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A summary of the current understanding of nuclear magnetic ordering in solid He is presented. The main
emphasis is a critical review of what is known from the experiments along with a critique of various
theoretical models. Unanswered questions are raised about both the macroscopic phenomena and the mi-
croscopic origins of the magnetism. Several experiments are proposed which should help advance our
understanding of the magnetic behavior of solid 3He.
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I. INTRODUCTION

Present address: Department of Physics, California Institute
of Technology, Pasadena, CA 91125.

Five years ago, experimental technique finally became
powerful enough to allow direct probes of the magnetical-
ly ordered phases of solid He. In particular, nuclear
magnetic resonance experiments incontrovertibly showed
the low-field phase to have a structure with only tetrago-
nal symmetry (Osheroff, Cross, and Fisher, 1980—
hereafter QCF), a result not evident in previous experi-
ments (Dundon and Cxoodkind, 1974; Halperin et al. ,
1974,1978; Kummer et al. , 1975; Prewitt and Goodkind,

1977). Quantitative measurements on the ordered phase
now yield a whole new set of constraints on models which
might describe the system. For the first time there is the
immediate prospect of sufficient experimental data to
severely test any proposed model for which quantitatively
reliable theoretical predictions are made. It is now abun-
dantly clear that solid He provides an exceedingly corn-
plex magnetic system —a surprising fact, considering the
simple nature of He itself. It is therefore particularly
important in this system to compare theoretical work
with experimental results. The purpose of ttus paper is to
review critically the recent work in this area. In addition,
we hope to propose fruitful directions for further experi-
ment to investigate specific features of solid He that are
not yet understood.

The nuclear spins of solid He provide a fascinating
and challenging magnetic system. On the one hand, there
is every expectation that the magnetic properties may be
understood from first principles. Qn the other hand, we
have direct experimental evidence for very rich magnetic
behavior. The optimistic outlook for a microscopic
understanding largely derives from the dramatic separa-
tion of energy scales that exists in the system.

First there are the vast differences between the basic in-
teraction energies: the excitation energy of the closed-
shell electronic structure is of order 10 K; the residual
van der Waals atomic interaction potential is character-
ized by an energy of order 10 K; and the only direct in-
teraction between the nuclear spins, the magnetic dipole
interaction, is of order 10 K. Thus it is an extremely
good approximation to treat the solid as a collection of
balls with an interaction potential known from atomic
collision experiments and with a residual degree of free-
dom S'=+ —,

' of the nuclear spin. As far as the spatial
structure of the system is concerned, the spin acts only as
a label distinguishing otherwise indistinguishable parti-
cles thus a collection of "red" and "blue" particles
would act in an almost identical way.

It is a remarkable consequence of the broken symmetry that
in the ordered phases the coherent sum of the tiny dipole ener-
gies leads to sufficiently large energies to determine the overa11
orientation of the ordered spins even at 1 mK. In the ordered
phases the spin nature of the degree of freedom plays an impor-
tant role in determining the orientation of the state, but not its
energy at the level of mK/atom.
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There is a second, more approximate separation of en-

ergy scales that appears in considering the exchange in-
teraction between the nuclear spins. The characteristic
energy Eo of the formation of the solid lattice is, as we
have seen, of order 10 K. The highly quantum nature of
solid He is reflected in the fact that both the potential
energy and the zero-point kinetic energy of the atomic
motion are roughly of this same size. Thus the charac-
teristic zone-boundary phonon frequency %coo is also set
by the scale Eo. The spin-exchange interaction results
from the empirically rare event of a cluster of atoms
changing lattice sites by some mechanism. Experimental-
ly this energy J is of order 1 mK. Thus one finds a
second, empirical separation of scales

J:coo=10:1.

This ratio is crucial in allowing the discussion of solid
He to be separated into two parts: first a solution of the

lattice problem, neglecting statistics, and then the use of
an effective spin Hamiltonian to yield the small spin split-
ting of otherwise degenerate states and hence the low-
temperature (&100 mK) thermodynamic behavior. As
we shall see, due to the strong dependence of exchange
rates on lattice distortions, this separation may not be as
well justified as suggested by this small ratio: if agree-
ment between a simple spin Hamiltonian and experiment
is not ultimately forthcoming, this assumed separation
may. be brought into question. We should also remark
that the empirical separation Eq. (1.1) is not well under-
stood from a theoretical point of view, since solid He is
indeed very highly quantum. This is quantified by the
de Boer parameter A=A/o. (mE'~ ), with a the charac-
teristic length, e the strength of the interaction potential,
and m the atomic mass. For solid He at melting pres-
sure A=0.5. It is not then clear what small number
yields the approximate separation of energy scales, al-
though presumably the hard-core nature of the potential
is important. Indeed, we believe that understanding this
point is probably the crux of theoretical progress in this
subject.

Understanding solid He should yield considerable in-

sights into other physical systems. Atomic exchange in
the sister solid He is presumably controlled by the same
physics, but is much harder to investigate experimentally
since the nuclei carry no spin as a label. If infinitely large
exchange loops were important in the solid, one would-
presumably have an example of a superfluid solid.
Understanding the multiple exchange processes in solid
He may yield some insights into this question. Another

system in which quantum exchange effects might lead to
interesting collective behavior, including magnetic phases,
is a two-dimensional Signer crystal of electrons at densi-
ties just below its quantum melting point. This may soon

2We shall use the symbol J to denote the order of magnitude
of the rate of exchange of He atoms; its use does not necessari-

ly imply two-particle exchange.

be accessible experimentally. The exchange might be
more important in this system than in solid He because
of the absence of steric impedance to motion. At the oth-
er extreme, solid He may provide an example of the tun-
neling of local atomic clusters with geometrical con-
straints, such as also occurs in metallic glasses and solid
hydrogen and deuterium. The He problem may be easier
to investigate experimentally, since the tunneling can be
measured via the resulting collective effects. Solid He
also provide" an example of a highly quantum three-
dimensional magnet. Most three-dimensional localized
magnetic systems, even if spin —,', show only small quan-
tum effects that are well accounted for by spin-wave per-
turbation theory (Anderson, 1952; Kubo, 1952). There is
good evidence that the quantum effects in the effective
spin Hamiltonian of solid He are large, for example,
amounting to 50—100% corrections to the ground-state
energy (Iwahashi and Masuda, 1981; Usagawa, 1982;
Roger et al. , 1983). It is one of the challenges on the
theoretical side to find methods to treat such a highly
quantum spin system. One intriguing possibility is that
the ground state may have a structure that has no classi-
cal analog, so that the usual Neel description of the
ground state would not even be a qualitative guide to the
structure. (This is discussed in Appendix B.)

Thus solid He provides a nontrivial, highly quantum
localized spin system that potentially may be understood
from first principles starting from the atomic Schrodinger
equation. In this paper we will discuss how close we are
to reaching some understanding of the magnetic proper-
ties of this system.

Although we do not aim for this review to be a
pedagogical first introduction, we have attempted to make
it self-contained, and have at least schematically
developed the main ideas from their inception. More de-
tails can be found in earlier review articles referenced at
appropriate points. A number of reviews already exist on
the magnetic properties of solid He. We have found an
article by Guyer (1974) to be a nice introduction to the
basic phenomenology of the system, and a second one
(Guyer, 1978) accounts for pre-1979 experimental work
and its failure to agree with contemporary theories.
McMahan (1972) discusses the early variational calcula-
tions of exchange rates. The revolutionary developments
in the past five years have been experimental work on the
low-temperature phases and the theoretical realization
that previous exchange calculations were probably totally
unreliable, together with the development of descriptions
based on empirical multiple exchange Hamiltonians. This
recent work has been compiled in a review by Roger et al.
(1983). An interesting review of early work on exchange
and on subjects peripheral to our main thrust, such as
phonon dynamics, is that of Varma and Werthamer
(1976). A provocative view'of the quantum solid problem
is given by Anderson (1984, pp. 130—158): such a picture
has not had immediate impact on most of the topics we
discuss, but may be important in future developments.

The purpose of the present paper falls into three parts.
First, we believe that a careful discussion is needed of ex-
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actly what is learned from various experiments, and what
constraints are put on possible theoretical models by the
data. For example, the reservations noted in the original
paper (OCF) on the identification of the structure of the
ground state from the nuclear magnetic resonance experi-
ments are not often mentioned in the subsequent litera-
ture; we feel it i.s important to point out first what is
unambiguously deduced from this experiment, and then
what is guessed. Second, we believe that further progress
requires a more critical review of the successes and
failures of various theories than given in previous articles,
particularly the derivation of and consequences of multi-
ple exchange Hamiltonians. Finally, we would like to
present suggestions for new experiments to probe some of
the outstanding questions.

It is of course too easy to present a negative view of
progress —no subject is completely uncontroversial until
the physics it displays is completely understood, and it is
no longer interesting. However, there has been a tendency
in the literature on solid He to focus on qualitative
successes of theories and to ignore problems. Microscopic
theories are sometimes "adjusted" to give answers con-
sistent with experiment, so that the applicability of the
original model is not tested. Thus, for example, both
high-density and low-density descriptions of the exchange
process, relying on quite different physics, apparently give
good agreement with experiment, and one is left with no
idea which physics is operating. There is therefore a
need, in our opinion, for a more critical account of the
work. In fact, we will raise more questions than we
answer. Perhaps it will turn out that our point of view is
too cautious —and it is certainly partly a response to pre-
vious articles in the subject that we believe err in the op-
posite direction. The multiple exchange models (Roger
et al. , 1983) may in the long run turn out to account for
all of the data, once their consequences are calculated
more accurately. This hypothesis does, however, need
further experimental tests and microscopic justification.
We hope that our critical review will help to stimulate
this process.

The rich magnetic behavior of solid He that is the
focus of our attention is dramatically displayed by the
magnetic field (H) —temperature ( T) phase diagram, Fig.
1(a) (Osheroff, 1982). The first observation of a magnetic
phase transition in solid He was made by measuring the
melting curve and showed a strongly first-order transition
with a large entropy change hS, of almost 0.5k& ln2 per
spin at a temperature T, of 1.0 mK (Halperin et al. ,
1974). This temperature was somewhat lower than would
be expected from the. high-temperature data then avail-
able. Even now, susceptibility measurements (see Sec.
II.B) indicate that the Curie-%'eiss constant 8 is about —2
mK, or larger, which would suggest a transition at above
1.5 mK for a nearest-neighbor bcc spin- —,

' Heisenberg an-
tiferromagnet. In addition to the latent heat, the entropy
measurements showed an anomalously small specific heat
for temperatures between 1 and 2 mK (Halperin et al. ,
1974). Thus the paramagnetic phase appeared to be stable
to a surprisingly low temperature, perhaps indicating
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FICx. 1. {a) Magnetic phase diagram of solid 3He [from Osher-
off (1982)]. Solid lines are a fit to the data of Osheroff (1982);
dashed lines are from Adams et al. (1980), and the dotted line is
the phase boundary of Prewitt and CIroodkind (1980) translated
downward in temperature by 0.09 mK. The squares and circles
are data for which the NMR frequencies in the low-field or-
dered phase were used as a thermometer, while for the triangles,
Pt NMR thermometry was used. The low-field to paramagnetic
and low-field to high-field transitions are definitely first order,
but there is some uncertainty concerning the order of the high-
field to paramagnetic transition. (b), (c), and (d) Schematics of
possible phase diagrams showing the low-field phase (L),
paramagnetic phase (I'}, and putative high-field phase (H),
which exists in (b) and (c) up to an upper critical field H, 2. The
solid lines indicate first-order transitions and the dashed lines
second-order transitions. In (d), the high-field first-order line
ends in a critical point and there is no distinct high-field phase.
In this case, a Schottky-type specific heat anomaly will occur in
the shaded region which might be confused experimentally with
a sm.eared-out transition.

competing interactions. A sharp kink in the transition
temperature as a function of field was observed at 4 kG
by Kummer et al. (1975), suggesting a different ordered
phase at high fields. The unusual nature of the transition
was finally confirmed in 1980 by the NMR data of
Adams et al. (1980) and OCF; the latter showed that in
small magnetic fields the system orders into an unexpect-
ed phase: an antiferromagnet with tetragonal symmetry.

The antiferromagnetic phase occupies an anomalously
small part of the phase diagram. Thus at a very low field
H, of 4.4 kG (corresponding to IJH-0. 3 mK with
p=yA'/2 the magnetic moment) there is a first-order
transition (Prewitt and Goodkind, 1980) to a phase with
no NMR shifts (Osheroff, 1982), implying cubic symme-
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try. At the transition the magnetization jumps to about
60% of its saturation value, showing strong fe'rromagnet-
ic tendencies in the system, and then has only a weak field
dependence extrapolating to saturation at much higher
fields of order 150—200 kG (pH-10 mK) (Prewitt and
Goodkind, 1977,1980). The lower critical field H, is al-
most independent of temperature (Osheroff, 1982). Simi-
larly the low-field dependence of the paramagnet to
tetragonal phase boundary given by

Tc QX
dH2

(1.2)

is very small on the expected scale of 1 mK/(14 kG), and
seems to have an anomalous behavior with increasing
field (Osheroff, 1982). Thus there is considerable evi-
dence for more than one energy scale.

The part of the currently accessible phase diagram
about which there is most uncertainty is the high-field re-
gime. Several authors (Prewitt and Goodkind, 1980;
Adams et al. , 1980) have reported evidence for a second
order line between the high-field phase and the paramag-
netic phase. The interpretation of these experiments is
considerably clouded, however, by questions of thermal
equilibrium. Indeed, Osheroff's (1982) data indicate a tri-
ple point with a first-order boundary intersecting the
boundaries to the tetragonal antiferromagnetic phase.
This transition is presumably smeared out in earlier ex-
periments because of equilibration difficulties. Recent
data of Uhlig et al. (1984) in sinter show a very narrow
but finite width to the transition at 4.5 kG, this is prob-
ably due to the effects of the confined geometry. The
data on the high-field state therefore remains consistent
with three hypotheses at this stage: (i) a first-order line
becoming second order at a tricritical point and then ex-
tending up to high temperatures before, presumably,
bending back around to a large critical field M, 2 at zero
temperature; (ii) a first-order line encircling the high field
phase; or (iii) a first-order line ending at a critical point
with no transition at higher fields, but instead with a
Schottky-like entropy anomaly at high fields. These pos-
sible phase diagrams are illustrated schematically in Figs.
1(b), 1(c), and 1(d), respectively. If (i) turns out to be
correct, and also almost certainly if (ii) is correct instead,
then the high-field phase is some kind of canted antifer-
romagnet with cubic symmetry as shown by the NMR. If
(iii) is correct, on the other hand, the high-field phase is
just paramagnetic with no spontaneously broken symme-
try.

The thermodynamic data are clearly inconsistent with
the simple model of a nearest-neighbor Heisenberg Ham-
iltonian resulting from nearest-neighbor exchange. Much
of the behavior, in particular the complicated phase dia-
gram with apparently several different energy scales, and
the surprising nature of the low-field ordered phase, sug-
gest that the magnetic properties in solid He are
governed by a rather delicate balance between several

competing magnetic interactions. In apparent contradic-
tion to this is the weak effect of pressure found experi-

mentally. In experiments to date the effect of pressure
appears to be merely to shift alI the energy scales down by
a uniform factor, leaving the thermodynamic behavior
unchanged up to a common rescaling of temperature and
field. This is in striking contrast to the reasonable expec-
tation that for competing interactions even small differ-
ences in the pressure dependence of magnetic interaction
strengths would have large effects on the phase diagram.
The effect of pressure on R', would thus provide a
stringent test. We will return to this puzzle later in the
paper.

Since very rich magnetic behavior is displayed by solid
He, the effective magnetic Hamiltonian will be much

harder to understand than initially anticipated. However,
this also means that a careful comparison of theory and
experiment will yield a great deal more information on
the truly microscopic description of the system. The spin
dynamics of a nearest-neighbor Heisenberg system are
characterized by a single exchange, J, and its volume
dependence; this is the only information learned from the
magnetic properties that may restrict possible models of
the microscopic dynamics. On the other hand, it is not
even known how many parameters are needed to account
for all the observed properties of magnetic solid 3He.
Clearly the dividends of understanding the behavior are
correspondingly larger.

I I. EXPER I MENTAL CONSTRAINTS

It is important to analyze what experiments can yield
model-independent constraints on the spin Hamiltonian of
solid He. In principle, given any candidate Hamiltonian
involving a few adjustable parameters, experimentally
relevant quantities can be calculated and compared with
the data. In this section, however, we will discuss experi-
ments which can be analyzed or usefully parametrized in
a way that is independent of the specific Hamiltonian. In
this way definite constraints are placed on possible
models. The experiments we will discuss either yield
qualitative information, such as the symmetry of the
ground state, or quantitative information that can be
rigorously and usefully parametrized in a model-
independent way, such as high-temperature data fit to a
1/T expansion. Such quantitative information is most
useful if the parameters are easy to calculate with suffi-
cient accuracy from a proposed Hamiltonian. We will
discuss this latter question in relation to using data at lou
temperatures in the ordered phases to put quantitative
constraints on models.

A. Symmetry of the antiferromagnetic
phase

Nuclear magnetic resonance (NMR) experiments pro-
vide a direct probe of the rotational symmetries of the
spin structure. Until neutron scattering experiments are
done to probe the actual spatial arrangement of the spins,
NMR must suffice to tell us as much as possible about
the symmetry of the ground state.
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Equations of motion

g=yH —y g 'S,
(2.1)

where the first equation is the usual torque equation, and
the second is a kinematic relation between angular veloci-
ty (g) and angular momentum.

It is important to point out that these equations (2.1)
are model independent and valid in a well-defined approx-
imation. They are best derived along the lines of Halperin
and Saslow (1977), although they are also familiar in the
literature of other systems with broken spin rotational
symmetry (Graham, and Pleiner, 1976; Brinkman and
Cross, 1978). The basic approximation used is that the
system is always near to the equilibrium defined by S and
the orientation of the broken symmetry. This requires
that all the microscopic coordinates are relaxed essentially
to their local equilibrium values, and that the motion of S
and 5' indeed relaxes on a much longer time scale. Typi-
cal microscopic relaxation times are expected to be of or-
der i'/J with J a characteristic exchange rate. At very
low temperatures thermal magnons become scarce, and

3The derivative BE&/Bq must be interpreted at constant entro-

py if ED is the internal energy, but at constant temperature if
ED is the free energy.

In the absence of any knowledge of the structure of the
ground state the common method (Kittel, 1971) of
analyzing antiferromagnetic resonance by writing n

dynamical equations for n "sublattice" spin variables
fails. In any case, this method is not rigorous and gives
only approximate answers. A better approach is to use
the weakness of the anisotropy energy to write down
quasihydrodynamic equations for the variables relevant in
the low-frequency dynamics of a NMR experiment.

A NMR experiment probes the resonant frequency of
the precession of the total magnetization of the sample
M=yS in a magnetic field H. This is simply the I.armor
precession perturbed by the weak magnetic dipolar an-
isotropy: the much larger spin exchange interaction com-
mutes with the total spin operator S and so cannot lead to
any frequency shifts. Thus we will arrive at a model-
independent analysis of these experiments. In addition to
the quasiconserved spin variable, the variables corre- .

sponding to the spontaneously broken spin rotational
symmetry of the antiferromagnetic ordering. also relax on
long time scales and must be included in the equations for
the slow dynamics. For a general antiferromagnet
without large external fields or anisotropies there are
three such variables, corresponding to the three broken
spin rotational symmetries. To investigate the dynamics
it is convenient to use the variables 5'=(5g„,5g„,5g, )

describing infinitesimal rotations of all the spins about
three orthogonal axes (x,y,z). The coupled equations of
motion are then

their relaxation times become longer as some power of the
temperature. On the other hand, their importance in
determining reactive responses correspondingly decreases
and it is likely that the criterion co «J, with co a charac-
teristic frequency of the dynamics, remains useful down
to arbitrarily low temperatures. More concretely, we
would expect additional dissipative terms in Eq. (2.1) of
order r Qo and r (yH), with Qo yED——IX and r '-J
a microscopic relaxation rate T. he inclusion of the term
proportional to H accounts for the fact that in an ap-
plied field H (or effective field H —M/g from a spon-
taneous magnetization M) the transverse symmetry is
externally broken, so that the transverse rotation coordi-
nates relax more rapidly to minimize the susceptibility an-
isotropy. Equations (2.1) result when these dissipative
terms are negligible.

Without the dissipation terms, which both a priori
(since Ao/J is of order 10 to 10 in He) and experi-
mentally are small, the dynamical equations are very sim-

ple, and can indeed be understood using Poisson brackets
for the variables S, 6g:

IS;,Sq I
= s;p,Sk,

IS;,5' J I =5J,
I5g;, 5qj J =0,

(2.2)

and the equation of motion dO/dt =IO, A I together
with the effective Hamiltonian

A =ED(vy)+ —,'SX 'S —S H. (2.3)

The NMR response is given by solving Eqs. (2.1) for
small oscillations about the value of S and the orientation
of the sublattice structure which minimize the total ener-

gy A . The equations can also be used to study large-
angle tipping experiments, providing dissipation may be
neglected (Brinkman and Smith, 1975; Hu and Ham,
1981;Fishman, 1982).

2. AnalYsis of the NMR spectrum

aE
Bvl

lJ~ IJ (2.4)

fhe equations of motion for a general antiferromagnet,
Eqs. (2.1), are six equations for the variables S and 5g.
These in general lead to three pairs of modes for each
field, with frequencies co=+co; for i =1,2, 3. Typically
there will be a complicated dependence on the field, since
the equilibrium orientation given by minimizing the total
energy will change with increasing field as the magnetic
energy begins to dominate the dipole energy. This may be
seen by the following analysis of the low- and high-field
limits.

At zero field the triad of axes defining the orientation
of the spin ordering orients to minimize the dipole energy.
The squares of the resonant frequencies are then given by
the eigenvalues of VX ', where V is the real symmetric
matrix defined by
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for small rotations 5g from the equilibrium orientation
minimizing E&.

On the other hand, at high magnetic fields (along the z
direction) the modes are

co =H [Sz,S„], (2.5a)

cp'=H (1—X /Xyy)(l —X /X ) [i1„,71'], (2.5b)

co =0 [S„il,], (2.5c)

where the quantities in brackets denote the variables in-
volved, and X is the least principal value of the suscepti-
bility tensor. Note that here the susceptibility tensor
determines the triad orientation. The dipole. energy may
now be included by perturbation theory. The third mode
of Eqs. (2.1) and (2.5) gains a finite frequency

—1
CO =7~+~ (2.6)

the longitudinal resonant frequency, and the first two
modes become mixed, with frequencies perturbed by
O(r /FS). Notice that because of the reorientation Eq.
(2.6) is in general not equal to any of the frequencies at
zero field: the matrix V is defined with respect to the
equilibrium orientation, which now minimizes the mag-
netic energy. Typically there will be a complicated inter-
mediate field dependence interpolating between the low-
and high-field limits that can be trivially calculated nu-

merically for a given X and ED.
This general picture should be contrasted with the ex-

perimental NMR spectrum for solid He (Fig. 2). These
spectra are fully explained by the assumptions of two
modes per crystal domain, " rather than the general three,
and have a very simple field dependence. (We follow here
the analysis of OCF. ) This suggests that, at least for the
NMR response, the antiferromagnetic spin arrangement

may be characterized by a unique axis d (i.e., by two vari-
ables rather than the three needed for a general phase). In
particular, the dipole energy and susceptibility tensor
must show this uniaxial symmetry, i.e.,

ED ————,
' d-A. d, (2.7)

X=Xp(1+5dd), (2.8)

with A a second rank tensor reflecting the symmetry of
the dipole energy under rotations of the lattice, and 5 a
parameter giving the susceptibility anisotropy. The form
Eq. (2.7) follows, since the dipole energy, evaluated
without perturbations due to the dipole energy itself, con-
sists of the contraction of a second rank tensor in spin-
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FIG. 2. NMR spectra from Qsheroff et al. (1980) on a single
crystal of solid 'He containing three domains. The pairs of
modes for each domain are denoted by the same symbols. The
solid lines are theoretical fits to Eq. (2.13), with 00/2+=777. 7
kHz and the values of cos 8 as shown. The dashed line is the
Larmor frequency, yH.

1500

space reflecting the spin rotational symmetries of the an
tiferromagnetic state, with a second-rank tensor in real
space. Note that had we allowed dipole energy-induced
perturbations in the state, a more complicated form
would have resulted.

It should of course be admitted that the assumption of
a symmetry based on the observation of fewer modes than
generally possible should not be made lightly: it is cer-
tainly conceivable that an additional mode might be
missed or be in a frequency range not scanned. However,
in the experiments analyzed here, the absence of a third
mode for the many different crystal orientations studied
and a wide range of magnetic fields, coupled with the
very simple field dependence of the observed modes,
seems sufficient evidence to justify this assumption.
Again, the final justification must be the excellent fit
eventually obtained based on this assumption. It should
also be emphasized that uniaxiality of the second rank
tensors in Eqs. (2.7) and (2.8) does not require that the
state itself be uniaxial: as we will see, lesser symmetries
may be sufficient to guarantee these results, although
higher rank tensor properties may then not be uniaxial.

Since the variable d defines the orientation of the spin
ordering globally, it is now convenient to rewrite the
dynamical equations (2.1) in this variable. Using the ex-

pression for an infinitesimal change 5d=d X 5il gives

4As the reader can see, typically three modes were seen in the
field scans for each single crystal. These were associated with
three domains of each single crystal. The original evidence sug-

gesting two modes for each of three domains was similarities in

strengths and shapes of pairs of peaks (associated with each
symbol in Fig. 2). Confirming evidence is the final excellent fit
to the data based on this assumption.

S=ySXH —d&A d,

d =d x (yH —y'Xp 'S) .

(2.9)

The susceptibility anisotropy 5 does not appear directly in
the equations of motion, but will be involved in determin-
ing the equilibrium configuration. These equations in
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general have two pairs of . finite frequency modes
m =+co~ 2 consistent with experiment, together with a sin-
gle mode at zero frequency corresponding to the identity

(d S)=0. (2.10)

This last mode is not seen in NMR. It becomes the spin-
diffusion mode at nonzero wavevectors.

Analysis of the high-field dependence immediately

shows that 5&0: i.e., d tends to lie perpendicular to an
applied field. In the opposite case the high-field asymp-
totes for co are yH and 5yH corresponding to Eqs. (2.5a)
and (2.5b), the second result conflicting with experiment.
For 5 &0 Eqs. (2.5a) and (2.5c) apply, leading to one mode
asymptotically flat and another approaching the Larmor
frequency, as observed.

The other information learned from the NMR is the

form of the tensor A. In general, A is characterized by its
principal values A, i & A,2 & A, 3 with respect to three orthogo-
nal principal axes. The NMR spectrum then depends just
on differences, e.g., A, i

—A,z, A, I
—A,3. A typical spectrum

for arbitrarily chosen values is shown in Fig. 3. In partic-
ular, the zero-field frequencies are given by

coi ——y (&I—&z)/Xo,

(2.11)
co2 ——y (A, i

—&3)/Xo .

The zero frequency observed for the lower mode at zero

magnetic field shows that A has planar symmetry, i.e.,
A. I =A,2, and that we may then write

where Qo(T) is given by

002= y2A, /xo

(2.13)

(2.14)

with coL, the Larmor frequency yH and cos8 the angle be-

tween the magnetic field and the lattice anisotropy axis 1,
which must be obtained from a best fit to the data for
each pair of modes. In addition, for each run, Qo must be
fitted. As can be seen, the resulting agreement is excellent
(and Qo is indeed then found to be a function only of tem-
perature and not crystal orientation). A careful analysis
of deviations of the low-frequency modes from Eq. (2.13)
at small magnetic fields shows that any deviation from
the planar symmetry of A is characterized by an energy

with A. =A, I
—A,3&0, and I the unique axis normal to the

plane of degeneracy for d. [Note: A, &0 would corre-
spond to axial symmetry and two degenerate modes at
zero field split linearly by the field. This is the case in
liquid He A (Brinkman and Cross, 1978).] This result is
also suggested by the complete absence of spin-flop ef-
fects, such as those evident in Fig. 3 at yH=0. 7, when

the d vector reorients from primarily minimizing ED to
primarily minimizing the magnetic energy. In the case of
planar symmetry an orientation of d perpendicular to
both 1 and H minimizes both ED and the magnetic energy
for all values of the field, and no reorientation occurs.

The resonant frequencies from Eqs. (2.9) are

co =
2 IcoL, +Q~o+[(cog —Qo) +4coL Qocos 8] I

ED ———,
'

A,(l.d) (2.12) (A, I
—A, 2)/iL & 10 (2.15)

P 8
0

yH
FIG. 3. Typical NMR spectrum for a uniaxial spin structure
with nonuniaxial dipole energy with eigenvalues A, &, A,2, A,3 related
as shown. The inset indicates the direction of the magnetic
field, and the dashed line the Larmor frequency. Note the
remanent of the spin-flip transition at yH =0.7.

For practical purposes this may be taken as evidence of
planar symmetry for A in the undistorted antiferromag-
netic state.

To summarize, the entire evidence learned from NMR
is the following:

(i) The uniaxial symmetry of the dipole energy and sus-

ceptibility tensors, given by an axis d in spin space.
(ii) A susceptibility anisotropy 5 & 0.
(iii) The form of the dipole energy Eq. (2.12), implying

uniaxial symmetry of A in real space, together with a
measurement of A, /Xo as a function of temperature.

(iv) Some information (via the fitted cos8) on the orien-
tation of the domains.

Clearly this evidence is insufficient to determine
uniquely a possibly complex microscopic spin arrange-
ment. We can, however, make definite statements on
some rotational symmetries this structure must show.
These symmetries turn out to be rather unexpected, and
lead us to a plausible suggestion for a possible structure.

3. Symmetry requirements
on the antiferromagnetic state

The anisotropic part of the dipole energy per unit
volume leading to the NMR shifts can be written
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(2.16)

where the spin correlation function is

C ~(r) = V ' g (S (r')S~(r+r') ), (2.17)

where A is a second-rank lattice tensor reflecting the spa-

tial symmetry, and E is a second-rank spin tensor reflect-
ing the spin rotational symmetries.

Two different rotational symmetries are important.
[Because of the sum over r' in Eq. (2.17) it is clear that
we are interested in point groups not space groups. ] The
first is the spin point group, consisting of the rotations of
the spin coordinates that together with optional transla-
tions (but not rotations) of the lattice leave the state un-
changed. The second is the set of lattice rotations that,
again with optional lattice translations but now no change
in the spin degrees of freedom, leave the state unchanged.
This new lattice point group may be reduced from the
original cubic symmetry. For a spin state described by a
single plane wave k in the spin density the lattice point
group is the group of k. The symmetries are easily visu-
alized in the classical description of the antiferromagnetic
state: the spin point group acts on the "arrows"
representing the spin directions; the lattice point group
changes the lattice sites of the arrows, but leaves the
directions unchanged.

We have argued that the NMR spectra lead to the con-
clusion

with r the distance between spins, and where the average
in Eq. (2.17) is over the spin fluctuations. In (2.16) we
sum over the neighbors and average over lattice fluctua-
tions. Notice that in general C ~ will depend on fiuctua-
tions in r through the dependence of the exchange energy
on separation, but since the exchange is invariant under
rotations in spin space, this will not affect the symmetries

of C under spin rotations. We may thus consider the di-
pole energy to be the contraction

(2.18)

metry leading to Eq. (2.19) is obviously complete uniaxial

symmetry about the axis d. Any state with all the spins
up or down along this direction satisfies this criterion.
However, the state may show lesser symmetry, but contin-
ue to satisfy Eq. (2.19), since discrete rotational sym-
metries of order n )3 about some axis are sufficient to
guarantee complete isotropy about this axis for a second-
rank tensor. One class of states satisfying this symmetry
is the helicoidal state, in which (S(r)) spirals about the
axis d with some wave vector k as r passes through the
lattice. An incommensurate k leads to a spin point group
invariant under rotations about d. Any k=n 'G, with n
an integer greater than two and 0 a reciprocal lattice vec-
tor, leads to a point group with discrete rotational sym-
metry. (Note here that the lattice translations are needed
to return the rotated state to the original configurations. )
In either case the dipole energy will be uniaxial, consistent
with experiment. Since the susceptibility tensor is also of
second rank, these same symmetries guarantee uniaxial
symmetry here also, although in the helicoidal states
higher rank tensors wiH not in general be uniaxial.

For the lattice symmetry Eq. (2.20) we may simply ar-
gue that the sublattice structure must preserve one of the
threefold axes or one of the fourfold axes of the original
cubic point group. Such an axis is necessary to make the
second-rank lattice tensor uniaxial about I, with I along
this axis. (Of course the full cubic syminetry cannot be
preserved, since this leads to no NMR shifts. ) In fact,
from the observation of domains we may conclude that i
must be one of the fourfold symmetry axes. This would
then imply the possibility of three domains for each single

crystal with orthogonal directions of I corresponding to
the three [100] directions. (If i were along a threefold
axis, there would be four possible domains, with the vari-

ous i at angles of 109.) A quantitative test of this result,
confirming that no domains were missed, is provided by
the values obtained by fitting the spectra with 8; for
i =1,2, 3, which are the angles between the possible I's
and the field direction. To a very good approximation
(better than 2%%uo in each case) these satisfy

(2.19)

(2.20)

3

g cos 8;=I, (2.21)

with d and i anisotropy. axes for spin and lattice rota-
tions, respectively. The symmetries (i.e., spin and lattice
point groups) of the antiferromagnetic state must be suffi-
cient to reduce second-rank tensors to these forms.

Let us first consider the spin tensor. A possible sym-

5This is the set [R,
~
OI, where the operations [ R,

~

t ), with R,
a rotation acting on the spin degrees of freedom and t a lattice
translation, leave the state unchanged.

6The set [Ri
~
0], where [Ri

~

t I, with Ri a lattice rotation,
leaves the state unchanged.

as required for orthonormal axes.
To summarize, the analysis of the NMR spectra im-

This is a classical Neel description of a spin-2 system for
which quantum corrections are likely to be large. We may then
define a state with this kind of uniaxial symmetry by imagining
turning on quantum effects and supposing no change in symme-
try during this continuous process. It cannot be entirely ruled
out that in a highly quantum system a state with a uniaxial C ~

might exist but with (S;)=0. One obvious example is the A

phase of superfluid He. This would not correspond to a con-
ventional quantum antiferromagnet, and we shall not consider
this possibility further.
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plies an antiferromagnetic structure with a spin point
group containing a symmetry axis of order n )3 (i.e., a
spin rotation of 2n/n plus a lattice translation leaves the
state invariant), and a new lattice point group retaining
one of the original fourfold axes of the cubic symmetry.
For a state with (S; ) consisting of a single plane wave,
the wave vector k must lie along a [100] direction (cube
edge).

4. Quantitative analYsis

(2.22)

and then suppose (S; ) to be given by the classical
description —usually we will suppose that then all

~
(S; )

~

are equal —but with a magnitude reduced from
—,A' by a factor of g to roughly take into account the
zero-point spin fluctuations. The evaluation of ED then
reduces to the calculation of dipole sums in classical
states —a straightforward calculation.

It is instructive to explicitly calculate A using this
mean-field approximation for uniaxial spin states
described by a single plane wave k

(S;)= —,'A@Re[crexp(ik r;)] . (2.23)

This class includes (with G a reciprocal lattice vector)
(a) all two sublattice "up-down" states ( k = —,

' G, a=d),
(b) states with ferromagnetic planes arranged in the se-

quence up-up-down-down (k= , G, o =~2e' —~d),

It is not surprising that a qualitative analysis of the
NMR spectra can lead only to rather global symmetry re-
quirements on the antiferromagnetic state. In particular,
point symmetries are determined, but many spatial struc-
tures are consistent with each point symmetry. Any fur-
ther conclusions concerning the microscopic spin arrange-
ment must involve first some guesses as to likely possible
states and then a quantitative comparison, through
Qo ——y A, /Xo, with the experiment. A source of uncertain-
ty in the comparison is that although A, may be easily cal-
culated for any Neel-type antiferromagnetic state (i.e.,
each S aligned with known magnitude along some direc-
tion in a rigid lattice), both zero-point spin fluctuations
and lattice fluctuations may significantly affect the result.
Particularly serious for a spin- —, system will be the zero-
point spin fluctuations. An estimate of the resulting
change in A, depends on the microscopic spin exchange
Hamiltonian, and so is not model independent. Thus, al-
though the magnitude of the frequency shift Qo may ulti-
mately provide a quantitative test for a proposed micro-
scopic Hamiltonian and its consequent ground state, it
does not provide a definite constraint on the antifer-
romagnetic state without knowledge of the microscopic
Hamiltonian. Experimental uncertainty in the measure-
ment of Xo leads to further uncertainty at present.

As a first approximation to calculate the NMR fre-
quencies for some possible structures we make the mean-
field factorization

(c) helicoidal states with the spin spiralling in the plane
normal to d (cr=h, +ih2 with h~, h, 2 unit vectors and

&) &2=0, 4)X62=1, kA —,G), and
(d) planar spin-density waves in which not all

~
(S;)

~

= —,A'g (o=1, k& —,G, including incommensu-
rate wave vectors).

It seems unlikely that the last class is physically
relevant at low temperatures where one would expect a
tendency towards a state without spins of anomalously
low expectation values. For each of these classes A is
given by'

A~p(k) =3(yR/2) p Q FS5~(k),

where

(2.24)

S5~(k) = p
' g exp(ik. r;)r; rj~/

~
r;

~
(2.25)

is the dimensionless lattice sum, which is tabulated for a
mesh of points in the bcc reciprocal cell by Cohen and
Keffer (1955), p is the number density, and the numerical
factor F is + 1 for classes (a) and (b), ——, for (c), and
+ —, for (d). Diagonalizing the matrix S5~ then confirms
the result of the general analysis, that in order to have a
degenerate pair of eigenvalues of A, k must lie along a
[111]or [100] direction. Out of the physically reasonable
classes (a), (b), and (c) it turns out that only two sets of
states are consistent with the requirement X&0. These
are a state in class (b) with k=2m. /d(1, 0,0) with d the
cubic lattice constant [this is denoted ( —„,0,0) by Cohen
and Keffer (1955) hereafter referred to as CK], and hel-
icoidal states based on the F points of the bcc reciprocal
zone [represented in CK by ( —,', —,', —,

'
) =(—', , —', , —', )]. The

elimination of other states from consideration does of
course depend on the assumption that the mean-field fac-
torization is sufficiently accurate to give the sign of A,

correctly. [If the unphysical seeming states (d) are also al-
lowed, then wave vectors k=(a, 0,0) and k=(p, p, p) with
0&p& 4 also give the correct sign of A..] The helicoidal
states would be likely, however, to yield the wrong sign of
the susceptibility anisotrOp, 5.

Taking into account the symmetry arguments given
above shows that out of the large class of states (a), (b),
and (c) only the one in class (b), consisting of [100] planes
of ferrornagnetically aligned spins arranged in the se-
quence up-up-down-down (and the two other symmetry
related directions of k corresponding to the other
domains) is consistent with both the symmetry implied by
the NMR and the sign of A., as calculated with the mean-
field factorization. This state, which we call u2d2, is
shown in Fig. 4.

Before discussing the quantitative comparison with ex-
perirnent we may consider other possible states suggested
by this structure. Although states in class (d) with
k =(a,0,0) are consistent with the symmetry require-
ments and the sign of A,, a physically more likely set of
states based on other [100] wave vectors is given by ar-
ranging the ferromagnetically aligned [100] planes in
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Qo/2m=1910K, ,' Q(T /1 mK) ' kHz, (2.28)

FIG. 4. A schematic representation of the u2d2 structure show-

ing the spin and real-space anisotropy axes d and I, respectively.

longer sequences, for example, u3d3 (where u stands for
"up" planes, d for "down" planes with respect to the spin
anisotropy axis).

A straightforward comparison of the dipole sums in
various umdm structures is given by noticing that the di-
pole interaction between the ferromagnetically aligned
sheets decreases exponentially with separation. Conse-
quently we may write in the same mean-field approxima-
tion as before

A, =3(yA/2) p g A, ,

with the numerical factor

(2.26)

(2.27)

The first result agrees with the value calculated by Cohen
and Keffer (1955). As can be seen, A,, gets progressively
larger as m increases, but saturates at 4m/3 for m~oo
corresponding to planar ferromagnetic domains, only
70%%uo larger than for m =2. (Of course for m~oo we
would expect quite different static and dynamic proper-
ties on application of a magnetic field; this limit is
evaluated only to show the trends in the dipole energy. )

Notice that the values depend mainly on the fraction of
nearest planes that are parallel: further neighbors give
only small corrections.

To compare with experiment, we find at melting pres-
sure

where fz gives the dipole interaction between sheet zero
and sheet p, the (+1) factor is for parallel or antiparallel
sheets, and the average is over all ferromagnetic sheets in
the crystal. The interaction fz decreases very rapidly
with p. In terms of the first few fz we find the following
results for A,, in Eq. (2.27):

u2d2: A,,=fo —2f2+2f4+ =2.42,

u3d3: &s=fo+ 3fi —
3 f2 —2f2+ '

u4d4: A,,=fp+f, f3+ . =3.30, —

lim umdm: A,,=fo+2f, +2f2 ——4. 19 .

where T is the magnetic temperature defined by
T~ =(yR/2) pX

' and we have introduced A,, as in Eq.
(2.26). Note that the numerical prefactor is density
dependent.

The best estimate at present for T at low tempera-
tures comes from measurements by Osheroff (1981). He
finds a value of T near the transition temperature
roughly consistent with the early measurement of Prewitt
and Goodkind (1977), but with a considerable (and rather
unexpected) increase as the temperature is lowered, lead-
ing to an extrapolated zero-temperature value of T =5.8
mK. This is larger than the value used in OCF, which
corresponded to the knee near T, of the low-field mea-
surements of Prewitt and Goodkind (1977).

For the u2d2 structure we therefore estimate

IIo/2m =1230/ kHz,

compared with the experimental extrapolation

(2.29)

(2.30)(00/2m. ),„p,
——825 kHz .

For agreement we need a large renormalization due to
zero-point spin fluctuations t/i-0. 67. This should be
compared with a value $-0.85 that might be guessed
from previous spin wave calculations on simple antifer-
romagnetic states (Anderson, 1952; Kubo, 1952). Howev-
er, a larger value may be reasonable in this system, al-
though it is hard to calculate (see Sec. IV.B). In view of
these uncertainties, the quantitative agreement with ex-
periment for the u2d2 state must be considered an open
question. Note that longer sequences umdm make the
agreement progressively worse (e.g., u3d3 gives 12%%uo

worse agreement), although perhaps not significantly so
for small m, considering the large discrepancy for m =2.

Roger and Delrieu (1981) have suggested that the zero-
point lattice motion may improve the agreement with ex-
periment by smearing out the effective magnetic moments
and so reducing the dipole anisotropy. It seems very un-
likely that this would yield a large correction in the u2d2
state, since uncorrelated, spherically symmetric fluctua-
tions lead to no change in the dipole energy, as follows
from elementary magnetostatics. Such a description
should be good in the u2d2 state, where nearest neighbors,
whose motion might be significantly correlated, do not
contribute to the dipole sums in the Neel approximation.

We (OCF) have suggested a simple phase based on a
[100] wave vector —the u2d2 phase —that is consistent
with the symmetry requirements imposed by the analysis
of the NMR spectrum. The quantitative agreement with
experiment is uncertain, because zero-point spin fluctua-
tion corrections are not reliably known. Consistency ap-
parently requires an anomalously large correction, based
on our expectations from analyses of simpler systems.
Larger sequences umdm give worse agreement. Similar
structures based on a [100] wave vector, but in which

~
( $; )

~

is modulated appear unlikely from physical
grounds at low temperatures but cannot be ruled out by
experiment [and, in fact, because of the factor I' =

2 in
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Eq. (2.24) may give rather good numerical agreement with

&AD = 1]. It is certainly true, however, that other phases ex-
ist consistent with the symmetry, but with more compli-
cated spatial structures.

B. High-temperature series

—I T g+ T
(2.32)

Very few experiments other than NMR provide infor-
mation on the effective spin Hamiltonian that is indepen-
dent of detailed model assumptions. Fitting measure-
ments of thermodynamic quantities to the terms of a
high-temperature expansion of the spin Hamiltonian (i.e.,
a series in J/T for measurements well above T, ) in prin-
ciple provides such information. There remains consider-
able controversy concerning the values of the coefficients
produced by this analysis. It seems to us that a careful
exploitation of this approach, involving precise measure-
ments of specific heat, magnetic susceptibility, and the
pressure P(T,H), together with a proper calibration of
the temperature scale, is essential to provide reliable num-
bers that can constrain proposed model Hamiltonians.

The development of the high-temperature series for
thermodynamic quantities is straightforward. The free
energy is given by the series

((M+yS'H )") (2.31)
p nJT"

with Pi the effective spin Hamiltonian and S* the total
spin along the direction of the magnetic field assumed to
be in the z direction. Although for a given model Hamil-
tonian A this series may in principle be developed to high
orders to compare with experiment, the reliable experi-
mental constraints to be imposed on possible models are
probably restricted to measurements of the first one or
two coefficients. In particular, in the series for the sus-
ceptibility 7 per unit volume,

' —2

eq(V) = f e2dV (2.36)

obviously leads to the same e2. This problem is sur-
mounted in practice by continuing the measurements to
high enough densities, where the exchange rate is expect-
ed to be small, so that small bounds may be placed on the
additive constant. The actual numbers derived by
Panczyk and Adams (1970) are consistent with a very
small value &0. 1 (mK) assumed for e2 at 21 cm /mole.
The nature of the assumption involved should, however,
be remembered whenever pressure measurements are used

ez ———(4 ) =- 12J for nearest-neighbor exchange,
4 2 2

N

(2.35)

8=—((S') A ) =-4J for nearest-neighbor exchange,
N

where the expectation value ( ) is taken with respect to
the high-temperature disordered density matrix (i.e., all
states weighted equally) and N is the number of spins.
The only assumption involved in deriving these expres-
sions is that the temperature is high compared to charac-
teristic magnetic energies of A . Thus the temperature
must be high compared to the exchange energies (typified
by the Neel temperature) but low enough so that the lat-
tice degrees of freedom such as vacancies and phonons are
not excited.

For the specific heat there is a rather wide range of
temperature, at least at the larger molar volumes, where
the magnetic T term gives the dominant specific heat:
the phonon contribution becomes comparable only at
100—200 mK. Thus e2 is rather well known near the
melting curve (Fig. 5) with ez -2.4 mK at a molar
volume V=24. 2 cm /mole. Panczyk and Adams (1970)
measured the temperature dependence of the pressure in
zero field, leading to values of e2 ——de2/dV. We would
like to stress that there is no way of deducing ez( V) from
this data without further assumptions, since an arbitrary
constant added to

the specific heat 10

a ez
Cv= + e ~ ~

4 T2

and the pressure

1 ez
P(T,H)= Po+ — + .

8 T2

(2.33)

cv

E
cv 4Q)

0

+ yAH 1 8'+. . . +O(H')
2 T2 (2.34)

o
21

I 1 i

22 23
MOLAR VOLUME (ML/MOLE)

1

24

(where the prime denotes the volume derivative), we will
restrict our discussion to the first nontrivial corrections
O, e2 and their volume derivatives. Here p is the number
density. These coefficients are given by moments of the
spin Hamiltonian

FIG. 5. Leading coefficient of the high-temperature expansion
of the specific heat (C„-e&/T ) as a function of molar volume.
The open points are from direct measurements: o, Greywall
(1977); H, Castles and Adams (l975); A, Dundon and Voodkind
(1974). The solid points (~ ) are derived indirectly from pressure
measurements (Panczyk and Adams, 1970).
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to derive exchange constants. An alternative method
sometimes used is to assume a particular form for the log-
arithmic derivative (Cxruneisen parameter)

y( V)=aine, /alnv, (2.37)

typically a constant. This is not reliable: the system is
sufficiently complicated and the theoretical understanding
is poor enough that any such assumption that such a
form is obeyed over a wide range of volumes is complete-
ly arbitrary.

Deriving reliable estimates from experiment for the
Curie-Weiss constant 8 is more difficult, and there has
been considerable controversy over its value for the past
twenty years. Recent more precise measurements have
heightened this controversy, with values quoted for 0 near
the melting pressure a factor of 2 lower than previous
values. The basic difficulty is that the term required is a
small correction to the "trivial" Curie susceptibility of
nonigteracting spins. Thus at high temperatures, 8 is
given by a very small fractional change in the susceptibili-
ty and the statistical errors are large. The size of the in-
teraction corrections may be made larger by going to
lower temperatures, but then the approximation of retain-
ing only the lowest-order term in the high-temperature
series is less good and the systematic errors become larger.

The experimentally deduced values of 8(V) fall into
two classes. Direct measurements of X(T) have led to
values shown as open points in Fig. 6 which rise to a
value of about 3 mK at melting pressure. A second class
of measurements are shown as solid points: these are de-
rived from pressure measurements which yield directly
values for 8', and the comparison technique mentioned
above, which yields 8(V)—8(VO), with Vo a reference
volume. This second class of measurements is undoubted-

E

LJJ
lZ

K
Q
X
I-LtJ

LLJ
0

+2 I

20
I & I 1 I

21 22 25
MOLAR VOLUME (ML/MOLE)

I

24

FIG. 6. Curie-gneiss temperature 9 as a function of molar
volume. The open points are from direct measurements.
Bakalyar et al. (1977);CKl, Prewitt and Cxoodkind (1977); ,
Morii et al. (1978); L, Bernat and Cohen (1973); Q, Johnson
and Wheatley (1970); Q', Sites et al. (1969);, Kirk et al.
(1969); 0, Hata et al. (1981). The solid points are indirect or
comparison measurements as discussed in the text: , Van De-
grift et al. (1982); Q, Kirk and Adams (1971); k, Kirk et al.
(1983).

ly more precise; they, however, suffer from the problem
encountered above that an unknown constant offset may
be added to 8(V). Kirk and Adams (1971) and Van De-
grift et al (.1982) use assumptions about the expected
volume dependence to fix this constant. We find this
method unsatisfactory for the reasons noted previously.
Kirk et al. (1983) try to place bounds on the offset [more
precisely, on 8( Vc ), with Vc the lowest volume
measured —21 cm /mole in the published data] by a less
precise direct measurement of 8(VO) using cerium mag-
nesium nitrate (CMN) and lanthanum CMN (LCMN)
thermometry. They estimate 8(Vo)=0.11 mK and con-
clude that almost certainly 8(VO) &0.22 mK, although
this estimate remains somewhat uncertain due to possible
offset effects in the thermometry scales. Extending the
measurements down to a volume of 19 cm /mole leads to
similar values for 8(V) (Kirk, 1983) and adds further
weight to their estimates.

One is then left with the problem of reconciling the two
sets of data. The greatest discrepancy is at melting pres-
sure (24.2 cm /mole), where the comparison measure-
ments yield 8 of about 1.6 mK, and the direct measure-
ments yield a systematically larger 8 of about 3 mK, with
typically +O.S mK error bars in the latter. Two options
seem open at this stage. One is to obtain consistency of
all the measured data by adding a constant offset of about
1 mK to the value derived from pressure and comparison
measurements. This requires a value of 8 at 21 cm /mole
of about 1 mK, much larger than expected from the
volume dependence 8- V' typically observed for other
quantities. However, in a system where evidence for com-
peting ferromagnetic and antiferromagnetic interactions is
strong, it is an intriguing possibility that the decrease in 8
with volume could lessen, or even that 0 begins to in-
crease with decreasing volume as the ferromagnetic part
of the interaction becomes relatively less important.
Against this argument is the apparent inconsistency of
the value of 1 mK at 21 cm /mole with the direct mea-
surement of Kirk et al. (1983).

The second option seems to be to suppose that the
analysis of the less precise measurements at melting pres-
sure for some reason systematically lead to too large a
value of 8. Except for the data of Sites et al. (1969),
these experiments were all analyzed by plotting X
against T with the intercept on the T axis giving 0. The
ranges of temperatures used in the various measurements
differ widely, yet all yield similar values of 8. Et is partic-
ularly hard to understand why the results of Prewitt and
Goodkind (1977), Bakalyar et al. (1977), Morii et al.
(1978), and Hata et al (1981) obtaine. d from temperatures
below 15 mK should lead to too large a value of 8: if the
enhancement in the susceptibility at lower temperatures
shown in these data may be ascribed to the next term in
the high-temperature expansion (i.e., A &0) the estimation
of 8 at too low temperatures should lead to too small a
value. On the other hand, Kirk et al. (1984) have recent-
ly measured an anomalous decrease in 7 at around 50 mK
in samples very near melting that would be consistent
with the idea that a 7 ' vs T fit to the direct measure-
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C. Low-temperature thermal properties
and spin waves

In the previous two sections we have shown that there
are severe qualitative constraints on the symmetry of the
low-temperature ordered phase imposed by the NMR data
and somewhat less stringent quantitative constraints from
the high-temperature thermodynamic data. In addition to
this information, there is a considerable amount of ther-
modynamic data at low temperatures in the ordered phase
which it might be hoped would provide additional con-
straints on possible theories.

For T «T, the temperature dependences of thermo-
dynamic quantities are determined by the low-energy ele-
mentary excitations of the system, i.e., the antiferromag-
netic spin waves. Except at extremely low and currently
inaccessible temperatures, the dipolar anisotropy can be
ignored and the spin-wave frequencies will be linear in the
wave vector k in the absence of a magnetic field. For
states with tetragonal spatial symmetry like the zero-field
phase, the low-frequency spin wave modes have a spec-
trum

co (k)=c ~)k +c J (k„+ky), (2.38)

where we have chosen the spatial anisotropy axis I to be
in the z direction. For general structures there will be a
different spin-wave mode, labeled by the index a, for each
of the broken spin symmetries. However, for uniaxial (in
spin space) spin structures which the NMR indicates for
He, two of the spin-wave modes must be degenerate. For

up-down structures, such as the u2d2 structure, only two

ments yields too large a value of 9.
It is clear that at the present stage this question re-

quires further experimental work, entailing precise direct
measurements of X(T) over a wide temperature range.
Kirk et al. (1984) have demonstrated the danger of
graphical fits to measurements without a careful analysis
of the weights to be given each data point. Plotting
(XT) ' or XT against T ' displays deviations due to
higher-order terms in the expansion more clearly, better
showing over what range in temperature the lowest-order
fit is reasonable. At the same time this plot gives larger
weight to the low-temperature region where the higher-
order terms are important. On the other hand, plotting

against T weights more strongly the high-
temperature region where the expansion is best, yet masks
deviations at lower temperatures. Since the signs of the
higher-order terms are not known, neither method is
a priori more likely to minimize their effect. A least-
squares fit to either form with consistent weighting of the
data points according to the experimental uncertainty
would eliminate differences due to these different treat-
ments. An inspection of the residuals from either fit to
examine whether the deviations appear systematic or truly
statistical would then answer the question of whether the
data is extending into regions where the assumed high-
temperature form is no longer adequate.

of the spin rotation symmetries are broken and only two
modes exist: there will thus be a unique spin-wave veloci-
ty in each direction. For helicoidal and other structures
which break all three spin symmetries but are still uniaX-
al, there will be three modes, two of them degenerate. In
addition to the acoustic spin-wave modes, there will gen-
erally be optic spin-wave modes; however, because of the
Bose occupation factors, the thermal effects of these
modes will be exponentially small at low T. All the
modes will, however, contribute to the zero-point suppres-.
sion of, for example, the dipole energy and the order pa-
rameter.

The characteristic magnitude of the spin-wave frequen-
cies will be T, /fi and hence the velocities will be of order
T,a/fi which is very small (of order cm/sec) due to the
weak magnetic interactions. An experimental determina-
tion of a combination of the spin wave velocities can be
obtained from the low-temperature specific heat per unit
volume

%co (k)
Cv= —g n'

Vk T
fun (k)

T
(2.39)

where n {x)=(e —1) is the Bose distribution function,
the prime denotes differentiation, and the sum runs over
wave vectors in the antiferromagnetic Brillouin zone and
the number of acoustic modes. Using the linear disper-
sion for small k which will dominate the sum for low
temperatures, we have the usual result

1M c (k)l
(2.40)

(
1 1
3 2c cc)( (2.41)

Experimentally (Osheroff and Yu, 1980) it is found
that the specific heat behaves as T almost up to T, with

=3.34&&10 ' (sec/cm)' .
a ca

(2.42)

For an up-down structure, this implies that the geometric
mean spin-wave velocity is 8.4 cm sec, which is of roughly
the expected magnitude.

Other low-temperature properties will depend on both
the spin-wave velocities and their eigenvectors. The form
of the latter will depend on the structure of the ordered
phase and so for the rest of this section we will assume
the u2d2 structure.

For three-dimensional antiferromagnets, it is generally
a relatively good approximation to consider the ground
state to be close to a classical Neel state and to treat quan-
tum fluctuations in terms of noninteracting spin waves
(Anderson, 1952). The spin-wave frequencies and eigen-
vectors are determined from expanding about the Neel
state and neglecting terms of order higher than quadratic.
The zero-temperature suppression of the order parameter
and the concomitant reduction of the dipolar anisotropy

where the average is over angles which for the tetragonal
case is given by
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can then be attributed to zero-point fluctuations of all the
spin waves. The leading low-temperature dependence of
these quantities and the T=O susceptibility will come
from only the long-wavelength acoustic modes. In this
section we will introduce a combination of measured
quantities which, once one has assumed the u2d2 ordered
state, depends Only on the assumption that interactions
between the spin waves can be ignored and not on the de-
tails of the microscopic Hamiltonian. This quantity gives
us model-independent information about the accuracy of
the noninteracting spin-wave calculations of low-
ternperature properties. (The details of the calculations,
which are somewhat tedious, are contained in Appendix
A.)

The zero-temperature transverse susceptibility is found
to be, from Eq. (A13),

y 2/2
X(0)=p (2A3)

with p the number density. The energy Y is a combina-
tion of the exchange constants in the Hamiltonian which
can be evaluated for any specific candidate Hamiltonian
and is related simply to the long wavelength limit of the
acoustic spin-wave eigenvectors Eq. (A 1 1). As described
in Appendix A, all the important properties of the long-
wavelength spin waves in the noninteracting approxima-
tion are contained in their velocities and the single param-
eter Y, so that the other low-temperature thermal proper-
ties can be directly related to the spin-wave velocities and
the susceptibility. In particular, we find that the suppres-
sion of the order parameter is given by Eq. (A29):

2(&*(0)(—2(S*(T()=—,(,), (2.44)

where ( I/c ) =1/chic~~ is the same combination as that
which enters the specific heat. The order parameter is not
directly measurable except with neutron scattering, but
another quantity, the thermal suppression of the dipolar
anisotropy exhibits related behavior and is measurable.
The dipolar anisotropy, as discussed in Sec. II.A, can be
most conveniently expressed in terms of the difference

A 3 between the largest and smallest eigenvalues of
the dipole energy tensor A ~. The thermal depression of
A, is found to be, from Eq. (A28),

6( T) =A, (T)—A,(0)

Q', (T)—Q,'(0)=Q,'(0) —1 +y'
X(T) X(0)

(2.46)

If we use the value Y=1.4 mK obtained from Eq.
(2.43) and the measured low- T susceptibility

X(0)=
2

(2.47)P
5.8mK '

(1/c ) from the specific heat, and the measured
temperature-dependent susceptibility, then the predicted
value for the right-hand side of Eq. (2.40) is

Qo(T) —Qo(0)
i p„d

———1.2T (2.48)

This should be compared with the experimentally mea-
sured

(2.49)

III. POSSIBLE THEORETICAt EXPLANATIONS

which is a factor of almost 4 smaller.
The theoretical expression Eq. (2.48) is based only on

the assumption of the u2d2 state and the neglect of in-
teractions between the spin waves. It is possible that the
large discrepancy is primarily due to errors in the mea-
sured quantities, particularly the susceptibility which
enters the result squared; however, the estimated errors
are far less than would be required for consistency.

A more likely, and certainly more interesting, possibili-
ty is that the discrepancy is due either to the incorrect
identification of the ordered phase or to the strong effects
of the spin-wave interactions in changing their frequen-
cies and eigenvectors from their noninteracting form. If
the latter is true, -then all the properties of the ordered
phase will be strongly affected by quantum fluctuations.
Thus, although the low-temperature experimental data
can be used in principle to constrain possible theories, it
will be difficult to calculate the low- T behavior of candi-
date Hamiltonians well enough for detailed quantitative
comparisons to be made. We will return to this question
in Sec. IV in connection with difficulties of obtaining use-
ful predictions from candidate models.

(2.45)

where the numerical factor is obtained from the dipolar
sunls discussed in Sec. II.A. We note that —', of this
suppression, 6( T), arises from the order-parameter
suppression Eq. (2.44) and the remainder from the spin
correlations transverse to the broken symmetry direction
d=z.

The low-T temperature dependence of the zero-field
NMR frequency Qo is expressible in terms of b,(T) and
other measured quantities:

The ground-state energy of solid He is almost indepen-
dent of the fermionic nature of the atoms and the spin de-
grees of freedom of the nuclei. The lattice energy may be
very well calculated, at the fraction of a Kelvin level, by
assuming each atom is confined to the vicinity of a partic-
ular lattice site. At this level of approximation fermions,
bosons, or distinguishable particles of identical mass have
the same energy.

For He atoms each localized to a lattice site there are
2 degenerate configurations corresponding to the possi-
ble spin arrangements. This degeneracy is split by any
process that leads to atoms exchanging their lattice sites.
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Empirically these processes are rare, corresponding to a
frequency of order 1 mK/atom, a factor of 10 less than
the vibrational frequencies. Because of the total antisym-
metry of the fermionic wave function under pairwise per-
mutations, there is a correspondence between the symme-
try of the spatial wave function under permutations and
the spin state. A spatial wave function that is not even
under all permutations implies the existence of nodes in
the wave function with a corresponding increase in the ki-
netic energy. Thus the residual quantum processes ex-
changing atomic sites lead to interesting phenomena at
energies of order mK that are manifest in the magnetic
properties of the system. The theoretical task is to under-
stand the nature of these quantum processes from the rich
experimental properties discussed in the preceding section
and the Introduction. The general properties of exchange
in solid He were first discussed by Thouless (1965), fol-
lowing ideas of Herring (1962,1966) for magnetic insula-
tors.

The most obvious exchange process is the pairwise ex-
change of nearest-neighbor atoms. If these events are
rare, they may be treated in isolation. It is then immedi-
ately clear that the contribution to the energy from any
pair of atoms is lower for the nodeless symmetric spatial
wave function (associated via the Pauli principle with the
antisymmetric spin state) than for the antisymmetric spa-
tial wave function (associated with the symmetric spin
state). Thus the total contribution to the energy from the
pairwise exchange process is

to the ground state of Eq. (3.3) for the bcc lattice is the
Neel antiferromagnet with S'=+ —,

' on the body centers
(for example) and S'= ——,

' on the body corners, known
as the NAP (for normal antiferromagnet) phase. This
state corresponds to one in which the exchange process
does not operate, i.e., in which each atom remains local-
ized at its lattice site—a result that is much less obvious
from the original statement of the problem. (The result is
of course approximate, and zero-point corrections will
correspond to some atomic exchange. )

Although simple, the spin Hamiltonian Eq. (3.3) is re-
markably inconsistent with nearly all the experimental
data on solid He. If any doubt remained, the NMR ex-
periments on the antiferromagnet phase are by themselves
sufficient to show that Eq. (3.3) requires drastic modifica-
tion, since the ground state of the near-neighbor Heisen-
berg antiferromagnet is strongly believed to have cubic
symmetry, leading to no shifts of the resonance from the
Larmor frequency. In fact, the u2d2 ground state pro-
posed by OCF which is consistent with the NMR would,
if correct, rule out any spin Hamiltonian involving only
pairwise exchange even if it included further neighbor
pair exchange: such a Hamiltonian would give a degen-
eracy in the ground state in which the spins in alternate
planes could be rotated uniformly with respect to the oth-
er spins. The thrust of the work since the inadequacy of
Eq. (3.3) was realized has been to find the proper descrip-
tion of the system to replace the hypothesis of only pair-
wise exchange.

~=J& g P~j
&~j&

(3.1)

A. Multiple exchange (general}

1Pj ———, +28;.Sj

yields

A =2J& g S;.S~+const,
&Ij&

(3.2)

(3.3)

the well-known nearest-neighbor Heisenberg spin Hamil-
tonian.

It is worth reflecting a little on the procedure leading to
this result. The original problem of finding the "most
nodeless" spatial wave function (with the dynamics of
nearest-neighbor exchange) consistent with the Pauli prin-
ciple amongst two sets of indistinguishable fermions (spin
up and spin down) is replaced by the problem of diagonal-
izing a lattice spin Hamiltonian. A good 'approximation

Note that we have gone from particle spin coordinates to site
spin coordinates. This is valid in the small exchange limit.

where the sum runs over nearest neighbor pairs (ij ) with
P'j the spin permutation operator acting at sites i,j and
J~ a positive energy equal to one-half the splitting of
symmetric and antisymmetric spatial states. Physically,
J~ gives the rate of occurrence of the process in which
two neighbors change position. Writing the permutation
operators in terms of the spin- —,

' operator S;

If pairwise exchange is not sufficient to describe the
system, it is natural to consider more complex exchange
processes involving a larger number of atoms. This idea
received initial impetus from the paper of McMahan and
Wilkins (1975). These authors attempted a microscopic
calculation of various exchange rates. Although their
method is now thought not to capture the features essen-
tial in determining the overall rates, the physics favoring
multiple exchange is perhaps as well documented in that
original work as anywhere else. The basic point is that
steric effects of neighboring atoms are much more serious
for two-particle exchange than for higher-order ring ex-
change processes. Thus the steric suppression of two-
particle exchange may be more important than the
suppression of multiple exchange due to the larger num-
ber of particles involved.

The derivation of the effective spin Hamiltonian result-
ing from multiple exchange proceeds essentially as before.
Again, since the exchange processes are rare, each one
may be considered in isolation, and the total Hamiltonian
will be the sum of individual exchange terms. Thus for
an exchange process corresponding to a permutation P' '

of the sites of the atoms we write the splitting in the ener-
gy between the approximate eigenfunctions

(3.4)
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as 2J(P), where $0 is an approximation to the spatial
wave function in which each atom is confined to the
neighborhood of one lattice site [the "home base wave
function" of Herring (1962)]. Again, by general argu-
ments the symmetric, nodeless combination [the + sign
in Eq. (3.4)] has the lower energy so that J(P) is positive.
Thus the energy splitting is given by

b, E@= J(P—)P' (3.5)

Now, using the fact that the wave function must be an-
tisymmetric under an odd number of interchanges of spin
and spatial coordinates together, so that acting on any fer-
mion wave function

P(R)P(cr) ( 1)P (3.6)

where ( —1) is positive for a permutation involving an
even number of interchanges and negative for a permuta-
tion involving an odd number of interchanges, we can
write the energy splittings completely in terms of the spin
permutations I" '. Summing over all permutations in the
lattice yields the effective spin Hamiltonian

A = —g ( —1) J(P)P' ' .
P

(3.7)

(3.8)

where the density matrix p(x, x', U) at temperature fi/U
may be expressed in path integral form

p(x, x', U)= f f exp ——S(U) Wx(U),1 (3.9)

where S(U) is the imaginary time action for particles at
x;(t)

U d&sS(U)= f dt —,'m g dt
+ V(x;) (3.10)

and the path integral is over all paths starting at x and
ending at x' at "time" U. We have not seen any rigorous

Note that for an even (odd) permutation, the ferromagnet-
ic state of aligned spins with P = 1 is the lowest (highest)
energy state. Thus it is the general rule that even (odd)
exchange processes favor ferromagnetism (antifer-
romagnetism).

Physically J(P) can be thought of as the rate of oc-
currence of the process in which distinguishable particles
undergo a permutation P of their position. We would
therefore like to obtain a formal expression for J in terms
of paths connecting the two configurations. This is
straightforward in a weakly quantum system with the de
Boer parameter A « 1 in terms of the WKB integral, but
is more difficult in the highly quantum case correspond-
ing to solid He at low densities. Formally we may gen-
erally write the exchange splitting as

f dx[p(x, x, U) p(x, Px, U)]-
J(P)= lim —ln f dx [p(x,x, U)+p(x, Px, U)]

development starting from Eq. (3.8). However, it seems
that the expression for J(P) can be simplified if we as-
sume that the empirical rarity of the exchange events al-
lows, even in the absence of an expansion involving %~0,
a treatment of the path integral in terms of a "dilute gas"
of independent to-and-fro exchange events, each one
occurring over a time scale small compared with the typi-
cal time between events. In this case we find

J(P)= f dxp(x, Px, U~oo), (3.11)

where p is defined as p(x, Px, U), but with paths restricted
to a single exchange event (x—+Px).

For a weakly quantum system the usual WKB expan-
sion can be performed to yield

J =mg exp( —S~;„/R), (3.12)

with S;„the action evaluated over the path minimizing
the action, and e, a complicated but well-defined quanti-
ty that can be interpreted as the attempt frequency and is
expected to be of order the frequency of the zero-point
motion, coo.

For hard-sphere atoms (which may well be a reasonable
approximation for He) exchange is somewhat more sub-
tle conceptually. Since there is no potential energy (it is
either zero or infinity for hard spheres), there is no tun-
neling in the usual sense. In addition, the atoms fluctuate
around lattice positions which are not minima of the po-
tential energy. (Note that this is in fact also true for bcc
solid He. ) Thus the "initial" and "final" configurations
of the exchange cannot be described as quantum fluctua-
tions about local minima. The boundary conditions due
to hard-core constraints do, however, force the wave func-
tion to go to zero when any pair of atoms approach to
within a hard-core diameter, and the effective potential
V ff can be associated with the kinetic energy E, of the

degrees of freedom transverse to the exchange path which
will be large because of the small distance 5, between the
atoms: roughly, according to IC, ~A' /m5, . This effec-
tive potential, Vd~, might possibly be included in the ac-
tion as a pseudopotential and minimized to give a classi-
cal path, but this has not yet been suitably formalized.
The exchange would then again be of the form of Eq.
(3.12) with Vin (3.10) replaced by V,ff.

For solid He near the me1ting curve, the exchanges are
probably in an even more complicated intermediate re-
gime between the soft potential case and the hard-sphere
limit. In the absence of reliable calculations of any ex-
change rates for He, it is useful to make a few general
comments here. In order to have J-1 mK, the actions in
the exponential in Eq. (3.12) determining J's must be rela-
tively large, on the order of 10k'. Twenty-percent varia-
tions in the exponential between different P s will yield al-
most an order of magnitude variation in the correspond-
ing J(P)'s. It is thus extremely unlikely that more than a
few exchange processes play major roles unless some addi-
tional physics (e.g., a common intermediate state) leads to
similar actions. Also, if the observed magnetic phases at
melting pressure are determined by a delicate balance be-
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tween several J's, small increases in pressure might be ex-
pected to cause relatively large changes in the phase dia-
gram and thermodynamic properties. To date this does
not seem to be the case; this is discussed further in Sec.
IV.A. Finally, it is clear that exchange processes I' which
can be factorized into two simultaneous permutations
P =Pi Pz will be negligible if P& involves only atoms far
from those in Pq (except for noninstantaneous coupling
via phonons discussed in the next section). In addition,
permutations involving atoms separated by more than the
nearest few neighbors which do not also involve the inter-
vening atoms are likely to be negligible.

For a soft interaction potential between atoms, one ex-
pects that the exchange integral for a permutation I' in-
volving n atoms each moving by, say, one nearest-
neighbor separation, will fall off roughly as e " due to
the total mass being proportional to n and from the as-
sumption that the barrier potential per particle is indepen-
dent of n In .this case, one would expect two-spin ex-
change to dominate over all others if the sum in Eq. (3.7)
is sensibly convergent. For He, however, the hard core
may cause the two-spin exchange to have an anomalously
large effective potential per particle relative to "ring" ex-
change of nearest (or perhaps next-nearest) neighbors.
This is the basic argument behind the proposal for multi-
ple exchange Hamiltonians. Consistency with the data
apparently requires competition between three- and four-
spin exchange processes; this is described in detail below.
However, it is interesting first to consider the possibility
of large- n ring exchange.

For large n, the exchange rate for a particular ring of n
atoms is roughly

J-coo exp[ n( Vi, ma —'/fi') '"], (3.13)

1 aS-—nt —in — + V,
2

(3.14)

where V„ is the sum of the vacancy-interstitial formation
energy and the barrier to vacancy hopping (the latter is
presumably small). Minimizing with respect to t yields

J-cooexp[ n(V, ma /A' )'~ ]—, (3.15)

which has the same dependence on n as Eq. (3.13). [Roger
(1984) incorrectly finds the n dependence J-exp( n' )—
for the latter case: his error arises from taking the
geometric path length in the intermediate configuration to
be of length -n '~ rather than the "taxi-cab" path of lat-
tice hops made by the vacancy which gives a length -n].
In either case J(n) decreases exponentially with n. Since,
however, the number of loops of length n in the lattice in-

with Vs the effective barrier per particle for the
intermediate state between (1,2,3, . . . n) and
(n, 1,2, . . . , n —1). An alternative process might be con-
sidered in which an interstitial-vacancy pair forms, fol-
lowed by the migration of the vacancy around the loop
and subsequent recombination. In this case the action in
Eq. (3.12) may be split into n parts in which the vacancy
hops one lattice space in time t:

T 2

creases as e ", with a a number of order one, it is con-
ceivable that

a & ( Vma /A' )
' (3.16)

so that large (in fact, infinite) loops might dominate.
[Note that the right-hand side of Eq. (3.16) is similar to
the inverse of the Boer parameter. ] What would be the
implications for the physical states? One possibility is
that Eq. (3.16) is inconsistent with the solid state, and the
system becomes liquid. More interesting is the possibility
that the system remains solid. It is not clear what large
exchange loops would imply for the spin state in the Fer-
mi system of He. In a Bose system such as He infinite-
exchange loops would seem, following the argument of
Feynman (1953) for the liquid, to lead to a supersolid
state. Understanding of multiple exchange from studying
He may thus have fascinating consequences in other sys-

tems, particularly electron crystals.

B. Three- and four-spin
ring exchange

Roger, Delrieu, and Hetherington (1980a,1980b,1983)
(RDH) have proposed a specific two-parameter spin
Hamiltonian for solid He. Since this work has been re-
viewed in depth recently, we refer the reader to that work
for a detailed discussion. The philosophy of their work is
to find the Hamiltonian with the fewest exchange process-
es that is consistent with the data. As we have seen, un-
less there are as yet unknown mechanisms that yield
many exchange processes at comparable rates, it is unlike-
ly that different exchange processes will coincidentally
have comparable rates. In fact, RDH are forced to use at
least two competing processes. Their simplest Hamiltoni-
an contains no two-spin exchange, but instead consists of
a three-spin exchange involving two nearest-neighbor
pairs and one next-nearest-neighbor pair, and a particular
four-spin ring 'exchange involving a planar nearest-
neighbor ring of four atoms. The Hamiltonian can be
written

~= —Ji g(PJk+Pjk )+&p g(PJkI+PjkI»
ijk jikl

(3.17)

where the sums run, respectively, over all distinct three-
spin rings (of the form mentioned above) and all distinct
planar four-spin rings. The permutation operator Pjk. . .
cyclically permutes the spins i,j,k, . . .. As discussed
above, general arguments lead, with the sign convention
(which is the opposite to that of RDH) in Eq. (3.17), to
J, & 0 (ferromagnetic) Xz & 0 (antiferromagnetic).

Since any permutation operator may be expressed as
the product of pairwise permutations, which in turn can
be written in terms of the spin operators via

1I',
q
———, +2S; Sj,

Eq. (3.17) may be written directly in terms of a spin rep-
resentation. The three-spin permutation term leads only
to pairwise spin interactions involving both nearest and
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next-nearest neighbors

P123+P123 7+2(Sl S2+Si S3+S2 S3), (3.18)
0.45 0.40

Kp
0.55 0.30

0.08

while the four-spin permutation gives four-spin interac-
tions, as well:

1

P)$34+P]234.—4 +S) S2+S2.S3+S3 S4

+S4.S1+SI.83+S2.S4

-+4[(S1 S2)(S3 S4) + (S2.S3)(S4.S1)

(3.19)

It turns out that for high-temperature series calculations
the spin representation is easier to use, essentially because
(P )&0 in the high-temperature limit, whereas
(S; SJ ) =0. For other purposes (e.g., ground states) it is
often conceptually simpler to work with the permutation
operators.

Three-spin ring exchange favors ferromagnetic rings
which are clearly eigenstates of Pjk with eigenvalue 1, the
maximum possible value. For four-spin exchange, fer-
romagnetic rings are least favorable, the most favorable
four-spin states being eigenstates of P1234 with eigenvalue
—1, i.e., antisymmetric under P$234 for example,

(~ tltl) —
~
ltlt)) .

2

If we restrict consideration to Neel-type states, which
may be a reasonable approximation for three-dimensional
ground states, then the spin-wave function can be ex-
pressed as a product of single spin-wave functions, each
giving the direction of one spin. In this case the
minimum expectation value of P1234 1s ——,, wllicll ls

achieved when all the spins rotate by m/2 around the ring
(or by —m/2), for example,

~

t~1~). Any ring, except
all spins parallel, described by a Neel state involving only
up and down spins will give (P1234) 0.

In principle, the two parameters J, and Kz in (3.17)
could be fitted to the two high-temperature series coeffi-
cients H, e2 in Eqs. (2.35) and then all other properties
could be carefully calculated and compared with experi-
ment. For the Hamiltonian Eq. (3.17), we have

8= 18(X~—2J, ),
(3.20)

Figure 7, taken from Roger et al. (1983), shows this
graphically. In practice, because of the current controver-
sy over the value of 8 discussed in Sec. II.B, the fitting
cannot be done with confidence at this stage. In addition,
the parameters accurately measured at low temperatures

As for two-spin exchange, the classical ground state for a sin-
gle ring has a considerably higher energy than the quantum
ground state.

0.10

0.12

0.14

0.16

0.18

have not been calculated accurately from the theoretical
Hamiltonian (as we have seen in Sec. II.C, zero-point
corrections to low-temperature properties seem likely to
be very large) and only a qualitative comparison with ex-
periment may be done at this stage. At the end of Appen-
dix A we quote some quadratic spin-wave results for the
RDH Hamiltonian.

Roger et al. (1983) have recently chosen parameters by
fitting to e2-7 (mK) and to the average spin-wave velo-
city obtained from the measured T specific heat at low
temperatures in Eq. (2.40) and that calculated without
zero-point corrections. This yields

J,=0.13 mK, E~ =0.385 mK . (3.21)

Since the zero-point corrections to the spin-wave velocity
may well be large, these may not be the best values to use.
RDH have then calculated the phase diagram from Eq.
(3.17) using mean-field theory at finite temperatures and
the classical Neel approximation to the various ground
states. For the parameter values Eq. (3.21) this is shown
in Fig. 8. There is certainly a remarkable qualitative
agreement with the experimental phase diagram. [See
Table I in RDH (1983.)] In particular,

(1) The low-field antiferromagnetic phase below about
1 mK is the u2d2 phase suggested by OCF to be con-
sistent with the symmetry assigned from the NMR.

(2) There is a first-order transition at low temperatures
as a function of field from the u2d2 phase to a high-field
phase which is cubic (and so consistent with the NMR
there) and has a large ( ——, saturation at the critical field

H, ) weakly field-dependent magnetization. In the RDH

0.20

FIO. 7. Calculated quantities for the RDH Hamiltonian [from
Roger et al. (1983)] with three-spin (J, ) and four-spin (K~) ex-
change in mK. The solid lines are contours of constant e2 [in
(mK) ], the coefficient of the high-temperature 1/T2 specific
heat; the dashed lines contours of constant Curie-Weiss 8 (in
mK); and the dotted lines geometric mean spin-wave velocities
(in cm/sec) calculated from linear spin-wave theory. In the
shaded region the low-field ordered phase in mean-field theory
is the SSQUAF phase, while in the rest of the phase diagram it
is the u2d2 phase; The best-fit parameters of RDH are
K~ =0.385 mK and J,=0.13 mK.

Rev. Mod. Phys. , Vol. 57, No. 4, October 1985



Cross and Fisher: Magnetism in solid 'He: 899

H {r)
{Q)'

l

10-
I

HEISENBERG MODEL /
g/

NAF

r {rnK)
0 i I

~

0 1 2~ pF

Jt = —0.13

Kp = -0.585
/

/
/

/
/

/
/

/
/

/
/

/
/

NAF

0
0

I

0.5

FIG. 8. Mean-field phase diagram for the RDH model with
J,=0.13 mK and Kp=0. 385 mK [from Roger er al. (1983)].
The solid lines are predicted first-order transitions and the
dashed lines second-order transitions. The circles and triangles
are experimental data. The solid lines through the data are
guides to the eye. The phase boundary of the spin- —,

' nearest-

neighbor model is shown as a dot-dashed line for comparison.

model this phase is the NAF phase with a canting of the
spins that would persist even in zero field. RDH labeled
this phase CNAF (for canted NAF). This state has a bro-
ken symmetry transverse to the field and is separated
from the paramagnetic phase by a second-order line in
RDH's calculation. Whether the high-field phase of sohd
He in fact has a spontaneously broken symmetry, and

whether a phase boundary (either first order or continu-
ous) enclosing the high-field phase exists has not been
proven by experiment.

(3) A first-order line ending in a critical point extends
upwards from the intersection of the H, (T) and the
T, (H) lines. The existence of a first-order transition is
consistent with the experiments of Osheroff (1982), al-
though it is not known how or whether the line ends.

The greatest discrepancy of Fig. 8 with the experimen-
tal phase diagram is that the critical field H, (0) for the
u2d2 to high-field phase transition at zero temperature is
predicted (Roger et al. , 1983) to be 16 kCx—a factor of 4
larger than the experimental value. Although, as we have
seen, there may be considerable zero-point fluctuation
corrections to the classical approximation (Roger et al. ,
1983},which yields

MoHc —4(Kp J,)'i (2Kp —3J,), (3.22)

with Mo the saturation magnetization, it does not seem

reasonable that the errors would be so large. The
discrepancy is equivalent to an error in the difference in
the ground-state energies of the two phases roughly equal
to the ground-state energies themselves. Since zero-point
corrections lower both energies, it seems unlikely that
their inclusion could eliminate the large discrepancy. The
first-order spin-wave corrections move the transition field
in the wrong direction, to a larger value (Roger et al. ,
1983). This conclusion is strengthened (as discussed in
Sec. IV) by the exact solution of a 16 quantum spin sys-
tem with the Hamiltonian Eq. (3.17) by Cross and Bhatt
(1984); these authors found an H, very little changed
from the classical estimate.

Other details of the phase diagram require further ex-

periment or further theoretical work. For example, the
details of the high-field phase to paramagnetic transition
warrants additional experimental investigation =ven the
existence of two transitions cannot confidently be con-
firmed or ruled out. More accurate calculations of the
phase diagram [e.g. , a calculation of T, (H=O) beyond
mean-field theory] are also needed to make serious quan-
titative tests of the model.

As we have said, the choice of values Eq. (3.21) for Kp
and J, is somewhat arbitrary. Some qualitative features
of the phase diagram change with fairly small changes in
the values. For example, an earlier choice of parameters
J, =0.1, Kp ——0.355 leads to the prediction (Roger et al. ,
1980a,1980b) of an intermediate helicoidal phase in a
magnetic field at about 1 mK. In addition, these values
are near to the critical value Kp/J, =4 in the classical ap-
proximation to a transition (see Fig. 7} to a different anti-
ferromagnetic ground state of lower symmetry with
Roger et al. (1980a) labeled SSQUAF for simple square
antiferromagnet, a complicated eight sublattice structure.
Associated with this proximity is an anomalously soft
spin wave, again in the classical approximation, which is
too soft to be consistent with the low-temperature experi-
ments. The parameters were, in fact, revised to move the
system away from the phase boundary, although the soft-
ness of the spin wave at the boundary is actually an
artifact of the classical approximation.

To resolve remaining discrepancies, Roger et al. (1983)
have considered including a third exchange process, al-

though they acknowledge that with each additional pa-
rameter the model becomes less attractive or at least re-

quires a more microscopic justification of the apparently
unlikely coincidence necessary to yield several comparable
exchange rates. The most promising additional process to
include is the two-spin nearest-neighbor antiferromagnetic
exchange. This has the effect (Roger et al. , 1983; Hether-
ington and Stipdonk, 1985) of lowering the transition
field H, to the CNAF phase but unfortunately introduces
an additional antiferromagnetic phase in zero field at
temperatures above T, (u2d2). This does not seem con-
sistent with experiment (e.g., a susceptibility enhancement
is observed in this temperature range rather than a
suppression, as might have been expected with antifer-
romagnetic ordering). Also, the reduction of H, seems'
very sensitive to quantum effects (Cross and Bhatt, 1985).

Rev, Mod. Phys. , Vol. 57, No. 4, October 1985



900 Cross and Fisher: Magnetism in solid 'He:

%"e do not, however, know if H, can be brought into
agreement with experiment while retaining the other qual-
itatively correct features of the model.

Various authors have studied alternative models with
three or more exchange processes. These have a very rich
behavior as a function of the relative strengths of the ex-
changes. Iwahashi and Masuda (1983) have investigated
the phase diagram of a model with three-spin ( J, ), planar
four-spin (ECz), and tetrahedral (folded) four-spin (Xz)
exchange and find new "double spiral" states. Other
models have been investigated in somewhat less detail.
Yosida (1980) investigated possible ground states with
large four-spin interactions, (S~ S2)(S3 Sz), but without
maintaining the corresponding two-spin terms in Eq.
(3.19); thus this Hamiltonian does not correspond to the
permutation processes we have been discussing. Roger
et al. (1983) have briefly studied four-spin exchange re-
sulting from rotating the nearest-neighbor tetrahedron
(i.e., two simultaneous pairwise exchanges) rather than
permuting them.

C. Coupling af exchange to phonons

(a)0~, ) '-(V,ff/IQ )' (3.23)

Note that, as pointed out by Thouless (1965), even this
Gruneisen constant may be the difference between two larger ef-
fects: as the lattice constant is decreased, the distance the atoms
must move decreases, increasing J. On the other hand, the
volume available for exchange decreases, and hence V,ff goes
up, deereasI'ng J, and dominating the distance effect.

An alternative mechanism which goes beyond simple
pairwise exchange is to include the coupling of exchange
to phonons.

Experimentally it is found that the characteristic ex-

change energy J has a strong dependence on static, long-
wavelength volume dilations, quantified by the Gruneisen
constant, y= —d(lnJ)/d(lnV), which is of order 20 in
He. ~ This has led to the idea that the coupling of spa-

tially separated exchange processes via virtual phonons,
leading to more complicated higher-order effective spin
couplings, may account for the complex magnetic
behavior of He. The resulting changes in the high-
temperature properties have been investigated by Varma
and Nosanow (1970), and some low-temperature effects
were considered by Guyer and Kumar (1982). Before we

consider the implications of an exchange phonon Hamil-
tonian, we shall investigate the physical basis of this pic-
ture a little further.

Even in the semiclassical limit there remains some con-
troversy over the correct definition of the characteristic
time scale for each exchange process as the "barrier
residence" time; the best justified value in the semiclassi-
cal limit seems to be (Buttiker and Landauer, 1982) the
"bounce" time given by v; -1(m/V, rf)', with l the path
length, m the particle mass, and V,~f the barrier potential.
With this estimate we find in the semiclassical limit

with K the elastic constant per atom, independent of fi.
The ratio (3.23) essentially depends on the anharmonicity
of the potential, and cannot simply be estimated from the
tunneling rate alone. If coo~, turns out to be small, then,
as first suggested by Thouless (1965), it may be reasonable
to assume that the exchange rate J depends on the instan-
taneous displacement coordinates of the atoms ju(r)I,
which are treated in terms of a phonon Hamiltonian.
This leads to the Hamiltonian

(3.24)

JJ j u(r) J =J 1+g I (r; r, rj —r) —u(r) (3.26)

then the phonons can be explicitly integrated out (karma,
1970) to yield an effective spin Hamiltonian which will

where A ~I, is the usual phonon Hamiltonian, and the sum
in the first term runs over nearest-neighbor pairs.

There are even more difficulties in applying this idea,
particularly in the case of solid He. There is no doubt
that expression (3.24) correctly describes the coupling to
slow, long-wavelength phonons, leading to a residual
power-law interaction between exchange processes at large
distances and important consequences for long-
wavelength phonon propagation experiments (see Sec.
V.B). However, when the phonons are integrated out in
the disordered phase, the dominant effect occurs at short
distances and comes from the high-frequency, short-
wavelength phonons. This introduces two problems.
First, at short distances the atomic displacements are
necessarily large and a harmonic description would not be
expected to be valid. Second, in a highly quantum crystal
such as He, the short-wavelength phonons are not very
well defined excitations, and probably do not describe the
Auctuations in the ground state accurately. Furthermore,
in the absence of a semiclassical picture for the tunneling,
there is no obvious way of deciding if coo~, is in fact
small, although a naive estimate evaluating V,~f empiri-
cally from the ratio J/coo using Eq. (3.13) and using l-a
and coo-A'/ma leads to the estimate

(rg)oz, ) '-ln(coo/J)=10 . (3.25)

Despite these difficulties, it remains true that the cou-
pling to lattice fluctuation may be an important effect.
This may occur at two levels. First, on the microscopic
scale, it may be possible to understand the similarity of
many different exchange rates in terms of a common in-
termediate state of a particular lattice distortion.
Second —and this is the main topic of this section —on a
macroscopic scale the coupling to a static lattice distor-
tion may be the energy driving the Inagnetic ordering. In
the absence of any better description, we shall follow pre-
vious authors in using the instantaneous, harmonic ap-
proximation to investigate the latter possibility.

Before proceeding with a discussion of the possible
ground states of a Hamiltonian of the form Eq. (3.24), we
briefly digress to discuss an equivalent spin Hamiltonian.
If the coupling of the exchange to phonons is hnear, i.e.,
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include terms of the form S;.SJSk Si, where (ij ) and

(kl ) are nearest-neighbor pairs and the interaction will be
retarded at large enough distances. These are similar, but
not identical, to terms generated by four-spin ring ex-
change. While for calculating certain properties, e.g., at
high temperatures, it is convenient to work with an effec-
tive four-spin Hamiltonian, for discussing ground states it
is more convenient to work with Eq. (3.24), in which the
phonons appear explicitly.

The sign of JJ Iu(r) j is given by the usual arguments,
now considering the spatial dependence of the atomic
many particle wave functions appropriate to a given set of
phonon coordinates. The wave functions even under two
particle exchange will be lower energy than the odd ones.
The overall antisymmetry of the wave functions imposed
by the fermionic character of He then implies that
JJ tu(r) j ~0 for all I u(r) j. The same result applies to
the effective exchange constant in the disordered phase,
which can be thought of as the exchange averaged over
the zero-point motion of the phonons: J=(J&Iu(r) j }.
In the presence of a static distortion I u, (r) j (or
equivalently a strain) the effective exchange, now depend-
ing on position, will be J~ Iu, j = (Ji~ Iu, (r)+5u, (r) j ),
where the average is over the zero-point motions I5u, (r) j
about the distorted state.

The logarithmic derivatives J,J with respect to a local
fractional static distortion u, (r;)/a will have a charac-
teristic magnitude" I which is of order yJ. In an anti-
ferromagnetic ground state, there will be a static phonon
distortion with displacements u, =I Ja/IC, where X-20
K is a characteristic elastic constant per atom of solid
He. The reduction in ground-state energy per atom, AE,

due to the lattice distortion will be of order

1 (I J)
2 K

(3.27)

~%'e shall use capital I"s to denote Gruneisen constants de-
fined as derivative with respect to strains and small y's those
with respect to volume.

It is possible that the dependence of the exchange rate on
a zone-boundary distortion will be considerably larger
than on a uniform compression. The appropriate coeffi-
cient I' entering Eq. (3.27) might thus be larger than yJ.
If, for definiteness, we take I =100 and J=1 mK, we ob-
tain bE= 0.5 mK, which is of th—e order of J. It thus
appears just possible, in principle, that the coupling of ex-
change to phonons might lower the energy of an antifer-
romagnetic ground state other than NAF by enough to
give it the lowest total energy. As we shall see, however,
this is unlikely to be the case.

We first consider the possible classical Neel ground
state of Eq. (3.24), i.e., we ignore quantum spin-wave fluc-
tuations. In this approximation the spins S; are just vec-
tors with magnitude —,', and hence the permutation opera-
tors P,J become numbers P,J with 0&PJ &1. It is now

A NAF
——A ph

——A s+ g J;J Iu(r) jP ~~J, (3.29)

where we have substituted Eq. (3.28). A lower bound for
Es can be established variationally by noting that

ENAF & ~ fs I ~NAF I fs &

=Es+ s ~ij' u r Pig s
(J&

Es (3.30)

where the second inequality follows by observing that
P;1J& Iu(r) j is strictly negative for some pairs (ij ), and
zero for the rest We .thus conclude that in the classical
spin approximation the NAF state wi11 always have the
lowest energy.

Lieb and Fisher (1981) have gone on to prove that for
the quantum spin- —,

' case, a similar result holds: for
Hamiltonians of the form (3.25) with all JJ Iu(r) j nega-
tive, all the body-centered spins will be antiferromagneti-
cally correlated with all the body corner spins and fer-
romagnetically correlated with each other at all tempera-
tures. This implies the desired result that phonon cou-
pling of nearest-neighbor exchanges cannot give rise to
the u2d2 antiferromagnetic state.

Guyer and Kumar (1982) have got around this result by
invoking an "effective" distortion-dependent nearest-
neighbor exchange which can be either ferromagnetic or
antiferromagnetic. However, since this effective exchange
must result from a combination of other more complicat-
ed exchange processes, and since we have seen that the
u2d2 phases arise naturally from just two competing ex-
change processes, it does not appear necessary at this
stage to invoke both phonon coupling and multiple-
exchange processes in order to explain only the nature of
the low-field phase.

We have just argued that distortion-dependent nearest-
neighbor exchange cannot yield the phase suggested by
OCF. It is natural to ask whether another phase which
has the observed symmetries could be induced by such
couplings. From the Lieb-Fisher result, we know that the
sign of the spin correlations must be the same as for
NAF, i.e., positive for all pairs on the same cubic sublat-
tice and negative between the sublattices. This leaves

simple to compare the ground-state energies of the NAF
state with another state, S, in which the P,J assume values
P,J. The energy, Es, of state S will be the ground-state
energy, with corresponding phonon wave function gs of
the purely phonon Hamiltonian

~s ———g JJ Iu(r) jP;1+% ~„, (3.28)
&~i&

with P;z the fixed numbers. In the NAF state, all the
nearest-neighbor pairs are antiferromagnetically aligned
and hence all P;~ are zero. In the classical spin approxi-
mation, the NAF energy, ENAF, is thus the (trivial)
ground-state energy of
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open the possibility that the magnitude of the correlations
for different originally equal spaced pairs varies in such a
way that the phase does not have the cubic symmetry of
the NAF phase. In Appendix 8 we discuss a novel phase
of this kind which is based on the spin analogy of a
Peierls instability of a uniform antiferromagnetic chain
and we call this the SPNAF (for spin-Peierls NAF) phase.

D. Zero-paint vacancies

An alternative explanation that has been proposed for
the anomalous magnetic properties of solid He invokes
the existence of "zero-point vacancies, *' that is, a finite
concentration of vacancy defects such that in the
ground-state wave function the number of lattice sites is
not equal to the number of atoms. Note that this is not
the same as a ground state containing Auctuations of
vacancy-interstitial pairs: such a fluctuation conserves
the total particle number; the vacancy-interstitial fluctua
tion may facilitate the exchange processes but is not in-
trinsically a separate process. The possibility of zero-
point vacancies was suggested by Andreev and Lifshitz
(1969), who argued that the decrease in energy (zt, with z
the number of nearest neighbors and t the hopping matrix
element) of the vacancy due to quantum hopping (the
banding energy) could overcome the "classical" activation
energy of a localized vacancy, E„. For the bcc lattice this
requires

8t &E„. (3.31)

Estimates of E„ from activated thermal processes suggest
E„—10 K, but perhaps it could be as low as 1 K or less
near the melting curve. Estimates of t from nuclear-spin
relaxation rates suggest t-20 mK, so that the inequality
Eq. (3.31) is not totally unreasonable. The nature of the
system if Eq. (3.31) is satisfied is much less clear, howev-
er.

The properties of an isolated vacancy in a fermion lat-
tice have been studied in considerable detail (Nagaoka,
1966; Brinkman and Rice, 1970). It is easy to see that the
passage of a vacancy around an even (odd) ring in the lat-
tice leads to an odd (even) permutation of the spins on the
occupied sites of the ring. Thus, following the argument
of Thouless (196S) given in Sec. III.A for conventional ex-
change, if all the rings are even, the vacancy leads to a
ferromagnetic tendency in the lattice. (The lowest energy
vacancy wave function has k=0 and does not introduce
additional sign changes. ) This is the case for the bcc He
lattice if the hops are restricted to nearest neighbors,
which seems a reasonable first guess in the absence of the
steric effects which suppress nearest-neighbor exchange in
the absence of vacancies. The energy of the ferromagnet-
ic state is lowered due to the vacancy hopping by exactly
the banding energy St/vacancy. A transition to the fer-
romagnetic state would therefore be expected when this
ferromagnetic tendency exceeds any competing antifer-
romagnetic tendencies due to direct exchange, i.e., for a
vacancy concentration x„(assumed small) given by

zx, t) Tln2 . (3.33)

For smaller vacancy concentrations Andreev (1976) sug-
gested the existence of magnetic polarons, namely, regions
of ferromagnetically aligned spins in which each vacancy
is bound and in which the vacancy hops. The radius of
the polaron, given roughly by minimizing the total free
energy, is

1/5

8+2T ln2

Montambaux et al. (1982) have studied more sophisticat-
ed versions of such a theory.

[The situation in a lattice containing odd-membered
nearest-neighbor rings, or when further neighbor hopping
of the vacancy is allowed, is much more complicated. In
this case, since the contribution of large rings and small
rings alike is O(t), only a detailed combinatoric analysis
can determine the ground state. ]

The attractive feature of the zero-point vacancy model
in accounting for the magnetic properties of solid He is
the natural introduction of a ferromagnetic tendency into
the system. Thus for T( t the formation of easily aligned
magnetic polarons may be used to explain the anomalous
tendency (beyond the simplest exchange models) towards
ferromagnetism apparent in the observed magnetic sus-
ceptibility (Prewitt and Goodkind, 1977) and the excess
specific heat (Halperin et al. , 1974) below 20 mK. On
the other hand, the theoretical analysis and predictions of
the model are far from complete. In particular, no pre-
diction of an ordered state below 1 mK consistent with
the symmetries deduced from the NMR has been made
from the model. Also, no reasonable explanation has been
given for the very small concentration x„—10, needed
to fit the energy scale of the magnetic anomalies. On the
basis of the competition between the two large energies in-
troduced in (3.30) it is very hard to see why the concentra-
tion of the weakly interacting vacancies should remain so
small. The magnetic interactions between the polarons
are weak, but attractive, and the repulsive kinetic energy
is small. The elastic interaction of the vacancies is also
weak at these concentrations, although perhaps compar-
able to the magnetic interactions. Thus there seems to be
no repulsive interaction strong enough to lead an equili-
brium concentration as small as 10 . In fact, the in-
teraction may well be attractive, leading to phase separa-
tion. On the other hand, the properties of a system with a
much larger number of vacancies are extremely uncertain:
it is not at all clear that such a system would in fact be a
solid. No anomalous dependence of the ordering transi-
tion on density near the melting curve, where the concen-
trations of vacancies might be anomalously large, is seen,
nor does the magnetic behavior depend on whether the or-
dered solid is grown from the liquid or cooled from a

(3.32)

or for temperatures given by the competition between the
energy reduction and the ln2 entropy per spin of the oth-
erwise degenerate spin system:
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high-temperature solid. Thus the suggestion of metasta-
ble trapped spin polarons is untenable as an explanation
of most of the magnetic properties.

It is conceivable that vacancies may explain some of
the anomalous results that do not seem to fit in with other
general frameworks [e.g. , the specific-heat anomaly seen
in some samples at around 100 mK (Castles and Adams,
1975) or the susceptibility anomaly of Kirk et al. , 1984]
for small ranges of parameters near melting or in poor
samples. The nature of the solid near the minimum of
the melting curve where the concentration of thermally
activated vacancies apparently grows considerably may be
particularly interesting to investigate further. (For exam-
ple, a sudden proliferation of vacancies should affect the
plasticity of the crystal due to the additional dislocation
motion. ) However, we do not see any indication that the
concept of zero-point vacancies is likely to explain the
bulk of the magnetic properties of solid He.

lV. THEORETICAL PROSPECTS

In this section, we discuss the current level of under-
standing and explore the prospects for advances in the
theoretical understanding both of the microscopic ex-
change rates and the behavior of candidate quantum spin
Hamiltonians.

A. Calculation of exchange rates

1. General comments

Although a considerable amount of effort has been put
into the calculation of exchange rates, there remains no
method that is a priori convincing at a fundamental level.
Quite good accounts of experimental trends have been
displayed using simple approximations that approach the
problem from dramatically opposite points of view —for
example, simple estimates based on a hard-sphere model
in which all the energy is kinetic, or conventional WKB
calculations in which the kinetic energy is assumed small
compared with the repulsive potential energy. Both have
yielded ordering of the various exchange rates consistent
with experimental deductions, and reasonable results for
the density dependence of the exchange (Roger et al. ,
1983; Roger, 1984). Yet neither of these approaches, at
least in their present forms, is reasonable at the densities
in the bcc phase or even at somewhat higher densities. It
seems to us that the important physics involved in a
quantitative determination of the exchange rates has not
yet been elucidated. The rough agreement (either ob-
tained directly or by further adjustments to the calcula-
tion) between theories using opposite approximations and
the experimental trends simply does not help in this quest.

The great difficulty in calculating exchange rates in
solid He arises from the fact that He forms a highly
quantum solid, but one in which the exchange rate is very
small (J/coo-10 with coo the attempt frequency, of or-

2m (a —b)2
(4.2)

This energy then competes with the externally applied
pressure P—the lack of binding at low pressures is of lit-
tle consequence, since the solid becomes unstable to the

der of the local oscillation frequency). Thus in terms of
the de Boer quantum parameter A=A/o(ms)'/ the esti-
mates for the potential energy FI, oscillation frequency
coo, and exchange rate Jwould be (cf. Anderson, 1984)

(4.1)

with the constant c naively expected to be O(1). The
highly quantum nature of He is demonstrated by the
equality over a wide density range between the potential
and kinetic energy in the ground state. This is consistent
with the estimate A-1. The small value of J compared
with the value then given by Eq. (4.1) is probably a real
effect due to the additional reduction in J arising from
the strong steric impedance caused by the hard core of the
repulsive interaction, which is not adequately described. by
the single parameter A. The upshot of this is that ex-
change cannot be calculated in terms of small quantum
fluctuations about a well-defined classical ground state
(which would in any case be locally unstable at densities
corresponding to the melting pressure), yet a full quantum
calculation is extremely hard since knowledge of the wave
function is required in regions where it is very small and
to which most approximate calculational schemes (e.g.,
variational) are completely insensitive.

Rather good accounts of the lattice properties of solid
He are given by variational methods with trial functions

involving Gaussian fluctuations of each atom about a lat-
tice site together with a Jastrow correlation between
neighboring atoms. It is now abundantly clear, however,
that calculations of the exchange rates based on the varia-
tional wave function, although historically important in
suggesting the importance of higher-order exchange pro-
cess (McMahan and Wilkins, 1975), are not correct: the
method is insensitive to the form of the tail of the wave
function that is critical in calculating exchange rates. We
will not discuss further these variational calculations of
the lattice properties, since this subject has been well re-
viewed (Varma and Werthamer, 1976; McMahan, 1972).
It. will, however, be useful to consider two phenomenolog-
ical, highly approximate treatments, to investigate which
features of the system are important in the large probabil-
ity configurations determining the lattice properties, and
also perhaps in the low probability configurations of the
exchange "barriers. "

Perhaps the most appealing caricature is that the solid
can be understood as a collection of hard spheres. This
has been discussed in some detail by Guyer (1974). The
important energy is then the kinetic energy of zero-point
motion, which might be estimated as the kinetic energy of
an atom in a spherical free volume of radius a b, with a-
the nearest-neighbor spacing and b the hard-sphere ra-
d1us'
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0, r&ro, (4.4)

with co the energy minimum at radius ro, and an attrac-
tive part

+co~ r &ro
V, (r) = ~

V(r), r&ro . (4.&)

They then suggest that the repulsive part V„(r) can be re-
placed by a hard sphere of radius equal to the zero-energy
scattering length b=0.84o.. Futhermore, they propose
that the wave function at a fixed density is rather insensi-
tive to the slowly varying attractive potential, which can
then be included in lowest-order perturbation theory, i.e.,
as the expectation value (@0~ V, (r)

~ $0) with $0 the
hard-sphere wave function. These suggestions are then
tested by comparison with variational calculations using
the full potential on the fcc phase of solid He for densi-
ties 24 to 16 cm /mole; similar conclusions would be ex-
pected for He. Their results are displayed in Table I. In-
teresting points to note are that the kinetic energy, as
pointed out by Roger (1984), agrees quite well with the

liquid phase there. With suitable choices of the hard-
sphere radius b and with a different numerical propor-
tionality constant in Ek, Cxuyer finds reasonable agree-
ment for the lattice parameter a (P). In this vein, it is in-
teresting to note that for (a b—)/a small Eq. (4.2) leads to
the volume dependences for the pressure and compressi-
bility ic:

8 lnP a
8lnV a —b

(4.3)
8 1mc 4 a
BlnV 3 a b—

Taking the radius b to be the Lennard-Jones parameter o.

gives y„-4 at melting pressure and y -5 at a volume of
21 cm /mole, in rough agreement with experiment.

A more stringent test of this picture is given by the cal-
culations of Kalos et al. (1974). These authors divide the
potential V(r) up into a repulsive core

V(r) —s„r&r,

simple expression Eq. (4.2), with the prefactor differing
o»y by 20%%uo and varying by less than 10%%uo as the kinetic
energy varies over a factor of 4. However, the attractive
part of the potential provides a large canceling contribu-
tion not only to the ground-state energy at one volume,
but also to the Uolume dependence of this energy T. hus
the agreement between a pure hard-sphere model neglect-
ing the attractive potential and experimental trends in the
lattice properties seems to be spurious.

An alternative, less attractive picture that has been put
forward by Avilov and Iordansky (1982) and by Roger
(1984) is that the high-density limit, where the energy is
dominated by the detailed form of the repulsive part of
the potential

12
CT

V( r) =+4m
r

(4.6)

has some relevance to the properties at experimentally ac-
cessible densities. Since quantum fluctuations are small
in this limit, calculations based on this model are very
much more straightforward. This intrinsically unlikely
model is given some credence by the observed scaling of
various lattice quantities with volume in rough agreement
with predictions based on the r ' form, e.g., P, a~ V,
and the- Debye temperature 0~ o. V . However, this
model requires a remarkably exact cancellation of the oth-
er, larger, energies in the problem, and in view of the al-
ternative explanation of these scalings in terms of the
hard-sphere model, we are inclined to view these successes
as pure coincidences.

It is instructive to attempt to estimate the range of va-
lidity of the high-density limit. We shall do this by com-
paring the potential energy with the zero-point kinetic en-
ergy. The latter is estimated as the harmonic-oscillator
energy ,' ficoo for the one-d—imensional motion of an atom
along a line to two of its nearest neighbors that are as-
sumed fixed. The high-density approximation should be
good if the zero-point kinetic energy is small compared
with the potential energy. For a displacement x the po-
tentia1 is taken to be

TABLE I. Energies calculated for fcc solid He by Kalos et al. (1976). EII is the energy for hard
spheres, with radius b =0.84o, with cr the Lennard-Jones parameter. ( V, ) is the expectation value of
the attractive part of the potential Eq. (4.5) in the hard-sphere ground-state wave function. E~ is the
sum En+( V, ), which is the estimate of the ground-state energy of the Lennard-Jones potential. It
agrees well with the calculation on the full potential, E„. All calculations are based on variational Jas-
trow wave functions.

Nearest-neighbor
0

spacing a (A)

3.85
3.72
3.59
3.41
3.26
3.03

Vol/mole

(cm')

24.2
21.8
19.6
16.8
14.7
11.8

23.3
27.9
33.4
44.2
57.7
93.5

«. )

(K)

—28.4
—32.7
—36.5
—44.6
—54.9
—66.0

(K)

—5.1
—4.8
—3.1
—0.4

2.9
27.5

(K)

49
—4.8
—3.9
—1.4

3.2
22.8

fi /m

5.6
5.7
5.8
5.9
6.0
6.1
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a —x

12

(4.7)

where we are neglecting the contribution from other
neighbors. This gives the ratio

1 5
2 ACOp a
V(0) cr

(4.8)

where A=0.5 is the de Boer parameter. Thus the zero-
point klnctlc energy 1s comparable to thc potcnt1al cncrgy
up to a -o, corresponding to densities of 8 cm /mole.

Applying either of these simple pictures to the low
probability configurations important in exchange is more
problematical.

To consider the validity of the hard-sphere model we
should first estimate the energies involved in the exchange
configuration. From the WKB expression for the tunnel-
ing rate we would estimate the maximum energy of an ex-
changing particle to be (cf. Sec. III.A)

1 ~p
ln

n J (4.9)

a (1.2 . (4.11)

%"e may compare the transverse kinetic energy of locali-
zation with the potential energy in the exchange configu-
ration, again using the harmonic oscillator approxima-
tion. Then replacing a by r in Eq. (4.8) would suggest

where N is the order of the exchange process. Since the
first quantity in large parentheses is a few degrees, and
1nc00/J is of order 10, we see that the energy in the barrier
configuration per particle for multiple-exchange processes
is not enormously greater than the ground-state energies.
This suggests that the penetration into the hard sphere
may not be an important effect. Again, the role of the at-
tractive part of the potential is harder to estimate. The
rather flat attractive potential might be expected to have a
relatively small effect on the motion of a single particle in
the static field of its neighbors. If, however, as seems
likely, exchange involves the collective motion of a small
cluster, the energy inay be significantly changed —for ex-
ample, by changing the local density.

The range of validity of the semiclassical high-density
approximation to the exchange configuration should be
easier to assess. For example, for the four-particle ex-
change barrier in the bcc lattice Roger (1984) finds in this
approximation a change from the ground-state repulsive
potential, given in dimensionless form by

r

5 g ' =40, (4.10)
i&j ~J

with a the equi1ibrium lattice spacing. Simply dividing
this by four, corresponding to the four exchanging parti-
cles, leads to an upper bound for the minimum separation
r in the exchange configuration

that the semiclassical approximation to the exchange bar-
rier is reasonable only for a (1.2o., corresponding to den-
sities certainly less than 13 cm /mole. It therefore seems
that towards melting pressure, a semiclassical description
of even part of the tunneling path will not be adequate for
multiple exchange.

2. Specific calculations

The early work based on the Gaussian variational wave
function has been reviewed by a number of authors. In a
number of papers Roger, Delrieu, and Hetherington (see
Roger et al. , 1983, and references therein) have pointed
out the inadequacy of the early work, and have attempted
to go beyond the estimates based on these correlated
Gaussian wave functions. It seems to us that the only ap-
proach discussed there that potentially goes beyond an il-
lustrative level is a one-dimensional variational calcula-
tion.

The idea of the one-dimensional variational calculation
(Roger et al. , 1980b) is to use as a variational trial func-
tion

f(r) =q G(r)f(~(r)), (4.12)

4 &t'

(4.14)

where Vis the interatomic potential and ( )i signifies the
average over the coordinates transverse to ~(r). This po-
tential has the appealing feature of adding to the tunnel-
ing barrier a contribution from the transverse kinetic en-
ergy due to the particle localization. However, as a prac-
tical calculational scheme this method would be expected
to suffer the same problems as all direct variational
methods, namely, the insensitivity of a variational calcu-
lation based on the total energy to the tails of the wave

where pG(r) is the Jastrow-correlated Gaussian wave
function for the 3N-dimensional coordinate r chosen to
describe the lattice dynamics and f(v.) is the variational
function, with r(r) the projection along an "exchange
path" between the two configurations connected by the
exchange process. The wave function yG may either be
the "home-based" wave function, as introduced by Her-
ring (1962), or a wave function symmetrized between the
two configurations connected by the exchange. The idea
is that the function f(r) corrects the Gaussian falloff of
ya in the tails of the wave function into a form more ap-
propriate for a tunneling problem. The function f(r) is
determined by minimizing the total energy. No algorithm
is given by Roger et al. (1980b) for choosing the best v(r).
Insteady they specialize immediately to a straight-line
path, which implies that the function

(4.13)

satisfies a one-dimensional Schrodinger equation with an
effective potential
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IC& ——exp( —8.47g '),
J,=exp( —9.27g

J=exp( —9.78g '),
with J the nearest-neighbor exchange and

(4.15)

g =A(a/o) /2' . (4.16)

(His exact calculation for J, in which 9.27 is replaced by
9.09 gives some idea of the validity of the particular ap-
proximation. ) Thus the ordering of exchange constants is
consistent with the experimental deductions at melting
pressure, although we reiterate that by any reasonable cri-
teria the high-density limit should not be valid at these
densities.

Avilov and Iordansky (1982) have attempted to extend
the WKB approach to lower densities by matching the
&KB calculation of the tunneling path in the repulsive
r potential that becomes more important near the bar-

function. Thus, although Eq. (4.13) is certainly a better
approximation than the Gaussian part yG, the important
corrections to the energy will again come from the regions
where the wave function is moderately large, and the
determination of f(~) will be dominated by these regions.
The tails of the wave function will be better given, but,
since the energy scale of the total energy is of order 10 K,
there is no reason to expect an accuracy of better than 2
or 3 orders of magnitude in the exchange energy. In addi-
tion, different exchange processes will, due to the dif-
ferent choice of the coordinate v(r), lead to different
corrections to yG in the moderately large probability re-

gions; thus comparisons of various exchange rates are not
likely to be even approximately valid.

Delrieu and Sullivan (1981) suggest an estimate of the
exchange barrier as the extra elastic energy due to the lo-
cal compression in the exchange configuration. Although
this effect may well be important, their calculation of this
elastic energy involves arbitrary renormalizations, so that
their calculations cannot be considered quantitative.

More recently there have appeared semiclassical calcu-
lations valid in a very-high —density limit. Although
there is no reason to believe that these approaches are
valid at low densities (as discussed earher), a number of
interesting points do come out of this work. In an asymp-
totically high-density limit the usual %'KB method for
calculating tunneling rates becomes a good approxima-
tion. The tunneling path is the path that minimizes the
action. Since that is given by a classical dynamical prob-
lem in the inverted potential, with modern computing
powers the minimum action can, with sufficient effort, be
calculated as accurately as desired, even including many-
particle correlations in three-dimensional systems. Roger
(1984) has pursued this program. In the hcp phase ex-
pected in the high-density limit he finds that triple ex-
change in the basal plane dominates, followed closely by
triple exchange out of this plane. Roger (1984) also inves-
tigates the bcc phase in the high-density limit. He finds
in an approximate calculation of the asymptotic limit

rier configuration to a phenomenological elastic descrip-
tion in the high-probability regions. Thus the small dis-
placements from the initial configuration are supposed to
be determined by the harmonic force matrix, derived by
inverting the phonon spectrum. Clearly for the atoms ac-
tually exchanging, the harmonic approximation breaks
down at large displacements; here Avilov and Iordansky
suppose that the repulsive part of the potential dominates.
It seems to us that there are two flaws in this interesting
approach that warrant further attention. The first is a
conceptual problem: the phonon theory describes the os-
cillations of some effective atom smeared out by the ra-
pid, short-length scale zero-point motion, and it is not ob-
viously trivial to match this to the semiclassical tunneling
of the atoms at large displacements. Second, it is clear
that the anharmonic corrections are not simply an in-
crease in the repulsive force for particles at smal'l separa-
tions, but also a reduction of the attractive forces for par-
ticles that have separated to large distances from their ini-
tial neighbors. This can be seen best by considering a har-
monic lattice consisting of particles connected by springs:
an exchange process clearly requires the cutting of some
springs that are stretched too far and a reconnection of
others to return the lattice to the original topology after
the exchange process. The phenomenological harmonic
force matrix for solid He will typically couple many
neighbors with effective springs, requiring a complicated
"reconnection" process at the exchange configuration
which is not adequately taken into account by Avilov and
Iordan sky.

3. Effects of pressure

The idea that the magnetic properties of solid He re-
sult from a delicate competition between antiferromagnet-
ic and ferromagnetic interactions leads to the obvious sug-
gestion that varying the density of the solid may, by
changing the relative strengths of the interactions, lead to
dramatic effects. It seems conceivable that the small anti-
ferromagnetic region of the phase diagram might be
suppressed altogether, or replaced by an alternative anti-
ferromagnetic phase. For example, in the competing
three-spin four-spin multiple-exchange Hamiltonian of
RDH the SSQUAF phase is predicted to occur at slightly
larger values of Ez/J, [Roger et al. (1980a); see Fig. 7]
such as might be expected on increasing the density.

Although the detailed structure of the phase diagram
has not yet been investigated as a function of molar
volume, a large number of parameters that have been
measured show a remarkably similar volume dependence
(Pancyzk and Adams, 1970; Mamiya et al. , 1981; Hata
et al. , 1981,1983; Devoret et al. , 1982; Shigi et al. ,
1983), with no evidence of a relative change in competing
parameters. The experimental results can be summarized
as

(4.17)
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(4.18)

where J,tt is a quantity with the dimensions of frequency.
The power-law dependence is assumed a priori —the data
do not usually provide a precise test. The range of values
we quote for y include the error bars for each fit, and the
range of values derived for different quantities: the two
ranges are quite comparable. The range of volumes used
is typically about 22—24 cm /mole, corresponding to a
range in Jeff of about a factor of 5. Quantities varying in
this way include the nuclear relaxation times T1 and T2,
the first two parameters derived from the high-
temperature expansion of P(T, V), the Neel temperature
T~, and the susceptibility at T&. In addition, a direct
scaling of the magnetization M(T)/M(T~) with T/T~
has been demonstrated more precisely but over a smaller
range of volumes 23—24 cm /mole (Hata et al. , 1983;
Shigi et al. , 1983). The variation of the Curie-Weiss con-
stant over a wide range of volume is not clear at this stage
because of the discrepancies discussed in Sec. II.B. As
discussed there, one possible resolution of the discrepancy
involves assuming a quite different form for 8( V). This is
a very important question to resolve, since of all quanti-
ties the Curie-gneiss constant may be expected to be the
most sensitive to the change in the relative strengths of
ferromagnetic and antiferromagnetic interactions. The
pressure dependence of the transition field H, to the
high-field phase has not been measured —it might also be
expected to be rather sensitive to competing exchanges.

How does the result Eq. (4.17) agree with theoretical
expectations'? If we assume, for example, a relationship

ties four-spin exchange would be expected to dominate.
If, however, only one part of the interatomic energy dom-
inates the exchange process, one might expect that

—p;/g( v)
Ji coi 8 (4.21)

where co; and the barrier parameter p; are different for
different processes, but the volume dependence of the bar-
rier factor g(V) is the same for all processes. Then one
roughly finds (for J;—1 mK, ai; —10 K)

J1 602=1+gin
3 2 P2 J2 ~1

(4.22)

where

/=[in(co/J)] '-0. 1 . (4.23)

g( V)=(irtlmo c.)'~ (a/o) 2v2, (4.24)

where the first factor is the de Boer quantum parameter,
a is the nearest-neighbor spacing, and o. is the Lennard-
Jones length parameter. The p; are then pure numbers
for the different processes In the h. ard-sphere model all
energies are kinetic

Thus the Gruneisen constants y12 would be similar to
within 10% for Ji z roughly comparable. The validity of
Eq. (4.21) is therefore an interesting conjecture. It is valid
in the very-high —density limit, where only the repulsive
part of the potential is important. Then

Jctt=&Ji+PJ2, (4.19)

with Ji and J2 the basic interactions, we obviously fmd

1

2m (Qx )2
(4.25)

jeff

71+72
(4.20)

where y; is the power law volume dependence of J;. .

Thus for quantities involving both processes with com-
parable strengths (aJi-PJz), if yi and y2 were signifi-
cantly different as would be naively expected, then the y,ff
for different quantities should vary widely. [The same
conclusion of course holds for more complicated relation-
ships than Eq. (4.19).] We are thus forced to conclude ei-
ther that only one process is involved in all the magnetic
interactions, or that the two (or more) different processes
must for some reason have a rather similar volume depen-
dence, i.e., y1/y2 is unity to within 20%.

It is interesting to consider the multiple-exchange
model from this point of view. At first sight three- and
four-spin exchange would be assigned quite different
volume dependence: naively one supposes that the greater
steric impedance effects on the three-spin exchange are
compensated, at melting pressure, by the larger number of
particles involved in four-spin exchange. At higher densi-

but since different lengths b,x may be identified that in-
volve different combinations of the lattice parameter a
and the hard-core radius b the simple expression Eq.
(4.21) is not obvious.

The unexpectedly similar volume dependence of many
quantities leads (subject to further experimental work) to
the following conclusion: The complicated magnetic
properties observed at melting pressure are probably not
the result of a fortuitous competition at only one density
There is, however, no real understanding of the mecha-
nism behind the rough equality over the range of volumes
of interest.

One possible mechanism which might yield this rough
equality of exchanges for a range of volumes involves rare
large fluctuations of the neighboring atoms of those ex-
changing. If the dominant contribution to the actions
which control exchange rates is caused by a shell of
neighboring atoms collectively expanding to allow the ex-
changes, then it is possible that the action for one such
event could control several exchange processes. For ex-
ample, if the effective volume of four neighbors was in-
creased to that characteristic of the-hquid, then several
exchange processes could take place among the four parti-
cles. This qualitative idea may well be worth pursuing.
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B. Solution of effective spin
Harniltonians

In the preceding section, some of the difficulties associ-
ated with deriving a spin Hamiltonian from first princi-
ples were discussed. %'e now go to the next level, and as-
sume that the spin Hamiltonian is known and then ask
what macroscopic properties can be reliably derived from
the candidate quantum spin Hamiltonian.

In Sec. III.B we argued that for the RDH Hamiltonian
with competing three- and four-spin exchange, the only
hard theoretical numbers were a few terms in the high-
temperature series expansions for thermodynamic proper-
ties. The quantitative phase diagram and low-
temperature thermodynamic properties, which in princi-
ple should provide much more stringent quantitative tests
of the applicability of the Hamiltonian are difficult to cal-
culate reliably. This is due almost entirely to the strongly
quantum nature of the spin system. For a classical spin
Hamiltonian, high- and low-temperature series combined
with Monte Carlo simulations analyzed by
renormalization-group methods can yield reasonably ac-
curate thermodynamic properties. For conventional
three-dimensional antiferromagnets such as nearest-
neighbor exchange for the bcc lattice, the quantum
corrections to the classical behavior are relatively small
even for spin —,'. For example, the order parameter (S')
at zero temperature is suppressed by only about 15% due
to quantum spin fluctuations (Anderson, 1952). There are
several indications, however, that for Hamiltonians rich
enough to yield the He phase diagram, quantum effects
will be much larger. For the purposes of this discussion,
we will assume that the zero —field-ordered phase is the
u2d2 structure.

From the discussion in Sec. II we know that the dipole
anisotropy at T=0 must be reduced by a factor of 2 from
its Neel value due to quantum fluctuations. If this were
primarily due to the reduction of the order parameter,
then (S') would have to be less than 70% of its satura-
tion value, i.e., a factor of 2 larger suppression than for
typical three-dimensional antiferromagnets. With zero-
point fluctuations as large as 30%, the approximation of
noninteracting linear spin waves is likely to be rather
poor.

Further evidence for the importance of spin-wave in-
teractions comes from the large (factor of 4)
Hamiltonian-independent discrepancy between the coeffi-
cient of the T temperature dependence of the dipolar an-
isotropy calculated from linear spin wave theory and the
measured value from the NMR as discussed in Sec. II.C.

With the value of the parameters of Eq. (3.21), RDH
(Roger et al. , 1983) find the order parameter suppression
from zero-point fluctuations calculated in the nonin-
teracting spin wave approximation to be 26%, which is
roughly the right magnitude to account for the dipolar
anisotropy. However, with an effect this large, the
neglect of spin-wave interactions is unlikely to be justifi-
able. It is natural to try to improve the spin-wave calcu-
lations by treating interactions between spin waves. This

has been done by Iwahashi and Masuda (1981), who treat
the interactions self-consistently in the Holstein-
Primakoff (1940) formalism. They find that the energy
and the T coefficient in the specific heat have very large
corrections from the linear spin-wave results and that the
instability of the u2d2 phase to the SSQUAF phase is
suppressed.

In addition to general difficulties associated with treat-
ing spin-wave interactions within the Holstein-Primakoff
formalism (Dyson, 1956a,1956b), it is hard to judge
whether the errors in the self-consistent calculation are
smaller than the effects calculated, especially since the
corrections to the noninteracting approximation are so
large. At this stage it is an open theoretical question
whether interacting spin-wave calculations for the RDH
Hamiltonian can be performed in a controlled manner. In
the absence of controlled approximations for calculating
low-temperature properties of the ordered state, Monte
Carlo calculations would in principle be very useful.
However, because of the commutation relations for the
spins and the antiferromagnetic interactions, none of the
existing stable methods for performing quantum Monte
Carlo simulations can be used for nonbipartite lattices due
to problems with negative weights in evaluation of the
necessary (3 + 1)-dimensional effective statistical mechan-
ical problem. Advances in quantum Monte Carlo
methods might perhaps resolve this difficulty in the fu-
ture.

Another numerical approach to the problem, which is
unfortunately rather limited, is the exact diagonalization
of the Hamiltonian for small systems. Cross and Bhatt
(1984) have performed such a calculation for a 16-spin
bcc cube with periodic boundary conditions (2X2&(2 plus
body centers), which is the largest cube for which this
method is feasible. Their results, while somewhat diffi-
cult to draw conclusions from, do yield some insight into
the effects of the quantum fluctuations. The ground-state
wave energy as a function of v=tC&/J, in zero field shows
a surprisingly sharp change in slope at a z, which it is
tempting to associate with the u2d2 to SSQUAF transi-
tion. This occurs at a value of a, slightly smaller than
found in mean-field theory, so that the quantum fluctua-
tions tend to favor the SSQUAF phase.

For a fixed value of a &a, the transition to what is
presumably a canted NAF phase as a function of magnet-
ic field appears as a large jump in the ground-state mag-
netization at a field II, . This critical fi'eld II, appears to
be rather insensitive to quantum fluctuations, a surprising
result, since this quantity might be expected to be particu-
larly sensitive to changes in the competition between fer-
romagnetism and antiferromagnetism.

Within the range of IC& and J, allowed by the high-
temperature data, Cross and Bhatt (1984) found that M,
for this 16-spin system cannot be decreased to below 10
kG, still more than a factor of 2 larger than the experi-
xnentally measured H, =4.4 kG. If the critical field of
this small system is reasonably close to that for an infinite
system, as might be expected for such a strongly first-
order transition, this is probably the most serious
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discrepancy between the RDH Hamiltonian and experi-
ment.

Reliable theoretical treatments of the RDH Hamiltoni-
an, which are likely to be rather difficult, are crucially
needed to test the validity of this multiple exchange
model.

We end this section with a remark concerning the order
of the transition in zero field, assuming the low-field
phase has the u2d2 structure. Bak and Rasmussen (1981)
have performed a renormalization-group expansion near
four dimensions for a Ginzburg-Landau-Wilson effective
Hamiltonian appropriate to the symmetry of the u2d2
phase which should be valid independent of the micro-
scopic Hamiltonian. They argue that even if the transi-
tion were second order in mean-field theory, fluctuations
below four dimensions would drive it into a regime where
it is first order. Although this argument is probably
correct, it is likely to be somewhat moot, since for the
range of models studied by RDH, the transition to the
u2d2 phase is strongly first order already in mean-field
theory.

V. FUTURE EXPERIMENTS

We now consider various experiments which might
shed additional light on the nature of the microscopic ex-
change dynamics, the effective spin Hamiltonian, and the
identification of the various observed phases.

Several authors (Goodkind, 1983; Roger et al. , 1983)
have suggested that it should be possible to investigate the
long-wavelength optic spin waves by their resonant cou-
pling to phonons at the same frequency. This would yield
important additional information on the structure of the
antiferromagnetic phase. For example, the number of
long-wavelength optic modes tells us about the number of
sublattices, distinguishing between the various umdm
phases. In fact, as we shall argue below, the coupling is
extremely small for the u2d2 structure because of symme-
try restrictions, although it may be much larger for other
structures. Observation of a large direct coupling would
therefore tend to rule out the u2d2 structure. Unfor-
tunately, higher-order spin-wave couplings (e.g., one pho-
non to two spin waves) will make it difficult to observe
the direct coupling clearly through phonon experiments.

The resonant coupling of the phonons to the uniform
acoustic spin modes will not yield information about the
symmetry of the phase —the frequencies of these modes
are well known from the NMR experiments. However,
little is yet known about the coupling of the ordered
phases to strains, and nothing at all is known about the
effects of shear on the magnetic properties, since the
linear effects are absent in the paramagnetic phase, al-
though, as we shall see, they will be present in the antifer-
romagnetic phase. Increased knowledge of the effects of
strain on the magnetic behavior, which can be derived
from the mixing of phonons with almost-uniform spin-
wave modes and from shifts in the sound velocities, may
therefore yield additional insight into the microscopic na-

ture of the exchange processes. Measurements of the
sound velocities may also yield additional symmetry re-
strictions on the ordered phases.

Finally, we consider the measurement of the specific
heat of the various phases in a magnetic field. The T
contribution contains information on the number of bro-
ken symmetries. Such a contribution in the high-field
phase, for example, would convincingly confirm the sug-
gestion of a transverse broken symmetry.

A. Coupling of phonoos to optic
spin waves

with u the atomic displacement and j. the appropriate
Gruneisen constant for J. Near the crossing of a phonon
with wavelength q and a sharp optic mode, this coupling
will induce a splitting, b, of the degeneracy of order

AyH fiq'
J

1/2J
K (5 3)

where the last factor is the strain (m is the atomic mass)
associated with a single phonon with elastic constant per
atom K-20 degrees Since I (.AyH/J) can be made o'f

order one in the low-field phase, this relative splitting will
be of order 10 . [Note that for coupling via the dipole
interactions in the absence of a field, the factor
I (iiiyH/J) would be replaced by something of the order
of the dipole energy divided by J, which is much smaller. ]
Unfortunately, for symmetry reasons this simple estimate

If we neglect dipolar interactions, spin conservation
prevents mixing of phonons and spin waves in zero mag-
netic field for any structure with only two broken spin
symmetries. This is because the component of spin paral-
lel to d (which we take to be in the z direction) will still
be conserved in the ordered phase. The spin waves are ex-
citations with S =+1 and cannot mix with spinless pho-
nons. In a field, however, mixing is generally possible.
The magnitude of the coupling for up-down structures
can be estimated as follows.

Let us consider an optic spin-wave mode with frequen-
cy coo-J/A and creation operator ao in the absence of a
field. A field will induce an expectation value of each

spin transverse to d and hence generally an expectation
value of ao of the same magnitude:

( )
fiyH
J

This can be shifted away simply by defining
a=ac —(ao), to make the Hamiltonian quadratic in a.
However, since a strain will alter J, it will induce an extra
linear coupling to the optic mode of the form

5A -%coo(a+a ) I u/a,AyH (5.2)J
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is not correct for the optic modes in four-sublattice u2d2
structure.

As discussed in Appendix A, for the u2d2 structure
there are two degenerate acoustic modes (with 5'=+1
and frequencies +co) and two degenerate optic mades.
The uniform acoustic modes, like the structure itself, are
even under a real-space inversion about a point midway
between a spin-up body corner and a spin-up body center.
The optic modes, on the other hand, are odd under inver-
sion. Since the dipole energy, all the spin parts of the
Hamiltonian, and uniform strains are a11 even under in-
version, the odd optic modes cannot couple to them
linearly at q =0 (Goodkind, 1983). At nonzero q cou-
pling is possible, but there will be an extra factor qa (with
a the lattice spacing) appearing in the coupling Hamil-
tonian Eq. (5.2) and 6/coo will be reduced from Eq. (5.3)

by this factor. At the crossing point of a phonon and the
optic mode, this suppression factor is roughly the ratio of
J to the zone boundary frequency of order 10 K, so that

10—6

COO

(5.4)

1 p 4
(5.5)

which is appreciable if 6-10 coo.

Unfortunately, there are other phonon attenuation pro-
cesses which are likely to' obscure the resonant effects dis-
cussed above. Even in the absence of a magnetic field,
phonons couple to spin waves quadratically and thus mn
decay into two spin waves of opposite helicity provided
the phonon frequency is not too large. Bemuse the pho-
non velocity is much larger than the spin-wave velocity,
in order to conserve energy, the spin-wave momenta will

for the u2d2 structure, and the splitting is thus very un-

likely to be observable.
For a more complicated up-down structure —for exam-

ple, u3d3—there will be optic modes which are odd
(under inversion about one of the middle up spins) which
will couple very weakly, and also optic modes which are
even which can couple much more strongly as given by
Eq. (5.3).

Structures which break all three spin rotational sym-
metries can in principle couple even more strongly to pho-
nons, since there will be no factor yAH/J appearing in
these cases. Thus the coupling to some of the modes in a
helicoidal structure (such as discussed in Sec. II.A) could
result in splitting of the degeneracy by an amount of or-
der 10% of the frequency. Observation of a non-

negligible mixing of phonons with an optic spin wave
would strongly suggest that the simple u2d2 structure is
not correct.

In practice, optic spin wave modes are likely to be quite
broad, with a width ~v arising from spin-wave interac-
tions which is a significant fraction of their frequency. In
this case mixing of phonons with these modes will result
in a broad peak in the phonon attenuation with width ~z

'

and maximum phonon attenuation rate

be much larger than the phonon momentum, and hence of
roughly equal magnitude but opposite direction. A pho-
non with frequency cop of the order of the optic spin-wave
frequency at zero momentum (which is -180 MHz for
the RDH Hamiltonian in the quadratic spin wave approx-
imation) will decay into two spin waves near the zone
boundary with frequencies of order of J/A'. The matrix
element W for this process is of order

8'-JI (5.6)
Pl COp

where q is the phonon wave vector and the factor involv-

ing the atomic mass m is again the strain associated with
the phonon. The coupling is proportional to some
Gruneisen constant I . Fermi's go1den rule gives the pho-
non attenuation rate at low temperatures

2 IT ~2 dn

fi dE ' (5.7)

where dn/dE is the density of states per unit cell, which
is of order 1/J. We thus find a decay rate for the phonon
with frequency cop equal to the optic spin-wave frequen-
cy, a phonon decay rate

7p
(5.8)

with X-mcoz/q an elastic constant of order 20 K. For
phonons at lower frequencies, phase-space and matrix ele-
ment factors will cause the rate to decrease as cop does
(for fuuI smaller than T the rate fram this process goes as
cop), and the attenuation will thus increase very sharply as
cop is increased. Putting in numbers more carefully with
parameters from Eq. (3.4) yields for cop equal to the opti-
cal spin-wave frequency,

Tp
10 cop I (5.9)

Naively, if I were a typical Gruneisen constant of order
20, this damping rate would be enormous. However, the
appropriate Gruneisen constant can be shown to be some
complicated angular average of the logarithmic derivative
with respect to the appropriate phonon strain of the ratio
of the spin-wave velocity ta the inverse susceptibility.
Thus, if the apparent similarity of all the measured
Gruneisen parameters applies for this case, I is likely to
be much smaller than 20, probably closer to two or three,
which is the typiml variation in the Gruneisen parame-
ters. Even with this reduction, the phonon attenuation
rate will be about l%%uo of its frequency, which is larger
than the rate estimated above from the mixing with optic
spin waves even when it is not excluded by parity. This
corresponds to an attenuation length of order 100pm.

Because of the large spin-wave nonlinearities, the decay
of phonons into four spin waves should have comparable
magnitude to the two spin-wave process discussed above,
once the phonon frequency is high enough that the spin
waves all have momenta near the zone boundary. In ad-
dition, in a magnetic field three spin-wave decays are a1-
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lowed and may also play a role.
From the above discussion, it is apparent that the pho-

non attenuation will show a rapid increase when the pho-
non frequency becomes of the order of the optic spin-
wave frequency because of decay into two or more spin
waves. This effect should be easily observable. However,
it will almost certainly mask any attempt to measure
resonant mixing with optic spin waves, unless through
some fluke in the spectrum in a more complicated mag-
netic structure than u2d2 the even optic mode is
anomalously narrow. It is possible with certain spin-wave
spectra that the two spin-wave decay rate may actually
show a peak at around twice the zone boundary frequen-
cies and decrease considerably before the four spin-wave
rate takes over at higher frequencies. A peak of this kind
which occurs in zero field could easily be confused with
optic spin-wave mixing for a structure with three broken
spin symmetries (rather than the two in the u2d2 phase)
for which mixing can occur in a zero field. An interest-
ing problem which involves questions about the extent of
the quantum nature of the ordered state is-the decay rate
for phonons at frequencies much higher than J into many
spin waves. We expect that the phonon damping rate
from such processes will fall off rapidly as the frequency
increases and more and more spin waves are necessary to
conserve energy. Understanding the behavior in this re-
gime should be quite a challenge. We thus expect very
rich magnetoelastic behavior; however, its potential use as
a probe of the ordered phase is complicated by the many
competing phenomena. The best prospects are if the
phase is not u2d2.

B. Hydrodynamics of coupling of phonons
to acoustic spin waves

S=yS&&H+d&&A(u;, ) d (5.10)

In this section we discuss the coupling of phonons to
the low-frequency magnetic modes analyzed in Sec. II.A.

Phonons can mix the magnetic modes when phonon
frequencies are comparable to the magnetic resonance fre-
quency. Since this will only occur at long wavelengths,
we can ignore the spatial inhomogeneity of the magnetic
modes and analyze the coupling to a uniform strain in the
crystal u;J. As in Sec. II.A, at the low frequencies and
long wavelengths of interest a hydrodynamic description
will be valid.

The equations of motion for the spin and the order pa-
rameter are the same as in the unstrained case except that
we must now allow for dependence of the susceptibility
and dipole energy on the strain. (Note that helicoidal, or
other complicated structures which have a third broken
spin symmetry on which the susceptibility and dipolar an-
isotropy do not depend, will have an extra acoustic spin-
wave mode with zero frequency in the limit of long wave-
lengths. However, the phonons will have no linear mixing
with this extra mode, since such mixing can occur only
via the susceptibility or dipolar anisotropy. ) We have
from Sec. II.A

d=dx[yH —y Xo '(uq)S] . (5.11)

These must be supplemented by an equation of motion for
the displacement field u; which has a contribution from
the derivative of the magnetic energy with respect to the
strain:

~ ~

mpu

(5.12)
Ei

where C,jkl is the elastic constant tensor, mp is the mass
density, boldface denotes vectors in spin space, and the
latin subscripts denote real space. Note that in general
the anisotropic part of the susceptibility tensor, 5, could
enter through the second term in Eq. (5.11). However, we
shall be interested in small deviations about equilibrium

and then the orthogonality of d~ and S,q in the u2d2
phase will cause the dependence on 5 to drop out. The
linearized equations of motion about equilibrium will de-

pend on the tensors

(5.13)

A~p
~aPi~ =

8QgJ
(5.14)

I;j=I 05,q+ I g I;lj . (5.15)

The measured dependence of Xo on a uniform compres-
sion is given by the susceptibility Gruneisen constant

1Xx=I0+ 3I ~ (5.16)

which determines one combination of the I 's. They are
not currently known independently; however, they are
both likely to be large. The dipole strain tensor A ~,z has
seven independent components, ' and its effects are thus

The independent components of A p;J for the uniaxial struc-

ture with a fourfold symmetry axis are, with I in the x direc-
tion, xxxx, xxyy, yyxx, xyxy, yyyy, yyzz, and yzyz. The last
three would not be independent in a completely uniaxial struc-

ture; however, since I is only a fourfold symmetry axis, they are
independent.

where the greek subscripts are spin indices. We may ig-
nore the terms in the linearized equations of motion for
the displacement which arise from second derivatives of
the equilibrium magnetic energy with respect to the
strain, since these will yield overall shifts in the sound ve-
locities rather than mixing; we shall return to their effects
later. Because of the spatial uniaxiality of the spin struc-
ture, the susceptibility Gruneisen tensor must have the
orm
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rather complicated. One would expect (unless perhaps the
state is the SPNAF state discussed in Appendix B) that
the dependence of the dipole energy on strain would be of
the order of the dipole energy at zero strain. If the spins
were classical, the dependence on strain would arise only
from the change in the distances between the spins and
would certainly be of the order of the dipole energy. As
long as the quantum effects are not large enough to alter
the state, then the logarithmic strain derivative of the di-
pole energy will remain of order one. We are thus prob-
ably justified in ignoring this effect all together, since it
will be considerably smaller than the strain dependence of
the susceptibility. In any case, we shall argue below that
in certain symmetry directions the effects of the strain
dependence of the dipole energy vanish.

We are interested specifically in the mixing of magnetic
modes with a phonon with wave vector q, polarization e,
strain field u;J. cc(e;qj+q;ej) and velocity s. For conveni-

ence we chose a coordinate system in which 1 is in the x
direction and for simplicity restrict ourselves to the case
where the magnetic field H is the x-y plane. This forces

d,q to lie in the third [100] direction z. Note that, as for
optic modes, there will be no mixing in the absence of a
field due to spin conservation. In this case, this will be
true even for helicoidal structures. It can easily be shown
that as long as u„,=uz, ——0, the dipole derivatives will not
enter the linearized equations of motion. This cor.dition
will be satisfied, for example, for any longitudinal [100]
phonon and any phonon with both e and q in the x-y
plane. Although there may be interesting information in
the tensor A~p;J, we will restrict our attention to the cases

where it drops out.
The full spectrum of the coupled spin-phonon modes is

given by Eqs. (5.10)—(5.12). Near to the crossing of the
bare magnetic modes with frequencies Q(H) and the pho-
non mode with frequency sq, the frequencies of the mixed
modes will be given by the usual form from degenerate
perturbation theory as long as the mixing is small com-
pared to the frequency differences between the bare mag-
netic modes. We thus have

T

Q +(sq) Q —(sq)
2 2

1/2+D', (5.17)

where the minimum splitting between the modes is
f72

Q

and we find

(5.18)

mp
(5.19)

where A, is the anisotropy of the dipole energy given by
Eq. (2.12). The function E depends on the angle 8 be-
tween the magnetic field and the spatial anisotropy direc-
tion 1 and on the bare magnetic mode. For the two bare
NMR modes with

Q =Q = —,
' [(yH) +Q ]
+ —,

'
I [(yH) Qo] —+4QO(yH) cos 8I'

(5.20)
F is given by

& (yH )2»nz28Q' I Q', +(yH )'+2Q', (yH )'cos28+ [Q,'+ (yH )'cos28](Q', +H'+ 2 cos28QOH ) (5.21)

sin 0
F+ ——F

2

and for H »Qo,
2

F+ —— sin Hcos 8,Qp

(yH)

F =sin 0.

(5.23)

(5.24)

For 8=0 corresponding to H parallel to 1, the bare mag-
netic modes are at zero frequency and [Qo+(yH) ]'~ .
In this case the phonons do not couple to either mode (ex-
cept for negligible effects involving extra powers of
D /Q ). On the other hand, for H perpendicular to l,

We quote three simple limits of this somewhat messy
expression. For H &QQp,

F+ ——sin 0
(5.22)

(yH)' . 2F = '
2 sin Ocos 8;

Qp

for H =Qp,

phonons couple strongly (with E=1) to the mode with
frequency Qo and not at all to the yH mode. Physically
this is because the coupling is via the susceptibility which
does not affect the pure I.armor precession mode.

Since the coupling to the low-frequency mode at Qo
goes up with field, this is probably the optimum place to
look for the mixing of phonons with the magnetic modes.
The relative splitting is given by (using sq =Qo ——Q)

1 /2

S'"(8), (5.25)yH= (I",J.etqj )
QpQp mps

I;Je;qJ =I 0(e.q)+I'z(e l)(q l) (5.26)

and presumably be around 20, at least for longitudinal
phonons. Since yH/Qp can be made of order 10 before

which we note is independent of 8 for the low-frequency
mode in the high-field limit. The characteristic magni-
tude of the splitting is just the square root of the dipole
energy per atom divided by the elastic modulus per atom
X =ms, which is about 0.5)& 10 . The Gruneisen fac-
tor in Eq. (5.25) will depend on the relative orientation of
e, q, andi:
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C. Specific heat in a magnetic field

In the presence of a magnetic field, which we will take
to be in the range Qo «yH «J, the spin-wave spectrum
deviates from linear dispersion at small k. For up-down
states, i.e., those in which all (S;) are in the d=z direc-
tion, the doubly degenerate acoustic spin waves in zero
field correspond to the two broken spin symmetries (S"
and S~). For the experimental case of interest for which
Xi &X~~, the magnetic field will always be perpendicular to

I

d, say, in the y direction. In nonzero field, there will
hence be only one spontaneously broken symmetry, S",
and only one linear spin-wave mode. The two low-lying
branches of the spectrum will then be

(k)k

co =(yH) +c (k)k
(5.27)

entering the high-field phase, the splitting can be made of
order l%%uo of the frequency for the low-frequency, field-
independent mode. Both the phonon and magnon line
widths are small in this regime, so that a mixing of order
19o should be easily observable. From either a combina-
tion of longitudinal and transverse phonon measurements
(the latter couple only via I z ), or from longitudinal pho-
nons propagating parallel and perpendicular to /, it should
be possible to extract I 0 and I z independently, which, as
mentioned above, one hopes would yield additional clues
as to the microscopic origins of the exchange processes.

We now turn to the effects of the dependence of the
magnetic energy on strain which will result in shifts in
the sound velocities and may yield extra symmetry infor-
mation about the magnetic structure. The second deriva-
tive of the magnetic energy with respect to strain is a
fourth-rank tensor A;Jki with magnitude of order I J,
which can have isotropic parts of order 0.4 K resulting in
5% changes in the elastic constants. The interesting ef-
fects will come from the anisotropic parts of the magne-
toelastic tensor which are likely to be somewhat smaller
but still measurable. Because the magnetically ordered
phase has lower spatial symmetry than the cubic
paramagnetic phase, the anisotropic parts of A will give
rise to additional anisotropies in the sound velocities.

For the u2d2 structure, the spatial symmetry is tetrago-
nal, and so A will have six independent components.
More complicated structures that are consistent with the
known spatial symmetry, which includes a fourfold [100]
axis, can generally have more nonzero magnetoelastic
coefficients. In particular, structures without a mirror
plane parallel to I can have an extra nonzero component
Azzzy Ayyyz This term can in principle be absorbed
into the usual tetragonal terms by rotating the x and y
axes; however, this effect would clearly be observable. We
note finally that if the SPNAF phase discussed in Appen-
dix B existed, then the large nonlinearities needed to stabi-
lize it would be likely to make the phonon velocities more
anisotropic than the magnitude estimated above for other
tetragonal phases.

For Qo« T «H, the coefficient of the low-temperature
T specific heat will then be decreased to half its value in
zero field.

For helicoidal states with d=z perpendicular to the
plane of the spins (or other states with all three spin sym-
metries broken) but again Xi &P~~ (as constrained by the
experiments) the situation is somewhat different. There
will be three linear spin-wave modes in zero field corre-
sponding to the three broken spin symmetries. Two of
these (S" and S~) will be degenerate with velocities c2(k)
and the third (S') will be distinct with velocity c i(k). In
a finite field in the y direction, only the S" mode will
remain gapless with co =c2(k)k . The specific heat in
finite field for T«H will be

Cv(M)=
~

T
( ~) (5.28)

in contrast to the H =0 result

(5.29)

The coefficient of T for the helicoidal case in a field will
thus be reduced by more than a factor of 2. Measure-
ments of Ci (H, T) at low T should provide an additional
way to distinguish between an up-down structure and a
helicoidal structure, the only conclusion of the general ar-
guments from the NMR experiment in Sec II.A that re-
lied on signs of anisotropies rather than symmetry.

Finally, we briefly discuss the high-field phase. It is
clear from the above discussion that if the high field
phase is a canted antiferromagnet it will still have at least
one spin-wave mode with linear dispersion which will give
rise to a T contribution to the low-temperature specific
heat. If, on the other hand, the high-field phase is a
paramagnet with no broken spin symmetries, then the
specific heat will be exponentially small at low tempera-
tures. Measurements of the specific heat at sufficiently
low temperatures in the high-field phase should thus dif-
ferentiate between a canted antiferromagnet and a
paramagnet. Note that a ferromagnetic spin structure in
which the spins on one sublattice point along the field and
those on the other point in the opposite direction would
also have an exponentially small specific heat, since the
spin rotation symmetry is unbroken, even though the
structure has a broken lattice translational symmetry.

Vl. CONCLUSIONS

In this paper on the magnetic properties of He we have
primarily concerned ourselves with the status of the corn-
parison between theory and experiment. The subject is in
an exciting stage of development. There exists a

phenom enological spin Hamiltonian —the multiple ex-
change Hamiltonian of Roger, Delrieu, and Hetherington
(1980a)—that shows remarkable qua li tati ue agreement
with a range of unusual magnetic properties of solid He.
However, this model seems to lead to large quantitative
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disagreements and is also conceptually unsatisfying due to
the necessity of an apparently coincidental similarity be-
tween two quite different exchange rates, a coincidence
that furthermore seems to be maintained over a consider-
able range of densities.

It is indeed quite likely that these objections will ulti-
mately be answered, and that a multiple-exchange Hamil-
tonian may provide at least a reasonable approximate
description. It also seems likely, however, that reaching a
consistent interpretation will advance our physical under-
standing of the system, and not merely represent a large
computational effort.

So far, there is no definitive confrontation between
theory and experiment. The only numbers which have
been reliably calculated theoretically for the model are the
high-field, zero-temperature transition field from the fully
aligned to the canted NAF state and a few terms in the
high-temperature series expansions of various thermo-
dynamic quantities. The transition field is so far inacces-
sible experimentally, and there remains considerable un-
certainty in the fitting of the high-temperature measure-
ments.

The large amount of low-temperature experimental in-
formation, on the other hand (spin-wave specific-heat,
susceptibilities, NMR frequencies, etc.), has so far not
been very useful in restricting the parameter range of the
theory due to the absence of reliable methods for theoret-
ically treating strongly quantum spin systems. Thus we
currently have a situation in which the quantitative
theoretical calculations have not been stringently tested by
experiment and in which quantitative experimental data
cannot yet be compared with accurate theoretical predic-
tions.

What are the prospects for improving this state of af-
fairs?

First, from the experimental side, resolving questions
about the nature of the high-field phase and the existence
and nature of the phase boundary between it and the
paramagnetic phase would be very useful. In particular,
the absence of such a phase boundary in high fields would
indicate that the high-field phase does not have a broken
symmetry. On the other hand, low-temperature specific
heat measurements could establish the existence of a
spontaneously broken symmetry in the high-field phase.
It may also be possible to indirectly excite spin waves via
NMR in the presence of a magnetic field gradient (Osher-
off, 1985). Furthermore, a program to establish a reliable
set of high-temperature thermodynamic data could help
immensely to pin down the model parameters, and should
be pursued with high priority. Even the structure of the
low-field antiferromagnetic phase is by no means certain.
We have suggested several experiments (magneto-
specific heat and phonon coupling) which might yield ad-
ditional information on the symmetry and nature of this
phase. However, the ideal structural probe, neutron
scattering, may soon make such roundabout analysis of
the structure superfluous. (See the note added in proof. )

From the theoretical side there is clearly much to be
done. The most. straightforward calculations are in the

high-temperature paramagnetic phase. Since the zero-
field transition is strongly first order, it is probable that
with a few terms- in high-temperature series, thermo-
dynamic quantities could be calculated accurately down
to the zero field T, . Direct comparison with the experi-
mental data for various quantities in the paramagnetic
phase could then be made —in particular, the dramatic
"hanging up" of the entropy above T, could perhaps be
compared with theory. A better. phenomenological under-
standing of the thermodynamic anomalies above T, may
also be instructive.

More difficult, although probably more interesting and
informative in the long run, would be calculations of the
phase diagram and ordered phase properties including
quantum fluctuations. This provides quite a challenge to
theorists: He should ultimately provide a nontrivial
quantum system in which the microscopic (spin) Hamil-
tonian is well known in terms of a few interaction con-
stants that are in turn accurately determined by (for ex-
ample) high-temperature measurements. Although there
has been considerable progress in quantum Monte Carlo
methods recently, it is not clear that any of the methods
are applicable to the He system, and further work in this
direction would clearly be useful. At low temperatures,
methods might be developed for treating the apparently
strongly interacting spin wave system. Other approaches
such as variational or cluster methods should also be in-
vestigated.

The theoretical basis for the introduction of a
phenomenological spin exchange Hamiltonian has been
well addressed in the literature (Herring, 1966; McMahan,
1972). There are compelling (but no definitive) arguments
for believing that a simple spin Hamiltonian should exist.
We are therefore in the unusual position that accurate
(and hard) quantum calculations of actual numbers may
ultimately lead, if agreement with experimental data is
not forthcoming, to advances in the microscopic under-
standing. For example, if a Hamiltonian with two, or
possibly three, exchange parameters is not sufficient to fit
the experiments, then we should be led to seek some mi-
croscopic physics causing many exchanges to have com-
parable magnitudes. Ultimately, the assumptions in-
volved in deriving a phenomenological spin Hamiltonian
might be brought into question.

This brings us to the problem of the microscopic origin
of the exchange Hamiltonian.

As discussed in Sec. IV.A, reliable microscopic calcula-
tions of exchange processes at densities of interest are not
yet available. Several approximate calculations, assuming
very different physics, have yielded roughly the right
magnitudes and ordering of exchange rates but the impor-
tant physics involved in the exchange has not been eluci-
dated. The simple scaling of the various exchanges, with
a single dependence on volume observed experimentally, is
also not understood at the relevant densities. This is far
from being a problem for which one can, with enough ef-
fort, just use some existing machinery to crank out the
answers: there are qualitative questions that are not un-
derstood. In particular, the question of whether the ex-
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change is best thought of as a tunneling process through
classically forbidden configurations, or is more like the
hard-sphere limit for which the potential energy is rela-
tively unimportant, is not yet resolved. It seems likely
that reliable quantitative calculations on this many-body
system, involving approximation techniques or advances
in numerical methods, are necessary to yield new qualita-
tive understanding of the many-body physics involved.
That such progress may indeed be possible is suggested by
the finite size of the clusters presumably involved (at least
nonperturbatively).

Finally, given the present stage of the agreement be-
tween theory and experiment, it is still conceivable that
multiple-spin exchange does not provide the correct, or
perhaps the best, description of the magnetic phenomena.
The field then of course becomes wide open. Neither of
the alternative thoories so far proposed —lattice-mediated
exchange or zero-point vacancies —has been developed far
enough to make quantitative predictions to be tested ex-
perimentally. Other possibilities, such as a complete
breakdown of the separation (except for perturbative
corrections) into a statistics-independent lattice Hamil-
tonian and a spin Hamiltonian to take care of the Pauli
principle, have not yet even been addressed.

Understanding the processes leading to exchange, par-
ticularly if they essentially involve large numbers of
atoms, should bear fruit in other quantum systems, espe-
cially electron crystals. This may even help to answer
Anderson's question "when are solids solid?"

Note added in proof. Very recently, Benoit et al. (1985)
have reported preliminary neutron scattering data show-
ing evidence for a magnetic Bragg peak with wavevector
k =2m/d( —,',0,0) as expected for the principal Bragg
peak of the u2d2 structure. At this stage, however, these
data cannot rule out some of the other possible phases dis-
cussed in Sec. .II.A. In particular a helicoidal structure
with the same wave vector and umdm phases with m
even, would also be consistent with the data. A search of
other regions of the Brillouin zone could, in principle,
rule out these possibilities: umdm phases will have mag-
netic Bragg peaks at 2vr/d (1/m, 0,0); the u2d2 phase will
have a weak charge Bragg peak at 2n./d(1, 0,0) due to the
zone boundary lattice distortion, while the helicoidal
phase will be characterized by the absence of any peak at
this wave vector.
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APPENDIX A: SPlN-WAVE CALCULATIONS

In this appendix, the zero-temperature susceptibility
and the thermal suppression of the dipolar anisotropy are

calculated from noninteracting spin-wave theory for the
u2d2 phase. Various authors (Iwahashi and Masuda,
1981; Usagawa, 1982; Roger et al. , 1983) have used dif-
ferent conventions and notation; we use a natural general-
ization of the notation of the paper by Harris et al. (1971)
which has the advantage that the symmetries manifest
themselves in a reasonably simple way. Because of the
spin symmetry, all the spin-wave modes will be doubly
degenerate and we can drop the subscript on the frequen-
cies and spin-wave velocities which was necessary for gen-
eral structures. (We shall later use a subscript on co for
the u2d2 phase to denote the acoustic and optic branches. )

The spins on the two up sublattices we label S; ~ and S;2
and those on the down sublattices Sz~ and SJ2. We can
perform a Dy son-Maleev transformation (Dyson,
1956a,1956b; Maleev, 1957) for spin-S spin operators to
boson operators defined by the correspondence

SIgMS Q(ggig
2

S;& ~(2S) a;~—(2S) a;g;pg,+ 1/2 —1/2

S;g ~(2S)'/ a;g,
2=SJg

———S+bj.gbjg,

Sj+~ (2S)1/2bJ~ (2S) 1/2bi gbf'~-bf

where /=1, 2 and we are interested in the spin- —, case.
The Fourier transforms of the site boson operators are de-
fined by

ag(k)=NM' ge '~a;g,

bg(k) =NM ' g e '~hfdf,
J

(A2)

(A3)

where I (k) and h(k) are Hermitian 2&&2 matrices.
This Harniltonian can be diagonalized by a transforma-

tion of the form

a~(k) =l„„(k)a„(k)+m„„(k)P„(—k),

b„(—k) =m„„(k)a„(k)+I„„(k)P„(—k) .
(A4)

The constraint that a„and p„obey boson commutation

where the g superscript on the sum denotes a sum only
over the spins of the /th up (or down) sublattice, and NM
is the number of magnetic unit cells (equal to 4 the num-
ber of atoms). The part of the Hamiltonian quadratic in
the spin-wave operators generally has the form (ignoring
additional constant terms arising from normal ordering)

A 2 ——g [ ag(k)l gv(k)aq(k)+by( —k)I ~q(k)bv( —k)
ggk

+~/(k)&gv(k)b„( —k)+ by( —k)~gg(k)u „(k)],
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relation implies

(A5)

where m and l are 2 X2 matrices and I is the identity ma-
trix. The resulting quadratic part of the Hamiltonian
takes the form

~2——+to („k)[a („k)a (k)+P+„(k)P („k)]+Eo, (A6)
k,p,

where Eo is the ground-state energy, including zero-point

energy of the spin waves, and co„are the spin-wave fre-
quencies. We adopt the convention that to~(k) and toq(k)
are the doubly degenerate acoustic and optic branches,
respectively. These doubly degenerate modes arise from
the two possible values of S' for spin waves: the a modes
carry S'= —1, while the p modes carry S'=+1. Their
frequencies are thus the same by symmetry of the state
under interchange of the up and down sublattices.

The low-temperature thermal properties of the system
will depend primarily on the acoustic spin waves. In par-
ticular, the transverse susceptibility per unit volume, P,
can be written in the quadratic spin-wave approximation

x= g (s"(a)s (a ))~RR

lim g ([ag( —k)+a~(k)+b&( —k)+b~(k)][a&(k)+a„( k)+b—v(k)+bv( —k))) .
&M2s .

(A7)

In terms of the diagonalized spin-wave operators this becomes

X= lim g [l~„(k)+m~„(k)][lv„(—k)+m„„(—k)]
&M2S .
TV 4 t O&„„

X [(a"(k)~„(k)) + (ct„(k)~„(k)) + (p (k)p (k) ) + (p (k)p„(k) ) ] . (A8)

In order to evaluate the susceptibility, we need to know
the eigenvectors

I

optic modes) must be orthogonal to the left eigenvector of
A 2, which ls

( &g~
—

my~ ) ~ (1111) for k~O . (A9)

of the acoustic (v= 1) and optic (v=2) a modes in terms
of the at and b The p mo. des will have eigenvectors with

the up and down sublattices interchanged: i.e., with l and
m interchanged. In fact, for the quantities we calculate
we do not need to find the eigenvectors explicitly. In the
limit of long wavelengths, the acoustic modes become
simply rotations of the structure. The transverse com-
ponents of the down spins in a small rotation point in the
opposite direction to those of the up spins. Hence m&~

and m2~ corresponding to the down spins must be equal
to each other and equal to minus l» ——l2~ corresponding
to the up spins [i.e., the eigenvector is (1,1,—1, —1)]. The
constraint Eq. (A5) that the eigenmodes satisfy boson
commutation relations implies .that the other modes (i.e.,

Therefore these modes do not couple to the total S",
which enters the susceptibility in Eq. (A7):

lim g (1@+m~)=(),k~0 (A10)

and the optic modes cannot contribute to the uniform
zero-field susceptibility. This result is true for all up-
down antiferromagnetic structures.

The contribution to X from the acoustic modes would
naively also be zero, since the acoustic eigenvector is pro-
portional to (1,1, —1, —1) in the limit of zero wave vec-
tors, with components again summing to zero. However,
due to the degeneracy at k =0, this limit must be con-
sidered more carefully. In fact, we expect the acoustic
eigenvector to take the form

1/2

[ I+aco&(k), 1+bcoi(k), —1+ccoi(k), —I+dc@i(k)]+O(k ), (Al 1)

where Y and a, b, c,d are constants that depend on the Hamiltonian. Now the requirement that the boson commutation
rules be satisfied leads to a relationship between the coefficients

g [lp(k)+my((k)]=
1/2

Ace)(k)
(a +b +c +d) =- for k~0,

iso ] 2 Y
(A12)
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with the same Y as in the eigenvector magnitude. This
combination is exactly the one appearing in the suscepti-
bihty, and leads in that expression to a nonzero value for
the susceptibility at T =0.

The zero-temperature susceptibility per unit volume be-
comes, with S = —,',

y2f 2

g(0) =p lim g [l~)(k)+my(k)]4 a 0& %co& k

X [Iv)( —k)+m v)( —k)]

S~(k)= ge S(R+r~) .
(NM)'" R

(A16)

The dipole energy then becomes

E,= (ya)'g g (s, (k, )s'(k, ) )-,
m k&, k2EZ~

X g D ~(G k)e—
GeZ

Fourier transforms of the spins on the mth sublattice

y 2/2
=p Y~

16
(A13) (A17)

In particular, we are interested in the difference,
1

—,(A3 —A, &), between the dipole energy with dll and that
with d~~l. The anisotropic part of the dipole energy per
volume is given by

E = ——,'&() e)'g (S (0)S~(r))-,D P(r), (A15)

where the sum runs over all sites, r with
D ~(r)=3r r~l

~
r ~, and the spin expectation value is

taken with a given order-parameter direction d. We will
denote lattice vectors of the magnetic structure by R and
the positions within one magnetic unit cell r, with m
running from 0 to 3 through the four [100]planes, which
we take to be f)&&, respectively. The original Brillouin
zone will be denoted by Z and the magnetic zone ZM,
with G the magnetic reciprocal lattice vectors. We define

where we have inserted the magnetic moment factors and
used Eq. (A12). Note that this quadratic spin-wave ap-
proxin1ation is equivalent to using the classical ground
state in a small field. At nonzero temperature there will
be corrections to X of relative order ( T/J) .

Another useful quantity which can be calculated from
spin-wave theory is the temperature dependence of the di-
pole energy per unit volume, Eq. (2.16):

(A14)

where for q&Z

D (q)= gD (r)e (A18)

and

D ~(GO)=Dllil l~+Dg(5 ~ I l~)— (A19)

The depression of the dipole energy at T =0, ED(0), due
to zero-point fluctuations will have contributions from all
of the optic and acoustic modes; however, the leading
low-temperature correction to ED(T) will come only from
the long-wavelength acoustic modes. Thus ED( T)
—ED(0) will depend only on the dipole Fourier transform
Eq. (A18) at the wave vectors +Go of the magnetic struc-
ture, since D ~(G) for the other G's in the original zone
(in fact, the NAF phase G's) will vanish by the cubic
symmetry. Furthermore, since cos&0 r is zero for
m =1 and 3, the contribution to the leading low- T
behavior from the correlations between the body-center
and body-corner sublattices will vanish, as it did for the
classical zero-temperature dipole energy discussed in Sec.
II.A.

We want to calculate the difference between the dipole
energy with d~~l (note: l =Go) and with dll. Because of
the uniaxiality of the dipole tensor at Go and the struc-
ture, the dipole tensor and the correlation function will
have the forms

~so(ki)S~(k2))-=5(k&+k2)[Cll(k&)d d~+C (k&)(5 ~—d d~)], (A20)

respectively.
From this it follows that the leading low- T behavior of the dipole anisotropy is given by

b, ( T)=A, )( T)—A.3( T)—[A,)(0)—A,3(0)]

2(Di —Dll)I[CO(k, )—Co(k, T)—C[l(k, T)+Cq(k, T)]—[ Co(k, O) —Co(k, O)

—C/l(k, O)+ C', (k, O)]I, (A21)

where the factor of 2 is from the two wave vectors +Go.
In terms of the boson operators defined in Eq. (Al), we have
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C/l(k) =S25(k)—5(k) f 2S&a i(q)(2i(q) &,

Co (k )= ~ (2S)& [((2 i ( —k )+~ i (k )][~ i ( —k ) +(2 i (k )] &

C/l = —S'5(k)+5(k) f [S&b i(q)b i(q) &+S&(2 i (q)~ i(q) & ],
C2 ———,

' (2S)& [(2 i(k)+a i( —k)][bi(k)+b i( —k)] & .

(A22)

In terms of the diagonalized acoustic modes ai and Pi w'ith Bose occupation factor

n [~i«)]= & ~i~i & = &Pl~1 &

we have

(A23)

6( T)= (yiri) 2(Di —D)l)

d3k
)& f n[co (ik)]I ——,'[

~
li((k) ( + (mb)(k) ( ]+—,

' [1)i(k)mi)(k)+i(i(k)m(i(k)]] .
(2ir)

(A24)

Using

«»= —m»=

from Eq. (Al 1),

Y
fuo i(k)

j./2

(A25)

J,=0.13 mK

JCp ——0.385 mK,

yielding a spin-wave anisotropy

(A32)

Di —D
l l

——3P(2.42), (A26) 2.0
Cy

and a magnetic temperature

(A33)

f d k n [~i(k)] 1 1 2 4m' xdxT2
(2m. ) ~i(k) vari c (2m ) o e"—1

12A' c
(A27)

4 T f2&S'(0) &
—2&S'(T) &

=—
Ap c

(A29)

we get

T2Y5(7') —(7.26)(y(()= , p(, )
.

Two-thirds of this suppression comes from the longitudi-
nal spin correlations, i.e., the thermal suppression of the
order parameter given by

T S.1 mK (A34)

reasonably close to the measured value of 5.8 ml( . Note
that for Kz &4J„cq is rather sensitive to the parameters
but 7 and c~~ are much less so.

The spin-wave velocities and the susceptibility have
been calculated by several authors (Iwahashi and Masuda,
1981; Usagawa, 1982; Roger et al. , 1983). Usagawa
(1982) has calculated the temperature dependence of the
dipolar anisotropy for a multispin exchange model which
includes the RDH Hamiltonian. He finds that b (T) does
not have the same form as the order-parameter suppres-
sion Eq. (A29). We believe this result is incorrect, al-
though the exact origin of the error is not known.

APPENDIX 8: SPIN-PEIERLS PHASEwhere Y is related to X ' by Eq. (A13).
For completeness, we quote some results for the RDH

three- and four-spin exchange Hamiltonian Eq. (3.17) dis-
cussed in Sec. III.B. The spin-wave velocities are given by

2clla2=64 (3Kp 4JT)(2Kp 3J)— —

(A30)
fi cia =16(3K' —4J, )(4J, —Kq)

for directions parallel and perpendicular to I, respectively,
and the magnetic temperature is

1

T =X 'p =4Y=8(3K' —4J, ) .
2

(A31)

Roger et (2l. (1983) fit the experimental results for & 1/c
with

In this appendix, we investigate the possibility of an or-
dered phase in which all two-spin correlations have the
same sign as in the NAF phase but with magnitudes for
different pairs which break the cubic symmetry.

A phase of this type occurs as the ground state of a
one-dimensional nearest-neighbor spin- —, antiferromagnet
coupled to static lattice distortions [Cross and Fisher
(1979) and references therein]. The driving mechanism
for this state is the tendency of spins to form singlets.
Because of this, the magnetic energy of a dimerized chain
with exchange alternating between zero and 2J is lower
than that of a uniform chain with exchange J. The gain
in magnetic energy for a small dimerization u yielding al-
ternating exchange (1+1u/a)J and (1—I u/a)J is pro-
portional to
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4/3
ru tu

a

(Black and Emery, 1981), while the energy cost of the lat-
tice distortion goes only as X(u/a), with K the ap-
propriate elastic constant per atom and a the lattice con-
stant. Thus the chain will dimerize at zero temperature
whatever the value of the Gruneisen constant I". This ef-
fect is known as a spin-Peierls distortion by analogy with
the Peierls instability of a one-dimensional metal, and is
seen in various quasi-one-dimensional magnetic systems.
We note that this effect is entirely quantum mechanical:
a classical spin system at zero temperature will gain no
energy from a dimerization, unless the exchanges them-
selves depend nonlinearly on the distortion.

How can the spin-Peierls effect manifest itself in our
three-dimensional case of interest'? A two-dimensional
spin- —,

' antiferromagnetic will generally have lower energy

per bond than a three-dimensional one because of the
greater importance of quantum spin fluctuations in lower
dimensions. Thus one should expect that in the presence
of a small [100] zone boundary lattice distortion u, the
magnetic energy will be lowered more by the increased
two-dimensionality of the more strongly coupled pairs of
[100] planes than by the loss of energy between different
pairs. Unfortunately, this magnetic energy gain in three
dimensions will behave only as (I u/a) J, while the pho-
non energy cost will still be IC(u/a) It is th. us not possi-
ble to lower the total energy by a small distortion unless
1?=I' J/K is greater than a number of order unity. If 1?

is large enough, then nonlinear terms in the elastic energy
will be needed to stabilize the system. On the other hand,
if 1? is not large, then it is still possible that nonlinear
dependence of the exchange constants on u—which at
least naively might be more nonlinear than the elastic
energy "ould cause a lowering of the total energy by a
relatively large distortion. &e shall call this putative
phase the SPNAF for spin-Peierls normal antiferromag-
net, normal referring to the sign of the spin correlations.
Unfortunately, because of the necessity of invoking a non-
linear distortion, it is hard to say much about the proper-
ties of this phase except very qualitatively.

First, it is likely that both the transitions from a
SPNAF phase to a paramagnetic phase as temperature is
increased and to an undistorted canted antiferromagnetic
phase as the field is increased, would be strongly first or-
der, as is observed. Second, the spin-wave velocities,
which in principle are separately measurable, should be
strongly anisotropic with the velocity in the direction
parallel to the dimerization considerably smaller than the
others. Note that this is the opposite sign of the anisotro-

py from that found in quadratic spin-wave theory for the
RDH Hamiltonian: in that case the velocity parallel to
the direction I is larger than the others.

In the classical Neel approximation, the spin correla-
tions will be identical to the NAF phase and, except for a
small effect arising from the displacement of the atoms,
the dipole anisotropy would vanish for a SPNAF phase at

zero temperature. However, the strong quantum fluctua-
tions, which are presumably necessary to drive the
SPNAF transition, will result in larger correlations be-
tween spins in the more strongly coupled planes than be-
tween those in weakly coupled planes, and the dipole ener-

gy will be anisotropic with the observed tetragonal sym-
metry. We can make a rough comparison of the dipolar
anisotropy energy

A, = —,
'

[ED(dill ) —ED(dll )] (Bl)

for the NAF, u2d2, and SPNAF phases, all of which have
ferromagnetic [100] planes by writing, as in Sec. II.A, A,

as the sum over the rapidly decreasing contributions from
nearby planes. Following the notation of Eqs. (2.26) and
(2.27), we have in classical Neel approximation

and

~uzdz ~f0 (82)

~NAF ~fo —2f i (B3)

where we have ignored the small terms from planes far-
ther away than nearest neighbor.

For the SPNAF phase, if it exists, it is probably reason-
able to assume that the order-parameter correlations fall
off much more rapidly across the weak bonds than across
the strong ones. If the expectation value of the order pa-
rameter is small, then we might be able to neglect the di-
polar anisotropy between weakly coupled planes. Then
we have simply contributions from each plane and its one
strongly coupled neighboring plane

~SPNAF ~fO
—fi

Since A,NAF
——0, f &

——,
' fo and hence

1

~SPNAF 2 ~u2d2 ~

(84)

(85)

i.e., the naive estimate for the SPNAF dipolar anisotropy
is roughly equal to the experimental value of half the Neel
estimate for the u2d2 phase. It is probable that the above
est1111ate of AspNAF is somewhat too large; however, we
note that it would be very difficult to estimate the magni-
tude of the corrections, even if the effective dimerized
spin Hamiltonian were known, because of the strongly

quantum nature of the state.
The arguments presented above are very rough and

should be treated primarily as plausibility arguments for a
SPNAF phase in solid He. It is unclear in the absence of
a detailed model whether the high-temperature and high-
field data could be explained in terms of nearest-neighbor
coupling to phonons; probably the hardest to explain
would be the near constancy of the magnetization in the
high-field phase. Qne relevant calculation does exist,
however; Varma and Nosanow (1970) have argued that
the leading correction to the antiferromagnetic Curie-
Weiss susceptibility at high temperatures will quite gen-
erally be ferromagnetic (as apparently observed in the ex-
periments) for nearest-neighbor exchange coupled to pho-
nons.
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