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The present status of elastic pp and pp scattering in the high-energy domain is reviewed, with emphasis on
the forward and near-forward regions. The experimental techniques for measuring at()t p, ahd B are dis-
cussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere.
The impact-parameter representation is exploited to give simple didactic demonstrations of important
rigorous theorems based on analyticity, and to illuminate the sigriificance of the slope parameter B and the
curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of "asymp-
topia" is given. A critique of dispersion relations is presented. Simple analytic functions are used to fit
simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp, obtained
from experimental data for o.«, and p. It is found that a good fit can be obtained using only five parame-
ters (with a cross section rising as ln~s), over the energy range 5 & +s & 62 GeV. The possibilities that (a)
the cr'oss section rises only as lns, (b) the cross section rises only locally as ln s, and eventually goes to a
constant value, and (c) the cross-section difference between pp and pp does not vanish as s~ oo are exam-
ined critically, The nuclear slope parameters B are also fitted in a model-independent fashion. Examina-
tion of the fits reveals a new regularity of the pp and the pp systems. Predictions of all of the elastic
scattering parameters are made at ultrahigh energies, and are compared to the available SPS collider mea-
surements.
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I. INTRODUCTION
I

The advent of pp collider physics at the CERN ISR
and SPS during the last three years has extended the max-
imum pp center-of-mass energy from Vs -20 GeV to
vs =540 GeV. Experimental groups at the SPS have
measured o.„„the total cross section, and B, the nuclear
slope parameter, at the highest available energy v s =540
GeV. In the energy range 30 & v s & 62 GeV, experimen-
tal groups at the ISR have made precision measurements
of these quantities for both pp and pp, with the same ap-
paratus used for comparison of pp and pp. Moreover,
new ISR measurements of elastic scattering in the
Coulomb interference region have made possible accurate
determinations of p, the ratio of the real to the imp, ginary
portion of the forward nuclear scattering amplitude, for
both pp and pp. The latter data, taken together with ear-
lier results, enable us to make a critical comparison of pp
and pp elastic scattering parameters in the high-energy
domain from v's =5 GeV to Vs =62 GeV, and allow
theoretical extrapolations to higher energies. As we shall
show, the agreement between these predictions and the
new SPS results at v's =540 GeV gives some confidence
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in further extrapolation to the energy regions of v's =2
TeV (the Tevatron collider, scheduled for 1986) and
Ms =40 TeV (the proposed superconducting super-
collider —SSC).

We shall deal exclusively with pp and pp collisions, re-
viewing the relevant experimental results for elastic
scattering and total cross-section measurements for
center-of-mass energies greater than 5 GeV, with em-
phasis on the new data for V's greater than 30 GeV. In
particular we shall concern ourselves with the analysis
of elastic scattering in the low-

~

t
~

region, —t &0.02
(GeV/c), where t is the four-inomentum transfer
squared. A brief description will recall to the reader the
experimental techniques and problems associated with
these high-energy measurements.

The principles of analyticity and unitarity are truly
fundamental to our understanding of particle physics. A
requirement of analyticity is that the forward scattering
amplitudes for pp and pp elastic nuclear scattering come
from the same analytic function. Further, unitarity pro-
vides a relation —the optica1 theorem —between the total
cross section and the imaginary portion of the forward
scattering amplitude. The existence of the new pp and pp
data now makes possible a critical confrontation of the
consequences of analyticity with accurate experimental
data over a wide energy range.

We shall review the consequences of analyticity for for-
ward elastic scattering amplitudes. The presentation will
be didactic in nature, and will assume only a general
understanding of elementary scattering theory from non-
relativistic quantum mechanics. The appropriate relativ-
istic generalizations will be made. Rigorous theorems fol-
lowing from analyticity, including the Froissart bound,
generalizations of the Pomeranchuk theorem for rising
cross sections, the Cornille and Martin bounds, and the
Fischer theorem, will be discussed. Using the impact-
parameter representation, these theorems will either be
proved heuristically or be illustrated by simple examples.
Their applicability and utility will be critically appraised.

Elastic scattering will be discussed in terms of an
impact-parameter representation. Using this physical pic-
ture, we shall provide heuristic derivations of many of the
important theorems relating to elastic scattering that are
based on analyticity and unitarity. %'e express the slope
parameter 8 (=djdt [ln(do. „/dt)], 0) and the curvature
parameter C ( = —,

' d /dt [In(do„/dt)], 0) in impact
space. Models of elastic scattering are discussed, and it is
shown that C =0 is a convenient criterion for the onset of
"asymptopia, " defined as the energy domain where the
differential elastic scattering cross section approaches that
of a sharp disk.

A model free analysis will -be made of the experimental
quantities o.t „p, and B. Traditionally, the requirements
of analyticity have been compared with experimental data
by means of dispersion relations. We shall demonstrate
how the same ends can be achieved more transparently
and easily through direct use of simple analytic functions.
The success of our fits is an experimental confirmation of
the principles of analyticity. The comprehensive fit to pp

and pp scattering reveals an unexpected regularity be-
tween the two systems over the full energy domain con-
sidered.

II. KINEMATICS AND CONVENTIONS

We consider elastic pp or pp scattering with the initial
4-momenta p& and p2 and the final 4-momenta p3 and
p4. The c.m. energy squared is

s =(p~+p2) =4(k +m ), (2.1)

where m is the proton mass and k is the c.m. momentum.
In terms of the laboratory momentum p and laboratory
energy E = (p +m )

' ~, we have

s =2(m +mE) .

The four-momentum transfer squared is

t =(pi P3)'—
= —4k sin (8/2),

(2.2)

(2.3)

where 0 is the c.m. scattering angle. The third Mandel-
stam variable is

(l 1 P4) 2

and we have

(2.5)

s+t+u =4m (2.6)

dO

dn C. m.

do 7T 2
C. III.

(2.7)

(2.&)

o.„,= Imf, (0=0) .
4~
k

(2.9)

The laboratory scattering amplitude will be denoted sim-
ply by f. It satisfies

(2.10)

(2.11)

tot
4a

Imf (9L ——0), (2.12)

where 01 is the laboratory scattering angle. The laborato-
ry scattering amplitude is related to the usual Lorentz-
invariant amplitude ~& by

p

(2.13)

We shall use elastic scattering amplitudes with several
different normalizations. Throughout, we use units where
f1= 1, c = 1. For f, , the c.m. scattering amplitude,
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so

0 tot
1 ImM(t =0)

2pt7l

Im~(t =0) .
2k s

(2.14)

Experiment has shown that we can adequately
parametrize the nuclear (hadronic) elastic scattering cross
section in the small-

~

t
~

region as

d0~ d0~ Bi (3.4)
dt dt ] 0

As a final normalization, we introduce Fwith the prop-
erties

(2.15)

i.e., if we plot ln(do„/dt) vs t, we get a straight line of
slope 8, for the small-

~

t
~

region. Now, we write Eq.
(3.4), at t =0, as [see Eqs. (2.7) and (2.8)j

o„,=4~vr IrnF(t =0) . (2.16)

The normalizations for these elastic scattering amplitudes
are related by

d0~ ~ d0~
dt, 0 k dQ, , 0=0

f= f. = ——F=-p p
k '™v'm. 8@m

(2.17) k ~
Ref, (0)+i Imf, (0)

~
(3 5)

The context will dictate which of these amplitudes is most
convenient to use. Introducing p =Ref, (0)/Imf, (0), we rewrite Eq.

(3.5) as

III. REVIEW OF EXPERIMENTAL RESULTS
FOR upon, p, AND B

dt
(p+ i)Imf, (0)

k

Prior to presenting an overview of the experimental pp
and pp results for 0.„„p,and B, we review briefly the
theory of elastic hadronic scattering in the presence of a
Coulomb field. This review will help us put into perspec-
tive measurements of elastic scattering made at small

~

t
~

and will remind the reader of both the types of ex-
perimental measurements and the actual physical quanti-
ties that must be measured to extract the parameters 0.„„
p, and B.

(3.6)

2
d0~ B~/'2

dt
=m (p+i) e~'"

4m.
(3.7)

where the last step used the optical theorem, Eq. (2.9).
Thus we can now write the elastic hadronic scattering
cross section as a function of t as

A. Theoretical formulation of elastic
hadronic scattering in the presence
of the Coulomb field

2aG (t)VVr
(3.8a)

It is convenient at this point to introduce the invariant
scattering amplitudes of Eqs. (2.15) and (2.16),

For the moment, we consider separately the effects of
either a Coulombic or a hadronic field, alone. We shall
later combine these fields to act simultaneously. In the
presence of only a Coulomb field, we have the familiar
Rutherford scattering cross section for pp (pp), which is

and

(p+i)o...e~'"
(3.8b)

oc
dQ,

(+ )aG'(t)
2k sin (8/2)

(3.1)

where u is the fine-structure constant =,37 the upper
sign is for pp, the lower sign is for pp, and G (t) is the
proton's electromagnetic form factor squared. It is readi-
ly shown that

so that the invariant differentia1 cross sections are

oc
„, = fF. I' (3.9a)

(3.9b)

d0 n' do
dt, k2 dQ, ,

and we can rewrite Eq. (3.1) as

d0
2 2O.'=rr (+)G2(t)

(3.2)

(3.3)

The above results treat the case of only one interaction
at a time. However, the simultaneous presence of both
the nuclear and the Coulomb fields, although coherent,
does not allow us simply to superimpose the amplitudes
I'c and I'„. Instead, we must introduce a phase factor
ap(t) into the Coulomb amplitude, such that the com-
plete elastic differential cross section is given by
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dcT~ do~~ dc'~

tan(t)+F
~

2

(+)6 (t) e' ~'"+(p+i) e '
4~

(3.10)

value for
~
ay

~

in Eq. (3.12) is =0.02. Thus the presence
of the interference cross section do.,„/dt allows one to
measure the quantity p+nq. Assuming that we know
cr„„ the interference term allows the evaluation of p, the
ratio Ref, (0)/Imf, (0). Therefore the Coulomb am-
plitude serves as a standard against which the phase of
the hadronic amplitude is measured. Inspection of Eq.
(3.10) indicates that the interference term is of maximum
significance when

where we assume tacitly that p varies negligibly over the
very small t region of interest. The phase factor ay(t) re-
flects the distortion of the pure amplitudes F, and F„due
to the simultaneous presence of both hadronic and
Coulombic scattering. This is perhaps most simply un-
derstood if we use the language of Feynman diagrams, in
which F, corresponds to summing all diagrams in which
only photons are present and F„corresponds to summing
all diagrams in which only hadronic exchanges are
present. However, when both fields are turned on, there
are new diagrams possible which have both photons and
hadronic exchanges present in the same diagram, which
are not accounted for in F, and F„. This gives rise to the
phase ap(t). This phase was first investigated by Bethe
(1958), and later by West and Yennie (1968), using a QED
calculation of Feynman diagrams. Most recently, the
phase was recalculated by Cahn (1982b), using an eikonal
approach, with the result

y(t) =(+) @+in +ln 1+B 8

BA

+ ln
A A A

(3.11)

where @=0.577. . . is Euler's constant, B is the slope pa-
rameter, A [=0.71 (GeV/c) ] appears in the dipole fit to
the proton's electromagnetic form. factor, and the upper
sign is for pp and the lower sign for pp. In the low-

~

t
~

region of interest, the numerical values given by Cahn
agree very closely with those given by West and Yennie.
In the t region near the interference maximum of Eq.
(3.10), the value of p(t) is very slowly varying and is
about 2. Thus ny is much less than 1, as also is Bt/2,
while 6 (t) is about 1. We can now simplify the interfer-
ence (cross) term of der/dt, defined as do,„/dt in Eq.
(3.10), to be

do =2(p+ asap)F, F„
dt

0.071
o.„,(mb)

(3.13)

for tin (GeV/c) .
We note that the differential elastic scattering cross sec-

tion given by Eq. (3.10) divides up naturally into three
distinct t regions. Region 1 is for

~

t
~

&&
~

t ~;„„where
the Coulomb scattering dominates and der/dt goes nearly
as 1/t Reg. ion 3 is where

~

t
~

&&
~

t;„„where the nu-
clear scattering dominates and do/dt goes nearly as e '.
Region 2 is where t=t;„„which is the interference region
between the Coulombic and the hadronic amplitudes.

For a colliding-beam experiment, where
~

t
~

=(k8), it
is useful to define the interference angle 0;„,as

(
i
t

i

)1/2

0;„,= k
(3.14)

Table I gives
~

t ~;„, and 8;„, for pp scattering as a func-
tion of the energy, v s, for typical colliding-beam ac-
celerators. For example, at the ISR, for U's =30.7 GeV
(corresponding to each beam's having k=15 GeV/c),
we find

~

t ~;„,=0.0017 (GeV/c), and hence 8;„,
=V'0.0017/15 =2.7 mrad. However, when we get up to
the Tevatron collider energy, ~s =2 TeV, where we ex-
pect o„,=100 mb, we find that

i
t ~;„,=0.00073

(GeV/c) and that 8;„,=0.027 mrad, a very small angle
indeed. At a distance of 100 m from the interaction re-

gion, it corresponds to a transverse displacement of only
3.7 mm. This illustrates the difficulty of penetrating into
the Coulomb interference region, let alone the Coulomb
region, as we go to higher-energy colliders. Clearly the
experimental problems become extremely severe for the
proposed SSC collider, at v's =40 TeV, where 8;„, is only
about 0.001 mrad.

Ws (GeV) Accelerator (GeV/c)
0;„,

(mrad)

TABLE I. Values of t;„, and 6I;„, for the Coulomb interference
region for pp elastic scattering. See Eqs. (3.13) and (3.14).

=(+)(p+aq ) (3.12)

with the upper sign for pp and the lower sign for pp and
where F„ is evaluated at t =0. The importance of this
term is clearly maximal when

~
F,

~

= ~F„ i, i.e., when
do., /dt =do.„/dt. If p+acp is positive, the interference
is destructive for pp and constructive for pp. A typical

23.5
30.7
52.8
62.5

540
2 000

40000

ISR
ISR
ISR
ISR
SPS

Tevatron
SSC

0.001 7
0.001 7
0.001 6
0.001 6
0.001 0
0.000 73
0.000 37

3.6
2.7
1.5
1.3
0.12
0.027
0.000 97
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B. Measorements of otpt p andand 8
from elastic scattering

an ex eriment is a countingThe measured quantity in an exp
section. For example, in an e astic

differential cross-section experiment, e qu
tity measure" '" is the counting rate,

d t corrected for/ht in a small interval aroun
h as azimuthal cov-an inefficiencies, suc as az'

erage, dead time, etc. This rate must e norma
'

do. /dt, and thus we write
188

86+. 81
2+. 83 mm

84~. 81

mb

8 GeV~

dc'
b, N(t)=L (3.15)

—1the normalization factor w ith units (area)
L i th luminosity). If&&(time) ' (for colliding beams,

11o th n t
.15) To take a concrete

ross section, whic a ows
1 from Eq. (3. . o

if the experiment is carrie ou a
t is capable of achiev-es =23.5 GeeV and the experimen is

~~ t ~~ of 0.00035 ~ e c'G V/ ) then the valueing a mimmum
1 mbic. Thus the dataof do-/dt a ist at this t is =96%%uo Coulom ic.

are easily and accura yuratel norma ize, prov'
he vital role the knownell determined. We note the vita ro e e

C 1 b
'

pn la sint is ype
ion factor L is known, t e o at e

rmined by plotting t e coun

(3.6), and . , n(3.15), knowing the normalization, we

d cT~(1+ 2)1j2

1/2

(t( (Gev/c)2

o. /dt vs t
~

for pp elasticI&. 1. An experimental plot of der„,j
the~s =23.5 GeV. The fitted curve used t e

0). The data were taken at the ISRparamerametrization of Eq. (3.10. e a a
(R211) group, Amos et al'. ,by the Northwestern-Louvain

1983a,1983b.

of, t ~;„,=0.0017 (GeV/c) . Thusvalue (see Table
ed dee ly into t e ou omthis experiment probed p y

ion 2 thein-n therefore also easily probed region, e
'

d }ihe fitted curve use eterference region. he
extracted wasof E . (3.10). The p value extrac e

C 1 b " ' '1'"t"n. Th= —0.006+0.010, using Cou om n
of the fit was quite satisfactory, giving a

2 for 93 degrees o ree om, wX /df=1. 2 for g
(do/dt) vs .

i
t

i
for ppg f freedom. A plot of ln o. v

elastic scattering
in rou (Amos et a ., a;Northwestern-Louva g p

R in 1982, is shown in Fig. . is1983) at the ISR in
=10 events. Because o t e

2m the minimum
~

t
~

is =0.
GV/ ) fo hio t,=0.0016 e ccompared to

and hence the Coulomb region is on y s ig
b,X(0)

I. (3.16)

~ ~ ~
I

~ ~ ~ I ~ ~788 ~ ~ I I ~ ~ ~ I ~ ~ ~ ~ I ~ I ~ I ~ ~ ~ I
~ 'I ~ I ~ ~ ~ I ~~ ~

i ue in which I. is separately evaluated,Thus this technique, in w
measures the quantity (r (1+p) . epv

m in regionated from the Coulomb interference term in

1 ty without using thetive ways of measu grin the luminosi y, w'

b s through each other
techni ue, such as t e van er e

e in colliding beams ro
etc. In all cases, a direct measurement o, a

f b,X(0) yields the result in Eq, i.e.,measurement o
2 1/2(r(o((1+p )

f C ulomb normalizationTo demonstrate e the ower o ou

d)
i

~fo
ualit of the avai a e a a,

1 an ex erimental plot of ln(d(r/ t vs
elastic scattering at s =23.5 e, a

b the Northwestern-Louvain group o
10 d t determine the elasticThere are about 1010 events use o

tion. The minimum t aattained indifferential cross sec io .
.00025 (GeV/c), we ethe experiment was 0.00

188

38
CQ

ISIeI
CQ

I s c s I e ~ I a a c I I

CO Al

gati (Gev/c)2

FIG. 2. An experimental plot oof do' t/dt vs
sca

'

g V =52.8 GeV. The fitted
. (3.10). The data were

scattering at s =
paran etrization of Eq.
by the Northwestern-Louvain in R211) group.

~ I ~ I ~ I I

t
~

for pp elastic
curve used the

taken at the ISR
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The parametrization of Eq. (3.10) was used to obtain the
fitted curve. In this case, the measured quantities were
o.„„p, and B, with the values o.„,=43.2+0.4 mb,
p=0. 13+0.02, and B =13.0+0.5 (GeV/c) . The quali-
ty of the fit was good, yielding X /df=0. 59, for 117 de-

grees of freedom.
Another method for determining the cross section is

the so-called "luminosity-free" method, in which one
simultaneously measures N„„ the total counting rate due
to any interaction, along with the elastic scattering inter-
cept rate EN(0). We write

and

Ntot =Lot.t (3.17a)

don
AN(0) =L

dt ~=o
(3.17b)

From Eqs. (3.16) and (3.17b), we find L and substitute it
into Eq. (3.17a) to obtain

16m.h& (0)
a'tot 1+p

tot
(3.18)

We see from Eq. (3.18) that the measured quantity from
the "luminosity-free" technique is o„,(1+p ), in contrast
to the direct measurement of L, which yields
cr„,(l+p )'~ . In both cases, the measurements require
AX(0), the extrapolated hadronic counting rate at t =0,
which is found by measurements in 'region 3, the pure nu-

clear region. We note that a knowledge of p is needed in
both cases in order to extract o.„,. However, these mea-
surements depend only weakly on p, since for p as large as
0.2, 1+p is only 1.04, a 4% effect in one case and a 2%
effect in the other. Thus even a very inaccurate
knowledge of p yields a relatively accurate value of o.„,.

The value of the nuclear slope B is found by plotting
the un-normalized curve, In[A,X(t)] vs t, in the purely ha-
dronic region (region 3) and extracting the slope of this
straight line. Thus the measurement of B does not re-

quire a knowledge of the normalization L.
Experiment shows that in the region of

~

t
~

greater
than about 0.10 (GeV/c), the parametrization [Eq. (3.4)]
of an exponential in Bt fails, and a "break" in the slope
occurs, with the slope getting smaller in the higher

~

t
~

region. The experimental elastic differential cross-section
data can be parametrized over this larger

~

t
~

region as

do n do'n

dt dt , 0
exp(Bt +Ct ), (3.19)

where the curvature C is =5 (GeV/c) at the ISR.
Thus if we define a t-dependent slope

d don
B(to)= ln

dt dt
(3.20)

we obtain B(to)=B—2C
~
to ~. If the experimental t

range is limited to
~

t
~

&0.02 (GeV/c), we have a mean

~
to

~

near 0.01 (GeV/c) . Since a typical value of B is 12
(GeV/c), we get B[t =0.01 (GeV/c) ]=0.993B, where

B =B(0). Thus the difference between B and the mea-
sured value B(to) is negligible below

~

t
~

=0.02
(GeV/c) .

The total elastic scattering cross section o,&
is defined

0
as (do„/dt)dt .With the parametrization used in

Eq. (3.4) and the results of Eq. (3.6), it is easily shown
that

don
0 B dt t=0

a t,t(1+p')
16' (3.21)

This result will be given a special name. We shall define
X,) as

~~a~(1+p')
16' (3.22)

If the parametrization [Eq. (3.4)] were valid over the en-

tire t range, then o.,~
would be X,~. We note that the value

of X,&
is the number often given in the literature as the ex-

perimental value of cr,~. From Eq. (3.22), we find that the
ratiO Of Xc~~o tot iS

0 tot

o.„,(1+p )

16' (3.23)

a result that will be used later.

C. An overview of experimental results

Measurements of elastic scattering and total cross sec-
tions have had a rich history at the CERN PS (Bellettini
et al. , 1965), Brookhaven AGS (Foley et al. , 1967), Ser-
pukhov (Denisov, Donskov et al. , 1971a; Denisov, Dmi-
trevski et al. , 197lb), CERN ISR (Amaldi et al. , 1971;
Holder et al. , 1971; Barbiellini et a/. , 1972; Amaldi and
Schubert, 1980; Favart et a/. , 1981; Carboni et al. ,
1982a,1982b, Amos et al. , 1983a,l983b); Fermilab (Bar-
tenev et al. , 1972,1973a,1973b; Carroll et al. , 1974,1976,
1979; Fajardo et al. , 1981), and CERN SPS colliders
(UA4 Collaboration, 1982a,1982b; UA1 Collaboration,
1983). There is now an approved experiment for the
Tevatron collider, to be carried out in 1986. Indeed, there
are plans to try to measure the elastic scattering at the
proposed SSC in the 1990s.

The utilization of p beams at the CERN ISR has made
possible accurate comparisons of the pP system with the
pp system up to ~s =62.8 GeV, using colliding beams.
The colliding-beam experiments all use "Roman pots, " so
named by the CERN-Rome (Amaldi et al. , 1973a) group
which first used them. The Roman pots are reentrant bel-
lows in the vacuum chambers used to get the counters (or
drift chambers) close to the beams. This is done so that
the minimum angle of detection 0;„is small compared to
0;„„ the Coulomb interference angle, to maximize
Coulomb effects and to measure the interference term
proportional to p+ ay.
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Before the advent of the ISR collider ( —1971), the
available pp data appeared to have cr(pp) leveling off with
increasing energy to a value of =40 mb. The antiproton
cross sections available in this era were higher than the pp
cross sections, and cr(pp) appeared to be falling with in-
creasing energy and approaching cr(pp). Thus it was as-
sumed at this time that the two cross sections were ap-
proaching a common constant value of about 40 mb, as
~shoo. The rising K+p cross section was widely ig-
nored. The nuclear slope parameters B(pp) were larger
than B(pp). The B(pp) were increasing with v's (diffrac-
tive shrinkage), whereas the B(pp) were slightly decreas-
ing with increasing v s, and it appeared that both were
going to a common value. The values of B (pp) at the top
energy were near 12 (GeV/c)

Vixen the ISR was turned on in 1971, some of the first
experiments done were an elastic scattering measurement
of the total cross section, cr(pp), by the CERN-Rome
group (Amaldi et al. , 1971), using the van der Meer
method of luminosity determination, and a measurement

of cr(pp) by the Pisa —Stony Brook group (Amendolia
er al. , 1973a,1973b) using total counting rate and lumi-
nosity. These early measurements showed that the pp
cross section was rising with energy, and indeed, had a
rise that could be fitted with a ln s/so term, where so is a
scale constant. These measurements were confirmed later
when the Fermilab accelerator and the SPS came into
operation. The value for the antiproton cross section had
dropped and flattened out at the highest available energy
(v's =25 GeV). With the introduction of a P beam into
the ISR, in 1982, experiments on pp scattering were done
both by the Northwestern-Louvain group (Favart et ctl. ,
1981; Amos et al. , 1983a,1983b), using elastic scattering
and Coulomb normalization, and by the Pisa —Stony
Brook group (Carboni et al. , 1982a,1982b), using total
counting rate and van der Meer luminosity. The
Northwestern-Louvain group measured o„„p,and B for
pp, while the Pisa —Stony Brook group measured o.„,.
These results conclusively showed that the value of cr(pp)
at v's =52.8 GeV was rising from its low-energy value
and that cr(pp) appeared to be approaching cr(pp). The p
values, as well as the slope parameters 8, also seemed to
be approaching one another.

Shown in Fig. 3 are the currently available experimen-
tal cross-section data in the energy interval 5 & Vs &62
GeV for both pp and pp. In Fig. 4 are shown the p data,
and Fig. 5 shows the B data. (The sources for the data
are listed in Tables II and VI.) We observe that cr(pp)
falls from a value near 50 mb at V s =5 GeV to a
minimum of 41.5 mb at Vs =20 GeV and rises to about
44 mb at v's =62 GeV. The cross section cr(pp) starts at
near 40 mb at v s =5 GeV, goes through a very shallow
minimum of 39 mb at &s near 12 GeV, and climbs to
43.5 mb at ~s =62 CJeV. The p(pp) values rise from
—0.27 at &s =5 GeV, going through zero at vs =23
GeV, and reach about 0.10 at vs =62 CJeV. The p(pp)
values are about zero in the energy region 10&Ms &20
GeV, and rise to about 0.10 at Vs =53 GeV. The slope
parameter data show that B(pp) is rising, going from
about 9.5 (GeV/c) 2 at V s =5 GeV to about 12.5
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TABLE II. Sources for the data used in the fits for o. and p for pp and pp.

Reference Accelerator V s {CxeV)

Cralbraith et al. , 1965
Foley .et al. , 1967

Denisov et a/. , 1971a,1971b

Beznogikh et al. , 1972
Bartenev et a/. , 1973b

Carroll et al. , 1974

Fajardo et al. , 1981
Amaldi and Schubert, 1980

Amos et al. , 1983a, l983b

Serpukhov

Serpukhov
FNAL

FNAL

FNAL
ISR

o(pp)
~(pp )

p(pp)
~(pp)

0.(pp) .

p(pp)
p(pp)

a(pp )

o(pp )

p(pP)
o.(pp )

p(pp)
Ao.

p(pp )

pav

Ap

5.3,5.6,6.0
5.3,5.7,6.0,6.3,6.6,6.8,7.1

5.3,6.3,6.9,7.1

5.3,6.3,7.0,7.6,
8.2,8.8,9.3,9.8, 10.2, 10.7
6.4,7.3,7.7,8.0,
8.2,8.5,8.8,9.0,9.5
6.1,8.6,8.8,9.0,10.3,10.6,11.5
9.9,13.3,16.S,18.1,
18.7,20.1,21.4,22.5,25.6,27.2
13.8,16.8,19.4
9.8, 13.8,16.8,19.4
11.5, 15.4, 16.8, 18.2, 19.4
23.5,30.7,44.7,52.8,62.5
23.5,30.7,44.7,52.8,62.5
52.8,62.5
23.5,30.6
52.8,62.5
52.8,62.5

(GeV/c) at vs =62 GeV. The values for 8(pp) stay
relatively constant at low v s, around 12 (GeV/c), and
rise to about 12.5 (GeV/c) at &s =53 GeV.

The ratio of the "total" elastic scattering cross section
to the total cross section, R =2,&/o.„„is relatively flat in
the ISR energy region, being =0.18. It appears to have
fallen slightly from its low-energy value. As we shall
show later, it is expected to rise at high V's .

The dominant experimental problems for the future, at
high energy, will be the following:

(1) to see if the current trends of b,cr„„bp, and AB go-
ing to zero (for b, =[(pp) —(pp)]) continue as we go to
very high s;

(2) to verify that the cross section o.„„which currently
rises as ln s/so, continues this rise as we increase s;

(3) to find out if 8 also increases as ln s as we go up in

] oo

f, (s, t)= —g (21 + 1)Pt(cos8)ai(k),
1=0

(4.2)

where 8 is the c.m. scattering angle and at(k) is the 1th
partial wave scattering amplitude. We find for purely
elastic scattering, by comparing coefficients in

4m

k
Imf, (t =0), (4.3)

gives the standard partial-wave expansion for spinless
particles (for our purpose of examining the near-forward
region, we can ignore spin),

(4) to determine whether R =X,~/cr„, keeps increasing
and find out its asymptotic constant value, i.e., to deter-
mine whether the pp system is a gray disk (R &0.5) or a
black disk (R =0.5), or indeed, if 1 & R ~ 0.5.

These are important questions. The answers become
more difficult at high V s, and the required measurements
pose a real challenge to tomorrow's experimentalists.

IV. THEORETICAL DISCUSSION

Ima, =(Ima, )'+(Rea, )', (4.4)

(Ima, ——,
' )'+(R~, )'= —,

' . (4.5)

If there is inelasticity, the amplitude lies inside the Ar-
gand circle (Fig. 6). Such an amplitude can be represent-
ed as

so the amplitude for each partial wave lies on the Argand
circle (Fig. 6),

A. Unitarity

4m
o', ,= Imf, (t =0) .

k
(4.1)

Writing an expansion in terms of Legendre polynomials

In the next two sections, it is convenient to work in the
center-of-mass frame. For elastic scattering, unitarity is
embodied in the optical theorem,

2i 5I
e

ah =
2l

(4.6)

where 6I is purely real if there is only elastic scattering,
and Im6~ ~ 0 if there is inelasticity.

A more complete formalism is needed to express the
full content of unitarity in the inelastic ease. For this
purpose we employ the conventional Lorentz-invariant
amplitude ~, which is related to the S matrix by
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where pl(El) and p2(E2) are the initial momenta (ener-
gies), the primes indicate final momenta and energies, and
I is the unit matrix. The states are normalized with

-'tl2
l

1/2
ge a

& p'
I p & =(2~)'&'(p —p'),

so completeness is expressed by

(4.8)

FICx. 6. Argand circle. The particle-wave amplitude ah or the
impact-parameter amplitude a(b) must lie on or inside the cir-
cle of radius 2. If Re5=5~ and Im5=5I, the central angle is

25~ and the length from the center of the circle to the ampli-
tude point is ( 2 )exp( —25I), where 5I )0.

r

Pl

=X II f 2 3 Ip'lp2 p' &&p'lp2 p.' I,
n i=1

or symbolically,

(4.9)

I=+ In)&n
I

. (4.10)

S=I—i (2m) 5 pl+p2 gp—t'

C

&p'lpga p' I~ I p p &

(2El)(2E2) II (2E )
(4.7)

Unitarity is the statement

STS =I . (4.11)

Evaluated between two-body states
I plp2) and

I p3p4),
Eq. (4.11) gives

& p3p4 I

—i~+i~'I plp2 & =2Im&p3p4
I
~

I plp2)
Pl g p.'X II f

n

Pl+P2 g Pj
j=1

I plp2 ' ' '
pn & &p lp2 ' ' '

pn I
~ Iplp2 & (4.12)

Vfe recognize the usual n-body phase space

tl 3 I n

dc„=(2m.) g II f,', 5 p, +p, —g p,'
n l =l (2~)'2''

(4.13)

which relates the cross section to the amplitude squared,
by

1

2E,2E
Im I'de„

(4.14)

21m~(t =0)= —4k' s g cr„=—4kV s o„, , (4.15)

or

a„,= — Im~(t =0) .
1

2k s
(4.16)

In this proof of the optical theorem, we see how a sum
over physical intermediate states is central to exploiting
the formal statement of unitarity, Eq. (4.11).

where /represents the flux factor. The flux factor ("the
relative velocity of the incoming particles" ) multiplied by
2El2E2 is simply 4k@s, where k is, as always, the c.m.
momentum in the initial state. Thus specializing to for-
ward scattering with p l

——p2, p3 ——p4, we find with

B. Geometrical picture: The impact-parameter
representation for two-body scattering

1. Impact-parameter representation

Elastic pp scattering is described by five amplitudes
(Wolfenstein and Ashkin, 1952), but in the very forward
direction, which is our' concern, it suffices to imagine that
there is a single amplitude, just as one has for spinless
particles. For this amplitude we will be able to develop a
geometrical picture based on impact-parameter space, the
two-dimensional physical space perpendicular to the beam
direction. (See Jackson, 1974, for an earlier account of
some of this material. ) Throughout, we consider only ha-
dronic scattering and ignore the Coulomb effects, which
are important only at very small

I
t

I
. The standard

partial-wave expansion for the scattering amplitude given
in Eq. (4.2) is

] OO

f, (s, t) =—g (21 +1)Pl(cos8)al(k),
I =0

where, as'in Eq. (4.6),

exp(2i5t ) 1—
at(k) =

2l

and 51 is the phase shift in the Ith partial wave. If the
scattering is purely elastic, 5I is real. If there is inelastici-
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ty, Im5~ &0. From Eq. (4.1) it follows that the contribu-
tion of the Ith partial wave to the total cross section is
bounded:

4~(2l +1)
k

(4.17)

P~(cos8)~Jo[(2l + 1)sin(0/2)] .

With these replacements, Eq. (4.2) becomes

f, (s, t)=2k f bdb Jo(qb)a(b, s),

(4.18)

(4.19)

or, using the integral representation of Jo [Abramowitz
and Stegun, 1964, Eq. (9.1.18)],

2m'

Jo(z) = dy exp(iz cosy),
2m

it is simply

(4.20)

f, (s, t) =—f d b exp(iq b)a (b,s), (4.2 la)

where
I
b

I
=b,

I q I
=q, b'q=bq cosg&,

= b db dy. The Fourier transform can be inverted to give

Since the bound is a decreasing function of the energy,
an increasing number of partial waves must contribute to
the high-energy amplitude. It is thus sensible to convert
the discrete sum, Eq. (4.2), into an integral.

A classical description of the scattering would intro-
duce the impact parameter b, which is related to the an-
gular momentum by bk =l+ —,'. The extra —,

' is added
for convenience and in recognition of its appearance in
the WKB approximation. To convert Eq. (4.2) to an in-
tegral, we replace QI —+ f dl~ f k db and at(k)
~a (b,s). We need also to express Pt(cos8) in terms of b
and q, where q = t =4k—sin (0/2). For large i, we
have (Erdelyi, 1953)

f du g(u)
a(b =0)=

(1+p )o«g f du g (u)
(4.24)

Thus for scattering amplitudes that are functions of a sin-
gle variable in the above sense, a(b =0) is given by
o,~/(1+p )o«, times a pure number that depends on the
shape of g, but not on the actual value of the parameter

29'o.

2. The slope parameter 8
and the MacDowell-Martin bound

sources of waves that produce an interference pattern.
Equivalently, it can be viewed as the distribution of an ab-
sorber that produces a diffraction pattern when plane
waves are incident upon it. There is a clear analogy with
diffraction in optics [for an extensive review of.this analo-,
gy, see Amaldi, Jacob, 'and Matthiae (1976)]. Total ab-
sorption corresponds to Im5= oo or a (b,s) =i /2 T.hus a
black disk of radius R gives a total cross section [see Eq.
(4.23)] 2vrR and an elastic cross section [see Eq. (4.22)]
wE. . For a Gaussian shape in impact-parameter space,
the elastic scattering amplitude is a Gaussian in momen-
tum transfer. In particular, if the scattering amplitude is
f=(ikrr «/4')exp( Bq—/2), so that B is the nuclear
slope parameter, the impact-parameter space represen-
tation is a =(io«, /8vrB)exp( b /—2B)=(2io,~/o«, )
&& exp( b /2—B) No. te that

I
a (b =0)

I
=2o,~/o«&

=2K,&/o.«, [see Eqs. (3.21) and (3.22)]. The connection
between a(b =0) and cr,~/o«, is more general. Suppose
that the scattering amplitude is f=( k/4')(i +p)o„,
&&g(q2/qo), where p is independent of q and g is some
function of a single variable u =q /qo. Then it is easy to
show that

a(b, s)= d q exp( —iq b)f, (s, t) .
4~k

(4.21b)
Using the impact-parameter amplitude, we can obtain a

physical picture of the slope parameter,

With our normalization, we have, using Eq. (4.21a), B(s,t) = ln
do

dt dt
(4.25a)

which we often evaluate at zero momentum transfer

=4 f d'b
I
a(b, s)

I

' (4.22) B =B(s)=B(s,t =0) . (4.25b)

and

tr«, = - Imf, (s,0)=4 f d b Ima(b, s) .tot (4.23)

The amplitude a (b,s) is given in impact-parameter space,
which is perpendicular to the beam direction and thus is
the same in the laboratory and c.m. systems. Its form is
still that of Eq. (4.6). Therefore, it lies in the usual Ar-
gand plot, shown in Fig. 6. Elastic scattering corresponds
to the phase shift 5 being real. If there is inelastic scatter-
ing as well, then 5 has a positive imaginary part and
a (b,s) lies inside the Argand circle.

Equation (4.21a) has a simple physical interpretation.
The function a (b,s) can be viewed as a distribution of

Beginning with

f, ~ f d b exp(iq b)a (b,s),
we expand about q =0 to find

f, cc f d ba(b, s)[1+iq b —,'(q b) .—. ] .

This yields a general expression for 8,

Re f db ba(b, s) f db b a*(b,s)B= 2
2 dbba bs

(4.26)

(4.27)

(4.28)

Thus, if the phase of a (b,s) is independent of b, we have
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f dbb a(b, s) f d bb a(b, s)B=
2 f dbha(b, s) 2 f d ha(b, s)

(4.29)
fectly black disk has A =1. The equality of a,&

and X,~
is

characteristic. In fact, the MacDowell-Martin bound
(MacDowell and Martin, 1964) states that

a(b, s)= z»2 I
a(b, s)

I(1+ 2)I/2

Combining Eqs. (4.22), (4.23), and (4.29), we find

Oel f bdb
I
a(b, s)

I

( 1+ 2)1/2
tot f b db

I
a(»s)

I

(4.30)

(4.31)

This shows that B measures the size of the proton. More
precisely, B is one-half the average value of the impact
parameter squared, as weighted by a.

Let us suppose that the phase of a (b,s) is independent
of b, so that Rea (b,s)/Ima (b,s) =p. Then we can write

~el 8
(4.33)

o, ,=4 f d ba',
o.,i

——4f d ba'

ototB =2

(4.34a)

(4.34b)

(4.34c)

We can demonstrate this using the impact-parameter rep-
resentation, assuming that a (b) is purely imaginary.
Then, letting a'=Ima,

4 tot

f bdb
I
a(b, s)

I

16mB ( I+p2)'/2 f db b 3
I

a (b,s)
I

2

(4.32) fdba' fdbba'—2m 3X,i d b
(4.3S)

As an example, suppose a (b,s) is purely imaginary and
constant, with a =iA /2 for b & R, where 0 & A & 2, and
zero for b &R. Then o,~/a„, =X,~/o„,„=A/2. A per-

Now to minimize cr,~/X, ] we consider varying the form of
a' by 5a'. Then at the minimum

5
' =0= fd ba2' 5a'f d bb a'f d ha'+f d ba' fd bb 5a'f d ba'

Xd

—3 f d ba' f d bb a' f d b5a' f d'ba'
—4

(4.36)

2a' f d bb a' f d ba'+b f d ba' f d ba'

—3 f d ba' f d bb a'=0.
Thus a' is of the form

(4.37)

a'= C) —. C2b (4.38)

where C~ and C2 are positive constants, as seen in Eq.
(4.37). Now a' cannot be negative, since Ima &0, so a'
vanishes outside some radius A, and we write

a'=A [1—(b/R) ], b &R

a'=0, b ~0.
This gives

(4.39a)

(4.39b)

Since this is true for arbitrary 5a, the coefficient of
f d b 5a' must vanish and

Our success in deriving the proper result, while using
the approximation of the impact-parameter representation
rather than the fully correct discrete partial-wave series, is
easy to understand. Since the minimum is achieved with
a form that in fact requires many partial waves, there is
no loss in treating the partial-wave sum as an integral.

For most reasonable shapes of a, the ratio a',&/X, &
is ac-

tually quite near unity. Thus it is difficult to distinguish
between models on the basis of this ratio. For example, if
a —1 —(b/bo)" and vanishes for b &bo, we find for the
ratio values between 9 for n =2 and 0.91 for n =5. For
the form a —[1—(b/bo)]", the minimum value is about
0.89 (just slightly greater than —,

'
) when n =0.6—0.7, and

the ratio increases so that, for n =4, it is 1.07. Putting a
Gaussian form in Eq. (4.32) gives a ratio of exactly 1, just
as the black disk gave.

o.,o, =2~AX (4.40a) 3. The curvature parameter C

o.,) —— 3 A
4~
3

B=—R1

6

g 2g 2

2

(4.40b)

(4.40c)

(4.40d)
dO~

dt
dO~

dt ~=0
exp(Bt+Ct + . . )

As discussed in Sec. III, the t dependence of the elastic
differential cross section is described at small t by

and

~e] 8

X,) 9
(4.41)

B21+Bt+ +C t2+ - . -

2

(4.42)
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If we take a to be purely imaginary, we can easily com-
pute the curvature parameter C from
I

f, cc f d b exp(iq. b)a(b)

~ f d b(l —,'q —b + ,', q—"b + )a(b) . (4.43)

By noting that

d cT~

dt
fdba + ,'tfd—bbafdba

a = 2I'A, (4.46)

with A real. Thus A =1 corresponds to a purely black
disk. From Eqs. (4.22) and (4.23), we find

o.tot=2mR A2

o,i ——mR A

(4.47)

(4.48)

elastic scattering amplitude at high energies is mostly
imaginary, we take

we find that

r 2

+ t f—dbba

+3'2t2fd ba f d bba+ (4.44)

and from Eqs. (4.22) and (4.19) or (4.21),
I

=mA f b db Jo(qb)
r '2
Ji (qR)=wA2R4

qR
(4.49)

1 fdbbC= f d'ba
1

16

2f d bb a

f d'ba
(4.45)

Thus B is certainly positive, while C may be positive, neg-
ative, or zero.

4. Models of elastic scattering

The relationship between the impact-parameter ampli-
tude a and the differential cross section can be illustrated
with some simple examples. For definiteness, we shall fix
the parameters in each model so that they produce
cr, ,=43 mb and B =13 (GeV/c) . These are charac-
teristic of the values found at the ISR.

The simplest model has a constant value for a inside
some radius R, and zero outside it. Since the forward

J~(qRO lns/so)f, (s, t) =ilcRO p
qRp

(4.50)

In Fig. 7, the profile for the disk and several shapes to
be considered subsequently are shown. The corresponding
differential cross sections are shown in Fig. 8 for the
values of the parameters that give cr«, =43 mb and
B =13 (GeV/c) . For the sharp disk, R =1.42 fm and
A =0.34. It is easy to verify that for the sharp disk we
have cr,~/cr«, 2/——2=o«, /16rrB, that is, X,~

——o,&. The
value of C is negative: C = —R /192. At "low" energies
(ISR), the disk predicts minima at too low a value of

~

r ~, when compared with experiment, so this model is
not universally good.

Ball and Zachariasen (1972) developed a model by solv-
ing the multiperipheral equation for diffractive scattering.
The result was an elastic scattering amplitude

I I I 2
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FIG. 7. Semilog plot of various profiles Ima(b), each of which
gives o.„,=43 mb and 8=13 (GeV/c): dot-dashed curve,
gray disk; dotted curve, parabolic form. , Eq. (4.51), which satu-
rates the Mac Dowell-Martin bound; solid curve, Gaussian
shape; dashed curve, Chou- Yang model.

t (Gev/c)

FIG. 8. Semilog plot of the differential elastic cross sections for
the shapes shown in Fig. 7: dot-dashed curve, gray disk; dotted
curve, parabolic shape; solid curve, Gaussian shape; dashed
curve, Chou- Yang model.
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By comparison with the amplitude used in Eq. (4.45) we
see that this model corresponds to a uniformly gray disk
of growing radius R =Ra ln(s/so) and amplitude
A =~[in(s/so)) '. The total cross section grows as ins,
the elastic cross section is constant, and B increases as
ln (s/so).

A softer profile is given by

a =iA[1 (b—/R) ], b(R
a=O, b&R .

(4.51a)

(4.5 lb)

This is the shape that saturates the MacDowell-Martin
bound, cr,~/X, ~

———,. For our chosen total cross section
and slope, the appropriate parameters are R =1.74 fm
and A =0.226. The differential cross section,

4J ) (qR) 2JO(qR )
=4m.A R —,(4.52)

qR qR
is shown in Fig. 8.

As a further example, consider a Gaussian profile,

a = —,'iA exp[ (b/R) ]—, (4.53),

a(b, s)= —.(e ' —1)=—(1—e ' ') .
2l 2

If a dipole electromagnetic form factor,

(4.54)

G(q )= A
2

A +q
(4.55)

is used to represent the Fourier transform of the matter
distribution, 'then a convolution of this function with it-
self shows that 0 is a function of x =Ab, where

Q=A —,x K3(x) . (4.56)

Here E3 is a modified Bessel function, and the constant
A is selected so that the amplitude, Eq. (4.54), yields the

which gives cr„„=2mAR, o,~
mAR ——/2. , and 8 =R /2.

Thus, as for the sharp disk, X,~

——a,~. Of course, C =0 for
the Gaussian form. The appropriate parameters are
R =1.00 fm and A =0.68. The differential cross section
is compared to that for the previous examples in Fig. 8.

More realistic examples of the impact-parameter ampli-
tude a (b,s) can be found among the models that have
been proposed for elastic scattering. The Chou- Yang
model (Chou and Yang, 1968,1983; Durand and Lipes,
1968) postulates that the elastic scattering is the shadow
of the absorption resulting from the passage of one ha-
dronic matter distribution through another. The trans-
verse distribution of the matter is assumed to have the
same shape as the charge distribution, as measured by the
electromagnetic form factor. This assumption leaves only
the strength of the absorption to be fixed, and this can be
done by requiring that the total cross section as calculated
in the model agree with experiment. Thus the only ener-

gy dependence is that which comes implicitly through the
energy dependence of the total cross section. If the ab-
sorption at an impact parameter b is Q(b), then one
writes

correct value for the total cross section. The normaliza-
tion in Eq. (4.56) is chosen so that as x —+0, Q —+A. For
large x, 0—+cx e -, where c is a constant. In Fig. 7
the profile a/i is displayed as a function of impact pa-
rameter, with A =1.35 and A=0.845 GeV/c, which give
the same total cross section and slope parameter as before.
The value of A obtained in the fit is in remarkably good
agreement with the value A =0.71 (GeV/c) deduced
from the electromagnetic form factor. The resulting dif-
ferential cross section is shown in Fig. 8.

The Cheng, Walker, and Wu model (Cheng, Walker,
and Wu, 1973; Bourrely, Soffer, and Wu, 1983) is based
on field-theoretic studies which showed that at high ener-
gies, the dominant exchanges give amplitudes varying as
s'+'. Multiple exchanges produce an eikonalized ampli-
tude. As a phenomenological form, Cheng, Walker, and
Wu used in Eq. (4.54)

Q=f(Ee ' i )rexp[ —k(b +b )'i ] (4.57)

where f, y, A, , and bo are parameters. The phase associ-
ated with the energy dependence will be discussed later.
The constant y is small and plays the role of c above.

The sign of the curvature C for the four displayed
models is apparent in Fig. 8. The Gaussian form with
C=0 is a straight line on the semilog plot. The sharp
disk and the parabolic form that saturates the
MacDowell-Martin bound both fall below the Gaussian,
and thus have negative values of C. The Chou-Yang
model has positive values of C for the given parameters.
The measured value of C is =5 (GeV/c) . Roughly
speaking, a positive value of C requires a broader tail
than the Gaussian distribution has.

From Eq. (4.45) we see that the condition that C be
positive is

(b'» 2(b')', (4.58)

d bb"a
(b")= (4.59)

C. Energy dependence of cross sections
and slopes in models, and the approach
to "asymptopia"

While our primary concern is with model-independent
analysis, it is worthwhile to consider what the simple
models discussed above have to say about the energy

It is easy to see that a —[1 (b/R)t'] gives —a negative C
for every p ~ 0, while a —[1 (b/R)]t' gives —a positive C
for p & 4. If:we consider shapes of the form
a -exp[ (b/R) ], then i—f p )2, the curvature C is posi-
tive, while if p ~2, C is negative. In Fig. 8 we see that,
among the curves with diffraction minima, those with
negative C tend to have the minima at smaller values of

~

t ~, since the differential cross section turns down soon-
er than for curves with positive C.
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dependence of the total cross section, elastic cross section,
and the slope of the elastic peak.

First, we consider briefly the geometric scaling model.
The fundamental assumption of the model is that the only
"dimensionful" parameter is the total cross section. It
follows that o,~/o„, and X,~/o„, must be energy indepen-
dent. While this model is successful in treating the ISR
data, it cannot contend with the energy dependence of
these quantities observed in going from the ISR to the
SPS collider.

Next we consider a generic Chou- Yang model with

a (b,s) = ,
' i I 1 ——exp[—2 Q(b) ]I, (4.60)

X=o,)/o.„, (4.61a)

and

Y=Xd/o, , (4.61b)

are shown as functions of the total cross section in Fig. 9,

where Q is some generalization of the specific form of
Chou and Yang. Then 3 measures the strength of the ha-
dronic interaction and Q measures the hadronic overlap
density at a separation b. We take 0 to be independent of
the energy. The parameter 2 must be chosen to repro-
duce the total cross section. Now if the cross section in-
creases indefinitely, so does A. The cross section is
roughly 2~R, where R is the value of b at which
Q(b)=1/A. If 0 falls exponentially with b, R —in'.
Thus we obtain a cross section growing as ln 5 if 2 varies
as a power of s. The amplitude is, for large 2, nearly i/2
for b &R, and nearly zero for b &R. We see, then, that
for this class of models, asymptotically the profile ap-
proximates a black disk with growing radius.

The ratio of o.,~/o. „„which asymptotically will be —,
' in

these models, is only 0.22 at the SPS collider, so we are
not yet at the asymptotic state of the black disk. The ra-
tios

where we have fixed the Chou- Yang model to have
A=0. 845 GeV/c and varied the remaining parameter A.
The behavior is not too different from the observed
changes between the ISR'and the SPS collider.

For models that become gray or black disks asymptoti-
cally, the curvature parameter C must eventually become
negative, as it is for the sharp disk. In Fig. 10 we show
the behavior of C in the Chou-Yang model as a function
of the total cross section. We note that C, which is posi-
tive at the ISR, is indeed positive in the model at the ap-
propriate cross section of about 40 mb. However, in the
model, C becomes negative when the cross section reaches
about 100 mb. Thus we expect that the value of C will
change sign around the energy region of the Tevatron col-
lider. For this reason, it is important for experimenters to
measure directly the energy dependence of C in going
from the ISR to the Tevatron. The prediction that it will
change sign is more general than the Chou-Yang model.
It is the consequence of the nucleon-nucleon profile's
becoming more and more that of a disk.

In Fig. 9, we see that the curves for X and Y cross
when o.„,=85 mb. A Gaussian shape has C=O and
X = Y. Not surprisingly, we find in Figs. 9 and 10 that
X= Y near C =0. Of course, asymptotically, the model
becomes that of a black disk, and X eventually becomes
equal to Y again.

While we are concerned primarily with very low
momentum transfer, it is instructive to use the Chou-
Yang model to make some predictions at larger momen-
tum transfer (Block and Cahn, 1984). As stressed above,
the Chou- Yang model has no intrinsic energy dependence.
It acquires energy dependence through the variable A of
Eq. (4.56), which is adjusted at a given energy to repro-
duce the correct total cross section. Once 3 is deter-
mined, there are no remaining free parameters. In the
next section we shall make predictions for the total cross
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FIG. 9. Funct1ons X=o.,1/o. ,p, (sohd curve} and Y=&,&/o fpt

(dashed curve) in the Chou- Yang model, as a function of o.t
FIG. 10. Curvature parameter C in the Chou-Yang model, as a
function of o.„,.
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FIG. 11. Plot of the impact-parameter amplitude a(b) vs b, in
fermis, for the Chou-Yang model (solid curve) and the sharp
disk (dashed curve): (a) ~s =540 GeV; (b) Vs =2 TeV; (c)
~s =40 TeV. The single free parameter of the Chou-Yang
model is fixed to reproduce the total cross section anticipated
from the fits of Sec. V. The parameters of the disk are chosen
to reproduce the same total cross section and the slope parame-
ter obtained in the Chou-Yang model. No distinction is made
between pp and pp.

section as a function of the center-of-mass energy. Anti-
cipating these results, we can use the cross section at each
of several energies to fix the model and thus predict the
differential cross section. We show in Fig. 11 the

I'~

.81 =

~ 881 =

.8881 =

.88881 I I I I ~ ' I s ~ ~ ~

Itl (GeV/c)~

FICr. 12. Plot of do.„/dt, the elastic differential scattering cross
section, for both the Chou-Yang model and the sharp disk, us-

ing the impact-parameter amplitudes shown in Fig. 11: dotted
curves {for p=O) and dot-dashed curves (for nonzero p}, Chou-
Yang predictions; dashed curves (for p=O) and solid curves (for
rionzero p), predictions for the sharp disk. The energies are (a)
V s =540 GeV; (b) Vs =2 TeV; (c) t/s =40 TeV.
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ferential cross sections generated by these irnpact-
parameter distributions. If the amplitudes are taken to be
purely imaginary, there are sharp diffraction minima
where the amplitude goes to zero. To obtain more realis-
tic results, we have incorporated small imaginary parts'by
the prescription of Martin (1973). Iff is the purely imag-
inary amplitude and we wish to give it a real part so that
a particular value of p is achieved, we use

2

)f j22 f (462)
k

+p

For the sharp gray disk with a =-iA/2 inside a radius R,
this yields

dO~ 2 4=md R
dt

J) (qR)
[Jo(qR)]

qR
(4.62b)

D. Analyticity

The physical amplitude for elastic scattering f is de-
fined for s )4' and —4m &t &0. It is possible to
show that f (s, t) is really the limit of a more general func-

Figure 12 shows that at the SSC (40 TeV), the differen-
tial cross section for elastic scattering is likely to be indis-
tinguishable from that of a sharp disk. The location of
the first minimum moves in rapidly for the Chou-Yang
model until it is nearly as close in as in the gray disk
model. The general arguments above demonstrate that
this must happen eventually. Hence we define "asympto-
pia" as the energy domain where the elastic differential
cross section is essentially indistinguishable from that of a
sharp disk. What the numerical study reveals is that the
coalescence of the models with the sharp disk will take
place with the SSC machine presently being designed.

At the ISR and SPS collider, the observed values of C
are positive. Figure 12 shows that C should be negative
at the SSC, according to the Chou-Yang model. The
quantitative indicator of the onset of "asymptopia" is the
energy at which C=O, and our fits indicate that this
occurs very close to the energy of the Tevatron collider.
This progression can be viewed in Fig. 11, where the pro-
file of the nucleon-nucleon system is seen to develop a
characteristic "flat top, " starting at the Tevatron collider
energy.

We shall find in Sec. VI that, when our fit to the exper-
imental values of the slope is extrapolated to very high
energies, the values of 8 thus obtained are in substantial
agreement with those calculated from the Chou-Yang
model, using Eq. (4.29). In conclusion, we have used a
model-free analysis of t =0 and very small

~

t
~

data at
lower energies to predict the parameters needed to fix dif-
ferential elastic scattering cross sections at very large ~s
and at large —t. We consider this much more reliable
than using the dip structure at large —t of do„ldt (at
low Ms) to determine the energy dependences of the total
cross section and the p values, which are either undefined
or ill defined in most models of elastic scattering cross
sections.

tion in which s and t may take on complex values. [See
Eden (1967) for a comprehensive introduction and Martin
and Cheung (1970) for a thorough treatment. See also
Jackson (1960,1974).] In particular, if we fix t =0, then
f (s, t =0) is the limit of an analytic function ~ according
to

fez(s, t =0)= lim& (s +is, t =0),
c—+0

(4.63)

where c~O from positive values. Not only is the pp am-
plitude a limit of an analytic function, the pp forward
amplitude is another limit of the same analytic function.
The principle of crossing states that, to go from the pp
amplitude to the pp amplitude, we merely replace p2 by
—p4 and vice versa. This is equivalent to interchanging u
and s. The pp amplitude is obtained from ~ by

f (s, t =0)= limw ( —s +4m —iE, t =0),
PP '

q ,0
(4.64)

E =(s —u)/4m . (4.65)

For t=O, E is the laboratory energy for pp scattering.
The pp to pp interchange reverses the sign of E. More
precisely, the physical amplitude f at t =0 is the limit of
an analytic function u of a complex variable E, with cuts
on the real axis. The physical amplitude for pp scattering
f(E,t =0) is the limit of a (E+ic, t =0) as E. ~O from
positive values. The pp amplitude at t =0 is obtained as
the limit of ~ ( E i E, t =0—), ag—ain as E~O from posi-
tive values (i.e., from below). See Fig. 13.

Unitarity relates the imaginary part of the elastic
scattering amplitude to a sum over all physical states with
the same energy E. See Eq. (4.12). It is possible to show

FIG. 13. Complex E plane. The physical pp amplitude is ob-
tained as the limit of the analytic function ~ approaching the
right-hand cut from above. The physical pp amplitude is ob-
tained by approaching the left-hand cut from below. The un-
physical cut is not shown. The integral dispersion relations are
obtained by integrating along the indicated contour (if one ig-
nores the unphysical cut and pole). The contours are really
closed by infinite semicircles above and below the real axis.

again with c~O. Now, for t=O, u = —s+4m, so we see
that the pp amplitude is found by evaluating ~ using u
as the variable, rather than s. This symmetry is clearer if
we use as a variable
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that, when we continue the elastic amplitude in the com-
plex variable E, the imaginary part of the elastic ampli-
tude for E next to the real axis vanishes if there is no
physical state with energy E that communicates hadroni-
cally with pp or pp. Since pp communicates with the m~
channel (and the channel with a single m), there is an "un-
physical region" on the real axis where 1m~&0, even
though there is no physical elastic scattering at this ener-

gy. (Actually, this region can be probed slightly by study-
ing pp atoms whose binding energy reduces the total ener-

gy to below 2m. )

From these considerations we conclude that the cut
structure of the forward elastic scattering amplitude is as
follows. The right-hand cut begins at threshold, E =m.
The single pion pole occurs when u =m, that is, when
E=m —m /(2m). The two-pion cut begins when
u =4m, that is, when E=m —2m /m. Between the
left-hand cut and the right-hand cut, except at the pion
pole, the amplitude is real on the real axis.

A function like ~, which is real on a segment of the
real axis, is called real analytic. The Schwarz reflection
principle states (Titchmarsh, 1939, p. 155) that if W is
real analytic, then M (z')=M (z). Thus if M has a cut
on the real axis, its imaginary part changes sign in going
from one side of the cut to the other, but the real part is
the same on both sides. In other words, the discontinuity
across the cut is imaginary.

The Schwarz reflection principle is quite easy to prove.
Suppose that ~ (z) is analytic in some region and that this
region includes a finite segment (however small) of the
real axis. Now define a function P(z) by S(z)=~ (z*).
We can show that S is in fact an analytic function of z:

has a power-series expansion, M (z) =a()+a&z
+a2z + . . so S(z)=ao+a&z+a2z + . . . Clearly
the two series have the same radius of convergence, so 9'
is analytic. Moreover, by construction M and 9 coincide
for values of z on the real axis. However, by the principle
of analytic continuation, the function is uniquely deter-
mined by its values on a segment, so S and M are the
same. Thus Ã*(z)=~ (z) and S'(z) =M (z*), so

(z) =a (z*), as we wished to show.
In practice, we shall use real analytic functions that

have a simple cut structure. The left-hand cut will begin
at E= —m, just as the right-hand cut begins at E =m.
Ignoring the unphysical region of the pion pole and the
two-pion cut is permissible, since we are interested in the
high-energy region, which is far from these singularities.

It is very useful to define two amplitudes that are com-
binations of the pp'and pp elastic amplitudes:

branch cuts to extend from m to infinity and from —m
to negative infinity along the real axis. We define the
function so that it is real along the real axis between —m
and m. This is the behavior appropriate to a forward
scattering amplitude. See Fig. 13.

Just above the right-hand cut

(E)=(E+m) —(E —m) exp( i~—a),
and for E))m,

(4.68)

(E)=2i sin(ma/2)
~

E
~

exp( i rr—a/2), (4.69)

while just below the left-hand cut

(E)=( E —m—) exp( isa)—( E—+m—)

and for —E))m,
(4.70)

S+(E)= —, I in[(m +E)/Eo]+in[(m E)/Eo] I, (4—72)

which has the same cut structure as before and which we
can define so that it is real on the real axis between the
two branch points. We then find that above the right-
hand cut (and below the left-hand cut), for E »m,

8+(E)=ln(p/Eo) 2
i~— (4.73)

where p is the laboratory momentum.
Another useful even function is

9'+ =v'(m +E)(m E) . — (4.74)

(E)= 2i s—in(ma/2)
~

E
~

exp( isa/—2) . (4.71)

The phases are explained in Fig. 14. If S were the con-
tinuation of the pp amplitude, Eqs. (4.68) and (4.69)
would give the pp amplitude and Eqs. (4.70) and (4.71)
would give the pp amplitude. Clearly the amplitude is
odd. It has all the properties we want for the odd part of
the forward scattering amplitude. Just below threshold, it
is purely real. The thresholds are in the correct place if
we ignore the unphysical cuts (as we shall do henceforth).
From this example, we infer that odd amplitudes which
behave asymptotically as E have the phase
i exp( i~a/2). This—inference is made rigorous by the
Phragmen-Lindelof theorem (Titchmarsh, 1939). The
corresponding analysis for even amplitudes shows that
their phase is exp( isa/2)—, if their power behavior is
EQ

Of course, not all amplitudes need have power-law
behavior. An example of an even function of a different
sort is

f+ =
2 (f,p+frr ) . (4.66)

The amplitude f+ is even under E~ E, while f is-
odd.

Consider, as an example, a prototypical function pos-
sessing the analyticity properties of a scattering ampli-
tude,

& (E)=(m+E) —(m —E) . (4.67)

This function has branch points at +m. We can take the

FIG. 14. Definition of the cut structure for S of Eq. (4.67).
is made we11 defined by specifying that

=
~,
m E~ e'" —

~
I+E

~

e '~ . S—ee Eqs. (4.67)—(4.71). For
the pp amplitude, g —+0, y~~. For the pp amplitude, g —+ —m. ,

y~Q.
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Above the right-hand cut, we define this function so that
it is precisely —ip. Asymptotically, this is just —iE, in
agreement with our general result for even functions with
power-law behavior.

%'e conclude this section with an illustrative list of sim-
ple analytic functions together with their asymptotic
behavior. It is from these forms that we shall eventually
build our scattering amplitude.

General form

S+——(m+E) +(m E)—
8+——v'(m +E)(m E)—
9'+ ———,

' Iln[(m E)/—Eo]+ln[(m +E)/Eo] I

=(m +E) —(m —E)

High-energy form above right-hand cut

E exp( i—ma/2)2c os(era/2)
—iE
ln(E /Eo ) i 7r /—2
iE exp( —isa/2)2 sin(era/2)

From this table we can recognize the traditional forms
for Regge behavior (see, for example, Eden, 1967). A for-
ward amplitude varying as E contributes to the total
cross section as E '. If the amplitude is even (the

pomeron, f,A2), the phase of the amplitude is

exp( —isa/2). Thus for the usual pomeron with u= 1,
the phase is —i. For odd amplitudes (p, co), the phase is
i exp( i wa —/2)

E. Integral dispersion relations

The traditional means of testing analyticity of the
scattering amplitude is to use Cauchy's theorem to obtain
a dispersion relation, that is, a relation between the real
and imaginary parts of the amplitude. (See Jackson, 1960
and Eden, 1967, for a more complete discussion. ) Let
~ (E) be the analytic continuation of f(E,t =0), so that
~ is analytic in the cut E plane. Then we can write

M(E)= fdE' (4.75)

1 ~,w (E'+is) —w (E' —is)
2~i m

+ dE', w (E'+is) —w (E'—ic)
00 E' —E

(4.76)

If M =~ + is even, so that ~ (E'+i c)=a ( —E' —ie), ,

w +(E)= f dE'I—mw +(E'+i E)

where the counterclockwise contour does not cross the
cuts or encircle any poles. (As explained above, we ignore
"unphysical singularities" like the single pion pole and
two-pion cut. Because we are interested only in high en-

ergies, these have little influence on our answers. ) We
choose a contour that passes just above and just below the
cuts on the real axis, as shown in Fig. 13. If the contribu-
tion from the semicircular contours at m vanish, we have

C

(E)=—f dE'Im& (E'+ is )I

1 1
(4.78)

The integrands have singularities at E'=+E that just
produce the identity Im& =Im&. The real part of ~ is
found as a principal-value integral. Thus

1 00

Ref+ (E)=P f dE'—
m

2E'
Imf+ (E'),E'2 —E

Imf (E') .2E
2 E2

00

Ref (E)=P—f dE'
m

(4.79)

(4.80)

If the integrals (4.79) or (4.80) do not converge because
of the behavior off as E moo, or bec—ause of the contribu-
tions from the semicircles at infinity, we must modify the
approach slightly. Consider the odd function

=~ +/E. If we insert this in Eq. (4.78) and take no-

tice of the pole at E =0, we find

Ref+(E)= Ref+(0)
1 ~, 2E2+I'— dE' Im + E' . 4.81

m E'(E' 2 E&)

[Here the amplitude at f+(0) really is the analytic con-
tinuation ~+(0) of the physical amplitude. ] This is
called a singly subtracted dispersion relation, and the first
term on the right-hand side is called a subtraction con-
stant. Clearly the subtracted dispersion relation has better
convergence properties than the unsubtracted relation.
On the other hand, there is an additional constant to be
determined. If we try the same trick for the odd ampli-
tude 8+ a /E, we find ——that we just reproduce the un-

subtracted relation (4.80). Instead we must use
/E2. With care exercised at the pole at E =0,

we find the twice-subtracted dispersion relation for the
odd amplitude

Ref (E)= E Ref ' (0)

1 1
(4.77)

+P f dE' —Imf (E'),
m E'2(E'2 E2)

(4.82)

while if u =~ is odd, where f' (0) denotes dM IdE, the analytic continua-
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tion, at E =0. We see that here the subtraction results in
a term linear in E. If the odd amplitude grows as fast as
E, it is this twice-subtracted dispersion relation that must
be used.

The importance of these dispersion relations is that
both Ref and Imf can be measured for the forward direc-
tion. The latter is measured through the optical theorem.
The former is obtained by measuring the interference be-
tween the hadronic and Coulombic amplitudes at very
small

~

r ~, which yields p, the ratio of the real to the
imaginary part of the forward amplitude.

The dispersion re1ations above may be combined to give
relations for the real part of the pp and pp amplitudes in
terms of the measured cross sections. The Froissart
bound requires that the total cross section not grow faster
than a power of Ins, so the even dispersion relation re-
quires a single subtraction. If the difference of the cross
sections falls as a power of s, the odd dispersion relation
needs no subtraction. We then combine Eqs. (4.80) and

t

(4.81) and the optical theorem to find [note that
f»(0) =f -(0)]

Ref»(E) = Ref»(0)

o»(E') o -(E')
+~ i pp pp

Ref (E)= Ref (0)

(4.83)

dE o»(E')
+p i pp

m

o»(E')

(4.84)

If the difference of the cross sections does not decrease
to zero at large E, we must use the twice-subtracted odd
dispersion relation, Eq. (4.82). The result is

d Ref» ~dEE, 1 1
Ref (E)=Ref»(0)+E (0)+P, , p', o»+ E,dE E 2 E E PP E+E (4.85)

d Ref
(E)=Ref,-(0)+E (0)+& I, p E, E~ + E Eo,— (4.86)

Note that df»(0)/dE= df (0)/dE—, whe-re more prop-
erly we should write dw /dE, and that f -(0)=f»(0).

On occasion, some care must be taken with the con-
tours at infinity that we casually ignored above. Consid-

er, for example, the analytic function E itself. This is
manifestly odd and has no imaginary part. The disper-
sion integral along the real axis, even unsubtracted, cer-
tainly converges, since it is identically zero. The unsub-
tracted dispersion relation, Eq. (4.80), would then say
E=0. The problem is that the contribution from the
contour at infinity cannot be ignored. The twice-
subtracted dispersion relation, Eq. (4.82), correctly gives
the identity E =E.

We review briefly some applications of dispersion rela-
tions to pp and pp scattering. The first use of a dispersion
relation for analyzing pp and pp elastic scattering was
made by Soding (1964). He introduced a once-subtracted
dispersion relation, taking into account the unphysical re-

gion by a sum over poles. Experimental cross sections
were inserted into the relation for V s ~ 4.7 GeV, and

asymptotic power laws were used to parametrize the data
for higher energies. He calculated p values for both pp
and pp scattering. At that time, experimental data only
for v s (6 GeV were available.

The next use of dispersion relations, by Amaldi et al.
(1977), occurred after the ISR data had shown that the pp
cross sections were rising. The data then available includ-
ed pp cross sections and p values up to v s =62 GeV and

pp cross sections up to Ms —15 GeV. They used the
once-subtracted relations, Eqs. (4.83) and (4.84). Contribu-
tions from pole terms and the unphysical region were
neglected. The authors did not use experimental cross

I

sections directly, but rather chose to parametrize them by

and

opp:B] +C]E '+B2ln~s —C2E (4.87)

o. —=Bi +C&E '+B2ln~s+ C2E

where E is in GeV and s is in CxeV . These forms were
then inserted into the dispersion relations.

From a X fit made simultaneously to the data for opp,
o —,and p», for the high-energy region 5 & V's & 62 GeV,
the parameters B~, C~, v&, B2, y, C2, and v2, as well as
the subtraction constant, were extracted. However, there
were several other parameters fitted that considerably
smoothed their results (and incidentally lowered the X
per degree of freedom substantially), by allowing the nor-
malizations of various data sets, including the p values, to
be varied within the range allowed by the systematic er-
rors. In addition, in the forms (4.87) and (4.88) they arbi-
trarily chose as a scale for s the value 1 GeV . A more
proper procedure would be to use the form Inr(s/so) and
fit both y and so. Nonetheless, the fit by Amaldi et al.
was adequate. The authors also did not fit the p(pp ) data
that then existed. Since the time when this work was
published, precise experimental measurements of cr and p
for the pp system have been made at high v s. These new
measurements now allow one to pin down accurately the
choice of parameters.

Dispersion relations were applied to the pp and pp sys-
tem by Del Prete (1983), who considered the possibility
that the difference of the cross sections grew asymptoti-
cally as lns. As demonstrated above, in such an instance
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the twice-subtracted dispersion relations are required,
since the integrals in Eqs. (4.83) and (4.84) are divergent.
Del Prete claimed to have used the singly subtracted
dispersion relations of Soding, which do not converge for
growing cross-section differences. Presumably the report-
ed finite results are artifacts of the numerical integration
scheme employed.

m 2E'Imf (E')
Ref (E)=P f—dE'

m
(4.94)

Now let E'=m exp(g+g), E=m exp(g), and expand

dispersion relations can be obtained from the odd disper-
sion relation:

F. Differential dispersion relations

Imf ((+g)=g g"Imf'"'(g) .
nf

(4.95)

The integral dispersion relations require extensive nu-
merical work for their evaluation. At low energies, where
the cross sections are rapidly varying near resonances, this
is an unavoidable problem. At higher energies, the cross
sections are smooth, and this can be exploited by assum-
ing that the cross sections are well described by a simple
function. This was the approach of Bronzan and co-
workers (Bronzan, 1973; Bronzan, Kane, and Sukhatme,
1974; Jackson, 1974), who obtained and utilized "differen-
tial dispersion relations. " Before we can derive these ap-
proximate relations, we need a different sort of integral
dispersion relation, one which gives the imaginary part as
an integral over the real part. These relations were first
employed by Gilbert (1957). These "reverse" dispersion
relations can be obtained by exploiting the even function

$+(E)=(m E)— (4.89)

where 9'+ is defined to be real on the real axis for
—m &E &m. This is just the reciprocal of the function
given in Eq. (4.74). Thus above the right-hand cut
9'+ —— i

~

E m—
~

'~ . No—w if M+ is the analytic
continuation of an even amplitude f+, we can construct
the even function

1 " 2exp(2$+r))
exp(2(+ 2g ) —exp(2$)

&& g q"Imf'"'(g) .
1

(4.96)

Only the odd terms contribute. I.et Z be the operator
azar'.

Formally,

Ref (g) = —f dg Imf (g) .
sinhg

(4.97)

We treat the definite integral as if Z were a real number

~

Z
~
~1, so that the integral above converges, and we

find (Gradshteyn and Ryzhik, 1965, p. 344)
r

Ref (g) = tan Imf (g),
2

(4.98)

or

Of course, we cannot really do this because there are
singularities along the real axis, but we ignore these
niceties and assume E ~&m, to write

A +(E)=9+(E)w+(E) . (4.90)

2E'ImA +(E'+i E)
Re% +(E)=P f dE'—

m EI2 E2
(4.91)

or, for E just above the right-hand cut,

Ignoring the possible need for subtractions, we have the
usual dispersion relation,

Ref (g) = tan — Imf (g) .
2 Bg

(4.99)

Imf+ (g) = — tan — Ref + (g) .
2 8

(4.100)

A similar treatment of the Gilbert dispersion relation, Eq.
(4.90), gives

2E'Ref+ (E')
Imf+ (E)= P f dE'— —

m

' 1/2
E —I

X E~2 2

For E ~~I, this gives the approximate relation

(4.92)

Red = tan ImA,aa
2

(4.101)

The above relations are tractable only when we make a
fit to the data using a simple function. For example, if
f=aE, the relations can be evaluated exactly. For the
odd amplitude we find

2E Ref+ (E')
Imf+(E) = P f dE',—2— (4.93)

This looks like the dispersion relation for ~, except that
the real and imaginary parts are interchanged and a
minus sign is introduced.

From Eqs. (4.80) and (4.93), we can derive the differen-
tial dispersion relations. These are approximate relations
that are much easier to employ than true dispersion rela-
tions, since they involve only derivatives. The differential

i.e., 2 = i exp( —i—era/2)
~

2 ~, as already established in
the table in Sec. IV.D above. Similar results are obtained
for an even function behaving as a power and for a loga-
rithmic function. So far nothing new has been achieved.
If more complicated functions are used, it is hard to
evaluate the power series in the differential operator, and
the series must be truncated to give an approximation.
This prompts the following question: Why not just use
the simple analytic forms themselves and bypass the dif-
ferential dispersion relations?
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G. Use of simple analytic functions
to fit the forward amplitude

are taken as parameters.

We shall circumvent all the difficulties of dispersion re-
lations and differential dispersion relations by the direct
use of analytic functions to fit the forward pp and pp
scattering amplitudes. This technique was first employed
by Bourrely and Fischer (1973). Since that time, the qual-
ity and extent of the data have improved enormously,
especially for pP. Thus significantly better results can
now be obtained.

1. Even amplitudes

The form we have chosen for th|: even amplitude is

P(ln2mp /so i ~/—2)'
4rrf+ ip 2 —+- +C +W,1+a (In2mp /s o i vr/2—)

(4.102)

cr+ ——3+P(ln s/so —~ /4), (4.103)

which saturates the form of the Froissart bound discussed
in the next section. The form is similar to that used by
Amaldi et al. (1977), except that so is left properly as a
free parameter. Permitting the parameter a to take on
small positive values allows for a deviation from this
form. Indeed, asymptotically the form gives a constant
cross section cr+(ao)=A+p/a. The constant c' is per-
mitted by the requirements of analyticity for the even am-
plitude and corresponds to a portion of the subtraction
constant in the usual dispersion relation treatment. The
parameter c' is unimportant in the region of interest,
since it lacks the factor of p present in the dominant
terms. We shall also see that very fine fits are obtained
with a =0. In fact, adequate fits are obtained even
without the Regge term. This is possible since the ln s/so
simulates the falling Regge piece for s &so. Thus we find
that just three parameters, A (in mb), p (in mb), and so (in
GeV ), are needed to parametrize the even amplitude.
The parameter a is useful, however, for it will provide a
means of estimating how nearly the data conform to an
idealized behavior with Froissart bound form.

2. Conventional odd amplitudes

The odd amplitude is known to be dominated by a
piece with the approximate behavior s '~ (that is,
o cruz -s '~ ). We write i—n—the high-energy limit

4rrf = Ds ~exp[i rr( 1 —a—)/2], (4.104)

where the power o, and the magnitude D of the amplitude

where the Regge term W [shown in Eq. (5.2a) with coeffi-
cient c] gives a decreasing contribution to the cross
section at high energies and where, as usual,
p=(E —m )'~. For a =0, the form is quite simple at
high energies, where s=2mE, and gives (neglecting the
falling Regge term)

3. Unconventional odd
amplitudes —the odderons

While the forms given above are quite adequate to
describe all the high-energy data, we shall want to consid-
er some less conventional forms for the odd amplitude. If
o.„,-ln s, the fastest growth allowed by the Froissart
bound, then b,o may grow as fast as lns (see next section).
We consider three prototypical odd amplitudes:

f' '=( —1/4rr)E' 'E, (4.105a)

g'" = ( —1/4n)e'"E[ln(2mp/&o) —i~/2] ~

fp' =( —1/4~)E"'E [in(2m@/&o) —i~/21' (4.105c)

where the c.'s are real constants. We shall refer to the am-
plitudes in Eqs. (4.105) as odderon 0, odderon 1, and
odderon 2, respectively (Lukaszuk and Nicolescu, 1973;
Kang and Nicolescu, 1975; Joynson et al. , 1975), general-
izing the term introduced by Joynson et ai (1975).. The
full odd amplitude is given by the sum of f from Eq.
(4.104) and one of the terms from Eq. (4.105). Odderon 0
affects the p values but not the cross sections, being en-
tirely real. Odderon 1 gives a constant cross-section
difference, while odderon 2 gives a cross-section differ-
ence growing as lns. In Sec. V.C we analyze the existing
data to determine to what extent odd amplitudes of the
above type can be excluded.

H. Asymptotic behavior: "Pomeranchuk theorems"
and the Froissart bound

~. The original Pomeranchuk theorem

When the highest-energy data available came from Ser-
pukhov, it seemed that the pp total cross section was
becoming constant. In such circumstances, the original
Pomeranchuk theorem would apply (Pomeranchuk, 1958).
This theorem states that if pp and pp (or more generally,
ab and ab) cross sections become constant asymptotically
and if the ratio of the real to the imaginary part of the
forward scattering amplitude increases less rapidly than
lns, the two cross sections become equal asymptotically.

It is easy to understand this result by considering a
class. of examples. If pp and pp cross sections become
constant, then f+ — iE. Iff grows—more slowly than
this, then surely the cross-section difference falls with E.
Suppose then that f grows asymptotically as
E[ln(s/so) —im/2]~. Certainly p cannot be greater than
1. If P= 1, the cross-section difference is asymptotically a
nonzero constant, but the ratio of the real to the imagi-
nary part grows as lns, violating the conditions of the
theorem. If p& 1, the real part over the imaginary part
grows as (ins)~, that is, less rapidly than lns, but then the
cross-section difference goes as (Itn')~ ', that is, it falls to
zero. Thus we see that the Pomeranchuk theorem holds
for amplitudes of this class.
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2. The Froissart bound

(i) The scattering amplitude f grows no faster than s .
(ii) For fixed s (i.e., k ), the amplitude is analytic in the

region
~ q l

&4m„.

We use (ii) and evaluate f at q=2im using Eqs. (2.17)
and (4.21). Thus

f=—fd b exp(iq. b)a (b,s)

=—f b db dy exp(2m b cosy)a (b,s)

=2p bdbI0 2m b a b, s &Ks (4.106)

where I0 is a Bessel function. We seek to maximize the
cross section, subject to this constraint. Clearly it is best
to make a(b, s) purely imaginary. Since Io(z) is an in-

creasing function of z, it is best to keep all the contribu-
tions at the lowest possible value of b in order to mini-
mize the above integral. For these reasons, we take
a(b, s)=i for b &b, and a(b, s)=0 for b ~b, . Thus we
have

Since the early operation of the ISR it has been known
that the pp total cross section starts rising after attaining
a minimum of about 38 mb. The cross section was found
to be rising approximately as ln s. The fundamental re-
sult of Froissart, refined by Martin (see Martin and
Cheung, 1970 and references therein), states that this is
the fastest rate permissible asymptotically. We present
here a derivation of the Froissart bound based on two fun-
damental results, which we take as given:

3. The revised Pomeranchuk theorem

Now that cross sections are seen to rise with increasing

energy, we need a revised Pomeranchuk theorem. Sup-
pose the pp and pp cross sections grow as (lns)r. Then we

can show that the difference of the cross sections cannot
grow faster than (1ns)'r~ ' (Eden, 1966; Kinoshita, 1966).

The proof goes as follows. Referring to Fig. 6, we see
that since the amplitude a (b) must lie in the Argand cir-
cle (we drop the indication of the energy at which the am-

plitude is evaluated),

~

Rea(b)
~

(Ima(b) . (4.110)

As we saw in the demonstration of the Froissart bound,
the impact parameters that contribute significantly to
scattering must lie within some value b, which grows as
lns. Thus we can approximate the scattering amplitude,
using Eqs. (4.21) and (2.17), as,

the bound is a peculiar one. First, a cuts off sharply. We
shall see that this is a rather general feature of all profiles
that lead to ln s growth of the total cross section. In ad-
dition, where a is nonzero, it is equal to i. Thus the
scattering is purely elastic. It is more common in models
to find a totally black disk, with a =i /2 I.n addition, the
a chosen above extends as far in impact-parameter space
as allowed by analyticity. If it extended a distance grow-

ing as lns but with a lesser coefficient, a smaller cross sec-
tion proportional to the square of this coefficient would

result. In particular, a black disk with radius approxi-
mately b, /7 would give a cross section growing as 0.6
mbln s, the value we shall find from the data analysis of
the next section.

b

f=2pi f dbbIO(2m b)

ipb,
2 Ii(2m b, ) &Ks2' ~

b

f(q =0)=~fd ba(b)=2p f b db a(b) . (4.111)
0

(4.107) It follows that

Now, using the asymptotic expression for the modified
Bessel functions for large z,

I„(z)~ exp(z) IV2vrz,

we see that

b

~

Ref(0)
l
=2p f 'b db Rea (b)

b

&2p f 'b db
~

Rea(b)
~

b

&2p f b db[Ima (b)]'~ (4.112)

(2m„b, )' exp(2m b, ) &const&&s . (4.108a) Next we apply the Cauchy-Schwartz inequality to (4.112)
to obtain

Since 2m„b, ~&1,

1
b, = [ln(s Iso) —ln ln(s Iso)],

2m~
(4.108b)

where s0 is an unknown scale.
Now, using Eq. (4.23), we find, neglecting the slowly

varying term ln ln(s lso),

~...=4fd'b Ima (b,s) =4~b,'

2 [In(s /so)] =60 mb[ln(s/so)]
m~

(4.109)

It should be noted that the form for a (b,s) that saturates

b

Ref(0)
l

&2p f b dbIma(b)
1/2

1/2 ' b

f 'bdb

~tot
& 2p

8m'
(

1

b 2)1/2

(4.113)

(4.114)

(const Xs(lns/so) (Ins/so) .

Now the generic form for the odd amplitude is

f -s(lnslso i vrl2)r . —

Comparing Eqs. (4.113) and (4.114), we find that
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Thus the difference of the cross sections goes as

b,o-(lns/so)r '&const&&(ins/so)r

as we wished to show.

(4.115)

(4.116)

so the differential cross-section ratio goes to unity as re-
quired by the Cornille-Martin theorem, although the
difference of the differential cross sections grows as ln s.
A particular consequence of this theorem is that the ratio
of the slope parameters goes to unity, i.e.,

Bpp/B ~1 . (4.119)

4. The Fischer theorem

We see that growing cross-section differences are al-
lowed. Is there any way other than just looking at the ex-
isting data for cross-section differences to infer whether
the cross sections are going to approach each other even-
tually? There is a theorem, due to Fischer and co-workers
(Fischer et al. , 1978; Fischer, 1981), which states, in part,
that if above some energy, the signs of Imf'" and Ref'"
remain the same, then the difference of the cross sections
tends to zero. (However, if the difference of the cross sec-
tions tends to zero, no conclusion can be drawn about the
relative sign. ) Clearly this theorem is satisfied by the am-
plitude f of Eq. (4.104), for 0&a&1. The addition of
an odderon-1 or an odderon-2 amplitude leads to opposite
signs for Imf'" and Ref"' in the limit of high s. This is,
of course, in accord with the Fischer theorem, since these
terms lead to nonvanishing cross-section differences.

It seems, then, that by looking at high-energy data for
signs of the real and imaginary parts of the odd ampli-
tude, we might predict whether or not the cross-section
difference will ultimately go to zero. The problem is that
at any finite energy, the contribution of one of the odde-
ron terms might still be too small to have changed the
sign of one or the other part of the amplitude. That
change could occur farther out in energy. We shall see an
example of this among our fits where the crossover point
occurs near v s =100 GeV, while the data extend only to
vs =62 GeV.

It is not the case that the ratio of the p parameters goes
to unity. Using the relation between the differential cross
section in the forward direction and the total cross sec-
tion, we derive a new corollary: the ratio of the squares of
the p values goes to unity, i.e.,

(p~~/p -)'~1 . (4.120)

Indeed, for odderon 2, the two p values go to nonzero
numbers that are negatives of each other.

6. If the total cross section grows as In s

For the cross section to grow as ln s, there must be con-
tributions to Ima(b, s) for values of b with a range vary-
ing as lns. Let us define

b, = 1

2m~
ln(s /so ),

a (x,s) =a (b =xb„s),

(4.121)

(4.122)

where so is fixed. Now from the asymptotic form of Eq.
(4.106),

f dx s "a (x,s) &Ks . (4.123)

This means that for x ~ 1, a(x,s) must fall to zero with
increasing s. However, there must be some region x & 1

where a remains finite, so that the cross section will truly
grow as ln s, giving a contribution [see Eq. (4.23)]

5. The Cornille-Martin theorem
and a new corollary

We have seen that as sh oo, o. -/opp —+1, whether or
pP

not o. — cr~„~0—Similar. ly, Cornille and Martin (1972a,
pp pp

1972b,1972c,1974) have proved that inside the forward
diffraction peak (suitably defined),

dopp dopp
(s, t) (s, t) 1,

dt ' dt
(4.117)

(4.118)

even though the difference of the cross sections at fixed t
may not go to zero. We shall illustrate this theorem by an
example. Suppose the cross section goes as ln s and that
there is an odderon 2. Then both f+/o and f /p go as
(lns /so

iver/2)

at—t =0 We can .imagine that the
behavior is similar for t&0. The odd and even ampli-
tudes, however, are out of phase by 7r/2 The result .is
that

cr=4mb, f x dx Ima(x, s) . (4.124)

Thus the piece of a (b,s) that gives rise to the Inzs cross
section is most simply obtained by an a that is indepen-
dent of s and that vanishes for x & 1. This excludes, for
example, a Ciaussian shape in impact-parameter space

a (b,s) =A exp( cb2/b, ), — (4.12S)

f-is ln sF(t ln2s), (4.126)

where F is an entire function (of its argument t ln2s) of
order one-half. [That is, F(z) is analytic everywhere in
th«i»«p»ne and as

I

z
I
~ao,

I
F

I
is bounded by

c exp(c' Iz
I

'
) with c and c' positive constants. ]

which has an infinitely long tail. If there is a piece of the
impact-parameter distribution that has a Gaussian distri-
bution, it cannot contribute a piece to the total cross sec-
tion that grows as ln s. From the ansatz that a (x,s) is in-
dependent of s, we can obtain a heuristic proof of the
theorem of Auberson, Kinoshita, and Martin (1971), that
if the cross section grows as ln s, then the amplitude is of
the form
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Eq. (4.19), using Eq. (2.17), becomes a finite integral:
1f -sb,' x dx a (x,s)Jo(qb, x) .

0
(4.127)

f-is ln s(a+btln s+ . ),
so that

(4.128)

The theorem follows from the observation that the in-
tegral is over a finite range and that the Bessel function is
an entire function. Asymptotically, for complex argu-
ment, the Bessel function Jo(z) is bounded by an exponen-
tial, exp iz ~. Thus the integral is bounded by exp(c'qb, )

-exp[c'( t ln s—)'~ ].
From the representation of Eq. (4.126), we can derive

results for the slope parameter at t =O. It is clear from
the MacDowell-Martin bound that if the total cross sec-
tion grows as fast as ln s, so must B, since the elastic
cross section cannot grow faster than ln s. The same re-
sult can be obtained by expanding Eq. (4.126) in powers
of tin s

where c"=c't ' at fixed t. Thus c" becomes very
large for very small t. This nonuniform behavior was
discovered by Martin (Martin, 1982). As a practical
matter, it still seems reasonable to use the form for
B(s,O), even at nonzero values of t, since the other form,
Eq. (4.130), is derived on the assumption that

i
t

~

ln s, or
equivalently

~

t
i a«„ is large. In particular, if the dif-

ferential cross section had diffraction minima, the limit
with t fixed would correspond to measuring the slope out-
side the diffraction minimum.

While the form of the amplitude given by Auberson,
Kinoshita, and Martin (1971) is a powerful means of ex-
amining high-energy behavior when the cross section
grows as ln s, it should be noted that the assumption of
this particular energy dependence is critical. If the cross
section grows as ln' s, the proof fails. We are unaware of
any weaker form of the theorem that pertains to such cir-
cumstances.

V. ANALYSIS OF t =0 AMPLITUDES
8(s,O) —ln s, (4.129)

B(s,t) ~ 2c'i t
~

'~ lns
dt

& c"1ns, (4.130)

in agreement with our expectations. If, instead of taking
t =0, we fix t&0 and let lns increase, we have the ex-
ponential bound referred to above. From the definition,
Eqs. (4.25), we find

A. Conventional amplitudes

We define ~ as the analytic continuation of the for-
ward scattering amplitude into the complex E plane,
where E is the complex energy (E is the pp laboratory en-
ergy if Eis real and )m, the nucleon mass). The's are
real analytic functions having cuts on the real axis from
+ m to oo and from —m to —oo. We choose the nor-
malizations such that, for fits without odderons,

( I in[2m (m +E)/so]+in[2m (m E)/so] J /2)—
4Irm + = —&(m +E)(m E) &+p——

1+a( I in[2m (m +E)/so]+in[2m (m E)lso]] /2)—

—
I [2m (m +E)]" '+ [2m (m E)]"—

2 sin(ITp/2) (5.1a)

4Ir~ =&(m +E)(m E)—[ [2m (m +E)] ' —[2m (m —E)]2 cos( IrIx/2) (5.1b)

where A, /3, so, a, c, p, D, and a are real constants to be fitted by the data. Clearly, ~+(E)=~+( E) and—
(E)= —~ ( E), i.e., ~ + is —an even amplitude and ~ is an odd amplitude. To find the scattering amplitudes

for pp scattering, f+ and f, we evaluate ~+(E +is) and ~ (E+ie), in the limit of real E and e~O (for the pp am-
plitudes, we could evaluate the ~ 's at —E —ir, or, correspondingly, use the appropriate symmetry properties of the
'M's). We obtain

P[ln(2mp /so) —iIr/2]
f+ =i A+ —,+c [(2m)(E —m)]~-'e™1-~'"

p 1+a [ln(2mp/so) —iver/2]

+-[(2m)(E+m)]~ ' —[(2m)(E —m)]"
2 sin(Irp/2)

(5.2a)

4Ir „ I (I )y2 [(2m)(E +m.)] —[(2m)(E —m)]
p 2 cos(Ira/2) (5.2b)
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terpret the even amplitude cs" ' as an even Regge ex-
change term, with the odd amplitude Ds ' as an odd
Regge exchange term. The term in'P gives the ln s rising
cross section, and 2 corresponds to a constant cross sec-
tion. It will turn out that the coefficients using (5.5a) and
(5.5b), i.e., using (5.6a)—(5.6d), are nearly identical to
those obtained using the kinematically correct equations
(5.2a) and (5.2b). The only important difference is that
(5.2a) and (5.2b) give an improved g for the fit. This is
because the low-energy kinematics (the cut structure in E)
is treated correctly in (5.2a) and (5.2b) for Vs =5 GeV,
where they are of importance. For Vs ~ 10 GeV, the re-
sults using either (5.2a) and (5.2b) or (5.5a) and (5.5b) are
numerically indistinguishable. However, the introduction
of an even Regge amplitude as an alternate description of
the data is a departure from our earlier treatment. The
ln s/so term in the even amplitude, for s &so, simulates
this term in the cross section. We have fixed the power p
to be 0.5, since we expect it to be about the same as a,
which turns out to be =0.5.

Clearly, setting a =0 in (5.2a) gives rise to a cross sec-
tion that continues to rise indefinitely as ln s/so. The in-
troduction of a nonzero a in (5.2a) gives us a functional
form that will have the cross section rise locally as
ln s/so (in the energy region 5 & Vs & 62 GeV), if a « l.
However, as s —+ ~, i.e., at a very high energy, the cross
section will flatten out and tend to a constant value,
2+(13/a ), for positive a. Thus we model the case where
the Froissart bound is not truly saturated (it rises as
ln s/so only locally), and eventually, the cross-section rise
stops, going to a constant cross section at ao. We consid-
er this extreme case a measure of the possible error due to
extrapolation beyond the region of the fit, 5 & v s & 62
GeV.

The fits were made using seven different types of exper-
imental data, o(pp), o(pp), bp, b,o, p„, p(pp), and p(pp),
along with their associated experimental errors (we define
~P=~(PP ) ~(PP), ~p=p(PP) p(PP), and p—.,=[p(PP)
+p(pp)]/2). The X was minimized using the seven
quantities and their quoted errors. No attempt was made
to adjust any of the data systematically. (For some relat-
ed fits, see Gauron and Nicolescu, 1984.) The sources of
the data used in the fits are given in Table II.

In our earlier work, we had included in f+ a real con-
stant term (which of course does not contribute to cr)

Since its effect on the p value is through the real part of
f+, it is proportional to the constant term divided by p,
and its contribution is vanishingly small in the energy re-
gion of interest. Thus its influence is negligible, and we
have neglected it here.

The results of our various fits are summarized in Table
III. For the cases where e =o =0 (fit 1), we get an excel-
lent reproduction of the data using five parameters A, P,
so, D, and a, with a X /df (X /degree of freedom) of 1.17
for 76 degrees of freedom. We obtain A =41.74+0.04,
P= 0.66+0.01, so ——338+8, D = —39.4+ 1.6 and
a =0.48+0.01. If we introduce the even Reggeon
(the term in c), we get, for a =0, fit 2, which
has a X /df = 1.15 for 75 degrees of freedom. We

The optical theorem relates the cross sections or+ and o.

to the above amplitudes by

o+ = Imf+
4m.

(5.3a)

4w
rr = Imf (5.3b)

where p is the laboratory momentum. Hence the imagi-
nary portions of (5.2a) and (5.2b) .give the appropriate
cross sections o.+ and o, from which we form

( )
(o +o' )

2
(5.4a)

and

o(pp) = (o+ —o )

2
(5.4b)

Equations (5.2a) and (5.2b) simplify greatly in the limit of
E»m, where s is given by s=2mE=2m@. Using the
notation f for the limit off as E~ ao, we obtain

4~ [In(s/so) —im. /2]
f+ i A——+p

p I+a [In(s/so) —im/2]

+ CSP
—1e rm(1 —p)/2 (5.5a)

and

4~ ~ D a —1 im(1 —a)/2= —Ds e (5.5b)

forms discussed in Sec. IV.G. If we put a =0 in (5.5a),
we find, by inspection of the real and imaginary parts of
(5.5a) and (5.5b), the very simple and useful formulas

772
o(pp)= A+P ln s/so—

4

&P &A+c sin s~ '+D cos s
2 2

(5.6a)

2

o(pp)= 2+P ln s/so—
4

7TP '7T'A+c sin s" ' —D cos s
2 2

(5.6b)

Pm Ins/so —c cos(~p/2)s" '+D sin(no. /2)
p(pp) = s

o(pp)

(5.6c)

(5.6d)

We have essentially used the forms (5.6a)—(5.6d) in our
earlier work (Block and Cahn, 1982a), where we intro-
duced only the coefficients A, P, so, D, a, and a. We in-

13m lns /so ccos(m p!2)s"—' Dsin(era/2)—
p(pp) = s

o(pp)
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TABLE III. Results of fits to total cross sections and p values. See Eqs. (5.1)—(5.6). The parameters 9
and P are in mb; se is in GeV; a, p, and a are dimensionless; c is in mbGeV" "', and D is in
mbCxeV"

Fit number
2

So

c
p
D

a
x'i«

df

41.74+0.04
0.66+0.01

338.5+7.7

—39.37+ 1.6
0.48+0.01

1.165
76

41.30+0.28
0.62+0.03

293.6+28
8.4+5. 1

0.5
—40.51+1.8

0.47+0.01

1 ~ 146
75

41.70+0.04
0.64+0.02

332.7+7.9

—39.20+ 1.5
0.48+0.01

0.0056+0.003
1.127

75

41.11+0.23
0.59+0.02

275.1+22
10.9+4. 1

0.5
—41.32+ 1.9

0.46+0.01
0.0082+0.003

1.058
74

find A =41.30+0.28, P=0.62+0.03, so=294+28,
D= —40.5+1.8, ca=0.47+0.01, and c=8.4+5. 1, using
p=0.5. Again, this fit is in excellent agreement with the
data. The units are such that o. is in mb if E, I, p, and
vs are in GeV. The introduction of a&0 results in fits 3
and 4. The X /df is not changed significantly, and we
find very small positive values of a, which are between 2
and 2.5 standard deviations from zero. Clearly, had we
found negative a and

t
a

~

&&1, we could not have used
the fit for extrapolation, since o~A+(/3/a) as spec.
We find that asymptotically o.~156 mb for fit 3 and
o.~113 mb for fit 4; All of the above fits are plotted in
Figs. 15(a) and 15(b) for c =0, and in Figs. 16(a) and 16(b)
for c&0 (the even Regge term). It is clear that these fits
reproduce the observed data in the energy region
5 &~s &62 GeV. Also appended to the cross-section
curves is the recent experimental value for o.(pp) at the

SPS collider at v s =540 GeV (UA4 Collaboration,
1982b; UA1 Collaboration, 1983), which we have correct-
ed for a p value of 0.20. Our predictions are in very good
agreement with this measurement. We remark parenthet-
ically that for a=0, the curves are essentially the same
for v's & 10 GeV, if we use the simple equations
(5.6a)—(5.6d).

We find [Figs. 15(a) and 16(a); also see Table IV] that if
the cross sections keep rising as ln s/so, at the Tevatron
collider (v's =2 TeV), o~ ——98.3+1.2 mb and o2 ——95.9
+1.9 mb, where the subscripts refer to the fit number and
the errors are those generated by the fit (1 without an
even Regge term, 2 with an even Regge term, with both
having a=0). At the proposed SSC collider (Vs =40
TeV), we predict o

&

——196.4+3. 1 mb and cr2 188.8——+5.6
mb. The p values predicted at the Tevatron collider are

p&
——0. 198+0.002 and p2 ——0. 193+0.'004, whereas at the
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FIG. 15. (a) Total cross sections o.„„in mb, for pp and pp, as a function of Vs, in GeV. Below Vs =100 GeV, the uppercurve cor-
responds to pp and the lower to pp, using fit 1 (c,a =0). Above this energy, the difference in cross sections is too small to be visible.
The upper curve above this energy corresponds to the Froissart bound form, with a =0 (c =0, fit 1), while the lower curve is the best
fit for a&0 (c=0, fit 3). The experimental data used in the fit were in the energy interval 5 & Vs &62 GeV. The experimental SPS

pp cross section at V s =540 GeV is appended for comparison, as is the cosmic-ray lower limit (Yodh, 1983) for the pp cross section.
To guide the reader, the energies of the Tevatron collider and the SSC are indicated. (b) p values for pp and pp. Below Vs =40
GeV, the upper curve is for pp and the lower for pp, using fit 1 (a,c =0). Above this energy, the curves split, with the lower of each
pair corresponding to a&0 (c =0, from fit 3) and the upper to a =0 (c =0, from fit 1). At very high energies, the differences be-
tween pp and pp disappear and the two a =0 curves (fit 1) coalesce, as do the two a &0 curves (fit 3).
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FIG. 16. (a) Total cross sections o„, for pp and pp, as a function of V s. The legend is the same as for Fig. 15(a), except that the
even Regge coefficient c (c&0) is fitted. The fit used for a =0 is fit 2 and the fit used for a&0 is fit 4. (b) p values for pp and pp,
as a function of Vs. The legend is the same as for Fig. 15(b), except that the even Regge coefficient c is fitted. The fit used for
a =0 is fit 2 and the fit used for 0&0 is fit 4.

SSC they are p&
——0.163+0.001 and p2 ——0.160+0.002.

Again the errors represent the uncertainties in the fit,
given the functional forms assumed.

For the fits with a &0, the predictions at v s =540
CzeV are o.

3
——65. 1+2.4 mb and o.4 ——61.6+2.4 mb, and

p3 —0.14+0.03 and p4
——0. 1 1 +0.02. The cross-section

predictions at this energy for a&0 are too close to the
values predicted by the a =0 fits for the present —10%
cross-section measurement to distinguish. At V s =2
TeV, the situation is more favorable, and we predict the
(a&0) values cr3 ——80.0+6.8 mb and a& ——72.2+5.4 mb,
with the corresponding values p3

——0.11+0.03 and

p4 ——0.08+0.02. Thus measurements of o. and p for pp at
the Tevatron collider should easily distinguish between
the cases of a&0 and a =0, i.e., whether or not the cross
section keeps rising as ln s. At Vs =40 TeV (the SSC),
the a&0 predictions are cr =3107.8+20. 1 mb and o.4
=89.0+12.8 mb, along with p3 ——0.05+0.02 and p4 ——0.04
+0.01.

At the present time, the measurements of o(pp) at the
SPS collider are not sufficiently accurate to distinguish
between the cases of a =0 and a&0. The only evidence

bearing on whether the cross sections continue to rise as
ln s/so is preliminary cosmic-ray data (Yodh, 1983),
where the cross sections for p-air collisions are reduced to
a lower limit on the pp cross section at a mean energy of
10 TeV. The lower limit is shown in Figs. 15(a) and 16(a)
and is evidence in favor of the cross sections continuing
to rise logarithmically. In this regard, the value of the
ln s/sz coefficient is 13-0.6 mb. This is to be contrasted
with the Froissart-Martin bound, which says that o. must
rise less rapidly than (n/m )ln s/so .-601n s/so mb,
where m is the pion mass. Thus our value of f3 is only
—1/o of the saturation coefficient. Hence it is not ap-
propriate to say that we have "saturated the Froissart-
Martin bound, " in spite of the fact that the cross section
seems to rise as ln s/sz.

TABLE IV. Predictions for o.t t p, and 8 at high energies. The predictions are the same for pp and pp
since no odderons are included. Both fits 1 and 2 have cross sections growing as ln s.

Fit
number

1

2
1

2
1

2
1

2
1

2
1

2

V s (TeV)

0.540 (SPS)
0.540 (SPS)
2.00 (Tevatron)
2.00 (Tevatron)

20.0
20.0
40.0 (SSC)
40.0 (SSC)

100.0
100.0
500.0
500.0

o. (mb)

70.37+0.62
69.32+0.89
98.30+1.17
95.93+1.87

169.46+2.57
163.39+4.55
196.38+3. 10
188.84+5.60
235.87+3.88
226.15+7.15
316.00+5.46
301.75+ 10.4

0.200+0.002
0.194+0.005
0.198+0.002
0.193+0.004
0.172+0.001
0.168+0.002
0.163+0.00 1'

0.160+0.002
0.152+0.001
0.149+0.002
0.134+0.00
0.133+0.001

8 (GeV/c)

16.65+0.74
16.66+0.59
19.53+ 1.41
19.57+ 1.12
26.03+3.15
26.13+2.50
28.34+3.81
28.47+3.03
31.64+4.78
31.81+3.79
38.14+6.75
38.39+5.35

X,)/o.

0.227
0.223
0.270
0.263
0.347
0.332
0.368
0.352
0.394
0.376
0.436
0.413
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TABLE V. Results of fits to total cross sections and p values including odderons. See Eqs. (5.1}—(5.6) and (5.8). The parameters A,
P, and E are in mb; se is in GeV; a and p, are dimensionless; c is in mb GeV"' "', and D is in mb GeV " '. Fits 5 and 6 correspond
to odderon 0, fits 7 and 8 to odderon 1, and fits 9 and 10 to odderon 2.

$0
C

p
D
a

X'/df
df

41.73+0.04
0.68+0.02

340.4+0.5

—42.07+2.2
0.46+0.02

—0.29+0. 12
1.105

75

41.51+0.30
0.65+0.03

317.4+31
4.3+5.6
0.5

—42.31+2.2
0.45+0.02

—0.25+0. 13
1.112

74

Fit number
7

41.70+0.04
0.67+0.01

345.8+8. 1

—41.35+1.7
0.48+0.01

—0.12+0.04
1.059

75

41.61+0.29
0.66+0.04

336.0+33
1.7+5.7
0.5

—41.47+1.8
0.48+0.01

—0.11+0.04
1.072

74

41.66+0.05
0.65+0.01

350.3+9.6

—35.34+2. 1

0.50+0.02
—0.04+0.02

1.089
75

10

41.36+ 0.26
0.62+ 0.03

316.1+30
6.0+5.0
0.5

—36.70+2.4
0.49+0.02

—0.04+0.02
1.084

74

B. Can a Ins rise fit the data'P

To verify the form of the rise, we have tested the fit using an even amplitude that would cause the cross section to rise
only as lns/so, i.e., we introduce the amplitude f+, via

r

f+ —— A+P[ln(2mp/so) —ivr/2]+c [2m(E —m )]" 'e' "
p 2 sin m.p/2

(5.7)

with @=0.5 and 4rrf /p being given by Eq. (5.2b). This
is a test to see how well the data can be reproduced utiliz-
ing a lns/so term, as contrasted to a ln s/so term. The fit
is very poor, giving rise to a 7 /df =7.2 for 76 degrees of
freedom. The predicted tr at the SPS collider was much
too low. Even if we employed p =0.6, the 7 /df was 4.1,
equally unsatisfactory. Fundamentally, one could not use
a lns/so term and simultaneously reproduce both the
cross sections and the p values in the energy region
5 & Ms & 62 GeV. Thus we conclude that fitting all avail-
able data in this energy domain requires the presence of a
term varying essentially as ln s/so, and that just a lns/so
term (or, indeed, any lower power) is ruled out.

C. Odderon amplitudes

Up to this point, we have concerned ourselves with fit-
ting the data using the odd amplitude f given by Eq.
(5.2b). This amplitude, in the limit of s~ &x&, has b,cr~O
and bp~O. The form of Eq. (5.2b) is suggested by an
odd Regge exchange term. However, the requirements of
analyticity are compatible with odd amplitudes (the
"odderons"), which give her~ nonzero constant or even
b,o.~lns/so, as s~ao (Lukaszuk and Nicolescu, 1973,
Kang and Nicolescu, 1975; Joynson et al. , 1975). (See
Sec. IV.G.) To test for the presence of these odderon
terms, we introduce three types of odderon amplitudes

f 'J', where j=0, 1, or 2, via

~ ~ ~ ~ I ~ ~ ~ ~ ~ i ~ ~ I
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FIG. 17. (a) Total cross sections cr„„in mb, for pp and pp, as a function of Vs, in GeV: solid curve, pp; dashed curve, pp. The fit
utilizes odderon 2 (e=0, from fit 9). The data utilized in the fit are in the energy interval 5& Vs &62 GeV. The SPS experimental
cross section at V s =540 GeV is appended for comparison. (b) p values for pp and pp, as a function of V s. The legend is the same
as that for {a).
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FIC. 18. (a) Total cross sections for o „for pp and pp, as a function of Ws. The legend is the same as that for Fig. 17(a), except
that odderon 0 was used (c =p, from fit 5). (h) p values for pp and pp, as a function of V s. The legend is the same as that for Fig.
17(b), except that odderon 0 was used (c =0, from fit 5).

(5.8a)

(5.8b)

4 f' '= E' 'E ln—2fflp

So

2

LENT

(5.8c)

Here the c's are real constants. We form a new odd am-
plitude f"' 'J'=f" +f'1', where the old odd amplitude is
given by Eq. (5.2b). The results of these fits are summa-
rized in Table V. All fits with odderons used a =0. Fits
5 and 6 used odderon 0 (j=0), 7 and 8 used odderon 1

(j= 1), and 9 and 10 used odderon 2 (j=2), for the cases
of c=0 and c&0, respectively. We note from Eqs.
(5.8a)—(5.8c) that odderon 0 gives bo —+0, odderon 1

gives ho ~En /2, and odderon 2 gives ho ~E lns/so, as
s~ ao. All of the odderon fits give a satisfactory X, with
the X /df ranging between 1.06 and 1.11. The coeffi-
cients c' ' are all small and negative, being about 2—2.5

standard deviations from zero. For fits 5, 7, and 9, which
correspond to c =0, we find E' '= —0.29+0. 12 mb,
c'"=—0.12+0.04 mb, and c' '= —0.04+0.02 mb. The
results for odderon 2 (with c =0) from fit 9 are plotted in
Figs. 17(a) and 17(b). We see the crossover of b,o from
positive to negative values at vs -80 CxeV in Fig. 17(a).
The most striking feature of this fit is the separation Ap.
The p value for pp rises to about 0.23, whereas the pp
value goes only to 0.15.

It is very difficult to rule out the presence of the odde-
ron terms given only the existing data. Although the
odderon amplitudes are very small (in comparison with
the constant amplitude A, they are & 1%), they of course
dominate the odd amplitude as s —+ao. The data do not
require adding the presence of odderons, but they also do
not rule out the presence of these terms at a two-
standard-deviation level. If the odderons are as large as in
these fits, comparisons of o(pp) and cr(pp) at Vs &500
GeV would easily confirm this. Very precise p compar-
isons would be required to rule out odderon 0. The curves
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FIG. 19. (a) Total cross sections o„, for pp and pp, as a function of v s. The legend is the same as that for Fig. 17(a), except that
odderon 1 was used (c=p, from fit 7). (h) p values for pp and pp, as a function of Vs. The legend is the same as that for Fig. 17(b),
except that odderon 1 was used (c =0, from fit 7).
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for fits 5 (odderon 0, c=O) and 7 (odderon 1, c=O) are
shown in Figs. 18(a) and 18(b), and Figs. 19(a) and 19(b),
respectively.

The results of the odderon fits illustrate that the Fisch-
er theorem must be applied with care. In the region in
which data now exist, Ref"' and Imf"' have the same
sign. For the fits with odderon 1 or 2, at high energies
the imaginary part changes sign, since the term in c is
negative and dominates the odd amplitude, causing Ao. to
change sign and become negative. Thus, for sufficiently
high energy (just beyond the range of existing data), both
the real and the imaginary portions of f"'" have opposite
signs, as required by the Fischer theorem, since ho. does
not go to zero as s~ oo. However, a premature applica-
tion of the Fischer theorem at existing energies leads one
to the false conclusion that the cross sections become
asymptotically equal, since at these energies both the real
and imaginary portions of the odd amplitude have the
same sign.

D. Summary of amplitude analysis

We summarize this section with the following con-
clusions.

(1) All of the cross sections and p values for pp and pp
above V's =5 GeV can be simply and very satisfactorily
parametrized with 6 (or even 5) coefficients, using Eqs.
(5.2a) and (5.2b) or using Eqs. (5.1a) and (5.1b). Above
~s =10 GeV, the simple equations (5.6a)—(5.6d) are suf-
ficient.

(2) Measurements of o„, and p for pp at the Tevatron
collider (Vs =2 TeV) are necessary to decide whether the
cross section continues to rise as ln s/so i.e., a =0, or2

whether the cross section flattens out. If the cross section
continues to rise, we predict cross sections of about 100
mb at V s =2 TeV and 200 mb at &s =40 TeV. On the
other hand, in the fit with a &0, they are predicted to be
only 70 mb and 90 mb, respectively (for fit 4), a very large
experimentally accessible difference. Further, the p value
is 0.20 for a =0 whereas p is 0.08 for a&0 (fit 4) at
Vs =2 TeV, again a very large effect.

(3) The fitted coefficient P of the ln s/so term for the
rising cross section is only 1% of the Froissart-Martin
bound of =60 mb for this coefficient.

(4) The existing p and o„,data for pp and pp in the en-

ergy region 5&v's &62 GeV require a ln s/so term. A
term only varying as lns/so (or a lower power) is not suf-
ficient.

(5) The odderon amplitudes are within 2—2.5 standard
deviations of zero, i.e., they are compatible with zero, and
are at most about l%%uo as strong as the constant even am-
plitude.

Vl. SLOPE ANALYSlS OF NEAR-FORWARD ELASTIC
SCATTERING DATA

The near-forward hadronic amplitude for pp and pp
elastic scattering is reAected in three experimentally deter-

mined parameters, the total cross section o.„„the p value,
and the nuclear slope parameter B, defined as

d d~n
B(s)=—ln

dt dt
at t=O . (6.1)

In the preceding section, we analyzed t=0 data in the
energy domain 5 & v's &62 GeV, in order to extract for-
ward hadronic elastic scattering amplitudes f+ and f
We found that we could get an excellent parametrization
of the data using either a five-parameter fit (fit 1 of Table
II) or a six-parameter fit (fit 2 of Table II), both of which
had a ln s/so behavior as s~ao. We recall that fit 2
used an even Regge exchange term es" ', with p=0. 5,
whereas fit 1 had c =0. Both fits used a =c.=0.

In this section, we shall use the results of fits 1 and 2 to
obtain the s dependence of the nuclear slope parameters B
for pp and pp elastic scattering, using experimental data
in the near-forward direction [defined as the small-

i
t

~

region, t
~

&0.02 (GeV/c) ]. We write the invariant ha-
dronic elastic differential scattering cross section as

do.„vr
~
f+g+(t, s)+f g (t,s)

~

dt p2
(6.2)

where p is the laboratory momentum. We have assumed
real, exponential "form factors" in Eq. (6.2), with

g+(t, s)=exp(B+t!2) being the form factor for the even
amplitude and g (t,s) =exp(B t/2) being the form fac-
tor for the odd amplitude. Since we are concerned only
with very small

~

t i, the assumption of an exponential
form is the practical equivalent of replacing e ' by
1+Bt/2. We rewrite Eq. (6.2) as

[ [Ref+exp(B+t/2)+Ref exp(B t/2)]
dt p

+[Imf+exp(B+t/2)+Imf exp(B t/2)] I,
(6.3)

with the + sign for pP and the —sign for pp. In the lim-
it of s~ ao and p~ oo, we can simplify Eq. (6.1), using
Eq. (6.3), to become

B(s)=B+(s)+ bB(s), (6.4)

with the + sign for pp and the —sign for pp, defining
bB(s)=B (s) B+(s). We have ass—umed in Eq. (6.4)
that the ratio of the odd to even cross sections
o /o+ «1 [o and o+ are defined in Eqs. (5.3) and
(5.4)].

In our analysis we shall include slope data in the high-
energy region 5 & U's & 62 GeV, and only those data mea-
sured in the very low

~

t
~

region,
~

t
~

-0.02 (GeV/c),
so that we can reasonably approximate the definition of B
made in Eq. (6.1).

In order to determine the form of the s dependence of
B+(s), we observe that as shoo, B(pp)=B(pp)=B+,
since f /p ~0. The high-energy elastic scattering is
known to be diffractive, with an approximately exponen-
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tial slope B. Further, at high energies, p is known to be
small. Thus, setting p=0, we approximate o,&, the total
elastic scattering cross section, as X,~, i.e.,

I
~el ~el B+

2
tot

16'+ (6.5)

where we have used the optical theorem in Eq. (6.5) and
where o«, is the total cross section. We rewrite Eq. (6.5)
as

Oel ~tot

16'+

Since o,~/cr„, must be less than 1, we must require that B
grow with s at least as rapidly as the total cross section
cr„„ i.e., that B+(s) must grow as ln s, since o„, grows
as ln s (Horn and Zachariasen, 1973). We therefore
parametrize the even slope as

B+(s)=C++D+1ns+E+ln s, (6.7a)

where s is measured in GeV . The odd amplitude is a
Regge exchange term, Ds ', so we choose for the odd
slope the normal Regge behavior

B (s) =C +D 1ns, (6.7b)

where s is in GeV . We emphasize the importance at
high energies of the term in ln s in Eq. (6.7a). It is essen-
tial for the slope parameter at t =0 to follow the trend of
the total cross section for large s. This term has not been
included in a recent analysis of Burq et al. (198$), and its
absence has seriously distorted their slope predictions for
high s. In particular, if one plots B vs lns, a positive cur-
vature similar to that measured for o-„, is expected, and
not a straight line, at large s.

The measurements of B in the energy range 5 &~s
& 62 GeV do not form a smooth set in s, unlike the situa-
tion for p and o„„where there is a good agreement be-
tween various experimental groups. Indeed, the slope sit-
uation is quite confused, and even after corrections for
curvature, many groups quote inconsistent values at the
same energies.

It is a Solomonic task to decide which results are
correct and should be included, and which results are
false and should be excluded from our analysis. We were
guided in our judgment by the principle that the slope
data should roughly resemble the shape of the total cross
section curve as a function of s, and thus have positive
curvature. Using this principle to choose between con-
flicting sets of data, we chose to fit the data from the
sources displayed in Table VI. The data have been fitted
in a g minimization program using the experimental
data for B(pj), B(pp ), and hB, along with their associat-
ed errors. No attempt has been made to adjust the data
for systematic errors between various data sets.

The results for fit 1 are, in (CxeV/c)

C+ =10.90+0.55,
D+ = —0.08+0.19,
E+=0.043+0.016,
C =23.27+1.6,
D —=0.93+0.17,

with X /df = 1.51 for 52 degrees of freedom.
The results for fit 2 are as follows:

C+ = 10.94+0.45,
D+ = —0.09+0.15,
E+=0.043+0.013,

TABLE VI. Sources for the data used in the fits for the slope parameter.

Reference

Foley et a/. , 1963
Bellettini et al. , 1965
Amaldi et al. , 1971
Chernev et al. , 1971
Holder et al. , 1971
Barbiellini et al. , 1972
Bartenev et a/. , 1972

Bartenev et al. , 1973a

Antipov et al. , 1973
Ayres et a/. , 1977

Baksay et al. , 1978
Fajardo et al. , 1981
Amos et a/. , 1983a,1983b

Accelerator

AGS
CERN-PS

ISR
Serpukhov

ISR
ISR

FNAL

FNAL

Serpukhov
FNAL

ISR
FNAL

ISR

Data used

&(pp)
&(pp )

&(pp )

B(pp)
&(pp)
&(pp )

&(pp)

&(pp )

&(pp)
&(pp )

&(pp )

&(pp )

5B
&(pp )

&(pp )

V s (CieV)

5.1,5.4,5.8,6.2
6.2,7.2
30.8,45.1,53.1

7.7,9.8,11.6
30.5
21.5,30.8,44.9,53.0
7.0,9.8, 11.9,13.8,
15.4, 16.8, 18.2, 19.4
9.8, 10.5,12.1,13.9,
15.6, 16.9,18.2, 19.4,
21.2,22.6,24.3,25.3,26.4,27.3
7.0,8.8
9.8,11.6,16.3
9.8,11.6,13.8, 18.2
44.9,52.8,62.5
15.4, 16.8,18.2, 19.4
52.8
52.8
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TABLE VII. The error squared matrix for slope fit 2.

c+
D+
E+
C
D

1.9 X 10—' —6.7X 10
2 3X10

5.5 X 10—'
—1.9 X 10-'

1.7 X 10—4

—1.1X 10—'

5.7 X 10—'
—5.5 X 10—'

1.9 X 10—'

4.8 X 10—'
—1.8 X 10-'

1,5 X 10-'
—1.3 X 10

1.7X10-'

C =23.30+ 1.4,
D =0.94+0.13,

32 —r rr
I

'31
38-
29-
28-
27-
26-
25-
24-
23-
zz-
21
28-
19-
18-
17-
16-
15—
14-
13-
12
11
189-

4 18 188 1888 IHHHH 188888

I/e (Gev)

FIG. 20. Nuclear slope parameters B for pp and pp elastic
scattering, evaluated at

~

t
~

=0.02 (CxeV/c): solid curve, pp;
dashed curve, pp. The data used in the fit were in the energy in-
terval 5&Vs &62 CzeV. The four AB values of Fajardo et ah.

(1981) were used in the fit, but are not shown in the figure. The
experimental SPS pp slope value at V s =540 CxeV is appended
for comparison. To guide the reader, the energies of the Teva-
tron collider and the SSC are shown.

with X /df = 1.51 for 52 degrees of freedom. The corre-
lated errors for fit 2 are given in Table VII.

The results of these fits are essentially indistinguish-
able. Figure 20 is a plot of our fit 2 for the slopes B(pp)
and B(pp) vs V's, where only data in the energy interval
5 & v s & 62 GeV have been used in the fitting. We have
also plotted in Fig. 20 the recent SPS measurement for
B(pP ) at V's =540 GeV, for comparison with our predic-
tion. The agreement is within errors. Our prediction
at V's =540 GeV for fit 2 is B(pp) =16.66+0.59
(GeV/c), where the error in the prediction is due to the
uncertainties in the fitting parameters.

Our prediction for B at the Tevatron collider (V's =2
TeV) is 19.57+1.12 (GeV/c), and at the SSC (Vs =40
TeV) is 28.47+3.03 (GeV/c)

%"e can now determine the total elastic scattering cross
section X,~ as a function of s, for both pp and pp elastic
scattering. If we consider a nonzero p value, Eq. (6.5) is
modified to become

g„=a„,(1+p2)/16',

(6.9)

We plot the ratio of X,&/tT„, vs s for both the pp and pp
systems (for fit 2) in Fig. 21. The ratio for pp at v s =3
GeV is 0.27+0.06 and is about 0.17+0.003 in the ESR
range. The pp ratio at Vs =3 GeV is 0.24+0.06, and is
about 0.17+0.003 in the ISR range, reaching 0.22+0.008
at the SPS collider (Vs =540 GeV). The measured ratio
at the SPS is 0.21+0.01, in good agreement with our pre-
diction. It is easy to show, using Eqs. (5.6a), (5.6b), and
(6.6), that asymptotically, the ratio

X,)lo„, +13/1.6rtE—+ as s ~ &x (6.10)

VII. A REGULARITY OF THE pp
AND pp SYSTEMS

% e notice from Fig. 21 that for all s, the ratios X,~/o. t t
are surprisingly close to being the same for both the pp
and the pp system, in spite of the fact that, at the lower
energies, the total cross sections, p values, and nuclear
slopes B are very different. An even more surprising reg-
ularity is seen when we examine the quantity 3, defined

388 i i I I s ~ ~
~

.368

.348

.328

~ ~ ~ I ~ I
/

I ~ ~ ~ I ~ I ~ ~ ~ I ~ I ~ ~

Ob" .Z88

.Z68

.Z48

.Z28

.288

. 188

.168
188 188888

I/s (Gev)

FIG. 2l. Ratio of X,~/a.„„for pp and pp, as a function of Vs:
solid curve, pp; dashed curve, pp. The curve was computed us-
ing fit 2 (a, v=0, c&0).

Thus, as infinite energy [using Table III and E+
=0.043+0.013 in Eq. (6.10)], the ratio X,&/cr„,
=0.74+0.23. Indeed, this result is also consistent with
the black disk prediction of 0.5. We remark that even at
as large an energy as V's =500 TeV, the ratio has only
grown to 0.44.
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(1+ 2)1/2

16mB

X,)
(1+ 2)1/2

(7.1)

whjch is proportional to the magnitude of the impact-
parameter amplitude at zero impact parameter. The ratio

A(pp )

A(pp)
(7.2)

VII I. CONCLUSIONS

Elastic pp and pp scattering are of renewed interest
since the acquisition of high-quality pp data from the
ISR. Those data demonstrated that the total cross section
for pp scattering exhibits the same rising trend first ob-
served for pp scattering at the ISR. Measurements at

is plotted versus s in Fig. 22. This ratio is compatible
with 1, within the errors of our fitting procedure. For ex-
ample, the error in R at vs =3 GeV is +0.040, at
vs =5 GeV is +0.025, at vs =10 GeV is +0.010, at
v s =52.8 GeV is +0.001, and essentially goes to zero for
vs =62.5 GeV. The above errors take into account the
correlation errors of fit 2 for the forward scattering am-
plitudes, as well as the slope fit. It is of course not
surprising that R =1 for the high-energy data, where
Ao.„,, Ap, and kB~0 as s~~. What is important is
that at the lowest energies (3 & Ws & 15 GeV), where the
total cross sections and nuclear slopes are very different
(up to —35%), the ratio R is compatible with 1, within
fitting errors of &2.5%%uo. This result implies that at all s,
the magnitude of the impact-parameter amplitude is the
same for pp and pp elastic collisions at zero impact pa-
rameter. At large impact parameters and low energies
they diverge, since the slope parameters 8 (which deter-
mine the shape of the impact-parameter representation)
are very different. It remains a fundamental problem for
any model of elastic pp and pp scattering at high energies
to explain this newly observed regularity.

ln s/so

1+aln s/so
(8.1)

very small
~

t
~

have determined the ratio of the real to
the imaginary part of the scattering amplitude in the
same energy regime.

Just as the ISR program was concluding, a new and
dramatj, c chapter in elastic scattering was beginning with
the SPS collider. The enormous jump in energy was a
great challenge to our ability to extrapolate from the ISR
and lower-energy data. Indeed the extrapolation indicated
that the SPS total cross section should be more than 50%%uo

higher than the minimum pp cross section of 39 mb. Pre-
dictions for the slope parameters were not as easy to
make, since the low-energy data were inconsistent.

The extrapolations of the cross section were not just
curve-fitting because analyticity connects the cross section
with the real part of the forward amplitude. Indeed the
simultaneous fitting of the o.„,and p data with analytic
functions is impressive evidence for analyticity.

Not only are the analytic fits quite successful, but their
form is very provocative. The data cannot be fitted suc-
cessfully with a 1n(s/so) rise, but are well fitted by a
ln (s/so) rise. Thus the total cross section seems to satu-
rate the form of the Froissart-Martin bound

o„,-ln s/so, although with a coefficient about 1% as

large as that allowed in principle. If we surmise that
asymptotically the elastic scattering will be described by a
black disk, we find that its radius is only about —, as large

as allowed by the Froissart-Martin bound. Why? If
quantum chromodynamics is indeed the correct theory of
hadronic interactions, it should be able to explain this
fundamental result. High-energy nucleon-nucleon scatter-

ing poses a long-term challenge to the theoretical com-
munity.

Does the ln (s/so) growth of the total cross section per-
sist indefinitely? Only further experimentation can tell.
It is possible, however, to quantify the issue. By introduc-

ing the parameter a we have allowed for deviations from
the ln s form. Roughly, the increasing part of the total
cross section varies as

1.888

1.868—

1.848—

1.828—

1.888—

.988

.968—

.948—
(8.2)

Here a is a small positive quantity. The smaller it is,
the closer the form is to the Froissart behavior. The value
of a can be translated into an energy scale at which there
is departure from the ln s form by considering the curva-
ture of the cross section as a function of 1ns. The curva-
ture is positive near the minimum of the cross section, but

is eventually riegative as the cross section approaches its
constant asymptotic value. We define s„as the value of s
at the transition where the curvature is zero. It is easy to
see that

(s„)' =(so)'/exp(l/&12a ) .

.9283 188888

v s (Gev)

FICr. 22. Ratio A=A(pp)/A(pp), as a function of Vs, where
2 =0„,(1+p ))' /167TB.

The values obtained in fit 3 give

( s„)' =865+4so GeV,

while from fit 4 we find

( St ) =400 150 GeV

(8.3)

(8.4)
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The introduction of (s„)'/ is analogous to the introduc-
tion of a scale parameter in QED to measure the depar-
ture from an idealized theory of point particles. The
analogy here is that the idealized theory is cr(shoo )

-ln (s/so), and (s„)' gives a measure of the lowest en-

ergy needed to observe a meaningful departure from it.
The numbers in Eqs. (8.3) and (8.4) indicate that it may be
possible at the SPS and Tevatron colliders to see devia-
tions from the ln s/so behavior.

The ISR data showed that the pp and pp total cross sec-
tions continue to approach each other as the energy in-
creases, in conformity with the usual description, which
has the difference of the cross sections varying as s
We do not know of a fundamental reason for this, espe-
cially if the total cross sections increase as a power of lns.
To make a precise conclusion about the cross-section
difference, we have considered a class of odd amplitudes,
odderons, which only contribute significantly at high en-

ergies. When we add odderon terms to our fits, we find
that these amplitudes are typically about a 2.5 standard
deviation effect from zero, and are =1% as strong as the
dominant even amplitude. The behavior of odderon 2
from our fit 9 is most intriguing. It predicts a substantial
difference between p(pp) and p(pp) at v's ~ 1 TeV, with
p(pp)=0. 22 and p(pp)=0. 10, an easily measured effect if
one had both pp and pp collisions available at these ener-
gies. At v's =40 TeV, this fit gives cr(pp) —o(pP)=5 mb.
Strikingly, the pp cross section climbs above the pp cross
section at v's =100 GeV and remains above it. The pres-
ence of odderon terms cannot be completely ruled out at
present energies, and only ultra-high-energy comparisons
between pp and pp collisions will be able to shed any light
on this interesting and mysterious possibility.

In this regard, one should note that the asymptotic
theorems, such as that due to Fischer, should be applied
with caution. It is always tempting to imagine that the
behavior at the highest energy for which there are mea-
surements represents the asymptotic pattern. However,
we have seen that fits can be made to the present data in
which at slightly higher energies the pp total cross section
exceeds that of pp and in which the cross-section differ-
ence does not go to zero but instead increases at higher
energies. Such is the case in our fits 7—10. These fits
show that at energies as low as v's =100 GeV, surprising
results might appear. To find such effects, we need direct

pp vs pp comparisons at the same energies.
The nuclear slope B is of interest in its own right. Our

predictions here are less firm because of the poorer quali-
ty of the data, but we are guided by the reliable fits for
the forward amplitudes and by the principle that B must
grow as fast as ln s if the total cross section does. Failure
to include such behavior must eventually be incompatible
with measurement, if indeed the cross section continues to
increase as ln s. The slope measurement can be combined
with the total cross section to give X,&. In all reasonable
models, o.,~

—X,~. The energy behavior of the ratio
X,&/0„, is of special interest. In many models, asymptoti-
cally the proton becomes a black disk and the ratio tends
to one-half. Our fits indicate that a substantial increase

from the value =0.18 characteristic of the ISR energy
range is to be anticipated. This is confirmed by early SPS
numbers.

An examination of our six-parameter fit to the experi-
mental data shows that

(1+ 2)1/2

16mB

(1+ 2)l/2

16'
is nearly unity within the errors of the fit, for the entire
energy region 3&vs &62 GeV. This of course is not
surprising in the high-energy region. What is important
is that at the lowest energies (3 & v's & 5 GeV), where the
total cross sections and nuclear slopes are Uery different
for pp and pp, the ratio R is compatible with 1, within fit-
ting errors of less than 2.5%. This suggests that for all
energies considered, a(0), the impact-parameter ampli-
tude at zero separation, is the same for pp and pp. This
new regularity remains as an important problem to be ex-
plained by models of nucleon-nucleon scattering.

The data from the SPS collider have confirmed the ex-
trapolations from the lower-energy data. The total cross
section is increasing rapidly, as is the slope parameter.
Still much remains to be determined. More precise mea-
surements at the SPS collider will be invaluable. Even
more exciting are the prospects for measurements of the
cross section and p at the Tevatron collider. These mea-
surements should help enormously in deciding whether
we have begun a continuing ln s climb that would make
the total cross section at the Superconducting Super Col-
lider (at 40 TeV) about 200 mb, or whether we are just be-
ing misled by a local tendency, which will flatten out and
give a substantially smaller cross section at the SSC.

For a wide class of models that have total cross sections
increasing with s, the nucleon-nucleon profile in impact-
pararneter space eventually becomes that of a sharp disk.
We regard the energy domain in which this happens as
"asymptopia. " In asymptopia, the value of the curvature
parameter C must be negative, since it is that of a disk.
Experiments show C to be positive at the ISR and SPS
collider energies. Using our predicted o.to, and p to fix the
Chou-Yang model, we show that the Chou-Yang and
sharp disk models give elastic, scattering distributions
nearly indistinguishable at v's =40 TeV, the SSC energy;
in particular, the value of C for the Chou-Yang model
has become quite negative. We have defined the onset of
asymptopia as the energy at which C =0, and have shown
that this will occur near the Tevatron collider energy,
v's =2 TeV. These forthcoming machines should finally
give us our first experimental glimpse of asymptopia.
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