., acoustic power per unit solid angle,
is plotted in Fig. 4(b) for the sound (Howe, 1975c) of a
monopole point source radiated across a vortex sheet,
with a relative velocity Uit ——uo —vo. The intensity of ra-
diation is independent of distance outside the zone of
silence (8&8+——75' in this case), but within the zone of
silence the sound field is negligible unless the source is
within a fraction of a wavelength from the shear layer
h/A, «1. A sharp peak in directivity at the edge of the
zone of silence is a feature of the vortex sheet model
(Ffowcs-Williams, 1964); it is not observed experimentally
in jet noise, and it is absent from more elaborate models,
such as (a) a semi-infinite vortex sheet, issuing from a
nozzle lip (Munt, 1977); (b) an irregular interface, i.e.,
partially curled-up vortex sheet (Howe, 1976b); (c) a shear
layer entraining turbulence (Campos, 1978c). Since we
shall discuss models (b) and (c) in more detail later (in
Secs. III.B- and III.C, respectively), we conclude by illus-
trating model (a) in Fig. 4(c); this shows the good agree-
ment with measured directivities (Pinker and Bryce, 1976)
of the noise of jets, for Mach numbers ranging from sub-
sonic Mo ——0.3 to near sonic Mo ——0.95, obtained by using
a model (Munt, 1977) consisting of a semi-infinite vortex
sheet issuing from a cylindrical pipe.

B. Scattering by irregular
and moving interfaces

Although the vortex sheet model, together with edge
diffraction, describes accurately the directivity of jet
noise, it is unable to account for changes in the spectrum,
since it preserves the source frequency, apart from con-
stant Doppler shifts. The noise of jets shows irrefutable
evidence of changes in the spectrum received in a given
direction, e.g., a monochromatic test source placed inside
a jet (Candel, Guedel, and Julienne, 1976) is heard outside
over a band of frequencies not present in the source. This
phenomenon of spectral broadening is due to random
Doppler shifts, which can occur in association with either
scattering by an irregular interface in motion or diffrac-
tion by a turbulent velocity field. We shall defer discus-
sion of diffraction until later (Sec. III.C), and consider
here scattering by rough surfaces, at rest and in motion.
As we have seen (Sec. I.A.5), scattering by static, random-
ly irregular interfaces (Greenwood, 1984) is well known to
give rise to signal "clutter" from studies of various types
of waves, e.g., electromagnetic (Beckmann and Spizzichi-
no, 1963), such as radar (Sholnik, 1962), optical (Chernov,
1967), radio (Berry, 1973), and sonar signals hitting the
sea bottom (Clarke, 1973) or surface (Gazanhes and
I.eandre, 1974; Essen, 1974). Scattering by rough surfaces
(Watson and Keller, 1984), e.g., sinusoidal (Rayleigh,
1879), is modified in the presence of convection, since dis-
tinct emission lobes may have different Doppler shifts
(Campos, 1978c), leading to spectral broadening. Multi-
ple scattering (Howe, 1973a,1973b) is also important, in
particular as concerns a static "slab" (Howe, 1976b) or a
"shielding jet" (Campos, 1978b) with two irregular inter-
faces, since modern turbofan engines have coaxial jet ex-
hausts (Chen, 1977; Stone, Groesbeck, and Zola, 1983),
which help to reduce noise levels.

1. Phase shifts

In the case of a rough interface g'(x~~, t), generally irreg-
ular and unsteady, the solution of Eqs. (69) and (72) yields
reflection R and transmission T coefficients

R i =Ro exp(i 2k' g),
T, =To exp[i(K~ —k~ )g],

(87a)

(87b)

which have the same amplitude as for a plane interface
[Eqs. (75a), (75b), (76a), and (76b)] and hence satisfy con-
servation of energy 1+ (

R
(
—

(
T

~

=1+Ro—To=0' the
roughness of the interface introduces phase shifts, which
do not vanish, except for the grazing direction k~ =0 for
the incident wave and undeflected scattering ki IC& for-—
the transmitted wave. The acoustic pressure, incident on
the interface from a point multipole source [Eq. (82)], is
transmitted as

p, (x, t)=(8n. )
' f (To/ki)s(ik~), ikq, ice, )exp[—ik (x—xo) —iso, t]exp[i(ki —Xi )g(x((, t)]d k)(, (88)
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just above the interface; we assume that the pressure dis-
tribution (88) on the interface z =g(xi', r) can be displaced
to its mean position z =0, for the purpose of calculating
the acoustic field pz(x, i) radiated to the observer in the
ambient, which has the spectrum

+ CO

p2(Kq&) =(2&) I g(x[iqr) exp[ —i (Kii 'x[i —Hr)]

Xd xfdt. (89)

The scattered field just above the interface (88) and the
spectrum radiated to the observer (89) both involve a
phase shift exp[i (ki —Kj )g], depending on the shape of
the interface g; if the latter is irregular and unsteady
g'(xi', t), the spatial xi' and time t dependence are
equivalent to changes in wave vector kii and frequency co,
i.e., imply directional and spectral redistribution of acous-
tic energy.

2. Spectral directivity

I(B,g,co)= (2n /piM, ci)sinBcosg

X ~+y p2 K)),Q) (93)

where the spectral directivity I is defined as the mean
acoustic energy fiux per unit solid angle dO and unit fre-
quency band dm,

d W=I(B,f,co)dOdco . (94)

(95b)

by integration over the frequency (95a) and solid angle
(95b), respectively.

The spectral directivity specifies completely the distribu-
tion of acoustic energy, for any received pressure spec-
trum p2(Kii, co); in particular, it yields the directivity D
and spectrum H,

D(6,$)=f I(B,f,co)dco, (95a)

H(co)= f f I(B,g, co)sinBdBd@,

The acoustic energy flux [Eq. (83)], averaged over time
W (Campos, 1978b}, can be expressed in terms of Eq
(79), the pressure spectrum p2(K, co), and Eq. (70), the
velocity spectrum Uz(K, co) =(co/pi)p2(K, co), in the am-
bient, as

W=(2m /piM, ) f (Ki/co)pz(Kii, co)pz (Kii, co')

X~~'d Kiidcodco (90)

where the as'terisk denotes the complex conjugate, and
5 ~ is the continuous Kronecker delta (equal to zero for
co&co', and unity for co=co'). If we write the transmitted
wave vector K in spherical polar coordinates,

Interference function
/

In the case of a vortex sheet, the transmitted spectrum
pq(Kii, co) coincides with the incident spectrum [Eq. (80)],
with the term in square brackets replaced by ki ' and
multiplied by the transmission factor To [Eq. (75b)]; sub-
stitution in Eq. (93) and the use of weH-known integration
properties [Eqs. (99a) and (99b)] show that

t

Io(B,iP, co) =Do(6,$)5(co—co, ), (96a)

i.e., all sound is emitted at the source's frequency co, [Eqs.
(Sla) and (81b)], and the directivity is given by

Do(6 it)—=D(B,g ~, )

K—:(K)i,Ki )

=(co/c i )(cosB,sinB sin@,sinB cosP),

= (32m piciM, ) '(KiTp/ki)

X I S(iki(,iki, ico, }J— (96b)

d Kii (co/ci ) sinB cosgd ——0,
d 0=—sinB d6d P,

so that Eq. (90) implies

(92a)

the d Kii integration in Eq. (90) involves the solid angle

do,
Equation (96b} for the directivity of the plane vortex sheet
can be shown to agree Do dW/d 0 with——Eq. (84), by us-

ing Eqs. (92a) and (92b); we have in (96b) considered only
propagating waves, for which Ki is real. In the more
general case of an irregular and unsteady interface, the re-
ceived pressure spectrum is given by Eqs. (88) and (89),
and thus the spectral directivity [Eq. (93)] by

I(B,g, co)=(256m p,c,M, ) 'sin Bcos g f (coTos/ki) exp[i(kii —Kii) s —i(co —co, )r]

XC(s, r)d kited sd~,

where C denotes the interference function (97) between
the phases of two waves,

C(s, )=rexpIi(ki —Kj )[g(xi', t) —g(xit+s, t+r)]I,
(98)

which we assume to depend only on the spatial s and tem-
poral 7. separation of the corresponding scattering ele-
ments. In the case of a vortex sheet g=O, there is no in-
terference C = 1, and Eq. (97) simplifies to Eqs. (96a) and
(96b), in contrast to the case of an irregular and/or un-

steady interface /&0, for which wave interference affects
the directivity and spectrum.
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4. Convected undulations

J exp[i (k —K)y]dy =2n 6(k —K), (99a)

I f(k)&(k K)dk—=f(K) . (99b)

For simplicity we consider one-dimensional irregulari-
ties in the x direction, and assume the interface to be
smooth in the y direction, so that the interference func-
tion C(x,r) does not depend on y. Thus y, k» appear only
in terms of the form

The properties (99a) and (99b) of Dirac's (1927) delta
function are proved in the theory of generalized functions
(Schwartz, 1949; Lighthill, 1958; Guelfand and Chilov,
1962—1970; Jones, 1966) and imply the Fourier integral
theorem,

J ff (k) exp[i(k K)y—]dy dk =2irf (K), (100)

which is fundamental in the theory of integral transforms
(Wiener, 1933; Titchmarsch, 1937; Sneddon, 1972). We
have used the properties of Eqs. (99a), (99b), and (100) re-
peatedly in Secs. III.A.6—III.B.3, and apply them once
more to the dy dk» integrations in Eq. (97),

I(e,co)=(128m piciM ) sin 8 f (coTos/k&) exp[i (k~~ —K~~)x + '(~ ~ )~]C(x &)dk (101)

where the observer lies in the "fly-over" plane g=0, and
we use the notations k~3 =kl~„,K~l =All„,and s =x. The
interference function is given by

l

convection effect 2mui/L; each "convection harmonic"
(10Sa) has a directivity

D„(e)—= (321T pic iM, )
C(x, 'r) =exp[i (ki —Ki )f(s)),
S:—X —Q)V ~

(102a)

(102b)
Xslil e(CO„TS /kl )x =k +2mn/L (105b)

for an interface with undulations of shape f(s), steady in
a frame (102b) convected at velocity u i.

similar to that of a vortex sheet [Eq. (96b)], but at fre-
quency co„(105a)and horizontal transmitted wave num-
ber K~~

——k~~+2nn/L embodying the scattering effect.
Thus the spectral directivity

5. Spectral-directional lobes
I,(e,~)= g c„D„(eN(~—~„) (106)

C(x,~) = g c„exp[i2n.n (x —u ir)/L], (103a)

Assuming that the undulations f ( s /L ) are determinis-
tic, with a period L, the interference function (102a) can
be expanded in a Fourier series:

consists of a series of convection harmonics (10Sa), each
corresponding to a directivity lobe (105b). In the case of
static undulations (Rayleigh, 1879), the lobes D„allhave
the same frequency co„andfor a sinusoidal shape

with coefficients
Lc„=L ' f exp[i(ki —Ki)f (s/L) i 2nns/L]ds;—0

(103b)

as an example, consider sinusoidal undulations of height
a and length L„

f (s)=a sin[2m. (x —u i~)/L] .

The coefficients are (McLachlan, 1934a; Watson, 1944)
Bessel functions:

c„=J„((ki—Ki )a )-0(((ki —Ki )a )")

—0((a /1, )"},
their amplitude relative to the fundamental lobe D0 de-
cays as the ratio of the height of undulations to wave-
length. In the limit of a flat interface a/A, ~O, only the
n =0 term remains in Eq. (106), which reduces to Eqs.
(96a) and (96b) for a vortex sheet.

6. Formation of spectral broadband

cos[(ki K& )a sin(2uq) —in']dq—0

=J„((ki—Ki)a) .

Each term of the Fourier series (103a) yields, when the dw
integration in (101) is performed, a delta function
5(co—co„),with frequency

co =co +277nui/L =coo+kiiuo —(kii Kii)ui—(105a)

equal to the source's co, [Eq. (81)], plus a multiple of the

The preceding case, of a spectrum consisting of
"spikes, " each with its own directivity lobe, has been ob-
served for sound reflected from the sea surface (Gazanhes
and Leandre, 1974); it corresponds to a deterministic in-
terface, with regular undulations, of height smaller than
the wavelength, i.e., low-frequency scattering. In the op-
posite limit, of diffraction of high-frequency waves by an
interface with random irregularities, the interference
function (98) is determined statistically. For a Gaussian
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C(x,~)=exp[ b—(x —uir) /L ], (107)

showing that, beyond a correlation scale L„interference

random process, it will be shown (in Sec. III.B.7) to
reduce to

cancels most of the acoustic energy. Only a fraction
exp( —b) remains, where b is a constant of order unity.
The formula for the spectral directivity (101)becomes, for
the interference function (107), introducing the convected
separation s (102b),

I(B,ai)=(128m piciM, ) sin Bf (a)ToS/k ) expti [co—aip+klluo —(kll —Kll)ui]r}

Xexp[i (kll —Kll)s bs —/L ]dkllds dr,
where (i) the integral in ds is of Gaussian type,

f p[ kll Kll)s bs /—L ]ds =Le'n/b exp[ —(kll —Kll ) L /4b]

(108)

(109)

and shows that the spectrum has a "hump" shape, with maximum for the frequency of undeflected transmission
kll Kll', a——nd (ii) the dr dkll integrations use properties (99a) and (99b) of the delta functions,

f ff(ai) expIi [ai —aio+kllup —(kll Kll )u i ]&}«dkll = [2~/(u i —uo)]f (aii) (110a)

showing that spectral broadening occurs only if ui&uo, i.e., if the irregular interface u i is in motion relative to the
source up and the relevant frequency

o+ kll Kll)ui ~ +( (110b)

is the source frequency (81), with a convection effect (105a). Thus the sound from a monochromatic source of frequency
coo, in motion at velocity up, is scattered by a randomly irregular interface, in relative motion at velocity u i &up, lli'to a
spectral broadband:

I2(B,co)=(64m piciM, ) 'Vn/b (Kz/kj ) [ToS /(ui —"o)]exp[ —. (kll —Kll) L /4b],

which is broader the smaller the wavelength iL relative to
the correlation scale, (kll —Kll) L -A, /L, i.e., for
high-frequency waves.

whose expansion in power series specifies all the moments
M„~of the aleatory process

(113b)

7. Correlations of bivariant process

It is clear that the transmission of a monochromatic,
high-frequency tone as a spectral broadband is due to dif-
fraction by the random irregularities of the interface,
causing Doppler shifts and hence interference between
wave components. The statistics of this random process
is entirely contained in the interference function (98),
which, for a stationary aleatory process, depends only on
the spatial s and temporal w separation of the irregulari-
ties. For example, in the convection case,

C(s) = (exp[ i (ki Ki )[g(sp) —g'(sp—+s)]I ), (112)

where we have taken the mean ( . ) over all possible
realizations of the interface. Thus we have a random pro-
cess (Kolmogorov, 1933; Von Mises, 1964) in two vari-
ables, viz. , the heights gi =—g(so) and $2=/(sp+s), or
phase shifts Ai 2 ——(ki —Ki )gi 2, and Eq. (112) is the point
characteristic function

c(W V2) = &exp['(Alki F242)l)

such as the variance o. and correlation E,
O' =M2p ——Mp 2

——(g ),
E=Mi i/Mo2 ——o (pig'2) . (114b)

8. Statistics of sound in turbulence

For a bivariant Gaussian process, the characteristic
function, in the terminology of the theory of probability
and statistics, is

C(s) =exp[ —err[1 —E (s)]}, (115a)

If we consider a sequence of sound fields at time intervals
longer than the correlation time, they are uncorrelated,
and by the ergodic theorem (Khinchin, 1948), we can use
averages over realizations instead of over time. By the
central limit theorem (Lindeberg, 1922), after a long se-
quence, the random process becomes Gaussian. An irreg-
ular, convected interface entrains turbulence, and the
Gaussian distribution of phase shifts [Fig. 5(a)] has been
observed (Schmidt and Tillmann, 1970) for sound cmss-
ing jets and wakes.

n, m =1
( —)~(i "+ /n! m!)M„~, (113a)

(115b)
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(a) Probability distribution
E sds=0,

p(s/L)=1 2—s /L

(117a)

(117b)

1.0

0.8

0.6

(b) Correlation function

Equation (117b) is the symmetric polynomial of lowest
degree, which gives the correlation function (116) the in-
tegral property (117a). We note in passing that for small
s we have E(s)=1 3s /—L, and thus the asymptotic
form of the interference function (115a) is
C (s)= exp( 3o—Is /L ), which agrees with the form used
earlier (107), with b =3oI. The property of volume con-
servation is thus met by the correlation function [(116)
and (117b)] for a single interface, or E(s) ~E(s)

~

for
sound crossing a jet with two interfaces. A type E(s)
correlation function (Campos, 1978b) has been observed
for the phase shifts of electromagnetic waves in atmo-
spheric turbulence (Tatarski, 1971), and the correlation
function E(s) ~E(s)

~

is consistent [Fig. 5(b)] with the
phase shifts measured for sound crossing a double-sided
jet (Ho and Kovasznay, 1976a,1976b).

0.4

0.2

C. Diffraction and interference
in random media

-0.2

-0.4

FIG. 5. Comparison of theory (solid lines) and experiments
(o,Q) for the statistics of phase shifts of sound transversing
turbulent jets and interfaces: (a) Gaussian probability distribu-
tion vs measured acoustic phase shifts (Schmidt and Tillmann,
1970) for weak (o ) and strong (D) turbulence; (b) correlation
function of the acoustic phase shifts of sound (Ho and Ko-
vasznay, 1976a,1976b) of frequency 10 kHz (o) and 20 kHz
(4 ) transmitted across a double-sided jet {from Campos,
1978b).

E (s) =p (s /L)exp( s2/L 2), — (116)

show1ng that the correlation becomes negligible beyond a
correlation scale, i.e., E «1 for s ~&L. The polynomial
factor adapts to special properties. For example, the in-
terface of a jet should conserve fluid volume, so that the
displacement g(s) has zero integral, and so does the corre-
lation:

where the mean deviation o.
&

is related to ratio of the rms
height of irregularities to wavelength A,, viz. , o&-P/A, ;
the function (115a) can be designated an interference
function in wave theory, since it shows that strictly corre-
lated waves E(s)=1, i e , in ph.as.e, suffer no attenuation,
C(0)=1, but uncorrelated components E(s)=0 have a
decay factor exp( —o1). The shape of the spectrum is
determined mainly by the correlation coefficient, usually
of the form

We use the designation scattering to describe the propa-
gation of long waves, in homogeneous media, or in the
presence of obstacles, of scale shorter than the wave-
length, e.g., sound transmission across an interface of
thickness small on a wavelength scale; scattering can sub-
stantially alter the directivity pattern (Sec. III.A), but not
so much the spectrum (Sec. III.B), e.g., sound from a
monochromatic source is received as spike(s), with
Doppler shifts in the presence of convection. The case of
diffraction of high-frequency sound by an irregular inter-
face demonstrates spectral broadening, which is associat-
ed with wave interference and aleatory phase shifts in
random media (Campos, 1978a,1978b; Wentzel, 1980;
Bj@rn@ and Larsen, 1984); another example is the propa-
gation of sound in turbulence (Lighthill, 1953; Sunyach,
Juve, and Comte-Bellot, 1982), which, in the diffraction
limit of wavelength short compared with the length scale
of change in the flow, can be studied by the "ray" approx-
imation. Random phase shifts have been observed exten-
sively for high-frequency sound propagating in turbulence
(Schmidt and Tillmann, 1970; Ho and Kovasznay,
1976a,1976b; Blanc-Benon and Juve, 1981a,1981b,1982a,
1982b); for intermediate frequencies, spikes and broad-
band coexist (Candel, Julienne, and Julliand, 1975; Can-
del, Guedel, and Julienne, 1976; Beyer and Korman,
1980). The effect is similar to the random Doppler shifts,
due to the motion of gas molecules, that widen the emis-
sion lines of the Bunsen burner (Rayleigh, 1873,1889,
1915), and to the broadening of line profiles of radiation
from the interior and atmospheres of stars such as the sun
(Athay, 1976; Bonnet and Dupree, 1980). In aeroacous-
tics, the theories of propagation of sound in jets with
"deterministic" velocity profiles (Atvars, Schubert, and
Ribner, 1964; Liu and Maestrello, 1975; Durbin,
1983a,1983b), wlle11 compared with wlIld tllIlllel 111easllle-
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ments (Cxrosche, Stiewitt, and Binder, 1977; Ross 1981),
may require correction for the spectral broadening effects
that are observed to occur during transmission across an
irregular and turbulent shear layer.

1. Convected eikonal equation

A jet of velocity vp e.g., a shear layer, usually contains
turbulence, with nonuniform, unsteady velocity v~{x,t),
whose typical rms value is (Barrat, Davies, and Fisher,
1963) about a~-0. 15 of the jet speed; thus, even in a
bisonic jet Mp ——Up/cp ——2, the local turbulence is in-
compressible, M f =U f /cp -a&Mp -0.1, implying that
the propagation of sound is described by the convected
wave equation,

I [8/8t +(vp+v])V] —cpV jp(x, t)=0, (118)

since (i) the mean flow may be of high Mach number, but
is uniform (Sec. III.A.5); (ii) the turbulent velocity v~ is
nonuniform, but of low Mach number. The acoustic
pressure may be represented by

p ( x, t) =p, (x,t)exp[i A(x, t)], (119)

k =RA/Bx,

co —= —BA/Bt,

yields the wave conservation equation

(121a)

(12lb)

(121c)

which corresponds to the identity 8 A/8 X Bt =8 A/
BtBx, valid if the phase A has continuous derivatives of
second order.

2. Sound rays in turbulence

Substituting (12la) and (121b) into the eikonal equation
(120) leads to the dispersion relation

co(k)=cpk+vp. k+vi k,
showing that the group velocity

(122)

where, in the ray approximation, the amplitude p, varies
on a scale I much larger than the wavelength, I. ~&A, .
In this case the phase A satisfies the convected eikonal
equation

[aA/at +(v, +v, ).aA/ax]' —c,'(aA/ax)'=0(X'/I, ') .

(120)

Defining the wave vector k and (minus) the frequency co

as the space and time derivatives, respectively, of the
phase,

dx/dt =w =—Bco/Bk=cpn+vp+v&{x, t)

consists of the sound speed cp in the direction normal to
the wave front n=—k/k, plus two convection effects, uni-
form by the mean flow vp, and nonuniform and unsteady
by the turbulent velocity v~(x, t). The sound rays are
straight lines for sound in a uniform mean flow
wp ——cpn+ vp, but the component of the turbulent velocity
transverse to the wave normal v,~=nX(nXV&) causes
"crinkling" of the ray paths; the uniform mean flow
causes a constant phase change k.vo, relative to sound in
a medium at rest, to which the component of the tur-
bulent velocity along the ray Uq~~

——v&.n adds a random
phase shift k v~ ——ku&~~. This phase shift implies early
(late) arrival of the wave for k v& &0 (k v~ &0), i.e., a
phase lead (lag) k.v ~ per unit time, equivalent to
O((U&/cp) ), to a phase shift k v&/cp ——k M& per unit
length, or to a total phase change

A (x, t) = —I [k.M$(x, t)]ds, (124)

along a ray path. Since it can be shown (Campos, 1978b)
that sound .does not exchange energy with low-Mach-
number turbulence, it follows that the main acoustic ef-
fect of such turbulence is to transform coherent into
"incoherent" beams by causing random phase shifts given
by (124).

3. Integral transmission operator

The shear layer separating a jet from a medium at rest
may be modeled as (i) consisting of an irregular interface,
convected at a fraction ap-0. 6 of the jet velocity, across
which mass density and sound speed may change, leading
to a transmission factor (87b), consisting of amplitude
and phase changes; (ii) entraining a layer of turbulence, of
rms velocity a fraction a~-0. 15 of the jet velocity, which
causes no mean amplitude change, but adds a phase shift
(124), so that the total transmission factor is given by

T =Tpexp[i(A~+A2)],

Ai(x, t) =(ki —Ki )g(x, t),
(125)

(126)

and consists of (a} an amplitude factor Tp similar [Eq.
(75b)] to that of a vortex sheet; (b) a phase shift A& due
[Eq. (126)] to scattering by the irregularities g of the in-
terface; {c)an additional phase shift Az due [Eq. (124)] to
diffraction of sound rays in turbulence. The total
transmission factor (125) may be used to calculate Eqs.
(88) and (89), the acoustic pressure spectrum p2(K, co)
transmitted across a shear layer, due to a source S in the
jet (77):

p2(K, co) =M[S(k, to, )]

=(64rr') ' f (Tp/k~}$(ik~~, ikq, iso, )exp[i(K~~ —k~~) x~~+i(co ——co, )t]exp[iA(x, t)]d2k~~d x~~dt . (127)
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This equation may be taken as the definition of the in-

tegral transmission operator M. In the case of a vortex
sheet, there are no random phase shifts,

A(x, t) =A, +A, =O,

p2(&,cv)= (8ir ) '(To/ki)S(iK, ico, )

X&(cv —cv, ),

(128)

(129)

and the transmission operator M reduces to multiplica-
tion by the ainplitude factor To, otherwise it is its gen-
eralization to turbulent and/or irregular shear layers.

4. Multiple refraction series

(ii) The sound field p+ propagating upward in the jet,
incident on the upper shear layer, is reflected A'+ into the
downwar'd-propagating field p in the jet and transmit-
ted M+ to be received p2 by the observer outside the jet:

p- =~+ Ip+ j

p2=~+tp+ j .

(131)

The system of coupled integral equations [(130)—(132)]
can be solved (Campos, 1978b) to express the sound field
p2 received by the observer in terms of that p &

emitted by
the source,

. . ) Ip, j, (133)

by means of the refraction series (in curly brackets),
whose terms can be interpreted as follows: (a) the zeroth-
order term M+M represents "direct" transmission from
source to observer across the lower M and upper M+
shear layers; (b) the nth-order term M+M "M involves n
intermediate double reflections p'=A' A'+ in the jet, at
the upper A'+ and lower A' shear layers, after transmis-

The integral operators, like Eq. (127), describing refrac-
tion of sound by shear layers, and including scattering of
low-frequency waves by interfaces and diffraction of
high-frequency waves by turbulence, can also be applied
to more complex systems of multiple shear layers. An ex-
ainple of practical use as a sound attenuator is the
"shielding jet," with two shear layers separating source
and observer. The sound field p2 received by the observer
"above" the jet is related to the sound field pi emitted by
the source "below" (i.e., on the other side of the jet),
through the sound field in the jet, which we decompose
into upward p+ and downward p propagating com-
ponents. The four sound fields p~,p2,p+,p are related
by integral operators like (127) as follows.

(i) The sound field propagating upward in the jet p+ is
due to transmission M, across the lower shear layer, of
sound pi from the source, plus reflection A', at the
lower shear layer, of the downward propagating fields

p —~

(130)

sion from the source M and before transmission M+ to
the observer.

5. Attenuation factor

Having shown that the method of integral refraction
operators can be applied to any system of shear layers, we
return to the single-layer case to calculate the spectral
directivity [Eq. (97)] or acoustic energy radiated per unit
solid angle and frequency band. Since the spectral direc-
tivity is quadratic in the acoustic fields, it depends on the
interference function (98), which is the mean value, over
all realizations of the shear layer, of the total phase shift
[Eq. (128)], due to irregularities [Eq. (126)] and turbulence
[Eq. (124)], for two wave components a distance s and
time v. apart:

C(s, r) = (exp[iA(x, t) —iA(x +s, t +r)] ) . (134)

For a stationary Cxaussian process, Eq. (115a) is given by

C (s) =exp I
—cr [1—E (s)]j,

0:—CT&+Op ~

(135a)

(135b)

6. Correlation scale

The variance o.2, as well as the correlation scale I. ap-
pearing in the correlation function C [Eq. (116)] can be
calculated explicitly from the statistical theory of tur-
bulence (Batchelor, 1953; Townsend, 1956; Hinze, 1975;

where the variance of phases o is the sum of those due to
scattering by irregularities cri and diffraction by tur-
bulence o.z, assuming the two processes to be statistically
independent. The variance cr2 scales (124) as

o2 ——([Az(x, t)] }=(k 1 /co)vj,
on the squares of wave number k and sound speed co, the
length of the ray 1 in the turbulent region, and the rms
turbulent velocity. The sum of Eqs. (136) and (115b) is
the effective attenuation factor o for uncorrelated sound
waves E(s)=0 transmitted through the shear layer, since
in this case the interference function (135a) reduces to a
constant C =exp( —o ). Note that the mean phase shifts
due to scattering [Eq. (126)] and diffraction [Eq. (124)]
are zero, {A)=0, because the irregularities of the inter-
face g' and turbulent velocity vi have zero mean
(g) =0=(vi); the variance of the phase shifts is not
zero, and specifies the attenuation factor cr, which has
two contributions due to (i) scattering by the interface
[Eq. (115b)], which vanishes only for the direction of un-
deflected transmission ki ——Xi and increases away from
it, scaling as the square of the ratio of rms height to
wavelength —P/A, ; (ii) diffraction by turbulence [Eq.
(136)], which does not vanish in any direction and in-
creases away from the vertical, as the ray paths in tur-
bulence become longer I-csc8, scaling as the squares of
the Mach number of turbulence -vf/co and ray length
divided by wavelength -1 /A, .
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Deissler, 1984). We denote by Mz
——(M;MJ ) the auto-

correlation of the turbulent Mach number M;, and by
N(J(K, X) the turbulence spectrum of wave vector e and
frequency X; sound waves are affected by the reduced
spectrum,

shorter for large wave number ~ (i.e., flow disturbances
concentrated on small scales) and longer for small wave
number (i.e., flow disturbances on large scales). The in-
terference function (135a) takes the form

N(ir) =n;nJNJ(~, cpn sc), (137) C(s)=e ~ g (u "/n~)(1 2s—'/L )"e (141)

which is the projection, upon the wave normal direction
n;, of the spectrum of turbulence NJ, with frequency
7=con sc determined by the sound speed co, and projec-
tion of the wave vector of turbulence x on the acoustic
wave normal. For example, in the case of isotropic tur-
bulence it is given by

N(a. ) =Np(a. )[(sc m) —a ], (138)

L ~=oz f f lc N(a)d Icds, (140)

where Np(k) is the turbulence spectrum function. The
variance of acoustic phase shift due to scattering by tur-
bulence is (Campos, 1978b) the integral of the reduced
spectrum, over turbulence wave vector space 8', and
along the ray &:

crz ——f f N(lc)d ~ds, (139)

i.e., the variance is larger for longer ray paths in stronger
turbulence; the correlation scale is

2
where (i) the first term e is an attenuation due to the
variance of phase shifts for uncorrelated wave com-
ponents; (ii) the remaining terms (o E)"/n! of all orders
reduce this attenuation, in agreement with Eqs. (116) and
(117b), the correlation functions for wave components
separated less than length scale s ~L. Since the interfer-
ence function is less than unity, C(s) & 1, an irregular and
turbulent sheap layer always transmits less acoustic energy
than a vortex sheet between the same media.

7. Spike and sidebands

A turbulent and irregular shear layer also distributes
the acoustic energy over a wider range of directions and
frequencies than a vortex sheet, as can be show~ by calcu-
lating the spectral directivity [Eq. (101)],

I(6,a)) =(128~ pic iM, )
' sin 6 f (piTpS/k~ ) expIi(k~! —K!~ )s +i [co co, —(—k!!—E!~)up]~I C(s)dk!!ds d~,

with the interference function [Eq. (141)]. The radiated
power at frequency m, in the direction 0, is given by

I(6,co)=e Dp(6)5(co —cp, )+ g I„(6,co), (143)
a=1

where (i) the zeroth-order term, corresponding to the first
term in Eq. (141), is the directivity of the plane vortex
sheet (96b), at the source's frequency (81), with attenua-
tion (135b) due to irregularities (115b) and turbulence
(136); (ii) all the remaining terms are spectral broadbands,
whose energy totals less than the attenuated from the
"spike" at source's frequency. The nth broadband is
given by

I„(6,~)= (64~'I,c',M, )

~2
)&sin 6[(cpiTpS/ki) e ~ /(gi —up)]II„,

(144)

where the frequency cubi [Eq. (110b)] includes the relative
motion of the shear layer past the source ui&up, and
where the shape function (Campos, 1984c)

11„=f+ (1 2s /L )"e exp[i(k—

=LV ~exp( —Q ) g [(2n) (n —m)!n!] 'H2~(Q)
(145)

l

is a Cxaussian hump, modified by Hermite poly-
nomials H2, with the dimensionless frequency
Q:—(k!!—E'~! )L/2~n as variable. Q=0 at the source's
frequency co=coi, and Q & 0 otherwise. The spectrum de-
cays far from the source's frequency; near to the source
frequency (small Q), the shape of the spectrum is deter-
mined by the Hermite (1864) polynomials Hp(Q) =1 and

2(Q) =4Q —2 (Courant and Hilbert, 1953), so that the
first sideband IIi(Q)=Hp Hp/2=20 h—as a dip, par-
tially "filled" at higher orders n =2,3, . . . . Thus the to-
tal spectrum consists of an attenuated spike, at the source
frequency, plus a series of sidebands, leaving a dip near
the spike.

8. Experimental and aircraft noise

This kind of spectrum, consisting of a spike plus side-
bands (Campos, 1978c), has been observed (Candel,
Guedel, and Julienne, 1976) for a sound received from a
monochromatic test source placed inside a low-speed air
jet. There is good agreement between the theory and ob-
servation, as shown in Fig. 6. It can be seen from this fig-
ure that spectral broadening increases with jet velocity
and source frequency, the latter also leading to more sig-
nificant attenuation of the spike. The simulation of the
transmission of sound for the hot, high-speed jet exhausts
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(a) effect of jet velocity
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FIG. 6. Comparison of theory (large plots) with measurements (inset plots) of the spectra (Campos, 1978c) received from a mono-
chromatic test source placed inside a cold air jet (Candel, Guedel, and Julienne, 1976). The effect of increasing the jet velocity (a) is to
enhance the sidebands; increasing the source frequency (b) also reinforces spectral broadening and accentuates the attenuation of the
spike.

of Concorde in takeoff conditions is presented in Fig. 7,
for a monopole source with a turbine tone frequency of 8
kHz. The spectra, given at 15' intervals, extend more to
the high frequencies in the downstream arc, and more to
the low frequencies in the upstream direction, as observed
for low-speed shielding jets (Candel, Julliand, and Juli-
enne, 1975) in a less marked form. The turbulent and ir-
regular shear layer transmits a broadband into the zone of
silence (e & 73') of a vortex sheet, and a spike and side-
band into other directions; the spike could be absorbed
into the broadband in all directions (second set of curves)
by doubling the thickness of the shear layer, a procedure
roughly equivalent to using a shielding jet with two shear
layers. The plot of directivity (at the bottom) shows that

the acoustic emission for a vortex sheet (solid line) is
spread over a wider range of directions for a single shear
layer (0) and further reduced in intensity by a double
shear layer (4 ).

IV. PROPAGATION IN NONUNIFORM HORNS
AND NOZZLES

The propagation of waves in nonuniform media is
characterized by a dimensionless compactness param. eter
s=kL =2'�/)I, , which is essentially (apart from the fac-
tor 2n. ) the ratio of the length scale of nonuniformities L
to the wavelength A, . The limiting cases of small and
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FIG. 7. Simulation of the noise radiation from a source (e.g., combustion noise) at the frequency of the turbine tone 8 kHz, in the hot,
high-speed jet exhaust of Concorde, in the takeoff configuration. Spectra are given, in nine directions, at 15' intervals, for "actual"
single-shear-layer and a possible double-shear-layer configuration. The directivity plot, at the bottom, compares the single (0 ) and
double (4) shear layers with the vortex sheet model {solid line}.

large compactness have both been considered, respective-
ly, (i) e «1 for scattering of sound by "compact" bodies
(Sec. II.C) and "thin" vortex sheets (Sec. III.A), and (ii)
e »1 for the diffraction of rays by irregularities (Sec.
III.B) and turbulence (Sec. III.C). The strongest interac-
tion between waves and the nonuniformity of the medium
occurs in case (iii) for a wavelength of the order of the
length scale A, -L, or compactness of order unity e-l,

which requires exact solutions of the wave equations. A
simple example of all three cases [(i), (ii), (iii) above] is the
propagation of the fundamental longitudinal acoustic
mode in a duct of varying cross section. The acoustics of
horns (Lagrange, 1760; Euler, 1772) together with the vi-
brations of tapering strings (Euler, 1764,1766; Bernoulli,
1767), provide the prototype problem of waves in nonuni-
form media, following the first studies of waves in "uni-

Rev. Mod. Phys. , Yol. 58, No. 1, January 1986



L. M. B. C. Campos: Acoustics of jets, turbulence, and ducts

form" media, viz. , the vibrations of uniform strings
(D'Alembert, 1747). These early researches bear witness
to the analogies between waves in fluids (Truesdell, 1955)
and in solids (Truesdell, 1960); a similar historic process
of extension, from waves in uniform to nonuniform
media, also occurred for other types, e.g., electromagnetic
waves in free space (Maxwell, 1873) and in transmission
lines (Heaviside, 1882). Thus the acoustics of horns is a
suitable introduction to the general properties of waves in
nonuniform media. For simplicity, we concentrate on
quasi-one-dimensional models.

A. General properties of acoustic ducts

The theory of waves in nonuniform media is analogous
(Eisner, 1966; Campos, 1984a) for a variety of modes,
wider than the preceding brief historical survey would
suggest. The following related problems are discussed in
the literature: (i) propagation of sound in fluid-filled
horns, e.g., air ducts of varying cross section (Rayleigh,
1916; Webster, 1919); (ii) vertical oscillations of a
compressible fluid under gravity, e.g., an atmosphere
(Rayleigh, 1890; Lamb, 1910); (iii) water waves in taper-
ing channels (Green, 1837) and the "water hammer" in
hydraulics (Paynter and Ezekiel, 1958); (iv) longitudinal
vibrations of "solid" horns, i.e., tapering elastic bars
(Merkulov, 1957; Eisner, 1963); (v) transverse vibrations
of tapering strings (Morse and Ingard, 1968) and torsional
oscillations of tapering bars (Pyle, 1967); (vi) electromag-
netic waves in nonuniform transmission lines (Stevenson,
1951a; Schwartz, 1974). We note in passing that the ray
theory (Hamilton, 1827—1832), sometimes referred to as
the WKB approximation, after its first users in quantum
mechanics, Wentzel (1926), Kramers (1926), and Brillouin
(1926), or WKBJ to include a somewhat earlier account in
applied mathematics by Jeffreys (1924), was used much
earlier (Green, 1837) for water waves in narrow channels
tapering gradually. From a conceptual point of view,
there is an analogy between classical mechanics (Whittak-
er, 1904; Landau and Lifshitz, 1949) and the ray approxi-
mation, with particle trajectories corresponding to sound
rays; the transition from classical to quantum mechanics
(Pauling and Wilson, 1935; Landau and Lifshitz, 1966)
corresponds to the extension of the ray approximation to
the exact theory of waves in nonuniform media, to which
we now turn.

1. Alternative wave equations

The acoustics of ducts is described generally by the
three-dimensional wave equations (Secs. II.B.2, II.B.4,
and II.B.6), with appropriate boundary conditions at the
walls. For example, an impedance Z=p/u condition,
specifying the ratio of acoustic pressure p to velocity u, is
often used to model acoustic liners in the locally reacting
approximation. The boundary condition is not needed,
i.e., is implied in the quasi-one-dimensional form of the
wave equation (Secs. II.B.3, II.B.5, and II.B.7) for the

fundamental longitudinal acoustic mode. The horn wave
equation (41) for the acoustic potential becomes, for the
pressure p =poBqr!Bt [see Eq. (24b)] and the velocity
u =Bp/Bx [see Eq. (24a)]

(a'/ar' —.,'~ -'a/ax~ a/ax)p (x, r) =0,
(a'/at' —c',a/ax~ -'a/ax~) u(x, t) =0,

(146a)

146b)

where A (x) is the cross-sectional area, which, for a rigid-
walled horn, depends only on the longitudinal coordinate
x. The wave equation is the same for all variables in a
homogeneous medium, but may take different forms for
different variables in nonuniform media. As an instance
of this we note that the horn wave equations for the pres-
sure (146a) and velocity (146b) coincide only in the case

(2 '/A )' =0,
2/2': I.=co—nst,

2 (x)=3 (0)e"~

(147a)

(147b)

(147c)

of an exponential horn (147c), with constant length scale
I. (147b), for variations in cross-sectional area
A'=dA/dx; the limiting case of infinite length scale
L~oo is the uniform duct A(x)-const, for which the
horn wave equations (146a) and (146b) not only coincide,
but also reduce to the classical wave equation.

2. Equipartition of energy

Before proceeding to derive general properties of the
acoustics of horns, we recall the conditions of validity of
Eqs. (146a) and (146b), which are discussed in more detail
elsewhere (McLachlan, 1935b; Campos, 1985a), namely (i)
that the duct have a straight axis, hard, smooth walls, and
no internal obstacles; and (ii) that the sound waves be of
small amplitude and propagate a plane wave front perpen-
dicular to the duct axis. The latter condition is satisfied
if the wavelength is larger than the transverse dimensions
of the duct, i.e., if only the fundamental longitudinal
acoustic mode can exist, and if acoustic quantities are
averaged over the cross section (Stevenson, 1951b). Note
that for a spherical wave in a conical duct, the ratio of the
area of the wave front to the cross section is a constant,
and for other nonuniform ducts its variation along the
duct axis is neglected. With reference to (a) plane waves
in uniform tubes and (b) spherical waves in conical ducts,
we recall that the former (a) satisfy the equipartition of
kinetic and compression energies everywhere, whereas the
latter (b) do not comply with equipartition, except asymp-
totically, at large distance r, as the wave fronts become
flat on a wavelength scale A,, viz. , kr =2m.r/A, ~&1. This
remark raises the issue of which are the horn shapes for
which equipartition of energy holds exactly at all stations;
to answer this question we note that the kinetic [Eq.
(26a)] and compression [Eq. (26b)] energies are equal
everywhere if the acoustic velocity U and pressure p are
related by
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p (x,t) =pvcou (x,t) {148) Jp(x) —=co /co —A "/2A +(A'/2A) (153)
all along the duct. Assuming this is true initially at
x =0, it will remain so for all x&0, if p, u satisfy the
same wave equation, i.e., if Eqs. (146a) and (146b) coin-
cide, implying that Eqs. (147a), (147b), and (147c) are
satisfied. Thus there is only one nonuniform acoustic
duct satisfying equipartition of kinetic and compression
energies exactly, at all stations x for all frequencies co,
namely, the exponential horn.

3. Duality principle

Comparing the three pairs of equations (146a),(146b);
(146a),(149a); (146b),(149b), we obtain three equivalent
statements of the duality principle:

A (x)p (x, t)~1/A (x),A (x)v (x,t),
A (x),p(x, t)~l /A (x),A (x)Bp (x,t)/Bx

(150a)

(1Sob)

Another exclusive property of the exponential horn is
that, if we define dual ducts as those having inverse cross
sections A(x), 1/A(x), the exponential is the only self-
dual shape; that is, the dual of an exponential horn
[Eq. (147)] is another exponential horn 1/Ao(x)
=[(1/Ao)]e ",one being convergent if the other is
divergent, i.e., the length scales are I,—L,. In order to
demonstrate the properties of dual ducts A, 1/A in gen-
eral, it is convenient to apply the operators AB/Bx to Eq.
(146a) and 8/BxA to Eq. (146b), leading, respectively, to

[a'/at' —c'(1/A)-'a/ax(1/A)a/ax]A ap/ax =0,
(149a)

[Q2/Bt2 —c 8/Bx(1/A) '8/Bx(1/A)]B(uA)/» =0 .

(149b)

(154b)

specifies the cutoff frequency co~ for the acoustic pres-
sure, since for lower (higher) frequencies co & to~ (co & co~)
we have Jz ~0 (Jz.&0), implying that Eq. (152) has only
standing-mode (also propagating-wave) solutions. The
horns of constant cutoff frequency for the pressure [Eq.
(153)]have cross sections satisfying

2AA" —A' —A /I =0, (155)

where l is a constant length scale; the solution of Eq.
(1S5) is

Az(x)=A2(0)[cosh(x/21)+pzsinh(x/21)], (156)

i.e., the hypex. family of horns, which are the only shapes
having a constant cutoff frequency for the acoustic pres-
sul e.

5. Constant velocity cutoff

If we use the duality principle (150a), the preceding re-
sult implies that the only ducts with constant cutoff fre-
quency for the acoustic velocity are the inverse hypex
family:

A3(x) =A 3(0)[sech(x/21)+p3 csch(x/2l)] . (157)

This result can be proved directly by noting that the
transformation (151) applied to the horn wave equation
for the velocity (146b) also reduces it to the Schrodinger
form (152), with an invariant

where the wave invariant [Eq. (153)],written in the form

(154a)

A (x),u (x,t)~1/A (x),8[A (x)u {x,t))/dx . (150c)
J„(x)=to /co+A "/2A —3(A'/2A) (158)

Equation (150a) is the original form (Pyle, 1965), stating
that the acoustic pressure p in a duct A coincides with the
volume velocity (cross section times velocity) Au in its
dual 1/A. Equations (150b) and (150c) are the alternative
forms (Campos, 198Sa), involving only pressure or veloci-
ty, stating that if p ( u) is the acoustic pressure (velocity)
in a duct A, then ABp/Bx [B(Au)/Bx] is the acoustic
pressure (velocity) in the dual duct 1/A.

4. Constant pressure cutoff

We introduce the reduced acoustic variables p, u(x;to)
defined by

v,p(x, t):[A (x)] '~ e ' 'u, p(x;to—), (151)

[d2/dx +J(x)]u,p(x;c0)=0, (152)

for a wave of frequency co; it follows that the horn wave
equation for the pressure [Eq. (146a)] takes a Schrodinger

rm

for the reduced velocity u(x;co), which is similar to that
[Eq. (153)] for the reduced pressure p (x;co), replacing A
by 1/A. It can be checked that the condition (1S4a) of a
constant cutoff frequency (154b), leads tc the differential
equation for the cross section

2AA" —3A' +A /I =0, (159)

whose solution is Eq. (157). The common member of the
hypex [Eq. (156)] and universe [Eq. (157)] families of ducts
is the exponential horn [Eq. (147c)], which can be ob-
tained setting p2 ——1, L =1 in Eq. {156). Thus the ex-
ponential horn is the only duct with constant cutoff fre-
quencies for both the acoustic velocity and the pressure,
which are identical, ai~=c/2L. The fact that the ex-
ponential duct (147c) has a constant cutoff frequency is
well known (Lighthill, 1978a; Dowling and Ffowcs-
Williams, 1983), but we have proved the stronger result
that (i) no other duct has the same constant cutoff fre-
quency for both the acoustic velocity and pressure, and
that (ii) if we require a constant cutoff for pressure (ve-
locity) alone, then the wider additional class of shapes
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meeting it is the hypex (inverse) family [Eqs. (156) and
(157), respectively].

6. Existence of elementary solutions

If we replace, in the hypex family [Eq. (156)], the real
length scale 1 by an imaginary one i/, we obtain the
sinusoidal family,

A4(x) =Aq(0)[cos(x/2/)+P4sin(x/2/)]

whose cross section satisfies the differential equation

2AA" A—'2+A 2/l2=0 .

(160)

(161)

J=(m +me)/~o . (162)

The wave invariant takes the same form [Eq. (162)) in the
wave equation for the reduced velocity (instead of pres-
sure), if we consider the inverse sinusoidal family

The cutoff frequency [Eq. (154b)] becomes "imaginary"
co, = —ico/2/, i.e., there is no real cutoff, and the
sinusoidal family of ducts is acoustically "transparent, "
that is, waves of all frequencies can propagate, since the
wave invariant in Eq. (152) is always positive:

8. Musical instruments

The exponential horn (147c) is a single-parameter L
family, including the uniform duct for L~ oo,' the hypex
[Eq. (156)], sinusoidal [Eq. (160)], and inverse [Eqs. (157)
and (163)] horns are two-parameter P, l families, with the
hypex family reducing to the exponential for P= 1,/ =L.
The importance of these exclusive families is not so much
that these horns have the stated properties, but rather that
all others do not; thus the properties stated, which are
taken for granted for waves in homogeneous media, hold
only exceptionally for waves in nonhomogeneous media.
We may conclude, for example, that exact solutions of the
horn wave equations for any shapes other than hypex,
sinusoidal, and inverse require the use of special func-
tions, in finite or infinite form. The simple shapes of
horn considered are not without practical relevance, since
they have been used in various devices long before being
analyzed theoretically, '

examples include the "hearing
trumpet" of exponential shape and the mouths of musical
instruments (Fig. 8), e.g. , sinusoidal for the English (Na-
garkar and Finch, 1971) and power law for the French
(Benade, 1976) horns, which have been in use for over two
centuries.

A5(x) =A5(0)[sec(x/2/)+P5csc(x/2l)) (163)

whose cross section satisfies the differential equation

2AA "—3A ' —A /I =0,
which is the dual of Eq. (161), i.e., it follows from Eq.
(161) by the transformation A —+1/A, and from Eq. (159)
by the change l —+i/. The reduced wave equation (152)
has elementary solutions, expressible in finite terms, using
only exponential circular and hyperbolic functions, if the
wave invariant J is a constant. Since it is real, the only
possible cases ar'e positive [Eq. (162)] and negative or zero
[Eq. (154a)]; thus we conclude that the horn wave equa-
tion [(146a) and (146b)] for the acoustic pressure/velocity
has exact elementary solutions only for the sinusoidal
(160) and hypex (156) families/inverse shapes [Eqs. (163)
and (157)].

FItting Of SinuSOId

7. Exclusive families of shapes

%'e have used the acoustics of ducts to identify gradu-
ally wider families of horns, according to the properties
they satisfy:

Exact equipartition of kinetic and compression ener-

gies: exponential horn;
Constant cutoff frequencies both for acoustic velocity

and pressure: exponential horn;
Constant cutoff frequency for acoustic pressure (veloci-

ty) alone: hypex (inverse) family;
Existence of exact elementary solutions of the horn

wave equation for the acoustic pressure (velocity): hypex
and sinusoidal (inverse) families.

0.0

BELL OF THE
ENGLISH HOR

FIG. 8. Cross section of the mouth of an English horn (Nagar-
kar and Finch, 1972), (a) as seen in a gamma-ray photograph,
compared with C,

'b) a sinusoid fitting. Other simple duct shapes
include the power law for the French horn and the exponential
for the "ear trumpet. "
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B. Exact solutions for specific profiles

The preceding account of the general properties of
acoustic horns gives, by implication, exact elementary ex-
pressions for the sound fields for five families of shapes,
namely, (i) the exponential horn (Hanna and Slepian,
1924); (ii) the hypex family (Salmon, 1946a); (iii) the
sinusoidal family (Nagarkar and Finch, 1971); (iv) the in-
verse catenoidal (Campos, 1984a), and, as a consequence,
(v) inverse sinusoidal shapes. Exact solutions for other
shapes involve special functions, in finite or infinite form,
e.g., Hermite functions (Bies, 1962) for the Gaussian duct
(Parodi, 1945) and Bessel functions (Ballantine, 1927) for
the power-law ducts (Lagrange, 1760), the latter includ-

ing, as particular cases, the conical horn (Stewart, 1920)
containing a spherical wave (Euler, 1759), and the para-
bolic (Olson and Wolff, 1930) and hyperbolic (Freehafer,
1940} shapes. More elaborate shapes include the tractrix
horn (Lambert, 1954) and parametric families (Mawardi,
1949; Molloy, 1975), obtained by transformations of sim-
ple shapes; another possibility is the matching of different
ducts (Poisson, 1817) to obtain more desirable impedance
characteristics (Olson, 1938; Merkulov and Kharitonov,
1959} or as a means of approximating numerically arbi-
trary shapes (Zamorski and Wyrzykowski, 1981),a related
topic being the effects of cross-sectional changes in wave
guides (Miles, 1981; Hasegawa, 1983; Grigoryan, 1984;
Thomson, 1984). Other topics in the acoustics of horns
include transient (McLachlan and McKay, 1936) and
finite-amplitude (Goldstein and McLachlan, 1935; Nay-
feh, 1975b) effects, amplitude, and phase laws (Salmon,
1946b), resonance (Thiessen, 1950), radiation (Benade and
Jansson, 1974; Jansson and Benade 1974), cutoff frequen-

Filtering function

We begin our consideration of some exact solutions of
the horn wave equation with the simplest shape, namely,
the exponential duct, which has a constant length scale,

L (x):—3 (x)/2'= Id [in' (x)]/dx I
'=1 . (165)

The horn wave equation is identical, in this case, for ve-
locity and pressure, which are given (151)by

vi,pi(x;co) =e "~ 'e ' 'f (x;co), (166)

where f(x;co) is the filtering function, satisfying Eqs.
(152) and (154a),

d fldx + f(co co, )lcp]f—=0, (167)

which is the equation for a second-order system with a
single, constant cutoff frequency. The solution of Eq.
(167) is

cies (Kergomard, 1981), finite-length effects (Wang and
Tszeng, 1984), random scattering (Macaskill and Uscin-
ski, 1981},effects of elastic walls (Barclay, Moodie, and
Haddow, 1977; Sinai, 1981), undulated walls (Nayfeh,
1975a; Bostrom, 1983), or collapsible walls (Lighthill,
1975; Pedley, 1980), internal gradients of density (Shaw,
1970) or temperature (Cole, 1979), thermal dissipation
(Keefe, 1984) and viscous dissipation (Kergomard, 1981)
at the walls. Extensions include two-dimensional horns
(Yeow, 1974) and baffles (Cho, 1980); three-dimensional
waves in tubes of a simple shape have been a subject of
longstanding interest (Duhamel, 1839; Pochhammer,
1876; Barton, 1908; Hoersch, 1925).

Ci ——exp(Kix/21)+Cq exp( —Kix/21) for co & co

f(x;co)= .Cix+C2 for co=co =—cp/21

Ci exp(iKpx)+C2 exp( iKpx)—for co & co

(168a)

(168b)

(168c)

viz. , a linear function (168b) at the cutoff frequency
co=co, —=cp/21, a standing pattern (168a) below co&co~,
and propagating waves (168c) above co&co, . The arbi-
trary constants of integration C~, C2 are determined by
two independent boundary conditions at the horn en-
trance and/or exit.

together with Eq. (166), yields a constant amplitude, and
the second a steady flow, viz. , Ci+C2e " . For propa-
gating waves [Eq. (168c)] above the cutoff frequency
co &co~, the effective wave number Kp is a real quantity
given by

2. Effective wave number

Kp —=(co —co, )' cp ——(co/cp)(1 —co, /co )' (170)

K, =(c /21)(co —co )' =(1—co~/co )' (169)

so that it varies between zero at the cutoff (Ki ——0 as
co=co~) and unity as the frequency tends to zero (Ki —+1
as co~0); in the latter case, the first term in Eq. (168a),

The parameter Ki in the standing-wave pattern (168a),'
below the cutoff frequency co =co~, is a real quantity given
by

which (i) coincides with the ordinary wave number
Kp-co/cp =kp, in the ray approximation, for frequencies
much higher than the cutoff co »co~; (ii) is smaller than
the ordinary wave number K p & co/cp at intermediate fre-
quencies co&co„(iii)vanishes at the cutoff frequency
(Kp ——0 for co=co~), when propagation becomes impossi-
ble. The acoustic velocity v and pressure p, for a wave of
frequency co in a horn of cross section A (x), are related
by
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u(x, t) = —(i/pro)Bp/Bx,

p (x, t) = —t (poco�/co)(Bu/ax + u /L),
(171a)

so that, for an exponential duct (constant L), these two
acoustic variables have the same spatial dependence; for
all other shapes, the horn wave equations for pressure
(146a} and velocity (146b) are different; it is usually easier
to solve one of them, to determine the respective acoustic
variable, and then to use Eq. (17la) or (171b) to determine
the other variable.

4. Transparency function

d f~/dx +[(co +co, )/co]f, =0,
whose solution is a transparency function,

(175)

The exponential, hypex, and inverse families all have
constant cutoffs, and thus involve the filtering function
[Eq. (168)], satisfying Eq. (167). For the sinusoidal and
inverse families, the filtering function is replaced by Eqs.
(152) and (162),

3. Smooth matching of ducts
f, (x;ei)=Ci exp(iX2X)+ C2 exp( t'J—2X), (176)

For the hypex family of ducts [Eq. (156)], the length
scale

1[1+P2tanh(x/21)]
Lz(x) —=

Pz+ tanh(x l21)
(172)

where the filtering function satisfies Eq. (167), i.e., is the
same as before. For the inverse hypex family of ducts
[Eq. (157)], since 22 (x)A 3 (x)=0 and hence L i(x )

+L3(x)=0, the length scale is minus [Eq. (172}]; the
constant cutoff frequency now applies (Sec. IV.A.5) to the
acoustic velocity [Eq. (151)],

u3(x, t) = [sech(x l21)+p3 csch(x/21)] 'e '"'f (x;co) .

(174)

The acoustic velocity for the hypex family is obtained
from Eqs. (171a) and (173), and the acoustic pressure for
the inverse hypex family from Eqs. (171b) and (174); both
variables require more complicated expressions, with two
terms, and not of the constant cutoff type. The families
considered here are all smooth matchings of exponential
ducts: (i) the hypex family [Eq. (156)] matches exponen-
tially diverging ducts

is not constant, except in the case L =1 of the exponent&»
duct P2 ——1. Since there is a constant cutoff frequency for
the acoustic pressure (Sec. IV.A.4.), the latter is given
[Eq. (151)]by

pz(x, t) = [cosh(x/21)+ pi sinh(x/21)] 'e ' 'f (x;to),

(173)

which allows propagating waves for all frequencies (no
cutoff), with effective wave number

+2 (~ +~+) /c0=(~/&0)(1+to, /to )', (177)

which always exceeds the ordinary wave number
ko =co /cQ The length scale for the sinusoidal family
[Eq. (160)], is

L4(x ) =1[1+pq tan(x /21) ]/[pq —tan(x /21)], (178)

and L3(x)= L4(x) for —the inverse sinusoidal family.
The acoustic pressure in the sinusoidal and velocity in the
inverse ducts are given, respectively, by

p4(x, t)=[cos(x/21)+P4sin(x/21}] 'e ' 'f, ( xcg),

u5(x, t)=[sec(x/21)+Pscsc(x/21)] 'e '"'f, (x;to),

(180)

where f, is the transparency function [Eqs. (176) and
(177)]. The acoustic fields have been given exactly, in
terms of elementary functions, for the exponential (Secs.
IV.B.l and IV.B.2), hypex (Sec. IV.B.3), sinusoidal (Sec.
IV.B.4), and inverse families of ducts; this is not possible
(Sec. IV.A.7) for any other duct shapes, for which the
horn wave equation has solutions only in terms of special
functions.

5. Convergent and diffuser horns

As an example of the above statement we consider the
power-law family of ducts:

A2(x)- —„'A3(0)(1+pi) exp(
I
X

I
/1) for

A6(x) =246(xQ)(x/xo) (18la)

(181b)

through a cross section at the origin which is fimte for
the catenoidal (or cosh ) shape, and zero for the hyper-
boloidal (or sinh ) shape; (ii) the inverse hypex family
[Eq. (157)] matches exponentially converging ducts

A3(x) 423(0)( 1 +p3)'exp( —
I
x

I
/1) «r

I
x 1»1

through a "hump'* near x =0 for the "solitary" wave
shape -sech, or with a baffle (infinite cross section) for
the csch shape.

whose length scale [Eq. (181b)] increases (in modulus)
without bound, from zero at the origin. The power-law
family [Eq. (181a)] includes the uniform tube A6(x)
=36(0), as the trivial case n =0, separating divergent
(n &0) from convergent (n &0) horns. All the "conic"
ducts are particular cases of Eq. (181a), viz. , the conical
~ =1, parabohc n = —,, and hyperbolic n = ——,

' horns.
For the power-law family [Eqs. (181a) and (181b)], the
horn wave equation for the acoustic pressure (146a) be-
comes
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B p/Bx +(2n/x)Bp/Bx c—p B p/Bt =0,
which reduces, by means of the substitution

p6(x, t)=e '"'(x/x())'/2 "j(x;co)

to a Bessel equation (Jeffreys and Jeffreys, 1946):

(182)

(183)

6. Generalized spherical waves

For the power-law ducts [Eq. (181a)] with nonintegral
exponent n &0, + 1,+2, . . . , the acoustic fields [Eqs.
(183) and (185)] have no exact expression in finite terms,
using only elementary functions. For example, for the
parabolic n = —, and hyperbolic n = ——, they are speci-
fied by Hankel functions of orders zero II'p' ' and unity
H"i ' —— H')' ', respectiv—ely. The Hankel functions of
any order n can be expressed (Ross, 1975; Lavoie, Osier,
and Tremblay, 1976) as derivatives of complex order of
elementary functions, by

II( i /2) (X) i/2/ in (n —) /2)Xn —i /2
n —1/2

X(X 'dldX)" 'tX 'e+'xI-(186)

the derivatives of complex order n reduce (Oldham and
Spanier, 1974; Campos, 1984g) to ordinary derivatives for
positive integer order n =1,2, 3, . . . , i.e., the Hankel
functions are finite expansions in the "spherical" case of
orders —,, —,, —,, . . . . From Eqs. (183) and (186), the
acoustic fields are given exactly, in finite terms, by

p (x, t) = C+e '"'(x 'd/dx)"

(187)

for waves propagating in the positive/negative x direc-
tion, in ducts of cross section x ", with n a positive in-
teger. The simplest case, ri =1, corresponds to a spheri-
cal wave p -x ' exp[ico(+x lcp t)] in a conical duct of-
cross section -x; the remaining positive integer values
of the exponent n =2,3,4, . . . , represent "generalized"

j"+xj '+ [(co2x lc() ) (n———,
'

) ]j=0, (184)

of variable cox/cp and order n ——,'. The transformation
(183) is quite predictable, since it considers a wave of fre-
quency co, and allows for the fact that, in the ray (or
high-frequency approximation) the amplitude scales as
A '/ -x ", with an additional factor x'/, since the
Bessel function scales as x '/2 for large variable. Thus
the acoustic pressure in the power-law ducts of arbitrary
exponent n is given exactly by Eq. (183), where j(x;co) is
a linear combination of Hankel functions,

J(x;co)=C+H„' ')/2(coxlcp)+C H„' 'i/2(coxlcp),

(185)

with H'",H' ' representing waves propagating in the pos-
itive and negative x directions, respectively, and their am-
plitudes C+,C determined from the boundary condi-
tions at the duct ends.

spherical waves [Eq. (187)], propagating in divergent
ducts of cross section -x,x,x, . . . .

7. Linear displacement amplifier

Just as fluid-filled convergent horns can act as sound
concentrators, a tapering bar or "solid horn" in longitudi-
nal oscillation can act as a displacement amplifier; the
displacement g(z, t) satisfies the horn equation (146a),
with the speed of longitudinal elastic waves cp —)//E/—pp
specified by the Young modulus E and mass density pp
(Landau and Lifshitz, 1967a). In the design of displace-
ment amplifiers, also called sonic transfoimers, arises the
so-called "inverse problem, " viz. , if we specify the dis-
placement law

g(x, t) =h (x) exp( ico,—t) (188)

= —[h "+(co,/c()) h]/h', (189)

where the prime denotes derivative with regard to x.
Note that the shape of the horn depends on the frequency,
i.e., it will be possible to achieve the specified displace-
ment law h (x) at one frequency co„the "design" frequen-
cy; at other frequencies co&co„the solution of the horn
wave equation

B g/Bx +L 'Bg/Bx +(co/c()) /=0, (190)

with the length scale L given by Eq. (189), will not be Eq.
(188), i.e., the displacement law will be different.

8. Power tools with uniform stress

Displacement amplifiers, such as those used in power
tools, are subject to breakage; in order to reduce the risks
of fracture, it is desirable to have a uniform longitudinal
stress, which corresponds to a constant strain

~

Bg'/Bx
~

=a, i.e., to a linear displacement h (x) =ax in
Eq. (188); from Eq. (189), it follows that this is achieved
by a "Ciaussian" horn,

A7(x)=A7(0) exp( bx ), —
b = (co, lcp ) /v 2, —

(191a)

(19lb)

whose "variance" 1 lb =2cp/co, =2/k, is determined
[Eq. (191b)] by the "design" wave number k, —=co, /cp.
The length scale is L = —1/(2b x), and so the displace-
ment g, at an arbitrary frequency co, satisfies

2b xg'+(co/cp—) /=0, (192)

which is (Morse and Feshbach, 1953) a Hermite equation,
as for the harmonic oscillator in quantum mechanics
(Pauling and Wilson, 1935). The solution of Eq. (192) is

at a frequency co„which shape of "solid horn" A (x) will
meet this requirement? The answer lies in substituting
Eq. (188) into the horn wave equation and solving for the
cross section,

1/L =—d [InA (x)]/dx
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g(x, t) =e '"'[CiH„(bx)+C2H „(bx)), (193)

C. Convection by accelerated
or decelerated flo~s

An important extension of the study of acoustic ducts
is the case in which there is a mean flow. The acoustics
of tubes of uniform cross section, has been considered for
uniform flow (Morfey, 1971; Jacques, 1975; Perulli, 1979;
Prasad and Crocker, 1984; Rienstra, 1984), and sheared
velocity profiles (Pridmore-Brown, 1959; Swinbanks,
1975; Mohring and Rahman, 1976; Mani, 1980), both for
unblocked ducts and in the presence of obstacles (Lep-
pington and Levine, 1980; Namba, Notomi, and Fujimo-

(a) experimental Gaussian horn

O
O
z 0.0020—

0.0016
(30
0 0.0012

0
0.0008

I-

o.ooo4

C9

I-
0 0

0

(b) linear displacement law

3
INCHES FROM CENTER

where H+„(bx) are Hermite functions of variable
bx:k—,x/v 2 and order v= c—o /2b co (c——o/co, ) . If the
order is a positive integer n, i.e., at the resonant frequen-
cies co„=co,V n, the displacement of the Gaussian horn is
specified by Hermite polynomials, as the wave function of
the stationary states of the harmonic oscillator. The first
resonant frequency n =1 is the design frequency co& ——co„
implying a linear displacement law II i (bx) =2bx
=~2(co, x/c o), which has been demonstrated experimen-
tally (Fig. 9; Bies, 1962), using a Gaussian horn.

to, 1984; Welsh, Stokes, and Parker, 1984; Quinn and
Howe, 1984). Engine inlet and exhaust ducts often have
varying cross sections, whose effects are modeled most
simply for quasi-one-dimensional flow and sound (Huerre
and Karamcheti, 1973; Lumsdaine and Ragab, 1977;
Mani, 1981; Miles, 1981; Salikuddin and Mungur, 1983),
corresponding to the fundamental longitudinal mode;
transverse modes have also been considered (Tester,
1973a,1973b; Cho and Ingard, 1983; Baxter and Morfey,
1983; Silcox, 1984; Myers and Chuang, 1984; Uenishi and
Myers, 1984), and popular technique is the use of pertur-
bation expansions (Nayfeh, 1973,1975a, 1975b; Nayfeh,
Kaiser, and Telionis, 1975a,1975b; Kaiser and Nayfeh,
1977; Nayfeh, Shaker, and Kaiser, 1980; Nayfeh, Kelly,
and Watson, 1982; Kelly, Nayfeh, and Watson, 1982),
which apply if the change in cross section is gradual. The
muffling of noise transmitted through ducts has motivat-
ed extensive research on wall effects (Crighton,
1980,1984; Namba and Fukushige, 1980; Sobolev, 1982;
Fuller, 1982; Howe, 1983b; Koch and Mohring, 1983;
Page and Mee, 1984), such as the use of perforated liners
(Howe, 1979a,1979b,1980; Yoshida, 1981); there is a sub-
stantial collection of experimental data on acoustic liners
(Plumblee, Dean, Wynne, and Burrin, 1973; Nayfeh,
Kaiser, Marshall, and Hurst, 1980; Silcox and Lester,
1982; Cummings, Parrett, and Astley, 1982; Baumeister,
Eversman, Astley, and %'hite, 1984; Fuller and Silcox,
1984; Watson, 1984), which is suitable for comparison
with theories of sound attenuation. Another area of ex-
tensive research is the effect of mean flow on the acoustic
energy balance (Blokhintsev, 1946; Cantrell and Hart,
1964; Garrett, 1967; Bretherton, 1968; Bretherton and
Garrett, 1969; Hayes, 1968; Candel, 1975; Mohring,
1971,1978b, 1980; Hayes, 1980), which is relevant to the
technique of active noise control (Ffowcs-Williams,
1984b), i.e., cancellation of sound by sound (Swinbanks,
1973; Kempton, 1976; Ford, 1984). A variety of other to-
pics has been considered in the acoustics of ducted flows
(Davies, Coelho, and Bhattacharya, 1980; Bull and Nor-
ton, 1980; Davies, 1981;Hasan, Islam, and Hussain, 1984;
Vaydia, 1984), including sound in near-sonic flows (Myers
and Callegari, 1972; Hariharan and Lester, 1984). Unlike
the case of horns, for which there are numerous exact
solutions (Sec. IV.B), there are relatively few cases of ex-
act solutions of the acoustic equations of nonuniform
nozzle flows; instances in the literature include an itera-
tive technique (Powell, 1959,1960), transformations for
throated ducts carrying high-speed flows (Tsien, 1952;
Crocco and Cheng, 1967; Eisenberg and Kao, 1969), and
solutions in terms of special functions, for low-Mach-
number convergent and divergent nozzles (Campos,
1984b, 1985d).

Nonuniform mean flow

FIG. 9. Diagram of a gaussian horn (a) used by Bies (1962) to
demonstrate the linear displacement law (b), when driven elec-
trically to oscillate longitudinally at the "design" frequency, i.e.,
the harmonic corresponding to the Hermite polynomial of order
one: O, experiment, solid lines, theory.

The generalization of the acoustics of horns to nozzles
is associated with the presence of a mean flow, which is
generally nonuniform, i.e., accelerated or decelerated axi-
ally, as a consequence of changes in cross-sectional area;
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a/at +a/axuo=d Idt +duo ldx ~

d Idt =a/at +u, a/ax,

(195a)

(195b)

which never coincides with d ldt, for a nonuniform flow,
i.e., in a nozzle of varying cross section. The wave equa-
tion for the acoustic velocity (194b) in low-Mach-number
(up «cp) nozzles,2 2

(a'/at+2a/axv, a/at —c',a/axA-'a/axA)u(x, t) =O,

(196)

differs from the horn wave equation (146b) on account of
the presence of the second term, representing nonuniform
convection by the mean flow. The first and third terms in
Eq. (196), which coincide with Eq. (146b), satisfy the du-

ality principle (150c). Bearing in mind that vp-1/A, the
condition that the second term also satisfies duality, is the
vanishing of

Aa/axA -' —A -'a/axA = —2A'/A = —2/L, (197)

which implies a uniform cross section. Thus the duality
principle, for nonuniform ducts of inverse cross sections
A(x), 1/A(x), holds for all horns [Eqs. (150a)—(150c}]
and is invalid for all nozzles in the presence of accelerated
or decelerated mean flow.

2. Amplitude and phase of rays

We represent the reduced acoustic velocity v (x;t0) by

u(x, t)= e '"'IA (x) I

Xexp iko J M—o(k)dk v(x'to) (198)

where kp
—=c0/co is the wave number, and

Mp(x) =up(x)/cp the Mach number; then the low-Mach-
number nozzle wave equation (196) transforms to the
Schrodinger form [Eq. (152)],with complex invariant

J„(x)=ko+ A "/2A —3(A '/2A )2+i 2koMp, (199)

in the case of an incompressible mean flow, the conserva-
tion of the mass flux implies that the volume fiux is con-
stant, and thus the velocity varies inversely with the
cross-sectional area up(x)A (x)-const, where, in the
quasi-one-dimensional approximation (Sec. IV.A.2), all
quantities are averaged over the cross section and thus de-
pend only on the axial coordinate x, for the mean state,
and also on time t, for the sound field. The low-Mach-
number nozzle wave equation (41) is different for the po-
tential y and velocity u =By/Bx,

[(a/at +u, a/ax)' —c,'A -'a/axAa/ax]q (x, t) =O,

(194a)

[(a/at+a/axv, )' c,'—a/axA 'a-/axA]u(x, t}=O,
(194b)

in that the latter replaces the material derivative d ldt by
the operator

Xexp ikp I—Mp(g)dg (201)

as a plane wave propagating in the positive/negative x
direction, with amplitude scaling as the inverse square
root of the cross section, as for horns [Eq. (151}],and a
phase shift due to convection by the non-
uniform mean flow, as for sound in turbulence [Eq.
(124)]. Thus, for the fundamental longitudinal acoustic
mode, a nozzle of varying cross section acts as if it were a
"ray tube. "

3. Acoustic pressure and velocity

From the linearized momentum and continuity equa-
tions, it follows (Campos, 1985a) that the acoustic pres-
sure p and velocity u are related by

ap/at =ppvpav/at —ppcpA 'a(Au)/ax, (202)

where the second term corresponds to horns, and the first
adds convection by the mean flow. In the ray approxima-
tion [Eq. (201)], the relation (202) between acoustic pres-
sure and velocity simplifies to

p (x, t) =ppcpv (x,t)[+1+il(2kpL)]; (203)

thus the acoustic pressure p =p +pp consists of two
components, a primary field p~-pocou, in phase with the
velocity and of comparable amplitude 0 ( 1), and a
secondary field ptt ipoc=puE/lout o, f phase by m/2 and
of small magnitude 0(E), with s —= 1/kpL such that
c &&1. The mean-square pressure p2, averaged over a
period, is determined by the primary field p, since

p~ti=o because the secondary field is out of phase with
the primary, and p jr =0 (E ) is negligible,

whose real part is the same as for horns [Eq. (158)] and
whose imaginary part is associated with nonuniform
mean flow Mo =dMo/dx+0. The imaginary part is a
constant for Mp ——ap=const. , i.e., a linearly accelerated
flow vp(x) =apx +a i in a hyperbolic nozzle
A (x)-1/(apx +a i ); this shape of duct is not included in
the exponential, hypex, sinusoidal, and inverse families,
for which the real part of the invariant is a constant and
the horn wave equation has exact elementary solutions
(Sec. IV.A.6). Thus the real and imaginary parts of the
wave invariant [Eq. (199)] are never exactly constant
simultaneously, and thus the nozzle wave equation has no
elementary exact solutions for any shape. The wave in-
variant will reduce to a constant,

JU(x) =ko [1+0((1/koL +Mo)2)]

in the combined MolkpL «1 ray kpL»1 and low-
Mach-number Mp « 1 approximations, for which the
solution of Eq. (152) is a plane wave v (x;to)
-exp(+ikpx) Th. us the acoustic velocity in a low-
Mach-number nozzle is given, in the ray approximation,
by

u, (x,t)- exp(+ikpx itot)I —A (x)]
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l

ip(x, t)
i

=poco
i
u(x, t)

i
. (204) 5. Wave action

It follows that there is equipartition of kinetic [Eq. (26a)]
and compression [Eq. (26b)] energies, i.e., the total energy
is twice either of them:

E=E„+Ep=2E„=poAu =2' ——p /poco (205)

in the ray approximation koL »1, i.e., for high frequen-
cies to »L /co. Equation (204) does not extend to lower
frequencies, since Eq. (202) does not reduce exactly to Eq.
(148) for any duct of varying area, on account of the
nonuniformity of the mean flow velocity uo(x). Thus,
whereas equipartition of kinetic and compression energies
hold exactly, at all frequencies and stations, for one horn,
the exponential (Sec. IV.A.3), it fails for all nozzles, in-

cluding the last-mentioned shape.

4. Energy density and flux

The coupling of reflections from the walls, as in horns,
with nonuniform convection in nozzles renders the acous-
tics of the latter more complex than those of the former.
None of the general properties of horns concerning (i)
equipartition of energy, (ii) duality principle, or (iii) ex-

istence of elementary solutions extend to nozzles. Simple
results can be obtained in the acoustics of nozzles, howev-

er, in the ray approximation, which neglects reflections
from the walls and assumes nearly uniform convection on
a wavelength scale. The ray law [Eq. (201)] implies con-
servation of the total energy density E and flux F,

E =pp(x)A (x)
i

u, (x, t)
i

I' =coE .

(206a)

(206b)

The energy then, Eq. (206b), is equal to the sound speed
cp times Eq. (206a), for the energy flux in a reference
frame moving with the fluid. The energy density E and
flux F satisfy the conservation equation

O=dE/dt +aF/ax =(d Idt +cpa/ax)E, (207)

showing that the acoustic energy propagates at a sound
speed relative to the flow, viz. , d/dt is Eq. (195b) the ma-
terial derivative. The ray approximation for low-Mach-
number flow is based on the smallness e «1 of the pa-
rameters E—= 1/kpL Mp. If we multiply the acoustic ve-

locity by 1+0(s), the Schrodinger equation (152) gains
two "new" terms s"v +2E'u'=0 (s ), which are negligi-
ble. A factor 1+0(e) in the acoustic velocity (201) does
not affect Eq. (204) for the pressure, so that equipartition
of energies [Eq. (205)] still holds to 0(E ), even though
the energies gain new 0 (s) terms; the 1+0(e) in the en-

ergy density E and flux F does not change the energy
equation (207), since aE/at =0 and upas/ax -0 (E ). In
conclusion, the combined ray c—= 1/koI. and low-Mach-
number e=—Mo approximations c ~~1 involve two levels
of accuracy: (i) to 0 (s) for the acoustic variables (veloci-
ty and pressure) and energy (density and flux); (ii) to
0(E ) for the wave equation, equipartition of energies,
and energy balance.

As an example of an 0(e) correction to the acoustic
velocity [Eq. (201)] in the ray approximation, we consider

us(x t) [1+Mo(x)/2]u (x t)

which implies the conservation of

B+——poA (x)
~
ub(x, t)

~
[co+vo(x)] .

(208)

(209)

This is the energy flux [(206a) and (206b)] for a frame at
rest, for which the propagation speed u+ is the sound
speed cp, plus or minus the mean flow velocity up, respec-
tively, for propagation downstream/upstream:

B+——E(x)u+(x),

u+(x)=co+up(x) .

The energy equation (207) can be written

0=[a/at+(c, +u, )a/ax]E

=aE/at+u aE/ax,

(210a)

(210b)

(211)

showing that the group velocity (210b) is the velocity of
energy propagation [cf. Eq. (123)). The conservation of
the Blokhintsev invariant [Eq. (209)] is equivalent to the
conservation of wave action,

W+ =B+/coco=—E(x)/to+,

co+ =co/[1+Mo(x)] ~

(212a)

(212b)

6. Convergent and diffuser nozzles

The latter result can be proved from exact solutions of
the nozzle wave equation, which are never elementary but
can be obtained in terms of special functions, for certain
shapes, e.g., the parabolic and hyperbolic nozzles, of cross
section, respectively,

As(x) =As(xp)(x /xp )

A9(x) =A9(xp)(xo/x),

(213a)

(213b)

where E(x) is the energy density and co+ the wave fre-
quency co with a Doppler factor to account for mean flow
effects. The conservation of wave action implies that the
energy density and wave amplitude increase or decrease
for sound propagating upstream or downstream, respec-
tively, corresponding to the lower or the upper sign in
Eqs. (208), (209), (210b), (211), and (212b). The conserva-
tion of wave action [Eq. (212a)], like the equipartition of
energies (205), fails to extend beyond the ray approxima-
tion in the acoustics of nozzles, when the wavelength is
comparable to the length scale for changes in cross sec-
tion or flow velocity; in the latter case it can be shown
(Campos, 1985d) that on the approach to a blockage, the
kinetic energy predominates over the compression energy
and the wave action is mainly kinetic, whereas on the ap-
proach to an opening, compression energy dominates and
the wave action is mainly compressive.
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the exact acoustic velocity is given, respectively, by

Us(x, t) =Us(xo, 0)(x /xp )

Xe ' '[H" '(k x)/H" '(kpxp)], (214a)

where the constant length scale is assumed to be positive
L &0, the upper sign applies to decelerated flow in a
diffuser nozzle, and the lower sign applies to accelerated
flow in a convergent nozzle. The exact acoustic velocity
is given by

u9(x, t) =U9(xp, 0)(x/xp) exp[(i/2)koMop(xp x—/xp)]

Xe '"'[Ho ' (v2kox)/Hp' '(v2koxo)], (214b)

u i (x, t) = U i (0,0) exP[i (Kox tot) ]—e+"~

X [&(x)/& (0)], (218)

where Moo =Mp(xp) is the Mach number at axial station
xp,' both solutions involve (Bateman, 1932) Hankel func-
tions H"' (H' ') for waves propagating in the positive
(negative) x direction, with complex order vi for the para-
bolic nozzle [Eq. (214a)], and with complex variable
vzkpxp for the hyperbolic nozzle [Eq. (214b)], with vi, vz

given, respectively, by

v) =—1+koxoMOO,

v2= (1+2iMpp/koxo)'~

(215a)

(215b)

In the case Mp ——0 when the mean flow is absent, Eqs.
(215a) and (215b) simplify to vi ——1 =-v2, and Eqs. (214a)
and (214b) yield the acoustic velocity in the parabolic and
hyperbolic horn, respectively,

us(x, t) =us(xo, 0)e '"'[H'i' '(kpx)/Hi(kpxp)],

V9(X, t) = U9(Xp, 0)e (X/Xp)

X [Ho ' (kox)/Ho ' (koxo)]

(216a)

(216b)

Equations (216a) and (216b) for the acoustic velocity u are
consistent with Eqs. (183) and (185) for the acoustic pres-
sure p, bearing in mind that u -Bp/Bx in the cases n = —,

'

(parabolic) and n = ——,
'

(hyperbolic) horns. The acoustic
velocity in the parabolic and hyperbolic horns [Eqs.
(213a) and (213b)] satisfies [Eqs. (216a) and (216b)] the re-
lations us-B(A9U9)/Bx and U9-B(A&us)/Bx, in agree-
ment with the duality principle [Eq. (150c)]; these rela-
tions do not hold for the acoustic velocity in nozzles [Eqs.
(214a) and (214b)], because the duality principle fails in
the presence of nonuniform mean flow. Since there are
(Erdelyi, 1953) no known relations between Hankel (or
Bessel) functions of coinplex variable (214b) and complex
order (214a), the example of the parabolic As and hyper-
bolic A9 dual ducts AsA9-const in Eqs. (213a) and
(213b) shows that there exists no simple extension of the
duality principle from horns to nozzles.

7. Correction factor

A, (x)=A e-+"",

M, (x)=M e+""
(217a)

(217b)

The simi1arities and differences between horns and noz-
zles can be illustrated by considering the simplest of
nonuniform ducts, the exponential shape; the cross-
sectional area and mean flow Mach number are given,
respectively, by

where the first three factors are the same [Eqs. (166) and
(168a)] as for waves propagating in the positive x direc-
tion in the exponential horn, with effective wave number
Ko given by Eq. (170); the effects of mean flow are con-
centrated in the factor B(x), denoting the confluent hy-
pergeometric function,

8(x)=F[—,'+iKpL;1+2iKoL;i2kpLMi(x)], (219)

which reduces to unity in the absence of mean flow
(8 =1 for Mi ——0) and otherwise is complex, i.e., intro-
duces amplitude and phase changes. We can compare the
exact solution [Eq. (219)] with the ray approximation
(201),

ui(x, t) = A+(x)ui(0, 0)exp[i(Kpx cot)]—
Xe+"~ exp[+iKpLMpo(e+" —1)], (220)

where we have replaced ordinary kp=co/cp by effective
wave number Kp. The correction factor A+(x) can be
determined so that the "modified ray formula" (220) coin-
cides with the exact solution [Eqs. (218) and (219)], i.e., it
measures the accuracy of the ray approximation when ap-
plied outside its domain of validity koL»1 to lower
frequencies.

8. Acoustics of flow nozzles

The ray correction function is plotted in Fig. 10 for the
exponential diffuser A (right-hand side) and convergent
A+ (right-hand side) nozzles, with Mach number 0.3 at
the narrowest section; since the correction function
A+(x) is generally complex, the modulus

~
A+

~

or am-
plitude factor and argument arg(A+) or phase shift are
plotted separately (at the top and bottom, respectively),
versus dimensionless axial distance x/L. Five sets of
curves are given for values of the compactness
kpL =coL/co ——co/2co~ =1,2, 5, 10,20, ranging from wave
frequencies cp close to the cutoff to, [Eq. (154b)], to much
larger. The amplitude correction is greater (smaller) than
unity for the diffuser (convergent) nozzle, showing that
ray theory overestimates amplitude effects, i.e., the local
sound level decreases in a diffuser and increases in a con-
vergent nozzle less than ray theory would predict; the ray
approximation also overestimates phase leads (lags), due
to propagation downstream (upstream) in nonuniform
flows, the maximum error being about 25' for the phase.
and 20%%uo for the amplitude of acoustic variables. The
amplitude and phase corrections become constant in re-
gions of very small flow velocity Mo « 1 and, conversely,

Rev. Mod. Phys. , Vol. 58, No. 1, January 1986



1.3

]A )

1.3
AMP L IT UDE

IA, ]

1,183
1.179
1.158

L. M. B C C AcoUstlcs , tUPbUIence and d

kL= I

4.0I
I

5.0I x/L
I

I

x/L

0.9

0.8

0.7

aCOUSTIC

VELOCITY
I

0,8

0.7

0.84 5
1o

0.848

+90

ARG (A' )

+60

-30

1.0 2.0

kL 20

kt= If

kL=5

kL= 2

kL= I

'V

3.0 4.0

PHASE

+12.3
5.5

1
+ 0.1

x/L

5.0

+90

ARG (A+)

+60

—30'

2.0
I

3.0I
I

kL —20

kL

I

I

4 0 PHASE 0 -3.6

kL=2 +/ x/L

—90'

FIG. 10. A
'

p and

—90'

. Amp1itude (top) and
tion for ex one I d'ff 1

or |,'Campos, 1984b) of exact a
'

ci rel
1 (1f) 1

„h
c ion of dimensionles

e to propag t d tream (insets) in both

vary more rrapidly near the en
( onverge t) o 1 s

e mean flow " cross section is s

noticeabl e.
eceleration (acce eration)

'
is more

V. EFFECTS OF NON

AND VISCO
NLINEARITY

US DISSIPATION

We have soo far discussed
whtch does not chan e t o erti

y ve equations.
m ich say th

n is alararge per-

ples includ
fo 'll' a 1ons (Mortell and

y e1gh, 1868) and

ortell 1 open tubes (Disselh

f '

orst

ifo (Am
and nonuniform d e and Chasseriaux, 1973;

Nayfeh, 197Sb), an
' '

ns
' ' '

ll, and oseillations
' ' '

eller

on inear method
a and does not

'ving or in cases of w
e or large-

o 1

p r

'
tional methods (Fo

eneous medidia has

8 P .
d

. g
dan Smith, 1979) d'

s of motion (Varlee equation
ound ~aves f

s eepen into shocks (Ri, 0.
en to

65;Bla kstock 19
, and Plohr, 1984)

(H 1984b
M

mp itudes (large

Reev. Mod. Phys. , Vol. 58, No.ol. 58, No. 1, January 1S86



L. M. B. C. Campos: Acoustics of jets, turbulence, and ducts I 59

A. Wave growth and damping
in atmospheres

The processes of (i) wave growth due to nonuniformity
of the medium and (ii) amplitude limitation by diffusion
mechanisms are well illustrated by acoustic-gravity waves
in atmospheres, respectively, (i) nondissipative (Rayleigh,
1890; Lamb, 1910; Groen, 1948; Moore and Spiegel, 1964;
Thorpe, 1968; Lindzen, 1970; Yeh and Liu, 1974;
Campos, 1983b) and (ii) dissipative (Yanowitch,
1967a,1967b,1969; Lyons and Yanowitch, 1974; Campos,
1983c). Similar phenomena occur for purely acoustic
waves in various nonhomogeneous and diffusive media
(Bergmann, 1946; Mihalas and Mihalas, 1983; Moorhem
and Landheim, 1984), but the case of linear acoustic-
gravity waves, propagating vertically in an atmosphere,
provides the closest analogy with the acoustics of ducts.
For example, the decay of mass density with altitude, in
an atmosphere, can be simulated in a tapering duct, by
choosing the cross section so as to enclose the same mass
per unit length; from this analogy, it follows that a wave
propagating upward (downward) in an atmosphere, in-
creases (decreases) in amplitude, as for sound in a con-
verging (diverging) duct. The wave growth, for upward
propagation in an atmosphere at rest, implies an increas-
ing amplitude for a constant frequency, i.e., gradually
steeper gradient of the waveform; this wave growth is op-
posed by dissipation, e.g., by viscosity, which limits wave
amplitude and phase.

2. Yiscous acoustic-gravity waves

The vertical momentum equation for a viscous fluid
under gravity can be linearized,

poau/at+ay/az+pg=gsa U/az (225)

where we have subtracted the mean-state stratification
[Eq. (221a)], v,p,p denote the velocity, pressure, and den-
sity perturbations, respectively, and g, =g2, + —,g&, the
total static viscosity (where g&, and gz, are the first and
second viscosities, respectively). The density perturbation
is specified by the equation of continuity,

ap/at = —a(pou)/az . (226)

It is related to the pressure by the adiabatic condition, in a
convected frame,

which may be interpreted as (a) the total mass mo of the
atmosphere, above the level z =0, is equal to the mass of
a cylinder, of uniform density equal to the "ground level"
value po(0), and height equal to the scale height L; (b) the
"center of gravity" zG of the atmosphere is located one
scale height L above the level z =0. Thus, for a cold iso-
thermal atmosphere, the scale height is small, the density
decays rapidly with height, and the center of gravity is at
low altitude; for a hot isothermal atmosphere, the scale
height is large, the density decays slowly with height, and
the center of gravity is at high altitude. For the same ini-
tial mass density, the atmosphere has a greater (lesser) to-
tal mass for larger (smaller) scale height L.

1. The scale height
ap/at+ U dpo/dz=co(ap/at +U dpo/dz), (227)

dp0/dz = —pog,

Po =POR To

(221a)

(22 lb)

is the equation of state for a perfect gas, for which, in hy-
drostatic equilibrium [Eq. (221a)], the pressure decays

dpo/dz = po/L, —
on the scale height L, defined by

(222a)

For a fluid in hydrostatic equilibrium, the mean-state
pressure po gradient dpo/dz with altitude z balances the
weight of fluid per unit height, i.e., the acceleration of
gravity g times the mass density po,

a'U/at' c,'a'u/az'+—1 g aU/at =~a'U/az'ar,

where g:—g, /po denotes the kinematic viscosity.

(229)

where co is the adiabatic sound speed, viz. ,
co=—(apo/apo), . Using Eqs. (221a) and (226) we may
rewrite Eq. (227)

ap /at =ppgv —poco~aU/az

Taking a/at of Eq. (225) and replacing ap/at, ap/at from
Eqs. (226) and (228), respectively, we obtain the vertical,
viscous acoustic-gravity wave equation,

L=TOR/g . (222b) 3. Analogy with horns

In the case of an isothermal atmosphere, under constant
gravity, the scale height is a constant, and both the gas
pressure and mass density decay exponentially,

We consider first q=0, i.e., nondissipative, vertical
acoustic-gravity waves, which satisfy

po(z)/po(0) =pc(z)/po(0) =exp( z/L), —(223) a'U/at' c,'a'U/az'+— (c,'/L)aU/az =0 (230)
so that the scale height is the distance over which there is
a decay by a factor e '. From Eq. (223) it follows that

Mo = f po(z)dz =Lpo(0) (224a)

zg ——mo ' f zpp(z)dz=L, (224b)

I.=co/yg,2

co ——yRTp,2

(231a)

(23 lb)

in an isothermal atmosphere of length scale given by [Eq.
(222b)]
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in terms of the sound speed cp, since all coefficients of
Eq. (230) are constant, the wave equation is the same for
all acoustic variables, such as velocity v, displacement
v =Bg/Bt, and potential u =Bqr/Bz, and we can readily
compare with other forms of the wave equation derived
before. Thus {i) the acoustic wave equation for an inho-
mogeneous fluid at rest [Eq. (31)] coincides, in a one-
dimensional form V' =8 /Bz, with Eq. (230), since
cpV(lnpp)V= (cp—/L)B/Bz, where L =——(pp 'dpp/dz)
is the positive length scale of decay of density with alti-
tude; (ii) the horn wave equations (146a) and (146b) both
coincide with Eq. (230) in the case of constant length
scale L =—2 /A ', i.e., for the exponential duct [Eqs.
(147a)—(147c)], with the sign of L reversed compared
with L= —pp/pp. The analogy between the vertical
acoustic-gravity waves in an isothermal atmosphere
po-e ' and the fundamental mode in an exponential
horn 1/A -e " [Eq. (147a)] is that the mass of fluid,
per unit length or altitude, decays exponentia11y with dis-
tance, on the scale height L. Using this analogy, it fol-
lows that vertical acoustic-gravity waves have a cutoff
frequency [Eq. (154b)]

z, =L In{cp/co5) . (237b)

The singular level z =z, divides the atmosphere into two
altitude ranges: (i) in the low-altitude range z & z

„

viscosity is weak b,(z) &1, and appears as a damping of
acoustic-gravity waves; (ii) in the high-altitude region
z &z~, viscosity dominates "compressibility" and ulti-
mately determines the "character" of the "wave. "

for a wave frequency to, in an atmosphere isothermal or
not,

[(1—ib)L d /dz L—d/dz+(Q /4)]u(z)e '"'=0.
(236)

In a general, nonisothermal atmosphere, the wave equa-
tion (236) has a singularity b, (z» )=1, i.e., at the altitude
z =z, where the effects of viscosity and compressibility
balance,

rt(z» )to=[cp(z» )]z .

For the isothermal case [Eq. (235a)], the altitude of the
singular level (237a) is

in an isothermal atmosphere; the wave fields are given by
Eqs. (166) and (168), e.g.,

v(x, t) =C+e'~ exp(+iXpz icot), — (233)

4. Two altitude ranges

The present atmospheric wave problem has two dimen-
sionless parameters besides z/L (altitude divided by scale
height), namely,

Q=co/co» =2coL/cp,

6=—~g/co . {234b)

The dimensionless frequency Q, defmed as [Eq. (234a)]
the ratio of wave co to cutoff frequency co„is the only pa-
rameter for nondissipative waves, and the dissipation pa-
rameter (234b) accounts for the effects of viscosity. In an
isothermal atmosphere, the scale height [Eq. (222b)],
sound speed [Eq. (231b)], cutoff [Eq. (232)], and dimen-
sionless frequency [Eq. (234a)] are all constant; the static
viscosity q„which depends mainly on temperature, is
also constant, but the kinematic viscosity i1=—g&/pp(z) iil-
creases exponentially [Eq. (223)] on the scale height,

respectively, for an upward-downward (plus/minus sign)
propagating wave, of frequency to above the cutoff
co&co», with effective wave number Kp given by Eq.
(170).

5. Three singularities

The two altitude ranges, low z~ &z ~z, and high
z~ &z &zq, are bounded by three possible singularities
zi, z2, z» of the viscous acoustic-gravity wave equation
(236}: (i} the solution in powers of b, for small viscosity,
around the lower singularity 6=0 or z~= —00, corre-
sponds to the initial regime of acoustic-gravity waves,
with viscous damping; (ii) the asymptotic solution, in
powers of 1/b„ for large viscosity, around the upper
singularity 5= oo or zz ——ao, specifies the regime where
compressibility is less important; (iii) the intermediate
singularity 5=1, at the critical level z =z„describes the
transition from the acoustic-gravity propagation below to
the viscous regime above. The simplest second-order
linear differential equation, with three regular singulari-
ties (Ince, 1926; Poole, 1936; Kamke, 1944) is the hyper-
geometric type, and indeed Eq. (236) can be transformed
into a hypergeometric equation, in the case of an iso-
thermal atmosphere. In order to perform this transfor-
mation, we adopt ( —i times the inverse of) the dissipation
parameter as variable, instead of altitude:

i5e—
u(z, t)=e '"'h (g),

(238a)

(238b)

where the function h (g) satisfies the hypergeometric
equation:

b.(z) =5e'~

5=cog(0)/cp ——cog, /ppcp,

(235a)

(235b)

from the value 5 at zero altitude [Eq. (235b)]. The
viscous acoustic-gravity wave equation (229) is written,

(1—g)gh "+(1—2$)h' —(Q /4)Ii =0 . (239)

The solution is (Abramowitz and Stegun, 1964) a linear
combination of hypergeometric functions of the first I'
and second 6 kinds,
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u(z, t)=e '"'I CiEi[ —(i/5)e '~~]

+C,G, [—(i/5)e-'"] I „

Ei Gi(g):F G( 2 +iKpL 2
—iKpL 1 g)

(240a)

where Kp is the effective wave number [Eq. (170)], and
Ci, Cz are arbitrary constants of integration; the solution
[(240)a) and (240b)] is valid in the "viscous regime"

~ g ~
& 1, corresponding [Eq. (238a)] to the high-altitude

range z &z„above the singular level [Eq. (237b)].

that does not vanish at high altitude and thus leads to an
infinite rate of energy dissipation, violating Eq. (242).
Thus we conclude that if we solve the viscous acoustic-
gravity wave equation (229) with g&0, and then let
viscosity vanish g —+0, we do not obtain the solution of
the inviscid acoustic-gravity wave equation (230), i.e., the
solution of the wave equation and the limit g~O are non-
commutative.

7. Reflecting layer

6. Dissipation condition

F+ (1/g) =—E( —,
' +iKpL, ,

' +iKpL—;1+2iKpL; 1/g),

(241b)
1/2+ iXOI

C+ =( i5) —
I Ci+2[ P(1)—g( —,

' +iKpL)

+i'/2]Cz I, (241c)

which corresponds [Eq. (241a)] to a superposition of
upward/downward propagating (plus/minus sign)
acoustic-gravity waves [Eq. (233)], modified by viscosity
according to the hypergeometric functions (241b), with
amplitudes C+ given by Eq. (241c) in terms of Ci, C2
[Eq. (240a)], where f( ) denotes the digamma function
of the argument. The viscous acoustic-gravity waves
must satisfy the following constraint, which may be
designated (Yanowitch, 1967a,1967b) the dissipation con-
dition:

Below the singular level z &z„wehave
~ g ~

& 1, and
thus we use the transformation $~1/g for hyper-
geometric functions (Caratheodory, 1950), to obtain the
velocity perturbation in the "acoustic regime, "

ez/2L icot[ C—e~ P~F (t5ez/L)

+C e F (i5e'~ )], (241a)

This result implies that the effect of viscosity upon an
acoustic-gravity wave is not merely damping, since the
latter would vanish as g —+0. The important mathemati-
cal difference is that the inviscid wave equation (230) does
not have singularities, and its solution is valid everywhere,
whereas the equation with viscosity (229) has a singular
level [Eq. (237a)], which in the limit of zero viscosity
5~0 does not disappear, but recedes to infinity z, ~Do
in Eq. (237b). In order to interpret this result physically,
we apply the dissipation condition (242), requiring that
the rate of strain

~

Bu/Bz
~

~0 must vanish at high alti-
tude; since this is not met by the hypergeometric function
of the second kind Gi [Eq. (240b)], we suppress it by set-
ting Cz ——0 in Eq. (240a). Thus the "viscous regime" lim-
its the amplitude and phase of the wave to a finite value,
as altitude z —+Oo. In the low-altitude range z &z„the
condition Ci&O=Cz implies that C+&0&C, i.e., we
have both upward- and downward-propagating waves,
viz. , the singular level z =z, acts as a reflecting layer for
waves. In conclusion, in the limit of zero viscosity q~O,
an upward-propagating viscous acoustic-gravity wave

[C+ in Eq. (241a)] simplifies to the inviscid form [Eq.
(233)]; the singular level (237b) recedes to infinity
z~ ~ &x&, but it still reflects the waves, producing a
downward-propagating wave [C in Eq. (241a)], which is
not present in the inviscid solution.

E„:—(i)/2) I i
Bu(z, t)/Bz

i
dz & oo . (242)

8. Amplitude and phase limiting
This condition states that the energy dissipated over an
infinite column of fluid, per unit time, must be finite. In
order to illustrate the relevance of this condition, suppose
we select a purely upward-propagating viscous acoustic-
gravity wave, by setting C =0 in Eq. (241a), so that gen-
erally Ci&O~Cz in Eq. (241c). The wave amplitude
would grow exponentially on twice the scale height, and
the phase would vary linearly with altitude, as in Eq.
(233), with modifications due to viscosity [Eq. (241b)] in
the low-altitude range; in the high-altitude range, as
z —+ oo, far above the critical level, g—+0, the first term of
(240a) yields a finite amplitude and phase Fi(g)—+1, and
the second G(ig)-I gn-z L/leads to a linear growth.
The latter corresponds to a rate of strain Bv/Bz-const

Equations (240a), (240b) and (241a)—(241c) specify the
wave field above and below, respectively, the reflecting
layer z~, in terms of hypergeometric functions of variable

g and 1/g, respectively. These variables are two from the
group of six g, 1/g, 1 —g, 1/(1 —g), 1 —1/g, g/(g —1),
which transforms (Klein, 1933) the hypergeometric equa-
tion into itself. The most convenient variable for the
present problem is (Campos, 1983c) 1/(1 —g), because

~

1/(1 —g)
~

& 1 for all z, by Eq. (238a); transforming Eq.
(240a), with C2 ——0, into a hypergeometric function (For-
syth, 188S) of variable 1/(1 —g), we obtain the expression
for the velocity perturbation of viscous acoustic-gravity
waves,

v(x, t)=e '"'(C+[1+(i/5)e '~ ] F+ I[1+(i/5)e '~ ] 'J+interchange+Kp with —Kp), (243)
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where E+ are the hypergeometric functions [Eq. (2411)]
and C+ a constant of integration. Equation (243) applies
over the whole altitude range, including at the reflecting
layer e * =5, where the terms in bold parentheses take
the value 1+i T.he effects of viscosity upon atmospheric
waves are illustrated in Fig. 11, which is based on non-
linear computations (Yanowitch, 1969); it shows that the
exponential amplitude growth (a) and linear phase growth
(1) for acoustic-gravity waves is sharply limited to a finite
value, above the reflection layer, which appears as a
"knee" in the curves.

B. Sound of large amplitude
in potential flows

(a) amplitude

10"

10'

INVISCID PROBLE M
-NO REFLECTION

102 m =1.084

It has been shown (Sec. V.A.) that diffusion processes
can limit wave amplitude in atmospheres. For example, if
they are strong enough the wave growth may be checked

at a linear level. If diffusion is weak, the waves may grow
to large amplitude before significant damping occurs,
leading to a combined nonlinear and dissipative problem
(Sec. V.C). In the initial stages of a disturbance, for times
shorter than the typical diffusion time or distances of
propagation shorter than the diffusion length, dissipation
can be neglected. The wave equations (Lumsdaine and
Ragab, 1977; Campos, 19851) of nondissipative, nonlinear
acoustics coincide with the exact equations of high-speed
gas dynamics (Bateman, Murnaghan, and Dryden, 1956;
Tsien, 1958), which, in the case of a potential flow, can be
derived either from the equations of motion (Prandtl and
Tietjens, 1934; Milne-Thomson, 1958) or from a varia-
tional principle (Bryan, 1918;Bateinan, 1929), using local
variables. In the case of vortical flow, instead of the
equations of motion (Basset, 1888; Milne- Thomson,
1938), it is possible to use a variational principle (Seeliger
and Vfhitham, 1968; Lynden-Bell and Katz, 1981; Katz
and Lynden-Bell, 1982; Mobbs, 1982), in terms of Clebsch
(1857) potentials (Lamb, 1879), which are integral (i.e.,
nonlocal) properties of the flow. The consideration of po-
tential flow implies the assumption of homentropic condi-
tions, and studies of waves of finite amplitude not relying
on this restriction are relatively rare (Varley and Cumber-
batch, 1970; Prasad, 1973); the common instance of
nonhom entropic flow is the study of shock waves
(Courant and Friedrichs, 1948; Raiser and Zel'dovich,
1966), which imply entropy jumps as a consequence of
mass, momentum, and energy conservation relations ap-
plied across the shock front.

10 1. Exact potential equations
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The momentum equation for the potential flow of an
inviscid fluid reduces to the Bernoulli equation,

(b) phase
@+—,(V@) +H =H, ,

H: I I 'dP= I (C—/I )dI =C~/(y —1),
(244a)

(244b)

-0.4

-0.6

INVISCID PROBLEM
"NO REFLECTION

where N is the total potential, @=8@/Bt its time deriva-
tive, V= V@ the flow velocity, and H, H, the free stream
and stagnation enthalpies, respectively. For homentropic
conditions, the enthalpy is given by Eq. (244b), where I,P
denote the total density and pressure, respectively, and C
the exact adiabatic sound speed C =(BP/BT), . The ex-
act equation of continuity or mass conservation,

-0.8 o=i +v(rv) =i +ve vr+rv'c, (245a)

-1.0 .

-1.2

for a potential flow V=V@, can be written in terms of
the enthalpy [Eq. (2441)]:

O'V'4+H+VC VH=O. (2451)
-1.4

0
I

15 20 25
I I

30 35 40

FIG. 11. Logarithxn of amplitude (a) and phase {b) as a func-
tion of altitude, computed (Yanowitch, 1969) for a vertical
viscous acoustic-gravity wave, showing the "knee" near the re-
flecting layer.

C V 4—N —2V@.V@—V@.[(VN.V)V@]=0,
C2=C', —(y —1)[C&+—,'(V@) ],

(246a)

(246b)

Substituting Eq. (244a) into (245b) we obtain the exact
equation for the unsteady potential,
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where the sound speed in the free stream C is given by
Eqs. (244a) and (244b), i.e., in terms of the stagnation
value C„byEq. (246b).

c e"—e+c (A'/A)e' —2e'e' —e' e"=0,
C'=C', —(y —1)(e+—,e') .

(25 la)

(25 lb)

2. Nonlinear local derivative

=O(Mp) .

Here the linear terms (first two) coincide with the classi-
cal wave equation (32), where cp =—C, is the sound speed
at rest; the additional, nonlinear terms are of degree two
(third and fifth) and three (fourth and sixth), but the
equation remains of order two, i.e., two boundary condi-
tions specify its solution uniquely. The nonlinear wave
equation (247) may be written in a form similar to the
classical wave equation (32),

[cP—(y —1)5q /5t]V'q —5(5q /5t)/5t =O(Mp) (24&)

by introducing the nonlinear 5q/5t and self-convected
5y/5t local time derivatives, defined by

5qp/5t =p+(Vq)

5y/5t =qp+ —,
'

(Vqr)

(249a)

Both reduce to the local time derivative
5q/5t=By/Bt=&p/5t in the linear approximation, and
the nonlinear term Vp Vy corresponds to "passive con-
vection" of sound by sound for the nonlinear local deriva-
tive [Eq. (249a)]; for the self-convected local derivative
[Eq. (249b)], the nonlinear term —,'(Vq) has a factor —,

'

relative to passive convection, i.e., it corresponds to the
kinetic energy (per unit mass) of the disturbance.

3. Self-convected local derivative

In the case of quasi-one-dimensional potential flow in a
horn of cross section A (x), the Bernoulli equations
[(244a) and (244b)] are unchanged, in one-dimensional
form, e.g., Ve~e'= Be/Bx; in the equation of continui-
ty (245a), the mass per unit volume I is replaced by mass
per unit length I 3, i.e.,

0=A r+(r vA)'=A r+ r Ae +A re +Are",
(250a)

or, in terms of the enthalpy,

For nonlinear sound in a medium at rest the total po-
tential 4=y coincides with the perturbation potential y,
which satisfies [Eqs. (246a) and (246b)] the exact wave
equation:

Oyp= coV—q' q} —2V—q Vq Vf—[(Vy V)V.q]
—(y —1)q V p [(y —1)/2—](Vp) V2q

Here the sound speed C is given by Eq. (251b), so that the
only difference in (251a) from the free-space expression
(246a) is the replacement of the Laplacian e" by the duct
operator e"+(A'/A)e'. Thus the nonlinear horn wave
equations (251a) and (2Slb) with e=—y differ from the
nonlinear classical wave equation (247) by the term

I-I,q —= I:Ipq + [co' —(y —1)(q +—,
'

q ')](A'/A)q '=0; (252)

it can be written in compact form

[co—(y —1)5q/5t]A '(Aq')' 5(5q /5—t)/5t =0(M, ),
(253)

which is analogous to the linear horn equation (33) with a
nonlinear correction to the sound speed (square brackets
in the first term) and replacement of local time deriva-
tives ip

—=8 q /Bt by nonlinear Eq. (249a)] and self-
convected [Eq. (249b)] local derivatives.

4. Nonlinear material derivative

Nonlinear sound is indistinguishable from unsteady
compressible "mean flow, " and in this case the preceding
wave equations (Secs. V.B.2 and V.B.3) should be used for
the total potential e. If there is a steady, nonuniform
mean flow, the acoustic perturbation, also nonuniform,
can be distinguished by its unsteadiness. Thus the total
flow variables (capital letters) can be decomposed in the
sum of a steady flow (subscript 0) and an acoustic pertur-
bation (lower-case letters),

e,V,I,r, C(x, t) = q „v„t„p„c,(x)

+p, v,p,p, c(x,t), (254)

I-jH'=I-jpq' —2vo Vq' —(y —1)(vo Vq')V q'

—(V'q. V)(v, .Vq )—Vq. [(v, V)Vq]=0,

(2S5}

which differs from the nonlinear classical wave equation
(247) by having a number of extra linear (second) and
nonlinear (third to fifth) terms, involving the mean flow
velocity vp. The nonlinear convected wave equation (255)
and (247} can be written in the form

for the potential, velocity, pressure, mass density, and
sound speed, respectively. Substituting in Eqs. (246a) and
(246b) and retaining all linear and nonlinear terms for
sound of large amplitude, we obtain, in a low-Mach-
number mean flow for which the density po and sound
speed co—=C are constant, the nonlinear convected wave
equation,

C [e"+(A'/A)e']+&+II'e'=0 . (250b)

Substituting Eq. (244a), the exact equation for the un-
steady potential is

[cp —(y —1)Dy/Dt]V qr D(Dtp/Dt)/Dt =O(M p),—

(256)
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which is analogous to the linear case (38), replacing the
linear material derivative (25), by the nonhnear Dy/Dt
and self-convected Dy/Dt material derivatives,

Dy/Dt =dy/dt+ (Vp)

Dqr/Dt =dp/dt+ —,(Vy)

(257a)

(257b)

which have the nonlinear terms as the local forms [Eqs.
(249a) and (249b)].

5. Self-convected material derivative

In the case of acoustic waves of finite amplitude, in
quasi-one-dimensional steady low-Mach-number potential
flow in a nozzle, the substitution of Eq. (254) into Eqs.
(251a) and (251b) yields the nonlinear low-speed nozzle
wave equation,

G3q:— ~g
—2voq —3Uoq q

+[(y—1)/2](Vq&) vp Vinpp . (262)

The most general wave equation in a potential flow, ac-
counting for nonlinearity [Eq. (247)], convection [Eq.
(255)], and nonuniformity [Eq. (262)], can be written in
the compact form

[co (y ——1)Dp/Dt ]V' y D(Dy/D—t )/Dt

+ coVq'V lnpo+(Dy/Dt)vo'V lnco =0

(263)

which is constant and equal to the stagnation value
cp ——C, only at low Mach number Mp =Uo/co « 1. The
general, nonlinear wave equation in a high-speed potential
flow differs from the low-Mach-number case [Eq. (255)]
by terms involving the nonuniformity of mass density pp
and sound speed co,

Cl4ip =—02lp +c p Vip ' V 11lpp + ( g7 +vp Vp )vp V inc p

+(2—y)uoy'[y" +(A'/A)q)'] =0(Mo),
(258)

which is similar to the linear case [Eq. (44)], replacing
linear [Eq. (25)] by nonlinear [Eq. (257a)] and self-
convected [Eq. (257b)] material derivatives,

Dy/Dt =5y/ot+vo Vy,

Dy/Dt =5q&/5t+vo Vy .

(260a)

(260b)

Thus the generalization of the wave equation from a
medium at rest to a low-Mach-number flow involves the
eonveetion term vp Vy, for both linear [Eq. (25)] and
nonlinear [Eqs. (260a) and (260b)] sound.

which differs from the nonlinear horn equation (252) by a
number of linear (second) and nonlinear (third and fourth)
terms, involving the mean flow velocity. The nonlinear
nozzle wave equation can be written in the compact form

[co—(y —1)Dp/Dt]A '(Ay')'

D(Dq /Dt—)/Dt =O(M,'), (259)

which is similar to the linear form (41), replacing linear
material derivatives (25) by nonlinear (257a) and self-
convected (257b) material derivatives. The nonlinear noz-
zle (259) and horn (253) wave equations differ in the same
way as the nonlinear convected (256) and classical (248)
wave equations, namely, they exchange local [Eqs. (249a)
and (249b)] and material [Eqs. (257a) and (2S7b)] deriva-
tives, both nonlinear and self-convected:

Dp!Dt =y+vp. Vy+(Vy)

Dy/Dt =y+vp. Vy+ —,(Vqo)

(264a)

(264b)

where the three terms correspond to the classical wave
equation, linear convection of sound by the mean flow,
and nonlinear convection of sound by sound.

7. Transformation of wave equations

For nonlinear sound in a quasi-one-dimensional poten-
tial flow of arbitrary Mach number in a nozzle, there are,
in addition to the terms in the low-speed nonlinear nozzle
equation (258), the following:

CI5q&=Cl3y+2Mpco(y+uoip )+Mocok =0 (265)

These terms involve the nonuniformity of the sound speed
cp for high-Mach-number mean flow [Eq. (261b)]. The
most general nonlinear acoustic wave equation, for quasi-
one-dimensional propagation in duets of varying cross
section A, including the effects of nonlinearity [Eq.
(247)], reflections from the walls [Eq. (252)], low-speed
convection [Eq. (258)], and high-speed mean flow [Eq.
(265)], can be written in the compact form

6. General wave equation

C =cp —(y —1)[it'+vo. Vq + —,(Vq ) ],
c,'=—C'. —[(y —1)/2]U,',

(261a)

(261b)

where cp is the mean flow sound speed [Eq. (261b)],

For nonlinear sound in a high-speed, i.e., compressible,
steady mean flow, the mass density po and sound speed co
are not constant. The exact sound speed [Eq. (246b)] is
given, using Eq. (2S4), by

[co—(y —1)Dp/Dt]A (Ay')' D(Dp/Dt)/Dt—
+2Moco(Dy/Dt) Uovop =—0 (266)

which reduces to Eq. (47) in the linear case. Comparing
the classical wave equation (32) with the nonlinear high-
speed nozzle Wave equation (266), we can list all the
transformations needed to write wave equations in poten-'
tial fiows: (i) for nonlinear sound, the exact sound speed C
is corrected [Eqs. (261a) and (261b)] relative to the mean
flow sound speed co by
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C =co—(y —1)Dp/Dt,

where Dqr/Dt is the self-convected material derivative
[Eq. (264b)]; (ii) the latter and the nonlinear material
derivative Dqr/Dt [Eq. (264a)] replace the local time
derivatives jj, to account both for nonlinear and linear
convection; (iii) reflections from the walls are included by
replacing the Laplacian V y by the duct operator

'(Ay')'; (iv) nonuniformity of the sound speed cc and
mass density po in homogeneous or high-Mach-number
flow add extra terms.

8. Temporal and spatial operators-

We list in Table III(a) the nonlinear acoustic wave
equations, in the same six cases as the linear forms [Table
II(b)]. The nonlinear equations were deduced directly
from the equations of fluid mechanics (Sec. V.B); since
the linear terms coincide with those derived from the
acoustic variational principle [Table II(a)], we have an in-

dependent check of its validity. The acoustic wave equa-
tions in potential flows are all generalizations of the clas-
sical wave equation, in three directions: (i) changing from
three-dimensional propagation in free space to the quasi-
one-dimensional fundamental mode, in a duct of varying
cross section, replaces the j aplacian by the duct operator;
(ii) passing from a medium at rest to low-Mach-number
convection replaces the local by the material derivative,
and high-speed mean flow adds inhomogeneous terms;
(iii) the extension from linear to nonlinear sound implies
taking into account convection of sound by sound in the
nonlinear and self-convected derivatives. All these

transformations involve space and time derivatives, listed
in Table III(b) after the nonlinear wave equations.

C. Front steepening versus gradient
smoothing

Having considered, separately, viscous dissipation of a
linear sound (Sec. V.A), and nonlinear, inviscid acoustics
(Sec. V.B), we now combine the two problems by discuss-
ing the evolution of a large pressure pulse in a viscous
fiuid. The combination of large amplitude and diffusion
is an important topic in modern nonlinear acoustics
(Blackstock, 1972; Beyer, 1974; Bjdrns), 1974; Rudenko
and Soluyan, 1977), since they have opposing effects,
respectively, steepening (Riemann, 1860) and smoothing
(Lighthill, 1956) of a waveform, and their relative impor-
tance may change during the propagation of a pressure
pulse (Blackstock, 1965; Ockendon and Spence, 1969).
This kind of evolution can be modeled by considering
compressibility effects to second order and dissipation to
first order (Crighton, 1979), since this is the lowest level
of complexity at which both effects compete at deforming
a waveform. The wave equation involves vector and sca-
lar potentials and is of fourth order, if temperature
boundary conditions are applied (Blackstock, 1964); it
reduces to second order, involving only scalar potentials,
if only dynamic boundary conditions are used. The ap-
proximate solutions by perturbation (Nayfeh, 1973) and
singular perturbation (van Dyke, 1964; Lesser and
Crighton, 1975) methods are usually untractable beyond
the second or third order. Explicit, analytic solutions
have been obtained by special transformations of specific

TABLE III. Nonlinear acoustics in the same six cases as the linearized forms listed in Table II, viz, , in
media at rest, in low-speed convection, and in high-speed potential Aows, for both three-dimensional
and quasi-one-dimensional propagation: (a) the acoustic wave equations; (b) the derivatives that
transform the wave equations in the twe1ve preceding cases (six linear and six nonlinear), in space (La-
placian and duct), and time (1ocal, material, nonlinear, and self-convected).

Case

Potential
Total
Perturbation in:
Medium at rest
Low-Mach-number convection
High-speed steady potential flow

Three-dimensional sound in
free space

(a)

Eqs. (246a) and (246b)

Eqs. (247) and (248)
Eqs. (255) and (256)
Eqs. (262) and (263)

Quasi-one-dimensional sound in
nonuniform duct

Eqs. (251a) and (251b)

Eqs. (252) and (253)
Eqs. (258) and (259)
Eqs. (265) and (266)

Linear

Medium:
Designation:

Nonlinear

Self-convected

(b)'
Fluid at rest

local derivative

aZat, Eq. (25)

$jest, Eq. (249a)

D/Dt, Eq. (264a)

Potential flow
material derivative

d/dt, Eq. (25)

8/5t, Eq. (2491)

D/Dt, Eq. (264b)

'Space derivatives: Three-dimensional, free space, V P; quasi-one-dimensional duct, A '
( A P').
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equations. Two of the best-known are (i) the inverse
scattering transformation (Gardner, Greene, Kruskal, and
Miura, 1967,1974) of the Korteweg —de Vries equation
(Boussinesq, 1871; Rayleigh, 1876; Korteweg and de
Vries, 1895; Miles, 1981), which leads to soliton-type
solutions (Freeman, 1979; Cheng, 1984; Drazin, 1984),
that have been observed (Russel, 1845; Gsborne and
Burch, 1980) and are studied extensively for water
(Chang, Melville, and Miles, 1979; Melville, 1980) and
internal (Grimshaw, 1981) waves, and more rarely for gas
motions (Roberts and Mangeney, 1982), analogous to deep
water waves (Benjamin, 1967; Ono, 1975); (ii) the
transformation (Burgers, 1948; Cole, 1950; Hopf, 1951)of
the nonlinear diffusion equation (Burgers, 1974) into a
heat equation (Carslaw and Jaeger, 1946), which has been
thoroughly studied in connection with the formation and
evolution of nonlinear acoustic and shock waves (Hayes,
1958; Whitham, 1974; Lighthill, 1978a) and has applica-
tions in various contexts (Campos, 1983g,l984d; Baxter,
1984; Campos and Leitao, 1985).

1. Invariants along characteristics

ar/at+ var/ax+ ra v/ax =o, (269)

suggests that we multiply Eq. (269) by +C/I to give it
the same dimensions as Eq. (268) and then add the two
equations, to obtain

The exact, nonlinear, one-dimensional equation of
momentum for a viscous fluid is

a V/at+ Va V/ax+ C-'ar/ax =~a'V/ax, (268)

where V denotes the velocity, the pressure gradient BPIBx
is related to the density gradient Br/Bx through the adia-
batic sound speed C:—(aP/ar), and g

—=gq+ —,gi is the
total kinetic viscosity (where g&, i1z are the first and
second viscosities, respectively). Comparing with Eq.
(245a), the exact, nonlinear, one-dimensional equation of
continuity,

2. Deformation of waveform

The pair of equations [(270) and (271)] can be interpret-
ed in gradually more complex stages: (i) linear, nondissi-
pative, (ii) nonlinear, nondissipative, and (iii) nonlinear,
dissipative. In case (i}, viz. , nondissipative ri=o and
linear approximation, the velocity perturbation is neglect-
ed compared with the sound speed. The characteristics of
Eq. (272) simPlify to dxldt=+co where co ——(BPO/BPo),
is the adiabatic sound speed, calculated for the mean
state, i.e., neglecting the acoustic perturbation; Eq. (270)
simplifies to

(8/Bt+coBIBx)J+ ——0,
J+ (x, t) =f(x+cot),

(273a}

(273b)

(a/at+ U.a/ax)Z =O,

J+(x,t)=f [x —U+(x)t],

(274a)

(274b)

and the nonlinear solution differs fundamentally from the
linear one, in that J+ and U+ are mutually dependent,
i e , Eq.. .(273b) is explicit, whereas Eq. (274) is implicit;
unlike the former, the latter allows for the deformation of
the waveform. In the compression (rirefaction) phase of
wave, the acoustic velocity adds to (subtracts from) the
sound speed, so that crests propagate faster than troughs,
leading to a steepening of the compression phase and tail-
ing off of the expansion.

showing that the Riemann invariants J+ reduce to linear
waves, propagating at the sound speed co, in the
positive/negative (+ / —} x direction, without change in
the shape of the waveform. In case (ii), still nondissipa-
tive, but now nonlinear, the velocity perturbation V is
comparable to the sound speed C, and the latter is affect-
ed by the presence of the wave as a large perturbation of
the mean flow, so that the characteristics C+ are given by
Eq. (272); Eq. (270) with i'd=0 shows that the Riemann
invariant [(271)] is conserved along the characteristics

I ~/at+(v+c)a/ax Iz =~a'v/ax',

J (x, t) = V+ I (C/I )dI = V+[2/(y —1 )]C .

(270)

(271)

The integral in Eq. (271) was calculated in homentropic
conditions C =yP/I and P-I r, where y is the adia-
batic exponent. Equation (270) states that viscosity
causes the decay of the Riemann invariant (271), along
the characteristic curves defined by

(272)

as the "paths" of propagation of waves at the "group
velocity, " i.e., the Quid velocity plus or minus the sound
speed. In other words, each of the two directions of prop-
agation U+ corresponds to one characteristic curve and
one invariant J+.

3. Simple wave

In the absence of dissipation, the steepening of the
. wave front would continue until it became vertical, and a
shock discontinuity would form; in this case, the velocity
gradient BUIBx~ co would increase without bound. It is
clear that the presence of dissipation will limit the steep-
ness of the waveform to a finite value. Thus, in case (iii)
described above (Sec. V.C.2), dissipation will cayuse the
Riemann invariant [(271)], describing the propagation of
nonlinear sound along the characteristics (272), to decay
[Eq. (270)]. In order to determine the sound field at any
event (at position x and time t), we have to identify the
two characteristics C+ and C passing through (x, t),
and follow the evolution of the invariant J+ back to a
known event, e.g., the generation of the wave; the values
of J+(x,t), so derived, completely specify the acoustic
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(275a)V = [2/(y —1)]C,
I

U—= V+ C= [(y+1)/(y —1)]C=[(y+1)/2] V .

field. For example, we may consider a piston advancing
into a tube containing a viscous fiuid and creating a large
compression pulse. Assuming the tube to be uniform and
semi-infinite, there is no reflected wave, and the invariant
J must be constant, viz. , we can set it to zero, since a
constant is a nonpropagating term. Setting J =0 in Eq.
(271) we obtain the following relations between velocity
perturbation V, sound speed C, and propagation velocity
U=—U+ ..

4. Viscous potential equation

The preceding deduction (I.ighthill, 1956) of the
Burgers (1948) or nonlinear diffusion equation (279), was
based on a one-dimensional, nonlinear, first orde-r dif-
ferential equation [(270)], describing unidirectional waves.
An alternative approach relies on nonlinear, three-
dimensional, second or-der differential equations, which
include the possibility of propagation in opposite direc-
tions. In order to illustrate the latter approach, for three-
dimensional nonlinear dissipative acoustics, we consider
the viscous momentum equation,

(275b) BV/Bt+ V'(V /2))+V h(V'h V)+VH

The wave, propagating in the positive direction at total
velocity (275b), is completely described by the nonvanish-
ing invariant J=—J+ ..

J= V+ [2/(y —1)]C=2V=[4/(y —1)]C

= [4/(y+1)]U . (276)

Substituting in Eq. (270) we obtain
Be/Bt+ —,

' (V'e)' —qV'e+H =H, , (281)

=pi V'&+(g2+ —,
' gi)V(V.V), (280)

where we have written the enthalpy gradient
TII=I 'VP, neglecting the entropy terms Tgs, where T
is temperature. For a potential flow V'h V=O, we can in-
tegrate Eq. (280) into the viscous Bernoulli equation,

B V/Bt+[(y+1)/2] VBV/Bx =(g/2)B V/Bx

BC/Bt+[(y+1)/(y —1)]CBC/Bx=(g/2)B C/Bx

B U/Bt+ UBZr/Bx =(~/2)B'U/Bx',

(277)

(278)

(279)

satisfied by V =V@ the total potential @, where
q=—qz+ —,g~ is the total kinematic viscosity. Substituting
the enthalpy H from Eq. (281) into the continuity equa-
tions [(245b) and (246b)],

H+V'@.VH+ I C» —(y —1)[B@/Bt+—,
' (V@) ]IV'2@=0,

as the exact equations satisfied, respectively, by the flow
V, sound C, and propagation P= V+ C velocities.

we obtain the exact equation for the total potential in a
viscous fluid, in homentropic conditions:

C'. V'C B'e/—Bt' 2VC —V(Be/Bt) (y —1)(BC—/Bt)v'e Ve.[—(VC V)VC]

—[(y —1)/2](V'@) V' @+gV' (B@/Bt)+g[(V@V)V' @]=0. (283)

This equation coincides with the nonlinear, "classical"
wave equation [(246a) and (246b)] in nondissipative terms,
and adds two viscous terms.

5. Nonlinear diffusion equation

The preceding equations should be considered as
mathematical models of nonlinear, dissipative acoustics,
since the physical assumptions underlying them may not
be strictly consistent. For example, a viscous flow is usu-
ally rotational V'h V=O, and a scalar potential V=V@
does not exist, at least in the boundary layer near a wall.
At a nonlinear level, there is dissipation of energy by
viscosity, scaling as the square of the rate of strain
(Bu;/Bxj ), and this invalidates the conservation of entro-
py. For rotational, nonhomentropic ftow, the velocity
v= V@+V h eP may be expressed in terms of scalar 4& and
vector tP potentials, and the equations of continuity,

I

momentum, and energy lead to (Blackstock, 1964)
fourth-order wave equations, which can meet boundary
conditions for velocity and temperature, e.g., in the pres-
ence of heat diffusion. We have obtained a sex:ond-order
equation (283) by omitting temperature but allowing velo-
city boundary conditions for potential homentropic flow;
in the one-dimensional case [Eqs. (277)—(279)], the scalar
potential always exists

N(x, t) = J u(g, t)dg,

but the homentropic assumption was also made in (271).
Henceforth, we shall also assume the kinematic viscosity
rt =g, /I to be a constant, although it is the ratio of the
static viscosity g, (which depends mainly on temperature
T) to the mass density I, both of which can vary signifi-
cantly in a nonlinear wave. All these assumptions are
"acceptable" for the simplest model theory of waveform
deformation, which considers dissipation linearly and
compressibility to second order [since, to first order,
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compressibility does not change the waveform (273a) and
(273b)]. Thus we simplify Eq. (283) to

c',V'& —a'e/a t' —2Ve V(ae/at)
—(y —1)(a@/at)V @+qv (a@/at) =0 . (284)

2r)a(inX)/at = U —qaU/ax .

These equations imply

X

X(x,t) =exp —rI
' f U(g, t)dg (290)

In the linear, nondissipative, one-dimensional case Eq.
(284) reduces to the first two terms,

a N/at —coa N/ax

=(a/at —c a/ax)(a/at+c a/ax)@, (285a)

which is a combination of the waves [(273a) and (273b)],
propagating in opposite directions, without deformation
of waveforms. The first-order approximation
c,ae/ax - ae—/at, or ae /at c,a—e/ax -2am/at,
may be used (Crighton, 1979) in the second-order terms of
Eq. (284), retaining the same nominal order of accuracy,

a@/at+coa@/ax —(g/2)a @/ax

+ [(y —1)/4](a@/ax ) =0, (285b)

where we have suppressed throughout a a/at factor,
which represents a nonpropagating term. Applying 8/dx
to the equation for the potential (285b) we obtain, for the
velocity V—=aN/ax,

a V/at+ Ico+[(y+1)/2]VIa V/ax =(rl/2)a V/ax2,

(286)

which coincides with Eq. (277), with the change of vari-
able x —+x cot to—a frame moving at sound speed co for
the fluid at rest.

6. Linearizing transformation

Of the four equivalent equations, (277), (278), (279),
and (286), we proceed with an analysis of Eq. (279), which
is similar to the Navier-Stokes equation in one dimension,
without pressure gradient, and with viscosity rI halved; if
we take into account thermal conduction, then g is re-
placed by the diffusivity of sound Yt—:g+(y —1)r1„
where 71» is the thermal diffusivity. Equation (279) is
similar to a linear heat equation (first and third terms),
with a nonlinear convection term (the second); the latter
can be suppressed by a suitable change of dependent vari-
able, that linearizes the equation but leads to nonlinear
initial or boundary conditions. In order to find this
transformation, we note that the nonlinear diffusion equa-
tion can be written in the forln

aX/at = (rl/2)a'X/ax (291)

i.e., the nonlinear diffusion equation (279) transforms,
through Eqs. (288) and (290), to a linear heat equation
(291), of which many solutions are known. An initial
value problem, the. evolution [Eq. (279)] of an initial velo-
city pulse U(x, O), may be calculated as follows: (i) the in-
itial condition is transformed, via Eq. (290), to X(x,O); (ii)
this initial condition is used in the solution X(x,t) of the
heat equation (291); (iii) substitution into Eq. (288) yields
the velocity pulse U(x, t) at all times.

7. Evolution of a pulse

We illustrate this procedure for a simple pulse shape,
viz. , a single initial hump:

U(x, O) =B5{x)=rI Re5(x), {292a)

Re=B/ri=r1 ' f U(g, O)dg .

Here 6(x) is Dirac's delta function and B the area under
the velocity pulse [Eq. (292b)]. Since it has the same di-
mensions [(length) X time] as the kinematic viscosity, we
can form a dim ensionless Reynolds (1883) number
Re—:B le with their ratio. In the presence of thermal dif-
fusivity r1», the diffusivity of sound is q=g+(y —1)rI»
and Eqs. (292a) and (292b) are replaced by the diffusion
number

(292b)

De =B/[g+ (y —1)rI»]

= 1/[1/Re+(y —1)/'Pe],

where Pe=B/r1» is the Peclet (1843) number. The initial
"temperature" [Eq. (290)] corresponding to Eq. (292a)
would be

1 if x&0
exp( —Re) if x ~0. (293)

X(x,t) =(2mr1t) '~ f X(g,O)exp[ —(rl —g)2/2rlt]dg'

The solution of the heat equation (291) with the initial
"temperature" profile (293) is

—2a U/at =a[U' —q(a U/ax)]/ax, (287) = 1 —[1—exp( —Re) ]erf[x /(Zrjt) '~ ], (294)

which is identically satisfied, if a function X exists, such
that

U = —r1 d (lnX)/ax,

where erf denotes the error function (Frank and Von
Mises, 1931). From Eq. (288), the corresponding velocity
pulse Is

U(x, t) = —(2'/mt)'~ exp( x /2qt)/I [1—exp( —Re)]—' —erf[x/(2r)t)'~ ]], (295)
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FIG. 12. Nonon inear acoustic pulse propagatin'ng in a viscousi: a near aussian decay at low Reynolds number, and
shock formation at "high" Reynolds numb (b) " h
o t e wave at different times, showing the decay of the k
front steeteepening, and final dissipation (c) "records" of the sig-

ay o e pea,

nal at different locations, showing the decay of the peak, the
gradually less steep rise, and the lengthening tail.

and at high Reynolds number it takes the sha e (C
1983g,1984d

e s ape ampos,

U x, t ——(2g/mt)'~ Iexp( x!2gt)/er—fc[x/(2gt)' ]I,
(296)

of a Gaussian hump modified by a complementary error
function erfc(g) —= 1 —erf(g).

8. Wave "front" and "tail"

We have illustrated in Fig. 12(a) the pressure pulse, in
dimensionless variables U(x) =v't / U( )

Re=0.5 1.
gt, or values of the Reynolds b

, 1.0, 5.0, 10.0; for small values Re(1, diffusion
predominates, and the pulse is a slightly modified Gauss-
ian hump [Eq. (296), with erfc= 1], as in ordinary heat

or arger vaiues of theconduction from a point source. F l l
eynol s number, nonlinear effects lead to the fo e ormation

a s oc, with a higher peak and steeper front, the
longer the diffusion takes to act

'
hac, i.e., t e smaller the
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