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Recent advances in the understanding of Rayleigh-Benard con~ection and turbulence are reviewed in light
of work using liquid helium. The discussion includes both experiments which have probed the steady flows
preceding time dependence and experiments which have been directed toward understanding the ways in

which turbulence evolves. Comparison is made where appropriate to the many important contributions
which have been obtained using room-temperature fluids, and a discussion is given explaining the advan-

tages of cryogenic techniques. Brief reviews are given for recent experimental investigations of convection
in He- He mixtures —in both the superfluid and the normal states —and investigations of convection in ro-
tating layers of liquid helium.
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I. INTRODUCTION

This paper describes recent studies of Rayleigh-Benard
convection with particu1ar emphasis on the experimental
results which have been obtained using liquid helium.
Rayleigh-Benard convection occurs when a horizontal
layer of fluid is heated from below with a sufficiently

large heat flux to generate flow. The motivation for
studying this system is twofold. From a practical
viewpoint, many interesting processes involve thermally
driven flows; among these are such diverse phenomena as
convection in stars, the ocean, and the atmosphere, and
the production of pure semiconductors. Normand,
Pomeau, and Velarde (1977) have discussed a number of
situations in which convection occurs. Additional reviews
have been given by Busse (1978,1981) and Koschmieder
(1974). From a fundamental point of view, convective
flows provide experimentally realizable systems for very
precise studies of nonlinear phenomena in dissipative sys-
tems; areas of study include the onset of turbulence and
nonlinear pattern formation. An immense variety of sys-
tems, some of which have been recently discussed by
Swinney (1983), fall within the rubric of nonlinear phe-
nomena, and the availability of well-defined experiments
is particularly important to theoretical progress.

Although Rayleigh-Benard convection was studied ear-
ly in this century by its namesakes, experimentally by
Benard (1901) and theoretically by Rayleigh (1916), the
emergence of new techniques has provided comparably
new and powerful insights. Specifically, lasers have pro-
vided precise local velocity data, computing power is
greatly increased, and recent theoretical studies of non-
linear systems have provided an important framework for
understanding the onset of turbulence. Cryogenic mea-
surements, the focus of this paper, are particularly useful
for obtaining exceptionally precise thermal information
on the convecting and turbulent states. The relevant ex-
perimental parameters for normal (i.e., nonsuperfluid)
liquid helium fall in a particularly fortunate range, as
first pointed out by Ahlers (1974,1975). Despite the low
temperatures involved, the cryogenic results are descrip-
tive of flows in ambient air, yet they can be obtained with
a precision greatly exceeding that obtainable with room-
temperature gases. In addition, liquid helium offers a
rich structure associated with the superfluid transition;
here mixtures of the two stable isotopes He and He are.
particularly interesting.

An understanding of the phenomena involved in a con-
vecting fluid requires a description of the equations of
motion and an identification of the relevant parameters.
Section II contains such a description, as well as a discus-
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658 Behringer: Rayleigh-Benard convection. . . in liquid He

sion of the thermodynamic, transport, and phase proper-
ties of liquid helium which make it such an unusual and
useful fluid. At the end of the section there is a brief dis-
cussion of experimental considerations. Section III illus-
trates the current understanding of the laminar (i e.,
steady) flows preceding turbulence using results drawn
chiefly from cryogenic experiments. At this point, how-
ever, it is worth emphasizing that many room-
temperature measurements involving flow visualization or
direct velocity determinations have provided complemen-
tary information not available from the helium experi-
ments. Any discussion of the cryogenic measurements re-
quires a comparison to these other results. Section IV ad-
dresses the problem of turbulent onset. Only a brief re-
view of recent theories pertaining to the route to tur-
bulence is given, since more extensive theoretical discus-
sions have been given by Ott (1981) and Eckmann (1981)
and in Order and Chaos as introduced by Swinney (1983).
It is important to note that this paper considers only the
onset of turbulence or chaos and that fully developed tur-
bulence lies outside its bounds. Examples drawn chiefly
from low-temperature experiments demonstrate various
aspects of theories describing the onset of chaos, and also
show where more work is needed. Section V briefly de-
scribes several systems related to convection in a pure
fluid that have been investigated using liquid helium.
This section also reviews phenomena which are unique to
the superfluid transition in mixtures of liquid 'He and
He. Section VI provides a summary and an indication of

possible new directions in cryogenic studies of convection
and turbulence.

One additional point concerns the turbulence which
occurs in pure He in the superfluid phase. The tur-
bulence in this case, arising from a tangle of quantized
vortices, is distinctly different from that for a convention-
al Newtonian fluid. This area will not be considered here,
but an extensive literature on superfluid turbulence exists,
including a recent review by Tough (1982).

II. DESCRIBING RAYLEIGH-BENARD
CONVECTION

A. Statement of the problem

The problem to be solved involves a layer of pure fluid
shown schematically in Fig. 1(a), having uniform thick-
ness d, and oriented in the direction perpendicular to
gravity g. For definiteness, the coordinate origin is
chosen so that the horizontal boundaries correspond to
z=+d/2. On each boundary the temperature is fixed
and independent of x or y. The expansion coefficient
tzz ———p '(r)plB)T)z defined in terms of the mass density

p is assumed positive throughout the fluid, and the bot-
tom of the layer has a temperature AT warmer than the
top. A complete hydrodynamic description gives the
velocity v(r, t), the temperature T(r, t), the pressure
P(r, t) throughout the fluid and for all times after t=0

Ji

'y

T+bT L.
tQ

(a)

(c)

when initial values v(r, O), T(r, O), P(r, O) and boundary
conditions are known.

B. Equations of motion

Conservation laws

The appropriate dynamics are inherently classical; the
equations of motion in their most basic form are conser-
vation laws [see, for instance, Landau and Lifshitz
(1959)]. In principle, it might be necessary to consider
microscopic degrees of freedom if the equations are to
describe turbulence. Several theoretical (Zaitsev and
Shliomis, 1970; Graham, 1974; Swift and Hohenberg,
1977) and experimental (Sano and Sawada, 1978; Ahlers,
Cross, Hohenberg, and Safran, 1981) efforts have been
directed toward understanding the effects of noise on
Rayleigh-Benard convection. However, both theory and
experiment indicate that a continuum description suffices
to describe convection near onset within current experi-
mental resolution. One of the most important recent re-
sults is that the origins of turbulence in a convecting layer
are usually attributable to the nonlinear interaction of
macroscopic modes, not to microscopic fluctuations. The
number of degrees of freedom needed to describe a tur-
bulent convecting state may be relatively small, and the
calculation of this number is an interesting problem
which will be discussed briefly in Sec. IV.

The basic laws for mass, momentum, and energy con-
servation are, respectively,

FIG. 1. (a) A layer of fluid having height d heated from below

by a heat flux Q. (b) Schematic of possible patterns of convec-
tive rolls in a circulate container seen from above. (c) Schematic
of possible patterns of convection rolls in a rectangular con-
tainer also seen from above.
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(jp/Bt = —V.(pv),

B(pu; ) It}t= —g atr, , I~x, ,
k

i}( 2 pu +pE+pgz)/~t

= —V [pv( —, u +s+gz+P/p) —v.o trV—T] .

(2)

(3)

bulk viscosity, and tr, the thermal conductivity. All of
these depend on the independent thermodynamic variables
T and P, which may vary in space and time.

Alternative formulations of both Eqs. (2) and (3) are
more conventional. From Eqs. (1) and (2) the time varia-
tion of v is given by

p [8v I8 t + ( v. V ) ]v = VP—+pg + r}V v

Here m.;k, the momentum flux density tensor, has com-
ponents

~ac =P& k +PUi Uk +O ik

with the viscous stress tensor o.;k given by

(4)

k=~(a., /a k+a.k/B, —=', 6,-kv )+~6,kV

Other quantities introduced in these equations are c, the
internal energy per mass, t}, the shear viscosity, g, the

+(g+q/3)V(V. v) .

Inherent in Eq. (6) is the assumption that g and g are ef-
fectively uniform throughout the fluid. Since both quan-
tities depend on T and P, this assumption, although usu-
ally valid, requires justification.

A more conventional formulation of Eq. (3) occurs by
identifying the reversible and irreversible contributions to
the energy transport. The reversible contributions can be
removed through Eqs. (1) and (2) and the remaining ir-
reversible terms form the entropy equation given for s,
the entropy per mass:

T(r}sIBt+v Vs) =V (trVT)+ —, t}g (Bu;IBx„+u„/Bx;—=, 5;„Vv) +g(V v)
k

(7)

Near the onset of convection, several approximations
are in order. The density of parcel of fluid is nearly con-
stant as it moves about —i.e., to a good approximation

dp/dt =Op/Bt+v Vp=0, (8)

or the fluid is incompressible. As a consequence, Eq. (1)
becomes

V v=0,
and Eq. (6) becomes the Navier-Stokes equations

p[r}v/r}t+(v V)v]= —VP+pg+gV'-v . (10)

p=pp[1 —a&( T —Tp)]

s so +cp( T To )/To

(11a)

(1 lb)

The quantities po, To, and so are constants corresponding
to appropriate values within the layer, and cp is the
specific heat per mass. The approximation of Eq. (11a) is
used for the body force term pg in Eq. (10); otherwise, p
can be treated as a constant equal to po. Note that the
dependence of p on T must be included in the body force
to describe convection. The terms multiplied by g in Eq.
(7) are negligible compared to others in the equation, at
least when the flow is near onset. In addition, the thermal
conductivity is generally nearly constant over the layer.
Implementing these approximations in Eq. (7) yields the
heat equation:

Since the flows are buoyancy driven and not pressure
driven, s(P, T), in Eq. (7) depends relatively little on P.
Likewise, the pressure dependence of p(P, T) in Eq. (10) is
relatively unimportant. If the temperature gradients are
not too large, then these quantities can be approximated
as

BT/Bt+v. VT=D V' T, (12)

where DT is the thermal diffusivity defined by
DT ——~/pcp.

Equations (9)—(12), known as the Oberbeck (1879}-
Boussinesq (1903) approximation, form the springboard
for further discussion. The approximations mentioned
above are discussed in more detail by Gray and Giorgini
(1976) among others. Nevertheless, the nonlinear terms
(v V}v in Eq. (10}and v V T in Eq. (12) are thought to be
the most important nonlinear terms for the convective
problem. Their presence is responsible for a number of
interesting effects, including turbulence. In particular, be-
cause these terms are nonlinear, they allow the possibility
of multiple solutions, in an analogous way to the multiple
roots which occur in nonlinear algebraic equations.

2. Equations of motion
in dimensionless form

A useful formulation, as discussed by Schliiter, Lortz,
and Busse (1965}is produced by rescaling the variables of
Eqs. (9)—(12) in terms of natural units for the system; in
this manner, the resulting dimensionless equations contain
only two dimensionless parameters instead of a much
larger number of dimensioned ones. The natural units are
put together from the various quantities DT,g, . . . . A
useful although not unique convention expresses length,
time, mass, and temperature in units of d, d /DT, ppd,
and DTv/opgd . Here v=g/p is the kinetic viscosity.
The quantity d /DT=t„ is particularly useful; it corre-
sponds roughly to the time for heat to diffuse vertically
across the layer. It is also useful to write the temperature
field, still in dimensioned units, as the sum of a steady
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conductive portion —(AT/d)z and a convective portion
0.

TABLE I. Some typical Prandtl numbers.

Fluid Pr
T(r, t) = T(0)—b Tz/d+8(r, t) . (13)

Note that be1ow the onset of convection, 0=0 in the
steady state. Using the new temperature representation
and then expressing all quantities in terms of natural
units, we see that the equations of motion become

Air
Liquid helium
Mercury
Oils
Water

0.7
0.5—1.0
0.025

10 and greater
2—10

V'. v =0
av/at+(v V )v = —Vw+Pr8z+PrV v,
30/Bt+ v.VO=Rz. v+ V 0,

(14)

(15)

(16)

where m contains a dimensionless pressure term as well as
terms generated by using Eq. (13) in the Navier-Stokes
equations. Equations (14)—(16) contain only the dimen-
sionless parameters R, the Rayleigh number, and Pr, the
Prandtl number:

and

R =a&gd 6T/DTv

Pr=v/DT .

(17)

(18)

Qualitatively, R provides a measure of the competition
between buoyancy and dissipation, with a&ghT giving a
measure of the former, and vDT giving a measure of the
latter. The appearance of both v and DT is understand-
able, since a rising volume of warm fluid loses energy by
viscous drag and by thermal diffusion to the colder sur-
roundings. Convection begins at a nonzero critical Ray-
leigh number R, when the available buoyancy overcomes
the effects of dissipation. For a horizontally infinite
layer, this happens for R, =1707.76. . . . Real experi-
ments must be done in finite geometries having vertical
walls which exert additional drag on the fluid. Conse-
quently, horizontally confined layers have va1ues of R,
greater than 1707.8, although the effect is small as long as
the horizontal dimension of the layer is large compared to
d. Convection begins in the form of rolls with alternating
upward and downward Aow which in ideal cases may
resemble those in Fig. 1(a). In actual experiments the ar-
rangernent of the rolls may resemble some of the less or-
dered patterns shown schematically in Figs. 1(b) and 1(c).
The ro11 pattern wavelength, A. , is of order 2d, a fact
which can be qualitatively understood in simple terms: if

is too large, the viscous drag from the horizontal
boundaries will inhibit the flow, if A. is too small,
upward-welling warm fluid will both be able to easily lose
heat to nearby falling liquid and experience increased
viscous drag. Consequently, when convection begins in a
very wide layer, the dimensionless wave number o.,

a =2nd/~ (19)

is predicted (Chandrasekhar, 1961) to have the critical
value a, =3.117.. . , or A. /d=2. 02. . . .

The parameter Pr gives a relative measure of viscous
and thermal diffusion; values of Pr for some fluids are
listed in Table I. Fluids with similar Prandtl numbers,
such as air and liquid helium, are expected to behave
similarly, although a comparison of the dimensioned pa-

rameters would not lead to such an unexpected con-
cl usion. In addi tion, experimentally obtainable liquid-
helium Prandtl numbers extend close to values which are
easily obtainable with water. Thus helium forms at least
a partial bridge between common fluids like water and
very low Prandtl number fluids like liquid metals, typi-
fied by mercury.

One last parameter concerns the effect of vertical con-
taining walls. Since heat transfer and some stretching or
squeezing of the convection rolls occur due to these walls,
their effect is important. This is particularly true when
the horizontal dimension of the layer is comparable to the
height d. An obviously important parameter is the ratio
of an appropriate horizontal length X to the height d, a
quantity called the aspect ratio I:

I =—x/d. (20)

The characteristic length X must be chosen for each
shape of the sidewalls. Although there are no unique
choices, a useful convention is to choose X for a given
geometry so that I roughly represents the number of
pairs of convection rolls. For a cylindrical geometry
which may have either axisymmetric rolls or roughly
parallel rolls, as sketched (from above) in Fig. 1(b), a good
choice for X is the radius, which for reasons of clarity we
write as M~/2, with M~ the diameter. Then

I =M~/2d (cylinders) . (21)

C. Fluid parameters and experimental
considerations

1. Pure helium

Liquid helium has a number of interesting characteris-
tics which in combination allow the experimenter an ex-
ceptional degree of flexibility and precision. Extensive re-

For rectangles a complete description gi ves both the
length and width in units of d. Under carefully prepared
initial conditions, the rolls wi11 align parallel to the short
side of the rectangle, but for random initial conditions,
patterns with defects will form. Hypothetical examples
are sketched in Fig. 1(c). As discussed in Sec. IV, the as-
pect ratio plays a critical role in the evolution of tur-
bulence. In particular, the turbulent states arising in
small-I containers with their constrained rolls are expect-
ed to be rather different from those in large-I containers,
where the flow pattern can make adjustments with con-
siderably more freedom.
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views dealing with the properties of helium are given by
Wilks (1967) and Ahlers (1976), and tabulations of data
have been compiled by Hill and Lounasmaa (1960),
Barenghi, Lucas, and Donnelly (1981), and Behringer and
Ahlers (1982). Due to their quantum nature both He and
He show features which differ from those of most other

fluids. Both liquefy only at low temperatures; He has a
critical temperature of 5.2 K, and 'He has a critical tem-
perature of 3.3 K. Both undergo an additional transition
to a superfluid state. "He is the most extensively used
working fluid in cryogenic convection experiments; its
phase diagram appears in Fig. 2. The boundary between
normal and superfluid, called the lambda line, terminates
at the saturated vapor pressure curve when T =2.172 K.
Continuing upward with a negative slope, this boundary
intersects the melting curve at 1.763 K. To the right of
the lambda line, He behaves like a classical or normal
fluid, and the He experiments described in this paper are
performed in this region. Near the superfluid transition
and at slightly warmer temperatures runs a curve along
which the expansion coefficient a& vanishes; in a region
to the left of the curve the expansion coefficient is nega-
tive. A parallel situation occurs for water at 4'C, and in-
teresting convective phenomena occur in the neighbor-
hood of vanishing a&. The superfluid transition and the
critical point, terminating the saturated vapor pressure
curve, are responsible for many of the interesting proper-
ties which characterize "He. In particular, at these transi-
tions, the thermal conductivity ~ is divergent; for the in-
tervening temperatures, ~ remains large, due to the pres-
ence of the transitions. Figure 3(a) gives ~ for He at
saturated vapor pressure. Using data from White (1959)
for comparison, we see that two useful metals, stainless
steel and oxygen-free high-conductivity (OFHC) copper,

IO

IP 4

IO

I I I

IO
«4 -20 IO

I

IO

60

hC

a) 40
O
E

20

I

I Po
I I I I I

Io IO" IP
T TX~K

FIG. 3. (a) The thermal conductivity ~ of liquid helium at
saturated vapor pressure vs temperature. (b) The specific heat
C, of liquid helium at saturated vapor pressure vs temperature.
C, differs from the specific heat at constant pressure Cp by a
small correction. These curves are from data fitted by
Barenghi, Lucas, and Donnelly (1981), and include work by
Ahlers (1968), Ahlers and Behringer (1979), Buckingham and
Fairbank (1961),Keller (1969), and Hill and Lounasmaa (1957).

30
4P =0

IO
I

SUPER-
FLULD

I

I

I

I

I

I

I

I

0.3—

NORMAL FLUID

CRlTICAL-

O.I—

0.03
T (K}

FIG. 2. Phase diagram of He showing the superfluid or lamb-
da line, the line along which the isobaric expansion coefficient
a~ =0, and the saturated vapor pressure curve where most con-
vection measurements have been made. To the right of the
1ambda line liquid helium is a conventional Newtonian fluid.

have conductivities of -0.002 W/cm K and -4
W/cm K in the temperature range of interest. Inspection
of Fig. 3 provides an understanding of the reason precise
thermal measurements can be made using liquid helium.
To obtain a system which closely matches the idealized
problem of uniform temperatures at the horizontal
boundaries, the experimenter needs a solid material with a
high conductivity compared to the fluid. OFHC copper
clearly satisfies that requirement. On the other hand, if
the vertical walls are too-efficient thermal conductors, the
effect of the fluid will be lost. Often helium measure-
ments are made with very thin stainless-steel walls which
divert only -20% of the heat flux away from the fluid.
In addition, the transfer of energy by radiation is insigni-
ficant in cryogenic experiments, but a serious problem is
room-temperature experiments.

One of the most important aspects of the cryogenic
measurements is their capability of producing inforrna-
tion on time-dependent flows by heat flux or temperature
measurements. If large thermal masses surround the
fluid, temperature oscillations may be severely attenuated
before reaching a detector. Due to the fact that the
specific heat of helium [Fig. 3(b)] is very large compared
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662 Behringer: Rayleigh-Benard convection. . . in liquid He

to the small (-0.002 J/cm K) specific heats of a metal
such as copper which also has a very high thermal con-
ductivity, thermal signals can propagate from the fluid to
a thermometer with virtually no at tention. A well-
defined criterion for the experimental quality of the hor-
izontal boundaries is based on the following simple argu-
ment (Behringer et al. , 1980). A fluctuation 5Te '"' in

the temperature at, say, the bottom of the fluid must
propagate through a thickness h of the bounding material
to reach a thermometer. Because the signal propagates by
thermal diffusion, it is attenuated. The ratio of the re-

ceived to the transmitted power is easily calculated to be

H(tu) =2[cosh(tultuo)' ' +co-s(tulsa)'~-'] (22)

Qoa= +1' P (23)

where the y s are a factor of AT times, respectively, the
logarithmic temperature derivatives of p ',

~ az ~

', v, tc,

and c~. The P s are Prandtl number dependent, but oth-
erwise constant. The flow is Boussinesq for

~ Qoa ~

&&1.
Figure 4(b) shows Qoa, evaluated at KT„versus tempera-
ture as calculated for helium layers with d =0. 1 cm.
Over much of the experimental range

~ Qoa ~

&0.02,
which is a quite reasonable value.

Although experiments are usually designed to satisfy
the Oberbeck-Boussinesq approximation fairly well,
departures from this approximation are also interesting.

where cuo Da I2——h and Db is the thermal diffusivity of
the boundary. Frequencies above cup are attenuated ex-
ponentially. In a typical helium experiment the fastest
frequencies satisfy co/ct)p &0.01, well within a safe limit.

The cryogenic measurements exploi t existi ng technolo-

gy for making very precise measurements at low tempera-
tures. Using resistance thermometry techniques discussed
by Mueller, Ahlers, and Pobell (1976), and Behringer and
Ahlers (1982), one can resolve temperature changes of
-0. 1 pK. This resolution is very small compared to a
typical value, hT, —1 mK, for AT at R, . The exact size
of AT, depends on the thermohydrodynamic properties
Exp D T' v, all of which vary with t he mean tern perat u re of
the layer, as well as the acceleration of gravity g, d, and
the geometry of the container. In a typical experiment for
a large aspect-ratio layer using liquid helium at saturated
vapor pressure, with d=0. 1 cm, the values of AT, depend
on the mean temperature as shown in Fig. 4(a). Over a
significant temperature range the experimental resolution
in this case is at least 0.1% of AT, and often better. By
using containers of differing heights, an experimenter can
always optimize the resolution.

An additional consideration is the extent to which the
helium satisfies the Oberbeck-Boussinesq approximation.
In particular, when AT, becomes large, the temperature
dependence of the fluid parameters may no longer be
negligible. Busse (1967b) has investigated this problem
theoretically, and Ahlers (1980b) and Walden and Ahlers
(1981) have studied it experimentally. The relevant pa-
rameter describing departures from the Oberbeck-
Boussinesq (OB) approximation is

I

I

E
o

&3g l

l

I

I

I

I

p I

I

I-0.02 —
I t

I

I

I
CD
C) I

I

-O.OI- I

I

I

I

I

I

0.00
I.O

0.02
I I

4
T (K)

(c)

FIG. 4. (a) The temperature difference AT, at the onset of con-
vection for a O. 1-cm-high layer of liquid helium at saturated va-
por pressure as a function of the mean temperature T. (b) The
parameter Qoa vs mean operating temperature T for the values
of hT, given in (a). Qoa is defined by Eq. (23) and measures
the departure from the Oberbeck-Boussinesq approximation. (c)
The Prandtl number Pr as a function of T for liquid helium at
saturated vapor pressure.

Recently cryogenic studies dealing with nonideal convec-
tion have been made by Ahlers (1975,1980b) and by Wal-
den and Ahlers (1981). The latter have examined the phe-
nomena of penetrative convection, a topic which has been
studied theoretically by Moore and gneiss (1973) and
Musman (1968). Penetrative convection occurs for fluids
such as liquid helium having a temperature range over
which the expansion coefficient, az, is negative. The
phenomenon is induced by adjusting the cold top tem-
perature to be in the region n~ ~0 and the hot bottom
temperature in the region cz& & 0. Only the bottom of the
layer is gravitationally unstable. However, when convec-
tion begins, flow in the unstable part induces flow in the
stable part, hence the name penetrative convection. A
number of interesting phenomena occur in this and other
non-Boussinesq situations, including the formation of cel-
lular flow patterns.

Figure 4(c) [after Barenghi et al. (1981)]shows an addi-
tional property of interest, the Prandtl number of liquid
helium at saturated vapor pressure as a function of tem-
perat ure.
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2. Mixtures of 'He and 'He

The precise techniques which make pure helium an ex-
cellent experimental medium also apply to mixtures of
'He and He. When X, the molar concentration of He, is
gradually increased from zero, the superfluid transition
temperature is depressed. This is demonstrated in Fig. 5,
which gives the T-X phase diagram at saturated vapor
pressure. When X is sufficiently large, X&0.675, the
continuous superfluid transition is altered to a first-order
transition in which the liquid separates into two distinct
phases of different isotopic composition and density.
Separating the first-order transition curves and the lamb-
da line is a tricritical point. The relevant thermohydro-
dynamic coefficients, discussed in Sec. V, vary signifi-
cantly from one section of the phase diagram to another,
giving the experimenter an exceptionally broad parameter
range for studying the properties of mixtures. Also dis-
cussed in Sec. V are the unique convective flows occur-
ring in superfluid He- He mixtures.

2.0

12

0.8

04
0.2 04 0.6 0.8 I.O

One final point should be made regarding experimental
procedure. In nearly all cryogenic experiments, the heat
flux Q is the fixed parameter rather than hT, the fixed
parameter of theoretical calculations. In addition, the
temperature at the top of the layer is held fixed. The
reason for fixing Q rather than b, T is the increased reso-
lution usually available by this technique. For steady
flows, i.e., those for which dvldt=aTidt =0, the distinc-
tion is usually not important. However, as argued by
Busse (1967a), the distinction may be important for time-

dependent flows. Evidence presented by Gao and Beh-
ringer (1984) indicates that fixing Q rather than hT does
not seriously affect the time-dependent flows near the on-

set of turbulence in liquid-helium experiments.

III. STEADY FLOWS IN A PURE FLUID

A. Introduction

The steady or laminar flows preceding turbulence are
interesting for several reasons. Since they precede tur-
bulent flows, any detailed description of turbulence
should consider their nature. In this regard, linear stabili-
ty theory, which predicts the onset of instabilities of a
steady state to small perturbations is particularly per-
tinent. In turn, linear stability theory for convective
flows is paralleled by similar analyses in a variety of prob-
lems. Finally, the laminar flows are also interesting in
their own right, and the evolution of a steady flow
described by nonlinear dynamics is a challenging problem.

B. Transition to convection

The transition to convection in a horizontally infinite
layer provides a simple example of stability theory, and a
foundation for further discussion of convective flows.
Here the discussion will be fairly brief, but a detailed dis-
cussion is given in Chandrasekhar (1961).

Stability theory begins by finding a steady solution,
which for R &R, corresponds to v=8=0. Then the di-
mensionless temperature field T for the steady solution
satisfies V' T=0, so that

T —Tp ———Rz . (24)

Also, by inspection of Eq. (15), the effective pressure term
w must then be a constant.

Finding a steady solution does not complete the prob-
lem, however, since there may exist other steady solutions.
In order to be relevant, a solution must also be stable.

' Here there are two types of stability. The weakest is local
stability, a term referring to the response of the system to
an arbitrary infinitesimal perturbation. If all possible in-
finitesimal perturbations on the steady state decay in
time, then the solution is locally stable. The stronger type
of stability, global stability, is inherently more difficult to
prove and considers the response of the system to any size

perturbation.
Continuing with the convective onset as an example of

local stability, we find that the next procedure in the cal-
culation is a search for solutions consisting of the laminar
state with a superposed infinitesimal perturbation. Due
to their smallness all terms higher than linear order in the
perturbation are neglected. In the present example, 0 and
v are both considered to be infinitesimals, which in this
case will be written as 50 and 5v to emphasize that condi-
tion. The pressure term w has the form w=const+ 5w.
The fields 5v, 50, and 5w are assumed to have the space-
time separated forms

FIG. 5. The phase diagram in the T-X plane for 'He- He mix-
tures at saturated vapor pressure. Relevant features include the
superfluid or lambda transition, Tq(X), the tricritical point
(TCP), and the two-phase region bounded by the first-order
transition lines.

5v=V(r)e ',
M=0(r)e ',
5w=W(r)e '.

(25)

(26)

(27)
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The resulting linearized equations for these modes are

V.V =0
o-V= —V W+Prez+PrV' V,
oe=RV, +V 8 .

(29)

(30)

When the appropriate boundary conditions are invoked,
the result is a self-adjoint eigenvalue problem for the
growth rate o.. If all the eigenvalues, which must be real,
are negative, the steady solution is stable; otherwise, it is
unstable to any mode with positive o..

In the case at hand one obvious type of mode has
V =0, e=e(z), so that 0 corresponds to a solution of
Fourier s law. This sort of diffusive mode, which is ob-
served experimentally below the onset of convection, often
has the form

6=sin[q„(z——, )], (31)

q„=(2n+1)m./2, n =0, 1. . . ,

o„=—q„(0.

(32a)

(32b)

The values of q are quantized, since e=O at z= —,', and
the heat flux c)e/c)z=0 at z= ——,'. These conditions
must be invoked if the usual experimental conditions of
fixed heat flux and fixed top temperature are to be valid.

When R (or b, T) is small enough, these slowest one-
dimensional diffusive modes relax the slowest in response
to a transient, and therefore dominate for long times. As
R grows, buoyancy becomes more important. The system
moves closer to being able to sustain convection, and con-
sequently the convective modes to be described below will
tend to decay more slowly. At the onset of convection the
critical mode neither grows nor decays; when R exceeds
R„this mode will grow exponentially until the discarded
nonlinear terms become important.

The convection modes can be obtained by operating on
Eq. (29) with VX VX and taking the z component. This
leaves only V, and 6 coupled via Eq. (30) and

leads to the restrictions

V, =aV, /az=e=o (z=+-,') . (37)

When R, P, a, and o are given, Eq. (35) yields six
values for q, allowing a superposition of six terms each
for 6 and V, in the various terms e ' 'e~'. The six rela-
tions of Eqs. (37) imply a functional relationship

cr=cr(R, Pr, a) . (38)

The most important case occurs for o.=O. Then the al-
lowed values R (a) form the boundary above which the
convective modes will begin to grow in linear order and
the conductive solution will be unstable. It is important
to note that when o.=O, a condition known as neutral sta-
bility, the Prandtl number dependence contained in Eq.
(35) vanishes; consequently the onset value R for a given
mode depends only on a. Figure 6 shows the resulting
neutral stability curve R vs a for the lowest symmetric
mode, which is the one for which convection can first be-

gin. The smallest or critical Rayleigh number of the neu-
tral stability curve, R„and corresponding critical value
of e are

Rc = 1707.7

nc =3.117

(39)

(40)

=—R,der/dR =38.40Pr/(1+ l.954Pr) (41)

That a, =3.117 clearly corresponds to rolls only slightly
wider than they are high.

When R is just larger than R„other modes with wave
vectors near a, will also grow in the linear theory, and the
conductive solution will be unstable over a continuum of
wave vectors, with any orientation also allowed for the
convective rolls. The growth rates and onset Rayleigh
numbers for these near-critical modes can be obtained by
expanding Eq. (38). The relevant derivatives which are
evaluated at a=a„R=R, are given by Wesfreid et a1.
(1978) and for Eq. (41) by Behringer and Ahlers (1977):

oV V, =Pr(V —c) /c)z )+Pr(V )-'V, . (33) and

When describing a laterally infinite layer, one makes the
difference between the horizontal and vertical directions
explicit by looking for solutions having a spatial depen-
dence e' 'e~'. Here

go ——( 2R, ) 'd R /d a =0.3848 .

8000

(42)

a =(a„,a~, 0)

is the horizontal wave vector, with the value of a deter-
mining the value of the convective wavelength A, . Equa-
tions (30) and (33) lead to the characteristic equation

(q —a-')[(o/Pr) —(q —a )][o—(q —a )]=—Ra (35)

linking a, R, o., Pr, and q with the additional constraint

6000—

2000

V, /e=(cr+a —q )/R . (36)

In order to complete the problem, one must impose the
relevant boundary conditions. These are assumed to be
"rigid" boundary conditions with v=O, 0=0 on the hor-
izontal surfaces. Using these conditions with V.v =0

0
Q

FIG. 6. The neutral stability curve R vs a for a horizontally in-
finite layer of fluid. See Chandrasekhar (1961).

Rev. Mod. Phys. , Vol. 57, No. 3, Part l, July 19S5



Behringer: Rayleigh-Benard convection. . . in liquid He 665

The relation giving o for near-critical modes is then

g =ro '[(R R—, ) /R, —go(a —a, ) j . (43)

2500

2100-
~ CHARLSON AND SANI
~ GAO yf a/.

1900—

(a)

This relation indicates that the growth rate o for the criti-
cal mode (a=a, ) will linearly increase from negative to
positive values as R increases from a subcritical to a su-
percritical value. Also, modes having a&a, will have
growth rates which are reduced by the quadratic term
(a —a, )'.

So far, the effects of the vertical boundaries have been
neglected. When I is very large, the infinite —aspect-ratio
approximation is reasonable, at least in determining R, .
However, as 1 decreases, the vertical walls exert extra
drag on the fluid which must be overcome by the buoyan-
cy force for convection to begin. Consequently R, (I )

will increase as I decreases. Although this is conceptual-
ly clear, obtaining a numerical result for R, becomes con-
siderably more difficult. Solutions with the exponential
time dependence e ' are still possible, but attempts to find
solutions which are separable in the horizontal and verti-
cal directions and which simultaneously satisfy rigid
boundary conditions on all the surfaces are unsuccessful;
the wave number n is no longer a sharply determined pa-
rameter. However, values of R, can be obtained by a
Rayleigh-Ritz technique, since the eigenvalue problem
corresponds to a self-adjoint operator with the quantity
R„defined for volume integrals over the entire layer,

eV' ed r
Ru— (44)

J(V V V+26V, )d r

providing an upper bound to R, . Charlson and Sani
(1970,1971) have used such a technique to obtain esti-
mates for R, in containers with cylindrical geometry.
The form which they use to obtain R„differs from Eq.
(44) due to their choice of nondimensionalizing factors.
These calculations are useful in cryogenic measurements,
many of which have been made with cylindrical con-
tainers. Figure 7(a) shows values of R, vs I as calculated
by Charlson and Sani for axisymmetric modes and insu-
lating side walls. Although nonaxisymmetric modes may
have somewhat smaller values of R, for some values of
I, the results of Fig. 7(a) lead to the qualitatively correct
conclusion that vertical walls affect R, only for I (2.
Gao, Metcalfe, Jung, and Behringer (1985) have measured
R, (I ) in the range 3 ( I (6 using liquid He in cylindri-
cal containers. The results, shown as triangles in Fig.

'

7(a), agree rather well with the theoretical calculations for
axisymmetric modes. An extension of the Rayleigh-Ritz
technique for calculating do ldR has been used by Shau-
meyer, Behringer, and Baierlein (1981) to show that this
quantity also varies little from the infinite-layer value un-
less the aspect ratio satisfies I (2. Their results for insu-
lating sidewalls and axisymmetric modes are shown in
Fig. 7(b).

C. Convection just above R,

The steady flows which evolve for R & R, are more dif-
ficult to describe, since they require nonlinear terms
which were discarded in the stability analysis for the on-
set of convection. These nonlinear terms cause the criti-
cal or near-critical modes, which initially grow exponen-
tially, to approach a saturated steady value.

'

In addition,
they allow more than one steady solution, so that the
theory should also determine which solutions are stable.
Schliiter, Lortz, and Busse (1965) have carried out a de-
tailed analysis of the steady solutions applicable for
R &R, and an infinite horizontal layer. Adapting their
notation, one can write the complete equations of motion
(14)—(16) as

1700 with

Bu/Bt+(u B)u =Du —Bw, (45)

14-

b
~ l3-

~ SHAUMEYER,
BEHRINGERs ANO

BAI ERLE IN

B.u =0 .

Here u is a four-component column vector field

T Tu = ( u o, u ] &
u 2, u 3 ) —( 8& U» & Uy & Uz )

D is a matrix operator

(46)

2.0 8.0I2 4.0 6.0
ASPFCT RATIO P

FICi. 7. {a) Critical Rayleigh numbers R, {Charlson and Sani,
1970) and {b) growth rate derivative R,do. /dR vs aspect ratio,
for axisymmetric modes in cylindrical containers with insulating
sidewalls (Shaumeyer, Behringer, and Baierlein, 1981). The tri-
angles in (a) are experimental data from Ciao, Metcalfe, Jung,
and Behringer (198S).

V 0
0 PrV'

0 0
Pr 0

0 R
0 0

PrV' 0
0 Prg'

(47)

and B is the four-dimensional operator B= (O,B/Bx,
B/By, B/Bz). D has the interesting property of being self-
adjoint with respect to the scalar product defined in terms
of the total volume integrals over the fluid
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(u, u ') =R f (u*, uI+u2uz+u3u', )d'r

+Pr uouod'r (48)

for two four vectors u, u
' whose components satisfy Eq.

(46) and rigid boundary conditions. Indeed, the linear sta-
bility problem for the onset of convection results when
the term (u .t) )u is omitted from Eq. (45) and only
D remains. That D is a self-adjoint follows from the
choice of the metric factors R and Pr in (48), from the
fact that only V' appears in the differential components
of D, from the boundary conditions imposed on the fields
u and u ', and from the condition B.u=0.

Schluter, Lortz, and Busse obtained steady (i.e., time-
independent) solutions to Eqs. (4S) and (46) and investi-
gated their stability by means of an expansion in a small
parameter A. , which gives a measure of how far the system
is above R, . Since v, 0, and R —R, vanish at the critical
Rayleigh number, the expansion takes the form

R —R, =aR('j+a-'R(-"+ ~ ~ ~, (49)

u=Au +A, u +. . .—()) 2 —(2)

One of the key- results of this analysis is that R ' ' van-
ishes, so that to leading order

A. ~(R —R, )'~- .

As a consequence, v and 0 vary as (R —R, )'t near R, .
Figure 8 shows an experimental confirmation of this re-
sult due to Berge and Dubois (1974) and Berge. (1975).
Here one component of v, at a fixed position in the layer,
as measured using a laser velocimetry technique, is shown
versus

E.:—(R —R, )/R, . (52)

The data agree quite well with the solid line which varies
as E'~-'.

In the case of liquid-helium measurements, the velocity
field is not readily observable. However, the dimension-
less heat flux Q is simply related to the dimensionless
velocity and temperature by

Q= —VT+Tv . (53)

In the steady state, the total heat per area per time carried
from the bottom to the top of the layer is identical to the
volume average (Q, ) of the vertical component of Q:

(Q, ) =R+(8U, ) . (54)

1.08,

m 1.06-lL

K

I.02

1.0C =

I t

0.98 1.00 1.02 1.04

R/Rc
FIG. 9. Heat-transport data N(R j vs R for two cylindrical
containers having I =4.72 (solid symbols) and I =2.08 (open
symbols), after Behringer and Ahlers (1977,1982).

10B 110

Only the 0 part of the temperature field appears in the
average of (54), because the averaged product of the con-
ductive portion of T and v vanishes. Since both U, and 0
grow as c ' ' above R„(Q,) should show a leading
term proportional to c. A convenient way of representing
a heat-flux data consists of normalizing (Q, ) by the con-
ductive portion, R. The resulting dimensionless quantity
is called the Nusselt number, N:

N = 1+ ( HU, ) /R . (55)

N is unity below R, and should grow linearly in c with
slope S for R )R, :

N =1+So+ . (56)

Experimental data by Behringer and Ahlers (1977,1982)
which demonstrate this expectation are given in Fig. 9.
These data pertain to measurements on liquid He in
cylindrical containers with I =4.72 and 2.08. Except for
a very small region near R„Nis we11 characterized by a
linear term plus small higher-order corrections in c. The
rounding very near R, is attributable to slight imperfec-
tions such as variations of the height d, or small thermal
perturbations associated with the sidewalls. The patholo-

gy of imperfections has been treated by several authors,
including Kelly and Pal (1976), Hall and Walton (1977),
and Daniels (1977,1978). On balance, the c' - power law
for the velocity and temperature perturbation is now well
establi shed.

IOOO
D. Amplitude and phase equations

E
IOO

O
E)

IO-
I

O.OI O. I I.O

I

IO.O

FIG. 8. The velocity v, at one point in a convecting layer of oil
vs E=(R —R, )/R„after Berge (1975) [see also Berge and Du-
bois (1974)]. On a log-log plot the slope is 0.50+0.01.

1. A simple example

Much of the rather complicated analysis contained in
the expansion techniques of Schliiter, Lortz, and Busse
(1965) can be represented in a simpler, more compact
form, by an amplitude equation. Recent work has been
done by Swift and Hohenberg (1977), Wesfreid et al.
(1978), Cross (1980,1982), Cross et al. (1980,1983),
Pomeau and Mannevi1 le (1981), Pomeau and Zaleski
(1981), Ahlers et al. (1981), Greenside et al. (1982), and
Greenside and Coughran (1983). Here, the idea originated
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by Newell and Whitehead (1969) and Segel (1969), is that
v and 0 just above R, will have a spatial dependence
which strongly resembles the critical mode. Thp convec-
tive states just above R, should be describable by simply
giving the amplitude A corresponding to the projection of
the motion onto this mode with, possibly, corrections for
small adjustments in the shape of the rolls (Cross, 1980).
Since A may depend on time, this approach has the added
advantage of being able to describe in a simple way the
growth and saturation of the steady-roll pattern. In addi-
tion, the effects of the sidewalls on the flow, which were
not considered by Schliiter, Lortz, and Busse, can be un-
derstood using an amplitude equation within an analytical
framework. This has been done recently by Cross (1982)
and by Cross, Daniels, Hohenberg, and Siggia
(1980,1983). These authors consider a number of dif-
ferent cases. Here it is useful to focus on one of the sim-
plest possibilities in order to observe some of the pertinent
features.

In the event that the fields v and 0 depend, as in Fig.
1(a), only on z and one horizontal coordinate, chosen to be

y, these quantities can be written in terms of an amplitude
A (y, t), which varies slowly in space by

u =E'~'(Ae ' —c.c. )uyp(z)+O(E),

v„=0,
v, =E'~-'(Ae ' +c.c. )v, p(z)+O(E),

O=E' (Ae ' +c.c. )0p(z)+O(e) .

(57)

If Eq (57) i.s to be a valid solution to O(E), A must satis-
fy

BA/Bt =r '(EA bA
(

A
~

'—+('B-'A/By' ), (58)

where Tp and gp are given by Eqs. (41) and (42). Several
features of Eq. (58) are worth noting. (1) For early times,
the growth of A from a small initial value is proportional

ct /70 2 2to e '. (2) The term B A/By allows for an adjustment
in the roll wave vector, an effect which is important near
walls. (3) The cubic term in A will provide a saturation
mechanism which limits the growth of A. This last prop-
erty is particularly interesting. In the case that the term
B A/By is negligible, Eq. (58) becomes an ordinarily dif-
ferential equation for A (t). The solution for R & R, is

I.01
CI

l.02

0.986

0.984

0812

04$0

7
e

oo

F000

t(s)

I
IOO

OA

2000

I
200

(a)
3000

I
500

O.R

i
A(oo )

i
=(Elb)' ' . (60)

Equation (60) reflects the fact that v and 0 vary as c'
near R, . The convective time

(61)+RB = 70~~

clearly sets the final scale for the approach to steady con-
vection, and experiments should show critical slowing
down which is analogous to the behavior of a mean-field-
like system near its critical point. This analogy can be
pursued further by noting that A ~c' plays th'e role of
an order parameter. Measurements of the critical slowing

(59)

C is related to the initial value of A, and A( oo ), the limit-
ing value of A as taboo, is

" "c}lac

FIG. 10. (a) Final evolution of hT following a step increase in
the heat current Q from below to above R, . Data are for a
I =4.72 cylindrical container (Behringer and Ahlers, 1977).
The section of the curve marked v.~ is dominated by the slowest
diffusive thermal modes of Eqs. (31) and (32). The section
marked ~Rq is dominated by the convective mode. (b) A similar
time evolution for hT following a step decrease in Q from a
steady convecting state to a subcritical state (Shaumeyer and
Behringer, 1981) for a cylindrical container with I =6.22. (c)
Experimental data for the inverse of the observed convective re-
laxation time rR& vs c, with the solid circles corresponding to
l"=4.72, and the open circles corresponding to I =2.08. The
squares correspond to measurements of rD.
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2. A Lyapunov functional
and pattern formation

When one characterizes the steady states preceding tur-
bulent onset, an important question involves determining
the way in which the convection rolls adjust to the verti-
cal walls and respond to initial transients. Unless particu-
lar care is taken, the rolls will not be uniformly aligned,
and defects will form. Indeed, competition between
boundary and bulk effects leads to textured and defected
flow patterns. An amplitude equation, which under some
conditions may be derived from a Lyapunov functional, is
a useful tool that has been used recently by Cross (1982),
Greenside et al. (1982}, and Greenside and Coughran
(1983) to address the problem of determining preferred
flow patterns. A Lyapunov functional for a dynamical
system, as discussed, for instance, by Hirsch and Smale
(1974), has a lower bound and can only decrease or
remain constant as the system evolves. Cross (1982) looks
for solutions valid to O(c), allowing for roll curvature
and having the form

8=/(x, y, t)8p(zl, (62)

down were reported by Wesfreid et aI. (1978) and by
Behringer and Ahlers (1977) using liquid helium. In the
latter experiments, the heat flux Q was increased instan-
taneously from a subcritical value to slightly supercritical
value which remained fixed thereafter. The evolution of
b, T following such an event is shown some time after Q is
switched on in Fig. 10(a). Initially, ET rises rapidly; then,
as the diffusive modes of Eq. (31) decay, it moves toward
a value which is higher than the long-time limit. Eventu-
ally, the slower convective modes begin to grow, causing
the fluid to carry the heat more efficiently. The result is
a decrease in AT as the system moves towards a steady
state. During this final decay, AT should relax with a
time constant of ~zz/2. The critical slowing down below
R, can be obtained by establishing a convecting state fol-
lowed by a step decrease in Q to a subcritical value. An
example of the ensuing relaxation is given in Fig. 10(b)
for a cylindrical container with I"=6.22 (Shaumeyer and
Behringer, 1981}. Analysis of the data for two different
aspect ratios yielded the circles in Fig. 10(c), where the
observed values of rett as well as the diffusive times ro,
the longest of the relaxation times in Eq. (32), are given
versus E for the final state. The convective fiows occur-
ring in the I =4.72 container of Fig. 10(a) were later
shown by Ahlers, Cross, Hohenberg, and Safran (1981) to
have additional transient behavior requiring a more so-
phisticated analysis. However, the data give a semiquan-
titative demonstration of critical slowing down. The ex-
perimentally obtained data for rtttt are consistent with the
linear dependence on c of the slowest time scale. That the
slope of the observed relaxation rates with respect to E is
found to agree with the I"=~ value is justified through
the calculations of Shaumeyer, Behringer, and Baierlein
(1981) shown in Fig. 7(b), indicating that the growth rate
of the critical mode is relatively insensitive to I until
I" &2.

u„=u p(z)(ia, ) 'Bg/Bx,

u~ =up(ia, ) 'BP!By,

u, = Qu, p(z) .

(64)

(65)

+ —,(gp/4a, )[(V +a, )11]'I,
where the term in g4 is a representation of a kernel

Then

rpP= 5F/5—$ .

(66)

(67)

The time derivative of F has the property

F= r I—d r(BQ/dt) (68)

i.e., it cannot increase in time. Hence the "preferred'
state of the system has the smallest possible F. Cross
(1982) has calculated F for various roll configurations.
An important result of this analysis is the prediction that
rolls will tend to intersect rigid nonslip walls in an ap-
proximately perpendicular direction. Gollub and Stein-
man (1981) and Gollub and Heutmaker (1984) have pro-
vided a particularly clear demonstration using laser
Doppler velocimetry techniques on a large rectangular
layer of convecting water. Results by Gollub and Heut-
maker are shown in Fig. 11, which shows a computer-
enhanced Doppler image of the flow in a large rectangle.
Recently, a number of other experiments, including those
by Croquette, Mory, and Schosseler (1983), Walden et al.
(1983,1984), Steinberg, Ahlers, and Cannell (1984), and
Croquette and Pocheau (1984), have used visualization
techniques to study pattern formation.

The flow patterns in helium experiments have oot yet
proven accessible to direct observation, and two factors
make visual observations very difficult. First, the dielec-
tric constant of liquid helium is very nearly unity. Conse-
quently even simple flow visualization through the

'(v )E,,

+c ' AL

M)
C

'v-

FIG. 11. A convective pattern observed using a Doppler velo-
cimetry flow visualization technique with computer enhance-
ment (Gollub and Heutmaker, 1984).

The equation of motion for f can be written in terms of
the variation of a Lyapunov functional F given by

F= d'r —,c ——, E. + —,
'
g
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focusing-defocusing effects of induced gradients in the in-
dex of refraction is very difficult with helium. Second,
the viscosity of helium is quite small, so that suspending
small light-scattering objects in the fluid, a process com-
plicated by electrostatic attraction of the particles to the
walls, is also quite hard. In view of these difficulties,
several alternative techniques for providing local informa-
tion have been developed. For instance, Libchaber and
Maurer (1978) have used very small thermal probes, and
Ahlers and Behringer (1978b) have used ion currents as
probes of the vertical velocity. These techniques have not
been developed to the point of yielding information on the
flow patterns.

Heat-transport data can be used, however, to infer pos-
sible roll patterns and other interesting information.
Ahlers, Cross, Hohenberg, and Safran (1981}have fitted
numerical integrations of amplitude equations to data
showing the evolution of flow just above R, . The data
were obtained in a cylindrically confined helium layer
having I"=4.72, with experimental details to be found in
Behringer and Ahlers (1982). A particularly interesting
feature of the analysis by Ahlers et al. (1981} is their
modeling of the mechanism responsible for the initial
growth of A or g in Eqs. (58) or (67). Since these equa-
tions are homogeneous, they cannot describe instabilities
growing from zero amplitude. An appropriate boundary
or initial condition may be invoked to enforce a nonzero
initial value, or an inhomogeneous forcing field may be
added. Two possible sources for such a forcing field stud-
ied by Ahlers et al. (1981}are stochastic thermal noise
and small perturbations which make the bifurcation to
convection imperfect. Among the latter are imperfections
in the cell geometry (Kelly and Pal, 1978), and heat flow
injected from the side walls (Hall and Walton, 1977;
Daniels, 1977,1978). Ahlers et al. (1981) showed that im-
perfections, as expressed as a constant inhomogeneous
term, lead to a reasonable description of the onset of time
dependence in data obtained following a step increase to a
supercritical value of the heat current. However, a
Langevin noise source, used to describe the effects of
thermal noise, did not lead to a particularly good descrip-
tion of the initial system response to a heat current step.
Figure 12 contrasts the two types of forcing functions by
showing what the authors term a corrected heat flow
versus time following the heat current step. As a conse-
quence of this presentation, the data of Fig. 12 resemble
an inverted form of Fig. 8(a), where the time evolution of
bT is given following a step in Q. Using effectively a
single-mode amplitude, and a fixed inhomogeneous term
Ahlers et al. (1981) obtained the dashed line of Fig. 12(a).
Experimental data are given by the solid circles. (The ini-
tial diffusive transients are not included in the model,
only the convective transients. ) The calculation for
noise-initiated flow, again with effectively a single mode,
is given by the solid line for Fig. 12(a), yielding a some-
what inferior description to the onset of convection. Here
a noise amplitude 6X10 times bigger than that expected
from statistical thermal noise is needed to provide an ac-
ceptable fit. The authors were able to provide good agree-
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ment with the data at later times by using more modes in
the calculation as shown for Fig. 12(b) by the additional
line. These authors also estimated the slope S=dX/de
for various flow patterns in a cylindrical container. In
particular, they find S=0.91, 0.45, and 0.72 for concen-
tric rolls with and without a central node and straight
rolls, respectively. The experimentally obtained slope of
S=0.83 (Fig. 9, 1"=4.72) is closest to the first of these
possibilities, but additional work in this area would be
valuable.

E. Stability of convective rolls

The validity of the amplitude expansion is restricted to
a region close to R„and for larger Rayleigh numbers
steady solutions must be obtained by alternative tech-
niques. The stability of these steady solutions plays an
important role in the onset of turbulence. Using a Galer-
kin technique, Clever and Busse (1974), Busse and Clever
(1979), and Bolton, Busse, and Clever (1983) have investi-
gated the stability of steady parallel convective rolls in a

FIG. 12. Values of the "corrected heat Aow" vs time following
a step increase in the heat flux Q to the bottom of the layer,
after Ahlers et aI. (1981). (a) contrasts the experimental data
(solid circles) with a fit (dashed line) to a deterministic model
for the onset of convection containing only one amplitude and a
fit (solid curve) to a model with one amplitude in which the on-
set of convection is initiated by a stochastic noise source. (b)
The solid line shows a fit to a deterministic model where three
amplitudes have been used. The dashed line reproduces the
dashed line of (a).
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670 Behringer: Rayleigh-Benard convection. . . in liquid He

horizontally infinite layer to infinitesimal disturbances. It
is anticipated that these calculations should apply to large
I" experiments. The wave number a of the rolls influ-
ences their stability, as shown by Fig. 13, which gives the
stability diagram (Busse and Clever, 1979) for Pr=0.71, a
value typical for helium. The convective stability
boundary, after Fig. 6, is indicated by the dashed line; ad-
ditional instabilities also occur, as indicated. Within the
shaded region straight parallel rolls are expected to be
linearly stable. For other Prandtl numbers the details of
the stability diagram may change, but generally there is
an enclosed region in which straight parallel rolls are
found to be the only linearly stable solutions for a hor-
izontally infinite Boussinesq layer. In this regard, for
helium the most important boundaries are the skewed
varicose instability and the oscillatory instability, since
the rolls must undergo a transition at these boundaries as
R increases. When the Rayleigh number increases across
the oscillatory instability boundary which can occur if a
is small, the rolls undergo coherent periodic oscillations as
sketched in Fig. 14(a). For larger wave vectors the
skewed varicose instability is important. When the Ray-
leigh number crosses this boundary, the rolls acquire a su-

perimposed structure as sketched in Fig. 14(b); the choice
of name is clearly appropriate. Unlike the oscillatory in-

stability, the skewed varicose instability is expected to
occur at onset without time dependence. The importance
of these instabilities to the onset of turbulence is included
in the discussion following. If the Rayleigh number is de-

creased from an initial value lying inside the shaded re-

gion, the system will encounter either the Eckhaus insta-
bility (Eckhaus, 1965; Stuart and DiPrima, 1978) or the
zigzag instability (Busse, 1981). The first of these is an

(b)

FIG. 14. Schematics of important instabilities for straight
parallel convective rolls. (a) The oscillatory instability. In this
case there will be a superposed structure on the straight rolls
which oscillates coherently with the wavy structure shown. (b)
The skewed varicose instability. In this case the superposed
pattern, as sketched, is expected to be time independent. See
Busse and Clever (1979).

instability which forms parallel to the original rolls, and
the second is a steady sinusoidal perturbation which is ob-
served experimentally at angles of 40 and 140' relative to
the original rolls.

IV. TURBULENCE

A. Introduction
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One of the most intriguing phenomena occurring in

fluids is turbulence. Although strongly turbulent flows
have been studied in the past, much recent work has
focused on the evolution of turbulence. An important ad-
vance involves the application of mathematical theories of
dynamical systems to turbulent onset in physical systems
such as a convecting fluid. Here, the discovery of strange
attractors plays a particularly significant role. A number
of reviews describe recent theoretica1 developments, in-

cluding those by Eckmann (1981), Ott (1981), Yorke and
Yorke (1981), the conference proceedings introduced by
Swinney (1983), and the report by Abraham, Gollub, and
Swinney (1984). Accordingly only a brief summary is
given beginning in Sec. IV C.

Reformulating the equations of motion is useful for
making formal contact with this work. Near the onset of
time dependence the basic roll patterns are expected to
coexist with a superposed time-dependent flow. This con-
cept is expressed by looking for solutions of Eqs. (45) and
(46) of the form

FIG. 13. Stability boundaries R vs a for a fluid of Pr=0.71,
after Busse and Clever (1979). Straight parallel rolls are expect-
ed to be stable within the shaded region. The dashed line gives
the neutral stability curve for the onset of convection. The
boundaries for various instabilities on straight rolls are indicat-
ed.

u =up(r)+Au(r, t), (69)

where up(r), which has a solenoidal velocity part, corre-
sponds to a steady solution such as straight rolls, and hu
is a finite perturbation. Equation (45) becomes, with Eq.
(69),
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[a~urar+(u, a)~u+(~u a)u —Hbu+abm]+(bu a)bu=Hu —(u a)u —am, . (70)

The terms have been segregated to emphasize the linear
and nonlinear parts in the perturbation as well as the
steady solution. The right side of Eq. (70) vanishes by as-
sumption. The linearized problem, contained in the
bracketed terms of (70) can be written in the form

Bhu /Bt =Hhu —Bhw, (71)

the presence of non-Hermitian terms in H for R ~ R, al-
lows the possibility of complex values of o. and hence os-
cillatory motion as in the osci11atory instability predicted
by Clever and Busse (1974).

The effect of the nonlinear term (hu B)hu can be reex-
pressed by expanding Au in a complete set of functions

{u;(r) I
with time-dependent amplitudes:

where H is a linear matrix operator depending on uo, R,
and P. The linear terms proportional to uo and contained
in H are inherently non-Hermitian for nonzero uo. If
solutions to (71) are sought which have the form

u(r, t)=e 'U(r),
Ic I' (76)

is a Lyapunov functional for the problem. This follows
[see also Joseph (1976)] by considering drldt By ins. pec-
tion of (75), M,zk

—— Mkj; fo—r R & R„because there
S,+=S;=S,*. The mode amplitudes c; are also real, so
that as a consequence of Eq. (74),

pled equations with a large number of modes and a
Prandtl number Pr=1, appropriate to liquid helium. On
integrating the equations of motion, they found a number
of interesting time-dependent states which resemble some
of those observed experimentally. More importantly, this
work was seminal, because it attempted to demonstrate
the possibility of strange attractors as a cause for the on-
set of turbulence.

Before we abandon a formally exact description, Eq.
(74) provides additional information about the possibility
of turbulence near R, . For R & R, the quantity r defined
by

du(r, t)= gc;(t)u;(r) . (72)
dr Idt =2 g o;c; (77)

The functions {u;(r) I must satisfy the appropriate
boundary conditions, and 8-u;=0. One possible choice
for the expansion functions, assuming completeness, is the
set {s;I satisfying

which is negative for the conduction-only solution when
R & R, . Accordingly, below R„the conductive solution
always evolves as taboo, regardless of the initial condi-
tions. Above R,

o.;S;=HS; —Bm; (73) drldt =2Re go; Ic; I
+ QM~kc;*c~cj,

l ijk
(78)

with

c( =cT(c& + g M&jkcjcp
jk

(74)

M,,„=—&s,+,(s, a)s„&=+&(s,* a)s,+,s„&. (75)

The infinite set of Eq. (74) provides a formal descrip-
tion of the problem. In practice, no calculations have
been done which could accurately describe an experiment.
Instead experiments have usually been compared with
tractable models, generally having only a few amplitudes,
in anticipation, partly justified, that turbulence in non-
linear systems will evolve in only a fairly small number of
ways. This approach, discussed in the following section,
applies to a broad spectrum of systems including convec-
tive flows. However, Mc Laughlin and Martin
(1974,1975) have performed computations on a set of cou-

and appropriate boundary conditions. A formal solution
for the time-dependent amplitudes {c&(t)I is obtained by
using Eq. (72) in Eq. (70), and by taking appropriate sca-
lar products to project out each time derivative c;(t).
Since H is non-Hermitian, the members of the set {S;I
are not mutually orthogonal and a set of functions {S,+
satisfying the Hermitian conjugate problem must be con-
structed. The conjugate modes are orthogonal to the
modes of the original problem and yield the equations

The terms in Eq. (78) which involve {M;Jk I
vanish at R,

at least as fast as c.. Consequently, Eq. (78) leads to the
expectation that for some range of positive but small
enough c steady flows will evolve for reasonable initial
conditions as long as the roll pattern corresponding to uo
is initially stable, i.e., Re(cr;) & 0 for all i

B. When is turbulence present?

A discussion of turbulence should begin with a
prescription for recognizing when turbulence is present.
On this point, there often exists a dichotomy in theoreti-
cal and experimental approaches. A theoretical descrip-
tion of a system may involve a rule for generating a se-
quence of points or it may involve a set of nonlinearity
coupled ordinary differential equations in some set of
variables {c;(t) I, i = 1, . . . , n (Cruckenheimer and
Holmes, 1983). Equation (74) is a particular example.
Members of the set {c;I form a phase space, and the
equations of motion, with initial conditions, describe tra-
jectories in the phase space. If all trajectories originating
from some set in phase space converge toward a common
subset of phase space, the subset is called an attractor,
and the set of all initial states leading to the attractor is
the basin of attraction. Turbulence occurs if the trajec-
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tories are nonperiodic and have correlation functions for
dynamical quantities x (t)

C. Pictures of the onset of turbulence

lims ~ x ( —x x &+7. —x
/~ 00 0

which vanish as 7.~ ao and a sensitive dependence on ini-
tial conditions (Ott, 1981).

The experimental determination of turbulence is often
less well defined, principally because the amount of infor-
mation is small and observations times are finite. Usually
one quantity is measured which is related to a superposi-
tion of the variables [c;l. For instance, the vertical ve-

locity v, (ro, t) at a position ro within the fluid may be
measured. In helium experiments temperature fluctua-
tions, effectively averaged over the bottom of the layer are
frequently measured. These correspond via Eqs. (69) and
(74) to

5T(t) = g c;(t) f 58;(r)dx dy . (79)

A useful tool is the experimental power spectrum [see, for
instance, Otnes and Enochson (1972)] defined for a quan-
tity such as 5T(t) which is measured over a time interval

(80)

The integrals are done on a discrete set of data points via
a fast Fourier transform, and appropriate windowing
must be done to suppress side lobes spuriously generated

by the finite measurement time. If the resulting power
spectrum contains features which are broader than the in-

strumental frequency resolution of order r ', then the ex-
pectation is that the flow is turbulent. Inherent in this
method are the possibilities that the observation times are
too short, the sampling rate too slow, or the experiments
obscured (possibly altered) by the presence of external
noise.

A new technique for identifying turbulence involves
calculating the dimension of an attractor from experimen-
tal time series. In this procedure (Packard, Crutchfield,
Farmer, and Shaw, 1980), an orbit in a phase space of ar-
bitrarily high dimension n is created by converting a
series of data x ~,x2, . . . ,x„,. . . , taken at uniform time
intervals At to a time series of n-tuplets (x;, x;+I„
x;+2k, . . . ,x;+(„&,k). As long as n is sufficiently large
and the experimental error sufficiently small, the resulting
phase-space orbit is equivalent to one which would be
generated in a more conventional set of phase-space coor-
dinates, such as those of Eq. (74). Given a phase-space
description of the orbit, a number of powerful analytical
tools (Grassberger and Procaccia, 1983a, l983b; Farmer,
Ott, and Yorke, 1983; Roux, Simoyi, and Swinney, 1983)
are available for calculating its dimension, a quantity
which can be defined in a number of ways, but which is
expected to be nonintegral when turbulence due to a
strange attractor is present.

1. Introduction via the Landau-Hopf model

One of the most important contributions of dynamical
systems theory is the demonstration that turbulence can
occur in systems with only a few degrees of freedom.
This section reviews the Ruelle-Takens-Newhouse picture
and generally recognized scenarios for the onset of tur-
bulence; the following section gives exampIes from the
helium literature. The classical description of the origins
of turbulence, due to Landau (Landau and Lifshitz, 1959)
and Hopf (1948), requires an arbitrarily large number of
degrees of freedom. In this model, the expectation is that
as the Rayleigh number increases, there will be a series of
bifurcations to oscillatory modes. The nonlinear coupling
between the modes is assumed to have no other result
than the generation of a set of sum and difference fre-
quencies formed from the fundamental frequencies of the
oscillatory modes. An experimental observation on such
a system would reveal a power spectrum with isolated, in-
strumentally sharp peaks. Consequently, there is no
well-defined onset of turbulence in this model; rather, an
experimenter would conclude that the flow was turbulent
when his apparatus could no longer resolve the individual
peaks.

Although the Landau picture is generally not correct,
bifurcations to periodic or multiply periodic states do
occur. The simplest periodic flows can occur in systems
described by two degrees of freedom, and the periodic at-
tractors are closed curves. When three or more degrees of
freedom exist, multiply periodic attractors and strange at-
tractors are added to the possible occurrences. Multiply
periodic orbits are characterized by two or more incom-
mensurate frequencies; their attractors are tori. A strange
attractor is a very complex region of phase space, now
commonly associated with the onset of turbulence.

2. The Ruelle-Takens-Newhouse picture

A useful guide in understanding the onset of turbulence
has been provided by Ruelle and Takens (1971) and New-
house, Ruelle, and Takens (1978). Their results refer to
general systems characterized by some parameter which
for convective flows corresponds to R. As R increases,
the system undergoes a series of bifurcations to oscillatory
states. Ruelle and co-workers have argued that as a gen-
eric property, nonlinear systems should have a strange at-
tractor after the third bifurcation. Recently, Grebogi,
Ott, and Yorke (1983) have shown the Ruelle-Takens-
Newhouse picture does not apply in all cases, particularly
if the nonlinear effects are weak. This helps explain
several experimental counterexamples to the scenario put
forward by Walden, Kolodner, Passner, and Surko (1984),
Gollub and Benson (1980), and Libchaber, Fauve, and
LaRoche (1983). In the example of Walden et al. up to
five independent frequencies occurred at one time. How-
ever, the motion associated with each frequency was spa-
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tially localized; possibly the interaction between the vari-
ous types of motion was weak. In the remaining exam-
ples, three distinct frequencies were observed without the
occurrence of turbulence. However, as discussed below
and by Swinney (1983), a number of investigations into
the onset of convective turbulence have revealed behavior
which resembles the expectations suggested by Ruelle,
Takens, and Newhouse.

3. The Lorenz model

c
&

———Pr(c
~

—cz),

C2 = —C2 + I"C
&

—C l C 3

C3 —C JC2 —bC3

(81)

The parameter r is equivalent to R /R„and the parame-
ter b is related (McLaughlin and Martin, 1975}to the roll

60,

Strange attractors arise in a number of mathematical
systems which have been extensively studied and which
provide a conceptual springboard for understanding the
onset of turbulence in experiments. The earliest
mathematical model of turbulence with a strange attrac-
tor was studied by Lorenz (1963), with more recent work
on the model discussed by Guckenheimer and Williams
(1976), Kaplan and Yorke (1979), Manneville and Pomeau
(1979,1980), and Yorke and Yorke (1981). It has also
been used (Ahlers, Hohenberg, and Lucke, 1984,198S) as a
tool for understanding the response of a convecting layer
to a modulation in the heat current. In this case the ex-
periments were carried out on a liquid-helium layer.

The model consists of three coupled equations which
were originated by Saltzman (1962) as a very abbreviated
description of convection; in fact, these equations are
more appropriate to a convection loop (Welander, 1967;
Gorman, Widmann, and Robbins, 1984}. The equations,
having adjustable constants r, Pr, and b, are

4. One-dimensional noninvertible maps

An important theoretical development has come from
noninvertible one-dimensional iterative maps. These
maps generate a sequence of points which can be regarded
as a time series, and related to three-dimensional ordinary
differential equations as discussed by Ott (1981). An ex-
tensively studied map, the logistic model, considered by
May (1976) and Feigenbaum (1978,1979) generates a se-
quence of points lying in the interval (O, l}by

x„+&
4bx„(1———x„) (82)

so long as 0~ b &1. As b increases, a series of bifurca-
tions occurs. The first bifurcation at b= —, changes the
stable state of the system from x =0 to another point
x*=1 (4b) '. The—next bifurcation occurs to a periodic
state of alternating points x&,x2,xl, . . . , and successive
bifurcations occur to periodic states of successively dou-
bled length. An accumulation point occurs for
b =0.862. . . , and the bk, the bifurcation values of b to
2 point cycles, satisfy

wave vector. Stable convective flows begin when r
exceeds 1; for 0 & r & 1 the stable solution is conductive
and corresponds to c

&

——c2 ——c3 ——0. When 1 & r (24
(with the usual choice b = —,', o = 10), there are two stable
solutions corresponding to two convective flows which
differ in the sense of the roll stream lines (see Fig. 1).
These steady solutions occur at c~ ——c2 ——+[b(r —I)]'~,
c3 ——r —1, as indicated by the points in Fig. 15. Above
r =24.06 but below r =24.74 several different orbits can
occur depending on the initial conditions. When r
exceeds 24.74, the orbits are chaotic. The motion encir-
cles the formerly stable steady solutions with the number
of loops near a given point before encircling the other, a
highly sensitive function of the initial data. An example
of such a chaotic orbit, projected onto the c3 —c2 plane,
appears in Fig. 15. As r is raised further, additional
features arise including regimes of periodic as well as tur-
bulent flows (Manneville and Pomeau, 1980).

bk -bI
lim =4.699. . . .

bk+ &

—bk
(83}

0
-30

As each subharmonic bifurcation occurs, the power at the
new frequency is expected to be reduced by a constant
factor from the previous one. Above the accumulation
point various regimes of periodic behavior are inter-
spersed with noisy behavior. A particularly important re-
sult has been obtained by Feigenbaum (1978,1979) show-
ing that the period doubling properties of Eq. (82} are
universal, depending only on the qualitative shape of the
map, and not on its details.

5. Intermittency

FIG. 15. Projection onto the c3 —cz plane of an orbit for the
Lorenz model, with r =28, Pr=10, and b = 3. The dots are
unstable fixed points; below r =24.74 these become stable.

One additional description of the onset of turbulence is
due to Manneville and Pomeau (1979,1980). In a strict
sense, this scenario applies when a stable periodic attrac-
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tor and an unstable attractor merge; in convective flows
this occurs as the Rayleigh number increases toward
R =R, ~ Above R, sections of a seemingly laminar
periodic flow lasting for times —(R —R, )

'~ are inter-
rupted by episodes of noisy behavior. The term intermit-
tency is sometimes applied loosely to flows characterized
by regimes of periodic or steady behavior interspersed
with nonperiodic interludes.

D. Experimental observations of turbulence

1. Evolution of turbulence
in small layers

Experi men ts on con vec ting layers typically show
behavior which resembles the previously discussed
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FIG. 16. The onset of turbulence in a small aspect-ratio
cylindrical layer of liquid helium, I =2.08, after Ahlers and
Behringer (1978a,1978b). Each figure gives the measured power
P vs frequency f for temperature fluctuations oT/AT, for a
different value of R/R„as indicated by the number in the
upper right-hand corner. The spectrum for R/R, =10.67 con-
sists of instrumentally sharp peaks at two frequencies and their
combinations. Over a fairly narrow range in R fR, the peaks
broaden and for the most part disappear into a continuous spec-
trum.
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FIG. 17. Amplitude (power) vs frequency for temperature fluc-
tuations showing the onset of turbulence via period doubling in
a layer of liquid helium, after Libchaber and Maurer (1980) and
Libchaber (1983).

theories when the aspect ratio I is small. The reason for
this is fairly clear; when the aspect ratio is small, only a
small number of modes should be relevant, the rest being
heavily damped. An example drawn from the helium
literature demonstrates an onset to turbulence after a dou-
bly periodic regime. Figure 16 shows power spectra ob-
tained by Ahlers and Behringer (1978a,1978b) using a
cylindrical container with 1 =2.08. The spectra were cal-
culated from temperature fluctuations with fixed applied
heat flux. Here fluctuations 6T in the total temperature
difference hT are expressed in a dimensionless form
6T/AT, . At the beginning of the sequence two frequen-
cies and their harmonic combinations are present. Over a
short span of Rayleigh numbers, the flow is characterized
by a broad-band spectrum. Other results have been ob-
tained by Gollub and Benson (1980) using a low —aspect-
ratio rectangular layer of water. Their results show
several different routes to turbulence, which fall within
the types of behavior seen in nonlinear systems with a few
degrees of freedom.

Examples demonstrating an onset to turbulence via
period doubling are available from several studies of con-
vection; in particular, these include work by Libchaber
and Maurer (1980), Gollub, Benson, and Steinman (1980),
and Libchaber (1983). Figure 17 focuses on the liquid-
helium measurements of Libchaber and Maurer (1980).
[See also Libchaber (1983).] In this sequence of power
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FICs. 18. The onset of turbulence via intermittent noise bursts
which disrupt otherwise doubly period flows (Maurer and Lib-
chaber, 1980).
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spectra for local temperature fluctuations several period-
doubling bifurcations occur. A complete cascade is not
seen because of the effect of external perturbations. The
spacing in R is in agreement with the prediction of Eq.
(83). Likewise, the multiplicative decrease in the power of
each new subharmonic frequency is seen.

The onset to turbulence via intermittency has been ob-
served in seminal experiments by Maurer and Libchaber
(1980) using a liquid-helium layer in a rectangular con-
tainer with dimensions 2.3d &&1.2d &d, as in the experi-
ments described above [see also Dubois, Rubico, and
Berge (1983)j. Their results are shown in Fig. 18. For the
lowest Rayleigh number shown, R/R, =74.5, the signal
is a doubly periodic state consisting of two frequencies

f, =1.0 Hz and f2=0.3 Hz with their combination fre-
quencies. With increasing R/R, the intermittent bursts
of noise, only marginally present for R/R, =74.5, be-
come increasingly dominant. However, Maurer and Lib-
chaber (1980) report that the regions of laminar (steady
periodic) flow vary as (R —R, ) ~, with 1 &P & 1.5, al-
though P= —,

' is expected theoretically (Manneville and

Pomeau, 1979,1980).

FIG. 19. The onset of turbulence for a moderate-size layer of
liquid helium, I =4.72, after Ahlers and Walden (1980). These
data, obtained at a series of fixed heat currents, show fluctua-
tions in AT scaled by AT„hence in R /R„over extended obser-
vation times. The vertical scale indicates the relative size of the
fluctuations and the time-average value of R /R, .

two aspect ratios differ by relatively little, the pretur-
bulent flows are quite dissimilar. Other thermal measure-
ments by Ahlers and Behringer (1978a,1978b) indicate
that turbulence may occur quite soon after the onset of
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2. Evolution of turbulence
in large layers
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If the aspect ratio is sufficiently large, a considerable
number of modes may be relevant, and the relatively sim-
ple scenarios of turbulent onset given in Sec. IV.C may
fail to describe experiments. That the aspect ratio signifi-
cantly affects the evolution of turbulence was demonstrat-
ed by liquid-helium measurements. Some examples of the
effects of aspect ratio are given in Figs. 19—21. These
show temperature fluctuations for cylindrical containers
with aspect ratios 4.72 and 6.22, obtained by Ahlers and
Walden (1980) and Behringer, Shaumeyer, Clark, and
Agosta (1982), respectively [see also Walden (1983)].
Each curve was obtained for fixed heat flux correspond-
ing to the indicated time-averaged reduced Rayleigh num-
ber, R/R„and fixed top temperature. Even though the

I.AI IIIIIIIIIIIIIIIII~

C 1.195

b list

2000 4000
g I.I 55

1

6000 sooo

f/t„

FIG. 20. The onset of turbulence for a somewhat larger
cylindrical layer of fluid, I =6.22, after Behringer et al. (1982),
showing fluctuations in the temperature at the bottom of the
layer 5Tb vs t lt„atfixed Q and top temperature. These results,
which are continued in Fig. 21 should be compared to Fig. 19
obtained with the same experimental conditions but different as-
pect ratio. The vertical bar indicates variations in 5T/hT, of
0.02 and the numbers give the time-average value of R /R, .
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FICx. 21. A continuation of Fig. 20 showing the onset of tur-
bulence for a cylindrical layer of liquid helium with I =6.22.
Persistent turbulence was found for values of R/R, ~ 1.756
after the regime of period multiplication shown in the inset.

convection for very large aspect-ratio layers. For I =57,
Ahlers and Behringer found an onset to broad-band time
dependence, as shown in the power spectra of Fig. 22(a),
which exceeded the background noise level when
R/R, ) 1.1. Root-mean-square values of oT/b. T, for
this aspect ratio, equivalent to the integrated power, are
shown in Fig. 22(b) and compared with results for other
aspect ratios. The onset of convection and the onset of
time dependence are not well distinguished in this case,
which is a surprising result in view of Sec. IV.A. Cross
and Newell (1984) have developed a phase theory
(Pomeau and Manneville, 1981) to describe gradual
changes in the roll orientations in imperfect patterns; this
work suggests that the broad-band noise is caused by pat-
tern adjustments occurring over a time scale large com-
pared to the horizontal diffusion time tH ——I t„,with the
fluid eventually approaching a steady state. Additional
experimental tests are clearly in order.

Recent measurements by Gao and Behringer (1984) and
Behringer, Gao, and Shaumeyer (1983) provide a unified
picture of the effects of aspect ratio on the onset of time
dependence and raise some additional questions. Thermal
measurements were obtained using liquid He and an ap-
paratus with cylindrical geometry that allowed a continu-
ous variation of the aspect ratio over the range
2.4(I (22. These measurements show that over the

—INST
0

0
kgo (Rr R, - ))

FIG. 22. (a) Power spectra for temperature fluctuations
6T/AT, at the indicated values of R/R, for a l"=57 cylindri-
cal layer. These data (Ahlers and Behringer, 1978a,1978b) show
the broad-band noise present close to the onset of convection.
The instrumental noise level is given by the spectrum marked
0.0. (b) The rms values of 5T/ET„equivalent to the integrated
power vs R /R, —1=v, for the aspect ratios and Prandtl num-
bers indicated. The instrumental noise is indicated by a hor-
izontal bar next to the label INST.

complete range of I there is a well-defined transition
occurring at a Rayleigh number R

~ & R, associated with
the onset of time dependence. Figure 23 gives values of
R I /R, as a function of I . One notable feature is the ten-
dency of the data to fa11 on a succession of sloping lines;
in addition, for large I, R&/R, ~1.09. Although there
exists a well-defined transition, for all aspect ratios its
qualitative nature changes. When I is small, I" (4, the
transition occurs as a change in flow pattern, as manifest-
ed in Nusselt-number data; at the transition N(R) shows
a discontinuity as shown in the inset of Fig. 23. Addi-
tional transitions occur with increasing Rayleigh number
for these small aspect ratios, and these are indicated by
arrows at the transition points R z and R 3 in the example
of the inset of Fig. 23. The Nusselt curve terminates at
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FIG. 23. Values of R&/R, vs 1 for cylindrical containers, after
Gao and Behringer (1984). Here R

~
gives the Rayleigh number

of the first instability above the onset of convection. The inset
shows Nusselt number (heat transport) data for a small aspect-
ratio (1 =3.253) cylindrical container. Changes in the flow pat-
tern occur at R ~, Rq, and R3.

FIG. 24. A set of experimental data for 5T/hT, vs t/t„show-
ing the slowing down of a "Type II" periodic flow as
e~ ——(Q —Q~ 1/Q~ approaches zero from above. The numbers
under each curve indicate the values of c, ~. The data pertain to a
I =9.002 cylindrical layer (Behringer, Gao, and Shaumeyer,
1983).

the onset of persistent time dependence, a point which is
often associated with a flow pattern change and non-
periodic Aow. As I is increased, the transition changes
character. Instead of a pattern change, R

&
corresponds to

the onset of periodic flow, as long as I )4.
For I )4 and R )R &, periodic states occur which have

an interesting but unexpected structure not attributable to
the oscillatory instability. Indeed, the values of R~ are
too small to correspond to this instability which in
liquid-helium measurements has been observed only after
the onset of turbulent flow (Ahlers and Behringer, 1978b).
For moderate aspect ratios, 4 ( I ( 13, the most frequent-
ly observed behavior near R

~
is finite amplitude oscilla-

tions characterized by a frequency which vanishes as c&

as R~R ~+. Here E~ is defined by E&=(Q —Q&)/Q&,
where Q, is the value of Q at R &. The choice of c,

&
as a

parameter reflects the fact that Q and not R is usually the
fixed parameter in these experiments. An example for
I =9.002 of the finite amplitude oscillations is given in
Fig. 24, with each sequence corresponding to the labeled
value of E~. If the frequency f, made dimensionless by a
factor of t„,is plotted versus E:& for many such sequences,
Fig. 25(b) results; the solid curve is a least-squares fit giv-
ing ft, =7.45X10 eI

Although finite amplitude ("type II") periodicity
occurs for most I 's in the range 4(I"(13, there are a
few values separated by EI -1.1 for which the amplitude
A vanishes as c& and the frequency remains nearly con-
stant as R ~R

&
. An example for I =8.741 showing

how A vanishes in this case is given in Fig. 25(a) and la-
beled "type I." Here the solid curve is a least-squares fit
giving A =4.04& 10 c& +9.82X 10 c& . By plotting
the limiting amplitude as R~R&+ vs I in Fig. 26, one
can easily see the effect of the number of convection rolls
in the container.

Since the usual conditions imposed in theoretical calcu-
lations require fixed R, rather than fixed Q, as in the ex-
periments, a relevant question is whether the oscillations

O

(a)

l5 (b)

oI0

0
0 0.02

Ci = (Q Ql)/Ql

0.04

FIG. 25. (a) An example for I =8.741 showing the amplitude
vanishing with the square root of the control parameter, here
taken to be e& ——(Q —Q&)/Q~. This occurs only for select aspect
ratios separated by b I =1.1 in the range 4& I & 13. (b) More
typically, the amplitude remains nearly fixed and the frequency
vanishes as c~ . These frequencies were obtained from data
selectively represented in Fig. 24 for I =9.002. See Behringer,
Gao, and Shaumeyer (1983).

and indeed nearly all the observations of time dependence
made with liquid helium are an artifact of the experimen-
tal method. This challenge to the experiments is particu-
larly relevant because Busse (1967a) has provided calcula-
tions demonstrating the occurrence of finite amplitude os-
cillations as an artifact of a fixed-Q condition. Figure 27
demonstrates that the difference between a fixed Q and a
fixed R is irrelevant to these experiments other than to
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FICx. 26. The peak-to-peak amplitude A as Q~Q,+ (from
above) or R~R 1+ for periodic flows in the aspect-ratio range
4(I (13. In this range of aspect ratios, the limiting value of

is usually nonzero. See Behringer, Gao, and Shaumeyer
(1983).

provide an overall inversion of the signal. Figure 27(a)
shows data taken under the usual conditions, with each
run marked by the value of E~. Figure 27(b) shows data
corresponding to the usual theoretical convention of fixed
R; here runs are labeled by values of (R —R

1 ) /R, .
An interesting question regards the physical origins of

the transition at R t. Some relevant information comes
from recent experiments by Walden, Surko, Kolodner,
and Passner (1983) involving water (3 & Pr & 5) in a rec-
tangular container with horizontal dimensions of nearly
10d &5)&d. Walden et al. found a hysteretic decrease in
the number of convection rolls when the Rayleigh number
exceeded values corresponding roughly to the skewed var-
icose instability. Since the experiments allow fiow visuali-
zation, the wave number a was accessible. A reduction in

the number of rolls decreases a and returns the system to
the region of the stability diagram for which parallel rolls
are stable (see Fig. 14). Indeed, sequences of pattern

changes which decrease a with increasing R have been
observed in other experiments, including recent ones by
Croquette and Pocheau (1984), Steinberg, Ahlers and
Cannell (1985) and older ones by Koshmieder (1966),
Koshmieder and Pallas (1974), and Rossby (1969). Also,
Gollub and Steinman (1981) observed the onset of noisy
time dependence in a rectangular layer of water at the
predicted onset of the skewed varicose instability.

For the helium experiments in cylindrical containers a
mechanism relating to the skewed varicose instability may
also play a role. However, there are a number of details
which do not fit cleanly into such a simple picture. The
value R~/R, —1.09 which is found for large I corre-
sponds for the skewed varicose instability to a wave num-
ber a=3.46, a value which is unaccountably large, given
the critical wave number of a, =3.117 at which the rolls
are expected to form. In addition, no time dependence is
expected on the basis of linear stability theory. Finally,
no theory explains quantitatively why the presence of
walls suppresses the skewed varicose instability at low as-
pect ratios although a pattern change still occurs.

At higher Rayleigh numbers where chaotic flow is well
established, an interesting but unexplained feature for
many experimental observations is the power spectra,
typified by results of Ahlers and Behringer (1978a, l978b)
in Fig. 28. Similar results have been observed by Gollub
and Steinman (1981) for the local velocity in turbulent
con vecting water. Notable features are the flat low-
frequency portion and the power-law falloff, P(tu)-cu
at higher frequencies, where in the figure f =to/2m. . Typ-
ically, the exponent a is 4+ —, . At very high Raleigh
numbers studies of turbulent convection for low Pr are
rather limited, although Threlfall (1975) has studied the

4
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O.I7 76 O.(350
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4

FIG. 27. An experimental demonstration of the equivalence of
the fixed Q and the fixed R conditions (Gao and Behringer,
1984). (a) A sequence showing fluctuations 6T/AT, vs t/tp at
several values of cl for I =7.923. (b) A corresponding set of se-
quences for the same aspect ratio but showing dirnensionless
fluctuations in the heat flux 5Q/Q, vs t/t„at fixed R. Here Q,
is the value of the heat current Q at R, and the number beneath
each trace gives the appropriate value of (R —R 1 )/R l.

I

log, o f

FICi. 28. The power P vs f =to/2tt for temperature fluctua-
tions in a turbulent state, R/R, =4.62, for a cylindrical layer
with I =4.72 (Ahlers and Behringer, 1978a, 1978b). The power
falls off at higher frequencies as f ' with a =4.0+ 0.2.
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heat transport in a turbulent layer of liquid helium.
A number of interesting questions clearly remain un-

resolved. In particular, the route to chaos followed by
large-I systems is still unclear. The measurements of
Gao and Behringer (1985) up to I =22 and Ahlers and
Behringer (1978a,1978b) for I =57 show some fundamen-
tal differences. In no case has the existence of a strange
attractor been determined for large layers. Although the
physical origins of the onset of time-dependent flow at R l

may be related to the skewed varicose instability, no
quantitatively correct explanation currently exists. Relat-
ing the very precise thermal measurements available with
liquid helium to the associated flow patterns is a consider-
able experimental challenge.

V. OTHER CONVECTIVE SYSTEMS

A. Introduction

B. Normal He-'He mixtures

Equations of motion

A formal description of convection in nonreactive
binary mixtures requires a number of modifications to the
equations for a pure fluid (Landau and Lifshitz, 1959).
Since two species exist, the continuity equation expressing
conservation of total mass must be augmented by an addi-
tional equation which also guarantees conservation of
each component. This new equation can be written in
terms of the mass concentration c of component 1:

c= m)X
I,X+m, (1 —X) ' (84)

where X is the molar concentration, m
~

is the molar mass

Rayleigh-Benard convection in a pure fluid represents
one of the simplest examples of thermally driven flow. A
number of related problems are also interesting, and some
of these have been investigated using the sophistication of
low-temperature techniques. Included are studies of con-
vection in normal binary mixtures, a subject which has
been reviewed in general by Schecter, Velarde, and Platten
(1974) and by Gershuni and Zhukovitskii (1976), studies
of convection in superfluid 'He- He mixtures, and studies
of convection in the presence of rotation. Due to the rich
phase structure discussed in Sec. I, 'He- He mixtures,
when used in the normal phase, provide wide parameter
ranges as well as the usual advantages in precision. The
presence of the superfluid phase and the tricritical point
provide new sorts of phenomena which are unique to
liquid helium (Steinberg, 1981a,1981b; Fetter, 1981,
1982a, 1982b). Each of the remaining sections gives a
brief description of recent cryogenic work in the three
areas of convection in normal mixtures He-4He mixtures,
superfluid He- He mixtures, and in the presence of rota-
tion.

of component 1, and m 2 is the molar mass of component
2. The new conservation law is

B(pc }/dt = —V (pc v ) —V.i, (85)

where i is a diffusive concentration current defined below.
To the quantities P, T providing a local thermodynamic
description must be added an additional variable which
may be taken as c.

A minor modification must also be made on the
Navier-Stokes equations, Eqs. (15). Since the density in
the buoyancy term pg may depend on c, T, and P, the ef-
fects of c must also be included. Again the pressure
dependence of p is negligible, and the pg term may be ap-
proximated by

p g =pog[1 cp,.(T— To} —Pp, T(—c —co)) (86)

where az, ———p 'd(p/dT) p, and Pp T
———p 'B(p/

ac)p T. To and co are appropriate temperature and con-
centration reference values.

One final adjustment must be made to the entropy
equation, since mass diffusion and heat flow provide ir-
reversible mechanisms for increasing s. Indeed, these pro-
cesses are linked; the irreversible heat flux Q and the
mass diffusion current i are given by

and

i= —pD[Vc+(kT/T)V Tj (87)

P, , =BE/B(m;N; }
~ p ~ ~~, (89)

where N; is the number of moles per volume of the ith
component.

Referring to Fig. 5, the critical influence of the super-
fluid transition and the tricritical point causes dramatic
variations in D and kT, introducing a number of interest-
ing phenomena (Steinberg, 1981a,1981b). As discussed
from a theoretical viewpoint by Siggia and Nelson (1977)
and from an experimental viewpoint by Behringer and
Meyer (1982), D diverges at the superfluid transition, but
vanishes at the tricritical point. The thermal diffusion ra-
tio diverges strongly at the tricritical point, but diverges
very weakly along the lambda line. By contrast to pure
He the measurable thermal conductivity, and the heat

capacity c&, are cusped but finite at the superfluid transi-
tion and are virtually unaffected by the tricritical point.

In terms of the currents i and Q, the entropy equation
becomes

BU.
p T(Bs /Bt+ v. Vs) = g otk —V (Q —pt) —i Vp, .

~&k

(90)
Near the onset of convection the appropriate set of equa-
tions is, after one invokes the Boussinesq approximation,

Q= [4 (c)p/Bc) —T(dp/"r)T), +p. ]i trV T . —

A normally negligible term in VP has been omitted from
i, and the three quantities D, kT, and p have been intro-
duced. These are the diffusion coefficient, the thermal
diffusion ratio, and the chemical potential difference
p=p~ —p& defined in terms of the quantities
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V.v=0,
pa[tv/t}t+(v V)v]= —VP+pog[1 —a~, (T —To) —P~, (c —co)]+gV v,
B}c/dt+v. Vc=D[V c+(k IT)V T],
r}T/r}t+v VT=(D +.c/D) T+(.VTD/k )V c .

(91)

(92)

(93)

(94)

=kr(By/Bc)r p/c T (95)

Here DT is modified to DT ——a./pep and .M is a dimen-
sionless parameter given by

l

boundaries. The most common experimental conditions
force i=O at z=+ —, , T=O at z= —,, and Q=0 at
z = ——,'. When one invokes these constraints, the quan-
tized rates a. must satisfy

tan[d(o/D2)'. ~ ]/tan[d(oD, )' ]
2. Onset of convection

=(D, /D2)' (D2 D)I—(D) D) . —(102)

By introducing natural scale factors, such as d /Dz for
time, it is possible to produce a set of dimensionless equa-
tions appropriate for convective flows and depending on
the parameters .V, Pr, Sc, H, and R. These parameters
are defined, after Lee, Lucas, and Tyler (1979,1983), by
Eqs. (95) and (18) for .c/ and Pr; R must be modified to

R =(ap, gd AT/vDT)[(1+. m')( I+S)+SDr/T], (96)

with Sc, the modified Schmidt number, S, and H given
by

and

Sc=v/D (1+.cl ),
S= f3T pkr/Ta~—, , (98)

H=ScS/Pr(l+S) . (99j

The choice of dimensionless parameters is far from
unique. Indeed, a plethora of parameter sets has been
used by different authors. We have chosen the present set
for ease in discussing recent cryogenic experiments (Lee,
Lucas, and Tyler, 1979,1983).

The coupling of the concentration and heat diffusion is
readily apparent on constructing the simple z-dependent
relaxational modes which are excited in response to tem-
perature or concentration transients below the onset of
convection. Following Behringer and Meyer (1982), these
modes are characterized by zero velocity, with the
remaining variables having a spatial dependence e'~' and a
relaxational time dependence e ' with o & 0. The equa-
tions of motion require the dispersion relations

2Oq =D) 2

with

D ) 2 ——
I DT+D( 1 +.&)

(100)

+ [(DT+D ( 1+.&}} 4DDT ] '
I /2DD y—. . (101)

Note that when W=O (i.e., kT ——0), D~ 2 become D and
DT, and the resulting uncoupled modes correspond to
strictly impurity or heat diffusion. The actual modes are
usually characterized by .V&0, and contain both tern-
perature and concentration components. They can be cal-
culated only by requiring appropriate conditions at the

Recently this relation has been exploited (Behringer and
Meyer, 1982) to obtain D for He- He mixtures from
measurements of o. and the remaining parameters con-
tained in D, 2. (See also Ahlers and Pobel, 1974.)

Following techniques similar to those described in Sec.
II.B, one can use the linearized equations of motion to ob-
tain the convective modes. As discussed by Schecter,
Velarde, and Platten (1974), one of the most striking
differences between a pure fluid and a mixture is the fact
that convection may occur even when the density gradient
is stabilizing. In addition, oscillations may accompany
the onset of convection, a phenomenon known as oversta-
bility, and convection may occur when the layer is heated
from either below or above, depending on the value of H
Recent calculations of R, for the onset of static and
overstable convection have been done by Lee, Lucas, and
Tyler (1983) and by Gutkowicz-Krusin, Collins, and Ross
(1979a,1979b). Here R, is a function of H. Stability dia-
grams for the onset of steady convection with R, now a
function of H take the forms given by Lee, Lucas, and
Tyler (1983) and are shown in Fig. 29 for the following
regimes: I, H ~ —1 and H &3.85; II, —1&H &0; and
III, 0& H &3.85. The critical Rayleigh number corre-
sponds to the lowest value of

~

R (H, a) ~; hence for case E

and for case EE when one is heating from above the onset
of flow is predicted to occur for a=O. Since experiments
are done with finite E, the effect of the vertical
boundaries should be important in these cases.

Lee, Lucas, Tyler, and Vavasour (1978) and Lee, Lucas,
and Tyler (1979,1983}have recently used mixtures of 'He
and He to test the stability theory for the onset of flow.
Their results are summarized in Fig. 30, which gives their

FIG. 29. Characteristic stability curves R vs n for binary mix-
tures with (I) H & —1 or H & 3.85, (II) —1 & H &0, (III)
0& H &3.85, after Lee, Lucas, and Tyler (1983). H is defined
by Eq. (99).
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FIG. 30. Experimental values (open symbols) of
R~ „.„;,———HR, (H)/(1+H) vs H, for a cylindrical container
with I =6.25 as well as the corresponding theoretical predic-
tions for overstability in a horizontally infinite layer (solid sym-
bols) and the onset of steady flow (solid curve). Circles, squares,
and triangles correspond to 'He molar concentrations of
X =0.016, 0.079, and 0.134, respectively. These results are by
Lee, Lucas, and Tyler (1983).

C. Superftuid ~He-4He mixtures

Superfluidity occurs for temperatures below the lambda
transition. Whereas liquid helium is a Newtonian fluid
above the transition (i.e., in the normal phase), its proper-
ties in the superfluid phase are distinctly different. A
phenomenological description of the hydrodynamics of a
superfluid has been given by Landau and Lifshitz (1959)
and Khalatnikov (1965). The fluid is to be viewed as an
interpenetrating mixture of normal and superfluid com-

parameter R &,„;,—— HR, (H)—/(1+H) as a function of H.
Here R, is the observed value of R at the onset of convec-
tion. The curve is the calculation for the onset of station-
ary convection, solid symbols are calculations for the on-
set of overstable convection, and the open symbols are ex-
perirnental results for three different He molar concen-
trations. Given the fairly large uncertainty in the fluid
parameters, the agreement is generally good. In the
liquid-helium experiments however, the phenomenon of
overstability does not seem as well defined as in room-
temperature experiments (Flatten and Chavepeyer, 1973;
Caldwell, 1974), and further experiments would be useful.
Indeed, a characterization of flow in He- He mixtures is
only beginning. In general, stability calculations for
R &R, comparable to those for a pure fluid have not
been undertaken, and the onset of turbulence is virtually
unexplored.

An interesting phenomenon for which He- He mix-
tures may provide a useful test system occurs when H and
R have been adjusted so that overstable and steady con-
vection are both likely to occur. A discussion of this
codimension-two problem (Guckenheimer and Holmes,
1983) has been given recently by Brand, Hohenberg, and
Steinberg (1984).

p=p. +p. . (104)

The superfluid portion carries no entropy and flows irro-
tationally and without viscous drag, in contrast to the
normal component, which like any conventional Newtoni-
an fluid does carry entropy and experience viscous dissi-
pation. At a more fundamental level, the normal fluid is
associated with excitations on the superfluid ground state,
and in a solution of He and "He the He molecules form
a part of the normal fluid.

As in a normal mixture, energy, momentum, and the
mass of each component must be conserved. Equation
(105) provides for overa11 mass conservation:

Bp/Bt= —V j . (105)

This relation expresses the expectations that V&v, =O
and that for small static gradients Vpz ——0. These equa-
tions provide a basis for describing a variety of unusual
flow properties discussed in Wilks (1967). They also in-

troduce a set of second viscosity coefficients g&, g2, g3,
and g4

——g~ to allow for irreversible transport processes
when both superfluid and normal motion exist.

Several authors, including Steinberg (1981a,1981b),
Steinberg and Brand (1983), and Fetter (1981,
1982a, 1982b), have used this description of superfluid
flow to study the onset of convection. As in simpler sys-
tems, the precoovecting state is determined and its stabili-

ty to perturbations is tested. However, this state is not
characterized by v„=v,=0. Rather, there exists a one-
dimensional counterflow of v„and v, with j=O; the con-
centration balance is maintained through the diffusive
mass flux given in Eq. (87). Because this state is charac-
terized, when the effect of gravity is negligible, by
VP =Vp4 ——0, gradients in any remaining thermodynamic
variables, such as c or s, depend only on V T. In this case,
the experimentally observed effective conductivity and ef-
fective thermal diffusion ratio are related simply to ther-
rnodynamic quantities:

x', „=v+pDT(dIJ, /dc) ' [cB(s/pc)dc+ (k /T)dp /Bc]',

(107)

and

Due to the presence of two independent velocity fields,
the dynamical equations for energy and momentum con-
servation, as given by Khalatnikov (1965), are consider-
ably more complicated than those for a normal binary
mixture, and accordingly they are not reproduced here.
An additional phenomenological equation of motion de-
scribes the rate of change of v, :

Bv, B/t +V(p& +1 2/v, )=V[(3V (j—pv„)+j4Vv„].
(106)
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kr' —c—B{s/pc)/Bc
i ~ „

(108)

A linearization about the preconvective state after suit-
able (although not unique) dimensional analysis yields a
set of non-self-adjoint equations for the convective modes.
Dimensionless parameters entering the equations include
a new Rayleigh number,

R =up pgd AT/DT, gv„, (109)

a redefined Prandtl number,

Pr =v„/DT fr, (110)

m =(g, —pg, )/v„,
0&t= —Um ~ (112)

c2 ——yhT/T, (113)

and

e3 ——(p/p„)g F13,&m/
~

(r)p4/Bc)T p ~

(114)

y = —(81nc/8 lnT)„,~ . (115)

Here a& &
is the expansion coefficient at constant p4 and

P, v„=g/p„,DT ff—K ff/pc& „and the superscript 0
refers to the preconvective state. The set of parameters
m, y, e~, ez, and E3 occurs only in the superfluid problem.
If they are zero, the linearized stability problem is identi-
cal in form to that for a pure normal fluid. Noting this
property, Fetter (1982a) has performed a perturbation
analysis to obtain the critical Rayleigh number when
these parameters are small, which is the case for the ex-
periments described below. He finds for a horizontally
infinite layer that

R~ =R~o+24. 6e~E2+ 10.2(F ]
—E2)

—19.9E2(e&p/p, —E3)+ (116)

where R,0——1707.76. . . is the value of R, for a pure nor-
mal fluid.

Experiments have been made by Warkentin, Haucke,
and Wheatley (1980) and Warkentin, Haucke, Lucas, and
Wheatley (1980) near the onset of superfluid convection.
Using a I =1 cylindrical cell, they found R, =1708. This
result is somewhat lower than expected, since Fetter
(1982a,1982b) and Steinberg and Brand (1983) claitn that
the critical Rayleigh number for this geometry should be
nearly equal to 2660, the value which would be obtained
in a pure normal fluid with I =1. The discrepancy be-
tween theory and experiment remains unresolved, al-
though Steinberg and Brand (1983) have suggested that
spatial variations in p4 which were neglected in existing
calculations may play a role. However, given the uncer-
tainty in the parameters determining R, the agreement is
not too bad.

Recent experiments by Maeno, Haucke, Ecke, and
Wheatley (1984), Maeno, Haucke, and Wheatley {1985),
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FIG. 31. (a) The rrns values of the periodic temperature varia-
tions 6T at fixed heat current Q vs e in a superfluid 'He-'He
mixture, after Maeno, Haucke, and Wheatley (1984). (b) The
corresponding effect on the Nusselt number. The value of c ob-
served for the onset of oscillations is indicated by co and Eo.

and Ecke, Maeno, Haucke, and Wheatley (1984) have pur-
sued the analogy of convection in a superfluid mixture to
that in a pure fluid by studying the onset of the oscillato-
ry instability. (See also Haucke er al. , 1984.) For low
Prandtl number pure {normal) fluids, exemplified by mer-
cury with Pr=0.026, the stability calculations of Clever
and Busse (1974) indicate that the oscillatory instability
(see Sec. III.E) is the first instability encountered as R in-
creases above R, . No corresponding calculations exist for
superfluid mixtures; however, their Prandtl number may
be adjusted over the range 0.02 & Pr & 3.0. Accordingly
an interesting question regards the occurrence of similar
oscillations in a superfluid mixture. It is this question
which Maeno, Haucke, and Wheatley have addressed us-

ing a rectangular cel1 of dimensions 2.0d:1.4d:d. Figure
31 shows the rms values of the observed periodic oscilla-
tions in AT near onset at fixed heat Aux, and the corre-
sponding region of the Nusselt number curve, both versus

The linear initial rise of the rms fluctuations oT is an
interesting feature. Another interesting set of results is
given in Fig. 32, where c0, the value of c. at the onset of
oscillations, is given versus Pr. Theory for a pure normal
fluid (Clever and Busse, 1974) indicates such a linear
change with Pr, although the observed va1ues of c0 are
larger than those expected for a pure normal fluid with
I = ao. In the present case the experiments suggest intri-

guing similarities to a pure fluid, although there is not yet
sufficient knowledge of the hydrodynamic solutions to
provide adequate comparison, nor are there yet sufficient
experimental data to reveal dependence, if any, on the as-

pect ratio and the wave number of the steady flow.
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FIG. 32. Values of Eo, the value of E at the onset of periodic
flow, vs Prandl number Pr for superfluid mixtures, after Mae-
no, Haucke, and Wheatley (1984).

FIG. 33. Values of R (Q) vs the dimensionless angular velocity
0 for a rotating layer of liquid helium with I =7.81
(Pfotenhauer, 1984; Lucas, Pfotenhauer, and Donnelly, 1983).
The solid line gives R,(Q) for a horizontally infinite layer
(Chandrasekhar, 1961).

D. Convection with rotation

The last area in which cryogenic techniques have been
applied involves a convecting layer of pure fluid where
the boundaries are rotated about a vertical axis. The rate
of rotation is m, and a new dimensionless parameter,
Q =cod /v, enters the problem. A convenient description
involves transforming to a frame rotating with the
boundaries. In the rotating frame the noninertial centri-
fugal and Coriolis forces appear directly in modified
Navier-Stokes equations:

p[ dv /Bt + ( v. V )v ]= VP +pg —pc@ X ( co X—r )

—pcoQv+gV v . (117)

Of these only the Coriolis force, which tends to inhibit
convection, is usually important, since the centrifugal
force is usually small compared to the force of gravity.

Experimental work on rotating convecting layers is rel-
atively sparse compared to work on nonrotating layers.
Results in room-temperature fluids have been obtained by
Nakagawa and Frenzen (1955), Fultz and Nakagawa
(1955), Dropkin and Globe (1959), Goroff (1960), Rossby
(1969), and Krishnamurti (1971). Most recently, Lucas,
Pfotenhauer, and Donnelly (1981,1983) and Pfotenahuer
(1984) have presented results using liquid He as the rotat-
ing fluid. This work is also discussed in the review article
by Pfotenhauer and Donnelly (1984).

Recent theoretical work includes Kuppers and Lortz
(1969), Kiippers (1970), Clever and Busse (1979), Busse
(1981),and Buell and Catton (1983a,1983b).

The onset of convection occurs at a Rayleigh number
R, which depends only on A and the geometry of the
convecting layer. Calculations of R, for straight parallel
rolls were made originally by Chandrasekhar (1961) for a
horizontally infinite layer. Recently Buell and Cat ton
(1983a,1983b) have calculated R, for a cylindrically con-
fined layer with aspect ratios I (2. An interesting
feature of this last work is that nonaxisymmetric modes
may have lower values of R, than axisymmetric modes.

Experimental determinations of R, (Q), after Lucas,

Pfotenhauer, and Donnelly (1983) and Pfotenhauer (1984)
are shown in Fig. 33. In this work, He was used in a
variety of cylindrical containers with aspect ratios 1.97,
3.22, 4.93, and 7.81. The present results for I =7.81
show agreement with the infinite layer calculations
(Chandrasekhar, 1961) within the errors of the fluid pa-
rameter needed to calculate R, given AT. Pfotenhauer
(1984) and Lucas, Pfotenhauer, and Donnelly (1983) have
also documented the suppression of the convective ampli-
tude with increasing 0 using liquid helium. Shown in

Fig. 34 are their results for the Nusselt number N(R) for
several values of Q. The suppression of the convection, as
manifested through the slope M =dN/dR, as well as R„
is clear. (Here it is important to distinguish M from the
parameter S=R,M. ) An interesting feature of the last
figure is the tendency for convection to begin at an ap-
parent subcritical Rayleigh number. The authors have ar-
gued in reference to Buell and Catton (1983b) that this re-
sult is attributable to the onset of nonaxisymmetric flow.

A relatively unexplored area for experiments involves
the onset of time-dependent flow. Kiippers and Lortz
(1969) and Kuppers (1970) showed that for Q & Q, =24
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FIG. 34. Nusselt number N as a function of R at several values
of Q for a I =7.81 cylindrical layer of liquid He (Pfotenhauer,
1984; Lucas, Pfotenhaur, and Donnelly, 1983). The values of 0
are as follows: solid circles, Q =0; +, 0= 128; squares,
0=192; triangles, 0=256; )&, 0=320; open circles, 0=452.
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FIG. 35. The theoretically obtained diagram for a rotating hor-
izontally infinite layer with Pr=0.71 and 0=5 (Clever and
Busse, 1979). This figure should be compared to Fig. 13 corre-
sponding to 0=0.

Vl. SUMMARY AND FUTURE DIRECTIONS

Recent experiments using liquid helium have provided
a quantitative test of specific predictions concerning
steady and turbulent convective flows. The main advan-

tages of cryogenic experiments are their high precision,
their ability to follow changes associated with an evolving
flow easily and with high sensitivity, and their unique

range of available Prandtl numbers. Both the amplitude
and time evolution to steady flows are generally in agree-
ment with theory. A characterization of flow patterns in

liquid helium remains an experimental challenge which
becomes more important in light of recent theoretical
descriptions of pattern evolution.

Through studies in a variety of different geometries,

(R = oo, slip walls) no steady convective solutions exist
for a horizontally unbounded layer, although they did not
determine the nature of the resulting time dependence.
Clever and Busse (1979) and Busse (1981) have reinvesti-
gated the Kiippers-Lortz instability in the context of an
overall stability analysis. They find for small 0 that
parallel rolls have the same types of instabilities as a non-

rotating layer. Figure 35 gives their stability diagram for
I' =0.71 and 0=5. These authors predict that for
0=10, the domain of stability for parallel rolls with
Pr=0.71 is practically nonexistent. Clever and Busse
(1979) and Busse (1981) have also investigated the time
dependence which develops above the Kiippers-Lortz in-

stability. According to their nonlinear calculations, this
time dependence consists of three sets of crossed rolls
forming a hexagonal pattern, with the maximum ampli-
tude alternating among the three sets. Motion is sus-
tained as the result of statistical noise present in the layer.

To date, no clear experimental verification of this sort
of time dependence or the route to turbulence exists from
either cryogenic or room-temperature experiments, al-

though Krishnamurti (1971) has observed hexagonal pat-
terns in the presence of rotation.

helium experiments in concert with those at room tem-
peratures have verified a number of recent theoretical pre-
dictions and scenarios for the evolution of turbulence.
Among the scenarios are turbulence via intermittency, via
a period-doubling cascade, and via a multiply periodic
state involving a small number of fundamental frequen-
cies. The cryogenic measurements have particularly
demonstrated the importance of geometry to the onset of
turbulent flow. They have also provided a bridge between
work done at very small aspect ratios where only a very
few modes are relevant, and work pertaining to large as-
pect ratios where calculations for horizontally infinite
layers are likely to pertain. For at least moderately large
aspect-ratio cylindrical layers, the onset of time depen-
dence is not in quantitative agreement with stability cal-
culations by Clever and Busse for the skewed varicose in-
stability. The resolution of this issue remains an interest-
ing problem. Likewise, the onset of turbulence in very
large layers is a subject of continuing study. Existing
measurements for a I"=57 cylindrical layer have shown
turbulent behavior quite close to R„whereas other mea-
surements up to I =22 show a time-independent convec-
tive regime followed by a route to turbulence over a fairly
narrow region in R/R, . The seeming contradiction be-
tween the two sets of data may be resolved by the theory
of Cross and Newell (1984). Further experimental work is
clearly in order.

An important point regarding emerging theories of tur-
bulence is their broad applicability to many different
dynamical systems. In this regard, experiments using
mixtures of He and "He—both normal and superAuid-
as well as rotating helium experiments, are likely to pro-
vide a rich testing ground for theory. Current experi-
ments for the first and last of these systems have focused
chiefly on the static flow properties. An understanding of
what is probably the most intriguing aspect of these sys-
tems, the onset of turbulence, is yet to come.
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