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A self-contained analysis is given of the simplest quantum fields from the renormalization group point of
view: multiscale decomposition, general renormalization theory, resummations of renormalized series via
equations of the Callan-Symanzik type, asymptotic freedom, and proof of ultraviolet stability for sine-
Gordon fields in two dimensions and for other super-renormalizable scalar fields. Renormalization in four
dimensions (Hepp s theorem and the De Calan —Rivasseau n! bound) is presented and applications are
made to the Coulomb gases in two dimensions and to the convergence of the planar graph expansions in
four-dimensional field theories (t' Hooft —Rivasseau theorem).
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~ NTROD UCTION

The aim of this work is to provide a self-contained in-
troduction to field theory illustrating, at the same time,
most of the known properties of the simplest fields.

I shall develop some of the ideas and methods of con-
structive field theory whenever they exist, providing the
construction (nonperturbative) of various fields with one
of the few methods available (which I consider conceptu-
ally the simplest).

While I have no pretension of saying something new,
particularly to the theoretical physicists, I hope that this
review might be useful, as many mathematical physicists
have never worked on field theory and are not familiar
with its remarkable problems, and as many physicists
have never had any wish or need to look at the rigorous
version of a statement that they seem to consider obvious.

In this section I review some of the philosophy behind
the setting of quantum field theory, mostly for complete-.
ness and with the hope that this might help some be-
ginners.

The special theory of re1ativity, in spite of its elegance
and simplicity, raises a large number of new problems by
imposing the rejection of the notion of action at distarice
to describe interacting mechanical systems.

In fact, the electromagnetic field in the vacuum or the
free particles provide simple examples of relativistic sys-
tems, but it is difficult to describe a relativistically invari-
ant mutual interaction between particles or between parti-
cles and fields.

Within the framework of special relativity it is possible,
and quite simply so, to describe relativistically invariant
interactions between fields; however, in classical mechan-
ics there is only one field, the electromagnetic field (gravi-
tation is not considered here), and a variety of particles
which seem to interact only through it, being charged en-
tities. Their interaction with the electromagnetic field is
hard to describe in a fundamental way because of the in-

From the newly discovered Augustus's meridian in Roma.
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472 Gallavotti: Renormalization of scalar fields

finite self-energy that it implies.
There has been, and still there is, great hope that the

electromagnetic field's quantization, or more generally the
quantization of a system of fields, would lead to the unifi-
cation of the field-particle dualism and to the possibility
of a description of relativistic quantum interactions be-
tween particles and fields. In the remaining part of this
section I summarize the heuristic reasoning behind this
hope.

Classically a field describes the configurational state of
an elastic body. As a primitive example, consider the case
of the one-dimensional vibrating string: describe it
through the value y(x) of the transversal deformation in
the point of abscissa x; see diagram 1,

The string's parameters will be the density p, its tension
pc (with c the wave propagation speed), and the restor-
ing constant pc@: i.e., the string's Lagrangian is

dc. c k c
( 2+ 2k 2)1/2

p
2 1/2

CO%/C

(1—U /c )'

(1.6)

i.e., the quantized string describes relativistic particles
with rest mass

Ip =COA/C (1.7)

2 2
Ul pC

y(x) —I(y(x) ) dx, (1.8)

It would be easy to convince oneself that such particles do
not interact mutually.

However, it is easy to introduce an interaction between
them which is relativistically invariant. The simplest way
is to modify the classical Lagrangian (1.1) by nonquadrat-
ic terms and then quantize it. Consider

2

W =—p f jv(x) —c (x)
2 & Bx

2
1 ) . 2 2 dyY=—p f j(x) —c (x) —co y(x) dx,
2 & dx

where a,p are the points where the string's ends are at-
tached (a= —oo, P=+ oo if one wishes relativistic co-
variance).

The equation of motion is therefore

a2
ij(x) —c (x)+co y(x) =0,

Bx
(1.2)

coshy sinhyR=. . . y)0, c—= 1.sinhy coshy

The solutions of (1.2), with a= —oo, P=+ oo, can be
developed in plane waves:

i f kx —c(k)t] (1.3)

where

s(k)=+(co +c k )' (1.4)

Via the correspondence principle and Bohr's relations

p =4k, E=Ac. , (1.5)

with A'=(2m) 'X(Planck's constant), one sees that the
quantized vibrating string should describe particles for
which the relationship between momentum p and velocity
v 1s

which describes a relativistically invariant field (if
a= —oo, P=+ oo), because if (x, t)~y(x, t) solves (1.2),
so does (x,t)~y(R(x, t)) for any Lorentz transformation
R:

where I (y) is some function of p.
The nonlinearity of the resulting wave equation pro-

duces the result that when two or more wave packets col-
lide they emerge out of the collision quite modified and
do not just go through each other as in the case of the
linear string, so that their interaction is nontrivial.

It is important to stress one feature of (1.1): in order to
describe a particle of mass m p it is necessary to consider a
string with restoring force constant co =mac /A'. lt is
this dependence of co on A which provides that, in the
classical limit A—+0, a particle with rest mass mp is no
longer described by a classical solution of the wave equa-
tion. The limit A' —+0 has to be discussed with more care
because of its very singular nature. The actual discussion
leads to the natural picture that the classical waves ob-
tained as limits of quantum states describing a set of free-
ly traveling quantum particles of momenta p&,p2, . . .
("coherent states") are a 5-function wave:

n

+5[x;—U(p;)t],

with U (p) given by (1.6) ("point particles" ).
There is, however, an obvious exception: the case

mp ——0. This time the limit as A—+0 does not have the
same singular character as before and the classical limits
of quantum states are generally correctly described by
classical fields verifying the wave equation.

The above discussion, which cannot be developed in
more detail here, is the basis for the solution of the
"wave-particle dualism": the classical waves and particles
being in a natural sense the classical limits of quantum
fields (respectively, massless or massive).

But one should not think that the quantization of the
string or of a more general D-dimensional elastic body
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(D =1,2, 3; see diagram 2 for the case D =2, with the
body being a discrete set of springs oscillating over the re-
gion ApCR ),

r

rr(x ) 2 t)tp+~ c' ~(x)
2p 2 Bx

2 2
f71 pC

+ I(y(x)) .d x (1.10)

with Hamiltonian

(2)

is an easy matter; it is in fact the scope of this paper to re-
view the related problems.

I start with the "naive" quantization: the quantum
states will be, by the "natural extension of the usual
quantization rules, " functions of the function y describ-
ing the configurational shape of the elastic deformations;
and n(x) will have to be thought of as the operator
ih5/5y(x). So the Hamiltonian operator acts on the
wave function I' as

(~F)(y) =fAo

2 2
f71 pC

y(x) +I(y(x)) F(y) d x,

and it should be defined in the space L2("dy"), where the
scalar product ought to be

(F,G) =fF(y)G(tp) "dy" (1.12)

pling between nearest neighbors n a, m a with potential
energy pc a (y„a —

cpm a) /2.
Therefore, the Lagrangian of the system is

r

"dy"= + dy(x) .
x EAO

W= —,'paD
n aEAO

. 2 D
2 2 20'na g (V n +eaa Vna )
j=1

—(mpc /A) y„, I(y„,)—
Even though by now the mathematical meaning that

one should try to attach to expressions like (1.11) and
(1.12) as "infinite dimensional elliptic operators" and
"functional integrals" is quite well understood, particular-
ly when I =0, formulas like the above-are still quite
shocking for a conservative mathematician, even more so
because they turn out to be very useful.

One possible way to give meaning to (1.11) is to go
back to first principles and recall the classical interpreta-
tion of the vibrating string or elastic body as a system of
finitely many oscillators, following the brilliant theory of
the discretized wave equation and of the related Fourier
series due to Lagrange (see, for instance, Gallavotti,
1983a, pp. 252—283); see diagram 2.

Suppose that the region Ap is a parallelepiped of side
size L and, for the sake of simplicity, with periodic boun-
dary conditions; replace it with a square lattice Z, with
bonds of size a such that L/a is an integer. In every
point n a of Za put an oscillator with mass pa
described by a coordinate dna giving the oscillator s

elongation over the equilibrium position, and subject to a
restoring force with potential energy

—,
' pa (mpc'/R)'q'„, ,

to a nonlinear restoring force with potentia1 energy

,' pa I(y„,), and, finally, to—alinear elastic tension cou-

(1.13)

where e; are D unit vectors oriented as the lattice's direc-
tions; if n a+ac; is not in Ap but n a is in Ap, then the
ith coordinate n;a is equal to L and n a+e;a has to be
interpreted as the point whose ith coordinate is a—i.e.,
(1.13) is interpreted with periodic boundary conditions
with coordinates identified modulo L.

Of course there is no conceptual problem in quantizing
the system described by (1.13); it is described by the
operator on L z( +„,dc@„,):

~quantum
2P nacA, Pna

aD D

+p, g c g(p„,+, , —y„,)'/a'
naCA,

+ (mpc /A) y„,+I(yn, )

(1.14)

with domain (of essential self-adjointness)
Cp (+na~A, R), provided I(p) is assumed bounded

below, as it should always be.
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The properties of the quantum vibrating string, or body
if D is larger than 1, which will be usually interesting will
be properties of the Hamiltonian (1.14) holding uniformly
in the "ultraviolet cutoff a." In fact, in most applications
one is actually interested also in properties holding uni-
formly in the "infrared cutoff L" as well, with L the size
of the box Ao.

It will become clear that in studying such "ultraviolet
stable properties" it will be necessary to put upon the "in-
teraction" I(q&) very stringent requirements to avoid the
system's becoming trivial in the limit a ~0, the "ultravio-
let limit. "

Also, last but not least, it should be clear that the objec-
tive of field theory is to formulate a relativistically invari-
ant quantum theory of interacting particles, and it might
conceivably happen that the above way of trying to give a
meaning to (1.11) and (1.12) based on (1.14) may fail: i.e.,
in the limit a —+0 one is left with a theory describing only
free particles. Such a failure, in principle, would not
prove the impossibility of giving a nontrivial meaning to
(1.11) but only that the way proposed through (1.14) is
not appropriate.

In the next section I shall proceed to give a more com-
plete formulation of the ultraviolet problem in connection
with (1.14) ("lattice regularization" ). Later, in Sec. III, a
different approach naturally emerges which will be the
one which will be really investigated in this work ("Feyn-
man regularization" )—in the few cases in which the
theory can be pushed beyond formal perturbation theory
the two approaches turn out to be equivalent.

This does not mean that in the case of questions that
are still open the two approaches should be thought
equivalent; however, there is no reason why one should be
preferred to the other or to any one among many others
that one can a priori conceive [see Gallavotti and
Rivasseau (1984)]: therefore, I shall avoid entering into
regularization-dependent questions, and I shall use one
well-defined regularization only for definiteness. This
will preclude the discussion of some recent deep results
based on special regularization assumptions, but the
reader is referred to the literature on such questions
(Aizenman, 1982; Frohlich, 1982).

II. FUNCTIONAL INTEGRAL REPRESENTATION
OF THE HAMILTONIAN OF A QUANTUM FIELD

A very convenient representation of the Hamiltonian
and a tool for the analysis of the ultraviolet limit is the
functional integral representation [this seems to be a rath-
er old representation; here I follow Nelson (1966,1973a);
see also Symanzik (1966,1969), Wilson (1971,1972) Guer-
ra, Rosen, and Simon (1975), and Glimm and Jaffe
(1981)].

Instead of studying the operator Hq„,„,„ itself, (1.14),
I

introduce the operator on L2(+„,dy„, ):

T, =exp[ —(H,„,„,„—E)r/A'], r &0,
where E is the ground-state energy of Hq„,„,„

Denoting y = (qr„, )„,~~ and

(2.1)

e (tto) =ground-state wave function for Hq„,„,„
ep(ttp) =ground-state wave function

for (Hquantum 4=o=Ho ~

Eo =ground-state energy for H o

T, (tP, tP' ) =kernel of T, on L2 +dtp„,

(2.2)

T, (tP, y' ) =kernel of exP[ —r(Hp —Ep)]

on L2 gdtp„,

it is possible to introduce a probability measure on the
space of the continuous functions (t,n a)~q&„,(t) such
that the sets

E(A;t, , . . . , r„)= Ip ~
(p(t, ), . . . , tP(r„))eA I,

~O nwith A C (R ')", will have the measure

(2.3)

P(E(A;r, , . . . , r„))
n —1

e yt1 T, , y tj,ytj+1
j=l

where

xe[q(&„)]+dy(&, ), (2.4)

( UF)(p) =e (@)F(y ), (2.5)

and if H=U Hq„,„,„U, it is, by definitions (2.4) and
(2.&):

d(p(t )= g dy„, (t )
naEAO

and t1, . . . , t„play the role of indices.
One readily checks that (2.4) does verify the compati-

bility conditions necessary to interpret it as a measure on
the algebra of sets generated by the sets like (2.3) on the

Aospace of the continuous functions t~y(t)HR, tP(t)
—:[0'«(t)]„,~A ['.e., P(E( )) &O,P(E((R ')";r&, . . . ,
r))—= 1, and, if for A Ap it is E(A t, , . . . , r)
=E(Ap, t&, . . . , tj &, t~+,, . . . , t„)—in other words, if the
value of y(t~ ) is irrelevant to decide whether
(y(t2), . . . , cp(r„) ) H A, then P(E (A;t t, . . . , r„))
=P(E(Ap, tt, . . . , tj „t~+b. . . , r„))].

If F,GHL2[e(p) dp] and if U maps
L2[e(y) dy ]~L2(dy) and is defined by

(F,e " '~"G) („~2„)——(UF, e '"'"'" UG)l. ,td„~ fe(tp)F(y)T, (tp—,—tp')e(y')G(tp')dydee'

= J F(tP(O))G(tE(&))P(dt's), (2.6)
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Gallavotti: Renormalization of scalar fields 475

which shows that the measure P contains all the informa-
tion needed- to study the operator HqnzztUm or its
equivalent U image H [see Nelson (1973)].

In the above formulas the notation y has been used to
denote an element of the space of the continuous func-

tions t~tp(t) with values in R ' (while (p denotes an ele-

ment of R '); this notation will be kept consistent.
The object P is of course quite complex and needs, any-

way, the theory of Hq„,„,„ to be really constructed.
It is easy to relate P to the measure Po, defined as P

but with I(((())=0, and to find "explicit" expressions for
Po itself [see Nelson (1973)].

The measure P0 is a Gaussian measure because the
Green's function T, (qr, (p'), being the heat kernel for the
Laplace operator on L2(R ') plus a quadratic potential,
is a Gaussian kernel [in fact, the heat kernel for the La-
place operator 3 is Gaussian, as it is well known, and the
addition to A of a quadratic potential B does not change

fe(A~)&~& (2.7)

where X(AoXR) is the set of the continuous functions p
on A0XR.

A well-known elementary calculation allows us to find
an explicit formula for C; let g=(x, t), rj=(y, t'); then

C(x+nL, t), (y, t )'
neZD

(2.8)

and

this because of the Trotter's formula exp(A +B)
=lim(expA/n)(expB/n)", and because the composition
of several Gaussian kernels is still a Gaussian kernel].

Therefore P0 can be completely described in terms of
its "covariance" or "propagator"; if g = (n a, t) H Ao XR
and tp~=tp„a(t) and r) =(m a, t') the covariance is defined
as

w/a + oo

C~.-(2.)..i f ...f /Po(t —f ) jP(~ —y) De e — —a pap0
2 2

m0C 1 —cos(pj a)
+p(')+2C' g

j=1 a

(2.9)

see Appendix A for a sketchy proof.
Then the measure P is related to P0 by

T

P(dtp)= lim Z(L, T) ' expT~ oo

—paD f I(tp(r))d~ Po(dtp),

(2.10)

Z(L, T)= f exp
—pa I(y(r))dr Po(dtp) .

This is the "Feynman-Kac formula" [see Nelson (1966,1973a): recall that L is the infrared cutoff, i.e., the side size of
the cube Ao with periodic boundary conditions, above which the oscillators vibrate]. The proof of (2.10) is not hard and
its rough sketch can be found in Appendix B.

Rather than using (2.10) to deduce the properties of the measure P as the ultraviolet cutoff a tends to zero, it is con-
venient to study a more explicit representation for P. This representation is a corollary of (2.9) and (2.10) and it is

P(dtp)= lim limZ ' exp. —
T—+oo b —+0 rr2A meho m

D
2 2 2 2 2

(Vna, mb Vna, mb+b) /b +C g(Pna, mb 0na+e a, mb)
j=1

n, m

(2.1 1)

where m is an integer varying between —T/2b and T/2b
(supposed integer), the points T/2b are identified
("periodic boundary conditions" in the time direction),
and Z is a normalization factor depending on I.„T,a, b.
The proof of (2;11) is hinted at toward the end of Appen-
dix B.

Call A the parallelepiped with sides I., T in R +'=R"
considered with periodic boundary conditions and call
PL Ta b the measure under the limit sign in (2.11). The
"ultraviolet problem" on the lattice is the problem of the
theory of the limit:

lim limPL T b ——PL T .
a —+0 b —+0

(2.12)

Here I shall study only questions related to the ex-
istence of this limit, which is a problem typical of field
theory, while no attention will be devoted to the other
fundamental problem of analyzing the limit

lim PL T ——P
L, T—+~

(2.13)

called the "infrared problem. " The latter problem can be
-considered a "thermodynamic limit" problem typical of
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statistical mechanics (which does not mean that it is easy).
The existence of the limit (2.12) will be attacked by try-

ing to establish upper and lower bounds ("ultraviolet sta-
bility") uniform in a, b, for quantities like

(e~' ')—:JPL T, b(dy)exp a b g f(g)pt, (2.14)
geA

where f is a C -smooth function with fixed support in
the interior of A. Equation (2.14) is usually called the
"generating function" for the "Schwinger functions" of
the measure PL T, b.

For simplicity it is convenient to fix the ratio a/b to be
equal to c, the speed of light, a =bc; also, I shall choose
I, =cT so that the measure PI I &...&, can be rewritten:

PL, , (dy) = exp — g I(ip~) PI, (dy)/Z,
2~~ geA

(2.15)

where PL, is the Gaussian measure on the finite space
R with covariance, if p (g —g) =p(x —y )+c(t t')—pd..

X Ce+. L,,
n EZ"

(2.16)

~
m la e iP (g g id d—

pC
(2~)d c n /a-

m +2 g [1—cos(pj a) ]/a

where m =moc/R [to understand (2.15) note the sym-
metric role of the d directions in (2.11) once a=bc,
L =cd, or explicitly

d d
PLo, (dip) =Z ' exp —~ g g(yg+„ipse) /a —+m ipse2' f~+ ' ]

?Id~~ (2.17)

C=[iMcA' '(m +5, )] (2.18)

(by finite difference Laplace operator one means, here, the
nearest-neighbor second difference divided by a ), while if
5, L denotes the finite difference Laplace operator on the
lattice Z,"with periodic boundary conditions on the boun-
dary of the cube A, it is

C=[iMcA' '(m +5, L )] (2.19)

i.e., C is the same as C apart from the boundary condi-
tions.

The problem of studying the limit as a —+0 of (2.15) is
not exactly the same as that of studying the
lim, o limb o in (2.12). The really difficult problem be-

ing the limit as a~0, it turns out that setting b =a/c
does not make the problem any easier or any harder. All
the results that follow could also be obtained if one con-
sidered first the limit as 6~0 and then the limit as a —+0.

III. THE FREE FIEI D AND ITS MULTISCALE
DECOMPOSITIONS

It has become clear that the right way to look at the
measures (2.17) (free field) is to consider them as stochas-
tic processes indexed by the points of A; thus the free
field will be thought of as a Gaussian process.

Furthermore, it is convenient to regard the free field as
defined everywhere in A and not just on the lattice points
Z, AA; this can be done easily by observing that C~&
makes sense, by (2.16), for all g, rIHR and therefore we
may actually imagine that it describes a family of Gauss-
ian random variables indexed by g'HA, whose distribution

The measure (2.17) is called the "lattice free field" and
if 6, denotes the finite difference Laplace operator on the
-lattice Z,"one sees that C~„ in (2.16) is just the kernel of
the operator

I

is still denoted PL, .
Since C&z is infinitely smooth, it follows from the gen-

eral theory of Gaussian processes that the "sample fields"

y~ will be, with probability one with respect to PL „C
functions of g. However, this does not really imply that
they are smooth in a physical sense: in fact, the expected
values of yg, (By~), . . . , all diverge as a —+0 (if, as will
be always supposed, d )2).

This means that the fields y& are indeed smooth but to
see that they are, one has to look at them on a scale as
small as a. An easy calculation shows that in fact

—zk —(d —2)
J'(&k )2Po (d )

O(a a, ) d & 2

O(a "lna ~)
(3.1)

fC~&[ &Me '~ "~, Vg, vg&Z,", » '& fg —r)f &—

(3.2)

where M, ~&0 are a independent; this can be interpreted
as saying that the field y~ has an independence scale of
0(» ').

where 8 is any kth-order derivative of cp~.
The relation (3.1) tells us that cp~ has to be regarded as a

smooth function which can be as large as a —(d —z)zz j
d & 2, or as (lna ')' if d =2, and which can have a
kth-order derivative larger by a factor a, i.e., the field
looks smooth only on scale a.

In general, in understanding the structure of a stochas-
tic field, two main scales have to be specified: the scale on
which the field is smooth and the scale on which the field
is without correlations, i.e., the scales on which the field
can be regarded as a constant and those on which the
values that it takes can be regarded as independent ran-
dom variables.

In our case it would be easy to show that

Rev. Mod. Phys. , Vol. 57, No. 2, April 1985
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If one calls "regular" the random fields with identical
smoothness and independence scales, it is clear that the
fields of interest here (free fields) are not regular; and this
is the distinctive feature of field theory with respect to
statistical mechanics of weakly interacting systems (i.e.,
away from the critical point). It introduces the new prob-
lems of ultraviolet stability characteristic of field theory.

In fact, a regular field is hardly different from a lattice
spin system of essentially independent spins located on a
lattice with spacing equal to the unique scale of regularity
and independence.

Since the techniques for studying lattice spin systems
have been well developed in statistical mechanics, at least
in some easy cases, the idea arose (Wilson,
1971,1972,1974,1983) of trying to represent irregular
fields as decomposed into sums of regular ones. This
leads to the "multiscale decompositions" of the free field
which are discussed below and which will be the basic
tool in analyzing the non-Gaussian fields in which we are
interested and which are small perturbations of the
Gaussian field I'I, .

l

It is, in fact, possible to write the field y as

(k)

k=o
(3.3)

where cp~"' are independently distributed over the index k
and are regular on scale y m ', if y & 1 is an arbitrarily
preassigned number.

The decomposition (3.3) can be done in different ways
and with different requirements on y' '.

In general, one desires that if y "m ')a, i.e., if the
length scale of the field y' ' is larger than the ultraviolet
scale a, then the samples of y' ' should be smooth on
scale y I ', with the kth derivatives being of the order
of y" times the size of the field itself [see (3.1)], for k (p.
Such a decomposition will be called a "class C multi-
scale decomposition" of y into regular random fields.

There is a simple algorithm to construct multiscale
decompositions of the Gaussian random field with covari-
ance operator (2.18). It is based on the following trivial
identities:

1

~ 2y2k+ 2

1

2y2k+2+ 2

OO m (y' —l)y'"
m 4y4k+2+ 2( 2+ 1) 2k 2+ 4

—= XX m 2(y2 1 )y2k m 2(y2 1 )y2k

4y4k+2y4h+ m 2(y2+ 1)y2kE2+ E4 4y4k+2y4h +4+ m 2(y2+ 1 )y2ks2+ 84

XX
oo k m 2(y2 1)y2m 4(y4 1 )y6ky —2h

4y2y4k+ 2(y2+ 1) 2 2k 2h+ 4][ 4 4ky6+ 2(y2+ 1) 2k 2h 2+ 4]
(3.4)

where in the last equality a change of variables is made, changing k +h into k.
The way to read (3.4) is the following: (m +e )

' can be written as a sum of reciprocals of fourth-order polynomials
in c, or as a sum of reciprocals of eighth-order polynomials, or of sixteenth-order, etc. , by the algorithm displayed self-
explanatorily in (3.4).

Then to each such decomposition one can associate a decomposition of the random field y like (3.3): if

s, (p) =2+ [1—cos((2p;)]/a

and if one defines

C (k) a/a m 2( y2 1 )y2ke v(g —v)d 4p

(2n. )"pc —~/a m y""+ +m y "(y +1)c,,(p) +E,(p)
(3.5)

and if C' ' is defined as in (2.16), with C replaced by C '"', one realizes that by the first identity (3.4) the field (p has the
same distribution as the sum of a sequence of fields y(") with covariances given by C'"'.

Similarly, using the last identity in (3.4) and setting

y2(y 1)(y 1)y6k he 'P(g —q)d p—~/a

(2~)dye „—a/a

~ I [ 4y2y4k+ 2(y2+ 1)y2k —2h
( )2+ ( )4]

~ [ 4y6 4k+ 2(y2+ 1) 2k —2h
( )2+ ( )4] I

—1 (3.6)
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and if C'"' is defined as in (2.16) with C replaced by C' ',
one again finds that the field cp has the same distribution
as the sum of a sequence of fields cp' ' with covariance
given by C' ', etc.

The fields (p'"' with covariance C'"' related to (3.5) or
to (3.6) or to the "higher-order generalizations" of them,
are regular fields for all values of k such that
y m ') a and are basically independent fields, when
restricted to the lattice points, for the larger values of k.
Furthermore, if y m '&a, the fields y("} have essen-
tially the same distribution up to trivial scalings.

To see the above properties of y' ' for y m '~a one
can, heuristically, fix k and let a ~0 (so that
y

—'m -'))a).
Then (3.5) becomes

(k) (d —2)k (O) (k) ~ (k)Cg„=y C k~ k„~
nEZd

(3.7)+" m (y —1)e't'(& "'d p
(2m )~pc — m "y'+ m '(y'+ 1)p '+p'

and it is easy to see that C ~z' is well defined and smooth
with its derivatives of order 2(l —c, ) if d =2 and of order
2( —,

' —e) if d =3 and it decays exponentially for
~ g —g ~

large on scale O(m '). This means that the field cp( ',
with covariance C' ' in (3.7), is Holder continuous on
scale y m ' with exponent less than 1 if d =2 or less
than —, if d =3 (here e & 0 is arbitrary); it is, however, still
irregular if d )4.

If one uses the second decomposition of (p introduced
above, associated with (3.6), one finds

k

C (k) (d —2)k ~ —2h( (O, h)
y ~ y rkfyk

h=0
(k) (k}

Cg —n L,g
n&Zd

—(o, t) R + m y (y —1)(y —1)e't'(~ "'d p
(277)dye(g)[m4y2+m2(y2+ 1)y2I1p2+p4][m4y6+m2(y2+ 1)y2hp2+p4]

(3.8)

and it is easy to see that C~z has the same qualitative(k)

properties of y"(" 'C'
k

'
k and C' ' ' is well defined

and smooth together with its derivatives of order 2(3 —s)
if d =2, or order 2( —,—e) if d =3, of order 2(2 —c) if
d =4 (E being an arbitrary positive number).

This means that the field qo' ' has second derivatives
which are Holder continuous with exponent (1—E) for
d =2, ( —,

' —E) for d =3, and first derivatives which are
Holder continuous with exponent (1—e) if d =4 [for
d =5 the first derivatives would be Holder continuous
with exponent ( —,—E) while for d =6,7 the field itself
would only be Holder continuous with exponent (1 —E) or
( 2

—E), respectively, and for d & 8 it would be irregular].
The above statements can be made more quantitative

(see below); their proof is essentially a repetition, adapted
to the circumstances, of the famous proof of Wiener as-
serting the Holder continuity of the sample paths of the
Brownian motion and it will not be repeated here [one can

N
( &N} ~ (k)

k=O
(3.9)

Then the measure (2.15) can be regarded as obtained by
integrating over the cp' 's the measure

I

use the classical method of Wiener as in Colella and Lan-
ford (1973); the cases (3.7) and (3.8) as well as the others
arising from the higher-order identities in (3.4) are specifi-
cally treated in Benfatto et al. (1980b), as a part of a gen-
eral theory of a class of Markovian Gaussian random
fields].

The above discussion on the fields y'"' suggests yet
another approach to the ultraviolet stability which will be
the one really followed in the upcoming sections.

Namely, choose y' ' to be the random fields with co-
variance (3.7) [or (3.8) or any other associated with the
higher-order identities in (3.4)] and define

Z ' exp — g I(y~)
pa~
2cA ~~~

QO a+P (dy("') = lim Z~,' exp — g 1(pg)
k=O 2cA

N
P(d (k)) (3.10)

under the condition that

v= Xm'"'
k=0

is held fixed; the Z's normalize to one the measures in
(3.10).

Now there will be a change in point of view and the
fields y( ' will no longer be regarded just as auxiliary
fields but as objects interesting in their own right: the sta-
bility problem will be extended to the problem of showing

N

x ~P(dp(J')
j=0

(3.11)

t

that not only y -but also y' ', for each k, have a well-
defined limit distribution as a~O, if they are given, for
a & 0, the distribution (3.10).

The plan is to attack the ultraviolet stability problem
by studying the measure

cfP'- '(dy) = Z~,' exp — Q I(yg ')-c
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uniformly in a,N, y m ' «a, allowing I(y) to depend
on a,N, and on the derivatives of p, if this becomes neces-
sary in order to ensure the existence of an interesting limit
as a~O after letting N~oo.

Ultimately "interesting" should mean a field theory
susceptible to a physical interpretation as a theory of in-

teracting particles: it should verify various properties
among which the possibility of defining an operator for-
mally equal to A in (1.11). For instance, one could re-

quire that the field y verifies the Nelson axioms or the
Osterwalder-Schrader axioms or that it should lead in
some way or another to the construction of Wightman
fields (which undoubtedly is the minimal requirement
thought so far) [for a critical discussion and a review of
the axioms of various type and their relations see Simon
(1974); see also Nelson (1973a,1973b,1973c), Osterwalder
and Schrader (1973), and Wightman (1956)].

In other words, one is free to change the rules of the
game provided one eventually succeeds in constructing a
Wightman field theory describing nontrivial interactions;
see also the comments at the end of Sec. I and in Sec.
XXII.

Of course, the more one changes the rules of the game,
the more one has to work at a later stage. For instance, in

passing from the lattice regularized-continuous time ap-
proach of Sec. II to the problem of taking the N~co
limit in (3.11), we lose the "unitary character" of the
theory, because it is no longer clear (and in fact it is not
true) that the process P' — )(dy) can be generated by a
Hamiltonian as was the case in Sec. II, i.e., before starting
the chain of "slight" changes leading to (3.11). So once
the limit as N —+ oo will have been taken, we shall have to
worry whether it has the properties which would allow us
to interpret it as generated by a Hamiltonian operator, i.e.,
whether a formula like (2.6) holds for some operator

~quantum.
In constructing a field theory, it may sometimes be

convenient to give up temporarily some of the properties
of the final theory; note, on the other hand, that the con-
tinuous time lattice regularization, although "unitary, " is
not translationally invariant [a property holding at b =0
for (2.11), which is not unitary].

At this point, in view of the above remark, it is very

tempting to simplify the problem by interchanging the
limits on a and on N and let a ~0 while keeping N fixed
and then let X~Oo. This leads to the measures

p(&)()dvg))Z)expo f 1(y(())d)vg
2et

x +&(dq")),
j=0

(3.12)

where now P(dy(J)) denotes the distribution of the field
q&(J) with covariance associated with (3.7) or, alternatively,
(3.8) or any higher-order version of them, and I(y) de-

pends on N, possibly.
The advantage of studying (3.12) is that it is obviously

easier, in some respects, than (3.11), because the fields y'~'

are now really related by simple scalings, as the first of
(3.7) or (3.8) shows (i.e., pre' has roughly the same distri-
bution as y y k&); note, however, that even in casek (d —2) /2 (O)

(3.7) there are small corrections, because, although in this
simple case C'"' scales exactly, the covariance C'"' does
not do so because of the imposition of the periodic boun-

dary conditions.
Furthermore, one does not have to distinguish between

the cases y Jm '&a and y m '(a. However, notice
that the fields y(J) with y ~m ' &a are somewhat trivial
(i.e., they are approximately independently distributed on
the lattice points) and thus one heuristically thinks that
the limits of (3.12), as N~ oo, should lead to the same
measures as the limit, as X~oo first and a —+0 second,
of (3.11).

This remark could in fact be made more precise to the
extent that it can become "all the results discussed in this
paper and concerning the existence of non-Gaussian lim-
its of (3.12) as N~ ao, or the existence of formal pertur-
bation expansions of various quantities, could also be ob-
tained considering the limits lim, Olim& of (3.11)";
this statement should emerge quite clearly from what fol-
lows, but it will not be explicitly proved (to limit the ma-
terial presented here).

The theory of the limits as N~ oo of (3.12), is already
complex and interesting enough, and studying (3.11), as
far as the problems discussed here are concerned, does not
lead to any new ideas but only to rather trivial technical
digressions.

Therefore, from now on I shall concentrate on the dis-
cussion of (3.12) with y(") being defined by (3.7) or (3.8)
or their higher-order analogs, depending on the models,
the aim being to obtain a limit as X—+ oo in which all the
variables y' ' are well defined, although they are not
described as Gaussian variables.

One says that the approach to field theory based on
(3.11) is a "nearest-neighbor lattice regularization" ap-

proach, while the one adopted here, via (3.12), is a
"Pauli. -Villars regularization" approach of some order;
more appropriately it should be called "Feynman
regularization" —see Pauli and Villars (1949). Both ap-
proaches are widely used in the literature: see for some
examples Bogoliubov and Shirkov (1959), Callan (1976),
Park (1977), Aizenman (1982), Frohlich (1982), and

Brydges et al. (1983).
Before starting the analysis of (3.12) it is important to

stress once more at the cost of being repetitious and to
avoid hiding important issues, that while the theories of
(3.11) and (3.12) are equivalent up to technicalities as far
as the results presented in this work are concerned, it is by
no means clear that they are equally suitable for pursuing
the quest of the results that we should like to obtain, first
among them showing the existence or the nonexistence of
a nontrivial y field in dimension d =4. Fur'thermore,
there are other possible approaches most of which give
the same results as the one presented here, if applied to
the solved problems presented here, and which might be
better suited for the study of the hard open problems —see
comments at the end of Sec. I and in Sec. XXII [see also
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I((p)o-y (3.13)

is not admissible for d &4 if one uses the Pauli-Villars
first-order field [because the expected value of y~- ' is
infinite if d )4, by the second of (3.7)]. However,

Gallavotti and Rivasseau (1984)].
The fields y( ' with covariance (3.7) will be called

"first-order Pauli-Villars fields" of frequency index k,
while those with covariance (3.8) will be "second-order
Pauli-Villars fields" with frequency index k (shortly
"with frequency k"); similarly one can define the mth-
order Pauli-Villars fields via the use of the higher-order
identities in (3.4) and with e=p —see below.

Formula (3.12) will define the mth-order regularized
interacting measure if y' ' has the meaning of an mth-
order Pauli-Villars field —of course only functions I(y)
will be allowed that are such that I (p( — )) has a meaning,
at least with probability 1, with respect to the measure

II,=P(d~"').
The latter remark is very important: in fact, it shows

that

decomposed into regular independent fields with covari-
ances C' ' defined by "periodizing" a covariance C' ' via
the second relation in (3.7) [or (3.8)] and with C'"', veri-
fying

—]c

i
() C' '

~

&goyky '" 'e

J =0, 1, . . . , Jp —1

(3.19)
C (k) gjo C (k) g " o k(d —2)

x(y" ~g —g'~)' '

Xe
—&or Ii4 —n I

where Ap, A, ap are suitable constants and c, &0 is arbi-
trary, and where jp ——2"+' —d. For instance, the case
n =2 is worked out explicitly in (3.8). The nth-order
Pauli-Villars fields defined by C' ' verify, with probabili-
ty bounded below by (3.17),

~

(P'~( k )

i
& II~yJky k ( d —2 ) /2 2j &j(j

I(V g) =XV f+p(pg+a(B'pr) (3.14)
(3.20)

is meaningful if one uses in (3.12) the second-order Pauli-
Villars regularization even for d =4, because the expected
values of (y~

— ') and (8p~ — ') are finite if computed
using (3.8) rather than (3.7).

This section will be concluded by listing a more quanti-
tative meaning to be given to the regularity statements
about the fields y(") made after (3.7) and (3.8).

Let cp( be a sample of a Gaussian random field dis-
tributed with covariance CPz' in (3.7). Then if A is imag-
ined paved by a lattice Qk of square boxes b, with side
size y "m ', one finds that, for d =2,3 and for all
choices of 8~ & 0,

y
(d )/ yg~g~Qk

~(k) (k) ' &g k(d —2)/2(yk e
2I

~

)(4—d)/2 —E

Vg'E6,
I k —2)

I &y

hold with probability bounded below by

(3.15)

(3.16)

II (1—Ae )
AEQk

(3.17)

N
( &N) ~ (k)

k=0
(3.18)

where y' — ' is a very smooth Gaussian field which is

if A, a & 0 are suitable constants depending on the choice
of the arbitrary parameter c. &0 but k independent. Of
course one assumes here that the side of A is divisible by
y m ' for all k &0; this assumption could easily be
released for the study of the problems considered in this
paper —see, however-, the comments in Sec. XXII.

More generally the chain (3.4) can be continued to ex-
press (m +p )

' as a sum of reciprocals of polynomials
of degree 2"+' in p, n =0, 1,2, . . . . In this way one can
define a field

g (k)

X(k) g

2(

& Z~yk(d —2)/2(yk

where cV denotes any jth-order derivative and

d
a!= a;!,

d

~a =pa;,
0-' is the derivative of order aI+ . . +ad of order a]
with respect to the first component, etc. , so that the
second of (3.20) is an estimate for the remainder of a Tay-
lor series.

For instance if n =3, d =4, the field y( ' admits five
derivatives (and the fifth is Holder continuous with ex-
ponent less than —,) and C' ' admits 11 derivatives.

Since periodic boundary conditions are being used un-
less explicitly stated otherwise, here as well as in the rest
of the paper, (g2 —g() will be a symbolic notation for a
periodic function on A)&A equal to the vector from g) to
g'2 when the distance between g( and g2 on A is small and,
for larger distances, equal to ($2—g()X(

~ $2 —g( ~
) with

gHC and g(r)=0, if r & 1, X(r)=1 if r & —,', and

i g2 —g( ~

the distance of the torus A.
The inequalities (3.19) are elementary consequences of

the analysis of the asymptotic behavior of the integrals in
(3.7) and (3.8) and of their generalizations to order n.
Whereas the inequalities (3.20) and (3.16) follow, as men-
tioned above, via the classical idea of Wiener (for the
Holder continuity of the sample paths of the Brownian
motion) from the regularity properties of the covariances
C'") expressed by (3.19) [see Colella and Lanford (1973)
and Benfatto, Gallavotti, and Nicolo (1982b)] plus the
fact that the y' ' form a Markov process.

In the literature other regularizations are also used
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which produce infinitely smooth fields q&( ' by using
"nonpolynomial" decompositions like

Xo(p) " X)(y p)

1+p 1+p k i 1+p

where

(3.21)

Xo(p)+ QX((y p)—:1
IG =1

(3.22)

IV. PERTURBATION THEORY AND ULTRAVIOLET
STABILITY

I shall try to be very general, not for love of generality,
but, rather, because perturbation theory is conceptually
very simple, and if one discusses it in the few examples in
which one is really interested, one makes it appear more
complex, as all the fine details peculiar to each model be-

come most inextricably mixed up with its structure.
The first thing to fix is the interaction I(y): choose

I (y) to have the form

and Xo,X) are C functions positive such that X) has sup-
port for 1&@ &y. Such decompositions produce C'"'s
which verify (3.19) with jo arbitrarily prefixed but with
the modification that the exponential decay factor is re-

placed by (1+y"
l

g' —i) l
) with w arbitrarily prefixed

[i.e., the decoupling takes place on the same scale as in
(3.19), i.e., y ", but is slower than exponential, although
still faster than any power].

P& (dy'- ')= lZ 'exp[V(y'- ', A, ,N)]J

X /P(dq"'),
j=O.

(4.3)

where A. )v is a given sequence of coupling constants ca)led
"bare couplings, " for which

e p[V( )]&L2 +P(dy' ')

or perturbatively —this definition is based on the follow-
ing idea (Schwinger, 1949; Feynman, 1949; Dyson, 1949).
Consider the following formal power series in the parame-
ters A, =(A, ), . . . , A, , ) HR':

probability it is known as a "martingale" property.
The sequence g =(gI, )), o of linear spaces veri-

fying the martingale relation (4.2) will be called an "in-
teraction. "

Of course the choice of the free fields y(J), i.e., of the
regularization's order, will always have to be such that the
integrals in (4.1) make sense [for instance, if u' ' is really
depending on By~ we shall use at least a second-order reg-
ularization for d &4; if U' ' depends only on y~ then we
could also use the first-order regularization, provided
d & ~ see (3.20)].

A field theory with interaction g can be defined in
two, usually nonequivalent, ways: nonperturbatively as a
probability measure which is the limit as X~ ao of mea-
sures defined by

V( (&)v) g N) y g(a) f (a)( (&)v) g (&)v))dg
a=1

k)v(A, ) =
m&, . . . , mt

L)v(m )1,,
'. I,, '—:pl)v(m )A,—,

—=I(g) . (4.1)

If y—=y(- ', the function I(y) spans a finite dimen-'

sional linear space g)v as A, =(A, ' ') i, spans R'or a
linear subspace of R', fixed a priori; one can regard g )v

as a subspace of
N

L gp(dy' ')
j=0

where i )v(m ) H R '. Then compute

f ' '(f)p—
(&N)(f) V(y(& ), A. ~(i, ),N), , ( )

f vv(q —,A. ~(A, ),)v) ~ (J)

(4.4)

(4.5)

It is convenient to assume that the spaces

g)v, N=0, 1, . . . , are so related that for all N'&Nit is

f (n)( (&)v') g (()v'))dg

formally by expanding a11 the exponentials in powers and
then using (4.4) to express the results as a power series in
A, by collecting terms with equal powers:

f p(d (N'+))). . . P(d+(N))

x (cx)( ( &N) 8 ( & N))dUN CPg

(4.2)

(Sm, N, f)A, —. (4.6)

or, in other words, u)'v'. is the Projection on g)v of
u)'v 'Hg )v executed by using as Projection oPerator the in-

tegration with respect to the field components of frequen-

cy higher than N . This property, which is verified au-
tomatically in all the models that are considered here
(since every model will be written in Wick-ordered
form —see below), is very convenient for the exhibition of
general structural properties of perturbation theory. In

S(m,f)= lim S(m, N f)
N —+co

(4.7)

exist for all smooth test functions f and for all m.
The theory will be called "perturbatively trivial" if the

power series

Then the perturbative field theory with interaction g
and bare constants A, )v(A, ) given by (4.4) is well defined if
the limits
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QS(m, f)A, — (4.8)

formaHy converges to the exponential of a quadratic form
in f (Gaussian theory) for

~

A,
~

small.
Similarly if the limits of (4.3) are Gaussian measures

for all possible choices of A,.N, one says that the theory is
trivial.

If it is impossible to find a formal power series (4.4)
such that the limits {4.7) exist, one says that g is a "non-
renormalizable" theory.

The power series (4.8) is called the "renormalized series
for g," and the parameters A, in it are called the "renor-
malized couplings, "while the corresponding formal series
(4.4) define the perturbative bare couplings [note that the
formal power series (4.4) do not necessarily converge].

It is perhaps worth stressing again that the real objects
that one is trying to find are more complex than a proba-
bility measure P limit of (4.3) (in a perturbative or non-
perturbative sense), so after such limits are constructed,
one still has to see if they have the right properties to al-
low their interpretation as relativistically invariant quan-
tum field theories.

However, in the few cases in which the measures P
have been constructed as limits for K—+co of (4.3) the
understanding of the problems remaining before a full in-
terpretation of the results, as relativistic quantum fields,
has been carried out without excessive difficulties [after
the basic techniques and tools to deal with this question
were developed in the basic papers —see Nelson
(1966,1973a,1973b,1973c), Glimm (1968), Glimm and
Jaffe (1968,1970a,1970b,1973), Glimm, Jaffe, and Spencer
(1975), Qsterwalder and Schrader (1972), and Guerra
(1972)], so I shall not develop this question further here,
after warning the reader of its paramount importance, on
the grounds that it should not properly be thought of as a
part of the main subject of this paper, i.e., of the ultravio-
let limit problem.

Perturbation theory plays a major role even in the so-
called nonperturbative approaches (G1imm, 1968; Glimm
and Jaffe, 1968,1970a,1970b,1973; Magnen and Seneor,
1976; Feldman and Osterwalder, 1976; Benfatto et al. ,
1978; Benfatto, Cassandro et al. , 1980; Benfatto, Galla-
votti, and Nicolo, 1980; Gallavotti, l978, 1979,1980;
Gawedski and Kupiainen, 1980,1983,1984; Balaban,
1981,1983; Federbush and Battle, 1982,1983; Brydges
et al. , 1984).

Here perturbation theory will be treated from the point
of view of the renormalization group, expanding the ideas
developed and used in Benfatto et al. in the just-cited pa-
pers. I shall follow the theory presented in Gallavotti and
Nicolo (1984), with some modifications here or there.
The first to treat completely, to all orders, perturbation
theory by literally applying the renormalization group
methods has been Polchinskii (1984), who adopts a
method slightly different from the one presented here (ob-
taining weaker results —e.g., the n I bounds are not treated
in his work, at least not explicitly).

The renormalization group approach to field theory

grew out of several earlier works [e.g. , Kadanoff (1966),
Wilson (1965,1971,1972), and DiCastro and Jona-Lasinio
(1969,1971); for reviews see Wilson and Kogut (1974),
Jona-Lasinio (1975), Ma (1976), and Wilson (1983)].

In this work applying the renormalization group
method will mean that one regards the fields

as real entities describing phenomena
taking place on their own length scale y I ', and one
defines the effective. interaction on scale y m ' as

y(k)(y( &k)) v(q —,A, ~(A. ),N)
e qI' = e

)(P(d~(N)). . . P(d (k+1)) (4.9)

g(t)y(t)( (&N) g (&N)) g(t}~(p) (&N) (4.10)

and show that the effective potentials are well defined
with a choice of l N(m ) leading to AN'=A, '" and to an ex-
pression of the other bare coupling constants" involving only A, ", . . . , 2" ' (and not
A,("); then the effective potentials and the coefficients
S(m, X,f) would be simply related and the problem of
proving the existence and ultraviolet stability of the effec-
tive potentials would be, in principle, harder than proving
that of the limit (4.7) (although it will be, in fact, an
equivalent problem in the cases studied later).

Alternatively one could decide to worry about this
problem after completing the theory of the effective po-
tentials: in fact, the formal connection between the effec-
tive potentials and the Schwinger functions will be briefly
discussed in Sec. X.

V. EFFECTIVE POTENTIALS: THE ALGORITHM
FOR THEIR CONSTRUCTION

Given an interaction g as defined in Sec. IV [see (4.1)
and (4.2)], let

( &N)) ~ g(a) / (a){ (&N). g ( &N))dg.UN CPP
a=1

(5.1)

In perturbation theory one fixes the formal power series
A, N(A, ) in such a way that V("' turns out to be given by a
formal power series in A, , which, order by order, has a
limit for X~ oo if q&' ', . . . , (p'"' verify {3.20) {n being the
order of the chosen regularization), and the limit has a
short-range structure allowing the interpretation of V'"'
as a statistical mechanics interaction between spins (the
q&'"'s) which are located on a lattice of mesh y "m ' (re-
call that the fields y' ' are regular and therefore can be
thought of as lattice fields on a lattice of mesh y Jm

rather than as continuous fields —see Sec. III).
One might be worried that the fields y(J) do not really

have a physical meaning (yet) and that knowing that they
are well-defined objects even in the presence of interaction
does not really tell anything about their sum qv' — ', which
is the object with physical meaning; one could repair this
objection by imagining that the last term in (4.1) has the
form
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~P(d~(N)). . . P(d~(k+1)) (5.2)

The effective interaction on the length scale y m ' is
defined by

exp' V'"'(V'-")1=f Iexpi: V(V'- ')ll

proves, the reason being that the construction of V'"' can
be carried out in general, without using the detailed struc-
tures (5.5)—(5.8) or the Wick ordering properties, starting
from (5.1), (4.1), and (4.2).

The mathematical basis for the algorithm is a trivial
Taylor series. To define it introduce the notations

(a)( ( &N)) .
(

( &N))a. (5.3)

To be slightly more concrete it is convenient to list the
cases which will be treated here or which can be treated
easily with the methods reviewed in this paper.

(1) Polynomial fields in two dimensions:

8'( ) = expectation value with respect

to a probability measure,

8'k( )= expectation value with respect
(5.9)

where the dots denote the Wick polynomials.
In this case, as well as in the cases below, the property

(4.2) is trivially a consequence of the properties of the
Wick polynomials. Such properties are remarkable and
the reader will be supposed familiar with them. For ease
of reference the definitions, their main properties, and the
ideas from which they are proved are provided in Appen-
dix C.

The notion of the Wick monomial will not be needed in
this section nor in the following sections, VI—X, where
everything is worked out without referring to Wick order-
ing or Wick monomials.

(2) Sine-Gordon field in two dimensions:
~ ( &N)

V(q(-"))= g f—:e'"'t:+vf dg
A A

~n) + ' +np

n1 n
aA. aA.1 P

g(11pp)
—0

1

(5.10)

The symbol 8'k will therefore have a well-defined
meaning if x), . . . , x& are p functions depending on y(k).

It is easy to prove by induction the Leibnitz rule:
VCR]~. . . ~ COp H R:

to the Gaussian measure P(dy( '),
and in general, given p random variables x1, . . . , x~ and

p positive integers n1, . . . , nz, one defines the truncated
expectations of x), . . . , xz of orders n, , . . . , nz as

~~ (x„.. . , xp, n ), . . . , np )

f:c , os( ap ~ '):dg+vf dg, a~0.

(3) Exponential field, d & 2:

(5.4) 5' (co)x)+ . . +copxp, n)

n& n
7l 1$ S1

(&N)
V(y(- ')= Af—:e , t:dg+vf dg .

A A

(4) y field in three dimensions:

V( ((%)) f ) g. (
(()v))4.+ .( (()v))2.+

(5.5)

(5.6)

nip ~ ~ ~ p n~
n+ ~ ~ ~ +n =n

1

n1! . n&t

&&
8' (x), . . . , x~;n), . . . , n~), (5.11)

(5) (p field with wave function renormalization for
d (4.

V( ( & )v)) f l g.(
( &)v))4 + .( ( & A'))2.

A

+a:(apt('-~))':+v]dg . (5.7)

(6) (p field with wave-function renormalization for
d (3

and if n =n ) + +nz,

8' (x; 1)= 8'(x), 8' (x;0):—0,

8' (x,x, . . . , x;n(, . . . , n~)—= N' (x;n) .
(5.12)

Then the following Taylor expansion holds formally
("cumulant expansion"):

V( (&N))
t
a.(

(&)v))6.+g.( (&E))4.
A

+p:(qq'-))'.+a.(aq(- ))'+v]dg

(5.8)

All the above cases are examples of interactions g in
the sense of (4.1) and (4.2) (see Appendix C for the prop-
erties of the Wick monomials).

In view of the above ambitious models one might think
that it would be very hard to find reasonable expressions
for V' ', this is not really the case, as the algorithm below

8' (x;p)8'(e")=exp p!

for any bounded random variable x.
Hence modulo convergence problems:

5')v( V;n)f P(dq (~))e'=exp-
n=1

=exp( V' ")

and

(5.13)

(5.14)
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8 T
( V(N —1).g)

J P(dg (~-")P(dy(~))e ~=exp
h=l

(X)
1 1=exp

h=1n +n + =h 1 2 1f 2| 3tnI n2 n3
1 2

&& 8'~ ((8'~(V;1),8'~(V;2), 8')v(V;3), . . . ;n(, n2, n3p . .), (5.15)

once we have applied the Leibnitz rule (5.11).
It is clear that by combining (5.9) and (5.13) one can

easily find a formal expression for V'"' of the type (5.15):
its structure will be elucidated in Sec. VI by means of a
graphical interpretation of the general term arising in the
iteration of the above expansions.

Vl. A GRAPHICAL EXPRESSION FOR THE
EFFECTIVE INTERACTIONS

The structure of V'"), as obtained from V by doing suc-
cessively the integrations over the fields of increasing
length scale, can be described easily in terms of a certain
family of planar graphs, actually trees.

Draw n points 1,2, . . . , n (diagram 3)

l

only if the tree y is not trivial.
Given a nontrivial tree y, let y1, y2, . . . , y, be the trees

which bifurcate in y from Uo, i.e., from the first nontrivi-
al vertex (in diagram 3 it is s =2). The s trees can be di-
vided into q classes of trees which are identical up to the
end point labelings, and let y1, y2, . . . , yq be the represen-
tatives of each class. Let p1,p2, . . . , pq be the number of
elements in each class. Define a "combinatorial factor"
n (y) inductively as

q
n (y) =+@;!n(y;)', (6.1)

setting n (y) = 1 if y is the trivial tree.
The index h, associated with each vertex of y will be

called a frequency index or the frequency of u.

If one stares, for a conveniently long time, at (5.13) and
(5.15) it becomes clear that

r:k(y)=k n(» (6.2)

where the sum runs over the trees with root at frequency
k and with frequency indices h, (K; V(y) is a function
of the field cp'- ', which, although it could be explicitly
written, is more conveniently defined by induction. If y
is trivial, let

«y) = 8'k+( (6.3)

and imagine that they are the end points of a tree y whose
vertices u bear an index h„with k & h, &X and h, & h, ,
if u & u' in the tree's order; the lowest vertex r of y, called
the "root," bears the index k, denoted k (y), and out of it
emerges one branch only. All the other vertices v ~ r are
branching points with at least two branches. The tree's
end points are not regarded as vertices.

Two trees will be regarded as identical if they can be
superposed, together with the labels appended to their
vertices, up to a permutation of the end point labels
(1,2, . . . , n) and up to a change in the lengths of the
branches and the location of the vertices which does not
alter the tree's topological structure. In drawing trees we
shall agree to think that they are drawn in some standard
fashion which always leads to the construction of a given
representative in each class.

The number of end points of y (n in diagram 3) will be
called the "degree of y." A tree of degree 1 will be called
trivial, and it will contain only one line, from the root r to
the end point 1.

The first vertex after r will be called vo, it exists if and

and if y bifurcates on the first vertex uo following its root
r into y1, . . . , y, at frequency h, =h, let

V(y) = 8 k+). . . 8 h 18'hT( V(yl), . . . , V(y, ); 1, . . . , 1) .

(6.4)

h, +1 (6.5)

the lines joining a vertex v to an end point correspond to

h+1 +N ~ (6.6)

and, finally, each end point corresponds to a function V.
The proof of (6.4) is obtained by combining (6.2) and

(6.3) with (5.9)—(5.14): one gets (6.4) immediately by in-
duction on the degree of the tree.

The above algorithm can be modified to obtain more
explicit expressions for V' '.

Let

As a result of (6.3) and (6.4) one sees that each vertex of
y with index p corresponds to 8'z, while each line of y
joining two vertices u & u' corresponds to
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t
V g g(a) (a)( (&N) ~ {&N))d~

a=1
(6.7)

which is the case of interest here, and introduce what will
l

be called a "decorated tree, " which is a tree whose end
points bear labels (g'(, a) ), . . . , (g„,a„) instead of
1,2, . . . , n, with g~ ER and aj H(1,2, . . . , t).

Then (6.2) and (6.4) imply that

V(k) y f
1' ' ' n

dg) . dg„
y:degy=n
k(y)=k

0(y) =((g'&, a&), (g2, a2), . . . )

V(y) V(y)

k(r)=k "(&)
(6.8)

where the sum runs over all the decorated trees y with
root frequency k and with vertex frequencies h„with
k &h„(X for U &r, and the value V(y) will have to be
computed by using (6.3) and (6.4) except that V has to be
replaced in the evaluation of the trivial tree's contribution
by

g{a)V(a)( {&N) y (&N))x
if the trivial tree is

I

zation, into a hierarchy of clusters, of the points

g{, . . . , g„, which are the position labels of the tree's end
points.

To get a picture of such clusters first draw a box
around each point g(, . . . , g„; then consider a vertex U

highest on the tree: out of it emerge s lines with labels

(gz, aJ, ), . . . , (g'J, nj ) at the other end point. Draw a box

enclosing gJ, . . . , gj and do this for all the other highest

vertices. For instance,

(4)

The third sum in (6.8) is performed by keeping fixed the
decoration 9(y) =((g{,a, ), (g2, a2), . . . , (g„,a„)}. Finally,
the combinatorial factor n (y) is defined as identical with
the combinatorial factor of the undecorated tree y ob-
tained by stripping y of its decorations.

In other words, one can say that the rule for evaluating
a decorated tree is the same as that for evaluating an un-

decorated tree but with a different interpretation of the
end points, which depends on the decorating indices.

For later use it is convenient to define a tree shape
which is a tree of the above types once stripped of all its
indices and decorations, except the indices a attached to
the end points, which will be called type indices.

This completes the discussion of the basic graphical al-
gorithm used to build V' ' for k &0. However, for
reasons that will become clearer later, it is convenient to
define V' ",also.

For this purpose one thinks of y( — ' as being given by

&, , a,
g, a~

g~,ag
$5 a
Z, ~6

&, &e8

O, a~o

leads to 0

(6)

(5)
Then consider the next generation vertices and draw boxes
around all the end points that can be reached from each
of them, climbing the tree, etc. ,

~( &N) ~( —&)+~(0)+. . . +~(&) (6.9)

where the field y' " is distributed independently relative
to the other y'J', j)0, and it has its own covariance

C~z ",which need not be specified, because it will eventu-

ally be taken to be identically zero whenever it appears in
some interesting formula. The introduction of V' " al-
lows meaning to be given to some expressions that will be
met so that the case k =0 can be treated on the same
grounds as the cases k ~0, and V' " should be thought
as void of any physical meaning or mathematical
relevance other than the just-mentioned one. V' " will
be described by trees with root frequency k= —1 via
(6.8); see (6.9).

The following interpretation of a decorated tree is in-
teresting and important for later applications.

Each vertex U of y can be interpreted as a cluster of the
end points' "positions, " and the tree y provides an organi-

Actually, the above cluster representation of y becomes
completely equivalent to the description of y if inside
each box one writes the frequency h„of the vertex U cor-
responding to it [(1) attribute, conventionally, index
N + 1, or better no index at all, to the innermost boxes en-

closing only single points, (2) append to the jth innermost
box the index aj, and (3) attribute to the outside of the
outermost box the index k of the root of y].

For instance, in the case of diagram 5 one gets

Rev. Mod. Phys. , Vol. 57, No. 2, April 1985



486 Gallavotti: Renormalization of scalar fields

is interpreted as [see also (4.2)]

e' [U„"(~(-"';aq,(-"')]
a(g ) (a)( (&k).g (&k))—:P~

(7.4)

where the frequencies jV+ I have not been marked (being
obvious).

Therefore, to each decorated tree one will be able to as-
sociate with each vertex a cluster of "points" and to asso-
ciate to each cluster a frequency index in the above
manner; furthermore, each point is a position label of y,
and a type label can be attached to it in the manner
described above. and exemplified in the above pictures.

The "order" of a vertex U will be the number of points
in the cluster corresponding to it: it coincides with the
number of end points that can be reached from U by
climbing the tree. So the degree of the tree coincides with
the order of its root vertex as well as with the order of the
first nontrivial vertex Uo (if present).

Vll. RENORMALIZATION AND RENORMALlZABlLITY
TO SECOND ORDER

)MJ(A, )= g lN(m )I,—,
[m (=j

it follows [see Sec. VI] that

v'"'= g J dg,
n=1 a( . . a j( .j y:k(y)=kn 1 n

degree y =n

(7.5)

which expresses V( ' as a power series in A, : the pth-order
term being obtained by selecting in (7.5) the contributions

that j(+j2+. . . +j.= Ij I
=p.

If one defines, given a tree y with decorations
(g),n),j(), . . . , (g„,o.„,j„),the degree D(y) of y as

D(x)=j(+ . . +j.= I j I, (7.6)

then the contribution to V'"' of order p is obtained by re-
stricting the sum in (7.5) to the trees y with D(y) =p. If
we denote it V'"', it is

Consider an interaction g, as defined in Sec. IV, (4.1)
and (4.2), and a formal power series like (4.4):

v'"'p= jdgg g
a j k(y)=k "(&)

D(y)=p

(7.7)

A, N(A, ) =A, + g 1 N(m )A.—
Im~)2

and define —see (4.4) and (4.1):

(7.1) Define

V (k),p( ( & k)
) iim V(k),p( ( & k)

)
Ã~ oo

1' '(m )A,—

/m [=j

U(a)( (&N) ~ (&N))d~

v= g g v,'„'=v(q(-"', x„(x),x) .
j=la=1

(7.2)

(g, a,j), gCR", += 1, . . . , t, j=1,2, 3. . . .

Then if the trivial tree

(7.3)

From the general theory of the preceding section it is
easy to find the rule to compute the effective potential
V'"' corresponding to the V in (7.2). The reader who
finds the discussion below too abstract for a first reading
can compare the abstract steps described here with the
concrete corresponding steps done in studying the specific
model qo, as described in Sec. XVII, or the sine-Gordon
field, in Sec. XII.

One merely allows trees whose end points are decorated
by

where

k
( (k) (j)

j=o

is supposed such that each y'~' verifies the smoothness
properties (3.15), (3.16), or (3.20), depending on the regu-
larization used for the free field.

The existence of the limits (7.8) clearly depends upon
the choice of the coefficients 1 N(m) in (7.1). According
to the discussion of Sec. IV, the theory is renormalizable
if there is a choice of the constants 1 N(m) such that the
limit (7.8) exists.

It is worth pointing out here a trivial property of the
renormalized series: if k is expressed as a formal power
series with %-independent coefficients in terms of new pa-
rameters A, ', then A, N(A, )—see (7.1)—becomes a new for-
mal power series in A, with new coefficients 1N(m); it
should be clear that if the power series (7.5) in A, is renor-
malized, i.e., if the limits (7.8) exist, then also the power
series in A,

' is renormalized in the same sense (provided
the series expressing A, in terms of A,

' has no constant
terms, of course). This shows that the coefficients 1N(m )

cannot be uniquely determined by the requirement that
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the theory is renormalized [i.e., that the limits (7.8) exist].
Now the problem is to decide whether a theory is renor-

malizable and, if so, to find a choice of the coefficients
I ]v(m ) and to estimate in some way the size of V'"'~ and,
if possible, of V' ' itself.

It is easy to find a general renormalizabihty criterion
and general renormalization rules [i.e., rules to build the
coefficients I]v(m) in (7.1)]. The whole theory stems
from the simple examples considered below.

Clearly V'""(]p' -"') will always admit a limit as
N~ oo, being N independent, because of property (4.2) of

say that there should be an operation Wk with range in

g k such that the two expressions

1 ~k )@ k+I +h —1@h( @)h(Vl )i+)h( Vl )) ~

T

h k

(7.10)

&n (V2,x)+ , g —~k&k+]
' h&k

X 8 h(@ )h( V] ), @)h(V])),

Therefore, the requirement of existence of the limit
(7.8) can put nontrivial restrictions only on
V2 pf V3 ~ . , and one can start by looking at the con-
ditions on Vzh [i.e., on l]v(m) with ~m

~

=2] imPosed
by the requirement of existence of the limit (7.8) for
p =2: it should be clear that if the theory is renormaliz-
able it must be possible to fix V2 & so that V' ' exists,
simply because V3 ~, V4 ~, . . . , do not contribute to
V(k), 2

Clearly V ' is determined by the sum of the contribu-
tions of the second-order trees, i.e., graphically

(7.11)

are convergent as N) oo, if y'-"' is smooth [in the sense
of (3.20)].

If such an Wk exists for each k it is clear that it must
depend on k in a special way, because one can compute,
for p & k, the effective potential V~' in two necessarily
equivalent ways, as graphical relation of diagram 10 ex-
plains (summations over ga indices understood):

g„,a„
N+-

g, a, z h&p P2

N
+ — Z

Za z h)k

CP I a/ 1

+- N

P+/ k k /zan 2

g
~ Qg I'1

+ —g
l&p P

qt Qqt

h

4 ~~~

+
] g @k+1 +h —1+h( @)h(Vl )~ +)h( Vl )) ~

h&k

(7.9)

8' (x], . . . , xq)wllel'e 5 h= 8h+] ' ' ' 8]v and
=8' (x], . . . , xq, l, . . . , 1).

Two cases arise: (1) the second term in (7.9) converges
to a limit as N~ oo [for y'- 's satisfying the smoothness
mentioned above, see (3.20)]; or, (2) this does not happen.

In the first case one can take V2 ~——0 without affecting
the finiteness of the theory to second order.

In the second case one must choose V2 ~ conveniently,
if possible at all, to compensate the divergence present in
the second term.

Since Vz ~(y'- ') will always haue to be in the interac-
tion space g h, the divergence of the second term in (7.9)
can be compensated by a suitably chosen V2& only if
such divergence arises because the second term in (7.9)
has some very large component on g k.

It is, however, unclear how to define, in an abstract
context, the component to be considered: for the time be-
ing, and to remain on very general grounds, one can just

(9)
where the summation over the a indices and the integra-
tion over the g indices is understood.

In formulas, diagram 9 becomes

&k+]' '

+ +k+] @h —1@h(&)h(V]»&)h( V])) (7.12)

should admit a limit as X~ oo.
A simple way to enforce such a property is, of course,

to require that for all p & k

@'k = &p+] @'k~k . (7.13)

This leads to the conclusion that one would like Wk to
be defined so that (7.13) holds. Then, proceeding heuristi-
cally, note that the limits of (7.11) as N~ ao exist for all
fixed k if they exist for just one k, as the above argument
implies. One can thus determine V2 h and Wk by impos-
ing the existence of the limit as N~oo of (7.11) for
k = —1 and, at the same time, imposing the requirement
that Wk make (7.10) convergent as N ~ ao.

For instance, one can require that

(10)
where the right-hand side (rhs) is obtained by integrating
(to second order in A, ) the exponential of the expression in
(7.9), using (5.13).

Since the convergence of (7.10) and (7.11) should imply
convergence of both sides of the equation in diagram 10
for fixed k,p, k &p, one finds after a brief calculation
that

N

—, g(~p&p+] &k —&]+] ' &k~k)
h&k
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( 1) 1
(@0 @)vVzh()(g )+

2) g [~—)@o ' ' +h —)+h(@ )h(V)) +)h( V) ))l
h=0

(7.14)

To continue in great generality, suppose that there is a
way of defining the operation Wk verifying (7.13) and
(7.14) and making (7.10) convergent: its existence, or
nonexistence, will turn out to be a very easy question in
the concrete models to be examined later. Once such a se-
quence of operations Wk is found one can produce a new
sequence with ihe same property by setting

WkF =WkF+ g g l ' )(m )A.—
a=1 ~m I

=2

I

that W'k verifies (7.13), if Wk does, because of (4.2).
The remarkable and interesting fact to be pointed out

now is that if the initial interaction V1 is changed to
V1+ V2 N, there are very simple graphical rules that allow
one to compute the effective interaction generated by
V = V1+ V2 N to any order in terms of new types of trees:
"partially dressed trees. "

The idea of defining such trees comes from computing
Vz)v defined by (7.14), thought of as a (trivial) linear
equation for the t coefficients [see (7.4)j

X f (a)( (&k)g ((k))dg (7.15)
(a) y l(a)( )gm

/m/=2

where the coefficients l ' '(m ) are arbitrarily chosen; note
in V, „(q -').

Using (4.2) and (7.13) we find (7.14) becomes

( —)~- f' («-~~~ )d&+ „X—~ &. &h &h(&.h(&)~.h(V))
a=1 Jm (

=2 h& —1

t k

l~ (m)A, f U I(«, (3@g )dg+ —g ~ )go ~ gh )(g h(V)) g h(V ))
lml =2 ' h=O

N

+
) g +0 @k~k +k+ I +h —I +6( @)h( Vl )~ @)h(Vl )) ~

' h&k
(7.16)

By (7.14) the second term in the rhs is —8 o
' ' 8 k( Vz, k) which implies, using again (4.2) and paying some attention to

the following important identity, crucially dependent on the definitions

&k+) &)vVz)v= g g 4«m) f Uk («
a=1 ~m I

=2

= Vz k
) g ~k+k+) +h —)+h(@)h( V) ')r+)h( Vl))

h&k
(7.17)

to
Then, inserting (7.17) in (7.9), one finds Eq. (7.9) equal

r

l(a)( )gm (a)( (&") (j (&"))
Uk (7.19)

Vz, k+ —,g [(1—~k)&k+)1 T

h&k

X(@')h(V)),& h(V)))], (7.18)

and the second graph represents symbolically the second
term of (7.18).

Relation (7.18) becomes the graphical identity

g„, a„,)

with Vz k defined by (7.14), with k replacing K.
Relation (7.18) together with the graphical representa-

tion in diagram 9 suggests the representation of (7.18) as

N
X( a 2 g&g k

N
+

h&k

(11)
where the summation over the g, a indices is understood,
the first graph represents symbolically

N
+

h&k

(12)
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where in the rhs two new indices a~, a2 appear inside the
frame, reminding us that V2 k is naturally defined as a
sum of t terms indexed by u&, o.2 and the symbols in dia-
gram 13 allow us to identify them:

g„,a„. &

t k
0' gk(V, k) =-q & Z

aq, ap h=O

(,az, &

(13)
To explain how to compute the higher-order effective

potentials generated by V= V~+ V2 ~ the identity in dia-

gram 12 above suggests introducing the notion of decorat-
ed trees "dressed to second order. "

These are objects constructed from an ordinary tree
with no appended indices: first, one considers all the ver-

tices out of which bifurcate exactly two branches ending
in end points and one either appends a decorating index R
or encloses the vertex together with the branches emerg-

ing from it into a frame; second, to each framed end point
one appends an index o;=1, . . . , t; furthermore, to each
frame and to each unframed end point a pair gER and

o.=1, . . . , t is appended; finally, all the unframed vertices
receive a frequency index h, .

For instance, diagram 14 illustrates three trees dressed
to second order:

k h

g, , a„

g, ,a, )

(4,a4
g, , a,

aq
g„,a

v'"'= Jdg g
a r.k(r) —k

(7.20)

where the rule to compute V(y) is simply the same as the

one used so far, except that the final lines of the form

C4 a4

(14)
Given a partially dressed tree y, dressed to second or-

der, the V(y) will be defined so that

have to be interpreted as representing the contributions to
V2 k described in connection with diagram 13.

Also, the R over a vertex has to be interpreted as saying
that the rule to combine the two V&'s in the computation
of the truncated expectations 8'~(S'&i, (V~), 8'&1, (V~))
has to be modified and produces, instead, the term in
square brackets of (7.18).

The factor n (y) in (7.20) is now defined by defining it
as identical to the combinatorial factor n (y) of the tree y
obtained from y by stripping it of all its frames and their
contents as well as of all its a decorations.

The above discussion is rather long, although conceptu-
ally simple; however, it has the advantage of suggesting
the procedure for construction of the higher-order coun-
terterms and for describing the results of their presence in
the effective potentials.

VIII. COUNTERTERMS, EFFECTIVE INTERACTION,
AND RENORMALIZATION IN A GRAPHICAL
REPRESENTATION {ARBITRARY ORDER)

The discussion of the preceding section can be extended
naturally to provide an algorithm to build
V3 ~, V4 ~, . . . , i.e., the formal series (7.1).

Again, if the reader finds the discussion below too
abstract for a first reading, he can compare the abstract
steps described here with the corresponding ones worked
out in Sec. XVIII for the cp model-.

The basic objects are the "dressed trees" and the "trees
dressed to order p."

A tree dressed to order p will be an object obtained by
considering a tree with no labels appended on it.

(1) To each end point append an index a H(1, . . . , t).
(2) To each vertex different from the root and of order

(p -(i.e., followed eventually, though not necessarily im-

mediately, by (p end points) append an index R or, alter-
natively, enclose it in a frame together with the part of
the tree following it, excluding the preceding vertices.

(3) Append to each frame an index a C (1, . . . , t).
(4) Append to each outer frame (note that, in fact, some

frames may be inside others) and to each unframed end
point an index g'ER .

(5) Append to the unframed vertices a frequency index,
increasing along the tree.

Diagram 15 provides a few examples:

, a

k k h

g„a,

(15)

where the first is a tree dressed to order 6, the second to
order 4 (or 5), the third to order 3. The above notion is
the obvious extension to p) 3 of the p =2 case met in
Sec. VII.

To each partially dressed tree y one associates a func-
tion V(y) so that
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y:k(y) =k
y dressed to order p

V(y)
n(y)

encloses a shape

would be the effective potential for y' — ' obtained by
starting from V) + V2 ~+ V3 ~+. . . + Vp ~.

The definition of V3 &, . . . , is inductive and so built
that the last statement is true. Having already construct-
ed V2 & in Sec. VII, one has to explain how Vp+] & is ob-
tained from V(, V2)v, . . . , Vz)v so that (8.1) holds once
V(y) is appropriately defined.

Call yo a shape of a degree-two tree

( fo)
and call Wk the sequence of operations introduced in
Sec. VII and called there simply Wk.

In general, one looks for a sequence W'k ' of operations
indexed by the shapes o. of the trees dressed up to order
p =(degree of o.—1) (a "shape" of a tree y dressed to or-
der p is the tree obtained by stripping y of all the frequen-
cy labels as well as of the g labels, leaving only the
frames, the R labels, and the a labels). The operation
W'k ' is meant to define the divergent contribution to the
effective potential due to the trees with shape o. and arbi-
trary frequency labels.

The operation W'k ' will be subject to the following re-
quirements (see Sec. VII).

(i) Wk acts on certain functions of the field q)(~") and
has range in the interaction space g k. Also, if F is in the
domain of W'k ', then 8'~+, 8'kF is in the domain of
W~ ', for q &k.

(ii) The following extension of (7.13) holds:

~k +k +h = +k @h~h (8.2)

To evaluate the function V(y) associated with a par-
tially dressed tree one will have to interpret a branch of
the tree emerging from a vertex with frequency label k
and ending in a frame containing a shape o. and carrying
frame labels g, a [see conditions (3) and (4) above] as
representing a function which, if integrated over g, is in

k.
For instance,

g, a (17)

In this way a partially dressed tree y can be regarded as
always ending in "endframes" containing tree shapes; the
name end point will be reserved for the end points of the
tree obtained from y by deleting all its frame.

The "bare degree" 5(y) of y is the number of end
points of y, while the "dressed degree" of y will be the
number of external endframes.

The meaning of the R superscripts, as well as the con-
struction of the coefficients l)I

' (k) and of the counter-
terms V~ )v, is described in terms of the operations W'k '.

The definition of l)v (k) and of W'k ' is inductive on
the (bare) degree of o. Since these objects have been al-
ready defined for cr of degree two, suppose that they have
been defined also for arbitrary shapes a. of degree &p.

Let y be a tree dressed to order p+1 and with degree
p +1. Suppose that its first nontrivial vertex vo carries a
superscript R and is the origin of an s-fold bifurcation
into s dressed trees; suppose that the frequency index of
vo is h; the situation is described in diagram 18:

and counts in the evaluation of V(y) as

l(a) (k)ger (a)( ((k) g (&k)) (8.3)

where l& '(k) are certain coefficients, "form factors of
shape (7,

" to be defined later and )'I.~=+A.( ', with the
product ranging over the indices a appended to the end
points of o (in diagram 16 they are a(,a2, a4, a5).

In other words, once the coefficients in (8.3) are defined
and the meaning of R is specified, the meaning of V(y) is
essentially the same as would be attributed to a decorated
tree (with decorations which are more complicated, as
they can be framed shapes of trees).

With the meaning of the framed shapes explained, it
remains to explain the meaning of the R superscripts and
the rule to determine the coefficients l)I ~(k) in (8.3).

For uniformity of notation it is convenient, in this sec-
tion, to consider the unframed end points of a partially
dressed tree as framed end points containing the trivial
shape, i.e.,

(16)
(18)
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Then if o is the shape of y one interprets diagram 17 as
representing

X@'h(V(y(), . . . , V(y, )), (8.4)

(19)

where WI, ' has to be defined verifying requirements (i)
and (ii) above and so that the summation of (8.4) over all
the trees y with the same shape o. and root frequency k is
ultraviolet finite (i.e., has a limit when N~ ao if y'~ ' is
smooth).

In the present general context one cannot discuss the
existence or nonexistence of such Wh ', although in each
model considered in the following sections this will be a
very easy problem; here, to continue, assume that at least
one such WI, ' exists. Of course, as already remarked, the
operation W'h ', which basically isolates the "divergent"
part of (8.4), will not be uniquely determined, if existing
at all.

This completes the definition of the meaning of the R
superscripts.

The next step is to define the coefficients l& (k) in
(8.3). This will be done via the following prescription.
Consider the tree shape o. of degree p +1 dressed to order

p and enclosed in a frame attached at frequency k;

and assume that cr bifurcates at its first framed vertex U0

into s completely dressed shapes o ~, . . . , cr, (a "complete-
ly dressed" tree is one dressed to an order equal at least to
its degree).

As said above, the framed shape in diagram 18
represents a function of the field y'-"' of the form (8.3);
to define it, the procedure of the preceding section is fol-
lowed, in a rather natural sense, as described below.

Delete the outer frame enclosing o. and insert frequency
indices at all the unframed vertices of o. as well as pairs
g, a at all the new external outer frames (formerly next to
the outer frame); the root of o is given frequency —1 and
the indices (g,a) attached to the deleted frame are also de-
leted (compare diagram 20 below with diagram 13):

(20)

(no R superscript is above U0 because o was supposed
dressed only to order p and of degree p + 1).

Since one is supposing inductively that
V(y~), . . . , V(y, ) are already defined, one can evaluate
the tree in diagram 20 above giving the usual interpreta-
tion of truncated expectation to the vertex Uo, which car-
ries no R superscripts. Then one can define the coeffi-
cient lz ~(k) in (8.3) in terms of the value of the tree in di-
agram 20 (see also diagram 13):

k
(k)U' '(yg ",&yg ")dg= f dg y y ~' I[@'0. &h )&J, (V(y$), . . . , V(y, ))],

a=1 h =Oh 0 0
v0

(8.5)

where the second sum runs over the frequency assign-
ments to the other vertices of the tree y.

Finally, again in analogy with the second-order case,
the "counterterms" Vz & of order p will be a sum of con-
tributions Vz ~ each coming from a tree shape o of de-

gree p:

(8.6)

where A, has the meaning described after (8.3).
Proceeding exactly as in Sec. VII, one proves that using

the above rules to interpret diagrams 1S and 19 one deter-
mines, via (8.1), the effective potential corresponding to
V$ + V2 &+ + Vp ~ simply by interpreting a partially
dressed tree of arbitrary degree as computed using the
above rules starting from the highest vertices and inter-
preting the lower vertices with no R superscripts as sim-

ply representing the truncated expectation of the func-
tions defined by the s-pie of trees branching out of a ver-
tex. The proof is by induction, once more, and it is left to
the reader with the warning that the definitions above

A, =A, '+L(A, '), (8.7)

and L is analytic near the origin with a second-order zero,
then inserting (8.7) into (7.1) and rearranging that formal
power series in A, into a formal power series in A,

' one
necessarily obtains another power series which will enjoy
the same properties as the former one as far as the stabili-
ty as X~ oo is concerned.

This situation is very much reminiscent of the state of
perturbation theory in classical mechanics where there are
formal power series for various objects, which are am-

have been conceived with the aim of making possible this
inductive proof.

It remains to define Wk ' in a more concrete way in
each model.

As already remarked elsewhere, the ambiguity in the
coefficients of the counterterms [and therefore in the defi-
nition of the operations Wk ' of identification of the
divergent parts] has its deep origin in the trivial fact that
if
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biguously defined for trivial reasons and even "divergent"
and which can be "renormalized" by suitable prescrip-
tions (Gallavotti, 1983b).'

An interaction g for which the operations W'k ' can be
taken identically zero for trees of bare degree &po will be
called "super-renormalizable. "

The basic idea of the above construction of the counter-
terms is from Zimmerman (1969), who introduces the no-
tation of "forest" (here called tree); however, here the no-
tion of tree is independent of the notion of Feynman
graph, not yet introduced, while in the literature the
forests are always associated with given Feynman graphs.
It seems conceptually simplifying and practically advan-
tageous to be able to introduce the notion of forest
without any reference to Feynman graphs.

That perturbation theory can be perhaps done in a
neater way by avoiding as much as possible the use of
Feynman diagrams has been clearly pointed out by Pol-
chinskii (1983), who presents a method quite similar to
the one introduced here to deal with perturbation theory
using multiscale properties and effective potentials work-
ing in the momentum space (here configuration space is
used, instead). The method outlined here has been used in
various super-renormalizable cases already in Benfatto
et al. (1978), Gallavotti (1978,1979), Benfatto, Cassandro
et al. (1980), and Benfatto, Gallavotti, and Nicolo (1980).
In the latter papers, however, the super-renormalizability
masks the power of the method [which becomes clearer in
Benfatto et al. and in Nicolo (1982,1983), even though
the theories treated are still super-renormalizable].

IX. RESUMMATIONS: FORM FACTORS
AND BETA FUNCTION

Before starting the real worki. e,., the analysis of con-
crete models, there are still quite a few remarkable
abstract considerations that can be made.

If an interaction g is super-renormalizable, the renor-
malization leads only to a slightly more complex structure
of the trees (which have to be dressed up to a finite order

po if the subtraction operators are chosen to be zero when
the degree of the trees is larger than the convergence
threshold po—see Sec. VIII) and there is little to discuss
about them.

But if g is only renormalizable or even if it is super-
renormalizable and one chooses to define Wk ' to be
nonzero for o's of large degree, i.e., if one "oversub-

tracts, " the graphical representation of V' ' is enormously
more complex and one wishes to simplify it as much as
possible by collecting together as many terms as possible
without losing control of what may be going on.

The trouble is that one would naturally like to collect

together infinitely many trees but, as will become sadly
clear, there are no chances that the resulting series will
converge in a naive sense. Nevertheless it is possible to
devise a simple 'summation rule" permitting us to give a
meaning to important resummations.

A concrete example on the abstract and general discus-
sion below is in Sec. XX, where the reader who finds too
abstract, on first reading, the contents of this section can
see the same ideas worked out concretely in the case of y .

The idea leading to such developments can be best illus-
trated via an example in which it is even rigorous: the
well-known "resummation of the leading divergences"—
see Landau (1955), Landau and Pomeramchuk (1955),
't Hooft (1982,1984), and Rivasseau (1984).

One defines a "pruning operation" on the dressed trees,
consisting of isolating the final bifurcations of a tree y
which have the form of diagram 21, called a "most-
divergent branch" or. a "most-divergent endframe. "

The pruning will just delete the "most divergent
endframes" of y and their contents, as diagram 21 shows,

V (y)= g V(y') .
y':7r'=r

(9.1)

where y is a tree with no most-divergent branches (i.e.,
ry =y); clearly in (9.1) the sum runs over infinitely many
trees (euen if the ultraviolet cutoff N is finite).

For instance,

, a

(22)
However, it is also clear that the result of the resumma-

tion in (9.1), if convergent in any sense, cannot lead to
anything other than the conclusion that V (y) is evaluat-
ed by "slightly modifying" the rules to build V(y): this
follows from observing that the sum (9.1) leads to a
change in the meaning of the lines reaching the end points
with index g, o, of a pruned tree y (i.e., such that ry=y)
and representing, according to the usual rules, the func-
tion

(21)

but this will not be all, because after the deletion of the
most-divergent endframes of y new most-divergent
endframes may appear in what is left of y: then the prun-

ing will be pursued until no most divergent branches are
left. This defines a "pruning mapping" y~ry.

The idea is to define

Although the main result of this paper has been previously
obtained by Russman (1967), the connection with renormaliza-
tion theory is somewhat new and relevant as a reference here.

g(a)U(a)( (&k) ~ (&k)) (9.2)

The modification is explained below.
Consider a tree y which is pruned: ~y=y. Then all
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the trees y' such that ry'=y are obtained from y simply
by considering each end point of y with index a and
growing on it a tree of arbitrary size with simple bifurca-
tions in two branches at each vertex and then drawing a
frame around every new vertex, as in diagram 23,

obtained by adding to each free vertex of y any framed
most-divergent shape o. just means interpreting the end-
branches which are like the

as meaning

gcrI(a) ( ) (a)( ( &p) & ( &p))

g(a)( ) (~)( (&p) g (&p)) (9.4)

(23)

attributing to each vertex and to each new frame indices
a', a", . . . (not drawn in diagram 23).

An end point of y can be either "framed, " bearing an
index a (and no index g), or it can be "free," bearing a
pair of indices (g,a); in diagram 24 end points of dif-
ferent type are marked on an example of a pruned tree:

where the sum runs over all the shapes o. that can be at-
tached to the end point and are most divergent.

Similarly consider a framed end point of y with index
a (like the end point with index a) in diagram 24. In this
case the addition of a most-divergent tree shape enclosed
in a frame and attached to the considered end point just
modifies the meaning of the frames of y as follows. Re-
call that the form factor iPlz-(p) corresponding to a
framed shape & is evaluated (see Sec. VIII, diagram 19)
recursively by reducing, eventually, oneself to the evalua-
tion of the function representing the simple trees

(24)

g(cT)$(a) ( ) (a)( ((p) g ((p))
x,o P Up (9.3)

It is clear that summing over all the y', with wy'=y and

They are the end points with labels a) (say), and a5.
Consider first the case of an end point which is free

and attached by a tree branch to a vertex of frequency in-

dex p.
We shall now assume, throughout this section and in

the sections following Sec. XVI (where applications of the
following considerations are presented), that the opera-
tions W( ' depend, for a general (T (not necessarily a
most-divergent one), only on what remains of cr after de-

leting all the frames that it may contain as well as their
contents. This property is very convenient and natural,
but it has not been assumed since the beginning in order
to develop a formalism flexible enough to permit the
simultaneous analysis of the super-renormalizable and the

just renormalizable cases. What follows here is not
relevant for super-renormalizable theories, unless one is
interested in studying the effects of "oversubtractions" (as
will become clear).

Since a frame with index a attached to a vertex of fre-
quency index p and enclosing a shape o (whether most
divergent, as of interest here, or not) represents, by the
general theory of Sec. VIII [see (8.5)], the function

corresponding to the end points of & (once, in the evalua-
tion process, they become unframed) and having the
meaning of A,

' 'O' '. If to each end point of o. is added a
most-divergent framed shape o. and one performs the
summation over all possible such o's, it is clear that one
simply gets the same result that would be obtained by in-

terpreting

as meaning again (9.4).
In other words, one may consider, in computing the ef-

fective potentials, only the trees y such that ~y =y, pro-
vided one interprets the end points of y attached to a ver-
tex with frequency index p as having the meaning (9.4):
this meaning has to be kept, for consistency, even when
the end points of y are inside frames (as in diagram 24).
This means that when one computes the form factors for
the framed parts of y and, in doing so, eventually reduces
oneself to the case of the tree

one interprets it as meaning (9 4) instead of simply
g(a) (a)( (&p) g (&p))

If we give to the end points of a tree @=ay the new in-
terpretation and represent this by using heavy dots at the
end points of y, it is clear from the above discussion that
the form factors A,

( '(k) verify the graphical relation of
diagram 25,
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g, a g, a
, a , a

where the left-hand side (lhs) can be taken as a symbolic
representation of (9.4) and where the rhs has a summation
over the indices a~, a~. . . , understood, in each term.

The equation in diagram 25 can be written pictorially,

k

(26)

which is, actually, a simple recursive relation for the form
factors A,(k): its iterative solution leads to expressing A,(k)
as a power series in A, . This power series, once substituted
into the V (y), defined, as explained above, interpreting
the end points of y as bearing a heavy dot and as meaning
that in the evaluation of V(y) a line

(~1) (~2) ~

where 8' (h)A, '
A, is the coefficient of

f (a)( ( —)) g ( —1))yg

in

(9.6)

(9 7)

The factor —, comes from the combinatorial factor associ-
ated with the tree shape

analytic equation only at the price of doing all the calcu-
lations necessary to evaluate the trees in diagram 25, i.e.,
the formal power series for the form factors).

Following the rules of Secs. VII and VIII for the
evaluation of the coefficients of the element of g k associ-
ated with a frame (see diagram 19), one gets, for 0 (k (N

k
)((a)(k) g(a)+ g y g(a) (p g(~1)(pg( ?)(p )

has to be interpreted as in (9.4), yields the representation

V(k)
n(y)

(9.5)

where the sum runs over the trees y=~y (i.e., over the
pruned trees) only.

On the other hand, it might happen that the relation in
diagram 26 thought of as an equation for the form factors
admits true solutions, not just formal solutions in the
form of power series generated by iterating it: then one
can use this solution to define the "summation rule" that
the sum (9.1) is by definition the expression V (y) com-
puted with the same rules as V(y) but interpreting the
end points as bearing heavy dots, which means that they
must be interpreted as in the rhs of (9.4), with A,(k) de-
fined by the given solution of the equation represented by
diagram 26.

In other words, the equation in diagram 26 has two dif-
ferent mell-defined possible uses. One is to generate by
iteration the various terms graphically represented in dia-
gram 25 [i.e., the formal power series for the form factors
A, (k) in (9.4)]. The other is to provide a nonperturbative
meaning to the sum of the series in diagram 25 for the
form factors, i e., a summation rule for the most-
divergent graphs. The first use is also quite interesting,
being equivalent to the direct definition of the various
trees in diagram 25 described in Sec. VIII; this is, mani-
festly, a conceptually simpler way to build the coefficients
A,

( '(k), although, as is clear from the principle of conser-
vation of difficulties, this does not really save any work if
one wishes to perform a real calculation (the point being,
as will be explicitly illustrated in the case of the models
considered later, that diagram 26 can be converted into an

The coefficients B are manifestly X independent.
To proceed any further one needs explicit expressions

for the B's: the ideal situation arises when the B's have a
structure allowing one to conclude that, possibly adjusting
the initial values A,

' ', there is a solution to (9.6) such that

(9.8)

where v(a) is some "dimension" suggested by each con-
crete model (in fact, as will be seen in the models treated
later, one can expect to have a k dependence of the form
factors which goes exponentially at a rate characteristic of
each form factor and, usually, the order-by-order behavior
of the perturbative coefficients of the form factors is es-
timated to be much worse than the a priori guessed ex-
ponential).

When this is the case, and this depends upon the in-
teraction g, it is clear that the above simple resummation
can produce a great gain in the expressions of V(y) and
in their estimates, because it may introduce a damping in
the contributions from the trees having in them bifurca-
tions at too high frequencies. Furthermore, this damping
results as a consequence of summing, by a well-defined
summation rule, a series which might be divergent (as in
fact happens in the simplest applications described later).

The above method to build resummation rules can be
extended to cover more complicated sets of trees by modi-
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fying conveniently the pruning operation.
The pruning operation can be extended by prescribing

the pruning of a given set of shapes; for instance one can
prune all the framed endbranches like

k&X,
k oo N

A,
( )(k) =A, ( '+ g g g B', '. . . (h;h(, . . . , h„)

h =On =2 h;&h
a)p ~ ~ o pa

a

In this case the equation in diagram 26 is modified into

g, a
+

k , a

(28)
where the summation over the indices ca~, u2, 0,3 is under-
stood in each term.

Or if one prunes out also the endbranches like

(29)

then the equation in diagram 28 is replaced by

k g, ~ k

,a

(30)
In the case of the equations in digrams 28 or 30 Eq.

(9.6) is replaced by a similar one in which the rhs also
contains cubic terms; their coefficients are still X in-
dependent. However, the X dependence is implicit
through the fact that the frequencies are bound to vary
between 0 and X. It should also be clear that, if the cut-
off is N, only trees with at most N+1 vertices between
any two successive frames are possible (and therefore can
be considered in the resummations; for instance the
resurnmation in diagram 30 makes sense only if X&1,
while the other two are meaningful even for N =0). The
N dependence of the B's will not be explicitly marked ex-
cept when necessary in Secs. XX and XXII; note that
each B becomes N independent for N large enough.

The ultimate greatest resummation can be associated
with the "total pruning operation" whereby all the frames
are pruned and one is left just with dressed trees without
frames in the formula corresponding to (9.1).

The graphical representation of this resummation rule
1S

oll possible framed dressed
trees of any order and
with heavy dots on the
end points and no inner

r
frames

(31)
where again all the summations over the indices
o.&,a2, a3, . . . , are understood.

The equation in diagram 31 becomes explicitly, for

XA. ' (hi) .
A, "(h„),

(9.9)
where the coefficients B must be computed according to
the rules of. Sec. VIII—see diagram 19—and are expressed
as sums of the coefficients of

g(~(). . . g(~r) r (n)( ( —i) g ( —1))dgU 1 gg y {Pg

in W )V' "(o)ln(o.), cr being one of the trees with r
end points in diagram 31 deprived of the first frame and
bearing no 8 superscript on the first vertex vo and with
frequency indices h appended to vo and h&, h2, . . . , h, ap-
pended to the vertices out of which emerge the r-final
branches of (T.

By the assumption of renormalizability and of existence
of the operators Wk it follows that the coefficients in Eq.

(a;)(9.9) will be such that if the form factors A,
' (h;) are re-

(a;)
placed by constants A,

' then the summation at fixed r
converges uniformly in %.

The problem is that, as will appear in the concrete case
of y, the sum over r is not well controlled.

Introduce the functionals A' N, A acting on the space
of the sequences A, of functions k(~)(k) are defined for-
mally as

k 00 N

(A)vA, )( '(k)= g
h=O r=2

a;=j, , t

B~, '
~ (h;hi, . . . , h„)

XA, ' (hi) A, "(h)
(9.10)

(AA, )' '(k) = g g g B~ '
~ (h;hi, . . . , h„)

h =Or=2 h;)h
a, =1, . . .t

XA, ' (h() A,
' (h„)

(9.11)

and rewrite (9.9) as

A(k) =A, +(A)vA, )(k), 0& k &N . (9.12)

The difference with the preceding "rigorous" resumma-
tion schemes is that the rhs of (9.12) does not really make
sense other than as a formal power series in A,

' '(h), be-
cause, as mentioned above, there is no control over the
summations over r in (9.10) or (9.11).

Therefore, the only use, already very interesting, of
(9.12) is that it can produce, by a formal solution by itera-
tion, a well-defined power series in A, , obtaining a formal
power-series expression of the form factors associated
with the resummation. Furthermore, as %—+ ao the coef-
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ficients of a given order in such power series for the
form-factor solutions of (9.11) converge to the corre-
sponding coefficients of the formal power series obtained
by iterating

A(k)=A, +(AA, )(k) . (9.13)

The result of the above 'discussion is quite nontrivial:
through the knowledge of all the coefficients B' '(I);h)
one can compute the form factors k(k) to any order
desired in the renormalized couplings and then reduce the
computation of V' ' to the computation of V(y) for all

the trivially dressed trees, i.e., for the trees with only R
superscripts on the vertices and no frames at all, provided
their end points are interpreted as meaning the rhs of (9.4)
with A,(k) being now a form factor defined by (9.12) to
any order in perturbation theory.

In other words, the knowledge of the coefficients in
Eqs. (9.12) and (9.13) allows one to reduce the calculation
of V'"' to essentially the same calculations that would be
necessary in the absence of renormalization. The econo-
my of thought gained in using this approach in comput-
ing perturbation theory coefficients is obvious. However,
it is worth stressing that, as already remarked, in practice
the calculation of the B coefficients is exactly equivalent
to the evaluation of the trees with frames; it is perhaps
better to regard Eqs. (9.12) and (9.13) as a convenient way

A(k+1)=A(k)+(B)vA)(k), 0&k+1 &N,

A,(k + 1)=A,(k)+ (Bk)(k), 0 & k,
where A, ( —1)—:A, , and

(9.14)

to organize the calculations of perturbation theory by
separating the "true calculations" (corresponding to the
trees with no frames) from the form-factor calculations.

Unfortunately, unlike the simple cases of the
"moderate" resummations described by diagrams 26, 28,
or 30 or, more generally, involving a finite number of
"pruned shapes, " no rigorous use of (9.12) and (9.13) can
be made to prescribe resummation rules, because no infor-
mation is available on the nonperturbative meaning to be
attached to the rhs of (9.12) and (9.13): one can say only
that if on the rhs of (9.12) and (9.13) the second order
"dominates, " then A.(k) should behave for kazoo in the
same way as the A, (k) that would be obtained from the
most divergent resummation [i.e., from Eq. (9.6)].

Many triviality arguments for cp are based on this as-
sumption (domination of the most divergent graphs), and
this point will be discussed in more detail in Secs. XIX,
XX, and XXII below.

It is customary to write (9.12) and (9.13) as difference
equations obtained by "writing them for k and 0+1 and
subtracting"

N

(B)vA.)(k)= g g gB' ' (k+1;h), . . . , h„)k ' (h, ) . . A, "(h„), 0&k+1 &N,
r=2 h;)k+1 a;

(Bk)(k)= g g gB' ' (k+1;h(, . . . , h„)A. ' (h)) A, "(h„), 0&k+1
r =2 h,-&k+]. a,

(9.15)

and B is basically the "beta function" [see Callan
(1970,1975), Symanzik (1970,1973)], which therefore can
be used to simplify conceptually the perturbation theory
in the sense explained above.

Usually Eqs. (9.14) are more homogeneous if written
for other form factors trivially related to the ones just dis-
cussed by

g(a)(k) v(a)kg(a) (9.16)

in the same sense in which the renormalized couplings
represent the trivial trees

g, a

where v(a) is a suitable dimension (this will become clear
in the treatment of the concrete model yq).

To conclude this section it is useful to point out that
the constants A, (k) verifying the first of (9.14) can be
naturally called also "effective coupling constants at fre-
quency y,"because they represent the trivial trees

By definition it is true that A, (N) is precisely the "bare
coupling" (7.1): note that it is the formal power series
(for k =N) generated by the recursive solution of the first
of (9.14) starting from the zeroth-order approximation
A, (k) =A, .

It is convenient to label the formal power-series solu-
tion of (9.12) and (9.13) [or (9.14)], by the symbols

A(k;N), k &N, or, respectively, A, (k;oo), to avoid any
confusion between them.

Clearly the bare coupling s are, in this notation,
A,(N;N), and they should not be confused with A, (N; Oo );
note also that, while A,(k; oo) can be (and will be in the
cases treated later) regularization independent, the form
factors A,(k, N) may be strongly dependent on the regulari-
zation used.

The latter statement requires some more detailed ex-
planations, since the use of a different regularization
seems to yield results which just are not comparable with
the ones coming from another regularization. Therefore,
to illustrate the above statement it is convenient to "com-
pare" the results of the Pauli-Villars regularization at a
given order n and the corresponding results for a radically
different regularization, e.g., the lattice regularization (see
Secs. II and III). The comparison of the two approaches
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can be made by thinking that the lattice free fields are
also decomposed into a sum of independent fields associ-
ated with a hierarchy of scales y, k =0, 1,2, . . . , via the
identities (3.4) of order n using

E(p) =e, (p) =2 g [1—cos(ap;)]/a

rather than E(p) =p .
Then one proceeds, exactly as in the Pauli-Villars case,

to study the effective potentials for the fields
Their effective potentials will be described by Eq. (9.13)
with the 8 coefficients depending on the cutoff a (here
N = oo from the beginning, be'cause one does not need

X & ao for regularization purposes when one is assuming
a &0): such coefficients converge to the coefficients of
(9.14) as a —+0 term by term, but for a & 0 they depend on
a and for large r [see (9.11)] their dependence on a itself
is strong.

It is even conceivable that A,(k; ao ) could be defined as
nonperturbative solution of the second of (9.14) [or (9.13)]
while A(k;N) could admit interesting nonperturbative
solutions only for suitably chosen regularizations [because
the terms of (9.12) are regularization dependent on the
sense above, while those of (9.13) are not]. This question
will be discussed in more detail in Sec. XXII.

X. SCHWINGER FUNCTIONS AND EFFECTIVE POTENTIALS

Iff is a smooth test function, one considers the following formal chain of identities:

S(f;p) =';„, (p(f)—;p) = ]nS';„,(ee'r(")
j

cP

8

k]p ~ ~ ~ p k&

&;,((g (f), . . . , y (f);1, . . . , 1)

q=1kl«. . . k m), . . . , m

m)+ . +m =p

q=l k 1

' (f)+ ' ' +y ' (f);p )
T (kl ) (k )

(k)) (It: )

0, ~ ~ g (ee(q ' (f)+ . . +g ~ (f)]e)')
ln

q=( k, ,k, ~()' (e )

o, oo

(A:1) (k ) (Ic )

g . . . g (ee(q ' (f)+ . . +q ~ (f)]e«)

q=1 k «. . k s=1 ~
1

(10.1)

where 8';„, is the expectation with respect to the "interac-
tion measure"

N

(exp V) + P(d(p(~))
j=1

~(0,k) =+0+( @k

y(f)= I (pg(g)dg.

In some sense, the crucial step in (10.1) is the identity
preceding the last, where V is replaced by the effective
potential.

The functions S(f;p) are called the truncated
Schwinger functions of order p for the interacting mea-

sure: they are trivially related to the nontruncated
Schwinger functions of Sec. IV. The relevance of (10.1) is
to show that the Schwinger functions can be expressed in
terms of the effective potentials [and, as can be easily seen
from (10.1), at least formally, vice versa].

Even though (10-.1) might present convergence prob-
lems a priori it will be easy to check that, in fact, the rhs
of the series in (10.1) will converge, order by order, in per-
turbation theory in the renormalized constants A, : this will
be so in the cases which will be encountered in this paper,
provided convergence problems do not arise already in the
perturbative definitions of the effective potentials them-
selves.

Sometimes one wishes to study more complex "observ-
ables" like
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p(f): f—:cos(a(pg):f(g)dg (10.2)

through their average values and the average values of,
their powers with respect to the interaction measure.

A way to analyze such quantities via the effective po-
tentials technique, which in particular can also be applied
to the Schwinger functions, is to include p(f) in the in-
teraction potential and to try to show that if
V = V~ + V2 ~+ . yields a well-defined ultraviolet
stable effective potential, then so does p(f)+ V.

Examples of how this could be done are provided by
the theory of the sine-Gordon interaction.

However, for reasons of space I shall not dedicate
much time to questions of the above type.

It is worth stressing that the convergence of the
Schwinger functions of a theory with cutoff N to their
limit values as X~ m need not be pointwise but might
take place only in the sense of distributions or even worse,
at least if one expresses the results in terms of S(f;p), i.e.,
of smoothed expressions involving the truncated averages,

(10.3)

It is probably important to avoid putting any specific
convergence requirements on how the expectations (10.3)
should approach their limits as %~op, in the absence of
physical reasons to prefer one type of convergence to oth-
er types, one should leave this question aside, allowing for
any type of convergence which will a posteriori be subject
to only one constraint, namely, that of leading to a proba-
bility measure I';„, on the space of the fields in a sense
suitable to infer the existence of, say, a Wightman field.

XI. THE COSINE INTERACTION MODEL IN TWO
DIMENSIONS, PERTURBATION THEORY
AND MULTIPOLE EXPANSION

denotes a regularized free field as defined in Sec. III via a
first-order Pauli-Villars regularization [see (3.3) and (3.7)],
consider the interaction g )v..

iaaf( ~
V)(p)= f —$:e ~:+v dg

A
o =+1

—= f [A, :cos(ay&- )):+v]dg,

The ideas and methods of the preceding sections can
now be applied to the actual theory of the simplest fields.

If
N

+( &&) y +(j)

Nevertheless, to avoid complicating the notations we shall
denote simply by C'"' and not by C'"' the covariance of
y'"', since there is no possibility of confusion, in Secs.
XI—XV. We shall also set A=c =p = 1.

It will turn out that the interaction g in (11.1) is renor-
malizable (actually, trivially super-renormalizable (in the
sense defined at the end of Sec. VIII), for a ~4m and
slightly less trivially for a E [4m, 8m]).

By the general theory of Sec. VI the effective interac-
tion V'"', as given by (6.8), will be described in terms of
trees with end points bearing, besides the position index
gHR, the index a=+1, —1, or 0 representing, respec-
tively, the three terms in the intermediate term of (11.1).
Since o.=0 represents a constant and the trees represent
truncated expectations, the index a =0 can appear only in
the trivial tree

Q„—= g oJ, "cluster charge. " (11.2)

When U =r =(root of the tree y), the y„,Q„will also be
denoted y(y)and Q(y). Given any h) —1, it makes
sense to consider the fields y,'- ' and y', '.

To find the rules for the computation of V(y), one
proceeds empirically trying to find an appropriate ansatz.
After a while, it clearly emerges that a reasonable ansatz
is that the contribution to the effective potential of the
tree y is

V(y) cia@(y). (11.3)

.where V(y) is a suitable function of the tree y.
Let y&, . . . , y, be the s subtrees, with root Uo equal to

the first nontrivial vertex of y branching out of Uo in y;
symbolically this is depicted in diagram 32, where
k =h, =(frequency of the root of y) and h =h„:

The indexes a=+1 will be denoted a, and they will be
called "charges. "

Using the cluster interpretation of the trees (see dia-
gram 7), one can interpret each vertex U of a tree as a
cluster and can define the "charge" Q, of the vertex u as
the sum of the indices o associated with the points in the
cluster defined by U.

Given a tree y, let U be one of its vertices with frequen-
cy label h„, which, if thought of as a cluster, contains the
points gj, , ;,gj with indices (rj, . . . , crj. ; then one sets

q „'
'= g aj q q,), "cluster field, "

which will be called the "cosine field" or the "massive
sine-Gordon field" with "open boundary conditions": the
latter specification refers to the fact that in Secs. XI—XV
the field p' ' will be supposed to have covariance given by
C'"' in (3.7) and not by its periodized version denoted in
(3.7) by C'"' ("nonperiodic open boundary conditions" ).

k h
(32)
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Then, combining (11.3) with the general recursion relation (6.4), one finds the following relation between the various
V(y), for k &h:

(11.4}

which, using the rules on the Wick monomials [see (C15) and (C16) in Appendix C], yields (note that the term in large
square brackets below is p independent) for k & h

V(y) = V(y) ) . V(y, )
iay —" (y;)n :e

j=l
a2g h)

(
(~~f&h —))(y)

) g ~ (
—rr C( 1)

TED A, E
(11.5)

where u is the set of simple graphs connecting the sym-
bolic objects y), . . . , y, (i.e., graphs with no repeated
bonds and such that for any two y;, yj there is a path of
bonds connecting them), which may be regarded as the
clusters of points determined by the vertices Ul, . . . , U,

following Uo in y; furthermore, if A, =(y;,yj ), one means

C(h) g (~(h)(y ) (h)(y )) C(h)

(A)X~4 nCA &

fEy,.
gEy)

(11.6)
C(&h) g g ( (&h)(y ) (&h)(y )) C(&h)

J

( &A)C
gEy,.
gEyj

Notice that the two relations in (11.6) have the interpre-
tation of electrostatic potential between the charged clus-
ters y; and yJ relative to the electric potential C~„'.

If we use the definition

iaog. (a /2)8'(y ) iaoy

(see Appendix C), Eq. (11.5) becomes

V(k)

n=l o&, . . . , o n

f dg)-. . dg„

~e V(3 ) . iay —"(y).:e
y:k(y)=k

(11.9)

f (&Ic P P(d
p=0 P.

OO f dz X) . dz X~w(X»LTq) . . w(X& cz&)r
p=0

cr l o p

where the third summation runs over the trees y with n

end points (i.e., of degree n) carrying the end point labels

g), cr), . . . , g„,cy„and root frequency k.
Expression (11.9) will be called the "multipole expan-

sion" for the effective interaction on scale y . This
name comes from the following simple and interesting ar-
gument.

, Consider the quantity Z below and compute it by ex-

panding the exponential in powers and using the proper-
ties of the Gaussian integrals (see Appendix C):

Z —f t exp[ V(k)(g( &k))] ]P (d ( &k))

V(y)= V(y)). V(y, )exp —a g Cy y-
l &J

Xexp —a g V . , (X;,XJ)
1&J

(11.10)

gE~~ AE7

which, considered together with

(11.7) where

f d,x—= g g f dg, -. dg„,
n —0 o ~ ~ a

1

X—= (g), . . . , g„), Lr=((r), . . . , 0.„),
(1 1.1 1)

for y=
w(X, cr) = V(y)

degree y =»
o(y)=o

for y=
g, o

provides a recursive definition of V(y) and proves ansatz
(11.3).

The effective potential then has the form

(&k)
V (XX')= g crgogCg

)EXfEX'

i.e., Z in (11.10) is indeed, formally [i.e., modulo conver-
gence problems in (11.10)], the partition function of a
multipole gas in which the multipole with charges
o), . . . , cr„ located in the volume elements dg) . . dg„
has activity

w(g, , . . . , g„;cr,, . . . , r„}dc/ .)dg„—:w(X, cr)dX .
(11.12)
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To complete the analysis of perturbation theory for the
cosine interaction one has to show that the theory is ultra-
violet finite. This is indeed the case for a &4', but if
a )4', this is so only for a &8~ and, perhaps, for
a =8m. This problem is studied in Sec. XII below.

XII. ULTRAVIOLET STABILITY FOR THE COSINE
INTERACTION AND RENORMALIZABILITY
FOR a~ UP TO 8m.

shape y. Finally, 5), . . . , b,„are n cubes extracted from
a pavement of A with cubes of side size y; we shall
denote this pavement Qk, supposing the side of A divisi-
ble by y

Of course one looks for bounds uniform in N and uni-
formly summable over the choices of 62, . . . , 5„ in Qk.
In fact, this is motivated by the observation that the con-
tribution to V' ' from the trees with shape y and charges
L7 can be written

Let
k

+( (k) g +(j)
j=—1

r'(r) =~
k(y) =k, o(y) =ET

V(y) (a'/2)C(~h)
e yy

a. n(y)

be a sample field in which y(J) verifies (3.15) and (3.16)
and let the covariances C' ', j = —1,0, . . . , N, verify
(3.19) (jo ——1 in the present case) being defined by O'J' in
(3.7) [see comment following (11.1)].

To study the ultraviolet stability of the effective poten-
tials V(")(y(~ ') one bounds [see (11.3)] the quantity

(12.2)

so that a bound, valid for all N and all k (N, like

—aykd(h 5 )

I [(a /4m) —2](n —1)+(~2//4~) I kXy

(12.3)

r:~(r)=x
k(y) =k, cr(y) =o.

n y

(2g2)C( &k)(a /2)Crr

having estimated the Wick-ordered exponentials

iap &k (y), 2
yy iap(& (y)

2 (&k):e:=e e

(12.1)

by exp[(a /2)C&r"']; and the sum runs over all trees with
fixed shape s (y )=y [to avoid confusion the shape is here
denoted s(y) rather than o(y)], fixed root frequency in-
dex k, and fixed charge labels o.=(o.(, . . . , o„) and n end
points. Hence the sum runs over the frequency labels h,
that can be assigned to the nontrivial vertices u ~ r of the

where m (y) is a suitable constant depending only on the
shape of y, would be sufficient to show that the effective
potentials are well defined order by order in perturbation
theory, so that they converge to limits as N~ao on
subsequences; actually, it will be very clear that one could
also easily prove plain convergence without need of subse-
quences.

The estimate (12.3) shows more, as it shows that the ef-
fective potential has a strong "short-range" property on
the scale y naturally associated with the frequency k;
the short-range property is expected to play an important
role in the infrared stability, but, as will become clear
later, also play a role in the ultraviolet stability.

In trying to prove (12.3) it is convenient to rewrite the
recursive relation (11.7) as

( )
(a /2)C(

y
) —(a /2)(Cr(~ ) —C(r~r ) TT ( )yl

i=1

(~2//2)C( & h —1)
l ~l a2C(h)+ (e —1) for k&6,

T6~~ A, Ev
(12.4)

where the relation

C( &h —1) C( &h —1)
XlPJ 3

i,j

is used and C' ":—0.
Let u & r be any vertex of y and denote u' the vertex of

y preceding u; denote y„ the subtree of y with root at u'

and first vertex u; for instance, in diagram 33 y, is the
tree consisting in all the branches of y that can be reached
climbing the tree starting from u' and passing through u:

(33)

Cali g,, . . . , g„,o, . . . , (r„ the end point labels for the
positions and, respectively, the charges.

Equation (12.4) implies [see below]
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where U; is the tree's vertex directly connected to the end point g;, ~- Ko )0 are constants, and

d*(X„)=graph distance of the points of X, modulo the clusters inside U, (12.6)

i.e., d (X„) is obtained by drawing lines connecting points in the clusters X„and belonging to distinct maximal subclus-
ters of X„(which are the clusters corresponding to the vertices of y following U immediately; see diagram 7) in such a
way that any subcluster can be reached from any other by walking on such lines and jumping inside the subclusters:
d (X„)is the minimum of the sum of the lengths of the above lines over the possible ways of drawing them.

The exponential factor in (12.5) requires an explanation; it arises from a bound on the last product in (12.4) and from
the exponential decay of C~"„'——C'

),
'

), [see (3.19)] for some a & 0:

2C(,h) a
I

C&"
I 2 (h) an CO h+(e ' —1) & Q(e ' a ICq I)& + ae " Q*Ae

A, Es A, E'7'
(12.7)

where n, is the numbers of vertices in X, (n, & n ), and the sum runs over the pairs g, g in the subclusters joined by A, ,
whose number is bounded by n, & n . Since

I g —g I

is larger or equal to the minimum distance between the two sub-
clusters, (12.5) follows, with ~- being a coefficient depending only on the family of numbers n„, i.e., on the shape

y

y =s (y) of y only.
To proceed one has to find a reasonable bound on the first product on (12.5).
Let C-''- denote the same expression as C&'& when all the points in the cluster corresponding to U are collapsed in

XV) V V V

one of them; it is

(12.8)

where Q, is the charge of the cluster U.

Then the first product in (12.5) can be written

((h„,—1) ( &h„,—1)—(a /2)(coo " —Coo
"

)QIe + t exp[ —(a /2)(C& r" —C-:" )]

( &h, —1) ( &h, —1)
Xexp[(a /2)(Cr r' —C-:" )] I (12.9)

and the term in curly brackets can be bounded by using (3.19) and

( &h„—1) ( &h —1) ( &h, —1) ( &h, ,—1) 1/2 1 h„1/2
Coo

'
I
+

I Cg'q
" —Coo

"
I

) &2+ ~)y2(1 y ) '[y "d(X )]
g, A+X,

=A[y "d(X, )]'~ (12.10)

where

d(X„)=length of the shortest path connecting

all the points of the cluster X„.

Hence using the easily proved inequality

(12.12)

In the last step of (12.10) use has been made of (3.19)
Ula

h

I

C((&) C(&h)
I

& y I

C(o) C(o)
I

p=0

[hint: (12.12) does not hold "without the sums"; see
(18.15) for a similar but deeper inequality], one finds that

p=0

&~)n(1 —1'

——gy "d'(X, )+A g [y 'd(X, )]' (A(y) &+ m,
0 V

(12.13)

(12.11) and one can bound (12.5) as
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( /) y~r, —( /)Q„( oo" — 0()" ) —(~/)y'd*( „)2 (&k 1) 2 2
(&h 1) (&h, 1) hv*

r
V)P

The integral (12.1) can now be estimated using (see Appendix D)

—1)
(a2/2)Cg gIIe

i=1
(12.14)

V V)T

if s„=number of branches emerging from the vertex v in y and if 8„ is some constant.
Using also CIx)

"' ——(h + 1)Coo', we see that

(12.15)

M(S S ") ~"r'
h

n (a2/2)hv Coo

II e
i=1 V)P

(12.16)

where the sum runs over the frequency labelings of the shape y such that k (y) =k.
Taking into account the relation between the number s„of branches emerging from v in y and the number n, of

points in the cluster X„corresponding to u

g (s„—1)=n~ —1,
V)W

one easily checks, denoting C =CI)o' =—(lny)/2m-.

(12.17)

so that, using again (12.17) and (12.16),

V)r

2

C(h, ,
—k) —1ny g 2(h„—k)(s„—1)+ CQ„(h, —h, )

i V)P

A2

4~
CX 0!—2 (n, —1)+ — Q„(h, —h„), (12.18)
4m. 4m.

J

k—(«4)d(~&. ~ ~„)r i [(a'/4~ —2)(n —1)—a'/4~]k' — 'r
V)r

(12.19)

with

2 2
—2 (n, —1)— + Q, .

4~ ' 4~ 4~
(12.20)

(34)

The summation in (12.19) is over the frequency label-

ings of y and therefore over the h's such that %)h„
—h, )1.

Clearly (12.3) follows, provided p„&0 for all v. In fact,
since v & r implies n„&2 and

~ Q„~ &0, it is clear that

p„& —a /2~+2 —i.e., p„&0 if a &4r)..
This proves (12.3) and the ultraviolet stability for

a &4m. Since one can easily check, as the bounds (12.19)
and (12.20) hint, that for a & 4~ the contribution to V(")

from the trees

(h, )
iay U(r )

tp ~ ~ e p oe
U

(h, )
iay " (r„)S,

) (12.21)

if u1, . . . , u, are the other vertices following u immediate-
ly.

However, when all the points of the cluster X, coincide,
it is p(y', ) =0, because Q„=O, and it is clear that (12.21),
being a truncated expectation, must vanish [in fact, the
first argument becomes identically 1 and 8' (1, . . . )—:0].

(h .—1)
Therefore, (12.21) will be equal to exp[ia(Iv " (y, )]

times a factor which will be proportional [given E&(0, 1)
arbitrary; see (3.16)]

y: Q, =0. Let v' be the vertex preceding v, and let h„,h„
be their frequency labels.

Then in the evaluation of V(y) the subtree y, of y
with root u' and containing u and all the following ver-
tices has the meaning, according to the general theory of
the tree expansion in Secs. IV and V,

(12.22)

is in fact divergent as X~oo, the problem for u )4m.

has to be reexamined —i.e., renormalization is necessary.
The key observation for studying the case a )4~ is

that the bounds (12.19) and (12.20) can be directly im-
proved.

In fact, let u be a "zero charge" or "neutral" vertex of

However, if one collects together the contributions to
V' ' from the trees having the same shape up to the
charge indices and having fixed clusters of zero charge,
then it is easy to realize that this improves the estimate
producing a result which is a finite sum of terms which
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can all be bounded by the same bound that can be put on
the "worst" among them, namely, the one obtained by re-

( &h„.) ( &h, )
placing:exp[iay " (yu)]: by:cos[aq& ' (y„)]:,which
in turn will introduce in the evaluation of the expressions
analogous to (12.21) a factor proportional to

(12.23)
I

if Q, =0 (because the cosine differs from 1 by a second-
order infinitesimal). The details will not be discussed
here, as a much more complicated similar analysis will be
presented and treated in Sec. XVIII. This leads, via some
simple algebra, to replacing (12.3) by a bound on

(12.24)

which, if Uo denotes the first vertex of y following the root r, is estimated by

(g g )
~

~ d(~] ~u ~( (a2/41r —2)n +a2/41r)k y
h

—(p„+2—c)(h„—h, .) ~p p
y

V) Vp) ~

(12.25)

because in the intermediate steps the integral (12.15) will be replaced by

2 —j
(12.26)

v)r V:P„=o g', g EX„
V)Vp

by using the remarks leading to (12.23): the first nontrivi-
al vertex of y, Uo, plays a special role, because if Q„=O
the expression:cos[ay(-"'(y, )]: will be proportional to
the result obtained after the last truncation and no further
truncation will be done at frequency k. Therefore, no fac-
tor like (12.23) can be contributed by the first vertex vo.

The integral (12.26) obviously leads to an extra factor
in (12.15) of the form

—2(1—c)(h —h .)gn 7r
u u

V) Vp

in fact, the product of exponentials in (12.26) forces the
points in the cluster U to be within a distance y '; hence
(12.23) can be replaced in the integral (12.26) by

(y u yu)2(l —'E)h2(gr) u

provided I(/4 is replaced by ~/8 and 8' is conveniently
chosen (see Appendix D).

The bound (12.25) proves that if one collects together
several trees of the same shape and if use is made of the
charge symmetry, th.en all the trees with nonzero charge
Q„&0 (note that this implies

~ Q, ~

& 1) yield p„&0 and

p„+2—2e &0 if e is taken small enough, for all a & 8m.
Hence (12.25) proves that the ultraviolet stability can be
violated, for a &8~, only by the trees which have zero
charge: Q„,=0.

For a &8m not all the neutral trees have ultraviolet
stability problems, only the neutral ones with n end
points, n =n, , such that [see (12.20)]

2
+n 271 —1=2 1 p 2 7 3 ) ~ ~ ~ ~

4m 2n

As a reaches o.„and beyond it, the trees with n ver-
tices and zero change "become ultraviolet unstable" —i.e.,
their contribution to the effective potentials are not con-
vergent as N~ ao.

However, the reason for the instability is somewhat
trivial and it is due manifestly to the fact that the first
nontrivial vertex Uo of y, when y is neutral, gives a con-
tribution to 'V(y) of the form:exp[ia(p(-"'(y)]:, which
does not vanish when the position labels g(, . . . , gn for
the end points of y become identical.

But if one defines W'k =0, unless Q, =0 or a &a„Vp

and

(12.28)

Or 0 ~

(35)

Z(r' f:e' ~' "(r'V(y )d-g= f, V(y)d—g, (12.29)

if Q„=O and a &a„, and, if one collects together the
Vp

trees y of the same shape up to the charge indices and
with the same frequency indices and the same vertices of
zero charge, one sees that the operators W'kr' define re-
normalization operations, according to the general theory
of Secs VI—IX, such that the dressed graphs have two
types:

CX CX—2 (n —1)+ &0 .
4m 4m.

(12.27)

So, for a &Sm, there is a sequence of thresholds ob-
tained setting the lhs of (12.27) equal to zero:

Either they contain an index R as a superscript on the
first vertex Uo after the root r or they are entirely con-
tained in a single frame with an index o =0 appended to
the frame [meaning that they contribute a constant to the
effective potential, because W'k~' takes values in the space
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of the constants, by (12.29)].
A tree with an A over the first vertex will mean a con-

tribution to the effective potential which is equal to the
one that would be given by the tree without the R but
with:exp[iay' ~ '(y)]: replaced by:[exp(iaq&'-"'(y)]
—1:.

Collecting again the contributions to the effective po-
tential from all the trees with given shape, up to the
charge indices, and summing their contributions over all
the possible frequency labels and charge labels at fixed
neutral vertices, one sees that the contribution to the ef-
fective potential sums up to the same quantity (12.24),
with

:e' ~ 'r': replaced by:cos[ay'-"'(y)] —1:, (12.30)

and the latter expression vanishes when the points
g&, . . . , g„collapse into one single point and the zero is of
the order of the square of the zero of y'~"'(y). The latter
can be evaluated by recalling the basic smoothness proper-

t

ties of y'~"' described by (3.16) (recall that the space di-
mension is here d =2): it is of the order of

no control on convergence one wonders what it really
means to study an interacting field theory.

The simplest type of result that one can think to try to
prove for the interacting measures P;„t is the following.

"There exist (infinitely many inequivalent) one parame-
ter families P~ of measures on a'(R ), the space of the
distributions on R, whose Schwinger functions admit an
asymptotic expansion in the parameter A, near A, =O coin-
ciding with the formal perturbation theory expansion'* of
the cosine interaction discussed in Secs. XI and XII (with
v=O).

Super-renormalizability is the deep property behind the
methods so far known to obtain a proof of.the above pro-
position in the cosine interaction case as well as in the
proof of its version for many other super-renormalizable
field theories (e.g., —A, :p: in two dimensions or
—X:y:—p:y:—v in three dimensions; in fact, the ideas
and methods involved do not distinguish between the
above theories).

The first idea is to try to build P~ as limit of measures
of the form

' 2(1—c.)

(12.31) N N
Z ' +X (cp'J') exp[V(y'- ')] +P(dp'J'),

j=0 j=O
(13.1)

if B =sup8g and c)0 is prefixed arbitrarily.
This improves the bound (12.25) by replacing also p„

by p„=p, +2—2c..
The arbitrariness of c implies that, if o. ~ 8~, c can be

chosen so that p, &0, and, therefore, all the unframed
0

dressed trees are ultraviolet finite in the sense that, col-
lecting together the contributions from the trees with
given shape, up to the charge indices, one obtains a total
contribution to the effective potential which is ultraviolet
finite.

The framed trees contribute only to the constant part of
the effective potential and therefore need not be studied.
However, their theory would also be simple, and they turn
out to be ultraviolet finite: in fact, the sum of the contri-
butions to the effective potential coming from the neutral
trees of a given degree is a constant which can be written
as f vt, d(, and, from (12.25) and the general theory, one
can find

~
vk

~

&~(y)(y' "" "+
) A, (12.32)

Since, given a & 8', Wkr =0 if n, the number of end
points ("degree") of y, is large enough, it follows that the
cosine interaction is super-renormalizable in the sense of
Sec. VIII (see final comments of Sec. VIII).

Exercise: study the exponential interaction (5.5) and
show that it is ultraviolet finite up to a &4~. Show that
it is not renormalizable for a &4~ (hint: just repeat the
same steps and estimates used for the cosine case).

XIII ~ BEYOND PERTURBATION THEORY
IN THE COSINE INTERACTION CASE:
ASYMPTOTIC FREEDOM AND SCALE INVARIANCE

Having completed the perturbative analysis for the
cosine field theory in terms of formal power series with

where gj are characteristic functions selecting fields hav-
ing so large a probability that

1& f g [XJ(y'J')P(dg'~')]
j=0

& exp[ —e(A, )
/

A
/ ], (13.2)

with

V(y'- ') = f [A,:cos(ay~- '):+vz(A, )]dg, (13.3)

where vz(A, ) is the sum of the counterterms due to the re-
normalization described in Sec. XII [see (12.31)], if any
(i.e., if 4' &a &8').

The characteristic functions XJ will be so chosen to al-
low one to treat "naively" the fields y'~' when X~(p'J') = 1;
i.e., Xj will be the characteristic function of the set:

where

(13.4)

B~ =B(1+j)'ln(e +j+l ')

for some 8 &O, s&O, a & ~, if
~ g —q ~

denotes the dis-
tance.

The probability of the above event is bounded below, by
using (3.17), for all a & —,

'
by

E(A) ~ 0
A, ~O

faster than any power and, of course (see Sec. XI) (11.1)
with v=0,
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Q [1—A exp[ —aB (I+j)][in(e+A+j)] I & [1—3 exp[ —aB (I+j)]ln(e+1+j) Ir '
hcA

(13.5)

where the product on the lhs runs over the cubes of the pavement QJ of A with cubes of side size y J, whose number is

Clearly in (13.2) one can take, when g~ is chosen as described in (13.4),

E(A, ) = g y2 In[1 —g(1+j+k—))—&'((+J')) ((—~((+J'+~
j=0

(13.6)

i.e., E(A, )~0 as A, ~O faster than any power of X.
Since the amount of phase space thrown away by the

insertion of the characteristic functions in (13.1) is, if
measured with the free-field measure, very negligible, see
(13.2) and (13.4), it is quite clear that the perturbation-
theory expansion for the Schwinger functions of the mea-
sure (13.1) and those of the measure obtained by taking
away from (13.1) the characteristic functions are identical
uniformly in X.

Therefore, if one succeeds in showing that the measure
(13.1) has a limit as X~ oo (possibly only on sub-

sequences), the one-parameter family claimed to exist in

the above proposition is constructed.
This is in fact true and it is the way which will be fol-

lowed in proving the proposition at the beginning of this
section.

Of course, since the construction clearly depends on the
arbitrary parameter B in (13.4), one must expect that the
family P~ of measures obtained as limits of (13.1) is B
dependent.

The measure (13.1) will be called a "restricted cosine
field": it is an object of limited physical interest even in
the limit X—+ ao. Its importance lies only in the fact that
its understanding is preliminary to the understanding of
the interesting case (essentially obtained by letting
8~oo).

Before'we continue, it is important to make the follow-
ing remark: the restrictions (13.4) do not imply that the
field y(- ' is constrained to be smooth for large ¹ actu-
ally, a simple computation shows that the cutoff on rough
or large fields imposed by the inequalities (13.4) is such
that y~

— ' —yz
— ' have essentially the same covariance,

and hence the same average size, with respect to the free
Gaussian measure and in the free restricted Gaussian
measure [i.e., the Gaussian measure restricted to the en-

semble of fields described by (13.4)j. This means that the
problem of taking the limit as X~oo of (13.1) is still
nontrivial and that some new idea is necessary for its
solution.

Arguments on field theory are often given, in the litera-
ture, treating the fields as if they verified (13.4). And the
problem of controlling what happens when the field
violates the conditions imposed in (13.4), i.e., the problem
of controlling the large fluctuations, is often solved by
handwaving methods, saying that the large fluctuations
"are depressed" by the "positivity of the action. "

In fact, it will be clear that, in practice, many real prob-
lems arise in trying to give a rigorous meaning to such ar-
guments; in my understanding the situation is, in general,

p
p()v)(@(0) ~(N)) +y (@(j))

j=0

N

( (J) y(~((N))

j=p+1

X ~ P(d, (J))

j=p+~
(13.7)

is the density of the distribution of y, . . . , yP with
respect to the measure P (d y(o) ) . . P (d@(&)).

The first step is to show that the integral in (13.7) is an
integrable function of cp' ', . . . , y'P' with respect to
P (dy( ') . P(d(P(&) ), and, furthermore, that the inte-
grable function can be bounded uniformly in the ultravio-
let limit, X~ ao.

From the above discussion on the relevance of the
phase space "neglected" [see (13.2) and (13.6)], it is natur-
al to think that the result of the integration in (13.7)
should simply be

very subtle and I cannot see the actual solution of the
above large-fluctuation problem (in the cases where it is
known how to handle it on a mathematical rigorous basis)
as just a refined way of rephrasing the mentioned argu-
ment based on the positivity of the action. Furthermore,
this is a case in which it makes no sense to appeal to
"physical arguments, " because the issue is precisely
whether field theory has anything to do with physics.

In any event, the problem of the relevance of the large
Auctuations seems to have been clearly perceived as a
deep one, even in field theories with a formally positive
action, in constructive field theory, and it should be re-

garded as one of its contributions; see Nelson (1966,1973),
Glimm and Jaffee (1968,1969,1973), Osterwalder and
Feldman (1976), Magnen and Seneor (1976), Gallavotti
(1978), Benfatto et al. (1978,1982), Benfatto, Cassandro
et al. (1980), Benfatto, Gallavotti, and Nicolo (1980), and

Nicolo (1983).
The new ideas needed to deal with the problem of prov-

ing the existence of the limit of (13.1) as X~ oo, at fixed

B, are two: (i) asymptotic freedom and (ii) scale invari-

ance. Their role and interplay in field theory seems to
have been clearly realized as early as 1969 by Wilson
(1971). It turns out that they are best illustrated in the
theory of the cosine field.

Suppose that one wishes to study the distribution of the
low-frequency fields (p( ', . . . , y(~) in the restricted ensem-
ble. Then the function
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exp[ V(k)((&k))] (13.8)

up to corrections negligible as A, —+0 and due to the pres-
ence of the characteristic functions in (13.1).

However, this does not really make sense, because the
theory of the preceding sections provides an asymptotic
expansion in k for V ' which has little chance of being
convergent.

The next best guess is that instead of (13.8) one gets, for
any integer t) 0

xp t
[V(k)((&k))][t]+gt +)R(+(&k).g) I (13.9)

where [ ][') denotes the truncation of a power series in A,

to order t and R, represents a "remainder. "
Therefore, [V(")][') will be given just by the perturba-

tion theory developed in the preceding section counting
only the trees with at most t end points; the choice of t in
(13.9) is arbitrary, provided that the remainder can be well
estimated for the chosen t.

The validity of a result like (13.9) means that the in-

tegral of exp[ V(y( & ')] over y( ), . . . , y(~+') can be per-
formed successively by using perturbation theory; there-

fore in order to have any hope of proving (13.9) with
reasonable bounds on the remainder it is necessary that
V'~'(y'-~') regarded as a "potential" on y(~' at fixed

", . . . , tp' ' has a very small size, at least on the re-
stricted ensemble (13.4); actually, not only should its size
be small, but it should even go to zero as q~ ao ("asymp-
totic freedom" ), if N = oo.

In order that the above property hold for all q &N it
must of course hold for q =N. Hence the check of the
property of asymptotic freedom starts with a check of its
validity for q =N.

To explain what the above words mean concretely one
considers the field y( ' and observes that, as discussed in
Sec. III, it can be regarded as smooth and essentially con-
stant on cubes 6 of size y, which will be thought of as
extracted from a pavement Q)v of A with cubic tesserae
of side length y . Furthermore, the values of y( ' on
different tesserae are almost independent because of the
exponential decay on scale y of the covariance of p(

This suggests writing the nonconstant (i.e., nontrivial)
part of the interaction as a sum of contributions each
coming from a given b, H Q&, i.e., as

g f . . [ (
((x—))+ ()v))].dg y (g

( ~ ) 0()'
~

g
~

)
1 f cos[ (

((&—))+ ()v))]dg
EEQ~ EGQ~

("/4& ""S
AEQ~

(13.10)

where use has been made of CIx)
' ——(N+1)(lny)/2',

~

b.
~
=y, and by the preceding arguments one regards

the variables S~ (which have "order 1," because they are
averages of a cosine) as random variables of the field y(
parametrized by the field y' — ", and y' ', j (X—1, are
supposed to be in the set defined by (13.4).

The variables S~ can be thought of as continuous spins
sitting on the lattice Q)(t and the calculation of the in-

tegral

f X (q' ')exp gAy' ' "~S P(dg' ') (13.11)

can be thought of as the problem of evaluating the parti-
tion function of a spin system, on the lattice Q)v, which is
a perturbation by an energy

(a~/4m —2)X (13.13)

f exp(A, W'dp)=exp g 8' (IV;p)+R,
pf

and

~
R,

~

(A, '+'X (system's volume in lattice

(13.14)

If o.'(8~, one sees that the "effective coupling on the
fields with frequency N" is (13.13) and it goes to zero as
N~oo, which means that the spin system is at "very
high temperature" for large X, and one can very reason-
ably hope to use the high-temperature expansion tech-
niques of statistical mechanics to estimate perturbatively
the integral (13.11): the result of such estimates is in gen-
eral that

(a~/4m —2)XS spacing units) X const. (13.15)

of the "free measure":

p IIdS, = f Qn(S, —S,)X„(q( ))p(d~(")),

(13.12)

which, intuitively, can be thought of as an almost-
factorized measure with respect to the variables S~.

So the problem of computing the integral (13.11) in
terms of its value for A, =O can be interpreted as a statisti-
cal mechanics problem problem for a spin system of
bounded uncorrelated spins with a local perturbation
whose size is lim lim k)v(k) =0 .

kazoo X~oo
(13.16)

It is therefore clear that the result of the integral (13.14)
gives rise to a very complex new function of y(—

For this reason one does not say that a theory is asymp-
totically free just if the computation of the effective cou-
pling constant for y' ' gives a result tending to zero with
N —+ ao, as in (13.13).

The correct definition of asymptotic freedom is set up
by considering the main term of (13.9) and by interpreting
it as a potential for y("' parametrized by y( —" "; one
then computes the "effective coupling constant A)v(k)"
and says that the interaction is asymptotically free if
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The self-consistent nature of this condition being clear,
one can hope to be really able to check (13.16) and use it,
afterwards, to obtain good estimates for R, .

Although the calculation, or estimates, of A,)v(k) looks
a priori much harder than the evaluation of A)v(%) per-
formed above [see (13.13)], it turns out that one can easily
estimate A)v(k) by using the general theory of perturba-
tions developed in the previous sections.

To obtain an estimate of A)v(k) one first needs its pre-
cise definition: in fact, [ V(")(y( &"))](')no longer depends
on a single constant, which, as done above when k =N,
can be naturally related to N, but it is rather a "many-
body" nonlocal interaction being a finite sum, over the
trees with & t end points, of terms like [see (11.9)] (12.31):

g(y) =o.

xdg) . . dg„, (13.17)

where y denotes a tree shape of degree n (i.e., with n end
points), o are the charges at the end points of y, and

I'(ll. . k '7'): Icos[(I(' 5')]—&g-oI:

(13.18)

Then one will interpret (13.18) as a many-body interac-
tion between the spins (S~,, . . . , S~ )=—(yg, ', . . . , yP )

and check that (13.18) is bounded by

—~ykd(h 6 )
(13.19)

uniformly in X and with A)v(k) and ~ independent on the
particular term like (13.18) contributing to the effective
potential, and also independent of the considered expan-
sion order t, C„~&0 being suitable constants.

Then the constant A)v(k) will naturally be called the
"effective coupling constant" for the field y' ': the in-
teraction (13.18) becomes susceptible to the very same in-
terpretation as (13.10) in terms of continuous lattice spin
systems.

All the technical work necessary to study bounds
(13.19) in the cosine field case has already been done in
the proof of its renormalizability: in fact, estimate (12.25)
with p„replaced by p„+2—2c;, as explained after

is the total charge of y.
To interpret (13.17) as a spin-spin interaction for a lat-

tice spin system one has to recall the main property of
y' ' of being approximately constant and smooth on the
scale y

" and of being independently distributed on the
same scale (approximately, of course).

Therefore, following the same philosophical principles
already used above, one splits (13.17) into a sum over all
possible n-tuples of tesserae b, ), . . . , b,„CQk of terms
like

(12.31), immediately yields a bound on (13.18) of the form
(13.19) with

C, =C,B

(k) =Ay' "(1+k) '(lne +k+ A, ')
(13.20)

y(+( &P) )exp[ P (P)( ( &P) ) ][t] (13.21)

for p =N, N —1, . . . , k+1.
The reason behind the feasibility of the above feat is the

second important idea on the problem: the fields
' are identically distributed up to trivial scal-

ing (see Sec. III).
This means that, whatever p is, the integral (13.21) can

be regarded as the computation of the partition function
of the same spin system on a fixed lattice affected by a

and )(=)('o/4&0, for all %, provided E in (13.4) is chosen
so that p„+2 —2E & 0—i.e., E « (2—a /4m. ).

Therefore, the cosine interaction is asymptotically free
for a & [0,8m ), provided it is correctly renormalized for
a K[4m, 8m).

Notice, however, that there is a deep difference between
the cases a &4' and a C [4n, 8~): in the first case con-
ditions (13.4) are not necessary to obtain (13.20) because
bounds (12.19) and (12.25) can be used and because they
had been obtained without using any smoothness (or
boundedness) property of q&( -"'.

Such properties are necessary to obtain the improve-
ment on (12.25) (i.e., p, ~-p, +2) needed to have the

ultraviolet stability for a &8'. Recall that the improve-
ment follows, after renormalization, only if
:c»[ay(-")(y)]—1: is bounded by (12.31) and this is pos-
sible only if the smoothness condition in (13.4) holds [the
boundedness condition in (13.4) is not really necessary and
one could proceed without it].

Actually, this remark shows that (13.20) can be im-
proved by replacing C, by a B-independent constant, if
a & 4m. Also, one can observe that while the proof of the
proposition at the beginning of Sec. XIII on the existence
of the P's easily implies, by the arbitrariness of B in
(13.4), the complete construction of the cosine theory in
the ultraviolet limit for a &4m, this is no longer so for
a & 4m, when the presence of the field cutoff introduced
by the characteristic functions in (13.1) is really essential
to have asymptotic freedom. In the latter case,
a H [4m., 8m ), new ideas are necessary to control the
B—+~ limit.

The discussion of the B~oo limit will be postponed to
Sec. XIV and in this section no more differences will arise
between the cases a & 47r and a H [4m, 8'�). .

Having proved the asymptotic freedom for the cosine
interaction, one realizes that the partial solution of the ul-
traviolet problem provided by the proposition stated at
the beginning of this section still requires the analysis of
many statistical mechanics problems of weakly coupled
continuous lattice spin systems.

One can, in fact, regard as such the problem of per-
forming the successive integrations over y'~' of
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508 Gallavotti: Renormalization of scalar fields

perturbation which is p dependent and which, by the
asymptotic freedom property, -has a p dependence becom-
ing weaker as p becomes larger.

Therefore, as a matter of fact, one can perform the in-
tegral of (13.21) over p'~' by trying to use the naive for-
mula

8' (X e )=exp g —8' ([V' '] ');j)

Lemma l. Formula (13.22) is valid for p =0, replacing

[ V' '](') by a finite linear combination of expressions like
(13.17), with k=0, such that the integrals (13.18) are
bounded by (13.19), with p =0 and A.&(0) replaced by a
free parameter A, .

By the scale invariance of the multiscale decomposition
such a lemma would then imply (13.22) for arbitrary p.

Accepting the above lemma, and hence (13.22), one ob-
serves that

+W,~(p)'+'R, y ~
~

A
~

—[ V~u —&~](&) (13.23)

(13.22)

[see (13.14)], where
~

8
~

& 1 and R, is a positive constant
depending on C, and v [see (3.19)]; the factor y ~ in front
of the volume

~

A
~

comes from the fact that the volume
has to be measured on the scale on which lives the field
y'~' (see below).

The validity of (13.22) rests on the following lemma.

which is evident if one recalls the definition of the formal
power series in A, for V'~ " in terms of that for V~~' [see
(5.13) and (5.14) and the relations following them in Sec.
V].

Then, since [V~~ "]('i verifies the bound (13.19) with

p —1 replacing p, provided y' ', . . . , y'~ " verify (13.4),
it follows that the integral (13.7) is, recursively, estimated

k N
F'"'(q' ' y' ')= +X,(y"') p [V'"']'l+ g M, y'

~

A
~

A, (p)'+'
j=0 p=k+1

(13.24)

where
~

0
~

& 1 and the remainder is simply the sum of the remainders produced by successively integrating the fields
+"using (13.22), i.e., Lemma 1 above.

So the remainder in (13.24) is bounded by

p=k
(13.25)

This proves that F' ' [see (13.7)] is well defined and
bounded uniformly in N if a & 8~: in fact, it is enough
to choose in (13.24) and (13.25) the arbitrary integer t & 0
to be not smaller than to, where to is the first integer such
that (a /4m —2)(tp+1)+2&0, so that tp ——1 if a2&4m,
tp ——2 if a H [4m, 16vr/3), tp ——3 if a H [16m'/3, 6m ), tp ——4
if a E [6m, 32m /5), etc.

If F' ' is well defined and bounded in N, it follows
from abstract analysis that there is a subsequence of the
sequence of measures (13.1) which converges "weakly" to
a limit I'~ as N~ao for all values of A, ER; any such
one-parameter family will verify the properties in the pro-
position stated at the beginning of the section [there are
many sequences of measures (13.1), since one can change
the parameter B in (13.4), or, more generally, since one
can modify the choice of the characteristic functions]. I
shall not discuss the details of such an analysis, since I
consider it not too relevant to the heart of the matter
treated here.

So the discussion of the proposition at the beginning of
this section is complete for the cosine interaction and
rests on the above technical lemma; this lemma will not
be proved here (although to do so is not particularly diffi-
cult, since it is a "mean field theory bound" in its statisti-
cal mechanical interpretation, as the reader familiar with
statistical mechanics can convince himselfl. The
relevance of Lemma 1 for the ultraviolet problem from

I

the constructive field theory point of view has been point-
ed out in Gallavotti (1978,1979,1980), Benfatto et al.
(1978, 1982), Benfatto, Cassandro et al. (1980), and Ben-
fatto, Gallavotti, and Nicolo (1980), and then used by
many workers who have often built it in as an important
ingredient necessary in the development of new more dar-
ing and deep ideas [see Gawedski and Kupiainien
(1982,1983) and Balaban (1982,1983,1984); see Westwater
(1980) for related ideas). Some of the methods in Galla-
votti (1978) had been previously introduced in the bril-
liant papers on the hierarchical model in statistical
mechanics [see Bleher and Sinai (1974,1975) and Collet
and Eckmann (1978)] [these are the methods used to at-
tack a model similar to the model called the hierarchical
field in Gallavotti (1978,1979)]; in some sense the role of
the application of such methods to field theory was to
point out the path to follow to apply the renormalization
group in constructive field theory using techniques al-
ready developed in statistical mechanics and taking al-
most literally the ideas introduced in statistical mechanics
and field theory by Wilson (1969).

The proof of Lemma 1 can be found in a rudimentary
form in Gallavotti (1978,1979) and in a complete form in
Benfatto et al. (1978,1982), Benfatto, Cassandro et al.
(1980), and Benfatto, Gallavotti, and Nicolo (1980), where
a much stronger version (see Lemma 2 of Sec. XIV, of
this paper) is derived; in Gallavotti (1979) Lemma 1 is ob-
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tained by literally reducing it to a classical statistical
mechanics problem of high-temperature expansions for a
system of weakly coupled spins, using the techniques of
Kunz (1976) and Sylvester (1977), and later improved in
Cammarota (1982) [see Seiler (1982) for a review].

The proof in Benfatto, Cassandro et al. (1982), Benfat-
to, Gallavotti, and Nicolo (1980), and Benfatto et al.
(1982) has been eritieized as complex and unnecessarily
so, being based on "delicate" properties of higher-order el-

liptic boundary value problems; I do not think that this
criticism is justified. While it is true that one relies on
properties of PDE's, interesting in themselves but techni-
cally involved, it should be stressed that the proof pro-
posed in the above reference is conceptually very simple
and intuitive and also provides a nice general technique
for the theory of Markov fields. The basic ideas behind
the proof are explained in a simple form and in simple
cases in Gallavotti (1980). A simpler account on the oth-
er earlier ideas can be found in Gallavotti (1979). The de-
tailed proofs of Lemma 1 presented in the above-cited pa-
pers should not mislead the reader into believing that they
are much more than technical developments of a very
simple probabilistic idea. I also believe that the so-called
simpler proofs are either weaker or equivalently difficult,
not surprisingly so by the well-known law of conservation
of difficulties.

Field theory is a technical domain, and I believe that all
proofs there are equivalently hard and equivalent to the
first proofs ever given; it is useful to devise new ones, be-
cause they can lead to the more efficient organization of
the proofs and to the intuition behind them, which seems
essential for further progress.

XIV. LARGE DEVIATIONS: THEIR CONTROL
AND THE COMPLETE CONSTRUCTION
OF THE COSINE FIELD BEYOND a =4m

The work done in Sec. XIII solves in some sense the
problem of the ultraviolet stability when the random
fields into which one decomposes the free field are con-
strained to fluctuate by a finite amount, albeit large com-
pared to their average fluctuation. The amount of the al-

lowed fluctuations is described by the parameter B in

(13.4).
One cannot easily take the limit B~oo because (see

Sec. XIII) the error estimates in (13.24) diverge with B in

general (R,~z „ao).
Actually, this is the case for a H[4vr, gm), while for

a &4m., as already mentioned in Sec. XIII, the properties
(13.4) are not necessary to obtain bounds on the effective
potentials and the error term in (13.24) is uniform in B
[because in (13.20) the constant C, can be taken indepen-
dent of B; see the remark after (13.20)].

For u &4~ it is therefore easy to let B~ ao and build
a family P~, A, HR, of probability measures on the fields
on R, which verifies the properties of the proposition at
the beginning of Sec. XIII but which is not concentrated
on an ensemble of fields restricted by (13.4); this is a fam-

[ V(k)( ((k))][2] I
y, k() )=k

degree y&2

and the V(y) are represented, if o =+1, by

i aug( &

) ~ 2

(14.1)

(14.2)

(14.3)

2

(e
2

—. a C~ g
o.,~2 —a ~,~2C~-g"-—2 (It) 2 (&h —])

( 2 1 2

;~~~ +(&k)+~ +(&k)~
1 t2 2 —6,+,()):, (14.4)

ily of measures that can naturally be taken as defining the
interacting cosine field for a & 4m; with some extra work
it could also be proved that the limit as X—+ oo of the in-
teraction measure (13.1) with B= + oo exists without any
need of passing to subsequences, and hence no nonunique-
ness problems arise.

A complete theory of the cosine interaction for u &4m
has been first worked out in Frohlieh (1976), where the
infrared limit is also studied.

Much more interesting, as a field theory problem, is the
case a &[4~,8m). So far the possibility of removing the
"field cutoff" B has been really proved only in the inter-
val a H [4m, 32~/5) (:[4~,Sm ); the values a H [32m /5, 8n )

have not yet been reached, because, as will become clear
soon, one has to find some suitable positivity property of
the effective potential, and in Benfatto et al. (1982) and
Nicolo (1983) the positivity has been checked "by hands"
rather than on the basis of p, general algorithm; since the
positivity requirements become stronger and stronger as
a ~8m, it is impossible to take a too close to 8~ unless
one understands in a simpler way why things seem to ad-
just to produce the right signs at the right moments.

I shall first discuss in some detail the mechanism which
allows one to remove the field cutoff (B~ oo ) for
a &[4m, 16m/3): this is the case in which the minimum
value that can be given to t in (13.24) is t =2, as discussed
in Sec. XIII.

Since t is so small, it is easy to write explicitly
[V' )((p(~ ))](') in terms of the graphically eloquent tree
language or as a plain 'old-fashioned formula.

In the trees' picture one has
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2 +a2C(h) + 2C( &g
—I I

(e ' —l)e
2 h=o

X 5a +a Qdg'[ (14.5)

and in (14.4) and (14.5) the subtraction affects only the
zero-charge trees (o &+a 2

——0) as expressed by 5,+, 0', the
combinatorial factor n(y) is 1 for (14.2) and (14.3) and 2!
for (14.4) and (14.5).

If we sum over the frequencies and the charges, the fol-
lowing analytic representation for [V'"']( ) emerges:

2
a2g( &N) a2g( &k)

[ V'"']( ) =—f [A,:cos(ay~-"'):+v]dg+ — f (e r" —e ~" ):cos[a(y~- '+@~ "')]:d-g dg
A A

'2 '2
+a2C( & X) +a2C( & k) (&k) (&k) +a2C( & k)

+ — f (e ~" —e ~" ):Icos[cz(yI- ' —y~- ') —1]I:dgd2) —— f (e ~" —1)dgdri .
A A

(14.6)

In this special case one recognizes the features of the general cases discussed in Sec. XIII: the only "dangerous term"
is the third, big because of the +a in the exponential. However, using the ideas of the preceding section, one can see
(as already seen in general in Sec. XIII) that its contribution to the effective coupling is

f, ~

g' —q ~

/ a B,(y
~

g' —2)
~

) 'dg'd 2=)A~( k) (14.7)

where exp(~2Cg ') has been bounded, uniformly in X,
by C~z '&(2vr) 'ln

~ g —q ~

' and it has been assumed
[see (3.16)] that

for some Bk', b, is a cube of the pavement Qk of A by
cubes of side length y ". Then the integral (14.7) is easily
evaluated by a scale transformation of 6 to a unit box
and, in conformity with the general bounds of Sec. XIII,
yields

(k )2 g2+ 4k~(a2/—2n')kB2'COnSt

(g (a2/4n —2)k)2B2 (14.9)

expressing the asymptotic freedom of the second-order
contribution to V' ', for e & Sm.

The problem of going beyond the formal perturbation
theory is that one cannot neglect the regions where (14.8)
does not hold with Bk given by

Bk =B[ln(e+k+A, ')](1+k)', (14.10)

~

»n(~/2)(q~-"' —y„'-"')
I

&Bk(y"
~ g rj~ )'—

(14.8)

l

as one would like to do on the grounds that, for a )—,,
the probability of field fluctuations' violating (14.8) is
exceedingly small, as described by the phase-space esti-
mates (13.6).

In fact, although such fluctuations are irrelevant in the
description of the free field, they might be enhanced in
the interacting field case, because the potential
[V'"'(y'- ')] becomes very large (and, worse, its size is
even X dependent, even for k small) in the regions
(g, 2)) EA where (14.8) is violated.

At this point one is usually confronted with the state-
ment "well, the free field tp'-"' will have a distribution
which depresses the phase-space regions where the free-
field measure contains, among other things, a term like
exp[ —,' f (a~—,)'dg].-

More precisely, one refers here to the possibility of
bounding the third term in (14.6) by using the inequalities
(1—cosx) &x /2 and

e —&r lk —nl
( e ~~ —e ~" ) & const &&, , (14.11)

+ ~a /2n.
which follows from the properties of C~&. One finds the
bound

2g( & X) a2g( & k )f I 1 cos[a(y~-"' —y„' "')]
I ( e ~—" —-e r" )dg dg

& const&& X2a2 f (q q~k' —
q

„'-'"')'
~ g —g ~

'/2~e &'"
~ & &—

~ d g dq—-
2 2 2(a2/4m —2)k&(use here Lagrange's theorem)(const&&A, a y

' '" f ~

L)y~-"'
~

dg (14.12)
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[the Wick ordering in the third term in (14.6) has been
neglected, as it is not very important, since the term
comes from a zero-charge tree), expressing the notion that
the "bad term" in (14.6) is domin'ated by f (By~ "-') dg'
times a small constant, if k is large.

However, the proof that follows controls the large part
of (14.6) by a method not reducible just to the inequality
(14.12) and making use of more detailed properties of the
expression (14.6); this seems to be the reason why the
proof below cannot be immediately extended to cover the
whole range a &[4',8m); of course, this does not mean

that a proof based just on the validity of the inequality
(14.12) is not possible —and, in fact, one should look for
ii.

In fact, one can see that the region of the y fields where
(13.4) fails gives only a very small correction in the com-
putatipn of the error terms via the following argument.

Fix B &1 in (13.4) once and for all [see below] and
a & —, large (say, a =—', ; this parameter could probably be
taken even equal to —, by suitably refining the estimates
below).

Given qv' ', (p' " y' ' define

~k= Ig, g I g, q«and
I
»n(a/2)(qg'-"' —q~'-"')

I
»k(y"

I 0—& I

)' 'I

where E & 0 is the number in (13.4), fixed so that (13.20) holds [i.e., s «(2 —a /4m)]. L« ~
Define also R ) ——e and

Rk ——I6
I
b&Qk, &g', g with g'&b„y"

I g —r) I
&1, and

I
sin(a/2)(yg"' —yp')

I
&(Bk/a)(y

I

g' —g I

)' 'I,
where o. & 1 is conveniently chosen later.

Then for k &0

(14.13)

(14.14)

~k +~k —)U(Rk XRk) (14.15)

In fact, let (g, g) H&k and /HE. ,gHb, '. Suppose that (g, g) 6&k ) U(Rk X Rk); then (y"
I g q I

)—

( /2)( ( k —() ( k ())I B (yk Ilg ~l))—

otherwise 6 H Rk and 6' E Rk hence (g, ri) H Rk X Rk or (g, 7) ) H &k

But (14.16) implies, for k & 1, the contradiction with (g, g) &&k.

I
sin(a/2)(y~- ' —p„'- ')

I
=

I

sin(a/2)(y~-" "—(pv- ')cos(a/2)(@P' —yv ')

( /2)( ((k —)) (( —))) '
( /2)( (k) (k))

I

(14.16)

&Bk ((y" 'll —nl)' '+

&(Bk )y "—'+Bk/a)(y" Ik n I )' '—
&Bk(y' 0 el )' '(y —" " +I/a&)Bk(y'lk nl)' '—

provided o. is chosen so large, as it can and will be, that

y
' ')+o. '(8(1, Vk & 1 .

The case k =0 is analogous, if p( "—=0.
Coming back to (14.15), assume, inductively, that it has been possible to prove that

ev(~'-"')~(d ()v)). . . &(d (k+()) ()'A+&+(k)I&I)
~ ~

V(k)

(14.17)

(14.18)

(14.19)

where [see (14.6)],

VA"'=A, f: co(say ~ '):dg + — f, (e t" —e
~2g( &k) )):cos[a(p('-k)+q „(-'k))]:dg dg

2

+
2 A2/Q'

2
~2C( g k)f, (e t" —1)dgd7),

~2g( &N) ~2g( &k) (&k) (&k),(e t" —e t" ):cos[a(y~- p& ) —I ]:dgdg—-

(14.20)
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i.e., one assumes that the part of the interaction which caused the worst problem in (14.6) is actually missing in (14.20)
[and of course one will also assume a good bound R+ (k); see below].

The reason this is not a terrible approximation is related to a special property of V'"'=—[V(")(p(-"))] ), whereby such
bad terms, if present, would be very negative, and therefore they could be really thrown out of the integration of the ex-
ponential of (14.20), because one is interested only in upper bounds (the lower bounds having been discussed in Sec,
XIII).

The negativity of V' ' —V&', i.e., of
a2C( &N) a2C( &k) (&k) (&k)f (e ~" —e ~" ):cos[a(q&p pz —) —-1]:dg d 2)

a2g( & N) a2C( & k) a2(~( & k) g( & k) )
e ~" —ea ™e ~" cosa' — —

y&
— —1 + l —e

holds, because in &k it is

))dgd2) (14.21)

where

2sin2(a/2)( ( ) ( ))+ 2(( ( k) C( k)
) & 2~2(yk g I

)2 —2 + 2(
I

k(g )
I

2 —2 (14.22)

k kc'-"' —c,'„-"'= g (c"—cg„') & g c,(I g q I) )—' "&'c(-) "Ig q I

)'-—" (14.23)
j=0 j=0

(C, and C being suitable constraints) has been used.
If 8 is supposed to be so chosen that Bo&o. C, it fol-

lows that the rhs of Eq. (14.22) is bounded by

&k()'"
l k—n I

)' —"&o. (14.24)

This observation makes it possible to neglect the in-

teraction, or at least its bad part, in the regions where the
field is rough and one can use the free-field properties to
prove this via rigorous bounds.

The precise way in which one uses the above ideas to
study the integral

f e "a(dq(k)) (14.25)

is the following.
(kThe first step in estimating (14.25) is to replace V A

' by
a simpler function, at least as far as the functional depen-
dence on y' ' is concerned; note that the cp' ' dependence
of (14.20) is neither polynomial nor trigonometrical, since
y' ' enters in a most complex way into the integration
domains.

To find the simpler form that is sought, think that A in

(14.20) is replaced by an arbitrary set J and call Vz the re-

I

sultmg express&on.
Then for a suitably chosen /I, /I (k):

V (k) & V +~(R )(gy(a /4n2)k' —

+g2 2(a2/4n 2)kg 2
)g-

k

+~(R )g (g)y(a /4m —2)kg 2 (14.26)

(14.27)

where g recalls that y( ' is constrained to be such that the
rhs of (14.14) is precisely Rk.

Then call HJ the expression obtained from Vz by re-

placing &k by Wk ), it is therefore, by definition,

which follows immediately from the asymptotic freedom
bounds (13.20), which in turn hold because y~-"' —yz-
is considered only in the region J /Wk, ' ~(Rk ) is just the
number of boxes composing Rk.

Therefore, (14.25) can be bounded above by

A/R A-{A,)82 (a2/4~ —2)k~(R )g f e "X(R )P(d '"')e

HA/R„=A, f:cs(oya~'):dj
'2

a2C( &N)

, e &" —e
{A/Rk )2

+
{A/R )2/&

a2g{ &k)

[ ( ((k)+ ((k))].dgd

a2C( & N) a2C( & k) (&k) (&k)(e ~" —e ~" ):cos[a(y~— —q&~- ) —1):dg d 2)

aC(&k)f,(e ~" —1)dgd2) .
2 (4/Rk )

It is easy to check that
'2

a2C( & N) a2C( & k) (&k) (&k)
Vn/zk =H//z„+ —

z (e " —e " ):cos[a(q ~- q'n ) —1]:dgdg,

(14.28)

(14.29)
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where Sk = ( A/Rk ) 8 ( &k )/& k ) as

[(A/Rk) /&k] =
I [(A/Rk) /&k, ] USk]/[(A/Rk) flak/~k, ],

and the set (A/Rk) flak/&k ) is empty because of Mk C:&k ) U(Rk XRk) [see (14.15)].
Let (g, g) e Sk (:&k ) A(A/Rk), k & 1; then it is

(y" 'l0 n—l)' '&k-)&1 i e (y" l4 n—l)' '&y' '&k —)

(because the sine is.bounded by 1).
Hence for all k ) 1 and (g, g) H Sk

I
sin(a/2)((pg- ' —y'„-"')

I

)
I
sin(a/2)(yg- "—y'„-" ")

I I
cos(a/2)(yP' cp'„"')—

I

—
I
sin(a/2)((pg"' —(p'„')

I

(14.30)

(14.31)

)(y" 'lan I' )—' ' 1— Bk
'2 1/2

' —'( " 'lg' I)'

1/2
'Y n)—' '»k@y" 'll' r)I)' —' (14.32)

and, if we suppose (as we can) that cr is large enough and use (14.11), 8 is
1/2

0=min
k&1 2

k —1 0
&0. (14.33)

The inequality between the first and the last terms can be checked, also, for k =0, directly.
Therefore, the integral in (14.29) is for all k & 0 nonpositive, provided [see also (14.22) and (14.23)]

—2sin (a/2)(q&'-"' —(p'-"')+a (O'-"' —C'-"') &( 28 B y
" —'+a C)(y

I g q I

)"—"&0
i.e., if B is supposed large enough, as is possible. Hence for all k & 0

(14.34)

A/Rk A/Rk

which implies, if we go back to (14.27),

(14.35)

f e AP(d (k))& y fX(R„)e P(dy("') exp[~(R )A(A, )y( '"] (14.36)

kThe advantage of replacing VA&z„ in (14.27) by HA&+„ is that the function HA&+„ is a "simple trigonometrical ex-

pression" in the fields y(") [see (14.28)], and no dependence is any more present on the very complicated set Wk, of
course there is a dependence on Rk, but Rk is a union of cubes and therefore this dependence is not so bad —besides, one
wishes to keep it fixed, as the integral (14.36) is performed at fixed Rk (because of the presence of the X functions).

At this point one needs a way of estimating integrals like the one in (14.36).
What is known about the integrand is that H& can be written as

Hq gA, f h(g))co——s(ay~- ) + g A.
(&k) 2

, h
( 2(g), $2)cos[a(o N'g(- +o'2f'g2- )].(2) (&k) (&k)

dk6 Qg a a & (a, xa, )nj' 2 2

~i ~2 «k

1 —cos[a(p~-, ' —
(pg,

— ')] dg) deh' '( )

~i ~2 «k
h' '( )

a, xa, nJ' (14.37)

where the h' ' functions are A, independent and where the &k ) dependence can be thought as included in the h func-
tions. Furthermore, the theory of the preceding sections or the explicit expressions for the h functions [see (14.28)] im-

ply that
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J I
g

I I b(g))
I dye & ggy~

I A, Ih' '(g'), g2) Id/)diaz&(ky' '") AB e ' ' &H
1 2

(14.38)

(14.39)

where A, A, Hk are suitably chosen constants.
En other words at fixed Rk the integral in (14.36) looks

like the partition function of a classical spin system on
the lattice Qk.

The reason the estimates (14.38) and (14.39) do not de-

pend on y' — " is that in the "bad terms" of Hz no pair
(g', ri)&&k ) appears, so that (14.39) is obtained by the

, same estimates leading to the proof of asymptotic free-
dom (and actually follows from them) in Sec. XIII.

It is possible to formulate a rather general version of
the Mayer expansion allowing one to estimate naively the
integral (14.36).

Let X~, X~=—1 —X~ be the characteristic functions ofb ' b b

the events on y'"), given b, H Qk,

(14.40)

and its complement.
Let R be a subset of A pavable by Qk, i.e., union of b, 's

in Qk, and let R' be its complement; denote

XR= + Xa,
hcR

if R is the disjoint union of the cubes AC:R; then the fol-
lowing lemma closely related to Lemma 1, Sec. XIII,
holds.

Iemma 2. Given t)0 integer, there exist constants
G,g,g', b* depending only on t (and on the parameters
y, e, )~) such that if H~ verifies (14.38)—(14.40) then

f P(dy'"')XRg Re & JXRI'(dy'"') exp
p=l

+[5(b,Hk)y'"
I
&

I
+5'(b, Hk)~(R)] (14.41)

5(b H )&G[(H bg " )'+'+e " ],

5'(b, Hk) & GHkbtt,

(14.42)

and ~(R) is the number of cubes b, in R. Furthermore,
if b is large enough, b & b*:

J I'(d g '"')XAe ' & exp

where the errors have a value close to the one which
would be naively expected from the point of view of sta-
tistical mechanics:

sumption which can be easily released but which is any-
way sufficient for our purposes, since y is restricted only
to be y ~ 1).

Clearly (14.43) implies as a special case Lemma 1 of
Sec. XIII. Lemmas 1 and 2 will not be proved here, be-
cause their statistical mechanics character makes them
somewhat foreigners to field theory; also, a detailed proof
would be very long in spite of its conceptual simplicity;
the reader can find this proof in the references given
above.

At this point it is easy to conclude all the estimates, if
one observes that in the present case

t:21 ~(k —1}
& v (Ip'- ") . (14.45)

5(b Hk )y"
I
&

I
(14 4»

and finally, for suitably chosen, k independent, constants
~OiPO.

This is because, the lhs being a Gaussian integral of
simple trigonometric functions, one can explicitly com-
pute the lhs; after a simple calculation one finds that the
difference between the rhs and lhs is given exactly by

p b2
P(d (k))X b & (

to )~{R) (14.44)
~2/( & k) ~2C( & k —1)

(e 477 e ki )

The k dependence of the constants is trivially due to
the scaling properties of the field. The first bound in
(14.42) could be easily improved: here it is given in the
form in which it had been found in Benfatto et al.
(1978,1982), Benfatto, Cassandro et al. (1980), and Ben-
fatto, Gallavotti, and Nicolo (1980) where Lemma 2 is
proved under the extra assumption y close to 1 (an as-

~:cos[a(yg— ' —yq
—" '

) —1]:dg dpi, (14.46)

which is not positive for the same reasons (14.21) and
(14.22) were not positive.

Therefore one applies Lemma 2 to evaluate the integral
(14.36), choosing t=2 and b=Bk, the result, using also
(14.45) and (14.46), is
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v(k)p(d (k)) & y [e +2 k' k (a e 0 k )' k ex [~(R )y(g II )] )
Rk

—=e e
' (1+ aoe e

'
) r =e—(~O~ ) k ~'( k k) )A~ ' V —'+c(k))A~ (14.47)

and, by (14.42), (14.39), and (14.38), gk oe(k) =O(A, ').
This means that if one assumes (14.19) for k=N 1—

and (14.29) holds for all k &If(A, ), with

En this case the V(()()(- ') is just the sum of the trees

R+(k)=R+(k+ 1)+E(k) . (14.48)
N (,a.

QAd

Hence the ultraviolet stability will be proved as soon as
one is able to check (14.29) for k =N 1—i.—e., one is able
to estimate

(36)

f e V(y( — ')p(d (N)
) (14.49) 0i.e.,

A, f:cos( ay'~- '):dg+v f dg —— f (e t" —1)dgd2)

(a /4~ 2)N f ( )
g + y 2N —y h(g~(a /4a —2)/N)2 (14 50)

a~|.„

where
~2/( (N) ~2g( (N)(a /2m—)Nea

hxA
d

dg & const . (14.51)

Hence in the first step one does not have to worry
about MN, WN (, because there is no obstacle in using
Lemma 2 in evaluating the integral (14.49): assumptions
(14.38) and (14.39) are verified with HA ——V( )=—V, by
(14.50) and (14.51); i.e., in the first step there is no need to
worry about the smoothness of y( ) in order to get the
asymptotic freedom bounds, as explicitly remarked in Sec.
XIII [see comments following (13.13)].

The validity of the inductive hypothesis for k =N —1

is completed by checking that

2
1

[']
g T( V(N).p) & V(N —1)

pf
(14.52)

which is proved as (14.45) by (14.21) and (14.22) written
for k=N —1.

This completes the proof of the ultraviolet stability for
o, &16m/3.

There would be no problem in applying the above tech-
niques to evaluate the integral of exp( V' ') to an arbitrari-
ly fixed order t & 2.

If a &[16m/3, 6m), still no.thing changes, basically, in
the above scheme of proof except the series of the errors,
both in the upper and in the lower bounds, will converge
only if t & 3; the positivity of the "bad terms" was used in
an essential way in the above proof in two steps and now
it can be used in the same way. In fact, the two steps
were first to remove the region &k ( from VA/~ [done

k

I

in (14.35)], and second to reintroduce it to "rebuild"
V' " [done in (14.45) and (14.52)].

The just-mentioned two "positivity steps" are now, for
a E[16m./3, 6m), carried through in the same way, be-
cause it turns out that no new positivity property is need-
ed on V' ' besides the one, already pointed out and amply
used, present in the second-order part of V ' ': the
second-order dominates in the inequalities necessary to
control the third-order terms and its positivity properties
are enough for the estimates.

The situation changes for cz &6m: now the second-
order dominates only in the inequalities necessary to carry
out the first of the two steps of the proof where the posi-
tivity is needed. In the second step it is not known wheth-
er it dominates; in fact, the proof has been carried
through in the interval [6m, (v 17—1)m) and later up to
32~/5 by using other ideas, slightly improving on the
above ones, based on detailed properties of the effective
interaction to fourth order in Benfatto et a)t. (1982) and
Nicolo (1983).

In order to obtain ultraviolet stability up to a &Sm.
some new idea seems necessary, and the paper by Nicolo
(1983) seems to go in the right direction; see also the com-
ments after (14.12) above.

The above difficulties are also an indirect consequence
of the fact that the large-fluctuation problem has not been
solved in the naive way, by free-field domination [see
comments after (14.12)], and a better understanding of
this point seems important and desirable.

The techniques used for the sine-Crordon equation can
be used also to treat the exponential interaction (5.5) for
a &4m [see Frohlich (1976)]; the exponential interaction
can be treated also for a »4~, for d =2, and for d & 3,
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which are cases in which it can be proved to be trivial [see
Albeverio et al. (1979)].

XV. THE COSINE FIELD AND THE SCREENING
PHENOMENA IN THE TWO-DIMENSIONAL COULOMB
GAS AND IN RELATED STATISTICAL MECHANICAL
SYSTEMS

Before studying the y fields it is appropriate to con-
clude the theory of the cosine fields by pointing out their

"surprising" connection with the two-dimensional classi-
cal statistical mechanics of Coulomb systems and Yu-
kawa gases.

The "neutral Coulomb gas" and the "charged Yukawa
gas" describe charged particles of charge +1, presenting,
for some values of the temperature and of the density,
very interesting and nontrivial "screening phenomena. "

In general, a system of charged particles interacting via
a potential C„z will be defined by the grand canonical
partition function

OO

Z'(A, I3,X)= g
n=0 2

n
I

exp —Pg (r;(r.(
CT )p ~ ~ ~ p CT l (J

(15.1)

1 X
CT ]p ~ ~ ~ p CT+

f exp —P g cr;(T~ C„. dx(. . . dx„.
cr. =0

l

where oJ =+1;or, in the case of a priori neutral systems:
TE

OO

Z (A, PA)= g
n=0 2

l (J
(15.2)

(moM) ] .
( )

C„y —— e(2')'
1

2 ZM +p

The cases which can be studied in terms of the cosine in-
teraction are

(a) the regularized Yukawa gas, with C„~ given by

I

where a ~0 is a suitable constant (a=ln2 —g, g being a
Euler-Mascheroni constant).

The partition function for the above systems can be
easily written in terms of a Gaussian random field

' sum of N+R + 1 independent fields:

(15.3)

(b) the "regularized Coulomb gas" with C„z given by

(mo'M ) (O, M) (O, mo)V„„=C„„' —Cop (15.4)

where the rhs has to be interpreted as the limit of
( M) (Sly mo )

Cy' —Cpp as m~O:

y( —R, )v ) y ~j()
j=—R

and in terms of the functions

(m, m y~+')
(~~2)'~oo

( q( —R,N)).

(15.7)

(m, , M)
~xj 2 2 2 2cosp x —g(2') p M +p

( y( —R,)v)) (15.8)

2
mp

dp
fPl 0+P

(15.5)

The covariance O'J) of the random field g(~) will have
the Fourier transform (see Sec. III) (free field with open
boundary conditions)

Note that when the regularization parameter M is let to
+ co it is

(mo, M)V„„' —+ ln(amo ~x —y ~
)

M~oo 27K

1

mph +P
1

mph +P
(15.9)

1
ln(mo

~

x —y ~
)

2&
(15.6)

Then it is easy to prove that the regularized Yukawa
gas partition function is, if we set a =V P, M =may

Zr(~)(A, P, &)= f exp X f:cos(aqP' '):U) dg P(dy' ') . P(dq' '), (15.10)

while the regularized Coulomb gas partition function in the neutral grand canonical ensemble and with potential (15.4)
with M=mpy +' and mp replaced, for notational convenience, by mop ', is

Zc(~)(A, P, X)= lim f exp X f:c o( sya~ '):U(dg P(dq( ') . P{dq( ') . (15.11)

It is convenient to introduce also the auxiliary partition function

Zc(~ )v)(A, p, k) = f exp A, f:cos(a/~ ' '):U).dg P(dp( ') . . P(dg(+)), (15.12)
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1 1
ZY(N) =ZC(o, N) ~ (15.14)

which will be called an "infrared regularized (non-neutral)
Coulomb gas" partition function, and (15.11) can then be
written

Zc()v)(A~P, A)= lim Zc(R x)(A~P~A) . (15.13)
R~oo

Finally, observe the following relation between the
Coulomb gas and the Yukawa gas [see (15.10)]:

The proof of (15.10)—(15.13) has essentially already
been explained in Sec. XI (and called there the "multipole
expansion"); however, the interpretation work necessary
to derive the present claims from Sec. XI is such that it is
simpler to derive the above relations from scratch.

Consider the integral in (15.10) and expand the ex-
' ( —ZN) — (~oy ~y~+'mo

ponential in powers: calling O' ' '=C
for simplicity, the covariance of ((()' ' ', we see that

P
1 (u/2)pCO(0, "}

e " dx, . dx„exp
0'tp ~ ~ ~ y

0'
7 p

2 Pl
CL (O, N)

(Ti aj C», »
i,j=l

=Z) ()v)(A~P~A) ~ (15.15)

because the diagonal terms in g,".
(

("self-energy terms") are canceled by the exponential factor outside the integral; in

the first step of (15.15) the formulas for the Wick ordering of the cosine and for the expectation 8' of the exponentials
have been used (see Appendix C and Sec. XI).

Recalling that the cancellation of the self-energy terms in (15.15) was due to the exponential factor due to the Wick
ordering, we see that the evaluation of the integral (15.12) by the same technique will lead to expression of the rhs of
(15.12) as

00

X
p=l P. 0'

]p ~ ~ ~ p CTp

~ ~ ~

2 1l

l J X)X ~

2 X X
i (J ij =1

(15.16)

because::Uv in (15.8) is a "partial Wick ordering" and therefore it can produce the cancellation of the diagonal terms of
only the "ultraviolet part of the potential", i.e., C~~'

Expression (15.16) can be'rewritten as

1

pl
CT lp ~ ~ ~ p 0'p

dx( ' dxRexp —a QcT(cT~C»»~ j J
I (J

2 Tl

(C( —R, —() C( —R, —)))
i j =1

Q exp
2

go;
i=I

2
~(—8, —1)
~OO

pf Jdx) . . dx~exp —a g(C„' ' ' —CIX)
' ")o;o.je

0'
]p ~ ~ ~ p CT l (J

—(a /2)Q C
(15.17}

with. Q =g, cr; In .thi.s way one obtains an expression
for Zc(R)v), (15.12), imPlying (15.11) with Coulomb Po-

tential V ' with M=moy +', mo ——moy
' (the

latter choice is a matter of notational convenience, y be-

ing fixed)
It is expected that the "neutral Coulomb gas" described

Zc(A~I3~A, ) = hm Zc()v)(A~Pii ) (15 18)
N~ (x)

is a well-defined therm odynamical system, exhibiting
some kind of screening phenomena, for a &4m", basically
it should behave as a neutral Yukawa gas with mo deter-
mined by A, ,a (and M=+ ~), at least for a small [see
Brydges (1978), Frohlich and Spencer (1981)].

For a E[4n., gn. ) one expects that the Coulomb gas
"collapses in the ultraviolet, " remaining nontrivial in the
sense that the collapse produces just a background of mul-

tipoles, with infinite density, on which free charges move

l

and interact through nontrivial screening phenomena
(note that in two dimensions the Coulomb gas interaction
does not go to zero at infinity and, for a &[4m., 8m. ) it
even diverges too fast near zero, making the partition
function infinite, because it involves integrating the non-

—a /2msummable factor
/

x —y [
}.

The same collapse is expected to happen to the Yukawa
gas in the same region of a except that no screening in
the infrared is necessary in order for the system to exhibit
well-defined thermodynamic behavior (in fact, the poten-
tial decays exponentially at infinity as a consequence of
the choice mo~0, which gives a meaning to mo

' as a
natural screening length); however, screening phenomena
are expected to occur in the ultraviolet region where the
Yukawa gas should collapse in the same way as the
Coulomb gas, i.e., by producing an infinite density back-
ground of multipoles on which free charges move.

In other words, the conjecture is that the Coulomb gas
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(nonregularized in the infrared and in the ultraviolet) and
the Yukawa gas (nonregularized in the ultraviolet) with
parameters X,o.,mo describe the same physical phenome-
na, or at least have partially overlapping physical inter-
pretations, if the Yukawa range m o is suitably chosen as
a function of A, ,a for a H [0,8').

For a ~ 8m it is believed that the nonregularized Yu-
kawa gas is trivial (i.e., it collapses without hope) and the
Coulomb gas no longer exhibits infrared phenomena of
any kind; at least not so strong as to produce an exponen-
tially decaying effective interaction or correlations.

The work done in Secs. XI and XII on the cosine in-
teraction allows one to make rigorous some of the above
conjectures, though much work remains to be done to-
wards the complete understanding of the whole theory.

In the case of the Yukawa gas the above-mentioned
connection (the sine-Cxordon transformation) between the
Yukawa gas and the cosine field allows one to translate
the properties of stability of the cosine field into the prop-
erties of stability of the Yukawa gas in the region

a & [0,32'/5), where the cosine field's stability is under
control. And for a &[4m, 32m./5) the above-mentioned
interpretation of the Yukawa gas as gas with an infinite
density of collapsed dipoles (for a & [4~,6m. )) and of di-
poles and quadrupoles (for a E[6m.,32m/5)), with zero
total charge, emerges quite clearly; I do not enter here
into the details of this interpretation of the results of the
theory of the cosine interaction: the work is begun in Ben-
fatto et al. (1982), and Nicolo (1983).

In the case of the Coulomb gas some of the above con-
jectures also follow as corollaries of the theory of stability
of the cosine field, but the connection requires some ex-
planations.

The first remark is that the problem of studying the
Coulomb systems with "no infrared cutoff, " i.e., with
R =+ oo in (15.12), can be reduced to the theory of the
cosine interaction in the ultraviolet regime by the follow-
ing chains of identities and arguments.

Rewrite (15.12) using the factorization:e +~:=:e"::e~:
for x,y independent Gaussian variables:

Zc(g ~)(A, P, A, ) = fP(dg ) ' P(dg ) fP(dg ) ' ' P(dg )

Q exp
~ ~—(a2/2)co(0 I i crag~~~ ~ icrafr(

A

= fP(dg' ') . P(dg' ') fP(dcp'") . P(dy ')exp g f A, (g'):e ~':dg'
V

(15.19)

where g=g'y and yP' "—:g' &, ' ", so that y' ' "has the same distribution as a sum of independent fields y'J'.

j=0
(15.20)

with covariance O', ', This follows immediately from the definitions by computing and comparing covariances;
9{0) (R )actually one could put pre =f „, . Furthermore, in (15.19) A, ~(g') means

(&2y2) C( —R, —1) E GLo'f

(15.21)

The interpretation of

y (y(O, N)) I ~g g(OyA 1 )

e ' =fP(dy' ') . P(dq&( ") exp $ f „A, q(g'):e ~':dg' (15.22)

is, clearly, that of an effective interaction in the sense
used in the preceding sections on field theory; it should
describe the Coulomb gas on scales mo

' (through an
equivalent gas of multipoles; see Sec. XIII for this inter-
pretation; see also below).

To describe (15.22) one can try to find an expansion for
Vc(g( ' ') in powers of A, .

The work for such an expansion has already been done
in Secs. XI and XII, because the integral (15.22) can be in-
terpreted as an integral of the type studied there.

Using the results and the notations of Secs. XI and XII,
one expresses it in terms of trees:

V, = f dye
Pt') =s

(15.23)

where the V(y) are computed with exactly the same rules
of Sec. XI provided that we interpret the elementary trees

(37)

as A, z(g), defined by (15.21), rather than A. /2; the index
o. is 1, while the index 0 is not allowed, because in the
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exponential in (15.22) there is no constant term.
All the results and bounds of Sec. XII carry through

with essentially no change, besides the mentioned change
of interpretation of diagram 37.

One therefore finds that V(y) can be expressed, to a
given order in A, , as

II A, R(gj. ) Wy(g), . . . , g„),
j=l

(15.24)

and 8'y will verify [see (12.5), (12.8), (12.9), and (12.14)]

((h„—1)

I ~y(k . 4)1 &~y II '
j=1

—(a2/2)Q (»» )C()() (n/4)y ~d (g, )

V)f
(15.25)

where ~- depends only on the shape of y. Actually, one will be interested only in expressions like (15.24) summed onr
the indices of y: in particular, one is interested in the summations of (15.24) over the different indices cr,g that can be
appended to the end points of trees otherwise identical. In this way the charge symmetry is used and some cancellations
appear, as explained in Sec. XII, which allow one to improve the bound (15.25) by replacing Q„/4m by
[Qn/477+ 2( 1 —E)5g p] if U & Uo ——(first nontrivial vertex of the tree); this cancellation, in fact, takes place already when

one sums only over the charge configurations which attribute the same absolute charge to each vertex U and integrate
over g.

According to the discussion of'Sec. XI the lhs of (15.22) via (15.23), can be interpreted as the Boltzmann-Cxibbs factor
in a gas of multipoles, each represented by the trees with the same shape up to the charge indices which vary subject to
the restriction that the absolute charge

~ Q„~ of each vertex U is fixed. The activity of the multipole will be defined,
quite arbitrarily [see Gallavotti and Nicolo (1984) for a deeper discussion]:

g'gf,dg(. dg„ II /(, R (gj) 8'y(g(, . . . , g„):exp iago~tp'„'&' (15.26)

where the g* runs over all the charge configurations rr which attribute given absolute value of the total charge Q„ to
each of the clusters associated with the vertices U of y (called above, simply, vertex charges); the sum g» runs over all

the possible frequency labels that can be appended on the shape of y and b. is a fixed unit cube.
The collection of the terms with the same vertex charges is natural for physical reasons (charge symmetry), and

mathematically it produces the just-mentioned cancellations.
If we reexpress (15.26), by "going back to scale 1," (15.26) becomes

ja~ p(0 N)

$ f dg . . . dg (g~2R (a /4n)R)n —II,e j,y//l (g g )
r r—~~x( —~A)" —' j=1

n r 1~ . ~ n

—a2P (x a.
2Rn —dX(g~ (a /4n 2}R)nor ()/

—RX— —
~

—RX
4xhn —l

where +=gag» [see (15.26)], and Yz(x(, . . .,x„;cr , .)., ()Tins. the Yukawa potential, with ultraviolet cutoff X, of the
charges o.1, . . . , o„at positions x1, . . . , x„.

Therefore, the activity of the multipole will be bounded by [using (15.24) and (15.25) and the cancellation remarked
after (15.25) and recalling that E & 0 is an arbitrary parameter which can be chosen as small as necessary]

—2Rn f (g —(a2/4n 2)R)n g—n pr (+
—RX )/

—Rx ) d~ ~ ~ ~ dx
h

pn —1

(a /4m —2)(n& —1)+a /4n. —a /4m~v +2(1—c, )5g
&~ ~

—2R+ (a2/4n 2)Rn y— II—(~
" ~'

)
v v'

r V) Vp

(a /4m —2)(n —1)+a /4m —a /4nQ h

X()' ') 'U)}(n, (15.28)
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CK—2 n+2=
4~

then either p & 0 and the rhs of (15.28) diverges in general
as R~ao or p &0 and in this case the bound (15.28) is
uniformly bounded in R, and tends to zero if Q„&0.

The conclusions from the above estimates are as fol-
lows.

(1) If a & 8~ (hence p & 0), the picture of the Coulomb
gas as consisting, as far as its properties on scale Io are
concerned, of neutral multipoles is consistent, bemuse the
activity of such multipoles is finite. This will be called
"the multipole theorem" [see also Frohlich and Spencer
(1981)].

(2) If a & a„, where a„are the thresholds defined by
setting p =0 in (15.29), then thinking that the gas contains
neutral multipoles of p charges with p &n but that no
multipoles with more than n charges can be well-defined
entities ("molecules, " of course, should be their name) be-
comes consistent.

(3) It is remarkable that the above thresholds a„, above
which the Coulomb gas (with ultraviolet cutoffl generates
molecules of p bound atoms, were precisely coinciding
with the thresholds o.„, where the Yukawa gas charges
collapse into clusters of p &n particles (in the ultraviolet
limit) [see Frohlich (1975)].

This is a confirmation of the above implicitly conjec-
tured "duality" between the infrared properties of the
Coulomb gas and the ultraviolet properties of the Yukawa
gas for a in [0,8m).

If we call pc(A, ,P) the pressure of the Coulomb gas
with ultraviolet cutoff, as a function of the charge activi-
ty A. and of the temperature P=a, the above analysis
proves, as is easily checked, that if

pc(i, , /3) = g A~f~~'(/3)+A. "R'~'(A, ,/3),
p&n

R'~'(A, ,P) ~ 0, (15.30)
A, ~O

where the sum over the frequency indices is of course
bounded by the infrared cutoff: h, &R. For more details
see Gallavotti and Nicolo (1984).

Before discussing formula (15.28), let us note that if
X= —1—i.e., if the Coulomb potential has no ultraviolet
part (which is the case usually considered in the
literature) —the effective potential becomes a constant and
it is no longer a random variable and has the interpreta-
tion of (grand canonical) pressure of the gas. Therefore,
(15.28) becomes a bound on the Mayer coefficients of the
gas (see below for some consequences of this remark).

To examine the remarkable formula (15.28) one distin-
guishes two mses: either a &8~ or o. &8~. Below one
uses the arbitrariness of c by taking it conveniently small.

In the first case the rhs of (15.28) goes to zero as
R~ oo, as can be checked elementarily, for Q, &0: the

gas is a gas of "neutral multipoles" [i.e., in the infrared
limit one is in a multipole phase; see Frohlich and Spenc-
er (1981)]. If Q, =0, then one can check that the rhs of
(15.18) is uniformly bounded in R.

In the second case let

2
CXP= —2 (n —1)+; (15.29)

4m. 4~ '

then the coefficients fc~'(/3) can be shown to be uniformly
bounded in the infrared limit R —& oo for a & n„, and that
only the even ones have a nonzero limit.

In other words, the Mayer coefficients of order & n are
formally well defined by convergent integrals for u & a„.

The latter property follows immediately by considering
the case X=—1, in which, as remarked above, the effec-
tive potential coincides with the grand canonical pressure.
It should be obvious that the general case N & —1 (but
finite) can be reduced always, and in a trivial way, to the
X=—1 case.

This leads to the natural conjecture that pc(A, , /3) is
smoother and smoother in A, at A, =0 as /t=a grows.

For a &4m not much can be said about smoothness;
for a E(4m, 6m. ) the function should have two derivatives
[actually, three if a H(16vr/3, 6m)]; for a H(6', 40m/6) it
should have four derivatives [actually, five for
a H(32vr/5, 40vr/6)], etc.; for a & 8' the pressure should
be infinitely smooth at A, =O.

By derivative one means here that (15.30) holds as an
asymptotic formula with R'"'(A, ,ft) tending to zero as
A, —+0.

This conjecture suggests that while a grows (i.e., while
the temperature decreases), the Coulomb gas presents an
infinite sequence of phase transitions in which it passes
from the "plasma phase, " small a, with Debye screening
phenomena, to the "multipole phase, " o. large, with no
screening in the infrared: the Kosterlitz-Thouless regime
would be the last stage in a sequence of increasingly com-
plex phase transitions in which bound states ("neutral
molecules") of increasing size become possible in thermal
equilibrium.

So far the bases of the above conjecture are the esti-
mates of this section (15.28) which imply the finiteness of
the coefficients of the Mayer expansion; such estimates
have been pointed out in Gallavotti and Nicolo (1984a).
Further work towards a full proof of (15.30), i.e., with es-
timates on the remainder in (15.30), is in progress [Galla-
votti and Nicolo (1984b)].

I think that the beautiful properties of the cosine in-
teraction exhibited in this section justify its inclusion in
this work, although they are not strictly an example of a
problem of field theory: they show that field theory is not
just a theory of quantum relativistic objects but that it can
be relevant to very different matters —Coulomb gases are
only one example out of many more, in solid-state physics
and in physics of fluids, for instance.

XVI. NATURE AND CLASSIFICATION
OF THE DIVERGENCES FOR y4 FIELDS

In order to see how to build the operators Wk ' realiz-
ing the renormalization of the theory g defined by

(16.1)

field, it is useful, albeit not strictly necessary, to have a
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clear idea of how divergences arise in it and how strong
they are.

I shall consider in detail only the four-parameter in-
teraction (16.1) in four dimensions, calling
a =4,2,2',0, the parameters —A, ,—p, —n, —v, respectively.

If d=2, 3 one could consider theories simpler than
(16.1) which in some cases can be constructed as true field
theories, going beyond the formal theory of perturbations,
by literally repeating the arguments of Secs. XIII and
XIV [e.g. , if d =2 one could consider the interaction
(5.3), or, if d =3 one could consider the interaction (5.6)].
Some more details on these simple ("super-
renormalizable") cases will be presented in Sec. XXI.

Suppose that the field y(- ' with ultraviolet cutoff y,
y & 1, is decomposed as a sum of independent fields living
on scales y ", k =0, 1,. . .,N and verifying (3.17)—(3.20)
with n =3 (say):

(16.2)

where y' " is a degenerate field with covariance C'
which will be eventually put equal to zero, so that

"=0, and which is introduced only for the purpose of
unifying certain notations.

The use of a Pauli-Villars regularization of order n )2
is necessary to give a meaning to (16.1) if d =4; actually,
the third term in (16.1) already requires n &2 even for
d =2, while the first two lose meaning only if d & 4 when
n =1. Here the choice n =3 is motivated by the fact that
in the subtraction algorithm built to renormalize the
divergences it will be convenient to be able to say that the
fields have two derivatives and therefore can be developed
in Taylor series to second order included. It is not impos-
sible that one could perform the work with n =2 but it
would certainly be harder: in any case, this question ac-
quires importance when one tries to go beyond perturba-
tion theory; when one is dealing only with perturbation
expansions it would be even better to have fields so regu-
lar to have derivatives of any order, e.g. , the ones arising
from regularization (3.21).

Fixed A, =(—A, , —(M, —a, —v) in (16.1), the effective po-
tential V("' on "scale k" will be expressed in terms of
simple trees as explained in Sec. VI: the end points will
be marked by a pair (g, a) with gHR and a=0,2,2',4 ex-
pressing which of the four terms in (16.1) is represented
by the end point under consideration.

An expression for V(y) can be found by the same tech-
nique used in the cosine field case in Secs. XI and XII,
namely, let a tree y bifurcate, at the first nontrivial vertex
Uo after the root r, into s subtrees y&, . . . , y„and let h be
the "frequency" of the vertex U

(38)

As in the case of the cosine interaction, one has to
guess first the form of V(y), and an obvious guess is the
following very general one:

V(y)QV(k)(/gyp)P(+(&k)B(&k))(163)
P

where the summation runs over all the possible Wick mo-
nomials of the form P =:(By~): if y is the trivial tree, or

n1 n

1 a q+1 'm

0 & q & n, 1 & n; & 4, (16.4)

where the derivative 8 means a derivative with respect to
one of the coordinates of the field's argument; the above
assumption is made only for the trees having nontrivial
vertices.

In fact, (16.4) is not true for the trivial tree

representing —a:(By„):;this will be the only (natural) ex-
ception.

Assuming (16.3) and (16.4) are true, with the above-
mentioned exception, we find the rules for the evaluation
of the truncated expectations of products of Wick mono-
niials, see Appendix C, yield the following recursion rela-
tion, deduced from diagram 38 after recalling that a tree
vertex has the meaning of a truncated expectation (see
Secs. VI and VII):

S

V(k'(g, , . . . , g„;1,P) = g + V(k~(„J;) „P,. )

P1, . . . , P j=1 v6a P AC@'
connected

H c'b'

A, =(,a, b)

ab
A, G m/w

A, H(a, b)

(16.5)

where g(, . . .,g, are the s clusters into which the points (
are decomposed by y&, . . . , y„ i.e., the s clusters corre-
sponding to the vertices u(, . . . , u, of the tree y immedi-
ately following uo and such that uj Cyj. u ~ is the set of
graphs obtained as follows.

Represent a Wick monomial P like (16.4) by drawing q
points g;, . . .,g; in R and n(, nq, . , nq pairwis. e dist. inct

lines, respectively, emerging from each of them, and m-q
points g;,. . .,g; with one line, labeled B emerging from

q+1 m

I

each of them.
It is convenient to think of the points g;, . . . , g; as

enclosed in a box out of which emerge the lines just de-
fined. For instance, the monomials

2 3 3
V'g Pg ~V'g: 4'g 0'g 0'g 0'g:

are represented as in diagram 39, where 1,2,. . ., stand for
(Az
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respect to some component of g whose index is omitted
for simplicity of notation.

For instance, consider diagram 40, where the integer j
stands for g'J.

(39)

and each of the above objects will be called a "Wick clus-
ter."

Then given s Wick monomials P&, . . . , P„ the symbol
M p will denote the set of the graphs obtained by joining
pairwise some of the lines associated with the Wick clus-
ters representing P, , . . . , P, in such a way that (explicit
examples are worked out in diagrams 40—43 below): (i)
two hnes emerging from the same cluster cannot be joined
together; (ii) there should be enough lines paired so that
the lines plus the sets inside the boxes associated with
each P form a connected set; (iii) the set of the points as-J
sociated with Pj, . . . , P, together with the lines emerging
from them and still "free" (i.e., not paired with other
lines) represent, once the points from which they emerge
are enclosed into a single box, the monomial P.

In the above definitions and constructions, as well as in
the upcoming ones, one has to bear always in mind that
the lines emerging from each point are regarded as pair-
wise distinct (and this will eventually give rise to a com-
binatorial problem).

Furthermore, ~(:m with the subscript "connected" [see
(16.5)], means a subset of the lines of ~ which still keeps
the connection between the boxes. A line A, obtained by
pairing ("joining" or "contracting" will be synonyms of
"pairing") two lines is identified by its two extreme points
together with the field indices (B or nothing) which will be
kept and appended to the line near the end point from
which they emerge (so that it might happen that a line
carries two, one, or no indices B; if it carries only one it
will be appended near the appropriate end point).

Therefore, A=(a, b) w, ith a =/, b=g' represents a line
obtained by joining two lines without labels emerging
from g' and g', similarly, if a =(g', B),b =g', then A. =(a,b)
represents the line obtained by joining together a nonla-
beled line emerging from g' and a labeled one emerging
from g. The resulting line will be represented by a seg-
ment joining g with g' carrying a label B near g (or,
equivalently carrying a label B~); and similar interpreta-
tions are given to the cases a =g, b = (g', B) or
a =(g, B),b =(g', B).

The symbols C~'=C'b' denote the appropriate covari-
ances

C,'b' ——a'(V&'q»'), C,'b ——a'(q& B„@„),() () ()
(16.6)

C()=8'(B64()q()) C()=8'(Bgqg()B.V())

if (a, b) = (g, q), (g, (g, B)),((g', B),g),((g,B),(g, B)), respec-
tively. Recall that here 8 or B~ means a derivative with

(40)

Then one possible element ~E.a z is depicted as

(41)

pi Pp

(42)

a simple possible vr is

(43)

and ~ is any subset of the five inner lines which contains
at least one of the first two and one of the last three.

Relation (16.5) defines recursively and completely the
coefficients V'"'(y;P) once one specifies the meaning of
V'"'(y;P) for the elementary trees yo..

Of course V (yo,'P)=0 unless P is:y —:,:(p-(k) ( &k)4. . ((k)~.

:(By' — '):, or 1; and in such cases V (yo, P) is just(k)

—A, , —p, —a, —v, respectively, for a=4,2,2',0 (no con-
fusion should arise between the renormalized coupling
constant o. and the end point index carrying the same
name).

To find bounds on V'"'(y;P) one can proceed as fol-
lows: first by using (16.5) recursively one decomposes this

where the dotted box represents the box corresponding to
P.

A possible ~(:n. is any nonempty subset of the inner
lines, inside the dotted box, diagram 41.

Similarly, if
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quantity into a (very large) sum; each term of the sum
will correspond to a fixed selection S of one index for
every possible summation arising by applying recursively
(16.5). One has to imagine that one such special selection
S has been fixed (say, one special choice of P, of
P ~, . . . ,P„ofm, ~, etc. , with similar choices made for each
of the successive vertices of y which appear while
disassembling y&,yz, . . . , y„etc.).

The bases for the bound that will be derived shortly are
the estimates (3.19), (3.20), and (3.17), and the following
notions which have already been introduced in Secs.
IV—IX above and in the preceding lines of this section,
but which it will be convenient to collect again and organ-
ize in the form in which they will be used below.

(1) Each vertex v of a tree y is associated with a cluster
of end points of y; this cluster will be denoted g „.

(2) The selection S of the summation indices just intro-
duced permits one to associate with each vertex u a mono-
mial P„which can be thought of as graphically represent-
ed by a box containing the points g „with lines emerging
from them and out of the box itself: some of the lines
may bear an index 8; the lines emerging from the box
represent the graphical image of the monomial P, .

(3) The number n„' of lines emerging from the box en-

closing the cluster g„will be the sum n~ „+no, of the
number of labeled lines, n& „, and of the number, no„, of
unlabeled lines (e: external; 1: labeled; 0: unlabeled).

(4) A selection S of the summation indices leads to
graphical representation of the corresponding contribu-
tions to VI"I(y;S).

Out of each end point g of y emerge either four unla-
beled lines or two unlabeled lines or two labeled lines or
no lines at all, depending upon the value of the appended
type index a=4,2,2',0. The case a=0 can appear only in
the trivial trees

which will be disregarded for the time being; in fact a =0
corresponds to a constant P = 1 and the truncation of the
expectations eliminates it unless the tree is trivial, i.e., in-
dicates no truncations.

The structure of y encloses the end points into a
hierarchically arranged sequence of boxes, each corre-
sponding to a tree vertex u, and it is possible to make the
convention that the pairings of the lines are drawn in the
graphical representation so that the lines contracted
between the clusters u &, u2, . . . , u„representing
P, , . . . , P„, to build the monomial P, corresponding to
the cluster v (v being the vertex immediately followed by
v &, . . . , v, ) are all contained inside the box corresponding
to u, as in diagrams 40—43 above.

For uniformity of notation it is convenient to imagine
that the end points of y also represent clusters of a single
point and that they generate little boxes around it (recall
that, however, the end points of a tree are conventionally
not regarded as tree vertices).

For instance, three possible selections corresponding to

the tree

(44)

(where v, v' are vertex names, p, h, k, are frequency labels)
are represented by

/

rI

8
I

i / ~

I \

\

2

I

I

I

I

l

I

/

/ / q8
/ ~i /

3
I I

I I
/

2 / I

/
/

I 8
/

I . iI

g
I

i (

(45)

(if 1,2,. . . stand for gI, g'2, . . .).
(5) If in S there is a line paired to another, there will be

a smallest box containing the contracted line, i.e., the two
end points (this is enough by the above drawing conven-
tion); if v is the corresponding tree vertex and h„ is its fre-
quency index, then one says that the contracted line has
frequency h„and one attributes the index h„ to each of
the two lines giving rise to the contracted line of frequen-
cy h„; the uncontracted lines will be given the frequency
index k=k(y) =(frequency of the root of the tree); they
are called "external. "

So to each box one can associate a frequency index
which is the frequency index h„of the vertex u corre-
sponding to the box. As a consequence one can associate
to each line in S a frequency index which is the frequency
index of the box which first encloses the line. Note that
the association of a frequency index to a line depends on
S and not just on the tree y. By convention the box asso-
ciated with the root r of the tree y is the whole space.

(6) The above set of indices still does not specify com-
pletely the selection S: one has to mark, for this purpose,
each line which belongs to the sets called r in (16.5) by a
label —say, 0—recalling its origin (as a line in a set r):
"character label"; lines with the label 0 will be called
"hard" or "high-frequency" lines.

(7) It is important to stress, again, to avoid combina-
torial errors, that in the above construction two lines
emerging from the same vertex still have to be regarded as
different and distinguishable; to keep track of the com-
binatorics it is convenient to imagine that the lines emerg-
ing from the innermost vertices (i.e., from the end points)
are numbered [from 1 to 4 if the vertex represents
—A, :y:, from 1 to 2 if it represents —:y2:or —:(L)y)2:].
Such labels will be called "identity labels. "

Of course, selections S which differ just by the distribu-
tion of the identity labels yield identical contributions to
&(y).

It is also clear that the number of selections differing
just by the identity labels is bounded by 4" if the tree has
n end points.
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Before we continue, it is important to stress that, by
our definitions, a selection S of summation indices yields
a connected graph joining all the end points g of y with
lines marked by

(a) a frequency index,
(b) a character index or no index per internal line: if

the index is missing, the line is "soft"; if it is present, the
line is "hard, "

(c) an index 8 or no index per each end point of the
line, and

(d) an identity index per each end point of the line
(internal or not).

The frequency indices and the character indices are not
random: they are organized by tree y in such a way that if
we draw the boxes corresponding to each vertex of y, the
lines internal to each box form a connected graph and so
does their subset formed by the hard ones among them.

The lines which are externa1, together with the points

out of which they emerge and the largest (finite) box,
form a graphical representation of the %'ick monomial I'
selected by S.

The reader familiar with Feynman graphs will recog-
nize in such a representation of S something which can be
called a "decorated Feynman graph, " the decorations be-
ing the above collection of labels listed in (a)—(d). One
also recognizes the connection between the above decorat-
ed graphs and trees and the basic notion of forest in Zim-
mermann (1969). To proceed to obtain bounds on V'"'
one considers the contribution to it by a choice of the
summation indices S.

Denoting V(y; S)Ps such a contribution, where I's
denotes the Wick monomial selected by S, and using
(3.19) and (3.20), one finds after some meditation the
("good" ) estimate in terms of 8=max(

~

A, l, ~)M l, la ~,

k[(d —2)/2] (), k( [(d —2)/2]+ & I )„[(d—2}/2]h( I [(d —2)/2]+ & J~('&-" IIy ' IIy
1o I)

—«.y ~(A,
( (16.7)

where d )2, for simplicity, k represents an "inner" line of
frequency h 2„associated with S, and

~

&
~

is the distance
between the end points of A, ; regarding the contracted
1ines of S as composed by two half lines, and regarding
the external lines also as half lines, we find that the first
product in the rhs is over the half lines bearing no 8 label
and the second product is over the half lines bearing a 0
label. The first nontrivial vertex of y is denoted by Uo,

and B, ~)0 are suitable constants.
The factor multiplying the lhs,

~

V(y;S) ~, has been in-
troduced for convenience [it will be clear shortly that it is
a natural multiplier in the lhs of the inequality (16.7)].

Bound (16.7) is really trivial "power counting, " once
the presence of the exponential factors is understood. It
arises from bounding C~ ' contributed by the hard lines A,

in S, with frequency index h.
Recalling (16.6), one sees, for instance, that there is

8&0 such that if A=(a, b), a=,g, b=g:

~

C(h) i

( [(d—2)/2]h)2g —«'y" (P—p(
ab )&'Y e

or if a=(', b=(g', (3):

~

( (h) i f[(d —2)/2]+1]h [(d —2)/2]hg —«y" (g—g(
ab (&7 y e

or if a=(g, B), b=(g', ()):

C(h) ( (( [[(d—2)/21+1]h)2gg' —"'y (4 )(7—
ab

(16.8)

(16.9)

(16.10)

while C,'b- ", contributed by the soft lines, can be
bounded only by (16.8), (16.9), and (16.10) without the last
exponential factor [or, rather, with that factor replaced by
exp( —~

l g —2)
~

), useless], provided d & 2 (if d =2, an ex-
tra factor h has to be added in bounding C,b ). -

One could write the exponential factor in (16.7) as

I

using the notations introduced in Sec. XII [especially Eq.
(12.6)] to treat the cosine field; however, this remark has
been made only for the sake of comparison and will not
be needed in what follows.

It remains for us to cast (16.7) into a more usable form.
Select a vertex UEy and let m2„,m4„m2, be the

numbers of vertices in the cluster („ associated with U

and bearing an index a =2,4,2', respectively:
m2, +m&, +m2, ——n„=(number of points in g, ), and
note that if u is a nontrivial vertex of the tree, n, )2 be-
cause v represents a truncation operation.

For each U also introduce

no""„"——number of lines without 8 label before the con-
tractions, contained in the box corresponding to U but not
in any smaller one,

n, ']"","——number of lines with label 0 before the contrac-
tions, contained in the box corresponding to U but not in
any smaller one,

the number of lines being counted before the contractions,
each inner line of a graph S counting twice in the evalua-
tion of n'""", and

no, ——number of lines without 0 label before the con-
tractions, emerging from the box corresponding to U,

n ],——number of lines with 8 label before the contrac-
tions, emerging from the box corresponding to U.

Then a simple counting allows us to rewrite (16.7) as

[(d —2)/2]kno „(d/2}kn ) „—« '"o '"o II g —«y ~()j,
(

II exp[ —hy "d*(X'„)],
h [(d —2)/2]n'"" ' h„(d/2)n, .'"„"'

X y' 'y"
U Q 1'

(16.11)
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where r is the root vertex of the tree y.
Let y have n end points labeled g(, . . . , g„and let the

external lines of the graph S emerge from the points
g(, . . . , g~, as can be assumed without loss of generality.
Then one is interested, according to the general ideas

developed in Sec. XII in connection with the asymptotic
freedom notion and the interpretation of the effective po-
tential as a potential for a continuous spin system, in
bounding

M, (b. (, . . . , b~) = I ~

V(y;s)
~
sup

~!
P, ((p(-"),By(-"))

~
dg, dg'„, (16.12)

2) /2]k+ Q
(d/2)k+ 1 n e

(16.13)

and the constant ~ depends only on the degree of the
polynomial Ps [hence it depends neither on k nor on the
degree n of y: in fact ~=O(n'!)].

where 6(, . . . , b&EQ& are cubes of side size y j' in
which the points appearing as labels to fields in Pz vary
in (16.12): these cubes are extracted from a pavement Qz
of A.

The supremum in (16.12) is over the fields

k
(&k) y +(j)

j=0

with y(j) verifying (3.20). If one denotes 8=sup ~8a
~

[see (3.20)], one finds (setting n o, ——n o, n ), n(, n='

=n,'+n', )

—dh„(s„—1) kd —(x/2)d(h&, . . . , 6 )yk
y

U)f
(16.14)

where B& ~ 0 is a suitable constant and s, is the number
of branches emerging from u in y [see Appendix D for a
proof of (16.14)].

Using (16.13), (16.7), (16.11), and (16.14), we can bound
integral (16.12) by

Inserting (16.13) into (16.12), one finds that (16.12) is
estimated by B "~ times the integral over 6& X 52
X . Xbz XA" ~ of the rhs of (16.7) [and this explains
also why the factor in the rhs of (16.7) is a natural one to
consider].

The only term in (16.7) which is not constant is the last
factor: its integral over the set indicated in (16.13) has al-
ready been considered in Sec. XII [see (12.15)]—see re-
mark following (16.8)—and the result is expressed by

—(a/2)ykd(b &, ,5 ) „-n kd k[{d—2)/2]no+k(d/2)n
&

hv[(d —2)/2]no"" ' h„(d/2)n'&""„' —h„d(s„—1)~ s"a ~y ] y ' y
V)r

The latter estimate can be elaborated using the identity

g (s„—1)=(n, —1)
V (U

(16.15)

[see (12.17)]. Remembering that the end points of y are not considered as vertices of y and denoting simply
m2, m4, m2, n &, no, n' the m2 „,m4, , . . . , if vo is the first nontrivial vertex of y following the root, one finds

„-n —
dk —d(h —k)(s„—1) [(d —2)/2]{h„—k)n,!"„"' (d/2)(h —k)n'I""„'

M, (A), . . . , Ap)(c. B B)y y
V)T

—dkg„(s„—)) [(d —2)/2]k(2m&+4m4 —nso) (d/2)k(2m&, n~& )k [(d ——2)/2]nsok (d/2)ns&k (a/2)y"d(j—) &.', a ),
„—n~ z —(~/2)g d(4 ) ~ ~ ~ Ap ) —

k [2m z+ (4—d)m4]1 P y
—d(h„—k)(s„-—) )+[(d—2)/2]k(h„—k)n&""„e"+(d/2)(h„—k)n'&""„'

V)P'
(16.16)

Denoting v' the vertex preceding v in y and denoting
n j~„"",j=0, 1, the number of lines, before contractions
(i.e., half lines), inside the box corresponding to u (which
is not necessarily the first box containing them; i.e.,
n j"U"")nj"„"",in general) and using

g (h„—k )(s„—1)=g (h„—h„)(n, —1),
U. r

g (h, k)nJ'"„"" —g(h„—h=„)n j","", j =0,1,

—inner e
IZ O v =2m2 U+4m4 v

—Il 0 v

—inner ~ e
Pl ) U

=—2m2s V
—n) U

one realizes from (16.16) that

—
k [2m z+(4—d )m4] —p„(h„—h„.)Xy

U)T'
U)f V)P

(16.17) (16.18)
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with

d —2 e dp„=—d+2m2„+(4 —d)m4„+ no„+ —n) „.
(16.19)

Therefore, recalling that the contribution to V' ' of the
trees of given shape is obtained by summing over all the
possible choices S and over all the possible frequency as-
signments to the vertices of the trees (i.e., over all the pos-
sible values of h„—h, ~0, h, (%), one realizes that the
estimate (16.18) and (16.19) for (16.12) implies ultraviolet
finiteness if for all S and all tree shapes it is p„)0.

However, clearly, there are plenty of cases with p, & 0
for some U, for d) 2.

The situation would be slightly better if one had started
with a more restrictive interaction —e.g. , if g had been
replaced by

f ( —A, :pre- ' ..—p:yg- ' .—y)dg . (16.20)

In this case it is easily realized that one has to take in
just (16.18) and (16.19), n), =—O, m2 „——0. This implies
that

(~) (4 d)hs~ 4+2—hs~ 2+dh62 0—(~)(h )r (h)=y (16.21)

and repeat the power counting argument leading to the
bound (16.18). In this case the result will be, for n ~ 1,

d=2 ~p, )0, VU

d=3 ~pU )0
unless no, ——2 and m2+m4, ——2 or no =0 and
m2 „+m4 „——0, i.e., the theory (16.20) is ultraviolet fimte
in dimension d =2. However, if d =3, it is not ultravio-
let stable and one has to check whether it is renormaliz-
able.

Going back to (16.1) for d =4, we discover many cases
with p, &0; in general it is, however, clear that p, ~0 if
there are too many external lines to the box corresponding
to v, i.e., if n 0, )5.

The above discussion completes the analysis of the ori-
gin of the divergences and of their strength. In the next
sections the problem of renormalizing the theory (16.1)

will be studied and solved for d & 4.
A final but, as it will turn out, very important remark

is that the above method allows producing estimates of
(16.12) when the rule to compute V(y;S) is modified by
replacing the A,

' ' contributions from the end points of y
with constants r' )(h~ ) with h~ being the frequency of the
vertex to which the jth end point is attached by its tree
branch.

Suppose that

and

d —2 e d e
p = —d+ no, v+ n (16.23)

i.e., the lines coming from vertices of type a=2 acquire
the "same dimension" as those coming from the vertices
of type a=4.

In the bounds (16.22) and (16.23) the values a~ must be
dh5z ononzero so that the factor y ' plays no role in deduc-

ing them. It has been inserted only for later reference.

XVII. RENORMALIZATION TO SECOND
ORDER OF THE y4 FIEl D

The application of the general renormalization theory
(see Secs. VII and VIII) to cure the ultraviolet instability
pointed out in Sec. XVI follows the same scheme met in
the case of the cosine field, in Sec. XII.

It is slightly more complex, because the polynomials do
not have nice multiplication properties, not as nice as
those of the complex exponentials' multiplication rules
which played a (hidden) role in simplifying the algebra in
the discussion of the cosine interaction.

However, it is still true that, to proceed, one has to
understand in detail only the renormalization theory to
second order, i.e., the definition of the subtraction opera-

(~, )

tors Wk. with

Q), Q2 =2, 2, 4

the other cases being easily understandable in terms of
this special one.

However, a detailed understanding of the above simple
case is absolutely essential and the inexperienced reader
should check the minutest details of the following few
straightforward but lengthy calculations, which are the
heart of renormalization theory (contrary to what is
sometimes asserted about the true difficulties being con-
nected with the "overlapping divergences, " a term which
will not be even defined here).

To proceed as in Sec. VII one starts by defining the
trees dressed to order 1: i.e., they are just the trees con-
sidered in Sec. XVI. Then one considers the trees of de-
gree two (i.e., with two end points); actually, they are

U U U
—p'(h —h )

x Q» '(h ) (16.22)

g, a,
They have been estimated in Sec. XVI, but it is easy to

compute them explicitly from their expressions in Sec. VI;
after integration over the end points position labels g), gz
they contribute to V'&"'.
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{k, a),a~) T { l) {&/g) { P) {&$)
2 Vl 2 A

+k+1 ~h —1 @h (Uh (V g( )~Uh ('Pg2 ) )dkldk2 (17.1)

A simple calculation which the reader should perform at least once in his life, in spite of its length (after all, not so
bad), gives

2

(1) V(k, 2, 2) 2 f . (.(h)dg + 22( f (( (&h) C( &h)2)dg
2

2
V""'=)M&

1 f W(~me:~2C12dk)2+((4&2' f I(~)C'(z"')' —(~(CI2"')']dk)2
L

2 4
(3) V(k, 2, 4) g f . 3.C(h)dg + g2( f . 2.(( (&h)2 C( &h)2)dg

2,
(4) V(k, ', ') f g g g2 C(h)dg + 221 f [(g2 C(&h))2 (g2 C(&h))2]dg

2 4 4
(5) V'k '")=as, , f:aq, (',((:(),C',"'dP, +aA, 2 2! f:P:[(8C', —"

) —(8 C', "') ]dP„

4
(6) V(k44) , ,g2 11 . '3 3.C(h)dg +g2 21 2 2 (C(&h)2 C(&h)2)d~%1%2 12 12 2 9 19 2 12 12 512

4 4
+g2 31 f . .(C(&h)3 C(&h)3)dg +g2 41 f (( (&h)4 C(&h)4)dg

(17.2)

where y), y2 means p~-, ', (pg,
-"', and C'12' means C~'~, , dg')2 ——dg(dg2, 8) =—8/Bg„B2——8/Bg'2, B)2——8 1.3 2,

(B)C' ') =8 1C' '8 1C' '; the symbol V ' ' ' denotes V' "~' with y given by diagram 46.
Some of the above integrals are not ultraviolet stable, once appropriately summed over h (i.e., for h in [k+ 1,N]), as is

easy to check, using the bounds of Sec. XVI and showing that they are "good bounds" or by direct computation; see the
following table:

first term second term third term fourth term

(1)
(2)
(3)
(4)
(5)
(6)

stable
stable
stable for d)2
unstable for d) 2
stable
stable for d & 2

unstable
unstable
unstable
unstable
unstable
unstable

for d=4
for d)2
for d=4
for d &2
for d &2
for d =4 unstable for d &3 unstable for d & 3

Using (17.2) and proceeding according to the theory of
Sec. VII, we can find counterterms V2 )v to Vl so that the
effective potentials V2"' of Vl+ V2 )v are ultraviolet finite
to second order.

Following the ideas developed in Sec. VII, one can start
by trying to define the operations Wk making (7.10), i.e.,
(1—Wk ) applied to (17.1) and summed over
h H [k+1,N], finite as N~oo.

From (17.2) it appears that the divergences arise be-
cause some integrals obtained after summing (17.2) over
h H [k+1,N] diverge for g) ——g2.

Therefore, one can think of defining Wk by specifying
its action on functions F having the form of the rhs of
(17.2) with the kernels in front of the Wick monomials re-
placed by general kernels (()(gl, g'2):

+= f ~(r), r2)+dkldk2 ~ (17.3)

with the restriction that the m kernels are translation in-
variant on A (recall that periodic boundary conditions are
imposed on A) and rotation covariant with respect to the
rotations by m/2 around the coordinate axes (which are
the only meaningful rotations on the torus A). The co-
variance here refers to the fact that the Wick monomials
in (17.3) may contain derivatives of the fields: each
derivative bears an index denoting to which component it
refers and hence will bear corresponding indices —i.e., it
will be a tensor; this fact does not explicitly show up in
(17.2) or in the upcoming formulas because of the con-
venient convention used here that suppresses the indices
of the derivatives, for simplicity of notation.

Once the action of Wk is specified on the functions of
form (17.3) it will be extended to their linear combina-
tions by linearity, some more comments on Wk as an
operator will be made later after discussing its action on
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R1=0,
R %19 2. Wl[ 'P2 'Pl (k2 gl ) —0 I

2 (g2 kl) x(42 kl)~ 0 ll

R VI~V 2 Wl[~'P2 ~V 1 (k2 41) Q~V 1]:

R:Bqr~By~:=:By~(B&p2—By~ ):, (17.4)

F's like (17.3).
To produce the cancellation of the divergences which

appear once the rhs of (17.2) are summed over h, generat-
ing expressions which are linear combinations of expres-
sions like (17.3) diverging for g&

——g2, the action of
(1—Wk) should result in replacing the monomial P in
(17.3) by a new expression RP vanishing as $2 —g&~0 to
an order so high that the integrals are no longer divergent.

An examination of the integrals in (17.2) shows that the
following choice of RP would produce ultraviolet finite
integrals:

2 2 2 2 2R:O'N'z: =4'i( pz —0'i ):

3= 3RV iV»:=+2(V i
—Vz):

RP =P otherwise,

and using (3.20) (recall that the regularization being used
here has n =3), one sees that the replacement of P by RP
replaces P by a %'ick polynomial which has a zero of or-
der, respectively, oo, third, second, first, first, zero.

Hence if there is an operation Wk such that (1—Wk)
acting on the integrals in (17.2) just changes P into RP,
then Wk has the property that (7.10) is, in the present
case, ultraviolet finite because the above-mentioned orders
of zero of RP are sufficient, in the worst cases, to make
the expressions (17.4) ultraviolet finite.

From (17.4) one deduces that the operation Wk "which
identifies the divergent parts" of V'] ' to second order has
to act on the integrals in (17.2) or more generally in (17.3)
as

~k f w(g~, g2)d4idg2 f w(gl k2)dgld42,

~k f w ( kl 4) 'Pg, V g .d g = f w (kl g2 ) [V g [pg + (g2 gl )~yg, + —,(g2 —g) ) X 8 gg ]I:dg )d g2,

~k f w(ki 4):eg, Fg, :dk= f w(ki k)vq, Pqq, +(4—0 ) Q~yq, ]:dg,

~ f (k 4):~Vg,~V q, :dk= f (k 4):(~V q,
)'.dk

~k f w(k, k)vg, m~ dk= f w(ki k)vg, :dk

Wk f w(P&, $2):p&p&, .dP= f w(gi, g2):pg, .dg,

Wk =—0 otherwise,

(17.5)

~V'g, ~eg g,:=—(4—ki)e:(~my, )':

~k:depg, de%'g, :=oee'(depg, ):
2 2 4~:%g 0'g:= Vg:

(17.6)

W=O otherwise .

so that the action of (1—Wk) on the integrals like (17.3)
is precisely obtained by replacing in them P by RP.

One has to check that Wk takes values in the space of
the interactions; this is in fact the basic reason the theory
is renorrnalizable.

Possibly integrating by parts or using the rotation in-
variance properties of the coefficients w(1, 2), one can
easily check that the action of Wk on the integrals in
(17.5) is equivalent to the action of the following operator

on the Wick monomials inside the integrals (here
', 8, 8'= l, 2, . . . , d; c}e——B/Bg'e', if g'e' is the 0th

component of the point g):

I

This proves that the range of Wk is in the space of the
interactions if one takes Wk to be defined by acting on
expressions like (17.3) by replacing P inside by WP [see
(17.6)].

The above analysis shows also, that, trivially, the action
of (1—Wk ) on expressions like (17.3) is precisely the sub-
stitution of P by RP.

It is convenient to stop to point out the following. The
operation Wk defined above is not unambiguously de-
fined as an operator in the sense of functional analysis: to
let Wk act on a function like (17.1) one has, by definition,
first to express it as a sum of functions like (17.3) and
then to act term by term replacing P by WP [see (17.6)].

However, the expression of (17.1) as a linear combina-
tion of expressions like (17.3) is not unique.

Therefore, in order that the above definition of Wk
makes sense one has also to prescribe how one writes
(17.1), or more generally a function in the domain of Wk,
as a linear combination of terms like (17.3). Expression
(17.2) is the prescription used here for the functions of in-
terest. Also, later on we shall have to use a well-defined
prescription for the decompositions of the effective poten-
tials as sums of terms on which the action of the higher-
order subtraction operations W'k ' is defined. The
prescription for the decomposition of the effective poten-
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tial has therefore to be thought of as a part of the defini-
tion of Wk.

Taking into account the above comment, we then check
relation (7.13) first by verifying that the prescription to
decompose the interesting functions (i.e., the effective po-
tentials) as a sum of terms in the domain of the Wk
operations commutes with the expectations 8'~+1 . 8'k
and second by asking whether Wk also commutes [in the
sense of (7.13)] with them.

Both the above checks are very simple in our case; actu-
ally, the systematic use of Wick-ordered interactions and
of Wick monomials has the basic motivation of making
this check an essentially trivial consequence of (4.2) (im-
plied by Wick ordering) and the definition of Wk.

From (17.6) and (17.4) and applying the general theory
of Sec. VII [see (7.14) and (7.16)], one finds easily the fol-
lowing expression of the counterterms V2 &, if 1p:—y'-
1t 1S

2

31»» (C( &h)3 C( &h)3)+ 1 &&() C(h)
2d

N
(A)V = —Jdg, g ':+&.j —&2

1
C(,")+&X2!

2 (C', -"' —C', "' )+as 2 2![(a,C'„-") ) —(a,C(, "' )]
A

2

+
2 1

3 12 12 P $ 2 12 12 2
31(C(&") C(&") )+ ~ —(1

2 '2
2 g2 kl P2 2 (k2 k1) (h)+:(Bq)g ):f —Pa 1

B2CI2'—
J

2
4

2 3

2

+ +$1 P~ 1 1 12+
2 2 2(C12 C12 ) d42

4 (h) ~
t ( &h)2 ( &h)2

+1 f 1 22((C(&h)2 C(&h)2)+ 2![(g C(&h)2) (g C(&h))2]

X' 4
+ 2'[(()12C )' —(()12C ')']+ 4!(C1-"' —C'1 "'

) dg,
' . (17.7)

It should be stressed that for some terms in (17.2) rule

(17.6) produces needless subtractions, as far as the ultra-
violet stability is concerned; in fact, rule (17.6) coincides
with the "usual rule" in the literature only in the "usual"
case a=(((,=0, d =4; if d &4, then (17.6) is oversubtract-

ing even in this case.
Nevertheless, "universal rule" (17.6) will be used for

simplicity of exposition; it would probably be not difficult
to make the theory of Secs. VII and VIII more flexible so
that more refined subtraction methods become possible
permitting one to introduce counterterms only for "really
divergent" parts of the effective interaction.

It is easy to compute in the above eases the meaning of
the trees dressed to second order,

a„

now meaning y(- ', up to a factor 2. Precisely select the
(k,a),a2) .

contribution to (17.7) from the term V
' ' ' in (17.2) [or

V
' ' ', whichever is present in (17.2)] containing U)'v ',

a=4, 2, 2', 0, i.e., containing:p:, :y:,:(Bp):,1; then the
frame in diagram 47 means

(a)( k) (a)( (&k) g (&k)) (17.8)

where the r coefficient is the coefficient of the term in

(17.7) just selected but with the summation over h ranging
from 0 to k; here o is a symbol for the tree shape framed
in diagram 47. Clearly, r' '(o, k) is proportional to
g(a] )g(a2)

The unframed dressed tree in diagram 47 represents, if
we follow the rules of Sees. VII and VIII, exactly (17.2)
with the replacement induced by (17.4), P~RP [see
(7.18)].

Thus if one introduces the new fields

(47)

According to See. VII' [see (7.19)], the framed tree
represents one of the terms in (17.7) with the summations
over h ranging from 0 to k (rather than to N) and with 1(()

1

Dklk2 =+El 'P42 ~

Sg g =Bing
—Bgg —(g1 —g2) B()f&g (17.9)
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~g, g, =v g,
—v g,

—(k—k)~my,

'Pr„( '((g~ (k2 kl) ~V g2

——,
'

(g2 —g()'x Q'pg, ,

where 6 & 82 means, if 5 is a vector in R",

y„5 5 (a'/ag"'ag'J')

then the contributions from the unframed tree in diagram
47 to the effective potential V2

' due to V1 + V2 ~ at fixed
h, a),a2 are (if (p=g(-"))

2P' 1:V'4,T~,4, 'Ckg, ' 1= 2=2

2

1 (h)
Pcx l .'Pg Sg g

.()g Cg g, cx1=2, cL2=2

r

3 . (A)
PA, ) ) .cPg Dg g Cg g, cz1 ——2, o.2 ——4,

2
2

cx
l

.'Bgg Dg g .Bg g Cg g, cx1=cK2=2

r

aA,
1 1

..By~pg, .B~,Cg, g, , a) ——2', a2 ——4 (unchanged),3 (h)

2 2 2
4

":&~P'~,:~~",~, +~'
2 2':+~,«~, +&~,)D~,~, :(C~Y,

"—C~;~",")+~'
3

(17.10)

(17.11)

(17.12)

(17.13)

(17.14)

(17.15)

A simple way of describing the construction of
(17.10)—(17.15) from (17.2), i.e., to interpret the R over
the vertex of the tree in diagram 47, is that the tree in dia-
gram 47 is computed from the values of the same tree
without the R followed by the replacement of I' by RI' in
the result.

It is also easy to compute the meaning of the most gen-
eral tree dressed to order 2 (see Sec. VIII for this nota-
tion), as with the example in diagram 48 below:

(49)

Then one proceeds to write the truncated expectation
formula for the evaluation of the contribution to V(") of
tree y, ignoring the presence of the R superscript (see
comments in Sec. VII after diagram 13).

The vertex bearing the R contributes

7' 7 g T( (~6)( (&() g (&t)) (~7)( ((() g (&t))) (17.16)

According to the general theory of Sec. VIII the first
act will be to "trim" the tree y of the frame and its con-
tent (if there are more frames, one trims all of them), ob-
taining a simpler tree y; e.g., in the case of diagram 48 the
result would be

in the above example and a similar expression in general;
then one just replaces in (17.16) the Wick monomials P by
RP according to (17.4). Finally one replaces factor A,

( '

contributed to the effective potential by the end point
( g, a) with factor r ( )((7,q ), a being the shape
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where P has the form [(p=(p(-"' and see (17.9) for the
symbols]

rr~
J nJ nJ

1n.
IID, '.

~ E J

framed, according to (17.8).
This completes the analysis of the second-order renor-

malization. It justifies calling (17.8) "form factors with
structure cr."

It will be clear that a detailed check of all the above
formulas is the heart of renormalization theory and there-
fore the inexperienced reader should proceed only after
having well understood the details of the above calcula-
tions.

As an exercise the reader can consider the theory of re-
normalization to second order in the following problems.

(1) Let g)v be

—A, f:pg('.et/ (17.17)

and show that if d =2 one can take Wk '=0, i.e., no re-
normalization is necessary.

(2) Let g & be

( g. ( &N)4. . ( &)v)2. )gg:—P:%g (17.18)

~:Pg Pg:=V'g: . (17.19)

(3) Let g & be

and work out the renormalization to second order in the
case d =3, proving that one could use as a definition of
Wk instead of (17.6) the following:

x +&((( '
J

(18.2)

with nJ &4, pJ &2, mJ, nJ. ,qJ. ,IJ, tJ &2.
The most naive way to proceed is to define recursively

the localization operations WI, ' associated with tree
shapes of degree p+1 (i.e., with p+1 end points) partial-
ly dressed to order p simply by using again the localiza-
tion prescription (17.6) and the corresponding renormali-
zation prescriptions for the interpretation of the vertices
with R superscripts (17.4), the idea being that, as suggest-
ed by (16.18) and (16.19), the divergences are caused by
the contributions to V(y;P)P from the vertices U of y
describing a Wick monomial of degree & 4.

However, if P is given a general form (18.2), it is clear
that there will be plenty of monomials of order &4 which
do not appear in (17.4) and for which the operations R
and W are not defined yet. The first task is to classify
them.

One assumes, inductively, that the renormalized effec-
tive potential corresponding to an interaction renormal-
ized to order p:

(17.20) (18.3)

work out in detail the renormalization theory showing
that, unless a=O, one still needs nontrivial renormaliza-
tion. However, the theory can be rigorously built if p, (z

are small, or non-negative.
(4) Show that the theory with interaction (17.18) is not

renormalizable if d =4, not even to second order, in the
sense of Secs. VI—VIII (not identical although trivially re-
lated to it to the one usual in the literature).

XVIII. RENORMALIZATION AND ULTRAVIOLET
STABILITY TO ANY ORDER FOR 07 FIELDS

P
(18.1)

Section XVII has shown that renormalization to second
order suggests representation of the effective potential in
terms of Wick monomials more general than the ones
used in Sec. XVI (16.4) and precisely as a sum of contri-
butions like

~ V(y;S)
~~

y:degree y =n S nI'y)
(18.4)

where now the graphs S will bear more decorations (com-
pared to the cases treated in Sec. XVI) to describe the "ef-
fects" of the renormalization.

One checks this inductive assumption in the case p =2
first, where it can be checked, because V2 & has already
been studied in Sec. XVII.

Let y be any tree dressed to order 2, e.g., see diagram
48. Trim y of the endframes and consider one decorated
Feynman graph 5 corresponding to the evaluation of the
effective potential due to the trimmed tree y but ignoring
the superscripts R.

Draw a box B, around the cluster of position labels of
y corresponding to the vertex v of y: the box B, will be
drawn so that the lines of S with frequency index h„are
inner to B, but not inner to v' if v' & v, as in Sec. XVI.

is still described in terms of decorated Feynman graphs S
as
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Therefore, out of each box B, emerge lines of S possi-
bly carrying 0 labels, as in Sec. XVI; the notations intro-
duced in Sec. XVI will be systematically used below; for
instance, n» and no, will be, respectively, the number
of lines emerging from B, and carrying or not carrying a
8 label; n,' will be defined to be the sum of the above two
numbers.

So each box B, represents a Wick monomial P„as in
Sec. XVI. Consider the vertices U bearing in y an R: ob-
serve that they must correspond to some innermost non-
trivial clusters and precisely to those with two points in
them.

Let one such v represent, in the given S, a Wick mono-
mial P, : one replaces it by RP, [see (17.4)].

If RP„=P„,nothing has to be said; but if RP, &P„one
has to interpret that the vertex U contributes, via the
graph S, RP, rather than P, to the evaluation of the trun-
cated expectations corresponding to y.

If RP, is a Wick mononial in the fields

y, By,D,D ',S ',S,T [see (17.9)], then one denotes this
operation of substitution of P, by RP, by simply adding
an index 0 to the box B,; but in some cases—actually,
only one in the cases considered so far—RP, may not be a
Wick monomial in the above fields. In fact, the R:y~
is, by (17.4),

. 2 2 2.=. 3 . -2
Wg(V'~ 0'g): = WP—g:+V'p~D~g:

(i.e., a sum of two monomials).
If RP, is a Wick polynomial sum of various monomials

numbered from 0 to I, then one attaches to the box B, a
label P, =0, . . . , m to recall which term in RP, one
selects in the evaluation of the truncated expectations as a
contribution from U.

One takes into account this index P„by changing ac-
cordingly the meaning of the lines of S emerging from
the box B,—e.g., the line representing y2 in:y1y2.. is re-

placed by T21, that representing By2 in:y18y2. is replaced
by S21, that representing By2 in:B@1B@2-.is replaced by
D21, that representing one of the two @2's in:cp1yz.. is re-

placed by Dz& if the index I3, appended to the box 8„
(which now takes values 0 or 1) is /3, =1, while, if P„=0,
then one of the two lines representing yz is replaced by a
line representing A@1 and the other by one representing D21
(which is replaced by what is irrelevant —e.g., one can de-
cide on the basis of the identity indices appended to the
lines emerging from a point, say, lexicographically); in the

:@1cpz.case the line representing cp1 now represents D12.
Then the evaluation of V(y;S) proceeds as before with

the consequent change of meaning of the covariances as-
sociated with the contracted lines (when two lines are con-
tracted, they give rise to the covariance between the two
fields that they represent, of course).

Clearly, at the end of the computation one still has to
replace the X' ' contributed by the end points of y (com-
ing from trimmed end frames bearing inside the shape o.

and attached to a vertex of frequency h) by new factors
r' ~(o-, h ), as explained in Sec. XVII; see (17.8) and the re-
lated discussion:

R1=0,

1R:y]0@2:=.y1S21

R:BcP Bg0:=:c)+1D21.'1

2 2. . 3 . . 2R 'Ply 2' '/1D21 '+ "@1@2D21.

3. . 3.R:+1'P2 D 12+2:

(18.5)

where (18.5) is just a way of rewriting (17.4) in the new
notations (17.9) and the D,S,T,D', S' fields have indices

j which mean g& and have also frequency indices which
are the same as those of y and which are not explicitly
written.

With the same notations the action of R on other mo-
nomials of degree & 4 is defined by

R:q 2D12. ——.y2T12

R:@2S12'-=:g2T12: r

R:@1S23 ~ —.D12S23 +R:@2S23~

R:CP1S12.——.D12S12.+:D21T12.+:CP1T12.

R:y1D32.=R:D12D32.+R:y2D32.

= —:S12S32+ S12D32 + D12S32.

+:D21T32.+:+1T32 r

R:D12D32 — S12S32.+:S12D32 + .D12S32

The result of the above procedure is a formula like
(18.4) for V2

' ——(effective potential due to
V2= Vi+ Vz, x).

Hence the inductive assumption is verified for p =2.
Assume (18.4) for p =2, 3, . . . , po and let y be a tree

dressed to order po and of degree po+ 1; assume to have
already defined operations Wk ' for all the shapes of de-
gree &po

Assume also that the result of the action of such opera-
tions leads to a rule of evaluation of the trees with no
frames (and possibly with some R indices), which consists
in examining successively the boxes B, corresponding to
the vertices of a tree, starting from the innermost ones,
and changing successively the monomials P„which each
of them represents, into a new monomial in the fields

@,B@,D,S,T,D'S' appearing in the polynomial RP„de-
fined as follows.

If P has one of the forms contemplated in (17.4), then
RP is defined as in (17.4)—i.e., if yj ——yI

— ', 5,J
——g; —gJ. ,

J
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RD12D34 ———S..12534D34 +~ .D12~34 D24:1 1

S12S34 + S12D34 ~ + D 12S34.

R:Bcp]Bcp2..——.Bcp1D21. ,
1

1
g2. = '.cp1S21. ,

R:By1D21.——.Bcp1S21~,
1R +1D21 'P1S21

1 1 1 1R:cp3D21:=:D31D21:+:D13 21:+:q3S21. ,

R:By,E23..——.D, D23 + '0+3S23
1

2 2 2 2
pl( 2+3 D12p2+3. +.D21'p2D32'+ cpl'p2D32

p1p2p3 p4 p 1D21$3+4 + 'p lD12D31+4.

+:g1tp2D31cp4:+:g1D12D13D41:

+ 'p1p2D13D41 + .q 1D12q 3D41

+:+1+2+3D41: ~

(18.6)

The action of R on the monomials which differ from the
ones listed above by a sign (e.g., y2D21) is that R acts by
changing the sign to the rhs; for the remaining monomials
one puts RP=P.

The basic idea informing the definitions (18.5) and
(18.6) is to subtract from each monomial P its "value at
coinciding points" (defined below by the W operation) to
an order such that RP contains a zero of order:

periodic boundary conditions) it should be

f to[(1 ~)P]dg= f uRPdg .

After some thought one realizes that this aim can be
achieved by defining the action of W to be that of replac-
ing a nonlocal Wick monomial P by its Taylor expansion
truncated to an order p„—1.

Since P is nonlocal, it will have to be decided which of
the points appearing as indices of the fields in P will be
made the Taylor expansion. For instance, one could
choose any of them and then symmetrize the result on the
choice; however, it is notationally and practically simpler
to choose the one among them giving the simplest form to
the result; sometimes this may still leave some ambiguity;
the ambiguity will be solved by arbitrary choices guided
by the labels j in the points gj. . Of course this implies
that one has to be careful in imagining to draw the trees
on the plane always in a standard way (a precaution ig-
nored so far), i.e., picking up systematically one represen-
tative from each equivalence class and numbering the end
points also in a standard way (e.g. , from top to bottom).

In the expression below the indices of the fields in P are
always supposed to be gj, gj. ,gj,gj, but the shortened

notation y~ =@~-"'will be used as well as 5;J =(gj —
g~ ).

Also, if 0,0' are component indices,

5'J xB p, = g (&;, )g(&;, )s
(~~) (~~)8,8=1 8 8'

Then, with the above conventions,
1

3
2
1

if
if
if
1f
if

degree
degree
degree
degree
degree

of P=4
of P=2
of P=2
of P=2
of P=O.

and
and
and
and

n1, ——0
en1„——0

n1 U=2

In other words, if we call p, the above order of zero, p,
is defined as the smallest integer for which p, +p,' ~ 0 [see
(16.23)].

Furthermore, the definition of R is such that each of
the monomials on the rhs can be thought of as obtained
by substituting for one of the factors in P an -"improved"
factor climbing the chains @~D~S~T or D~S~T
or D~D' —+S' or By~D'~S' or D'~S' or S—+T.

In analogy with the second-order case of Sec. XVII it is
natural to try to define the operation Wk on the contri-
bution of the tree y with shape o. to the effective potential
Vz ', assuming that the tree has degree go+1 but that it
is dressed to order po only (this is the situation that has to
be considered according to the general theory of Sec.
VIII). If this contribution is denoted

2W:q,e,:=:y,(+,+s„aq, + , a xa q, ):—,

W:B181P2.'= .'Cl+1BIP1.'

~V'113/ 2 111 1(~F1+ |321 Ã'Pl )

1 2~V 1D21 ' W1(&21 ~m1+ T&21 ~V 2)

~:q 1D23:=:»».~q 3» 3~y3:

+:,(5„8,+ —,
' 6,', xg', ):,

'~:D12D34:=:&12'Q%»34'L)%2:

1~W1S21 Y %1~21X ~ 0 I

2+'P1S12 2 F2512 X~ 'P2

1W V 1S23.———,V 3523 X B g3

1.~V1D21' %1821 ~~V 1'

(18.8)

g f V(y'S)Psd( (18.7)
1~V'1D23:= 4'3&23'1)1)%3:

then, in analogy with Sec. XVII, Wk ' should act on
(18.7) by just changing Ps into WPs and W should be
defined so that for any kernel m verifying the translation
invariance and rotation covariance (for rotations of m/2
around the coordinate axes only, since A is taken with

~:~%1D23:=:1)%3~23 '0%'3:

3 4. r-w 2 2 . 4.~:0192:=:cP2- ~ ~:cP1cP2:=:cP1:~

2 4 4
~:CP1W2@3CP4:=:CP1: ~
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WP=O if P does not differ by a sign from one of the
above monomials, WP= —W P—if P differs by a sign
from one of the above monomials.

If the above is taken as definition of W, one can find
W'k ' and hence by the general algorithm of Sec. VIII, the
counterterms of order @0+1as well as the meaning of the
tree

Recall that one is proceeding inductively and the defini-
tion of the counterterms (and the meaning of the dressed
trees) is supposed known for trees of degree &po. Of
course one has first to check that the operation W~ ' has
range in the space of the interactions (see Secs. VII and
VIII). This follows, as. in the case of second-order renor-
malization, by studying the integrals of expressions like
(18.8) times kernels verifying the translation invariance
and rotation covariance properties mentioned above (and
possibly integrating by parts to obtain expressions of the
appropriate form).

It is perhaps worth saying why W'k ' bears an index o.:
in fact, W is defined independently of o.. However, W'k '

acts on the functions of the form (18.7) and a function F
can be written in several ways in the form (18.6). As dis-
cussed in Sec. XVII, the operation Wk ' acts on the effec-
tive potential written in the form (18.7) as it arises from
the prescriptions of calculation to be followed in evaluat-
ing the contribution of the graph S to the effective poten-
tial once the tree y is given (such prescriptions are the
ones discussed in detail in Sec. XVI): the prescription de-
pends on the shape cr of y; hence so does Wk '. To be
more precise, in Sec. XVI the prescriptions for the evalua-
tion of the effective potential in terms of decorated Feyn-
man graphs were given in the absence of renormalization;
but renormalization just allows more complex Wick mo-
nomials and therefore a possibility of giving to the
graphs' lines the meaning of more complex fields and one
can still use the same graphical rule to build the evalua-
tion of the expectations via the Wick rules.

Therefore, it will be decided to choose as definition of
Wk ' on the expressions (18.7) the action of the operations
W in the integrands. Then, by the above construction,
the action of (1—W) generates an interpretation of the R
superscripts in the trees dressed to order po+ 1 as mean-
ing that the Wick monomial represented in a given graph
S by a vertex U of order go+1 has to be replaced by RI'
defined by (18.5) and (18.6).

This means that the inductive assumption is indeed ver-
ified for p =@0+1and hence for all p. It also means that
W'k ' depends on cr only through the tree shape m ob-
tained by deleting the frames of cr as well as their con-
tents, a necessary property in order to apply the resumma-
tion theory of Sec. IX to the present problem.

For later use it is convenient to recall the meaning of
the tree

It is obtained by the rules of Sec. XVI; see diagrams 18
and 19 and Eq. (8.5).

One starts by erasing the frame around the shape 0. and
its labels g, a. Then one attributes frequency indices to
the vertices of o. which are outside the remaining frames,
and one also attributes position indices to the unframed
end points of 0. and to the endframes of o.: in this way one
builds a partially dressed tree y=(o-, g), because the first
vertex of y bears no superscript R (because before erasing
the frame it was enclosed inside it and therefore had no R
superscript).

Suppose that the indices h are such that the root fre-
quency is —1: h„= —1.

One proceeds by computing, with the rules explained
above, the effective potential V(y;S), where S is a
decorated Feynman graph,

no R here

(50)

[ I(4)( h) ( —))4.+I(2)( h) ( —1)20

+&"'(L7-):(&qg ")':+I' '((r )]dg, (18.9)

and this means that [see (8.5)] the form factor corre-
sponding to

1S

I( )(4)
r( '((T, k)= g g

) =o)
(18.10)

with enough decorations on every box B„ to allow recog-
nizing which choice among the monomials of RI', is
made at that vertex (as explained above, this is done by
adding an index P, at each box B, corresponding to a ver-
tex U bearing a superscript R and /3, can take only a few
values [from (18.5) and (18.6) one sees that
P„=0,1,2, 3,4, 5, 6 are enough in the most complex
cases] ).

Since the rhs of (18.8) is made up of local expressions
in the fields and the coefficients are kernels with transla-
tion invariance and rotation covariance (in the sense con-
sidered above), it follows that the integrals over the posi-
tion labels of V(y;S )Ps summed over S can be cast in the
form "of an interaction":
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where h denotes the frequency index of the first vertex of
«7- after the root and h' are the frequency indices on the
higher vertices (and the root frequency is supposed to be
—1).

Naturally the N dependence of (18.10) is in the fact
that the summation indices over h' run with upper
bounds equal to N; nevertheless, it will appear that
r' '(o, k ) admits a limit as X~ «e, at fixed k.

This completes the inductive description of the counter-
terms and of their effects on the tree representation of the
effective potentials.

The final result is that after complete renormalization

y(k) y f
n=1 y:k(y)=k

degree y=n, g'(y)=g
y dressed

n(y)
(18.11)

where the sum runs over the Feynman graphs S associat-
ed with the trimmed tree y (i.e., y deprived of the outer
frames and of their contents), decorated by boxes (defin-
ing the clusters associated with the vertices v of P) bear-
ing indices P, explaining the selection to be made in
evaluating RP, (the index P, can take at most seven
values). Furthermore, the graph S bears all the other
decorations already possible in the nonrenormalized cases
(i.e., frequency, character, identity, and «) indices —see
Sec. XVI).

It remains for us to check that, with the above defini-
tions of the subtraction operations, the new theory is ul-

traviolet finite.
Given a dressed tree y with no frames (i.e., with every

vertex of y bearing an index R), one has to study, given
' verifying (3.20) (with n =3), the expression [see the

analog (16.12)]

Ms(~j . ~p)= f, „,I
~(y S)

I
sup

I
Ps

I

&& d g, b,, H Qk,p & n, (18.12)

where S is a given decorated Feynman graph: n is the de-

gree of y, k is the root frequency.
Clearly the integral (18.12) is evaluated by just the same

type of analysis leading to the bounds (16.18) in the case
of no renormalization. One has only to replace some co-
variances with new covariances due to the fact that some
lines have the meaning of new fields (D,S,T,D',S').

However, a few remarkable improvements are generat-
ed by such changes.

Call a line of S representing fields like (17.9) a "renor-
malized line. " Below y and S will be fixed.

Looking at the graph S, one can see which is the vertex
v "causing" the change of meaning of a renormalized line

compared to the meaning that the line would have in the
graph So obtained from S by erasing all the decorations
which allow one to interpret it as a renormalized graph.
It must be a vertex v corresponding to a box B„which in

So would determine a monomial Pv on which R acts non-
trivially (RP„&P„)[see (17.4), (18.5), and (18.6)]. The ac-
tual meaning of a renormalized line cannot, however, be
determined by v alone. In fact, as (18.6) shows, it may
happen that its meaning is changed again in correspon-
dence of a vertex v' & v such that B, contains two exter-
nal lines.

But the change of meaning cannot take place more than
four times, because the meaning of the line keeps "im-
proving" (i.e., the corresponding order of zero in the RP
polynomial keeps increasing): a y line can become a D, S,
or T line, a D line can become an S or T line or a By line,
an S line can become a T line, a Bcp line can become a D'
or S' line, and a D' line can become an S' line; and R is
the identity when acting on Wick monomials containing
S' or T fields.

So, given y, S, and a renormalized line of S, one can
define the first vertex v responsible for its change of
meaning with respect to the meaning it would have in So,
one can also define the vertices v„vz, . . . , following v

where the line again changes meaning before acquiring its
final meaning; from (18.6) and (18.5) one sees that this
change of meaning cannot take place more than a fixed
number of times (e.g., four). Finally, one can define the
vertex w where the line becomes internal to a box B„for
the first time: w = r = root of y if the line is external.

Call p, the parameter associated with the vertex v [see
(16.18) and (16.19)] in the graph So. Then it is clear that
the fact that the line has changed meaning introduces in
the basic bound (16.7) an extra factor given, at least, by

&z[y d(g. )] '=&zy (18.13)

where B2 is a suitable constant and 5„ is the variation of
the order of zero of P„as d((„)—+0, introduced in P„by
the R operation via the change in meaning of the line
under consideration.

Therefore, every time a given line changes meaning at
vertices v& ) vz ) . . new factors like (18.13) arise in the
bound on Mq(b, &, . . . , Az), and by construction the sum
over the lines k that change meaning and over the vertices
v of the quantities 5„ is such that

g +5„(h„—h ) ) g p„(h, —h„), (18.14)
V V

if v' is the vertex immediately preceding v in y, and
p„=—p„+1 if p„&0 and p, =0 otherwise.

Eventually the bound on Ms(b, &, . . . , b~) becomes

4, x . . x4~~ ~ ~ + [y "d(k. )1
" d4

V V

r. (d —2)/2]kno „(d/2)kn )„gI (~r —2)/2]n'""" p (Z/2)ninner"~8 'B 'B"
V &r
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where it is defined by a formula like (16.13) in which Pq
has the new meaning [and the rhs is changed accordingly
in the natural way: note that the new rhs will contain, in
general, factors like (18.13) when Ps contains renormal-
ized fields and use is made of (3.20) to exhibit the order of
zero in the D,S,T,D',S' fields; the constants Ov can, in
principle, be read by comparing (18.13) and (18.15)].

The exponents 0, can be bounded by the maximum of
p„(i.e., three) times the number of times a line can change
meaning (i.e., four at most) times the number of lines that
do change meaning at the vertex U [by (18.5) and (18.6) at
most three: actually, this happens only when P, looks like
lpflp2lp3lp4 see ( 18.5)]. Call T the above bound ( T=3 4).

Hence for all g & 0 it is, if d(() is the graph distance be-
tween the points of (=(g~, . . . , g„),

/ [)' "d(k. )] "

V

4n

exp gT g y "d(g„)
V)l'

(18.16)
(where the 4n arises from the fact that the lines changing
meaning at v can become internal at different vertices m:
at most 4).

This is used to choose g so that gT&~(1 —y ')/4,
which can be used together with the inequality

gy ~

X
~

&(1—y ') g y "d(g, ), (18.17)
jib V)f

a consequence of y" &(1—y ')(1+y '+y +
+y ")y" and of elementary geometry, to bound (18.15)
by [see Appendix D for the bound (16.14) on the integral]

'4n

1 p V

f,y-"" exp ——y y
A.

which, inserted in (18.15) and after the appropriate power counting, becomes

—n n n (~/ )y d(~» ' ' p ~ 2+ 4~ ~ pv+pv "v v'

v~r

(18.18)

(18.19)

for a suitable B3, if U denotes the vertex immediately before v in y and with p, defined in (16.19), using the graph So
obtained from S by erasing all the labels referring to the renormalization, and

2
p„+p, = —d+2mq „+(4—d)m4, + no „+ n& „+5,—5,

1 7

(18.20)

(here n„', n ~ „no „are counted as they appear in So).
Actually, for later use, one can observe that if 2m 2,

+ (4—d )m4 „ is replaced by 0 in (18.20) one obtains a new

expression p'„+p„which, nevertheless, is still larger than
p= —, [see (16.20)—(16.23)].

Expressions (18.19) and (18.20) prove the ultraviolet
finiteness for the trees which are dressed but contain no
frames.

If y bears frames enclosing shapes o &, . . . , o ~,
m (n =degree of y, attached to the trimmed tree y, ob-
tained from y by trimming it at the vertices of frequency
h~, . . . , h (allow here the convention that the unframed
end points are regarded as framed by a frame contaii%ng
the trivial shape, as already done in the previous sections),
then bound (18.17) is obviously replaced by

e — —(]c/2)ykd(h 6 )
M, (b, (, . . . , b,„)& ~B"B 3e

—[2m2+(4 —d)m4 jk
Xy

—(p„+p„)(Igt„—II„)
X

V)P

where the factors r' '(o-, h) are the form factors associat-
ed with the shapes o [see Secs. VIII and XVII, and
(17.8)], defined by (18.10), r' '(o.,h)=A, ' ' if the shape o
enclosed in the frame is trivial.

Consider d =4 and suppose that one could prove that

i

r' '(o, h)
i &y 'y 'h'E'C, , (18.22)

where s is the degree of the shape o. and

Then, as already noted in Sec. XVI and after (18.20)
2h5

above, the factors y ' would affect the bounds (18.19)
and (18.20) by replacing p, +p, by p,'+p„and 2m2, by 0,
so that (18.19) becomes

e — —(K/2)y d(dL 5 )

(18.23)

x H ~tr '(~J h&)~

(18.21)

and the ultraviolet finiteness would follow also for the
frame-bearing dressed trees.

It is convenient to observe that bound (18.23) can be
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considerably improved at no cost if one notes that, by the
nature of the bounds leading to the d(b), . . . , b,z) in the
exponential, one could have obtained instead the quantity
ds(b. ), . . . , Az), where this is defined as the sum of the
distances between the cubes 6 joined in S by a hard line.
It is clear that this is a much better bound for very struc-
tured graphs.

It remains for us to prove (18.22); however, in Sec. XIX
a much stronger bound compared to (18.22) (easy, as it
will appear) will be proved. Therefore, the proof of
(18.22) is postponed to Sec. XIX.

The results of this section basically contain the "Hepp
theorem" (Hepp, 1966,1969): this theorem provided the
first completely rigorous proof of ultraviolet stability [see
also Zimmermann (1969), Speer (1974), and Eckmann and
Epstein (1979)j.

) Qg R ~g &g

R ph~(, , ~«
q , a,

Qj j= 5,6, 7 .

(51)

The number of shapes of degree s can be easily estimat-
ed by D) for some D) (one can take D) ——2 ).

Consider the contribution to V'"' from the trees of de-
gree n:

XIX. "n! BOUNDS" GN THE EFFECTIVE
POTENTIAL

V '=f y y V()'"dg
k(y)=k S

degree y=n
Pr~=k

(19.1)

-It is now possible to find concrete bounds on the coeffi-
cients of the effective potentials. In this section we take
d=4, for simplicity (the cases d ~4 are similar and

slightly easier).
From the preceding analysis emerges the following or-

ganization of the contributions to V' ' of the trees of de-

gree n.
A dressed tree y will be described by its trimmed part

y, obtained by cutting out of y all frames and their con-

tents, and by the actual contents of the external frames of
y: one per end point of y which bears a frame; for unifor-

mity of notation one imagines here that a11 the end points
of the dressed trees are framed so that if

is an endbranch of y which bears no frames one imagines
to transform it into

The degree of y will in general be larger than or equal
to the degree m of y, which will be called the "renormal-
ized degree of y."

So a dressed tree y will be described by y and m shapes
o.

&,
o.2, . . . , o. , which have to be enclosed in frames at-

tached to the end points of y to rebuild y: if y has degree
n and cr; degree n; it must be n = g,. ) n;

For instance, the following picture shows a tree y to-
gether with its trimmed part y and the shapes
o i~o2. ~ ~ ~ ~

where Pz has the form (18.2) and S is a decorated Feyn-
man graph as described in Sec. XVIII.

The aim of this section is to show that if g), . . . , g~
are the endframe labels of y, then there are y-independent
constants B,a', D, b such that if B=sup~B~ in (3.20) and
a=max

~

A.
( )

~

itis

'= f~~ i
V(y;S)

' I' k(yi=k, Py)=g S
degree y=n

&&sup
i
P

i d(
«y"d(h(, . . . , 6—)

" (bk)J
Jf

(19.2)

where &(b, ), . . . , h~ ) is the product b, ( && 52)&
Jaekp Q A Q Q A or a domain obtained by permuting

such factors; EJ. H Qk and the supremum of P means
supremum over the fields

k
(&k) y +(1)

j=0
with y'J) verifying (3.20); ~ depends on the degree of P
only: ~=O(n'!).

Equation (19.2) will be called the n! bound: this bound
was obtained in a slightly different form (i.e., as a bound
on the Schwinger functions rather than on the effective
potentials, and in "momentum space" rather than in "po-
sition space") and with a somewhat different method in
the remarkable work of De Calan and Rivasseau (1982).
The approach presented below follows essentially Cialla-
votti and Nicolo (1984).

The first problem is to find explicit combinatorial esti-
mates on the number of terms in (19.2).

Since S has the interpretation of a decorated Feynman
graph with m vertices, m being the renormalized degree
of y (i.e., the degree of its trimmed part), and since the
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decorations consist of finitely many indices attached to
each line and vertex of the graph (see Sec. XVIII for an
explicit description of such indices, each of which can
take a number of values which is finite and graph in-

dependent, except for the frequency indices), it follows
that one can bound the number of terms in gs in (19.2)

at fixed y by a constant of the form D2 times the number
of Feynman graphs, i.e., connected graphs, which can be
built by joining pairwise (4m4+2mz+2mz ) lines emerg-
ing from m =(m&+mz+mz ) vertices out of mz of
which emerge four distinct lines, while out of the other
(mz+mz ) emerge only two lines, possibly leaving a few
lines unpaired. This number is clearly bounded by

(2m&+mz+mz )!4 ' ' ' ((2m )!2™,
and this is therefore an estimate of the number of terms
in the g

However, the above number is too big, and it can be re-

placed by a better bound. This is so because the (2m )!24™
ways described above come from multiplying the (mI2
connected graphs built with m unlabeled points ("topo-
logically distinct graphs" ) times the m! ways of labeling
such points by g~, . . . , g . But the rules of construction
of a graph S associated with a tree y are such that if a
graph S is given and can arise in the sum (19.2) for a
given y, i.e., y, then the same graph with the vertices rela-
beled does not necessarily arise.

Given a graph 6 with no labels, one can consider the
number N of ways of labeling G compatibly with y and
with given numbers n„' of external lines (of any type)
emerging from the subgraph of G associated with the ver-

tices v of y. Then N is bounded by
r

n(cr)C,"exp e g n„'

for all v~0 and suitable C„ if cr is the shape of y and
n(a) is the corresponding combinatorial factor. This
bound replaces an incorrect one of a previous version, and
I am indebted to G. Felder for pointing out the error and
its correction (see Appendix F, by Felder). The bound
will be combined with the remark that the summation
over y can in fact be thought of as a sum over the shapes
o. and the frequency labels h assigned to the vertices of o..
However, various frequency assignments h to the vertices
of o. produce the same y=(cr, h ), because of our conven-
tion on the trees' equivalence, and the correct, relation be-
tween the sum over y and that over (cr, h ) is

Let then y =(cro, h, cr, g) be the dressed tree obtained by
choosing a trimmed shape o.0, labeling its vertices with
frequency indices h, and then choosing m dressed tree
shapes o.

~, . . . , o-, of given degrees nj, . . . , n such that

g n; =n, framed inside endframes attached to the end

points of oo and bearing position indices g=(g'&, . . . , g ).
Let S be a decorated Feynman graph, compatible with y,
such that Pz is a given I' and such that the number of
external lines n,' emerging from the subgraph of S corre-
sponding to the vertex v of oo are given. Then M( ) in
(19.2) can be obviously bounded, by taking into account
the above combinatorial considerations, as

M(b, ), . . . , b~) ( sup
eO', el, . . . , am

m!D", g g exp Egn„' I, , ~

V' '(y;s)
~
sup ~p id/

meI Ih~ I

—Kp d(5l .. ~ ~ 4& ) n
—2m2 &k

h . v&r „e J
V

(19.3)

if D3,D4 are suitable constants and the notations of Sec.
XVIII are used; furthermore, the summations over n,'
from 0 to oo can be controlled by

one —(h„—h .)(p +p ) —(h, —h, .)(p+2m2 „)e "y " ' ' ' (constQy
n =0

(19.4)

I

as soon as one makes the right guess as what to prove; the
guess has to be made by trial and error methods, and it is
pointless to repeat the search here. The result is that one
should try to prove that there exist constants b & 0,
D5 & 0 such that (always for d =4)

~

r' '(cr'k)
~

( E "D5 '(n —I)!

because of (18.18) and h, —h„) 1, if e (arbitrary so far) is
chosen small enough. Here the notations of Sec. XVIII
are used: in particular, U' denotes the vertex immediately
preceding U in y.

Therefore, bound (19.4) reduces the problem to that of
the coefficients r' '(o;h), which end up, in this way,
playing the central role in the quantitative theory of re-
normalization.

The theory of the coefficients r' '(cr;h ), to a degree of
depth allowing the proof of the nI bound, is in fact easy

"—' (bk)z zks, +~ks,
X

1=0 J'
(19.5)

where n is the degree of o and, as usual, a=max
~

A,
' '

i
.

Before proving (19.5) we shall find it reassuring to
check that (19.5) is really what one needs.

In fact, inserting (19.5) in (19.4), one estimates the rhs
of (19.4) by using the remarks following (18.20) and lead-
ing to (18.21); it follows that
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—~ykd(b, 5 )
—

(h h )
m

M(&,, . . . , &, )&e ' ' ' ~ m!~D4s"D," - y~)
h v&r j=l

II 1 (bh )P

(nj —1)!
p=o

(19.6)

where nj is the degree of o.j'

nj =n
j=l

This gives immediately (19.2) via the inequality

(19.7)

Il —m (bk )P
&D, (n —m)! g p!

(19.8)

valid for suitably chosen b,D6.
The latter remarkable inequality can be proved by in-

duction on the number of vertices, and its (simple) proof
is in Appendix E.

Coming back to the proof of (19.5), one shall again
proceed by induction. Consider a shape o. enclosed in a
frame fo and fix it.

Therefore, the shape o. will have no R superscript on
the first nontrivial vertex. Let o.o be the shape obtained
by trimming o of the outer frames and their contents, let
n )m be the degrees of o and cro of co. urse no confusion
should arise with the quantities with the same names used
in the first part of this section. It is convenient to avoid
proliferation of the symbols, but the reader should bear in
mind that what follows is the proof of (19.5), quite in-
dependent on the first part of the section.

If f is any frame in o and if mf denotes the degree of

the trimmed tree inside the frame f, it is

n —1= g(mf —1),
f

(19.9)

where the sum runs over the frames of o and on the
frame fo enclosing o (so that mf ——m), which one imag-

ines to have erased in setting up the computation of the
form factor r' '(cr;h) as prescribed in Sec. XVIII [see
(18.10) and the discussion preceding it]. Relation (19.9) is
basically the same relation used several times [see, for in-
stance, the comments before (16.16) or (12.17)].

As discussed in Sec. XVIII [(18.9) and (18.10)], it fol-
lows from the general theory of Secs. VII and VIII that
r' '(o', k) can be estimated in terms of the coefficients
V(y;S) corresponding to the Feynman graphs S such that
Ps has degree 4, 2, or 0 and y = (o-,() is the tree obtained
by attributing to cr frequency labels h and endframe posi-
tion labels g' so that the root of y receives frequency —1

and the first nontrivial vertex of y receives frequency in-
dex h &k. Note that y is only partially dressed, because
by construction the vertex Uo bears no R superscript, hav-
ing been obtained by deleting the frame fo originally con-
taining it.

Assuming, inductively, that the r coefficients r' ' veri-
fy bounds (19.5) when the degree of y is less than n

(which is trivially true for n = 1), one sees that (19.4) and
(18.21) together with the previous counting estimates im-
ply (if d =4 and just applying the definitions)

h„=O h'
0

V) Vp

k —p(h„—h )
'

(bhj )
(nj —1)!

p=o p'
(19.10)

Q (p (p„+p is fixed and p + —4+no „
+2n ) „——45 o—25~2 [see (16.19)], because the first

vertex vo has no superscript R; hence no improvement on

p, is provided by the renormalization ("no renormaliza-

tion is operating on vo"); in (19.10) hj denotes the fre-
quency of the vertex at which the jth endline of oo is at-
tached in o.o.

Using the inequality (19.8), one can easily estimate the
sums over h'=

l h, i, &, .
Suppose that at Uo bifurcate m branches, each of degree

n, , . . . , n so that g nj =n; then -by (19.8)'s being ap-
plied to each branch

~

y' '(o;k)
l

& D7m!Dg

heap+ 2h5a2 —ma (n —m)
k

X
h=o

n —m~

s=l p=O

(19.11)

where m, is the number of end points of the sth branch,
after trimming it of its endframes: g, m, =m.

Then one can use the following bound valid for all
non-negative integers a l, . . . , aq ..

(bh)' ~' (bh)"
ii pi.s=l j=O r=0

a&

j) ——0
jl+ ' +j

I'i
ali- -.a!j i o ~ ~ j q. gg t

S

~' (bh)"

r=0
(19.12)
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following from the fact that the large parentheses in the intermediate step is bounded by the square bracket on the rhs; a
proof of this elementary combinatorial inequality can be found by induction.

Bound (19.12) can be used in (19.11) to infer

( k)
~

&D !Dm —mDn —mDmm —m n —m m SnO+ 2kSn2
" (bh )"

h =0 r=O yf
(19.13)

and using

k k

g h" &k"+ 1 h "dh =k'+k" +'l(r+1),
h=0

implying

k n —m (bP )r b+1 n —m+1 (bk)r

(19.14)

(19.15)

t

plane (without causing line intersections which are not,
actually, graph vertices or without enclosing one of the
external lines inside a region surrounded by internal lines).

For instance, the graphs below are nonplanar (if the
bumpy crossings are not graph vertices):

one deduces the bound

i

r' '(o;k) i( D7 Ds(cD6D4Ds ') y

DsD7 (D6DcDs ) m & 1, ll'm ~ 1,b +.1 m

b
(19.17)

then (19.5) follows by induction from (19.16): in fact,
bound (19.5), as already remarked, holds for m = 1 (trivial
shape o), and the above chain of inequalities proves that
the bound holds for trees of degree n, if it holds for trees
of lower degree.

The constant b is not arbitrary, because it must be such
that (19.8) holds.

The constant D5 can be taken c independent.
By repeating the same argument and taking into ac-

count that n —m+1 can be considerably smaller than
n —1, one could improve (19.6) by the following inequali-

ty:

~

r' '(o;k)
~

& c(cD)" '(n —1)!

(bk )J l4s, +2s, lk

jf
(19.18)

where f 1 is the numb—er of frames in o.: this bound
shows that the number of frames in o. measures the rate
of growth of r' '(o ,k) with k,"or at least bounds it.

XX. AN APPLICATION: PLANAR GRAPHS
AND CONVERGENCE PROBLEMS—A HEURISTIC
APPROACH

Consider the power series for the effective potentials
and, given a dressed tree y, consider the contributions

J V(y;S)P&dg, associated with y, to the effective poten-
tial coming from a decorated Feynman graph S, as ex-
plained in the previous sections.

Most of the graphs 5 wiH have a complicated topologi-
cal structure and it will be impossible to draw them on a

n —m+1 (b/ }r
X(n —1)!m g, m & 1, (19.16)

r=0

where D7 ~ 0 is a suitable constant.
Thus, if D5 is chosen so large that

(52)

(20.1)

to the planar graphs 6 only; of course, such a restriction
also applies in the graphs arising in the evaluation of the
counterterms and of the "form factors" r' '(o';h) (other-
wise, one would lose the ultraviolet stability).

For what concerns the physical as well as the
mathematical meaning of such a planar theory perhaps
the best interpretation is that of "leading order" in an

' expansion in a vector (p2) theory, where p is a
%XX matrix with (p ) =Tr(p*y); this interpretation
will not, however, be discussed here [see 't Hooft (1982,
1983,1984); Rivasseau (1984)].

Therefore, in this paper the planar field theory for y
will be considered only as a set of formal power series and
as a protoype of a situation in which the resummation
ideas of Sec. IX can be applied.

The main property of the planar graphs is that the un-
labeled planar graphs, "topological planar graphs, " are
not too many and their number can be bounded by XO,
where NO is some constant and n =m4+mz+m2 is the
number of vertices. One can take %0=3 [see Koplik
et al. (1977)].

Without our entering once more into the details, it
should be quite clear, or at least reasonable, that the
whole theory of the preceding sections for the shape form
factors r' '(o.;k) remains essentially unchanged, except
that factors like n!n(y) estimating the number of graphs
relevant for a tree y with n endframes are now replaced
by factors like Non(y )

The basic bound (19.5) becomes, as is proved in the
same way,

~
r~ll,'„„(cr;k)

~

&c,(cD)" 'f! g jf
(20.2)

The planar y theory is the set of power series for the
effective potentials (as well as for the Schwinger func-
tions) obtained by restricting the summation
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where (f—1) is the number of frames inside o". in other
words, instead of ( n —1 )! one, finds f! (note that
f (n —1); compare this with the improved bound (19.18)
to understand a little more how this is possible.

The improvement over (19.5) and (19.18) is clearly very
strong when f &&n. However, f can be as large as
(n —1), and therefore the sums (20.1) still present conver-
gence problems of a major nature being a power series in
the renormalized couplings A, = ( —A, , —p, —n, —v) with
factorially growing coefficients coming from the trees y
with f of the order of the number of vertices of y—e.g.,

k

r=2h =Oh', . . . , hr &h

Q]p ~ ~ ~ p Qf

B' ' (h;hi, . . . , h„)

&& Q [r ' (h;)] .

(20.3)

The simplest rigorously correct, interpretation of (20.3)
is that it can be used to generate recursively a power-
series expansion for the functions r' '(k) in the renormal-
ized coupling constants.

It is convenient to recall that in the previous sections
this expansion was studied in son1e detail and led to the
representation

r' '(k)=A, ' '+ y r' '(cr k) (20.4)

(53)

To understand better the problen1 of convergence one
can consider the resummation procedures outlined in Sec.
IX.

Precisely consider the pruning operation r (see Sec. IX)
cutting out of a tree all the frames.

The resulting resummation equation (9.9) for the fully
summed coefficient r' '(k) [called in Sec. IX A,

' '(k)] be-
comes

where o are all the possible shapes of trees (see diagram
24).

Clearly, (20.4) is a power series in A, and r' '(o;k) is
part of the polynomial of degree equal to the degree of o.

in the expansion of r' '(k).
From the general theory of Sec. IX it follows that

(20.4) must verify, if thought of as a formal power series,
relation (20.3) and therefore (20.4) can be generated just
by solving recursively (20.3) as an equation for r(k) with
k as input.

Of course it is not surprising that once the coefficients
B in (20.3) are known one can reduce the problem of com-
puting

r' '(cr k)=r' '(k)
degree o.=m

to a simple "algebraic" problem, i.e., that of iterating I
times (20.3), retaining only the mth-order monomials in

From the definitions it is clear that the computation
of the coefficients B is a necessary prerequisite for the
computation of r' '(o;h ), since computing the B factors
amounts precisely to computing the dressed trees with no
frames. In fact, recall that the computation of r~ ~(o.;h)
for general a is reduced inductively to the no-frame case;
on this fact are based the nf estimates of Sec. XIX. But it
is quite evident that (20.3) provides a very economic and
systematic way of organizing the calculations of the fac-
tors r' '(o",k).

Equation (20.3) is similar to the Callan-Symanzik equa-
tions (Callan, 1975; Symanzik, 1973).

From the work of Secs. XVI—XIX the coefficients B
can be easily computed for small r and estimated for large
r, uniformly in the ultraviolet cutoff N (in fact, they are
independent on X, as the reader should eventually
realize —but they depend on the regularization chosen, as
it will be pointed out later).

Coefficients B can be bounded following the same pro-
cedures used in Secs. XVIII and XIX; one just has to take
into account that only planar graphs will ever be con-
sidered. The work is a repetition of what was done there,
and it will not be reproduced here. The coefficients B
arise from the con1putation of trimmed trees, i.e., of trees
with no frames so that f= 1, by keeping in all the compu-
tations only the planar graphs, so that the factorials
m!n(y) are replaced by N p n(y). And no factorials arise
produced by the frames, so that no factorials arise in the
estimates of B. It .is [see also Gallavotti and Nicolo
(1984)] for some C&

g. (2s 2+45 p)h

h;&h
h fixed

For r =2 one can perform some explicit easy calculations starting from (17.7):
2

B22'(h;h, h ) = ——
1 I C(2dg2 ——y [p2q +0(y ")],

(20.5)
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4
B42'(h;h, h) = ——'

2 j (C)2 "' —C12
'

)dg2 ———[p42'+O(y ")],

4
B42'(h, h, h)= ——

2 2!j [(()C12 ) (()1C12 ) ]d42 ) [p42' O(y

2

B(2)(I .h h ) 31 (C( &h)3 C( &h)3 )dg y2h[p(2)+O(y —2h)]
4

21' 2 ].

B22'(h;h, h ) = ——
2 d

~2C12 dk2 y [p22' +«y '")]

B(2')(h.h h ) j ( (h)dg —4h[p(2')+O(y 2h)]—

'2
2

E44 (h'h h)=
3

3! (C)2 —C)2 )dg2=[p44 +O(y )]

2 4
B24'(h;h, h) = —

I I C'12d$2= —y [p24'+O(y )],2. . . .
2

4
B44'(h;h, h ) = ——

2 2!j (C', 2
"' —C', 2

' )dg2= —[p44'+O(y ")],
2 .2.

B,', '(h h, h)= ——2! (O', -""—C'("")dg = —[p2 '+O(y '")]1

2

1B' ', (h;h, h)= ——2!j [((),C', -"') —((.:),C'„') ]dg = —y "[p' '+O(y )],
2

1B' '(h;h, h)= ——2! [((), C', -"') —((), C', "') ]dg = —y "[p' '+O(y ")],
2

(20.6)

2

B(0)(h.h h) 4) (C(&h)4 C(&h)4)d/2 y4h[p(0)+O(y —2h)]
2 . .

where O(y ") denotes something bounded by h~y " for some p; all the other B's with r =2 vanish or reduce to the
above by B' ' =B' ' .

It is convenient to introduce new form factors, more naturally depending on k; they are the "adimensional form fac-
tors" defined by

(u)(k) g(a)(k), 2+",o"

and one can rewrite (20.3) in terms of new functions p' ' (h;h), . . . , h„)

oo k h —k 25 45 )P"' (h h, , . . . , h) "+ "gX '(h ),
r=2 h=0 h[, . . . , h„&h 1 =].

Q]p ~ ~ p 9&

arid it can be checked that

lim p', '
~ (h;h), . . . , h„)=p' ' (h) —h, . . . , h„—h)

(20.7)

(20.8)

(20.9)

exist if h; —h are kept constant and the basic bounds of Sec. XVIII imply via (20.5)

~P' .(h;h, , . . . , h, )
~

&C",-)
h;&h

h fixed

Therefore, if we call

A, ( k) = —A,
' '(k), /l(k) = —A,

"(k),
~(k) = —X")(k), v(k) = —X("(k),

(20.8) can be written explicitly:
/

(20.10)
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k
A(k) =A+ g [p4g'(h)A(h) + 2)(324'A(h)p(h)]+

A=0
k

(x( k) =a —g [P44'(h )A(h) —2/3q2'p(h)a(h)+Pqq ')M(h) ]+

p(k)=py "+ g y
'" ")[/32''(h))M(h) +2P42'(h)A(h)(M(h)+2P4q'(h)A(h)a(h)+P44'(h)k(h) ]+ . - .

6=0
k

v(k) =vy + g y
(" ")[)822'(h)(M(h) +2p22'(h)p(h)a(h)+/322 (h)u(h) +p„'4'(h )A(h) ]+

h=0

(20.11)

and the functions Pa
' (h) will have a well-defined posi-

tive limit as h~oo, as follows from (20.6); the dots
denote the "higher-order terms, " r & 2.

The limits P' ' of /3a
' (h) are reached exponentially

fast [O(y ")] and are not all independent, e.g.,
p44 ——8p2p ——3/3g2, . . . .(4) (O) (2)

Obviously, because of the truncated expectation mean-
ing of the vertices of the trees, it follows that no v(k) ap-
pears in the first three of (20.11); this means that the
fourth equation in (20.11) decouples from the first three
and determines v(k) completely as soon as A,

( '(h) are
known for a=4, 2, 2' [because, also, no v(k) appears in the
rhs of the fourth term in (20.11)]. For this reason the
fourth equation in (20.11) is not too important in setting
up the theory of renormalization.

The power series in (20.11) [in the variables A,(k)] can
be used, as already mentioned, to generate expressions of
A, (k) as a power series in A, .

As proved in Secs. XVIII and XIX, this power series
has coefficients which are uniformly bounded in the ul-
traviolet cutoff and this also follows directly (but not in-
dependently of the theory of Secs. XVIII and XIX) from
the bounds (20.10).

However, it is clear that the coefficients one gets must
coincide with the ones estimated in Sec. XIX, and which
grow with the order n as O(n!), even in the planar case
being considered here [because of the contributions that
these coefficients receive from the trees with many
frames —see (20.2)]. One can convince himself that such
estimates are not pessimistic unless some cancellations
take place.

In fact, the bounds are reasonable and "optimal" on
each individual graph, as one can easily identify graphs
(planar) and trees giving contributions to the nth-order
coefficients of A,(k) which are of the order of n!; this was
pointed out by Lautrup (1977).

However, cancellations between several big terms can
take place and in various possible senses.

A way of exhibiting such cancellations is to find a se-
quence (A ( k) )k 0=A, verifying (20.11). This sequence
could then be taken as a definition of the sum of the
power series in the A, 's which define perturbatively A, (k) as
a (probably divergent) power series in A, .

To make sense of the rhs of (20.11) it seems natural to
impose on the sequence A, a decay condition at k = oo, in

apparent contradiction with the bounds (20.2) which are
strongly growing with k.

So one introduces

I ~I, = sup(1+k)'I ~(k)
I

.
k&0

(20.12)

Bounds (20.10) allow one to define an operator A on
the k's with

I
A,

I ~ & oo for some q)0; in fact, bounds
(20.10) imply (recall that they hold in the planar case
only) that the operator A,

(AA, )( '(h)= g g P' '
a (h;h(, . . . , h„)

a&, . . . , a

(20.13)

has the property

I

AA,
I q ( (c(

I
A,

I q), q=0, 1, . . . ,
1

(20.14)

and therefore A is well defined on the space (20.12) if
A,

I ~ is small and C( is introduced in (20.10).
More generally A is well defined if for some g&0,

B &0, and a suitably chosen Kz z, 6

IXI„&B, sup IA(k)I (5,
k&E~ g

as follows from (20.10).
Equation (20.11) becomes

Z(a)(k) g(a) a, 2 a, O

(20.15)

k

+ g y
"' '(A'X)' '(h), (20.16)

6=0

f g(a)( 1 ) g(a) a, 2 a, o .

k' '(k+1)= y ' 'A, ' '(k)

+(AA, )( '(k+1), k& —1,

and one looks for a solution A, such that, say,

IA, I)(1 and sup IA(k)I &5.
k&K) )

(20.17)

In studying (20.17) one is thus interested in solutions
A,(k) —+k 0; therefore it is natural to replace A by its
second-order part A2 for the purpose of getting first an
approximate solution:
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(A2A, )' '(h)= g /3~
' (h)A, ' (hlA, '(h) (20.18) '(k+ 1)= A,

' '(kly

[see (20.11)].
In turn, since P' ' (k) ~k P' ', it is convenient to

study first the relation
l

k&0 (20.19)

with A2 defined as (20.18) with /3' ' (h) replaced by their
limits P' ' as h ~ ao. Explicitly the last equation is

A(k+1) =k(k)+Pq4'Alk) +2/324'A(k)p(k),

a(k+1) =a(k) —/3z2'p(k) —/344'A(k) +2/3~2'p(k)a(k),

p(k+1)=y p(k)+/32''p(k) +2/342'k(h)p(k)+2/34~'A(h)a(k)+/F4'Alk)

v(k + ) Y (vk) +/ 22 p(k) +2/322'p(k)a(k ) +/32'2'a(k) +/ 44 ~(k )

(20.20)

This relation can be regarded as an iteration of a map
T on R [or R if one disregards the last (decoupled)
equation].

One can therefore apply the techniques developed in
the general theory of maps to analyze (20.20).

One looks for data A, ,P,a, v for A, (0) such that
A,(k) ~I, 0. Their existence can be proved by using the
general theory of the central manifold [see Lanford (1973)
or Cxallavotti (1983a), Chap. 5, Secs. 6 and 8, and related
problems]; there exists a surface X, in general nonunique:

p= p( al, )= Aa+LA, +Ial, +
(20.21)

v=v(a, i)=A'a +L'A, +I'aA, + .

where the dots represent terms of higher order, which is
invariant under the map T defined by (20.20) and such
that the T images of any point A, close enough to the ori-
gin evolves under repeated iterations of T by approaching
exponentially fast the surface X as long as they stay close
enough to the origin.

A simple exercise ["substitute (20.21) in (20.20) to find
A, A', . . ."]yields

I=2/342'(1 —y ) ', A = —/322 (1—y )

/3(2)( 1 y
—2) —1

(20.22)
I'=0, A'= —/3z z (1—y )

L'= /34''(1 —y ")—
and the map (20.20) becomes on X

A(k+1) =A(k)+/34''A(k) +
(20.23)

a(k+1) =a(k) —/344'A(k) +. . .

where the dots represent terms of higher order.
Neglecting the higher-order corrections once more, and

setting /3=/344') 0, P'=/3/4'&0, one considers the rela-
tions

which admit solutions with data A, ,a= —P'/3 'X, A, &0:

A,(k)=, a(k)= —P'/3 'A, (k) .
1 —/3k A,

(20.25)

(20.26)

From general consideration of stability theory it fol-
lows that Eqs. (20.23) also admit a solution behaving as
k ~ oo as (20.25) with initial data A, & 0,
a= —P'P 'X+O(A, ) and such that A(k) ~q o0 at
fixed k.

This means, via (20.21), that (20.20) admits a solution
with data A, ,a= /3'/3 'X+O(A, ), p—=O(A. ), v=O(A, )

which is such that X(k),a(k)=O(k ') and

p(k), v(k)=O(k ) as k~co and such that A(k) ~0 at
fixed k when A, ~O.

Hence one finds a solution to (20.20) depending on one
parameter A, such that

~

A, &&0(/3 ') for A, small and
such that A, (k) is as small as one wishes for any fixed
number of k's, say k & K~.

Hence such A, is in the domain if the "beta function"
A defined in (20.13) and by some more efforts of abstract
perturbation theory it could be proved that there is a solu-
tion to (20.17) depending on one parameter k, with
A(k), p(k), a(k), v(k) given approximately by (20.25) and
(20.21).

Such a solution will not be such that
~

A,
~ &

is small

[rather, the above discussion suggests
~

A.
~ ~

——O(P ')], al-

though A, (k) at fixed k will be small for small A,(0) or for
small values of the parameter k on which the solution de-
pends. This "nonuniform smallness" is related to the fact
that A, cannot be found perturbatively, although it has, by
construction, the correct asymptotic expansion in k.

Note also that (20.25) shows that (at least the approxi-
mating) A, has singularities at points accumulating at
A, =0, as a function of A, .

The renormalized couplings are defined by the (conver-
gent) series:

A(k+1) =A(k)+/3A(k)A(k+1),

a(k+1) =a(k) —P'A(k)k(k+1),
(20.24) if A, is small, obtained by setting A,

' ~(+ co ) =0 in (20.16).
Alternatively one can use
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(20.27)

ii, io ——sup ii(k)i =7. ~ 0.
X~o

(20.28)

Therefore, the effective potential of the planar theory
corresponding to the above definition of A, (k) will be
described by dressed trees with no frames but with "heavy
end points" contributing to the effective potential the

2h5 z+2h5~form factor r' '(h)=A, ' '(hip ' when they are at-
tached to vertices of the tree bearing a frequency label h.

Furthermore, since one is considering only the planar
theory, one evaluates the contributions of a tree y to the
effective potential by using the "few"

NOM =Non (y )C",exp e g n„'

which determines k' ', A,
' ', as well.

The family of solutions to (20.17) constructed above is
a one-parameter family; however, one could alter the coef-
ficients in front of the few covariances or their mass
terms so that one has built a many-parameter family of
field theories "like y& planar"; however, it does not seem
possible to choose a=o nor, by (20.27), )M=o, because
2&0 in (20'.22) if one wishes that a(k),p(k)~0 as
k~ Oo.

The meaning of the statement that one has built planar

y4 theory is explained below and can be summarized in
the statement "the resummed tree expansions for the ef-
fective planar potentials converge for small negative cou-
pling. "

The solution to Eq. (20.17) discussed above is roughly
like (20.25) and (20.23), i.e., is such that

hence (20.29) is really a simple consequence of the esti-
mates of Secs. XIX [(19.19)] and XVIII [(18.21)].

Since for e small the (20.29) can be summed over n, one
gets the effect, in the above-considered planar theory, that
the resummed series for the effective potentials is really
convergent for small A, &0 [i.e., small negative A,(0)—i.e.,
small negative renormalized coupling]. Therefore, in the
planar theory the effective potentials can be defined
beyond perturbation theory.

The series defining the effective potential is a power
series in the resummed form factors (20.30), the form fac-
tors being nonanalytic near A, =o [in the sense roughly ex-
pressed by approximation (20.25)], it is clear that one can-
not expect that the effective potentials be analytic in the
renormalized coupling constant near zero.

The resummation procedure induced by the beta func-
tion allows one to express the effective potentials analyti-
cally in the new effective coupling constants or "form
factors, " (20.30), and provides a well-defined resumma-
tion prescription. It seems highly plausible that among
the above solutions there is one which is the Borel sum of
its perturbative nonresummed series; this was proved in
the case a=p=v=o [not covered here because I have
chosen for simplicity, the initial a and p, so that A,(k)~0
as k ~ 00 ] [see 't Hooft (1983a,1983b) and Rivasseau
(1984)].

Another interesting possibility is that the series may
converge even for some A, ~o: the formula (20.25) allows
the possibility that for k & 0 the effective potentials are
defined for "most" values of A, . The resemblance with the
situation arising in classical mechanics in the Hamiltoni-
an stability problems in connection with the appearance
of small denominators seems interesting: maybe here one
needs some imagination.

planar or graphs compatible with y (see Sec. XIX).
This means that, by the theory of Secs. XVIII and

XIX, bound (19.2) is replaced, if D0 is a suitable constant,
by

(20.29)

r(a)(h ) Z(~)(h )~ ~0 ~2 "
(20.30)

with A,
' '(h) ~„0 (this quantity was not only not

small in perturbation theory, but even divergent with h as
h~00). And at the same time the resummation leading
to the form factors (20.30) eliminates the necessity of con-
sidering contributions from trees with frames to V' ':

with no n!, because ri! arose for two reasons: one was that
the number of Feynman graphs associated with a tree y
were bounded by Mn!, where n is the number of end
points in the trimmed tree y, and the other was the n! in
the form factors r' )(o.;h ) [see (19.5)] due to the
endframes of o..

However, in the planar theory the graphs are far fewer,
and the form factors, still badly dependent on the degree
of the shapes (as pointed out at the beginning of this sec-
tion), are "resummed" to yield new form factors:

XXI. CONSTRUCTING y4 FIEI DS
IN DIMENSION 2 OR 3

The theory of renormalization in dimension d =2,3 can
be done in a much simpler way, compared to the d=4
case.

Of course there is no problem in repeating word by
word the four-dimensional theory in dimension 2 or 3
(and in fact in Secs. XVI—XX one had never really used
the case that d =4 but only that of d & 5).

The real simplification arises when one remarks that if
d =2,3 one can study much simpler theories which lead,
or may lead, to nontrivial fields (i.e., the fields with non-
quadratic effective potentials V'"') of y type.

What is more important is that the simpler theories
(which would not make sense if d=4) can be treated
rigorously for "small couplings" and really shown to exist
beyond the level of formal perturbation theory.

The theories which, make sense if d=2 and that are
simpler than the ones considered so far are those generat-
ed by the interaction g )v.

(21.1)
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while if d =3 a theory simpler than the one arising from
(16,1) is provided by the interaction g &

..

V, = I ( —~:~('-"—l'~"-""—v)d'x.
A

(21.2)

p„=—2+2m )0 (21.3)

and this not only shows renormalizability of the "pure cp

field" but also shows that no renormalization is ever
necessary (this same remarkable conclusion would hold,
when d =2, for the most general Wick-ordered polynomi-
al interaction).

If d=3 and (21.2) is considered, one can still use the
general bounds of Sec. XVI setting n &, ——m2, ——0 so that

1 ep„=—3+2m2 „+m4, + —,np, )0, (21.4)

The main reason (21.1) and (21.2) are much simpler
than (16.1) is that no resummations have to be devised to
organize the corresponding renormalized perturbative
series, because only finitely many trees lead to diver-
gences.

The renormalizability in the above case with d =2 fol-
lows immediately from the formulas and estimates of Sec.
XVI setting n &, ——O, m2, ——m2 „——0, so that (16.19) be-
comes, for all m4, ) 1

unless (recall that m2, +m4, )2 in the nontrivial cases)

m4„——1

m4 ~=2
m4 V=3

m2 U=1
m2„——0
m2„——0

n,'=0
n,'=0, 2

(in fact impossible)
(possible)
(possible) .

(21.5)

So only trees of degree 2 or 3 need the definition of the
' localization operations, and the only nontrivial case

is m4, ——2, n„'=2 ("mass diagrams") yielding p„=O, and
therefore it can be cured by a simple subtraction:

~2 N ~N 'Px
(2). ( &N)2. 3 (21.6)

Formally W( ' is defined in terms of the action W on
Wick monomials, as in Secs. XVII and XVIII:

W1=1 if degree y(3,
col px Illy px if degree p 2

(21.7)

which leads to a simple expression for V2 N V3 N i.e., for
the counterterms [note that V3 ~ is a constant and that
the nonconstant part of V2 z must have the form (21.6)]:

4 A,
2

V = — 3t C"-~" (~""dydee — 4! C'- "dydee2 N —
2 1

. g')g2 0 g') . 1 2

3

3 E—— 5'( (x)(:p~- ., V~- ., Vg- .)dp&d/2d/3 .T ( &N)4 . ( &N)4. . ( &N)4.

(21.8)

(21.9)

where S represents the decorated Feynman graphs and Pz
has the form [if q =—q(-"', D—=D'-"']:

n, m,
:II &; H+gg. :

J J
(21.10)

The theory of Secs. XVI—XIX now becomes much
simpler and one can prove that the effective potential has
the form

—nkXe ' ' 'y nB', (21.11)

with the same notations as in Secs. XVI—XIX, i.e.,
n =(degree of y), E, =max(

~

X ~, ~(Lt ~, ~

v
~

), k =(root fre-
quency of the tree),

where, as in Sec. XVII, D&&
——

cp&
—cpz.

The same techniques of Secs. XVI—XIX (easier now, in
practice) yield the bound

M(&,, . . . , b,, ) & mn! s(sD)"-'k'

(21.12)

degree y=n PG ——P

where the supremum of
~

PG
~

=
~

P
~

is over the fields
y(~"' verifying y(~"'=y( '+y("+ . . +y("' and (3.20)
with regularization of order 1, and B=supB~. Finally,~ is the "adimensional bound" on P:

&" II) "l(k, —0;) ll"" "~
and ~ depends on n' only because there are only a finite
number of Wick monomials P of degree n ' of the type

l

(21.10), apart from the values of the position labels.
The presence of the factor y

"" in (21.11) proves that
the theory is asymptotically free.

In the case d =2 one replaces, basically, y
" by y

The above bounds were found in special cases and by
using techniques of the previous sections, in Benfatto
et al. (1978), Henfatto, Cassandro et al. (1980), and Ben-
fatto, Gallavotti, and Nicolo (1980); for the Schwinger
functions expansions analogous to bounds hold and were
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well known; see, for instance, Glimm and Jaffe
(1968,1973,1981).

Since in the approach presented here there is little
difference between:)I():2 and:y:3, I shall focus only on
the d =3 case, (21.2), in this section.

The actual construction of the theory can be easily per-
formed by taking advantage of the asymptotic freedom
just pointed out [see the factor y

"" in (20.11)] and fol-
lowing, basically word for word, the procedure adopted in
the cosine interaction case (which is, in fact, equivalently
hard). For simplicity of exposition it is convenient to
choose the values of the renormalized coupling constants

p and v=O; of course this does not mean that the three-
dimensional space in (21.2) is replaced by the one-
dimensional space (21.1) but only that the theory has only
one renormalized coupling, namely, k, but still the coun-
terterms can generate nonzero constant and mass terms
(which will be of higher order in A, ).

The strength of the asymptotic freedom shows that if
the integrals over the "small fields" are computed via the
cumulant expansion, i.e., via expressions like (13.22) [see
also (5.13)], the expansion must be carried out at least to
third order, since only the remainders of order, in A, ,
larger or equal to four give rise to an error of controllable
size; such remainders at order t + 1 are now estimated by
a bound analogous to (13.25)

corresponding to contributions from the trees

and

due to the Feynman graphs

xdgdg, (21.13)

~

A
~ g [Ay ~(1+p)'»(e+p+~ ')]'+'y'~

@=0

convergent for t & 3 (if d =2, one could control errors of
order )2 so that the cumulant expansion could be carried
out stopping only at order t = 1, in practice a good simpli-
fication).

The other hand problem is that of the "large devia-
tions" or "large fields. "

The D factors (D&„——)p&
—yz) present in the effective

interaction are dangerous much as the

I 1 —cos[a()(()g—)pz)]] factors were in the cosine field case:
they are treated exactly in the same way, because they ap-
pear with the right sign (i.e., the corresponding effective
potential tends to —ao when the field y becomes so rough
that D~z is too large compared to its covariance).

In this case there are also other dangerous terms in the
third-order effective potential, namely, all the others. In
fact, the field y can be very large and make P itself very
large; this was not a problem in the case of the cosine in-
teraction, because there the fields appeared only inside
trigonometric functions and therefore in a "bounded
form. " The large fields have also to be treated by posi-
tivity arguments.

The positivity properties needed in the theory can all be
extracted from the fact that the effective interaction con-
tains the following two terms:

W'= —A, :y~- ' .dg
A

2 4
3) (C( &)v)3 C( &k)3

)
D(&k)2.

~2 4%

L
the first term being very negative when y, is large and the
second being very negative when D~„=(y~ q&z) is —large
compared to (y"

~ g —g ~

)'; here one uses A. & 0, A, & 0
(which must be a further restriction, although no restric-
tion on the size of A, is necessary).

The details are essentially identical to those explained
in the cosine case and they will not be repeated here; and
the reader is referred to the literature [see Benfatto et al.
(1978), Benfatto, Cassandro et al (1980), and. Benfatto,
Gallavotti, and Nicolo (1980)]. It is, however, important
to stress once more that nothing is really different from
the case of the cosine field treated in detail in Secs. XIII
and XIV, as the reader can check by a glance at the above
references.

The result of the analysis is the existence of a constant
E & 0 such that for all f H C with support in a set Af it
1S

')+m'- '(f) (()v) Ix IE+Ilfll'„ I Af I

(21.14)

which proves, up to technicalities, the existence of the
limit of the "interaction measure" at least on subse-
quences as X~ oo. i.e., it proves the "nonperturbative ul-
traviolet stability. "

With some extra work and using the same ideas plus
abstract arguments one could prove the actual existence
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of the ultraviolet limit (with no subsequences involved);
this is not written explicitly in the literature but, at least
for A, small, the result is known also by other methods
[see Glimm, Jaffe, and Spencer (1975,1976), Magnen and
Seneor (1976), Feldman (1974), Feldman and Osterwalder
(1976), Federbush and Battle, (1982)].

As in the case of the cosine interaction the other limit,
A~ ao, the "infrared limit, " has to be treated under extra
assumptions (like A. small), because, contrary to the ultra-
violet limit, in the cases consideved so far, it may be af-
fected by nonuniqueness phenomena: "(infrared) phase
transitions" corresponding to the ordinary phase transi-
tions of statistical mechanics. Such transitions have to be
expected here, too, as the main idea of the multiscale ap-
proach is that field theory can be reduced to the theory of
a spin system on a lattice of scale 1. And such systems
are known to exhibit, in general, phase transitions in the
infrared limit (also called thermodynamic limit) A~ oo.

Finally, let me mention that in some cases with d =2, 3
the theory can be performed completely —i.e., up to the
extent of really constructing a field theory verifying the
Wightman axioms, hence with the proper interpretation
of a physical quantum field theory describing in some of
its states, interacting relativistic quantum particles [see
Glimm, Jaffe, and Spencer (1975,1976a,1976b), Ma
(1976), Koch (1980)]—however, these kinds of questions
go beyond the scopes of the present review.

XXII. COMMENTS ON RESUMMATIONS,
TRIVIALITY, AND NONTRIVIALITY.
SOME APOLOG IES

The reason one cannot perform the resummations,
described in the preceding section, in a rigorous way is
simply that the coefficients P of the "beta function, "
(20.13), formally defining the resummed "adimensional
form factors" A,

' '(k), a =4,2,2',0

p', ' (h;hi, . . . , h, )

(22. 1)

are badly behaved in r as r —+ ~. i.e., they are bounded
by r!C" [unless one restricts oneself to the planar theory
where (20.10) holds (see Sec. XX)].

This is in conflict with the fact that the idea of using
the equation (of "Callan-Symanzik")

(22.2)

to define the adimensional form factors in a nonperturba-
tive way requires the existence of a sequence
A, =[A,' '(k)] t, of form factors for which AA, makes

sense and verifies (22.2).
Because of the bad bounds on the P coefficients and be-

cause, as emerges from considering only the second-order
part of (22.2), a solution to (22.2) cannot tend to zero too
fast as kazoo [see (20.25)], the only way in which AA.
could make sense for interesting sequences A, is that there
are cancellations in the P's (which are sums of many
terms of uncontrolled signs) and, possibly, the existence of
such cancellations might depend upon the sequences A, (k)
chosen in (22.1) and not just on the p coefficients.

In this section I elaborate on what could happen if
(22.2) admitted a solution verifying A,(k)~k 0 and pro-
viding the necessary cancellations needed to make sense of
the rhs of (22.1) and, consequently. , of (22.2).

In this situation one should reasonably expect that the
solution of (22.2) behaves as h~oo exactly as the solu-
tion to an equation like (22.2) but with A replaced by its
second-order part [i.e., by the terms with r=2 in (22.1)];
see Coleman and Weinberg (1973).

Such an equation was the basis for the theory of the
adimensional form factors in the "planar theory" of Sec.
XX and, as discussed there, one expects that it has a solu-
tion in which —A,

I '(h ) behaves as [see (20.25)]

(22.3)

and similarly should behave a(h), while p(h), v(h) ought
to go to zero as the square of (22.3).

Then the following remarks can be made.
(1) In itself a solution to (22.2) behaving like (22.3) does

not yet yield a 'solution to the problem of showing that the
effective potentials V' ' are well defined as sums of
resummed perturbation series [see 't Hooft (1983)].

In fact, the resummation operation just permits one to
describe the effective potentials in terms of dressed trees
"with no frames" and with end points (g,a) providing an
adimensional form factor X' '(h) rather than A,

' ', if h is
the frequency index of the tree vertex to which they are
joined by a branch of the tree.

Although this is a big improvement, as far as the k
dependence of V'"' is concerned [it suffices to recall that
the nonresummed adimensional form factors were diverg-
ing with h as powers of an order depending on their de-
gree of complexity and with no a priori bounds —see
(19.5) and (19.18)—while the resummed adimensional
form factors even go to zero with the frequency h as
h ~ co ] one is still confronted with the problem of sum-
ming the contributions to V'"' of the above "simple" (i.e.,
frameless) trees.

One finds, in doing so, a power series in the resummed
adimensional form factors (coming from the trees of or-
der n ) whose nth terms can still be bounded only by n!.
If we use the bounds of Sec. XIX, the effective potential
is now given by an expression like (19.1) with a sum run-
ning only over the trees with no frames and such that the
contributions from the trees of degree n can be bounded
as in (19.2) with the last sum (divergent, a priori) re-
placed by k "—a rather minor gain as far as the n

dependence is concerned.
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However, the structures of the beta-function coeffi-
cients and those of the V(y;S) coefficients in (19.1) are
obviously related, and "basically the same, " so that if one
is willing to accept the existence of cancellations allowing
giving a meaning to A(A, ) one should also accept that the
very same mechanism might produce cancellations in the
expression of the effective potential in terms of the
resummed form factors A, .

However, this cancellation mechanism is totally unclear
(as this time the beta function cannot help, as it did in the
planar case of Sec. XX, to exhibit such cancellations) and
it can only be hoped to exist.

(2) It might be that the parameter y plays an important
role in the theory: for instance, in (22.3) the singularities
in A, are located at y-dependent positions (in fact, one
could check that 13/lny~r &Po&0, by explicit calcula-
tion).

This leads to the possibility that the theory could be de-
fined for many but not all A, 's near zero, e.g. , for the
values of the renormalized coupling constant which avoid
a suitable set of small measure [union of small neighbor-
hoods of the points (Ph) ' in the case (22.3)] where the
form factors could be singular functions of A, . Such a sit-
uation is not uncommon in perturbation theory in classi-
cal mechanics aIld It might appear also iIl field theory.

(3) The possibility of the existence of cancellations
mentioned in remark (1) above is hinted at also by the
"triviality proofs, " where, via some very special assump-
tions on the regularization and the form of the counter-
terms, one shows that the adimensional form factors
A,

' '(k;N) defined in the presence of an ultraviolet cutoff
at length y vanish as N~oo. A,

' '(k;N)~z „0.
The fact that A,

' '(h; co )=0 is a property that can be
proved nonperturbatively under special assumptions [see
Aizenman (1982), Frohlich (1982)] hints at the existence
of nontrivial cancellation mechanisms in the summations
involved in the construction of the effective potentials and
of the beta function. Paradoxically the "triviality argu-
ments" might be interpreted as nontriviality argumerits.

If we go back to a slightly more concrete frame of
mind, some comments on the cutoff dependence of the
above discussion, brought up in the last remark, as well as
on the classical triviality arguments of Landau [see Lan-
dau (1955), Thirring (1958), p. 198, Landau and Pomeran-
chuk (1955), Bogoliubov and Shirkov (1959), p. 528] seem
appropriate here. In fact, they hinge upon the
just —brought-up question of the cutoff and of the regu-
larization dependence of the whole theory.

The form-factor resummations can be studied with no
formal change in the presence of an ultraviolet cutoff y
In the previous sections the N dependence of the form
factors was seldom made explicit because one was in-
terested in properties which were uniform in X.

Contrary to what is sometimes stated, fixing N does
not make the theory well defined; in fact, one can easily
see that there is a simple relation between the form fac-
tors of the theory with ultraviolet cutoff N, denoted
A,

' '(k;N) and the bare coupling constants. Precisely,
YN52 +4N5O

the bare couplings are A,
' '(N;N)y

The reason the bare coupling constants are undefined
even in a theory with cutoff is simply that A, ~=A,(¹N)
are still power series in the renormalized couplings with
only n! bounds on their coefficients —i.e., they are formal
power series, probably divergent.

One can use the resummation ideas of Secs. IX and
XIX to try to say something about the bare couplings A, N,

'

in fact, A,(h;N) is formally defined by the same recursion
relation as A, (h)—:k(h; ~ ):

+
g,a k (',a k

+ ~ o ~

g, c
(54)

impossible if M & N + &

possible if M & N +3 or if N & 3

impossible if M & N + I or if N & 3

possible if M & N+1 or if N & I

impossible if M & N + I or if N

(55)

In diagram 55 the first tree is impossible if M &X+ 1,
because one cannot attach allowed frequency labels h; to
the vertices of o M with h; & h;+ &

and root at —1 (as
should have been the case had cr~ been a tree which could
have arisen in the presence of a cutoff y ).

Note that A,(¹N)is a (probably) divergent series, be-
cause there are infinitely many trees compatible, even
with a finite cutoff N, e.g.,

M&1.
The equation in diagram 54 is very similar to the equa-

tions discussed in Secs. XIX and XX, and in fact it coin-
cides with them if one restricts the k and h indices in
(22.1) and (22.2) to be &N.

It is therefore clear that in the theory of (22.2) per-
formed in the approximation in which the second order
"dominates, " i.e., in which (22.2) becomes equivalent to

(see also diagram 31) the difference being that k & N and
that everywhere only some tree shapes can appear. Thus,
if one fixes a frame and deletes all the inner frames and
their contents, the tree shape left inside the selected frame
has to be a shape which can arise in computing the effec-
tive potentials in the presence of a cutoff y —for in-
stance,
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A,
' '(h;N) = A, (1—Ph A, )

large h
(22.4)

which would lead to [setting A,
' '(N;N)=A, ~=(bare cou-

pling)] the following surprising relation:

(20.19)—and hence eventually to (20.20) and (20.24), one
can manage to find a solution to (20.2)'with

gn(pN)1v —1 (22.8)

rigorously the most divergent contributions to the coeffi-
cients of the expansion of the bare couplings in terms of
the renormalized ones. For example, A,N has, to order n
in the renormalized coupling, a most-divergent contribu-
tion exactly equal to

~N

1+pNA1v
(22.5)

while o;N has the contribution:

(P'/—P)X"(PN)" (22.9)
where A. =—A,(0;N) is a "renormalized coupling constant"
expressed in terms of the bare coupling A,N.

Triviality follows from (22.5), which implies that

—+ 0 ~A(h;ao)=0,
N~ oo

(22.6)

(22.7)

behave like (22.4), one sees another interpretation of
Landau's result: it leads to triviality if one neglects every-
thing except the most divergent contributions to the (adi-
mensional) form factors.

At the same time it also allows one to compute

no matter how A,N behaves, provided A,N )0.
On the other hand, kN & 0 is obviously not allowed, as

this would make the theory in the presence of a cutoff un-

defined.
Of course the above argument is based on the identifi-

cation of k(N;N) with A, (N; oo ) which, to say the least, is
not proved (even in an approximate sense).

To understand better the structure of (22.5) one can re-
mark that the bare couplings A,(¹N)are a formal power
series in the renormalized couplings (for simplicity take

p =a =v=0 so that there is only one renormalized cou-
pling). The coefficients diverge with N as N —+oo like
powers of N: precisely as N" ' to order n.

The latter statement can be proved by going back to
(19.19), which tells us that the bare couplings A, (N;N) can
receive the "most divergent contribution" from the trees

y containing the largest number of frames. Such a num-
ber is, if n is the degree of y, f—1 & n. Furthermore, the
trees which contain the maximal number of frames,

f= n, really give a contribution to the form factors like
A.(AD)" '(bN)" ' to leading order in N.

This can easily be seen by observing that f= n implies
that each vertex of 0. is framed and gives rise to a bifurca-
tion in just two branches (otherwise, f & n)

In other words, the resummation of the most divergent
contributions is obtained simply by considering what in
Sec. IX was called the resummation of the most divergent
graphs. In the language of Sec. XX and of this section
this means replacing A by A2 in the beta function [so
that one also finds the interpretation of the approxima-
tion in which A is replaced by Az. it just means count-
ing only trees simplest in structure and completely
framed, i.e., with no renormalization vertex (no unframed
vertex) allowed].

Since, as was explained in Sec. XX, one knows that the
well-behaved solutions to

with the notations of Sec. XX, see (20.24).
A more detailed analysis allows one easily to select the

Feynman graphs which, in the evaluation of the most-
divergent trees contributions, really give the leading
behavior in X: in the language of classical perturbation
theory they are the so-called "parquet graphs" and one
could find (22.8) and (22.9) also starting from the con-
sideration of such graphs. This involves quite hard work
but is very interesting [see the appendix written by
Rivasseau in the paper by Gallavotti and Rivasseau
(1983)]. This point will not be discussed further here be-
cause it involves too many new definitions necessary to
establish contact between the formalism developed here
and the classical language of the Feynman graphs.

I collect now a few concluding comments to stress
some of the ideas and problems already foreshadowed in
all the sections of this work.

(a) The assumption that the form factors A, (h;N) verify
essentially the same equation as the A,(k; oo ) seems hard
to accept [at least if one wishes to claim from this that
the A, (k;N) and the A, (k; ao ) have the "same" properties]
if one accepts that perturbation theory gives correctly the
asymptotic expansion for the beta function when the re-
normalized couplings A, ,p, a, v are suitably chosen (say, as
functions of A, ).

In fact, in order that this could be true some important
cancellation effects must be present (to compensate the
factorially growing coefficients) and the recursion rela-
tions for A, (k;N) being "slightly different" from those of
A,(k; oo ) may just miss the cancellations.

(b) It is clear once an ultraviolet cutoff is specified to-
gether with the bare Lagrangian, the coefficients A.(h;N)
are well defined and can be expressed in terms of the bare
coupling constants k(N;N) both as formal power series or
as true functions (of the bare couplings) or as formal
power series in the renormalized form factors A, (0;N) or
in the renormalized coupling constants.

On the other hand, the functions A,(h; oo ) are perturba-
tively well defined as a formal power series in the renor-
malized constants and, thought of as a formal power
series, are completely independent of the regularization
used.

The approach in which one prescribes the bare con-
stants A.(N;N) and tries to study the renormalized con-
stants A, (0;N) looks conceptually clearer; however, it
suffers from the drawback of necessarily relying on spe-
cial assumptions on the cutoff and on the regularization
and on the bare Lagrangian.
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For instance, the well-known lattice approximation in
which By is the nearest-neighbor difference and the La-
grangian is taken to be

(22.10)

with the free field defined by

(22.11)

has the drawback of making "indistinguishable" the
"main" (By) term from the similar "counterterm":
whether this point is relevant is not known but it is cer-
tainly one of the main properties necessary in the existing
triviality proofs of the lattice regularization of y4 [in the
sense of (22.10) and (22.11)].

A sign that something might be wrong with the lattice
regularization, with respect to the old problem of finding
a meaning for the perturbation-theory formal series, is
that the most divergent contributions to the expansion of
the bare couplings A,&,o.& in a series of the renormalized
couplings A.,p, a, v are (when p=a=v=O for simplicity)
all positive for A.& and all negative for a~ [see Gallavotti
and Rivasseau (1983)]hinting at the possibility that in the
bare theory the counterterms on (By) might be antifer-
romagnetic and therefore a detailed description of their
form [e.g., whether az(By) is the nearest-neighbor
difference or a many-neighbor version of it] might be
essential.

This also hints at the possibility that the convergence of
the fields y~ on the lattice to the continuum fields might
be more complicated than the naive pointwise conver-

gence of the Schwinger functions (even at distinct points).
(c) Expression (22.4) hints at the possibility that A,(k;N)

could be defined only for some values of A, which accu-
mulate to zero together with other values of A, for which
A,(k;N) cannot be defined. Such regular and singular
values of A, may depend on y: i.e., the parameter y itself
may play a nontrivial role in defining the theory. The ex-
istence of another relevant parameter is somewhat neces-
sary if one believes that the antiferromagnetic effects dis-
cussed above may have some importance: such a parame-
ter should describe on which scale such effects are
smoothed out (an event that should happen, since the fi-
nal Schwinger functions, as defined order by order by per-

. turbation theory, are smooth except at coinciding points).
(d) Of course one cannot even exclude the possibility

that A, should be negative [which might eliminate the
singularities in A, for A, small, as shown in the approxi-
mate formulas (22.10)].

In fact, from the observation that A,(¹N)&A,(N;ao),
there seems to be little (or no) relation between the signs
of A, (N;N)=(bare coupling) and those of the effective
form factors A, (0; co ) (which for small renormalized cou-
pling should have the same sign as the renormalized cou-
pling itself, called above X): at least unless special as-
sumptions on the bare interaction Lagrangian are made
[see Coleman and Weinberg (1973), who prove that

A, (O,N) & 0 implies A,(N, N) & 0 in a class of nonperturba-
tive lattice-regularized cp models with a ferromagnetic ki-
netic term; see also Aizenman (1982), Frohlich (1982), for
a rigorous version of a similar result].

(e) If d=2 or 3 one could still perform the (mostly un-
necessary if d=3 and totally unnecessary if d=2) sub-
tractions that one would perform in the case d=4, as
described in Secs. XVII and XVIII. Contrary to what is
sometimes stated, the problem is far from being easy in
spite of the strength of the asymptotic freedom.

The bare couplings are still given by nonconvergent
(a priori) series and the same happens for the form fac-
tors.

The only gain is that the dimensionless form factors are
bounded or grow with a power of the frequency index at
any fixed order of perturbation theory and the power is a
number independent of the order n.

However, the dependence of the perturbation series
coefficients for the form factors is, at order n, bounded
only by nf.

Understanding whether, in spite of this, one can still
make sense, beyond perturbation theory, of:y: fields in
dimension d=2 or 3 with the subtractions of:q&:4 would

help in understanding the role of the asymptotic freedom
in constructive field theory. By "subtractions of:y:4"
one means here essentially the usuaI zero-momentum sub-
tractions "to fourth order for the four-external-lines dia-

grams and to third order for the two-external-lines dia-

grams. "
This problem, surprisingly, does not seem to have been

considered in the literature.
I apologize for this section, which has a somewhat dif-

ferent character from the rest of the work, mostly dealing
with open or ill-defined 'problems. The main reason for
including it is to stress a fact that I think is a rather im-

portant one, namely, that the problem of the construction
of a nontrivial:cp:4 field theory, or a proof of its triviali-

ty, is still very open and hard.
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APPENDiX A: COVARIANCE OF THE FREE FIELD;
HINTS

Let Hquan«m = —
2 26+ V, where 6 is the Laplace

o'perator on the space L2(R( ") =A, A =A /paD [see
(1.14)].

The operator Hq„»«m ——H has a simple lowest eigen-
value, because V—m oo at infinity [see (1.14)]; therefore if

denotes also the multiplication operator on A by cp,
1t 1S

C~„(e——, tp„T, tp e )=(e,T (P„T,&p T,e )

—:lim Tr(T,(P„T,y T, , )
'T~ 00

= lim 1 T (V' %0—)(%0) T(V-'0 % )(%' )-T —(V' rp )dip — d(pa—de'
'T~ oo

where y=(y ) ~ D and g=(x, O), g=(y, t).

Using Trotter s formula [see comments before (2.7)], one finds (if b ~ 0 and 2rlb =X is an integer)

(Al)

C = lim lim e (e'b '" ebv) ((p (p )((p ) (e' ' e )' ((p q& )
b 0

0 0 x

~ ( ) (
(b/2)Ab. bV)(t w)/b( —

)d~

N N
(b/'2)& ~ & b&)((P b 0' — +b'+b) — 1 H d'p P—

j=0 j=0

N
bV(q'&& )

II (e )('p — b' 0 — b' b )e p(, 0)p(, ) / d p —+jb
j=0 j=0= lim

r, b
(A2)

where one assumes that ~/b is also an integer and the fields in the kernels have been denoted, for reasons which will be

soon clear, with a "time index" r+bj ra—ther than by j itself. Also, one writes ((pe)„=&p(„,e) and g=(gx)„~zs, z&.

The denominator within the last limit is essentially exp( —2EDr/A'), being, after the limit b~0, equal to the trace of
exp( —Hq„,„,„2r/A').

Using the explicit form of the heat equation kernel:

and

ll ~ '%= bJ. 0' — bJ
b'= p —

2 gg m m '0', —+ b
—v', —+Jb+b~

j=0 j=0 x&A

bV(q ~. ) 1 ba p X X X ('P +, , +/b 0'—+—gb), —
j=0 xEA j=Oi =1

21ba P mo~

2

N (

X X(~-, =+b, )'
x&A j=0

(A4)

one finds, if g' denotes a point on the d =D + 1 dimensional lattice with spacing a in the first D directions and b in the

last one, and if ej, j=1, . . . , D, O, are unit vectors in the lattice directions, one finds that the integral in (A2) has the

form

lim&&const I e " "~'~'~'y~&+dg
v;b

(A5)

where the constant is a normalization constant and Q =(Qtz)&„~z, where A is [(AAZ"a)]~[( —rr) AZb] with

"periodic boundary conditions" and g=(x, O), g =(y, t) is given by

(mac ) 2+
geA

2 2
('tpg+e a Pg) ( Pg+egb

(Q(p, (p) = ~ha g c (A6)
Q2

But the integral (A5) is simply (Q ')~„and Q
' can be easily found by explicit diagonalization: because of the

periodic boundary conditions the eigenvectors of Q are complex exponentials.
In the limit A~ oo, r~ oo the eigenvalues fill the Brillouin zone and Q becomes, if p =(p,p0) ER +',
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1T/a m/b

Qgz = dp dpo
+(2«r)d —m/a — n l—b 2

fthm pC 2
1 —cos(apj ) 2[1—cos(bpo)]+2c' gj—1

$2

(A7)

and (2.8) follows from (A7) by letting b +0— sion (C4) implies by induction

APPENDIX B: HINT FOR (2.10)
p

CO) Xg
Q'! S Npg1. '

For the proof of (2.10) one proceeds as in Appendix A.
Everything is the same up to (A4), where, in the present
case, an extra term appears:

q& qgx ''x (C7)

exp — g I(yg)
ba~p

2A

APPENDIX C: WICK MONOMIALS AND THEIR
INTEG RALS

Let x1, . . . , xp be Gaussian random variables with co-
variance matrix

CJ =8'(x;xJ) .

One defines, for any of the above variables x,

x~ =[28'(x P]'/ M Ix/[28'(x )]'

(C 1)

where Hp is the pth Hermite polynomial defined by the
generating function:

ao P —a~/4+a(
1p=p P

More generally, one defines inductively

n(+1 n2 n n) n~ n
:X1 X2 Xp .=X1'X1 X2 Xp

(C3)

~ ~ ~ ~ ~ ~ ~ ~

p n n. —1
1

n

C1jnj x1 xj xp
j=1

(C4)

interpreting the last term as 0 if nj ——0 and setting

Setting T=«., one sees that the proof of (2.10) is the
proof of the admissibility of an interchange of two limits.

This problem should be studied by the reader as a test
of understanding of the theory of Brownian motion. On a
heuristic level the reader can accept (2.10) and proceed to
see that is done with it.

The identity of the P in (2.10) and (2.11) is a byproduct
of the above discussion.

which is the "Leibnitz rule" for Wick monomials.
The basic property of the Wick-ordered monomials is

the "Wick rule" for the expectations of products of Wick
monomials.

Let D~, . . . , D, be s subsets of (1,2, . . . , n) and let

~ XD o —o

J aED
(C8)

then the integral

S

~ rr:-;: =r rr C.'
j=1 @ED (a, p)Cm

(C9)

Equation (C9) is the "Wick rule" and it is easily proved
by induction from (C4) and its special case when DJ con-
tains one point for each j.

The latter case is treated directly from the relation

Oo

8' g, ' g co;x;
'

«

:Xg) .'
Jj=1

is computed as follows.
Draw, say, on a plane, s clusters of

~
D& ~, . . . , i

D,
~

points each and arbitrarily label the points in the cluster

Dj by the elements in DJ.
Draw one line out of each of the vertices aPDj and

think of it as representing the variable x
Let u be the set of the graphs obtained by joining pair-

wise all such lines in all possible ways so that no lines
constituting a pair emerging from the same cluster are
ever joined together. Denote (a,p) the elements of «rHu
obtained by joining (or "contracting") a line
emerging from the vertex a with a line emerging from the
vertex p.

Then, denoting (a,p) the lines in «r joining a and p, we
have

0 0 q 0 1 0. xp..——1, :x1 ' xk ' xp.' ——xk . (C5)

Expressions (C4) and (C5) are a natural extension of the
recursion relation for the Hermite polynomials expressed
by [if C=8'(x )']

n&

n + o ~ o +n
1 q

q
COq n& n8'(x, . x «)n!q'.

:x +:=x:x:—nC x (C6)
= 8' exp g co;x;

1=exp —, g co;coJC,J.

&,J
n)+n2Note that if x1 ——x2 ——x it is:x1 x2 .——..x:.Expres- (C10)
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where the last integration is the general integration for-
mula of the exponential of a Gaussian variable x:
8'(e )=exp[8'(x )/2].

The formula that one is seeking follows from (C10) by
developing the last exponential in powers and by identify-
ing the coefficients of equal powers in the second and
fourth terms of (C10) and then interpreting the result
graphically.

But the most remarkable property of the Wick mono-
mials is related to the possibility of simple formulas for
the truncated expectations.

In fact,

(XD ~ ~ XD ~s]~ . ~sp)
1

(Cl 1)

can be computed via the following rule: draw s1 clusters
of

~

D]
l

points each, s2 clusters of
l
D2

~

points each,
etc., and label the points in them by the elements of
D1,D2, . . . ,Dp, respectively, plus another index identify-
ing which cluster is being considered among the sj clus-
ters of

~
DJ l

points.
Then consider all the possible graphs ~ obtained by

joining pairs of such points, avoiding drawing lines join-
ing points belonging to the same cluster and with the
property that each graph ~ would be connected if all the
points inside each cluster were considered identical or-
the same thing —connected (i.e., m. should be connected
"modulo the clusters" ).

Then, if A, is a line in ~ joining the pair of points
(rz, P) —=A, , it is

~ ~ ~ ~ ~ ~

D ~ ~ D "1 . . "p' M Ll C P1
(C12)

ln particular, it is remarkable that 8' ( ))0 if C ]])0
(which, however, is a property not necessarily true, be-

cause C is constrained only to be a positive definite ma-
trix).

The (C12) can be generalized to the case where

x; =y; +z;, with y; and z;, i = 1, . . . , p being two sets of
independent Gaussian random variables with covariances
C,z and C,z, and one considers

where the second sum runs over the subgraphs of ~ which
are still elements of u (i.e., which still form a graph con-
nected modulo the identification of the points in each
cluster).

One first checks that (C14) is an immediate conse-
quence of (C12) by writing x; =y;+z; and developing the
sums using the Leibnitz rule: actually, i.t is convenient to
note from the beginning that (C14) is true in general if it
is true for s1 ——s2 ——- . ——Sp ——1. This is seen by using
the identity valid for truncated expectat'ions:

(X], . . . , X],X2, . . . , X2, . . . , Xp, . . . , Xp', 1, 1, . . . , 1)

=re (x], . . . , xpis] ~ .1. ~sp ) (C15)

if xj is repeated sz times in the lhs of (C15).
Then one checks that (C14) follows from (C12) by

developing the summations as mentioned above in the
case s1= ' =s =1.p

Finally, one checks (C12) as a consequence of another
remarkable formula (in the case s] —— .

sp
——1, which is

not restrictive, as noted above):

'A E7
A, =(a,P)

(C16)

where u is the set of graphs with lines joining p points
and forming a connected set in which there are never two
lines joining the same pair of vertices. Below, the nota-
tion A, =(a,P) is used to identify a line with its end points;
and one also defines

CO%. (~)" p. (co /2)Cecox
~ ~

p=p p.t
(C17)

where the latter equality follows from (C2) and (C3).
More generally, if x; =y;+z;, and y,z are independent

with covariances C,C', respectively,

~ ~ ~ ~ ~ ~ (T8', (.=, , = .,s, , . . . , s ),
1

(C13)

where 8'] means expectation (i.e., integration) with
respect to the z variables at fixed y.

If ~ denotes now the set of the graphs obtained by.
joining pairs of points of different clusters as before but
now allowing that some points stay disconnected from the
others provided the set of lines joining the points still
makes the sets of clusters connected (if each of them is re-
garded as connected), let:x: denote: +*x:,where the
product is over the points which in ~H u are left uncon-
nected with other points.

Then

A E'll
(

" —1), (Cl&)

as a consequence of (C16) and [see (C17)] of

:e~:=:cay::eaz. (C19)
Equation (C12) follows from (C16) by expanding both

sides in powers of co and identifying equal powers of ~.
Therefore, the only formula that one must prove is

(C16). One possible proof of (C16) can be given as fol-
lows. Consider

v ] ( XD '
) ) XD )S] ) ) Sp )

1 P

Z = J exp g A~:e ' '. P(dx),
j=1

(C20)

vCm A, Ew A, +7r/7'
(C14) where P (dx ) is the Cxaussian distribution of x and A J & 0,

coj CR, and i =+—1.
Then, expanding in powers of A, , one finds
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io!X.
~g ~

n

n=0 n! P(dx)

o n! „+.. . +„„n1f-.. np!
1

n&
A]

n1!n) y ~ y np

P
p i(ro) ) n&x+ . . +co n x

) ((/2)(cu(n)C)(+ ~ ~ ~ +co n C )
8 P P Pg ~ ~ ~~ I'(dxn!p

n), . . . , n

n.
' j —(, n —n )co J/22

J J J
n. !j=1 J

exp ~ nf nJcc)icoj CfJ
l (J

(C21)

Therefore, one has to study APPENDIX D: PROOF OF {16.14)

BA, 1 BAp
One has to show that

:—5' (:e ' ', , :e ~ ~;;1, . . . , 1), (C22)

and one realizes that, for this purpose, one can replace Z
by

~A~B", ' Qy "", o1, (Dl)

Z =
n&, . . . , n =0, 1

P

.
Az exp —g co;cojn;nJC, J

'

s (J

' + A,~' exp
' — g C~„co~„

XC(1, . . . ,pj /EX (g, g)CX

(C23)

(C24)

which proves (C16) replacing co by iso~ [the imaginary
unit has been introduced in (C20) to avoid convergence
problems in the definition of Z as an integral].

where the last sum is over the pairs (g, g ) in
X =(x), . . . , x~); this fact follows from the last expres-
sion of (C21) (because nj nz

——0 if n—j ——1).
One realizes that Z' in (C23) is the grand canonical

partition function for a system of particles with variable
activity A~ sitting on a finite set (1,2, . . . , p) and interact-
ing with a pair potential C&vco~„.

The theory of the Mayer expansion teaches that the
logarithm of Z' can be expanded in a series of the activi-
ties and the coefficients of this series are well known and
can be obtained via a graphical algorithm: the coefficient
of A, ), . . . ,Az (which in any event is easy to compute in-

dependently of the theory of the Mayer expansion) is pre-
cisely

which is clearly equivalent to (16.14). Here one imagines
to have fixed a tree (with no decorations or frames but
just frequency indices h and Position labels g), . . . , gn at
the end points). The vertices U of the tree organize the
end points into a hierarchy of clusters g, .

The lines A, are drawn so that the ones which join pairs

g, gag, which are not both located inside any smaller
cluster g„with te & v are enough lines to connect all the
points in the cluster g„modulo the smaller clusters (i.e.,
imagining that the points inside the smaller clusters are
connected): for such lines A, it is h& ——h, =frequency in-
dex of the vertex.

Define I(yo)=
~

A
~

if n=1, i.e., if the tree is trivial.
Assume that the tree yo has root frequency k and has a

first nontrivial vertex Uo where it bifurcates into s sub-
trees y1, . . . , y„s& 1.

Clearly in proving (Dl) it is not restrictive to suppose
that the lines connecting the clusters g„, , . . . , g, , associ-

ated with the vertices immediately following Uo in yo, do
the connection in a simply connected way; otherwise, one
just deletes the extra factors in (Dl).

Once this is supposed it is clear that one can perform
the integrals in (Dl) by keeping first all the points in

fixed and the positions of the points in the

first cluster fixed relative to the point g, which is linked

by a line A, to the other clusters; here one is supposing that
is one of the (at least two) clusters connected to only

one other cluster (which is no loss of generality).
The result of the integration, followed by the integra-

tion over the remaining coordinates, yields the inequality
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I(y )= J '" 'r i' dp I(y')
/A[

(D2)

APPENDIX E: PROOF OF (19.8)

Given a tree shape o. without any frames and with
m)2 final lines each carrying an index nj, so that
g nJ =n, nj ~ 0, consider the sum

where y' is the tree obtained from yp by deleting the
branch y1 and B1y " is a A-independent bound on the
integral in (D2); in deducing (D2) the translation invari-
ance of the problem has been used; furthermore, the above
inequality holds even if one of the trees in the rhs is trivi-
al, provided one defines, as above, I =

~

A
~

for the trivial
tree.

Hence by iteration

1(yo) & &') ', , 1(y ) ) . . I(y, )

'
(bhi )I'.

(nj —1)! gJ

(E1)

where I is the degree of o. and h is a frequency assign-
ment to the vertices of o. with root frequency k.

Consider first the case in which o. is

Obviously (D3) implies (Dl) for yo if (Dl) is supposed
valid for y1, . . . , y„hence the theorem follows by induc-
tion being true, by definition, for n = 1: note that here the
relation used several times, nrn

(56)

g (s, —l)=n„—1,
U )U

is useful [see (12.17)].
In this case one has to study, changing for convenience

of notation nJ into nJ + 1,

h)k p=p 5' 1

[b(t+k)]i'
n'ft=1 j=1 p=0

y
Pi-

t=1 . Jx . . Jm

b Ji+ ' ' ' +Jm J 1 + +Jm ).

)1I . ) t r=0

j)+ +j

r!(J~+ +j —r)!

n&

n, !
j) ——0

nm

y bji+' +Jm

Jm=0

(j)+ . +j )! m»+ ''+1m

X X)1 )m t 1 „p
y

—pt~J&+ +Jm rkr

r!(ji+ +j —r)! ' (E2)

and for all 8 & 0 the rhs of (E2) is bounded by

m
'

nj( gn, !
j) ——0

"m

=0

b
Ji+ ' ' +Jm

0
(j)+ . +j )!j! j)+ '''+j

r=0

(Hk )"
yI

(E3)

sothatif y ~e &1 and Q &g,

g,. n, !
Eq. (E3) &y 7'e+s

1 —y-&e'

~i i (@)r n

r! (n&+ . +n )!

n)

x
$)r j) —0 =0

(j~+. . . +j ).'

)1f ') !

gn, !

1 —b /0 1 y
—s'e ~ 1 —6 /6W

X yt
(E4)
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where we have used the inequality (to be proved by induc-
tion)

n„+ n~+ n~

n1I''' n~! nm
~ ~ ~

(n + . +n )i
Jm =0

Jj+ ' +j

Finally, let

q.

Vn)~q (E5)

fly
05
ne

D6 ——y t'e (1—y t'e ) '(1 b/8—) (E6)

and (9.8) follows with b =8/2 suitably chosen' [e.g.,
b = (p/4) lny] and with D6 replacing D6, which is
correct in the special case just considered.

Consider next a general tree,

Every time the procedure is repeated one gets a factor
D6 and an expression similar to the one to be bounded but
for a simpler tree. Since in m —1 steps at most one
reaches the case drawn in diagram 56, (19.8) is proved.

l1 p

nz

n&
n5

n6

(57)

Using recursively the bound found in the case of dia-
gram 56, one reduces the problem of estimating (19.8) to
the problem of a similar estimate for a simpler tree. In
fact, summing over h„where U is one of the highest ver-
tices of the tree, and if m„& 2 is the number of branches
emerging out of U, we find the estimate (19.8) to be re-
duced to that relative to the tree o' without the vertex v

and with the line v'v joining v to the preceding vertex v',
being a final line bearing an index g,. n;, where the sum
is over the end points' indices (of o ) of the end points
linked to v by a final branch. For instance, in the case of
diagram 57 one gets, if U is taken to be the vertex with
frequency h2,

APPENDIX F: ESTIMATE OF THE NUMBER
OF FEYNMAN GRAPHS COMPATIBLE WITH A TREE

This appendix is due to Giovanni Felder, Zurich, who
proves the following.

Lemma. Let 6 be an unlabeled Feynman graph with n
vertices, and let y be a tree with n end points. Then the
number N ( G, y, I n„'I, Er ) of labelings of G compatible
with y and such that for all vertices U the subgraph of G
corresponding to v has n,' external lines, is bounded above
by C,"n (o.) expo( g„n,'), for all E &0 and some constant
C„ if o is the shape of the tree y.

Proof. Consider G, y, In,'I, Er fixed. Let y„be the sub-
tree of y with root v, and N„(j) the number of ways of
choosing and labeling a subgraph of 6 compatible with

y, and having an external line connected to the vert'ex j of
G. Furthermore, let v1, . . . , v, be the vertices following

v in y. Since the subgraphs 6, , . . . , G„correspondingv)& v

to v1, . . . , v, have to be connected together, there exists

at least one tree diagram T, with vertices v1, . . . , v,
v

whose lines correspond to propagators connecting
G„, . . . , 6, . Let d, be the number of lines of T, em-

'

erging from v;. We have the estimate

$

N, (j) & g maxN, (j')j'c6

g,. (d„—1)=s —2

v+ (n„')
s, (s, —2)!

' + (d, ,
—1)!

(Fl)

where the last ratio is the Cayley formula for the number
of rooted trees T, with fixed coordination numbers [see J.
W. Moon (1967), Enumerating Labelled Trees, in Graph
Theory and Theoretical Physics, edited by F. Harary
(Academic, London)], and

lines of G, corresponding to the lines
t

over d„can be performed explicitly:
$

N„(j ) ( g maxN„(j') s,
$ —2

n„' (F2)

of T, . The sum

v d —1

(n,' )

is a bound on the number of ways of choosing external

and, using x"(k!E "exp(Ek), g, (s„—1)=n —1, we get

N(y, G, tn,'I„~r) (C," g s, ! exp c, g n,' . (F3)
vEy
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But

n((r)= + s„!

(where t; „are the multiplicities of the different tree
shapes of the trees that start from U) is just the number of
ways of drawing the shape o. by choosing at each vertex
how to order the trees starting from it: this number is
bounded by the number of ways of drawing all the trees
with n end points, which, by the same argument used to
count the trees, is bounded by C" for some constant C.

APPENDIX G: APPLICATION
TO THE HIERARCHICAL MODEL

A very simple and particularly interesting example of
field theory is the y hierarchical model.

This model is defined by an interaction like (5.6), i.e.,
"pure y," but with a different interpretation of the free
field y'- ' and with d being any integer (4.

In this appendix I discuss very briefly the minor
changes necessary to treat this new case; in fact, it will be
a useful exercise for the reader to check the statements
made below, while reading various parts of this paper.

To define the free fields cp'- ' with cutoffs at scales

y one introduces a sequence Qo, g), Q2, . . . , of com-
patible pavements of the unit cube A: the pavement QJ is
built with cubes of side size y'J, where y ~ l is the "scale
parameter. "

Each point g is in one cube b, E QJ, for j=0,1,2,3, . . . ,

with the obvious (and trivial) exception of the points on
the boundaries of the cubes. Then one defines

k
{&k) ~ f{d—2)/2]jz

j=1

(Gl)

where h~ is the cube in QJ containing g and the z~ are
Ciaussian-independent variables with covariance —, except
for one among them, zt... corresponding to b,o—=Argo,
which will be assumed to have covariance
1/2(1 —y ' '), just to simplify some formulas.

The fields cp'- ' behave roughly as the Euclidean free
. field with cutoff at y

Hierarchical models in field theory were introduced in
the papers of Wilson [see Wilson (1971,1972) and Wilson
and Kogut (1974)] as approximations to the Euclidean
theory and called, therefore, "approximate recursion for-
mulas. " In statistical mechanics they were introduced by
Dyson (1969,1971) and studied also by Bleher and Sinai
(1973,1975) and by Collet and Eckmann (1978).

~(&k) y (k ) . (&k)2n.d
An=1

(G2)

where X~=@„'- '/[2S'(y'-"' )]'~ if x Hb„and in the
second step use has been made of the fact that rp~-"' is
constant over boxes b, of side size y . The function
0k (x ) is defined implicitly by (G2) as well as the coeffi-
cients co(k, n). The normalized field is introduced for con-
venience.

(3) In fact, one can see, independently of perturbation
theory, that the functions Qk(x) are related by a recursion
formula, namely, it is Qk = TQk+), k &0, where T is [see
also Gallavotti (1979b)]

(TQ)(x)=y ln J Iexp[Q(az+Px)]Ie
~7r ' (G3)

Model (G1) is not the one studied in the above-
mentioned papers; its relevance and importance for field
theory were pointed out in Gallavotti (1978,1979b), and it
was applied to constructive field theory for Euclidean
fields in a series of papers by Benfatto et al. (1978) [see
also Benfatto, Cassandro et al. (1980)]. It is mentioned
earlier in Wilson and Kogut (1974, p. 120, line 11) [see
(G3) below for comparison] without comments except
perhaps the implication that it may be not too relevant;
see Wilson and Kogut (1974, p. 119, line 11). Many of
the results that follow would apply as well to the
hierarchical models considered in the above-mentioned
papers after some obvious changes; for some earlier pa-
pers on such "classical" hierarchical models see Gawedski
and Kupiainen (1981,1983,1984) and their references.

The theory of the cp field with interaction given by
(5.6) for d =4 can be pursued exactly as in Secs.
XVI—XX with a few remarkable simplifications; the re-
sults, and the simplifications just mentioned, are listed
below. The reader who has followed Secs. V—IX and
XVI—XX will find them very easy to prove; their proof
is, however, very instructive, as it shows the true prob-
lems of perturbative field theory deprived of most techni-
cal complications which accompany them.

(1) Classifying the divergences leads to the same results
of Sec. VXI, provided one sets everywhere m 2 „——0,
n, ,=0, thus disregarding the By fields (which are not de-
fined in this model and which are absent from the interac-
tion).

(2) The renormalization is also done along the same
lines. It is, however, much easier in practice, because the
effective interaction (very peculiarly for this model)
remains "purely local" on each scale: i.e., the effective
potential on scale k has the form

See in particular footn6te 8. This paper introduces a hierarchical model and deals mainly with qadi, other similar hierarchical
models had been introduced earlier in Dyson (1969) and later in Baker (1972) in statistical mechanics and in Gallavotti {1978)in field
theory —a general theory of the recursion relations associated with certain hierarchical models can be found in Collet and Eckmann
(1978), who extend the work initiated by Bleher and Sinai (1973,1975).
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with a=(1—P )'/, P=y
Therefore, Qk ——T QN if k &0, and a simple calcu-

lation shows that the interaction

x(~)v Wx:+p)v:(I':+&x )~xf ( &Ã)4 '

( (X)~

can be written as (G2), with

where we have explicitly exhibited the decomposition of
the P coefficients of (20.8) in terms of the contributions
from the various trees.

Then, as the reader can easily check, the bounds on /3

are, if vo ——first vertex of o.,

~P' '(k+I;h, a')
~

&Cpn!y

n„(x)=[X y
"-d)"-C'II, (x)+~„y '~C'H, (x)

—p(A„—A —1)
X y

V ) Vo

(G7)

+ y dN]—

where C =(1—y
' ') '/. The reason k=O is special

ls tllat zg fol 6&gp has a slightly different covariance.
If za, b, &gp, had been taken with covariance —,', too,
then a,P in (G3) would, however, have turned out slightly
k dependent.

(4) Because of remark (2) the W and R.operations of
Sec. XVIII need only to be defined for 1, :y&., cp&, and
are simply

2. 2 4 4

Wp", :=0 if n )4,

R1=0, R:y(.——0, R
~
y).=0,

R:cpI.=.g).'j.f n )4 .

x g & '(I ),
end point

of 0

(G6)

No D„» fields arise: because of the locality remark (2),
above, x would be equal to y, so that D~~

—=0.
Since the D„» fields vanish, there is no need to increase

the order of subtraction, because D„» "has clearly a zero
of infinite order. "

Therefore, the above theory is renormalizable, in spite
of the absence of (Bp) terms in the interaction. This is

my proof of a theorem by Wilson; in fact Wilson (1972,
line 26 from bottom of p. 424) proved this result (just by

stating it) in q&3 theory (and hence in y4 theory also, the
argument being the same in the two cases). It seems that
this deep result of Wilson went almost unnoticed, prob-

ably because he failed to stress its interest, very high in

my opinion. The difference between the models used here

is irrelevant, and the above proof can be repeated verba-

tim in the "classical" hierarchical models.
(5) Finally, consider the resummations. The equation

for the form factors, diagram 32, and formulas (9.9) and

(20.8) can be written in terms of the "beta functional"

(BA,)' '(k)= y y P( '(k+1 h a')
o h, h„&k+1

Usual notations and with

p= j+(6—e)(g —2)/2, c, ~O. The 6 in p is explained

by the fact that the vertices of o carrying a superscript R
generate [because of (G5)] only Feynman graphs with at
least six external lines (in fact, the R operation just deletes

the contributions from nontrivial Feynman graphs with

two or four external lines emerging out of clusters gen-

erated by the vertices of the tree o ).
Expression (G7) suggests that the hierarchical model

may have a "1/y expansion" for the beta function B in

(G6). One sees that the right-hand side of (G7) is of order

O(1), as yah oo only for the trees y which have only one

nontrivial vertex Uo, which we can call the "simple" trees.
For the other trees the bound (G7) contains terms of
& (1/y').

Therefore, it might be of some interest to analyze the

equation for the dimensionless form factors (G6) in the

approximation in which only "simple" trees are con-

sidered in the right-hand side of (G6). This approxima-
tion is not equivalent to taking an order-by-order dom-

inant term in the y
' expansion of the P~ for the cr of

given order n, because even for simple trees o the P de-

pend on y and have subleading corrections in y
Therefore, the above approximation has the same char-

acter as the "leading log" or "most-divergent graphs"
resummation or as the "planar graphs" resummation dis-

cussed in Secs. IX and XX. However, it is in some sense

to be clarified (one hopes) a deeper resummation, as, un-

like the cases of the "most-divergent graphs" or the "pla-

nar graphs" resummations, its beta function has an

asymptotic expansion which has zero-radius of conver-

gence: the contribution from the tree with n end points

being proportional to n! [see (G7) and (G8) below].
But the really interesting aspect of the above resumma-

tion is that the beta function can be computed "exactly. "
In fact, from the graphical interpretation of Eqs. (5.13)
and (5.14) in terms of "simple" trees one can easily recog-
nize that the contribution of the simple trees to the right-
hand side of (G6) is just the power series expansion of a
function Bs[A.(k +1)] in formal powers of A, (k + 1), and
B' '(A, ' '

A.(2)) isg

20
Bg(A( ), A,'2')=y", C f FIe(x)e

'
ln f e exp gA( 'C 'Re(az+Px)

g 9 g) 7r gl

(G8)

where g 2 4 C (1 y
—(d —2))—1/2 a (1 P2)1/2 P y

—(d —2)/2
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Thus, if we set A, = —A,
' '(0+ 1)C, itt = —A.

' '(@ + 1)C, i(,'= —A.' '(k)C, p'= —1,' '(k)C, it follows that the dimen-
sionless form factors on scale k are expressed in terms of those on scale k + 1 simply by

g 2 ~z dx
y

t H&—(az+px) pH—&(az+px) 2 dz4
e

v'7r

~ 2 ~2 dx j' —XHg(az+px) pH—2(az+px) z2 dz2

This formula [which I derived, with some algebraic er-
rors, later corrected by Nicolo, from the remark that
(5.13) and (5.14) imply that Bg can be summed explicitly]
gives a recursion relation somewhat interesting in itself.
But more interesting would be to see in what sense (if at
all) the above resummation provides a good resummation
rule up to 0 (y '). Such problems have not been investi-
gated yet.
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