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The wetting of solids by liquids is connected to physical chemistry (wettability), to statistical physics (pin-
ning of the contact line, wetting transitions, etc.), to long-range forces (van der Waals, double layers), and to
fluid dynamics. The present review represents an attempt towards a unified picture with special emphasis
on certain features of “dry spreading™: (a) the final state of a spreading droplet need not be a monomolecu-
lar film; (b) the spreading drop is surrounded by a precursor film, where most of the available free energy is
spent; and (c) polymer melts may slip on the solid and belong to a separate dynamical class, conceptually re-

lated to the spreading of superfluids.
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I. INTRODUCTION

Many practical processes require the spreading of a
liquid on a solid. The liquid may be a paint, a lubricant,
an ink, or a dye. The solid may either show a simple sur-
face or be finely divided (suspensions, porous media,
fibers). Water, for instance, may be sucked into a porous
soil, because it tends to wet the solid components of the
soil. Tertiary oil recuperation also involves the penetra-
tion of water into the channels of a porous rock, which
were originally filled mainly by oil. The “flotation” of
ores is based on selective wetting properties for the ore
particles.

In spite of their importance, these processes are still
poorly understood.

(1) All interfacial effects are very sensitive to contam-
inants and to physical modifications of the surface (e.g.,
steps, dislocations, if we are dealing with a crystalline
solid); this may explain why certain basic experiments
(e.g., spreading a single small droplet on a flat solid sur-
face) have been fully carried out only recently.

(2) The solid/liquid interfaces are much harder to probe
than their solid/vacuum counterpart; essentially all exper-
iments making use of electron beams become inapplicable
when a fluid is present. A few sensitive techniques may
still be applied specifically to the interface (fluorescence,
EPR, etc.), but they are often restricted to very specific
examples. Similar limitations occur with the electro-
chemical data.

(3) On the theoretical side, 180 years after the pioneer-
ing work of Young and Laplace, a number of basic capil-
lary problems are just beginning to be solved.

(a) The physicochemical parameters controlling the
thermodynamic wettability of solid surfaces were clarified
through the long, careful efforts of Zisman (1964) and
others (Fowkes, 1964; Padday, 1978), but the deviations
from thermodynamic equilibrium are just beginning to be
understood. Here I shall insist particularly on two such
deviations—the hysteresis of contact angles, due to the
pinning of the contact line on localized defects, and the
regimes of “dry spreading,” where the final state of a
spreading droplet is not necessarily a monomolecular
layer, but may be a film of greater thickness. These rela-
tively novel aspects are explained in Sec. II.

(b) The transition from ‘“complete wetting” to “partial
wetting” (defined in Fig. 1 below), first predicted in 1977
(Cahn, 1977; Ebner and Saam, 1977), has become an ac-
tive field of research and dispute (Sec. III).

(c) The dynamics of spreading is delicate: a pioneering
paper (Huh and Scriven, 1971) suggested a singularity in
the dissipation, which provoked many discussions. Re-
cently, a useful distinction has appeared between simple
fluids, in which the liquid spreads by a rolling motion
(Dussan and Davis, 1974), and polymer melts, which
often tend to slip on a solid surface (Brochard and de
Gennes, 1984). These two regimes (and the corresponding
removal of singularities) are presented in Sec. IV.

Our discussion does not include the local structure of
the interfaces—the arrangement of the atoms, or mole-
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cules, at the 3-A scale near a boundary. For fluid/fluid
interfaces, this aspect is, in fact, well reviewed in a recent
book (Rowlinson and Widom, 1982). For solid/fluid in-
terfaces our knowledge is still rather limited. In the
present paper, the emphasis will be on behavior at some-
what larger scales (say 30 to 300 A), where long-range
forces (van der Waals, electrostatic, etc.) become essential,
control many practical features, and give rather universal
properties.

Il. CONTACT ANGLES
A. Thermodynamic equilibrium

1. Angles and energies: the Young condition

When a small liquid droplet is put in contact with a
flat solid surface, two distinct equilibrium regimes may be
found: partial wetting [Figs. 1(a) and 1(b)] with a finite
contact angle 0,, or complete wetting (6, =0) [Fig. 1(c)].!
In cases of partial wetting, the wetted portion of the sur-
face is delimited by a certain contact line . (which, for
our droplets, is a circle).

The situation near the contact line is represented more
precisely in Fig. 2. Here we are dealing with a macro-
scopic wedge, and the line . is normal to the plane of
the figure. Three phases are in contact at the line: the
solid S, the liquid L, and the corresponding equilibrium
vapor V. Each interface has a certain free energy per unit
area Ys., Ysv> and ypp (the latter, for simplicity, will
simply be called 7).

These parameters describe adequately the energy con-
tent of the interfaces in the far field (far from .#). In the
vicinity of .#, the structure is much more complex and
depends on a detailed knowledge of the system (examples
of the complications that may occur are shown in Fig. 3).
There is a “‘core region” around the nominal position of
-2, where the complications occur. It is possible, howev-
er, to relate 6, to the far-field energies y;; without any
knowledge of the core. This was one of the (many)
discoveries of the British scientist Thomas Young
(1773—1829).

The basic idea is to write that, in equilibrium, the ener-
gy must be stationary with respect to any shift (dx) of the
line position. In such a shift, (a) the bulk energies are
unaffected (since the pressure is the same in the liquid
and in the vapor); (b) the core energy is unaffected—the
core is simply translated; and (c) the areas of the far-field
interfaces (for a unit length of line) are increased, respec-
tively, by dx (for S/¥), —dx (for S/L), and —cos0,dx
(for L /V). Hence the condition

Ysy—7YsL —Y cosf, =0 . (2.1)

IThe subscript (e) in 0, refers to an equilibrium property.



P. G. de Gennes: Wetting: statics and dynamics 829

v
v
6,
e / %
+ + + + ! + +
+ + + + + +
(a) (b)
Vv
L
+ X +
+ + s + +
(c)

FIG. 1. A small droplet in equilibrium over a horizontal sur-
face: (a) and (b) correspond to partial wetting, the trend towards
wetting being stronger in (b) than in (a). (c) corresponds to com-
plete wetting (6, =0).

Equation (2.1) shows that the angle 6, is entirely defined
in terms of thermodynamic parameters: measurements on
6, give us certain information on the interfacial energies.
Usually, we know y;,=y by separate measurements.
Thus we are left with two unknowns (¥ ,¥sy) and only
one datum (6,). But it is only the difference ysy—vsi
which is relevant for experiments involving the liquid.

2. Spatial scales for the definition of a contact angle

Equation (2.1) was derived for a wedge (planar inter-
faces in the far field). For many practical applications

VAP.

LiQ.

SOL.

FIG. 2. Translation of a liquid wedge (triple line .¢°) by an
amount dx. The energy is unchanged in this process, and this
leads to the Young equation (2.1).
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(d)

FIG. 3. Various types of core structures for the triple line. (a)
Effect of attractive van der Waals forces. For 6, << 1, the pro-
file is hyperbolic and the height A, of the perturbed region is of
order a /0, (where a is an atomic length). (b) A charged solid
surface wetted by salty water (screening length k5'). (c) Effect
of the finite deformability of the solid. The width r. of the de-
formed region is r.~vy/E (y, surface tension of the liquid; E,
Young’s modulus of the solid). For simplicity the special case
0, =m/2 has been drawn. (d) In the vicinity of a liquid/vapor
critical point, the L/V interface becomes diffuse (thickness &)
and the triple line has a core of radius 7, ~¢&.

(such as the droplets of Fig. 1), some weak curvatures are
superimposed.

(a) The liquid/vapor interface may have a total curva-
ture C=R;'+R; !, and this is associated with a certain
pressure difference between liquid and vapor:2

prL—pr=vC. (2.2)

The angle 6, is still well defined in this case, provided
that the radii of curvature (R,R;) are much larger than
the size (rc) of the core region.

(b) The line .7 itself may be curved, and, in this case, a
displacement of the line modifies the core energies.
Again, this leads to measurable effects only when the ra-
dius of curvature of the line is not too large, when com-
pared to the core size r¢ [see, for instance, Platikhanqv
et al. (1980)]. In many practical examples rc <100 A.
Thus, for most macroscopic experiments, where the drop-
lets or the capillaries have sizes R ~1 mm, all curvature
corrections are negligible. A measurement of 6, at a dis-
tance r from the line, where

re <<r<<R,

should give a well-defined 6,, independent of r.

2Equation (2.2) is also due to Young (1804) and was
rediscovered independently one year later by Laplace.
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3. Practical determinations of 6,

The angle 6, can be obtained (a) from a direct photo-
graph, (b) through the reflection (or deflection) of rays by
the liquid prism of Fig. 2, (c) by interferential techniques
(Callaghan et al., 1983), especially for small 6,, (d) from
the rise of a liquid column in a fine capillary (Fig. 4); for
a general discussion of the various capillary effects, see
the classical book by Bouasse (1924) and the recent tutori-
al article of Guyon et al. (1982).

In actual experiments the main difficulty is to avoid a
certain pinning of the triple line . on defects of the solid
surface. This pinning leads to a hysteresis of the contact
angles, which can very seriously obscure the determina-
tion of 6,. Clearly, to avoid pinning one requires solid
surfaces that are smooth and chemically homogeneous,
but the question is, what level of smoothness do we re-
quire to reduce the uncertainty in 6, below a prescribed
limit AG? A partial answer to this question is given in
Sec. I1.C.

4. Special features of complete wetting

Equation (2.1) gives cosf, as a function of interfacial
energies. The special case

Y=Ysy—7sL

leads to cosf,=1 or 6,=0 (complete wetting). At first
sight, this situation appears rather exceptional. In fact, it
is not, because ¥, +¥ can never be larger than ygp (in
thermodynamic equilibrium). If it were larger, this would
imply that the free energy of a solid/vapor interface (yg))
could be lowered by intercalating a liquid film of macro-
scopic thickness (energy v¥s; +7v). The equilibrium
solid/vapor interface then automatically comprises such a
film, and the true ygy is identical to y5; +7, i.e., we have
complete wetting in this regime.

FIG. 4. Capillary rise: in a thin capillary the meniscus is a
spherical cap of radius R=R,/cosf,. The Young-Laplace
capillary pressure 2y /R is balanced by the hydrostatic com-
ponent pgh (p, density difference between liquid and vapor, g,
gravitational constant). Thus a measurement of 4 gives 6,.
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On the other hand, if we deal with nonequilibrium situ-
ations, we may have a solid/vapor interfacial energy vso
that is larger than y5; +7v. The difference

S=Yso—¥s.—¥ 2.3

is called the spreading coefficient. Physically, ygo is as-
sociated with a “dry” solid surface, while y g is associat-
ed with a “moist” surface. For some systems the differ-
ence is enormous. With water on metallic oxides,
¥so —¥sv ~ 300 ergs/cm?; with organic liquids on oxides,
¥so —7¥sv ~ 60 ergs/cm?. On the other hand, with organ-
ic liquids on molecular solids, the difference (as seen via
contact angles) is perceptible only when the liquid is very
light and volatile. For instance, with normal alcanes on a
Teflon surface, the angles 6, (on dry Teflon) and 6, (in
equilibrium with the vapor) are found to differ only when
the carbon number n of the alcane is <5 (Zisman, 1964).

The importance of the spreading coefficient (2.3) for
practical purposes was first recognized by Cooper and
Nuttal (1915) in connection with the spraying of insecti-
cides on leaves. Large positive S favors the spreading of
a liquid.

There remains, however, a fundamental ambiguity in
cases where the experimentalist observes complete spread-
ing on macroscopic scales: he cannot tell whether S =0
or §>0. For the “moist” case, we know that 6, =0 (or
that the corresponding S, =0) because the system
“locks in” at this value, as explained at the beginning of
this section. But for the “dry” case there is no “lock-in”
process, and we expect that complete spreading will usual-
ly be associated with a positive S.

How large is S? We shall see in Sec. IL.D that the
answer may sometimes be obtained by probing the thick-
ness of the ultimate wetting film achieved in spreading:
the smaller the S, the larger the equilibrium thickness, in
qualitative agreement with the trend noticed by Cooper
and Nuttal.

B. Wettability

Our aim in this section is to understand qualitatively
how the contact angle 8, depends on the chemical consti-
tution of both the solid S and the liquid L. The basic
reference here is still the review by Zisman (1964).

1. High-energy and low-energy surfaces

Let us discuss the solid first. From studies on the bulk
cohesive energy we know that there are two main types of
solids, (a) hard solids (covalent, ionic, or metallic), and (b)
weak molecular crystals (bound by van der Waals forces,
or in some special cases, by hydrogen bonds). A similar
classification is found from the solid/vacuum surface en-
ergies (Fox and Zisman, 1950). Hard solids have “high-
energy surfaces” (¥so~500 to 5000 ergs/cm?), while
molecular solids (and also molecular liquids) have “low-
energy surfaces” (yso ~ 50 ergs/cm?).
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2. Standard behavior of high-energy surfaces

Most molecular liquids achieve complete wetting
(§>0) with high-energy surfaces. Let us try to under-
stand this in simple terms, assuming that hard bonds con-
trol ¥so, while van der Waals interactions control the
liquid/solid energies (no chemical binding between liquid
and solid). This amounts to writing for the solid/liquid
energy

Yst=Vso+v—Vs. (Vsp >0). ‘ (2.4)

Here the term — Vg, describes the attractive van der
Waals (VW) interactions between solid and liquid near the
surface. Equation (2.4) can be understood if we progres-
sively bring into contact the regions S and L; when they
are well separated (by an empty slab), the energy is
¥so +¥; when we establish contact, we recover the energy
— Vst

Very similarly, by bringing into contact two liquid por-
tions, we start with an energy 2y, and end up with zero
interfacial energy,

0=2y—V;; (Vi 1>0), (2.5)

where — V;; represents the LL attractions. Using Eqgs.
(2.4) and (2.5), we find that the spreading parameter S,
defined in Eq. (2.3), is equal to

S==2y+Vsg=Vs.— Vi1

and the condition of complete wetting (.S > 0) corresponds
to

Vst >Vir - (2.6

It is also possible to translate (2.6) in terms of the dielec-
tric polarizabilities ag (a;) for the solid (liquid). To a
first approximation the VW couplings between two
species (i) and (j) are simply proportional to the product
of the corresponding polarizabilities

V,-j=ka,-aj N (2.7)
where k is (roughly) independent of (/) and (j). Then the
condition (2.6) reduces to

as>ay . (2.8)

Thus high-energy surfaces are wetted by molecular
liquids, not because yso is high, but rather because the
underlying solid usually has a polarizability ag much
higher than the polarizability of the liquid. Of course,
these considerations are very rough (the frequency depen-
dence of the a’s should be taken into account), but they
still provide us with some guidance.

3. Low-energy surfaces and critical surface tensions

Low-energy surfaces can give rise to partial or to com-
plete wetting, depending on the liquid chosen. In a com-
plex situation like this, it is natural to choose a series of
homologous liquids (for instance, the n-alcanes) and to
study how they wet a given solid.
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In some cases we find complete wetting for the whole
series. This occurs, for instance, for liquid alcanes against
solid polyethylene. But in other cases we find a finite
contact angle 6,, varying within the homologous series.
A useful way of representing these results is to plot cos6,
versus the surface tension ¥ of the liquid. (An example is
shown in Fig. 5.) Although, in many cases, we never
reach cosf, =1, i.e.,, we never reach complete wetting, we
can extrapolate the plot down to a value ¥y =y, which
would correspond to cosf,=1. The details of the ex-
trapolation produced differ from author to author (in the
pioneering work of Zisman a linear extrapolation was
used), but this is not essential.

In general, we would expect ¥ to depend on the solid
S, but to depend also on the liquid series L. However,
when dealing with simple molecular liquids (where van
der Waals forces are dominant), Zisman observed that y ¢
is essentially independent of the nature of the liquid, and
is a characteristic of the solid alone. Typical values are
listed below:

ergs/cm?
Nylon 46
P. Vinyl chloride 39
P. Ethylene 31
PVF, 28
PVF, 18

If we want to find a molecular liquid that wets completely
a given low-energy surface, we must choose a liquid of
surface tension ¥ <y ¢. Thus y¢ may be called a “critical
surface tension” and is clearly the essential parameter for
many practical applications.

Can we relate y¢ to some simple physical parameters
of the solid? This has been attempted by various authors

A cos 6,
14
[ ]
[ ]
[ ]
[ ]
0.8 - d
[ ]
[ J
[ J
[ ]
20 30 Y (ergs/em2)

FIG. 5. A typical Zisman plot (cosine of equilibrium angle 6,
vs surface tension) for a polytetrafluoroethylene (Teflon) surface
in contact with liquid n-alkanes (after Fox and Zisman, 1950).
The critical surface tension ¥, for this system is ~ 18 ergs/cm?2



832 P. G. de Gennes: Wetting: statics and dynamics

(Girifalco and Good, 1957; Fowkes, 1962; Good, 1964).
In the present review, we shall present only a naive argu-
ment, following the simple “van der Waals model” of
Egs. (2.4)—(2.7) and always assuming that the polarizabil-
ity 7 of the vapor is negligible. This amounts to writing
cosO, = Ysv—YsL
14
_Yso—VsL
I 4
_Vsi—v
Y
Zas

= —1.
ar

(2.9

When we compare different chemicals within the same
homologous series, we vary a;. For instance, with al-
canes, the polarizability of the terminal (CH;3) groups is
higher than the polarizability of the —CH,— groups:
shorter alcanes have larger a; values. The value of a; at
which cosf, extrapolates to 1 is

Qrc=0as . (2.10)

If we prefer to work in terms of surface tensions
y=+V.. =~ka}, we may write Eq. (2.9) in the form
1/2

Yc _1,

14

cosf, =2 (2.11)

ve=vkak . (2.12)
Equation (2.12) does show that y¢ depends only on the
properties of the solid and is an increasing function of its
polarizability. Numerically, Eq. (2.12) is not good, and
various lines of improvement have been pursued.

(a) In practice many forces contribute to the
solid/liquid interactions—dipolar, hydrogen bonds, etc.
Thus one adds more terms in the decomposition (2.4),
each force giving its contribution to Vg; and to V., (see,
for instance, Good, 1964). In such a case Y may depend
slightly on the nature of the liquids chosen to define it.

(b) Even when VW forces only are present, the simple
expression (2.7) of the interaction in terms of some aver-
age polarizabilities is too primitive. More precise theories
incorporate the frequency dependence of the polarizabili-
ties, following the lines of the Lifshitz calculation of VW
forces (Owens et al., 1978). We shall not insist on these
points, but mention that there exists (at least) a third
group of corrections.

(c) The density distribution and the pair correlations in
the liquid are modified near the solid surface, and these
modifications may be quite different from what they are
at the free surface of the liquid. For instance, recent
work by Israelashvili (1982) and others shows that the
forces between two closely spaced (20 A) solid surfaces,
through a liquid, are often oscillatory in sign, suggesting a
one-particle density function in the liquid, which oscil-
lates as a function of the distance to the solid. Computer
work on these structures has begun (see, for instance,
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Snook and Van Megen, 1979,1980), but some more time
will be required before we extract from it some really gen-
eral rules and trends.

Let us now return to the practical aspects, and com-
ment upon the values of y ¢ that have been listed above.

(a) The system of high y ¢ (nylons, PVC) are those most
wettable by organic liquids. They carry rather strong per-
manent dipoles.

(b) Among systems that are controlled by VW interac-
tions, we note that CF, groups are less wettable (<« less
polarizable) than CH, groups. In practice, many protec-
tive coatings (antistain, waterproofing, etc.) are based on
fluorinated systems.

(c) It is possible to study specifically the wetting prop-
erties of terminal groups CF;— or CH;— by depositing a
surfactant monolayer on a polar solid surface (Fig. 6).
For CHj; groups y; =24 ergs/cm?, and for CF;, yc is
amazingly small (~6 ergs/cm?). For more details on all
these fascinating questions, we again refer the reader to
the beautiful review by Zisman (1964).

C. Contact angle hysteresis

1. Experiments

The determination of the thermodynamic contact angle
requires very clean experimental conditions. In many
practical situations, one finds that the triple line .¥ is
pinned, and immobile, not only for 6=6, but whenever 6

lies within a finite interval around 6,,
6,<0<6, . (2.13)

The angle 6, (advancing angle) is measured when the
solid/liquid contact area increases, while 0, (receding an-

LiQ.
+ + + + +
+ + + + + +

SOL

CF;
I
= (CIFZ)‘O

co,

FIG. 6. Idealized structure of a surfactant monolayer attached
to a polar solid. The particular example chosen provides one of
the least wettable surfaces ever found.
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FIG. 7. Definition of the advancing (6,) and receding (6,) an-
gles for a liquid on a nonideal solid surface.

gle) is measured when the contact area shrinks (Fig. 7).
The interval 6, — 6, may be 10° or more for surfaces that
have not been specially prepared.

What is the source of this hysteresis? Three major
causes have been invoked.

(a) Surface roughness. Early observations by Trillat
and Fritz (1937) showed that the triple line . was easily
trapped when parallel to a system of grooves. Among the
more recent experiments, those by Dettre and Johnson
(1964) deserve special mention because they were per-
formed with a series of solid surfaces of increasing rough-
ness. A typical set of data is shown in Fig. 8. It exhibits
a remarkable, nonmonotonous variation of 8, with the de-
gree of roughness, to which we shall return later. Further
systematic studies were carried out by Mason (1978).

(b) Chemical contaminations, or inhomogeneities, in the
solid surface may also play an important role. Some of
the experiments of Dettre and Johnson (1964) were made
with glass beads immersed in paraffin wax, and the
differences in wettability between glass and paraffin may
have contributed to the hysteresis. But systematic studies
of purely chemical effects at a smooth surface are still
lacking.

(c) Solutes in the liquid (surfactants, polymers, etc.)
may deposit a film on the solid surface, and the presence

A © (DEGREES)
3
150
e

L
100 4

q

ROUGHNESS

50 >

n=10 n=0

FIG. 8. Advancing and receding angles for water on fluorocar-
bon wax: a rough surface is obtained by spraying the wax. It is
then made smoother by heating in an oven. The numbers n on
the horizontal scale (0,1.0,10) refer to the number of successive
heat treatments. Notice the abrupt jump of 6, between n =6
and n =7 (after Dettre and Johnson, 1964).
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or absence of the film can, in some cases, lead to hysteret-
ic effects. In many cases the film, once formed, is stuck
on the solid surface. See, for instance, Chappuis (1984).

2. Models with parallel grooves

Early discussions on the effects of surface roughness
were restricted to periodic surfaces—for instance, with a
parallel set of grooves (Johnson and Dettre, 1964; Mason,
1978; Cox, 1983). These systems have some reality—a
classical example is a phonograph record (Oliver et al.,
1977).

When the triple line .# is parallel to the grooves, it
may have a number of pinned positions (described in Fig.
9), and it is possible to compute numerically the magni-
tude of the energy barriers between two such positions.
Some aspects of these calculations are very artificial (the
energy barriers are proportional to the total length of line

(a)

e

L, £,
FIG. 9. (a) Equilibrium positions of a contact line . (normal
to the sheet) on a system of grooves. .%, .Z,, are locally
stable, while .’ is unstable. 6, is the thermodynamic contact
angle. 6, is the macroscopic angle. (b) The creep process for a

contact line . moving from position ., to position .. C
stands for “crest” and T for “trough.”
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soL.

FIG. 10. A ‘“‘composite” structure, with vapor bubbles trapped
between liquid and solid, when the solid has deep, parallel
grooves. )

involved), but some aspects are instructive. For instance,
when the grooves are rather deep, it may happen that va-
por bubbles remain locked in the troughs and are covered
by the liquid (Fig. 10). The resulting ‘“composite struc-
tures” are then predicted to display much smaller bar-
riers. The minimum of 6, are a function of roughness,
observed in various systems by Dettre and Johnson (1964),
has been interpreted along these lines: When we increase
the roughness, we first find a normal increase of the bar-
rier heights and a corresponding decrease of 6,; but when
the troughs become deep enough, we obtain a composite
structure, with weaker barriers, and 0, increases.

Note, finally, that the groove systems show an extreme-
ly strong anisotropy. When the line . is parallel to the
grooves, it is pinned. When .Z lies (on the average) at a
certain angle ¥ from the grooves, it has the local structure
shown in Fig. 11, and .¢ can be displaced continuously

FIG. 11. A triple line .£ at an oblique angle (¢) from a system
of grooves (the crests and troughs are marked C and T, respec-
tively). The overall pattern can be translated along the groove
direction without any energy change (no pinning).
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without any pinning (Cox, 1983). Experiments have been
carried out for the special case 1)=90° and indeed show
no pinning (Mason, 1978).

In fact, the cascade of ‘“‘jogs” displayed in Fig. 11 also
gives us a hint about the physical processes that take
place when .7 is parallel to the grooves (¢=0). At =0
the line wants to jump from one crest (.¢|) to the next
(.£,), as explained in Fig. 9(a). But the optimal method
of doing this is not an overall jump (which would corre-
spond to a huge barrier energy). What should really hap-
pen (in an infinite sample, with no edge effects) is shown
in Fig. 9(b): nucleation of two “jogs” of opposite sign,
followed by a glide of each jog along the grooves, until
the (.¢",) strip spans the whole crest. Thus the physical
barrier energy is independent of sample size, and is related
to the nucleation and depairing of two adjacent jogs.

This statement holds when the grooves are infinitely
long (or close on themselves, as they would in a capillary
with grooves normal to the axis). If the grooves have a
finite length (e.g., on a grooved plate), then a single jog
may easily nucleate at the end of the groove and sweep
through it. This process was discovered in recent numeri-
cal studies by Garoff and Schwartz (private communica-
tion).

3. Random surfaces

a. Weak fluctuations

A natural extension of the groove models is the case of
surfaces that have a double periodicity, e.g., two orthogo-
nal sets of grooves (Cox, 1983). However, it is clear that
the major physical problem in this case corresponds to a
random surface (random shape, or random chemical com-
position). This situation is, of course, more difficult. A
first step, to make it simpler, is to focus on cases of weak
Sfluctuations. To explain what this means quantitatively,
let us start with a flat surface, but allow for chemical con-
tamination. This will be described in terms of the local
interfacial energies ysp(x,y),ys.(x,y) at the point (x,y)
on the surface. What matters is the difference Y5y —vsy,
or, more accurately, the fluctuating part

h(x,0)=ysy—v¥s. —¥sy—¥sL) > (2.14)

where the angular brackets denote a space average. The
local contact angle 8(x,y) at point (x,y) is given by the
Young condition (2.1),

‘}/COSG=I1 +<'}’SV—')/5L> s (2.15)
while the unperturbed angle 6, is ruled by
y cosOp={vsy —¥sL) - (2.16)
For small 4 we may thus write
h(x,y)
Q= — Y 2.17
0= 60="" 5in, ’ @17

and the condition for weak fluctuations is |6—6,| <<y
or, equivalently, | 6—6,| <<sin6,, imposing
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| h(x,p)| <<y sin6y . (2.18)

We shall assume that Eq. (2.18) holds in most of our dis-
cussion. This automatically eliminates certain interesting
features (e.g., the “composite structures” mentioned ear-
lier), but many important nonlinear effects are still
present in this limit. [Remark: A further (convenient)
simplification to be made here is to require that 6, itself
be small, 6y << 1. All calculations become simpler in this
limit, without losing much physical content.]

Having defined weak fluctuations for chemical contam-
ination, let us now turn to the case of surface roughness.
Here the height of the interface at point (x,y) differs
from the ideal value by a correction u(x,y). We assume
that the slopes €, =0u /0x, £, =0u /9y are small. A sys-
tematic analysis of the effects to order £? has been carried
out by Cox (1983). Here we shall restrict our attention to
the lowest significant order (g). Let us define our axes
(x,p) in the plane of average interface, so that the average
contact line . is parallel to x. The *liquid side” is
chosen to be the half-plane y <0 (Fig. 12). Then the ma-
jor effect at any point is the rotation of the local surface,
along an axis parallel to x, by an angle g,. The
liquid/vapor interface makes an angle 6, with the tilted
surface, but makes an angle

0=00-+¢, = 6o+ 3u /dy (2.19)

with the average boundary plane (Fig. 12). Comparing
Egs. (2.19) and (2.17), we see that the surface roughness
problem and the chemical contamination problem coincide
(to first order in £), provided that we set

— h(x,y)<>y6,0u /9y (2.20)

(for By << 1).

The detailed statistical features of the random function
h(xy) depend on the particular system under considera-
tion. In what follows, we shall restrict our attention to
cases where 4 (xy) is a random noise function with an am-
plitude 4 and a finite correlation range £. This is prob-
ably adequate for many types of chemical contamination
and for certain forms of surface roughness (e.g., induced
by abrasion). But the assumption may break down for
certain special systems. For instance, as pointed out by
Huse (private communication), if the solid is a glass, and
if it has retained the thermal fluctuations of the surface it
had as a melt, the surface u (xy) is “rough” in the partic-
ular sense of statistical mechanics, and exhibits some
anomalous long-range correlations.

SOL.

FIG. 12. Effect of a local tilt of the surface on the apparent
contact angle 6.
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b. The wandering triple line

Having defined the irregularities of the surface through
a certain random function A (x,y), we wish to understand
how these irregularities react on the shape of the triple
line .. This has been attempted independently by
Pomeau and Vannimenus (1984) and by Joanny and de
Gennes (1984). The two approaches supplement each oth-
er, the first being more rigorous and the second giving
certain physical insights.

A first step is to study a deformed line .# [specified by
a position y =7(x) on the average surface] and to con-
struct the elastic energy of the line. At first sight one
might think of a line tension .77, giving an energy
2

d
fel_f %‘7- z"xl dX
=37 >q*|n,|? @.21)
q

where we have introduced the Fourier transform 7, of
n(x). The form (2.21) however, is wrong, and should be
replaced by

fa=3v063 lq| ng 1. (2.22)
q

Physically, the usual | g | dependence for a mode of
wavelength 277 /q expresses the fact that the line distortion
perturbs the liquid/vapor interface on a thickness g .
Integrating a capillary energy (proportional to q?) over
this thickness, we get Eq. (2.22).

Let us now add the inhomogeneities described by
h(x,y). They contribute an energy

= [dx fnz)dyh(x,y).

We may equivalently say that h = —§f;/8n(x) is the lo-
cal force f acting on the line .%,

fx)=h[x,n(x)] .

We must now balance the elastic force [linear in the
displacements 7(x)] against the random force (2.24). But
the random force is itself a (nonlinear) function of 7.
This point, emphasized by Pomeau and Vannimenus,
makes the discussion quite delicate. Here, we shall use an
illuminating presentation, due to Huse (1984), which
parallels a classic idea of Imry and Ma (1975), improved
later by Grinstein and Ma (1983) for the discussion of
random field effects in ferromagnets. We consider a piece
of line of macroscopic length /, which is pinned at both
ends,

(2.23)

(2.24)

n(x =0)=n(x=0)=0. (2.25)

Let us look for the ground-state energy of the line, assum-
ing that it is characterized by a fluctuation amplitude

n(x)~W (0<x <) . (2.26)

The corresponding elastic energy is derived from Eq.
(2.22) with g ~I~!, and is
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fea~13y03 "\ W2=1yR3w? . (2.27)

The energy f; associated with the random force 4 can be
estimated simply in two limits.

(i) If W <& the line meets /£ uncorrelated inhomo-
geneities, each with random forces +h. The overall force
is of order V'1/&h, and the energy is

fi=—WhVTTE .

When this is added to Eq. (2.27), we find an optimum dis-
placement

h =

Y%

(2.28)

(2.29)

This law has been quoted by Pomeau and Vannimenus
(1984) and Joanny and de Gennes (1984a), but it is re-
stricted to W <&, or, equivalently,

h <y@VE/T . (2.30)

(i) If W>¢&, the line, when moving from its unper-
turbed position (7=0), has swept a ribbon of area Wi,
containing WI /&% uncorrelated inhomogeneities. The re-
sulting energy is

fi~—hEXWI/EN 2~ —hEVWI (2.31)

and the optimum W, obtained by minimization of

fi +felr is
2/3

h 113203

W~
763

(2.32)

For most practical purposes, this second case is adequate,
and the Huse formula (2.32) should hold. Taking /=1
mm,’ h :yO(z), and £=1 um, we get W =10 um.

c. Line pinning

In the preceding section we considered only one (op-
timal) shape for the contact line .¥°. However, to describe
hysteresis, we must compare different shapes. To under-
stand the competition between two shapes, let us first
consider a single “defect,” following the arguments of
Joanny and de Gennes (1984a). The word ‘“defect” means
a perturbation % (x,y) localized near a particular point
(x4,y4) and with finite linear dimensions Ax ~Ay =d.
Typical forms are shown in Fig. 13. The contact line .¥
may have more than one equilibrium position near such a
defect. In certain regimes it can become “anchored” to
the defect as shown in Fig. 14. Far from the defect, the
line coincides with y =y;. Just on the defect (x =x,),
the line is shifted and reaches a certain value of y =y,,.

An essential parameter is the total force f, exerted by
the defect on the line,

3This is an upper limit. Beyond that size gravitational energies
come into play.

Rev. Mod. Phys., Vol. 57, No. 3, Part |, July 1985

h (x= Xd;Y)
ho
fe—d
o
Yo y
(@
u(x = xd,y)
y
h(x=x4,y)
y
(b)

FIG. 13. Examples of smooth defect structures: (a) a chemical
contaminant localized near one point (x4,y,) creates a localized
peak in A(xp); (b) a bump on the surface, described by u(xy),
induces an h function proportional to the derivative du /dy.

FIG. 14. A contact line .Z anchored on a defect. The defect is
restricted to a small region (of diameter d), but the line is per-
turbed much farther out.
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fi=[ —: dx h[x,yp +m(x)] . (2.33)

The ‘integral (2.33) is dominated by the central region
[x ~x4, 7(x)~y, —y,] and will be approximated by the
simpler form

[1m)= f_: dx h(xy,) .

For a given defect structure, f;(y,,) is then a known
function of y,,—y, (Fig. 15). A simple example, to
which we shall sometimes refer, is a Gaussian defect

(2.34)

(x —x2)*+(y —pg)?
h(x,y)=hgexp | — 2.35)
X,y)="ho €Xp 2d? (
In this case the force f(y,,) is also Gaussian:
Ym —a)?
Filym)=(2m)"hod exp | — " 2.36)

Let us now consider the line tip (x =x4,y =y,,). The line
here is in equilibrium under two forces, the force f de-
fined in Eq. (2.34), and an elastic restoring force, which
tends to bring y,, back to the unperturbed line position
yr. This elastic force can be derived from the elastic en-
ergy (2.22). It has the simple Hooke form

fa=kGr—ym), (2.37)

where k may be called the spring constant of the line and
is given by

_ ™6
T In(l/d)

Here [ is a long-distance cutoff (for the single-defect
problem, / would be the total length of line available), and
d is always the defect size. The nice feature of Eq. (2.38)
is that k is nearly independent of all defect properties.
. The balance of forces then gives the fundamental equa-
tion

k (2.38)

k(Ym—y)=f10m) » (2.39)

which is solved graphically in Fig. 15. When the strength
of the defect [measured by A, in Eq. (2.35)] is small, there
is only one root y,, for any specified y;; we have no hys-
teresis. On the other hand, when the strength hg is

K(y-v)
T

_—

B <A A Ym

FIG. 15. Equilibrium positions for the anchoring point (y =y,,)
of the line on the defect. The position of the line far from the
defect is imposed (y =y;). For a given y; there may be three
equilibrium positions; two of these (yn,,ym) are locally stable.
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£ (Ym)

FIG. 16. An example of a “mesa” defect. The function & (x,)
is zero, except in a circle of radius d around the point (xgy4),
where it is constant (A =h,). Then the force f(y,,) has the as-
pect shown. Even for very weak A, there exist two competing
equilibrium positions (at y,, and y.), when y; is just to the left
of point A: hysteresis is always present.

beyond a certain threshold, we can find three roots (for a
certain interval of y; values); then we expect hysteresis.

This brings us to a very important conclusion for “reg-
ular” defects, i.e., for cases when f(y,,) is a smooth
function [with a finite derivative fi(p,,)]. We see that
weak perturbations create strictly no hysteresis: to have a
good determination of the thermodynamic angle 6,, we
do not need an ideal surface; we need only a surface with
irregularities below a certain threshold.

The case of “mesa” defects (where the function A has
step discontinuities) is completely different (Fig. 16).
With mesa defects we can have hysteresis even for very
small A functions. (Mesa structures can be obtained, for
instance, with fatty acids on glass; see Brockway and
Jones, 1964.) The mesa case was the only one considered
by Pomeau and Vannimenus (1984). For this reason,
some of their conclusions on the magnitude of the macro-
scopic hysteresis are somewhat specialized.

Up to now we have discussed only a single defect. It is
not too hard, however, to extend the arguments to a dilute
system of defects, and to produce detailed formulas for
the hysteresis parameters 6, and 6, (Joanny and de
Gennes, 1984a). The only nontrivial point in this exten-
sion is a renormalization of the spring constant k [Eq.
(2.38)]: here the cutoff length / becomes the average dis-
‘tance between defects, as seen by the line .. If n is the
number of defects/cm?,

I—(nd)~'.

There is good hope of comparing these predictions with
experiments performed on controlled defects, with sizes in
the 10-um range.* They can be prepared by film deposi-
tion, using the many techniques currently in use in mi-
croelectronics. One can arrange to have either diffuse
edges (“regular” defects) or sharp edges (“mesa” defects),
and one can purposely locate these defects at random on a

4At much smaller sizes (below 1000 A) the barriers between
the equilibrium positions may be overcome by thermal agitation.
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given surface. Measurements of contact angles in such
systems should provide much more information on the
basic laws of hysteresis.

d. Effects of inhomogeneities in situations
of complete wetting

The above discussion was concerned with cases where
S <0 (partial wetting), allowing for finite contact angles.
What happens in the opposite case, where S is positive
(complete wetting) but varies from point to point? This
has been discussed recently (de Gennes, 1984e). It turns
out that the final state of a droplet in dry spreading can
be quite complex. The regions of high S are wet, while
the regions of low S are not. The final thickness ¢ of a
macroscopic droplet adjusts itself so that the dry “islands”
are just at their percolation threshold (i.e., at the onset of
a continent). These considerations also suggest that many
hysteretic effects could take place in dry spreading, but
(to the author’s knowledge) we do not have any experi-
mental observations in this regime.

D. Wetting films and contact lines

1. Role of long-range forces

All our previous discussion dealt with macroscopic
scales (larger than 1 um). We now want to investigate
smaller scales (say from 30 A to 1 um), where a continu-
um picture is still applicable, but where certain long-range
forces become relevant, mainly van der Waals (VW)
forces for organic liquids, or double-layer forces for wa-
ter. (Classical reviews on these forces were given long ago
by Dzyaloshinskii et al., 1961; Overbeek and Van
Silfhout, 1967; and Lyklema, 1967). Let us call P(§) the
long-range tail of the energy/cm? of a flat liquid film of
thickness &, lying on the solid. It is related to the cele-
brated “disjoining pressure” Il({) introduced by Deryagin
(1940) and reviewed in Deryagin (1955; see also Deryagin
and Churaev, 1976), via [1=—dP/d¢,

PO)= [, dgne) .

A lucid discussion of our present knowledge of the
function I({), for various liquids and various substrates,
and of its application to dynamical studies has been given
by Teletzke, Davis, and Scriven (1984). In what follows
we extract only some relatively simple limiting cases.

(2.40)

a. van der Waals forces

Here we have two regimes:

A /(1276 (£ < X; nonretarded)
B/(3&%) (&>X; retarded) .

(2.41)

Pig)= (2.42)

We shall restrict our attention to the case where the con-
stants 4 and B are positive. This means that VW forces
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tend to thicken the liquid film (the “agonist™ case in the
nomenclature of de Gennes, 1983). The crossover length
A=A/2m is roughly related to a characteristic ultraviolet
absorption wavelength A of the medium, and is of order
800 A.

b. Double-layer forces

If the liquid L is water, or more generally an ionic
solution (of screening length x5 '), the solid will usually
create in the water a charge double layer, of thickness
kp'. Since water has a high dielectric constant e= 80,
while the vapor phase has e=1, the electric field must
(nearly) vanish at the liquid/gas interface. This means
that the double layer is repelled by an electrostatic image.
The asymptotic form of this repulsion at large { was com-
puted long ago by Langmuir (1938) and Frumkin (1938).
The “‘disjoining pressure” Il is exponential,

M= Cexp(—2pl) (kpE>1), (2.43)

where (for monovalent ions, such as Na* and Cl~) the
prefactor is

C =64nkpT tanh(ye /kgT) . (2.44)

Here 1y is the potential at the solid surface, » is the num-
ber of ions/cm? in the water, and e is the unit charge.
Comparisons between Egs. (2.43), (2.44), and ellipsometric
data on water films have been carried out by Callaghan
and Baldry (1978). They find that Eq. (2.44) does not
give a very good fit to their data, and use some more
complicated models.

In the regime kp§ < 1 the experimental data are some-
what surprising.  Pashley (1980) concludes that
M(&)~&~ ! (for water on glass or silica) in the region
£ <400 A. There is no obvious theoretical explanation for
this slow decrease.

On the other hand, the data reviewed by Israelashvili
(1982), on double-layer forces between two closely spaced
mica plates, do agree with the standard theory and thus
with Eq. (2.44), in the large thickness limit. In any case,
to obtain simple predictions on thick wetting films and
contact lines, the form (2.44) is a natural starting point.

2. Final spreading equilibrium

It will be much simpler to discuss a one-dimensional
problem where the liquid thickness { depends only on one
coordinate x in the plane of the solid surfaces (Fig. 17).
The ingredients in the free energy are listed below:

*max

f=fo+ [ dx 4k

dx

Y

—S+ =
+2

2
+P(§)+G(§)} .

(2.45)

Here (X ,in,Xmax) represent the interval covered by liquid.
S is defined by Eq. (2.3) for the “dry” case, and by a simi-
lar rule (replacing yso by ¥sp) for the “moist” case. The
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+ Xmin+ + + + + Xmax +

FIG. 17. The final “pancake” in complete dry spreading
(S >0). Contrary to common belief, the equilibrium state is not
a molecular film. Whenever S <<y the thickness e is larger
than the molecular size a.

v term results from an expansion of the length element
ds’=dx?+d¢&? assuming d{/dx small (this will turn out
to be the most interesting regime). The long-range forces
show up in P(&). Note that P({— «)=0. The interfa-
cial energies S and y appearing in Eq. (2.45) are the ther-
modynamic values, valid for thick films (§— o). They
do incorporate contributions from the long-range forces.
Finally G(£) describes gravitational and hydrostatic ef-
fects. These effects are often negligible for microscopic
studies on contact lines and wetting films, but they show
up in some special cases, and we keep them for this
reason:

G(&)=pg(&2/2+LH) ,

where p is the density difference between liquid and gas, g
is the gravitational acceleration, and the H term has dif-
ferent meanings depending on the case being considered.

(@) For the “moist” case, the very existence of a
liquid/vapor equilibrium requires that, in the experimen-
tal cell, a macroscopic reservoir of bulk liquid be present
and in contact with the vapor. Then H is the difference
in level between the solid plate and the liquid surface in
the reservoir. .

(b) For the “dry” case, the total volume of the spread-
ing droplet, Q, is fixed (no exchange), and we may think
of the quantity

(2.46)

po=—pgH (2.47)

as a Lagrange multiplier associated with this condition.
After finding the droplet shape, imposing (Q fixes py.

The minimization of Eq. (2.45) with respect to {(x)
leads to a standard equilibrium condition,

2

= (2.48)
Va2 Tag Tac
which has an important first integral,
a |’
Y = —
7 | 2 P(H)+G(5)—-S . (2.49)

The value of the integration constant is best understood
from the balance of horizontal forces shown in Fig. 18.
Let us consider, for instance, a fluid region extending up
to a value of £ where long-range forces are negligible
[P(£)=0]. The fluid region experiences on the right the
forces ¥ cosp + ¥ sy (capillary) and G (&) (hydrostatic). To
the left we have the force yso. Noting that
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yY) :Ea

(G+P)

Yso (Yg)  +

+ + + + + + + +

FIG. 18. The balance of forces on a liquid portion near the con-
tact line .Z.

cosp=1—1(d&/dx)?, (2.50)

we recover (2.49). The calculation of all droplet shapes
&(x) can now be performed by simple quadratures. We
shall apply this scheme in the following section.

3. Partial wetting: microscopic structure of contact lines

a. Organic liquids: effects of van der Waals forces

Let us now consider the case of a nonzero contact angle
6, (6, <<1). In this case,

S=—1y6? .51

is negative. We insert this value in Eq. (2.49) and discuss
the core structure of the contact line ..

In the vicinity of the contact line (Fig. 18) we may ig-
nore gravitational forces as well as the macroscopic pres-
sure difference py. Setting G =0 in Eq. (2.49), we then
have

ig 2

o —02=2y"'P({) .

(2.52)

For most practical purposes here, the nonretarded form of
P($) [Eq. (2.44)] is adequate; we then define a molecular
length a,

a’=A/(6my) . (2.53)

Solving Eq. (2.52) explicitly, we find a hyperbolic form,
E2=(0,x)*+(a’/6,)*. (2.54)

Results equivalent to Eq. (2.54) for {>>a were first ob-
tained by Berry (1974). See also Joanny and de Gennes
(1984b). Of course Eq. (2.54) is meaningful only in the re-
gions where d{/dx << 1, or equivalently {>>a. But, for
small contact angles 6., the hyperbolic profile extends to
thicknesses { ~a 0, ! which can be of order 100 A, and is
thus significant.

The limiting case 6, =0 (complete wetting) should also
be mentioned at this point. Integrating (2.52) for this
case, we reach a parabolic shape,

E=2a(x —x;) (a<f<k).

Beyond & we must switch to the retarded form for P(§),

(2.55)
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and we find a slightly different exponent,

E=By~[3(x —x.)]* (£>%). (2.56)

Ultimately, when § gets large, the gravitational/hydro-
static terms G (&) come into play. One then returns to
macroscopic physics (see Bouasse, 1924).

The profile for the opposite (and probably less frequent)
case of antagonist VW forces (A <0 and 6, finite) has
been discussed by Wayner (1982).

b. Water solutions: double-layer effects

If we insert Eq. (2.43) into Eq. (2.52), we find the modi-
fied wedge structure illustrated in Fig. 3(b): the local con-
tact angle 6, near .Z tends to be larger than the thermo-
dynamic angle 6,. If we use Eq. (2.43) down to low
values of the thickness &, we get

002 2P(0) _ 2C

(9] <1).
14 KpY

(2.57)
Equation (2.57) is only indicative. In actual fact, at small
§ the exponential form (2.43) does not hold, and the VW
terms may play a role as well. But, independently of
these details, the perturbation around {=kp !, indicated in
Fig. 3(b), is meaningful.

Here again, the special case of complete wetting
deserves a special mention. For 6,=0, Eq. (2.52) gives a
logarithmic profile:

E=kp ' In[14+xkyHy/C)?] . (2.58)

Just as in the case of van der Waals forces, this holds only
in the microscopic regime. Ultimately, at large §, the
gravitational and hydrostatic terms become dominant,
and we return to standard macroscopic forms.

4. “Complete” spreading:
thickness of the wetting films

a. The “moist” case

A horizontal plate (at height H above reservoir level) is
exposed to the vapor and completely covered by a wetting
film. Here there does not exist a contact line giving us a
balance of forces and specifying the integration constant
in Eq. (2.49). But we obtain directly the equilibrium
thickness e by minimization of van der Waals and gravi-
tational energies:

Il(e)=pg(e +H) . (2.59)

This is a classical equation, discussed long ago by the
Russian school (Deryagin, 1940; Dzyaloshinskii et al.,
1961), verified on Rollin films of He, (Brewer, 1978), on
normal fluids (Deryagin et al., 1978), and somewhat less
clearly verified in experiments with consolute mixtures
near the free surface (see the review by Moldover and
Schmidt, 1983). Basically, when H is macroscopic (~1
cm) the thickness is small (e ~300 A), and nonretarded
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interactions often prevail. On the other hand, the limit
H =0 does not seem to have been experimentally explored
(it could be easily controlled by interference techniques).
It would lead to very thick films (e ~10 um) and to a
rather direct determination of retarded VW forces:

e(H=0)=(B/pg)'"* . (2.60)

b. Nonvolatile liquids (the “dry”’ case)

Here a spreading droplet ultimately becomes a flat
“pancake,” and we want to determine (i) the thickness of
the pancake, and (ii) some information on the structure
near the contact line (Fig. 17). For our one-dimensional
problem the shape is ruled by Eq. (2.49), with S >0. The
maximum thickness corresponds to d{/dx =0, and this
gives a condition

P(e)+G(e)=S . (2.61)

But we have two unknowns: the thickness e and the pres-
sure pg. To obtain a second condition, for a finite drop-
let, we should calculate the total volume Q. Here, howev-
er, we shall restrict our attention to the limit of a very
wide pancake (20— o0 ). As usual, it is then convenient to
think of Eq. (2.49) as the conservation of energy for a
classical particle of position £ at time x, with a mass 7, a
potential energy —( P +G), and a total energy —S.

For strongly negative values of the total energy —S,
the particle oscillates in a wall near {=0, and the period
is finite (i.e., the droplet size is finite). But if —S is ad-
justed to coincide with the maximum of the potential,
then the particle takes an infinite time to reach this max-
imum (infinitely wide pancake). The maximum then de-
fines the position at long times (the macroscopic thickness
of the pancake). This gives a hydrostatic condition identi-
cal in form to Eq. (2.59),

I(e)=pg(H +e), (2.62)

where Il=—dP/de is always the disjoining pressure.
Eliminating ( H) between Egs. (2.61) and (2.62), we obtain
an explicit relation between the spreading coefficient S

and the wetting film thickness:
P(e)+ell(e)—5pge’=S . (2.63)

To discuss Eq. (2.63), let us restrict our attention to van
der Waals forces, with the simple limiting forms (2.42) or
(2.43),

Ple)~e™™,

P(e)+ell(e)=(m +1)P(e) .

(2.64)
(2.65)

We start from S—0: here, the thickness e is large, and
we must use the retarded form (m =3). This gives

S =4B/3¢*—pge?/2 . (2.66)
The wetting film thickness at S =0 is
e(S=0)=e*=(8B/3pg)'"?, (2.67)
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differing only by a numerical coefficient from the thick-
ness at 8, =0 in complete equilibrium [Eq. (2.60)]. Typi-
cally e* equals several micrometers. If we now turn to
small, positive values of the spreading coefficient S, we
see from Eq. (2.66) that a useful dimensionless parameter
is

u=S(*?/B . (2.68)

Numerically B/(e*)*~10~7 ergs/cm? while S~O0.1
erg/cm®. Thus u is immediately very large. Consequent-
ly, the gravitational term in Eq. (2.67) becomes complete-
ly negligible, and we may write (2.65) in the form

S =ell(e)+Ple) . (2.69)

Equation (2.69) is the basic formula for dry spreading
with finite S. It could be obtained more directly by ignor-
ing the edge of the “pancake” and writing only the exten-
sive part of the energy. If « is the pancake area, this is a
sum of capillary and VW energies,

f=fo—So +APle). (2.70)
This must be minimized with the constraint
eo =Q=const , (2.71)

which brings one directly to Eq. (2.69).

For most practical purposes (finite S), the value of e
deduced from Eq. (2.69) is of order 100 A or less. The
nonretarded form of VW interactions holds (m =2).
This gives the final formula (Joanny and de Gennes,
1984b)

172
v

e=a 2S (a<e<k). (2.72)

Equation (2.72) provides the explanation for a very classi-
cal fact, observed long ago by Cooper and Nuttal (1915):
liquids of large S spread more efficiently than liquids of
small S. We do see in Eq. (2.72) that the final spreading
film is thinner if S is larger, and this, in turn, implies that
the equilibrium surface covered is larger.

Most of us believed that the explanation of the
Cooper-Nuttal rule could be based on a different, dynam-
ic effect, namely, more rapid spreading of drops of large
S, but this is not true. As we shall see in Sec. IV, the rate
of spreading of a droplet is essentially independent of S.

Let us close this discussion with two remarks. The
first concerns the edge of the “pancake” realized after
spreading. Returning to the minimization near {=0, we
can check that the edge is always parabolic, with the
structure (2.55).

The second remark concerns the case where the dom-
inant long-range force is due to a double layer. Then,
neglecting gravitational effects and inserting (2.43) into
(2.69) one arrives at

1 C
=__l .
= ~in g 2.73)
Equation (2.73) should hold for S <<Ckp'. At larger
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values of S, the discussion should include both VW and
double-layer forces, and becomes more complex.

c. Complete wetting: vertical wall

The macroscopic analysis for a wetting liquid (6, =0)
near a vertical wall predicts a certain curved profile, with
a contact line .£ at a level h, above the bulk liquid sur-
face,

hl————\/iK—l

(see Bouasse, 1924). Herek~'is a capillary length (not to
be confused with the Debye screening length kp') of or-
der of magnitude 1 mm. We have

(2.74)

K*=gpy . (2.75)

How is this modified when we switch on the VW forces?
For S =0 exactly, the picture is essentially unaltered. For
S >0, a film climbs up the wall. If x is now the altitude
above the bulk liquid surface, and £(x) the film thickness,
the equilibrium condition is (in the nonretarded regime)

2 2
d—% + % —sz =0.
dx &
The standard (loose) discussion of Eq. (2.76) separates out
two regimes.

(2.76)

(i) The film regime, where the curvature term d?¢ /dx?
is negligible, leaving an exact balance between VW and
gravitational pressures:

E=CL(x)=x""3"23q?3 2.77)

[1t has been realized recently (Joanny and de Gennes,
1984c) that the profile (2.77) does not hold up to arbitrari-
ly large altitudes x. Returning to the full equation (2.76),
one can show that the film is ftruncated at a certain
x =x,,, such that &(x,)=e(S), where e(S) is the
minimal thickness defined in Eq. (2.72).]

(ii) The macroscopic regime, where the VW forces are
negligible.

The crossover between (i) and (ii) is nontrivial; it was dis-
cussed long ago by Deryagin (1940), more recently by
Renk, Wayner, and Homsy (1978), Adamson and Zebib
(1980), and by Telo de Gama (unpublished), Legait and de
Gennes (1984), and Evans and Marini (1985) in connec-
tion with experiments by Moldover and Gammon (1983)
who were studying capillary rise between fwo plates.
Moldover and Gammon had proposed that the effective
interplate distance (to compute the capillary rise) be re-
duced by twice the thickness of a single film, 2§;(x,), tak-
en at the level of the nominal contact line x =x;. Actual-
ly the presence of a second plate thickens the films, and
the correction should be 3§(x;) rather than 2§, (in the

5] am indebted to Professor R. Evans for the Deryagin refer-
ence.
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nonretarded regime). Similarly, for a single plate, the
thickness of the film in the crossover region (x;~#h,) is
expected to be

E~Ei(hy) ~k13a23 (2.78)

Finally let us consider the case of negligible van der
Waals forces and dominant double-layer forces. Equili-
brating gravitational pressures and double-layer pressures,
we get a thickness

1 B
=— — |, 2.79
&(x) 2y n o ( )
and we find a film extending up to a finite height,
B
Xpp=—. (2.80)
™ pg

Equation (2.79) is limited by the restrictions mentioned
after Eq. (2.58): above x =x,, a residual film may be
present, because of short-range disjoining pressures, but
below x =x,, the logarithmic profile should be visible.

1. THE WETTING TRANSITION
A. Experiments on related systems

1. Scope

A liquid/vapor interface L /V, in the vicinity of a solid
S, may exhibit either a finite equilibrium contact angle 6,
(partial wetting) or a strictly vanishing contact angle
(complete wetting). There may exist a particular tempera-
ture T, at which we switch from one regime to the other.
This is called the wetting transition temperature.

Unfortunately, the L /V /S systems are usually not con-
venient for studies of this wetting transition. To change
significantly the interfacial energies y;;, we would have to
scan a rather broad temperature range. To maintain the
L /V equilibrium then requires that one work at high
pressures. Because of these practical difficulties, all
current studies on T, have been carried out with the oth-
er three-phase equilibria, where temperature variations (at
atmospheric pressure) are feasible and have more spectac-
ular effects on the interfacial energies. The two main ex-
amples are solid/liquid A/liquid B, free surface/liquid
A/liquid B, where A and B are two coexisting phases of a
binary mixture with a certain critical consolute tempera-
ture T,. It turns out that, for such a case, the interfacial
energies vary considerably when we consider the broad vi-
cinity of T, (typically a 30° interval). This makes the ex-
perimentation much simpler.

Thus, in this section, we shall broaden our subject and
consider a variety of three-phase equilibria. The main
emphasis, however, will be on solid/fluid/fluid systems.
It is reasonable to assume that all these systems are rather
similar (as far as the static properties are concerned).
Thus the liquid/vapor wetting transitions, when observed,
will probably follow the laws described here.
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2. Wetting films

Numerous examples of complete wetting are found
with solid/liquid/vapor systems. But the existence of
wetting films, with 6, =0, in other types of three-phase
equilibria has been established only during the last decade.

An important, early experiment was carried out by
Heady and Cahn (1972). Here the solid S is replaced by a
vapor phase. The analogs of L and V are two liquids,
made of a hydrocarbon (methyl cyclohexane) and of the
fluorinated analog of this hydrocarbon. The fluorocarbon
(hydrocarbon) system has a consolute point T,. Below
the critical temperature 7, we can have coexistence of
two equilibrium phases; one of these is rich in fluorocar-
bon and will be called L; the other is rich in hydrocarbon
and will be called V.

The original aim of the Heady-Cahn experiment was to
study a quench into the two-phase region, followed by nu-
cleation of L into V. They found, however, that, in the
vicinity of the free surface, nucleation barriers could nev-
er be observed: droplets of L immediately began to drip
from the surface. They concluded that, in the range of
temperatures studied, a wetting film of L was always
present near the surface S.

Another early observation of wetting films came from
metallurgy (Zabel et al., 1981). The L /V system here is
a single crystal of niobium containing a significant frac-
tion of dissolved hydrogen. The analog of S is again the
free surface. In a certain temperature range the Nb/H
system shows a two-phase equilibrium (a<sa’). Both
phases are cubic, but they differ in their hydrogen con-
tent. The lattice spacing is swollen by the presence of H,
and the nature of the phase present near the surface can
thus be detected by x-ray reflections. The conclusion is
that the a phase wets the interface, the thickness of the o
film being of order one micron.

3. Wetting transitions with consolute pairs

A relatively simple measurement of 6, was carried out
by Pohl and Goldburg (1982) on a system of two liquid
phases (A4,B) (lutidine water mixtures) against common
glass (S). The technique is based on capillary rise (Fig. 4)
and allows for a plot of cosf, as a function of tempera-
ture. Below a certain temperature 7 =T,, cosf,=1,
while above T =T, cosO, decreases (with a nearly con-
stant slope).

Another important measurement was carried out by
Moldover and Schmidt (1983) with S=free surface,
A,B=alcohol + fluorocarbon mixtures. = Macroscopic
measurements of the contact angle indicated a wetting
transition at 7,,=311 K, and complete wetting (by the
fluororich phase) in the interval between T, and T,=363
K. Ellipsometric measurements of the thickness e of the
fluorocarbon film show a finite jump of e(7T) at T =T,,.
This transition is clearly of first order.

To summarize, for these S/A /B systems we find com-
plete wetting in a finite temperature interval ( T,,, T, ) near
the critical point, and partial wetting far from 7,. There
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are more complicated cases. In particular, the pair
cyclohexane-methanol, near the free surface S, shows a
complex sequence of transitions, which occurs only in the
presence of dilute contaminants (water, acetone). We
shall come back to these impurity effects at the end of
Sec. III.B. But the two examples (Pohl and Goldburg,
1982; Moldover and Schmidt, 1983) above are probably
typical of a generic (impurity-free) situation.

A final remark: wetting transitions are also observed
with solid films evaporated on a solid surface (for in-
stance, organic solids on graphite, or oxygen on graphite).
But the situation here is more complex for many reasons.
For crystalline, epitaxial films, the discrete nature of the
solid layers introduces a wealth of new transitions, and
the elastic distortion fields induced by the substrate com-
plicate the energy balance. For a recent discussion of
these “solid on solid” problems see Gittes and Schick
(1984).

B. Theory

1. The Cahn model

We follow first the simple and illuminating arguments
of Cahn (1977) phrased in language adequate for a
solid/liquid/vapor system.

(a) The first simplification is to describe the
liquid/solid interface by a continuum theory, where the
liquid number density p(z) varies smoothly as a function
of the distance z from the solid surface (see Fig. 21
below). This will be most adequate if we are dealing with
temperatures T that are not too far from the critical point
T,. The hope is that most variations of p(z) will take
place over distances comparable to the correlation length
&, and this £ is larger than the intermolecular distance (a)
in the liquid, when T ~T,.

(b) A second, important assumption is that the forces
between solid and liquid are of short range ( ~a), and can,
in fact, be described simply by adding a special energy
v(ps) at the solid surface. Here p; =p(z =0) is the liquid
density ““at the surface” and v, is a certain functional,

Ye=Yo—ViPs+ TV + " . 3.
The v, term (favoring large p,) describes an attraction of
the liquid by the solid. The y, term represents a certain
reduction of the liquid/liquid attractive interactions near
the surface: a liquid molecule lying directly on the solid
does not benefit from the same high number of liquid
neighbors that it would have in the bulk. The parameters
71 and 7y, describe the essential features at the interface.
However, the Cahn approach is slightly more general
than Eq. (3.1): any form of y.(p;) is acceptable. We may
say that y. is the contribution to the solid/fluid interfa-
cial energy which comes from direct contact. This is not
all the interfacial energy. Another contribution y4 will
come from the distortions in the profile p(z).

(c) A final (less important) approximation amounts to
treating the fluid statistics by a mean-field theory. The
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specific form chosen for the free energy v, is a classical
“gradient square” functional,
2
ap +Wi(p)

1
=L
2 dz

) (3.2)

va= [ dz

W(p)=F(p)—pu—P . (3.3)

Here F is the free-energy density of the bulk liquid, u its
chemical potential, P its pressure. [For a complete justifi-
cation of Egs. (3.2) and (3.3) see Rowlinson and Widom,
1982.] We shall assume that u and P correspond to the
exact coexistence of liquid and vapor. Then W(p) has
two minima of equal height ( W=0) for the two equilibri-
um densities p=p; (liquid) and p=p, (vapor). The gen-
eral aspect of W(p) is shown in Fig. 19. For simplicity
we take L independent of p.

2. Determination of the surface density

To construct the density profile in the liquid p(z) we
optimize (3.2) and obtain

2

(3.4)
- dz? dp
from which we construct a first integral
d 2
TL|%L | =wip). :
3 4 (p) (3.5)

There is no integration constant in Eq. (3.5). If we con-
sider a point far in the bulk, where p=p, (p, being either
pi or p,), we must have dp/dz=0 and W (p,)=0 as ex-
plained in Fig. 19. The simple form of Eq. (3.5) allows
for a direct calculation of the distortion energy 74 [Eq.
(3.2)],

P d A )
valpsps)= [ LELdp= fm, [2LW(p)]'dp .  (3.6)

Py dz

The last step is to determine the surface density p; by
minimization of the total energy V.o;=vq+7Vc(ps). The

resulting condition is
—vilps)=[2LW (p,)]'/? (3.7

[where y.(p)=dy./dp]. This leads to the graphical con-

FIG. 19. The “effective free energy” W (p) as a function of the
density p.



844 P. G. de Gennes: Wetting:

Ps

FIG. 20. The Cahn construction determining the density at the
surface p;. In the example displayed we have two locally stable
roots (p',p""). The other two roots are unstable.

struction of Fig. 20. Here, for simplicity, we have chosen
the specific form of y.(ps) proposed in Eq. (3.1), and this
gives a linear plot for —y.(ps)=%1—7V20;-

3. Two types of wetting transitions

a. First-order transitions

If the slope (v,) is small, the condition (3.7) may give
four roots for p;. Two of these are locally stable, while
the others correspond to a maximum of the free energy
and are unstable. In this regime we find a competition
between a state of low p; (p;=p’) describing a nearly
“dry” solid in contact with the vapor (p, =p,) and a state
of high p, (p;=p" > p,) describing a wet solid in contact
with the h% uid (pp =p;). The energies of these two states
are (per cm* of solid surface)

s =Ya(pu,p ) +7c(p"),

(3.8)
Yss=vYalpn,p" )+ v (p") .

We must also remember that the liquid/vapor interfacial
energy ¥ can be derived from the same analysis:

Y =vd(pup1) . (3.9)

Let us discuss the “spreading coefficient” defined in
Sec. II:

Yo —Vsi—V =S . (3.10)

Using Eqgs. (3.6), (3.8), and (3.9), one can check that S has
a simple graphical interpretation in Fig. 20: S =S,—S5,
is the difference of the two shaded areas.

Let us now vary the temperature, as indicated in Fig.
21.

(i) At T << T, the difference p,
larger than S,.
tial wetting).

(ii) If we raise T, the difference S,

—py is large, and S, is
This gives S <0, i.e., cosé, is finite (par-

—S, decreases and

Rev. Mod. Phys., Vol. 57, No. 3, Part |, July 1985

statics and dynamics

p_P"
) Tw
pll
(c) T>T71, |
|
| I~
P PP Py
p PH

FIG. 21. First-order transition from the Cahn construction. (a)
At low T, two surface states p’ (solid/vapor) and p"
(solid/liquid) can exist. The spreading coefficient S =S, —S, is
negative (partial wetting). (b) At T=T,, S;=S, and the
spreading coefficient vanishes. The contact angle is 6,=0. (c)
At T>T,, S;>S, and S is positive. But the low-density solu-
tion (p') is not observable in equilibrium. A wetting film is al-
ways lower in energy. (d) At higher T the root p’ disappears
completely: in this last regime it is not possible to define a
spreading coefficient S.

vanishes at a special temperature T =T,,. Here S=0 and
6,=0.

(iii) At temperatures T > T, S, <S, and S is positive.
As we know from Sec. I, this regime is unobservable in
thermal equilibrium. Instead of building up a
liquid/vapor interface with p;=p’, the system prefers to
achieve it in two steps, through a macroscopic film of L
wetting the surface and giving a total surface energy
¥Ys+7v. Thus, here, we keep 6,=0 (complete wetting).
Ultimately, at high temperatures (T ~ T, ), only one stable
root is left, corresponding to a solid/liquid interface.

In this scenario the transition at T, involves a jump
from one energy minimum (p;=p’) to a distinct
minimum (p;=p"') and is clearly of first order. The plot
of cos@, versus temperature in the partial wetting regime
has a finite slope, and intersects cosf, =1 at T'=T,,.
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b. Second-order transitions

If the slope (v,) of —v.(p;) is large, at all temperatures
T we find only one root p; from the construction illustrat-
ed in Fig. 22.

(i) At low temperatures p; <p;, and we can construct
two density profiles corresponding to two physical situa-
tions: one profile where p(z) decreases from p; to p,
(describing S/V) and one profile where p(z) increases
from p, to p; (describing S/L). Again a discussion of
areas allows one to compare the surface energies. One
finds a negative spreading coefficient, S <0 corresponding
to partial wetting.

(ii) At high temperatures (T > T,,), the surface density
ps is higher than p;; there is only one profile associated
with p,, where p(z) decreases from p; to p; (S/L inter-
face). The S/V interface must then involve a macroscop-
ic film of L, and we have complete wetting. Clearly this
scenario corresponds to a continuous (‘“‘second-order”)
transition. At T =T, p;=p, exactly.

4. Special features of second-order
transitions

Second-order wetting transitions are probably rather
rare, for reasons to be explained below. But they have
stimulated a considerable theoretical effort and deserve a
few comments.

Let us consider a liquid film, of thickness &, covering
the solid, and described by the density profile p(z) shown
in Fig. 23: most of the density drop takes place in a

e

(@) T<T
= Tw v_[zLW(p)]vz

e, ' \ P, P

(b) 7T-Ty, \
P, P P
() T>T7,
\/\>(
5, R A\ P

FIG. 22. Second-order transitions from the Cahn construction.
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Ps

z'; z
FIG. 23. Density profile for a thick film (thickness ¢ larger
than the interface width £). Depending on the coefficients in

Eq. (3.1), the value at the surface (p;) may be either larger or
smaller than the bulk value in the liquid (o, ).

thickness £ near the nominal interface (around z =¢).
Far from this interface (z <<¢) the difference between
p(z) and p; is exponentially small. At the surface

plz =0)=p;=p;—¢,
(3.11)
ex(p;—p,Jexp—(£/§) .

[Equation (3.11) can be derived from a complete integra-
tion of (3.5), taking for W(p) the simplest polynomial
form compatible with Fig. 19.] Near T, (for T slightly
lower than T,) € is small and positive, and the energy of
the S/V interface may be expanded in powers of ¢,

Yo =Yo(e=0)—a(Te+ 3y*+ -+ . (3.12)

Here a(T) can be computed explicitly from Eq. (3.7) and
is proportional to T,—T (a>0 for T, >T). Equation
(3.12) can be translated into a plot of film energy versus
film thickness, since € and § are related by (3.11):
Yo=Yl lT =Ty)—alp;—p,lexp(—E£/§)
+372lpr—py ) expl —2L/E)+ -+ - . (3.13)

For T < T, we have a weak attractive tail at large { and a
finite repulsive tail at smaller ¢ (Fig. 24). There is an op-
timal film thickness which corresponds to e=a /¥, or

Ysv

Ysv (Ty,)

\T<T,,,

FIG. 24. Energy vs thickness for a film, in the vicinity of a
second-order transition (at T=T,). This type of plot (with ex-
ponential decay at large distance) would occur in the absence of
long-range forces.
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(=g=gnl2 (3.14)
a

This approach gives a very pictorial description of the
second-order wetting transition (in a mean-field picture):
there is a wetting film even for T < T,, but its thickness
diverges logarithmically at T =T,,. For T > T,, the ener-
gy (3.13) becomes repulsive at all distances, and the film
is macroscopic.

As usual, this mean-field picture is complicated by
Sfluctuation effects. The L /V interface may undulate

Elxy)=E"+u(xy) .

To order u? the fluctuation energy is

f= [dxdy l7'su(§*)+ Y& Iu?

2 2

Qu
ox

du

+ 37 3

} , (3.15)

where y''(£*) can be derived from Eq. (3.13) and turns out
to be proportional to a®. The form (3.15) leads to a corre-
lation length &, for the fluctuations:

1/2

~(T,—T)"". (3.16)

However, the expansion (3.15) of the energy to order u?
is inadequate. If one computes from Egs. (3.15) and
(3.16) a mean-square average (u?), one finds u ~¢*.
Thus the special events where the fluctuating L /V inter-
face touches the solid surface must be taken into con-
sideration. This has been carried out in detail (Brézin,
Halperin, and Leibler, 1983a,1983b) and gives rise to a
very unusual critical exponent, whose value depends con-
tinuously on the parameter kT, /&%y.

We shall not describe these delicate fluctuation effects
in any detail, because they may often be short-circuited by
long-range forces, as explained below.

5. Role of long-range forces

a. Simple estimates of wetting
film energies

Let us assume that the short-range forces [described by
Y¢(ps)] lead by themselves to a second-order transition
T, associated with the film energy (3.13). Then let us
switch on an agonist van der Waals interaction, unretard-
ed [Eq. (2.45)], with a positive Hamaker constant A.
Then the plot of film energy versus thickness is still
monotonous and repulsive for T > T, and we have com-
plete wetting in this temperature region. But for T < T,
the plot is deeply modified (Fig. 25). At large thicknesses
&, the VW term dominates over the exponentials, and the
energy is repulsive. At shorter distances the attractive ex-
ponential —a exp(—{§ /&) may create a trough when a is
large enough. Finally, when a reaches a certain value a;
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Ysv

_T=Tw

T<Tw

FIG. 25. Energy vs thickness with incorporation of long-range
van der Waals forces. These forces are assumed to be “agonist”
(i.e., they tend to thicken the film). They dominate at long dis-
tances.

(temperature T';), the trough may give an energy equal to
that of a macroscopic film y.({=c). At this point
there is a certain optimal thickness &, and the system
jumps by a first-order transition from {= o to £=¢,.

A similar description can be given for water solutions
against an ionizable surface. Whenever the Debye screen-
ing length x5 is larger than the L /V interface thickness
&, the Langmuir repulsive term [obtained from Eq. (2.57)]
dominates the behavior of the film energy at large dis-
tances, and the energy plot is qualitatively similar to the
preceding one. The transition point is shifted from T,
to a lower value T, and the transition becomes first or-
der.

Finally let us mention briefly some other situations.

(i) An “antagonist” VW force, corresponding to a nega-
tive Hamaker constant 4. Here the long-range energy
tends to shrink the wetting film, and the L /V interface is
thus stuck near the solid wall (partial wetting). A transi-
tion can, however, occur (at T <T,,) between two dif-
ferent minima, corresponding, respectively, to a thick film
and a thin film.°

(ii) When the density of the V phase varies significantly
with temperature, it may happen that we switch from the
agonist to the antagonist case at one particular tempera-
ture T=Ts (Lipowsky and Kroll, 1984; Dietrich and
Schick, 1984). If, in the absence of long-range forces,
there were a second-order wetting transition at T =T,
then, upon switching on VW forces, one would still expect
a second-order transition, shifted to T =Ts (provided
that Ts>T,o). This prediction can be understood by
means of diagrams similar to Fig. 25.

Using naive VW calculations, one expects the Hamaker

6This was pointed out to me by M. Schick.
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constant A to be a quadratic function of the polarizabili-
ties a;,

A~(as—a; Na; —ay),
and the switching temperature T corresponds to
ar ( TS )=a5 .

Thus there will exist a second-order wetting transition at
T =Ts provided that a number of conditions are satis-
fied:

(1) The “bare” transition T,,q is of second order.

(2) There exists a Ts: the polarizability of the dense
liquid must be higher than ag, while the liquid polariza-
bility at the critical point must be smaller than ag.

(3) T is above T-

(4) Although the preceding discussion involved only the
leading term in the long-range potentials [ V(&) ~¢&™2],
we must make sure that at the temperature T's, where this
leading term vanishes, the next term (~§"3 ) does not
upset the order of the transition. This has been analyzed
(Dietrich and Schick, 1984; Ebner, Saam, and Sen, 1984;
Kroll and Meister, 1984), and imposes another condition.

From an experimental point of view, the conditions
(1)—(4) are not easy to satisfy simultaneously. But there
remains some hope of finding a second-order transition by
an intelligent tuning of parameters.

b. Limitations and improvements

The discussion on the effects of long-range forces based
on Fig. 25 has the merit of being simple, and has been
used by a number of authors (Pandit ez al., 1982; Hauge
and Schick, 1983; Tarazona and Evans, 1983; Tarazona,
Telo da Gama, and Evans, 1983; de Gennes, 1983;
Teletzke et al., 1983; Privman, 1984). The discussion,
however, has certain limitations which should be kept in
mind. (See the review by Sullivan and Telo da Gama,
1985.)

(1) It holds only when the L /V interface thickness & is
not too large, so that the film has a well defined thickness
(£ >>&). Thus the close vicinity of the L /¥ critical point
would require a special study.

(2) Fluctuations of the L /V interface could modify the
effective film energy in a profound way. This possibility
was mentioned in particular by Pandit et al. (1982), and
‘was studied in detail by Nightingale et al. (1983), using a
“solid on solid” model, but in a temperature regime
(above roughening) that made it adequate for the L /V in-
terface. They did not find any dramatic effects of the
fluctuations. We can understand this as follows:” the
fluctuating interface is restricted in its motions by the
presence of the solid wall. This entropy reduction creates
an effective potential V;(§) (where f stands for fluctua-
tion), and V() is a rapidly decreasing function of §. In

71 am indebted to M. Schick for this presentation.
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the absence of long-range forces, V() is an essential
component of the theory for second-order transitions.
But in the presence of long-range forces, which decay
much more slowly with distance than V;(§), fluctuation
effects become negligible. Thus, even if one finds a
second-order transition at some T =Tg, as explained
above, this transition is expected to be of the mean-field
type.

(3) It is incorrect to assume exponential tails for the
L /V interface [Eq. (3.11)] when the interactions between
molecules in the fluid become long range. The (Vp)® ex-
pansion of Eq. (3.2) then becomes invalid. This was no-
ticed long ago by Christiansen (see Plesner and Platz,
1968) and more recently by de Gennes (1981) and Rowlin-
son, Barker, and Henderson (1981). What happens when
the (Vp)? expansion breaks down? A first attempt to
answer this question is due to Sullivan (1979,1981). He
chose a pair interaction,

& M (3.17)

U(rij)=—
(ryj) 4y

and a solid/molecule interaction with the same range
—1
Y1

Viz;)=—g e . (3.18)

Sullivan showed that this special choice allows for a sim-
ple solution of the complete (integral) mean-field equa-
tions for p(z), without assuming a (Vp)? expansion. He
reached some interesting physicochemical conclusions.
High ¢, led to plots where 6,(T) was decreasing (as it is
in the Cahn theory), while low ¢, led to 6, increasing
with 7. His wetting transitions were of second order, but
later work of Teletzke et al. (1983) and Benner et al.
(1984), with the same model, ultimately led to first-order
transitions. (The more complex situation with different
¥: parameters in U and V was studied by Hauge and
Schick, 1983.) In any case, the exponential interactions
(3.17) and (3.18) are not adequate to study the order of the
transition. They lead to a film energy p(z) which is also
exponential, and thus more abruptly decreasing than the
expected VW term (~¢72).

It is more instructive to keep realistic VW interactions;
this was done in numerical calculations by Tarazona and
Evans (1983). Using the standard 6-12 potential, they
found wetting transitions that were constantly of first or-
der. This, in our view, does not mean that second-order
transitions are entirely ruled out. But the conditions for a
second-order transition in the presence .of long-range
forces, as deduced from the analysis of Dietrich and
Schick (1984), are so stringent that they were not met in
any of the cases considered in recent numerical calcula-
tions.

Tarazona et al. (1983) also extended these calculations
and considered the equilibrium thickness of wetting films.
Their results agree with the macroscopic predictions of
Fig. 25.

An interesting extension of these ideas has been worked
out very recently by Evans and Tarazona (1984). Instead
of a single plate, exposed to a liquid or a gas, they consid-
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er two parallel plates, separated by a gap of width H,.
Using the Sullivan trick, they compute the effective inter-
facial energies 2y (T,H,) and 2ysy(T,H,) as a function
of H,. For a given H, there may exist a transition tem-
perature T.(H,) such that, at this temperature,
¥Ys. =Vsy. For large H, this T, coincides with the wet-
ting transition point T,,. For small H,, they find that the
transition line T, (H,) ends up at a critical point (this,
however, occurs when H, is comparable to the range of
the forces, and may thus be rather sensitive to detailed lo-
cal effects).

c. Prewetting transitions

Our discussion in this section was restricted to cases of
macroscopic coexistence between liquid and vapor. If we
impose a vapor pressure p, below the value p.,(T) for
liquid/vapor equilibrium, we cannot maintain a macro-
scopic L phase, but we may still have a film of L near the
solid. The equilibrium thickness of these films can be
analyzed in terms of a graph very similar to Fig. 24: we
need only add a term linear in § (with a slope proportional
to the difference in chemical potential between vapor and
liquid). In many cases one still finds competition between
two minima, and a possible first-order transition between
them—describing a switch from a thick film to a thin
film. For more details on this “prewetting transition” the
reader is referred to Ebner and Saam (1977), Tarazona
and Evans (1983), and Nakanishi and Fisher (1982).

6. Impurity effects: facts
and conjectures

a. Facts

We have already mentioned in Sec. III.A that chemical
contaminants may have dramatic effects on the wetting
behavior of a liquid/liquid system. This was recognized
from direct observations of contact angles (Moldover and
Cahn, 1980) and substantiated by various measurements
on the cyclohexane/methanol system near the free surface
S. The contaminant was either water (Beaglehole, 1983;
Tverkrem and Jacobs, 1983) or acetone (Cohn and Jacobs,
1983)—but in the latter case water may also have been
present as a second contaminant. The Beaglehole experi-
ments on water effects were based on ellipsometry. They
are summarized below in terms of three different regimes,
for a sample with 0.3% water.

(i) Very close to the critical point (T, <T <7,) no
significant wetting film is observed.

(ii) In a certain temperature range (T <T <To,) a
wetting film of the B phase (methanol rich, heavy) is ob-
served. The unfavorable gravitational potential of the B
phase is compensated by the attractive force between S
and methanol. Beaglehole also mentions fluctuations of
the thickness (near T,,) plus a long time drift of the
thickness (in most of the temperature interval).
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(iii) At lower temperatures T < Ty only a very thin
residual film remains and methanol partially wets the free
surface.

A very remarkable feature of these experiments is that,
in the absence of water, the two transitions disappear:
there is no detectable wetting film (at the free surface) at
any T < T, for the pure system.

b. Tentative interpretations

(i) Surface transitions. One line of thought, advocated
by Leibler (1984), is based on a possible similarity between
surface transitions and the effect of He; impurities in su-
perfluid He,. Near a solid surface He; is depleted (less at-
tracted than He,) and superfluidity is favored. The result
is the existence, in a small temperature range, of a two-
dimensional superfluid phase near the solid, while the
bulk He; + He; system is still normal. Similar surface
transitions—induced by water impurities—could occur in
the cyclohexane/methanol system, and be responsible for
anomalous behavior in a small region near T,, But it is
not easy to interpret in these terms the lack of any observ-
able film in region (i).

(ii) Macroscopic balance of interfacial tensions. The
idea here is to describe the competition of water and
methanol for the free surface, making use only of the
macroscopic surface tensions y,;; between the various
partners (S, a, 3, and W =water). Let us assume the fol-
lowing structure for the y;:

¥sw ~independent of T,

Vsa=Vsi—MY¥s , (3.19)

Ysg=Yss+mys .

Here y is the surface tension of the critical mixture.
Following Cahn (1977) it is assumed that y;,— g is pro-
portional to the difference in concentration between a and
B, the latter being itself proportional to m =(AT /T,)"/>.
The coefficient y; is postulated to be positive. This means
that, in the absence of water, the free surface prefers the a
phase. Since this is also the lighter phase, it will occupy a
macroscopic region below the free surface, and no wetting
film is expected (in agreement with the observations on
water-free systems).
Let us now list the other interfacial tensions:

kT :
Vaﬁ57’~?~?’lm4 (3.20)

(where we have used a classical scaling ansatz and the ap-
proximation B= _%,v: -§- for the standard critical ex-
ponents)
Ywa=7wl+7/:um ’
(3.21)
Ywp=Ywl —Ywh .
We expect y,, to be strongly positive (the water/methanol

interfacial tension being much smaller than the
water/hydrocarbon tension).
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Having defined the surface tensions, we may now con-
struct the spreading coefficients S, defined as in Sec. II.
Here we shall call Sjj the spreading coefficient for a film
of (j) being spread between phase (i) and phase (&),

Sije=Yik —(Vij +V ) - (3.22)

As we know from Sec. II, a positive S means spontaneous

spreading and buildup of a wetting film. The first
spreading coefficient of interest is

stB(T)=7/sI_7sw_7wl+m (Y; +7/;u)

Let us assume that S;,5(T,) <O, so that, at the critical
point, water does not wet the S interface. However,
when we decrease T (increase m), because the coefficient
(ys +7:w) is expected to be strongly positive, we may rap-
idly reach a temperature T, such that

Suwp( Ton) =0 . (3.24)

Below this temperature we do have a water film, and we
must now consider the possible spreading of the 3 phase
between water and a. Making use of the definition (3.22)
and of the listed y;; values, we arrive at

Sppa=2myy,—yim*, (3.25)

and when m increases ( T decreases) we may switch from
positive S,g, (wetting film of B) to negative S, g,. Thus
we expect a second transition at T =T, where

Sygal Tofr) =0 . (3.26)

At this point, the system becomes unable to sustain a se-
quence gas|water|3|a. It may then achieve one of the
following conformations:

gas | water |a if Sg,,>0,
gas|a if S;,,<0.

The formula for S,,, is obtained from (3.23) by inter-
changing m and — m,

Sswa= st( T)—m(ys+7vy) - (3.27)

With our assumption, all terms in (3.27) are negative. We
thus expect the water film to redissolve when we cool
down below T4, and the a phase to be in direct contact
with the surface, leaving only a very thin layer (&) of ex-
cess cyclohexane. This scenario thus appears compatible
with the data. Clearly this model is tentative and very
rough. The water film may be much too thin to justify
these purely macroscopic arguments, and it may be that
there is no sharp W /a interface (if water is entirely solu-
ble in a).® But the trend is interesting. The slow drift,
and the fluctuations, seen in the interval T <T < Top,
could be due to the slow buildup of water content at the
surface by diffusion and random convection.

8] am indebted to G. Teletzke for this remark.
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It may be worthwhile to mention at this point another
strange system, studied by Ross and Kornbrekke (1984).
This is cyclohexane/anilin against glass. Here, at low
temperatures, cosf is an increasing function of T, and
reaches unity at a special temperature 7';. But above T,
cosO decreases smoothly. It may be that this reflects a
very fundamental multicritical behavior. But it may also
be an impurity effect. When we reach T'=T, an anilin
film spreads over the capillary wall and may trap an im-
purity (water?) from distant sources. Then, at T > T, we
would be dealing with a different surface (glass wet by
impurity).

Clearly, all the binary mixtures under discussion
(hydrocarbon/polar liquid) have chemical difficulties,
such as trapping of water or spontaneous decomposition,
and these difficulties are enhanced when the surface S is
glass, which is also amenable to ion exchange, etc. Full
control of impurity effects will require long, patient ex-
periments.

(iii) Effects of long-range forces. The above interpreta-
tion assumed that long-range forces do not play a major
role in the existence of the films, although they clearly
control the thickness of a film.

An opposite viewpoint has been taken by Law (1984).
Further, using a certain (assumed) form for the VW ener-
gies of films when the thickness (§) is not very large com-
pared to the width of the a/f3 interface, he attempts to
discuss the near vicinity of the bulk critical point (domain
of large £). He finds three roots for the equilibrium film
thickness, and claims that, in a certain range, all three
roots are locally stable. The competition between three
states then gives interesting possibilities, but it is hard to
see how an energy function could have three distinct
minima without having two intermediate maxima, also
showing up as roots; thus this calculation is open to some
doubt.

Another line of thought has been suggested by Israe-
lashvili (1984). He pointed out that in certain layer sys-
tems (with dipoles present) the retarded/nonretarded VW
energies may be of opposite signs (in a certain tempera-
ture range). This could lead to new energy minima, or
maxima, in Fig. 6, and lead to our phase transitions.

IV. THE DYNAMICS OF SPREADING

A. Macroscopic measurements

Many practical problems involve a liquid spreading on
a solid and displacing a gas. However, long, patient ef-
forts have been required to obtain quantitative data on
these problems. First, one must eliminate hysteresis ef-
fects. As we have seen in Sec. II, this is not a dream.
With a reasonably (but not perfectly) smooth and homo-
geneous surface, no hysteresis should be left. Second, one
should choose a simple flow geometry—eliminating, for
instance, gravitational effects (which are often important
in practice, but not very fundamental). A loose, but use-
ful, condition for getting rid of gravitation is that the



850 P. G. de Gennes: Wetting: statics and dynamics

linear dimensions of the drop (or of the meniscus) studied
be small when compared to the capillary length
K"=(pg/y)'/2. Similarly, with common viscous fluids,
one wishes to eliminate all inertial effects. We shall re-
strict our attention to slow, viscous flows, except in one
section, which will be devoted to the opposite case of su-
perfluid helium 4, where inertia is dominant.

A general review on the significance of the experiments
has been given by Dussan (1979). Two arrangements,
which satisfy the above requirements, have been used in
detailed experiments: forced flow in a capillary and spon-
taneous spreading of a drop on a horizontal solid.

The choice of materials has not been very systematic.
The liquids, in particular, are often selected because they
have a viscosity that falls in a convenient range, one typi-
cal example being silicone oils. In fact, these oils are
polymer melts, which may have very anomalous flow
fields in the vicinity of the solid; fortunately, however, as
we shall see in the theoretical sections, there are reasons
to believe that the macroscopic laws are weakly (logarith-
mically) sensitive to these special properties. Thus the ex-
periments described below are probably meaningful, even
when they make use of these oils.

Most experiments have been performed with fluids that
wet the solid completely, but there remains a fundamental
ambiguity, because this may correspond either to S=0 or
to $>0. The case S=0 is expected to be exceptional for
dry solids, but possible for moist solids (6, =0). Howev-
er, we know, from the static discussion of Sec. II, that in
the moist case the thickness of the preexisting liquid film
is not fixed, but depends on a control parameter. In com-
plete L/V equilibrium, this is the height of the plate
above the reservoir providing the equilibrium.

At present, we do not seem to have any data from ex-
periments on spreading, in the moist case, with prescribed
values of this control parameter. Most existing experi-
ments refer to the dry case, and probably correspond to
S'>0. But clearly the role of initial conditions should be
considered more precisely in future work.

1. Forced flow in a capillary

The geometry chosen by Hoffman (1975) is shown in
Fig. 26. He used a glass capillary (with a diameter ~2
mm), inside which a fluid was forced with velocities vary-
ing over five decades. The dimensionless parameter

FIG. 26. Principle of the Hoffman experiments.
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_Un_U
w= = (
y v
(where 7 is the fluid viscosity) ranged between 10~* and
10. Hoffman measured an apparent contact angle 6, by a
photographic technique. In a first series of experiments
with silicone oils, he obtained conditions of complete wet-

ting (S >0) and found a rather universal relation between
0, and w (Fig. 27):

capillary number) 4.1)

w=F(6,) . (4.2)

Of particular interest is the low velocity limit (w—0),
where the Hoffman data can be represented in the form

w =const X 67 4.3)

with m =3+0.5. Thus 6,(w) first increases like w!/?3,

and ultimately saturates at w=1, 6, —.

In a second series of experiments, Hoffman worked
with other oils and industrial products, giving partial wet-
ting (6,50). He then found that his data could still be
expressed in terms of the same F function, by writing

w=F(6,)—F(6,) . (4.4)

However, the result (4.4) is much less documented than
the data for complete wetting, and is open to some doubt.
These experiments clearly suffer from some defects.
The materials were chosen mainly for their industrial in-
terest, and many of them could carry contaminants. Ten
years later, we are still lacking systematic data on pure
(nonpolymeric) liquids, as well as on polymers of con-
trolled molecular weight. It would be also be of interest
to find out whether the apparent contact angle, as mea-
sured in photographs, at a given U, is independent of the
capillary diameter. [Recent studies by Dussan and Ngan
(1982) indicate that there is in fact some dependence.]

(:]

T T
10°* 10~2 1 w

FIG. 27. Relation between reduced velocity w=U/y and ap-

parent contact angle 6, (silicone oils on glass), after Hoffman

(1975). At low w the relation is close to 8 ~w'/3.
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However, in spite of these limitations, it is clear that
the Hoffman experiments represent an important ad-
vance. The universal law (4.2) is very important. In par-
ticular, it is amazing to see that it holds without altera-
tion for liquids of different S (S >0): the magnitude of
the spreading parameter has no influence. We shall ex-
plain this in detail later.

2. Spreading of a droplet

Here most experiments have been performed for com-
plete wetting (S >0). The principle is shown in Fig. 28.
In the classical approach, the expanding radius R (¢) is
measured from photographs. In other studies, the nearly
flat droplet is used as a lens. From the focal length of
this lens one can go back to the apparent contact angle
0,(1).

In the regimes where gravitation is negligible, the mac-
roscopic shape of the droplet is found to be rather close to
a spherical cap. Then the apparent contact angle, the
drop thickness A (z), and the radius R (?) are related by

~1Re,, @.5)

ThR?=Q, (4.6)
2

valid for thin droplets (6, << 1), this being the most im-
portant regime for complete spreading. Here Q is the
droplet volume and is assumed to be constant (weak
evaporation).

Experimentally it is found that R (¢) increases rapidly
at the early stages, and then very slowly. The data can
often be represented (in terms of the wetted area 7R?2) by
a power law:

7R(1)=1"QP . 4.7

The values of n obtained by different groups on dif-
ferent systems have been compared in a review by
Marmur (1983). For water on glass, the early data of
Hyppia (1948) suggest n=0.22, but Lelah and Marmur
(1981) have found a strong temperature effect, with n
ranging from 0.16 at 29°C to 0.32 at 15°C. One of the
most accurate studies was performed by Tanner (1979) on
silicone oils, and gave n=0.21. The exponent p has not
been studied with the same detail, but is of order % in the
experiments of Lelah and Marmur (1981).

Some general remarks on the exponents n and p are in
order at this point. Let us assume that the relation be-

GAS

R (t)

FIG. 28. A nearly flat droplet spreading on a solid: the macro-
scopic picture.
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tween apparent contact angle and velocity is correctly
described by Eq. (4.3) and that the relevant velocity is the
velocity of the contact line,

U="4R _Yogm_yegn.

a =g (4.8)

If we make use of the spherical cap approximation [Egs.
(4.5) and (4.6)] to eliminate 6,, we arrive at

m
dR Q
——=V* = , 4.9
ar R} (4.9)
and the spreading law becomes
R Fl=p*Qm . (4.10)
Thus we expect
2
- 1
n==_ T (4.11)
2m
_ .1
P=3, 1 4.12)

Taking the most probable value m =3 from the Hoffman
data, we are then led to n=0.20 and p=0.60. We shall
see below that m=3 is indeed expected theoretically for
all cases of dry spreading (S > 0).

B. The precursor film

In the course of his pioneering work on wettability,
Hardy (1919) recognized that a spreading droplet is an-
nounced by a precursor film (of submicrometer thick-
ness), which shows up ahead of the nominal contact line.
In particular, for droplets spreading on a solid surface,
the film was revealed through its lubricating effects: a
small test particle can slip more easily on the solid when
the precursor is present. Hardy believed that these films
occurred only with volatile liquids, which could condense
ahead of the advancing droplet. This process may well
exist, but more recent examples suggest that the film is
present even in the absence of any vapor fraction (Bang-
ham and Saweris, 1938; Chang et al., 1982).

Detailed optical studies were carried out on the film at
the Naval Research Laboratory (Bascom et al., 1964), us-
ing nonpolar liquids which give complete spreading on
steel. They found a precursor film, visible in ellipsometry
at the late stages of spreading, with thicknesses of a few
hundred angstroms. They also found (with impure
liquids) a thicker, secondary film, probably due to Maran-
goni effects—a volatile contaminant being eliminated near
the front and creating gradients of y. We return to this
impurity effect in Sec. IV.F.2, but omit it from the
present discussion.

In one case, with a molten, viscous glass (which can be
quenched and examined later), the film obtained by
spreading on a metal was seen by electron microscopy
(Radigan et al., 1974). But the most brilliant detection of
the film was based on electrical resistance measurements
(Ghiradella et al., 1975). The setup is slightly more com-
plex [Fig. 29(a)], with a vertical plate and a conducting
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FIG. 29. Electrical detection of the precursor film (Ghiradella
et al., 1975). (a) Principle: the resistance R,(7) between two
electrodes E|E, is measured. (b) Typical record of R.(z): as
soon as the film reaches (E,), R.(t) drops.

liquid HCI that is set in vertical motion (velocity U). One
measures the conductance between the bulk of the liquid
(E,) and an electrode ( E) attached to the solid, when the
nominal contact line . has not yet reached the electrode
E,. One finds a finite conductance occurring well in ad-
vance (e.g., when E, is one millimeter ahead of .¥’). A
typical decrease of resistance with time is shown in Fig.
29(b). In principle, this could be translated into a profile
&(x).

In practice, however, all the experiments we have
described suffer from serious limitations: impurity ef-
fects resulting in gradients of the surface tension y; choice
of liquids, the polymer systems being in fact quite special,
as explained in Secs. IV.B and IV.D; use of transient re-
gimes (in the electrical experiments, where the velocity is
imposed suddenly); noise and instability effects.

For all these reasons, we do not yet have a quantitative
experimental law for the simplest (steady-state) film pro-
file. But the situation should improve soon.
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FIG. 30. A nearly flat droplet spreading on a solid: the micro-
scopic picture.

C. Interpretation

1. Three types of dissipation

Let us restrict our attention to dry spreading (S >0) of
a pure, nonpolar liquid, attracted towards the solid by
long-range van der Waals forces. Then the structure of
the advancing front (with velocity U) corresponds to Fig.
30.

All macroscopic observations show the existence of a
certain apparent contact angle 6,. At distances x ~ 100
um from the nominal contact line the fluid profile is very
close to a simple wedge advancing along the solid. The
motion of the liquid in this region has been probed in a
clever experiment by Dussan and Davis (1974), marking
the upper surface of the wedge with small spots of a dye
(Fig. 31), and watching their motion (the liquid being
highly viscous and the motion slow). They found a very
characteristic rolling motion, reminiscent of a caterpillar

\

2u

cd

(b)

FIG. 31. (a) The Dussan-Davis experiment: spots of a dye
D |D,D; are laid on the free surface of an advancing wedge.
The spots slide down the wedge, and then get stuck to the solid.
(b) The motion of a caterpillar vehicle is somewhat similar to
the motion in the wedge [compare the velocity profiles v(z)].
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vehicle. This rolling motion gives rise to viscous friction.
We shall call the corresponding dissipation (per unit
length of the contact line .¥) TE,,,, where the index w
stands for “wedge.”

Ahead of the wedge we have a precursor film (of typical
thickness 100 A) extending over a finite distance d. It
has recently been realized (Hervet and de Gennes, 1984)
that the v1scous dissipation in this film is very strong. We
shall call it TS f-

The precursor film ends up by a real contact line .£,
(shifted by a distance d from the nominal contact line
Z). In the close vicinity of ., we may have special
losses, due to the attachment of liquid molecules to the
solid. Some of the available free energy S may be
transformed directly into heat. This third contribution is
largely unknown; we shall call it Ti, (where [ stands for
“local™).

We can relate the total dissipation to the unbalanced
Young force F, obtained by macroscopic considerations
similar to Fig. 2:

F=yso—vsL—7v cosb, (4.13)

=S+3v0 (6,<«<1). (4.14)
Then the total dissipation is

FU=T(3,+3,+3) . (4.15)

The common trend of the literature has been (i) to ignore
2, we shall see that this may be correct in some favor-
able cases, and (ii) to ignore Zf we shall see that this is
grossly incorrect, and that, in fact,

TS,=SU . (4.16)

The free energy S is entirely burned in the film region.

2. Viscous losses in rolling motion

The flow patterns in a simple “wedge,” advancing with
constant velocity and angle 6, [Fig. 31(a)], have been
analyzed in a fundamental paper by Huh and Scriven
(1971). They considered a very general case (arbitrary 6,,
nonzero viscosity in the gas phase). Here we shall present
only a simplified view, holding for small 8, and for negli-
gible friction in the gas phase. This allows us to use the
celebrated “lubrication approximation” of fluid mechan-
ics. The idea is to treat the wedge as a nearly flat film,
with a velocity profile

U (z)=u(z)

of the Poiseuille type [Fig. 31(a)]. On the solid side, u
vanishes and on the gas side dw /dz vanishes (no tangen-
tial stress). The velocity U of the contact line is the z
average of this profile,

U=¢ [ dzuta) . 4.17)

(This may be checked by going to a frame moving with
the line, where the solid slips at velocity — U, and where
we find a steady state with O horizontal current.) One can
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then write
ul(z )———g—z-(—z +2§z) . (4.18)
The viscous dissipation integrated over the film depth is
2
¢ 2
[ dzn = i’igi (4.19)

(where 7 is the fluid viscosity), and the total dissipation in
the wedge is

xmax

o xmﬂx 2
T3,= [ " ——’7—-§U d|x|= ——’7—1 (4.20)

x min

We expect x .« to be a cutoff related to the macroscopic
size of the droplet x,, ~R. The cutoff x,,, is more dif-
ficult to specify and will be discussed below. But without
any cutoff (x,;,—0) the dissipation would diverge; as ex-
plained in Hellenic terms by Huh and Scriven (1971), “not
even Herakles could sink a solid!”

Various physical processes may remove the singularity,
and the choice of process depends very much on the
choice of systems.

v(z)

FIG. 32. The extrapolation length b characterizes the amount
of slippage allowed in viscous flow near a solid surface.
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a. Finite slippage at the solid surface

Instead of imposing zero velocity on the fluid (in the
solid’s frame) at the solid surface, it is natural to allow for
a small amount of slippage, described by an extrapolation
length b (Fig. 32). This may occur in various systems.

(i) A porous solid, saturated with the same fluid, will
allow for an exponential tail in the velocity field. This
could be found in nature—for instance, static contact an-
gles have been studied on a *“solid” made of a swollen sili-
ca gel (see Michaels and Dean, 1962)—but has not been
studied systematically.

(ii) A rough solid surface may possibly be described
along similar lines (Hocking, 1976). This, however, is not
a very attractive situation, because roughness implies all
the complications of hysteresis—discussed in Sec. II.C.

(iii) A normal liquid flowing over a smooth solid will
display a length b comparable to the molecular size a. As
we shall see, for this most important case, slippage is usu-
ally negligible, and the cutoff is provided by another ef-
fect (long-range VW forces).

(iv) Special physicochemical processes near the contact
line have been proposed by Ruckenstein and Dunn (1976).
They also lead to b ~a.

(v) A polymer melt, flowing on a smooth surface
(without any chemical attachment between polymer
chains and the wall), is expected to show anomalously
large values of b (de Gennes, 1979a). This generates spe-
cial “foot structures” near the contact line, which are
analyzed in Sec. IV.D.

A complete mechanical theory of macroscopic droplets
spreading with finite slippage has been constructed by
Huh and Mason (1977), and in more detail by Hocking
(1977,1981) and Hocking and Rivers (1982). This theory
is characterized by a matched asymptotic expansion be-
tween three regions—a “foot” where slippage dominates,
a “wedge” with nearly constant slope, and a “central re-
gion” where the droplet is close to a spherical cap. This
last feature deserves comment. In the thicker regions of
the droplet, the flows are easy, and the mechanical pres-
sure p; equilibrates. The difference p; —p), between the
pressures in and out of the drop is constant, and this, in
turn, through the Laplace-Young equation, means that
the curvature of the L /V surface is constant, hence the
spherical cap. The work of Hocking provides a precise
proof of the above statement.

Quantitatively, as we shall see in Sec. IV.D, the result
of slippage on the logarithmic cutoff x.;, is simple: we

expect
Xmin=b/0, . (4.21)

b. van der Waals forces

These lead to precursor films, and the film provides a
cutoff for the dissipation TX,. In cases of dry spreading
with §'> 0, we shall see later that the cutoff is given by

X min=a /6% . (4.22)
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This dominates over slippage effects whenever the ex-
trapolation length for slippage is comparable to the
molecular size a [as can be seen by comparison of Egs.
(4.21) and (4.22)].

3. Structure and dissipation
in the precursor film

The idea that a film can move because of a gradient of
the disjoining pressure II is not new (Deryagin, 1955;
Lopez et al., 1976; Starov, 1983). However, for the
spreading of liquids on solids, progress, has been slow. A
number of hydrodynamic flows have been solved numeri-
cally by Teletzke et al. (1983). The difficulty stems from
the variety of experimental situations, revealed in the
preceding paragraph. It is only by a patient separation of
different physical regimes that one may hope to reach
general laws (de Gennes, 1984a,1984b,1984c; Hervet and
de Gennes, 1984).

Let us concentrate, then, on a “pure” case: a nonpolar
liquid, giving complete wetting, and attracted towards the
solid by VW forces. Transfer through the vapor is as-
sumed to be negligible. There are no solute impurities,
and we also exclude the case of polymers (the extrapola-
tion length b for slippage is then negligible). Gravity ef-
fects are omitted. Finally, we restrict our attention to a
steady-state regime, where the nominal contact line ¥
moves with constant velocity (— U) with respect to the
solid (Fig. 31). We shall, in fact, work in the frame of the
line, where the solid moves with a velocity + U. The
choices of steady state, rather than transients, simplifies
the equations enormously.

a. Hydrodynamic equations

Our starting point will be the pressure distribution in
the film p(x,z), which has the following structure:

2

p=po—1L5 W -W(2),
dx

where pg is the gas pressure; the second term represents

the Young-Laplace capillary term. W ({) is the VW ener-

gy (per unit volume of liquid) between liquid and solid.

In the nonretarded regime, which will be our main con-

cern here, we have from Eq. (2.41)

. A
6wz
Locally Eq. (4.23) describes a hydrostatic equilibrium.
The vertical force acting on any volume element vanishes,
_% 3w _,
az dz

The term W (§) in (4.23) ensures that p () reduces to the
Laplace-Young value.

In the lubrication approximation, the horizontal
current Jg (in the frame of the solid) is given by a
Poiseuille formula:

(4.23)

Wiz)=—Il(z)=

(4.24)

(4.25)
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3
=t | % (4.26)
3n Ix
In the frame of the line .# this current becomes
J=Ui+Js . (4.27)

For steady-state solutions, J must be independent of x
and ¢t. In fact, for our problem (where there remains no
film far ahead of the line .#’), J must vanish exactly.
This leads to the basic equation

3 2
__gzg:gd; —yg;%+W(g) . (4.28)

Equation (4.28) describes not one, but many types of pre-
cursors, depending on the value of the spreading coeffi-
cient S. However, before discussing all these possibilities,
it is instructive to return first to the macroscopic limit—
i.e., to values of £ that are large, so that W ({) becomes
negligible. Then (4.28) reduces to an equation studied by
Tanner (1979). We are particularly interested in solutions
that have zero curvature for large £ (i.e., that tend to
behave nearly like a simple wedge in the macroscopic lim-
it). They have the asymptotic form

1/3
X

X1

(4.29)

E(x)—x -%Uln

and the slope varies very slowly with x. The constant x
will be determined later by matching Eq. (4.29) with ap-
propriate solutions (at x <0) which describe a precursor
film.

b. The “maximal’ film

Let us consider first the profile marked M in Fig. 33.
With this profile, we have a film that is present over all
the solid surface. It will turn out that this “maximal’ sit-
uation is relevant when the spreading coefficient S is pos-
itive and not too small (S >>y62). For the “maximal”
case, there is no contact line ., at the microscopic level,
and the precursor is a nearly flat film. It is then permissi-
ble to drop the y term in Eq. (4.28) over the whole film
region (x <0).

Using (4.24) for W (&), and the definition (2.50) of the
molecular length a, we can then reduce Eq. (4.28) to the
simple form

adf U

S St =——=w. 4.

2 dx v w (4.30)
This can be integrated immediately to give the maximal
film profile:

02

blx)= w(x,—x)

4.31)

where x, is another integration constant, which we shall
take to be equal to zero in what follows. We shall see
that, in nearly all practical cases, Eq. (4.31) describes an
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FIG. 33. A few numerical solutions of the film equation (4.33)
for various values of the spreading parameter S (after Hervet
and de Gennes, 1984). The larger S values correspond to the
larger films.

important portion of the film, where the thickness is de-
creasing only slowly (¢~ |x | ~!) with distance.

c. Crossover between the maximal film
and the macroscopic droplet

Let us first rescale (4.28) into an adimensional form,

X =Xqgy

E=Coh ¥, (4.32)
xo=3""6aw =%

Co=3"%aw =173,

h'h—2—h"h2=1, (4.33)

where h'=dh/dy --- . The “maximal” solution corre-
sponds to A (y— — oo )—0. There exists a one-parameter
family of solutions of Eq. (4.33) which satisfies this con-
dition, with the asymptotic form
ho(y— — o )=—yi+aexp(y3/3) . (4.34)

The a=0 solution corresponds to Eq. (4.31). The other
solutions (a540) are obtained by searching for small devia-
tions from Eq. (4.31) and solving the corresponding linear
equation in a WKBJ approximation. Starting from Eq.
(4.34), one can extend the solutions 4,(y) towards positive
y by numerical integration of Eq. (4.33) (Hervet and de
Gennes, 1984).

One of these solutions (@=a~0.38) has the limiting
property

hz(y—+)=0. (4.35)

This is the solution of interest (because the curvatures on
the macroscopic side are always very weak on the scale of
the film). At large, positive y the solution hz(y) does
reach the asymptotic form announced in Eq. (4.29),
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hg(»)—yf'3(y), f(y)=31n(0.4p) . (4.36)

Thus the cutoff length x; defined in Eq. (4.29) is
X1= 2. 5x0 y

where x is defined in Eq. (4.32)

The most important observable is the apparent contact
angle 6,, defined by a measurement at a macroscopic dis-
tance x from the contact line . [x; <<x <<R(#)]. Us-
ing (4.34), we find

So

X0

13, 4.37)

6, =95 _ £ p13(1 4 1=
dx xg

and returning to Eq. (4.32) this gives the fundamental for-
mula

63 =3fw . (4.38)

The main conclusions are the following.

(i) f is nearly constant, and 8, ~w'/?, as observed in
the low-velocity experiments of Hoffman (1975) and
Tanner (1979). An equation of this type was first derived
theoretically by Fritz (1965), but for a slightly different
problem (liquid spreading on a wet surface). It is prob-
ably fair to call Eq. (4.38) the Tanner law, because Tanner
was the first to define it and to obtain it from experiments
on a dry surface. He also interpreted his own experiments
by similar ideas (although he did not take the precursor
film into consideration). Of course, the exponent 3 in Eq.
(4.38) is only approximate, because f is logarithmically
dependent on w, but this is a minor refinement.

(i) The width of the crossover region between film and
droplet is of order xo=aw~2/* [Eq. (4.32)]. After mak-
ing use of Eq. (4.38), this becomes

ro=a/6> . (4.39)

(iii) The thickness of the film in the crossover region is
o=a /0, . (4.40)

Thus the precursor film has reality (§, >>a) only for situ-
ations of small 6,. Typically 6,=10"2and a=1 A, giv-
ing {o=100 A (falling well into the range of nonretarded
VW interactions).

d. Truncated films

We shall now show that the maximal film described
above (covering the whole solid surface) corresponds to a
certain limiting case of “dry” spreading, described by the
inequality®

S>>376; . 4.41)

This can be easily understood if we return to the static
discussion of Sec. II.LD. We saw there that a VW fluid

9This condition was not entirely appreciated in the original
work (de Gennes, 1984a) on the maximal film.

Rev. Mod. Phys., Vol. 57, No. 3, Part I, July 1985

with positive S does not spread on a dry solid down to a
molecular layer, but in fact stops at a certain equilibrium
thickness e (S) [Eq. (2.72)],

172

Xy 4. (4.42)

e(S)= S

It is natural to expect that the precursor film never thins
down below this value. The maximal film solution is
applicable only in the interval

e(S)<&<bo -

Setting {=e(S) in Eq. (4.31), we have a formula for the

film width d:
a’ _a
we(S) — w

(4.43)

172
s

14

These predictions are entirely confirmed by detailed nu-
merical solutions of Eq. (4.33) (Hervet and de Gennes,
1984). The truncated solutions are shown in Fig. 33.
They start at certain contact line ., of position x, = —d.
The initial rise of the profile near x, is parabolic and
identical to the static solution [Eq. (2.55)]. At higher x
the solution merges with the maximal profile, provided
that d >>x,. The latter condition also shows up in Eq.
(4.43). To have a film, we must satisfy

e(S)<§o >

d=

(4.44)

(4.45)

and this requirement is equivalent both to d > x, and to
Eq. (4.41). In most practical cases we expect to have Eq.
(4.41) well satisfied, in which case a film will indeed be
present.

e. Dissipation in the film

A remarkable feature of the Tanner law (4.38) is that
the value of the spreading coefficient S does not play any
role (even in the log term). The only requirement is that
the macroscopic profile cross over into a maximal film,
and this, as we just saw, is satisfied whenever S >>y62.
The Tanner law expresses a certain relation between the
flux U and the force F in the thermodynamic formulation
of Eq. (4.15). The spreading coefficient S is the dominant
term in the force, so there is an apparent paradox. How
does S drop out of the energy balance?

The viscous dissipation computed from the hydro-
dynamic equation (4.28) does agree with Eq. (4.15). The
dissipation in an interval — co <X <X (Where xp,, is
in the macroscopic region x ., >>Xg) is exactly

x 2

T(iw+i,)=f_’:‘—”§0—dx .
Using the truncated solutions plus suitable integrations by
parts (Hervet and de Gennes, 1984), we can transform this
exactly into Eq. (4.15) (with the assumption Ti,=0).
Thus we have not forgotten anything in the energy bal-
ance. But where is the free energy S dissipated? We shall
find the answer through a qualitative estimate of the

(4.46)
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losses in the film only,

0 2

$ - [° 31U
T3,= [, G (4.47)
where we use an abrupt truncation at x = —d and also ar-

bitrarily decide that the film stops exactly at x =0. We
use the maximal film solution in this interval, in the form
(4.30), and transform (4.47) into

O g
T$,=3q0%% " [ 95

s £ (4.48)
The leading term comes from the lower limit and is
° 3ya’U
2p="t—= (4.49)
T 2e%s)

We now have the answer: all the excess free energy S is
burned in the film. The remaining contribution to F,
namely, %795, is used up in the wedge, and imposes the
relation (4.38) between reduced velocity (w) and wedge an-
gle ,, where S does not appear.

4. Spreading over a wet surface
(Bretherton, 1961; Fritz, 1965; Tanner, 1979)

Let us return now to macroscopic droplets (or capil-
laries) and consider a solid that was initially covered with
a liquid film of constant thickness (ey). On top of this we
add, for instance, a droplet, and watch its spreading.

a. Macroscopic regime

If ey is large (eq > 1000 A) we may omit all effects of
long-range forces, and we are dealing only with capillary
energies that are dissipated by viscous flows. This family
of problems was discussed long ago by Landau and Le-
vich (1942; see Chap. 12 of the book by Levich, 1962).
They were more concerned with a plate being pulled out
of a liquid, while our present problem is the analog of a
wet plate being pushed in, but the basic equations are the
same. We may summarize the results by saying that the
logarithmic cutoff discussed in Sec. IV.B.2 is now provid-
ed by the original film,

X min =€9 /Ga . (450)

Inserting this into the wedge dissipation formula (4.20),
we see that large x,;, values correspond to a smaller loga-
rithmic factor /, and should thus lead to larger velocities.

An interesting feature is that the profile is not monoto-
nous: we expect small capillary oscillations ahead of the
nominal contact line .¢°. Such an expectation arises from
the linearized ({—e,) steady-state equation, which is of
third order and has exponential solutions with a complex
decay length—Ileading to damped oscillations. These os-
cillations are, in fact, quite visible when moving a liquid
in a prewetted test tube,'® and are shown in photographs
by Fritz (1965). ‘

10] am indebted to Y. Pomeau for one of these observations.
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b. Microscopic regime

If ey is smaller than the precursor characteristic thick-
ness §o [Eq. (4.32)], the main effects should occur in the
precursor region. Let us discuss them briefly, starting
from the current in the frame of the line [Eq. (4.27)]

__4 4§
6mné dx ’

where we have used Egs. (4.23) and (4.24). In steady state
J is constant, but the constant is now different from zero.
In the far precursor region, the thickness {—e(, and we
must have

J=U¢ 4.51)

J="Ue . (4.52)
This leads to a profile
E(x)= % , (4.53)
1—explg | x —x,]|)
where x, is an integration constant, and
q= —6-17'1:&2 . (4.54)

The result (4.53) describes a crossover between the maxi-
mal precursor [Eq. (4.31)] found in the region {> e (or
g | x;—x | <<1) and an exponential tail,

{(x)—eg=egexp(—q |x—x; ), (4.55)

in the forward region ({—ey <<eg). We see that in the
limit eg <&y, the matching of the macroscopic solutions
will be imposed by the conventional precursor, and the
preexistant film of thickness e, should have only weak ef-
fects on macroscopic flows. More detailed numerical dis-
cussions of the various regimes have been carried out by
Teletzke et al. (1983).

c. Spreading with obstacles

The ideas sketched in Secs. IV.A.4.a and IV.A4.b
above could be tested by relatively simple experiments us-
ing uniformly wet surfaces. But their main impact may
be different. Some macroscopic experiments show that a
moving contact line has a velocity sensitive to perturba-
tions on the solid surface which lie ahead of ..

(i) Bangham and Saweris (1938) noticed that a drop of
methyl alcohol spreading on mica was slowed down when
reaching the vicinity of a drop of butyl alcohol.

(ii) Lelah and Marmur (1981) showed that a water
droplet spreading on a glass slide had its line .Z attracted
towards the edge of the slide. This attraction was felt at
distances ~1 mm.

All these situations are complex; one would like to
know first what happens when two drops of the same
liquid are spreading on a flat solid surface and on the
verge of coalescing. Experimental studies on the macro-
scopic shapes would be easy to perform and (possibly) not
too hard for theoretical analysis. Indeed, Teletzke, Davis,
and Scriven (1984) have analyzed the Lelah-Marmur ex-
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periment (ii). They can explain the sign of the effect if
they assume for the disjoining pressure T1(§) of water on
glass the slow decrease (IT ~¢ ™) extracted from empirical
data by Pashley (1980).

D. The special case of polymer melts

1. Observations

We are concerned here with flexible polymer chains,
which can exist in a liquid form and give complete
spreading (S >0). To study these polymer drops is not
very easy; one encounters at least two difficulties: high
viscosities (if the chains are long) and impurity content
(many practical polymer systems contain additives, or
catalysts, from the fabrication process). This led to seri-
ous complications in the early experiments by Bascom
et al. (1964).

However, the spreading of polymers such as silicone
oils is important for many industries (paints, adhesives,
protective coatings). Also, from a more fundamental
point of view, we shall see that it raises a very special
problem. Three main experiments indicate an anomalous
behavior.

(a) Early work by Schonhorn et al. (1966) showed that
a certain characteristic length (independent of the original
size R, of the droplet) came into the spreading laws.
Later work by the same group (Radigan et al., 1974), us-
ing electron microscopy, displayed a “protruding foot”
near the contact line ..

(b) Ogarev et al. (1974) studied polydimethylsiloxane
chains of high molecular weight (M ~ 10%) spreading on
mica. (They had only one value of M, but they could
vary the viscosity significantly by changing the tempera-
ture.) Their main conclusion (from our point of view)
was that the macroscopic shape of the drops is not a
spherical cap, as it is with nonpolymeric, pure liquids.
The deviation from sphericity is most significant for
small droplet volumes. There is indeed a spherical cap re-
gion in the center, but the cap is surrounded by a protrud-
ing “foot” (Fig. 34). The foot is macroscopic and has
nothing to do with the precursor of submicron thickness
which was discussed in Sec. IV.C.

(c) Sawicki (1978) carried out a series of systematic
spreading with silicone drops of different chain lengths.
His results on the apparent contact angle 6,(¢) are not far
from the Tanner law (8, ~t~%%. However, when he
compared the bulk viscosity to the apparent viscosity 7,
required to fit a wedge model, he found 7, values that
were too low. His interpretation was that the macro-
molecules were elongated in the film region, and that this
led to a reduction of viscosities. But this non-Newtonian
behavior is open to doubt at the very low shear stresses
achieved in spreading. An alternate explanation will be
presented below.

2. Interpretation

The “protruding foot” has been a source of confusion
in the past. To keep things straight, we must (i) carefully
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FIG. 34. Qualitative shape of a polymer melt during spreading.

discriminate between the foot and the precursor film (as
explained above), and (ii) put in a different class the spe-
cial profiles observed by Bascom et al. (1964), which are
associated with volatile impurities.

a. Strong slippage

The basic idea, proposed independently of all spreading
phenomena (de Gennes, 1979a), is that entangled poly-
mers, flowing near a smooth, passive surface, should
show a highly anomalous slippage, or, equivalently, a very
large extrapolation length b (Fig. 32). Physically we may
say that it is less expensive to concentrate the shear at the
polymer/solid interface than to spread it over all the
liquid (where entanglements oppose the shear very strong-
ly). The resulting formula for b is

b=an/7no, (4.56)

where a is a molecular size, 7, is the viscosity of a liquid
of monomers (with the same interactions, but no entangle-
ments), and 7 is the melt viscosity (enormously enhanced
by the entanglements).

In the “reptation” model for molten polymers, one ex-
pects (de Gennes, 1979b)

N3
N="7o Nez ’ (4.57)
where N is the number of monomers per chain, while N,
is a characteristic number (the “number of monomers per
entanglement”), of order 100. Experimental exponents
are slightly higher than the value (3) predicted by (4.57),
but the trend is clear: with high values of N(10*), one

can expect to find b values up to one millimeter.

Early observations on the flow of polyethylene melts
inside transparent capillaries give some support to these
ideas (Galt and Maxwell, 1964). In these experiments, the
velocity field was probed via tracer particles. It was
found that the velocity at the well did not vanish in a sig-
nificant fraction of the runs. Experiments by Kraynik
and Schowalter (1981) detected the slip by hot film
anemometry. Burton et al. (1983) used a Weissenberg
rheogoniometer equipped with closely spaced parallel
plates: for molten polystyrene (M ~ 10%) the data indicate
b~60 um. They are taken at relatively low shear rates:
slippage does exist for Newtonian flows.
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b. Droplet shapes
(Brochard and de Gennes, 1984)

Let us focus our attention on the most important case,
where the droplet thickness at the center (4) is much
larger than b, but b itself is macroscopic (b >1 um). One
then expects to find three regions.

A spherical cap, where {>>b. Here normal viscous
flow takes place, slippage is negligible, and the apparent
contact angle 6, should follow the Tanner law [Eq. (4.3)].

A macroscopic foot, where b > § > &y. In this region we
expect to find a “plug flow” of polymer driven by capil-
lary forces.

A precursor film, where {o> &, which differs from the
normal precursor of Sec. IV.C because the flow is again
of the “plug” type.

Let us start with the macroscopic domain. For finite b,
the equation for the horizontal current Jg, which replaces
(4.26), is

ap

2
Jsz%(b +er3) | =92 (4.58)

If we work in a macroscopic regime, the only effect con-
tributing to dp /9x is capillarity,

_ _a_z "
™ —y&", (4.59)
and the steady-state equation becomes
U
w57=-—(b +&/3)68"" . (4.60)

At & >>b we recover Tanner’s equation, and the profile is
a spherical cap. At {<<b, we can construct a special
solution that describes the foot:

E2=8|x |3/3h,
A=b/w .

4.61)
(4.62)

Here | x | is the horizontal distance measured from the
nominal contact line .. In principle, the crossover be-
tween the foot [Eq. (4.61)] and the spherical cap (£> b)
can be extracted from the work of Hocking (1977) and
Hocking and Rivers (1982). For qualitative purposes, it is
enough to note that the width £, of the foot must be such
that Eq. (4.61), taken at | x | =f, gives {~b. Thus

f1=Ab) P =bw =" =b6;" . (4.63)

The logarithmic cutoff discussed in Sec. IV.B is now
expected to be x,;, ~f, as announced in Eq. (4.21).

c. The polymer precursor

If we now go to a microscopic regime, where VW
forces become dominant, the equation for the maximal
film is obtained by ignoring capillarity and setting

_op A4 3

ox 2t on (4.64)
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(in the nonretarded regime). Inserting this into Eq. (4.58),
choosing & << b, and solving, one obtains

g2 _Ab 1

= 4.6
4mnU |x —x, | (4.65)

where x, is an integration constant. Thus the thickness
of the maximal precursor should decrease even more
slowly than in conventional fluids ({~ |x | ~!/%). Note
that the prefactor 1/b=1o/a should be independent of
molecular weight (for entangled systems). The scaling
form of the crossover length x, is

1/20—3/2
a .

x,=(ab) (4.66)

A truncation of the maximal precursor at finite S should
occur as in Sec. IV.C.3, but has not yet been explored.

3. Perspectives

The existence of a macroscopic foot on spreading poly-
mer droplets appears as a natural consequence of plug
flows. It must be emphasized that the extrapolation
length b, describing the plug flows, is very sensitive to the
surface treatment (de Gennes, 1979a): if the surface is
slightly rough, or if the surface can bind chemically to
some of the chains (or to chain ends) b could be drastical-
ly reduced from the estimate (4.56). This means that a
complete study of the spreading of polymer melts will re-
quire a delicate, coordinated effort between polymer sci-
ence and surface science.

On the theoretical side, many aspects of polymer melts
remain completely unexplored. The regimes at h <b
should not be ruled by the Tanner law, and may corre-
spond to the observations of Schonhorn et al. (1966).
Moreover, the discussion on surface friction, leading to
Eq. (4.56) for b, has been carried out only in the limit of
strongly entangled chains (N >>N,). With silicone oils of
low N, which are of some practical interest, one needs an
estimate of b in the opposite limit (N <N,). We still ex-
pect an enhancement of b, and Eq. (4.56) may even
remain qualitatively valid, but to prove this will require a
delicate study of chain flow near a passive wall, which
(fortunately) was not required in the entangled limit.

E. Spreading laws for superfluid He,

A long experimental effort has been devoted to the stat-
ics of the Rollin film, and also to the small-amplitude os-
cillations of the film surface (“third sound”). Some stud-
jes have also been carried out on transport (from one
reservoir to another, at a different level) via the film (see
the review by Brewer, 1978). But we do not know of any
observation on the horizontal spreading of droplets.

On the theoretical side, a recent study (Joanny, 1985)
analyzes the motion in a simple inertial regime, at very
low temperatures (no normal fluid, and no evaporation),
without any vortex nucleation. All the work is restricted
to the special case S=0. We shall concentrate here on
the macroscopic regime.
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A force balance argument predicts that the dynamic
contact angle vanishes. This property is in fact similar to
Eq. (4.61) for polymer flow (d{/dx =0 at the nominal
line position .¢°), and the physical origin is the same: in
both cases we have a plug flow and no singularity [in the
dissipation, or in the horizontal hydrostatic forces
§(—09p /3x)] near the line .#°. Thus the balance of forces
at .Z is of the Young type, with no added terms, and
6,=0,=0.

Let us, then, consider a droplet of original volume
Q =R}, spreading to a distance R () >> R, under the sole
action of capillary forces. The initial capillary energy was
of order yR3. When this is transformed into kinetic ener-
gy, with rms velocity U, we have

Q+p, Ul=yR}, (4.67)
172
U= |t~ (4.68)
PLRo

The final velocity of the line . should be constant and
given by Eq. (4.68). The detailed shape of the droplet is
not simple, but (within the lubrication approximation)
Joanny was able to construct exact, self-similar solutions
with 6, =0 and with the velocity (4.68). It would be of
interest for the future to investigate the stability of these
self-similar solutions.

The (more realistic) case where S is positive remains
completely unexplored. It may be that the energy S is
spent in the form of vortex lines nucleated at the solid
wall.

F. Unsolved problems

1. Pure fluids

We have seen that a consistent picture may be con-
structed for the dry spreading of a simple fluid on a solid.
On the other hand, we noticed that the situation of moist
spreading requires the specification of a control parameter
[H in the notation of Eq. (2.46)] and is thus not unique.

There remains, however, a long list of open questions
connected with the spreading of pure fluids, some of
which are specified below.

(a) Long-range forces other than van der Waals may
come into play (especially double-layer effects, if the
liquid is water).

(b) All our discussion assumed that the local dissipation
Tik,ca, near the moving contact line was negligible. This
need not be true. Let us list again the different types of
dissipation (Sec. IV.C.1):

T3,=SU, (4.69)
° 2
T,=5y705U~ —TL——GU , (4.70)
a
TS ica=+mU?. @.71)

In Eq. (4.71) we tentatively assumed that the local term
could be described in terms of a simple friction coefficient
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7; (which turns out to have the physical dimensions of a
viscosity). If this assumption is correct, we usually expect
that, in the limit 8, —0, the hierarchy is

Tif > Tiw > Tilocal (472)
provided that
0. </ . (4.73)

But this statement may be useless if the local friction can-
not be described in the form (4.71), or if the coefficient 7,
is much larger than 7 [so that the conditions (4.73) never
hold in practice]. A complete understanding of the local
process will probably require calculations of molecular
dynamics on specific examples.

(c) Flow instabilities may occur, even with viscous
fluids. Optical observations by Williams (1977) on
spreading droplets of various fluids show a wiggly contact
line. This may be interpreted in (at least) three different
ways: inhomogeneities in the solid surface (see the discus-
sion on a static contact line in Sec. II); solute impurity ef-
fects (see Sec. IV.F.2 below); fundamental instabilities in
precursor flow: it could be that the films described in Sec.
IV.C.3 are intrinsically unstable, even for a pure liquid.

(d) Transfer via the vapor may be important even in dry
spreading. Although the solid well ahead of the contact
line is dry, it may receive a few molecules evaporated
from the liquid interface. Even for mildly volatile
liquids, this process may renormalize the effective value
of the spreading parameter S. Our analysis suggests that
this has not much effect on the Tanner law, but that it
will change the width d of the precursor film.

(e) All our discussion ignored mechanical losses in the
gas phase. As early as 1971 Huh and Scriven pointed out
that even a gas may become important in the limit of
U > V*, where 6, —m, and where we are actually dealing
with a thin film of gas squeezed between liquid and solid.
These effects become even more spectacular if we are
dealing, not with liquid/gas, but rather with a
liquid/liquid system. Pismen and Nir (1982) observed
that a simple wedge solution was not acceptable in the
macroscopic regime, and that self-similar solutions led to
strange ‘“‘spiral” configurations. Pumir and Pomeau
(1984) propose a set of traveling waves following the con-
tact line. This should be checked by experiments on con-
solute mixtures.

2. Effects of additives in the liquid

a. Volatile impurities

Their role in spreading was noticed early in the optical
studies of Bascom et al. (1964): certain precursor struc-
tures occurred only with impure liquids. The explanation
of Bascom et al. of these results is based on a local gra-
dient of the surface tension, induced by evaporation near
the tip. This interpretation is very plausible. It may be,
however, that in some cases the renormalization of S by
vapor signals—described in Sec. IV.F.1.c above—plays a
role.
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b. Surfactants

When they are insoluble in the bulk liquid, surfactants
appear only in films at the various interfaces
(S/L,S/V,L/V). If we know the surface concentrations
I';; in these various films, the conservation law gives a
condition on the hydrodynamic velocities. Consider, for
instance, the very simple case where I'y =T is finite,
while I's; and gy vanish. Then the velocity at the free
surface of the liquid must be just equal to the line velocity
U, so that the surfactant “never catches up” with the line.
This, in turn, imposes a certain modification of the velo-
city profile in the liquid film and a change of the numeri-
cal coefficients in the Tanner law (4.20). Considerations
of this type were already present in the work of Huh and
Scriven (1971).

For many practical purposes, the effects of surfactants
are much more spectacular. For instance Lelah and
Marmur (1981) find that a small amount of surfactant
(above the critical micelle concentration) gives rise to a
hydrodynamic instability in spreading. A well-known
class of experiment makes use of a surfactant that at-
taches slowly to the S/L interface and makes it hydro-
phobic: a droplet spreads and then retracts. All these ef-
fects will require good models of adsorption/desorption
kinetics (involving single-surfactant molecules or involv-
ing micelles).

¢. Polymers

In solution, polymers also can be adsorbed on the S/L
interface (and/or on the L /V interface). All the effects
mentioned above may appear. Moreover, the hydro-
dynamic extrapolation length b of Fig. 32 may be drasti-
cally reduced by polymer adsorption.
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