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A so-called representation (rep) group G is introduced which is formed by all the | G| distinct operators
(or matrices) of an abstract group Gina rep space L and which is an m-fold covering group of another
abstract group g. G forms a rep of G. The rep group differs from an abstract group in that its elements
are not linearly independent and thus the number # of its linearly independent class operators is less than its
class number N. A systematic theory is established for the rep group based on Dirac’s CSCO (complete set
of commuting operators) approach in quantum mechanics. This theory also comprises the rep theory for
abstract groups as a special case of m=1. Three kinds of CSCO, the CSCO-I, -II, and -III, are defined
which are the analogies of J2, (J2,J,), and (J%,J,,J,), respectively, for the rotation group SO,, where J, is
the component of angular momentum in the intrinsic frame. The primitive characters, the irreducible basis
and Clebsch-Gordan coefficients, and the irreducible matrices of the rep group G in any subgroup symme-
try adaptation can be found by solving the eigenequations of the CSCO-1, -II, and -III of G, respectively, in
appropriate vector spaces. It is shown that the rep group G has only » instead of N inequivalent irreduci-
ble representations (irreps), which are just the allowable irreps of the abstract group G in the space L.
Therefore, the construction of the irreps of G in L can be replaced by that of G. The labor involved in the
construction of the irreps of the rep group G with order |G |.is no more than that for the group g with or-
der |g|= |G| /m, and thus tremendous labor can be saved by working with the rep group G instead of
the abstract group G. Based on the rep-group theory, a new approach to the space-group rep theory is pro-
posed, which is distinguished by its simplicity and applicability. Corresponding to each little group G(k),
there is a rep group Gy. The n inequivalent irreps of Gy are essentially just the acceptable irreps of the lit-
tle group G(k). Consequently the construction of the irreps of G(k) is almost as easy as that of the little
co-group Gy(k). An easily programmable algorithm is established for computing the Clebsch-Gordan
series and Clebsch-Gordan coefficients of a space group simultaneously.
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GLOSSARY

C (C(i))

CGC

the ith class operator

complete set of commuting operators
(CSCO or CSCO-I) of G (G(i))
Clebsch-Gordan coefficient

C(s)=(C(1),C(2),...) complete set of commuting

CSCO
D(V)(R,-)

EFM

QxR ®

Qo

|G| (|g])
Gk’G;c

Gi

G(k)

Go

Go(k)
Go(k)*

G(s)=G(1)DG(2)D - - -

h,

IRB
irrep
ISF
L

P(k)
Py

P;V)b

operators of G(s)

C(s)=(C(1),C(2),...) complete set of commuting

operators of G(s)
complete set of commuting operators
the irreducible matrix for the group ele-
ment R;
eigenfunction method
abstract group
number of elements in the ith class
representation group (in Secs. I—VIII),
space group (in Secs. IX—XX)
abstract group
the intrinsic group of G
order of the group G (g)
representation groups
the abstract group isomorphic to Gy
little group
isogonal point group of the space group
G
little co-group
central extension of Gy(k)
subgroup chain
dimension of the irreducible representa-
tion v
irreducible basis
irreducible representation
isoscalar factor
the representation space of G associated
with the representation group G,
space lattice, L ={R,} (in Secs.
IX—-XX)
group space of the representation group
G
group space of the representation group
Gy :
eigenspace of the CSCO of the represen
tation group G
eigenspace of the translation operator
{e| Ry}
the representation space of the space
group G
number of linearly independent class
operators of G
number of classes of the representation
group G
holosymmetric point group of the crystal
system
symmetric group of k
the generalized projection operator of
the representation group G
the normalized generalized projection
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operator of the representation group G

rep representation
T translation group _
(v,a,b) eigenvalue of (C,C(s),C(s))

(via,va;, | vOa) Clebsch-Gordan coefficient

(o' | 762)s Usgngra',gar the

Gordan coefficient

0 multiplicity index

(b the ath vector for the bth irreducible
representation v

space-group - Clebsch-

TABLE 1. Space-group elements, IRB and irrep. -

Genealogical relation for the space group and its point
group
GDOG(k)DG(s)DT,
PDGyDGyk),
PDOP(k),
Gy(k)=P(k)NG,
Coset decomposition
G=Y1e{B,|V,]|]Gk),

Go= > {®8,Go(k)

T G®°

G - G(k)® Go(k)°
group element {ai | V(ai)+R,} {ril V(y)+R,} {e|R,} fri| Viya} 4
basis vector ¢§‘Va’a={ﬁo1vo} & ) k=e:(x+xm).r o)
irrep DR D exp(—ik-R,) DX AR
dimension qh, h, 1 h, h,

*The irrep of G(k) is D®V({y | c})=exp(—ik-¢)A(y).

Sy | Viy)} =Rj=explik-V(y] {7v; | V¥)}, j=12 ..., | Go(k) |, are the active’ elements of the rep group Gy.
°A™ is the projective irrep of the little co-group Go(k) and AY(y)=D®™({y | V(y)}').

I. INTRODUCTION
A. Historical retrospect

Group representation (rep) theory plays a very impor-
tant role in physics and quantum chemistry, and its im-
portance has increased with modern developments. The
rep theory for both finite groups and compact Lie groups
is rather mature and is treated extensively in numerous
books and articles (e.g., Eisenhart, 1933; Murnaghan,
1938; Weyl, 1950; Racah, 1951; Burnside, 1955; Lyubar-
skii, 1957; Littlewood, 1958; Wigner, 1959; Hamermesh,
1962; Boerner, 1963; Lowdin, 1967; Miller, 1972; Wy-
bourne, 1974). This theory, which we cal] the traditional
group representation theory, seems to be perfect from the
mathematical point of view. However, it is not totally
satisfying from a practical, or physical, point of view.
First, as pointed out by Salam (1963), it is unphysical.
Group theory was introduced into mathematics as early
as 1810, and the theory of group rep was developed main-
ly by mathematicians during the 1920s, before quantum
mechanics was established; in this it is unlike calculus,
which was invented at about the same time as the
discovery of Newton’s law. As a result, many sophisticat-
ed physicists who are quite at home in their own fields
seem to be afraid of group theory (Lipkin, 1966). Second,
there is no general method for treating various kinds of
problems in group rep. Any given technique applies only
to a particular problem for a particular group. Not only
do the methods for dealing with point groups, permuta-
tion groups, space groups, and Lie groups all differ drasti-
cally, but the methods for finding the characters, irreduci-
ble basis (IRB), irreducible matrices, and Clebsch-Gordan
coefficients (CGC, or CG coefficients) also vary from one
to another. Therefore, in many cases, these methods are
more of an art than a science.

In physical applications, we often need to construct an
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IRB adapted to a hierarchy of groups, the so-called
symmetry-adapted IRB, starting with a high-symmetry
group that approximately represents the structure of the
system under investigation, down to the actual symmetry
group of the system, and terminating in an Abelian group
(Butler and Wybourne, 1976b). The analysis due to De-
vine (1967) of the spectroscopic properties of the rare-
earth double nitrates via the group chain SO;DI,
DT, D% ; affords a beautiful example of the application
of descending symmetry. The symmetry-adapted IRB is
also required in dealing with a system having the so-
called dynamical symmetries (Arima and Iachello, 1979,
and references therein).
 The standard method for constructing an IRB adapted
to a group chain GDGl(s), G(s)=G(1)DG(2)D -+~ is
to use the generalized projection operator (Elliott and
Dawber, 1979),
G
P,ﬁ”—lr—— '2' DR(R)*R; ,

i=1

(1.1a)

where | G| is the order of G, A, the dimension of the ir-
reducible representation (irrep) (v), and D} (R;) the ir-
reducible matrix elements in the GDG(s) classification.
Notice that here a or b is no longer merely an index
enumerating the basis, but denotes a set of quantum num-
bers @ =(A,A,, . ..), A; being the irrep label of the sub-
group G(i). Supposing that ¢ is one of the reducible basis
vectors of G, an IRB might be obtained by applying P.}

to @,

(v)

W —const X P . (1.1b)

The question is how to get the irreducible matrices D in
the given GDG(s) classification. If the GDG(s) IRB
¥ were known, then

DY(R)=(YY | R; | ¢ . (1.2)
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The trouble is that the IRB in the G D G(s) scheme is not
known yet. It is seen that Eqgs. (1.1) and (1.2) are two in-
terdependent problems; the solving of one is prerequisite
for the solving of the other. Therefore, we are at an im-
passe when both the matrices and the IRB are unknown.
One might use the successive induction technique to con-
struct the GDG(s) IRB (Boerner, 1963; Bradley and
Cracknell, 1972; Altmann, 1977; Dirl, 1977); however,
this technique is rather intricate, and a systematic induc-

tion procedure can be developed only for invariant sub-

groups.

The situation is similar for the space-group rep theory.
The determination of the irreps of space groups was be-
gun by Seitz (1936) and Bouckaert, Smoluchowski, and
Wigner (1936). Thanks to the efforts of many scientists,
tables of the irreps of the 230 space groups have now been
published [Kovalev, 1961; Faddeev, 1961; Hurley, 1966;
Miller and Love, 1967 (reprinted in Cracknell et al.,
1979); Zak et al., 1969; Bradley and Cracknell, 1972].
Programs for computing the irreps of any little group
G(k) have been prepared (e.g., Worlton, 1973; Neto,
1975). Extensive review papers and excellent books on
space-group reps are available, such as those of Koster
(1957), Johnston (1960), Slater (1962,1965), Altmann
(1963), Bradley and Cracknell (1972), Maradudin and
Vosko (1968), Birman (1974), and Cracknell (1975). Re-
views of computational group theory in crystal systems
are given by Davies (1982) and Neubiiser (1982).

Therefore, it may seem that work on the determination
of the irreps of space groups is finished. However, this is
not true. For many purposes, e.g., for investigating sym-
metry change or symmetry breaking in continuous phase
transitions (Birman, 1982; Deonarine and Birman, 1983a,
1983b; Tao, 1983), or for studying the compatibility rela-
tions for space groups (Bouckaert et al., 1936; Cornwell,
1969; Dirl, 1977), we need to use an IRB and irreps
adapted to a given group chain G(k)DG(s)DT, where
G(s) is a subgroup (or a subgroup chain) of the little
group G(k), and T is the translation group. Unfortunate-
ly, this requirement is usually not met by the existing
tables or programs for the irreps of space groups, and we
have to construct the irreps anew in the given Gi(k)
D Gl(s) DT classification.

Besides, the conventional approach to the space-group
rep is not totally satisfactory. First, the theory itself is
rather complicated and evasive for a person who has only
a general knowledge of finite group representation.
Second, the practical methods for constructing irreps of
the little group are mainly Herring’s little group method
and the projective- (or ray) rep method (Herring, 1942;
Doring, 1959; Bradley and Cracknell, 1972; Birman,
1974) or the variation of the projective-rep method (Lyu-
barskii, 1957; Kovalev and Lyubarskii, 1958). The former
two methods require constructions of reps for groups with
high order. For example, for the projective-rep method,
the order can be as high as 192. In the Lyubarskii and
Kovalev method, a set of matrix equations is set up for a
few generators of the little co-group Ggy(k) on a case by
case basis. The projective-rep matrices for these genera-
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tors are first found one by one from the matrix equations,
and the whole projective rep results from matrix multipli-
cation. The method used by Zak (1960), Klauder and
Gay (1968), and Neto (1973) is based on the reduction of
the reps of the little group G(k) induced from the irreps
of its invariant subgroups of index two or three.

Recently, there have been many papers devoted to the
Clebsch-Gordon (CG) coefficients for the permutation
groups (Schindler and Mirman, 1977a,1977b; Chen and
Gao, 1981; Gao and Chen, 1985; Chen, Gao, Shi, Val-
lieres, and Feng, 1984; Saharasbudhe et al., 1981), for
point groups (Van den Broek, 1979; Butler, 1981; Kotzev
and Aroyo, 1980,1981), and for space groups (Litvin and
Zak, 1968; Saulevich et al., 1970; Gard, 1973; Sakata,
1974; Berenson and Birman, 1975; Berenson et al., 1975;
Rudra and Sikdar, 1976; Dirl, 1979,1980; Suffczynski and
Kunert, 1982; Chen, Gao, and Ma, 1983). A program in
ALGOL has been written for calculating the principle
block CG coefficient of the space group (Birman, 1974)
by Kowalczyk et al. (1980). Systematic tables of CG
coefficients for permutation groups (Schindler and Mir-
man, 1977b; Chen and Gao, 1981; Gao and Chen, 1985),
point groups (Koster et al., 1963; Butler, 1981), and mag-
netic point groups (Kotzev et al., 1980—1982) are avail-
able. More recently, the work on computer-generated
space-group CG coefficients has been reported (Davies
and Dirl, 1983). However, their coefficients are not sub-
group symmetry adapted. One of the major aims of the
present paper is to set up a simple algorithm for comput-
ing space-group CG coefficients adapted to any given
subgroup chain.

B. A new approach to group representation theory

From the physical point of view, it is most desirable to
have a group rep theory in accordance with the concepts
and methods of quantum mechanics. The commuting-
operator approach to the rep theory of semisimple Lie
groups has met this requirement to a certain extent, due
to the efforts of Racah (1951), Biedenharn (1963a,1963b),
and Baird and Biedenharn (1963). Gamba (1969) and Kil-
lingbeck (1970,1973) expressed their desire to reform the
rep theory for finite groups by suggesting a Lie-like ap-
proach and commuting-operator approach to the theory,
but they have not pursued the subject far enough. There-
fore, rep theory for finite groups remains basically the
traditional one.

As pointed out by McVoy (1965), the theory of Lie
groups, used properly with all the most powerful
theorems, is both difficult and time consuming. Howev-
er, the key theorems are perfectly understandable without
a detailed knowledge of the trickery involved in their
proof. In this regard, the rotation group SO; provides an
excellent example. The main results for SO; rep theory
can be summarized as follows (Chen, Wang, and Gao,
1975,1983).

The Casimir operator J? of SO is called the first kind
of complete set of commuting operators (CSCO-I) of SOs.
In the class parameter space,
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J?=_ ____1___.5_
sin(@/2) do

sin2(<p/2)§% ] , (1.3)

and its eigenfunction gives the character of SO,

T (@)=j(j + X (), (1.4a)
] sin(j + 3 )@
)= — =7

e sin(g/2) (1.46)

The operator J? is a CSCO for the class parameter space.
Similarly, J, is the CSCO-I of SO,. (J%J,) is called
the CSCO-II of SOs;, and its eigenfunction gives the IRB
adapted to the canonical subgroup chain SO; DS0O,,
jG+1)
m

J2
Iz

j =
m

¥ . (1.5)

(J%,J,) is a CSCO for each irreducible space of SO;.

Let J,, J,, and J, be the components of angular
momentum in the intrinsic frame of a rotating system.
They are the generators for rotations around the intrinsic
axes x, y, and z. The rotation group with J,, J,, and J,
as infinitesimal generators is called the intrinsic rotation
group and denoted by SO;. It is well known that (Bohr
and Mottelson, 1969)

[Jirfk]=O9 ik =X,0,Z , (1.6a)
[V, dy1=ity, [JxJy1=—iJ, , x,p,z in cyclic (1.6b)
JP44IF=T2 4T +TE . (1.6¢)

Therefore, the group SO; and its intrinsic group SO, are
commutative and anti-isomorphic.

(J%,J,,J;) is called the CSCO-III of SO;, and its eigen-
function in the group parameter space gives the complex
conjugate of the irreducible matrix element.

J? jG+1)
J, |DdiaBy*=| m |Dh(aBy)*,
‘T k

mk=—j,—j+1,...,5. (L7

(J%,J,,J;) is a CSCO for the group parameter space of
SO;. k is called the intrinsic quantum number and is
used to distinguish between equivalent irreps (j) of SO;.

It is thus seen that the characters, IRB, and irreducible
matrix elements can be obtained by solving the eigenequa-
tions of the CSCO-I, -II, and -III, respectively.

Stimulated by the above simple results for the group
SO;, Chen and co-workers (Chen, Wang, and Gao,
1977a,1977b,1977¢,1978a,1983; Chen et al., 1979) devel-
oped a new approach to group rep theory. For any non-
Abelian group G, a so-called intrinsic group G was intro-
duced, and three kinds of CSCO, CSCO-I, -II, and -III,
were defined. The key theorems, like those presented
above for the group SO;, are first established easily for
finite groups and then extended to compact Lie groups.
Thus a unified approach for both finite and Lie groups is
established.
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For a finite group G, the CSCO-I is just the analogy of
the set of !/ Casimir operators of a Lie group with rank
equal to / [McVoy (1965) referred to it as the complete set
of commuting observables of a Lie group]; the CSCO-II
is, roughly speaking, a set of operators consisting of the
CSCO-I of all the subgroups contained in a canonical sub-
group chain, while the CSCO-III is a CSCO in the group
space. The new approach distinguishes itself by its sim-
plicity in concept and wide applicability in practice.\ It is
also constructive in nature, leading to a new method, the
so-called eigenfunction method (EFM), for determining
group irreps. The problems of determining (1) the char-
acters and isoscalar factors, (2) the IRB and Clebsch-
Gordon coefficients (CGC), and (3) the irreducible ma-
trices adapted to any subgroup chain are all reduced to a
single recipe—seeking the eigenvectors of the CSCO-I,
-II, and -III, respectively. The EFM proves to be very
powerful and versatile in treating the point groups (Chen,
Wang, and Gao, 1978c; Chen, Gao, Wang, and Yu, 1979;
Chen, Wang, Gao, and Yu, 1980), permutation groups
(Chen, Wang, and Gao 1977a; Chen, 1981; Chen and Gao,
1981,1982; Chen, Collinson, and Gao, 1983; Zhu and
Chen, 1984), unitary groups (Chen, Wang, and Gao,
1977b,1978a,1978b; Chen, 1981; Chen, Shi, Feng, and
Vallieres, 1983; Chen, Gao, Shi, Vallieres, and Feng,
1984), graded unitary groups (Chen, Chen, and Gao,
1983a,1983b,1984; Chen and Chen, 1983; Chen, Gao, and
Chen, 1984a,1984b), and space groups (Chen, Gao, and
Ma, 1983). For a systematic and extensive review of the
new approach the reader is referred to the monograph by
Chen (1984).

The EFM for the irreducible characters, IRB, irreduci-
ble matrices, and CGC of a finite group is much simpler
than, the conventional methods and is flexible enough to
obtain the irreducible basis adapted to any given group
chain GO G(s) without need of any knowledge of the ir-

- reducible matrix, or conversely, to obtain all the irreduci-

ble matrices in any given subgroup chain G D G(s) classi-
fication without any knowledge of the irreducible basis.
Furthermore, since the ultimate step of the method is the
diagonalization of the representative matrices of a certain
kind of CSCO, the procedure can be easily translated into
a computer program. Several codes are already available;
these include one for the CGC and one for the outer-
product reduction coefficients of the permutation group
(Chen and Gao, 1981, in ALGOL-60), one for the transfor-
mation coefficients from the standard (i.e., the Yamanou-
chi) basis to the nonstandard basis of permutation groups
(Chen, Collinson, and Gao, 1984, in FORTRAN IV), and
one for the SU(mn) DSU(m) X SU(n) isoscalar factors for
arbitrary m and n (Chen, Gao, Shi, Vallieres, and Feng,
1984, in FORTRAN IV). ‘

C. The representation group

Suppose that G is an abstract group with elements ﬁs,

G={R,:s=12...,|G|}. (1.8)
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Let R, be the corresponding operators, or matrices, of I/Q\s
in a certain rep space L. Suppose that, of the | G | opera-
tors (or matrices), only |G| ones are distinct and they
form a group G. With proper ordering, G can be ex-
pressed as

G={Ry;s=1,2,..., |G|} . (1.9)

Obviously G is a subgroup of G and forms a rep of G.
According to the Lagrange theorem (Hamermesh, 1962),

|G| =4"|G]|, (1.10)

" being an integer. If #/"=1, G is a faithful rep of G.
The #">1 case is trivial, since the order of the abstract
group G can be restricted to be equal to |G| by impos-
ing cyclic boundary conditions. Hence in the following
we assume that |G | = |G|.

These |G| operators, though distinct, may not be
linearly independent. Suppose that there are only
|g| = |G| /m linearly independent operators R;, where
m >1 is an integer, and the remaining operators are sim-
ply related to these | g| operators as

R"=e(i,DR; , i=1,2,...,|g|, [=0,1,...,m—1,

(1.11a)
R{®=R;, R =el(identity), |e(i,})| =1,
where €(i,/) are complex numbers. Then the group
G={R"i=12...,|g|,1=0,1,...,m—1} (1.11b)

is called a representation (rep) group. The |g| operators
R; are called the active elements of G and constitute the
fundamental set F of G,

F={Ri:i=12..., |gl|}. (1.11¢)

For simplicity, the rep group G of Eq. (1.11b) will be
denoted as

G={(Ri:i=12...,|8|}m- (1.11d)

According to Eq. (1.11a), the multiplication relation of
the rep group is fully determined by that of |g| active
elements which can be written as

R;R;=7(i,))Ry; , (1.12)

where R;; is one of the active elements and %(i,j) are
complex numbers with absolute value equal to one. The
multiplication table of these |g| active elements will be
referred to as the group table of the rep group G.

If there is a group g with order |g| and elements y;,

g={riai=12...,[gl}, (1.13)
and if g has the multiplication relation
Yivi=Yij» (1.14)

then the rep group G is an m-fold covering group of g,
and under the mapping R;<>y;, the fundamental set F of
the rep group G is said to be a projective (or ray, or multi-
plier) rep. of the group g, and 7(i,j) form what is called a
factor system (Birman, 1974; Bradley and Cracknell,
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1972; Altmann, 1977; Dirl, 1977). If n(i,j)=1, then F is
an ordinary, or vector, rep of g.

Thanks to Eq. (1.11a), to specify an irrep v of the rep
group G, we need only give explicitly the irreducible ma-
trices for the |g| active elements. Hence for simplicity
we shall just say that

DY(G)={D™(R,)i=12,..., |g|} (1.15)

is an irrep of the rep group G. With this convention,
D™(G) is clearly a projective irrep of the group g under
the mapping R;<>y;. Henceforth we shall simply say
that each irrep of the rep group G gives a projective irrep
of g. Therefore, the construction of projective irreps of
the group g for the factor system 7 (Kovalev and Lyubar-
skii, 1958; Mackey, 1958,1968; Dirl, 1977) can be replaced
by the construction of vector irreps of the rep group G,
which is, as will be shown later, as easy as that for the
finite group g with order |g|=|G|/m (|g| can be
called the “effective group order” of the rep group). Dirl
(1977) used the induction procedure to obtain projective
irreps of g adapted to a certain subgroup chain, starting
from a given projective irrep of an invariant subgroup of
g. The procedure is far from simple and applicable only
to the invariant subgroups of g.

On the other hand, the IRB of the abstract group Gin
the rep space L is obviously identical to the IRB of the
rep group G, and thus the former task can be replaced by
the latter one. It is much easier to work with the rep
group G than with the abstract group G, since the “effec-
tive” group order of G is only one mth of the order of G.

In the case of m =1, all the |G| elements of G are
linearly independent and the rep group G is identical,
from the group-theoretical point of view, to the abstract
group G. Therefore, the abstract group G can be regard-
ed as a special case of the rep group corresponding to
m=1.

D. About this review

In the first part of this review (Secs. II—VIII), we ex-
tend the new approach for the rep theory of the abstract
group to the rep-group case. The approach is entirely
based on Dirac’s CSCO theory, which is very familiar to
physicists. All the theorems are proved in a ‘“physical
way,” and abstract mathematical proofs are avoided as
much as possible. The treatment is self-contained, and
only a minimal knowledge of group theory is required,
covering such topics as the Schur lemmas, the definition
of class, cosets, representations, inductions, subductions,
etc.

In Sec. IT we begin with a brief review of some defini-
tions and theorems for group reps. In Sec. III, the CSCO
(or CSCO-I) is introduced for the rep group G, which is
analogous to the set of Casimir operators for Lie groups.
In Sec. IV the intrinsic group G is defined which is anti-
isomorphic to and commuting with the group G. The in-
troduction of the intrinsic group G is crucial for distin-
guishing between the equivalent irreps. Sections V and VI
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are the heart of the new approach to the projective irreps
of a group g. Section VII is a summary of the eigenfunc-
tion method for constructing the irreducible basis, ma-
trices, characters, and CGC, while Sec. VIII is an example
of the application of the general theory for a rep group to
a particular abstract group, i.e., the construction of the ir-
reps and CGC of the point group C,, adapted to two dif-
ferent subgroup chains.

In the second part of this review (Secs. IX—XX) the
general theory developed in Secs. II—-VII is applied to the
space group, and a simple rep theory for the space group
is established. Sections IX and X give the basic defini-
tions required for dealing with space groups in the subse-
quent sections. In Sec. XI the representation groups Gy
and Gy, related by a gauge transformation, are introduced
and the relation between the irreps of the rep group Gy or
Gi and the small reps of the little group G(k) is establish-
ed. Sections XII and XIII specify some details for apply-
ing rep-group theory to the representation group Gy. Sec-
tion XIV is devoted to the working out of several exam-
ples to show the ease with which irreducible characters
and matrices of the little group G(k) can be obtained by
the EFM. In Sec. XV a simple algorithm for obtaining
the full rep matrices of the space group in terms of the
small reps of the little group is given, in which all we
need is the point-group multiplication instead of the
much more complicated space-group multiplication. In
Sec. XVI the regular rep of a space group G is totally
decomposed to | G| one-dimensional spaces, each corre-
sponding to an irreducible basis vector of G. In Sec.
XVII, the intrinsic group G and the CSCO-III of the
space group G are introduced, and it is shown that the ir-
reducible basis vectors resulting from the decomposition
of the regular rep of G are the eigenvectors of the
CSCO-III of G. Section XVIII is devoted to setting up
an algorithm for the space group CG coefficients while
Sec. XIX gives two examples of the construction of full
rep matrices and the CGC of the space group O} for the
k stars X and W. Various methods for calculating the
space-group CGC are reviewed in Sec. XX, and a sum-
mary of the whole paper is given in Sec. XXI.

Since the abstract group Gisa special case of the rep
group G, the theory for rep groups also contains that for
abstract groups as a special case of m =1. In the follow-
ing, for most cases we deal only with the rep group, and
for simplicity we shall just say “the group G” instead of
“the rep group G” when no confusion will arise. Besides,
since every rep of a finite group is equivalent to a unitary
rep, without loss of generality we assume that all reps dis-
cussed here are unitary. It should also be mentioned that
the term “a vector space” throughout the paper means “a
linear complex vector space.”

We restrict ourselves to the single-valued reps of the
unitary group. Extension to the double-valued reps is
straightforward.

Il. PRELIMINARY KNOWLEDGE

In this section we cite some definitions and theorems.
The proofs of these theorems are omitted, since they can
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be found in any textbook on group theory, except for
Theorems 2.1, 2.3, and 2.6, which may not be available in
textbooks, at least not in the form we use.

A. A complete set of commuting operators

Definition 2.1. Suppose that there is an operator C de-
fined in a linear vector space .Z’; the subspace .Z, gen-
erated by all the eigenvectors v of C which belong to the
same eigenvalue v of C is called an eigenspace of C,

Ly={veE L :Cv=wv] . (2.1a)
Symbolically we write
CYL,=v?,. (2.1b)
Definition 2.2. A set of commuting operators
C=(C,,C,, ...,C) is said to be a complete set of com-

muting operators (CSCO) of the space .Z if in . all the
eigenvalues of C are nondegenerate (or, equivalently, if
the eigenspaces of C are all one dimensional).

A CSCO is said to be self-adjoint if it consists entirely
of self-adjoint operators.

Theorem 2.1. A CSCO for a vector space .Z of finite
dimensionality can always be chosen to consist of only a
single operator.

Proof. The basis vectors |@;) for an n-dimensional
vector space .Z” can always be labeled uniquely by a single
discrete parameter A, A=1,2,...,n. Without loss of
generality, | @, ) can be assumed to be orthonormal.

Let us construct a linear operator C by

n
C=23 Ao enl . (2.2a)
o A=l
Obviously we have
Cloa)=Al@n) . (2.2b)

Thus each basis vector |g;) is an eigenvector of the
operator C with the parameter A as the eigenvalue. Ac-
cording to the hypothesis of the uniqueness of the label A,
the single operator C is evidently a CSCO of the space
Z

Theorem 2.2. A linear operator which commutes with
each operator of a CSCO is a function of the CSCO (see
Dirac, 1958, Sec. 19).

B. Group representations

Definition 2.3. An invariant subspace of a group G is
called a rep space of G.

Definition 2.4. A minimum invariant subspace of a
group G is called an irreducible space of G.

For groups commonly used in physics, the group opera-
tors are unitary. In the following, this is always assumed
to be true.

Theorem 2.3. The subspace .Z,, of a rep space of G,
which is an eigenspace of an operator C commuting with
the group G, is necessarily also a rep space of G.
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Proof. From the hypothesis we have
CL,=v.?,, [C,R]=0 for REG; (2.3)
it follows that
C(R.Z,)=RC.ZL,=v(R.Z,) for REG .

Hence R.Z ,€ .7 ,, that is, the eigenspace .Z , is invariant
under the group. Therefore, .Z, is a rep space of G.

The significance of this theorem is that a rep of G gen-
erated by the space . can be reduced by decomposing
the space .Z into eigenspaces of an operator which com-
mutes with the group G. This is the starting point of the
new approach to group rep theory.

Theorem 2.4 (Schur lemma). Let D™“(G) be an h,-
dimensional rep of a group G and A4 be an h,Xh, ma-
trix; then the rep DX(G) is irreducible if and only if the
only matrix A which satisfies

D™Y(R)A =AD™(R) (2.4a)
for all REG is
A=AI, (2.4b)

where I is an A, X &, unit matrix (see Miller, 1972, p. 70).
- Theorem 2.4 is extremely useful because it gives a sim-
ple criterion for irreducibility of a rep.

Corollary 2.1. If C is an operator commuting with a
group G, and if L is an invariant space of C and an ir-
" reducible space of G, then L is necessarily an eigenspace
of C.

Definition 2.5. The |g|-dimensional vector space L,
formed by the |g| linearly independent operators R; is
referred to as the group space of G,

Ly={Ri:i=12,...,|g|}- (2.5
The metric tensor for the group space can be chosen as
8ii=(R;|R;)=6;, i,j=12,...,¢g]| . - (2.6)
Any vector in the group space L, can be expressed as
P= § u(R;)R; , 2.7
i=1 ‘

where u(R;)=u; are complex numbers. According to
Eq. (2.6), the scalar product of two vectors in L, is

g|
(PW|PW)= i u(R)*uM(R;) . (2.8)
i=1
Apart from the scalar product (2.8), we can also define
the group product of two vectors according to the rep-
group multiplication rule (1.12),

PYPW=3 18y R, ) PR, (i, /)Ry - 2.9)
ij

Obviously, the product P™VP*) still belongs to the space
Lg,. Thus L; is closed under the group multiplication
rule and forms an algebra, called the rep-group algebra or
the projective group algebra (Dirl, 1977). When 5(i,j)=1,
it reduces to ordinary (or vector) group algebra (Hamer-
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mesh, 1962; Littlewood, 1958; Lowdin, 1967; Miller,
1972).

Theorem 2.5. The space spanned by the inverse opera-
tors of R;, i=1,2,...,|g]|, coincides with the group
space Ly, i.e.,

Le={R7Mi=12...,|g|}. (2.10)

Proof. Since there are only |g| linearly independent
vectors in Ly, and any | g| linearly independent vectors in
L, span the same space Lg, we need only show that the
| | operators R;! are linearly independent. If they are
not, then one can write

R'=3 (¢ R/ . (2.11a)
J#i
The unitarity of the operators R; implies that
RI=3 {8 uR} or R,=3 [*'ulR;, (2.11b)
i J#

in contradiction with the hypothesis that the |g| opera-
tors R; are linearly independent. Hence the |g| opera-
tors R7%, ..., Rg—1 are also linearly independent.

Definition 2.6. The rep D(G) generated by the group
space L, is called the regular rep of G, namely,

g | .
RJRkZ 5 Dik(Rj)Ri’ .]9k :1?2) ctt !g’ 4
i=1
(2.12)
D,-k(Rj)=<Ri |Rj le>E<i IRj | k>="7(j,k)5i,jk .

Notice that to determine a rep for the group G, we
need only to give the rep matrices for the elements in the
set F, since the rep matrices for other elements of G are
given by

D(R")=¢(i,ID(R;) . (2.13)

Again Eq. (2.12) is a generalization of the usual regular
rep for an abstract group G.

C. The class algebra

Suppose that the rep group G has N classes (N is also
the number of classes of the abstract group G). The
m | g| operators R{" of G can be regrouped into N
classes. Let R(; ., be the xth element of the ith class.

Definition 2.7. The algebraic sum of all the operators
of G belonging to the same class is called the class opera-
tor,

8;

Ci:zR(i,x), i=192»-'-’N s 2.14)
k=1
where g; is the number of operators in the class i.
Furthermore, we use the notation
8
Cr=3 Rk (2.15)
k=1

to denote the class operator consisting of the inverse
operators of R; -
Definition 2.8. The class i is said to be ambivalent if C;
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is equal to C;; otherwise it is said to be nonambivalent
(Hamermesh, 1962).

Since the operators R;" or R ; ) of the rep group G are
not linearly independent, neither are the N class opera-
tors. Some of the class operators may be null operators,
or some may differ by only a phase factor, C; =§;;C; with
|&ij|=1. Let Cy(=e),Cy,...,C, be the linearly in-
dependent class operators of G, n <N (the equality holds
only when m =1).

Definition 2.9. The vector space spanned by the n

linearly independent class operators C;,C,,...,C, is
called the class space of G, denoted as
L,={Ci:i=12,...,n}. (2.16)

The class space L, is a subspace of the group space L,.
The metric tensor in the class space is decided by Eq.
(2.6), i.e.,

<C1ICJ>:gISU’ i’j=172)~--;n . (2.17)

The class operators have the following imporﬁant prop-
erties (Hamermesh, 1962).

(1) They commute with any element of G,

[Ci,R]=0 forall REG . (2.18a)
(2) They commute with one another,
[Ci,Ci1=0. (2.18b)
(3) They are closed under group multiplication,
n
CiCi=3 CkCy, i,j=12...,n. (2.18¢)
k=1

The coefficients C,-’; are called the structure constants of
the rep group. Note that they can be imaginary [for ex-
ample, see Egs. (14.6)], in contrast to the case of an
abstract group whose structure constants are non-negative
integers.

Any vector in the class space can be written as

0=73 4C:,

i=1

(2.19)

where g; are complex numbers.
The scalar product of two vectors in the class space is

n
(Q(l) I Q(Z))= 2 giqi(l)tqi(Z) .

i=1

(2.20)

Because of Eq. (2.18c¢), the class space is closed under
group multiplication and therefore it forms an algebra—
the class algebra. It is clear that the class algebra is a
subalgebra of the rep-group algebra.

Theorem 2.6. Any operator constructed out of group
operators and commuting with the group is necessarily a
class operator or a linear combination of the class opera-
tors of the group (Wu, 1984).

Proof. Assume that the operator

G §
4= EysRs: x;R;

s=1 i=1

(2.21)
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commutes with the rep group G, where y, and x; are

complex numbers. This means that
A=R,AR ', s=12,...,|G]| . (2.22a)

Therefore,

(2.22b)

is the class operator associated with the element R;.
ll. THE CSCO-1 OF A GROUP G

A. The CSCO in the class space

Definition 3.1. A set of I operators C,C,,...,Cj,ora
linear combination of them, selected out of the »n linearly
independent class operators of a group G, is called a
CSCO-I of G, or simply a CSCO of G, if the set is a com-
plete set of commuting operators in the class space of G,
denoted as'

C=(Cy,Cy,...,Cp, (3.1a)

or
sz kiCi .
i=1

Let O be an eigenvector of the CSCO of G.in the
class space :

(3.1v)

COM=vQ" . (3.2a)

If Cis given by Eq. (3.1a), then (3.2a) actually denotes a
set of simultaneous eigenequations

GOV =AY, i=1,2,...,1, (3.2b)
and v stands collectively for the set of eigenvalues
v=(AYAY, LA . (3.3)

It follows from Definitions 2.2 and 3.1 that, for a rep
group with n linearly independent class operators, C must
have n distinct sets of eigenvalues v. In the following, v
is also used as the index enumerating the sets of eigen-
values. Therefore, we can write v=1,2, ..., n.

From Theorem 2.2, we immediately have Theorem 3.1.

Theorem 3.1. Any class operator C; of a group G is a
function of the CSCO of G,

1C; does not necessarily mean the identity operator.
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C;=F/(C), i=12...,n, ' (3.4)

and in turn we also have Theorem 3.2.

Theorem 3.2. Any eigenvector of the CSCO of G is
necessarily a simultaneous eigenvector of all the n class
operators of G,

COV=AY0"™, i=1,2,...,n. (3.5)

The choice of the CSCO of G is not unique; however,
different CSCO of G are all equivalent in the sense that
they have, according to Theorem 3.2, identical eigenvec-
tors Q("), v=1,2,...,n. Thus we have Theorem 3.3.

Theorem 3.3. Different CSCO’s of G are equivalent.

B. Irreps of the class algebra

Equation (2.18c) shows that the n basis vectors
Cy,...,C, of the class space L, carry a rep of the class
algebra,

n
CiCi=3 Dy(C)Cy, i,j=1,2...,n . (3.6)
k=1

The rep Z(C;) is called the natural rep of the class opera-
tor C; with matrix elements
Dii(CH=Cf . (3.7)

With the eigenvectors Q' of the CSCO of G as basis
vectors, the representation matrices of the n class opera-
tors all become diagonal,

Cill Ci12 R Cii:
D(Ch=|: . |—>D(C)
¢y Ch oot Gy

- _ : (3.8)

Hence we see that the natural rep of the class algebra is
reducible, i.e., it can be reduced into n one-dimensional ir-
reps of the class algebra.

Theorem 3.4. The set formed by all the n class opera-
tors Cy,...,C, of a group G is necessarily a CSCO of
G.

Proof. To prove the theorem, we need only show that,
in the class space, the set of operators (Cy, ..., C,) has n
distinct sets of eigenvalues. Let us regard the diagonal
matrix of D(C;) in Eq. (38), (A
Aivz), R A;v”)), as a column vector and put n such vec-
tors together to form a matrix M,

elements
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(vy) (vy) (vy)
SR P e
v,) (%) (v,)
}\12 )"22 )"nz
YT : (3.9
(v,) (v) (v)
}\'1" }\'2" e 7\'”"

. (v)) _(v) (v,) .
The ith column vector (A; ',A; %,..., A ") is a

representative of the class operator C;. Since the n class
operators are linearly independent, the n column vectors
in the matrix M are necessarily also linearly independent.
Therefore, the rank of the matrix M is equal to »n, which
il} )turn i(m})lies that the n row vectors (k(lvi ,
sz' e, knvi ), i=1,2,...,n, are also linearly indepen-
dent. Consequently, no two row vectors can be identical.
Otherwise stated, the set of operators (Cy,...,C,) has n
distinct sets of eigenvalues.

Theorem 3.5. Any CSCO of G is equivalent to a self-
adjoint CSCO of G.

Suppose that among the » class operators, n,; are am-
bivalent and 2n, are nonambivalent. Using the unitarity
of the group operators and Eq. (2.15), it is easy to show
that the ambivalent class operators are self-adjoint, while
the nonambivalent class operators are not, i.e.,

cl=c, i=1,2...,n,, (3.102)

Cl=Cp, j=ni+1...,n1+n,. (3.10b)

However, out of the 2n, non-self-adjoint operators
(C;,Cj) we can construct another 27, self-adjoint opera-
tors,

I=j—n;=12...,n,. (3.11)
Thus we have a set of n self-adjoint operators
C'=(Cy,...Cp Ky, ... Ky, K, oKy ) (3.12)

Repeating the proof of Theorem 3.4, C’ must be a CSCO
of G, while, according to Theorem 3.3, any CSCO of G is
necessarily equivalent to C’.

The significance of Theorem 3.5 is that from now on in
proving theorems we can always assume that the CSCO
of G is self-adjoint and utilize all the results obtained in
quantum mechanics related to the self-adjoint CSCO.

C. The finding of the CSCO of G

If all the primitive characters of G are known, it is
trivial to find the CSCO of G (see Sec. VIL.C). If the
characters are unknown, we can use the following steps to
find the CSCO of G.

First, we pick-out one class operator, say C;, from the
n class operators and seek its eigenvector,

Q=2 qC;, (3.13a)
j=1
C:0=M\0 . (3.13b)
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This amounts to diagonalizing the matrix Z(C;),

n
3 (CE—Ai83)gj=0, k=1,2,...,n. (3.14)
ji=1 ‘
The characteristic equation is
det||Ck—A;8u || =TT (A =A™=, (3.15)

where the integer m, is the degeneracy of the eigenvalue
A{®. If all the degeneracies m, are equal to one, i.e., if C;
has n distinct eigenvalues, then the single operator C; is a
CSCO of G. Conversely, if for a certain eigenvalue A{?’
the degeneracy mg>1, then C; is not a CSCO of G.
From Eq. (3.14) we can obtain mg linearly independent
eigenvectors Qj, ..., 0., 5 belonging to the eigenvalue
AP, They span a mg-dimensional eigenspace Lg of C;.
In such a case, we have to pick another class operator, say
Cj, and make linear combinations of Q,,...,Q, g SO

that they become eigenvectors of C; as well. If in the
space Lg the eigenvalues of C; are all nondegenerate,
then ( C;,C;) will be the CSCO of G; otherwise we have to
add more operators, until we find a set of operators,
C=(Cy,...,C)), whose eigenvalues have no degeneracy,
in which case C is the CSCO of G.

The CSCO for all point groups and for permutation
groups S, with n up to 14 are listed by Chen et al.
(1977a,1977¢). It is found that the number / of the class
operators contained in the CSCO for the above groups is
equal to one, two, or at most three. Hence [/ is much
smaller than the number of classes, ! <<N. This fact has
great practical significance for the eigenfunction method.

Suppose that C =(C,, ..., C;) is a CSCO of G. With
known eigenvalues A\"’ of C;, it is easy to find a single
operator

1
C= 2 kiCi , (3163)
i=1
k; being coefficients properly chosen, such that C has n
distinct eigenvalues

!
AW = 2 k.-kﬁ-”)

i=1

(3.16b)

Consequently we can choose this single operator C as the
CSCO of G. The advantage of choosing a single operator
as the CSCO of G is obvious when a computer is used in
practical calculation.

In the following, the CSCO of G can be understood
either as Eq. (3.1a) or as the single operator (3.1b).

The n eigenvectors of C,

n .
oW= > qi(v)ci, v=12...,n, .

i=1

(3.17)

form an orthonormal and complete set in the class space.
By the definition of the scalar product [Eq. (2.20)], the
orthonormal and completeness conditions are

n
S gigi g =8, ,

i=1

(3.18a)

Rev. Mod. Phys., Vol. 57, No. 1, January 1985

n
2 g‘.qi(v)*qj(.v):ﬁij . (3.18b)
v=1

As mentioned before, the abstract group is a special
case of the rep group. The above theorems and equations
also hold for abstract groups by letting m =1,
|g| =|G|, n=N. In order to illustrate this, in the fol-
lowing example we consider only the m =1 case, leaving
the m > 1 case to Sec. XIV.A.

D. Example: The CSCO of the point group C,,

The point group C, has eight elements, (CgY,
i=1...,4, 04, 0y, 044, and o4. Here we use the nota-
tions of Bradley and Cracknell (1972). For example, o,
stands for a reflection plane with its normal in the x
direction, and o4, for one with a normal midway (45°) be-
tween the x and y axes. The group C,, has five classes,
and its class operators are

Ci=e, C,=Cy, C3=C2;+C4—z7

(3.19)
Ci=0, +oy, Cs=04,+0gp -

From the group table of C,4, (see Table IV below), the
class multiplication table can easily be constructed, as
shown in Table II.

From Eq. (3.6) and Table II, we can construct the
natural rep of the class algebra. For instance,

00020
00020
D(Cy)=0000 21,
11000
00200

(3.20)
00002
00002
D(Cs)=/00020
00200
11000

Clearly, we should choose as the members of a CSCO
class operators having as many as possible distinct eigen-
values. C; has only one distinct eigenvalue, 1, while C,
has two distinct eigenvalues, *+1, so they are not good
candidates. Let us try to choose C4 (in fact C; or Cjs
would be equally good). By diagonalizing Z(C,), we
find the following eigenvalues and eigenvectors:

TABLE II. The class multiplication table of Cj,.

C C, C; [ Cs
C2 Cl C3 C4 C5
C; Cs 2C,+2C, 2Cs 2C,
C, C, 2Cs 2C142C, 2C,
Cs Cs 2C, 2C, 2C;+2C,
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A4=2, double degeneracy , Q¥ =C,+C,+C, ,

Q¥ =C3+Cs . (3.21a)

Ag4=—2, double degeneracy , Q\ Y =C,+C,—C, ,
0y ?=C;—Cs . (3.21b)
As=0, no degeneracy , Q®=C,—C, . (3.21¢)

Due to the twofold degeneracy for A,=+2, C; is not a
CSCO of C4,. We have to pick another class operator,
say Cs, and recombine Q(IZ) and Q(zz), as well as Q(,_Z)
and Q572 so that they are eigenvectors of Cs. As can be
checked, the eigenvector Q' for the single root of C, is
already an eigenvector of Cs; with eigenvalue 0. Using
Table II, we can get the simultaneous eigenvectors of
(C4,Cs), as listed in Table IIL.

In Table III, .#" is the norm decided by Eq. (3.18a).
Now all the degeneracies have been lifted, and thus

(C4,Cs) is a CSCO of C,4,. We may as well choose
C=2C4+Cs (3.22)

as the CSCO of C,,, since it has five distinct eigenvalues,
6,2, —6, —2, and 0. In Sec. VI.G, we shall see that the
eigenvalues of the CSCO of G can be used to label in-
equivalent irreps of G.

E. The projection operator

From Egs. (2.18b), (3.17), and (3.2a) we have

CQ(V)Q(y)=vQ(v)Q(u)=“Q(v)Q(u) .

Equation (3.23) shows that the product Q”Q®* is an
eigenvector of C with the eigenvalue v or u. Since the
eigenvalues of C are all nondegenerate, we must have

VoM =5,n,0", (3.24)

where 7, is a constant depending only on v. When we let

(3.23)

PY=y oW, (3.25)
we have
PWPpHI—5, PV (3.26)

Hence P are idempotents.
From Eq. (3.18b), we get the inverse expansion of
(3.17),

"
Ci=3 gq”" Q™.

v=1

(3.27)
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Multiplying Eq. (3.27) from the right with Q*), and us-
ing (3.2b) and (3.24), we obtain
ANV =184 . (3.28a)

Letting i be the identity class and noting AL"):ge =1, we
then have

0y =g . (3.28b)
We combine Egs. (3.25), (3.27), and (3.28a),
Ci= i AMYPY) (3.29)
v=1
With C; =e, we obtain
(3.30)

e= i P,
v=1

Equation (3.30) is the decomposition formula for the
identity operator of the rep group G. Notice that the rep
group is defined in the representation space L of the
abstract group G and Eq. (3.30) is valid only in the space
L.

Suppose that .Z" is an arbitrary rep space, which is a
subspace of L; then the subspace

ZL,=PV¥, £CL, (3.31a)

either vanishes or is necessarily an eigenspace of the
CSCO of G,

CL =vSL,. (3.31b)

Since C is assumed to be self-adjoint, the different eigen-
spaces are mutually orthogonal,

(ZL,| ZL,)=0 if ve£&v' . (3.32)

Combining Egs. (3.26), (3.30), and (3.31), we arrive at the
following theorem.
Theorem 3.6. The eigenvectors P are projection
operators onto the eigenspaces of the CSCO of G.
Theorem 3.7. In any rep space .£ CL, the possible
eigenvalues of the CSCO of G cannot go beyond the n
sets determined in the class space of G.
Proof. According to Eq. (3.30), for any rep space
£ CL, we have
n n
L=eL=J PV ¥=F 0.7,. (3.33)

v=1 v=1

If .#, is an eigenspace of C belonging to an eigenvalue p
other than those determined in the class space of G, i.e., if

TABLE III. The eigenvectors of the CSCO of Cy4,. The first column is the Mulliken notation for ir-

reducible representations of point groups.

A.4,A.5 N Cl Cz C3 C4 C5
A, 2,2 V1/8 1 1 1 1 1
B, 2,2 V'1/8 1 1 —1 1 —1
A, —2,-2 V1/8 1 1 1 —1 —1
B, —2,2 V1/8 1 1 —~1 —1 1
E 0,0 V1/8 2 -2 0 0 0
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CL =u"L, p&lv= ,nl, (3.34)
then we must have
(Z,|L,)=0 forv=12,...,n, (3.35)

due to Eq. (3.32).
that

By virtue of Eq. (3.33), this implies

(L Lu)=0.

Since .Z is an arbitrary subspace in L, .£, is necessarily
a null space in L.

Theorem 3.8. In the group space of G, the CSCO of G
has, and only has, the »n distinct sets of eigenvalues
ALY, A, v=1,2,...,n, determined from the
class space of G.

Proof. Here “has” is trivial, since the group space con-
tains the class space as its subspace, while “only has” fol-
lows from Theorem 3.7.

Theorem 3.9. The rep spaces .Z, which are eigen-
spaces of the CSCO of G belonging to different eigen-
values are inequivalent.

Proof. For succinctness in exposition, the CSCO of G
is assumed to consist of only a single operator C, as given
by Eq. (3.16a). If the two rep spaces ., and ., with
different eigenvalues vs£v', were equivalent, then the ma-
trices of the CSCO of G in the two rep spaces must relate
to each other as

DY C)=TDY(C)T!,

(3.36)

(3.37)

where T is a matrix. On the other hand, since .¥, and
£, are eigenspaces of C, the representative matrices of C
in .Z, (.£,) must be equal to the unit matrix multiplied
by the eigenvalue v (v'):

DY(C)=v1, DY(C)=v"I. (3.38)

Substituting Eq. (3.38) into (3.37), we get v=+', in con-
tradiction with the hypothesis. Thus the theorem is
proved. Combining the above discussions, we have
Theorem 3.10.

Theorem 3.10. The group space L, of G can be
decomposed into n rep spaces, orthogonal and ine-
quivalent to each other:

n
L,=SeL, L, (3.39)

v=1

=P(V)Lg

In order to make clear the difference and connection

between the abstract group G and its rep group G defined
in the space L, let us reinterpret the above results in terms

of the abstract group G.
The group space of G is designated as

Le={Ry:s=12,..., |G|} (3.40)
with the metric tensor
(R, |R,)=5, . (3.41)

The abstract group G has N linearly independent class
operators, C;, j=1,2,..., N, which span the class space
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L N of é
Suppose that € is a CSCO of G and its eigenvectors in
Ly are P

ep™ ’

—_-#,.ﬁ""’, i=1,2,...,N. (3.42)

Then parallel to Eq. (3.30) we have the decomposition

NA
()
e=2P”‘ .

i=1

(3.43)

and corresponding to Theorem 3.7 we have Theorem 3.7'.

Theorem 3.7'. In any rep space, the possible eigen-
values of the CSCO of G cannot go beyond the N sets,
Uiy o s N determlned from the class space Ly of G.

Let C;, €, and P ®1) be the corresponding operators of -
C,, ‘5 and P ) , respectively, in the rep space L.
Among the N class operators Cy,...,Cy, now only n
are linearly independent, and these can be chosen to be
identical to those in (2.16). In the space L, Eq. (3.42) be-
comes

eP*" =p,P" i=12 ... N, (3.44)

where P*' are linear combinations of » linearly indepen-
dent class operators Cy, ..., C,. According to Eq. (3.44)
and Theorem 3.7’ the set {P ”‘) .., PN )} exhausts all
the eigenvectors of € in L, and since L, is n dimension-
al, there are n and only n linearly independent eigenvec-
tors of &, say

P* i=1,2,..

.,n, (3.45)

where uy, . . ., 1, are n distinct eigenvalues of €. There-
fore, € is a CSCO of the rep group G. (However, the re-
verse is not true, i.e., if Cis a CSCO of the rep group G,
then the corresponding operator C is not necessarily a
CSCO of the abstract group G. In a manner similar to
the proof of Theorem 3.7, it can be shown that

P*' =0 forj=n+1,...,N, (3.46)
that is, for those u; which are not exgenvalues of the
CSCO of the rep group G, the operators P"™ are identi-
cally null operators. It is seen that Egs. (3.30), (3.43), and

(3.46) are self-consistent.
In summary we have

PML —P™'L fori=1,2...,n, (3.472)

PYWL =pP"'L =0 forj=n+1,...,N, (3.47b)
where uy, . . ., u, are eigenvalues of the CSCO of the rep
group G. Later we shall show that P P are the projec-

tion operators onto the irreps u; of G. Therefore, Egs.
(3.47) tell us that in the rep space L, only the irreps

Ui+ - s iy O G are acceptable.
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IV. THE INTRINSIC GROUP

A. The intrinsic group of an abstract group

The rep space L, of G defined by Eq. (3.39) is in gen-
eral reducible. According to Theorem 2.3, if we can find
extra operators which commute with G, then the rep gen-
erated by L, can be further reduced by decomposing L,
into eigenspaces of these operators. Theorems 2.6 and 3.1
tell us that it is impossible to find such extra operators
from the group G itself. In Sec. I.B we see that for the
rotation group SO;, there is an intrinsic rotation group
SO; commuting with and anti-isomorphic to the group
SO;. Although the CSCO-I of SO; is equal to that of SO,
and thus does not provide new operators, the CSCO-I J,
of the subgroup SO, of the intrinsic group SO; does pro-
vide a new operator. In parallel to this, Chen, Wang, and
Gao (1977a) have introduced a so-called intrinsic group G
for any non-Abelian group G, using the CSCO-I of the
subgroups of G, which play the same role as J, for SO;,
to decompose the rep space L,,.

We begin with the introduction of the intrinsic group
for an abstract group, or equivalently for a rep group with
m=1. To simplify notation, we temporarily use
R,S,T,U, ... to denote the elements of a group G which
span the | G | -dimensional group space Lg.

Definition 4.1. For each element R of a group G, we
can define a corresponding operator R in the group space
L through the following equation:

RS =SR forall SEG . 4.1)

The group G formed by the totality of the operators R is
called the intrinsic group of G, or simply the intrinsic
group G if no confusion will arise.

Let us first show that the operators R do form a group.
According to Eq. (4.1), the operation of R on a vector S
in Lg is to change it into another vector SR. It should be
emphasized that (4.1) is the defining equation for the
operator R rather than an identity relation. Hence it is
not permissible to multiply Eq. (4.1) from the right by
another vector T of Lg, i.e.,

RST-£SRT . 4.2)

Instead, we should regard ST as a new vector in Lg, and
then use Eq. (4.1) to get

RST=R(ST)=STR . 4.3)
Suppose the multiplication relation for the group G is

RS=U. (4.4a)
From (4.1) and (4.3) we have

SRT=STR=TRS=TU=UT . 4.5)
Since T is an arbitrary vector in Lg, one has

SR=U. (4.4b)

Therefore, there is a one-to-one correspondence between
the elements R and R, and Eq. (4.4) shows that the totali-
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ty of R form a group G which is anti-isomorphic to the
group G.

Besides the property of being anti-isomorphic to G, the
intrinsic group G has another important property, name-
ly, that it commutes with the group G. From Eq. (4.1)
one has

SRT =STR forall TELg; . (4.6)

Comparing Eq. (4.3) with (4.6), and noting that T is an
arbitrary vector in Lg, one has

RS =SR , (4.7a)

or

[R,S]=0. (4.7b)

Therefore, G commutes with G.

Note the essential difference between Egs. (4.1) and
(4.7a). The latter is an identity, while the former is not.
The difference comes from the fact that in (4.1), S is re-
garded as a vector in L, while in (4.7a), S is an operator
in Lg. The rule for determining whether a group element
S is to be regarded as a basis vector or as an operator is
very simple. If S is the last element behind an intrinsic
group operator, then .S should be looked upon as a basis
vector; if S is followed by other group elements of G,
then S should be regarded as an operator.

We know that if G is anti-isomorphic to
G={R,S,T, ...}, then G is isomorphic to the group
G'={R-1,S~1T~! ...}. The difference between the
groups G and G’ is merely a matter of nomenclature for
the elements. Hence we see that the intrinsic group G is
“essentially” isomorphic to G. Consequently, all con-
clusions regarding the group G also apply to the intrinsic
group G. For example, if C; is a class operator of G,
then by replacing all the elements R in C; by R, we ob-
tain the class operator C; of G; if C= 3, k;C; is the
CSCO of G, then C= 3, k;C; is the CSCO of G; if G
has a subgroup chain GDG(1)DG(2)D - - -, then G has
a subgroup chain GDG(1)DG(2)D - -+ ; and if C(i) is
the CSCO of the subgroup G(i), then C(i) will be the
CSCO of G(i), etc.

Theorem 4.1. The CSCO of G and G are equal.

Proof. To prove the theorem, one need only show that
the class operators of G and G are equal. From Eq. 4.1)
one has

8; _ 8
CR - 2 R(i,K)R =R z R(,-,K)=RC,- Y (4.8)
k=1 k=1
and from Eq. (2.18a) one has
C;R =RC; . (4.9)

Because R is an arbitrary basis vector in Lg, from Egs.
(4.8) and (4.9) we have ‘

C,=C;, i=12,...,N. (4.10a)
Therefore,
C=cC. (4.10b)
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Equation (4.10b) is a generalization of (1.6¢) for SO;.

It must be emphasized that although the class operators
of G and G are equal, the class operators of the subgroup
‘G(i) and G(i) are not equal, since the former commute
only with the subgroup G(i), whereas the latter commute
with the whole group G.

B. The intrinsic group of a representation group

Now consider the intrinsic group G of a rep  group G
with m >1. We first define |g| operators R; in the
| g | -dimensional group space L, of G by

R;Ry =R R;=n(k,j)Ryj, jk=12,...,8|,

(4.11a)
and define
RY'=e(j,DR;, j=12,..., gl ,
1=0,1,...,m—1. (4.11b)
Then
G={RYj=12...,]g|,1=01,...,m—1} (4.12)

form the intrinsic group G of the rep group G. All the
discussions in Sec. IV.A remain. valid for the intrinsic
group G of Eq. (4.12), with the single exception that now
only |g| intrinsic group operators are linearly indepen-
dent.

From Theorem 4.1 we know that the eigenvector P!
of the CSCO of G is also the eigenvector of the CSCO of
G. -

Equation (4.11a) shows that the group space L, also
forms a rep space for the intrinsic group G,

_ & —
R]Rk= 2 Dik(Rj)Ri’ ],k =1,2, ey ‘gl ’
i=1
_ _ (4.13)

The rep D (G) will be called the regular rep of the intrin-
sic group G.

For the case of m=1, the rep D(G) is referred to as
the inverted rep of the group G by Boerner (1963), since
D(G) is anti-isomorphic to G. D(G) is also anti-
isomorphic to the right regular rep of G (Miller, 1972).

Suppose A4 is an element of the group algebra and A4 is
its intrinsic element,

g| - & =
A= x,'R,', A= ixiRi .

i=1 i=1

(4.14a)

Let D(A) and D(A) be the representative matrices of 4
and 4 in Lg; then we have Theorem 4.2.

Theorem 4.2. The matrices D(A) and D(A) are related
by a similarity transformation, D(A) being the transpose
of D(A).

Proof. The matrix elements of D(A) and D(A4) are
denoted by
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Dy(A)=(i |4 |]), Dy(A)=(i|4|j),  (4.14b)
and are decided by the following equations:
AR; =3 (i [A|jIR;, (4.152)
AR;=R;A=T3 (i [4|J)R; . (4.15b)
i
Taking the Hermitian conjugate of (4.15a), letting

A<>A', and using the unitarity of the group operators,

Ri'MA=ZF G4 DR, (4.15¢)
Comparing Eq. (4.15b) with (4.15c¢), we obtain
GlA1)y=Gali™h, (4.16)

where
G7HAi™)=(R;7"|4 |R7").

According to Theorem 2.5, R,-_1 and R j-l are still vectors
of the group space Lg; therefore the matrices
[1<i= ')A ]i~')|| and ||{j| A |i)|| are similar. Thus
Eq. (4.16) shows that D(A) and D(A) are similar ma-
trices, i.e.,

D(A)=TDAT. (4.17)

C. Some remarks

The following points are worth noting.

(1) From Eq. (4.1) it is seen that, for an Abelian group,
the intrinsic group G coincides with the group G itself.

(2) The intrinsic group element R defined by Eq. (4.1)
is not a conjugate element of the group element R. From
(4.1), a formal relation between R and R can be written as

R=SRSs™! (4.18)

when R acts on S. It should be stressed that Eq. (4.18) is
also not an identity. It only shows that when acting on S,
R is equivalent to the operator SRS ™!, and that while
acting on another vector T, R will be equivalent to
TRT~!. In other words, the element S in Eq. (4.18) is
not fixed. It changes according to which vector the
operator R is acting upon. This is the most important
point, albeit a little tricky, for the understanding of the
intrinsic group.

In contrast, a conjugate element T of the group element
R is

T =S,RS;!, (4.19)

where S is a fixed element of G. Equation (4.19) is an
identity relation, and T is an element of G.

(3) It is important to distinguish between the subgroup
G(1) of the intrinsic group G of G, and the intrinsic
group G'(1) of the subgroup G(1) of G. G(1) is defined
in the whole group space of G, while G'(1) is defined in
the group space of G(1). Let R, R(1), R(1), and R (1)
be the group elements of the groups G, G(1), G(1), and
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G'( 1), respectively. The definitions for the groups G(1)
and G'(1) are, respectively,

R(1)R =RR(1) forall REG,
R'(1)S(1)=S(1)R (1) for all S(1)EG(1) .

(4.20a)
(4.20b)

Obviously, G(1) commutes with the whole group G,
while G ‘(1) commutes only with the subgroup G(1),

[G(1),G]=0,
[G'(1),G]=£0,
[G'(1),G(1)]=

The CSCO of G(1) and G(1) are commutative but not
equal, while the CSCO of G'(1) and G(1) are equal.

(4) For a Lie group G, Eq. (4.1) defines an intrinsic Lie
group G. Chen, Wang, and Gao (1983) showed that the
intrinsic rotation group SO; is just the group describing
rotations around the intrinsic coordinate axes of a rotat-
ing system, and in the group parameter space, the group
G and its intrinsic group G are precisely the first and
second parameter groups discussed in great detail by
Eisenhart (1933) and Racah (1951).

(4.21)

V. THE CSCO-Il AND CSCO-llI
OF A GROUP G

A. For a canonical subgroup chain

Now let us seek the eigenvectors P} of the CSCO of G

in the group space Ly:

cPi=vP{", v=1,2,...

. (v) f
PV= > uyR; ;. (5.2)
i=1 :

,h, I=12,...,m,, (5.1

where u,;; are complex numbers; as specified in Theorem
3.8, the n distinct eigenvalues v of C in L, are the same
as those obtained in the class space L,. Cis a CSCO for
L, but is in general no longer a CSCO for the |g]|-
dimensional group space L,. Therefore, the eigenvalues v
are in general degenerate in L,. The degeneracy of v is
denoted by m, in Eq. (5.1). For a given v, from (5.1) we
can obtain m, linearly independent eigenvectors P},
which can be chosen arbitrarily subject to the orthonor-
mality condition. The m, eigenvectors form the eigen-
space L, of C,

L,={P"1=0,1,...,m,}, (5.3)

and the group space L, is decomposed into the direct sum
of the n eigenspaces L, as indicated in Eq. (3.39). Di-
mension conservation requires that

n
zmv:lgl .
v=1

With P (") as the new basis for L,, the matrices of the
operators A and A (or their transpose A) of Eq. (4.14a)
now become quasidiagonal,

(5.4)
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D'(A)=UDA)U'= zeaD w(d), (5.5a)
'(A)—UD(A U—" 2 @D(v)(A) (5.5b)

v=1
where the matrix elements U, ;=u};;, V)(A) and

D,)(A) are the representative matrices of 4 and 4 in the
elgenspace L,. B _
From Eqgs. (4.17) and (5.5), with D(A4)=D(A), we have

D'(A)=T'D"(AT'~, T'=UTU! (5.6a)
i.e.,

n — n ~

S oD (A)=T"3 &@D (AT ~'. (5.6b)

v=1 v=1

Since (5.6b) holds for any element A of the group algebra,
T’ has to be also quasidiagonal,

n
=S eT, . (5.6¢)
v=1
From Egs. (5.6b) and (5.6¢) we immediately have
D (A)=T{, D (AT{;" forv=1,2...,n (5.7)

This shows that, as in L, the representative matrices of
A and A4 in the eigenspaces L, are still related by similar-
ity transformations. Since the determinant of a matrix is
invariant under matrix transposmon this in turn means
that in L, the operators A, A4, and A have the same
characteristlc equations and therefore have the same
eigenvalues. This leads to Theorem 5.1.

Theorem 5.1. In the eigenspace L, of C, the eigen-
values of an operator A4 defined in L, and its intrinsic
operator A are exactly the same.

To lift the degeneracy of v entirely, or to fix P{¥) unam-
biguously, we have to add extra operators to the operator
set C, so that it becomes a CSCO of the | g |-dimensional
group space L,. These extra operators must commute
with C and with one another. By virtue of Theorem 3.1,
the other class operators of G that are not included in C
are useless for lifting the degeneracy. The possible candi-
dates for these extra operators are the CSCO of subgroups
of G. Suppose that G has a subgroup chain

GDOGl(s), G(s)=G(1)DG(2)D -~ . (5.8a)

We use C(i) to designate the CSCO of the subgroup G(i)
and C(s) the set of operators (C(1),C(2),...). C(s) will
be called the CSCO of the subgroup chain G(s). Obvious-
ly, the operators C (i) commute with C as well as with
one another.

Due to the anti-isomorphism between G and G, corre-
sponding to (5.8a), we have the intrinsic subgroup chain

GDOG(s), G(s)=G(1)DG(2)D - - - (5.8b)

and the CSCO C(s)=(C(1),C(2),...).
with both C and C(s),

C(s) commutes

[C(s),C1=0, [C(s),C(s)]=0. (5.9)
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Since C=C [see Eq. (4.10b)], C does not provide any new
operators. However, C(s)5C (s); therefore the operators
C(s) are also candidates for these extra operators to be
added to the CSCO of G.

Definition 5.1. If, starting from the group G, we can
find a group chain (5.8a) and the corresponding operator
set K,

K =(C,C(s),C(s)), (5.10a)

C(s)=(C(1),C(2),...),

_ _ (5.10b)
C(s)=(C(1),C(2),...),

such that K is a CSCO for the |g |-dimensional group
space Lg, then K is called a CSCO-III of G, while

M =(C,C(s)) (5.10c)

is called a CSCO-II of G, and GDG(s) is said to be a
canonical subgroup chain.

As will be seen later, the meaning of the canonical sub-
group chain is identical to the usual one (e.g., see Butler
and Wybourne, 1976a).

It is clear that the operator set K in (5.10a) is a general-
ization of (J2,J,,J,) for SO;.

In many cases, the operator set K in (5.10a) is over-
determined in the sense that the following K may already
be a CSCO in L,,

K=(C',C'(5),C'(s)), (5.11a)

C'(s)=(C"(1),C'(2),...),

_ o (5.11b)
C'(s)=(C"(1),C"(2),...),

where C’ and C'(i) involve only some of the class opera-
tors contained in the CSCO of G and G (i), and thus are
not the CSCO of G and G(i), respectively. For examples,
see Sec. VIIL.

Furthermore, in analogy with Eq. (3.16a), each operator
set C’(i) can be assumed to consist of only a single opera-
tor, and we can use a single operator

A= d;C'(i) (5.12a)

and

A=3d,C'(i) (5.12b)
i

to replace C’(s) and C '(s), where the coefficients d; are

properly chosen so that

K=(C",4,4)

is a CSCO of L,.

The above consideration leads to a more general defini-
tion for the CSCO-II and -III of G.

Definition 5.1' A set of commuting operators
K =(C',4,4), with C’ being commutative with G, and 4
an operator set or an operator in L, is called a CSCO-IIL

(5.12¢)
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of G if K is a CSCO of L, and
M=(C',A)

is called a CSCO-II of G.
Therefore, each of the operator sets K of Egs. (5.10a),

(5.12d)

(5.11a), and (5.12¢) is a possible form of the CSCO-III of

G. In the following, we still use K =(C,C(s),C(s)) to
denote a CSCO-III of G, keeping in mind that actually K
could take other forms as well.

B. For a noncanonical subgroup chain

In the above discussion, G D G(s) is assumed to be a
canonical subgroup chain. Now let us pass on to the gen-
eral case where GDGf(s) is not a canonical subgroup
chain. In such a case, (C,C(s),C(s)) is not a CSCO in L,
and thus is not a CSCO-III of G.

According to Dirac (1958, Sec. 14), any set of commut-
ing operators can be made into a complete set of commut-
ing operators by adding certain operators to it. Let us
first add one operator, say &, which can always be written
as a linear combination of | g| elements in the fundamen-
tal set F, £= 3, &;R;, & being complex numbers, since
we are working in the group space L,. Corresponding to
&, there is the intrinsic operator £= ¥, £;R;. Thus the
additional operators always - occur pairwise. If
(C,C(s),£,C(s),E) is not yet a CSCO of L,, we add
another pair of operators 1 and 7, etc., until

(C,C"(5),C "(s)) (5.13a)
is a CSCO of L, where
C"(s)=(C(s),&,1,...),
(5.13b)

C"(s)=(C(s),&,7,...) .

Hence we can always find a CSCO-III of G regardless
of whether G D G(s) is a canonical subgroup chain. To be
specific, in the following, we shall assume that GO G(s)
is a canonical subgroup chain unless otherwise stated.
For the noncanonical case, all we need to do is to reinter-
pret the meaning of C(s) and C(s) in accordance with
Eq. (5.13).

In analogy with Eq. (3.16a), we can choose a single
operator

K=C+ 3 [o;C(i)+B;C(i)] (5.14)
1
as a CSCO-III of G, where the coefficients a; and 3; are
properly chosen so that K has | g| distinct eigenvalues.

The CSCO-II for point groups is given by Chen, Wang,

and Gao (1977a).

VI. FULL REDUCTION OF THE REGULAR
REPRESENTATION »
A. The eigenvectors of the CSCO-llI

Let PV be the eigenvectors of the CSCO-III of G in
the group space L,
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C v
C(s) |PV= |a |P{M? (6.1a)
C(s) b

Using Eq. (4.1), we can rewrite the third equation in (6.1a)
as

C(s)PV°=PM°C (s)=bP\"" , (6.1b)
where a (b) denotes a set of eigenvalues

a=(ApAy...), b=(Apky,...), (6.1c)
A; (X;) being the eigenvalue of C (i) [C(i) )], if C(s ) [C()]

is interpreted as in Eq. (5.10b); if C(s) [C(s)] is interpret-
ed as in Eq. (5.12), then a (b) denotes the eigenvalue of 4
(4).

According to Theorem 5.1, in the eigenspace L, of C,
C(s) and C(s) have exactly the same, say h4,, distinct
eigenvalues,

(6.1d)

a,b=a;,a,,... »@h, >

where h,, is an integer to be decided below. In the follow-
ing, a(b) is also used as an index enumerating the eigen-
values, and thus we can write a,b =1,2, ..., h,,.

According to the hypothesis that (C,C(s),C(s)) is a
CSCO of L, it is necessary that (C(s),C(s)) be a CSCO
in each of the eigenspaces L,, v=1,2,...,n. Thus the
total number of distinct eigenvalues (a,b) of (C(s),C(s))
in L, has to be equal to the dimension of L,,

hi=m, . 6.2)

This leads to Theorem 6.1.

Theorem 6.1. The dimension of the eigenspace L, of C
is necessarily a square of an integer.

From Eqgs. (5.4) and (6.2) we get

n
S hi=|g| . (6.3)
v=1 ‘
The eigenvectors P‘i")b can be expressed in terms of the
basis vectors of Lg,
I3

2 uvabt i (64)

i=1

P(V)b

The eigenequation (6.1a) can be written in matrix form,

e c v
<l C(S) ])- a 8,1 uvab’j=0. (6.5)
i=1 C(s) b

The h, eigenvectors P, PY%, . .. ,P,(,:)b, with the
same v and b, span an eigenspace L ,), of (C,g(s)). Ac-
cording to Theorem 2.3 and the fact that (C,C(s)) com-
mutes with G, L,), is necessarily a rep space of G. Con-
sequently, the eigenspace L, of C is further decomposed
into A, rep spaces of G,
hV
= 23 &Ly, Lop=
b=1

(PMa=1,2,...,h,}. (6.6
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Analogously, the eigenspace of (C,C(s)),
Liye={PMb=1,2,...,h,},

is a rep space of the intrinsic group G, since (C,C(s))
commutes with G. Hence the space L, can also be
decomposed into h, rep spaces L, of G,

(6.7a)

= 2 oL, . (6.7b)
a=1

The eigenvectors of the CSCO-III form an orthonormal
and complete set in the group space Lg,

(P P(’/)b’ > =8, 8aaBpp (6.8a)

n h’V

>3 E PPY (PP | =1. (6.8b)
v=la=1b=1

Using Eq. (6.4), (6.8) becomes
g |
utab,iuv’a’b’,i:8w'8aa’8bb’ » (6.92)

i=1

n ’V hV

2 > > u:ab,iuvab,jZSij . (6.9b)
v=1

a=1b=1

With the help of Eq. (6.9b), the inverse expansion of Eq.
(6.4)is

h,
R;= E upea PP, i=12,...,|g|. (610

T,M=
u Mf‘

B. The representations D™?(G)
and D™M#(G)

Since C commutes with the group elements and in turn
: (pn)d
with P4,

CPéu)dP;v)bz_HPc(y)dPév)b___ Péu)dp‘;v)b‘ 6.11)
Therefore,

(u—v)PPEpM—q . (6.12a)
From Eq. (6.1a), it follows that

C(s)(PHIPVby = c(PHepVE) | (6.12b)

é(s)(Péu)dPa(v)b) =Pc(u)d6(s)Pa(v)b

=b(PMpMP) (6.12¢)

Furthermore,

PL(.'u)d( C(S)P,;V)b) =aP(y)dP(v)b

=(PMC (5))PVo=dPp[V?

Thus

(@ —d)PPpMb—0 . (6.12d)

Due to the nondegeneracy of the eigenvalues of the
CSCO-III, Eq. (6.12) implies that

Pc(#)dPéV)b S,uvaadgabcp(wb (6.13)
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where £, is a constant to be decided.
Applying R; of Eq. (6.10) to P*', and using Eq. (6.13),
one gets

R;PY= 2 DYROPM (6.14a)
c=1

with

DY (Ry)=E bt yea,i - (6.14b)
On the other hand, from Egs. (6.14a) and (6.8a),

DY%R;)=(P?|R; | P . (6.14c)

From Egs. (1.12), (6.14c), and (6.8), we have

D™E(R;, D™ (R;)=n(i,j)D*(R;;) . (6.14d)

Equation (6.14) shows that the eigenvectors P."°

(a=1,2,...,h,) form the basis for the bth rep (v) of the

rep group G with the rep matrices D"¥R,),
b=12...,h,. _

Similarly for the group G one has

R,PM = 2 D@BR,)PM? (6.152)

Dy (R, )=t spa (6.15b)-

= <P,§”"’ |R; | P, (6.15¢)

D™ 4R;)D™R;)=n(j,i) DR} . (6.15d)

Equation (6.15) shows that the eigenvectors P.*°
(b=1,2,...,h,) form the basis of the ath rep (v) of the
intrinsic rep group G with the rep matrices. D4(R;),
a=12,...,h,.

C. The standard phase choice for P{"?
The eigenvector P."® in Eq. (6.1a) can be determined
only up to a phase factor. Until now the phase has been
assumed to be chosen arbltrarlly From Eq. (6.13) it is
seen that the constant £\, depends on the phase choice of
P{"®, Let us make the ansatz

PéV)aPéV)b=§(V)Pc(V)b (6.16)

where £ depends only on v, and later we shall show how
this can be achieved by a suitable phase choice.
With Eq. (6.16), (6.14b) now becomes

Dé:)(R )_g(wuvcat . (6.17)
From Egs. (6.9a) and (6.17)
g |
i IDI(R;) | 2= £V |2 (6.18)

i=1

Summing Eq. (6.18) over the index a from 1 to 4, and us-
ing the unitarity of the rep D, we obtain

|E %= |g| /h,

Choosing £ to be real positive, we have
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M=(|g|/h ). (6.19)
Hence Eq. (6.13) becomes
PMAPME =8, 8ual |8 | /h,) VAR (6.20)

From (6.20) it is seen that the real positive choice for £
corresponds to the requirement that the coefficient Uyaa,e
in front of the identity e in P(")“ be always real positive,

Uyeae>0, a=1,2,...,h, . (6.21)
Equations (6.14), (6.15), (6.4), and (6.10) reduce to
hV
RPM= "3 DINRHPY®, ab=1,2,...,h,, (6.22a)
a'=1
R‘iPév)b_____P‘gv)bRi 2 D v) P(v
b'=1
a,b=1,2,...,h,, (6.22b)
DY(R)=D(R)=|g| /b ) s (6.23)
D™(R;)D™(R;)=n(i,j))D™(R;) , (6.24a)
D™(R,)D™(R;)=n(j,)D"(R}) , (6.24b)
g |
PM=(h,/ | g|)"? 5‘, DY(R; ¥R, (6.252)
i=1
n hv hv
=33 3 (h/|g)DP(R)HPM?, (6.25b)
v=la=1b=1

while Eq. (6.9) becomes

(h /|g|)§D‘”’(R *DY(R;)=8,,8,:8a , (6.262)

i=1
n hv h
> 2 (h,/|g| DP(R,*DF(R;)=8,; . (6.26b)
v=la=1b=1

The phase choice of Egs. (6.16) and (6.19) which leads
to Egs. (6.22)—(6.26) is referred to as the standard phase
choice. From (6.21) and (6.23) we know that the steps for
reaching the standard phase choices are as follows.

(1) The coefficient in front of the identity element e in
the eigenvector P\ should be real positive.

(2) Among the 4, reps of G, the phases of the basis
vectors of one rep, say the first one, P\V°=!,
a=2,3,...,h,,can be chosen arbitrarily.

(3) The phase of the eigenvector P."? for b1 can be
fixed by requiring that the coefficient u,,;; in front of a
certain element R; be equal to

(hy/ | g )P R | P (6.27)

where the element R; can be chosen arbitrarily so long as
U yab, ,;&O

Fmally we need to show that the system of eigenvectors
P of Eq. (6.25a) satisfies the ansatz (6.16). Using Eqgs.
(6.25a), (6.22a), and (6.26a), we may soon verify that
(6.16) is satisfied.

From Eqgs. (6.22) and (6.23) it is seen that, under the
standard phase choice, the h, reps DYYG),
b=12,...,h,, become identical; the h, reps D™V'%G),
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a=1,2,...,h,, also become identical, and D"(G) is
identical to D YX(G). Therefore, we have Theorem 6.2.

Theorem 6.2. The reps D™%(G) [ D% G)] with the
same eigenvalue v of the CSCO of G are equivalent and
can be made to be identical to one another by using the
standard phase choice.

D. The irreducibility of D"(G)

Theorem 6.3. The n inequivalent reps DV(G) result-
ing from the decomposition of the group space L, of G
are irreducible.

Proof. Suppose that an h, X h, matrix 4 satisfies

AD"(R;))=D™(R)A4, i=12,..., |g| (6.28a)
or

ZA,,,,D“"(R )= ED;,:?(R,»A,,,C ) (6.28b)
Multiplying both  sides of Eq. (6.28b) by

(h,/|g| )Ds2(R;)*, and summing over i, from (6.26a) we
obtain

Agp =8ap Aec -

This shows that the only matrix which commutes with all
the matrices of the rep D' is a multiple of the unit ma-
trix. According to Theorem 2.4 (the Schur lemma),
D™)X@G) is irreducible.

Similarly, the reps D(G) for the intrinsic group are
also irreducible.

From Eq. (6.3) we have Theorem 6.4.

Theorem 6.4. The regular rep of G contains » in-
equivalent irreps D), n being the number of linearly in-

(6.29)

dependent class operators of G; the number of ti s each
irrep v occurs is equal to its dimension.
This is an extension of the Burnside theore for an
abstract group G.
E. The generalized projection opefator
Let us define the operator P}
172
h
Py = l v pvb
“ lgl ¢
h, g .
=" ﬁ DY(R;)*R (6.30)
lgl /=
From Eq. (6.20),
PYPH =8,,85 P . (6.31a)
It can be easily verified that
et =P . (6.31b)

If (' "a=1,...h u} is the basis for the rth irrep u of
G, it is easy to show that
,(ZV)T=8 (v)¢(u)r .

vyabc (6.31¢)
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There are many names for the operator P.}’, such as the
normal unit (Rutherford, 1948), unit (Dirl, 1977), shift
operator (Bohr and Mottelson, 1969), irreducible symme-
try operator (Folland, 1977), etc. We prefer to call it the
generalized prOJectlon operator (Elliott and Dawber,
1979), and call P, the normalized generalized prOJectlon
operator.

From Eq. (6.30), we can obtain the generahzed projec-

tion operator for an abstract group G with order m 8],

AR I RPNy
E S DYRPFRY,

m|g| 215

v=12,...,N. (6.32)

In the rep space L, due to Egs. (1.11a), (2.13), and (3.36),
the operator becomes

DY(R)*R;, v=1,2,.

(v) _
P i=1

o, v:n+1,...,N, (6.33)

which leads to Theorem 6.5.

Theorem 6.5. In the rep space L, the acceptable or al-
lowable irreps of G are just the n irreps of the rep group
G defined in the space L.

To find the irreducible basis in the space L, one mlght
first decompose the regular rep of the abstract group- G
and construct the generalized projection operator P,,,,,
and then apply it to the vectors in L (Bradley and Crack-
nell, 1972). Since the dimension for the regular rep of the
abstract group Gis m | g|, whereas that for the rep
group G is only |g]|, it is much easier to decompose the
regular rep of G, construct the generalized projection
operator P} of Eq. (6.33), and then apply it to the vec-
tors in L.

Melvin (1956) suggested a factored form for the gen-
eralized projection operator. He considered all operations
h in the group G whose rep matrices in the irrep (v) have
a lone nonvanishing diagonal element equal to one in the
given ath row. The set of operators forms a subgroup
H={4}\. The group G can be expanded in left cosets
of H,

G=SH, (6.34)

where S ={e =s,5,,...,5,} is a set of g coset represen-
tatives (or generators). Then it is easy to show that

g
~TaT ”l S D) 3 k.

o=1 hE€EH

(6.35)

Melvin worked out the factored projection operator P.Y
for all the point groups except the icosahedral groups I
and 1.

Folland (1977,1979) extended Melvin’s technique. He
let

Py =— 'H| ED(‘" (6.36)

be the generalized projection operator for the subgroup H,
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h, being the dimension of the irrep (v). The symmetry
operator for the induced rep (vt G) of dimension gh, was
shown to be

PUIS) =5, PYs =" (6.37)

where the double index oa or 7b is used to label rows or
columns of the induced rep (v1G). If the induced rep
(v1G) is irreducible, then Eq. (6.37) gives the generalized
projection operator of G in terms of its subgroup H.

F. The character

In traditional group theory, the character plays a
predominant role; however, in our new approach, its im-
portance is greatly reduced. In fact, up to now, we have
not explicitly used the character. In this section, we shall
establish a simple relation between the character vector
and the eigenvector of C in the class space.

From Eqgs. (6.25b) and (6.30), we get the decomposition
of the identity,

e= EPL‘,;).

From Egs. (6.31) it is seen that P\ is self-adjoint and
also is an idempotent, the so-called primitive idempotent.
Define

(6.38)

<
i
a8
I

h

v

PY=3 Py . (6.39a)
a=1

From Eq. (6.31a) it is easy to show that

P(V)P(”)::SWP(V) . (6.39b)
According to Egs. (6.39a) and (6.30),

h, & '
PV = -3 xi"*c,, (6.40a)
lel /&
X=TrD"(R) for RE class i , (6.40b)

where X 5-") is the character, or primitive character, of the
class i in the irrep (v).

Obviously, P is an eigenvector of C with eigenvalue
v. Moreover, Eq. (6.39b) is precisely Eq. (3.26). Hence
the operator P in (6.39a) resulting from a contraction of
the eigenvectors Py of the CSCO-III in L, is identical
with P in Eq. (3.25). Comparing (6.40a) with (3.25),
one has ‘

e _yrn o L g (6.41a)
1 - i . .
|8 Ny
Letting i be the identity class and using Eq. (3.28b),
h? ‘
—2 v
n = . (6.41b)
We choose the phase of 7, so that it is real positive,
-1 v
N, =—75 . (6.42)
v I g [ 172
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Substituting Eq. (6.42) into (6.41a), we get a simple rela-
tion between ¢;* and X",

W g |2 . (6.43)

Therefore, the orthonormality and completeness condi-
tions, (3.18a) and (3.18b), for the eigenvectors of the
CSCO-I are just the two orthogonal theorems for the
character,

n i ’

3 S yr=s,,. (6.44a)
i=1 lg|

S x5 6.44)
gl %X,- X;"=8; . (6.

Either (6.44a) or (6.44b) can be used as a criterion for
the irreducibility of a rep.

From Eq. (6.44) we can easily reestablish the theorems
involving the primitive characters. They are discussed
elsewhere and hence will be omitted here.

From Egq. (3.4) we know that the eigenvalue of a class
operator C; is a function of the eigenvalue of C,

AV =F;(v) . (6.45)
By taking the trace of
8;
DY(C)= 3 DR ) » (6.46)
k=1
we get
(v) h" (v)
X' =—N". (6.47)
From Eqgs. (6.45) and (6.47) we obtain
(v) h'V ’
Xi =?F,-(v) . (6.48)

This shows that the characters of the n classes are
functionally dependent and uniquely decided by the eigen-
value v. Since the equality of the characters is the neces-
sary and sufficient condition for two irreps to be
equivalent, Theorem 6.6 follows.

Theorem 6.6. The equality of the eigenvalues v of the
CSCO of G is the necessary and sufficient condition for
two irreps to be equivalent.

G. Summary and discussion

Representation group theory includes the theory for
abstract groups as a special case of m=1. Therefore, all
the important theorems for the finite abstract group have
been reestablished through a quite different route from
the usual one. The traditional approach relies heavily on
the character theory, whereas the new approach is based
on decomposition of the regular rep space by a set of
commuting operators. The former approach may seem to
be more elegant from a mathematical point of view.
However, it has the fatal drawback that it does not pro-
vide us any practical method for reducing the regular rep.
The new approach, though a bit lengthy in proving some
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theorems, is very instructive in nature. It not only offers
more insights into group structure, revealing the duality
between the group G and its intrinsic group G, but also
gives a simple and universal method for decomposing the
regular rep into irreps subducted according to any given
subgroup chain GDG(s). Furthermore, this can be done
without any knowledge of the characters. Consequently,
the main advantages of the new approach are its practi-
cality and flexibility.

On the other hand, representation group theory gives
the theory for projective irreps of the group g. The set of
matrices

(DY(y)ii=12,..., |gl|}, Dy;)=D™(R;) (6.49)

gives what is called the projective irrep of the group g.
Equations (6.22a), (6.23), (6.24a), (6.25), and (6.26) are just
the key equations for the projective irreps of the group g
for a given factor system 7 (Altmann, 1977; Dirl, 1977;
Mackey, 1968; Coleman, 1968; Jansen and Boon, 1967).
Several methods have been proposed for constructing pro-
jective irreps of a finite group G for a given factor sys-
tem. Dirl (1977) proposed a new method based on the in-
duction from the projective irreps of an invariant sub-
group N of G; by this method he determined complete
sets of projective irreps for all little co-groups of the non-
symmorphic space group O7.

Some of the new features of the present approach are as
follows.

(1) The inequivalent irreps are labeled by the eigenvalue
v of the CSCO of G, just as the irreps of a compact Lie
group are labeled by the eigenvalues of the Casimir in-
variants of the Lie group.

(2) The subgroup chain is introduced for classifying ir-
reducible basis and irreps. If C(s) and C(s) in Eq. (6.1a)
are to be understood as in Eq. (5.10b) with their eigen-
values a and b denoted by Eq. (6.1c), then by solving
(6.1a) we can obtain the GDG(s) and G D Gl(s) irreduci-
ble basis

(MX,A,, ...
(V)b _ i
Pa :Pkl,kz,... ’

(6.50)
which belongs to the irreps v,A,A,, ... of the groups
GDG(1)DG(2)D -+ as well as to the irreps
v,A1, Ay, . .. of the groups GDG(1)DG(2)D - - -, respec-
tively. If GDG(s) is a canonical subgroup chain, then in
subduction from G(i) to its nearest subgroup G(i 4 1),
the irreps A; ;; of G(i +1) can occur at most once in a
given irrep A; of G(i) [otherwise there would be degenera-
cy for some eigenvalues A;,; in contradiction with the
definition of the canonical subgroup chain for which
(C,C(s5),C(s)) is a CSCO in L,].

For a system with G as its symmetry group, the eigen-
values v and a are good quantum numbers.

(3) Using Eq. (6.23), we can obtain all the irreducible
matrices D”(R) in the GDG(s) classification, which
have the useful property of decomposing immediately
into direct sums of irreps of the corresponding subgroups
contained in G(s), if the subduction is carried out.

(4) The intrinsic group G provides a new quantum
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number, the intrinsic quantum number b, for distinguish-
ing the h, equivalent irreps D? of G with the basis
{P%:q=1,2,...,h,}. Equation (6.14a) shows that,
under the group G, the basis vector P, only changes its
external quantum number a.

(5) Analogously, in the group space, the irrep (v) of the
intrinsic group G also occurs h, times. The #,
equivalent irreps D™ with the basis {P\"%b
=1,2,...,h,} are distinguished by the external quantum
number a. Equation (6.15a) shows that under the group
G, the basis vector P\’ only changes its intrinsic quan-
tum number b.

For a given v, the external and intrinsic quantum num-
bers a and b have exactly the same %, distinct values.

(6) Under the standard phase choice for the eigenvec-
tors P,i"’b, we have

DYYG)=D"(G),
D(V)“(G)=D(V)(C_}) ,
DY(G)=D “(G) .

(6.51)

(7) The two orthogonal theorems for the characters
[Eq. (6.44)] and those for the irreducible matrix elements
[Eq. (6.26)], now can be interpreted as the orthonormality
and completeness conditions for the eigenvectors of the
CSCO-I and -III, respectively.

(8) Thus far, for all the irreps of G, we have adopted
the same GDG(s) basis. In fact, for different irreps (v)
we can choose different classification schemes. Otherwise
stated, the choice of the subgroup chain G(s), and there-
fore of the operator set C(s), may depend on v. Equation
(6.1a) can thus be generalized to

C

v
CY(s) |PV= |a |PV? (6.52)
C "s) b

where C")(s) is the CSCO of the subgroup chain G(s)
chosen for classifying basis vectors of the irrep (v).

Flodmark and Blokker (1972) have proposed a scheme
for constructing irreps of finite groups. They first
decompose the regular rep space of a group G into sub-
spaces L, by using the projection operator P [see Eq.
(3.39)], and then use a systematic but rather complicated
procedure to decompose L, into h, irreducible spaces.
This procedure has been programmed by Flodmark and
Jannson (1982). The irreps constructed by this scheme
still suffer from the drawback that they are not adapted
to a definite subgroup chain.

VIl. THE EIGENFUNCTION METHOD (EFM)

A. EFM for the irreducible basis

Theorem 7.1. A necessary and sufficient condition for
a function ¥*’ to belong to the irrep (v) of a group G is
that ¥*) be an eigenfunction of the CSCO of G,
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C¢(v)=v¢(v) X (7.1)

Proof. The ‘“necessary” follows from the following
consideration. Suppose ' is a vector of an irreducible
space L of G. Obviously L is a representation space for
any class operator of G and thus is an invariant subspace
of C. According to Corollary 2.1, " is necessarxly an
eigenfunction of C.

Next we prove that (7.1) is a sufficient condition.

If Eq. (7.1) is true, then ¥'*) must belong to the eigen-
space .Z, of C with the eigenvalue v. The space ., may
be decomposed into several irreducible spaces £ ().
7=1,2,..., each generating an irrep. All these irreps
are labeled by the same eigenvalue v of C and thus are
equivalent to one another on account of Theorem 6.6.
Therefore, the function ¥ is necessarily a basis vector
for one of those equivalent irreps, or a linear combination
of their basis vectors. This is exactly what it means for a
function to belong to the irrep (v).

Note that if both 9"’ and 95" belong to the irrep (v) of
G, it does not necessarily mean that they are two com-
ponents (or partners) of an irrep, since it may be that Y
is a basis vector of the first irrep (v), whereas ¢35 is a
basis vector of the second irrep (v).

A natural extension of Theorem 7.1 is Theorem 7.2.

Theorem 7.2. A necessary and sufficient condition for
¢§C;);‘2. .. to belong to the irrep v,A},A,,... of a subgroup

chain GODG(1)DG(2)D -, is that it satisfy the fol-
lowing eigenequations:

C v
c) (v) }Ll (v)
C(Z) IIJMAZ"- = A’Z 'J’A‘Az-- .. (72)

Equation (7.2) offers a method, the eigenfunction
method (EFM), for finding the IRB of a group G in any
chosen GDGl(s) classification without need of any
knowledge of the characters or irreducible matrices.

Suppose that there are .#” orthonormal wave functions

@/(X), j=12...,47, (7.3)

which carry a reducible rep of the group G, and we need
to find the GD G(s) IRB ¢, which can be expressed as

= Uy ;- (7.4)
J

The set of eigenequations (7.2) can be rewritten in a more
compact form as

(V) LV) , (7.5a)

C
C(s) a

which is a generalization of Eq. (1.5) for the SO;DS0,
IRB.
From Egs. (7.4) and (7.5a) we obtain

(5] o)

C(s)
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N

>

=1

v
a 811 uv,,,1=0. (75b)

If the eigenvalue (v,a) is a single root, it means that the
irrep v occurs only once, and corresponding to each (v,a),
a=ay,a ...,a, there is only one eigenvector. These

h, eigenvectors ¥y carry the irrep v of G.

In the foregoing procedure, a knowledge of the irredu-
cible matrices is unnecessary. However, in some cases,
certain conventional or standard irreducible matrices in
the GDG(s) scheme are given. In order that the IRB
found from the EFM be consistent (including the phase)
with the standard matrices, we can use the following tech-
nique.

We need only find one component, say Y, for each
possible v from Eq. (7.5). Using the known matrix ele-
ments, we can construct an operator F,i",,(R) a suitable
linear combination of the group elements, by means of
which the other a’th component can be derived from the
known component a successively,

W =F(RYY . (7.6a)

The form of the operator F.!)(R) is very simple for the
commonly used finite groups and can be easily found.
For example, suppose that R; ‘V’_clxp‘”-;-cz:/;ﬁ,”), then

F)(R)=(R;—cy)/c; . (7.6b)

Suppose that the eigenvalue (v,a) is a 7,-fold root; then
it indicates that the irrep v occurs 7, times, and for given
(v,a) there are 7, linearly independent solutions to Eq.
(7.5),

¢£,V)", =1,2...,7,. (7.7)

The eigenvectors ¥."'" can be chosen to be orthogonal in

the multiplicity label 7. However, it should be stressed
that the eigenvectors ¢(")T, a=12,...,h,, thus chosen
arbitrarily except for the requirement of orthogonality
with respect to 7, in general do not generate an irrep of G.
To obtain the IRB we can use either one of the following
two methods.

(1) We can use the intrinsic quantum number B; to dis-

tinguish the 7, sets of eigenvectors {1/1,, }, i=1,
2, ...,7, For details see Chen and Gao (1982).

(2) For a given eigenvalue (v,a), we can get from Eq.
(7.5) 7, linearly independent solutions. After Schmidt’s
orthogonalization, they become Y7, r=1,2, ..., 7,. The
other components zp ™ can be obtained through

(v) (v) (v)
S T=F(RWST, m=1,2,...,7,.

The functions ¥{*", . . ., 1/1},‘;’7 carry the rth irrep v. Now

the index 7 is an additional label rather than the intrinsic
quantum number.

The conventional method for constructmg an IRB is
the projection-operator method. From Theorem 7.2, we
know that, acting on a normalized function ®y(X)
without any symmetry under the group G, the normalized
generalized projection operator P.*° yields the GDGl(s)
and GDG(s) IRB

1//(aV)b=P;V)b(po(X) .

(7.8)

(7.9
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While acting on a wave function ®(X) that has partial
symmetry with respect to the group G, it yields the un-
normalized G D G(s) IRB

) = const X P{V°®(X) . (7.10)

However, Eq. (7.10) is in general no longer the IRB of
G DGls) (Chen and Gao, 1982).

The projection-operator method epitomized in Eq.
(7.10), though simple in principle, may well be very la-
borious, and is not convenient for groups of large order.
The eigenfunction method is simpler and especially suit-
able for computer calculation.

B. EFM for irreducible matrices

Let us define the column vector

Dy =col(DF(R), ..., D (R |4 ) (7.11a)

as the irreducible-matrix-element vector. Then according
to Eqgs. (6.5) and (6.23) we have Theorem 7.3.

Theorem 7.3. In the group space, the eigenvectors of
the CSCO-III of G are proportional to the complex conju-
gate of the irreducible-matrix-element vectors,

| C v
s <R, C(s) R]>‘— a 8,1 Dég)(RJ)*zo.
=t C(s) b

(7.11b)

From Egs. (7.11b) and (6.26a), or equivalently from Egs.
(6.5) and (6.23), and using the standard phase choice in
Sec. VI.C, we can determine all the matrices in the
G D Gl(s) classification.

Equation (7.11b) is a generalization of Eq. (1.7) for the
SO; D S0, irreducible matrix elements.

Sometimes we need the generalized shift operator from
the GDG(s)' IRB ¢\ to the GDG(s) IRB ¥, where
G(s)" and G(s) are two different subgroup chains of G.
The generalized shift operator is given by

h, g
— S DYRARR;

P =
k lel /5

(7.12a)

where ZY(R;) are the generalized matrix elements, or
the skew matrix elements (Klein and Seligman, 1982),

DRAR)=(PY |R; | @) . (7.12b)
As in Eq. (7.11b), Z )R, satisfy the eigenequations

C v
&)
> (R,- C(s) R,.)_ a|8; |[DUR;* =0, (7.13)
j=1 C(s) K
where C(s) is the intrinsic operator set corresponding to
the CSCO C(s)" of the subgroup chain G(s)'. From Eq.
(7.13) and a normalization condition similar to (6.26a)
with D replaced by &, we can evaluate the generalized
matrix elements.

It is' thus seen that the flexibility of the EFM makes
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possible the construction of both the IRB and the irredu-
cible matrix in any given group chain, and the puzzle of
solving two interdependent problems in the traditional
theory is solved satisfactorily.

C. EFM and conventional methods
for irreducible characters

From Egs. (3.14) and (6.43) we have Theorem 7.4.

Theorem 7.4. The eigenvectors of the CSCO-I of G in
the class space are proportional to the complex conjugate
of the irreducible character vectors,

D(OX* =y V™ | (7.14)

This is a generalization of Eq. (1.4a) for the SO; charac-
ter.

It should be mentioned that Theorems 7.3 and 7.4
remain true for compact Lie groups if the group (class)
space is replaced by the group (class) parameter space,
and the eigenvectors by the eigenfunctions (Chen, Wang,
and Gao, 1983).

The EFM for characters can be summarized as follows.

Using the structure constants C,-’Jf of the group G to
form the natural representative matrices & (C;) for the
classes contained in the CSCO of G,

Di(CH=Cf, i=12,...,1.

ijs (7.15a)

Let q=col(g;,gs, - - ., q,). Suppose that q") are simul-
taneous eigenvectors of Z(C,), ..., Z(C)), i,

D(CHqV=A"q"™, i=1,2,...,1, (7.15b)
and that they obey the normalization condition
n
Sele =1, (7.15¢)

i=1

as well as the phase convention that all ¢\*’ for the identi-
ty e are real positive. Then the primitive character of G
is given by
X =vTgla™™ . (7.16)
For example, Table III is precisely the character table
of the point group C,, where V1/8=|g|~!72
— l G | —-1/2.
Before the EFM was proposed, several conventional
methods were available for determining the characters of

an abstract group G with N classes. These include the
following.

1. Jones’s method (1975)

First find all the N? eigenvalues A{", v,i =1,2,...,N
from the characteristic equations of the N matrices
Z(C), i=12...,N; next use the relation X"
=(h,/g)A to get the N? characters X{"; and finally
use the orthogonality of the characters to arrange the N2
characters into the character table.
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2. Boerner's method (1963)

From Eq. (2.18¢) one obtains a set of equations for the
eigenvalues of the N classes

N
kﬁv)x}v): 2 Ci/;)\’gcv) X
k=1

(7.17a)

Multiplying both sides of Eq. (7.17a) by an indeterminate
u; and summing over i, one gets an eigenequation for

AM=col(AY, ..., A},
L (1)AV =YY | (7.17b)
where L (u) is a matrix with the matrix elements
< ~k
ij(u)= 2 Cijui 5 (7.17¢)
i=1
and
§(v)= Z{VM'V)ui .
i
By decomposing the determinant of the matrix
(L (u) —uol) into linear factors,
N: N
det(L (u)—uoD)= [ |uo— 3 Au; |=0, (7.17d)
v=1 i=1

one can determine the N 2 eigenvalues 7\.%"’, and then use
Eq. (6.47) to obtain the N? characters. Boerner’s method
avoids the rearrangement of X|"’; however the decomposi-
tion procedure (7.17d) is not easy for higher-order groups.

3. Bradley and Cracknell’s method (1972)
From Egs. (7.17a) and (6.47) one has
\ N
gigiX" X =h, 3 Claxy’ . (7.18)
k=1
From Eq. (7.18) along with (6.3) and (6.44a) (noting that
here |g| and n should be replaced by |G| and N,
respectively), one can determine the characters. The ma-

jor difficulty of this method is that Eq. (7.18) is a non-
linear algebraic equation for X

4. Burnside’s method (1955)

Equation (7.17a) can be rewritten as

MAY =AW | (7.19a)
where ‘
M;=2(C;), (M;)j=Cf. (7.19b)

Therefore, the N column vectors A" aré common vectors
of the N matrices M;, i=1,2,...,N. From Eq. (7.19a)
we can find N eigenvectors A'*) normalized according to
A =1. The dimension A, is decided by

N .
S A /8= |G| /h2, (7.19¢)

i=1
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while the characters are obtained from Eq. (6.47). The
main difficulty of this method is that it involves the cal-
culation of the common eigenvectors of N matrices.

The common feature of these four methods is that the
concept of the CSCO for the class space has not been in-
troduced, and thus all the structure constants Ci’; of the
group are required. These methods are not easily applied
to higher-order groups.

5. Dixon’s method (1967)

Dixon (1967) improved upon Burnside’s method by
transposing the problem from the field of compliex num-
bers into the field of integers modulo p for a suitable
prime p. It is much easier to compute the modular char-
acters in the latter field, and from these characters one
can calculate the ordinary irreducible character. An effi-
cient program has been written by Dixon.

In contrast, the equation for the EFM (7.14) is linear,
and only the natural representation matrices of the / class
operators contained in the CSCO of G are required. Usu-
ally / is much smaller than the class number N. The
EFM is also suitable for high-order groups; for example,
the characters of the permutation group S;; with N=56
have been calculated by diagonalizing only a single ma-
trix, the natural representation of the two-cycle class
operator (Gao et al., 1976; Chen and Gao, 1982).

6. Seeking the CSCO of G from known characters

As mentioned before, in the new approach, the charac-
ter recedes from its predominant role in the traditional
theory. We can now carry out the reduction of a rep
without any knowledge of the characters. However, if the
primitive characters of a group G are known, use can be
made of them to simplify the calculation.

The character has the following two major applications
in the new approach.

(1) Finding the CSCO of G. With the known character
table and Eq. (6.47), we can get the following array for
the n? eigenvalues A}":

L) (v ()

}"1 ' )\'2 ' )‘n !
(v,) (v,) (v,)

A2 Ayl An’
: : : (7.20)
v ) .(v) (v )

7‘1 n ;\2 ntooL. Kn n

If we can find a column, say Sol)umn )i, in the( al;ray which
has n different eigenvalues A; ,A; 2, ...,A; " , then the
class operator C; is the CSCO of the rep group G. Other-
wise, we look for two c(olum(ns, say i an(cl _];, a(nd) if the n
pairs of eigenvalues (A;" ,)Ljvl b, (A" ,kjv” ) are all
different, then (C;,C;) is a CSCO of the rep group, etc.
Consequently, if the character table is known, it is trivial
to find the CSCO of the group.
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(2) Determining the number of times a given irrep v
occurs in a rep D. Let 7, be the number of times the irrep
v occurs in the decomposition of a reducible rep D with
characters X;,

Xi= 3 7,X" . (7.21)

From Egs. (6.44a) and (7.21) we get the well-known ex-
pression for 7,,

n
= 2 x XM (7.22)

D. EFM for Clebsch-Gordan coefficients

Suppose that G is an abstract group (for notational
convenience, we omit the caret). Let

hy ),

o

(v)

{¢a a,=12,..

be the GDG(s,) basis for the projective irrep D"
with the factor system 7'®’

=12, (7.23a)

)ofG

D(va)(Rs )D(va)(Rt)=’7’](0)(S,t)D(v”)(RSR,) ,
o=1,2,5¢t=12..., |G| . (7.23b)

The A, h,, vectors
(v) (vy)

=Y Vs

carry the Kronecker product rep of G (or the uncoupled
rep of G)

laia,) = (7.23¢)

D(vl)x(vz)::D(vl)@D(vz) ] (7.23d)

(V)X ()
It is easy to show that D ' "2

for the factor system

is a projective rep of G

7(s,8)=71Vs,t)n?(s,1) . (7.23¢)

The Kronecker product rep can be reduced into the
projective irreps v of G for the factor system 7,

=3 (vy»,v)DV
v

where (v;v,v) is the number of times that the projective

irrep v occurs in the Kronecker product rep. Equation

(7.24) is referred to as the CG series. To effect the reduc-

tion, the product basis vectors of (7.23a) need to be

recombined into the GO G(s) IRB

(v X(vy)

D (7.24)

[vra)= 3 (via;v,a; |vra) |a a,) ,
a8z

T= 1,2, . > ('VlVZ’V) N (725)
where 7 is a multiplicity label and (via,v,a, |vra) is
called the Clebsch-Gordan coefficient (CGC) (or the
Wigner coefficient or the coupling coefficient). Notice
that the subgroup chains G(s), G(s,), and G(s) may be
different from one another or may be identical.

According to Eq. (7.5), the CGC satisfies the eigen-
equations
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C
C(s)

>

a8,

v
<b1bz a1az)— la lsalblsazbzl

X (via;va, | vra)=0 (7.26)

It shows that the CGC results from a diagonalization of
the representative matrix of the CSCO-II of G in the
product basis. The matrix elements of a class operator C;
are given by

(v)) (v,)

<b bZ]C |ala2>— 2 Dbla (R (i,x )Dbzaz(R(x, ).

(7.27)

Using Eq. (7.27) we can calculate the matrix elements of
the CSCO-II of G. From the characteristic equation of
(7.26), we can obtain the eigenvalue (v,a) along with its
degeneracy, which gives the multiplicity (v;v,v) in the CG
series (7.24).

When (viv,v) > 1, for given (v,a), there are (v;v,v) sets
of linearly independent solutions to Eq. (7.26). Subject to
the orthogonality requirement with respect to the multi-
plicity label 7, i.e.,

> (viaywa, |vral*(viavaa, |vr'a)=8,., (7.28)

4142

the (v{v,v) sets of solutions can be chosen arbitrarily.
If the solution for one component a is known, the other
components b can be found with the help of Eq. (7.8),

|vrb ) =F)(R) |vra), 7=1,2,..., (7.29)

Substituting Eq. (7.25) into (7.29) and multiplying (7.29)
from the left by (4,b, |, we obtain

> (b1, | F(R)|ajay)

a4,

(vivav) .

(vibvyby | vTb)=

X(viavya, |vra) . (7.30)

Following a procedure similar to that described after
Eq. (7.7), for each possible v we take only the CGC for a
particular @ from Eq. (7.26); the remaining CG coeffi-
cients of the projective irrep v should be evaluated from
Eq. (7.30).

When 7°(s,t)=1, for 0=1,2, 5,t,=1,2,..., |G|, all
the projective irreps of G become the vector irreps of G,
and Egs. (7.24)—(7.30) continue to be valid.

It is to be noted that the multiplicity separation is arbi-
trary, and the following linear combination satisfies all
our requirements for the CGC:

(viayvaa, [vBa)= 3, S§) (via1v,a, |vra) , (7.31)
T
where S is a (v;v,v) X (v;v,v) unitary matrix. Hence
the CGC can be determined only up to a unitary transfor-
mation.
The advantage of the EFM for the CGC lies in the fact
that here only the irreducible matrices of a few group ele-

ments are required, and these are contained in the CSCO-
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II of G, while in the projection-operator method (see Sec.
VILE), the irreducible matrices of all the | G| group ele-
ments are required. Another feature of the EFM is that
the CG series and CGC are obtained simultaneously.

The EFM is powerful for constructing the CGC or iso-
scalar factor (ISF) of compact groups. As early as in
1966, Bayman and Lande calculated the SUj; .,
DSP,;;1D080; ISF by diagonalizing the operator
C(SUzj + 1) + 0.11 C(SPZJ + 1), where C(SUZJ +1) and
C(SP,; 1) are the Casimir operators of SU,;,; and
SP,; 1, respectively. The EFM has been used for com-
puting the CGC of the permutation groups S,—S¢ (Chen
and Gao, 1981; Gao and Chen, 1985), the unitary groups
(Chen, Wang, and Gao, 1978a; Chen, Gao, Shi, Vallieres,
and Feng, 1984; So and Strottman, 1979), and the graded
unitary groups (Chen, Gao, and Chen, 1984a,1984b;
Chen, Chen, and Gao, 1984).

It is seen that there is virtually no difference between
the treatment of the CGC for projective irreps and that
for vector irreps. Therefore, we shall discuss only the
CGC of vector irreps from now on.

E. Various methods of obtaining
Clebsch-Gordan coefficients

The conventional method for calculating the CGC is
the projection-operator method. In contrast to the EFM,
it requires a knowledge of the CG series. From Egs.
(7.22) and (7.23d), the mult1p11c1ty (v;v,v) can be calculat-
ed by

z

(), %)

(V1V2‘V) E X(V)*X X

(7.32)

The projection-operator method in its primitive version
works as follows (Tinkham, 1964). By successive applica-
tion of the projection operator P4 and the shift operators

P§Y) (bs£a) to the basis vectors of the Kronecker product
rep, one can generate the irreducible basis vectors one by
one, whose components give the CGC. The main disad-
vantage of this method is that one sometimes performs a
good deal of work in vain if a vanishing result is obtained.
In such a case, one must apply the projection operator to
another basis vector. This procedure must be repeated
until (v;v,v) linearly independent IRB are obtained for a
given irrep v.

In the following we discuss several variations of the
projection-operator method. The original derivation for
them is rather lengthy. However, shortcuts are possible
by using the key equation (7.33b) below.

1. Koster’s method

In the Kronecker product space, the generalized projec-
tion operator

P;‘V) ED(V)

can be written as
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(vyvyv)
PP= 3 |vra)(vrb| .

T7=1

(7.33b)

Equation (7.33b) is easily justified by showing that it sat-
isfies Eq. (6.31). Hence

(vivpv)
(alaz ;P,gz) l b]bz)z 2 <(11(12 | vT7a )(V’Tb ' b1b2>
7=1
(7.34a)
Using Eq. (7.33a), we have
(v,)
| ED(")(R)"‘D b (R)D,%. (R)
(vyv,yv)

S, (viayvaa, | vra)(vibvob, | vib)*

=1
(7.34b)

This is the formula proposed by Koster (1958) for ob-
taining the CGC. For the multiplicity-free case
[(v1vyv)=1], the CGC can be calculated from Eq. (7.34b)
by holding a,, a,, and a fixed, letting b run from 1 to #,,
and letting b,b, run from 1 to h,,thZ. For the (viv,v) > 1

case, a systematic procedure for obtaining all (v;v,v) sets
of CGC is given by Koster (1958) and Birman (1974, p.
38). The disadvantage of this method is that it is rather
tedious.

This method has been used for calculating the CGC of
the point groups (Statz and Koster, 1959; Koster et al.,
1963), the permutation group S5 (Hamermesh, 1962), and
the space groups (Litvin and Zak, 1968; Berenson and
Birman, 1975; Berenson et al., 1975).

2. Schindler, Mirman, and Dirl’'s method

A significant improvement in the method of computing
the CGC is due to Schindler and Mirman (1977a), who
recognized the fact that the (v;v,v) independent columns
of the projection matrix yield, after being orthonormal-
ized, the (viv,v) sets of CG coefficients.

From Eq. (7.33b) or (6.31c) we have

PY) |vra)=|vra) , (7.35a)

" vra)=|vrb) . (7.35b)
Written in matrix form, this is

PYUYT=UY", (7.36a)

PYUYT—UYT, (7.36b)

where P{) and UJ’" are the representatives of P}y and

[vra) 1n the Kronecker product rep, respectively. The
matrix elements of Py, are given by
(Py)a,ay,8,6,= (@182 | P4 | b1by)
(vy) (v,)
= ]c;‘ gp,ﬁg’uz—‘) 5, (R)Dg 3 (R) .
(7.37)
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Py is called the projection matrix. UY" is called the
CGC vector with components

(U(aV)T)ala2=(‘Vlal‘Vzaz ' vra), a1a2=1,2, ey ]‘l.‘,lhv2 .

(7.38)

In Eq. (7.36a), the CGC vectors UY", 7=1,2, .. ., (v;vyv)
can be regarded as the vectors that span the elgenspace of
the projection matrix P with eigenvalue equal to one.
From Egs. (7.34b) and (7 31) it can be easily shown that
the matrix P{) has (v;v,) and only (v;v,v) linearly in-
dependent columns. Using the Schmidt process, we ob-
tain (v;v,v) orthonormal column vectors which are eigen-
vectors of P?) with eigenvalues all equal to one, whose
components. are the required CGC (via;va; |vra),
7=12,...,(viv,v). The CG coefficients for the other
components b are obtained either from Eq. (7.36b) or
from Eq. (7.34b).

Dirl (1979a) went on to show how the multiplicity in-
dex of the CGC can be identified with the special column
indices of the projection matrix and to give an explicit ex-
pression for the CGC in terms of the matrix elements of
PyY). A simple derivation of Dirl’s result is given below.

(b1b;)b)=N5"} ara; | Py | biby)

h 172
= id DY
‘IGI 2 D

('Vlal‘Vzaz | vO=

(v))

RHD,

S DR
R

If by varying the column index b;b, we can obtain
(v1v,v) orthogonal vectors

|v9=(b1b2)u,a>, U:1,2; DRI (VIVZV) ’

then the multiplicity index 6 can be explained completely
by the special value of the column indices of the projec-
tion matrix. On the other hand, if we can obtain only
n < (vyv,v) orthogonal column vectors in the matrix Paa ,
then we have to apply Schmidt’s procedure to obtain the
complete CGC.

Equation (7.40a) clearly shows that the columns of the
projection matrix Py give the CGC vectors.

It is also interesting to note the connection between
Eqgs. (7.40a) and (7.34a), where the multiplicity 7 is chosen
arbitrarily. From these two equations one has

(Vlal‘Vzaz I v0:(b1b2 )a)

,ﬁ:’},"z > (viaywa, | vra)(vibiwb, | vra)*
“

(7.41a)
By identifying
S8 =N5 (vibivaby | vra)* (7.41b)

we see that Eq. (7.41a) is precisely Eq. (7.31), that is, the
two sets of CG coefficients with multiplicity indices 6
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Dy b, (R)Dy,, (R) , b=1,...,a,...,h,.

Applying the projection operator P\ to a vector
| b ,b‘2) in the Kronecker product space, if the result is
nonvanishing we obtain an un-normalized basis vector for
the irrep v of G,

[vO=(b1by)a) =Ny iPG) | biby) (7.39a)

where the multiplicity index O is identified with the

column index b;b, of the Kronecker product, and Nl(,:',),"z

'is a norm that can be easily shown, upon using (6.31a), to

be
Ny = | {byby | PG | byby) | ~1/2. (7.39b)
From Eq. (7.39a) one immediately gets
(via1vaay | vO=(b,by)a)=Ny'y: (aja; | P | b1b,)
(7.40a)

The other components |v0=(b;b,)b) can be obtained
from

| vO=(b1by)b) =Py | vO=(bby)a ) .
Using Egs. (7.37) and (7.39), one obtains

(vy)

b, (R)Dg p, (R)

(v)) (v,) -1z

(7.40b)

'and T are related by a unitary transformation.

van den Broek and Cornwell (1978) made a further im-
provement in the solution of the multiplicity problem of
the CGC. After obtaining a CGC vector by using Eq.
(7.39a), which is now denoted as

|vr=1,a) =Ny 52PG) | b1by) (7.42a)
they construct a new operator
P =PY) — |via){vla] . (7.42b)
From Eqgs. (7.33b) and (7.42b) one has
(vivpv)
P=3 |vra)(vra|, (7.42¢)
T=2

where |vra), 7=2,3, ..., (viv,v) are the CGC vectors to
be decided. Therefore, '(") is again a projection opera-
tor, but it is for the [( vlvzv)— 1]-dimensional space, and
one can play the same game with P,’,,(,") to obtain another
CGC vector

NyipyPas” 1163 ),

e (7.42d)

|vr=2,a)=

where

N;(v)a I <b b2 lPI(V) lb’lb’2> | —-1/2 . (7.42e)
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It is easily seen that the CGC vectors |vra ), 7=1,2 are
the eigenvectors of P,\"’ corresponding to the eigenvalues
0 and 1, respectively. Hence they are orthogonal. One
may proceed in this way until the (v;v,v) orthonormal
CGC vectors are obtained.

This method in its original version was used for com-
puting the CGC of the permutation group S3;—Sg
(Schindler and Mirman, 1977b,1978). Later the method
was extended to treat the CGC for space groups (Dirl,
1979d; van den Broek, 1979a), for finite magnetic groups

(van den Broek, 1979b), and for space magnetic groups |

(Dirl, 1980a,1980b).

3. Sakata’s method

Suppose that 4 is a h, h, Xh, rectangular matrix.
Multiplying both sides of Eq. (7.34b) by (| G | /hy)Ap b6

and summing over b;b, and b, we obtain an equation
that can be put into the form

L vvpv)
M(Eayaya= 3 Elviarvia, |vra), (7.43a)
r=1
where £ is a vector
E=nbr ... &) p=lvivy), (7.43b)
&= & > Ap p,,6(vib1v2b; |vrb)* (7.43c)

hy bieys
and M(£), 4,,q is the matrix element of a &, h, Xh, ma-
trix M (§) containing (viv,v) parameters &y, . . ., &,

M= D™ (R)eD"
R

(vy)

(R)]JADY((R)' . (7.44)

In the case of (vivyv)=1, Eq. (7.43a) shows that the
CGC vectors U are obtained by normalizing the
columns of the matrix M(£=1). In the case of
(viv,v) > 1, by taking (vyv,v) linearly independent vectors
& such as £V=(1,0,...,),6¥=(0,1,...,0),...,
£9=(0,0,...,1), we get (vv;») matrices M(£'?),
0=1,2, ..., (vi»w). After normalizing each column vec-
tor of these matrices and using the Schmidt process, we
obtain (v;v,v) sets of CGC (Sakata, 1974).

If H is a subgroup of G, and (s;=e, .. ., 54) is a set of
coset representatives of H in G [see Eq. (6.34)], then the
matrix M (§)=M (G) can be rewritten as

(v

(s)8D"(s,)]

XMH)DY(s,) 4 -+,

M(G)=M(H)+[D
(7.45a)

ME)= 3 (D™(WeD™(h)]4D™(h) . (7.45b)
hEH

This method is suggested by Sakata (1974) and used to

compute the CGC of the double point group D; and the

double space group D }}. The method is rather tedious
and has an ad hoc nature.

A common feature of the above methods is that the ir-

reducible matrices of all the |G| elements are required.
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The total number of irreducible matrix elements is equal
to |G|?% which is quite large for a high-order group.
This is the main difficulty in applying the projection-
operator method.

4. Butler and Wybourne’s method

Butler and Wybourne (1976a,1976b) adopted a quite
different approach to the CGC problem for compact
groups. According to Racah’s factorization lemma
(1951), the calculation of the CGC for the subgroup chain
GDG(1)DG(2)D -+ is reduced to the calculation of
the isoscalar factors for GDG(1),G(1)DG(2),... . The
Butler-Wybourne method is for computing the 6j symbols
and 3jm factors of G, the latter being the symmetrized
isoscalar factors. The distinguishing feature of this
method is that it requires only a knowledge of character
theory, chiefly the product and branching rules. It is par-
ticularly useful for groups with irreps of large dimen-
sions.

This method has been used to compute the CGC for
point groups (Butler and Wybourne, 1976b; Butler, 1981)
and the 3jm factors for SU(3)DSU(2) and SU(6)

- DSUB)xXSU(2) (Bickerstaff et al., 1982).

Vill. EXAMPLE: THE IRREPS AND CLEBSCH-
GORDAN COEFFICIENTS OF THE GROUP C,,

We now take the group C,, as an example to illustrate
the application of the EFM for obtaining irreps and CG
coefficients. Again we consider only the m =1 case and
leave the m > 1 case to Secs. XIV.C and XIX.

A. Construction of irreducible
matrices

The group elements of C,, are given in Sec. IIL.D. The
group table of Cy, is given in Table IV.

According to Egs. (2.12) and (4.13), as well as Table IV,
it is easy to find the regular reps of the groups C,, and
Cs4. In fact, the nth row of Table IV gives the rep of the
nth element R, of Cy,, e.g.,

D(Rs5)=D(0,)=(58671342) ,
D(R¢)=D(0,)=(67583124),
D(R7)=D(04,)=(75862413) ,
D(Rg)=D(04)=(86754231),

(8.1)

-and the nth column of Table IV gives the rep of the in-

trinsic group element R, e.g.,
D(R5)=D(5,)=(57681324) , (8.2)

where (ijkl. ..) denotes a matrix with the matrix elements
all equal to one at the entries (a,b)=(i,1),(},2),(k,3),
(1,4),..., and equal to zero elsewhere, and where a (b) is
the row (column) number.
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TABLE IV. Group table of C,,.

e Cc Cy. Ci Ox oy Oda Oap
1 2 3 4 5 6 7 8
2 3 4 1 7 8 6 5
3 4 1 2 6 5 8 7
4 1 2 3 8 7 5 6
5 8 6 7 1 3 4 2
6 7 5 8 3 1 2 4
7 5 8 6 2 4 1 3
8 6 7 5 4 2 3 1

We can use the complete set of commuting operators
(C4,Cs) of Cy,, found from the class space of C,, in Sec.
III.D, to decompose the regular rep. However, we can
also find a CSCO of C, directly from the group space by
looking for an operator C = .k;C; that has N =5 dis-
tinct eigenvalues. Let us try C =2C4+Cs. The rep ma-
trix of C in the group space is given by

D(C)=2[D(05)+D(0,)]1+D(0g)+D(0g) . (8.3)

A diagonalization of D(C) gives

four single roots, v=6,2, —2,—6; m, =1,
one fourfold root, v=0; m, =4.

The fact that m,=~h2 implies that v=6,2, —2, —6 corre-
sponds to four one-dimensional irreps, while v=0 corre-
sponds to a two-dimensional irrep that occurs twice. The
operator C has five distinct eigenvalues, and thus it is a
CSCO of C,,.

For the four single roots, we can find four unique
eigenvectors of D(C) as listed in Table V below. They
give the IRB for the one-dimensional irreps
v=6,2,—2,—6, and are identical to the first four vectors
listed in' Table III except for a constant factor. For the

fourfold root, from the eigenequation
/
D(Clu=vu=0, u=col(u,,u,,...,ug),

we obtain the following equations for u;:

up+u3=0, uy+uy=0,
(8.4)
us+ug=0, u;4+ugzg=0.

‘To lift the degeneracy, or to determine uniquely the
solution to (8.4), we need to introduce the operator C(s)
and C(s). Obviously, for our problem here, any element
of C,, except the identity can serve as C(s). Let us take
C(s)=0,. It means that we choose the C4, D % classifi-
cation for the irreps with € ; =(e,0,). The solution to the
eigenequations

D(oy)u=au, D(G,)u=bu (8.5)

can be read out from the fifth row and fifth column,
respectively, of Table IV, i.e.,

a=tlw=tus, uy=>ug, uy==ug, us==u,.

(8.6)
b=xlw=2us, uy==u;, us=>2ug, us==ug .

The four one-dimensional bases are of course the eigen-
functions of o, and &,, as can be seen by comparing
Table V with Eq. (8.6). By combining Egs. (8.4) and (8.6),
we determine another four eigenvectors P!, P,
P! and P! of K =(C,04,7,) up to some phase
factor. It is easily seen that K has eight distinct eigen-
values, as shown in the second column of Table V.
Therefore, K is a CSCO-III of Cy,.

We now follow the three steps given in Sec. VI.C to

TABLE V. The irreps of Cy, in the C,4, D%, classification. The parameters v, v/, a, and b are the eigenvalues of C, Cs, o,, and 7,,

respectively; /' =V'h,/|G|.

e ch Cy. Cz Ox oy ‘Oda Oap
PP (v,a,b) (V',a,b) Va 1 2 .3 4 5 6 7 8 DY
P 6,1, @,1,1) VI 1 1 1 1 1 1 1 1 ph
p! ,1,1) (—2,1,1) VIZE 1 -1 1 -1 1 1 -1 -1 phn
PSS (—6,—1,—1) (=2,—-1,—-1) VI/8 1 1 1 1 -1 -1 -1 -1 D™
PURTT (22, —1,—1) (2,—1,—1) Vg 1 —1 1 -1 -1 -1 1 1 p™
P! 0,1,1) 0,1,1) > 1 0 -1 0 1 —1 0 0 D§
PO} (0,—1,1) (0,—1,1) 1 0 1 0o -1 0 0 1 -1 Dj
P! 0,1,—1) (0,1,—1) 5 0o -1 0 1 0 0 1 -1 Dj
P! (0,—1,—1) 0,—1,—1) + 1 0o -1 0o -1 1 0 0 D%
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determine the phases of P.""°. The phases of P{®! and
P91 are fixed by step (1). The phase of P°} can be
chosen arbitrarily according to the step (2). Suppose that
it has been chosen as shown in Table V. To determine the
phase of P{®)~!, we need first to calculate a nonvanishing
matrix element D{® (R;) from the known IRB P{®?=1,
R; can be chosen freely; for example, we might choose
R;=R,=C/};. From the fifth and sixth rows of Table V
and using Table IV we can calculate

D% (Ry)=(P{"" | R, | PO)

=4(1—3+5—6|R,|2—4+7—8)=—1,

where the shorthand symbols for group elements have
been used. The phase of P9~ js now determined by re-
quiring that its coefficient u, be equal to
V278D | (Ry)* = — 7.

Having adjusted the phase, thanks to Eq. (6.23) we can

read out from Table V all the irreps of Cy4,. For instance, |

(a,b)=(1,1):u1=u5, Uy=Us=U7r=Ug, U3=Ug ,

0 —1

DR, =D cCH)=|, ,

(8.7

If the phase of P{® ! has not been appropriately
chosen, say if it has been chosen as opposite to that given
in Table V, and if we still use Eq. (6.23) to obtain matrix
elements from u,,, ;, we will get

01

’

and [DE(C)]? will be equal to I, in disagreement with
[DECE)PP=DER;)=—L1L

In the above, we first solve the eigenequation of C and
then those of C(s) and C(s). In fact, a more convenient
way is to use first the eigenequations of C(s) and C(s) to
eliminate the non-independent variables and thus to de-
crease the order of the eigenequation of C. Let us redo
the above problem by this alternative procedure. From
Eq. (8.6) we get

=(—1,1):u1=u5=0, Uy=—Up=U7=—Ug, u3=u6=0 ’
=(1,——1):u1=u5=0, Uy=—Ug=—U7=Ug, u3=u6=0 s’
=(—1,—1)iuy=—us, Uy=us=—us=—ug, Uz3=—1ug . (8.8)

The eigenvalues (a,b)=(1,1) and (—1, —1) have threefold degeneracy. For each of them we have three independent

solutions,

(a,b)=(1,1):p;=(14+5), @3=(2+4+7+8), p3=(3+6),
=(—1,—1):p) =(1-5), p3=(2+4—7—8), ¢3=(3—6) . ’ (8.9)

To lift the degeneracy, we need the class operator of
C4. Let us combine them into eigenvectors of the class
operator Cs=(7+8). The representative matrices D (Cs)
and D'(Cs) in the un-normalized bases {¢;} and {¢;},
respectively, are equal to

020

101
020

D(Cs5)=—D'(Cs)= (8.10)

A diagonalization of D(Cs) gives the basis vectors
PP P2 pO1 and P21 PP PO The result
is identical with Table V.

The eigenvalues (a,b)=(1,—1) and (—1,1) have no de-
generacy, and from Egs. (8.8) we obtain unique solutions.
It is easy to infer that these solutions belong to the two-
dimensional irrep, and thus they are just PO ang P!
listed in Table V.

It is easily seen that the two-dimensional irrep given by

Table V corresponds to the rep with (y,—x) as the two
basis vectors.

From this example, it is seen that (Cs,0,,5x) is a
CSCO-III of C,4,, although Cjs is not a CSCO-I of C,,.
The CSCO-III (C4,C5,0’x,b_'x), (2C4+C5,0’x,a—'x), and
(Cs,0,,0,) are all equivalent in the sense that they give
identical irreps.
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Furthermore, we can also choose

K=Cs+30, 425, (8.11)

as a CSCO-III of Cy4,. From the third column of Table V
we know that K has eight distinct eigenvalues,

u=v'+3a+2b=17,3,-7,-3,5,—1,1,—5, (8.12a)

where V' is the eigenvalue of Cs. Similarly we can choose
M=Cs+30, (8.12b)

as a CSCO-II of C4,, which has ¥ h,=6 distinct eigen-
values, 5, 1, —5, —1, 3, and —3.

Suppose that we need the irreps of C,, in the Cy, D%,
classification, where %, is the cyclic group generated by
Ci;; then C(s) should be chosen as the CSCO of & 4 1€,
C(s)=C4. The  simultaneous eigenvectors  of
(C,C#,C ) are listed in Table VI, where C =2C,+Cs.
The one-dimensional irreducible bases are of course iden-
tical with those of Table V, but the two-dimensional IRB
are changed. From Table VI we can read out the irreps in
the C,4,D € , classification. For example,

0
DOR,)=DECH)= |, ~il' (8.13)
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TABLE VI. The irreps of C,, in the C,,D ¥ 4 classification. The parameter v,a,b are thé eigenvalues of C,CZ;,C?Z;, respectively.

s
C 4z

e Cy. Ci Ox Oy Oda Tdb

(v,a,b) Vh,/|G| 1 2 3 4 5 6 7 8
6,1,1) V1/8 1 1 1 1 1 1 1 1 D™
(2,—1,—1) V178 1 —1 1 —1 1 1 —1 —1 p™
(—6,1,1) V178 1 1 1 1 —1 1 1 -1 D™
(—2,—1,—1) V1/8 1 —1 1 —1 —1 —1 1 1 p™
(0, i,i) 5 1 —i —1 i 0 0 0 0 (DH)*
(0, — i, i) . 0 0 0 0 —1 1 —i i (DE )™
(0, i —i) 5 0 0 0 0 —1 1 i —i (D%)*
(0, — i, —1) . 1 i —1 —i 0 0 0 0 (D% )*

It can be easily recognized that the two-dimensional ir-
reps given by Table VI corresponds to the rep with
[V1/2(x —iy),V'1/2(x +iy)] as basis vectors.

From the above example, we see clearly that the EFM
has great flexibility in constructing the irreps of a group
G in any G D G(s) classification.

B. Construction of the CG coefficients

Let us construct the CGC for the Kronecker product
E XE of Cg4, in the C4, D€ classification. The CSCO-
I1 is chosen to be M =(Cs,0,). There are four vectors,

lajay)=v; 95, a1a,=11,12,21,22, (8.14)

in the Kronecker product space with 1/;115 =¢‘1°’ and

vE=9'%. A diagonalization of (Cs,0,) in the basis of
Eq. (8.14) gives the CGC. The diagonalization of o, is
trivial, since | @ a, ) are already eigenvectors of o:

or=1:]11), |22), (8.15a)
op=—1:]12), |21). (8.15b)

Therefore, it is only necessary to diagonalize Cs in the
subspaces (|11),]22)) and (|12),]|21)). Equation
(7.27) for the matrix elements of Cs now reads

db
<01a2 ‘ Cs Ib1b2>= 2 DaElb,(Ui)DaEsz(ai) s
i=da
(8.16)
(aja;|Cs|biby)=(ab;|Cs|bja;)
db E R
= E [Dalbl(ai)] .
i=da
Using Table V, we easily find the matrices of Cs in the
two subspaces,

g(CS)z

>

20

. (8.17)
-2

D(CH=|_, o
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Diagonalizing & (Cs) and Z'(Cs) gives four irreducible
bases:

v =D VT2 11) + | 22)) ,
V=W D=3 11) — | 22)),

P (8.18)
V=P =v172(]12) + | 21)),

Vw2 —VT/3(|12) — [21)) .

The identification of the eigenvalues of (Cs,0,) with the
Mulliken notation is made on the basis of Tables III and
V. Equation (8.18) gives the CGC for the product E X E
of C,, and shows that EXE=A4,+A4,+B,+B,.

It is seen that (1) the CG coefficients are obtained
without a priori knowledge of the CG series and (2) only
the irreducible matrices of the elements oy,, 045, and o,
are required, which are contained in the CSCO-II of C,,.
In other words, here we need only 3X4=12 matrix ele-
ments, while for the projection-operator method we need
122=144 matrix elements. The superiority of the EFM
over the projection-operator method for finding the CGC
is especially conspicuous for higher-order groups.

IX. BASIC KNOWLEDGE OF THE SPACE GROUP

Starting from this section, we shall apply the general
theory for the rep group developed in the previous sec-
tions to the space group. We begin with a brief statement
of some basic definitions and relations concerning the
space group for the purpose of easier accessibility and es-
tablishing notation. Additional information can be found
in review papers or books on space group reps, such as
those of Bradley and Cracknell (1972), Birman (1974),
and Koster (1957).

A. Symmorphic and nonsymmorphic
space groups

A crystal is formed by arranging atoms, ions, mole-
cules, complexes, etc., in a space lattice L ={R,}, called
an empty lattice, defined by sets of points (the lattice
points) '
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R,=nti+nyt,+nsts, 9.1a)

with integers n;. The t; are called the primitive or basic
translations, and R, the lattice vector.

All the rotations a which preserve R, on the lattice L
form a point group P,

P={a:aR, €L}, (9.1b)

called the point group of the empty lattice or the
holosymmetric point group of the lattice.

The symmetric group of an infinite crystal is called a
space group G. Its elements are denoted by the Seitz no-
tation

{a|a}j={a|V(a)+R,}, (9.2a)

where a is a rotational (proper or improper) operator be-
longing to the so-called isogonal point group Gy, or the
point group of the space group G. The vector V(a) asso-
ciated with a is called the nonprimitive, or fractional,
translation. V(a) is either zero or a translation which is
less than a lattice vector. V(a) has the general form

V(a)=—;7(m1t‘x+m2t2+m3t3) , (9.2b)
where m takes only four possible values, m =2, 3, 4, and
6, while m;=0,1,...,m —1. We always associate a
primitive translation with the identity rotation €, so that
V(e)=0. A space group G is designated by

G={{o; | V(e;)+R,}:i =12, ..., |Go|,R,EL} .
9.3)

A space group is said to be symmorphic if its nonprim-
itive translations V(a)=0 for all a. Clearly the point
group Gy is a subgroup of the symmorphic space group.
A space group is said to be nonsymmorphic if its V(a) is
not zero for at least one a. The point group Gy is not a
subgroup of the nonsymmorphic space group G. Among
the 230 space groups, 73 are symmorphic and 157 are
nonsymmorphic.

As mentioned before, a crystal is formed by arranging a
collection of ions or complexes in an empty lattice. Both
the arrangement and the ions or complexes have some
symmetry of their own; therefore the symmetry of the
point group Gy is lower than that of P, unless the ar-
rangement as well as the ions have a symmetry higher
than or equal to that of the empty lattice. In other words,
Gy is generally a subgroup of P: PDG,.

The operation of {a | a} on a vector x is defined by

{a|alx=ax+a, 9.4)

i.e.; a rotation on x followed by a translation a. From Eq.
(9.4) we obtain the multiplication rule,

{a|a}{B|b}={aB|ab+a} . 9.5)
Setting {af8| ab+a}={€ |0}, we get the inverse element
{ala)”'={a"!| —a"'a} . 9.6)

From Eq. (9.5) we have
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{a|a)={e|a}{a|0}={a|0}{c|a""a} . 9.7

Therefore, the translation and rotation do not commute,
except when the translation a is parallel to the rotation
axis or the reflection plane. :

Following the multiplication rule

{a| V() +R,}{B| V(B)+R,,)
={aB|V(a)+aV(B)+aR, +R,}, (9.8)

one infers that the lattice vector and nonprimitive transla-
tion must satisfy the following conditions:

aR,, =R, , 9.9)
V(a)+aV(B)=V(aB)+Ryg, (9.10)

where R; and R are lattice vectors.
The operation of {a|a} on a function ¥(x) is defined
by

{a|a}¥(x)=y¥({a|a] ' X)=(a"(x—a)) .

With this definition, the multiplication rule for the
function operator is identical with Eq. (9.5) for the opera-
tor in the coordinate space:

(]} (B] b}Ytx)={a|a} (B~ 'x~5"b)

=B {ala] " 'x—B"b)
=¢({aB|ab+a} " x)
={aB|ab+al(x) .
Hence for simplicity we do not distinguish between the
coordinate transformation operator in Eq. (9.4) and the
function operator in Eq. (9.11). However, it is worth

mentioning that in applying a function operator one must
be very careful to notice the following points:

fe|a}Pla™'x)=g(a"(x—a))~Y(a " 'x—a),
{a|0}p(x—b)=(a~'x—b)x~Pla(x—b)),
{a |0} (B~ x) =B~ la~'x)~pa~ B 'x) .

It is convenient to use the coordinate system with t; as
basis vectors,

x=§t;+ &ty +Ests .

The transformation of x under a rotation a is determined
by that of t;:
ati = 2 DJ,(a)t] .
J
By virtue of Eq. (9.9), Dj;(a) have to be integers +1 or 0
(see Table 3.2 in Bradley and Cracknell, 1972).
From Eq. (9.11), it is easily shown that, acting on ¥(x),
the translation operator

(9.11)

(9.12)

(9.13)

(9.14)

(9.15)

{e| a}:exp(——a-V):exp(——iﬁ'a) ) (9.16a)

where k= —iV, is the momentum operator (choosing the
Planck constant i=1).
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The space group is a discrete infinite group. However,
to define a space group one need only specify the three
primitive translations t; and a finite number of elements
{a|v(a)}, or more economically, just few generators.
The generators for the 230 space groups are listed in
Table 3.7 of Bradley and Cracknell (1972).

B. Crystal systems and Bravais lattices

It can be shown that the allowable point groups P of
the empty lattice are restricted to the following seven
point groups:

03, DD 4, DD DCoy D
n n

D¢, DDy, 9.17)

where we have shown their genealogical relations.

Two empty lattices are said to belong to the same crys-
tal system if they have the same holosymmetric point
group P. Therefore, there are only seven possible crystal
systems, namely the triclinic (C;), monoclinic (C,;),
orthorhombic (D,,), trigonal (Dyy), tetragonal (D),
hexagonal (Dgy), and cubic (Oy,).

The seven crystal systems contain 14 different types of
crystal structure, known as the Bravais lattices. For their
names, symbols, and primitive translations, see Table 3.1
in Bradley and Cracknell (1972).

C. The translation group T and its irreps

The group
T={{e|Rn}}

is called the translation group. T is an invariant subgroup
of the space group G, since

{a]|a}{e|R,}{a|a} '={e|aR,}ET. (9.18)

The basis vectors t,t,,t; are in general not orthonor-
mal; from these vectors we can introduce another set of

dual basis vectors by,b,,b;, such that
bi'tj=2778ij 5 (9.19)

where the factor 27 is introduced for later convenience.
1t is easily seen that the relation between b; and t; is
b; =2mt; Xt /[t;-(t; Xt )], i,j,k cyclicin 1,2,3 .

t; and b; are the covariant and contravariant bases,
respectively, while b; ‘t; =27;; is an invariant.
The gradient operator V can be written as

d 3 d
V= |-2b,+ -2 b+ -2b /277. (9.16b)
3, ' 3& ° B
Let us define
Km =m1b1+m2b2+m3b3 . (9.20a)
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K,, are called the reciprocal lattice vectors, and the lattice
formed by all K,, is called the reciprocal lattice, denoted
as

L~ '={K,} .
Obviously we have

K,,'R, =27 X integer . (9.20b)

It can readily be proved that the reciprocal lattice and
the ordinary space lattice have the same symmetry group
P, and thus belong to the same crystal system, but they do
not necessarily have the same type of crystal structures.
For the orthorhombic and cubic systems, the body-
centered space lattice corresponds to the face-centered re-
ciprocal lattice, and vice versa. However, for all other
cases (including the simple or base-centered orthorhombic
and simple cubic), the space lattice and its reciprocal lat-
tice are of the same type.

The translation group T is Abelian. Therefore, its
CSCO can be chosen simply as the group operator

{e|R,}=exp(—ik'R,) . (9.21a)

The irreducible basis of T can be found from the solution
to the eigenequation

—ik'R,

{e| R, }uy(r)=e ug(r) . (9.22)

The eigenvalue k of the operator k is called the wave vec-

tor and is used to label irreps of T. Assuming

k=p;b;+p,b,+ps3b;, (9.23)

one of the solutions of Eq. (9.22) is easily found to be
uy(r)=exp(ik-r)

=exp[27i(pE1+p262+p3E3)] .

exp(iK,,'R;)=1 from Eq. (9.19), wuxsk,
=exp[i(k+K,,)-r] is also a solution to Eq. (9.22) with
the same eigenvalue. Consequently the irreps k and
k+K,, of T are equivalent. k and k+K,, are referred to
as the equivalent wave vectors, denoted as

k=k+K,, .

(9.24)

Since

(9.25)

The CSCO of the translation group T, {€|R,}, can be
replaced by the momentum operator

k=—iv (9.21b)

with eigenvalues k modulo K,, .
The most general form of the basis belonging to the ir-
rep k of T is the so-called Bloch function,

)= 3 v(k+K,,)exp[i(k+K,,) 1],
K

m

(9.26)

where v(k+K,, ) are coefficients.
The projection operator for the translation group is

P®—constx 3 exp[i(k—k)'R,] .
R

(9.27)

n
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D. The Brillouin zone

In order to visualize the region of space in which k
must lie, let us introduce the so-called Wigner-Seitz unit
cell, defined as the region around an origin O (which may
be any one of the reciprocal lattice points) bounded by the
planes bisecting perpendicularly the vectors joining the
origin to all neighboring reciprocal lattice points. This re-
gion surrounding the origin is called the Brillouin zone or
the first Brillouin zone.

According to Eq. (9.25), to obtain all the inequivalent
irreps of the translation group, one need only let the wave
vector k run over all the points in the Brillouin zone.
Nice diagrams of the Brillouin zones for the 14 Bravais
lattices are given by Bradley and Cracknell (1972, Figs.
3.2-3.15).

The points in a Brillouin zone are divided into two
groups.

(1) General points. A wave vector k is called a general
point if it does not have any symmetry, i.e., for any opera-
tor a € Gy, ak and k are not equivalent.

(2) Special points. A point with a certain kind of sym-
metry is called a special point, for example, the point that
lies on a rotation axis or a reflection plane and therefore is
invariant under the rotation or reflection, or the point k
on a surface of the Brillouin zone which may be invariant

or goes to its equivalent point k'=k-+K,, under a rota-

tion or reflection.

Special points are subdivided into (Bradley and Crack-
nell, 1972) two groups.

(a) Points of symmetry: k is called a point of symmetry
if there exists a neighborhood of k in which k is the point
with the highest symmetry.

(b) Lines or planes of symmetry: k is called a line
(plane) of symmetry if in a sufficiently small neighbor-
hood of k there is always a line (plane) passing through k,
all points of which have the same symmetry as that of k.

The special points in a Brillouin zone are labeled by the
standard solid-state physics symbols, e.g., I', X, M, etc.
(see Bradley and Cracknell, 1972, pp. 96—118).

Of all the rotations in the point group P, those which
leave the wave vector k invariant modulo a reciprocal lat-
tice vector form a subgroup of P, designated as P(k):

P(k)={aEP:ak=k} . (9.28)

P(k) is referred to as the symmetric group of the wave
vector k.

The symmetry groups P(k) are listed by Bradley and
Cracknell (1972) in their Table 3.6 for the wave vectors k
that lie in the so-called basic domain of the Brillouin
zone.

If a wave vector k; lies outside the basic domain, but is
related to a wave vector k that is in the basic domain by

ki=ak, a€P, (9.29a)

then the symmetry group G(k;) of the wave vector k; is
obtained from P(k) by conjugation,

P(k;)=aP(k)a""!. (9.29b)
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X. THE LITTLE GROUP

A. Representation space of the space group

Since the translation group T is a subgroup of the space
group G, naturally we shall choose the group chain GDT
to classify the IRB of G. From Eq. (9.25) we know that

Pe=expli(k+K,, ) r] (10.1a)

carries the irrep k of T, with k restricted to the Brillouin
zone. The functions of Eq. (10:1a) with the same k but all
possible K,, form an eigenspace .Z; of the translation
operator {€|R,},

ZLv={expli(k+K,,)1]:K,, EL "} . (10.1b)

Our primary task is to find linear combinations of
(10.1a) with k and K,, such that the combinations form
the irreducible bases of the space group G. As a routine
procedure, we apply all the group elements of G to the
single function ¥y and pick out the linearly independent
functions that will carry a rep of G, and then reduce this
rep into irreps of G. From Egs. (9.11) and (10.1a),

{a|ajyy=exp[ —ia(k+K,,)alexp[ialk+K,,) 1] .
(10.2a)

It is seen that the translation part {€|a} of the group ele-
ment {a |a} only affects the phase factor, whereas the ro-
tation part a changes the wave vector k-+K,, into
a(k+K,,). Therefore, {a|a}y, belongs to the eigen-
space .Z 4 of {e|R,}. Equation (10.2a) shows that the

functions {a | V(a)+R, } ¥y with the same a but different

R, are linearly dependent. Consequently, although the
space group G has an infinite number of elements, it gen-
erates from i only |Gy | linearly independent functlons,
which can be chosen as

Yap={a; | Via))}i
=explia;(k+K,,) (r—V(e;)],

They form a rep space

L(xk)={Paui=12,..., |Gol} (10.2¢)

for the space group G. In general .Z(%k) is a reducible
space of G..

Stated differently, in a rep space with Bloch functions
as basis vectors, the space group G has only | Gy | linear-
ly independent operators {a; | V(a;)}, which form a rep
space

L(xk)={{a; | V(e)}i=1,2...,|Go|} (102d)
for the space group G. The spaces .Z(xk) and L(xk)
are isomorphic.
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B. The little co-group Gy(k)

The problem we face now is how to reduce this |Gy | -
dimensional rep of G. According to the procedure intro-
duced in Sec. VI, we need first to find the CSCO of the
space group, and then to find the eigenvectors of the
CSCO in the space .Z(xk). However, this procedure
proves to be unsuitable, due to the fact that the class
operator of the space group has a rather complicated
structure. We have to resort to other strategy. We first
sandwich a group H between the space group G and the
translation group T; then we determine the HDT IRB,
and finally we get the GDHDT IRB.

Of the | Gp| rotations in the point group Gy, all the
rotations ¥ which leave the wave vector k invariant
modulo a reciprocal lattice vector, i.e.,

vk=k+K,, =k, (10.3)
form a subgroup of Gy, which is designated as

and is called the little co-group (Bradley and Cracknell,
1972).

It is easily recognized that the little co-group Gy(k) is
the intersection of the symmetry group P(k) of k and the
isogonal point group Gy, i.e.,

Go(k)=P(k)NGy . (10.4b)

C. The little group G(k)

All the elements {y|V(y)+R,}, for y €EGy(k) and
R, €L, form another space group designated as

GK)={{7: | Vy)+R,}i =12, ..., |Go(k) |,R,EL} .

(10.5)

G(k) is referred to as the little group, or the group of the
wave vector k. Gf(k) is a subgroup of G and contains T
as its subgroup. Therefore, the group G(k) is a candidate
for the group H to be sandwiched between G and T.
Another way of saying this is that for any subgroup H of
the space group G, the point group of H must be the sym-
metry group of a certain wave vector k. Thus we can use
the wave vector k to label this subgroup, that is, use G(k)
to denote H.
The order of Gy(k) is a divisor of the order of Gy,

9=1Gol|/|Go(K)| , (10.6)
where ¢ is an integer.
The | Go(k) | linearly independent functions
Yya=1{7i | Vr) i (10.7a)
form a space
LXK)={¢xi=12,..., |Golk)|} . (10.7b)

ZL(k) is a subspace of ¥, as well as a subspace of
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ZL(xk), and is a | Go(k) | -dimensional rep space of the
little group G(k). £(k) is in general reducible. By
decomposing . (k), we can get the G(k) DT IRB.

Since .£(k) is an eigenspace of {e|R,}, in L (k) we

have
{e|R,} =exp(—ik'R,) I, (10.8)

where I is a unit matrix. Therefore, in the space . (k),
the translation operator {e|R,} commutes with any
operator of G(k).

XI. THE REPRESENTATION GROUPS Gk AND Gk

A. The rep group Gk

From

{v; I Vy))+R,}={e| Ry} {y; | V(y;)}

and Eq. (10.8), we see that the group operators of G(k) in
the space .# (k) are related by

{vi | Vi) + R =e(m){y; [ V(y;)},
e(j,n)=¢e(n)=exp(—ik'R,) .

(11.1a)

(11.1b)
(11.1c)

To avoid notational clumsiness, we use the same symbol
{7 | V(7)} to denote both the group element and the cor-
responding operator or representative matrix in .Z (k).

Equation (11.1b) shows that in the rep space . (k) the
little group G(k) has only | Gy(k)| linearly independent
operators {y; | V(y;)}, i=1,2,..., | Go(k)]|.

Using Egs. (9.8), (9.10), and (11.1b), we obtain the mul-
tiplication relation for these independent operators,

i IV v |V =pG )iy [ Vv, (11.2a)
wuli,j)=exp(—ik-Ry;)
=exp{ —ik' [V(y))+v:V(y;))—V(y;)l} . (11.2b)

By identifying £ (k), | Go(k)|, {7;|V(¥:)}, and u(i,j)
with L, |g|, R;, and 7(i,j), respectively, in Sec. I.C, we
see that all the distinct operators e(i,n){y; | V(y;)} form a
rep group

G={{7vi|Vr}i=12...,|Gok) |}, , (11.20)

where m is an integer depending on k (see discussion
below).

The rep group Gy can be regarded as a faithful rep of
an abstract group Gk. The abstract group could be, for
example, the so-called central extension GX* defined by
Schur "(see Bradley and Cracknell, 1972). Notice that
what is called the representation group by Doring (1959)
and Birman (1974) is just another name for the central ex-
tension, and thus differs from our definition for the rep
group.

From Eq. (11.1b) it is clear that the IRB of the little
group G(k) in the space .Z (k) is identical to the IRB of
the rep group Gy; their representation matrices are related
by



Chen, Gao, and Ma: The representation group . . . 247

—ik‘R

D®Y({y | V(y)+R,})=e "DE({y | V(Y)})),

(11.3)

where (k)(v) is the label for the irrep of G(k) or Gy. It is
to be noted that, in this paper, the symbol DY(X) is al-
ways regarded as the representative matrix of an operator
X with respect to a certain basis labeled by the index j,
and DY)(Y) is that for another operator Y, while X and Y
may belong to different groups. This notation is con-
sistent with the convention used, in quantum mechanics
and is very convenient.

The irrep DY ({y | c}) is called the small rep of the
little group G(k).

If the wave vector k is a point of symmetry, then k is
of the form

k=;11-(m1b1+m2b2+m3b3) s (11.4a)
where m and m; are integers. In such a case, the phase
factor u(i,j) in Eq. (11.2b) is of the form

=exp(2wli/m), 1=0,1,.... (11.4b)

Hence the rep group Gy is an m-fold covering group of
Gy(k) with the elements

e2™/miy (V(y))}, j=12...,|Gok)]|,

1=0,1,...,m—1. (11.4¢)

Nevertheless, if k is a line (or plane) of symmetry, for
instance if k is of the form

k=—r‘nl—,(m1b1+m2b2)+p3b3‘, (11.44d)
where p; is an arbitrary number, say an irrational num-
ber, then the phase factor u(i,j) will not have the simple
form of Eq. (11.4b). It is thus seen that the factor system
i has the unpleasant feature that the integer
m = |Gy|/|Golk)| depends on the wave vector k and
may become very large for k in a line (or plane) of sym-
metry. To avoid this trouble, we proceed to the next sec-
tion.

B. The rep group Gi

Let us make the following gauge transformation for the
group elements of G(k):

Ri={y:|Vlyd})
=exp[ik-V(y)]{v: | V(r:)} .

This transformation seems to have been used for the first
time in the context of studying the degeneracies of elec-
tronic energy bands in crystals by Kovalev and Lyubar-
skii (1958). It follows from Eq. (11.2a) that in the space
Z (k) we have

R;R;=7(i,j)R; ,

(11.5)

(11.6a)
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n(i,j))=exp{ —ik-[v;V(y;)=V(y;)1} . (11.6b)
According to Eq. (-10.3),

vi'’k=k+K, , (11.6¢)
where K, is a reciprocal lattice vector. Thus

n(i,j)=exp[—iK, -V(y;)] . (11.6d)

With Eqgs. (9.2b) and (11.6d), the phase factor 7(j,k) is

_ of the form

n(j, k)=exp(2miay /m), m =2,3,4,6, (11.7)

where aj; is an integer depending on j and k. Therefore,
in the space .Z’(k), the m | Gy(k) | operators

R"=exp(2mli/m)R;, j=1,2,..., |Gok)| ,
’ 1=0,1,...,m—1, (11.8)
form a rep group designated as

Gi={Rii=12..., |GyKk)|}m - (11.9)

The rep group Gy is an m-fold covering group of the
point group Gy(k) where the integer m depends only on
what kind of fractional translation the space group G has
and takes only four possible values, 2, 3, 4, and 6, for all
230 space groups.

Since R; differs from {y;|V(y;)} only by the phase
factor exp[ik-V(y;)], the groups Gy, Gy, and G(k) have
identical irreducible bases, and their matrices, upon using
Egs. (11.3) and (11.5), are related to one another by

D(k)(v)( {'V.' | V('V,-)} )—e ——ik'V(Yi)D(k)(v)(Ri) , (11.10a)

D’(k)(v)( {7’1‘ [ c; } Y=e “ik'ciD(k)(v)(Rl_) , (11.10b)

where D®¥)(R;) is the irreducible matrix for the element
R; of the rep group Gy.

For notational convenience, we often use A(y;) to
denote the matrix D'Y™(R;), i.e.,

Aly))=DWPY(R)=DPY({y, | V(¥)}) . (11.11a)
Equation (11.10b) then reads
DOV ((y; e =e Ay, . (11.10c)
It follows from Egs. (11.6a) and (11.11a) that
Ay DAy =q(, )HAy;y;) (11.11b)

A is called the projective irrep of the point group Gy(k),
the ray rep (Hamermesh, 1962), the multiplier rep (Mara-
dudin and Vosko, 1968), or the loaded or weighted rep
(Lyubarskii, 1957; Kovalev, 1961).

In summary, the problem of finding the irreps of an in-
finite group G(k) is converted into finding that of the rep
group Gy or Gi. For those wave vectors k which are
lines or planes of symmetry, we must work with the rep
group Gy, while for those k which are points of symme-
try, we can work either with the group Gy or with Gg.
However, the multiplication relation (11.6a) for Gy is
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much simpler than that for Gy; in the following we shall
work only with the rep group Gy, irrespective of points of
symmetry or line (planes) of symmetry.

The | Go(k) | functions

Y;=R;exp[i(k+K,, ) 1], j=1,2..., |Gok)|,
(11.12a)

carry the rep space .£ (k) for Gy, which coincides with
the space . (k) of Eq. (10.7b). The group space of the
rep group Gy is denoted by

LK)={R;:i=12..., |Gok)|} . (11.12b)

The spaces -Z’(k) and L (k) are isomorphic, and it is more
convenient to work with the latter. In the following we
work mainly with L (k).

C. Special cases of the rep group Gy

The following four cases need to be considered
separately.

(1) For a general k point. This is a trivial case, since
now Gy =Gy ={¢}.

(2) For the symmorphic space group, or the nonsym-
morphic space group whose little group G(k) is sym-
morphic for the wave vector k under consideration. For
these cases, V(y)=0, and according to Egs. (11.2b) and
(11.6d) the phase factor u(i,j)=m(i,j)=1, hence

G =Gy =G(k),

i.e., the rep group Gy (or Gy) is identical to the point
group Gy(k), whose irreps are already known. In passing
we point out that in such cases the space
L(k)={R;}={y;} is the regular rep space of the point
group Gy(k).

(3) For an interior point of a Brillouin zone. When the
wave vector k is not on the surface of the Brillouin zone,
the only possibility for yk=k+K,, is that K, =0, i.e.,

rk=k . (11.14)

(11.13)

Comparing this with Eq. (11.6c), we know that now
K, =0, and the phase factor in Eq. (11.6a) is again equal
to one, 7(i,j)=1. Therefore, the rep group Gy is iso-
morphic to the point group Go(k)={7;}. Suppose D¥ is
the irrep of the point group Gy(k). Then the irrep of the
rep group Gy is

DWY(RH=D™(y,) . (11.15a)
while the irrep of the little group G(k) is [Eq. (11.10b)]

D®Y({y |c})=e kDM (y) . (11.15b)

Observe that, for the origin point k=0, we again have
Gy =Gy, (11.16)

i.e., the distinction between Gy and Gy disappears.

It should also be noted that for the case of interior
points, although the rep group Gy and the point group
Go(k) have identical irreps (11.15a), their irreducible
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bases do not coincide. For example, if

Pe= > uvith (11.17a)
i

is the irreducible basis of Gy(k), where u,ﬁ,‘}) are coeffi-

cients and ¢y =exp[i(k+XK,) r], then the corresponding
irreducible basis of Gy is

o= Zu 1y IV}t - (11.176)
1

(4) For a point on the surface of a Brillouin zone and
for nonsymmorphic little groups. For cases (1)—(3)
above, the irreps of the rep group Gy can be directly taken
over from those of the point group Gy(k). The only case
for which the irreps of Gy cannot be obtained in this way
and have to be worked out anew is when the wave vector
k is on the surface of a Brillouin zone and its little group
G(k) is nonsymmorphic.

The whole machinery for constructing irreps for the
rep group has been worked out in Secs.. II—VII. All the
formulas there can be applied to the rep group Gy with
| g| replaced by |Gy(k)|. Before going into detail on
the application of the general theory to the specific group
Gy, let us discuss briefly one of the conventional methods
for constructing the irreps of G(k), the projective-rep
method. '

D. The projective-rep method

We recapitulate the main points of Schur’s theory on
projective representations (Schur, 1904,1907,1911; Bir-
man, 1974; Bradley and Cracknell, 1972) as follows. Our
starting point is still Eq. (11.11b). Under the gauge

transformation
A'ly))=C;Aly;), (11.18)
with | C; | =1, Eq. (11.11b) becomes
Ay DN (r ) =0'(L, DA (y7;) (11.19a)
(i, )) = é, Lotiyj) . - (11.19b)

ij

The factor systems 7 and 7’ are said to belong to the
same class. We need study only one factor system for
each class. One of Schur’s basic theorems is the follow-
ing: The number of classes of factor systems of a finite
group g is finite, denoted by m, and every projective rep
is equivalent to a unitary one with a factor system in the
same class.

Let g* be the central extension of g with an Abelian
group A of order m such that A is an invariant subgroup
of g* and A is contained in the center of g*. (The center
of a group is the set of all elements each of which is in a
class by itself.)

Another basic theorem of Schur is the following: All
the projective irreps of g are vector irreps of g* subduced
on g.

The central extension g* of minimum order producing
all the distinct projective irreps of g is called the “rep”
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group (here we added the quotation marks to differentiate
Schur’s usage from our definition of the rep group).

To obtain projective irreps belonging to a given factor
system 7 of Eq. (11.7), we can construct the “rep” group
g" as follows: Form m |g| pairs of elements (y;,]), each
pair with a ¥; from g and an [ from the cyclic group Z,,
of integers 0,1, ...,m —1; the group product of Z,, is
defined as addition modulo m. The multiplication rule
for g* is defined by

Vi DY) =yl +1 +ap) . (11.20)

All the projective irreps of g for the factor system 7 can
be found from the vector rep of g*. '
Now let us return to the little co-group g=Gy(k). Its
central extension is g*=G(k)*, or G in Bradley and
Cracknell’s notation. The relation between the central ex-
tension Gy(k)* and our rep group Gy is clear when we
note that from Egs. (11.6a), (11.7), and (11.8) we have

R;”R,(cmzexp[Zﬂi(l +1")/m]R;Ry

=exp[2mi(l +1'+ay)/mIRp =R, (11.21a)

U'=Il+I'+ay . (11.21b)

Comparing Eq. (11.20) with Eqgs. (11.21), we see that
there is a one-to-one correspondence between (y;,/) and
R}”; therefore Gy(k)* is isomorphic to Gy. Being an
abstract group, the central extension Gy(k)* is just the
abstract group Gi( with the rep group Gy as its faithful
representation.

Several approaches are available for constructing pro-
jective irreps of a point group belonging to a given factor
system.

1. Déring’s approach

Taking the simplest factor systems, i.e., taking as many
phase factors 7(i,j)=1 as possible, Doring was able to
construct all the different projective irreps of the 32 point
groups (Doring, 1959). However, Doring’s irreps are usu-
ally not associated with the factor system (11.6d) we need
for constructing the irreps of the little group G(k), and a
gauge transformation [Eq. (11.18)] is required to correct
the factor system. Therefore, Doring’s table for the pro-
jective irreps of point groups is not in a form that permits
direct application of his projective irreps to space groups.
This is the reason why the projective-rep method was less
widespread, before Kovalev’s table (1961) was published,
than the little-group method due to Herring (1942).
Herring’s method is based on the factor group
G(k)/T(k), where T(k) is a subgroup of all lattice
translations through vectors R for  which
exp(—ik-R)=1.

2. Kovalev and Lyubarskii’s approach

From Eqgs. (11.11b) and (11.6d), we obtain a set of ma-
trix equations for the generators of Gy(k). With the help
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of Evhf,: | Go(k) |, we can determine the projective ir-
reducible matrices for these generators on a case-by-case
basis (Lyubarskii, 1957). The whole projective rep of
Gy(k) results from matrix multiplication. The disadvan-
tage of this approach is that it is very tedious. Based on
this method, tables of the projective irreps have been con-
structed for the little co-groups corresponding to most of
the symmetry points in the Brillouin zone for all 230
space groups (Kovalev, 1961).

3. Bradley and Cracknell’s approach

Bradley and Cracknell (1972) published extensive char-
acter tables for all abstract groups that may appear as the
central extension groups Gy(k)* or @i(. However, out of
the N inequivalent irreps of Gy(k)*, only n are acceptable
irreps for the little group G(k) in the space .£'(k). By re-
quiring that

for all j and I, Bradley and Cracknell could determine
which irreps of Gy(k)* were acceptable for G(k). They
also listed the irreducible matrices for the generators of
the little group G(k).

The disadvantage of this approach is that we have to
work with groups of large order, which can be as high as
192 for the cubic system. Since all we need are the ac-
ceptable reps, the labor involved in constructing all the N

irreps of Gy(k)* or GL seems disproportionate.

4. Dirl’'s approach

The projective irreps constructed by the previous ap-
proaches are arbitrary, i.e., they do not fit into a specific
classification scheme. In practice, as in the investigation
of compatibility for space groups, one needs to construct
projective irreps of the little co-group Gy(k) in the
Gy(k) DGy(k') classification, where k is a point lying on
the surface of the Brillouin zone and k'=¢k,O0<e<1,isa
point of lower symmetry.

A successive induction procedure has been established
by Dirl (1977) to construct the required Gy(k)D Gy(k')
projective irreps. However, the formulation is rather for-

'midable and defies a brief recapitulation here. The in-

terested reader is referred to Dirl’s original paper.

The projective irreps of the little co-group have also
been obtained by Sahni and Venkataraman (1970) by in-
ducing from those of a subgroup of prime order starting
from an invariant cyclic subgroup.

Xll. THE CSCO AND CHARACTERS
OF THE REPRESENTATION GROUP G

A. The group table of Gk

Although the rep group Gy is of order m | Gy(k) |, its
multiplication rule is totally determined by the multipli-
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cation relation among the - | Go(k) | active elements R,
p=12,..., |Go(k)|, which is referred to as the group
table of Gy.

The group table of Gy can easily be constructed from
the group table y,y,=7,, of the little co-group Gy(k) by
replacing ¥’s with R’s and multiplying the (po) entry

with the phase factor,
n(p,0)=exp[ —i(y, 'k—k)-V(y,)] . (12.1a)

Since phase factors 7(p,0) are crucial for the whole
process of analysis, we give a simple formula for calculat-
ing them. To this end, we introduce the following nota-
tions. Let

b=(by,b,,b3), t=(t},15,t3),
(12.1b)
p=(p17p27p3)7 TU=(TUI7T¢72’T¢73) »

The wave vector k and the nonprimitive translation V(y,)
can be expressed as

k=p'b=p b;+p,b,+p3b;,
(12.1¢)

V(o) =Tg t=To1t; +Toots +To3t3 .

Obviously, under erations, (p1,p2,p3) transforms as
(ty,t5,t3), while (7,1,702,703) transforms as (b, b,,b;).
Furthermore

7/;1k=’;/p_l(p‘b)zp'('}/;lb):pp'b ’
l (12.1d)

Pp=YpP=(Pp1,Pp2,Pp3) .
The transformed vector p,=7,p can be found from Table
3.2 in Bradley and Cracknell (1972) by replacing the t;’s
with p;’s. Using Egs. (12.1a), (12.1c), and (12.1d) we fi-
nally obtain

1(p,0)=exp|[ —27i(p,—p)'7,] , (12.2a)
where
3
(Pp—P)To= 2, (Ppi—Di)Tqi + (12.2b)

i=1

B. Classes and class operators of the rep group Gi

On the basis of the group table of Gy, it is easy to
determine the classes of Gy. In this process the following
observation is of help.

Suppose for the point group Gy(k) we have

Yivevi ' =vx
Then for the group Gy we shall have

R;R;R; '=e?™!/mR, . (12.3)

This shows that if y; and y; belong to the same class of
the point group Go(k), then R; and Ry’ may belong to
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the same class of Gy, while if y; and y; do not belong to
the same class of Gy(k), then R;” and R}’ for any / and
1" will never belong to the same class of Gy. ,

It should be pointed out that, for an abstract group, we
never choose the identity operator as a member of the
CSCO except for the trivial identity group (consisting of
only one element), whereas for the rep group, it may hap-
pen that there is only one linearly independent class
operator for a nontrivial rep group. In such a case the
identity operator must be the linearly independent class
operator and is the CSCO of this nontrivial rep group.
Examples of finding the CSCO of Gy are given in Sec.
XIV.A.

C. The characters of Gi

Although the rep group Gy has N classes, all we need
are the characters of the n classes whose class operators
are linearly independent. The character of the remaining
class is either zero, for a null class operator, or a factor
times one of the n known characters. For example, if
C;=uCj, then X; =uX;, where u is a constant factor.

The procedure for obtaining the characters of the rep
group Gy by the EFM is given in Sec. VIL.C. Here it is
sufficient to mention that by working with the rep group
G, rather than the abstract group G [or Go(k)*], we can
reduce the order of the eigenequations for the characters
from N to n. From the known fact that (N),.,=32,
while (n),,,,=11 for the single-valued representations of
the 230 space groups (Bradley and Cracknell, 1972), we
can fully appreciate the importance of this simplification.

We can use the eigenvalues v of the CSCO of Gy, to la-
bel irreps of the rep group Gy or of the little group G(k).
However, to follow the customary notation (Birman,
1974), we prefer to use (k)(v) as label of the irreps of Gy
or G(k).

Xlll. THE IRREDUCIBLE BASIS
AND MATRICES OF G

A. The CSCO-Il and CSCO-Ill of Gk

To decompose the group space L (k) of Gy, we need to
introduce a suitable group chain Gy DG;, which can be
assumed to be a canonical one without loss of generality.
For simplicity in exposition, here G; is assumed to be
simply a subgroup of Gy, instead of a subgroup chain, i.e.,

G;:[Rs}7 Rsz[YSIV(Vs)}" (13.1)

We also need the intrinsic group G of the rep group Gi
defined by Eq. (4.11a), i.e.,

R;R;=R;R; for any R;EL(Kk) . (13.2)

G and Gy are commutative and anti-isomorphic. Corre-
sponding to the subgroup G; of Gy is the intrinsic sub-
group

G;={R,} (13.3)
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of G;. Let C and C(s) be the CSCO of Gi and G,
respectively; then C and Cl(s) are the CSCO of G and
G |, respectively, where C and C(s) are obtained from C
and C(s) by replacing the elements of Gy with the corre-
sponding intrinsic group elements. Furthermore, we still
have C=C.

If K=(C,C(s5),C(s)) is a CSCO in the |Gy(k)]|-
dimensional space L (k), then K is the CSCO-III of Gy,
while M =(C,C(s)) is the CSCO-II of Gy.

The intrinsic group G(k) of the little group G(k) is de-
fined by
GK)={{r:[VyN+R,],i=12,..., |Gyk)|,R,EL}

(13.4a)
with .
[7iTe]=e~*“R,, c=VW(y,)+R, (13.4b)

The eigenvector of the CSCO-III'of Gy in the space
L(k) is denoted by PX'® Equation (6.1a) now reads

C v
C(s) [PV g |PPW g b=a,a,,... »ap, -
C(s) b
(13.5)
The eigenvector PV is a linear combination of R;,
pPRWE_ 3 lfGo(k” ulVR, (13.6)

i

Equations (6.3), (6.5), and (6.9) still hold under the substi-
tutions

(k)(v)

Igl _’IGO(k)” Uyab,i—>Uab,i (13.7)

Then the coefficients u,ﬂ,‘),( are the solutions to Eq. (6.5).
The eigenvector P )(")b for a,b =a,, .. » @y, consti-

tutes the G{DG; and GkDG s IRB. Equation (6.3)
shows that the number of times that the irrep (k)(v) of
Gy appears in the space L (k) is equal to its dimension
h,.

One of the advantages of the EFM for constructing the
IRB or irreps of G(k) is that the subgroup chain used to
classify the IRB or irrep can be chosen at will without the
restriction that the subgroup has to be an invariant sub-
group of G(k) as in Dirl’s method (Dirl, 1977). For ex-
ample, in the case studied by Dirl, we can choose
G; =Gy, k'=¢k, O<e<1, where Gy is the rep group
corresponding to the little group G(k'). If Gy DGy is not
a canonical subgroup chain, then in addition to the CSCO
of Gy we need to seek extra operators to form the opera-
tor set C(s). (See Sec. V.B.)

However, if for some circumstances we are only in-
terested in obtaining irreps of G(k) without the require-
ment that they be in a certain classification scheme, then
we pay attention only to the operator set C(s), without
bothering about its related subgroup chain. In such cases,
the eigenvalue of C(s) is used merely to distinguish be-
tween the components of an irreducible basis, and C(s)
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can be chosen differently for different irreps. The choice
of C(s).can be arbitrary so long as its eigenvalues can
provide enough labels for the basis vectors of the same ir-
rep. It is always desirable that C(s) contain as few opera-
tors as possible. For example, for two-dimensional irreps
the possible choice of C(s) is a (plane) reflection operator
o, or a twofold rotation C,; for irrep