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The preparation, or generation of coherent states, squeezed states, and photon number states is discussed.
The quantum noise is evaluated for various simultaneous measurements of two quadrature components:
heterodyning, the beam splitter followed by two single quadrature measurements, the parametric amplifier,
the (degenerate and/or nondegenerate) four-wave mixer, the Brillouin and Raman amplifiers, and the laser
amplifier. A quantum nondemolition measurement followed by a measurement of the conjugate variable is
also categorized as a simultaneous measurement. It is shown that, for all of these schemes, the minimum
uncertainty product of the measured variables is exactly equal to that required for a simultaneous measure-
ment of two noncommuting variables. On the other hand, measurements of a single quadrature component
are noise-free. Such measurements are degenerate heterodyning, degenerate parametric amplification, and
cavity degenerate four-wave mixing and photon counting by a. photomultiplier or avalanche photodiode.
The Heisenberg uncertainty principle and the quantum-mechanical channel capacity of Shannon are dis-
cussed to address the question "How much information can be transmitted by a single photon?" The
quantum-mechanical channel capacity provides an upper bound on the achievable information capacity and
is ideally realized by photon number states and photon counting detection. Its value is Acu/(1n2)kT bit per
photon. The use of coherent or squeezed states and a simultaneous measurement of two quadrature field
components or the measurement of one single quadrature field component does not achieve the ultimate
limit.
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I. INTRODUCT)ON

The role of the Heisenberg uncertainty principle as the
quantum-mechanical limit on the precision of measure-
ments has been discussed for many years, because it is a
crucial issue for the interpretation of quantum mechanics
(Bohr, 1935; Einstein et al. , 1935; Bohm, Chaps. 5 and
22, 1951;Aharanov and Bohm, 1961, 1964).

Recently, the interest has been rekindled. in the two
fields, in which measurement accuracies close to the
quantum limit imposed by the Heisenberg uncertainty
principle have been achieved. The development of the su-
perconducting quantum interferometric device (SQUID)
amplifier, which is close to quantum limited sensitivity,
raises the possibility of detecting gravitational waves us-
ing a mechanically resonant {Weber bar) antenna (Thorne,
1980a, 1980b). Unfortunately, a resonant bar antenna
couples so weakly to gravitational waves that the standard

Reviews of Modern Physics, Vol. 58, No. 4, October 1986 Cppyright 1986 The American Physical Society 1001



1002 Y. Yamamoto and H. A. Haus: Preparation. . . of optical quantum states
l

quantum limit, imposed by the position-momentum un-
certainty relation, Axbp )h/2, of the bar itself, prevents
detection of the excited oscillation of the order of 10
cm. If the position is measured with an accuracy of
M =10 ' cm, the back action on the momentum
bp=R/2Lbc changes the position by Ax=hut=b&pt/m at
the instant of the second measurement after t sec. The
value is 5&&10 ' cm when the second measurement is
done at t=10 sec, even if the mass of the antenna is 10
kg.

The new technique called "quantum nondemolition
(QND) measurement" was proposed by Braginsky et al.
(1977) and Unruh (1978) to overcome the standard quan-
tum limit. A similar technique called "back action evad-
ing" was proposed by Thorne et al. (1978). In the two
measurement schemes of the occupation number or of one
quadrature component of the mechanical harmonic oscil-
lator the back action of the first measurement is imposed
on the conjugate observable of the measured variable.
When the subsequent measurement is performed, the back
action does not disturb the free motion of the measured
variable. This is indeed possible by a proper choice of the
measured observable and the interaction (Braginsky
et al. , 1980; Caves et al. , 1980).. The other new tech-
nique called "contractive state measurement" was pro-
posed by Yuen (1983). In this measurement scheme of
the position of a free mass, the back action imposed on
the momentum has a quantum-mechanical correlation
with the position operator and contributes to the position
uncertainty reduction at the instant of the second mea-
surement. A practical scheme to realize this was pro-
posed by Bondurant and Shapiro (1984).

Another field of interest is the measurement of optical
fields and the transmission of information using a
coherent laser radiation field. The precise measurement
of inertial rotation has now become possible by the advent
of the four-frequency ring-laser gyroscope (Dorschner
et al. , 1980) and the ring-fiber gyroscope (Sanders et al. ,
1980). The sensitivities of these devices have already
reached the quantum limit determined by the photon
number-phase uncertainty relation, hnhcp) —,', of the ra-
diation field. The same quantum limit is now being ap-
proached by optical communication using coherent
heterodyning detection (Yamamoto, 1980; Chan, 1981)
and by optical communication using photon counting
(Pierce et al. , 1981). The quantum limit of the photon
number and phase measurements are b, n —v'(n) and
by&=i/(2V'(n)). This standard quantum limit is at-
tributable to the quantum noise of a coherent state
(Glauber, 1963).

Quantum states of electromagnetic waves called
"squeezed states (Takahashi, 1965; Stoler, 1971; Yuen,
1976)," "photon number states, "and "amplitude-squeezed
states (or number-phase minimum uncertainty states)
(Carruthers and Neito, 1968)" were proposed to bypass
the standard quantum limit. These states of the elec-
tromagnetic field have reduced quantum noise for one ob-
servable and preserve the Heisenberg uncertainty relation
by an increased quantum noise for the conjugate observ-

able. The information can be extracted from the observ-,
able with reduced quantum noise, and thus the standard
quantum limit can be overcome.

In the same way as the Heisenberg uncertainty princi-
ple sets an upper limit on the precision of a quantum
measurement, Shannon's channel capacity (Nyquist, 1928;
Shannon, 1948) imposes an ideal limit on the efficiency of
transmission and reception of information. The effect of
the "granular nature" of electromagnetic waves on
Shannon's channel capacity has been discussed since the
advent of the laser (Stern, 1960; Gordon, 1962; Levedev
and Levitin, 1963; Takahashi, 1965; She, 1968; Helstrom,
1976; Braginsky and Khalili, 1983). Whereas the
quantum-mechanical form of Shannon's channel capacity
is &cry simply stated, its meaning is profound and con-
tains implicitly the rules imposed on the preparation,
transmission, and measurement of quantum states. This
article reviews the impact of various aspects of quantum
measurement on the quantum-mechanical form of
Shannon's channel capacity.

Section II discusses the control of the quantum state of
electromagnetic waves. A discussion is presented of the
characteristics of a coherent state, a squeezed state, a pho-
ton number state and an amplitude-squeezed state and the
present means of generating them. An ideal laser excited
far above threshold can generate a "quasi" coherent state.
Optical attenuation can extinguish the difference between
the "quasi" coherent state generated by an ideal laser and
the "genuine" coherent state.

A squeezed state can be generated via unitary evolution
using a phase-conjugate wave. A variety of optical non-
linear processes are candidates (Takahashi, 1965; Yuen
and Shapiro, 1979; Walls, 1983; Yurke, 1984). Recently,
Slusher et al. (1985) observed a squeezed state in a cavity
four-wave mixer. An alternative way to generating a
squeezed state is the combination of negative feedback via
a quantum nondemolition measurement (Yamamoto
et al. , 1984; Haus and Yamamoto, 1986). The scheme
can also generate an amplitude-squeezed state (Yamamoto
et al. 1986). Regardless of the system's initial state, the
quantum nondemolition measurement leaves it in an
eigenstate of the measured observable with the measured
eigenvalue. The negative feedback is required to keep the
system in such an eigenstate continuously, because the
system (laser) undergoes unpredictable free motion by
coupling to reservoirs (subsystems).

The simultaneous measurement of two conjugate ob-
servables inevitably introduces additional noise to resolve
the noncommutability of the observables (Haus and Mul-
len, 1962; Arthurs and Kelly, Jr., 1965; She and Heffner,
1966; Caves, 1982). Types of apparatus for a simultane-
ous measurement are discussed in Sec. IV.

Optical heterodyning and the beam splitter followed by
two single-quadrature measurements are analyzed. The
parametric amplifier, the nondegenerate four-wave mixer,
the Raman amplifier, the Brillouin amplifier, and the
laser amplifier are described as high gain phase insensitive
amplifiers. The degenerate parametric amplifier is a
phase-sensitive apparatus. The quasi-QND measurement
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of photon number in an optical Kerr medium is
equivalent to a simultaneous measurement of photon
number and phase, if the first quasi-QND measurement
of photon number is followed by a phase measurement.

Sections V and VI show that a single quadrature mea-
surement and photon counting detection can be done
without additional noise. Optical degenerate heterodyn-
ing, degenerate parametric amplification, and cavity de-
generate four-wave mixing realize such noise-free single
quadrature measurements. The photomultiplier and
avalanche photodiode are, ideally, noise-free photon
counters (Sec. VII).

The quantum-mechanical formulation of Shannon's
channel capacity is presented in Sec. VIII, using the
negentropy principle of information of Brillouin (1956)
and the sampling theorem of Nyquist (1928). The max-
imum amount of information that can be transmitted by a
single photon is infinite at zero temperature and is equal
to fico/(1n2)kT bit at finite temperature. This ultimate in-
formation capacity of a photon can be realized only by
enormous reduction in channel efficiency, i.e., informa-
tion rate per bandwidth, however. Thus the quantum
noise does not place any limit on the information capacity
of a single photon but the thermal noise does. An
equivalent but more heuristic statement is that the quan-
tum noise is completely controllable but the thermal noise
cannot be fully controlled.

The dependence of the channel capacity on the specific
schemes of state preparation and measurement is dis-
cussed in Sec. IX. The quantum-mechanical channel
capacity derived in Sec. VIII is ideally realized by photon
number states and photon counting detection. For the
coherent states and squeezed states of large photon num-
ber, the simultaneous measurement of two quadrature
components and the single quadrature measurement,
respectively, are optimum. Although thyrse measurement
schemes can recover the highest information for the two
states, their channel capacities are smaller than the ulti-
mate limit. The information capacities of a single photon
are 1.44 bit for the simultaneous measurement of the
coherent state and 2.88 bit for the single quadrature mea-
surement of the squeezed state.

If the coherent state of large photon number is detected
by a photon counter, ihe channel capacity is approximate-
ly one-half of the ultimate limit. The halving of the effi-
ciency is due to the fact that equal amounts of informa-
tion could be carried in the form of photon number and
phase, and the photon counting jneasurement does not
utilize the phase information. However, if the coherent
state of small photon number is detected by a photon
counter, the channel capacity approaches the ultimate
hmit. This is because the coherent state of small photon
number loses its wave nature (phase information).

II. QUANTUM STATES
OF FLECTROMAGNETlC WAVES

Information is conveyed electromagnetically by the
transmission and reception of electromagnetic wave pack-

ets that are quantum states of the electromagnetic field.
The transmission involves preparation of these states, the
reception is achieved by means of their detection. In this
section we review briefly a variety of quantum states of
importance, coherent states, in-phase and quadrature-
squeezed states, and amplitude-squeezed states and dis-
cuss the current means of generating these states.

A. Characteristics and generation of coherent states

A coherent state is the eigenfunction
l
a) of the pho-

ton annihilation operator a:

a a =a a (2.1)

A coherent state is obtained from the vacuum state l0)
via the unitary displacement operation D(a)=exp(aa+
—a*a) as follows (Glauber, 1963):

l
a) =exp(aa+ —a*a )

l
0) . (2.2)

If the recursion relations for the photon number state
fn),

a
f
n+l&=&n

l
n),

~+ f~&=v'~+1 l~+»,
(2.3)

(2.4)

are used in (2.2), the expansion coefficients of a coherent
state in terms of photon number states are obtained as

(2.5)

The photon probability distribution P(n)=
l

(n
l
a)

l
is

Poissonian.
The non-Hermitian operator a can be separated into

two Hermiiian components a
&

and a2

a =aI+ia2 (2.6)

which are the "in-phase" and "quadrature" field-
component operators.

A coherent state satisfies the following relations:

al+ia2 &al &+1 (+2 &

&~'~&= ial'=a1+a2 (~1&'+&~2)

&~.l&=&~.', ) =-,' .

(2.7)

(2.8)

(2.9)

Equation (2.9) shows that a coherent state satisfies the
minimum uncertainty product (2.10) with equal noises in
the in-phase and quadrature components.

Cxlauber (1951, 1963) has shown that a classical current
source generates a coherent state. In a more realistic con-
text, a laser far above threshold generates a sequence of
states that are not too far from a coherent state (have lit-
tle excess noise above the quantum noise). Each state oc-
cupies a time interval corresponding to the inverse

A coherent state is one of the minimum uncertainty
states, which satisfy the Heisenberg uncertainty principle

(2.10)
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linewidth of the laser, the phase of the states pertaining to
successive time intervals goes through a "random walk. "
Through attenuation, the excess noise can be made small
compared with the quantum noise and thus the attenuated
radiation from a laser far above threshold can be made to
approach a sequence of coherent states. If ihe laser is
phase locked' to a "local oscillator" master laser, the
phases of the slave laser follow those of the master oscil-
lator and may be considered controlled (within an uncer-
tainty prescribed by the photon number-phase uncertainty
product). Thus one may say that the generation of
coherent states for the transmission of information is real-
izable. The difference in the error distributions &a

l p l

a &

for a coherent state and the quantum state of an ideal
laser is shown. in Fig. 1.

ture component (a2). Squeezed states appear under
several names in the literature: pulsating wave packet
(Takahashi, 1965), generalized coherent state (Stoler,
1971), and two-photon coherent state (Yuen, 1976).

A squeezed state is the eigenfunction
l
pva& of the

operator b =pa+va+:

(pa+ va+)
l pva & =(p,a+va*)

l pva &,

where

(2.11)

(2.12)

so that the commutation relation [b,b+]= 1 is satisfied.
An ideal squeezed state is obtained from the vacuum

state
l

0 & by operation with the squeezing operator
&(g)=exp( —,'/*a ——,pa+ ), followed by operation with
the displacement operation D(a):

B. Characteristics and generation of squeezed states

An ideal squeezed state is another kind of minimum
uncertainty state. One quadrature component of the field
(say a&) has smaller fluctuations than the other quadra-

l pva& =D(a)S(g)
l
0&,

where

l
p, l'=cosh'l r l,

l

v '=sinh'l r
l

.

A squeezed state satisfies the following relations:

&a & &p ~ v~ & a &a$ &+i&a2&

(2.13)

(2.14)

(2.15)

(2.16)

!deal Laser &ba', & =-,'e

& b,a', & = —,
'

e '" .

(2.18)

(2.19)

,,' —a ~zz~ ~ «l

(b)

(e) (&) (g)
FICx. 1. The error distributions &a

l p l
a) in a~ —a2 space for

ideal laser and for a variety of optical quantum states. (a)
coherent state, (b) in-phase squeezed state, {c) quadrature-
squeezed state, {d) amplitude-squeezed state, (e) quadrature-
phase eigenstate, (f) in-phase eigenstate, and I', g) photon number
eigenstate.

Q =v Ga+v'G —la+, (2.20)

where a is an input mode operator which is assumed to be

Equations (2.12), (2.18), and (2.19) show that a squeezed
state satisfies the minimum uncertainty product and has
different amounts of noise in the two quadrature com-
ponents. Here the complex amplitude axis (a~, a2) is ro-
tated by 0/2 so that a& and a2 represent the minor and
major axes of the error ellipse. Equations (2.16) and
(2.17) indicate that part of the mode energy

l
v

l
is con-

sumed to reduce one of the quadrature noises. Squeezed
states are compared with a coherent state in Fig. 1.

An in-phase squeezed state has the reduced quantum
noise along the coherent excitation and exhibits sub-
Poissonian photon statistics and photon antibunching. A
quadrature squeezed state has the reduced quantum noise
in quadrature to the coherent excitation and exhibits
super-Poissonian photon statistics and photon bunching.
The ultimate limit of these states in the "quadrature
phase eigenstate" as shown in Fig. 1, which is unrealistic
in the sense that it requires an infinite mode energy.

In principle, an ideal squeezed state can be generated by
a degenerate parametric amplifier (Takahashi, 1965). The
equation for the unitary evolution generating such a state
is given by
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a coherent state and b is an output operator. The output
mode is in a squeezed state.

Degenerate four-wave mixing in an interferometer con-
figuration (Yuen and Shapiro, 1979) and in a cavity con-
figuration (Yurke, 1984) were proposed as other candi-
dates. These schemes reduce to the same basic equation
(2.20). Nondegenerate forward four-wave mixing followed
by an optical heterodyne detector achieves a relation simi-
lar to ('2.20) for the intermediate frequency signal (Leven-
son et al. , 1985).

Several experimental efforts are under way toward the
generation of squeezed states by these schemes (Bon-
durant et al. , 1984; Levenson, 1985; Slusher et al. 1985).
Recently Slusher et al. (1985) observed the squeezing of
vacuum fluctuations in a cavity four-wave mixer.

C. Photon number states, amplitude-squeezed states,
and their generation

laser

exlO

-5
6x l0

-5
4x IQ

probe
laser

I

l
I

I
optical Kerr medium 1

sub-Polssonlan
state

negative feedback

(a3

0
00

' ~ negative feedback
e+ loser

0

p o

A photon number state is completely determined by its
photon number. The phase is completely random. Pho-
ton number states are generated by performing a quantum
nondemolition measurement of photon number on a wave
packet. The number of photons is unaffected by the mea-
surement and known, after passage of the wave packet
through the measurement apparatus. A nonlinear inter-
ferometer containing a Kerr medium probed by radiation
of (center) frequency different from that of the packet to
be measured performs such a QND measurement (Imoto
et al. , 1985).

An amplitude-squeezed state is a squeezed state that
has reduced photon number noise and enhanced phase
noise as shown in Fig. 1. %'eakly sub-Poissonian photon
statistics were observed in resonance fluorescence (Short
and Mandel, 1983). It is not necessarily a number-phase
minimum uncertainty state.

It has been proposed that an amplitude-squeezed state
can be generated by a negative amplitude feedback laser
incorporating a quantum nondemolition measurement of
photon number (Yamamoto et al. , 1984; Yamamoto
et a/. , 1986). The proposed scheme to generate an
amplitude-squeezed state is shown in Fig. 2(a). The phase
shift of the probe wave in an optical Kerr medium mea-
sures the photon number of the laser emission (signal
wave) (Imoto, Haus, and Yamamoto, 1985). The photon
number fluctuation of the signal wave is measured non-
destructively and it is negatively fed back to the laser
pump. The photon number fluctuation is reduced, but
the phase noise of the signal wave is increased by the
phase modulation due to the probe wave intensity noise.
As will be shown in Sec. V.E, the back action imposed on
the signal phase is by= I/(2b, n), where b, n is the uncer-
tainty of the photon number measurement. In the limit
of large feedback gain, an amplitude-squeezed state which
satisfies the minimum uncertainty relation b,nb.y= —, can
be generated. The same scheme can generate a squeezed
state if the QND measurement of a& or a2 (Yurke and
Denker, 1984) incorporates negative phase feedback.

-5
2x10

on distribution

ree-running loser

Sub-Poissonian statistics were actually observed in the
negative amplitude feedback semiconductor laser (Machi-
da and Yamamoto, 1986) as shown in Fig. 2(b). In this
experiment, however, a conventional destructive photon
detector was used instead of the QND measurement of
photon number. Under these conditions, amplitude-
squeezed states cannot be extracted from the system
(Haus and Yamamoto, 1986).

III. GENERAL QUANTUM LIMIT ON THE
SIMULTANEOUS MEASUREMENT OF
TWO NONCOMMUTING OBSERVABLES

In the preceding section, we have discussed briefly a
variety of quantum states of use, or potential use, in the
encoding of information. The coherent state has nonzero
expectation values for both amplitude and phase, or in-
phase and quadrature components a ~ and a2. Hence both
"degrees of freedom" could be used to encode informa-
tion. In the case when two degrees of freedom. represent-
ed by two noncommuting quantum observables are used
for the transmission of information one has to examine
carefully the measurement process. The generation of the
encoded signal does not encounter difficulties in principle.
One may imagine that the encoding is done at a classical
power level, with (almost perfect) control of in-phase and
quadrature components, followed by attenuation. The re-

L0
—p~n -An 0 &n 2&n

n en&

FIG. 2. (a} The configuration of a negative amplitude feedback
laser with quantum nondemolition measurement. (b) The ob-
served sub-Poissonian photon statistics in the negative ampli-
tude feedback semiconductor laser using part of the photo-
detected output.
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ceiver has to detect (measure) these observables simultane-
ously. This is only possible with the introduction of addi-
tional quantum fluctuations (beyond those implied by the
Heisenberg uncertainty principle).

In this paper, we use the adjective "simultaneous" mea-
surement to denote the determination of two noncommut-
ing observables of a state, or wave packet. Of course, in a
measurement apparatus, the determination of one variable
may be delayed with respect to that of the other, and the
two variables may not be determined simultaneously. The
term double measurement may be more appropriate.
However, in communication systems temporal simultanei-
ty is usually required, and thus the use of the term simul-
taneous seems to be appropriate. Arthurs and Kelly
(1965) have studied a simultaneous measurement of two
noncommuting vanables. They assumed the measure-
ment to be performed by coup1ing the system, whose ob-
servables were to be measured, to two measurement sub-
systems. " In each of the subsystems one variable is mea-
sured, and the system is assumed to be in a minimum un-
certainty state. The mean square deviations of the observ-
ables measured in this way are, optimally, twice those of
the uncertainty principle.

This finding can be summarized as follows. A sirnul-
taneous measurement of two noncommuting observables
introduces excess noise. The uncertainty product for the
measurement is 3 dB larger than the one dictated by the
uncertainty principle. The single observable measurement
is free from excess noise and, therefore, the uncertainty
product for two independent single observable measure-
ments is reduced to the uncertainty principle. Why, then,
is such a noise added to the system'? We shall show below
that additional noise is introduced by the simultaneity of
the measurement because two observables measured
simultaneously must commute.

Consider a simultaneous "measurement" of two opera-
tors a~ and a2 achieved by coupling of the original sys-
tem to two systems described by operators x and y, and
by measurement of x and y. The normalized output
operators x and y for the measurement of two input
operators ai and a2 by means of linear coupling to the
system are

x=a]+3, (3.1)

X=~2+&- (3.2)

3 and 8 are internal noise operators. An ideal measure-
ment requires

(x ) = (a~ ) and therefore (A ) =0,
(y ) = (a2 ) and therefore (8 ) =0 .

(3.3)

(3.4)

[al a2]+[A»] (3.5)

where the third equality uses the fact that the input
operators and the internal mode operators are independent

Since it is assumed that x and y are simultaneously mea-
sured by the two detectors, they must commute:

0= [x,y] = [a &,a2]+ [a ~,8]+[A,a2]+ [A,B]

and commute with each other

[a),8]=[A,a2]=0 . (3.6)

From (3.5) we conclude that [B,A] = [a ~,a2]. The uncer-
tainty product for A and 8 is, therefore,

(b A 2) (682) )—,
'

~
( [a &,a2] )

~

(3.7)

If the input operators and internal-mode operators are un-
correlated, the uncertainty product for x and y is given by

(~ ')&~y'&=(&~ '&+&~A'&)(&~ '&+&~8'))

) ( b,a, ) ( b.a ) + ( b.A ) ( b 8 )

+Z((xa') (aa') (aA') (aB') )'"
)4(ba', ) (ba2) = —,

' .

Here the equality holds when ( hA ) = ( b,a
& ) and

(aB'& = & aa', ).
The above discussion shows that a simultaneous mea-

surement requires internal-mode fluctuations to allow
commutation of the two simultaneously measured output
operators x and y. These Auctuations in turn increase the
uncertainty of the measurement by at least 3 dB from the
uncertainty product of the input operators. If one lifts
the assumption that the input operators and internal-
mode operators are uncorrelated, it is possible to obtain
(hx )(Ay ) =0. The additional noise encountered in
the simultaneous measurement of two noncommuting ob-
servables has various origins depending upon the specific
measurement apparatus employed. Detectors measuring
two noncommuting observables fa11 into two general
types.

One type incorporates an amplifier of high gain. After
amplification of the signal to a classical power level, the
signal can be measured with no uncertainty', a simultane-
ous measurement can be performed on both the in-phase
and quadrature components, or on the amplitude or
phase. The uncertainty principle is obeyed by virtue of
the fact that noise was introduced in the amplification
process.

The other type involves directly simultaneous measure-
ments on the two noncommuting variables with no
preamplification. An example is the beam splitter fol-
lowed by measurements of the in-phase component on one
output port of the beam splitter, of the quadrature com-
ponent at the other output port. A quantum nondemoli-
tion measurement of photon number, followed by a phase
measurement is another example. Heterodyne detection
resembles the high gain amplifier system foHowed by a
detector. The analysis of heterodyne detection always as-
sumes effectively a high gain so that the currents pro-
duced in the photodetector can be treated classically. In
effect, every measurement of a quantum observable is per-
formed by instruments that operate (at their output) in a
classical environment, as pointed out by Bohr.

An amplifier with different gains Gi and 62, for the
in-phase component a& and quadrature component a2,
respectively, can be viewed as either a component of a
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simultaneous measurement of two noncommuting observ-
ables if Gl »1 and G2 »1, or as a component of a sin-
gle observable measurement, if one of the gains is close to
unity or less than unity. It is an easy matter to set up the
general formalism for this amplifier type which then
serves as a means of comparison for all measurement ap-
par ati.

IV. THEORY OF A LINEAR, PHASE-SENSITIVE
AMP LIFIER

The mean square signal output is then

&b, &' , &b, )'
&~l,.ff&'=, &~2,.ff&'=

Gi
' '

G2

and the noise output is, in the two components

&aF', )
&~",.«) =&~",&+

G(

(SF,')«.',
,.«& =«.', &+

G2

(4.6)

(4.7)

(4.8)

In this section we ~rite down the general theory of a
linear, phase-sensitive amplifier with gairi 6& for the
(power of the) in-phase component al and 62 for the
(power of the) quadrature component a2. The noise in-
troduced by the amplifier must account for the quantum-
mechanical uncertainty of a simultaneous measurement
(if G»&l and G2»1).

The two quadrature components of the amplified out-
put operators b] and b2, in terms of the input operators
al and a2 are given by (Haus and Mullen, 1962; Caves,
1982)

Here it is assumed again that a and F are uncorrelated.
The high gain phase-sensitive amplifier with Gl »1

and G2 »1 is a special case of the measurement of two
noncommuting observables as discussed in the preceding
section. The normalized output operators commute when
the gains G& and G2 are high, and can be identified with
the observables x and y of the preceding section. Indeed,
using (4.4)

[Fl F2]
[+l, eff~122, eff] = [al,a2]+

G1G2
b 1

——+G 1 a 1 +F1,
b2 ——QG2a2+F2 .

(4.1) i i 1

V'G1G2

Here, F1 and F2 are the (internal-mode) fluctuation
operators. The mode operators b&, b2 and a~, a2 must
both satisfy the boson commutation relations

i 1

2 QG162
(4.9)

l
[+1 ~2] [bl b2]=

2
' (4.3)

[F„F,]=—(1—QG, G, ) .
2

(4.4)

Here, the assumption used is that the input operators a
&

and a2 are independent of the internal fluctuation opera-
tors, [a 1,F2]=[a2,F1]=0. One may define the normal-
ized output signal by

b) b2
+ l, eff = +G ~ +2, eff = ~G]. 2

(4.5)

because they are both operator (excitation) amplitudes of
the same kind of mode (i.e., a wave packet "fed" into the
input "transmission line" emerges as an amplified wave
packet in the output "transmission line" ). In order that
(4.3) be obeyed, one finds

&~F1&&~F2& 1 I&[F1~F2]) I'
4 «1G2)

1 11—
16 +G, G,

2

(4.10)

and from (4.1) and (4.2)

Thus, when +6162»1, then the two observables com-
mute and can be measured independently, We can see
from the preceding derivation that conservation of com-
mutation relations of the operators led to commutability
of the measured observables, because the observables are
the output operators divided by the square roots of the
gains.

Next, we determine the uncertainty product of ha~, f~

and b,a2 ff. Using (4.4), we obtain

(aF', )
&~+1, ff)&~ 2, ff) &~+1)+

(aF,')
&+

G
J

«F', ) &»',&, , (~F', ) «F', )
1 2 1 2

) + 1 — +2 1—1
—16 16 +G G2 16 QG G2

1

16 QG, G2
(4.11)
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The equality holds when the input is a minimum uncer-
tainty state, and when

(aF', ) =(«,
G]

(4.12)

(4.13)

(4.14)

Internal-mode
fluctuations

I/2 ed
or pa}f

/4 ————————————————I

and
(aF', ) =(«', ) .

2

Equation (4.11) is similar to (3.8), but with a difference.
If the product of gain coefficients 6~62 does not satisfy
the condition of 6~G2 && 1, then the uncertainty product
can be smaller than 4. This seems to be in contradiction
with the general quantum limit for a simultaneous mea-
surement discussed in the preceding section. The reason
for this discrepancy is that a classical measurement free
of additive noise can be performed only when 6~62 &&1.
Indeed, according to (4.9) a ~ off and a2,rr do not commute
and, therefore, cannot be measured simultaneously, when

G] 62 is not much greater than unity.
The gain factors QG~ and +62 suggest a classifica-

tion of the amplifiers studied in this section. If QG, and
+62 are independent of a

&
and a2, the amplifier is linear

and belongs to one of three categories (Caves, 1982):

Q G~ ——QGz (phase-preserving amplifier),

Q 6 ~
———+62 (phase-conjugate amplifier),

(phase-sensitive amplifier),

In the special case of G~G2 ——1, the amplifier does not
add noise [see (4.4)] and the uncertainty product of (4.11)
is reduced to —,', . The product 6~G2 can be kept equal to
unity by making G~ ——I/Gz and 6& & l. In this case a~
can be measured with no additive noise and the informa-
tion on a2 is sacrificed. Takahashi (1965) was first to dis-
cuss a degenerate parametric amplifier as such an amplif-
ier. Caves (1982) discussed it again recently.

There is another mode for an ideal single observable
measurement (Yurke and Denker, 1984). It is

(m',), (SF', ) »(«2) .
G2

The measurement of a& is ideal, but the information on
az is lost. A parametric amplifier with a zero-mean
squeezed state fed into the idler channel will be treated as
an example later on. Figure 3 summarizes the depen-

dences on gain of the internal fluctuations.
The linear, phase-sensitive amplifier with 6»&l and

G2 ~~1 is a genera1 example of a measurement apparatus
that measures two noncommuting observables simultane-
ously. Specific examples are the laser amplifier,
parametric amplifier, four-wave mixer, etc. In the next
section we look in more detail at "devices" for a simul-
taneous measurement and compare them with the results
of this section.

V. "DEVICES" FOR SIMULTANEOUS
MEASUREMENT OF TWO NONCOMMUTlNG
OBSERVAB LES

A. The ideal laser amplifier

An ideal laser amplifier, with gain produced by a per-
fectly inverted medium, can be described by equations
analogous to (4.1) with 6& ——62. It is a linear, phase-
preserving amplifier.

The output operator b=b]+ib2 may be written in
terms of the input operator a =a~+ia2,

b=VGa+F, (5.1)

where I'=I']+iI'2 is the noise operator. In order to
preserve ihe commutation relations

[b,b+]= [a,a+]= 1,
one must have

(5.2)

[F,F+]=1—6 . (5.3)

When 6 & 1 (attenuation), F denotes a zero-point fluctua-
tion added by a "loss oscillator. " For a gain medium,
G ~ 1, I and I'+ change their roles as creation and an-
nihilation operators, and I" + denotes a zero-point fluctua-
tion annihilation operator. This relation can be interpret-
ed in another way. The expectation value for b+b with a
coherent state

~

a ) into the signal channel, a
~

a )
=a

~
a), and a vacuum state for the noise, (FF+ ) =0, is

(a
~

b+b
~
a) =(6 —1)(

~

a
~

+1)+ ~a
~

. (5.4)

For every induced signal photon there is added one spon-
taneously emitted noise photon. This reasoning was used
in the early days of the maser to predict maser noise per-
formance (Shimoda, Takahashi, and Townes, 1957;
Strandberg, 1963). An injection-locked laser oscillator
has the same quantum limit, even though the signal gains
are different for in-phase and quadrature-phase com-
ponents (Haus and Yamamoto, 1984).

0
0 I 2

phase-preserving
amplifier

I I I

6 7 8
signal gain B. Parametric amplifier and four-wave mixer

phase-sensitive
ampli f ler

{GiG~= I)

FIG. 3. Internal-mode fluctuations vs signal gain for a phase
preserving amplifier, a phase-conjugate amplifier, a phase-
sensitive amplifier, and "balanced detector pair. "

The input to a parametric amplifier and a four-wave
mixer consists of two modes. A signal wave at co, and an
idler wave at u;, that are coupled with each other by
second- and third-order nonlinear processes produced by
the intense pump wave at co&. The basic configuration is
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shown in Fig. 4. Energy conservation requires

co, +co; =co& parametric amplifier,

m, +m; =2m& four-wave mixer . (5.6)

If the pump wave is in a coherent state and its intensity is
sufficiently high, it can be treated as a classical wave.
The evolution equations for the signal and idler waves are
(Yariv and Louisell, 1966)

b, =v Ga, +V'6 —la;+,

b;=VG —1 a,++VGa;,
(5.7)

(5.8)

where a, (b, ) and a;(b;) are input (output) operators for
the signal and idler waves, and V 6 is the signal gain.

Suppose the signal channel is taken as the output. The
device is a phase-preserving linear amplifier with signal
gain of QG~ ——+62 ——v G. The mean and variance of a
normalized output y,:b, /V 6—are

(5.9)

(5.12)

A simultaneous measurement of a, ~ and a, z can be
achieved for a coherent state input when a; is in a con-
ventional vacuum state

~

0). If the input to the idler is a
zero-mean squeezed state such that (b,a;& ) (& (b.a, t ),
then no noise is added by the internal fluctuations. Of
course, a measurement of the conjugate variable becomes
impossible because the noise (by, ) goes to infinity. The
measurement "degenerates" into that of a single observ-
able with no additional noise.

Suppose the idler channel is taken as the output. Then
the device is a phase-conjugate linear amplifier with sig-
nal gain of QG~ ———+62 ——v'6 —1. The mean and
variance of a normalized output y; =b; /V'6 —1 are

(5.13)

(5.14)

«y,', &=«.,', &+ 1-—
6 (5.10)

(S.l 1)

(y 2) = —&u, 2& (5.15)

(5.16)

signal

idler

nonlinear medium (x,x )
(&) (&)

bs
/

/ /// / /, / //// / / / ////r'///////0. Qp
' PumP

a,

(Q) Parametric amplifier
Four-wove rn ixer

pump wave l

The result is the same as that of the linear phase-
preserving amplifier in the limit of high signal gain
6 »1. However, there is a subtle difference. As shown
in Fig. 3, a phase-conjugate linear amplifier is more noisy
than a phase-preserving linear amplifier unless the signal
gain is high.

A degenerate four-wave mixer is shown in Fig. 4(b),
where the signal, idler, and pump waves are at the same
frequency. There are still two input modes az and bL.
The evolution equations are (Yuen and Shapiro, 1979)

probe wave l

QR

Q L

pump wave 2

= bR

L

probe wave 2

(b) Degenerate four-wave mixer

pump wove l

QR

pump wove 2

b„

C

lOO lo mirror

(c) Cavity degenerate four-wave mixer

FIG. 4. Basic configurations of (a) a parametric amplifier, {b) a
degenerate four-wave mixer, and (c} a cavity degenerate four-
wave mixer.

bg ——V Gag+e' V'G —1bL+,

al. VGbl. +e' V——6 —lag+,

(5.17)

(5.18)

Since (5.17) and (5.18) are of the same form as (5.7) and
(5.8), the degenerate four-wave mixer performs like the
nondegenerate parametrix amplifier.

The above result can be applied to any optical amplifier
with a parametric interaction process, among several bo-
sonic modes, such as the Raman amplifier and the Bril-
louin amplifier. The internal-mode fluctuations are al-
ways added to the signal during such an arnplification
process. They are the zero-point fluctuations of a lattice
vibrational mode (optical phonon) in the Raman amplif-
ier, and the zero-point fluctuations of an acoustic phonon
mode in the Brillouin amplifier (Louisell, Yariv, and Sieg-
man, 1961). The effects of quantum noise of a pump
wave and of an internal lass are not included in the above
discussion, because they are not fundamental limiting fac-
tors.
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C. Heterodyning

Yuen and Shapiro (1980) have developed the detailed
theory of heterodyning with a' photon detector, including
the cases of heterodyning with squeezed states as the in-

put in either the signal channel, idler channel, or both.
The schematic is shown in Fig. 5. The beam splitter com-
bines the incoming signal wave with the local oscillator
wave. The local oscillator is assumed to be much more
intense than the incoming signal. The photon detector
has quantum efficiency q.

The analysis of Yuen and Shapiro can be summarized
in a set of simple equations that give the expectation
value and the mean square fluctuations of the current in
the signal channel. The current variable y is so normal-
ized that its expectation value gives the number of pho-
tons detected in one observation time interval. The
current has an in ph-ase (cosine) component y„and a
quadrature (sine) component y, . The expectation values
are

(5.19)

(5.20)

and the mean square fluctuations are

&~y.') =«.,', &+&~.,', &

(~y,'& =&~~,'i &+(« i &,

(~y,'&=(~~ 2&+(~a p) .

(5.22)

(5.23)

Equations (5.19), (5.20), (5.22), and (5.23) are identical
with (5.9)—(5.12), in the limit when the gain in the latter
goes to infinity, G~oo. Thus the heterodyne receiver
performs like a parametric amplifier, followed by a
noise-free detector (a practical detector can be considered
noise free if preceded by an amplifier of high gain).

Equations (5.22) and (5.23) suggest that heterodyning is
an abstract quantum measurement of a, +a;+ and that
the in-phase and quadrature parts of y commute and can
be measured simultaneously. It has been argued, however,
that there is an uncertainty product of order co,~/coo for
the simultaneous measurement of y, and y, (Caves, 1981).

by the finite quantum efficiency of the photodetector,
respectively. An analogous relation holds for the quadra-
ture fluctuations (b,y, ) with subscripts 1 changed to 2.
Here the beating noise between the coherent excitation of
the signal wave and the zero-point fluctuations (Shapiro,
1985) is neglected.

In the limit of g~1 and c.—+1, but still preserving the
local oscillator gain much larger than unity, Eq. (5.21)
and the analogous expression for (by, ) reduce to

+ '(&», &+(»,', ))+ (5.21)
D. The beam splitter

Q ( ~F)

Signol
arm

Qi ~~o o'I F}

B.s. (s)

P. D.

(q)

&1 ~~o 'uIF } ~o~c"o+ ~IF}

b (~
LocQI oscillator Qrm

sin (~IFt}

The terms in (5.21) represent the in-phase noise of the sig-
nal wave, the zero-point fluctuations of the vacuum
modes in the image band of the signal arm, the zero-point
fluctuations in the signal and image bands of the local os-
cillator arm, and the zero-point fluctuations introduced

The beam splitter followed by two independent single
quadrature measurements does not incorporate any gain
before detection. (As pointed out earlier, the detection
process reduces the output to a classical observable whose
determination is not subject to uncertainty. ) It differs in

this respect from the amplifier-detector apparatus and its
noise has a different origin from that of the amplification
process.

A beam splitter followed by two independent single
quadrature measurements is shown in Fig. 6. Practical
detectors for single quadrature measurements will be dis-
cussed in the next section. It might be optical degenerate
heterodyning (homodyning), degenerate parametric ampli-
fication, or cavity degenerate four-wave mixing. All of

JI o
c measurement detector

QP Ql)F

signal
arm

n b

b,
loco l

osci l l o tor
Qrm

signal (system} l

os

b( meosurement detector

FIG. 5. Basic configuration of an optical heterodyne receiver.
There are two modes in the signal arm, an input signa1 a„and a
vacuum mode a; in image band coo —A@IF. There are three
modes in the local oscillator arm, a local oscillator wave bI and
two vacuum modes b; and b, .

internal fluctuations

FIG. 6. A beam splitter followed by two independent single
quadrature measurements.
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these are free from excess noise. Oliver (1962) was first to
consider this type of simultaneous measurement, in which
he assumed two optical homodyne receivers each per-
forming a single quadrature measurement. Unfortunately
he obtained the incorrect conclusion that the Heisenberg
uncertainty principle can be realized by such a detector by
erroneously dropping a factor of 4 in the noise calculation
for the photon number. The operators for the two output
arms of the beam splitter are

b =E' a, +(1—s)' a;,
c= —(1—e) a+a a;,1/2 1/2

(5.24)

(5.25)

where a; is the vacuum mode incident on the beam
splitter from the open port which is indicated by "internal
fluctuations" in Fig. 6.

Suppose that a, &
is inferred from a measurement in the

output arm (b) of the beam splitter and a, 2 is inferred
from the output arm (c). Then, e should be chosen to be

to get equal accuracies in the two measurements. If
one defines the variables to be measured by

(5.26)

and

C2
Q2 eff — —W2CZv'1 —e

(5.27)

one obtains [a ~,ff, ap eff] — [a, ~,as2]+ [a; ~, a;2] =0.
This is the same relation as (3.5). Furthermore,

and

(&$, ff&=&~, ~&

( &P, ff &
= & ~,2 &

(«], ff & = («,'i & + & «
&«', ,.«) =«.,', &+«.,', ) .

(5.28)

(5.29)

(5.30)

(5.31)

E. Quasiquantum nondemolition measurement
followed by phase measurement

One possible configuration of the quantum nondemoli-
tion measurement of photon number is shown in Fig. 2(a)
(Imoto, Haus, and Yamamoto, 1985). A different config-
uration based on similar principles was discussed by Bra-
ginsky and Vyatchanin (1981, 1982). A signal wave prop-
agates along an optical Kerr medium without suffering
any loss. The refractive index of the Kerr medium,
changed by the signal wave intensity, is probed as a phase
shift of the probe wave passing through the Kerr medi-
um. Thus the photon number of the signal wave can be
measured nondestructively. The phase shift yz of the

This is of the same form as the relations for the
parametric amplifier of high gain. Here the additional
noise contributions arise from the coupling to the zero-
point fluctuations of the "unused" input port of the beam
splitter.

probe wave produced by the signal wave is proportional to
the signal photon number X,:

q&~ =~FN, , (5.32)

where F is a constant proportional to the third-order non-
linear coefficient g' ', the interaction length L, and the
signal and probe frequencies. Any phase shift produced
on the probe wave by the probe photon number fluctua-
tion can be either canceled by passing the probe wave
through a Kerr medium with opposite sign of X' ', or can
be avoided through proper use of resonant excitations.
The expectation value of N, is

&N. &= ~ (q, ) . (5.33)

The measurement accuracy of %, is limited by the
natural fluctuations of yz to

&»,'»... —(&q,') . (5.34)

&aq,'& „,=(aN,'&r. (5.35)

If the probe wave is in a minimum uncertainty (coherent)
state we obtain

(»,')(aq,') =-,' .
Thus~

(»s )meas ( ~q s )meas + 4

(5.36)

(5.37)

The phase perturbation produced by the measurement and
the uncertainty in the measurement of photon number
obey the minimum uncertainty 'product.

The quasi-QND measurement of photon number with a
finite measurement accuracy can be part of a measure-
ment of two noncommuting variables if the wave emerg-
ing from the QND measurement apparatus is subjected to
a phase measurement. The signal enters the QND mea-
surement apparatus with fluctuations ( b N, );„and
(b,qr, );„. The fluctuation at the output of the apparatus
are

(»,')„,=(»,');„+(»,) „,,

(~q,'&...= &~q,'&;„+(&q,') ... ,

their uncertainty product is

&»,'&...& ~q,'&...& —,'+ (»,'&....(~q,'),.
+&»,'&,.&~&.'& ... .

(5.38)

(5.39)

(5.40)

If (b,p~ ) is made very small, then the accuracy of the
measurement is correspondingly increased. In the limit of
( b,q~ ) /F ~0, this measurement scheme can be con-
sidered as the quantum nondemolition measurement of
photon number. Repeated measurements performed on
the same wave packet at different positions and times give
the same value of photon number. The probe acts on the
signal wave by its own photon number fluctuations. A re-
lation of the form (5.32) holds with subscripts s and p in-
terchanged. Therefore, the measurement introduces a
signal-phase perturbation
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The equality sign holds when the incoming signal is in a
minimum uncertainty state,

(5.41)

When we introduce (5.37) and further use (5.41) we find
that (b N, )«, ( hy, )«, reaches a minimum of 1 when the
adjustment is made (b,y, );„=(hq&, ) „,. This shows
that the quasi-QND measurement of photon number, fol-
lowed by a phase measurement, under proper adjustment
of the measurement conditions leads to a doubling of the
noise associated with the in-phase and quadrature com-
ponents, or photon number and phase.

YI. QUANTUM NOISE OF SINGLE
QUADRATURE MEASUREMENT DETECTORS

There are three single quadrature measurement detec-
tors: optical degenerate heterodyne detection, the degen-
erate parametric amplifier, and the cavity degenerate
four-wave mixer.

A. Degenerate heterodyning (homodyning)

Degenerate heterodyne detection measures only one
component of the signal wave (Haus and Townes, 1962;
Oliver, 1962). The operation of the detector is contained
in that of the heterodyne detector with signal and idler
channels merged. This means that the noise in the signal
channel and the idler channel are one and the same and
must be counted only once. Instead of (5.22) and (5.23),
one has

&yi &=&a, &&,

&~y) & =&&a.') &,

(b,y'z) =(«,', ) .

(6.6)

(6.7)

(6.8)

(6.9)

Equations (6.7) and (6.9) suggest that a degenerate
parametric amplifier measures a, &

and a, 2 without excess
noise. As discussed in Sec. V, the internal-mode fluctua-
tions vanish if 6~62 is equal to unity. A degenerate
parametric amplifier satisfies this condition. However, the
quadrature component, a, z is actually attenuated and can-
not be measured. Therefore the performance of the de-
generate parametric amplifier at high gain is the same as
that of degenerate optical heterodyning.

The output signal b, of a degenerate parametric ampli-
fier is in a squeezed state with quadrature noise magni-
tudes (bb, &) =e "l4 and (bb, q) =e "l4 that satisfy
the minimum uncertainty product of (hb, & ) (b,b, z ) =+, .

C. Cavity degenerate four-wave mixer

Suppose the unused port of the degenerate four-wave
mixer, bI in Fig. 4(b), is closed by a perfectly reflecting
mirror as shown in Fig. 4(c). Then we have

bR bL (6.10)

The signal gain for the a, ~ component is
+G~ ——e"=v G +v'G —1 and the signal gain for the a, z

component is +Gz ——e "=v G —&G —1, which corre-
sponds to loss. The normalized output y&—=b, &l+G&
and y, =b,zl+Gz satisfy

(Ay', )=(«,', )

for an in-phase detector, and

(~yz) =(«,'z)

for the quadrature detector. Of course,

(6.1)

(6.2) aL ——v G'a~ +e'~KG' —la~+,

where the overall signal gain v G' is now given by

(6.1 1)

With (5.19), (5.20), and (6.10), the output mode aI is ex-
pressed by (Yurke, 1984)

&y~ &=&a, ~) (6.3) v'G'=
2 —6 (6.12)

for the in-phase detector, and

(yz &
= &a,z)

for the quadrature detector.
These relations determine the signal-to-noise ratio,

which in turn fixes the channel capacity achievable with
degenerate heterodyne detection.

Note that (6.11) has the same form as (6.5) for the degen-
erate parametric amplifier, when p =0.

NOISE OF PHOTON NUMBER DETECTORS

A. Photomultiplier

B. Degenerate parametric amplifier

b, =v Ga, +v'G —la,+=e "a, ~+ie "a,z . (6.5)

A degenerate parametric amplifier is a special case of a
parametric amplifier in which the signal frequency is
equal to half of the pump frequency, co, = —,

'
co&. The evo-

lution equations for the signal and idler waves, (5.7) and
(5.8), are reduced to the following single equation:

The normalized variance of the output photon number
fluctuations for a photomultiplier is (Schockley and
Pierce, 1938)

(~n z)„=(an')+ (n )S' g(g —1)
(7 1)

Here (b.n ) is the variance of an input signal, (g ) is the
signal gain at each multiplication stage, M = (g ) is the
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overall gain, m is the number of multiplication stages and
5 =&g &

—&g& is the mean-square deviation of gain. In
the limit of high gain, M, &g»&1 and 5 =&g& (the
secondary electron emission rate is Poissonian), the
second term of (7.1) vanishes. Therefore, a photomulti-
plier can approach an ideal photon counter. Note that
unity quantum efficiency is assumed in (7.1).

&n&P(n)=
'n

(8.3a)

The maximum entropy for this distribution is

When the maximization is carried out one finds (Landau
and Lifshitz, 1959) that P(n) should satisfy the distribu-
tion

8. Avalanche photodiode H,„=&n &ln 1+ +ln(1+ &n &) .1

&n&
(8.3b)

The normalized variance of the output photon number
fluctuations for an avalanche photodiode is (McIntyre,
1965)

This is the maximum entropy of a system of & n & photons
normalized by the Boltzmann constant.

The average number of photons is

&n&=&n, &+&n, &, (8 4)

(7 2)

Here k is the ratio of electron and hole ionization coeffi-
cients and M is the overall gain. In the ideal limit of
k=O and M »1, the second term of (7.2) reduces to
&n &. Therefore, an avalanche photodiode does not ap-
proach an ideal. photon counter, even when the ratio of
ionization coefficients k is zero, and the quantum effi-
ciency is unity.

A new structure for a noise-free avalanche photodiode
was proposed (Capasso, 1983) that has spatially confined
avalanche regions and, therefore, has the same charac-
teristics as a photomultiplier.

Vill. QUANTIZATION OF SHANNON'S
CHANNEL CAPACITY

The maximum amount of information that can be car-
ried by quantized electromagnetic waves is derived in this
section. The derivation is based on the negentropy princi-
ple of information by Brillouin (1956) and the sampling
theorem of Nyquist (1928). The result can be applied to
the information capacity of any kind of band-limited bo-
sonic mode.

where &n, & is the number of thermal photons and is ob-
tained from

&n, &=
exp(fuu /k T ) —1

(8 5)

and if the average power of the signal is P, &n, & is given
by

&n, &=

H=ln(1+&n, &)+&n, &ln 1+ 1

n,
(8.6)

Taking the difference between (8.5) and (8.6) one obtains

I=H,„H=(&n, &+ &—n, &)ln 1+ 1

n, + n,

Here r ' is the arrival rate of the independent modes
which constitute the signal wave. We shall define the ar-
rival rate as a function of the channel bandwidth 8 in the
next section.

According to the negentropy principle of information
(Brillouin, 1956), the maximum amount of information I
that can be extracted from signal states is equal to the
difference between the total entropy (8.3) and the (residu-
al) noise entropy which is

A. The negentropy of information

The entropy S of a single mode of an electromagnetic
wave with an average number of photons & n & is given by
the maximum of the expression

+ln 1+

—&n, &in 1+ 1
(8 7)

H= —QP(n)lnP(n)—S
k

(8.1)

under the constraints

QP(n) =1

gnP(n)=&n & .

(8.2a)

(8.2b)

B. Quantum-mechanical channel capacity
and information capacity of single photon

The channel capacity is the product of the maximum
amount of information I of each mode and the arrival
rate B=lie, where r is the time-interval occupied by
each mode:
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C=B ((n, )+(n, ))ln 1+ 1

ns + n,

(n, )+ln 1+ (—n, )ln 1+1+ n, ng

In the limiting case of low temperature, (n, ) « (n, ), the
channel capacity reduces to

be sent at arbitrary times without other accompanying
photons within a very long time interval (PPM), then this
single photon can carry an amount of information which
increases logarithmically with the ratio of the duration of
the wave packet to the time interval. In order to deter-
mine the arrival of the wave packet, however, a band-
width is required which is much greater than the arrival
rate of the photons.

The ultimate information capacity (8.12) is realized
only when the channel capacity per unit bandwidth (chan-
nel efficiency) is sacrificed enormously:

C =8 ln( 1+ ( n, ) )+ ( n, )ln 1+ 1

(n,
(8.9) =4X 10

C %co %co

8 ' kT kT (8.13)

C 1 1

( )
——ln 1+( ) +( )ln(l+(n )). (8.10)

)

In the limit of small photon number, (n, ) «1, (8.10)
goes to infinity. That is, a single photon can transmit an
infinite amount of information in this limit.

In the opposite limiting case of (n, ) « (n, ), the chan-
nel capacity reduces to

This photon channel capacity was derived by Stern (1960),
Gordon (1962), Levedev and Levitin (1963), Takahashi
(1965), and She (1968). The first term is the product of
the mode arrival rate 8 and the logarithm of the number
of photons per mode plus one. This part of the informa-
tion predominates in the limit of large photon number
and is associated with the wave nature of the photons.
The second term is the product of the arrival rate of pho-
tons, 8(n, ), and the logarithm of the number of modes
per photon 1/(n, ) plus one. This information is carried
by the particle property of the photons and predominates
when the number of photons per mode is smaller than un-

ity.
The information which can be carried by a single pho-

ton is given by

A system with signal transmission via properly prepared
photon number eigenstates, and detection of photons with
ideal photon counters that are, according to Sec. VII free
of noise, achieves the channel capacity (8.9) for
( n, ) « ( n, ). We used photon number states for the pur-
poses of analysis. If the transmission is accomplished by
preparation of states other than photon number states, the
channel capacity may, and in general does, differ from
(8.9). Yet it can never exceed (8.9) which provides the
ideal limit. %'e shall look at this issue in greater detail in
the next sections.

C. Sampling theorem and bandwidth

Because the proper interpretation of the channel band-
width 8 and the arrival rate r ' of an independent mode
is crucial to the results of this paper, we review here brief-
ly the considerations that lead to the relation 8= 1/v. .

Suppose one starts with a baseband signal with a square
spectrum centered around zero frequency. The Fourier
transform of the flat spectrum extending from co= ~8
to co =m'8 is proportional to sin( m Bt /vrBt ) as shown in
Fig. 7(a). A sequence of Nyquist functions displaced by

C=B(n, )ln 1+ =8(n, }—.
1

(n ) ' kT
(8.11)

disptaced Nyquist
function

The information which can be transmitted by a single
photon is now finite:

C Acu

8(n, ) kT
'

vrB

{a)

7= I/O

This number corresponds to about 32 nat/photon (46
bit/photon) for a wavelength of 1.5 pm and a temperature
of 300 K. Pierce (1978) obtained (8.12) for the specific
scheme using a coherent state, pulse position modulation
(PPM), and photon counting detection. The derivation of
(8.10) and (8.12) shown above does not assume any specif-
ic modulation-demodulation scheme and quantum state
and, therefore, sets an upper limit on the information
capacity by any selection of quantum states, modulation
schemes and detection types.

The fact that the information per photon can go to in-
finity in the absence of thermal radiation may be made
plausible as follows. If the wave packet of the photon can

ui lPB

Filter bandWldth

{b)
FIG. 7. The spectra of a baseband time function and a carrier
time function and their Fourier transforms.

Rev. Mod. Phys. , VOI. 58, No. 4, October 1986



Y. Yamamoto and H. A. Haus: Preparation. . . of optical quantum states 1015

r= 1/B reproduces fully any bandwidth-limited function
confined to the spectral width B/2 (positive part of spec-
trum) (Nyquist, 1928). Each Nyquist function corre-
sponds to a mode which carries the information (8.7).

If the spectrum is centered at coo»2mB, then the Ny-
quist function appears as in Fig. 7(b). A displacement by
r= I/B of the Nyquist function produces a new Nyquist
function orthogonal to the original one. Again, one may
represent a general band-limited time function as a super-
position of Nyquist functions displaced by r = 1/B.

Each mode has two degrees of freedom, phase, and am-
plitude, reflected in the fact that the amplitudes of the
Nyquist function are complex. However, this does not
imply that the channel capacity is given by multiplying
(8.7) with the arrival rate times the number of degrees of
freedom 2B. The reason for this is the following: The
derivation of (8.8) assumes that the states can be prepared
for transmission and then measured in a noise-free
manner. This is possible, in principle, with number states,
the measurement of which can be performed ideally with
no noise associated with the measurement as seen in Sec.
VII. The measurement of phase and amplitude cannot be
performed simultaneously without the introduction of ad-
ditional uncertainty (noise) beyond that associated with
the uncertainty principle as discussed in the theory of
simultaneous measurements of two quadrature com-
ponents. Therefore, Eq. (8.8) implies the use of one ob-

servable in the transmission and reception, one degree of
freedom.

In the next section we present the channel capacity for
the channel in which both amplitude and phase are used
for transmission.

IX. CHANNEL CAPACITY OF CONTINUUM
CHANNEL

When the transmission of information is accomplished
by preparation of coherent states, or squeezed states, the
transmitted observables can assume a continuum of
values. Of course, both the prepared states, and the mea-
surement of two complementary observables are subject to
noise which imposes an upper limit on the achievable
channel capacity.

A. Joint conditional probability and mutual
information

Let us suppose that the two quadrature components a
&

and a2 of the signal are used for the transmission of in-
formation. The joint conditional probability of the output
events, given (a & ) and (aq ) and the measurement uncer-
tainties (cr~) and (cr~), is

P(x,y; (a, ), (a, ) ) = . . . , exp
1

2m((cr) o2 )'

The noise (or residual) entropy H for the above signal with (a~ ) and (az) is

H = —f fP(x,—y;(a~ ), (az))ln[P(x, y;(a&), (az))]dx dy

=ln2n. + —,
' ln(o. ', )+ —,

' ln(o', &+1 .

(9.1)

(9.2)

2
p

2

P(x,y) =
2 z, exp

2 (&X')&X'&)'" 2(X') 2(X')

(9.3)

The maximum entropy is then given by

H,„=ln2m+ —,
' ln ( X

~ ) + —,
'

ln ( X2 ) + 1 . (9.4)

When the signal and noise are independent, the channel
capacity is

The maximum entropy that the signal can possess is cal-
culated for a Gaussian distribution with zero mean and
variances (X&) and (X2):

B. Channel capacity of coherent state

(aF', )
&~&) =(«&,.fr&= —+l, e 4 G

(AF2 )
(cr2) (~a&, ff) +

4 G2

(9.6)

(9.7)

The minimum uncertainty product for such additional
noise was shown to be

Although a coherent state has the two quadrature fluc-
tuations («~ ) =(«z) = ~, the simultaneous measure-

ment of the two quadrature components introduces addi-
tional noise according to (4.11)

1C =BI=B(H,„H)=B —ln —+—ln
&~i)

(aF', ) (aF', )
G) 62

(9.8)

(9.5)

The variances of the noise (o&) and (oz) are set by the
quantum noises of the signal and detector.

The minimization of the noise (or residual) entropy (9.2)
under the constraints (9.6)—(9.8) requires ( AF q ) /G ~

=(b,F2)/G2 ———„. The maximum entropy (9.4) is calcu-
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lated by the relation

(ri&+&r2& =(n, &+I . (9.9)

Here the additive 1 on the right-hand side of (9.9) stems
from the quantum noise of the signal and the internal-
mode of the detector. The maximization of the channel
capacity (9.5) under these constraints is

C=B ln(1+ (n, )) . (9.10)

C. Channel capacity for single quadrature measurement
of squeezed state

For a squeezed state with (Aa f) «(b,az), the max-
imization of (9.5) requires that all the useful signal energy
is used for modulating (a& ). The signal consists of a se-

quence of squeezed states with different (a~ ) values but
the same (a2) value of zero. Thermal noise is neglected
as compared with the quantum noise (b,a t ). If each Ny-
quist mode has the same noise distributions (b,a ~ ) and
(ha2) but has different (a&) values, the ensemble of
these Nyquist modes has the Gaussian distribution:

The signal modulation should satisfy the condition
(r&) =(r2) = —,'((n, )+1). The maximum number of
bits which can be recovered by the combination of a
coherent state and a simultaneous detector is 1.44 bit per
photon.

1

4(2(n, )+ 1)

2(n, )+1
b,a@ 4

(9.18)

(9.19)

C=B1n(1+2(n, ) ) . (9.21)

This result was obtained by Yuen (1983). The maximum
number of bits which can be recovered by the combina-
tion of a squeezed state and a single quadrature measure-
ment detector is 2.88 bit per photon.

The channel capacities C, normalized by the channel
bandwidth B, are called channel efficiencies and are plot-
ted in Fig. 8 as functions of the average photon number

(n, ) per mode. The channel efficiencies for the simul-
taneous measurement of coherent states and for the single
quadrature measurement of squeezed states are lower than
those for a photon counting measurement of photon num-

ber states. The drop off in the very small photon number,

(n, ) « 1, is not inherent in the signal quantum states but
stems from the inefficiency of the detectors.

(F~ ) =0 (single quadrature measurement) . (9.20)

Equations (9.18) and (9.19) show that the overall state
which maximizes the signal-to-noise ratio (Yuen and
Shapiro, 1980) is optimum in terms of the channel capaci-
ty.

The maximum channel capacity is

3'

2(r,')
(9.11)

(9.12)

(9.13)

D. Channel capacity for photon counting measurement
of coherent state

Let us consider finally the case of a signal in a coherent
state, detected by a photon counter. The photoelectron
statistics for the given average photon number s = ( n )

where (Fq ) and (F2 ) is the quantum noise imposed by
the detector, which satisfies (F~ ) (Fz ) = —,', . The max-
imum entropy is calculated for this Gaussian distribution.
After the measurement, the signal state is left in the state
which satisfies

P(x,y; (a, ), (a, ) =0)

(x —(a, ))' y&

2m(&o', ) (o,') )'i' 2(o i) 2(o', &

(9.14)
(9.15)

(9.16)

The residual entropy is calculated for this distribution.
The information is

lo—

Q3

C3
ei

lD

O
V

~ lO

(9

o IO

IO
lO' IO

I I )

lO I lo lo
Photon Number per Pulse «n ~

9.27):
on number
surement
»& j)

drature
ments

single quadrature
measurements

I

lo'

This value becomes a maximum when

FIG. 8. The quantum-mechanical form of Shannon's channel
capacity (8.8), the channel capacities recovered by the trvo quad-
rature measurements of a coherent state (9.10), of a squeezed
state {9.30), by a single quadrature measurement of a squeezed
state (9.21), and by photon counting of a coherent state for a
small photon number (9.26), and for a large photon number
(9.27).
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are Poissonian:

&
—SSn

P(n) =
yg t

(9.22)

tude) squeezed states is bounded by (8.8), and (9.26), and
(9.27).

When the average number of signal photons per mode is
much smaller than unity, the information per mode is
given by (Gordon, 1962)

I=H(y) H„(y—), (9.23)

where H(y) is the total information and is given by the
probability P(0) that no photons are received and P(1),
the probability that one or more photons are received:

E. Channel capacity with beam splitter followed by
single quantum measurement detectors

( a I, ff ) = (a2, ff ) (9.28)

The signal and noise quantities for a beam splitter with
are given in (5.28) to (5.31). The squares of the

mean amplitudes are

H(y) = —P(0)lnP (0)—P(1)lnP(1)

= —Q(1 —e ')ln[Q(1 —e ')]
and fluctuations

(ba;] ) =(ba;2) =(ha, $ ) = (ba, 2) =
~ (9.29)

—[1—Q(1 —e ')]in[1 —Q(1 —e ')], (9.24)

where Q is the probability of sending photons (on state)
and 1 —Q is the probability of sending no photons (off
state). The conditional probabilities are

P(1),„=1—e ', P(0),„=e
P(1) ff—O0, P(0)off—1 .

H„(y) is the c'onditional entropy per mode when the
transmitter symbol (on or off) is known

H„(y)= —Q[e 'lne '+(1—e ')In(1 —e ')] . (9.25)

The maximization of (9.23)—(9.25) gives the following
channel capacity in the limit of (n, ) =Qs « 1,

C=BsQ ln
1

sQ
=8(n, )ln

1

n,
(9.26)

The channel capacity approaches the upper bound of the
photon channel capacity (8.8), as the average number of
signal photons goes to zero as shown in Fig. 7.

When the average number of signal photons (n, ) per
mode is much larger than unity, the channel capacity is
(Gordon, 1962)

C=—ln(n ) .B
S (9.27)

In the limit of (n, ) ~~1, the channel capacity recovered
by a photon counter is one-half of the photon channel
capacity (8.8). This can be understood as follows. When
the average number of signal photons (n, ) is much larger
than unity, half of the information is carried in the form
of photon number and the remaining half in the form of
phase, which is rejected in the photon counter. When
(n, ) is much smaller than unity, on the other hand, the
photon phase cannot be defined (Carruthers and Neito,
1968). In this range, all the information may be carried in
the form of photon number which can be recovered by an
ideal photon counter.

Although an amplitude-squeezed state has sub-
Poissonian photon statistics, the deviation from the Pois-
son distribution is not large (Yuen, 1976). The channel
capacity for a photon counting measurement of (ampli-

When these values are introduced in (9.5), one obtains the
channel capacity (9.10) with s= —,. The same result is
achieved by heterodyne detection with a coherent state.
The excess noise required for a simultaneous measure-
ment of two noncommuting variables came from the
"open port" of the beam splitter.

When squeezed states are used, one has the choice of
putting all the information into the in-phase signal chan-
nel and decouple from the open port, setting c.= 1. In this
limit one obtains the result (9.21) which is also obtained
for the heterodyne detection of a squeezed state. Of
course, this limit is quite uninteresting, because it is a
trivial example of the channel capacity with the signal
carried by only one of two noncommuting variables and
detected by an ideal noise free detector.

A case of greater interest is when one puts all the infor-
mation into the in-phase signal channel, and uses a beam
splitter with c.= —,

' . In the signal channel one uses

squeezed states given by (9.18) and (9.19), and the open
port is excited by an equally squeezed ground state. Then
the channel capacity becomes

C= —in[1+2(n, )(1+(n, ) )] .8
2

(9.30)

The same result is obtained for heterodyne detection with
analogously prepared states in the signal channel and the
idler channel, respectively.

X. DlSCUSSION

This paper reviewed the signal and noise properties of
various detection schemes. The fact that a simultaneous
measurement of two noncommuting observables leads to
additional noise was emphasized and was demonstrated as
a matter of principle (two simultaneously measurable
quantities must be made to cornrnute and thus require ad-
ditive noise) and with the aid of particular device equa-
tions. The quantum noise associated with the signal
preparation and the measurement process sets an upper
bound for the channel capacity. This upper bound was
derived generally from the negentropy principle. Any
signal-state preparation and measurement scheme can
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only lead to a channel capacity that is lower, or at best
equal, to the limiting channel capacity.

The internal-mode fluctuations, the channel capacity,
and the information capacity for various detectors are
summarized in Table I. All detectors capable of a simul-
taneous measurement of two quadrature components have
inevitable internal-mode fluctuations, which increase the
uncertainty product of the measurement by 3 dB from the
Heisenberg uncertainty principle. Such detectors can re-
cover the highest channel capacity from a coherent state,

if the average number of photons is much larger than uni-

ty. The ultimate information capacity is 1.44 bit per pho-
ton. All ideal detectors for a single quadrature measure-
ment are free from internal-mode fluctuations, and realize
the Heisenberg uncertainty principle. Such detectors can
recover the highest channel capacity from a squeezed
state, again if the average number of photons is much
larger than unity. The ultimate information capacity is
2.88 bit per photon. A photon counter, on the other
hand,

' can reach the photon channel capacity if a photon

TABLE I. Classification of various optical measuring schemes, internal noise, channel capacity C, and information capacity
C /B(n, ) of a single photon.

~
0), zero-point fluctuation;

~
0)&, squeezed zero-point fluctuation. CS, coherent state; SS, squeezed

state; PNS, photon number state.

Class

Balanced
detector

pair

Detectors

Heterodyning
beam splitter

Internal-mode
(fluctuation)

~

0) at image band

~
0) from open port

Channel capacity C
information capacity C/B(n, )

Phase
insensitive
amplifier

Parametric amplifier
Degenerate 4-wave
mixer

Raman amplifier

Brillouin amplifier
Laser amplifier

~

0) at idler band

~

0) from open port

Optical phonon

Acoustic phonon
Dipole moment

C =B 1 n(1 +( n, ) )

X1.44 bit
C

B n,

QND meas. Optical' Kerr medium Probe wave (CS)

Squeezed
internal
mode

Heterodyning

Beam splitter

Parametric amplifier

Degenerate 4-wave mixer
Optical Kerr medium

~
0)p at image band

~0)s from open port

~
0)s at idler band

I 0)p from open port
Probe wave
{nonsqueezed)

C=—in[1+2(n, )1(n, ) +1)]B
2

X1.44 bit
C

B n,

(SS)

Single
quadrature

measurement

Photon
counting

measurement

Degenerate
heterodyning
Degenerate parametric
amplifier

Cavity degenerate 4-
wave mixer

Photomultiplier

Avalanche photodiode

C =—ln( 1+4( n, ) 1
8
2

~2.88 bit
C

B n,

(CS)
C =B ln(1+ 2n, )

~2.88 bit
C

B n,

(SS)

C=B ln(1+(n, ) 1+(n, )ln 1+ 1

(n, )
C

B(n, )
(PNS)

C=B(n, )ln
1

(n, )
C

B(n, )
(CS)
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number state is prepared, and also recovers the highest
channel capacity from a coherent state, if the average
number of photons is much smaller than unity. The effi-
ciency is, however, 50% when the average number is
much larger than unity.
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