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This paper presents a review of both active and passive ring laser devices. The operating principles of the
ring laser are developed and discussed, with special emphasis given to the problems associated with the
achievement of greater sensitivity and stability. First-principle treatments of the nature of quantum noise
in the ring laser gyro and various methods designed to avoid low-rotation-rate lock-in are presented.
Descriptions of state-of-the-art devices and current and proposed applications (including a proposed test of
metric theories of gravity using a passive cavity ring laser) are given.
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INTRODUCTION

The development of the laser in the early 1960s moved
optical physics into a new regime of precision and com-
mercial applicability. One of the more interesting devices
that the laser has made possible is the ring laser gyro-
scope. (See Gyorffi and Lamb, 1965; Menegozzi and
Lamb, 1973; and Aronowitz, 1965, for the general theory
of a ring laser. ) This consists basically of a ring cavity
around which two laser light beams travel in opposite
directions. An examination of the interference pattern
formed by extracting and heterodyning portions of the
two counterpropagating beams provides information
about the rotation rate of the ring cavity relative to an
inertial frame.

The idea of using a ring interferometer as a rotation
rate sensor was introduced by Sagnac (1913a) but, until
the developinent of the laser, the Sagnac interferometer
was not even considered as an alternative to conventional

Reviews of Modern Physics, Vol. 57, No. 1, January 1985 Copyright Q~1985 The American Physical Society-



Chow et a/. : The ring laser gyro

mechanical gyroscopes. With current laser technology,
however, this is no longer the case. Ring laser gyros are
presently used for navigation of some commercial aircraft
and are being considered for use in a variety of military
applications. The inherent advantage of the ring laser
gyro as a rotation sensing device is that it has no moving
parts and so would seem, potentially, to have a longer
repair lifetime than a mechanical gryoscope.

The initial optimism surrounding the ring laser gyro's
development eventually proved to be justified; however,
during the last twenty years many obstacles, most notably
the so-called lock-in effect, have been encountered and for
the most part overcome. It is just these obstacles that
make the ring laser gyro a doubly interesting device. Not
surprisingly, the struggle to produce a commercially com-
petitive optical gyro has uncovered new physics which has
its own inherent interest. The development of the ring
laser gyro evinces particularly well the way in which
physics characteristically benefits from the interplay of
the applied and "pure" spheres.

In this paper we first explain the basic operating princi-
ple of the ring laser gyro (Sec. I) and then proceed to the
schemes devised to maximize the stability and sensitivity
of these devices. It is with this last task that we are pri-
marily concerned, and we discuss at length the two basic
types of optical rotation sensors —passive ring resonators
and active ring laser gyros. In Sec. II passive ring resona-
tor gyros, in which the lasing medium is outside the ring
cavity, are discussed. Section III is an overview of the
more important active ring laser gyro, so called because in
this variation the active laser medium is within the reso-
nator and forms part of the optical path. Section IV deals
with variants of the active devices which use multiple
modes of the resonator to overcome the lock-in effect. In
Sec. V the important topic of noise in optical rotation rate
sensors is considered, with special emphasis given to the
origin and nature of quantum noise in active ring laser
gyros. Finally, in Sec. VI we conclUde this paper with a
short overview of the applications of optical rotation sen-
sors iri which we discuss conventional gyro applications
(such as navigation) and a more esoteric scheme propos-
ing the use of a ring laser gyroscope to distinguish be-
tween various metric theories of gravitation.

I. SAGNAC EFFECT

(t t( ))

FIG. 1. Passive ring interferometer.

2mp+pQt+
(1.2)

where pQt+ is the arc length the interferometer rotates
through before the CW beam arrives back at the beam
splitter, and c is the speed of light. Similarly,

point A and is split into clockwise (CW) and counter-
clockwise (CCW) propagating beams by a beam splitter.
If the interferometer is not rotating, the CW and CCW
propagating beams recombine at point A after a time
given by

2&p
c

where p is the radius of the circular beam path. However,
if the interferometer is rotating, with angular velocity Q,
about an axis through the center and perpendicular to the
plane of the interferometer, then the beams reencounter
the beam splitter at different times because the CW
(codirectional with 0) propagating beam must traverse a
path length of slightly more than 2mp in order to com-
plete one round trip, since the interferometer rotates
through a small angle during the round-trip transit time.
Similarly, the CCW propagating beam traverses a path

'
length slightly less than 2mp during one round trip. If we
denote the round-trip transit time of the CW beam by t+
and that of the CCW beam by t, then t+ is given by

A. Elementary derivation
of the Sagnac effect

2' —pAt
C

(1.3)

The basis for understanding the operation of ring laser
gyros is the so-called Sagnac effect, first discussed by Sag-
nac in 1913 when he demonstrated the feasibility of the
use of an interferometer to sense rotation. In this section
a simple classical derivation (Aronowitz, 1971) of the Sag-
nac effect is presented.

An understanding of the Sagnac effect can be gained by
considering a circular ring interferometer like the one
shown in Fig. 1. Laser light enters the interferometer at

4' Q
2 2Q2

For reasonable values of p and 0, (pQ) «c, so that

4mp 0ht=-
c

the round-trip optical path difference, AL, is given by

(1.4)

Solving Eqs. (1.2) and (1.3) for t+ and t and then taking
the difference gives
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4m 04 pQ (1.6)
c

From Eq. (1.6) we see that the round-trip optical path
difference, according to this analysis, is directly propor-
tiorial to the rotation rate of the interferometer. A more
general approach valid for an arbitrary interferometer
shape (see Post, 1967; Schleich and Scully, 1984; and
Jacobs and Zamoni, 1982) leads to the result

4Q.ZA (1.7)

where A is the area enclosed by the light path and Z is a
unit vector normal to the surface of the interferometer.

The effectiveness of the Sagnac interferoineter is limit-
ed by the fact that the optical path difference given by
Eq. (1.6) is inuch less than a wavelength. (For instance, if
p=1 m and A=10 deg/h, then b,L=—4. 1&(10 ' m. ) At
first glance this would seem to make the use of ring laser
gyros impractical as rotation sensing devices, since sensi-
tivities of 10 deg/h or less are desirable. However,
there are two different schemes used to greatly increase
the sensitivity of ring laser gyros.

The first of these is to increase the total round-trip path
length of the light by the use of a kilometer-long optical
fiber as the interferometer cavity. To see why this in-
creases the sensitivity of the gyroscope, we shall recast
Eq. (1.6) into a more general form. From Eq. (1.6) we see
that the phase difference, y, between the counterpropagat-
ing beams after one round trip is given by

2m' 8m p 0 4AQ
A, cA, cA.

where k is the reduced wavelength of the laser light and
A =mp the area enclosed by the light beams. Equation
(1.8) is valid for a one loop circular light path. If an opti-
cal fiber is used, the light path typically consists of a fiber
coil of radius p and many turns. In particular, in such a
fiber coil with n turns Eq. (1.8) becomes

8~p nQ
cA

0

or, in terms of the total length, L, of the optical fiber,

(1.9)

4mLpQ
C

(1.10)

Equation (1.10) represents the important result that the
phase shift induced by rotation of a Sagnac fiber ring in-
terferometer increases linearly with the total length of the
optical fiber. A detailed analysis of rotation sensors
which utilize this fact is presented in Sec. II of this paper.

The second scheme devised to increase the sensitivity of
ring laser gyroscopes is tlie introduction of an active laser
medium into the ring cavity. This arrangement is illus-
trated by Fig. 2. For convenience, throughout the rest of
this paper, such an arrangement will be called an active
ring laser gyro. Then the C%' and CC%' ring laser modes
have different frequencies because of the difference in ef-
fective round-trip optical path lengths caused by the rota-
tion of the cavity. In particular, only oscillations with
wavelengths satisfying the resonance condition

FIG. 2. Active ring laser gyro.
Outpot

can be sustained in the cavity. Here, m is an integer, A, +
and L+ correspond to the wavelengths of and effective
cavity lengths seen by the CW and CCW propagating
beams, respectively. Equation (1.11) can be rewritten in
terms of the resonant frequencies as

(1.12)

Using Eq. (1.12) the frequency difference between the CW
and CCW propagating beams can be approximated by

mc mc mchL AL
AM =CO —CO+ = =67

L L+ L2 L

(1.13)

2copQ 2pQ
c

(1.14)

For small 0 Eq. (1.14) becomes inaccurate due to prob-
lems such as lock-in, scale factor variation, etc., to be dis-
cussed throughout the remainder of this paper. Note that

The approximation arises out of setting L+L =L .
Now, a couple of important points need to be made.

The first of these is that when using an active ring laser
gyro it is the frequency difference (not the optical path
difference) between the counterpropagating beams which
is measured. This frequency difference is generally mea-
sured by heterodyning the two output beams (see
Aronowitz, 1971 or Sec. III of this paper). Also note that
the frequency difference given by Eq. (1.13) is a factor of
m/L larger than the optical path length difference given
by Eq. (1.6). This increased scale factor together with the
relative experimental ease associated with small frequency
difference measurements makes the active ring laser gyro
the most common and, currently, the most sensitive inter-
ferometer rotation sensor.

Inserting Eq. (1.6) into Eq. (1.13) gives (for a circular
ring),

Rev. Mod. Phys. , Vol. 5?, No. 1, January 1985



64 Chow et al. : The ring laser gyro

Aco does not depend on the total length of the cavity so an
increased scale factor is not achieved by using long fiber
optic coils in active ring laser gyros. For an arbitrary
cavity geometry we see from Eq. (1.28) (see also Post,
1967; Schleich and Scully, 1984; Jacobs and Zamoni,
1982) that Eq. (1.14) becomes

42 A
Ado =

PA,

V D=O, VXE=- BB
at '

V B=O, V~8= 1 BD
Bt

together with the material equations

D=E—c(BXh),

(1.17)

(1.18)

(1.19)

where 3 is the area enclosed by the light path and P is
the perimeter of the light path. The constant of propor-
tionality, 43IKP between b,co and 0 is often called the
scale factor which we will later represent by the symbol S.

In passing let us note that Eqs. (1.14) and (1.15) ignore
the effects of a refractive medium in the light path.
These effects are treated extensively in a review article by
Post (1967).

B. The Sagnac effect in general
relativity

B=H+ —(EXh),1

C

where we used the notation

h:("oi,ho2, ho2) .

(1.20)

Now we are able to derive a wave equation. The strategy
is straightforward and proceeds as follows. Taking as in
ordinary electrodynamics VX(VXE) and using the ma-
terial equations (1.19) and (1.20) to eliminate the D and
the H fields from Maxwell's equations (1.17) and (1.18)
we arrive at the following wave equation for the electric
field E:

1. Wave equation for electric field

in ring laser

1 BE ~ 2 BE
c Bt c Bt

(1.21)

0 0 hpl hp2 hp3

h)p 0 0 0

In this section we are going to consider the Sagnac ef-
fect in the framework of general relativity. This may be
achieved by deriving a wave equation for the electric field
in the ring laser in the presence of a gravitational field
and solving it. However, due to the presence of a gravita-
tional field we cannot use Maxwell's equations from spe-
cial relativity. The starting point must be Maxwell's
equations in curved spacetime (see Misner er al. , 1973).
However, these equations are difficult to handle, because
they contain covariant derivatives and Christoffel sym-
bols, etc. But there is a way around this complication.
Plebanski (1960) showed that it is possible to write
Maxwell's equations in an arbitrary gravitational field in
a form in which they resemble electrodynamic equations
in a dielectric medium. Therefore, the gravitational field
is in some sense equivalent to a dielectric medium. From
these equations we can then use the standard techniques
to derive the wave equation.

The gravitational field, represented by the metric
g&„——g„&, is assumed to be of the form

g~-=&~-+h~

For details of the derivation we refer the reader to the
Appendix. Iri deriving Eq. (1.21) we have neglected all
derivatives of h.

2. Derivation of the frequericy shift in terrrIs
of the metric

In this section we are going to derive the Sagnac effect
in a metric field gz„of the form of Eq. (1.16) for the use
of an active and a passive device. To do this we try to
solve Eq. (1.21) using the ansatz

E=Epe'
r

—:Eoexp i (co+a,co)t+ Jdr'. k(r')+y(r)
I

We assume a planar surface of the gyroscope but allow an
arbitrary shape. The path of the light may be defined by
l. For the sake of simplicity we assume the electric field
Ep to be polarized perpendicular to the direction of the
light path and to the area of the gyroscope. This may be
achieved by using Brewster wiridows. Then the electric
field vector Eo is constant along the path of the light.
The wave vector k we assume to be constant in its abso-
lute value but changing its direction due to the shape of
the interferometer, therefore

0
+ ~ 2p

h3p 0 0 0
k(r) =—e(r),CO

C
(1.22)

where g& is the metric of special relativity and h& is a
small correction to it. In all that follows we only keep
terms linear in h& .

Maxwell's equations (charge and current free) in
Plebanski's notation have the following form (Schleich
and Scully, 1984) assuming the metric Eq. (1.16):

where e(r) denotes a unit vector in the direction of propa-
gation at point r. The effect of the gravitational field b is
fed in by the frequency shift b,co and the phase shift y(r).
Both corrections contain the gravitational field h at least
linearly. To get the passive resonator case results we have
to set Am =0, bemuse the frequencies of the two counter-
propagating waves are' equal and fixed to be that of the
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external light source. To describe the active case we have
to fulfill periodic boundary conditions for the phase.

Substituting the ansatz into Eq. (1.21), noting that Eo is
constant we find by standard vector algebra

and therefore

b,to= — f dr. h(r) .
kP

(1.2S)

(co+bto) —(k+Vy) = —2—h.k .2 C
(1.23)

—k —2k.Ty

Note that in deriving the right-hand side we already
neglected terms 0 (h ). We can simplify this by noting

1
~ (to+ hco) —(k+V@) = — +22 CO CO ECO

, C C c c
b,co= — f dr h(r) .

kP (1.26)

Stoke's theorem can be applied to obtain b,to in a different
form

Ato= — f f dA (VXh)

This is the frequency shift for an electromagnetic wave, in
an active interferometer in a gravitational potential h.
Because there are two counterpropagating waves in a ring
laser gyroscope we get for the frequency shift between the
two waves twice the result of Eq. (1.25), namely

=2 (hto —ce Vy),2

(VXh) e, .2ic
(1.27)

where we used b,to-0 (h) and Vp-0 (h). Equation
(1.23) reduces then to

C
hco —ce.Vy= ——(h.e),

y= —f dr.h(r)= —' f f dA. (VXh),2 2
(1.24)

where we have used Stoke's theorem in the last step. The
factor of 2 arises from the fact that we consider two
counterpropagating waves.

Now we turn to an active cavity, which means the light
source is inside the cavity. In such a case the boundary
condition is such that the wave after one round trip must
interfere with itself in a constructive way, which means

2nn = +—f dr h(r)+ f dr k(r) .AcoP 1

C

From Eq. (1.22) we immediately find

CO PCOdr k(r)= (Ii dr e(r)—= =2nn,
C C

where we again made use of Eq. (1.22) and defined the re-
duced wavelength X=A, /2m=c/co. A solution to the
above equation is

y(r) = f dr' e(r')+. —f dr' h(r'),
r

C 'o X 'o

where r denotes a point on the path of the light. The
phase shift after one round trip is then simply

f dr e(r)+ —
IIi dr h(r)

567 1

C

+—f dr h(r),AQ)P 1

C

where P is the length of the interferometer neglecting
gravitational effects.

We first want to consider a passive device with a light
source outside of the cavity In this c.ase the frequencies
of the two counterpropagating waves are fixed to be equal
to the external frequency too. This means b,co=0. The
Sagnac phase shift between the two waves is-then simply

This "generalized" Sagnac effect is the main result of this
section. In Eq. (1.27) A is the area of the planar surface
bounded by the ray path of the interferometer and e, is a
unit vector normal to the plane of the device. The surface
A is bounded by the ray path and the curl is evaluated at
the center of the interferometer. In deriving Eq. (1.27) we
have retained only the terms linear in h and neglected
derivatives of h.

3. Classical Sagnac effect

In this section we want to make the connection between
the classical Sagnac effect discussed in Sec. I.A and the
results derived in the previous sections. To do this we
need the metric vector h for a rotating interferometer.
We may read this from the line element

ds =goo(dx ) +2go;dx dx'+g;Jdx'dxj,

where we sum over double indices.
In the present problem go; =ho;. . The simplest example

of a metric with off-diagonal elements between space and
time is the metric in a rotating frame. This result written
in Cartesian coordinates is as follows. In order to
transform to a rotating frame the line element

ds =c dt (dxz+dy +dz2)—

is transformed (for rotation about the z axis) according to

x =x =ct, x'=x =x 'cosQt —x sinQt,

x =x =z, x =y =x ' sinQt+x cosQt,

where we denote the coordinates in the rotating frame by= (ct',x',y', z'). This yields

r

Q (x' + '
)ds= 1— c dt' (dx' +dy' +dz—' )2

I I

+2Q—c dt'dx' —2Q c dt'dy'
C C
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and we see that ho; is given by

0, 0
AOI — P p 602 — X p AO3 —0 e

C C

This then implies that
r

0(VXh).e, = —2
C

L J

This yields for the Sagnac phase and frequency shift

43Q
hap =

cavity. The basic experimental setup for this approach is
shown in Fig. 3. As indicated in the figure, laser light is
coupled into the ends of a long single-mode optical fiber.
In this way two counter-rotating beams are established in
the fiber. When the fiber interferometer is caused to ro-
tate, the two counterpropagating beams travel different
effective round-trip path lengths before they exit the fiber
and are recombined on the screen. Hence they arrive at
the recombination point with a phase difference and so a
fringe shift relative to the pattern obtained when the fiber
is not rotating is observed. This phase shift for a fiber
ring coil is given by Eq. (1.10) as

4mr. pQ
CP= (2.1)

Ap
' (1.28)

the well-known results already derived in Sec. I.A. In
Sec. VI we use Eq. (1.27) to show how one can test gen-
eral relativity using ring laser gyroscopes.

II. PASSIVE RING RESONATOR GYROS

The basic characteristic of a passive ring resonator gyro
is that the lasing medium is outside of the ring cavity so
that the mode structure of the laser light in the inter-
ferometer is determined by a cavity external to the ring
resonator. This scheme is attractive because it eliminates
the problems associated with having the gain medium in-
side the interferometer itself. For example, in an active
gyro, for small rotation rates, the counterpropagating
beams tend to lock together so that even for nonzero rota-
tion rates the frequencies of the two beams are degenerate
(Aronowitz, 1965). Another problem associated with hav-

ing the gain medium in the interferometer itself is the
variation of the optical length of the light path due to the
variation in the index of refraction of the gain medium.
These problems are not observed in passive resonator
gyros.

There are two basic schemes which make use of the
passive ring interferometer. The two approaches differ in
that one relates the rotation rate to a fringe shift (Vali and
Shorthill, 1976) and the other determines the rotation rate
by making a frequency difference measurement (Ezekiel
and Balsamo, 1977). As mentioned in Sec. I, determining
the rotation rate of the ring by measuring the relative
phase shift between the counterpropagating beams has the
difficulty that the proportionality constant which relates
the relative phase shift between the two beams and the ro-
tation rate of the ring is much smaller than the one which
relates the beat note of the two beams and the ring's rota-
tion rate. This problem can be partially overcome by us-
ing long optical fibers as the interferometer. In this sec-
tion we discuss the merits and problems associated with
passive ring resonator gyroscopes.

p p —aL (2.2)

ATTERN

I BEAM SPL)TTE g

where I. is the total length of the fiber and R is the radius
of each fiber loop. Equation (2.1) illustrates the impor-
tant point that the observed phase shift is directly propor-
tional to the length of the fiber so that the sensitivity of
the fiber ring interferometer can be greatly increased (i.e.,
the minimum detectable rotation rate can be greatly re-
duced) by using long fibers.

The sensitivity of this device is fundamentally limited,
however, by the minimum distance change that can be
detected using an interferometer. The most common ex-
perimental technique used to measure the Sagnac fringe
shift is to scan the screen for positions of maximum in-
tensity. (For an excellent discussion of measurement
techniques, see Schiffner, 1980.) In this case, the
minimum distance change is inversely proportional to the
square root of the beam power (Ulrich and Johnson, 1979;
Lin and Giallorenzi, 1979). (This fundamental limit,
often called the shot-noise limit, will be discussed in more
detail in Sec. V.) As longer and longer fibers are used, the
power coupled out of the fiber ends decreases due to an
increase in the amount of light scattered and absorbed by
the fiber in accordance with the rule,

A. Phase-sensitive fiber ring gyros

The first of these approaches, in its most developed
form, uses a long single-mode optical fiber as the ring FICx. 3. Fiber ring gyroscope.
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where I'; is the power output of the laser, L is the length
of the fiber, a is an attenuation coefficient characteristic
of the fiber, and I'0 is the power coupled out of the end of
the fiber. Typical values of a for existing fibers are a few
dB/km. The optimum fiber length for minimizing the
detectable rotation rate is determined'by balancing the ef-
fect that increasing L has on the magnitude of the fringe
shift, with the reduced sensitivity of the detector which
results from a decreased power out of the fiber. Several
analyses (Vali and Shorthill, 1976; Lin and Giallorenzi,
1979) have estimated the optimum fiber length, for exist-
ing fibers, to be several kilometers, for which a rotation
rate of 10 deg/h or less could, in theory, be detected.
This minimum sensitivity is limited only by the quantum
noise of the detector and the attenuation properties of ex-
isting fibers. In practice it is very difficult to approach
this limit. The variance in the theoretical and experimen-
tal sensitivities is due to a number of factors whose nature
and experimental resolution will now be discussed.

1. Noise sources in the fiber ring gyro

The noise sources to be discussed in this section are
those associated with thermal effects, the need to main-
tain a single-polarization state in the fiber, beam to fiber
coupling, back-scattering, and the optical Kerr effect. In
addition there are other noise sources associated with the
detection of the phase difference such as 1/f noise, dark
current noise, amplifier noise, the effect of magnetic
fields, and variation of the index of refraction of the fiber,
which will not be treated here. These last sources are
treated in some detail by Lin and Giallorenzi (1979),
Schiffner (1980), and Leeb et al. (1979).

a. Thermal noise

conditions Shupe points out that "The variation of the in-
cremental phase over a period dp at any point along the
fiber can be approximated by"

dy= +Pa v dl,dP 5T
5t

(2.3)

where t is the time, and o; is the coefficient of linear ex-
pansion of the fiber. This equation is valid over time
periods on the order of the time it takes light to make one
trip around the fiber coil. Note that the first term in Eq.
(2.3) accounts for the variation of the index of refraction
with temperature and the second indicates that the scale
factor (i.e., length) changes with changing T.

The total thermally induced phase shift induced in a
time 5t can be calculated by taking the time ~ in Eq. (2.3)
to be the difference in the time it takes for two wave
fronts which enter opposite ends of the fiber at the same
time to reach a given point in the fiber which is located at
a distance I from one end of the fiber, and then integrat-
ing Eq. (2.3) over the length of the fiber,

1 =—(2I L)—
CO

and performing the integrations gives,

(2.4)

+pa —f (2l L)[T(t,l) —T(0,1)—]dl 5t,dP P
dT co

(2.5)

where we have assumed that p and dp/dT are time in-
dependent and the order of integration over I and t can be
interchanged. These are first-order approximations.
Furthermore, in order to get a numerical estimate of the
apparent rotation due to the thermally induced phase
shift, Shupe makes the following assumptions:

P=kn, , (2.6a)
The problem of thermally induced nonreciprocities in

the round-trip path lengths of the CW and CCW propa-
gating beams is discussed in an article by Shupe (1980).
The following discussion is based largely on his paper.
The condition which causes thermally induced non-
reciprocities is the existence of a time-dependent tempera-
ture gradient along the length of the fiber. Now, in the
fiber ring interferometer, corresponding wave fronts of
the two counter-rotating beams encounter the same region
of the fiber at different times and the propagation con-
stant of the fiber, p (which is related to the velocity, U, of
light through the fiber by the expression p=to/U, where co

is the frequency of the laser light) is temperature depen-
dent. In this way the CW and CCW propagating beams
traverse slightly different effective path lengths and so a
spurious phase shift is produced.

The magnitude of this thermally indu'ced nonreciprocal
phase delay can be obtained in the following way. Con-
sider the incremental phase delay, dy, to both counter-
propagating beams produced by each element dl of the
fiber's length. The temperature, T, is taken to vary both
with time and the position along the fiber. Under these

dp kdnq

dT dT

T(t, l) T(0,1)=lb, T/L, —

(2.6b)

(2.6c)

where k is the free-space wave number of the laser light,
n, is the refractive index of the fiber core (the approxima-
tion being that n, =n, where n is the refractive index of
the fiber cladding), and b, T is the temperature change
across the coil in a time t. Substituting Eqs. (2.6) into
(2.5) and equating the resulting phase shift to the right-
hand side of Eq. (2.1) in order to get an expression for the
thermally induced apparent rotation rate yields

71~I 6T de~
(2.7)

Shupe calculates the temperature change AT necessary to
produce a shot-noise limited rotation-rate in an integra-
tion time of 1 h (i.e., 5t =1 h). He uses the shot-noise
limited rotation rate calculated by I.in and Cxiallorenzi
(1979) of 0.0078 deg/h for a fiber ring gyro having a fiber
coil of radius 10 cm and length 1.56 km, and takes
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dnc

dT
=10 /'C, a=SX10 /'C, n, =1.45 .

With these values, Eq. (2.7) yields the result that hT need
only be 6.7X10 /'C before thermally induced non-
reciprocities become the limiting factor-in the sensitivity
of such a fiber ring gyro. In common navigational appli-
cations such temperature invariance would be impractical
to maintain. Shupe offers two remedies to this problem.
The first is to produce fibers with smaller indices of re-
fraction (and smaller values of dn, /dT) The. second sug-
gestion is to wind the fiber coil in such a way that por-
tions of the fiber that are at equal distances from the
center of the fiber are beside each other so that they un-
dergo the same temperature fluctuations and the non-
reciprocity is eliminated.

b. Polarization and birefringence

All passive, fiber ring gyros make use of so-called
single-mode fibers. In practice all real "single-mode"
fibers permit the transmission of modes of two orthogo-
nal polarizations through the fiber (in each direction).
Disturbances, such as temperature fluctuations and
mechanical stresses, cause power to be transferred from
one polarization mode to the other. (Normally one of the
two modes carries almost all of the power. ) Light in one
polarization mode has a velocity different from the light
which is being propagated in the other polarization mode
so that if light from both mode "channels" exists in the
output, the interference pattern will consist of two super-
posed interference patterns with the resulting pattern hav-
ing less contrast and being shifted with respect to the pat-
tern which would be produced if only the dominant mode
were present in the output. Ulrich and Johnson (1979) re-

port just such a blurred and slowly moving fringe pattern
which they correlate to the effect described above. They
report that a scheme utilizing polarizers and analyzers to
suppress the weak polarization mode resulted in a fringe
pattern in which the positions of the fringes were perfect-
ly stable, regardless of temperature fluctuations and
mechanical disturbances in the fiber which tend to
transfer energy from one polarization mode channel to
the other. However, as one would expect, the intensity of
the fringes varied strongly during these disturbances. For
this reason they suggest that detection schemes which
respond to the position of the fringes only should be con-
sidered.

The noise produced by the transfer of energy between
the two modes makes the need for fibers which inhibit
this energy transfer clear. One method devised to make
single polarization holding fibers is the introduction of
high birefringence into the fiber coil (far exceeding the
birefringence induced by small temperature fluctuations
and mechanical disturbances which are responsible for the
undesirable energy transfer). To understand why this
high birefringence inhibits the energy transfer consider
the birefringence length I. (Ramaswary et al. , 1978) with

(2.8)

where b, /3 is the difference between the propagation con-
stants of the two modes with orthogonal polarizations
which the fiber will transmit. The birefringence length is
the beat length in which energy is transferred from one
mode to the other and then back again. If the manufac-
tured beat length is made smaller than the beat length of
any mechanical disturbance which the fiber might under-
go, then no energy. can be transferred from one polariza-
tion mode to the other. The beat lengths of mechanical
disturbances are rarely smaller than 10 cm and so coils
with inherent beat lengths of 5 cm or less (Rashleigh and
Ulrich, 1980) are desirable and obtainable. (Note that for
a beat length of 5 cm, 5f3 must be approximately
1.26/cm. ) Fibers with a high birefringence can be pro-
duced by drawing the fibers so that they have an elliptical
core or by introducing a highly anisotropic internal stress.
In addition winding a typical single-mode fiber under
pressure can also produce the necessary high birefringence
(Rashleigh and Ulrich, 1980).

c. Beam-to-fiber coupling noise

Another noise source in fiber ring gyros which can be a
larger source of error than shot noise results from light
which is backscattered when the laser beam is coupled
into and out of the fiber. The reflection coefficient at the
end face can be approximated by the expression (Ulrich
and Rashleigh, 1980)

(2.9)

where n is the index of refraction on the axis of the fiber.
The reflected light can modify the output from the fiber
if it interferes with the primary beam. The treatment of
the beam-to-fiber coupling noise given here is essentially
the same as that of Ulrich and Rashleigh (1980). In a
Michelson-type interferometer the reflection-induced
phase error can be as large as

~

r
~

radians and, for a
Mach-Zehnder-type interferometer in which the interfer-
ence occurs after m coupling reflections as large as

~

r
~

Ulrich and Rashleigh state that a reasonable condition
for beam-to-fiber coupling to be considered efficient, is
that the reflected power which interferes with the primary
beam be no larger than the power backscattered by the
fiber itself through Rayleigh scattering. For a 1-m-long
single-mode fiber an approximate value for the backscat-
tered power is —60 dB so that the power reflected at the
input or output beam/fiber interface (

~
r; ), ~

r
respectively) should be less than 10 times the beam
power. Using the conditions stated earlier this would re-
sult in a phase shift error of 10 rad or less.

Ulrich and Rashleigh (1980) propose three viable solu-
tions to the problem of beam-to-fiber coupling noise.
These are the use of antireflective coatings on the fiber
end faces, the use of an immersion cell to reduce the index
of refraction step at the beam/fiber interface, and the pro-

Rev. Mod. Phys. , Voi. 57, No. 1, January 1985



Chow et al.: The ring laser gyro 69

duction of fibers with tilted end faces so that little of the
reflected light interferes with the primary beam.

The use of antireflective coatings alone does not seem
sufficient as these reduce

~
r;

~

and
( ro (

to only about
10 . However, in conjunctioii with other remedies, an-
tireflective coatings may reduce the lower limit of beam
to-fiber coupling noise.

The effectiveness of immersion cells is limited by the
fact that the indices of refraction vary with temperature.
A liquid whose index of refraction, ni, matches that of
the fiber at a given temperature so that

(2.10)

is negligible will not provide index matching when the
temperature is varied. For a temperature variation of
10 C, n —n~ can be as large as 10 leading to a power
reflection coefficient of as inuch as 10 . Careful choice
of the immersion liquid and rigid temperature coritrol
would of course reduce this coefficient. However, the im-
mersion cell remedy to beam-to-fiber coupling noise is
somewhat clumsy in a practical laser gyro and in addition
the windows of the immersion cell itself introduce addi-
tional reflections.

Currently the favored solution is the use of tilted end
faces. In this way, most of the reflected light does not in-
terfere with the primary beam. Ideally one would like to
make the angular separation between the geometrical
direction of the reflected light and the direction of the
primary beam as large as possible. However, one must
compromise since as the normal to the end face is made
to be at a larger and larger angle to the beam direction,
the couphng efficiency is reduced due to the introduction
of astigmatic aberrations (which may also lead to non-
reciprocal effects). Ulrich and Rashleigh calculate that
an angle of 10' between the normal to the end face and
the primary beam input direction is necessary to reduce

~
ro

~

and
~

r;
~

to below 10 . They caution against us-

ing angles much larger than this for the reasons given
above. (However the optimum tilt angle, of course, de-

pends largely on the specific experimental setup. )

d. Backscattering

major sou««f error to be disc'ussed in this sectjo„
results from backscatterlng due to splices in the fiber and
Rayleigh backscattering from the fiber itself. In this sec
tion we discuss the way in which backscattering con-
tributes to a nonreciprocal phase shift (forward scattering
is also thought to contribute but will not be discussed
here) in passive devices.

Following Cutler et a/. (1980) one can make the fol-
lowing estimate of the magnitude of the noise induced by
backscattering (Bohm et a/. , 1981). For simplicity, con-
sider only Rayleigh backscattering. Let cr., be the Ray-
leigh scattering attenuation coefficient of the fiber so that,
taking Rayleigh scattering to be the only loss factor, the
power of the primary beam when it exits the fiber after

one complete circulation, Po, is given by
—a L

Po ——P;e (2.11)

where P; is the beam power coupled into the fiber and L
is the length of the fiber. In addition, some of the back-
scattered energy also exits the fiber and mixes with the
primary beam. Let Gz /4 (Bohm et a/. , 1981) be the
fraction of the total scattered power that is transmitted by
the fiber core and so mixes with the primary beam in the
output. Here 6 is the scattering directivity along the
fiber (1& 6 (1.5) and z is the acceptance angle of the
fiber core. The ratio of the power in the backscattered
wave to that in the primary wave, after one circulation, is
then

P,
Pp

P;(I —e ' )Gz /4
—a L (2.12)

Assuming a,L to be small so that only terms up to first
order in a,L need be retained yields the approximate re-
sult

P, =46z a,L.P 4 (2.13)

The magnitude of the phase shift produced by the two
counter-rotating waves due to the presence of the secon-
dary backscattering waves is, at most,

' 1/2

y,„=2 =z(Ga, L)'i
Po

(2.14)

/

This gives rise to an apparent rotation rate of (for circular
loops)

I /2
xcz

IRx 4
(2.15)

where R is the radius of the fiber coil. In order to obtain
an order of magnitude estimate of Q,„we choose A, =633
nm, L =1000 rn, R =1 m, Z=0. 1 rad, 6=1.0, and
a, =10 /m. Using these values in Eq. (2.15) yields an
approximate upper limit to the backscattered-induced ro-
tation rate of 98 deg/h, which is well above the shot-noise
limited rotation rate.

Effective techniques have been developed to mitigate
the effect of backscattered noise (Cutler et a/. , 1980;
Bohm et a/. , 1981; Bergh et a/. 1981a,1981b). One is to
construct the components on a single contiriuous optical
fiber (Bergh et a/. , 1981a) to avoid the backscattering due
to the splices. In addition, in order to reduce the effect of
the Rayleigh backscattering two techniques are used. The
first invo1ves phase modulation which averages out the
phase error. The phase modulator introduces the same
kind of phase fluctuations as those due to temperature
and vibration sensitive Rayleigh backscattering but in a
wide frequency band so that the error can be averaged out
more easily (Bohm et a/. , 1981). The second technique
reduces the coherence length of the laser source so that
only a small portion of the backscattered light is capable
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of interferiiig with the primary beam. Both of these
schemes have beeri tested with good results (see below). [eo+sz(

I
E,

I

'+2
I Eg I

')]' (2.21b)

e. Optical Kerr effect

Recently work has been done which indicates that a
nonreciprocal phase shift due to the Kerr nature of the
fiber cavity is a significant noise source in passive ring
laser gyros.

To understarid why this is so, a short discussion of the
optical Kerr effect will be given here. A Kerr medium
(one in which the Kerr effect is operative) is defined as
one in which the susceptibility of the medium is given by

s=so+sz
I
E(x)

I
(2.16)

where eo and sz are constants and E(x) is the total elec-
tric field at position x in the mediuin. The presence of
the second term in Eq. (2.16) leads to nonreciprocal ef-
fects for beams transversing the medium in different
directions.

For simplicity we wi11 now speciaIize this discussion to
the case of interest —a fiber ring. Let E

&
and Ez

represent the CW and CCW fields, respectively, propaga-
ting through a passive fiber ring gyro so that the total
field in the cavity is giveri by

E(x)=E,(x)e' "+Ez(x)e (2.17)

Now, using Eqs. (2.16) and (2.17) we will demonstrate
that the CW and CCW beams propagate with different
velocities through the fiber due to the nonlinear part of
the susceptibility. Recall that the velocity of light
through a material medium is given by

(2.18)

To proceed, then, we find what the effective susceptibili

ty, c., is for the counterpropagating beams. This can be
done by writing the polarization P as

P=cE . (2.19)

+EzEi(x)e' (
I Ei I

+2
I Ez

I
)

+EzEze '
( IEz I'+2IEi I')+. . . , (2.20)

where the ellipses represent rapidly varying terms.
The effective susceptibility seen by, say, the C% beam

is given by the coefficient of E&e' and that of the CCW
beam by the coefficient of Eze ' . Using these suscepti-
bilities in Eq. (2.18) gives, for the propagation velocities
of the counterpropagating beams

[&0+&z( IEz I
'+2 IEi I

') l'" (2.21a)

Using Eqs. (2.16) and (2.17) in Eq. (2.19) gives (see
Kaplan and Meystre, 1981)

P =so[Er (x)e' +Ez(x)e ' ]

From Eqs. (2.21) it is evident that if hz&0 (i.e., the fiber
has a Kerr-like nonlinearity) and if

I
Ei

I & IEz I
(i.e.,

the intensities of the counterpropagating beams are not
degenerate) then the velocities of the counterpropagating
beams differ and so a nonreciprocal phase shift not
caused by the rotation of the ring is induced.

If c2 is sufficiently different from zero and the beam
splitter does not split the laser beam into equal parts then
the nonreciprocal phase shift induced by the optical Kerr
effect can become the limiting factor in the sensitivity of
the passive ring gyro. Several analyses (Bergh, I.efevre,
and Shaw, 1982; Ezekiel, Davis, and Hellwarth, 1982)
have shown that for existing fibers and if special care is
not taken to ensure the equality of the counterpropagating
beams the optical Kerr effect does indeed introduce sig-
nificant noise into the gyroscope. For example, in the
state-of-the-art experimental setup used by Bergh,
Lefevre, and Shaw (see Sec. II.A.2), if the ratio of the in-
tensities of the two beams is maintained to 0.5+10 the
apparent rotation rate induced by the Kerr-like nature of
the fiber is still 10 deg/h. Similar results are quoted by
Ezekiel et al. (1982).

To avoid the Kerr phase shift the two groups men-
tioned above employ (or suggest) several methods. The
most straightforward of these is to simply ensure that the
intensities' of the coonterpropagating beams are degen-
erate. In this case, as shown by Eqs. (2.21), the velocities
of the counterpropagating beams are equal and so there is
no spurious phase shift.

Ezekiel et al. (1982) offer several possibilities for
equalizing the intensities. Among these suggestions are
the use of,a feedback loop to monitor and control the in-
tensities and the use of a variable waveguide coupler in-
stead of a simple beam splitter (see Sec. II.B).

Bergh et al. (1982) suggest using a square wave modrl-
lation of the signal so that the weighted average of the in-
tensities of the two beams are equal. That is, the square
wave modulation removes the nonreciprocity of the Kerr
phase shift. They employed such a techrrique using an
apparatus similar to that discussed in Sec. II.A.2 of this
paper and found a significant reduction in noise level {in
particular the long-term shift was reduced).

This section has been concerned with the problems in
rotation sensing which result from the optical Kerr effect.
It is worth mentioning that Kaplan and Meystre (1981,
1982) discuss a technique which used the fact that a Kerr
medium in a passive ring laser gyro increases the intensity
difference of the counterpropagating waves to enhance
the Sagnac effect, i.e., to increase the sensitivity of the de-
vice.

In this section we have discussed a number of the error
sources present in the fiber ring gyro. In the next section
we discuss a state-of-the-art experimental scheme in
which these error sources are reduced to a low level. Still
this state-of-the-art device has a noise limited capability
of measuring a rotation rate of only 0.2 deg/h in a thirty
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second integration time. As shown in Sec. VI (see Table
I) this is several orders of magnitude above the sensitivity
required for practical devices. The limiting technological
factor is currently scattering and loss properties of the
long optical fibers used in passive phase sensitive optical
gyros. Rapid advances are being made in fiber technology
which could eventually reduce these problems to a
manageable level. However, a more fundamental problem
associated with fiber ring gyros is that they are much
more susceptible to thermal and Inechanical stresses
(which result in nonreciprocal effects) than are conven-
tional resonator gyros. . Before the passive fiber gyros can
become a viable alternative (as practical rotation sensors)
to the active ring laser gyros (discussed in Sec. III) the
problem of environmental noise will have to be overcome.

POLARIZATION
CONTROLLER PC2 POLAR IZER

POLARIZATION
CONTROLLER PC

LASER
DIODE

COUPLER +-~
DC~

COUPLER
DC&

DETECTOR~l
MODULATED SIGNAL

CHART RECORDER

ROTATION

SIGNAL

DEAD ENDS j
Q PHASE

REFERENCE++ MODULATION

[ ) s&GNaL ii

LOCK-IN AMPLIF IER AC GENE RATOR

FIG. 4. Schematic of fiber ring gyroscope of Bergh, I.efevre,
and Shaw. [Diagram taken from Bergh et al. (1981a).]

2. State-of-the-art phase-shift-sensitive
fiber ring gyros

TABLE I. Inertial navigation applications.

Gyro
resolution (deg/h)

and stability

10.0—+1.0

1.0X0. 1

0.01
0.001~0.000x

0.000x ~0.0000x

Systems applications

Flight control, attitude heading,
short-flight devices
Some aircraft
Commercial airliners
Ships, other advanced
aircraft
Submarines, spacecraft

To the best of our knowledge the state-of-the-art fiber
ring gyroscope which relates a fringe shift to rotation rate
is the one developed by Bergh, Lefevre, and Shaw (1981a).
A schematic of their system is depicted in Fig. 4.

The salient features of their system are the following.
They use a 580-m coil, with a numerical aperture of 0.1

and a core radius of 2 pm wound on a 7-cm-radius spool.
All of the components were constructed on a single con-
tinuous optical fiber to avoid losses and backscattering
due to splices. The four-port coupler (DC i in Fig. 4) acts
as the beam splitter. The polarizer is designed to select a
single polarization state so that there is no birefringence-
induced optical path length difference between the coun-
terpropagating beams. PC& and PC2 adjust the input and
output polarization states of the beam to ensure efficient
passage through the polarizer.

An important feature of this and other highly
developed systems is that the signal is biased. This en-
sures higher sensitivity because for low rotation rates the
counterpropagating waves add to nearly a maximum since
they have traversed very nearly the same optical path
length. At a maximum, the signal is not sensitive to
small phase differences and so a phase bias is introduced
in order to put the signal in a more sensitive regime. This
is accomplished by'the phase modulator. The lock-in am-
plifier is used to measure both the first and second har-

monies of the Fourier expansion of the detected signal.
The rotation rate is determined from the measurement of
the first harmonic and calibrated using information car-
ried by the second harmonic.

The use of a low-loss fiber (13 dB/km between input
and detector for a He-Ne source) permits the use of low-
power devices without approaching the shot-noise limit.
The short-term noise in thip system was determined to be
due to Rayleigh backscatteriqg. To investigate this noise
source a comparison of the. ,'~hase modulation and reduc-
tion of laser coherence length techniques (discussed previ-
ously) designed to reduce the backscattered noise was car-
ried out. 'It was found that the rms value of the phase er-
ror [which determines the minimum detectable phase
shift which in turn is proportional to the minimum
detectable rotation rate via Eq. (1.10)] with a He-Ne laser
as the source and no backscattering phase modulation. was
1)& 10 rad for a 1-sec integration time. This value was
reduced to 2&(10 rad when a phase modulator was in-
troduced into the center of the loop. When the He-Ne
laser was replaced by a GaAs-diode laser (which has a
small coherence length) the phase error was reduced to
5 )& 10 rad for a 1-sec integration time. This is
equivalent to a rotation rate of 0.5 deg/h for the parame-
ters given above. It was found that using a phase modula-
tor in conjunction with the diode laser did not reduce the
noise level.

Using an integration time of 30 sec, the minimum
detectable rotation rate was found to be 0.2 deg/h, which
is well above that obtainable with conventional ring laser
gyros (see Sec. III). It should be noted that this minimum
detectable rotation rate is a noise equivalent rate. That is,
it reflects the size of the noise in the device, and the as-
sumption is remade that any rotation rate which exceeds
the noise level could be resolved. However, by using a
diode laser with a larger spectral width (smaller coherence
time) and by lengthening the fiber, Bergh et al. hope to
increase the sensitivity of their device.

For the description of another highly developed syste~
we refer the reader to the work done by Cx. Schiffner, in
particular, Schiffner, 1980.
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B. Frequency-sensitive fiber ring gyros

As stated earlier, passive ring resonators can be used to
determine rotation rates by measuring the frequency
difference between counterpropagating beams whose fre-
quencies are locked to the clockwise (CW) and counter-
clockwise (CCW) resonant frequencies of the cavity,
respectively (Ezekiel and Balsamo, 1977; Davis and Ezek-
iel, 1981).

Ezekiel and Balsamo (1977) discuss the operating prin-
ciple of this type of gyro and describe an experimental
setup which uses a conventional passive ring resonator
(i.e., not a fiber). Currently, the most developed form of
this type of laser gyro (which we shall call the frequency-
sensitive passive laser gyro) uses an optical fiber as the
ring cavity (Davis and Ezekiel, 1981).

A skeletal schematic of the layout of this type of device
is depicted in Fig. 5.

Light from a single laser source is split by a beam
splitter and then each branch of the beam is frequency
shifted by acousto-optic devices so that they become
locked to the CW and CCW resonant modes of the cavity
(which, of course, are not degenerate when the cavity is
rotating), respectively. The frequency difference between
the counterpropagating modes is then given by the usual
Sagnac-effect formula [Eq. (1.15)],

42Q
AQ) =

P (2.22)

where, as before, A is the area enclosed by the light path,
k is the reduced, free space wavelength of the laser light,
P is the perimeter of the light path (one loop of the fiber
coil), and Q is the rotation rate of the resonator.

The frequency-sensitive passive gyro has the advantage
of a much larger scale factor [as discussed in connection
with Eqs. (1.7)—(1.11)] than the phase shift measurement
schemes have. This is a particularly important point
when conventional cavities (i.e., not fibers) are used. This
type of device has the same scale factor as the convention-

al ring laser gyro but avoids the lock-in problem.
The form of the frequency-sensitive passive gyro that

has been given the most attention, however, uses an opti-
cal fiber as the resonator. In a comparison with the
phase-sensitive fiber devices, the frequency-sensitive de-
vice has the advantage of a larger scale factor but this
scale factor (4A/Xp) does not depend on fiber length as
does the scale factor of the phase-sensitive devices. How-
ever, Shupe (1981) investigated the shat-noise limit of the
frequency-sensitive fiber device and showed that the sen-
sitivity of such a device does indeed depend on the length
of the fiber. This dependence can be understood by con-
sidering the expression for the shot-noise limited
mini'mum detectable rotation rate of the frequency-
sensitive fiber devices. This rotation rate is given approx-
imately by (Shupe, 1981;Ezekiel et al. , 1978).

A,P ~2I'
4A (2.23)

where I is the width of the resonant peaks of the fiber
and W denotes the signal-to-noise ratio of the system. I
and W depend upon the length of the fiber (see Vali and
Shorthill, 1976, for the explicit dependence) and it is
through this dependence that 6Q depends on the fiber
length. Shupe found that the fiber length which mini-
mizes 5Q is on the order of, but somewhat smaller than,
the optimum fiber lengths of phase-sensitive fiber gyros.
Using a set of typical laser and fiber parameters Shupe
found the shot-noise limited rotation rate to be
2.49 g 10 deg/h.

All of the noise sources discussed in Sec. II.A.2 are also
present in frequency-sensitive fiber ring gyros. Now a
brief description of the state-of-the-art frequency-sensitive
passive fiber gyro will be presented. The device to be
described here is capable of measuring rotation rates of
0.1 deg/h in a 30-sec integration time. It was developed
by Davis and Ezekiel in 1981.

The experimental setup of their device is shown in Fig.
6. (The schematic is taken from Davis and Ezekiel,
1981.)
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FIG. 5. Schematic of frequency-sensitive passive laser gyro.
FIG. 6. Experimenta1 setup of fiber-rotation sensor. [Taken
from Davis and Ezekiel (1981).]
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They used a single-mode fiber coil 200 m long and 19
cm in diameter. The Iaser source was a 5-mW He-Ne
laser. The important features of the setup are two
acoustic-optic (A/0) frequency shifters which lock the
counterpropagating beams to the C%' and CCW resonant
frequencies of the fiber, the polarizers (P) which ensure
single-mode operation, and the electro-optic (El0) phase
modulator which functions to reduce the Rayleigh back-

scattering noise. The output is detected by the photo-
detector (P-D in Fig. 6). The current, i(t), produced in
the photodetector by the fiber output is proportional to
the square of the sum of the complex amplitudes of the
two counterpropagating beams. If the E/0 phase modu-
lator is driven to produce phase modulation with ampli-
tude q&p and frequency ro~ then the P-D current can be
approximated by (Davis and Ezekiel, 1981)

i (t) = 2Ip ' 1+Jp 2q&psin ro — cosy +5IpJ, [2ypsin(ro ~D/2)]sing cos[co (t ~z/—2)]m

—4IpJ2[2&psi n( r~o&D/2)]cosy cos[2co ( t ~n l2)] (2.24)

4mQL, pps=
C

(2.25)
V

The usual measurement scheme is to demodulate i (t) at
the fundamental frequency, co, by using a phase-
sensitive demodulator (PSD in Fig. 6) to obtain an output,
yi, related to y. From Eq. (2.24) we see that this relation-
sh1p 1s

yi 4IpJi [2q&psin(co wp/2)]sing . (2.26)

Davis and Ezekiel found that the best sensitivity could be
obtained by operating at a null. That is, the total nonre-
ciprocal phase shift in the coil can be offset, using a feed-
back loop, by a frequency-induced phase shift produced
by shifting the frequencies of the CW and CCW beams
with the A/0 shifters. In this way, one has

where the ellipses represent higher-order terms, and where
rD is the round-trip transit time of light in the fiber, p is
the total phase difference between the CW and CW beams
due to the rotation of the fiber and any nonreciprocal
noise sources, and J„are the Bessel functions. As given
by Eq. (2.1) the rotation-induced phase shift is

nearly qr =y, (that is how nearly b,v=hv'), since the rota-
tion rate is determined by monitoring Av'.

Davis and Ezekiel found that modifying the above pro-
cedure by demodulating the output of the second harmon-
ic (and so using y2-4IpJ2[2ppsin(co ~p/2)]cosy as the
discriminate in the feedback loop) reduced the noise level.
It was with this scheme that they were able to reduce the
noise level to a rotation rate equivalent of 0.1 deg/h. Fig-
ure 7 compares the rotation rate equivalent noise rate ob-
tained in their experiment when the first and second har-
monics of the signal, respectively, were demodulated with
the corresponding shot-noise limits. This figure indicates
that their setup permits nearly shot-noise limited detec-
tion (Fig. 7 again taken from Davis and Ezekiel, 1981).
Note thai the experimental noise level ceases to decrease

2.0

'l.0—

0.6 —"
2m nl Av'=0,

C
(2.27)

02— II

Av'= Q,4A
(2.28)

which if b.v' is associated with hv is the usual Sagnac ef-
fect. So the sensitivity of this device depends upon how

where Av' is the net frequency shift of the laser light
necessary to offset the nonreciprocal phase shift and nI. is
the optical path length of the coil. If there were no noise
hv' would be identical to b,v, the frequency difference be-
tween the CW and CCW resonant modes of the cavity.
In Ezekiel's setup one of the A/0 shifters is operated at a
fixed frequency and the other is operated at a variable fre-
quency. This second A/0 shifter shifts the frequency of,
say, the CW beam whenever the feedback loop indicates
that yi (and hence y) is not zero. Equations (2.25) and
(2.27) can be combined to give

P

0
0.1—

0.05

0.02

0.01
10
7 (sec3

FIG. 7. Measured and theoretical rotation-, rate uncertainty 5Q
as a function of integration time v. Open circles denote first
harmonic measurement with the solid line being the correspond-
ing shot noise. Filled circles denote second harmonic measure-
ment with the dashed line indicating the corresponding shot-
noise limit. [Taken from Davis and Ezekiel (1981).]
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after integration times longer than 30 sec. Ezekiel and
Davis attribute this to temperature-induced long-term
drift.

Ezekiel's device certainly seems to be competitive with
phase-sensitive devices but, as yet, its performance does
not approach that of the best conventional ring laser
gyros.

CCW Beam CW Beam

III. CONVENTIONAL {TWO-MODE} ACTIVE
LASER GYRO

A. Readout in the laser gyro Detector

27TEXI=Io 1+cos +2mhvt+ p (3.1)

The active laser gyro, whose operating principle has
been presented in the preceding section, gives information
on the rotation rate in the form of a frequency difference
between the counterpropagating waves. A detailed study
of this device and of the early state of the art can be
found in Aronowitz (1971).

The simplest way to measure the frequency difference
is to combine the two beams and observe the beats be-
tween them. A way to do this is by means of a combining
prism, as shown in Fig. 8.

The beams coming out of the prism will be very nearly
colinear. On the surface of the detector they will give rise
to a fringe pattern, the intensity of the light being given
by

FIG. 8. Readout in the laser gyro. The small deviation of the
corner angle of the prism from 90 gives rise to an interference
pattern on the detector.

Its use- as an actual gyroscope involves three ring cavi-
ties assembled in three mutually orthogonal planes. A
practical way to do it in a compact package can be seen,
for example, in Thomson (1978) and in Aronowitz (1971).

B. Sources of error in the laser gyro

The use of the active laser gyro as a rotation sensor de-
pends crucially on the extent to which the relation Eq.
(1.15) is valid. In the ideal laser gyro [that is, one which
obeys Eq. (1.15)] the relationship between Q and hv is
linear and is shown in Fig. 9(a). There are three main

if the intensities of both beams are equal. Here qv is just a
constant phase difference and

(a) (b) AU

where s is zero for perfect alignment and x is measured
along the surface of the detector. The fringe spacing is
given by A, /e and can typically be of the order of a few
millimeters. From the term 2mhvt we see that the fringes
will move when the device is rotated (that is, when
b,v+0), in a direction which depends on the sense of rota-
tion (through the sign of hv). A detector set to count the
.number of intensity maxima that move past it will give an
output

4A ' 4A0N= I bvCh= I QCh=
o &I. o AL

(3.2)
(d)

[where use has been made of Eq. (1.15) for the frequency
difference]. Here 8 is the total angle of rotation of the
gyro. To take into account the possibility of bv (or,
equivalently, Q) changing sign during the measuring
time, one may use a system of two detectors to get infor-
mation on the direction of motion of the fringes, and a
logical circuit to. add up "positive" and "negative" counts.
In this way the cumulative number of counts is an
instantaneous —and "digitalized" —measure of the angle
rotated by the device.

FKx. 9. Beat note vs input rotation rate in a ring laser gyro. (a)
The ideal case, a straight line through the origin; (b) a linear re-
lationship with a nonzero null shift; (c) frequency locking; and
(d) nonlinearities in the response (variable scale factor).
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kinds of error that may cause Eq. (1.15) to be invalid. As
shown in Fig. 9, these are the following.

1. Null shift [Fig. 9(b)]. This happens when the fre-
quency difference is "biased, " i.e., b,v is nonzero for zero
input rate. It amounts to adding a constant term to the
right-hand side of Eq. (1.15), the exact magnitude of
which is usually unpredictable. It can arise from any an-
isotropy in the cavity with respect to radiation traveling
in the two directions. If it is constant and repeatable it
can be measured once and compensated for in the final
output (Aronowitz and Lim, 1978). If it drifts, however,
or changes from turn-on to turn-on, it can be a serious
problem.

The main cavity anisotropy that gives rise to null shift
errors is the so-called Langmuir flow in the active laser
medium. It is found that within a dc-excited plasma
there is a movement of the neutral atoms which is to-
wards the cathode along the center of the discharge tube,
and towards the anode along the walls. Since the laser ra-
diation is along the tube center, it sees a net motion of the
medium. This motion introduces an effective anisot-
ropy with respect to the two propagation directions,
which leads to a splitting in the frequencies as discussed
in Aronowitz (1971).

The usual way to avoid this problem is to make the
Langmuir flow reciprocal by using two discharge tubes
with opposite polarities, as in Fig. 10. In this way the two
"biasing" elements cancel each other. The discharge
current has to be the same in both tubes to a rather high
accuracy if no null shift is to be observed. In the ring
laser discussed in Aronowitz and Lim (1978), an unbal-
ance of 1 pA between the two currents led to an
equivalent null shift of 0.0066 deg/h.

There are several other sources of null shifts that can
arise in specific cases. Any nonreciprocal loss mechanism
in the cavity, for example, will give rise to different
mode-pulling coefficients for the two waves, which will
again lead to a frequency splitting (at least for nonzero
detuning). Power-dependent effects (mode pushing) may
also give rise to a frequency difference if the intensities of

both waves are not identical (again, this may happen
when there are nonreciprocal losses).

Applied external magnetic fields have also been report-
ed to produce null shifts. Here the detailed mechanism is
less clear. However, significant correlation between
theory and experiment has recently been obtained for the
case of the Zeeman laser, on which we will comment
below.

2. Mode locking (or "frequency locking" ). As shown
in Fig. 9(c), this corresponds to the frequency difference
hv vanishing altogether for small, but nonzero, input ro-
tation rate. All information on the latter is therefore lost.
Mode locking is caused by a weak coupling mechanism
between the two otherwise independent traveling waves.
This is backscattering from one wave into the other,
which takes place mostly at the mirrors, due to surface
imperfections. Since it is the most important problem
that has to be overcome in order to have a working laser
gyro, we will discuss it at length in the remainder of this
section.

3. Variations in the scale factor as a function of the ro-
tation rate [Fig. 9(d)]. This means that the linearity ex-
hibited by Eq. (1.15) no longer holds. These nonlinear ef-
fects may arise by dispersive effects in the laser medium
(frequency pulling and pushing). They may also arise, as
will be seen later, as a consequence of some of the tech-
niques used to eliminate mode locking, particularly the al-
ternating bias ("dither") method.

C. Mode locking

). Backscattering and mode locking

Backscattering in the ring laser means that, due to im-
perfections in the optical path, a small fraction of one of
the waves is scattered back in the direction of the oppo-
sitely traveling wave. The scattering itself can be expect-
ed to be more or less uniform in a solid angle of about 4'
steradians; of this, only the part of the light that falls into
the solid angle of the counter-rotating beam contributes to
coupling the two waves. The resulting coupling coeffi-
cient is usually very small, yet it becomes a dominant ef-
fect at low rotation rates, as we are about to see.

Here, we want to present an example showing how cou-
pling between the two counter-rotating waves may arise;
this example is merely illustrative and does not attempt to
describe the actual backscattering process, which is dis-
cussed in greater length in Aronowitz (1971).

Assume a very thin piece of a dielectric is placed inside
the cavity at a position zo, with thickness I and index of
refraction n,

FICx. 10. A scheme to compensate for the null shift due to
Langmuir flow. The signs + and —indicate the polarities of
the discharge tubes.

(3.3)

where Xo is the dielectric susceptibility. Reflections off
this dielectric slab are supposed to mimic the backscatter-
ing at the mirrors mentioned above.

From Lamb's semiclassical laser theory (see Lamb,
1964; Sargent, Scully, and Lamb, 1974, Chap. 8) the two
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waves inside the cavity are described by the self-
consistency equations

1 2+v 1 2@vE~ +— E+ ——— Im( P'+),
2 Q~ 2 eo

1 2m.v 1-
2m v++ p+ ——2m.Q+ —— Re( H+ ),

co E+

(3.4a)

(3.4b)

where E(+) is the electric field amplitude, H(+) the polar-
ization amplitude, and the subindices + and —refer to
clockwise and anticlockwise waves, respectively; Q~+] is
the empty cavity frequency, and v(+) is the frequency that
is actually obtained when the dispersive effects of the ac-
tive medium are taken into account.

The polarization amplitude 8'+ is given by the slowly
varying part of the expression

++~+ — +P (z, t-)dz,Z~
0

(3 5)

where P (z, t) is the total macroscopic polarization

P(z, t)=XE(z, t) =X[E+(z,t)+E (z, t))
i(2m—+t+q+ —k+s)

i(2vrv t+—p +k z)] (3.6)

so that use of (3.6) in (3.5) gives

r

Xoi Xo —;(k,+k )., e
+ L ++

—i(k+ +k )I

i (k+ —k )—
2ni(v+ —v )tE +i(y+ —P )

and an analogous expression for H with the subindices

+ and —interchanged. If one defines the phase angle
difference

Equation (3.5) simply gives the projection of P(z, t)
onto either of the two counter-rotating modes. Now as-
sume for simplicity that the cavity is empty except for the
dielectric slab mentioned above. This results in a suscep-
tibility

Xo if zo & z &zo+ l
X(z)=

0 otherwise

—i (k++k )zo —i(,k++k )I
e + — 'e + — —17e I. —i(k++k )

(3.10)

If now Eqs. (3.9) are used in the frequency determining
equation (3.4b) and E+ E——is assumed, one gets for the
phase angle difference g the equation of motion

27TV+p/=2'. (Q+ —Q ) —— r cos(f+e)
2 co

which is usually written as

Q=SQ+b sing .

(3.11)

(3.12)

SQ~+arcsin
(3.13)

Of the two solutions given in Eq. (3.13), the second one,
having b cosg, &0, is stable: this means that no matter
what the initial condition is, the evolution of g will even-
tually bring it arbitrarily close to the value g„ for which
the right-hand side of Eq. (3.12) equals zero. That is,
eventually (after a time, in fact, of the order of 1!b) the
time derivative of the phase difference P [recall the defi-
nition, Eq. (3.8)] becomes zero, or, in other words, the fre-
quency difference v+ —v vanishes, in spite of the fact
that the rotation rate 0 is nonzero.

When this happens, one says that the two waves have
"locked in" at the same frequency. From our (oversimpli-
fied, since we assumed E+ Ewhich in p—r—actice is not
the case) discussion, we can estimate

Here Q is the rotation rate and S the scale factor
[2m.(Q+ —Q )=SQ], and P has been slightly redefined
by adding to it an appropriate constant. The factor
b =()rvXpr/Ep) is called the "backscattering coefficient, "
and clearly has units of (angular) frequency. Equation
(3.11) is indeed the "locking" equation obtained in more
sophisticated treatments of backscattering (see, for exam-
ple, Aronowitz, 1971).

To see how Eq. (3.11) leads to mode locking, note that

g is just the beat note between counter-rotating waves
[compare the definition Eq. (3.8)]. Now, inspection of
Eq. (3.12) shows that if SQ&&b the phase difference (tt

grows essentially as a linear function of time, as it would
do in the absence of backscattering. But if SQ &b sta-
tionary solutions to (3.12) exist, with /=0, given by

SQ—arcsin
b

@=2m(v+ —v )t +q&+ —qo

one may write (3.7) as

(3.8)
b IA,

4g
(3.14)

H+ =X() E+ +X()re"e'&E—
and the corresponding equation for H as

=X, E+Xore "e '~E+, —-
where the complex number re" is given by (3.7),

(3.9a)

(3.9b)

as the threshold for lock-in and hence the minimum
detectable rotation rate. Values of b as large as 10
rad/sec (100—200 Hz) are not unreasonable; then if
I.-30 cm, X=6328 A, 3=40 cm, one finds Q,h

—2
&10 rad/sec=400 deg/h. This is an extremely large
number, considering that for navigational purposes rota-
tion rates must usually be known with an accuracy of
about 0.01 deg/h.
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T=
SQ+b sing

2m

[(SQ) —b ]'i

A few remarks may be added about the behavior of g
in the intermediate region where SQ is not much greater
than b. In this unlocked regime P, as given by Eq. (3.12),
is a periodic function of time (modulo 2~). Its period can
be used to define an average "frequency difference" as
follows; define T as

so that no significant errors are introduced when subtract-
ing it from the measured frequency difference. For exam-
ple, to get Q with an accuracy of 0.1 deg/h, with a bias of
10 deg/h, the latter has to be known, and kept constant,
to within one part in 10 . Note that a very large bias is
required, not only to overcome locking, but also to be al-
lowed to treat the scale factor as a constant, that is, to
linearize Eq. (3.15) to a sufficient accuracy: indeed, we
have

Then the "average frequency difference" in the unlocked
region can be taken to be (j ) =[(SQ+a)2—b ]'

2

a~.=r =[(SQ)' b—']'" . (3.15)
4
I

This is represented in Fig. 11.
Mode locking is clearly the first problem that has to be

overcome if one is to have a working laser gyro. Many
techniques have been developed to counteract it; the
remainder of this section will be devoted to them.

2. Methods for the avoidance of lock-in

a. Constant bias

The most straightforward technique to avoid lock-in
and the "dead band" about zero rotation rate is to intro-
duce a constant, externally controlled null shift or "bias,"
large enough that the laser is always in the unlocked re-
gion. The frequency difference will then be

(3.16)

where a represents the bias, from which one can recover
SQ by subtracting the known constant bias. A difficulty
is immediately apparent here: the bias has to be a large
number (to avoid lock-in) known with very high accuracy,

1 b=(SQ+u) 1 ——
2 SQ+u

which means that a bias on the order of 10 —10 times
the lock-in threshold is needed to get scale factor lineari-
ties [as assumed in Eq. (3.16)] to an accuracy of
10-'—1O-'.

Finally, another reason why a large bias is needed is
that SQ may have either sign (depending on the sense of
rotation), and when its sign is opposite the bias the sum
SO+a may become small, and one may again have
lock-in and scale factor nonlinearities, only this time
around SQ= —a rather than around SQ=O. This effec-
tivdy imposes alimit on the maximum value of

~
Q

~

that
can be measured, so that one has to choose the bias to be
much larger than the maximum expected value of S

~
Q

~
.

Many methods may be used to provide a constant null
shift, the most obvious one being to apply a constant rota-
tion of the gyro. In practice all of them suffer from the
same problem: the accuracy with which they have to be
known and kept stable is simply too hi.gh either to attain
or to be economically practicable. Of all of them, only
the one using the Faraday effect will be briefly considered
here, since it is the basis for some other schemes that have
proved successful (magnetic dither and DILAG).

The Faraday effect takes place, to some extent, in all
isotropic, transparent substances. If a beam of polarized
light passes through a medium where a constant, uniform
magnetic field is applied along the direction of propaga-
tion of the beam, the plane of polarization of the light is
rotated through an angle

P= VBd, (3.17)

b

P b
dead band"

FIG. 11. The average frequency difference given by Eq. (3.15)
(solid line) in a laser gyro suffering from mode locking. The
dashed line shows the ideal response. The "dead band, " or
range of input rotation rates for which no frequency difference
is observed, extends from SO = —b to SQ = +b.

where 8 is the magnetic flux density, d is the length of
mediuIn traversed, and V is the empirically determined
Verdet constant of the medium. The direction of rotation
is always the same with respect to the direction of the
magnetic field, irrespective of whether the light propa-
gates parallel or antiparallel to it; therefore the rotation
appears to have opposite handedness for counterpropagat-
ing waves.

The effect is most easily described in terms of circular
polarizations, since for a circularly polarized wave a rota-
tion of the electric vector amounts to multiplication by a
phase factor. Iri a medium with a positive Verdet con-
stant, a wave running parallel to the applied magnetic
field will be rotated to the left, so that left-circularly po-
larized waves are advanced in phase, and right-circularly
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polarized waves are retarded, the opposite being the case
for waves running antiparallel to 8. For simplicity con-
sider right-circularly polarized waves only. It follows
from the above discussion that the effect of the Faraday
cell is to introduce a nonreciprocal index of refraction

VBk
n+ ——n+ =n+

kd 2m
(3.18)

where the + sign is for the wave running antiparallel to
B (which is advanced in phase upon traversing the cell).
The consequence of this is that the counterpropagating
waves see different optical path lengths, and hence, by the
same argument that was presented in Sec. I, their frequen-
cies must be different in order for each to satisfy its own
cavity resonance condition. One has

cd', c dbn 2cVBd
I. 2vrl-

(3.19)

with the wave running parallel to B having the larger fre-
quency (since its index of refraction, n, is smaller, it
"sees" a shorter cavity). For lift-circularly polarized
waves, the splitting has the same magnitude but opposite
sign (the wave running antiparallel to 8 having the larger
frequency).

A secondary effect of the presence of a Faraday cell in
a resonant ring cavity, is that only elliptically polarized
waves can oscillate, since the polarization vector is rotated
in each round trip. To operate it with linear polariza-
tions, the Faraday cell may be inserted between quarter-
wave plates that change the linearly polarized light to el-

liptically polarized and vice versa.
Using this technique, a bias on the order of 10 —10

deg/h can be obtained. To keep it as stable as possible, it
has been found convenient to use ferromagnetic or ferri-
~agnetic materials, with a low saturation magnetization.
An external magnetic field is used then to saturate the
material, thus making sure the 8 in Eq. (3.19) is not af-
fected by stray magnetic fields (including the earth' s

own). There still remains the problem of measuring it
with enough accuracy to compensate for it in the output.
This can be avoided by the techniques discussed in the
following section.

b. Alternating bias

In this scheme, the bias is operated in both the positive
and negative rotation rate direction. Over each of these
cycles, the net bias averages to zero, so that the output of
the gyro, being intrinsically an integrated magnitude,
would only reflect the net rotation rate.

The most successful alternating bias technique to date
is the mechanical one, in which the gyro is rotated alter-
nately in one direction and the opposite. This process has
come to be known as "dithering. " It is usually done by
mounting the gyro on a rotational spring system which is
oscillated by means of a piezoelectric transducer.

The effects of an alternating bias (mechanical or other-
wise) that changes sinusoidally in time may by described
by the modified lock-in equation [compare Eq. (3.12)],

l// =a +b slIlf+cx cos(cipD t), (3.20)

where a =SO, and a and coD are the amplitude and fre-
quency, respectively, of the oscillating bias (both of them
in radians per second). One wants a ~&b, as for the static
bias discussed previously, and b &&uD so that the gyro
spends most of the time in the unlocked region.

To solve Eq. (3.20) we make the ansatz

f(t) =at+ sin(coDt)+5(t)
Nz)

(3.21)

and find for the unknown function 5 at once the follow-
ing equation

5(t)=b sin at + sin(coD t) +5(t) (3.22)

Noting the useful 8essel-Fourier expansion (Magnus
et al. , 1966)

eix sinP g J (X)eimti

where J~ denotes the mth Bessel function of the first
kind, Eq. (3.22) reduces to

5(t) = g bJ~ sin[(a +mcoD)t+5(t)] .
rn= —~ , CO

L

(3.23)

This equation is still exact, and to get some insight we
now apply a few approximations. Note from Eq. (3.23),
that for a rotation rate approximately equal to a multiple
of the dither frequency

a =rcoD,

Q =rCOD+Q

where
I
a

I &&coD. Using this. notation we find from Eq.
(3.23)

where r =. . . , —1,0, +1,+2, . . ., there is only one term
in the sum, which is varying slowly compared to coDt,
namely m = r This —ma.y be seen as follows. First, no-
tice that the function 5(t) in the argument of the sine it-
self is slowly varying, since the magnitude of its time
derivative, as given by Eq. (3.22), is

I
5

I
-b &~mD. This

means that the time dependence of the different terms in
the series (3.23) is determined by the frequencies
a+maiD. Of these, one will be close to zero (namely, if
a=-rcoD, the one with m = —r}, and the others will be of
the order of magnitude of mD and its harmonics. The
gyroscope is averaging over some number of dither
periods, so only the slowly varying term survives, which
simplifies Eq. (3.23) significantly.

To study this in more detail, we may write the rotation
rate a, near a multiple of the dither frequency co~, as
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5(t)= bJ
COD

sin[at +5(t)] which, by the substitution y=at+5(t), can be brought
into a more familiar form, namely,

+ g bJ~ sin[(r+m)coDt+at+5(t)] .
m=—

jv =a+bJ, sing .
COD

(3.25)

(3.24)

As explained before, the second term on the right-hand
side of Eq. (3.24) is at least varying with coD because

l
a

l
«coa and

l
5(t)

l
-b «co&, and therefore averaging

over some number of dither periods yields

sin[at +5(t)]

This is the well-known lock-in equation discussed already
in Sec. III.C.1, except that the backscattering coefficient
now has changed to

b —+bJ
COD

Using the results from Sec. III.C.1, we can at once present
the mean beat frequency characteristic using Eq. (3.21),

( )g ——

cz
M)& «r lal & b

COD

2 1/2

rtoD+ (a ) —bJ
COD

for bJ
COD

&
l
a

l «coD,
(3.26)

where r=. . ., —2, —1,0, +1,+2, . . ..
Due to the nonlinear character of Eq. (3.20) we find ad-

ditional dead bands centered at multiples of the dither fre-
quency with a width

l bJ, (a/coD)
l

as indicated in Fig.
12. These steps also arise in the current-voltage charac-
teristic of a driven Josephson junction, and were observed
for the first time by Shapiro (1963). This phenomenon is
not surprising, as the equations describing the phase in a
ring laser gyroscope and the current in a Josephson junc-
tion are closely related (see, for example, Josephson,
1965). In connection with gyroscopes Killpatrick (1967)
integrated' Eq. (3.20) numerically (see also Roland and
Agrawal, 1981). Hutchings and Stjern (1978) presented
approximate analytical results, based on the lines shown
above, together with experimental confirmation of these
"Shapiro steps" in the mean beat frequency characteristic

CX
cos

COD
(3.27)

l

of a ring laser gyroscope. It is worthwhile to mention
that locking at multiples of the driving frequency has
been well known to radio physicists since the 1930s, when
it was called in German "Mitzieh-Effect" (Erdelyi, 1934).

Note that especially for r =0 the width of the familiar
dead band discussed in Sec. III.C.1 is now given by
b

l Jo(a/coD)
l
. Therefore, by choosing .a/co~ equal to a

zero point of the zeroth Bessel function (a/mD
=2.40, etc.) it is possible to make this dead band vanish.
This is usually prevented by technical constraints. %'hat
can be done is to choose a/coD as large as possible, since
for large arguments a/co~ the Bessel function Jo(a/toD)
can be written as

1/2

20.0—

l5.0—

IO. 0—

K=GO
ND' = lO

//r/////r/

/
//

/
//

/'
/

and therefore the width of the dead band goes to zero. In
mechanically dithered gyros one may have a=190 kHz
and coD ——200 Hz giving a/coD ——950 and Jo(a/coD )
&0.02 (Chow et aL, 1980).

From Eq. (3.24) we see that as soon as the rotation rate
a becomes of the same order as ~D, more and more terms
of the sum contribute and the approximation breaks
down. To derive, therefore, an expression for the mean
beat frequency between two multiples of the dither fre-
quency we have to apply another technique. From the
undithered gyro we know that the mean beat frequency is
approximately [see Eq. (3.15)]

~ I b
hen, —= (P),=—a 1 ——

2 a
I

5.0
I

l0.0
I

l5.0 20.0

FKs. 12. Average frequency difference for a dithered laser gyro
vs input rotation rate. Parameters are given in the text.

i.e., it is the ideal case plus a correction of the order
(b/a) . In order to find this correction in the dithered
case and then an approximate analytical expression for
(g), for this regime we start from the following relation:
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G

dt

bJ
COg)

X
Q +VlCOg)

' cos[(a +m coD )t +5(t)] —5( t)
m= —~ a +mCOD

' sin[(a+mcoD)t+5(t)]=5(t)

which can easily be proven by performing the differentiation on the left-hand side, which yields Eq. (3.23). Substituting
Eq. (3.23) into the second term on the left-hand side of the above equation we find

5(t) =
dt

bJ
COD

X a +mCOD

00
' cos[(a + m AD )t +5(t) ] 2 m= —00

Jm J„
COD COD

' cos[(m n)co—Dt]

m= —00

COD CO~

a +mCOD

' cos2 a+ toD t +5(t)Pl +n
2

Averaging this equation over time we find

(t)=——
b2 COD

2 Q +mCOg)
(3.28)

Note that in deriving Eq. (3.28) we neglected the term
varying with twice the frequency.

For a=0 (no dither) Eq. (3.28) reduces because of
J~(0)=5~0 to Eq. (3.15). Note also that this sum be-
comes singular at a =rcoz (r =. . . , —2, —1,0, +1,
+2, . . . ), which is again a manifestation of the Shapiro
steps. The sum can be evaluated exactly -in terms of
Bessel functions (Newberger, 1982) to give together with
Eq. (3.21) an approximate result for the mean beat fre-
quency characteristic for rotation rates between two mul-
tiples of the dither frequency,

&g&, =a—
2 COD

J Ja /coD —a /era

sin(a ~/coD )
(3.29)

J
COg)

cos 1 1+ 2P&—47T (3.30)

Figure 12 shows the lock-in curve of a dither gyro for
b = 1, a=30, coa ——10, where the dashed curve was calcu-
lated using Eq. (3.29), whereas at the multiples of coD Eq.
(3.26) was used.

It turns out that mechanical noise tends to greatly
reduce the nonlinearities in the gyro output, smoothing
out the lock-in bands in Fig. 12 (see Hutchings and Stjern,
1978; Schieich et a/ , 1984). To un.derstand how it hap-
pens, consider, for example, Eq. (3.25): for large values of
a/boa, the Bessel function ca'n be written as

1/2

Now, with a/coD of the order of 900, say, it can be seen
that small fluctuations in the dither amplitude a may
cause the cosine in (3.27) to be "washed away, " since an
error of less than 1% in a will cause its phase to change
by 2~. These errors are sometimes deliberately injected in
the dither mechanism; other times the random noise
natural to the system itself is enough to ensure that the
average of Eq. (3.27) over several dither periods vanishes.
Either way, one now has from Eq. (3.25)

&j &=a —=- &5&=0

or [from Eq. (3.21)]

&q& =at

so that all traces of locking disappear from the output.
The phase difference P, however, is now a random vari-
able, with a dispersion that grows with time. In other
words, the output itself is noisy; its statistics will be cal-
culated in Sec. V.

VA'th mechanical dither it is actually possible
(Aronowitz, 1971,1978) to compensate electronically for
the oscillating bias in the readout, so that the averaging
that was performed in going from Eq. (3.24) to Eq. (3.25)
is not really necessary; with this technique, the instantane-
ous output already equals at+5(t), rather than P [see Eq.
(3.21)].

As mentioned in the preceding section, the Faraday ef-
fect can also be used to induce an alternating bias, by
periodically reversing the magnetic field applied to the
Faraday cell. In addition to the characteristic already
mentioned, of having a low saturation magnetization, it is
desirable for the magneto-optic material used to have
short switching times, again so that the laser spends as lit-
tle time as possible in the locking region. Most impor-
tantly, the inclusion of any external element in the cavity
(such as, in this case, the Faraday cell and optionally the
quarter-wave plates) may increase the losses and especial-
ly the backscattering problems. The magneto-optic ele-
ment therefore has to be highly transparent, and given a
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dielectric coating of high optical quality (see Henry, 1980,
and Carter and Inwood, 1981, for technical details). This
tends to raise the production costs.

A related technique is that of the so-called "magnetic
mirrors" in which the magneto-optic layer is incorporated
into one of the mirrors in the cavity. The traveling waves
pass through the layer before being reflected (from an or-
dinary highly reflecting dielectric layer), and this results
in a nonreciprocal phase shift as with the usual transmis-
sion Faraday element. As an alternative to the Faraday
effect, the so-called traverse magneto-optical Kerr effect
has been suggested as a means to achieve the bias. The
'latter affects waves linearly polarized in the plane of in-
cidence and gives a maximum phase shift when the mag-
netic field 8 is perpendicular to the direction of propaga-
tion of the wave, rather than parallel (or antiparallel) to it,
as was the case for the Faraday effect. The magnetic

'field is therefore applied in the plane of the mirror, and
perpendicular to the plane of the cavity. Here also careful
coating is necessary, since the "magnetic mirror" has to
be of the same high optical quality as the rest of the mir-
rors (see Henry, 1980, and Carter and Inwood, 1981). For
an instance of the performance of a magnetic gyro, see
Thomson (1978}.

Of the techniques discussed to avoid mode locking,
mechanical body dither is the most widely used in com-
mercial gyros. One of these has been reported (Hammons
and Ashby, 1981) to perform under circumstances where
the mechanical noise was comparable to the noise arising
from purely quantum-mechanical processes (see Sec. V);
the random noise diffusion coefficient was of the order of
5 && 10 deg/h.

Partly responsible for this development have been the
significant advances in mirror technology that have taken
place over the past few years; lock-in thresholds as low as
30 deg/h. can now be obtained. This implies, as seen from
Hammons and Ashby (1981), an important reduction in
noise level. (See also Sec. V below. )

In spite of these achievements, there is considerable in-
terest in alternative optical rotation sensors: among these,
especially the multioscillator schemes to be discussed in
the following section, which can operate without any
moving parts (as opposed to dithered gyros) and with less
technical complications than the devices discussed so far.

IV. MUI TIMODE DEVICES

A. Differential laser gyros

c. Other schemes

We mention here two more methods that have been
suggested to minimize or eliminate the problem of lock-
in. The "mirror dither" technique involves oscillating one
of the mirrors in a shear mode parallel to. the plane of the
cavity: the idea is to Doppler shift the frequency of the
light backscattered from one mode into the counterpro-
pagating one, thereby reducing the coupling between
them, and hence the lock-in threshold. The combination
of amplitude, direction, frequency, and phasing of the
dithering mirror is critical (Coccoli and Lawson, 1970}.

Finally, a recently proposed scheme (Diels and McMi-
chael, 1981) would use a phase-conjugation device to cou-
ple the counter-rotating waves in such a way as to prevent
lock-in. When the coupling due to phase conjugation is
larger than the one due to backscattering, computer calcu-
lations show the lock-in threshold to be significantly re-
duced. The technique would also minimize the imbalance
between the intensities of the two counter-rotating modes
which may occur, for instance, in homogeneously
broadened lasers due to strong mode-competition effects.

vi —v4=SQ+cx

whereas for the "LCP gyro, "
(4.1a)

In Sec. III.C it was mentioned that the bias introduced
by a Faraday cell in a ring laser gyro [Eq. (3.19)] would
have opposite signs for two identical ring lasers, one con-
sisting of two left-circularly polarized, counterpropagat-
ing waves, and the other one consisting of right-circularly
polarized waves. The differential laser gyro (DILAG) ex-
ploits this by using a ring laser with four modes above
threshold in a way that is equivalent to having a pair of
ring lasers as described above, only sharing the same cavi-
ty. Specifically, let us for definiteness number the modes
in the following way:

Mode 1, counterclockwise (CCW), right-circularly po-
larized (RCP);

Mode 2, CCW, left-circularly polarized (LCP);
Mode 3, clockwise, (CW), LCP;
Mode 4, C%', RCP.
Then for the "RCP gyro, " made up of Modes 1 and 4,

one mill have

v2 —v3 ——SQ —o, . (4.1b)

d. Coriclusion

"Conventional" two-mode laser gyros have reached a
stage in their development when they are already competi-
tive with purely mechanical gyros for a variety of applica-
tions (a review of these can be found in Stowell et al. ,
1978). Rotation rate sensing capabilities over a range
from 10 to 10+ deg/h have been demonstrated. With
respect to cost, on the other hand, their main asset lies in
their comparatively inexpensive maintenance.

Here SQ is the splitting between the passive cavity fre-
quencies of CCW and CW modes, due to a rotation rate
Q, which is clearly independent of the polarization. The
bias is induced by a nonreciprocal device, such as a Fara-
day cell or a magnetic mirror. Since it is the same device
that interacts with Modes 1,4 as with Modes 2,3, the mag-
nitude of the bias in Eq. (4.la) is exactly the same as in
Eq. (4.1b).

If beams 1 and 4 are combined on a detector, the beat
note v~ —v4. will be observed, and likewise for vz —v3. By
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beating the output of the two detectors together, the com-
bination note vI —v4+v2 —v3 may be observed. But, ac-
cording to (4.1),

c ~, —I
( & )»» = — — sing„~ —— cosg„~ E~,2

v~ —v4+ vp —v3 =25A . (4.2) (4.3a)

That is, the differential beat note is independent of the
bias, and proportional to the input rotation rate, with a
scale factor twice the one for an ordinary two-mode gyro.
Any random fluctuations or long-term drifts in the bias
cancel in the difference, Eq. (4.2), so that bias stability is
no longer a problem, nor is it necessary to know its exact
magnitude.

To be sure, Eq. (4.1) will no longer be true if frequency
locking occurs. There are clearly three possibilities for
mode locking, each with its own mechanism.

(i) Locking of unidirectional waves. This corresponds
to the case when vz ——v&, v3 ——v4. From Eqs. (4.1) it can be
seen that there is then no bias, or, rather, that although
the resonant frequencies of the empty cavity are biased
the active medium overrides it. In fact, what one has in
this case are only two counter-rotating linearly polarized
waves, like in an ordinary gyro, which nothing will
prevent from locking in frequency for low rotation rates
(since the effect of the bias has been neutralized).

The mechanism responsible for this may be anisotropy
(usually located at the mirrors) that would tend to favor
linear over circular polarization. This is the case, for in-
stance, when losses are different for waves polarized along
the x and y directions (here, as is customary, z is the laser
axis and y is the direction perpendicular to the ring
plane). Even more important turn out to be phase anisot-
ropies, which means that the phase shift per cavity round
trip is not the same for an x-polarized wave as for a y-
polarized wave. Both effects will always be present to
some extent, since both the reflection coefficient and the
phase shift at the mirrors are polarization dependent for
non-normal incidence. They are jointly referred to as "x-
y Q and phase anisotropy, " and the terms they contribute
to the amplitude- and phase-determining equations are of
the form

(g„)„»= — cosP„+— sing„~
c Vy Vx c Iy ~x . +m

lfm L 2 lgltg

(4.3b)

where P„~=/„—g (g„ is the phase of the nth mode),
n, m =1 2 2 1 3 4 4 3 pz py are the phase shifts added
onto the x- and y-polarized waves per round trip, and
l„E„,l»E» are the losses of the x and y wave per round
trip. The origin of the loss term in Eqs. (4.3) can be
found, for instance, in Sargent, Scully, and Lamb (1974,
Chap. 12). Here we sketch a derivation of both terms.

Consider, for simplicity, Modes 1 and 2. Their polari-
zation vectors are s and c+, respectively, with

(x+iy) .
2

The combined E field of these two modes can be written

Ef= ~ (1—l„)e "(E)e '+E2e ')x

(1 i»)e —«(E,e ' E2e ~)y .~2 (4.4)

We may separate from Eq. (4.4) the RCP part of forming
the dot product with e*; this will give us the effect of
losses and phase shifts on Mode 1. We have

E; = (E,e '+Eze ')x
2

l —if) —i/2
(E&e E2e )y—.

vZ

With the definitions given above, it is then clear that the
H field after one round trip will be given by

E& e* = t —,
' [(.1 —l„)e +(1—l»)e «]E~+ —,

' [(1—/„)e "—(1—l»)e «]E2e ' ' Ie

A11 of /„, ly, y„,yy are very small. Expanding the exponentials, and keeping only terms linear in the above quantities,
one finds

i IttE)e —Ef c, —E] 1—
2

+ —,
' [(l —i„)+i (y —p„)]E2e ' e (4.5)

The first term in Eq. (4.5) simply expresses the effect of the average losses. The second one is clearly the anisotropy
term. It can be rewritten as

—,[(l» —I„)+i(p» —y„)]Eze ' ' = —,
'

[(l» —l„)costi&2 —(y» —y„)sing&2]+ —[(I» —l„)sin@~2+(y» —y„)cos@&2] E2 .y x

(4.6)
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Again recalling that all terms in Eq. (4.6) are small, it can
be seen that, to first order, the real part will contribute to
the amplitude E~, whereas the imaginary part will contri-
bute to the phase g'i. Equations (4.3) then follow (note
the factor L/c is the round-trip time, to get the rate of
change). Note that from Eq. (4.3b) one can immediately
drive the mode-locking equation for Modes 1 and 2:

r

~ c gy f'x &2'~"'= L 2 E 1

cly —I E
2 E, + E, (4.7)

With average losses of 1%, and a cavity length L 30
cm, a Q anisotropy I /1~=0. 9 would give a lock-in coef-
ficient (c/L)(lz —l )/2=0. 1 MHz. The phase anisotropy
is not as predictable because mirrors from different coat-
ing runs exhibit different birefringent behavior for non-
normal incidence. A value of

t y„—q&„
t
=5 X 10

rad/reflection may be considered typical at the state of
the art. For a laser with four mirrors, this leads to a
phase anisotropy coefficient of =16 MHz. Note, howev-
er, that according to Eq. (4.7) its locking effect can be
considerably reduced if the amplitudes Ei and Ez are ap-
proximately equal.

To avoid this form of locking, it is usual practice to in-
troduce a reciprocal bias that splits the frequencies of
corotating modes of different polarizations. The most
common way to do this is by using an optically active
material. A right-handed quartz crystal, for example,
placed inside the cavity with its optical axis along the
laser axis, will cause all the LCP waves to see a larger in-
dex of refraction, and all the RCP to see a smaller one (re-
gardless of in which 'direction they are traveling); hence
Modes 2 and 3 will be downshifted in frequency, and
Modes 1 and 4 will be upshifted (by the same amount).
The final optical spectrum of the DILAG may then look
as in Fig. 13.

Other schemes use an out-of-plane cavity configuration
to reciprocally bias the two polarizations. In this way one
does not have to use an additional intracavity element,
such as the quartz crystal, which may always be a source
of unwanted losses and backscattering. This biasing tech-
nique will be discussed at length separately (Sec. IV.A.2).

(ii) Locking of bidirectional waves with opposite polari-
zations. This would give v2 ——v4, v3 ——v~, and a zero beat
note in Eq. (4.2). It corresponds to having standing waves
in the cavity, and can be caused by backscattering and lo-
calized losses, the same mechanisms responsible for lock-
ing in the two-mode gyro. Backscattering couples waves
of different polarizations because backscattered right-
circularly polarized light becomes left-circularly polar-
ized, and vice versa. Losses that are localized at some
particular point in the cavity will clearly favor a
standing-wave field configuration with a node at that
point.

This kind of locking is prevented by the reciprocal bias
introduced above (Fig. 13).

(iii) Locking of bidirectional waves with the same po-
larization. This corresponds to v2 ——v3 and v4 ——v&. Again
one has standing waves, this time linearly polarized. The
mechanism again may be localized losses, and back-
scattering acting together with x-y Q or phase anisotropy.
The coefficient corresponding to the latter case would be

b(l„—I„) b(y~ —y )
or

2

where b is the usual backscattering coefficient [see Eq.
(3.12)]. This rate is usually 2—3 orders of magnitude
smaller than b, which in turn is many orders smaller than
the x-y Q or phase coefficient.

This kind of locking is countered by the Faraday bias,
which still has to be larger than the maximum expected
value of S

t
0

t
[see Eqs. (4.1)], as discussed in Sec.

III.C.2.
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FIG. 13. Mode spectrum of a differential laser gyro {DILACx).
The sign of the Faraday bias in this figure assumes that C%"
waves travel antiparallel to the applied 8 field.

1. The Zeernan laser gyro (ZLAG)

The Zeeinan laser gyro is a differential laser gyr'o in
which the Faraday bias is provided by the active laser
medium itself; that is, rather than introducing a Faraday
cell in the optical cavity, a magnetic field is applied to the
laser medium.

Under these conditions, the Faraday bias can itself be
calculated from laser theory, in particular from the Zee-
man laser theory (Sargent, Scully, and Lamb, 1974, Chap.
20; Hanson and Sargent, 1974; Chow et al. , 1979). The
mechanism responsible for it can be summarized as fol-
lows.

The external magnetic field 8 splits the atomic levels
(a,b; see Fig. 13) into sublevels characterized by different
values of the magnetic quantum number m (Zeeman ef-
fect). Let us designate by a' the values of m associated
with the upper level, and by b' those for the lower level,
as in Fig. 14. It can be seen (Sargent, Scully, and Lamb,
1974, Chap. 20; Hanson and Sargent, 1974; Chow et al. ,
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=2

~ab

-- a'=l
a' =0
gl )

b'=2
b' = I

O' =0
b' = -I
bl 2

detuning. Some important results in this direction were
presented in Sanders et al. (1978), and suggest that cer-
tain optimal combinations of polarization bias and mag-
netic field may exist. An important factor with respect to
future developments is the good correlation found be-
tween the experiments and the semiclassical, third-order
Zeeman laser theory.

2. Out-of-plane cavity biasing techniques

FIG. 14. Level structure for an atom in a magnetic field. Level
a has total angular momentum 1, and is split into three sublev-

els (labeled by a'), while level b has total angular momentum 2
and is split into five sublevels (labeled by b').

1979) that conservation of angular momentum then leads
to this selection rule: an LCP wave traveling parallel to 8
(such as Mode 2) or an RCP wave traveling antiparallel to
B (such as Mode 4) can only induce transitions for which
a' b'= 1, —whereas the other two possible waves (Modes 1

and 3) can only induce transitions for which a' b'= —1—.
(This discussion assumes again that CW waves traverse
the medium in a direction antiparallel to B.)

Consider the level scheme in Fig. 14, which corre-
sponds to the 1.15-, 3.39-, and 0.6329-pm Ne lines in the
He-Ne laser. For each transition associated (according to
the selection rule) with Modes 2 and 4 there is a corre-
sponding transition (having, say, the same a') associated
with Modes 1 and 3 and which has an energy larger by
twice the splitting between levels,

2Ahm =2pgBg (4.8)

(where pzi is the Bohr magneton and g the Lande factor).
Hence it is as if the effective atomic line center for Modes
2 and 4 was lower than that for Modes 1 and 3 by an
amount. 2bco. "Mode pulling" towards these two dif-
ferent atomic frequencies then causes the frequencies vz
and vq to split from vi and v3. The actual Faraday split-
ting thus obtained is not nearly as large as A~ in Eq.
(4.8), since the relative importance of mode pulling is
given by the ratio between the cavity and the atomic
bandwidths, and the former is usually much smaller. In
Sanders et al. (1978), a Verdet constant for the He-Ne
plasma of about 300 Hz/cm 6 was reported; the experi-
mental result agreed with the one obtained from Zeeman
laser theory (see Chow et al. , 1980).

In principle the ZLACi can be operated without any in-
tracavity optical elements (by using an out-of-plane cavity
for the reciprocal bias, as will be shown) and without any
moving parts. Its main problem lies in the fact that mode
pulling and pushing effects have been shown, both
theoretically and experimentally (Sanders et al. , 1978;
Chow et a/. , 1980; Smith and Dorschner, 1980) to give
rise to a null shift which depends on the magnetic field
intensity and the detuning. Since cavity length fluctua-
tions that lead to detuning variations are unavoidable, it is
necessary to look for a ZLAG configuration that mini-
mizes the derivative of the null shift with respect to the

n)~k)
a& ——

sinO~

n( ~k2
sinO~

(4.9)

The reflected (unit) wave vector is kz, which together
with nz defines the normal az to the second plane of in-
cidence:

n2xk2
Qg=

sinOq
(4.10)

The polarization components S, and Pi refer to the first
plane of incidence. To find Sz and Pz, note that from
Eqs. (4.9) and (4.10), both a i and az are perpendicular to
k2, so that they both lie in the same plane as S~ and P&.

In essence, all the quartz crystal in a DILAG does is
rotate the polarization vectors by a certain angle: the fre-
quency splitting comes from the resonant cavity, since the
traveling waves have to adjust their frequencies to com-
pensate for the phase shift per round trip due to that rota-
tion. What the techniques to be discussed here do is per-
form the rotation of the polarization vectors using an
"out-of-plane" configuration of mirrors.

To understand how this is done, consider the system of
three orthogonal vectors formed by the propagation vec-

tor k and the two orthogonal polarizations S and P (P lies
in the plane of incidence, while S is perpendicular to it}.
The relative orientation of these three vectors is preserved
upon reflection, except for a 180' phase shift in the S
component (space inversion). Then if one uses an even
number of mirrors (so that there will be an even number
of space inversions, leaving an orthogonal system with the
same handedness as the original one) the main factor in
determining the effect of successive refiections will be the
change in orientation of the plane of incidence itself as
the wave travels from one mirror to the next. It is clear
that this change has to be of the form of a rotation about
the direction of propagation k (since this direction is
common to both planes of incidence), and can therefore
be represented as a rotation of the S and P vectors among
themselves.

To help visualize this idea, consider Fig. 1S. Here n&

and n2 are the normals to two consecutive mirrors. The
plane of incidence for the first mirror is defined by ni
and the incident wave vector k~, or equivalently by the
normal a

&
to the plane, given by
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Defining the rotation matrix

cosa 12 slna12
R (a12)= —sina12 cosA') 2

(4.11)

we have

P2 P1
=R (a12)

2 1
(4.12)

FIG. 15. Cieometry of two consecutive reflections: n i and n~

are the normals to mirrors 1 and 2, respectively, 0& and 02 are

incidence angles, ki is the unit wave vector of light before the

first reflection, and k2 is the wave vector after the first reflec-
tion. ai and aq are the normals to the two consecutive planes
of incidence; S and I' refer to the first reflection. MJ(OJ )=

0 ype
—i5/2 (4.13)

The effect of the mirrors themselves on the P and S
components can be represented by the diagonal matrix
(Sanders and Anderson, 1981)

r

Xie "~2

The situation is shown in Fig. 16.
The new S component, S2, is the projection of the po-

larization vector along a2, in terms of the components Si
and Pi, and the angle a, 2 between a, and a2, it can be
written as

S2 ——S1cosa12—P 1 sina12 .

Analogously

P2 P1cosa12+Slsina12 '

where x and y are the P and S reflectances of mirror j for
an angle of incidence 8&, and 5 is the corresponding linear
phase birefringence. In terms of the definitions intro-
duced at the beginning of this section, one has /„=1—x,
l„=l—y, and y„—pre

——5+m (as mentioned before, all
the m. phase shifts effectively cancel in one round trip for
an even number of mirrors).

If we have n mirrors, then, the total change in the po-
larization vector after one round trip is given in terms of
the S and P components by the product

P' P
S& R(rzn 1)M (tn) nR (rr23)M2(~2)R ~12)M1(~1) (4.14)

where, as above, a;~ is the angle between the planes of in-
cidence of mirrors i and j.

This way of representing the effect of an optical system
on polarized light by a succession of 2X2 matrices is of
course nothing other than the Jones calculus (see, for in-
stance, Hecht and Zajac, 1974), adapted here to the prob-
lem at hand.

The expression (4.14) can be simplified if one neglects
x-y Q and phase anisotropy (that is, set x =y and 5=0
for all mirrors). Then

1 0
M~—= 0 1

(ix )

and noticing that
r

1 0 cosa sina 1 0
0 —1 —sina cosa 0 —1

cosa —sina
sina cosa

=R( —a)

the total matrix product in Eq. (4.14) is easily seen to be
proportional to a rotation through an angle

at()t agg 1 apg, g —1+ +a23 a12 ~

In fact, orie has

Pi
~ n

S
n P/ XJ R(af, )

j.=1
(4.15)

FICx. 16. Rotation of the plane of incidence in two consecutive
reflections (see text).

which means that the polarization vector is rotated
through an angle which is either a„, or a, ,+m, depend-
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ing on whether i" is + 1 or —1 (remember that n is
even).

Consider the simple case in which Eq. (4.15) reduces to
a rotation by 90' (the losses 1 —Q". ,xj. having been bal-
anced by the gain medium). Then after one round trip

I" 0 1 I'
S' —10 S (4.16)

(For an illustration of how this can be achieved in prac-
tice, see Smith and Dorschner, 1980.) It can easily be
seen that, with the orientation chosen for S and P (Figs.
16 and 15), right-circularly polarized light will be
represented by the Jones vector

r

(This is simply s written in column form; think of P
and S as the x and y components of the E field, respec-
tively. ) Analogously, I.CP light is given by

1
F

l

Equation (4.16) then gives

0 1 1

—1 0 i——l = —i'

1 0 1 1

—1 0 i— =iEL

in/ZE I ~

(where m is the mode number); that is, one has

VT'C

COg =COp+

L

(4.17)

and hence the frequency splitting achieved between waves
of opposite circular polarizations is

1 Che= = (a)~ —coL ) =—,
2m 2m

that is, half the intermode spacing.
The reason for the denomination "out of plane" for

these techniques is immediate from Eqs. (4.9)—(4.11): if
the normals to all the mirrors lie in the same plane, all the
vectors az are parallel and u;J- =0 for all i,j. It is only by
arranging the mirrors so that the plane of incidence actu-
ally changes between reflections that a rotation of the po-

Hence there is a m phase difference between the RCP and
LCP waves in one round trip. To satisfy the resonance
condition, the new frequencies will have to be such that

L m'

COg + =27TPl =
c 2

larization can be achieved. This means the optical path
cannot lie in one plane as in the usual ring lasers. For
these out-of-plane cavities the gyro axis is defined by the
general expression

a= f r)&dr, (4.18)

where the line integral runs along the optical path; r is the
position vector and dr points along the propagation direc-
tion at r.

An out-of-plane technique has been suggested (Sanders
and Anderson, 1981) to minimize the round trip x-y g
and phase anisotropy. The idea is that mirrors from the
same coating run have similar anisotropy characteristics:
by arranging such mirrors in pairs, and rotating the polar-
ization by 90' between reflections, anisotropies might
ideally be made to cancel; and, at any rate, would be con-
siderably reduced.

B. Self-biased laser gyros

Recently in a number of papers (Scully et al. , 1978;
Sanders et al. , 1978; Anderson et al. , 1979,1980) a dif-
ferent multioscillator approach to the problem of mode
locking was investigated. Theoretical work led to the
conclusion that the presence of an additional pair of
modes oscillating in the cavity could significantly reduce
the lock-in threshold because of nonlinear coupling effect.
In this scheme one would have, for example, the unusual
pair of TEMpp„counterpropagating modes, and then a
pair of {in general weaker) TEMoi„modes; or the second
pair could have a different longitudinal mode number.
An internally generated bias (which eventually could be
an alternating bias) was expected to occur when the laser
was pumped hard enough that the second pair of modes
were brought above threshold. Experiments (Scully et al. ,
1978; Sanders et al. , 1978; An'derson et al. , 1979) did
indeed show an important reduction of lock-in in these
four-mode gyros.

In one particular experiment (Anderson et al. , 1980; see
also Chow et al. , 1980; Anderson, 1981) the lock-in re-
gion vanished altogether. A self-induced bias was ob-
served that changed sign when the direction of rotation
was changed, as seen in Fig. 17.

The optical spectrum of this laser was as shown in Fig.
18, which also shows the convention used here to number
the modes. The "weak" Modes 1 and 4 were TEMp&„
modes.

The frequency spacing between the strong and weak
modes was = 60 MHz. The weak modes were only
slightly above threshold; the ratio of intensities I, /I~ was
about 30. Here I, =(I2+I3)/2 and I =(Ii+I4)/2;
these average intensities were observed to be constant in
the experiment. It was also observed that the frequency
differences vq —v3 and vi —vq locked at the same value
that is, v4 —v3 ——v~ —v2, or equivalently v3 —v2 ——v4 —vj,
the gyro output was then (jp), where

f32+ Al
(4.19)
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4 mode

mode

Here

a,' =(P, —8, )I, ,

a' =(P 8—)I
(4.22)

where p is the third-order self-saturation coefficient, and
8, ~ ~

is the third-order cross-saturation coefficient for the
strong-weak modes; 0,„ is a third-order cross-saturation
coefficient for the strong-weak pairs; r~ and r, are
(intensity-dependent) cross mode pushing coefficients; b
and b, are backscattering coefficients for the weak and
strong modes; and c, and c are the average backscatter-
ing phases

~2+ ~3 ~i+ ~4
&s=

2 2
&w= (4.23)

FICJ. 17. Beat note vs rotation rate for the four-mode laser gyro
demonstrated in Anderson et al. (1980). The laser exhibited
lock-in when only the usual two counter-rotating modes were

above threshold, and a reciprocal bias (and a 1inear characteris-
tic) when it was operated with four modes.

4

From the above argument one expects @11
—

1(t41.

In the study of this 2-+ 2 laser gyro it is convenient to
use the normalized intensity differences

I3 —I2
2i. '" I4 —I)

2Iw
(4.20)

~s = —2a,'i, -+ 2b, sine, cosy,
dt

(4.2 la)

From their definition, they can vary between —1 and + 1

and in the expmment they were seen to be small. Using
all the above information, one can find the following set
of equations for the 2+ 2 gyro (obtained in third-order
perturbation theory):

I
&s »+

1

+w &&0' ~

(4.24a)

(4.24b)

were introduced. By virtue of the first one, it is possible
to solve Eq. (4.21a) "adiabatically" (see Chow et al.,
1980) to get

slnEs
i, =b, cosy .

As
(4.25)

Now Eq. (4.25) may be substituted in Eq. (4.21b) to give,
together with the additional hypothesis Eq. (4.24b)

b„sine
lw = —2A slntP ~ (4.26)

It can be seen that in order for the average intensities I,
and I~ to remain constant (as was observed in the experi-
ment), e, and e have to be odd multiples of n /2

In Chow et al. (1980) and Anderson et al. (1980), it
was shown how Eqs. (4.21) can lead to a bias (that is, a dc
term in the equation for dq&ldt) under certain hypotheses.
Specifically, the mode-pushing terms r, and r~ were
neglected, and the assumptions

= —2a' i —20, I,i, —2bwsine, cosy,

=SQ+r i +r i,
dt

(4.2 lb)
where

bs S1n&s sw
A =1+

b~ Slue ~ pg —8~
(4.27)

+[bglgslnaq —b~l~s1ne~]sing . (4.21c)
~hen Eq. (4.26) is substituted into Eq. (4.21c) one gets
the following expression for the 2 + 2 beat note:

TEMoon

CCW CW

TEMO) n

CCN CN

b2 b2 b2
~=gQ+ g —3 cos2y+ sin2y .

2Cxs
(4.28)

To see how this brings about a bias, neglect for the mo-
ment the last term in Eq. (4.28): one has then a quadratic
equation in j, with the solution

Strong Modes

I 4

Weak Modes

FKx. 18. The spectrum of the 2 + 2 laser gyro.

p= I'SQ+ 1 f(SQ) + 8b~A sin q&]
~ (4.29)

It is clear that for large positive rotation rate Q the plus
sign gives the right solution, whereas for large negative Q
the minus sign is appropriate. As the rotation rate ap-
proaches zero from the positive side, one has
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y—b v'2A
f
sing

f
(4.30)

dlw = —2awlw —2bs A slncwcos+,
dt

(4.3 la)

which shows that y has to be either positive or zero.
Under these conditions the stationary (locked) solutions
y=n~ have to be unstable, since any small phase fluctua-
tions can only grow. In fact, if one solves the complete
equation (4.28) (including the last term) numerically, with
an additional small noise term, a nonzero bias is indeed
found for all values of the input rotation rate Q.

Equations (4.21) can also be studied without neglecting
the cross-pushing terms r, and rw. We make again the
assumptions Eqs. (4.24), and write i, in the form of Eq.
(4.25). Now Eqs. (4.21b) and (4.21c) can be rewritten as

There are several important problems with this ap-
proach; some of them may be technical, and some may be
of a deeper nature.

First, although a,', as calculated from third-order
theory, does indeed satisfy Eq. (4.24a) for values of y
such as those shown in Fig. 16, a' does not satisfy Eq
(4.24b) unless a value for I is chosen [compare Eq.
(4.22)] that has to be much smaller than the experimental
values I =Is/30. Second, and more important, Eqs.
(4.26) and (4.27) show that i„may be larger than unity,
which is impossible by its own definition [what. happens
of course, is that Eqs. (4.21) were derived assuming that
both i, and i~ were small; they are not valid if either of
them is close to +1). In fact, from Eqs. (4.30) and (4.26)
it can be seen that, for a rotation rate close to zero,

=SO+ P'w lw —bw slncw lw sing
dt f

i
f
-v'2A . (4.36)

2
&sbs bs+ sine, cosy + sing cosy .

s as
(4.31b)

Note that there is now a term in cosy in Eq. (4.31b) for j&.

An analysis similar to the one carried out in Sec. III.C.2.b
[Eqs. (3.21)—:(3.24)] leads one to expect a dc term in Eq.
(4.31a). In fact, if one assumes

iw =bo+a sing (4.32)

substitution of this form on both sides of Eq. (4.31a) and
use of Eq. (4.31b) for p on the left-hand side leads (after
neglecting small terms) to the result

1

2(r +B)
—SQ+ (SQ)'+4b'A+4b'A

1/2

(4.33)

b sine a,'a'
8=2

b, sine, r,
(4.34)

(4.35)

In the secorid term inside the square root one can recog-
nize the term 8b~A sin gr in Eq. (4.29), with sin p re-
placed by its average value —,'. In general, the new bias
mill be much larger than the one obtained previously,
since as stated above r jS&~1.

When Eqs. (4.32) and (4.33) are used in Eq. (4.31b), a bias
is obtained that equals r bo. To simplify things, assume
that r„&~B, which can be justified as follows: first, cal-
culations show that rw is larger than the estimated back-
scattering coefficient b~ =10 kHz; second, the assumption
(4.24b) that a„' «p entails [compare Eq. (4.31b)] that
~Is &«sbs ~&s.

Then the dc term in Eq. (4.31b) reads
1/2

SQ+r„bo—,'SQ+ —(SQ) +4b~—A+4b AM

From Eq. (4.27) it can be seen that A can be less than 1

if sinss = —sins~; but again the third-order coefficients
8, , P„and Os make it hard to get A &0.5 (except if b is
carefully chosen).

These problems may just be an indication that third-
order perturbation theory is not appropriate for this 2 + 2
laser gyro, which, after all, is not surprising, since the two
strong modes are operating very far above threshold. A
more important objection is as follows: both Eqs. (4.29)
and (4.35) give a beat note that tends to SQ for large in-
put rotation rate; that is, the bias goes to zero as Q —+ 00.
This contrasts with the constance of the bias exhibited by
the experimental results. Also, the choice of a sign in ei-
ther Eq. (4.29) or (4.35) for small (close to zero) rotation
rates is, after all, arbitrary; the solution with the p)us sign,
say, does not end sharply at 0 =0: rather, it goes smooth-
ly to zero for large negative Q. Under these cir-
cumstances, one wou1d expect the system to exhibit some
hysteresis in the region around Q=O: but the experimen-
tal results show no trace of this.

A different approach has been presented in Anderson
(1981). There the amplitude and phase determining equa-
tions (in third-order theory) were solved for the steady
state, in the absence of backscattering. The general sys-
tern has six differential equations, for I1, I2, I3 I4,

=—i)'j3z —fbi, and y', the latter variable is decoupled
from the rest, in the absence of backscattering, so that the
first five equations could be simultaneously solved.

It was found that there were steady-state solutions hav-
ing i~&0; from Eq. (4.21c), this iinplies the existence of a
bias i~i„, which is calculated in Anderson (1981). The
assumption is that even in the presence of backscattering,
the system remains close enough to the steady-state solu-
tion so that the bias term would still be present in Eq.
(4.21c), and would, in turn, minimize the effect of back-
scattering.

The trouble with this theory is that it assumes that the
steady-state solutions with i~&0 are stable; in fact, it can
be shown that they are unstable with respect to small
fluctuations in the phase difference g . This makes the
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validity of the main claim questionable.
Also in Anderson (1981}it was claimed that the locked

solutions (y=O) were unstable. The relevance of this can
only be assessed after a numerical study of the six equa-
tions shows what the actual behavior of the system is
(since all the steady-state solutions are then unstable); one

could, for instance, still have (p ) =0.
Finally, as with the theory sketched in this section, no

definitive explanation for the absence of hysteresis was
presented.

In conclusion, the 2+ 2 laser gyro is still far from be-

ing clearly understood. Gnly further investigations (in-
cluding probably a strong-signal treatment of the strong
modes) will clarify the nature of the bias, whether it is
"static" in origin, as contended in Anderson (1981) or
"dynamic" [meaning that it depends on the backscatter-
ing, as evidenced by both Eq. (4.29) and Eq. (4.35)], as
proposed in Anderson et al. (1980). The interest of the
problem, however, is obvious: an understanding of how
the self-induced bias arises may lead to the simplest prac-
tical laser gyro so far, with no moving parts, no intracavi-
ty elements, and no applied external magnetic fields or
complicated mirror arrangements.

propagating waves. Therefore, the quantum noise influ-
ences ihe output.

The study of the quantum noise is, therefore, extremely
important to determine the ultimate sensitivity of ring
laser gyroscopes. All other noise sources, as, for example,
vibrations of the laser mirrors, can be overcome by some
clever technique. But thert: is no way to get around the
quantum noise which stems from the quantization condi-
tion (5.1}.

In this section we are going to discuss the influence of
the quantum noise due to spontaneous emission of laser
atoms on two characteristics of the gyroscope, namely the
mean beat frequency rotation/rate characteristic and the
spectrum of the mean beat signal by summarizing the
results presented in Cresser (1982) and Cresser et al.
(1982a,1982b). For the influence of quantum noise on the
locking curve of a dithered gyro, see Schleich et al.
(1984). In Sec. V.A.Z we will discuss the. error introduced
by quantum noise into rotation rate measurements.

6. Theory of fluctuations: Langevin
and Fokker-I Ianck methods

V. . NOISE IN OPTICAL ROTATION SENSORS

A. Quantum noise in ring laser gyroscopes

Due to spontaneous emission of the laser atoms the
phase of the electric field in the cavity is a stochastic vari-
able. The equation of motion for the phase difference be-
tween the two counterpropagating waves, Eq. (3.12), now
reads

1. Spectrum of the beat signal and locking
in the presence of noise

a. introduction

/=a+& sinf+F(t), (5.2)

where we feed in the noise by the fluctuating force F(t)
which we assume to be Gaussian with mean zero

(F(t))=0 (5.3)

Up to now we only considered the ring laser in the
framework of Lamb's semiclassical laser theory, which
means we treated the laser atoms quantum mechanically,
whereas the electric field was considered to be a classical
quantity. However, by using the canonical quantization it
can become itself an operator. From this point of view

the electric field is a superposition of an infinite number
of independent (quantum-mechanical} harmonic oscilla-
tors described by their creation or destruction operators
aj. or aj., respectively, which are quantized in the canoni-
cal way (Wentzel, 1949),

[a, ak]=&jk . (5.1)

This problem was solved in the late 1960s and is here ap-
plied to the laser gyro problem (Scully and Lamb, 1967;
Sargent et al. , 1970). This quantization gives rise to some
new effects such as the infinite zero-point energy of the
field, the vacuum fluctuations, and spontaneous emission.
Due to spontaneous emission the laser field has a random
phase and, therefore, the phase of the electric field in the
cavity is no longer well determined: it becomes a stochas-
tic quantity. This is crucial, because by using a ring laser
as a gyroscope one is measuring, as explained in Sec. I,
the phase or frequency difference between the counter-

where ( ) denotes the ensemble average. (Here a =sQ.)
This type of problem is well known from the problem of
injection locked (symmetry broken) lasers (Chow et al. ,
1975).

Such stochastic equations are called Langevin equa-
tions. A rigorous derivation of Eq. (5.2) can be found in
Cresser et al. (1982a).

In noise theory one often uses the expressions system
and reservoir. The reservoir is coupled to-the system and
feeds noise in. This causes the system variable to fluctu-
ate around a mean value and according to the
fluctuation-dissipation theorem, also causes damping.

In our problem the reservoir is represented by the laser
atoms and the system is the laser field in the cavity, the
system variable is the phase of the electric field. Compar-
ing the correlation time of the reservoir ~, (i.e., the decay
time of the atoms) with the damping time of the electric
field 1/y we find

(F(t)F (s) ) =ZD5(t —s), (5.4)

r, «1/y .

Therefore, on the time scale of the electric field we can
assume for the two-time correlation function
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where

2Q(n)
(5.5)

aP a $2p
[(a +b sing)P]+D

dt 8 aq'
(5.6)

subject to periodic boundary conditions can be solved ap-
proximately in various regions of the rotation rate as well
as exactly in terms of infinite continued fractions. In the
paper by Cresser et al. (1982a) approximate analytical re-
sults were obtained for the spectrum of the beat signal in
some regions of the rotation rate working in the Fokker-
Planck method. These results can also be derived using
the Langevin approach (Schleich, 1981). In Cresser et aL
(1982b) the exact expressions for the spectrum of the beat
signal and the mean beat frequency in terms of continued
fractions were presented and finally approximate analyti-
cal expressions for the spectrum for a certain range of the
rotation rate working in the Langevin approach were ob-
tained by Cresser (1982).

denotes the diffusion constant of this stochastic process
((n) is the average number of photons in the field at
steady state and Q the quahty factor of the cavity)
Equation (5.5) is valid only when all angular variables are
measured in radians. Its derivation may be found, e.g., in
Sargent et al. (1974, Sec. 20.3) (it has been assumed that
the laser is operating far above threshold; otherwise the
expression for D is more complicated)

There are basically two approaches to calculate the
average of a function f(g) depending on a stochastic vari-
able g: the Langevin and the Fokker-Planck methods. In
the Langevin approach one solves the equation of motion
for g in terms of integrals of the fluctuating force F, sub-
stitutes this back into f (g) and performs the average us-

ing Eqs. (5.3) and (5.4) together with the property that
F(t) is Cxaussian. This approach is difficult in many
cases, because one is unable to solve the Langevin equa-
tion, which is, at least in the problems of interest, non-
linear; see Eq. (5.2).

A more promising approach is the Fokker-Planck ap-
proach, in which one derives a partial differential equa-
tion for the conditional probability P(t, g ~

to, go) the-
probability to find at time t the value f, given that the
value at to was 1(0—and substitutes this into the familiar
expression for an average

(f(g))= I dgP(f)f(g) .

This method works fine because in most of the cases one
is able to solve the Fokker-Planck equation exactly, in
terms of infinite (matrix) continued fractions, a method
developed by Risken and co-workers (Risken, 1983).

The Fokker-Planck equation for this problem corre-
sponding to Eq. (5.2)

cosg(t), where the equation of motion for the relative
phase 1t between the two counterpropagating waves is Eq.
(5.2). Before we proceed to discuss the spectrum of,the
beat signal in the presence of noise, it is worthwhile to
consider the noise-free case (i.e., F=0) first.

(i) Noise free -case: F =0

As explained in Sec. III.C.1 in the locked zone the
phase settles down at steady state to a constant value P,
for which $=0, namely

a
g, =vr+arcsin-

b

[compare Eq. (3.13)]. The power spectrum of such a con-
stant beat signal is (Champeney, 1971)

00

aNF(co) = dt cos 1(,e'"'

a=2m 1 — — 5(a)) .
b

(5.7)

aNF —— g w„5(co n I ),—
n&0

where the weight w„of the nth harmonic is
2 2I~

l

fa f

—I
b

(5.8)

The laser gyro can sustain harmonics because of the non-
linear character of the backscattering. Note also that
there is no 5-function contribution at the frequency ~=0,
which would indicate a locking behavior.

As we will see later, the higher harmonics appearing in
the deterministic problem are also observed in the pres-
ence of noise, with the major difference that each com-
ponent is then broadened instead of being a 5 function. In
addition we will see the appearance of a 5-function contri-
bution at co=0, which we have already seen in the locked
zone.

(ii) Spectrum in the presence of quantum noise

The spectrum therefore consists of a 5 function centered
at a zero beat frequency and so expresses the existence of
a dead band. In the presence of noise the strength of this
6-function component will be diminished as we will see
later. In addition a broad background contribution not
present in Eq. (5.7) will appear.

Qutside the dead band, i.e., for
~

a
~

& b, the noise-free
spectrum consists of a fundamental at I =(a b)'r, —
i.e., the mean beat frequency of the gyro [Eq. (3.15)], and
higher harmonics at the frequencies n I:

c. Spectrum of the laser gyro's beat signal

In Sec. III [see Eq. (3.1)] it was shown that the beat sig-
nal is up to a nonessential constant factor given by

In order to avoid the complexities associated with the
definition of a spectrum for nonstationary processes
(Cresser, 1983)„we limit our discussions to situations
where the laser gyro is allowed to reach steady-state
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operating conditions before a measurement is performed.
In this case it is found that the beat signal cos1fj can be
represented as a stationary stochastic process, so that we
can make use of the Wiener-Khintchine theorem and de-
fine the spectrum as

a(ro)= f dre'"'(cosg(r)cosf(0)) . (5.9)

The correlation function (cosg(r)cosg(0) ) can be written
(Cresser et al. , 1982a) as

21T 21r

(cosg(r)cosy(0) ) = f df, f dP~cosQ, cosQg

x P (Pi r
I &z.0)P-(&2)

where P(g&, t
I lt2, 0) is a solution of the Fokker-Planck

equation (5.6) and P„denotes the steady-state solution of
Eq. (5.6).

The procedure to solve Eq. (5.6) and calculate the
correlation function (cosfcosg(0) ) in order to, find
a=a(ro) in terms of continued fractions is shown in
Cresser et al. (1982b), and we quote only the results.

The spectrum is found to be always separable into a
"coherent" 5-function contribution at, zero frequency,
representing the effects of locking and an "incoherent"
part of nonzero bandwidth,

1.0

0.9—

0.8—

0.7—

05-C$

Cl
c9

O.I—

03-

02-

0.1—

0
0 0.5 1.0 1.5

u(ro) =aD5(ro)+A,

where A represents the broad spectrum. It is instructive
to compare the strength of the 5-function contribution aD
to the overall integrated spectrum

FICx. 19. Area of the 5-function part of the spectrum relative to
its total area and as a function of the rotation rate a. b=1,
D =10 . [Taken from Cresser et al. (19821).]

rri ——f dro a(co)

Q=a+F(t) (5.10)

which is up to the constant factor a the phase equation
for the usual laser (Sargent, Scully, and Lamb, 1974).
Therefore, it is not surprising to find

as a function of rotation rate (see Fig. 19). For laser rota-
tion rates corresponding to the locked zone in the absence
of noise, the tendency for locking as measured by the
strength of the "coherent" contribution continues to dom-
inate, but this effect rapidly becomes negligibly small out-
side this zone. Moreover, for rotation rates near the
boundary of the locked region, the "incoherent" com-
ponent starts to give an important contribution. Note
that this happens already for rotation rates a & b, which
indicates that the noise tends to unlock the system.

Now we are going to discuss the behavior of the spec-
trum a=a(co) as the rotation rate decreases from some
large value to zero by pointing out analogies to the single
mode laser and the laser with injected signal (Chow et al. ,
1975).

For a »b, one can' essentially neglect the effects of
backscattering, i.e., set b =0. The two counterpropagat-
ing modes are therefore decoupled and the spectrum is
that of a single-mode laser. This is not surprising because
for b =0 Eq. (5.2) reduces to

a(co) =—
2 2 + 2 2, (5.11)1 D D

2 (ro a) +D —(to+a) +D

~D Ia I

—I Ia I

—I 2Ia
I

I
~el'

n = —00
n+0

'2/n
/

IaI —r
b

272

(ro nl ) +n d—(5.12)

i.e., Lorentzians with a width D around the frequencies
+a. The symmetry of the spectrum arises from the fact
that due to the heterodyning of the counter-rotating
waves the spectrum is given by cosf in contrast to the
usual laser, where one measures

( E+(r, t') E(r, t) ) -e'
As the rotation rate

I
a

I

is decreased, the backscattering
becomes more important. It brings a nonlinear element to
the system and the gyro can sustain higher harmonics, as
indicated in Figs. 20(e) and 20(f). An approximate analyt-
ical expression for the spectrum was found by Cresser
(1982) for

I
a

I
& b and for sufficiently weak noise
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where

D(a + —,'b )
d=

I 2

l

A~ = —E7l I +n

a D5(co)+2
b 2y ~2+ y2

2 + 4 ~ ~

~'+(2y)'

a(co) =e ~r 2nl —.—D/ Q

b

2
D+2
y

(5.13)

We notice that the harmonics predicted in the noise-free
case [Eq. (5.8)] are now broadened, while the 5-function
contribution at co=0, which we have already seen in the
locked zone, has persisted, though diminished. This indi-
cates that the locked region in the presence of noise is not
well defined anymore.

For
~

a
~

&b the system, rather than being completely
locked as would be the case in the absence of noise, still
presents a component of the spectrum centered at a
nonzero beat frequency as indicated in Figs. 20(c) and
20(d).

Within the locked zone
~

a
~

&b, in the absence of
noise, .the phase f is known to settle down to a steady-
state value g, . In the presence of noise the phase does not
diffuse very far from this value, provided the noise is
weak. Under these considerations it is possible to linear-
ize the Langevin equation (5.2). This situation is very
similar to that of a laser with an injected signal: the
phase of the laser is constrained to a very small range
about the injected phase.

The spectrum can be evaluated approximately and con-
sists of a 5 function centered at zero frequency, as in the
noise-free case, and an "incoherent" part of an infinite
sum of Lorentzians all centered at co =0,

(b2 a2)1/2 (5.14)

d. Mean beat frequency in the presence of noise

As mentioned before due to the quantum noise the dead
band of the ring laser gyro is no longer defined. This is

Thus the 5-function contribution in Eq. (5.13) represents
the tendency for locking to occur even in the presence of
noise. However, the strength of this term decreases with
increasing rotation rate; that is, the locking effect de-
creases as one moves away from the center of the locked
region.

%'e also note the presence of two Lorentzians centered
at co=0, the narrowest of which is absent for a =0 but
which eventually dominates the second broader Lorentzi-
an for increasing a. The exact numerical solution [see
Figs. 20(a) and 20(b)] clearly shows a broad background
to the 5 function which has a width 2y for a =0 but rap-
idly narrows to have a width of y for increasing a, as
predicted by Eq. (5.13). Finally we note that the parame-
ter y itself is a decreasing function of a [see Eq. (5.14)] so
that as a is increased further, there is a continued de-
crease in the width of the background spectrum.
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also confirmed by the mean beat frequency (Fig. 21) in
which it can clearly be seen that due to the noise unlock-
ing tends to occur at smaller values of a. However, far
away from the locking region (a »b) the curve coincides
with the deterministic curve. Therefore, in the laser gyro
with noise, there is no sharp boundary as one goes from

~

a
~

&b to
~

a
~

& b. Rather the system goes continuous-
ly from a completely locked region to an essentially un-
locked region. Where the transition exactly occurs de-
pends on the strength of the random fluctuations as
demonstrated for D =10 and 10 ' in Figs. 21(a) and
21(b), respectively. In conclusion we emphasize that the
quantum noise plays a useful role in unlocking the laser
gyro.

2. Gyro quantum limit

As has been mentioned before, the limit that the quan-
tum noise discussed above imposes on the performance of
ring laser gyros has recently become of practical interest.
In Hammons and Ashby (1981) and Dorschner et al.
(1980) operation at this quantum limit has been reported;
the device in Hammons and Ashby (1981)was a mechani-
cally dithered gyro, whereas the one in Dorschner et al.
(1980) was a DILAG.

It is well known that a laser initially prepared in a pure
state will evolve into a statistical mixture in time, the evo-
lution being characterized by the exponeritial decay of the
off-diagonal density matrix elements (Sargent, Scully, and
Lamb, 1974, Sec. 17.3). In this process, the phase uncer-
tairity grows with time. Since any actual measurement of
the phase must extend over a finite time this phase dif-
fusion process has to be considered.

The occurrence of a "randomization of the phase" is a
consequence of the existence of a nonzero intrinsic laser
linewidth (and vice versa) and the mechanism responsible

/=a +F(t) (5.15)

which may be integrated to give

g(t)=at+ f F(t')dt'. (5.16)

Now, using Eq. (5.3), we see that the average value of the
phase is still given by at, as it should,

(P(t))=at+ f (F(t'))dt'=at (5.17)

for it is spontaneous emission. This can be qualitatively
understood as follows. The process of stimulated emis-
sion alone induces all atoins to emit in exactly the same
mode, the one that is above threshold, and with a phase
that is driven by the macroscopic, field. Hence in the ab-
sence of any other mechanism that would cause photons
to be emitted in other cavity modes, it would lead to an
infinitely sharp spectrum, that is, a vanishing laser
linewidth. Spontaneous einission, on the other hand,
occurs randomly and with roughly the same probability in
every possible mode of the field, and in this way disrupts
the monochromaticity (and also the phase coherence) of
the lasing process. It is not surprising; therefore, that the
laser linewidth [D in Eq. (5.5)] turns out to be inversely
proportional to (n ) since this is the main factor in the ra-
tio of the spontaneous emission rate to the stimulated
emission rate.

The corinection between phase diffusion and laser
linewidth, and their relation to spontaneous emission is
worked out in detail in, for example, Sargent, Scully, and
Lamb (1974, Sec. 20.3).

We showed above how the coefficient D that appeared
in the correlation function (5.4) for the quantum noise
coincided with the laser linewidth [in the unlocked re-
gime: see Eq. (5.11)]. It is easy to see how the same coef-
ficient D is related to phase diffusion by starting from
Eq. (5.10) for the unlocked regime (a »b):
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but the fluctuations of g(t) about its average value are
given by (in rms value)

2 1/2
I([g(t)—at]')]'~'= f F(t')dt'

f dt' f dt"(F(t')F(t"))

f dt' f dt"2D5(t' t")—
L

=V'2Dt, (5.18)

where use has been made of Eq. (5.4). We may write Eq.
(5.18) as

(5.19)

where hP is the rms error in the phase difference between
counter-rotating waves and t is the measurement time.
An error in g translates into an error in the determination
of the input rotation angle, according to Eq. (3.2), where
the proportionality factor is the scale factor S of Eq.
(1.15). Hence we have, if 0 is the rotation angle,

1 AL ~~ 1 A,L ~2D
2m 4A 2m 4A

1/2

Vt1 A.L
2~ 4A Q(n )

(5.20)

using Eq. (5.5). Here the factor of (1/2') ensures that
both b,g and b,8 are expressed in radians.

The average number of photons can be related to the
power loss per mode by the formula

(5.21)

1/2
2D

(5.24)

same characteristics [see Eq. (4.2)], and we divide by the
scale factor in Eq. (5.20); second, as Eq. (4.2) shows, in a
DILACx one adds four frequencies, not just two; hence the
rms error of Eq. (5.19) gets multiplied by v 2. Hence the
overall factor (I/V 2).

The diffusion coefficient (5.22) was evaluated (Ham-
mons and Ashby, 1981) to be equal to 3X10 deg/Vh
for a He-Ne laser (two mode) with a power loss per mode
of 35 pW. This value should be compared with the
mechanical "dither noise" for the same laser, given in the
following section. In Dorschner et al. (1980), where no
external noise sources were apparent, the frequency noise
measured was in good agreement with the theoretical pre-
diction. Hence the present laser gyro technology may be
said to be at the point where purely quantum-mechanical
errors (in this case the one due to spontaneous emission,
as discussed above) become observable.

So far we have only talked about the error in a mea-
surement of the rotation angle, or equivalently the phase
difference. If we are interested in the rotation rate in-
stead, it is the uncertainty in the frequency difference that
we want to consider. Now Q=O/t (as long as 0 can be
considered to be constant); hence the uncertainty in the
rotation rate decreases with increasing observation time,
as 1/V t.

In terms of the laser frequency difference now, we may
think of an experiment in which we measure P repeatedly,
over a time interval b, t each time. From Eq. (5.18), the
rms error in the frequency difference co=//b, t will be,
for each individual measurement

Hence Eq. (5.20) can be written as
1/250 1 A,L co Ace

Vt 2n 4A Q Pi„,
(5.22)

If we perform X such measurements, the rms error will
be decreased by a factor V N (provided co is constant on
the average, that is, provided that we are always measur-
ing the same thing). The final error will be

1/2 - 1/2

Or, introducing a dimensionless parameter l (cf. Ham-
mons and Ashby, 1981) giving the fractional loss per
round trip (just as in Sec. IV.A) we can write PI„, lP;, ——
where P; is the power per mode inside the cavity, and

co/Q =Ic/L, giving

68 1 A,c /%co

vt 2~ 4A P,

The power in the cavity may in turn be related to the out-
put power via the transmission of the output mirror. A
factor may be added to Eq. (5.22) or Eq. (5.23) to account
for the fact that the lower level is not completely empty,
which has a small effect on the linewidth, Eq. (5.5). (See,
for example, Dorschner et al. , 1980; or Yariv, 1967.)

Equations (5.22) and (5.23) have been written as dif-
fusion coefficients, that is, b,8/v t has units of rad/V'see.
For the four-mode DILACx of Dorschner et al. (1980),
this diffusion coefficient is smaller by a factor of v2,
which can be understood as follows. First, the scale fac-
tor for a DILAG is twice that for a two-mode gyro of the

2D
iVAt

(5.25)

B. Noise in dithered systems

In Sec. III.C.2 the lock-in equation for a sinusoidally
dithered laser gyro was derived [Eq. (3.25)]:

jv =a+bJ
Q)D

sin+ . (5.26)

It was mentioned there that random mechanical noise
could cause the Bessel function J „ in Eq. (5.26) to aver-

where T is the total observation time. An analogous
reasoning applies to the determinatian of the rotation rate
in the laser gyro: for both magnitudes, the statistical un-
certainty decreases with longer observation times. The
opposite is the case, as we have seen, for the rotation
angle.
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age to zero over several dither periods, effectively giving
an average beat note free from lock-in effects,

(y) =a or (P) =at . (5.27)

However, the output 5 is now a stochastic variable. In
this section we want to calculate its dispersion. Our treat-
ment will essentially follow Hammons and Ashby (1981).
We want to point out that what follows can in no way be
considered mathematically rigorous. An exact treatment
of this problem (which involves multiplicative noise) does
not exist in the literature so far (to the best of our
knowledge). One can only hope that the treatment
presented here yields a useful order-of-magnitude esti-
mate.

We consider J „(a/co11) to be a random variable in
time with zero average. Since a/coa is large, we may
make use of the asymptotic form

r 1/2
2

cos + ,' r~ ,'—n. —. —(.5.28)
COD

(
—u-~ )-.

COD CO
(5.30)

where a stationary random process has been assumed (i.e.,
the correlation function depends only on the time differ-
ence t' —t"). The details of the functional form used in
Eq. (5.30) are not really important. To determine the pro-
portionality factor, note that, for t'=t",

J „ (t') J
COD

a dither period. Also, the phase of the gyro is particularly
sensitive to any small fluctuations at those "switching
times, " when the bias is momentarily smaller than the
backscattering term [see Eq. (3.20)]. All of this leads one
to postulate for the random variable J „(a/tpt1) a corre-
lation function of the form

Small fluctuations in a do not affect the square root in
Eq. (5.28), but they may cause the cosine to "wash out. "
We may take these fluctuations to be essentially uncorre-
lated over a time equal to half the dither period,

2COD 2 a, m 1 2COD
cos (t') ——

ma COD 4, 2 ~e

Hence we may write

(5.31)

1 2m

2 CO~
(5.29) —(-~ )=

COD

COD D 'TEA

This can be justified by assuming that random errors are
more-likely to occur at the times when the bias is reversed
(that is, the rotation changes sign) which happens twice in

I

Now from Eq. (5.26) we have

(5.32)

t
[y a(t —t, )]—'=b' f dt' f dt"J „

0 0
(t') J „(t")sing&(t') sing(t") .

COD COD
(5.33)

As we did in Sec. III.C.2, we want to look at time intervals t —to which are large compared to a dither cycle but small
enough that p does not vary appreciably. Then we can take sing outside the double integral. The average value of Eq.
(5.33) then [using Eq. (5.32)] may be written as

([y a(t —tp)—] ) =b sin q& f dt f dt"e

COD —(t —t0) Ir,=b sin y [2r, (t —tp) —2&, (1—e ')] (5.34)

Again, since we are assuming t tp ))1 =77/coD, we m—ay
approximate Eq. (5.34) by

we see that it grows as in a diffusion (random walk) pro-
cess:

([y a(t —tp)] )=b sin~y —2r, (t —tp)
(bP) = sin q&ht .2b

(5.37)
COD 2m=b sin y — (t tp)—
ma COD

2b
sin y(t —tp} . (5.35)

When considering the phase diffusion over a time span b t
larger than several periods of the frequency a (that is,
b, t &&2n/a ), we may replace sin qr by its average value —,'.
We therefore obtain

Hence if we define the uncertainty in the gyro phase

(5.36)
&b, t .b (5.38)
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Note that in Eq. (5.38) the units for b and a are radians
per second, those for b,t are seconds, and those for b.P ra-
dians. The equivalent uncertainty in the angle rotated by
the gyro can be obtained by dividing Eq. (5.38) by the
scale factor S, where, as usual,

4A rad/sec
LA, rad/sec

That is, if 0 is the rotation angle in radians
' 1/2

b ht60=-
S a

(5.39)

(5.40)

In commonly used units, Eq. (5.32) reads (in radians)
I /2b' ht

S' 2+a' (5.41)

where b' and a' are expressed in Hz (that is, b'=b/2n, .
a' =u/2m ) and S'=4A /I- A, (counts/sec)/(radians/sec).
[Compare Eq. (3.2).] This coincides with Hammons and
Ashby (1981). Still another possible forin is (in degrees)

(5.42)

where 0' is in degrees, b" is the equivalent lock-in rota-
tion rate (i.e., b/S) expressed in degrees per second, a" is
the equivalent rotation rate (a/S) in deg/h, S" is the
scale factor in units of (counts/sec)/(arcsec/sec), and At is
still in seconds.

As was mentioned before, current mechanically dith-
ered laser gyros may have extremely low random drift er-
rors; the one reported in Hammons and Ashby (1981)had
a "diffusion coefficient" 68/v'At of the order of
5X10 deg/~h, the same order of magnitude of the
random drift due to quantum noise (i.e., spontaneous
emission; see the preceding section). Advances in mirror
technology are greatly responsible for this [note Eq. (5.40)
is proportional to the backscattering coefficient].

Finally, let us emphasize again that Eq. (5.40) should
not be taken too literally, but rather as an order-of-
magnitude estimate, on account on the number of as-
sumptions that enter its derivation.

the optical power (optical intensity times area of the
detector) of each of the two counter-rotating beams as
they reach the detector; and P& is the optical power of
the scattered (incoherent) light. In Lin and Giallorenzi
(1979), Pz is given by a sum of five different scattering
contributions: Rayleigh and Brillouin backward and for-
ward scattering and scattering caused by core-cladding in-
terface corrugation. It is also shown there that the effect
of Pz cannot in general be neglected for long fibers (a few
kilometers long), and it considerably degrades the signal-
to-noise (S/N) ratio at short wavelength (in particular,
A, =0.633 pm). Mode stripping was suggested as a way to

- prevent this degradation and obtain in general large
values of S/N.

The shot-noise limited regime is obtained for large sig-
nal intensities, so that shot noise becomes a dominant ef-
fect over other sources of detector noise, such as dark
current, thermal noise, and background noise induced by
external light. In this respect, it should be noted that the
scattering term P~ clearly increases with input power in
the same way as I'; does.

Equation (5.43) shows the S/N ratio to improve with
higher input power. The limitation to higher and higher
power levels comes from the possibility of giving rise to
nonlinear effects in the fiber, in particular to stimulated
Raman and Brillouin scattering. Of these two, the second
is the dominant. At some critical value of the laser out-
put power, the backscattered stimulated Stokes wave in
the Brillouin process would acquire a power level as high
as the transmitted power of the beam coming from the
other end of the fiber. This is discussed in I.in and Gial-
lorenzi (1979), where it is shown in a numerical example
that the (shot-noise limited) sensitivity at the critical
power is still appreciably larger than for low powers.

In the absence of scattering noise, the laser power out-
put would still be limited by the possibility of causing
damage to the fiber at very high powers.

Kith the lock-in detection technique proposed by Ezek-
iel and co-workers, both for ring interferometers (Davis
and Ezekiel, 1978) and passive rotation sensors (Ezekiel
et al. , 1978), the center of the resonance line can 'be locat-
ed with an uncertainty given by (Davis and Ezekiel, 1978)

C. Passive systems

A very detailed and complete discussion of the dif-
ferent kinds of noise in passive optical rotation systems,
especially in optical fiber interferometers, has been given
in Lin and Giallorenzi (1979). That analysis includes the
effect of scattering in the fiber, as well as high optical
power results. For a detector of bandwidth B they obtain
in the shot-noise limited regime

(5.43)
i~~ 4»&0 P;+P~

Here i~ and i~ are the photocurrents associated with
signal and shot noise, respectively; g is the quantum effi-
ciency of the detector; hv is the energy per-photon; I'; is

(5.44)

where ~~ Is the "amphtude- signal-to-noise [the square
root of Eq. (5.43)], and I is the full width of the reso-
nance at half power. For the passive cavity resonator, I
is the cavity bandwidth. For the fiber ring interferometer,
the "resonance line" is in fact an interference fringe; its
width in radians of phase difference is therefore equal to
&, giving

(5.45)

Neglecting scattering contributions, the minimum (shot-
noise limited) uncertainty in the rotation rate is reported
in Davis and Ezekiel (1978) to be, for a fiber interferome-
ter
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CA,O CA,p5Q= 5y=
8~NA 8~nNA (N h«)t~&

(5.46)

Vl. RING LASER APPLICATIONS

In this final section we discuss some of the realized and
as yet unrealized applications of the ring laser gyroscope.
These applications can be divided into two general classes.
The first of these is obvious and the purpose for which
ring laser gyros were developed in the first place. That is,
for use as rotation sensing devices in aircraft and more
generally as a replacement for mechanical gyroscopes
wherever they are now used. Some of the necessary speci-
fications and particular problems associated with the use
of ring laser gyroscopes in this sort of application as well
as a discussion of the fabrication of devices currently used
in commercial aircraft is given in the next part of this
section.

The second class of application of the ring laser is an
offshoot of the quest for better and better rotation rate
sensitivities. As this quest continues various obstacles to
low rotation-rate sensing like those discussed throughout
the body of this paper (such as gas flow, lock-in effect,
backscattering in fibers, etc.) have been encountered. For
the first class of applications these effects are, of course,
undesirable. The whole problem can be looked at from
the other way around, however. In this new perspective

Here n is the index of refraction of the fiber, A the area it
encloses, N the number of turns, N~h the number of pho-
tons reaching the detector per unit time (related to P; by
P; =hvN~h), and r the detector integration time (related
to Bo by Bo——I/2r). As an example, they use the values
A = 100 cm, gp ——0.6328 pm, X=1000, n = 1.5,
N~h=3)&10' sec ' (corresponding to 1 mW at the given
Ao), i'd=0. 3, and r=1 sec; the uncertainty 5Q is then
equal to 5X10 rad/sec, or 0.01 deg/h. This is con-
sistent with the sensitivity calculated in Lin and Gial-
lorenzi (1979) for a similar case; .it was pointed out there,
however, that sensitivities as high as 7 X 10 deg/h could
be achieved (with longer fibers and larger powers, using
the l. l-pm line, for which attenuation is much smaller).

For the passive cavity resonator, the sensitivity report-
ed by Ezekiel et al. (1978) based on Eq. (5.44) but with an
extra factor of V2 to account for the fact that two in-
dependently determined frequencies are subtracted, reads

Ml= (5.47)4~ (N&hrIT)

This can be made very small by decreasing the cavity
bandwidth I, and increasing the power. For geophysical
applications, large integration times (in the order of, say,
one hour) as well as very large cavities may be considered.
To quote from Ezekiel et al. (1978) "with a 10 m by 10 m
cavity and a 4-watt stabilized argon laser, it should in
principle be possible to reach a sensitivity of 10 'OQE

(QE =earth's rotation rate, 15 deg/hr) in an integration
time of 1000 seconds. "

the ring laser gyro is viewed as a device which is capable
of measuring these effects heretofore considered only as
problems. This perspective (not an unusual scientific
viewpoint, of course) is beneficial in that a better under-
standing of the nonreciprocal effects can help lead to
greater sensitivity and also these effects may be interest-
ing (even useful in other spheres) in and of themselves.
An exciting example of this sort of use for the ring laser
gyro is given in the last part of this section in which an
optical test of metric theories of gravitation is discussed.

A. Navigation

The principal proposed use for the ring laser has been,
since the early 1960s, that of a navigational gyro. Specifi-
cally the ring laser has been suggested and in some cases
implemented for use in inertial guidance of aircraft, ships,
and missiles, attitude heading and flight control, and gun-
fire pointing. In addition the ring laser could be used in
any situation in which mechanical gyros are now used
such as oil field mapping, the pointing of a drill bit, etc.
The different navigational applications have a wide range
of required gyro sensitivities and stabilities which are tab-
ulated in Table I. In addition, conventional gyro applica-
tions require that the gyro operate in a wide range of en-
countered environmental conditions. The environment,
for example, may range from that of the 'cockpit of a
commercial aircraft to the severe heat and sulfur atmo-
sphere (hell fire and brimstone) of an oil well bit to the
cold vacuum of deep space encountered by spacecraft to
the many thousand g acceleration associated with other
kinds of devices. Obviously, the application dictates a
considerable influence on the size, shape, design, materi-
als, and packaging of the instrument.

Contrary to tradition, the first major implementation of
this new gyro technology has come in the field of com-
mercial passenger carrying aircraft. Both Honeywell and
Litton Industries have contracts with Boeing and Airbus
Industries, respectively, to supply systems using ring laser
gyroscopes for all the functions of navigation of the Boe-
ing 757 and 767 and the Airbus A310, now in production.
These systems are required to perform'in the traditional
one nautical mile per hour range. This requires gyros
with bias stabilities and repeatabilities in the neighbor-
hood of 0.01 deg/h and a quantum phase diffusion coeffi-
cient [Eq. (5.22)) of approximately 3X10 deg/h for
100-sec data sample time. These requirements eliminate
the possibility of using fiber ring gyros of the type dis-
cussed in Sec. II of this paper and, indeed, for nearly all
current applications the active ring laser gyro is the only
possible choice.

The following is a description of some of the essential
design features of the class of ring laser gyros being pro-
duced. Figure 22 highlights some of these features. First,
the ring laser body is constructed from one of the ul-

tralow thermal expansion glasses such as CerVit or
Zerodur. These materials are chosen because they are
reasonably transparent, good dielectrics, and provide a
stable scale factor, i.e., a stable cavity length over the
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FIG. 22. Schematic of a prototype active ring laser gyro.

range of temperatures of interest. These materials have
thermal expansion coefficients on the order of 10 /'C.
The piezo attachments to the backs of two of the mirrors
are adequate to compensate for the residual thermal ex-
pansion of the blocks. They can maintain a constant cav-
ity perimeter to a few microinches. This is done by an ac-
tive servo which uses the laser light intensity as the indi-
cator of change in laser cavity length. That is, since the
laser gain has a'Doppler profile, the laser intensity follows
a change in optical frequency which in turn is determined
by the cavity length. Thus servoing the laser intensity to
a maximum maintains a near constant optical fre-
quency —which is to say a near constant scale factor. Of
course, it is also necessary to maintain a single 1ongitudi-
nal mode during operation of the gyro in order to main-
tain a constant scale factor.

As mentioned above CerVit and Zerodur are "good"
dielectrics. %'hat is meant by a "good" dielectric in this
context is explained below. A dielectric is needed to
maintain the gas discharge. Some dielectrics have the
problem that they disassociate in the presence of the gas
plasma discharge and condense on the cavity mirrors.
This results in a severe degradation of the optical quality
of the resonant cavity. CerVit and Zerodur are good
dielectrics in that they avoid this complication.

The aperture may be constructed in the glass body or
formed on one of the mirrors. Whichever way it is con-
structed, the aperture should match the beam shape at
that point in the cavity. In ring cavities with curved mir-
rors the beam shape is elliptical. The dimensions of the
aperture for such a beam shape can be roughly deter-
mined from the beam spot calculation (Rigrod, 1965) and
a calculation of the desired diffraction loss (Boyd and
Gordon, 1972; Fox and Li, 1972). In practice suppression
of the first off-axis modes, i.e., the 01 and 10 modes, such
that the finesse of these modes is some ten times less than
the finesse of the axial, 00 mode, is desired. The dimen-
sion of the elliptical aperture is determined empirically to
accomplish this. It is alleged to be important that the po-
sition of the aperture be at the beam waist and equidistant
from the two gain sections of the cavity (read, for exam-
ple, Burnashev and Filatov, 1973). The aperture size is

typically two or three times the beam waist size.
As emphasized in earlier sections, elimination of nonre-

ciprocal frequency shifts caused by factors other than ro-
tation is central to increasing the sensitivity and reliability
of the ring laser gyro. Elimination of a large class of non-
reciprocal frequency shifts is accomplished or simplified
by constructing the gyro in a symmetric manner. This
means ensuring that the gyro is designed so that the two
counterpropagating beams encounter the same environ-
mental frequency shifts which then cancel in the output.
The light beams traversing a section of the gain medium
in which there is a gas flow experience a change in veloci-
ty due to the Fresnel-Fizeau effect which results in nonde-
generate resonant frequencies for the counterpropagating
beams. With the symmetric arrangement of the two equal
anodes as shown in Fig. 22, the counterpropagating beams
encounter the same gas-flow-induced frequency shift
(generated by the plasma current, see Sec. III.B) as long as
the current in each gain length is the same. The beat note
error caused by a difference in the current is discussed by
Aronowitz and Lim (1978). Typical numbers associated
with current unbalance in a gyro of the type considered
here are a few degrees per hour per milliampere. Another
source of gas flow in these instruments is caused by local
heating. Again, the symmetric placement of electronic
heat sources helps to minimize these effects.

The gain media of popular choice is helium and neon.
This is a mixture of He, Ne, and Ne. The dual iso-
tope neon is used to minimize the effects of Bennett hole
burning. The undesirability of using a single isotope is
discussed by both Aronowitz (1972) and Hutchings et al.
(1966). In single isotope helium-neon gas the mode com-
petition is so severe that simultaneous stable lasing for
both directions around the ring is not possible. Minimum
mode competition is obtained by operating the laser at a
frequency halfway between the Ne and the Ne tran-
sitions. The 6328-A (3Sq~2P4) transition in neon is a
popular choice bemuse the holes that are burned in the
Doppler-broadened gain curve for this transition, using
the dual isotope mixture, do not significantly overlap with
each other. This results in a minimum of "pushing" and
"pulling" effects on the gyro bias error, For a discussion
of Bennett holes and a related analytical technique called
the Yntema-Grant diagram, see Chow et al. (1980). The
typical ratio of helium to neon is around ten to one at a
total pressure of somewhere between 3 and 8 Torr. The
precise ratios and pressure are determined by the gain re-
quired and the plasma current oscillation conditions for
the particular gyro design.

Equation (5.22) is an expression for the quantum noise
phase diffusion coefficient. From this equation it can be
seen that the quantum noise is directly proportional to the
ratio of the perimeter L to the area A enclosed by the
cavity and is inversely proportional to the cavity Q and
the square root of the laser power inside the cavity. So
the quantum noise is reduced by using a square rather
than a triangle since a square has a smaller ratio of L to
A. The laser power (gain) is a function of plasma current,
plasma length, bore diameter, and the above-mentioned
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gas mixtures. The cavity Q is the most important vari-
able in the expression for the quantum noise phase dif-
fusion coefficient and has its most important dependence
on the mirror quality. The mirror quality is. important
enough to warrant a more extended discussion.

As a matter of fact the mirror quality is undoubtedly
the key to being competitive in the commercial ring laser
gyro technology. VA'th the new ion beam deposition-
coating technology and the current state-of-the-art sub-
strate smoothness, mirrors with total losses of less than
one hundred parts per million are now available. At this
stage of mirror technology the factor which seems to lim-
it the cavity Q is that the plasma ultraviolet light dam-
ages multilayer dielectric mirrors. Exposure to uv radia-
tion from the He-Ne plasma causes an increase in the
amount of light absorbed by the exposed mirror. The
mirrors least damaged show an increase in absorption of
20 parts per million while for a typical mirror coating
produced via the conventional electron beam technology
this increasing is about 200 ppm. A second mirror
characteristic, which is very important, is the amount of
light which it scatters. The light scatter from a mirror af-
fects the cavity Q in that scattered light represents a loss.
Perhaps the more detrimental effect of scattered light is
that backscattered light is the agent chiefly responsible
for the lock-in phenomenon. As more light is backscat-
tered from the cavity mirrors the rotation rate lock-in
threshold rises. The scatter quality of current state-of-
the-art mirrors is such that the "backscattering coeffi-
cient" in Eq. (3.12) is typically around a few "earth rates"
(15 deg/h) and the total scatter loss less than 1 ppm. This
corresponds to a substrate smoothness of about 1 A rms
roughness and a coating virtually free of microcrystalling
growth. The recent progress in the technology behind
substrate smoothness and thin film coatings make the
ring laser a viable candidate for high accuracy gyro appli-
cations.

The device in the center of the prototype gyro depicted
by Fig. 22 is the dither spring, which as the name implies,
is used to overcome the frequency locking problem. This
spring is connected to the glass gyro body and the vehicle
(in the navigational application) frame. The glass is
mechanically oscillated/dithered about its sensitive axis
relative to the vehicle frame. It is just this sort of setup,
when the dither is sinusoidal, that is described by Eq.
(3.20). Typical values of the peak dither angular velocity
amplitude and frequency are about 150 deg/sec and 300
Hz. These values are determined by the mechanical reso-
nance of the driven spring and gyro mass combination.

The gyro output, as given by Eq. (3.20), is a modulated
signal and must be demodulated. There are two different
techniques used to accomplish this. One involves generat-
ing a signal that represents the motion and position of the
glass body relative to the vehicle frame. The demodula-
tion is then achieved using this signal in the electronics.
The other technique is referred to as ". optical demodula-
tion" (Killpatrick, 1968). In this case the combining op-
tics prism is connected to the vehicle frame in a particular
fashion and not to the back of the mirror as shown in Fig.

22. In this way the output light from the ring laser is
Doppler shifted in such a way that the modulation term
in Eq. (3.20) does not show.

A final consideration in the construction of a commer-
cial ring laser gyro is the preparation of the electrodes
such that the He-Ne laser will have a long stable life.
Typically, the anode is made of copper and the cathode is
made of aluminum and both are sealed to the glass body
with indium. Preparation of the electron emitter, the
cathode, is critical in the production of a long-lived gyro
(while preparation of the anode is not). This is because if
the cathode size, shape, and oxide layer are not right for
the charge emission density, it will sputter. The sputter
action of the cathode metal buries the gas atoms in the
cathode thus depleting the laser gain media. The tech-
niques for preparing the cathode emitting surface, and
choosing the size, geometry, and material of the cathode
to ensure long life are part of the art of ring laser gyro
construction and so are not published and are kept as
company propriety for competitive reasons.

This concludes the discussion of the fabrication of, and
requirements associated with, commercial ring laser gyro-
scopes. It should be emphasized that for most applica-
tions the ring laser meets all requirements and in the long

;run should be cost competitive with conventional
mechanical gyros. The next section deals with the other
class of applications in which the ring laser gyro is used
as a probe of gravitation.

B. Optical test of metric gravitation theories

introduction

To perform experiments in general relativity is ex-
tremely difficult. This is due to the "small" gravitational
coupling constant

G =6.67&&10 cm /gsec

The situation is best summarized by Misner, Thorne, and
Wheeler (1973) in their book Grauitation: "For the first
half century of its life, general relativity was a theorist s
paradise but an experimentalist's hell. "

Einstein's theory has been tested by only a few (three)
crucial tests of general relativity (Ohanian, 1976)—
redshift, deflection of starlight by the sun, and perihelion
shift of the mercury. As a result of recent laser experi-
ments we now have a "fourth" test—the Nordtvedt
effect—using laser lunar ranging experiments (Nordtvedt,
1982). Compare this with the situation in quantum
mechanics where we have hundreds of experiments prov-
ing its validity. Furthermore there exist' alternative
theories of relativity; for example, the Brans-Dicke-
Jordan theory, Ni's theory and others, which are also vi-
able theories (see, for example, Misner et a/. , 1973). Thus
we are motivated to look for new possible tests of these
theories. Now it might seem to be that to decide which
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theory is the correct one we would have to do the calcula-
tion for a given experiment using all possible theories.
But thanks to Will and Nordtvedt (1972a,1972b) this is
not necessary. They developed a formalism —the so-
called parametrized post Newtonian (PPN) formalism in
which it is possible to do the calculation for any gravity
experiment only once for all theories. To achieve this,
they introduced a set of parameters —the so-called PPN
parameters. Each set of parameters corresponds to a dif-
ferent metric theory of gravity, for example, one set gives
Einstein's theory and another set gives Brans-Dicke-
Jordan's theory. The values of certain PPN parameters
are shown in Table II (Will, 1974). The goal of experi-
mentalists is now to determine these PPN parameters as
accurately as possible or to design new experiments in
which certain parameters can be tested.

But as already mentioned above, experiments in this
field are extremely difficult to make. However, thanks to
advances in modern optics, especially the development of
the laser, new tests of metric gravity are being and will
continue to be carried out (see, for example, Barut et al. ,
1982). In the next section we are going to discuss one of
these "laser probes of the macrocosmos" using a ring
laser gyroscope (Scully et al. , 1980,1981), which will al-
low one to put tight constraints on certain PPN parame-
ters.

2. Generalized Sagnac effect

In Sec. I.B we derived the Sagnac frequency shift, in a
ring laser gyroscope for a given metric g„,. Now we are
going to apply these results to analyze the influence of the
gravitational field of the rotating earth on a ring laser in-
terferometer in an earthbound laboratory.

Consider a ring laser interferometer which is rotating at
a rate Q, has a colatitude 00 and a distance r =rsinOo
all relative to the earth's axis (r is the radius of the
earth). Finally the ring laser is allowed to spin about its
own axis at a rate Qo', see Fig. 23. For the sake of simpli-
city we assume the rotation axis of Qo to be parallel to the
earth's axis. The case of an arbitrary orientation of the
axis was treated by Scully et al. (1980,1981).

Transforming the metric for the rotating earth in the
PPN formalism into the double rotating frame of the

Sagnac
Ring Laser

FIG. 23. Sagnac interferometer used to test metric theories of
gravity.

+ 8 (72L]+62)T ], (6.1)

where the terms T~, Tz, and T~ associated with the so-

called preferred frame effect, space curvature effect, and
Lense-Thirring effect, respectively, are as follows:

r,T = ——
~

W
~

8(t, ) sin80,
8 r~
rs 2Q sin go,r (6 2)

1 rs
Tq —— Q~(1 —3 cos 80),10 r

and r, =26M/c is the Schwarzschild radius and M
the total mass of the earth. The parameters y, b~, h2,
and cx~ are the PPN parameters, whose values are summa-
rized in Table II. Their physical meaning will become
clear when the contributions T~, T&, T~ are discussed.

~

W
~

is the velocity of the earth relative to fixed stars,
i.e., relative to the frame in which the cosmic 3-K back-
ground radiation is isotropic (Smoot et al. , 1977; Smoot
and Lubin, 1979) and is of magnitude

gyroscope and substituting into Eq. (1.27) we find after
some lengthy algebra (Scully et al. , 1981)

bee= [Q,+Q, +a, T + —,(y+ l)T4A I

Para Einstein
Brans-Dicke-

Jordan

TABLE II. PPN Parameters in various theories.

~

W
~

=360+60 km/sec .

Further terms appearing above include

8(t, )= cos5cosa,

5=6 +10,
a =Q~ [t, —(11+0.6) h] .

(6.3)

a, =7m, +b,—4{y+1)

10+7m

14+ 7'
With optimized latitude and tilt angles the contribution to
Ace due to the preferred frame term is 1.2&10 a&Q.
The y-dependent geodetic rotation rate is (1.4
X 10 ) ~ (y + 1)Q~ while that of Lense-Thirring is
(5.6X10 ")—,

' (7b., +h, )Q~.
We now turn to a discussion of each of the terms of Eq.
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(6.1). The first two terms are purely classical and obvi-
ously result from the double rotation of our ring laser, one
rotation with the rate Qo about its own axis and one with
the earth rotation rate Q because the gyroscope is fixed
on the earth.

The terms T, T&, and T~ are purely general relativis-

tic effects. To discuss the contributions T& and T~ we
use an analogy between Maxwell's equations and
Einstein's field equations in the weak field limit.

The first attempt to explain gravity was made by Heav-
iside in 1893 (1971). He mentioned that gravitation may
obey the same equations as electrodynamics. Therefore,
one might expect "electric" and "magnetic" types of grav-
itational fields. Recently, it was shown by Forward
(1961) and Braginsky et al. (1977) that indeed such equa-
tions follow from Einstein's field equations in the weak
field limit. In this analogy the Newtonian field G= —Vu
where u is the Newtonian potential, corresponds to the
electric field E and is therefore sometimes called the
"gravitoelectric" field. The gravitational potential h
moreover is analogous to the vector potential A in electro-
dynamics. Therefore, VXh is analogous to the magnetic
field B, and might be called the "gravitomagnetic" field.
From Eq. (1.27) in Sec. I.B we recognize that the general-
ized Sagnac shift is proportional to the "gravitomagnetic"
field V X h, and so a magnetic field will produce a Sagnac
type of frequency shift. Keeping these ideas in mind it is
very easy to understand the T& and T~ contributions.
We start by explaining the so-called geodetic precession
Tf 0

It is well known that electric and magnetic fields have
no independent existence. A purely electric or magnetic
field in one coordinate system will appear as a mixture of
electric and magnetic fields in another moving coordinate
frame. An observer moving through a purely electric
field also sees a magnetic field which is perpendicular to
the velocity v (Jackson, 1965) and is given by

B-v&(E . (6.4)

Vxh- 1
Q sin80e )&e, . (6.5)

Because the axis is parallel to the z axis, e, =e„we get

Q~
(Vxh) e, — sin 8, . (6.6)

This is up to a constant (which can be determined from
the exact analogy including all constants) the Tr contri-
bution. We note that this effect results simply from the
presence of matter —the mass of the earth —namely its

Now let us apply this to the gyroscope problem. The
gyroscope is passing through the radial symmetric gravi-
tational field of the earth, Cx-(r/r ) at a radius r~ with
a velocity v=rQ sinOoe~, where e+ is a unit vector in '

the y direction which is due to the fact that the gyroscope
is fixed on the rotating earth. According to the above dis-
cussion this must result in a "gravitomagnetic" field

Newtonian potential. But as Wheeler (1983) phrased it:
"Matter tells space how to curve, " and the y parameter
expresses the amount of curvature of space by a mass.
Similar "curved space" physics leads to the bending of
starlight and retardation of radio signals passing by the
sun.

The extra rotation term T~ is also very easy to under-
stand in terms of the electromagnetic gravitation analogy.
It is well known in electrodynamics that a rotating,
homogeneously charged sphere of radius a produces not
only an electric field E but also a magnetic field B, which
outside of the sphere is given by

3r(Q.r) —Q(r) 2

r5
(6.7)

where r is the point of observation and Q the rotation
rate. Therefore, keeping in mind this electrodynamics
gravitation analogy, an earthbound gyroscope (a =r~,
r =r ~ e„) will notice a "gravitomagnetic" field

3e„(Q.e, ) —QVxh- (6.8)

which will give a

(Vxh) e, —Q~ 2(1—3cos 80) (6.9)

contribution in the Sagnac frequency shift. Note that this
effect is purely due to the rotation of the earth and does
not depend on the motion of the gyroscope. The gyro-
scope is therefore somehow "dragged" by the motion of
other masses (here the rotation of the earth). For this
reason the PPN parameters 6& and 62 are called frame-
dragging parameters and are a measure of to what extent
inertial frames are dragged by the motion of masses. This
effect is sometiines also called the Lense-Thirring effect
(Lense and Thirring, 1918).

The T contribution to the frequency shift arises from

the presence or absence of a preferred (rest) frame, which
might be thought to be that implied by the 3-K blackbody
background. In Einstein's theory of relativity all frames
of reference are equivalent and therefore this effect is
zero. However, in the Ni cosmology the universe is at
rest and the effect is presented not to be zero. The PPN
parameter aq therefore measures the extent to which pre-
ferred frame effects are important in a given theory. Be-
cause Einstein predicts such an effect to be zero there
exists no electrodynamical analog to this effect and the
form of T~ cannot be derived from simple heuristical ar-

guments.
As we see from Eq. (6.1) the most proinising effect for

tests would be the preferred frame effect, because of its
size. The present limit for ai is ~ai

~

&0.02. The pro-
posed experiment should be able to place tight new con-
straints on the magnitude of a&. For the details of the ex-
periment we refer to the work of Scully et al.
(1980,1981).
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APPENDIX: DERIVATION OF WAVE EQUATION

V D=O, VXE=- BB
Bt

(1.17)

V.B=O, VXH= 1 BD
c2 Bt

Maxwell charge and current-free equations in the
metric of Eq. (1.16) are given (Schleich and Scully, 1984)
by

where we have again assumed that the gravitational fields
vary slowly on an optical wavelength and have made use
of Eq. (1.17). In order to derive an expression for VXB
we use the material equation, Eq. (1.20), to find

VXB=VxH+ —Vx(Exh)1

C

+ —(h V)E+h(V.E)
1 BD 1

c

Xh+ —(h V)E+O(h ), (A3)
1 BE 1 B9

c' Bt c Bt C

where we have used Eq. (1.18) together with (1.19) and
the fact that V E=O(h). Substituting the results (A2)
and (A3) back into (Al) we get, after minor algebra,

together with the material equations

D=E—c(Bxh)

and

(1.19)

1 a'E
b,E 2(h. V)

BE
c Bt
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(1.21)

which yields

V.E=—h +c(Vxh) B+O(h ),1 BE 2

c Bt

where we have neglected terms O(h ). Assuming that
the gravitational fields do not vary much over an optical
wavelength we can neglect the second term on the right-
hand side against the first one. Therefore,

1 BEV'.E=—h-
Bt

Now we are able to write using standard vector identities

V(V E)=—V h.1 l BE
c Bt

-=—(h V) +hX (VxE)1 BE B

c . Bt Bt

1
(h V)c)E h

Bt2
(A2)

B=H+ —(Exh) .
1

C

%'e start deriving a wave equation for E as in ordinary
electrodynamics by taking VX(VXE) from Eq. (1.17)
which yields

Vx(VxE)=V(V E)—&E= — (VxB) .B

Bt

Now we have to find expressions for V E and V XB.
From the material equation (1.19) we get, by using

standard vector identities,

0=V D=V E—ch (VxB)+cB.(Vxh) .

From Eqs. (1.18) together with Eqs. (1.19) and (1.20) fol-
lows

VXB= ~ +O(h)1 BE
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