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Physical and numerical experiments show that deterministic noise, or chaos, is ubiquitous. While a good
understanding of the onset of chaos has been achieved, using as a mathematical tool the geometric theory
of differentiable dynamical systems, moderately excited chaotic systems require new tools, which are pro-
vided by the ergodic theory of dynamical systems. This theory has reached a stage where fruitful contact
and exchange with physical experiments has become widespread. The present review is an account of the
main mathematical ideas and their concrete implementation in analyzing experiments. The main subjects
are the theory of dimensions (number of excited degrees of freedom), entropy (production of information),
and characteristic exponents (describing sensitivity to initial conditions). The relations between these quanti-
ties, as well as their experimental determination, are discussed. The systematic investigation of these quan-
tities provides us for the first time with a reasonable understanding of dynamical systems, excited well
beyond the quasiperiodic regimes. This is another step towards understanding highly turbulent fluids.
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In recent years, the ideas of differentiable dynamics
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have considerably improved our understanding of irregu-
lar behavior of physical, chemical, and other natural phe-
In particular, these ideas have helped us to
understand the onset of turbulence in fluid mechanics.
There is now ample experimental and theoretical evidence
that the qualitative features of the time evolution of many
physical systems are the same as those of the solution of a
typical evolution equation of the form
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X(t)=F,(x(1)), xER™ (1.1

in a space of small dimension m. Here, x is a set of coor-
dinates describing the system (typically, mode amplitudes,
concentrations, etc.), and F, determines the nonlinear
time evolution of these modes. The subscript u corre-
sponds to an experimental control parameter, which is
kept constant in each run of the experiment. (Typically,
u is the intensity of the force driving the system.) We
write

x(1)=fp(x(0)) . (1.2)

We usually assume that there is a parameter value, say
u =0, for which the equation is well understood and leads
to a motion in phase space which, after some transients,
settles down to be stationary or periodic.

As the parameter p is varied, the nature of the asymp-
totic motion may change.! The values u for which this
change of asymptotic regime happens are called bifurca-
tion points. As the parameter increases through succes-
sive bifurcations, the asymptotic motion of the system
typically gets more complicated. For special sequences of
these bifurcations a lot is known, and even quantitative
features are predicted, as in the case of the period-
doubling cascades (“Feigenbaum scenario”). We do not,
however, possess a complete classification of the possible
transitions to more complicated behavior, leading eventu-
ally to turbulence. Geometrically, the asymptotic motion
follows an attractor in phase space, which will become
more and more complicated as u increases.

The aim of the present review is to describe the current
state of the theory of statistical properties of dynamical
systems. This theory becomes relevant as soon as the sys-
tem is “excited” beyond the simplest bifurcations, so that
precise geometrical information about the shape of the at-
tractor or the motion on it is no longer available. See
Eckmann (1981) for a review of the geometrical aspects of
dynamical systems. The statistical theory is still capable
of distinguishing different degrees of complexity of at-
tractors and motions, and presents thus a further step in
bridging the gap between simple systems and fully
developed turbulence. In particular, the present treatment
does not exclude the description of space-time patterns.

After introducing precise dynamical concepts in Sec. II,
we address the theory of characteristic exponents in Sec.
III and the theory of entropy and information dimension
in Sec. IV. In Sec. V we discuss the extraction of dynami-
cal quantities from experimental time series.

It is necessary at this point to clarify the role of the
physical concept of mode, which appears naturally in sim-
ple theories (for instance, Hamiltonian theories with
quadratic Hamiltonians), but which loses its importance
in nonlinear dynamical systems. The usual idea is to
represent a physical system by an appropriate change of
variables as a collection of independent oscillators or

11t is to be understood that the experiment is performed with a
Jixed value of the parameter.
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modes. Each mode is periodic, and its state is represented
by an angular variable. The global system is quasiperiodic
(i.e., a superposition of periodic motions). From this per-
spective, a dissipative system becomes more and more tur-
bulent as the number of excited modes grows, that is, as
the number of independent oscillators needed to describe
the system progressively increases. This point of view is
very widespread; it has been extremely useful in physics
and can be formulated quite coherently (see, for example,
Haken, 1983). However, this philosophy and the corre-
sponding intuition about the use of Fourier modes have to
be completely modified when nonlinearities are impor-
tant: even a finite-dimensional motion need not be quasi-
periodic in general. In particular, the concept of “number
of excited modes” will have to be replaced by new con-
cepts, such as “‘number of non-negative characteristic ex-
ponents” or ‘“information dimension.” These new con-
cepts come from a statistical analysis of the motion and
will be discussed in detail below.

In order to talk about a statistical theory, one needs to
say what is being averaged and in which sample space the
measurements are being made. The theory we are about
to describe treats time averages. This implies and has the
advantage that transients become irrelevant. (Of course,
there may be formidable experimental problems if the
transients become too long.) Once transients are over, the
motion of the solution x of Eq. (1.1) settles typically near
a subset of R ™, called an attractor (mathematical defini-
tions will be given later). In particular, in the case of dis-
sipative systems, on which we focus our attention, the
volume occupied by the attractor is in general very small
relative to the volume of phase space. We shall not talk
about attractors for conservative systems, where the
volume in phase space is conserved. For dissipative sys-
tems we may assume that phase-space volumes are con-
tracted by the time evolution (if phase space is finite di-
mensional). Even if a system contracts volumes, this does
not mean that it contracts lengths in a// directions. Intui-
tively, some directions may be stretched, provided some
others are so much contracted that the final volume is
smaller than the initial volume (Fig. 1). This seemingly
trivial remark has profound consequences. It implies
that, even in a dissipative system, the final motion may be
unstable within the attractor. This instability usually
manifests itself by an exponential separation of orbits (as
time goes on) of points which initially are very close to
each other (on the attractor). The exponential separation
takes place in the direction of stretching, and an attractor
having this stretching property will be called a strange at-
tractor. We shall also say that a system with a strange at-
tractor is chaotic or has sensitive dependence on initial
conditions. Of course, since the attractor is in general
bounded, exponential separation can only hold as long as
distances are small.

Fourier analysis of the motion on a strange attractor
(say, of one of its coordinate components) in general re-
veals a continuous power spectrum. We are used to inter-
preting this as corresponding to an infinite number of
modes. However, as we have indicated before, this
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FIG. 1. The Hénon map x; =1—1.4x}+x,, x5 =0.3x, con-
tracts volumes but stretches distances. Shown are a region R,
and its first and second images R’ and R’ under the Hénon
map.

reasoning is only valid in a “linear” theory, which then
has to take place in an infinite-dimensional phase space.
Thus, if we are confronted experimentally with a continu-
ous power spectrum, there are two possibilities: We are
either in the presence of a system that “explores” an in-
finite number of dimensions in phase space, or we have a
system that evolves nonlinearly on a finite-dimensional at-
tractor. Both alternatives are possible, and the second ap-
pears frequently in practice. We shall give below an algo-
rithm which, starting from measurements, gives informa-
tion on the effective dimension. This algorithm has been
successfully used in several experiments, e.g., Malraison
et al. (1983), Abraham et al. (1984), Grassberger and
Procaccia (1983b); it has indicated finite dimensions in hy-
drodynamic systems, even though the phase space is in-
finite dimensional and the system therefore could poten-
tially excite an infinite number of degrees of freedom.

The tool with which we want to measure the dimension
and other dynamical quantities of the system is ergodic
theory. Ergodic theory says that a time average equals a
space average. The weight with which the space average
has to be taken is an invariant measure. An invariant
measure p satisfies the equation

plf "UE)]=p(E), t>0, (1.3)

where E is a subset of points of R ™ and f ~!(E) is the set
obtained by evolving each of the points in E backwards
during time ¢. There are in general many invariant mea-
sures in a dynamical system, but not all of them are phys-
ically relevant. For example, if x is an unstable fixed
point of the evolution, then the & function at x is an in-
variant measure, but it is not observed. From an experi-
mental point of view, a reasonable measure is obtained ac-
cording to the following idea of Kolmogorov (see Sec.
II.F). Consider Eq. (1.1) with an external noise term add-
ed,

X()=F,(x(1))+eanlt), (1.4

where w is some noise and € >0 is a parameter. For suit-
able noise and € > 0, the stochastic time evolution (1.3) has
a unique stationary measure p,, and the measure we pro-
pose as ‘‘reasonable” is p=1lim._,qo,. We shall come back
later to the problem of choosing a reasonable measure p.
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For the moment we assume that such a measure exists,
and call it the physical measure. Physically, we assume
that it represents experimental time averages. Mathemat-
ically, we only require (for the moment) that it be invari-
ant under time evolution.

A basic virtue of the ergodic theory of dynamical sys-
tems is that it allows us to consider only the long-term
behavior of a system and not to worry about transients.
In this way, the problems are at least somewhat simpli-
fied. The physical long-term behavior is on attractors, as
we have already noted, but the geometric study of attrac-
tors presents great mathematical difficulties. Shifting at-
tention from attractors to invariant measures turns out to
make life much simpler.

An invariant probability measure p may be decompos-
able into several different pieces, each of which is again
invariant. If not, p is said to be indecomposable or ergo-
dic. In general, an invariant measure can be uniquely
represented as a superposition of ergodic measures. In
view of this, it is natural to assume that the physical mea-
sure is not only invariant, but also ergodic. If p is ergo-
dic, then the ergodic theorem asserts that for every con-
tinuous function ¢,

lim & [ olrx0)de= [ pldx)glx) (1.5)
i T J0 ® =J paeoe )
for almost all initial conditions x(0) with respect to the
measure p. Since the measure p might be singular, for in-
stance concentrated on a fractal set, it would be better if
we could say something for almost all x(0) with respect
to the ordinary (Lebesgue) measure on some set SC R ™.
We shall see below that this is sometimes possible.

One crucial decision in our study of dynamics is to con-
centrate on the analysis of the separation in time of two
infinitely close initial points. Let us illustrate the basic
idea with an example in which time is discrete [rather
than continuous as in (1.1)]. Consider the evolution equa-
tion

x(n+1)=f(x(n)), x(()ER , (1.6)

where 7 is the discrete time. The separation of two initial
points x(0) and x(0)’ after time N is then

X(N)—x(NY =fMx(0))—fMx(0))

~ [j’;(f”)(xm)) [x(0)—x(0Y], (17

where fN(x)=f(f(--- f(x)---)), N times.
chain rule of differentiation,

By the

_‘!__ N ____‘_i_ _
dx(f )(x(O))——dxf(x(N D)

d d
X:i;f(x(N——Z)) dxf(x(O)). (1.8)

[In the case of m variables, i.e., x € R™, we replace the
derivative (d /dx)f by the Jacobian matrix, evaluated at
x: Dyf=(3f;/3x;).] Assuming that all factors in the
above expression are of comparable size, it seems plausi-
ble that df"/dx grows (or decays) exponentially with N.
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The same is true for x(N)—x(N)', and we can define the
average rate of growth as

.1
AleTL Nlog{Dx[mfNSx(OH . (1.9)

By the theorem of Oseledec (1968), this limit exists for al-
most all x(0) (with respect to the invariant measure p).
The average expansion value depends on the direction of
the initial perturbation &x (0), as well as on x (0). Howev-
er, if p is ergodic, the largest A [with respect to changes of
6x(0)] is independent of x (0), p-almost everywhere. This
number A, is called the largest Liapunov exponent of the
map f with respect to the measure p. Most choices of
6x(0) will produce the largest Liapunov exponent A;.
However, certain directions will produce smaller ex-
ponents Ay, Az, ... with A;>A;>A3;> -+ (see Sec. IILA
for details).

In the continuous-time case, one can similarly define

Mx,8x)= lim —Llog|(D,fT6x | . (1.10)

T—w T

We shall see that the Liapunov exponents (i.e., charac-
teristic exponents) and quantities derived from them give
useful bounds on the dimensions of attractors, and on the
production of information by the system (i.e., entropy or
Kolmogorov-Sinai invariant). It is thus very fortunate
that A and related quantities are experimentally accessible.
[We shall see below how they can be estimated. See also
the paper by Grassberger and Procaccia (1983a).]

The Liapunov exponents, the entropy, and the Haus-
dorff dimension associated with an attractor or an ergodic
measure p all are related to how excited and how chaotic
a system is (how many degrees of freedom play a role, and
how much sensitivity to initial conditions is present). Let
us see by an example how entropy (information produc-
tion) is related to sensitive dependence on initial condi-
tions.

We consider the dynamical system given by
f(x)=2x modl for x€&[0,1). (This is “left-shift with
leading digit truncation” in binary notation.) This map
has sensitivity to initial conditions, and A =log2. Assume
now that our measuring apparatus can only distinguish
between x <5 and x>7. Repeated measurements in
time will nevertheless yield eventually all binary digits of
the initial point, and it is in this sense that information is
produced as “time™ (i.e., the number of iterations) goes
on. Thus changes of initial condition may be unobserv-
able at time zero, but become observable at some later
time. If we denote by p the Lebesgue measure on [0,1),
then p is an invariant measure, and the corresponding
mean information produced per unit time is exactly one
bit. More generally, the average rate h(p) of information
production in an ergodic state p is related to sensitive
dependence on initial conditions. [The quantity A(p) is
called the entropy of the measure p; see Sec. IV.] It may
be bounded in terms of the characteristic exponents, and
one finds

h(p) < postive characteristic exponents . (1.11)
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In fact, in many cases (but not all), when a physical mea-
sure p may be identified, we have Pesin’s formula (Pesin,
1977):

h{p)=7> positive characteristic exponents .  (1.12)

Another quantity of interest is the Hausdorff dimension.
[This quantity has been brought very much to the atten-
tion of physicists by Mandelbrot (1982), who uses the
term fractal dimension. This is also used as a sort of gen-
eric name for different mathematical definitions of di-
mension for “fractal” sets.] The dimension of a set is
roughly the amount of information needed to specify
points on it accurately. For instance, let S be a compact
set and assume that N(g) balls of radius € are needed to
cover S. Then a dimension dimg.S, the “capacity” of S, is
defined by

dimgS =lim sup logN(e)/ |loge| .
£—>

[This is a little less than requiring N(g)e?— finite, which
means that the “volume” of the set S is finite in dimen-
sion d.] Marmé (1981) has shown that the points of S can
be parametrized by m real coordinates as soon as
m>2dimgS +1.

The definition of the Hausdorff dimension dimyS is
slightly more complicated than that of dimg.S; it does not
assume that S is compact (see Sec. I.J). We next define
the information dimension dimyp of a probability mea-
sure p as the minimum of the Hausdorff dimensions of
the sets S for which p(S)=1. It is not a priori clear that
sets defined by dynamical systems have locally the same
Hausdorff dimension everywhere, but this follows from
the ergodicity of p in the case of dimyp. A result of
Young [see Eq. (1.13) below] permits in many cases the
evaluation of dimyp. Starting from different ideas,
Grassberger and Procaccia (1983a,1983b) have arrived at
a very similar way of computing the information dimen-
sion dimyp of the measure p. Their proposal has been ex-
tremely successful, and has been used to measure reprodu-
cibly dimensions of the order of 3—10 in hydrodynamical
experiments (see, for example, Malraison et al., 1983).

We present some details of the method. Let p[B,(r)]
be the mass of the measure p contained in a ball of radius
r centered at x, and assume that the limit

logp[ B, (r)]

lim——————=a

(1.13)
r—0 logr

exists for p-almost all x. The existence of the limit im-
plies that it is constant, by the ergodicity of p. Under
these conditions, a is equal to the information dimension
dimyp, as noted by Young. In an experimental situation,
one takes N points x(i), regularly spaced in time, on an
orbit of the dynamical system, and estimates p[ B, ;(7)]
by
1 N

— > O[r— |x(j)—x(i)|] (N large),

(1.14)
N =,

where ©(u)=(1 + sgnu)/2. This permits us in principle
to test the existence of the limit. In practice (Grassberger
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and Procaccia, 1983a,1983b) one defines

Clr=25 TOlr—[x()—x(D|] (N large), (115
hj

information dimension=1lim logClr) . (1.16)

r—0 |logr |

The problem of associating an orbit in R ™ with experi-
mental results will be discussed later. We also postpone
discussion of relations between the Hausdorff dimension
and characteristic exponents [such relations are described
in the work of Frederickson, Kaplan, Yorke, and Yorke
(1983); Douady and Oesterlé (1980); and Ledrappier
(1981a)].

One may ask to what extent the definition of the above
quantities is more than wishful thinking: is there any
chance that the dimensions, exponents, and entropies
about which we have been talking are finite numbers?
For the case of the Navier-Stokes equation,

av; 1
— = >, v;8v; +vAv; ——3;p+g; ,
J

1.17
at d ( )

with the incompressibility conditions 28 jv; =0, one has
some comforting results given below. [Note that, in the
case of two-dimensional hydrodynamics, one has good ex-
istence and uniqueness results for the solutions to Eq.
(1.17). Assuming the same to be true in three dimensions
(for reasonable physical situations), the conclusions given
below for the two-dimensional case will carry over.]

Consider the Navier-Stokes equation in a bounded
domain QC R ¢, where d =2 or 3 is the spatial dimension.
For every invariant measure p one has the following rela-
tions between the energy dissipation € (per unit volume
and time) and the ergodic quantities described earlier:

B,

h(P)Shgokigj_T_;(fﬂs(z*_d)M) , (1.18)
2/d+2)

dimyp < B, de/z <f0 s(2+d)/4>d/(d+2) i (1.19)

where By,B; are universal constants (see Ruelle,
1982b,1984, and Lieb, 1984, for a detailed discussion of
these inequalities). Thus, if some average dissipation is
finite, then all of these quantities are finite. In two di-
mensions, if the average dissipation is finite, i.e., if the
power pumped into the system is finite, then h(p) and
dimpyp are also finite. In three dimensions, the situation
is less clear because the average of [ £/4 occurs instead
of the average of f €. The lack of an existence and
uniqueness theorem is in fact related to this difficulty.
Experimentally, however, one finds that dimyp is finite
(implying that there are only finitely many A; > 0).

To conclude, let us remark that the dynamical theory
of physical systems is a rather mathematical subject, in
the sense that it appeals to difficult mathematical theories
and results. On the other hand, these mathematical
theories still have many loose ends. One might thus be
tempted either to disregard rigorous mathematics and go
ahead with the physics, or on the contrary to wait until
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the mathematical situation is sufficiently clarified before
going ahead with the physics. Both attitudes would be
unfortunate. We believe in the value of the interplay be-
tween mathematics and physics, although either discipline
offers only incomplete results. A mathematical theorem
can prevent us from making “intuitive” assumptions that
are already proved to be invalid. On the other hand, the
relation between the two disciplines can help us to formu-
late mathematical conjectures which are made plausible
on the basis of our experience as physicists. We are for-
tunate that the theory of dynamical systems has reached a
stage where this kind of attitude seems especially fruitful.

The following are a few general references which are of
interest in relation to the topics discussed in the present
paper. (These references include books, conference
proceedings, and reviews.)

Abraham, Gollub, and Swinney (1984): An overview of
the experimental situation.

Bergé, Pomeau, and Vidal (1984): A very nice physics-
oriented introduction, to be translated into English.

Bowen (1975): A more advanced introduction, stress-
ing the ergodic theory of hyperbolic systems.

Campbell and Rose (1983): Los Alamos conference.

Collet and Eckmann (1980): A monograph, mostly on
maps of the interval.

Cvitanovi¢ (1984): A very useful reprint collection.

Eckmann (1981): Review article on the geometric as-
pects of dynamical systems theory.

Ghil, Benzi, and Parisi (1985): Summer school
proceedings on turbulence and predictability in geophy-
sics.

Guckenheimer and Holmes (1983): An easy introduc-
tion to differential dynamical systems, oriented towards
chaos.

Gurel and Rossler (1979): N.Y. Academy Conference.

Helleman (1980): N.Y. Academy Conference. These
two conferences played an important historical role.

Iooss, Helleman, and Stora (1981): Proceedings of a
summer school in Les Houches, 1981, with many interest-
ing lectures.

Nobel symposium on chaos (1985).

Shaw (1981): A nice intuitive introduction to the infor-
mation aspects of chaos.

Vidal and Pacault (1981): Conference proceedings on
chemical turbulence.

Young (1984): A brief, but excellent, exposition of the
inequalities for entropy and dimension.

Il. DIFFERENTIABLE DYNAMICS
AND THE RECONSTRUCTION OF DYNAMICS
FROM AN EXPERIMENTAL SIGNAL

A. What is a differentiable
dynamical system?

A differentiable dynamical system is simply a time evo-
lution defined by an evolution equation
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dx

i =F(x) (2.1
(continuous-time case) or by a map

x(n+1)=f(x(n)) (2.2)

(discrete-time case), where f or F are differentiable func-
tions. In other words, f or F have continuous first-order
derivatives. We may require f or F to be twice differenti-
able or more, i.e., to have continuous derivatives of second
or higher order. Differentiability (possibly of higher or-
der) is also referred to as smoothness. The physical justifi-
cation for the assumed continuity of the derivatives of f
or F is simply that physical quantities are usually con-
tinuous (small causes produce small effects). This philo-
sophy, however, should, not be adhered to blindly (see
Sec. I11.D.2).

One introduces the nonlinear time-evolution operators
f*, t real or integer, requiring sometimes ¢ >0. They have
the property

fO=identity, fSf'=fs*".

The variable x varies over the phase space M, which is
R ™, or a manifold like a sphere or a torus, or infinite di-
mensional (Banach spaces, in particular Hilbert spaces,
are important in hydrodynamics). If M is a linear space,
we define the linear operator D,f' (matrix of partial
derivatives of f at x, or a bounded operator if M is a
Banach space). Writing f'=f, we have

Dxfn:Dfn—Ixf U Dffoxf (2.3)

by the chain rule.

Example.

A viscous fluid in a bounded container QCR *or R * is
described by the Navier-Stokes equation

du

2.4
Y (2.4)

1
= — 2 Ujajuj+VAvi—Eaip +gl ’
J

where (v;) is the velocity field in Q, v a constant (the
kinematic viscosity), d the (constant) density, p the pres-
sure, and g an external force field. We add to Eq. (2.4)
the incompressiblity condition

> 8;0;=0, 2.5)
j

which expresses that v; is divergence free, and we impose
v; =0 on 9L (the fluid sticks to the boundary). Note that
the divergence-free vector fields are orthogonal to gra-
dients, so that one can eliminate the pressure from Eq.
(2.4) by orthogonal projection of the equation on the
divergence-free fields. One obtains thus an equation of
the type (2.1) where M is the Hilbert space of square-
integrable vector fields which are orthogonal to gradients.
In two dimensions (i.e., for QC R %), one has a good ex-
istence and uniqueness theorem for solutions of Egs. (2.4)
and (2.5), so that f* is defined for ¢ real >0 (Ladyzhen-
skaya, 1969; Foias and Temam, 1979; Temam, 1979). In
three dimensions one has only partial results (Caffarelli,
Kohn, and Nirenberg, 1982).
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B. Dissipation and attracting sets

For a conservative system (Hamiltonian time evolution),
Liouville’s theorem says that the volume in phase space
M is conserved by the time evolution. We shall be mainly
interested in dissipative systems, for which this is not the
case and for which the volume is usually contracted. Let
us therefore assume that there is an open set U in M
which is contracted by time evolution asymptotically to a
compact set 4. To be precise, we say that A4 is an attract-
ing set with fundamental neighborhood U if (a) for every
open set ¥ DA we have f'UCV when ¢ is large enough,
and (b) ffA4=4 for all r. (See Fig. 2.) The open set
U,>0(f')—'U is the basin of attraction of A. If the basin
of attraction of A is the whole of M, we say that A4 is the
universal attracting set.

Examples.

(a) If U is an open set in M, and the closure of f'U is
compact and contained in U for all sufficiently large ¢,
then the set A=N,, f'U is a (compact) attracting set
with fundamental neighborhood U (see Ruelle, 1981).

(b) The Lorenz time evolution in R * is defined by the
equation

X —0Xx|+0x,

X2 (= X X3 Xy —Xx;y |,

X2 x,xz—bX3

with 0=10, b==%, r=28 (see Lorenz, 1963). If U is a
sufficiently large ball, [i.e., U={(x,,x2,x3):2x,-25R2}
with large R], then U is mapped into itself by time evolu-
tion. It contains thus an attracting set A, and A4 is
universal (see Fig. 3).

(c) The Navier-Stokes time evolution in two dimensions
also gives rise to a universal attracting set A, because one
can again apply (a) to a sufficiently large ball (in a suit-
able Hilbert space). It can be shown that A4 has finite di-
mension (see Mallet-Paret, 1976).

FIG. 2. Example of an attracting set 4 with fundamental
neighborhood U. (The map is the Hénon map.)
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X

FIG. 3. The Lorenz attractor. From Lanford (1977).

C. Attractors

Physical experiments and computer experiments with
dynamical systems usually exhibit transient behavior fol-
lowed by what seems to be an asymptotic regime. There-
fore the point f‘x representing the system should eventu-
ally lie on an attracting set (or near it). However, in prac-
tice smaller sets, which we call attractors, will be obtained
(they should be carefully distinguished from attracting
sets). This is because some parts of an attracting set may
not be attracting (Fig. 4).

We should also like to include in the mathematical def-
inition of an attractor A4 the requirement of irreducibility
(i.e., the union of two disjoint attractors is not considered
to be an attractor). This (unfortunately) implies that one
can no longer impose the requirement that there be an
open fundamental neighborhood U of A4 such that
f'U—A when t— «. Instead of trying to give a precise
mathematical definition of an attractor, we shall use here
the operational definition, that it is a set on which experi-
mental points f'x accumulate for large t. We shall come
back later to the significance of this operational definition
and its relation to more mathematical concepts.

FIG. 4. The dynamical system is X, =x;—x}, Xx,=—x,. The
segment A,B is the universal attracting set, but only the points
A,B are attractors. In other words, the whole space is attracted
to the segment A4,B but only 4 and B are attractors.
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Examples.

(a) Attracting fixed point. Let P be a fixed point for our
dynamical system, i.e., f’P=P for all t. The derivative
Dpf! of f! (time-one map) at the fixed point is an m X m
matrix or an operator in Hilbert space. If its spectrum is
in a disk {z:|z| <a} with a <1, then P is an attracting
fixed point. It is an attracting set (and an attractor).
When the time evolution is defined by the differential
equation (1.1) in R ™, the attractiveness condition is that
the eigenvalues of DpF), all have a negative real part. For
a discrete-time dynamical system, we say that
(Py, ..., P,) is an attracting periodic orbit, of period n, if
fPy=P,,...,fP,=P,, and P; is an attracting fixed
point for f".

(b) Attracting periodic orbit for continuous time. For a
continuous-time dynamical system, suppose that there are
a point a and a T >0, such that f7a =a but f‘a~a when
O<t<T. Then a is a periodic point of period 7, and
C={f'a:0<t< T} is the corresponding periodic orbit (or
closed orbit). The derivative D,f7 has an eigenvalue 1
corresponding to the direction tangent to I' at a. If the
rest of the spectrum is in {z:|z| <a} with a <1, then T
is an attracting periodic orbit. It is again an attracting set
and an attractor. The attracting character of a periodic
orbit may also be studied with the help of a Poincaré sec-
tion (see Sec. IL.H).

(c) Quasiperiodic attractor. A periodic orbit for a con-
tinuous system is really a circle, and the motion on it (by
proper choice of coordinate ¢) may be written

Pp(1)=@(0)+wt (mod2w) , 2.7

where w=27/T. This may be thought of as representing
the time evolution of a simple oscillator. Consider now a
collection of k oscillators with frequencies w,, ...,y
(without rational relations between the w;: no linear com-
bination with nonzero integer coefficients vanishes). The
motion of the oscillators is described by

@i ()=@;(0)+w;t (mod2w), i=1,...,k, (2.8)

and this motion takes place on the product of k circles,
(k > 1), which is a k-dimensional torus T*. Suppose that
the torus T% is embedded in R™, m >k (or in Hilbert
space), as the periodic orbit I' was in the previous exam-
ple; suppose, furthermore, that this torus is an attracting
set. Then we say that T* is a quasiperiodic attractor.
Asymptotically, the dynamical system will thus be
described by

x()=fx=®[p(2), ..., ()] 2.9)

=W(wt,...,wxt), (2.10)

where W is periodic, of period 27, in each argument. A
function of the form r—W(w,z,...,wt) is known as a
quasiperiodic function (with k different periods). Quasi-
periodic attractors are a natural generalization of periodic
orbits, and they occur fairly frequently in the description
of moderately excited physical systems.
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B

FIG. 5. The Hénon attractor for a =1.4, b =0.3. The succes-
sive iterates f* of f have been applied to the point (0,0), produc-
ing a sequence asymptotic to the attractor. Here, 30000 points
of this sequence are plotted, starting with £2%(0,0).

D. Strange attractors

The attractors discussed under (a), (b), and (c) above are
also attracting sets. They are nice manifolds (point, cir-
cle, torus). Notice also that, if a small change &x(0) is
made to the initial conditions, then 8x(t)=(D, f")8x(0)
remains small when 7#— . [In fact, for a quasiperiodic

motion, Eq. (2.7) gives 8¢(1)=056¢(0).] We shall now dis-
cuss more complicated situations.

Examples.

(a) Hénon attractor (Hénon, 1976; Feit, 1978; Curry,
1979). Consider the discrete-time dynamical system de-
fined by

2
1

14+x,—ax
bxl

X

f (2.11)

X

and the corresponding attractor, for a=1.4, b=0.3 (see
Fig. 5). One finds here numerically that

5x(1)=8x(0)e™, A=0.42,

i.e., the errors grow exponentially. This is the
phenomenon of sensitive dependence on initial conditions.
In fact (Curry, 1979), computing the successive points f"x
for n=1,2,..., with 14 digits’ accuracy, one finds that the
error of the sixtieth point is of order 1. Sensitive depen-
dence on initial conditions is also expressed by saying that
the system is chaotic [this is now the accepted use of the
word chaos, even though the original use by Li and Yorke
(1975) was somewhat different].

(b) Feigenbaum attractor (Feigenbaum, 1978,1979,1980;
Misiurewicz, 1981; Collet, Eckmann, and Lanford, 1980).
A map of the interval [0,1] to itself is defined by

FIG. 6. The Feigenbaum attractor. Histogram of 50000 points in 1024 bins. This histogram shows the unique ergodic measure,

which is clearly singular.
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fux)=pux(1—x) (2.12)

when u €[0,4]. It has attracting periodic orbits of period
2", with » tending to infinity as u tends to 3.57...
through lower values. For the limiting value u=3.57.. .,
there is a very special attractor 4 shown in Fig. 6. We
shall call it the Feigenbaum attractor (although it was
known earlier to many authors). Note that interspersed
with this attractor, and arbitrarily close to it, there are re-
pelling periodic orbits of period 2", for all n. Therefore
the attractor 4 cannot be an attracting set. One can
show, moreover, that, for this very special attractor, there
is no sensitive dependence on initial conditions (no ex-
ponential growth of errors): the Feigenbaum attractor is
not chaotic.

The Hénon and Feigenbaum attractors, as depicted in
Figs. 5 and 6, have a complicated aspect typical of fractal
objects. In general, a fractal set is a set for which the
Hausdorff dimension is different from the topological di-
mension, and usually not an integer. (The exact definition
of the Hausdorff dimension is given in Sec. II.J.) The
name fractal was coined by Mandelbrot. For the rich lore
of fractal objects, see Mandelbrot (1982). While many at-
tractors are fractals, and therefore complicated objects,
they are by no means featureless. They are unions of un-
stable manifolds (to be defined in Sec. IIL.LE) and often
have a Cantor-set structure in the direction transversal to
the unstable manifolds. (For the Feigenbaum attractor
the unstable manifolds have dimension 0, and only a Can-
tor set is visible; for the Hénon attractor the unstable
manifolds have dimension 1.) An attractor is by defini-
tion invariant under a dynamical evolution, and this
creates a self-similarity that is often strikingly visible.

In view of both its chaotic and fractal characters, the
Hénon attractor deserves to be called a strange attractor
(this name was introduced by Ruelle and Takens, 1971).
The property of being chaotic is actually a more impor-
tant dynamical concept than that of being fractal, and we
shall therefore say that the Feigenbaum attractor is not a
strange attractor (this differs somewhat from the point of
view in Ruelle and Takens). We therefore define a
strange attractor to be an attractor with sensitive depen-
dence on initial conditions. The notion of strangeness
refers thus to the dynamics on the attractor, and not just
to its geometry; it applies whether the time is discrete or
continuous. This is again an operational definition rather
than a mathematical one. We shall see in Sec. III what
should be clarified mathematically. For physics, howev-
er, the above operational concept of strange attractors has
served well and deserves to be kept.

Example.

(c) Thom’s toral automorphisms and Arnold’s cat map.
Let x; (modl) and x, (modl) be coordinates on the 2-
torus T2 a map f:T?— T? is defined by

Xy X +Xx2

f X1 +2%, (mod1) .

XZ (2.13)

[Because det(}})=1, the map R 2— R ? defined by the ma-
trix (}3) maps Z? to Z? and therefore, going to the quo-
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(a)

FIG. 7. Arnold’s “cat map™: (a) the cat; (b) its image under the
first iterate; (c) image under the second iterate of the cat map.

tient T2=R %2/Z2, a map f:T?—T? of the 2-torus to it-
self is defined. The system is area preserving, and the
whole torus is an “attractor.”] This is Arnold’s celebrated
cat map (Arnold and Avez, 1967), well known to be
chaotic (see Fig. 7). In fact we have here

8x (1) =8x(0)e? (2.14)
with
A:log3+T‘/3 ,

(3+V'5)/2 being the eigenvalue larger than 1 of the ma-
trix (13).

More generally, if V is an m Xm matrix with integer
entries and determinant +1, it defines a toral automor-
phism T™—T"™, and Thom noted that these automor-
phisms have sensitive dependence on initial conditions if
V has an eigenvalue a with |a| > 1.

Returning to Arnold’s cat map, we may imbed T2 as
an attractor A4 in a higher-dimensional Euclidean space.
In this case 4 is chaotic, but not fractal.

Our examples clearly show that the notions of fractal
attractor and chaotic (i.e., strange) attractor are indepen-
dent. A periodic orbit is neither strange nor chaotic,
Arnold’s map is strange but not fractal, Feigenbaum’s at-
tractor is fractal but not strange, the Lorenz and Hénon
attractors are both strange and fractal. [Another strange
and fractal attractor with a simple equation has been in-
troduced by Rossler (1976).]

E. Invariant probability measures

An attractor A, be it strange or not, gives a global pic-
ture of the long-term behavior of a dynamical system. A
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more detailed picture is given by the probability measure
p on A, which describes how frequently various parts of
A are visited by the orbit t—x(z) describing the system
(see Fig. 8). Operationally, p is defined as the time aver-
age of Dirac deltas at the points x (),

.1 T
p= lim — fo dt 8, -

2.15
t— o0 T ( )

Similarly, if a continuous function g is given, then we de-
fine

plp)= [ pldx)gp(x)

—tim + [ drglx(n] (2.16)
T—w I Y0 ¢ ) )
The measure is invariant under the dynamical system, i.e.,
invariant under time evolution. This invariance may be

expressed as follows: For all ¢ one has

ploo fN=plep) . (2.17)

Suppose that the invariant probability measure p cannot
be written as +p,+ 3p, where p,,p, are again invariant
probability measures and p;s£p,. Then p is called in-
decomposable, or equivalently, ergodic.

Theorem. If the compact set A is invariant under the
dynamical system (f"), then there is a probability measure
p invariant under (f‘) and with support contained in A.
One may choose p to be ergodic.

[The important assumptions are that the f’ commute
and are continuous 4 —A4 (A compact). The theorem re-
sults from the Markov-Kakutani fixed-point theorem (see
Dunford and Schwartz, 1958, Vol. I).] This is not a very
detailed result; it is more in the class referred to as “‘gen-
eral nonsense” by mathematicians. But since we shall
talk a lot about ergodic measures in what follows, it is
good to know that such measures are indeed present.

Theorem (Ergodic theorem). If p is ergodic, then for p
almost all initial x (0) the time averages (2.15) and (2.16)
reproduce p.

The above theorems show that there are invariant (er-
godic) measures defined by time averages. Unfortunately,

: \ 3 )
AT Wi

FIG. 8. Histogram of 50000 iterates of the map x —pux (1—x),
in 400 bins. The parameter £ =3.67857. .. is the real solution
of the equation (u—2)(+2)=16. It is known that the invari-
ant density is smooth with square-root singularities.
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a strange attractor typically carries uncountably many dis-
tinct ergodic measures. Which one do we choose? We
shall propose natural definitions in the next section.

Example.

The points of the circle T' may be parametrized by
numbers in [0,1), and each such number has a binary ex-
pansion 0.aa,a; - - -, where, for each i, a;=0 or 1 (this
coding introduces a little ambiguity, of no importance for
what follows). We define a map f:T'— T'! by

fix)=2(x) (modl) . (2.18)

Clearly, f replaces 0.aaas;-:+ by 0O.aas;--* (an
operation called a shift). We now choose p between 0 and
1. A probability distribution p, on binary expansions
0.a,a,a;3 - - - is then defined by requiring that a; be 0
with probability p, and 1 with probability 1— p (indepen-
dently for each /). One can check that p, is invariant
under the shift, and in fact ergodic. It thus defines an er-
godic measure for the differentiable dynamical system
(2.18), f:T'—T", and there are uncountably many such
measures, corresponding to the different values of p in
(0,1). .

F. Physical measures

Operationally, it appears that (in many cases, at least)
the time evolution of physical systems produces well-
defined time averages. The same applies to computer-
generated time evolutions. There is thus a selection pro-
cess of a particular measure p which we shall call physical
measure (another operational definition).

One selection process was discussed by Kolmogorov
(we are not aware of a published reference) a long time
ago. A physical system will normally have a small level €
of random noise, so that it can be considered as a stochas-
tic process rather than a deterministic one. In a computer
study, roundoff errors should play the role of the random
noise. Due to sensitive dependence on initial conditions,
even a very small level € of noise has important effects, as
we saw in Sec. IL.D for the Hénon attractor. On the other
hand, a stochastic process such as the one described above
normally has only one stationary measure p,, and we may
hope that p, tends to a specific measure (the Kolmogorov
measure) when e—0. As we shall see below, this hope is
substantiated in the case of Axiom-A dynamical systems.
However, this approach may have difficulties in general,
because an attractor 4 does not always have an open
basin of attraction, and thus the added noise may force
the system to jump around on several attractors.

Another possibility is the following: Suppose that M is
finite dimensional, and that there is a set S CM with Le-
besgue measure u(S) >0 such that p is given by the time
averages (2.15) and (2.16) when x(0)ES. This property
holds if p is an SRB measure (to be defined and studied
in Sec. IV.C; Sinai, 1972; Bowen and Ruelle, 1975; Ruelle,
1976). For Axiom-A systems, the Kolmogorov and SRB
measures coincide, but in general SRB measures are easier
to study.
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Clearly, Kolmogorov measures and SRB measures are
candidates for the description of physical time averages,
but they are not always easy to define. Fortunately, many
important results hold for an arbitrary invariant measure
p. Results of this type, which constitute a large part of
the ergodic theory of differentiable dynamical systems,
will be discussed in Secs. III and IV of this paper.

G. Reconstruction of the dynamics
from an experimental signal

In a computer study of a dynamical system in m di-
mensions, we have an m-dimensional signal x (z), which
can be submitted to analysis. By contrast, in a physical
experiment one monitors typically only one scalar vari-
able, say u(t), for a system that usually has an infinite-
dimensional phase space M. How can we hope to under-
stand the system by analyzing the single scalar signal
u (t)? The enterprise seems at first impossible, but turns
out to be quite doable. This is basically because (a) we re-
strict our attention to the dynamics on a finite-
dimensional attractor -4 in M, and (b) we can generate
several different scalar signals x;(¢#) from the original
u(t). We have already mentioned that the universal at-
tracting set (which contains all attractors) has finite di-
mension in two-dimensional hydrodynamics, and we shall
come back later to this question of finite dimensionality.

The easiest, and probably the best way of obtaining
several signals from a single one is to use time delays.
One chooses different delays 7T,=0,T,,..., Ty and
writes xi(t)=u(t+Ty). In this manner an N-
dimensional signal is generated. The experimental points
in Fig. 9 below have been obtained by this method. Suc-
cessive time derivatives of the signal have also been used:
xk+1(t)=dkx1(t)/dtk, but the numerical differentiations
tend to produce high levels of noise. Of course one
should measure several experimental signals instead of
only one whenever possible.

The reconstruction just outlined will provide an N-
dimensional image (or projection) m4 of an attractor A4
which has finite Hausdorff dimension, but lives in a usu-
ally infinite-dimensional space M. Depending on the
choice of variables (in particular on the time delays), the
projection will look different. In particular, if we use
fewer variables than the dimension of A, the projection
A will be bad, with trajectories crossing each other.
There are some theorems (Takens, 1981; Mané, 1981)
which state that if we use enough variables, typically
about twice the Hausdorff dimension, we shall generally
get a good projection.

Theorem (Mané). Let A be a compact set in a Banach
space B, and E a subspace of finite dimension such that

dimE >dimgy(4 X A4)+1,
or let 4 be compact and
dimE > 2dimg(4)+1,

where dimy is the Hausdorff dimension and dimg is the
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capacity. Then the set of projections 7:B—E such that 7
restricted to A is injective.(i.e., one to one into E) is dense
among all projections B-—E with respect to the norm
operator topology.

[More precisely, the injective projections are “residual,”
i.e., contain a countable intersection of dense sets. As no-
ticed by Mané, his original statement of the theorem
needs a slight correction, which is made in the above for-
mulation.]

The choice of variables for the reconstruction of a
dynamical system has to be made carefully (by trial and
error). This is discussed in Roux, Simoyi, and Swinney
(1983).

H. Poincaré sections

The reconstruction process described above yields a line
(f*)¥ that may look like a heap of spaghetti and may be
difficult to interpret. It is often possible and useful to
make a transverse cut through this mess, so that instead
of a long curve in N dimensions one now has a set of
points S in N — 1 dimensions (Poincaré section). Figure 9
gives an experimental example corresponding to the
Beloussov-Zhabotinski chemical reaction. Given a point
x of the Poincaré section, the first return map will bring it
to Px, which is again in the Poincaré section. When a
good model of S and P can be deduced from the experi-
ment, one has essentially understood the dynamical sys-
tem. This is, however, possible only for low-dimensional
attractors.

Notice that the use of a Poincaré section is different
from a stroboscopic study, where one looks at the system
at integer multiples of a fixed time interval. By contrast,
the time of first return to the Poincaré section is variable

X{tj+2)

X(tj+ 22)

X(tj+T) Xk
(b) (c)

FIG. 9. Experimental plot of a Poincaré section in the
Beloussov-Zhabotinski reaction, after Roux and Swinney (1981):
(a) the attractor and the plane of Poincaré section; (b) the Poin-
caré section; (c) the corresponding first return map.
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(and has to be determined numerically by interpolation).
Sometimes, as for quasiperiodic motions, there is a natur-
al frequency (or several) that will stabilize the stroboscop-
ic image. But in general this is not the case, and therefore
the stroboscopic study is useless.

|. Power spectra

The power spectrum S(w) of a scalar signal u (¢) is de-
fined as the square of its Fourier amplitude per unit time.
Typically, it measures the amount of energy per unit time
(i.e., the power) contained in the signal as a function of
the frequency w. One can also define S(w) as the Fourier
transform of the time correlation function (u(0)u(t))
equal to the average over 7 of u(7)u(t+7). If the correla-
tions of u decay sufficiently rapidly in time, the two defi-
nitions coincide, and one has (Wiener-Khinchin theorem;
see Feller, 1966)

: 1 r iwt 2
S(w)=(const) lim 7!-[0 dte u(t)’

T o

=(const)f_°o dt e'“" lim 1 fofdr’u(r')u(t-f—r’).

T T
(2.19)
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Note that the above limit (2.19) makes sense only after
averaging over small intervals of w. Without this averag-
ing, the quantity

L T iwt, 2
- 'fo dte u(t)’

fluctuates considerably, i.e., it is very noisy. (Instead of
averaging over intervals of w, one may average over many
runs).

The power spectrum indicates whether the system is
periodic or quasiperiodic. The power spectrum of a
periodic system with frequency w has Dirac 8's at w and
its harmonics 2w,3w,.... A quasiperiodic system with
basic frequencies ), ...,w; has &8s at these positions
and also at all linear combinations with integer coeffi-
cients. (The choice of basic frequencies is somewhat arbi-
trary, but the number k of independent frequencies is well
defined.) In experimental power spectra, the Dirac 8’s are
not infinitely sharp; they have at least an “instrumental
width” 27 /T, where T is the length of the time series
used. The linear combinations of the basic frequencies
y, - - . ,wi are dense in the reals if k > 1, but the ampli-
tudes corresponding to complicated linear combinations
are experimentally found to be small. (A mathematical
theory for this does not seem to exist.) A careful experi-
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FIG. 10. Some spectra: (a) The power spectrum of a periodic signal shows the fundamental frequency and a few harmonics. Fauve
and Libchaber (1982). (b) A quasiperiodic spectrum with four fundamental frequencies. Walden, Kolodner, Passner, and Surko
(1984). (c) A spectrum after four period doublings. Libchaber and Maurer (1979). (d) Broadband spectrum invades the subharmonic
cascade. The fundamental frequency and the first two subharmonics are still visible. Croquette (1982).
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ment may show very convincing examples of quasiperiod-
ic systems with two, three, or more basic frequencies. In
fact, k =2 is common, and higher k’s are increasingly
rare, because the nonlinear couplings between the modes
corresponding to the different frequencies tend to destroy
quasiperiodicity and replace it by chaos (see Ruelle and
Takens, 1971; Newhouse, Ruelle, and Takens, 1978).
However, for weakly coupled modes, corresponding for
instance to oscillators localized in different regions of
space, the number of observable frequencies may become
large (see, for instance, Grebogi, Ott, and Yorke, 1983a;
Walden, Kolodner, Passner, and Surko, 1984). Nonquasi-
periodic systems are usually chaotic. Although their
power spectra still may contain peaks, those are more or
less broadened (they are no longer instrumentally sharp).
Furthermore, a noisy background of broadband spectrum
is present. For this it is not necessary that the system be
infinite dimensional [Figs. 10(a)—10(d)].

In general, power spectra are very good for the visuali-
zation of periodic and quasiperiodic phenomena and their
separation from chaotic time evolutions. However, the
analysis of the chaotic motions themselves does not bene-
fit much from the power spectra, because (being squares
of absolute values) they lose phase information, which is
essential for the understanding of what happens on a
strange attractor. In the latter case, as already remarked,
the dimension of the attractor is no longer related to the
number of independent frequencies in the power spec-
trum, and the notion of “number of modes” has to be re-
placed by other concepts, which we shall develop below.

J. Hausdorff dimension and related concepts®

Most concepts of dimension make use of a metric. Our
applications are to subsets of R ” or Banach spaces, and
the natural metric to use is the one defined by the norm.

Let A be a compact metric space and N(r,4) the
minimum number of open balls of radius » needed to cov-
er A. Then we define

dimg 4 = lim sup————lOgN(r’A )
r—0 log(1/r)
This is the capacity of A (this concept is related to
Kolmogorov’s € entropy and has nothing to do with
Newtonian capacity). If A and B are compact metric
spaces, their product A X B satisfies

dimg (A4 X B)<dimg A +dimgB . (2.20)

Given a nonempty set 4, with a metric, and r >0, we
denote by o a covering of 4 by a (countable) family of
sets o, with diameter d; =diamo; <r. Given a >0, we
write

mA(A)=inf S (dy)* .
7 k

When r10, m7(A) increases to a (possibly infinite) limit
m%(A) called the Hausdorff measure of A in dimension a.
We write
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dimy A =sup{a:m*(4) > 0}

and call this quantity the Hausdorff dimension of A.
Note that m*(A4)=+ « for a <dimy A4, and m*A4)=0
for a>dimyA. The Hausdorff dimension of a set A is,
in general, strictly smaller than the Hausdorff dimension
of its closure. Furthermore, the inequality (2.20) on the
dimension of a product does not extend to Hausdorff di-
mensions. It is easily seen that for every compact set 4,
one has dimy 4 <dimg A4.

If A4 and B are compact sets
dlmHAZdlmK A, dlmHB=d1mKB, then

satisfying

dimy (A4 X B)=dimg(A X B)=dimy A +dimyB .

We finally introduce a topological dimension dim; A. It
is defined as the smallest integer n (or + «) for which the
following is true: For every finite covering of 4 by open
sets oy,...,0ny one can find another covering
oY, ...,0y such that o;Co; for i=1,...,N and any
n +2 of the o; will have an empty intersection:

U}Oﬂa}lﬂ--- No; o .

n+1
The quantity dim; A4 is also called the Lebesgue or cover-
ing dimension of A.

For more details on dimension theory, see Hurewicz
and Wallman (1948) and Billingsley (1965).

lll. CHARACTERISTIC EXPONENTS

In this section we review the ergodic theory of differen-
tiable dynamical systems. This means that we study in-
variant probability measures (corresponding to time aver-
ages). Let p be such a measure, and assume that it is er-
godic (indecomposable). The present section is devoted to
the characteristic exponents of p (also called Liapunov ex-
ponents) and related questions. We postpone until Sec. V
the discussion of how these characteristic exponents can
be measured in physical or computer experiments.

A. The multiplicative ergodic
theorem of Oseledec

If the initial state of a time evolution is slightly per-
turbed, the exponential rate at which the perturbation
6x (1) increases (or decreases) with time is called a charac-
teristic exponent. Before defining characteristic exponents
for differentiable dynamics, we introduce them in an
abstract setting. Therefore, we speak of measurable maps
f and T, but the application intended is to continuous
maps.

Theorem (multiplicative ergodic theorem of Oseledec).
Let p be a probability measure on a space M, and
f:M —M a measure preserving map such that p is ergo-
dic. Let also T:M— the m Xm matrices be a measur-
able map such that

[ ptdxolog*||T(x)|] < w0 ,

where  logtu=max(0,logu). Define the matrix
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T'=T(f""'x):-- T(fx)T(x). Then, for p-almost all x,
the following limit exists:

lim (TP*THV2"=A,

n— o0

(3.1)

(We have denoted by T7* the adjoint of T, and taken the
2nth root of the positive matrix T7* Ty.)

The logarithms of the eigenvalues of A, are called
characteristic  exponents. We denote them by
Ai>A,;> ---. They are p-almost everywhere constant.
(This is because we have assumed p ergodic. Of course,
the A; depend on p.) Let A'"> A%’ --- be the charac-
teristic exponents again, but no longer repeated by multi-
plicity; we call m'” the multiplicity of A'". Let E;” be
the subspace of R™ corresponding to the eigenvalues

<expA'” of A,. Then R™=E{"DE*D--- and the
following holds
Theorem. For p-almost all x,
o1 n (0
lim —log||Tyul||=A (3.2)
n—w N

if u€E\NE'*", In particular, for all vectors u that
are not in the subspace E\’ (viz., almost all u), the limit
is the largest characteristic exponent A'"’.

The above remarkable theorem dates back only to 1968,
when the proof of a somewhat different version was pub-
lished by Oseledec (1968). For different proofs see
Raghunathan (1979), Ruelle (1979), Johnson, Palmer, and
Sell (1984). What does the theorem say for m =1? The
1 X 1 matrices are just ordinary numbers. Assuming them
to be positive and taking the log, the reader will verify
that the multiplicative ergodic theorem reduces to the or-
dinary ergodic theorem of Sec. ILE. The novelty and dif-
ficulty of the multiplicative ergodic theorem is that for
m > 1 it deals with noncommuting matrices.

In some applications we shall need an extension, where
R ™ is replaced by an infinite-dimensional Banach or Hil-
bert space E and the T'(x) are bounded operators. Such
an extension has been proved under the condition that the
T (x) are compact operators. In the Hilbert case this
means that the spectrum of T(x)* T(x) is discrete, that
the eigenvalues have finite multiplicities, and that they
accumulate only at O.

Theorem (multiplicative ergodic theorem—compact
operators in Hilbert space). All the assertions of the mul-
tiplicative ergodic theorem remain true if R ™ is replaced
by a separable Hilbert space E, and T maps M to com-
pact operators in E. The characteristic exponents form a
sequence tending to — oo (it may happen that only finitely
many characteristic exponents are finite).

See Ruelle (1982a) for a proof. For compact operators
on a Banach space, Eq. (3.1) no longer makes sense, but
there are subspaces E\DE.*'D--- such that (3.2)
holds. This was shown first by Mané (1983), with an un-
necessary injectivity assumption, and then by Thieullen
(1985) in full generality. (Thieullen’s result applies in fact
also to noncompact situations.)
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B. Characteristic exponents
for differentiable dynamical systems

1. Discrete-time dynamical systems
onR"™

We consider the time evolution
x(n+1)=f(x(n)), (3.3)

where f:R™— R ™ is a differentiable vector function. We
denote by T (x) the matrix (3f;/3x;) of partial derivatives
of the components f; at x. For the nth iterate f" of f,
the corresponding matrix of partial derivatives is given by
the chain rule:

Af™; /dx;=T(f""'x) - T(fx)T(x) . (3.4)

Now, if p is an ergodic measure for f, with compact sup-
port, the conditions of the multiplicative ergodic theorem
are all satisfied and the characteristic exponents are thus
defined.

In particular, if 8x(0) is a small change in initial condi-
tion (considered as infinitesimally small), the change at
time n is given by

8x(n)=Tgdx(0)
=T(f" 'x)--- T(x)5x(0) . (3.5)

For most 8x(0) [i.e., for 8x(0)ZE.3)] we have 8x(n)
zﬁx(O)e"A', and sensitive dependence on initial condi-
tions corresponds to A;>0. Note that if 6x(0) is finite
rather than infinitely small, the growth of 6x(rn) may not
go on indefinitely: if x(0) is in a bounded attractor,
8x(n) cannot be larger than the diameter of the attractor.

2. Continuous-time dynamical systems
onR™

If the time is continuous, we apply the multiplicative
ergodic theorem to the time-one map f=f1. The limits
defining the characteristic exponents hold again, with
t— oo replacing n— oo (because of continuity it is not
necessary to restrict ¢ to integer values). To be specific,
we define

T =matrix (3f;/0x;) . (3.6)

If p is an ergodic measure with compact support for the
time evolution, then, for p-almost all x, the following lim-
its exist:

lim (TPHTHV2=A, , (3.7
— o
fim %logHT;uH:)\'” ifu€EVNEVTY | (3.8)
t— o0

where A'V>A2's .- are the logarithms of the eigen-
values of A,, and E;" is the subspace of R ™ correspond-
ing to the eigenvalues <expA'’. Notice, incidentally, that
if the Euclidean norm || || is replaced by some other
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norm on R ™, the characteristic exponents and the E,“” do
not change.

3. Dynamical systems in Hilbert space

We assume that E is a (real) Hilbert space, p a probabil-
ity measure with compact support in E, and f* a time
evolution such that the linear operators Ti=D,f’
(derivative of f' at x) are compact linear operators for
t>0. This situation prevails, for instance, for the
Navier-Stokes time evolution in two dimensions (as well
as in three dimensions, so long as the solution has no
singularities). The definition of characteristic exponents
is the same here as for dynamical systems in R ™.

4. Dynamical systems on a manifold M/

For definiteness, let M be a compact manifold like a
sphere or a torus; p is a probability measure on M, invari-
ant under the dynamical system. If M is m dimensional,
we may cut M into a finite number of pieces which are
smoothly parametrized by subsets of R ™ (see Fig. 11). In
terms of this new parametrization, the map f is continu-
ous except at the cuts, and so is the matrix of partial
derivatives.
abstract multiplicative ergodic theorem, we can again de-
fine characteristic exponents. This definition is indepen-
dent of the partition of the manifold M that has been
used, and of the choice of parametrization for the pieces.
The reason is that, for any other choice, the norm used
would differ from the original norm by a bounded factor,
which disappears in the limit. One could alternatively use
a Riemann metric on the manifold and define the charac-
teristic exponents in terms of this metric. If 9, M
denotes the tangent space at x, we now have .7, M
=E/'DEPD> -,

C. Steady, periodic, and quasiperiodic motions

1. Examples and parameter dependence

Before proceeding with the general theory, we pause to
discuss illustrations of the preceding results.

FIG. 11. A two-dimensional torus cut into four rectangular
pieces by two horizontal and two vertical circles.
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Since only measurability is needed for the

A steady state of a physical time evolution is associated
with a fixed point P of the corresponding dynamical sys-
tem. The steady state is thus described by the probability
measure p=25p (Dirac’s delta at P), which is of course in-
variant and ergodic. We denote by a;,a,, . . ., the eigen-
values of the operator Dpf' (derivative of the time-one
map f Uat P), in decreasing order of absolute values, and
repeated according to multiplicity. Then the characteris-
tic exponents are

}»1=log|a1|, k2=log|a2|, RN (3.9)

In particular, a stable steady state associated with an at-
tracting fixed point (see Sec. II1.C.2) has negative charac-
teristic exponents. If the dynamical system depends con-
tinuously on a bifurcation parameter u, the A;=log | «; |
depend continuously on u, but we shall see in Sec. III.D
that this situation is rather exceptional.

A periodic state of a physical time evolution is associat-
ed with a periodic orbit I'={f'a:0<t < T} of the corre-

sponding continuous-time dynamical system. It is thus
described by the ergodic probability measure
1 o7
p=br=-r [, dib,, . (3.10)

We denote by a; the eigenvalues of D,f”; then one of
these eigenvalues is 1 (corresponding to the direction
tangent to I' at a). The characteristic exponents are the
numbers

1
hi=plog|af|

and one of them is thus 0. In particular, a stable periodic
state, associated with an attracting periodic orbit (see Sec.
I1.C.2), has one characteristic exponent equal to zero and
the others negative. Here again, if there is a bifurcation
parameter u, the A; depend continuously on p.

Consider now a quasiperiodic state with k frequencies,
stable for simplicity. This is represented by a quasi-
periodic attractor (Sec. I1.C.3), i.e., an attracting invariant
torus T% on which the time evolution is described by
translations (2.8) in terms of suitable angular variables
@1, . . . »@x. There is only one invariant probability mea-
sure here: the Haar measure p on T, defined in terms of
the angular variables by

Qm) ke, - dey .

Here, k characteristic exponents are equal to zero, and the
others are negative. If the dynamical system depends
continuously on a bifurcation parameter u and has a
quasiperiodic attractor for u=pu,, it will still have an at-
tracting k torus for u close to ug, but the motion on this
k torus may no longer be quasiperiodic. For k >2, fre-
quency locking may lead to attracting periodic orbits (and
negative characteristic exponents). For k > 3, strange at-
tractors and positive characteristic exponents may be
present for p arbitrarily close to pg (see Ruelle and Tak-
ens, 1971; Newhouse, Ruelle, and Takens, 1978).
Nevertheless, we have continuity at g =p,: the charac-
teristic exponents for u close to uy are close to their
values at ug.



632 J.-P. Eckmann and D. Ruelle: Ergodic theory of chaos

2. Characteristic exponents as indicators
of periodic motion

The examples of the preceding section are typical for
the case of negative characteristic exponents. We now
point out that, conversely, it is possible to deduce from
the negativity of the characteristic exponents that the er-
godic measure p describes a steady or a period state.

Theorem (continuous-time fixed point). Consider a
continuous-time dynamical system and assume that all
the characteristic exponents are different from zero.
Then p=35p, where P is a fixed point. (In particular, if all
characteristic exponents are negative, P is an attracting
fixed point.)

Another formulation: If the support of p does not
reduce to a fixed point, then one of the characteristic ex-
ponents vanishes.

Sketch of proof. One considers the vector function F,

Flx)= L frx (3.11)
dr

7=0

If the support of p is not reduced to a fixed point, we
have F(x)s0 for p-almost all x. Furthermore, Eq. (3.11)
yields

TIF(x)=(D fF(x)=F(f'x) .

Since p is ergodic, f'x comes close to x again and again,
and we find for the limit (3.8)

lim %logIlT,ﬁF(x)HzO.
t— o0

Thus there is a characteristic exponent equal to 0.

In the next two theorems we assume that the dynamical
system is defined by functions that have continuous
second-order derivatives. (The proofs use the stable mani-
folds of Sec. IIL.E.)

Theorem (discrete-time periodic orbit). Consider a
discrete-time dynamical system and assume that all the
characteristic exponents of p are negative. Then

1 N
P= N ; kaa ,
where {a,fa,...,f" 'a} is an attracting periodic orbit,
of period N.

Proof. See Ruelle (1979).

Theorem (continuous-time periodic orbit). Consider a
continuous-time dynamical system and assume that all
the characteristic exponents of p are negative, except A.
There are then two possibilities: (a) p=6p, where P is a
fixed point, (b) p is the measure (3.9) on an attracting
periodic orbit (and A;=0).

Proof. See Campanino (1980).

As an application of these results, consider the time
evolution given by a differential equation (2.1) in two di-
mensions. We have the following possibilities for an er-
godic measure p:

A’l :}\.2:0,
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Ay=0, A, <0: p is associated with a fixed point or an
attracting period orbit,

A;>0, A,;=0: this reduces to the previous case by
changing the direction of time, and therefore p is associat-
ed with a fixed point or a repelling periodic orbit,

A, and A, are nonvanishing: p is associated with a fixed
point.

None of these possibilities corresponds to an attractor
with a positive characteristic exponent. Therefore, an
evolution (2.1) can be chaotic only in three or more di-
mensions.

D. General remarks on characteristic exponents

We now fix an ergodic measure p, and the characteris-
tic exponents that occur in what follows are with respect
to this measure.

1. The growth of volume elements

The rate of exponential growth of an infinitesimal vec-
tor &x () is given in general by the largest characteristic
exponent A;. The rate of growth of a surface element
S0(t)=258x (1) A &,x (1) is similarly given in general by the
sum of the largest two characteristic exponents A+ A,;.
In general for a k-volume element 8 x (1) A - -+ A8 x (1)
the rate of growth is A+ - -- +A,. (Of course, if this
sum is negative, the volume is contracted.) The construc-
tion above gives computational access to the lower
characteristic exponents (and is used in the proof of the
multiplicative ergodic theorem). For instance, for a
dynamical system in R ™, the rate of growth of the m-
volume element is the rate of growth of the Jacobian
determinant | J{ | = ]det(af,-'/axj) |, and is given by
Ai+ -+ +A,. For a volume-preserving transformation
we have thus A;+ -+ - +A,,=0. For a map f with con-
stant Jacobian J, we have A, + - - - +A,, =log|J |.

Examples.

In the case of the Hénon map [example (a) of Sec. I1.D]
we have J=-—b=-0.3, hence A,=log|J|—A,
~—1.20—-0.42=—1.62.

In the case of the Lorenz equation [example (b) of Sec.
IL.B] we have dJ'/dt =—(o+1+b). Therefore, if we
know A;>0 we know all characteristic exponents, since
Ay=0and A;=—(o+1+b)—A,.

2. Lack of explicit expressions, lack of continuity

The ordinary ergodic theorem states that the time aver-
age of a function ¢ tends to a limit (p-almost everywhere)
and asserts that this limit is f @(x)p(dx). By contrast,
the multiplicative ergodic theorem gives no explicit ex-
pression for the characteristic exponents. It is true that in
the proof of the theorem as given by Johnson et al. (1984)
there is an integral representation of characteristic ex-
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ponents in terms of a measure on the space of points
(x,Q), where x is a point of our m-dimensional manifold,
and Q is an m Xm orthogonal matrix. However, this
measure is not constructively given. This situation is
similar to that in statistical mechanics where, for exam-
ple, there is in general no explicit expression for the pres-
sure in terms of the interparticle forces.

For a dynamical problem depending on a bifurcation
parameter u, one would like at least to know some con-
tinuity properties of the A; as functions of p. The situa-
tion there is unfortunately quite bad (with some
exceptions—see Sec. III.C). For each u there may be
several attractors A%, each having at least one physical
measure ph. The dependence of the attractors on y need
not be continuous, because of captures and “explosions,”
and we do not know that p5 depends continuously on A4%.
Finally, even if pf, depends continuously on u, it is not
true in general that the characteristic exponents do the
same. To summarize: the characteristic exponents are in
general discontinuous functions of the bifurcation param-

eter .
Example.
The interval [0,1] is mapped into itself by

x—pux(1—x) when O0<p <4, and Fig. 12 shows A, as a
function of u. There are intervals of values of u where A,
is negative, corresponding to an attracting periodic orbit.
It is believed that these intervals are dense in [0,4]. If this
is s0, A is necessarily a discontinuous function of u wher-
ever it is positive. It is believed that {pu€[0,4]:A;> 0}
has positive Lebesgue measure (this result has been an-
nounced by Jakobson, but no complete proof has ap-
peared). For some positive results on these difficult prob-
lems see Jakobson (1981), Collet and Eckmann
(1980a,1983), and Benedicks and Carleson (1984).

The wild discontinuity of characteristic exponents
raises a philosophical question: should there not be at
least a piecewise continuous dependence of physical quan-
tities on parameters such as one sees, for example, in the
solution of the Ising model? Yet we obtain here discon-
tinuous predictions. Part of the resolution of this paradox
lies in the fact that our mathematical predictions are
measurable functions if not continuous, and that measur-
able functions have much more controllable discontinui-
ties (cf. Luzin’s theorem, for instance) than those one
could construct with help of the axiom of choice. Anoth-
er fact is that physical measurements are smoothed by the
instrumental procedure. In particular, the definition of
characteristic exponents involves a limit ¢— oo [see Egs.
(3.7) and (3.8)], and the great complexity of a curve
p—A(u) will only appear progressively as t is made
larger and larger. The presence of noise also smooths out
experimental results. At a given level of precision one
may find, for instance, that there is one positive charac-
teristic exponent A,(x) in the interval [u,,u,]. This is a
meaningful statement, even though it probably will have
to be revised when higher-precision measurements are
made; those may introduce small subintervals of [u,u,]
where all characteristic exponents are negative. Let us
also mention the possibility that for a large chaotic sys-
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FIG. 12. (a) Topological entropy (upper curve) and characteris-
tic exponent (lower curve) as a function of u for the family
x—ux(1—x). (Graph by J. Crutchfield.) Note the discon-
tinuity of the lower curve. (b) Similar figure for the Hénon
map, with b =0.3, after Feit (1978).

tem (like a fully turbulent fluid) the distribution of
characteristic exponents could again be a smooth function
of bifurcation parameters.

3. Time reflection

Let us assume that the time-evolution maps f* are de-
fined for ¢ negative as well as positive. In the discrete-
time case this means that f has an inverse f~! which is a
smooth map (i.e., f is a diffeomorphism). We may consid-
er the time-reversed dynamical system, with time-
evolution map f'=f"". If p is an invariant (or ergodic)
probability measure for the original system, it is also in-
variant (or ergodic) for the time-reversed system. Fur-
thermore, the characteristic exponents of an ergodic mea-
sure p for the time-reversed system are those of the original
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system, but with opposite sign. We have correspondingly a
sequence of subspaces E \'CE 2’C - -- for almost all x,
such that

lim ——log||T u||=—A" if uEWNEY-" .

t— — o0 }t |
Define F\'=E'"NEY. Then, for p-almost all x, the
subspaces F, ,‘ci ) span R ™ (or the tangent space to the mani-
fold M, as the case may be; compact operators in
infinite-dimensional Hilbert space are excluded here be-
cause they are not compatible with ¢ <0). Furthermore, if
T! is the derivative matrix or operator corresponding to

7 "1 when t <0, we have
lim —:—logHT;quk(“ ifueFry,
[t|—o

where ¢ may go to + « or — . (For details see Ruelle,
1979.)

4. Relations between continuous-time
and discrete-time dynamical systems

We have defined the characteristic exponents for -a
continuous-time dynamical system [see Egs. (3.7) and
(3.8)] so that they are the same as the characteristic ex-
ponents for the discrete-time dynamical system generated
by the time-one map f = f'.

Given a Poincaré section (see Sec. II.H), we want to re-
late the characteristic exponents A; for a continuous-time
dynamical system with the characteristic exponents A;
corresponding to the first return map P. Note that one of
the A; is zero (first theorem in Sec. III.C); we claim that
the other A; are given by

Ai=A/{T)y, (3.12)

where (7), is the average time between two crossings of
the Poincaré section X, computed with respect to the
probability measure o on 2 naturally associated with p.
(The measure o gives the density of intersections of orbits
with 2.) The proof is not hard and is left to the reader.

5. Hamiltonian systems

Consider a Hamiltonian (i.e., conservative) system with
m degrees of freedom. This is a continuous-time dynami-
cal system in 2m dimensions. We claim that the set of
A;’s is symmetric with respect to 0. This is readily
checked from Eq. (3.7) and the fact that T} is a symplec-
tic matrix. Actually, two of the A; vanish; we get rid of
one by going to a (2m — 1)-dimensional energy surface,
and one zero characteristic exponent survives in accor-
dance with the first theorem of Sec. III.C.2.

E. Stable and unstable manifolds

The multiplicative ergodic theorem asserts the existence
of linear spaces E\""DE{*’D - such that
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FIG. 13. Stable and unstable manifolds can be defined for
points that are neither fixed nor periodic. The stable and unsta-
ble directions E; and E} are tangent to the stable and unstable
manifolds ¥; and VY, respectively. They are mapped by f onto
the corresponding objects at fx.

lim %IOgHT;uH <A ifueE® .
t— o0

This means that there exist subspaces E," such that the
vectors in ELV\EY *1) are expanded exponentially by time
evolution with the rate A'¥. (This expansion is of course a
contraction if A'” <0.) See Fig. 13.

One can define a nonlinear analog of those E.” which
correspond to negative characteristic exponents. Let
A <0, £>0, and write

ViA,e)={y:d(f'x,f'y) <ee™ for all t >0} ,

where d(x,y) is the distance of x and y (Euclidean dis-
tance in R ™, norm distance in Hilbert space, or Riemann
distance on a manifold). We shall assume from now on
that the time-one map f' has continuous derivatives of
second as well as first order. If A"~ Vs A > A" the set
Vi(A,€) is in fact, for p-almost all x and small €, a piece
of differentiable manifold, called a local stable manifold
at x; it is tangent at x to the linear space E.” (and has the

FIG. 14. The stable manifold of a hyperbolic fixed point folds
up on itself. (The map is after Hénon and Heiles, 1964.)
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same dimension). One shows that V3(A,e) is differenti-
able as many times as f!.

If we assume that our dynamical system is defined for
negative as well as positive times, we can define global
stable manifolds such that

vis— 1y lim %logd (fox, fly) < AP
t— o0

=U s/ vine,
t>0
with negative A between A'" ~!) and A!" as above.

These global manifolds have the somewhat annoying
feature that, while they are locally smooth, they tend to
fold and accumulate in a very complicated manner, as
suggested by Fig. 14. We can also define the stable mani-
fold of x by
il

vi=

If A >0 we define similarly

y: there exists y_, such that f'y_,=yp and lim %logd(x_,,y_,)<0[ .
t— o

Vi={y:lim %mgd(f’x,f’y) <0
{—

(it is the largest of the stable manifolds, equal to V}’*
where A'” is the largest negative characteristic exponent).

For a dynamical system where negative times are al-
lowed, we obtain unstable manifolds V* instead of stable
manifolds simply through replacement of ¢ by —¢ in the
definitions. Instead of assuming that f’ is defined for
t <0, we find it desirable to make the weaker assumption
that f' and Df' (defined for t>0) are injective. This
means that f'x =f'y implies x =y and D,f'u =D, f"
implies u# =v. This injectivity assumption is satisfied
when the dynamical system is defined for negative as well
as positive times, but also in the case of the Navier-Stokes
time evolution. The global unstable manifold V} is then
defined, provided that for every ¢>0 there is x_, such
that f'x _,=x; the definition is

1

Vi(A,e)={y: there exists y_, such that f'y _,=y and d(x_,,y_,) <ee ™ for all >0} .

and if A>0and AtV < A <A we write

(i)u
V=

= U fivine) .
t>0

The global unstable manifold Vy is the largest of the
Vi corresponding to the smallest positive characteristic
exponent A", Here again one shows that the local unsta-
ble manifolds V}(A,c) are differentiable (as many times,
in fact, as f!), while the global unstable manifolds V"
and V} are locally differentiable, but may accumulate on
themselves in a complicated manner globally.

The theory of stable and unstable manifolds is part of
Pesin theory (for some details, see Sec. II1.G).

Examples.

(a) Fixed points. If P is a fixed point for a dynamical
system (with discrete or continuous time), the characteris-

tic exponents of the 8-measure &y at P are called charac-
teristic exponents of the fixed point. They are given ex-
plicitly by Eq. (3.9). The fixed point P is said to be hyper-
bolic if all characteristic exponents A; are nonzero. When
all A; <0, P is attracting. When all A; >0, P is repelling.
When some A; are >0 and some <O, P is of saddle type.
The stable and unstable manifolds of the hyperbolic fixed
point P are defined to be the stable and unstable mani-
folds of 8p. One has

t—+ o

Vi= ly: lim f’y=x} ,
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y: there exists y_, such that f%_,=y and lim Ld(x_,,y_ )< —AW
!

t—ow [

Vi=

y: lim fY :x] .
t——o

(b) Periodic orbits. Let T’ be a closed orbit for a
continuous-time dynamical system. There is only one in-
variant measure with support I', namely 81 given by Eq.
(3.10); it is ergodic. If u is a vector tangent to ' at x, the
corresponding characteristic exponent is zero as one may
easily check. If all other characteristic exponents are
nonzero, I' is a hyperbolic periodic orbit. The attracting,
repelling, and saddle-type periodic orbits are similarly de-
fined. If x €T we have

Vi=ly: lim d(f%f%)=01.

This is also called the strong stable manifold of x, and a
stable manifold of T is defined by

P=Uw
xer

=U Frve,

t>0

where the local stable manifold V§(¢) is defined for small
€ by
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VE(e)={y:d(f'x,f'y)<e forall >0} .

Theorem. If A is an attracting set, and x € 4, then
V¥C A i.e., the unstable manifold of x is contained in A.

Proof. If U is a fundamental neighborhood of A, and
yEVYE then f~ye€U for sufficiently large 7 (because
S Tyisclose to f ""x € A). Thereforeye N _ fU=A.

Corollary. Let A be an attracting set. The number of
characteristic exponents A; >0 for any ergodic measure
with support in A4 is a lower bound to the dimension of
A.

Proof. The dimension of A4 is at least that of V}, which
is equal to the dimension of E ¥', where A'¥’ is the small-
est positive characteristic exponent. But dimE';k’ is the
sum of the multiplicities of the positive A'", i.e., the num-
ber of positive characteristic exponents A;.

(c) Visualization of the unstable manifolds. The Hénon
attractor has a characteristic appearance of a line folded
over many times (see Fig. 5). A similar picture appears
for attractors of other two-dimensional dynamical sys-
tems generated by a diffeomorphism (differentiable map
with differentiable inverse). The theorem stated above
suggests that the convoluted lines seen in such attractors
are in fact unstable manifolds. This suggestion is con-
firmed by the fact that in many cases the physical mea-
sure on an attractor is absolutely continuous on unstable
manifolds, as we shall discuss below.

In higher dimensions, the unstable manifolds forming
an attractor may be lines (one dimension), veils (two di-
mensions), etc. Attractors corresponding to noninvertible
maps in two dimensions often have the characteristic ap-
pearance of folded veils or drapes, and it is thus immedi-
ately apparent that they do not come from a diffeomor-
phism (Fig. 15).

FIG. 15. The map x'=(4 —x —By)x, y'=(A4 —Byx —yly
with 4 =3.7, B, =0.1, B,=0.15 is not invertible. Shown are
50000 iterates. The map was described in Ushiki et al. (1980).
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F. Axiom- A dynamical systems”

We discuss here some concepts of hyperbolicity which
will be referred to in Sec. IV. The hurried reader may
skip this discussion without too much disadvantage. In
this section, M will always be a compact manifold of di-
mension m. We shall denote by T, M the tangent space
to M at x. If f:M—M is a differentiable map, we shall
denote by T,f:TxM—Ts M the corresponding tangent
map. (We refer the reader to standard texts on differen-
tial geometry for the definitions.) If a Riemann metric is
given on M, the vector spaces T, M acquire norms || ||,.

1. Diffeomorphisms

Let f:M —M be a diffeomorphism, i.e., a differentiable
map with differentiable inverse f ',

We say that a point a of M is wandering if there is an
open set B containing a [say a ball B,(e)] such that
BNf¥B =g for all k>0 (or we might equivalently re-
quire this only for all k large enough). The set of points
that are not wandering is the nonwandering set Q. It is a
closed, f-invariant subset of M.

Let A be a closed f-invariant subset of M, and assume
that we have linear subspaces E; ,E; of T,M for each
Xx €A, depending continuously on x and such that

TM=Ef +E;, dimEf +dimE; =m .

Assume also that T,fE; =E; and T,fEf=E} (e,
E~—,E™ form a continuous invariant splitting of TM over
A). One says that A is a hyperbolic set if one may choose
E~ and E™* as above, and constants C>0, © > 1 such
that, for all n >0,

HTxf"qunxsce_"HuHx ifuekE;,
j|Txf_”u||f~,,x5C6‘"||v|]x ifveEE] .

[Note that, as a consequence, no ergodic measure with
support in A has characteristic exponents in the interval
(—6-1,67).]

If the whole manifold M is hyperbolic, f is called an
Anosov diffeomorphism. [Arnold’s cat map, Sec. I1.D, ex-
ample (c), is an Anosov diffeomorphism.]

If the nonwandering set Q is hyperbolic, and if the
periodic points are dense in 2, f is called an Axiom-A dif-
feomorphism. (Every Anosov diffeomorphism is an
Axiom- A4 diffeomorphism.)

2. Flows

Consider a continuous-time dynamical system (f*) on
M, where f' is defined for all tER; (f') is then also
called a flow.

We say that a point a of M is wandering if there is an
open set B containing a [say a ball B,(g)] such that
BN f'B =p for all sufficiently large ¢. The set of points
that are not wandering is the nonwandering set Q. It is a
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closed, (f*)-invariant subset of M.

Let A be a closed invariant subset of M containing no
fixed point. Assume that we have linear subspaces
E7,EXE} of T,M for each x €A, depending continu-
ously on x, and such that

T.M =E; +EX2+E] ,
dimEl=1, dimE; +dimEf=m —1 .

Assume also that Ef is spanned by

a .
dtfx ’

t=0
i.e., Ef is in the direction of the flow, and that
Txf’E;=Ef_,x R
T.f'E} :E;’,x

One says that A is a hyperbolic set if one may choose E ~,
E° and ET as above, and constants C>0, ©>1 such
that, for all 1 >0

NTof'ull  <CO|Jullx if u€ET,

ITxf "] j—iy <CO™'0]lx ifveEt .

More generally, we shall also say that A* is a hyperbolic
set if A* is the union of A as above and of a finite number
of hyperbolic fixed points [Sec. IIL.E, example (a)].

If the whole manifold M is a hyperbolic, (f*) is called
an Anosov flow.

If the nonwandering set Q is hyperbolic, and if the
periodic orbits and fixed points are dense in the Q, then
(f") is called an Axiom-A flow.

3. Properties of Axiom- A dynamical systems

Axiom- 4 dynamical systems were introduced by Smale
[for reviews, see Smale’s original paper (1967) and Bowen
(1978)]. Smale proved the following “spectral theorem™
valid both for diffeomorphism and flows.

Theorem. () is the union of finitely many disjoint closed
invariant sets (, . .., g, and for each Q; there is x €;
such that the orbit {f’x} is dense in Q;. The decomposi-
tion Q=Q; U - - - US); is unique with these properties.

The sets {); are called basic sets, while those which are
attracting sets are called attractors (there is always at least
one attractor among the basic sets).

Some of the ergodic properties of Axiom-A attractors
will be discussed in Sec. IV. The great virtue of these sys-
tems is that they can be analyzed mathematically in de-
tail, while many properties of a map apparently as simple
as the Hénon diffeomorphism [Sec. IL.D, example (a)]
remain conjectural.

It should be pointed out that there is a vast literature
on the Axiom-A systems, concerned in particular with
structural stability.
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G. Pesin theory*

We have seen above that the stable and unstable mani-
folds (defined almost everywhere with respect to an er-
godic measure p) are differentiable. This is part of a
theory developed by Pesin (1976,1977).2 Pesin assumes
that p has differentiable density with respect to Lebesgue
measure, but this assumption is not necessary for the
study of stable and unstable manifolds [see Ruelle (1979),
and for the infinite-dimensional case Ruelle (1982a) and
Mané (1983)].

The earlier results on differentiable dynamical systems
had been mostly geometric and restricted to hAyperbolic
(Anosov, 1967) or Axiom-A systems (Smale, 1967).
Pesin’s theory extends a good part of these geometric re-
sults to arbitrary differentiable dynamical systems, but
working now almost everywhere with respect to some er-
godic measure p. (The results are most complete when all
characteristic exponents are different from zero.) The
original contribution of Pesin has been extended by many
workers, notably Katok (1980) and Ledrappier and Young
(1984). Many of the results quoted in Sec. IV below de-
pend on Pesin theory, and we shall give an idea of the
present aspect of the theory in that section. Here we men-
tion only one of Pesin’s original contributions, a striking
result concerning area-preserving diffeomorphisms (in
two dimensions).

Theorem (Pesin). Let f be an area-preserving dif-
feomorphism, and f be twice differentiable. Suppose
fS =S for some bounded region S, and let S’ consist of
the points of S which have nonzero characteristic ex-
ponents. Then (up to a set of measure 0) S’ is a countable
union of ergodic components.

In this theorem the area defines an invariant measure
on S, which is not ergodic in general, and S can therefore
be decomposed into further invariant sets. This may be a
continuous decomposition (like that of a disk into circles).
The theorem states that where the characteristic exponents
are nonzero, the decomposition is discrete.

IV. ENTROPY AND INFORMATION DIMENSION

In this section we introduce two more ergodic quanti-
ties: the entropy (or Kolmogorov-Sinai invariant) and the
information dimension. We discuss how these quantities
are related to the characteristic exponents. The measure-
ment of the entropy and information dimension in physi-
cal and computer experiments will be discussed in Sec. V.

A. Entropy

As we have noted already in the Introduction, a system
with sensitive dependence on initial conditions produces

2For a systematic exposition see Fathi, Herman, and Yoccoz
(1983).
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information. This is because two initial conditions that
are different but indistinguishable at a certain experimen-
tal precision will evolve into distinguishable states after a
finite time. If p is an ergodic probability measure for a
dynamical system, we introduce the concept of mean rate
of creation of information h(p), also known as measure-
theoretic entropy or the Kolmogorov-Sinai invariant or
simply entropy. When we study the dynamics of a dissi-
pative physicochemical system, it should be noted that the
Kolmogorov-Sinai entropy is not the same thing as the
thermodynamic entropy of the system. To define & (p)
we shall assume that the support of p is a compact set
with a given metric. (More general cases can be dealt
with, but in our applications supp p is indeed a compact
metric space.) Let .o =(./y,...,.,) be a finite (p-
measurable) partition of the support of p. For every piece
o we write f_"bcx/j for the set of points mapped by f*
to .«/;. We then denote by f —k«/ the partition
(f~*a7y,...,f*,). Finally, o#'" is defined as

M= Vf“l.n/ IVARRE \/f—n-HLQ/ ,
which is the partition whose pieces are
o Nf N NfT

with i;€{1,2,...,a}. What is the significance of these
partitions? The partition f~*.o/ is deduced from .o/ by
time evolution (note that f¥.o/ need not be a partition,
since f might be many-to-one; this is why we use £ ~¥.o7).
The partition .«'" is the partition generated by .o/ in a
time interval of length n. We write

a
H(A)=— 3 pl)logpl.A;) , 4.1
i=1
with the understanding that u logu=0 when u=0. (We
strongly advise using natural logarithms, but log;q and
log, have their enthusiasts.) Thus H (.7) is the informa-
tion content of the partition .7 with respect to the state p,
and H(«/") is the same, over an interval of time of
length n. The following limits are asserted to exist, defin-
ing h(p,«) and h(p):

h(p,o/)=lim [H(&/""+1)—H (&/'")]

n— oo

~ lim “H (™), (4.2)

n—o N
h(p)= i hip,«), 4.3
P)= ) 43
where diam./ =max;{diameter of ./;}. Clearly,

h(p, o) is the rate of information creation with respect to
the partition .«, and 4 (p) its limit for finer and finer par-
titions. This last limit may sometimes be avoided [i.e.,
h(p,o/)=h(p)]; this is the case when .« is a generating
partition. This holds in particular if diam.o”'"'—0 when
n— oo, or if f is invertible and diamf".«*"'—0 when
n— oo. For example, for the map of Fig. 8, a generating
partition is obtained by dividing the interval at the singu-
larity in the middle. For more details we must refer the
reader to the literature, for instance the excellent book by
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Billingsley (1965).

The above definition of the entropy applies to continu-
ous as well as discrete-time systems. In fact, the entropy
in the continuous-time case is just the entropy 4 (p,f!)
corresponding to the time-one map. We also have the for-
mula

hip.f =T |hip,f1).

Note that the definition of the entropy in the continuous-
time case does not involve a time step t tending to zero,
contrary to what is sometimes found in the literature.
Note also that the entropy does not change if f is replaced
by f~.

If (f*) has a Poincaré section =, we let o be the proba-
bility measure on Z, invariant under the Poincaré map P
and corresponding to p (i.e., o is the density of intersec-
tion of orbits of the continuous dynamical system with
3). If we also let T be the first return time, then we have
Abramov’s formula, :

h(o)
h(p)= ,
P,
which is analogous to Eq. (3.12) for the characteristic ex-
ponents.

The relationship of entropy to characteristic exponents
is very interesting. First we have a general inequality.

Theorem (Ruelle, 1978). Let f be a differentiable map
of a finite-dimensional manifold and p an ergodic mea-
sure with compact support. Then

h(p) <= positive A; . (4.4)

The result is believed to hold in infinite dimensions as
well, but no proof has been published yet.

It is of considerable interest that the equality corre-
sponding to Eq. (4.4) seems to hold often (but not always)
for the physical measures (Sec. ILF) in which we are
mainly interested. This equality is called the Pesin identi-

ty:
h(p)=2X positive A; .

Pesin proved that it holds if p is invariant under the dif-
feomorphism f, and p has smooth density with respect to
Lebesgue measure. More generally, the Pesin identity
holds for the SRB measures to be studied in Sec. IV.B.

In Sec. V we shall use in addition an entropy concept
different from that of Egs. (4.1)—(4.3). It is given by

a
Hy(/)=—log 3 p()*,
i=1
(4.5)
Kyp)= lim lim SH, (™),

diam.o/ —-0n— oo H

if these limits exist (see Grassberger and Procaccia,
1983a). It can be shown that the K, entropy is a lower
bound to the entropy h(p):

Ky(p)<h(p). (4.6)



J.-P. Eckmann and D. Ruelle: Ergodic theory of chaos 639

B. SRB measures

We have seen in Sec. IILE that attracting sets are
unions of unstable manifolds. Transversally to these, one
often finds a discontinuous structure corresponding to the
complicated piling up of the unstable manifolds upon
themselves. This suggests that invariant measures may
have very rough densities in the directions transversal to
the foliations of the unstable manifolds. On the other
hand, we may expect that—due to stretching in the unsta-
ble direction—the measure is smooth when viewed along
these directions. We shall call SRB measures (for Sinai,
Ruelle, Bowen) those measures that are smooth along un-
stable directions. They turn out to be a natural and useful
tool in the study of physical dynamical systems.

Much of this section is concerned with consequences of
the existence of SRB measures. These are mostly rela-
tions between entropy, dimensions, and characteristic ex-
ponents. To prove the existence of SRB measures for a
given system is a hard task, and whether they exist is not
known in general. Sometimes no SRB measures exist, but
it is unclear how frequently this happens. On the other
hand, we do not have much of physical relevance to say
about systems without SRB measures.

To repeat, we should like to define, intuitively, SRB
measures as measures with smooth density in the stretch-
ing, or unstable, directions of the dynamical system de-
fined by f. The geometric complexities described above
make a rather technical definition necessary. Before go-
ing into these technicalities, we discuss the framework in
which we shall work.

(a) In the ergodic theory of differentiable dynamical
systems, there is no essential difference between discrete-
time and continuous-time systems. In fact, if we discre-
tize a continuous-time dynamical system by restricting ¢
to integer values (i.e., use the time-one map f=/f"' as a
generator), then the characteristic exponents, the stable
and unstable manifolds, and the entropy are unchanged.
(The information dimension to be defined in Sec. IV.C
also remains the same.) We may thus, for simplicity, con-
sider only discrete-time systems.

(o) If fis a diffeomorphism (i.e., a differentiable map
with differential inverse), then our dynamical system is
defined for negative as well as positive times. If, in addi-
tion, f is twice differentiable, then the inverse map is also
twice differentiable. We shall assume a little less, namely,
that f is twice differentiable and either a diffeomorphism
or at least such that f and Df are injective (i.e., fx =fy
implies x =y, and D, fu =D, fv implies u =v; these con-
ditions hold for the Navier-Stokes time evolution).

Given an ergodic measure p (with compact support as
usual), unstable manifolds V} are defined for almost all x
according to Eq. (3.13). Notice that y € VY is the same
thing as x € ¥}, so that the unstable manifolds V* parti-
tion the space into equivalence classes. It might seem
natural to define SRB measures by using this partition for
a decomposition of p into pieces p,, carried by different
unstable manifolds:
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p= fpam(da), 4.7)

where a parametrizes the ¥*’s, and m is a measure on the
“space of equivalence classes.” In reality, this space of
equivalence classes does not exist in general (as a measur-
able space) because of the folding and accumulation of the
global unstable manifolds [and the existence of a nontrivi-
al decomposition (4.7) would contradict ergodicity].

The correct approach is as follows. Let S be a p-
measurable set of the form S= U_,c,S,, where the S,
are disjoint small open pieces of the V*’s (say each S, is
contained in a local unstable manifold). If this decompo-
sition is p measurable, then one has

p restricted to S= f pam(da) ,

where m is a measure on A4, and p, is a probability mea-
sure on S, called the conditional probability measure as-
sociated with the decomposition S = U_c,S,. The p,
are defined m-almost everywhere. See Fig. 16. The situa-
tion of interest for the definition of SRB measures occurs
when the conditional probabilities p, are absolutely con-
tinuous with respect to Lebesgue measure on the V*s.
This means that

pldE)=@u(E)dE on S, ,

where d§ denotes the volume element when S, is smooth-
ly parametrized by a piece of R "+ and @, i1s an inte-
grable function. The unstable dimension m | of S, or V*
is the sum of the multiplicities of the positive characteris-
tic exponents. It is finite even for the case of the Navier-
Stokes equation discussed earlier (because A;— — o0 when
i— o0, as we have noted).

We say that the ergodic measure p is an SRB measure
if its conditional probabilities p, are absolutely continuous
with respect to Lebesgue measure for some choice of S
with p(S) >0, and a decomposition S = U,S, as above.
The definition is independent of the choice of S and its
decomposition (this is an easy exercise in ergodic theory).
We shall also say that p is absolutely continuous along un-
stable manifolds.

Theorem (Ledrappier and Young, 1984). Let f be a
twice differentiable diffeomorphism of an m-dimensional
manifold M and p an ergodic measure with compact sup-
port. The following conditions are then equivalent: (a)
The measure p is an SRB measure, i.e., p is absolutely

(4.8)

Sa

FIG. 16. A decomposition of the set S into smooth leaves S,,
each of which is contained in the unstable manifold.
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continuous along unstable manifolds. (b) The measure p
satisfies Pesin’s identity,

h (p)=Z2 positive characteristic exponents .

Furthermore, if these conditions are satisfied, the density
functions @, in Eq. (4.8) are differentiable.

The theorem says that if p is absolutely continuous
along unstable manifolds, then the rate of creation of in-
formation is the mean rate of expansion of m -
dimensional volume elements. If, however, p is singular
along unstable manifolds, then this rate is strictly less
than the rate of expansion. These assertions are intuitive-
ly quite reasonable, but in fact quite hard to prove. The
first proofs have been given for Axiom-A4 systems (see
Sec. IILF) by Sinai (1972; Anosov systems), Ruelle (1976;
Axiom-A4 diffeomorphisms), and Bowen and Ruelle
(1975; Axiom-A flows). The general importance of (a)
and (b) was stressed by Ruelle (1980).

One hopes that there is an infinite-dimensional exten-
sion applying to Navier-Stokes, but such an extension has
not yet been proved. Ledrappier (1981b) has obtained a
version of the above theorem that is valid for noninverti-
ble maps in one dimension.

The SRB measures are of particular interest for physics
because one can show—in a number of cases—that the er-
godic averages

1 n—1

n < Orts

tend to the SRB measure p when n— oo, not just for p-
almost all x, but for x in a set of positive Lebesgue mea-
sure. Lebesgue measure corresponds to a more natural
notion of sampling than the measure p (which is carried
by an attractor and usually singular). The above property
is thus both strong and natural.

To formulate this result as a theorem, we need the no-
tion of a subset of Lebesgue measure zero on an m-
dimensional manifold. We say that a set SCM is Lebes-
gue measurable (has zero Lebesgue measure or positive
Lebesgue measure) if for a smooth parametrization of M
by patches of R ™ one finds that S is Lebesgue measur-
able (has zero Lebesgue measure or positive Lebesgue
measure). These definitions are independent of the choice
of parametrization (in contrast to the value of the mea-
sure).

Theorem (SRB measures for Axiom-A4 systems). Con-
sider a dynamical system determined by a twice differen-
tiable diffeomorphism f (discrete time) or a twice dif-
ferentiable vector field (continuous time) on an m-
dimensional manifold M. Suppose that 4 is an Axiom-A4
attractor, with basin of attraction U. (a) There is one and
only one SRB measure with support in A. (b) There is a
set S C U such that U\ S has zero Lebesgue measure, and

1 Q! . .
lim — &,k = discrete time) ,
Jim k§0 ke =P (discrete time

or
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.1 pT . .
Tlir)nw? fo dt Sf,x =p (continuous time) ,
whenever x €S.

For a proof, see Sinai (1972; Anosov systems), Ruelle
(1976; Axiom-A4 diffeomorphisms), or Bowen and Ruelle
(1975; Axiom-A flows). The “geometric Lorenz attrac-
tor” can be treated similarly.

The following theorem shows that the requirement of
Axiom A can be replaced by weaker information about
the characteristic exponents.

Theorem (Pugh and Shub, 1984). Let f be a twice dif-
ferentiable diffeomorphism of an m-dimensional mani-
fold M and p an SRB measure such that all characteristic
exponents are different from zero. Then there is a set
S CM with positive Lebesgue measure such that

lim — ¥ kax =p (4.9)

for all x €S.

This theorem is in the spirit of the “absolute continui-
ty” results of Pesin. An infinite-dimensional generaliza-
tion has been promised by Brin and Nitecki (1985). The
theorem fails if O is a characteristic exponent, as the fol-
lowing example shows.

Counterexample. A dynamical system is defined by the
differential equation

dx 3

e
on R . Its time-one map has §; as an ergodic measure,
with A;=0. However, O is (weakly) repelling, so that Eq.
(4.9) cannot hold for xs40. In fact, if x5£0, f'x goes to
infinity in a finite time.

We give now an example showing that there is not al-
ways an SRB measure lying around, and that there are
physical measures that are not SRB.

Counterexample (Bowen, and also Katok, 1980). Con-
sider a continuous-time dynamical system (flow) in R ?
with three fixed points A4,B,C where A4,C are repelling
and B of saddle type, as shown in Fig. 17. The system
has an invariant curve in the shape of a “figure 8 (or
rather, figure ), which is attracting. It can be seen that
any point different from A or C yields an ergodic average
corresponding to a Dirac 8 at B. Therefore &5 is the
physical measure for our system. Clearly it has zero en-
tropy, one strictly positive characteristic exponent and the
other strictly negative (and thus, in particular, not zero),

FIG. 17. The figure « counterexample of Bowen (1975).



J.-P. Eckmann and D. Ruelle: Ergodic theory of chaos 641

and is not absolutely continuous with respect to Lebesgue
measure on the unstable manifold. (Note that the unsta-
ble manifold at B consists of the “figure 8.”) On the oth-
er hand, it is not hard to see that 8z is a Kolmogorov
measure; i.e., a system perturbed with a little noise € will
spend most of its time near B, and as e—0 the fraction of
time spent near B goes to 1.

C. Information dimension

Given a probability measure p, we know that its infor-
mation dimension dimyp is the smallest Hausdorff di-
mension of a set S of p measure 1. Note that the set S is
not closed in general, and therefore the Hausdorff dimen-
sion dimy(suppp) of the support of p may be strictly
larger than dimyp.

Example. The rational numbers of the interval [0,1],
i.e., the fractions p /q with p,q integers, form a countable
set. This means that they can be ordered in a sequence
(a, ). Consider the probability measure

1 & 1
P= “ n!8"" ’
where 8, is the & measure at x. Then p is carried by the
set S of rational numbers of [0,1], and since this is a
countable set we have dimyp=0. On the other hand,
suppp=[0,1], so that dimy(suppp)=1.

It turns out that the information dimension of a physi-
cal measure p is a more interesting quantity than the
Hausdorff dimension of the attractor or attracting set A
which carries p. This is both because dimgp is more ac-
cessible experimentally and because it has simple
mathematical relations with the characteristic exponents.
In any case, we have suppp C 4 and therefore

dimgp <dimy(suppp) <dimyA4 .

The next theorem shows that the information dimen-
sion is naturally related to the measure of small balls in
phase space.

Theorem (Young, 1982). Let p be a probability measure
on a finite-dimensional manifold M. Assume that

. logp[B,(r)]
lim————————=qa

(4.10)
r—0 logr

for p-almost all x. Then dimyp=a.
Young shows that a is also equal to several other “frac-
tal dimensions” (in particular, the “Rényi dimension™).
We are of course mostly interested in the case when p is
ergodic for a differentiable dynamical system. In that sit-
uation, the requirement that

logp[B,(r)]
m—=x
r—0 logr

exists p-almost everywhere already implies that the limit
is almost everywhere constant, and therefore equal to
dimgyp. [The above limit does not always exist, as
Ledrappier and Misiurewicz (1984) have shown for cer-
tain maps of the interval.]
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An interesting relation between dimyp and the charac-
teristic exponents A; has been conjectured by Yorke and
others (see references below). We denote by

k
Cp(k)= E A.,'
i=1
the sum of the k largest characteristic exponents, and ex-
tend this definition by linearity between integers (see Fig.
18):

k
cpls)= > Ai+(s —kAgyy ifk<s<k+1.
i=1
The function cp is defined on the interval [0, + « ) for
a dynamical system on a Hilbert space, and on the inter-
val [0,m] for a system on R ™ or an m-dimensional mani-
fold. In the latter cases we write cpls)=—o0 for s >m,
so that ¢, is now in all cases a concave function on
[0, + «), as in Fig. 18. Notice that c,(0)=0, that the
maximum of ¢,(s) is the sum of the positive characteris-
tic exponents, and that c,(s) becomes negative for suffi-
ciently large s. (This is because, in the Hilbert case, the
A;tendto —o0.)
The Liapunov dimension of p is now defined as

dimpp=max{s:c,(s)>0} .
Notice that when c,(k) >0 and cp(k +1) <0 we have
cplk) '
[ Akl

The (k +1)-volume elements are thus contracted by time
evolution, and this suggests that the dimension of p must
be less than k + 1, a result made rigorous by Ilyashenko
(1983). Yorke and collaborators have gone further and
made the following guess.

Conjecture (Kaplan and Yorke, 1979; Frederickson, Ka-
plan, Yorke, and Yorke, 1983; Alexander and Yorke,
1984). If p is an SRB measure, then generically

dimyp=k +

4.11)

The SRB measures have been defined in Sec. IV.B. and
“genericity” means here “in general.” What concept of

dimgp=dimyp .

cpls)
r
h(p) '
o1k Hy=hg+A, .
Hy=h, |
? 9
L d s
0 1 2 3 4 5 6 7 8
m, dimA o]
-0}
L

FIG. 18. Determination of the Liapunov dimension dimu(p).
The number of positive Liapunov exponents (unstable dimen-
sion) is m_ . The graph is from Manneville (1985), for the
Kuramoto-Sivashinsky model.
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genericity is adequate is a very difficult question; we do
not know—among other things—how frequently a
dynamical system has an SRB measure. An inequality is,
however, available in full generality.

Theorem. Let f be a twice continuously differentiable
map and let p be an ergodic measure with compact sup-
port. Then

dimgp <dimyp . 4.12)

The basic result was proved by Douady and Oesterlé
(1980), and from this Ledrappier (1981a) derived the
theorem as stated. (It holds for Hilbert spaces as well as
in finite dimensions.)

An equality is also known in special cases, notably the
following.

Theorem (Young, 1982). Let f be a twice differentiable
diffeomorphism of a two-dimensional manifold, and let p
be an ergodic measure with compact support. Then the
limit (4.10) exists p-almost everywhere, and we have

1

(4.13)
Tl

dimgyp=h(p) |—

where A;> 0 and A, <O are the characteristic exponents of
pP-

Note, incidentally, that if f is replaced by f~!, the
characteristic exponents change sign, the entropy remains
the same, and the formula remains correct, as it should.
Note also that the cases where A; and A, are not of oppo-
site sign are relatively trivial. From the inequality (4.4)
applied for f or f~! we see that A;=0 or A,=0 implies
h (p)=0, so that the right-hand side of Eq. (4.13) becomes
indeterminate. If A;>A,>0 or 0> A; > A,, a theorem of
Sec. II1.C.2 applied to f or ! shows that p is carried by
a periodic orbit, so that Eq. (4.13) holds with

Variants of the above theorem that do not assume the
invertibility of f are known (for one dimension see
Ledrappier, 1981b, Proposition 4; for holomorphic func-
tions see Manning, 1984).

If p is an SRB measure, then Eq. (4.13) becomes
dimgp=1+A,/|A,|, which is just the conjecture (4.11).
The next example shows that the conjecture does not al-
ways hold.

Counterexample. Notice first that if a measure p has
no positive characteristic exponent, then h(p)=0 by a
theorem in Sec. IV.A, and therefore p is an SRB measure.
If dimgp is strictly between O and 1, then Eq. (4.11) can-
not hold (because dimp can only have the value O or a
value >1). In particular, the Feigenbaum attractor [ex-
ample (b) of Sec. IL.D] carries a unique probability mea-
sure p with A;=0 and dimyp=0.538. .. so that Eq. (4.11)
is violated here. [For the Hausdorff dimension of the
Feigenbaum measure see Grassberger (1981); Vul, Sinai,
and Khanin (1984); Ledrappier and Misiurewicz (1984).]

Finally, let us mention Jower bounds on dimgp.

Theorem. If p is an SRB measure, then dimgp>m ,
where m , is the sum of the multiplicities of the positive
characteristic exponents (unstable dimension).

This follows readily from the definitions.
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D. Partial dimensions

Given an ergodic measure p, we can associate with each
characteristic exponent A" a partial dimension D'V
Roughly speaking, D'” is the Hausdorff dimension in the
direction of A'". The entropy inequality (4.4) and the di-
mension inequality (4.12) will be natural consequences of
the existence of the D'¥,

In order to give a precise definition, we assume that f is
a twice differentiable diffeomorphism of a compact mani-
fold M (in the case of a continuous-time dynamical sys-
tem we take for f the time-one map). If A" is a positive
characteristic exponent and A > A >max(0,A%*1), we
have defined in Sec. IIL.E the local unstable manifolds
V¥(A,e), which we simply denote here by V{2, and
S= U,e 4 Sq where the S, are open pieces of the V{...
Suppose S = U_,e4Sq where the S, are open pieces of
the V,OC, and define conditional probability measures p“)
on S, such that

p restricted to S = f pm(da),

where m is some measure on A. This definition is a bit
more general than that given in Sec. IV.B. There A" was
the smallest positive characteristic exponent. We define

8" =dimyp!

(this is a constant almost everywhere) and write
D“):S“) if K“)>0 ,

and
D(t) 8(1) 8(1’—1) ifi >1 and K(i)>0

Slmllarly, if A <0, we define conditional probabilities
pa on pieces of stable manifolds and let

6(] = dlmed’

We then write
(r__ 8( r)
if the smallest characteristic exponent A" is negative, and
DI=8W_gu+V jfj pr AV <0.

The definition of D* for A’¥’ =0 is somewhat arbitrary

[between O and the multiplicity m‘® of A'¥'=0]; we take
D — (B,

Theorem. The partial dimensions D'V, ... D satisfy
0<DP<m fori=1,...,r,
where m ‘¥ is the multiplicity of A'”. The entropy is given

by

hip)= 3+t AHDW=—F~AVDW, (4.14)
i i

where > (3 7) is the sum over positive (negative)

characteristic exponents, in particular

S APDP=0. (4.15)
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The Hausdorff dimension satisfies

dimgp< 3 DV . (4.16)
1]

(It is not known if there is equality when no characteristic

exponent vanishes.)

The proof of this theorem by Ledrappier and Young
(1984) is not easy, but brings further dividends, in particu-
lar an interpretation of the numbers |A? | D) as partial
entropies.

Some earlier theorems on entropy and Hausdorff di-
mension are recovered as corollaries of the above theorem,
as we now indicate. [We follow Ledrappier and Young
(1984); Grassberger (1984); Procaccia (1984).]

(a) First we recover from

)

1

dimgp< ¥ D'” < max
i

Proof. Let k be such that
ko k+1
2)‘(”20> 2 Al
1 i
We then have A'*+1) <0 and

dimpp < Z_Dm=1_(:__:17 3 (—ak+)pth
1 1

643
hip)= 2*7&“’D‘“

the entropy inequality (4.4),
h (P)S 2+7»mm“) .

(b) The above inequality is in fact an equality (i.e., p is
an SRB measure) if and only if DV'=m"" for all positive
}\,(i).

Next we check that we recover the dimension inequali-

ty (4.12):
dimyp < dimyp (4.17)

from

2d‘”:0<d(")<mm and zd”)}\.“)——-o .
i

—1 ' ho =1 &, ,
= NCES) 2(7\.(')—}»("+1))D(')S PXCEST 2 (k(l)_k(k+l))D(x)
i i=1
k X éh“"m‘”
;1__ (i) (k+1) i) __ @, i=1
SN’H—”iglm'—_k )ml_i§1m‘+w-

It is easily seen that the right-hand side is just the
Liapunov dimension dimp, and Eq. (4.17) follows.

(d) Suppose that we have equalities in the proof above,
i.e., that the Kaplan-Yorke conjecture holds for p. Then
we must have DY =m¥ for i =1, ...,k and D?=0 for
i=k+2,...,r (conversely these properties imply
zD(i)zdimAp). In particular, if the Kaplan-Yorke con-
Jecture holds for p then p is an SRB measure.

Remarks.

@ If 3 A%m?> 0 we have dimyp=m (the dimension
of the manifold), which provides a trivial bound for
dimyp. However, if one replaces f by f —1, changing the
sign of the A'”, one gets a new Liapunov dimension,
which is < m and provides a nontrivial bound on the di-
mension of p.

(b) If there are only two distinct characteristic ex-
ponents, then DY) and D® can be computed from Eq.
(4.14).

(c) Let p be an SRB measure with r characteristic ex-
ponents such that AVs .- SAT=D5 052" and
SiA%m D <0. Then what we have said shows that

S DV =dimp.
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E. Escape from almost attractors

Before asymptotic behavior is reached by a dynamical
system, transients of considerable duration are often ob-
served experimentally. This is the case, for instance, for
the Lorenz system [Sec. II.B, example (b)] as observed by
Kaplan and Yorke (1979): for some values of the parame-
ters preturbulence occurs in the form of long chaotic tran-
sients, even though the system does not yet have a strange
attractor. One may say that the system has an almost at-
tractor and try to estimate the escape rate from this set.
More generally, one would like to have a precise descrip-
tion of transient chaos (see Grebogi, Ott, and Yorke,
1983b).

The situation, as usual, is best understood for the
Axiom- 4 systems, where the basic sets (see Sec. IIL.F) are
the natural candidates to describe almost attractors. Let
Q; be a basic set, U a small neighborhood of Q;, and u a
measure with positive continuous density with respect to
Lebesgue measure on U. Let
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be the amount of mass that has not left U by time 7.
One finds that p (T)~e’, where

P =max (h(p)— 3, positive A,;(p):

p ergodic with support in Q; { . (4.18)

Note that P vanishes, as it should, if €; is an attractor;
the maximum is given in that case by the SRB measure.
If Q; is not an attractor, then P<O; there is again a
unique measure p; realizing the maximum of Eq. (4.18),
but it is no longer SRB (see Bowen and Ruelle, 1975).

If our dynamical system is not necessarily Axiom A4,
the following is a natural guess.

Conjecture. Write

P=h(p)— 3, positive A;(p) . (4.19)

Then | P | is the rate of escape from the support K of p,
provided

P>h(o)— 3, positive (o)

for all ergodic o with support in K. If P>h(o)— 3,
positive A;(o) when os£p then p describes the time aver-
ages over transients near K.

A heuristic argument following the Axiom-A case
makes this plausible, but it is unknown how generally the
conjecture holds. Some satisfactory experimental verifi-
cations have been given by Kantz and Grassberger (1984).
They write Eq. (4.19) as follows in terms of the partial di-
mensions D'V discussed in Sec. IV.D:

IP ’ =—P= 2 A.(i)(m(i)——D(i)) .
iA>0

F. Topological entropy*

The measure-theoretic entropy of Sec. IV.A gave the
rate of information creation with respect to an ergodic
measure. ' A related concept, involving the topology rather
than a measure, will be discussed here.

Let K be a compact set and f:K-—-K a continuous
map. If & =(o,...,o,) is a finite open cover of K
(i.e., U; &; DK), we write

R =(fRat\, ..., f "),
A M= N fTlAN -V fr ey
=(o; Nf et N nftla; ).

Now let N(.7,n) be the smallest number of sets in 7™
that still covers K. The following limit is asserted to ex-
ist:

Biop(K, o )= lim %logN(.g{,n) ;
n—oo

and one defines the topological entropy of K by
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htop(K)=s;1))hmp(K,.z{) .
If we have a metric on K we may write more conveniently

hiop(K)= diaggl_,oh“’p(K’d) .
The following important theorem relates the topological
entropy and the measure-theoretic entropies.

Theorem. If K is compact and f:K—L continuous,
then h,(K)=sup{h(p)p is an ergodic measure with
respect to f}. /

[This was conjectured by Adler, Konheim, and McAn-
drew (1965), and proved by Goodwyn, Dinaburg, and
Goodman.] For references and more details on topologi-
cal entropy we must refer the reader to Walters (1975)
and Denker, Grillenberger, and Sigmund (1976).

G. Dimension of attractors”

The estimates of dimyp in Sec. IV.C can be completed
by estimates of the dimension of compact invariant sets
(like the support of p, or attractors and attracting sets).

Theorem. Let A be a compact invariant set for a dif-
ferentiable map f. Then

dimy A <sup{dimyp: p is ergodic with support in 4} .
(4.20)

This result is due to Ledrappier (1981a), based on
Douady and Oesterlé (1980); it is not known whether one
can write dimg A4 instead of dimyA4 in Eq. (4.20). Note
that, contrary to what Eq. (4.20) might suggest, there are
cases where dimgyA > sup{dimgp:p is ergodic with sup-
port in A} (see McCluskey and Manning, 1983).

Lower bounds on dimg A4 are also known. For instance,
if a dynamical system has an attracting set 4 and a fixed
point P with unstable dimension m (P), then
dimgA >m , (P) (see the corollary in Sec. IILE). For
better estimates see Young (1981).

H. Attractors and small
stochastic perturbations”

In this section we discuss how physical measures and
attractors are selected by their stability under small sto-
chastic perturbations.

1. Small stochastic perturbations

In Sec. ILF we discussed how the introduction of a
small amount of noise in a deterministic system could
select a particular invariant measure, the Kolmogorov
measure. We can now be more precise. Consider first a
discrete-time dynamical system generated by the map
f:M—M, where M has finite dimension m. Let £>0,
and for each x EM, let u; be a probability measure with
support in the ball B, (g)={y:d (x,y) <e}.

More  specifically, we assume that ui(dy)
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=& "p[x,e"(y —x)]dy, where ¢ is continuous, ¢ >0,
@(x,0)>0, p(x,x —y)=0 if d(x,y)>1, and dy denotes
the Lebesgue volume element if M =R ™ (if M isnot R ™
this prescription is modified by using a Riemann metric

on M; see Kifer, 1974). A stochastic dynamical system is
a time evolution defined not on M, but at the level of

probability measures on M. In our case we replace
f:M—M by the stochastic perturbation

v— f wixv(dx)

= [[emelrme v —poltan |ay . @2p)

The limit of a small stochastic perturbation corresponds
to taking e —0.
In the continuous-time case, the dynamical system de-

fined on R ™ by the equation

i )

= Fix

dt !
is replaced by an evolution equation for the density ® of
v. We write v(dx)=®(x)dx, and

d®(x)

ar (4.22)

= > F;3;®(x)+eAd(x) .

If we have a Riemann manifold, the Laplacian A should
be replaced by the Laplace-Beltrami operator. The limit
of a small stochastic perturbation corresponds again to
taking e—0.

Theorem. Let an Axiom-A dynamical system on the
compact manifold M be defined by a twice differentiable
diffeomorphism f or a twice differentiable vector field F.
Let 4,,..., A, be the attractors, and py, . . . ,p, the cor-
responding SRB measures.

(a) In the discrete-time case, for € small enough, let p;
be a stationary measure for the process (4.21) with sup-
port near A4;. Then pj—p; when e—0.

(b) In the continuous-time case, there is a unique sta-
tionary measure p® for the process (4.22), and any limit of
p° when £€—0 is a convex combination > a;p; where
a; > 0, 2 a;= 1.

These results have been established by Kifer (1974), fol-
lowing Sinai’s work on Anosov systems (1972). Another
proof has been announced by Young. The idea behind the
theorem is as follows. The noisiness of the stochastic
time evolution yields measures which have continuous
densities on M. The deterministic part of the time evolu-
tion will improve this continuity in the unstable directions
by stretching, and roughen it in other directions due to
contraction. In the limit one gets measures that are con-
tinuous along unstable directions, i.e., SRB measures.

Note the difference between the discrete-time and the
continuous-time cases, which is due to the fact that in the
discrete-time case, for small €, a point near one attractor
cannot jump out of its basin of attraction.

If we have a general dynamical system (not Axiom A),
the stationary states for small stochastic perturbations
will again tend to be continuous along unstable directions,
but the limit when €—0 need not be SRB (see the coun-
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terexample of Sec. IV.C). Moreover, there need not be an
open basin of attraction associated with each SRB mea-
sure, so that, even in the discrete-time case, the stochastic
perturbation may switch from one measure to another,
and the limit may be a convex combination of many SRB
measures (in particular be nonergodic). That basins of at-
traction may indeed be a mess is shown by the following
result.

Theorem (Newhouse, 1974,1979). There is an open set
S4p in the space of twice differentiable diffeomorphisms
of a compact two-dimensional manifold, and a dense sub-
set R of S such that each f €R has an infinite number of
attracting periodic orbits.

A variation of this result implies that for the Hénon
map [see Sec. II.D, example (a)] the presence of infinitely
many attracting periodic orbits is assured for some b and
a dense set of values of @ in some interval (ag,a;). The
basins of such attracting periodic orbits are mostly very
small and interlock in a ghastly manner.

The study of stochastic perturbations of differentiable
dynamical systems is at present quite active; see in partic-
ular Carverhill (1984a,1984b) and Kifer (1984).

2. A mathematical definition of attractors

We have defined attractors operationally in Sec. ILC.
Here, finally, we discuss a mathematical definition.

If a,bEM, let us write a—b (a goes to b) provided
for arbitrarily small &£>0 there is a chain
a =Xxg,X1,...,X,=b such that d(xk,fe"xk_l)<s with
Or>1for k=1,...,n. We accept a—a (corresponding
to a chain of length 0), and it is clear that a —b,b—>a im-
ply a—c. If for every £>0 there is a chain a—a of
length >1 we say that a is chain recurrent. If a is chain
recurrent, we define its basic class [a]={b:a—b—a}. If
[a] consists only of a, then a is a fixed point. Otherwise
if b €[a] then b is chain recurrent and [ b]=[a].

We shall say that a basic class [a] is an attractor if
a—x implies x —a (i.e., x €[a]). This definition ensures
that [a] is attracting, but in a weaker sense than the defi-
nition of attracting sets in Sec. IL.B. Here, however, we
have irreducibility: an attractor cannot be decomposed
into two distinct smaller attractors. (More generally, the
set of chain-recurrent points decomposes in a unique way
into the union of basic classes.)

'Tt can be shown that any limit when £¢—0 of a measure
stable under small stochastic perturbations of a discrete-
time dynamical system is ‘“carried by attractors,” at least
in a weak sense. More precisely, this can be stated as the
following theorem.

Theorem. Let A be a compact attracting set for a
discrete-time dynamical system, m a probability measure
with support close to A, and ¢ sufficiently small. Let also
m¥ be obtained at time k from the stochastic evolution
(4.22). If [a] is not an attractor, then

k]im m¥[B,(8)]=0,
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when 8 is sufficiently small. [B,(8) denotes the ball of
radius & centered at a.] In particular, if m  is a limit of
m¥ when k— oo, then a does not belong to the support of
mg. If p is a limit when €0 of m®°, and if m is ergo-
dic, then its support is contained in an attractor.

Proof. See Ruelle (1981).

The topological definition of an attractor given in this
section follows the ideas of Conley (1978) and Ruelle
(1981). A rather different definition has been proposed
recently by Milnor (1985), based on the privileged role
which the Lebesgue measure should play for physical
dynamical systems.

|. Systems with singularities
and systems depending on time"

The theory of differentiable dynamical systems may to
some extent be generalized to differentiable dynamical
system with singularities. This is of interest, for instance,
in Hamiltonian systems with collisions (billiards, hard-
sphere problems). On this problem we refer the reader to
the considerable work by Katok and Strelcyn (1985).

Another conceptually important extension of differenti-
able dynamical systems is to systems with time-dependent
forces. One does not allow here for arbitrary non-
autonomous systems, but assumes that

x (1 +1D=fGx(D,0(0) or £ =Flxo(0)

where o has a stationary distribution. (For instance, o is
defined by a continuous dynamical system.) It is surpris-
ing how many results extend to this more general situa-
tion; the extension is without pain, but the formalism
more cumbersome. Here again we can only refer to the
literature. See Ruelle (1984) for a general discussion, and
Carverhill (1984a,1984b) and Kifer (1984) for problems
involving stochastic differential equations and random
diffeomorphisms.

V. EXPERIMENTAL ASPECTS

Now that we have developed a theoretical background
and a language in which to formulate our questions, it is
time to discuss their experimental aspects. A basic con-
ceptual problem is that of confronting the limited infor-
mation that can be obtained in a real experiment with the
various limits encountered in the mathematical theory. A
similar situation occurs, for instance, in the application of
statistical mechanics to the study of phase transitions.
Other important problems in the relation between theory
and experiment concern numerical efficiency and accura-
cy. The present section will address those problems.

We shall describe two different fields of
experimentation—computer experiments and experiments
with real physical systems. There is a quantitative differ-
ence between the two fields, since one can study dynami-
cal evolution equations with fixed experimental condi-
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tions more accurately on a computer than in reality.
However, there is also a more important qualitative
difference: Since the evolution equations are explicitly
known in a computer experiment, it is generally easy to
compute directly the “tangent map” Df’. In a physical
experiment, by contrast, only points on a trajectory are
directly measurable, and the derivatives (tangents) have to
be obtained by a delicate interpolation, to be discussed
below.

It must be understood that the information currently
being extracted from experiments goes a long way beyond
the solid mathematical foundations that we have
described in the previous sections. It is a challenge for
the mathematical physicist to clarify the relations be-
tween the various quantities measured on dynamical sys-
tems. Most of them seem indeed very interesting, and
very promising, but a lot of work is still necessary to
prove the existence of these quantities and establish their
relations. Our selection below reflects to some extent our
personal taste for measurements based on sound ideas and
for which a mathematical foundation can be expected.

A. Dimension

The measurement of dimensions is discussed first be-
cause it is most straightforward. We concentrate on the
determination of the information dimension, using the
method advocated by Young (1982), and Grassberger and
Procaccia (1983b). The idea is described in the first
theorem (by Young) in Sec. IV.C. The method, developed
independently by Grassberger and Procaccia, has gained
wide acceptance through their work.

We start with an experimental time series
u(1),u(2), ..., corresponding to measurements regularly
spaced in time. We assume that u (/)€ R, where v=1in
the (usual) case of scalar measurements. From the u (i), a
sequence of points x (1), ..., in R ™" is obtained by tak-
ing x({)=[u(i+1),...,uli+m —1)]. This construc-
tion associates with points X (i) in the phase space of the
system (which is, in general, infinite dimensional) their
projections x (i)=m,,X (i) in R™". In fact, if p is the
physical measure describing our system (p is carried by an
attractor in phase space), then the points x (i) are equidis-
tributed with respect to the projected measure ,p in
R ™", [Actually this is not always true: if the time spac-
ing At between consecutive measurements u (i),u (i +1)7is
a “natural period” of the system—for instance, when the
system is quasiperiodic—one does not have equidistribu-
tion. This exception is easily recognized and handled.]
We wish to deduce dimyp from this information (with
the possibility of varying m in the above construction).
Before secing how this is done, a general word of caution
is in order. In any given experiment we have only a finite
time series, and therefore there are natural limits on what
can be extracted from it: some questions are too detailed
(or the statistical fluctuations too large) for a reasonable
answer to come out. See, for instance, Guckenheimer
(1982) for a discussion of such matters.



J.-P. Eckmann and D. Ruelle: Ergodic theory of chaos 647

A serious difficulty seems to arise here from the fact
that dimy,,p need not be equal to the desired dimgp.
We remove this objection with the observation that, if
dimyp <M, then, for most M-dimensional projections p,
dimypp=dimyp. More precisely, we have the following
result.

Theorem. Let 0<M <n. If E is a Suslin set in R ",
and dim E < M, then there is a Borel set G in the space of
orthogonal projections p: R "—R ™ such that its comple-
ment has measure zero with respect to the natural
rotation-invariant measure on  projections, and
dimpE =dimE for all p in G.

J

C"r)=N"" {number of x (j) such that d[x (i),x (j)] <},

C™r)=N~"'3 C"r)

=N ~?{number of ordered pairs [x (i),x (j)] such that d [x (i),x (/)] <r} .

[ C" is obtained by sorting the x (j) according to their dis-
tances to x (i); C™ is obtained more efficiently directly by
sorting pairs than as an average of the C/”.] We may use
d (x,x')=Euclidean norm of x’'—x, or any other norm,
such as

|x'—x | =max |u'(a)—u(a)| ,

where the u(a) are the m components of x, and
| u'(a)—u(a)| is for instance the Euclidean norm in R ¥
(this will be used in Sec. V.B). Note that when N — o,
we have

limCim=(7rmp)[Bx(,-)(r)] (5.3)

(except perhaps at discontinuity points of the right-hand
side). Suppose now that
logCl™(r)

lim lim =lim
r—-0N—>w logr r—0

log(mp,p)[By(i)(r)]
logr N

Ay -
(5.4)

Then dimy7,,p=a,, (first theorem of Sec. IV.C). Pro-
vided the projection 7, is in the “good set” G, we have
thus a,=mv if dimgp>mv and a,,=dimgp if
dimyp <mv. Experimentally, «,, may be obtained by
plotting logC/"(#) vs logr and determining the slope of
the curve (see below). With a little bit of luck [existence
of the limit (5.4), and 7, in the good set] we may thus ob-
tain dimgp experimentally: we choose m such that
a,, <mv; then we have dimgp=a,,. Although we cannot
completely verify that 7, is in the good set, we can in
principle check (within experimental accuracy) the ex-
istence of the limits «,,, and the fact that «,, becomes in-
dependent of m when m increases beyond a value such
that a,, <mv. Note that «,, should also be independent
of the index i in Eq. (5.4).

The information dimension dimgyp may also be ob-
tained by a modification of Eq. (5.4). We describe the
method of Grassberger and Procaccia, which has been
tested experimentally in a number of cases. This consists
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Proof. See Lemma 5.3 in Mattila (1975). We are in-
debted to C. McCullen for this reference. It is interesting
to compare this result with that of Mané in Sec. II.G,
where one obtains (with stronger restrictions) the injectivi-
ty of p.

Of course we have not proved that our projection ,,
belongs to the good set G of the above theorem (with
M =myv), but this appears to be a reasonable guess, and
we shall proceed with the assumption that dimHpy,,p
=dimyp for large enough m.

We now use our sequence x(1),x(2),...,x(N)in R ™
to construct functions C/* and C™ as follows:

(5.1)
(5.2)
[
in writing
m
lim lim 128C70) _p (5.5)

r-0N—w logr

and asserting that for m sufficiently large, 3,, is the in-
formation dimension. The only relation that can easily be
established rigorously between Egs. (5.4) and (5.5) is that
if both limits exist, then «,, >f,,. However, it seems
quite reasonable to assume that in general a,, =f3,, (i.e., if
the C/” behave like r%, then their linear superposition C™
also behaves like ). The f3,, obtained experimentally do
become independent of m for m large enough, as expect-
ed. See Fig. 19.

To summarize: the method of Grassberger and Procac-
cia is a highly successful way of determining the informa-
tion dimension experimentally. Values between 3 and 10
are obtained reproducibly. The method is not entirely jus-
tified mathematically, but nevertheless quite sound. The
study of the limit (5.4) is also desirable, even though the
statistics there is poorer.

1. Remarks on physical interpretation

a. The meaningful range for C™(r)

Suppose we plot logC(r)/logr as a function of logr (we
suppress the superscript m and possibly the subscript i of
C). First, for small r, we have a large scatter of points
due to poor statistics; then there is a range (#,7;) of near
constancy (the constant is the information dimension if m
is suitably large). For r larger than r; we have deviation
from constancy due to nonlinear effects. The “meaning-
ful range” (ry,71) is that in which the distribution of dis-
tances between pairs of points is statistically useful.

b. Curves with “knees”

It is not uncommon that the logC (r) vs logr plot shows
a “knee” (see Fig. 20), so that it has slope « in the range
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FIG. 19. Experimental results from Malraison et al. (1983) and
Atten et al. (1984); see also Dubois (1982): (a) The plots show
logC vs logr for different values of the embedding dimension,
for the Rayleigh-Bénard experiment. (b) The measured dimen-
sion a as a function of the embedding dimension m, both for
the Rayleigh-Bénard experiment and for numerical white noise.
Note that a becomes nearly constant (but not quite) at m =3.
The a for white noise is nearly equal to m (but not quite).

(logrg,logr;) and a smaller slope a’ in the range
(logr,,logr,). The dimension, or “number of degrees of
freedom” is thus different for r above and below r, (see,
for instance, Riste and co-workers, 1985). To see how
this situation can arise, let us consider a product dynami-
cal system IXII formed of two noninteracting subsystems
I and II. Take an observable u =u;|+uy, where u; and
uy depend only on the subsystems I and II, respectively,
and let the amplitude r; of the signal u; be much smaller
than that of uy. In the range r <r, we have statistical
information on the complete system IX1II, giving an in-
formation dimension a. In the range r >>r; we have sta-
tistical information only on the subsystem II, giving an
information dimension a’. More generally, suppose that
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FIG. 20. A logC(r) vs logr plot may show a “knee,” so that a
dimensign « appears in the range (logrg,logr,), and a dimension
o' in the range (logr,,logr,). Here the scalar signal of a deter-
ministic system with information dimension a’ is perturbed by
the addition of random noise, which yields a dimension a equal
to the embedding dimension m (see Atten er al., 1984).

system II evolves independently of I, but that I has a time
evolution that may depend on II; then the same con-
clusions persist for this “semidirect product.” (The
small-amplitude modes of I are driven here by system II,
an example of Haken’s “slaving principle.”) The above
argument makes clear, for instance, how the information
dimension found by analysis of a turbulent hydrodynamic
system does not take into account small ripples of ampli-
tude less than the discrimination level r, of the analysis.
(We thank P. C. Martin for useful discussions on this
point.) A knee will also appear if the signal from a deter-
ministic chaotic system is perturbed by adding random
noise of smaller amplitude (see Fig. 20).

c. Spatially localized degrees of freedom

We have just discussed dynamical systems that have a
product structure IXII, or where a subsystem II evolves
independently and drives other degrees of freedom.
Strictly speaking, such decoupling does not seem to occur
in realistic situations like that of a turbulent viscous fluid
(except for the trivial case where the fluid is in two dif-
ferent uncoupled containers). Normally, in a nonlinear
system one may say that “every mode is coupled with all
other modes,” and exact factorization is impossible. An
apparent exception is constituted by quasiperiodic
motions where factorization is present, but the indepen-
dent frequencies do not correspond to independent physi-
cal subsystems. In other words, if a physical variable
u () of the system is monitored (for instance a component
of the velocity of a viscous fluid at one point), the whole
dynamics of the system (on the appropriate attractor) can
in principle be reconstructed from the time series [u (2):t
varying from O to «]. In particular, the information di-
mension of the system can be obtained indifferently from
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monitoring u or any other physical variable.

As noted in Secs. V.A.l.a and V.A.1.b, the experimen-
tal uncertainties change this situation. At the level of ac-
curacy of an experiment, some degrees of freedom may
effectively be driven by others and, having small ampli-
tude, pass unnoticed. (A case in point would be that of
eddies of small size in three-dimensional turbulence.)
Another frequent and important case occurs when some
“oscillators” (possibly complex oscillators) are strongly lo-
calized in some region of space.> Consider, for instance,
the flow between coaxial rotating cylinders in a regime
where there is some turbulence superposed with Taylor
cells. Some features of the flow are global (like the very
existence of the Taylor cells), others seem to be restricted
to one Taylor cell, having very little interaction with
neighboring cells.

The information dimension d., obtained from
moderate-precision measurements of one cell, is then like-
ly to be different from the global information dimension
d, of a column of v cells (and one expects formulas like
d.=a +b, d,=a +vb). Note that d, could be obtained
by monitoring a vector signal with v components, each
corresponding to a scalar signal from one cell.

2. Other dimension measurements

The most straightforward way to find the “fractal” di-
mension of a set A is to cover it with a grid of size r, to
count the number N (r) of occupied cells, and to compute

logN (r)
r—0 |logr |

This box-counting is computationally ineffective (Farmer,

dix(j),x(i)]=max{ |u(PD—ul)|,...

1984). It gives access to the dimension of attractors rath-
er than to the information dimension (the latter seems for
the moment to have greater theoretical interest). Another
problem with box-counting is that usually the population
of boxes is very uneven, so that it may take a considerable
amount of time before some “occupied” boxes really be-
come occupied. For all these reasons, the box-counting
approach is not used currently.

B. Entropy

The entropy (or Kolmogorov-Sinai invariant) A (p) of a
physical measure p is an important quantity, as we have
seen in Sec. IV. Early attempts to measure h(p) were
based directly on the definitions and used a partition &7
(see Sec. IV.A). These attempts (Shimada, 1979; Curry,
1981; Crutchfield, 1981) were interesting but not entirely
successful. We describe here another approach due to
Grassberger and Procaccia (1983a); see also Cohen and

- Procaccia (1984). [Similar ideas were developed indepen-

dently by Takens (1983).] This approach has far greater
potential for implementation in experimental situations.

The idea of Grassberger and Procaccia is to exploit the
m dependence of the functions C/"(r) and C™(r) defined
in Egs. (5.1) and (5.2). As before, they use C™(r), which
has better statistics, but it is easier to argue with the
C/™(r), which satisfy

C"(r) =, p)[ By if(1)] (5.6)

for large N [see Eq. (5.3)]. In view of Eq. (5.6), C/™(r) is
the probability that x(j) satisfies d[x(j),x()]<r.
Grassberger and Procaccia use the Euclidean norm, but
we prefer to follow Takens and to take

uG+m —D)—uli+m—1)|} .

Usually v=1 (scalar signal), but the general case is not harder to handle [with | u(i)—u (j)| being the Euclidean norm
of u(i)—u(j) in R¥]. We may thus interpret C/"(r) as the probability that the signal u (j +k) remains in the ball

v

B 41 (r) for m consecutive units of time [ B} ;(r) is the ball of radius 7 in R * centered at u (i)].
With this interpretation, and the fact that C™(r) is the average of the C/"(r), it can be argued that

lim lim —- Jlim [—logC™(n]=AtKy(p) ,

r—-0m—ow

(5.7

where K, has been defined at the end of Sec. IV.A, and At is the spacing between measurements of the signal u. Since
K(p) is a lower bound to & (p), we see that if one obtains K,(p) >0 from Eq. (5.7) then one can conclude that 4 (p)> 0,

i.e., that the system is chaotic.

It is, however, also possible to obtain h (p) directly as follows. Define

P"(r)= 7;— ; logC™(r) .

Then
¢m+l(r)_

Therefore,

®™(r)=average over i of log[probability that u (j +m)EB}; ) (r)

given that u (j +k)EBy; 4 1)(r) for k =0,...,m —1].

3For some discussion of the difficult problem of localization in hydrodynamics, see Ruelle (1982b).
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lim lim lim [®™*+!(r)—®™(r)]=Ath(p) .

r—-0m-—sc0 N— o

(5.8)

Remarks.

(a) Like the expressions of Sec. V.A, the identities (5.7)
and (5.8) hold “if all goes well.” Basically, the condition
is that the monitored signal should reveal enough of what
is going on in the system.

(b) While the information dimension could be obtained
from C™(r) for one single m (sufficiently large), we have
a limit m — « in Egs. (5.7) and (5.8). In this respect,
(5.7) is not optimal (it will contain errors of order 1/m);
it is better to write

C™(r)

=AtK,(p),
Cm+1(r) 21p

lim lim lim log

r—-0m—oN—>w

or to use Eq. (5.8).

C. Characteristic exponents:
computer experiments

We recall that the characteristic exponents measure the
exponential separation of trajectories in time and are com-
puted from the derivative D,f'. In computer experi-
ments, the derivative is often directly calculable, whereas
in physical experiments it has to be obtained indirectly
from the experimental signal. Therefore the methods for
evaluating characteristic exponents are somewhat dif-
ferent in the two cases and will be treated separately. In
this section, we discuss computed experiments, which
have served and still serve an important purpose in the ex-
ploration of dynamical systems.

Let us mention here some interesting open problems.
What is the distribution of characteristic exponents for a
large or a highly excited system? Can one define a densi-
ty of exponents per unit volume for a spatially extended
system? What is the behavior near zero exponent? For a
theoretical study in the case of turbulence, see Ruelle
(1982b,1984). For an experimental study in the case of
the Kuramoto-Sivashinsky model, see Manneville (1985).

In the case of a discrete-time dynamical system defined
byamap f:R™—R™, let

T(x)=D,f .

This is the matrix of partial derivatives of the m com-
ponents of f(x) with respect to the m components of x.
Write

T!=T (" x): T(fx)T(x) (5.9)

(matrix multiplication on the right-hand side). Then the
largest characteristic exponent is given by

A= lim ~ log||T7u|| (5.10)
n—ow N

for almost any vector u, and this is a very efficient way to

obtain A,. The other characteristic exponents can in prin-

ciple be obtained by diagonalizing the positive matrices

(TH*Ty and using the fact that their eigenvalues be-

have like e " ',eZ"AZ, ... . Obviously, for large n, the dif-
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ferent eigenvalues have very different orders of magni-
tude, and this creates a problem if 77 is computed
without precaution. When (Ty)*Ty is diagonalized, the
small relative errors on the large eigenvalues might indeed
contaminate the smaller ones, causing intolerable inaccu-
racy. We shall see below how to avoid this difficulty.

Consider next a continuous-time dynamical system de-
fined by a differential equation

dx (1)
=F(x (1)), 5.11
dt (x () ( )
in R™. An early proposal to estimate A, (Benettin,

Galgani, and  Strelcyn, 1976) used solutions
x(2),x'(t),x"(t), ..., chosen as follows. The initial con-
dition x'(0) is chosen very close to x(0), and x(t)
remains close to x'(z) up to some time T';; one then re-
places the solution x’ by a solution x” such that
x"(Ty)—x(T|)=a[x'(T})—x(T,)] with a small. Thus
x"(T,) is again very close to x(7T), and x'(t) remains
close to x(¢) up to some time T, > T, and so on. The
rate of deviation of nearby trajectories from x( ) can
thus be determined, yielding A,. This simple method has
also been applied to physical experiments (Wolf et al.,
1984); we shall return to this topic in Sec. V.D.

In the case of (5.11) one can, however, do much better.
Namely, one differentiates to obtain

%u(l)——‘(Dme)[u(t)] ,
which is linear in u, but with nonconstant coefficients.
The solution of (5.11) yields x (¢£)=f*(x(0)), and the solu-
tion of (5.12) yields

u(t)=(Dy o,/ u(0) .

(5.12)

Therefore one can readily compute the matrices
T:=D,f" by integrating Eq. (5.12) with m different ini-
tial vectors u. Better yet, one can use the matrix differen-
tial equation
d t t

ETxIO)z(DxU)F)Tx(O) ’
with T, the identity matrix.

As in the discrete case, it is not advisable to compute
T, for large t. We choose a reasonable unit of time 7:

not too large, so that the ¢™" do not differ too much in
their orders of magnitude, but not too small either, be-
cause we have to multiply a number of matrices propor-
tional to 7L Having chosen 7, we discretize the time
(setting f=f") and proceed as in the discrete-time case.
If the characteristic exponents for f are A;, then the
characteristic exponents for the continuous-time system
are A; =7'—17\,-.

Before discussing the accurate calculation of the A; for
i >1, let us mention that the knowledge of A, [obtained
from Eq. (5.10)] is sometimes sufficient to determine all
characteristic exponents. This is certainly the case for
one-dimensional systems, as well as for the Hénon map
and the Lorenz equation, as we have seen in the examples
of Sec. IIL.D.1. It is also possible to estimate successively
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Ay by (5.10), then A+ A, as the rate of growth of surface
elements, A;+A,+A; as the rate of growth of three-
volume elements, etc. This approach was first proposed
by Benettin et al. (1978). In what follows, we discuss a
somewhat different method.

The algorithm we propose for the calculation of the A;
is' very close to the method presented by Johnson et al.
(1984) for proving the multiplicative ergodic theorem of
Oseledec. Remember that we are interested in the prod-
uct (5.9):

TP=T(f" %) T(fx)T(x).
To start the procedure, we write T (x) as

T(x)=Q1R1 ’ (5.13)

where Q) is an orthogonal matrix and R, is upper tri-
angular with non-negative diagonal elements. [If T (x) is
invertible, this decomposition is unique.] Then for
k =2,3,..., wesuccessively define

Ti=T(f* %0 _,
and decompose

T =QwRy

where Q, is orthogonal and R; upper triangular with
non-negative diagonal elements. Clearly, we find

Ti=Q.R, " R;.

To exploit this decomposition, we shall make use of the
results of Johnson et al., but note that those are only
proved in the “invertible case” of a dynamical system de-
fined for negative as well as positive times. In the paper
referred to, an orthogonal matrix Q is chosen at random
(i.e., Q is equidistributed with respect to the Haar mea-
sure on the orthogonal group), and the initial 7'(x) is re-
placed by T (x)Q in Eq. (5.13), the matrices T'(f* ~!x) for
k > 1 being left unchanged. It is then shown that the di-
agonal elements A{" of the upper triangular matrix prod-
uct R, -+ R, obtained from this modified algorithm
satisfy

lim 1 logh{f =A;

n—o N

(5.14)

almost surely with respect to the product of the invariant
measure p and the Haar measure (corresponding to the
choice of Q). On the right-hand side of Eq. (5.14) we have
the characteristic exponents arranged in decreasing order.
For practical purposes, it is clearly legitimate to take
QO =identity.

In the case of constant T(f*x), i.e., T (f*x)=A for all
k, the above algorithm is known as the “Analog of the
treppen-iteration using orthogonalization.”* See Wilkin-
son (1965, Sec. 9.38, p. 607). The multiplicative ergodic
theorem can thus be viewed as the generalization of this

4We thank G. Wanner for helpful discussions in relation to
this problem.
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algorithm to the case when the T(f*x) are randomly
chosen.

Let us again call A'", .. ., A" the distinct characteristic
exponents, and m'Y, ... m'” their multiplicities. The
space E'Y associated with the characteristic exponents
< A'? (see Sec. III.A) is obtained as follows. Consider the

last m'?=mP 4 - -+ +m" columns of the matrix

Ri'---R;7'A=(R, - R)7'A,

where A is the diagonal matrix equal to the diagonal part
of R, -+ R,. Let E'(n) be the space generated by these
m'? column vectors. Then E”' =lim,_, E'"(n).

Note that if we are only interested in the largest s
characteristic exponents, A;> - - - > A, then it suffices to
do the decomposition to triangular form only in the upper
left s Xs submatrix, leaving the matrices untouched in the
lower right (m —s)X(m —s) corner.

The practical task of decomposing a matrix T} as
Ok Ry, as discussed above, is abundantly treated in the
literature, and library routines exist for it. According to
Wilkinson (1965, Secs. 4.47—4.56), the Householder tri-
angularization is preferable to Schmidt orthogonalization,
since it leads to more precisely orthogonal matrices. This
algorithm is available in Wilkinson and Reinsch (1971,
Algorithm 1/8, procedure “decompose’). It exists as part
of the packages EISPACK and NAG. This algorithm is
numerically very stable, and in fact the size of the eigen-
values should not matter.

D. Characteristic exponents:
physical experiments

By contrast with computer experiments, experiments in
the laboratory do not normally give direct access to the
derivatives D, f'. These derivatives must thus be estimat-
ed by a detailed analysis of the data. Once the derivatives
D, f are known, the problem is analogous to that encoun-
tered in computer experiments. The same algorithms can
be applied to obtain either the largest characteristic ex-
ponent A; or other exponents. Only the positive ex-
ponents will be determined, however, or part of them. We
have seen above how to restrict the computation to the
largest s characteristic exponents, and we shall see below
why one can only hope to determine the positive A; in gen-
eral.

As in Sec. V.A we start with a time series
u(1),u(2),..., in R"Y, and from this we construct a se-
quence x(1),x(2),..., in R™, with x()=[u(i),...,
u(i +m —1)]. We shall discuss in remark (c) below how
large m should be taken. We shall now try to estimate
the derivatives Ty ;) =D, ;f,- As in Sec. V.C, 7 should
be such that the e *" are not too large (we are only
interested in positive A;); this means that 7 should not
be larger (and rather smaller) than the ‘“characteristic
time” of the system. Also, 7 should not be too small,
since we have to multiply later a number of matrices Ty ;
proportional to 7~!. Of course, 7 will be a multiple pAt
of the time interval At between measurements, so that
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FIG. 21. The balls of radius 7 centered at x (i), x (i +p), and
x (i +2p).

Sfrx(D)=x(i +p).

The derivatives Ty ;, will be obtained by a best linear fit
of the map which, for x (j) close to x (i), sends x (j)—x (i)
to fHx())—fT(x(i))=x(j+p)—x(i+p) (see Fig. 21).
Close here means that the map should be approximately
linear. This will be ensured by choosing 7 sufficiently
small and taking only those x (j) for which

d[x(),x(j)]<F and d[x(i+p)x(j+p)]<F

(these conditions imply that x (j +k) is close to x (i +k)
for O<k <p; one could also require d[x(i+k),
x(j+k)]<7 for each k separately). The choice of 7
should probably be made by trial and error, monitoring
how good a linear fit is obtained. Certainly 7 should be
less than the upper bound r; of the “‘meaningful range for
C™(r),” discussed in remark (a) of Sec. V.A. Having
chosen 7, we have to assume that the length N of the orig-
inal time series is sufficiently long so that there is a fair
number of points x (j) in the ball of radius 7 around x (i),
and such that x(j+p) is also in the ball of radius 7
around x (i +p). In principle, m points are enough to
determine a linear map, but we want many points: (a) to
overcome the statistical scatter of the x (j), (b) because a
symmetric distribution of the x (j) will yield a linear best
fit from which the quadratic nonlinear terms have been
eliminated. We repeat how Ty ;,=D,;f" is obtained,
with 7=pAt. Take all x(j) such that d[x(i),x(j)]<F
and d[x (i +p),x(j +p)] <7, and determine the mvXmv
matrix Ty by a least-squares fit® such that

Tinlx(N)—x(D]=x(j +p)—x (i +p) . (5.15)

Note that when we estimate Ty, ;) we have to start look-
ing again for all x (k) such that d[x (i +p),x (k)] <7 and
d[x(i +2p),x(k +p)] <F, and not just for the x(k) of
the form x (j +p)!

In general, the points x () will not be uniformly distri-
buted in all directions from x (i). In other words, the vec-
tors x (j)—x (i) may not span R ™", and therefore the ma-

5The most convenient algorithms are given in Wilkinson and
Reinsch (1971), contribution 1/8. (All algorithms in this book
are available in the large libraries such as EISPACK and
NAG.)
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trix Ty;) may not be well defined by our prescription.
Even if T}, is defined, there will in general be directions
in which there are many fewer points than in others, so
that the uncertainty on the elements of T7;, correspond-
ing to those directions is large. In fact, we can only ex-
pect with confidence that the vectors x (j) —x (i) span the
expanding directions around x (i), i.e., the linear space
tangent to the unstable manifold at x (i) (because an SRB
measure is absolutely continuous along the unstable mani-
fold or because an attracting set contains the unstable
manifolds of the points on it). The fact that the matrix
T:(; is only known with confidence in the unstable direc-
tions need not distress us: It means that we can determine
with confidence only the positive characteristic exponents.
This is done with the method of Sec. V.C, constructing
triangular matrices from the 7, for x=x(iy),
x(ig+p)x(ig+2p),..., computing the characteristic
exponents, and discarding those which are <0. The latter
will usually (although not necessarily) be meaningless.

Remarks.

(a) The detailed method presented above for deriving
characteristic exponents from experiments seems new.
Up to now, attention has been concentrated on obtaining
the largest exponent A, using basically the method dis-
cussed in Sec. V.C after Eq. (5.11). For a different ap-
proach, see Wolf et al. (1984).

(b) The example of a time series u(i)=const, corre-
sponding to an attracting fixed point, shows that it is not
possible in general to obtain the negative characteristic ex-
ponents from the long-term behavior of a dynamical sys-
tem. It is conceivable that our method works up to that &
after which the sum of the largest k characteristic ex-
ponents becomes negative. If one has access to transients,
then negative characteristic exponents are in principle ac-
cessible.

(c) We have discussed in this section the determination
of the characteristic exponents of a measure p from its
projection m,,p. How large should one choose m to be?
For the determination of the information dimension, it
was sufficient to take mv>dimyp. Here, however, this
will usually be insufficient, because we have to recon-
struct the dynamics in the support of p from its projection
in R ™. We want 7, therefore to be injective on the sup-
port of p. According to Mafié’s theorem in Sec. IL.G. this
may require mv>2dimg(support p)+1. Probably the
best evidence that m, is a “good” projection for the
present purposes would be a reasonably good linear fit for
Eq. (5.15).

E. Spectrum, rotation numbers

The ergodic quantities that we have discussed in this
paper—characteristic exponents, entropy, information
dimension—are those which appear at this moment most
important and most easily accessible. They are, however,
not the only quantities one might consider. For a quasi-
periodic system, the generating frequencies are of course
important. More generally, Frisch and Morf (1981) have

-drawn attention to the complex singularities of the signal
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u (1) and their relation to the high-frequency behavior of
the power spectrum. One may also look for poles at com-
plex values of the frequency in the power spectrum (reso-
nances). Finally one should mention rotation numbers,
which are not always defined but are interesting quanti-
ties when they make sense (see Ruelle, 1985).

VI. OUTLOOK

Our review has led from the definitions of dynamical
systems theory to a discussion of those quantities accessi-
ble today through the statistical analysis of time series for
deterministic nonlinear systems. Together with the more
geometrical aspects of bifurcation theory, this represents
the main body of theoretically and experimentally suc-
cessful ideas concerning nonlinear dynamics at this time.
The purpose of this review is to make this knowledge ac-
cessible to a large number of scientists. The results
presented here are the combined achievement of many in-
vestigators, only incompletely cited. We believe that the
next step in the study of dynamical systems should lead to
a better understanding of space-time patterns, for which
only timid beginnings are now seen. We hope that the
present review serves as an encouragement for the under-
taking of this difficult problem. v

Note added in proof. Another useful reprint collection
to be added to the list of Sec. I is Hao Bai-Lin, 1984,
Chaos (World Scientific, Singapore).
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