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A so-called representation (repi group Cx is introduced which is formed by all the
i
G

i
distinct operators

(or matrices) of an abstract group G in a rep space I. and which is an m-fold covering group of another
abstract group g. G forms a rep of G. The rep group differs from an abstract group in that its elements
are not linearly independent and thus the number n of its linearly independent class operators is less than its
class number X. A systematic theory is established for the rep group based on Dirac's CSCO (complete set
of commuting operators) approach in quantum mechanics. This theory also comprises the rep theory for
abstract groups as a special case of m=1. Three kinds of CSCO, the CSCO-I, -II, and -III, are defined
which are the analogies of J, (J,J, ), and (J,J„J,), respectively, for the rotation group SO3, where J is
the component of angular momentum in the intrinsic frame. The primitive characters, the irreducible basis
and Clebsch-Gordan coefficients, and the irreducible matrices of the rep group G in any subgroup symme-
try adaptation can be found by solving the eigenequati. ons of the CSCO-I, -II, and -III of G, respectively, in
appropriate vector spaces. It is shown that the rep group G has only n instead of N inequivalent irreduci-

ble representations (irreps), which are just the allowable irreps of the abstract group G in the space L,
Therefore, the construction of the irreps of G in I. can be replaced by that of G. The 1abor involved in the
construction of the irreps of the rep group Cir with order

i
Cr

i
is no more than that for the group g with or-

der
i g i

=
i
Ci

i
/m, and thus tremendous labor can be saved by working with the rep group Ci instead of

the abstract group G. Based on the rep-group theory, a new approach to the space-group rep theory is pro-
posed, which is distinguished by its simplicity and applicability. Corresponding to each little group G(k),
there is a rep group Gk. The n inequivalent irreps of G& are essentially just the acceptable irreps of the lit-
tle group G(k). Consequently the construction of the irreps of G(k) is almost as easy as that of the little
co-group Go(k). An easily programmable algorithm is established for computing the Clebsch-Gordan
series and Clebsch-Gordan coefficients of a space group simultaneously.
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GLOSSARY

C;
c (c(i))

CGC
C(s) =

C(s) =

CSCO
D'"'(z )

EFM
I
Cx

Ci
Cx

Gk &i

Cr(k)
Cxo

Cxo(k)
Cxo(k)*
cx(s) =G

IRB
irrep
ISF
I,

L(k)

W(ek)

P(k)
(v)

g(v)b
a

the ith class operator
complete set of commuting operators
(CSCO or CSCO-I) of Cx (Cx(i))
Clebsch-Cxordan coefficient

(C ( 1 ),C (2), . . . ) complete set of commuting
operators of Cx(s)

(C(1),C(2), . . . ) complete set of commuting
operators of 6(s)

complete set of commuting operators
the irreducible matrix for the group ele-
ment R;
eigenfunction method
abstract group
number of elements in the ith class
representation group (in Secs. I—VIII),
space group (in Secs. IX—XX)
abstract group
the intrinsic group of 0

~ g ~
) order of the group Cx (g)

representation groups
the abstract group isomorphic to Cx1,

little group
isogonal point group of the space group
0
little co-group
central extension of Go(k)

(1)DCi(2) D . subgroup chain
dimension of the irreducible representa-
tion v
irreducible basis
irreducible representation
1soscalar factor
the representation space of G associated
with the representation group Cx,

space lattice, L =IR„J (in Secs.
IX—XX)
group space of the representation group
0
group space of the representation group

eigenspace of the CSCO of the represen-
tation group Cx

eigenspace of the translation operator

the representation space of the space
group 0
number of linearly independent class
operators of G
number of classes of the representation
group Ci
holosymmetric point group of the crystal
system
symmetric group of k
the generalized projection operator of
the representation group Cs

the normalized generalized projection
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0
~(v)b

operator of the representation group G
rep representation
T translation group
(v, a,b) eigenvalue of (C,C(s),C(s))
(v(a) vqaq

I
vOa ) Clebsch-Gordan coefficient

("", ",
I

-",- ), U' ', -,- the space-group Clebsch-
Gordan coefficient
multiplicity index
the ath vector for the bth irreducible
representation v

Genealogical relation for the space group and its point
group

G DG(k) DG(s) DT,
P&Go&Go(k)

PUP(k),
Go(k) =P(k) A Go

Coset decomposition
G=X'+{& IV I }G(k»

Go ——g, (E)P Go(k)

TABLE I. Space-group elements, IRB and irrep.

~&b
k

group element

basis vector

irrep

dimension

{a; I
V(a;)+R„}

V~}q):.'
D(Ok)(v)

~b, era

qh

y, I
v(y, )+R„

(v)

D{k)(v)

h„

IeIR„}
i{k+K ).r

(i)k=e

exp( —ik.R„)
1

Iy Iv{y, )}'
(v)

D (k){v)
ba

h„

'The irrep of G{k) is D'"" '{
I y I

c } ) =exp( —ik c)b.'"'{y).
Iyj I

V{y&)}'=&& ——exp[it V{y&)] ty& I V{y&)},j=1,2, . . . , I
Go{k) I, are the active elements of the. rep group Gg.

'b(" is the projective irrep of the little co-group Go{k) and b("){yi =D'"""'(
I y I

V(y) }
' ).

l. INTRODUCTION

A. Historicai retrospect
'i

Group representation (rep) theory plays a very impor-
tant role in physics and quantum chemistry, and its im-
portance has increased with modern developments. The
rep theory for both finite groups and compact Lie groups
is rather mature and is treated extensively in numerous
books and articles (e.g., Eisenhart, 1933; Murnaghan,
1938; %'eyl, 1950; Racah, 1951; Burnside, 1955; Lyubar-
skii, 1957; Littlewood, 1958; %'igner, 1959; Hamermesh,
1962; Boerner, 1963; Lowdin, 1967; Miller, 1972; Wy-
bourne, 1974). This theory, which we call the traditional
group representation theory, seems to be perfect from the
mathematical point of view. However, it is not totally
satisfying from a practical, or physical, point of view.
First, as pointed out by Salam (1963), it is unphysical.
Group theory was introduced into mathematics as early
as 1810, and the theory of group rep was developed main-
ly by mathematicians during the 1920s, before quantum
mechanics was established; in this it is unlike calculus,
which was invented at about the same time as the
discovery of Newton's law. As a result, many sophisticat-
ed physicists who are quite at home in their own fields
seem to be afraid of group theory (Lipkin, 1966). Second,
there is no general method for treating various kinds of
problems in group rep. Any given technique applies only
to a particular problem for a particular group. Not only
do the methods for dealing with point groups, permuta-
tion groups, space groups, and Lie groups all differ drasti-
cally, but the methods for finding the characters, irreduci-
ble basis (IRB), irreducible matrices, and Clebsch-Gordan
coefficients (CGC, or CG coefficients) also vary from one
to another. Therefore, in many cases, these methods are
more of an art than a science.

In physical applications, we often need to construct an

IRB adapted to a hierarchy of groups, the so-called
symmetry-adapted IRB, starting with a high-symmetry
group that approximately represents the structure of the
system under investigation, down to the actual symmetry
group of the system, and terminating in an Abelian group
(Butler and Wybourne, 1976b). The analysis due to De-
vine (1967) of the spectroscopic properties of the rare-
earth double nitrates via the group chain SO3 DI$
& Tb D C3 affords a beautiful example of the application
of descending symmetry. The symmetry-adapted IRB is
also required in dealing with a system having the so-
called dynamical symmetries (Arima and Iachello, 1979,
and references therein).

The standard method for constructing an IRB adapted
to a group chain G&G(s), G(s)=G(1)DG(2)D . is
to use the generalized projection operator (Elliott and
Dawber, 1979),

gg IGl
( )

i=)
(1.1a)

where
I
G

I
is the order of G, ))(„ the dimension of the ir-

reducible representation (irrep) (v), and D,'b'(R;) the ir-
reducible matrix elements in the GAG(s) classification.
Notice that here a or b is no longer merely an index
enumerating the basis, but denotes a set of quantum num-
bers a =(A,), )(.z, . . . ), A,; being the irrep label of the sub-
group G(i) Supposi. ng that (p is one of the reducible basis
vectors of 6, an IRB might be obtained by applying P,'&'

toy,
P,' '= c nost XP,'b'

(p. (l.lb)

The question is how to get the irreducible matrices D' ' in
the given G&G(s) classification. If the G&G(s) IRB
g,'"' were known, then

D(v)(g ) {@(v)
I
~

I

@(v))
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The trouble is that the IRB in the G& G(s) scheme is not
known yet. It is seen that Eqs. (1.1) and (1.2) are two in-
terdependent problems; the solving of one is prerequisite
for the solving of the other. Therefore, we are at an im-
passe when both the matrices and the IRB are unknown.
One might use the successive induction technique to con-
struct the G&G(s) IRB (Boerner, 1963; Bradley and
Cracknell, 1972; Altmann, 1977; Dirl, 1977); however,
this technique is rather intricate, and a systematic induc-
tion procedure can be developed only for invariant sub-
groups.

The situation is similar for the space-group rep theory.
The determination of the irreps of space groups was be-
gun by Seitz (1936) and Bouckaert, Smoluchowski, and
Wigner (1936). Thanks to the efforts of many scientists,
tables of the irreps of the 230 space groups have now been
published [Kovalev, 1961; Faddeev, 1961; Hurley, 1966;
Miller and Love, 1967 (reprinted in Cracknell et al. ,
1979); Zak et al. , 1969; Bradley and Cracknell, 1972].
Programs for computing the irreps of any little group
G(k) have been prepared (e.g., Worlton, 1973; Neto,
1975). Extensive review papers and excellent books on
space-group reps are available, such as those of Koster
(1957), Johnston (1960), Slater (1962,1965), Altmann
(1963), Bradley and Cracknell (1972), Maradudin and
Vosko (1968), Birman (1974), and Cracknell (1975). Re-
views of computational group theory in crystal systems
are given by Davies (1982) and Neubuser (1982).

Therefore, it may seem that work on the determination
of the irreps of space groups is finished. However, this is
not true. For many purposes, e.g., for investigating sym-
metry change or symmetry breaking in continuous phase
transitions (Birman, 1982; Deonarine and Birman, 1983a,
1983b; Tao, 1983), or for studying the compatibility rela-
tions for space groups (Bouckaert et a/. , 1936; Cornwell,
1969; Dirl, 1977), we need to use an IRB and irreps
adapted to a given group chain G(k) D G(s) D T, where
G(s) is a subgroup (or a subgroup chain) of the little
group G(k), and T is the translation group. Unfortunate-
ly, this requirement is usually not met by the existing
tables or programs for the irreps of space groups, and we
have to construct the irreps anew in the given G(k)
D G(s) D T classification.

Besides, the conventional approach to the space-group
rep is not totally satisfactory. First, the theory itself is
rather complicated and evasive for a person who has only
a general knowledge of finite group representation.
Second, the practical methods for constructing irreps of
the little group are mainly Herring's little group method
and the projective- (or ray) rep method (Herring, 1942;
Doring, 1959; Bradley and Cracknell, 1972; Birman,
1974) or the variation of the projective-rep method (Lyu-
barskii, 1957; Kovalev and Lyubarskii, 1958). The former
two methods require constructions of reps for groups with
high order. For example, for the projective-rep method,
the order can be as high as 192. In the Lyubarskii and
Kovalev method, a set of matrix equations is set up for a
few generators of the little co-group Go(k) on a case by
case basis. The projective-rep matrices for these genera-

tors are first found one by one from the Inatrix equations,
and the whole projective rep results from matrix multipli-
cation. The method used by Zak (1960), Klauder and
Gay (1968), and Neto (1973) is based on the reduction of
the reps of the little group G(k) induced from the irreps
of its invariant subgroups of index two or three.

Recently, there have been many papers devoted to the
Clebsch-Gordon (CG) coefficients for the permutation
groups (Schindler and Mirman, 1977a,1977b; Chen and
Gao, 1981; Gao and Chen, 1985; Chen, Gao, Shi, Val-
lieres, and Feng, 1984; Saharasbudhe et al. , 1981), for
point groups (Van den Broek, 1979; Butler, 1981; Kotzev
and Aroyo, 1980,1981), and for space groups (Litvin and
Zak, 1968; Saulevich et al. , 1970; Gard, 1973; Sakata,
1974; Berenson and Birman, 1975; Berenson et al. , 1975;
Rudra and Sikdar, 1976; Dirl, 1979,1980; Suffczynski and
Kunert, 1982; Chen, Gao, and Ma, 1983). A program in
ALGc)L has been written for calculating the principle
block CG coefficient of the space group (Birman, 1974)
by Kowalczyk et al. (1980). Systematic tables of CG
coefficients for permutation groups (Schindler and Mir-
man, 1977b; Chen and Gao, 1981; Gao and Chen, 1985),
point groups (Koster et al. , 1963; Butler, 1981), and mag-
netic point groups (Kotzev et al. , 1980—1982) are avail-
able. More recently, the work on computer-generated
space-group CG coefficients has been reported (Davies
and Dirl, 1983). However, their coefficients are not sub-

group symmetry adapted. One of the major aims of the
present paper is to set up a simple algorithm for comput-
ing space-group CG coefficients adapted to any given
subgroup chain.

B. A new approach to group representation theory

From the physical point of view, it is most desirable to
have a group rep theory in accordance with the concepts
and methods of quantum mechanics. The commuting-
operator approach to the rep theory of semisimple Lie
groups has met this requirement to a certain extent, due
to the efforts of Racah (1951), Biedenharn (1963a,1963b),
and Baird and Biedenharn (1963). Gamba (1969) and Kil-
lingbeck (1970,1973) expressed their desire to reform the
rep theory for finite groups by suggesting a Lie-like ap-
proach and commuting-operator approach to the theory,
but they have not pursued the subject far enough. There-
fore, rep theory for finite groups remains basically the
traditional one.

As pointed out by McVoy (1965), the theory of Lie
groups, used properly with all the most powerful
theorems, is both difficult and time consuming. Howev-
er, the key theorems are perfectly understandable without
a detailed knowledge of the trickery involved in their
proof. In this regard, the rotation group SO3 provides an
excellent example. The main results for SO3 rep theory
can be summarized as follows (Chen, Wang, and Ciao,
1975,1983).

The Casimir operator J of SO3 is called the first kind
of complete set of commuting operators (CSCO-I) of SO3.
In the class parameter space,

Rev. Mod. Phys. , Vol. 57, No. 1, January 1985
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1 d
sin (q&/2) dy

sin (g/2)2 d (1.3)

and its eigenfunction gives the character of SQ3

(1.4a)

(J,J, ) is a CSCO for each irreducible space of SO3.
Let J„, J~ and Jz be the components of angular

momentum in the intrinsic frame of a rotating system.
They are the generators for rotations around the intrinsic
axes x, y, and z. The rotation group with J~, Jz, and J,
as infinitesimal generators is called the intrinsic rotation
group and denoted by SO3. It is well known that (Bohr
and Mottelson, 1969)

[J;,Jk]=0, i, k =x,y,z,
[J,J~]=iJ„[J„,J~]= iJ, , x—,y, z in cyclic

J„+Jy +J, =J„+Jy +J, .

(1.6a)

(1.6b)

(1.6c)

Therefore, the group SO3 and its intrinsic group SO3 are
commutative and anti-isomorphic.

(J,J„J,) is called the CSCG-III of SO3, and its eigen-
function in the group parameter space gives the complex
conjugate of the irreducible matrix element.

J2

J, D~k(aPy)*=
'J,

j(j+1)

m, k= —j,—j+1, . . . ,j . (1.7)

(J,J„J,) is a CSCG for the group parameter space of
SO3. k is called the intrinsic quantum number and is
used to distinguish between equivalent irreps (j) of SO3.

It is thus seen that the characters, IRB, and irreducible
matrix elements can be obtained by solving the eigenequa-
tions of the CSCQ-I-, -II, and -III, respectively.

Stimulated by the abave simple results for the group
SO3, Chen and co-workers (Chen, Wang, and Gao,
1977a, l977b, 1977c,1978a,1983; Chen et a/. , 1979) devel-

oped a new approach to group rep theory. For any non-
Abelian group 6, a so-called intrinsic group 6 was intro-
duced, and three kinds of CSCQ, CSCQ-I, -II, and -III,
were defined. The key theorems, like those presented
above for the group SO3, are first established easily for
finite groups and then extended to compact Lie groups.
Thus a unified approach for both finite and Lie groups is
established.

sin(j+ —, )y
xj(y) = (1.4b)

sin y/2
The operator J is a CSCO for the class parameter space.

Similarly, J, is the CSCO-I 'of SO2. (J,J, ) is called
the CSCO-II of SG3, and its eigenfunction gives the IRB
adapted to the canonical subgroup chain SQ3& SQ2,

J . j(j+1)
(1.5)

C. The r epresentation groop

'
~

Suppose that G is an abstract group with elements R„
G=IR, :s =1,2, . . . ,

~
G~ I . (1.8)

For a finite group G, the CSCO-I is just the analogy of
the set of i Casimir operators of a Lie group with rank
equal to 1 [McVoy (1965) referred to it as the complete set
of commuting observables of a Lie group]; the CSCO-II
is, roughly speaking, a set of operators consisting of the
CSCO-I of all the subgroups contained in a canonical sub-

group chain, while the CSCO-III is a CSCO in the group
space. The new approach distinguishes itself by. . its sim-

plicity in concept and wide applicability in practice. It is
also constructive in nature, leading to a new method, the
so-called eigenfunction method (EFM), for determining

group irreps. The problems of determining (1) the char-
acters and isoscalar factors, (2) the IRB and Clebsch-
Gordon coefficients (CGC), and (3) the irreducible ma-

trices adapted to any subgroup chain are all reduced to a
single recipe —seeking the eigenvectors of the CSCO-I,
-II, and -III, respectively. The EFM proves to be very
powerful and versatile in treating the point groups (Chen,
Wang, and Gao, 1978c; Chen, Gao, Wang, and Yu, 1979;
Chen, Wang, Gao, and Yu, 1980), permutation groups
(Chen, Wang, and Gao 1977a; Chen, 1981;Chen and Gao,
1981,1982; Chen, Collinson, and Gao, 1983; Zhu and
Chen, 1984), unitary groups (Chen, Wang, and Gao,
19771,1978a,1978b; Chen, 1981; Chen, Shi, Feng, and
Vallieres, 1983; Chen, Gao, Shi, Vallieres, and Feng,
1984), graded unitary groups (Chen, Chen, and Ciao,

1983a,1983b,1984; Chen and Chen, 1983; Chen, Gao, and
Chen, 1984a, 1984b), and space groups (Chen, Gao, and
Ma, 1983). For a systematic and extensive review of the
new approach the reader is referred to the monograph by
Chen (1984).

The EFM for the irreducible characters, IRB, irreduci-
ble matrices, and CGC of a finite group is much simpler
than the- conventional methods and is flexible enough to
obtain the irreducible basis adapted to any given group
chain GDG(s) without need of any knowledge of the ir-

reducible matrix, or conversely, to obtain all the irreduci-
ble matrices in any given subgroup chain GDG(s) classi-
fication without any knowledge of the irreducible basis.
Furthermore, since the ultimate step of the method is the
diagonalization of the representative matrices of a certain
kind of CSCO, the procedure can be easily translated into
a computer program. Several codes are already available;
these include one for the CGC and one for the outer-
product reduction coefficients of the permutation group
(Chen and Gao, 1981, in AI.DOL-60), one for the transfor-
mation coefficients from the standard (i.e., the Yamanou-
chi) basis to the nonstandard basis of permutation groups
(Chen, Collinson, and Gao, 1984, in FORTRAN IV), and
one for the SU(mn) &SU(m) XSU(n) isoscalar factors for
arbitrary m and n (Chen, Gao, Shi, Vallieres, and Feng,
1984, in FORTRAN IV).
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Let R, be the corresponding operators, or matrices, of R,
in a certain rep space I.. Suppose that, of the

I
G

I
opera-

tors (or matrices), only
I
G

I
ones are distinct and they

form a group G. With proper ordering, G can be ex-
pressed as

G= jR, :~ =1,2, (1.9)

Obviously G is a subgroup of G and forms a rep of G.
According to the Lagrange theorem (Hamermesh, 1962),

(1.10)

~ being an integer. If ~=1, Cy is a faithful rep of G.
The ~~ 1 case is trivial, since the order of the abstract
group G can be restricted to be equal to

I
G

I
by impos-

ing cyclic boundary conditions. Hence in the following
we assume that

I
Cx

I

=
I
GI.

These
I

Cs
I

operators, though distinct, may not be
linearly independent. Suppose that there are only

I g I

=
I
G

I
/m linearly independent operators R;, where

m & 1 is an integer, and the remaining operators are sim-

ply related to these
I g I

operators as

R '=E(i, l)R;, i =1,2, . . . ,
I gI, 1=0,1, . . . , m —1,

(l.1 la)
R '=R;, R, =e(identity),

I
E(i, i)

I
=1,

where s(i, l) are complex numbers. Then the group

G=IR;"'.i =1,2, . . . , IgI, ~=0, 1, , m —ij (1.11b)

F=IR; :i=1,2,. . . . , IgII . (1.11c)

For simplicity, the rep group Cx of Eq. (l. lib) will be
denoted as

is called a representation (rep) group. The
I g I

operators
R; are called the active elements of G and constitute the
fundamental set Fof G,

1972; Altmann, 1977; Dirl, 1977). If g(i,j)—:1, then F is
an ordinary, or vector, rep of g.

Thanks to Eq. (1.11a), to specify an irrep v of the rep
group G, we need only give explicitly the irreducible ma-
trices for the

I g I
active elements. Hence for simplicity

we shall just say that

D "(Cx)= [D'"'(R; ):i = 1,2, . . . , I g I f (1.15)

is an irrep of the rep group G. With this converition,
D'"'(G) is clearly a projective irrep of the group g under
the mapping R;~y;. Henceforth we shall simply say
that each irrep of the rep group Cr gives a projective irrep
of g. Therefore, the construction of projective irreps of
the group g for the factor system q (Kovalev and Lyubar-
skii, 1958; Mackey, 1958,1968; Dirl, 1977) can be replaced
by the construction of vector irreps of the rep group D,
which is, as will be shown later, as easy as that for the
finite group g with order

I g I

=
I

&
I

~in (
I g I

can be
called the "effective group order" of the rep group). Dirl
(1977) used the induction procedure to obtain projective
irreps of g adapted to a certain subgroup chain, starting
from a given projective irrep of an invariant subgroup of
g. The procedure is far from simple and applicable only
to the invariant subgroups of g.

Qn the other hand, the IRB of the abstract group G in
the rep space L is obviously identical to the IRB of the
rep group Cx, and thus the former task can be replaced by
the latter one. It is much easier to work with the rep
group Cx than with the abstract group Cy, since the "effec-
tive" group order of G is only one mth of the order of G.

In the case of m =1, all the
I
G

I
elements of G are

linearly independent and the rep group G is identical,
from the group-theoretical point of view, to the abstract
group G. Therefore, the abstract group G can be regard-
ed as a special case of the rep group corresponding to
m =1.

I g I I- (1.11d)

According to Eq. (1.11a), the multiplication relation of
the rep group is fully determined by that of

I g I
active

elements which can be written as

R;RJ ri(i, g )Rgj. , — (1.12)

where R,J is one of the active elements and rl(i, j) are
complex numbers with absolute value equal to one. The
multiplication table of these

I g I
active elements will be

referred to as the group table of the rep group Cx.

If there is a group g with order
I g I

and elements y;,

g= I1':i=1 2.
I g I I

and if g has the multiplication relation

Vl VJ 74/ (1.14)

then the rep group G is an m-fold covering group of g,
and under the mapping R;~y;, the fundamental set I' of
the rep group G is said to be a projective (or,ray, or multi-
plier) rep of the group g, and q(i,j ) form what is called a
factor system (Birman, 1974; Bradley and Cracknell,

D. About this review

In the first part of this review (Secs. II—VIII), we ex-
tend the new approach for the rep theory of the abstract
group to the rep-group case. The approach is entirely
based on Dirac's CSCO theory, which is very familiar to
physicists. A11 the theorems are proved in a "physical
way, " and abstract mathematical proofs are avoided as
much as possible. The treatment is self-contained, and
only a minimal knowledge of group theory is required,
covering such topics as the Schur lemmas, the definition
of class, cosets, representations, inductions, subductions,
etc.

In Sec. II we begin with a brief review of some defini-
tions and theorems for group reps. In Sec. III, the CSCO
(or CSCO-I) is introduced for the rep group G, which is
analogous to the set of Casimir operators for Lie groups.
In Sec. IV the intrinsic group G is defined which is anti-
isomorphic to and commuting with the group G. The in-
troduction of the intrinsic group G is crucial for distin-
guishing between the equivalent irreps. Sections V and VI
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are the heart of the new approach to the projective irreps
of a group g. Section VII is a summary of the eigenfunc-
tion method for constructing the irreducible basis, ma-
trices, characters, and CGC, while Sec. VIII is an example
of the application of the general theory for a rep group to
a particular abstract group, i.e., the construction of the ir-
reps and CGC of the point group Cq„adapted to two dif-
ferent subgroup chains.

In the second part of this review (Secs. IX—XX) the
general theory developed in Secs. II—VII is applied to the
space group, and a simple rep theory for the space gioup
is established. Sections IX and X give the basic defini-
tions required for dealing with space groups in the subse-
quent sections. In Sec. XI the representation groups 01,
and Gi„related by a gauge transformation, are introduced
and the relation between the irreps of the rep group Gk or
Gz and the small reps of the little group G(k) is establish-
ed. Sections XII and XIII specify some details for apply-
ing rep-group theory to the representation group 01,. Sec-
tion XIV is devoted to the working out of several exam-
ples to show the ease with which irreducible characters
and matrices of the little group G(k) can be obtained by
the EFM. In Sec. XV a simple algorithm for obtaining
the full rep matrices of the space group in terms of the
small reps of the little group is given, in which a11 we
need is the point-group multiplication instead of the
much more complicated space-group multiplication. In
Sec. XVI the regular rep of a space group Ci is totally
decomposed to

~

G
~

one-dimensional spaces, each corre-
sponding to an irreducible basis vector of G. In Sec.
XVII, the intrinsic group 0 and the CSCO-III of the
space group G are introduced, and it is shown that the ir-
reducible basis vectors resulting from the decomposition
of the regular rep of CJ are the eigenvectors of the
CSCO-III of G Sectio.n XVIII is devoted to setting up
an algorithm for the space group CG coefficients while
Sec. XIX gives two examples of the construction of full
rep matrices and the CGC of the space group Oi, for the
k stars I and W. Various methods for calculating the
space-group CCxC are reviewed in Sec. XX, and a sum-
mary of the whole paper is given in Sec. XXI.

Since the abstract group G is a special case of the rep
group G, the theory for rep groups also contains that for
abstract groups as a special case of m =1. In the follow-
ing, for most cases we deal only with the rep group, and
for simplicity we shall just say "the group G" instead of
"the rep group G" when no confusion will arise. Besides,
since every rep of a finite group is equivalent to a unitary
rep, without loss of generality we assume that all reps dis-
cussed here are unitary. It should also be mentioned that
the term "a vector space" throughout the paper means "a
linear complex vector space. "

We restrict ourselves to the single-valued reps of the
unitary group. Extension to the double-valued reps is
straightforward.

II. PRELIMINARY KNOWLEDGE

In this section we cite some definitions and theorems.
The proofs of these theorems are omitted, since they can

be found in any textbook on group theory, except for
Theorems 2.1, 2.3, and 2.6, which may not be available in
textbooks, at least not in the form we use.

A. A complete set of commuting operators

Definition 2.1. Suppose that there is an operator C de-
fined in a linear vector space W; the subspace W gen-
erated by all the eigenvectors v of C which belong to the
same eigenvalue v of C is called an eigenspace of C,

W, = Iv&W:Cv=vvI .

Symbolically we write

CW =vW„.

(2.1a)

(2.1b)

n

A, =1

Obviously we have

(2.2a)-

(2.2b)

Thus each basis vector
~ yi„) is an eigenvector of the

operator C with the parameter A, as the eigenvalue. Ac-
cording to the hypothesis of the uniqueness of the label k,
the single operator C is evidently a CSCO of the space

Theorem 2.2. A linear operator which commutes with
each operator of a CSCO is a function of the CSCO (see
Dirac, 1958, Sec. 19).

B. Group representations

Definition 2.3. An invariant subspace of a group G is
called a rep space of G.

Definition 2.4. A minimum invariant subspace of a
group Ci is called an irreducible space of G.

For groups commonly used in physics, the group opera-
tors are unitary. In the following, this is always assumed
to be true.

Theorem 2.3. The subspace W„of a rep space of G,
which is an eigenspace of an operator C commuting with
the group 0, is necessarily also a rep space of G.

Definition 2.2. A set of commuting operators
C =(C„C2, . . . , Ci) is said to be a complete set of com-
muting operators (CSCO) of the space W if in W all the
eigenvalues of C are nondegenerate {or, equivalently, if
the eigenspaces of C are all one dimensional).

A CSCO is said to be self-adjoint if it consists entirely
of self-adjoint operators.

Theorem 2.1. A CSCO for a vector space W of finite
dimensionality can always be chosen to consist of only a
single operator.

Pvoof. The basis vectors
~ yi ) for an n-dimensional

vector space W can always be labeled uniquely by a single
discrete parameter A, , X=1,2, . . . , n With. out loss of
generality,

~ y~) can be assumed to be orthonormal.
I.et us construct a linear operator C by
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Proof. From the hypothesis we have

CW„=vW [C,R]=0 for R HCs,

it follows that

(2.3)

C(R W„)=RCW, =v(R W ) for R H Cx .

Hence R W„E-W„, that is, the eigenspace W„ is invariant
under the group. Therefore, W„ is a rep space of Ci.

The significance of this theorem is that a rep of Cx gen-
erated by the space W can be reduced by decomposing
the space W into eigenspaces of an operator which com-
Inutes with the group Cs. This is the starting point of the
new approach to group rep theory.

Theorem 2.4 (Schur lemma). I.et D"(Cs) be an k-
dirnensional rep of a group Cx and 2 be an h &h ma-
trix; then the rep D("'(Cx) is irreducible if and only if the
only matrix 3 which satisfies

D'"'(R)A =AD("'(R)

for all R EG is

(2.4a)

(2.4b)

where I is an h &(h unit matrix (see Miller, 1972, p. 70).
Theorem 2.4 is extremely useful because it gives a sim-

ple criterion for irreducibility of a rep.
Corollary 2.l. If C is an operator commuting with a

group Cx, and if L is an invariant space of C and an ir-
' reducible space of G, then L is necessarily an eigenspace

of C.
Definition 2.5. The

~ g ~

-dimensional vector space Ls
formed by the

~ g ~

linearly independent operators R; is
referred to as the group space of G,

mesh, 1962; Littlewood, 1958; Lowdin, 1967; Miller,
1972).

Theorem 2.5. The space spanned by the inverse opera-
tors of R;, i =1,2, . . . ,

~ g ~, coincides with the group
space Lz, i.e.,

Igll . (2.10)

Proof. Since there are only
~ g ~

linearly independent
vectors in L~ and any

~ g ~

linearly independent vectors in

L~ span the same space I~, we need only show that the

~ g ~

operators R; ' are linearly independent. If they are
not, then one can write

(2.11a)
J+i

The unitarity of the operators R; implies that

J+I J+l
(2.11b)

(2.12)
D;k(RJ)=(R; ~RJ ~

Rk) =(i ~R
~

k) =g(j,k)5(jk .

Notice that to determine a rep for the group 6, we
need only to give the rep matrices for the elements in the
set F, since the rep matrices for other elements of Ci are
given by

in contradiction with the hypothesis that the
~ g ~

opera-
tors R; are linearly independent. Hence the

~ g ~
opera-

tors R
&

', . . . , R~
' are also linearly independent.

Definition 2.6. The rep D(Cx) generated by the group
space L~ is called the regular rep of G, namely,

sl
R~Rk= D;k(Rl)R;, j,k =1,2, . . . ,

/ g f,

Ls=IR;:i =1,2, . . . , ~g~j. (2.5) D(R ') =E(i,l)D(R;) . (2.13)

The metric tensor for the group space can be chosen as

g;, =(R; ~RJ)=5;, , ij =1,2, . . . , ~g~ .

Any vector in the group space Lz can be expressed as

sl
P = u(R;)R;, (2.7)

where u (R; ) =u; are complex numbers. According to
Eq. (2.6), the scalar product of two vectors in L~ is

lsl
( P'"'

~

P(~') = g u '"'(R, )"u (~'(R, ) . (2.8)

Again Eq. (2.12) is a generalization of the usual regular

rep for an abstract group Cx.

C. The class algebra

Suppose that the rep group Cx has N classes (N is also
the number of classes of the abstract group Cx). The
m

~ g ~

operators R ' of Cx can be regrouped into N
classes. Let R~; „~ be the ~th element of the ith class.

Define'tion 2. 7. The algebraic sum of all the operators
of Cx belonging to the same class is called the class opera-
tor,

Apart from the scalar product (2.8), we can also define
the group product of two vectors according to the rep-
group multiplication rule (1.12),

C, = y R(, „), (2.14)

P'"'P'"'=g
I u'"'(R;) u'~'( R)lg(i j)R J . (2.9)

where g; is the number of operators in the class i
Furthermore, we use the notation

Obviously, the product I" 'I""' still belongs to the space
L. Thus I. is closed under the group multiplication
rule and forms an algebra, called the rep-group algebra or
the projective group algebra (Dirl, 1977). When g(i,j)—= 1,
it reduces to ordinary (or vector) group algebra (Hamer-

—1~( g (I,K)'

@=1
(2.15)

to denote the class operator consisting of the inverse
operators of R(;,~.

Definition 2.8. The class i is said to be ambivalent if C,
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L„=I C;:i =1,2, . . . , n j . (2.16)

The class space L„ is a subspace of the group space Lz.
The metric tensor in the class space is decided by Eq.
(2.6), i.e.,

is equal to C;; otherwise it is said to be nonambivalent
(Hamermesh, 1962).—

Since the operators R ' or R(; „) of the rep group Cx are
not linearly independent, neither are the X class opera-
tors. Some of the class operators may be null operators,
or some may differ by only a phase factor, C; =g;J CJ with

~g,z ~

=1. Let Cl(=e), C2, . . . , C„be the linearly in-
dependent class operators of Cs, n (N (the equality holds
only when m =1).

Definition 2.9. The vector space spanned by the n

linearly independent class operators C1,C2, . . . , C„ is
called the class space of Cr, denoted as

A =RsARs, s =1,2, . . . ,
~
Cs(

Therefore,

iol
1

sl 1 Iol
x,

s=l i=1 s=l

(2.22a)

(2.22b)

where

g; l&l
C;= g R,RR,

is the class operator associated with the element R;.

commutes with the rep group 6, where y, and x; are
complex numbers. This means that

(C;~C, )=gi5;, ij =1,2, . . . , n . (2.17)
III. THE CSCG-I OF A GROUP 6

The class operators have the following important prop-
erties (Hamermesh, 1962).

A. The CSCO in the class space

(1) They commute with any element, of Cx,

[Ci,R]=0 for all R CCs.

(2) They commute with one another,

[C;,CJ]=0 .

(3) They are closed under group multiplication,

(2.18a)

(2.18b)

Definition 3.1. A set of / operators C„C2, . . . , Ci, or a
linear combination of them, selected out of the n linearly
independent class operators of a group Q, is called a
CSCO-I of &, or simply a CSCO of Cs, if the set is a com-
plete set of commuting operators in the class space of G,
denoted as'

n

CC1= g CJCk, i j =1,2, . . . , n .
k=1

(2.18c) or

C=(C),C2, . . . , Ci), (3.1a)

The coefficients CJ are called the structure constants of
the rep group. Note that they can be imaginary [for ex-
ample, see Eqs. (14.6)], in contrast to the case of an
abstract group whose structure constants are non-negative
integers.

Any vector in the class space can be written as

l
C=gkC;. (3.1b)

( g(v) vg(v) (3.2a)

Let g(") be an eigenvector of the CSCO of CI ln the
class space

Q=g q;C;, (2.19) If C is given by Eq. (3.1a), then (3.2a) actually denotes a
set of simultaneous eigenequations

where q; are complex numbers.
The scalar product of two vectors in the class space is

C, g"=X(,")g("), i =1,2, . . . , i,
and v stands collectively for the set of eigenvalues

(3.2b)

( g(l)
i
g(2)) y (1)s (2) (2.20)

( g(v) 1 (v) 1„(v)) (3.3)

Because of Eq. (2.18c), the class space is closed under
group multiplication and therefore it forms an algebra-
the class algebra. It is clear that the class algebra is a
subalgebra of the rep-group algebra.

Theorem 2.6. Any operator constructed out of group
operators and commuting with the group is necessarily a
class operator or a linear combination of the class opera-
tors of the group (Wu, 1984).

Proof. Assume that the operator

l~l sl
A = gysRs= x R; (2.21)

s=l

It follows from Definitions 2.2 and 3.1 that, for a rep
group with n linearly independent class operators, C must
have n distinct sets of eigenvalues v. In the- following, v
is also used as the index enumerating the sets of eigen-
values. Therefore, we can write v= 1,2, . . . , n.

From Theorem 2.2, we immediately have Theorem 3.1.
Theorem 3.1. Any class operator Ci of a group CIs is a

function of the CSCO of Cx,

1C& does not necessarily mean the identity operator.
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Cg ——F(C), i =1,2, . . . , n, (3.4) (v))

and in turn we also have Theorem 3.2.
Theorem 3.2. Any eigenvector of the CSCO of Cx is

necessarily a simultaneous eigenvector of all the n class
operators of Cx,

(3.5)

(v2)
1

(v„)
1

(v2)
2

(v„)
2

1 2

( 2)

(v„)
n

(3.9)

The choice of the CSCO of Cx is not unique; however,
different CSCO of Cx are all equivalent in the sense that
they have, according to Theorem 3.2, identical eigenvec-
tors Q'"', v=1,2, . . . , n Th. us we have Theorem 3.3.

Theorem 3.3. Different CSCO's of Cs are equivalent.

B. lrreps of the class algebra

Equation (2.18c) shows that the n basis vectors
C~, . . . , C„of the class space I.„c rary a rep of the class
algebra,

&kj(C;)=CJ . (3.7)

With the eigenvectors Q' ' of the CSCO of G as basis
vectors, the representation matrices of the n class opera-
tors all become diagonal,

1
C;2

Cn

1

~D(C;)
Cn

C;CJ= g &kj(C, )Ck, i,j =1,2, . . . , n .
k=1

The rep M(C;) is called the natural rep of the class opera-
tor C; with matrix elements

(v)) (v2) (v„)
The ith column vector (A,; ', A,; ', . . . , A,;

"
) is a

representative of the class operator C;. Since the n class
operators are linearly independent, the n column vectors
in the matrix M are necessarily also linearly independent.
Therefore, the rank of the matrix M is equal to n, which

(v,. )
in turn implies that the n row vectors (A, ~

',
(v,. ) (v,. 7

A, 2 ', . . . , A,„' ), i =1,2, . . . , n, are also linearly indepen-
dent. Consequently, no two row vectors can be identical.
Otherwise stated, the set of operators (C&, . . . , C„) has n

distinct sets of eigenvalues.
Theorem 3.5. Any CSCO of Cx is equivalent to a self-

adjoint CSCO of CJ.

Suppose that among the n class operators, n& are am-
bivalent and 2n2 are nonambivalent. Using the unitarity
of the group operators and Eq. (2.15), it is easy to show
that the ambivalent class operators are self-adjoint, while
the nonarnbivalent class operators are not, i.e.,

C; =C;, i =1,2, . . . , n(,
Cj ——C,', &=n&+1, . . . , n&+n2.

(3.10a)

(3.10b)

However, out of the 2n2 non-self-adjoint operators
( CJ, CJ ) we can construct another 2nz self-adjoint opera-
tors,

EI =Ci+ CJ, K/ =i ( CJ. —CJ ),
l =j n& ——1—, 2, . . . , n2 . (3.11)

Thus we have a set of n self-adjoint operators

(3.12)

(vl)
l

(v2)

( „3

(3.8)

Repeating the proof of Theorem 3.4, C' must be a CSCO
of G., while, according to Theorem 3.3, any CSCO of Cr is
necessarily equivalent to C'.

The significance of Theorem 3.5 is that from now on in
proving theorems we can always assume that the CSCO
of Ci is self-adjoint and utilize all the results obtained in
quantum mechanics related to the self-adjoint CSCO.

Hence we see that the natural rep of the class algebra is
reducible, i.e., it can be reduced into n one-dimensiona1 ir-

reps of the class algebra.
Theorem 3.4. The set formed by all the n class opera-

tors C~, . . . , C„of a group Cx is necessarily a CSCO of
Ex.

Proof. To prove the theorem, we need only show that,
in the class space, the set of operators ( C~, . . . , C„) has n

distinct sets of eigenvalues. Let us regard the diagonal
(vl)

matrix elements of D ( C; ) in Eq. (3.8), (A,; ',
(v2) (v„)

X; ', . . . , A.; " ), as a column vector and put n such vec-
tors together to form a matrix M,

C. The finding of the CSCO of 8

(3.13a)

C;Q=A, ;Q . (3.13b)

If all the primitive characters of G are known, it is
trivial to find the CSCO of Cs (see Sec. VII.C). If the
characters are unknown, we can'use the following steps to
find the CSCO of G.

First, we pick-out one class operator, say C;, from the
n class operators and seek its eigenvector,
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This amounts to diagonalizing the matrix W(C; ),

g (Ckj —A,;5jk)qj —0, k =1,2, . . . , n . (3.14)

(v)+ (v)g gr9t Vj =&ij
v=1

(3.18b)

The characteristic equation is

det~[C,', —~, S,,[I=+(~,—~,") ., (3.15)

I
C=gk, c, , (3.16a)

where the integer m is the degeneracy of the eigenvalue
A,,

' '. If all the degeneracies m~ are equal to one, i.e., if C;
has n distinct eigenvalues, then the single operator C; is a
CSCO of Cx. Conversely, if for a certain eigenvalue A, ';~'

the degeneracy m~&1, then C; is not a CSCO of Cr.
From Eq. (3.14) we can obtain mp linearly independent
eigenvectors Q~, . . . , Q belonging to the eigenvalue

They span a m~-dimensional eigenspace Lp of C;.
In such a case, we have to pick another class operator, say
CJ, and make linear combinations of Q&, . . . , Q, som&~

that they become eigenvectors of Cj as well. If in the
space Lp the eigenvalues of CJ are all nondegenerate,
then ( C;,CJ ) will be the CSCO of G; otherwise we have to
add more operators, until we find a set of operators,
C=(C~, . . . , CI), whose eigenvalues have no degeneracy,
in which case C is the CSCO of Cx.

The CSCO for all point groups and for permutation
groups S„with n up to 14 are listed by Chen et al.
(1977a,1977c). It is found that the number / of the class
operators contained in the CSCO for the above groups is
equal to one, two, or at most three. Hence I is much
smaller than the number of classes, l &~N. This fact has
great practical significance for the eigenfunction method.

Suppose that C =(C&, . . . , C&) is a CSCO of Cx. With
known eigenvalues A, ,

'"' of C;, it is easy to find a single
operator

As mentioned before, the abstract group is a special
case of the rep group. The above theorems and equations
also hold for abstract groups by letting m = 1,

) g ~

=
~

Cs ~, n =N. In order to illustrate this, in the fol-
1owiog example we consider only the m =1 case, leaving
the m ~ 1 case to Sec. XIV.A.

D. Example: The CSCO of the point group C4„

From the group table of C4„
class multiplication table can
shown in Table II.

From Eq. (3.6) and Table
natural rep of the class algebra.

00020
00020

(Cg)= 00002
1 1000
00200

(see Table IV below), the
easily be constructed, as

II, -we can construct the
For instance,

(3.20)

The point group C4„has eight elements, ( C4, )J,

j =1, . . . , 4, o.„,o.z, o.d„and odb. Here we use the nota-
tions of Bradley and Cracknell (1972). For example, 0.„
stands for a reflection plane with its normal in the x
direction, arid od, for one with a normal midway (45') be-
tween the x and y axes. The group C4„has five classes,
and its class operators are

C) ——e, C2 ——C2„C3——C4, +Cg, ,+

(3.19)
C5 =Ndg +wdb

k; being coefficients properly chosen, such that C has n

distinct eigenvalues

(3.16b)

n
Q'"'= g q "~C~, v=1,2, . . . , n,

i=1
(3.17)

Consequently we can choose this single operator C as the
CSCO of G. The advantage of choosing a single operator
as the CSCO of Cr is obvious when a computer is used in
practical calculation.

In the following, the CSCO of G can be understood
either as Eq. (3.la) or as the single operator (3.1b).

The n eigenvectors of C,

00002
00002

&(C)= 00 0 2 0
00200
1 1000

Clearly, we should choose as the members of a CSCO
class operators having as many as possible distinct eigen-
values. Ci has only one distinct eigenvalue, 1, while C2
has two distinct eigenvalues, +1, so they are not good
candidates. Let us try to choose C4 (in fact C3 or C5
would be equally good). By diagonalizing W ( C4, ), we
find the following eigenvalues and eigenvectors:

TABLE II. The class multiplication table of C4„.

~ ~
(v) .(p)

giqi 4 =&vp, ~ (3.18a)

form an orthonormal and complete set in the class space.
By the definition of the scalar product [Eq. (2.20)], the
orthonormal and completeness conditions are

Ci
C2
C3
C4
C5

C2
Ci
C3
C4
C5

C3
C3

2C(+2C2
2Cg
2C4

C4
C4

2C5
2C)+2C2

2C3

C5
C5

2C4
2C3

2C) +2C2
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A,4——2, double degeneracy, QI '=C) +C2+C4,

Q2 =C3+C5(2) (3.21a)

Multiplying Eq. (3.27) from the right with Q'"', and us-

ing (3.2b) and (3.24), we obtain

A& ———2, double degeneracy, Q', ' =C, +C2 —C~,

Q2 '=C3 —C5 . (3.21b)

g (&) (v)+—g~, q; (3.28a)

Letting i be the identity class and noting A,,'"'=g, =1, we
then have

Aq=0, no degeneracy, Q' '=C) —C2 . (3.21c) —1 (v)i
'9v =qe (3.28b)

C =2C4+ Cg (3.22)

as the CSCO of C4„, since it has five distinct eigenvalues,
6, 2, —6, —2, and 0. In Sec. VI.G, we shall see that the
eigenvalues of the CSCO of G can be used to label in-
equivalent irreps of Cs.

E. The projection operator

From Eqs. (2.18b), (3.17), and (3.2a) we have

Cg (v)g (P) vg (v)g (P ) g (v)g (/l) (3.23)

Equation (3,23) shows that the product Q' )Q()') is an
eigerivector of C with the eigenvalue v or p. Since the
eigenvalues of C are all nondegenerate, we must have

Q(v)g(P) g + Q(v) (3.24)

where g is a constant depending only on v. When we let

p(&) —1~(v)
9v

we have

(3.25)

P(~)P(JM) g P(~) (3.26)

Hence P' ' are idempotents.
From Eq. (3.18b), we get the inverse expansion of

(3.17),

Due to the twofold degeneracy for X4——+2, C4 is not a
CSCO of C4„. We have to pick another class operator,
say C5, and recombine g') ' and Q2 ', as well as Q'(

and Q2 ', so that they are eigenvectors of C5. As can be
checked, the eigenvector Q' ' for the single root of C& is
already an eigenvector of C5 with eigenvalue 0. Using
Table II, we can get the simultaneous eigenvectors of
( C4, C5), as listed in Table III.

In Table III, ~ is the norm decided by Eq. (3.18a).
Now all the degeneracies have been lifted, and thus
( Cq, C5 ) is a CSCO of C4„. We may as well choose

We combine Eqs. (3.25), (3.27), and (3.28a),

C y g(~)P(v) (3.29)

%'ith C; =e, we obtain

(3.30)

(3.31a)

either vanishes or is necessarily an eigenspace of the
CSCO of Cx,

CW =vW, . (3.31b)

Since C is assumed to be self-adjoint, the different eigen-
spaces are mutually orthogonal,

(W
~
W„)=0 if v~v'. (3.32)

Combining Eqs. (3.26), (3.30), and (3.31), we arrive at the
following theorem.

Theorem 3.6. The eigenvectors P( ' are projection
operators onto the eigenspaces of the CSCO of G.

Theorem 3.7. In any rep space WC'. L, the possible
eigenvalues of the CSCO of G cannot go beyond the n

sets determined in the class space of (x.
Proof. According to Eq. (3.30), for any rep space

WCL, we have

v=1
(3.33)

Equation (3.30) is the decomposition formula for the
identity operator of the rep group Cx. Notice that the rep
group is defined in the representation space L, of the
abstract group Cx and Eq. (3.30) is valid only in the space
I..

Suppose that W is an arbitrary rep space, which is a
subspace of L; then the subspace

C; = g g;q ""Q'"' .
v=1

(3.27)
If Wz is an eigenspace of C belonging to an eigenvalue )M

other than those determined in the class space of Cr, i.e., if

TABLE III. The eigenvectors of the CSCO of C4„. The first column is the Mulliken notatiori for ir-
reducible representations of point groups.

Bi
A2
82

A4pA 5

22
2, —2

—2 —2
—22

0,0

V'1/8
V'1/8
V 1/8
&1/8
V'1/8

1

1

1

1

2

C2

I
1

1

1

—2

C3

1

—1

1

—1

0

1

1
—1

—1

0

1
—1

1

0
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then we must have

(W„~ W„)=0 for v=1,2, . . . , n,

(3.34)

(3.35}

L~ of G.
Suppose that Ã is a CSCO of G, and its eigenvectors in

~(p;)
L~ are P

due to Eq. (3.32). By virtue of Eq. (3.33), this implies
that

KP ' =pP ', i=12, . . . , N. (3.42)

Then parallel to Eq. (3.30) we have the decomposition

(W
)
W„)=0. (3.36)

(3.43)
Since W is an arbitrary subspace in L, W& is necessarily
a nu11 space in L.

Theorem 3.8. In the group space of G, the CSCO of Gr

has, and only has, the n distinct sets of eigenvalues
(A, '&"', Az"', . . . , kI"'), v=1,2, . . . , n, determined from the
class space of G.

Proof. Here "has" is trivial, since the group space con-
tains the class space as its subspace, while "only has" fol-
lows from Theorem 3.7.

Theorem 3.9. The rep spaces W„which are eigen-
spaces of the CSCO of G belonging to different eigen-
values are inequivalent.

Proof. For succinctness in exposition, the CSCO of G
is assumed to consist of only a single operator C, as given
by Eq. (3.16a). If the two rep spaces W„and W„with
different eigenvalues v&v', were equivalent, then the ma-
trices of the CSCO of 6 in the two rep spaces must relate
to each other as

D&"'(C)=TD"'(C)T-' (3.37)

where T is a matrix. On the other hand, since W„and
W~ are eigenspaces of C, the representative matrices of C
in W„(W ) must be equal to the unit matrix multiplied
by the eigenvalue v (v'):

D' '(C)=v. I, D'"'(C)=v' I . (3.38)

Lg ——g SL, L„=P'"'Ls . (3.39)

In order to make clear the difference and connection
between the abstract group G and its rep group G defined
in the space L, let us reinterpret the above results in terms
of the abstract group G.

The group space of 6 is designated as

Substituting Eq. (3.38) into (3.37), we get v=v', in con-
tradiction with the hypothesis. Thus the theorem is
proved. Combining the above .discussions, we have
Theorem 3.10.

Theorem 3.10. The group space Lg of G can be
decomposed into n rep spaces, orthogonal and ine-
quivalent to each other:

ÃP"' =p;P ', i =1,2, . . . , N, (3.44)

(p;)where P ' are linear combinations of n linearly indepen-
dent class operators C&, . . . , C„. According to Eq. (3.44)
and Theorem 3.7' the set I P ', . . . , P j exhausts all
the eigenvectors. of X in L„,and since L„ is n dimension-
al, there are n and only n linearly independent eigenvec-
tors of K, say

(IM; )P ', i =1~2, . . . pn, (3.45)

where p~, . . . , p„are n distinct eigenvalues of 4'. There-
fore, K is a CSCO of the rep group G. (However, the re-
verse is not true, i.e., if C is a CSCO of the rep group G,
then the corresponding operator C is not necessarily a
CSCO of the abstract group G.) In a manner similar to
the proof of Theorem 3.7, it can be shown that

P ' =0 for j=n+1, . . . , N,(p )
(3.46)

that is, for those p~ which are not eigenvalues of the
(PJ )

CSCO of the rep group G, the operators P ' are identi-
cally null operators. It is seen that Eqs. (3.30), (3.43), and
(3.46} are self-consistent.

In summary we have

P 'L =P 'L for i =1 2, . . . , n, (3.47a)

and corresponding to Theorem 3.7 we have Theorem 3.7'.
Theorem 3.7'. In any rep space, the possible eigen-

values of the CSCO of G cannot go beyond the N sets,

p~, p2, . . . , p~, determined from the class space Lz of G.
(p;)Let CJ, K, and P ' be the corresponding operators of

CJ, Ã, and P ', respectively, in the rep space L.
Among the N class operators C~, . . . , C&, now only n
are linearly independent, and these can be chosen to be
identical to those in (2.16). In the space L, Eq. (3.42) be-
comes

LG ——IR, :s = 1,2, . . . ,
~

G
~ j (3.40) P 'L =P 'L =0 for j =n+1, . . . , N,W(JM ) (P )

(3 47b)

with the metric tensor

(R,
~
R, ) =5„. (3.41)

The abstract group Cx has N linearly independent class
operators, Cz, j =1,2, . . . , N, which span the class space

where p&, . . . ,p„are eigenvalues of the CSCO of the rep
w (p")

group Cx. Later we shall show that P ' are the projec-
tion operators onto the irreps p; of G. Therefore, Eqs.
(3.47) tell us that in the rep space L, only the irreps

p $p ~ ~ ~ p pg of Cx are acceptable.
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IV. THE INTRINSIC GROUP

A. The intrinsic group of an abstract group

The rep space L of 6 defined by Eq. (3.39) is in gen-
eral reducible. According to Theorem 2.3, if we can find
extra operators which commute with G, then the rep gen-
erated by L can be further reduced by decomposing L,
into eigenspaces of these operators. Theorems 2.6 and 3.1

tell us that it is impossible to find such extra operators
from the group 6 itself. In Sec. I.B we see that for the
rotation group SO3, there is an intrinsic rotation group
SO3 commuting with and anti-isomorphic to the group
SO3. Although the CSCO-I of SO3 is equal to that of SO3
and thus does not provide new operators, the CSCO-I J,
of the subgroup SO2 of the intrinsic group SO3 does pro-
vide a new operator. In parallel to this, Chen, Wang, and
Gao (1977a) have introduced a so-called intrinsic group 6
for any non-Abelian group Cs, using the CSCO-I of the
subgroups of G, which play the same role as J, for SO3,
to decompose the rep space L .

We begin with the introduction of the intrinsic group
for an abstract group, or equivalently for a rep group with
m = 1. To simplify notation, we temporarily use
R,S,T, U, . . . to denote the elements of a group G which
span the

~

G
~

-dimensional group space LG.
Definition 4.1. For each element R of a group 6, we

can define a corresponding operator R in the group space
LG through the following equation:

RS =SR for all SEG .

The group G formed by the totality of the operators R is
called the intrinsic group of Cx, or simply the intrinsic
group G if no confusion will arise.

Let us first show that the operators R do form a group.
According to Eq. (4.1), the operation of R on a vector S
in LG is to change it into another vector SR. It should be
emphasized that (4.1) is the defining equation for the
operator R rather than an identity relation. Hence it is
not permissible to multiply Eq. (4.1) from the right by
another vector T of LG, i.e.,

RST&SRT .

Instead, we should regard ST as a new vector in LG, and
then use Eq. (4.1) to get

ty of R form a group Cx which is anti-isomorphic to the
group G.

Besides the property of being anti-isomorphic to G, the
intrinsic group G has another important property, name-
ly, that it commutes with the group G. From Eq. (4.1)
one has

SRT =STR for all TELG . (4.6)

Comparing Eq. (4.3) with (4.6), and noting that T is an
arbitrary vector in LG, one has

RS =SR, (4.7a)

or

[R,S]=0 . (4.7b)

Therefore, G commutes with G.
Note the essential difference between Eqs. (4.1) and

(4.7a). The latter is an identity, while the former is not.
The difference comes from the fact that in (4.1), S is re-
garded as a vector in LG, while in (4.7a), S is an operator
in LG. The rule for determining whether a group element
S is to be regarded as a basis vector or as an operator is
very simple. If S is the last element behind an intrinsic
group operator, then S should be looked upon as a basis
vector; if S is followed by other group elements of G,
then S should be regarded as an operator.

We know that if G is anti-isom orphic to
G=

I R,S, T, . . . I, then G is isomorphic to the group6'= IR ',S ', T ', . . . }. The difference between the
groups 6 and 6' is merely a matter of nomenclature for
the elements. Hence we see that the intrinsic group 6 is
"essentially" isomorphic to G. Consequently, all con-
clusions regarding the group Cx also apply to the intrinsic
group G. For example, if C; is a class operator of G,
then by replacing all the elements R in C; by R, we ob-
tain the class operator C; of G; if C= g,. k;C; is the
CSCO of 6, then C= g,. k;C; is the CSCO of G; if 6
has a subgroup chain 636(1)36(2)3, then 6 has
a subgroup chain 6&6(1)DG(2) D. . . ; and if C(i) is
the CSCO of the subgroup 6(i), then C(i) will be the
CSCO of 6(i), etc.

Theorem 4.1. The CSCO of G and Cx are equal.
Proof. To prove the theorem, one need only show that

the class operators of 6 and G are equal. From Eq. (4.1)
one has

RST=R (ST)=STR .

Suppose the multiplication relation for the group G is

(4.3) fg

C;R = g R(;,)R =R g R(;„)——RC;, (4.8)

RS=U .

From (4.1) and (4.3) we have

SRT =STR =TRS =TU= UT .

Since T is an arbitrary vector in I z, one has

(4.5)

and from Eq. (2.18a) one has

CR =RC; . (4.9)

Because R is an arbitrary basis vector in LG, from Eqs.
(4.8) and (4.9) we have

SR=U. (4.4b)
Therefore, there is a one-to-one correspondence between
the elements R and R, and Eq. (4.4) shows that the totali-

C;=C;, i =1,2, . . . , X .

Therefore,

C=C .

(4.10a)

(4.10b)
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Equation (4.10b) is a generalization of (1.6c) for SO3.
It must be emphasized that although the class operators

of Cs and G are equal, the class operators of the subgroup
-G(i) and G(i) are not equal, since the former commute
only with the subgroup G(i), whereas the latter commute
with the whole group G.

D~(A)=(i
I

A
I j), Dj(A)=(i

I
A

I j),
and are decided by the following equations:

AR =RA=+(i IAlj)R;.

(4.14b)

(4.15a)

(4.15b)

B. The intrinsic group of a representation group Taking the Hermitian conjugate of (4.15a), letting
A+ A ~, and using the unitarity of the group operators,

Now consider the intrinsic group & of a rep group Ci
with m &1. We first define

I g I
operators Rj in the

I g I
-dimensional group space Lg of G by

R Rk RkR—J—=rj(kj )Rkj, j,k = 1,2, . . . , I g I

(4.11a)

and define

RJ. 'A = g (j I
A

I
i )R;

Comparing Eq. (4.15b) with (4.15c), we obtain

where

(4.15c)

(4.16)

G= IR,'": =1,2, . . . , I I, l =0, 1, . . . , (4.12)

form the intrinsic group G of the rep group G. All the
discussions in Sec. IV.A remain valid for the intrinsic
group G of Eq. (4.12), with the single exception that now
only

I g I
intrinsic group operators are linearly indepen-

dent.
From Theorem 4.1 we know that the eigenvector P'"'

of the CSCO of G is also the eigenvector of the CSCO of
G.

Equation (4.11a) shows that the group space Lg also
forms a rep space for the intrinsic group G,

isl
RjRk= y Dgk(RJ)Rg, j,k =1,2, . . . , I g I

D I {Rj)= &i
I Rj I

k & =rj(kj )~,kj .
{4.13)

The rep D(G) will be called the regular rep of the intrin-
sic group Ci.

For the case of m= 1, the rep D(G) is referred to as
the inverted rep of the group G by Boerner (1963), since
D(G) is anti-isomorphic to G. D (G) is also anti-
isomorphic to the right regular rep of G (Miller, 1972).

Suppose A is an element of the group algebra and A is
its intrinsic element,

R J '=c.(j,l)RJ, j=1,2, . . . , I g I

l =0, 1, . . . , m —1 . (4.11b)

Then

According to Theorem 2.5, R; ' and Rz
' are still vectors

of the group space Lg; therefore the matrices
&j

'
I
A li '&ll and II&j I

A
1 i&II are similar Thus

Eq. (4.16) shows that D(A) and D(A) are similar ma-
trices, i.e.,

D(A)=TD(A)T (4.17)

C. Some remarks

R =SRS (4.18)

when R acts on S. It should be stressed that Eq. (4.18) is
also not an identity. It only shows that when acting on S,
R is equivalent to the operator SRS ', and that while
acting on another vector T, R will be equivalent to
TRT '. In other words, the element S in Eq. (4.18) is
not fixed. It changes according to which vector the
operator R is acting upon. This is the most important
point, albeit a little tricky, for the understanding of the
intrinsic group.

In contrast, a conjugate element T of the group element
R is

The following points are worth noting.
(1) From Eq. (4.1) it is seen that, for an Abelian group,

the intrinsic group G coincides with the group G itself.
(2) The intrinsic group element R defined by Eq. (4.1)

is not a conjugate element of the group element R. From
(4.1), a formal relation between R and R can be written as

sl IlA= xR;, A= xR;. (4.14a) T =SpRSp ', (4.19)

Let D(A) and D(A) be the representative matrices of A
and A in I.g,

' then we have Theorem 4.2.
Theorem 4.2. The matrices D(A) and D(A) are related

by a similarity transformation, D(A) being the transpose
of D(A).

Proof. The matrix elements of D(A) and D(A) are
denoted by

where So is a fixed element of G. Equation (4.19) is an
identity relation, and T is an element of G.

(3) It is important to distinguish between the subgroup
G(1) of the intrinsic group G of G, and the intrinsic
group G'(1) of the subgroup G(1) of G. G(1) is defined
in the whole group space of G, while G'{1)is defined in
the group space of G(1). Let R, R (1), R(1), and R '(1)
be the group elements of the groups G, G(1), G(1), and
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G'(1), respectively. The definitions for the groups G(1)
and G '(1) are, respectively,

D'(A )= UD(A ) U '= g eD(„)(A ), (5.5a)

R(1)R =RR(1) for all R HG, (4.20a)
D'(A)=UD(A)U '= g EBD(„)(A), (5.5b)

R '(1)S(1)=S(1)R(1) for all S(1)HG(1) . (4.20b)

Obviously, G(1) commutes with the whole group G,
while G'(1) commutes only with the subgroup G(1),

[G(1),G]=0,
[G '(1),G]&0,
[G'(1),G(1)]=0 .

(4.21)

The CSCO of G(1) and G(1) are commutative but not
equal, while the CSCO of G '(1) and G(1) are equal.

(4) For a Lie group 6, Eq. (4.1) defines an intrinsic Lie
group G. Chen, Wang, and Gao (1983) showed that the
intrinsic rotation group SOS is just the group describing
rotations around the intrinsic coordinate axes of a rotat-
ing system, and in the group parameter space, the group
G and its intrinsic group G are precisely the first and
second parameter groups discussed in great detail by
Eisenhart (1933) and Racah (1951).

Y. THE CSCO-II AND CSCO-III
OF A GROUP 6

A. For a canonical subgroup chain

Now let us seek the eigenvectors P~'"' of the CSCO of G
in the group space Lg:

CPt =»r v=1 2, . . . , n, 1=1,2, . . . , m (5.1)

(v)PI —— u~I iR;, - (5.2)

L„=[Pg'" ..i =0, 1, . . . , m (5.3)

and the group space Lg is decomposed into the direct sum
of the n eigenspaces L as indicated in Eq. (3.39). Di-
mension conservation requires that

gm„=)g/ .
v=1

(5.4)

VAth P~' ' as the new basis for L,g, the matrices of the
operators A and A (or their transpose A) of Eq. (4.14a)
now become quasidiagonal,

where u I; are complex numbers; as specified in Theorem
3.8, the n distinct eigenvalues v of C in Lg are the same
as those obtained in the class space L„. C is a CSCO for
L„but is in general no longer a CSCO for the

~ g ~-
dimensional group space Ls. Therefore, the eigenvalues v
are in general degenerate in Ls. The degeneracy of v is
denoted by m„ in Eq. (5.1). For a given v, from (5.1) we
can obtain m„ linearly independent eigenvectors PI ',
which can be chosen arbitrarily subject to the orthonor-
mality condition. The m„eigenvectors form the eigen-
space L„of C,

where the matrix elements U I;——u*„~;, D~~~ (A ), and

D~„~(A ) are the representative matrices of A and A in the
eigenspace L .

From Eqs. (4.17) and (5.5), with D(A) =D(A ), we have

D'(A )= T'D '(A)T' ', T'= UTU (5.6a)

1.e.,

g eD(,)(A)=T' g eD( )(A)T'
1 v 1

(5.6b)

Since (5.6b) holds for any element A of the group algebra,
T' has to be also quasidiagonal,

T'= g eT(,) . (5.6c)

G 3G(s), G(s) =—G(1)3G(2) 3 (5.8a)

We use C(i) to designate the CSCO of the subgroup G(i)
and C(s) the set of operators (C(1),C(2), . . . ). C(s) will
be called the CSCO of the subgroup chain G(s). Obvious-
ly, the operators C(i) commute with C as well as with
one another.

Due to the anti-isomorphism between G and G, corre-
sponding to (5.8a), we have the intrinsic subgroup chain

G D G(s), G(s) =G(1)D G(2) D (5.8b)

and the CSCO C(s)=(C(1),C(2), . . .). C(s) commutes
with both C and C(s),

[C(s),C]=0, [C(s),C(s)]=0 . (5.9)

From Eqs. (5.6b) and (5.6c) we immediately have

D~ ~(A)=TI ~D~~~(A)T~ ~' for v=1,2, . . . , n . (5.7)
I

This shows that, as in Lz, the representative matrices of
3 and 2 in the eigenspaces L are still related by similar-
ity transformations. Since the determinant of a matrix is
invariant under matrix transposition, this in turn means
that in L the operators A, 2, and 2 have the same
characteristic equations and therefore have the same
eigenvalues. This leads to Theorem 5.1.

Theo~em 5.1. In the eigenspace L of C, the eigen-
values of an operator A defined in Lg and its intrinsic
operator A are exactly the same.

To lift the degeneracy of v entirely, or to fix P~' ' unam-
biguously, we have to add extra operators to the operator
set C, so that it becomes a CSCO of the

~ g ~
-dimensional

group space Lg. These extra operators must commute
with C and with one another. By virtue of Theorem 3.1,
the other class operators of G that are not included in C
are useless for lifting the degeneracy. The possible candi-
dates for these extra operators are the CSCO of subgroups
of G. Suppose that G has a subgroup chain
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K =(C,C(s),C(s)), (5.10a)

Since C =C [see Eq. (4.10b)j, C does not provide any new
operators. However, C(s)&C(s); therefore the operators
C(s) are also candidates for these extra operators to be
added to the CSCO of Ci.

Definition 5.1. If, starting from the group G, we can
find a group chain (5.8a) and the corresponding operator
set K,

of G if K is a CSCO of Ls and

(5.12d)M =(O', A)

is called a CSCO-II of Cx.

Therefore, each of the operator sets K of Eqs. (5.10a),
(5.1la), and (5.12c) is a possible form of the CSCQ-III of
G. In the following, we still use K=(C,C(s),C(s)) to
denote a CSCO-III of G, keeping in mind that actually K
could take other forms as well.

C(s)=(C(l),C(2), . . . ),
(5.10b)

B. For a noncanonical subgroup chain

M =(C,C(s)) (5.10c)

is called a CSCO-II of G, and GDG(s) is said to be a
canonical subgroup chain.

As will be seen later, the meaning of the canonical sub-

group chain is identical to the usual one (e.g., see Butler
and Wybourne, 1976a).

It is clear that the operator set K in (5.10a) is a general-
ization of (J,J„J,) for SO3.

In many cases, the operator set K in (5.10a) is over-
determined in the sense that the following E may already
be a CSCO in L~,

C(s)=(C(1),C(2), . . .),
such that K is a CSCQ for the

~ g ~

-dimensional group
space Ls, then K is called 'a CSCO-III of G, while

In the above discussion, G&G(s) is assumed to be a
canonical subgroup chain. Now let us pass on to the gen-
eral case where G&G(s) is not a canonical subgroup
chain. In such a case, (C,C (s),C(s) ) is not a CSCO in Ls
and thus is not a CSCO-III of G.

According to Dirac (1958, Sec. 14), any set of commut-
ing operators can be made into a complete set of commut-
ing operators by adding certain operators to it. Let us
first add one operator, say g, which can always be written
as a linear combination of

~ g ~

elements in the fundamen-
tal set F, g'= g,. g;R;, g; being complex numbers, since
we are working in the group space Lz. Corresponding to
g, there is the intrinsic operator g= g,. g;1T;. Thus the
additional operators always occur pairwise. If
(C,C(s),g, C(s),g) is not yet a CSCO of Ls, we add
another pair of operators q and q, etc., until

K =(O', C'(s), C'(s)),

O'(s)=(O'(l), O'(2), . . .),

C'(s)=(C'(1),C'(2), . . .),

(5.11a)

(5.11b)

(C,C"(s),C "(s))

is a CSCO of Lz, where

C"(s)=(C(s),g, g, . . .),
C "(s)=(C(s),g, g, . . . } .

(5.13a)

(5.13b)

where C' and C'(i) involve only some of the class opera-
tors contained in the CSCO of 6 and G(i), and thus are
not the CSCO of G and G(i), respectively. For examples,
see Sec. VIII.

'

Furthermore, in analogy with Eq. (3.16a},each operator
set C'(i) can be assumed to consist of only a single opera-
tor, and we can use a single operator

A = gd;C'(i} (5.12a)

A= gdtC'(i) (5.12b)

to replace C'(s) and C'(s), where the coefficients d; are
properly chosen so that

Hence we can always find a CSCO-III of G regardless
of whether G&G(s) is a canonical subgroup chain. To be
specific, in the following, we shall assume that G&G(s)
is a canonical subgroup chain unless otherwise stated.
For the noncanonical case, all we need to do is to reinter-
pret the meaning of C(s) and C(s) in accordance with

Eq. (5.13).
In analogy with Eq. (3.16a), we can choose a single

operator

K =C+ g [a;C(i)+P;C(i)j (5.14)

as a CSCO-III of G, where the coefficients a; and p; are
properly chosen so that K has

~ g ~

distinct eigenvalues.
The CSCO-II for point groups is given by Chen, Wang,

and Gao (1977a).
K =(O', A, A) (5.12c)

is a CSCO of L~.
The above consideration leads to a more general defini-

tion for the CSCO-II and -III of G.
Definition 5.1'. A set of commuting operators

K =(O', A, A ), with C' being commutative with G, and A

an operator set or an operator in L~, is called a CSCO-III

Vl. FULL REDUCTION OF THE REGULAR
REPRESENTATlON

A. The eigenvectors of the CSCO-III

Let I' ' be the eigenvectors of the CSCO-III of Cx in
the group space Lz,
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C V

C( )
p(v)b p(v)b

a = a a

C(s)
(6.1a)

Using Eq. (4.1), we can rewrite the third equation in (6.1a)
as

Analogously, the eigenspace of (C,C(s) ),

L( )
——I p, ':b =1,2, . . . , h„], (6.7a)

is a rep space of the intrinsic group Cx, since ( C, C (s) )
commutes with Cx. Hence the space L can also be
decon1posed into h rep spaces L( ), of Cx,

)p(v)b p(v)bC ( ) bp(v)b

where a (b) denotes a set of eigenvalues

(6.1b) h

L,= g eL( ), .
a=1

(6.7b)

a =(A, (,A
2,
. . . ), b =(A,„A~, . . .), (6.1c)

a, b =a1,a2, . . . , ah (6.1d)

A.; (A,;) being the eigenvalue of C(i) [C(i)], if C(s) [C(s)]
is interpreted as in Eq. (5.10b); if C(s) [C(s)] is interpret-
ed as in Eq. (5.12), then a (b) denotes the eigenvalue of 3
(A ).

According to Theorem 5.1, in the eigenspace L of C,
C(s) and C(s) have exactly the same, say h„, distinct
eigenvalues,

sl
vab, i v'a'b', i ~vv'~aa'~bb' ~ (6.9a)

The eigenvectors of the CSCO-III form an orthonormal
and complete set in the group space Lg,

& =~~ &- &bb (6.8a)
h h

g g g Ip."')(P.""I=1. (6.8b)
v=1 a =1 b =1

Using Eq. (6.4), (6.8) becomes

where h is an integer to be decided below. In the follow-
ing, a (b) is also used as an index enumerating the eigen-
values, and thus we can write a, b = 1,2, . . . , h .

According to the hypothesis that (C,C(s), C(s)) is a
CSCO of Lg, it is necessary that (C(s),C(s)) be a CSCO
in each of the eigenspaces L, v=1,2, . . . , n. Thus the
total number of distinct eigenvalues (a,b) of (C(s),C(s))
in L has to be equal to the dimension of L,

h h

u vab, iuvabj ~ij
v=1 a =1 b =1

(6.9b)

h„h
R=X X X .*",P."'"

p=1 c =1d =1
i=1,2, . . . , IgI (6.10)

With the help of Eq. (6.9b), the inverse expansion of Eq.
(6.4) is

2
h =m (6.2)

This leads to Theorem 6.1.
Theorem 6.1. The dimension of the eigenspace L of C

is necessarily a square of an integer.
From Eqs. (5.4) and (6.2) we get

B. The representations 0(")b(G)
and 0(")'(6)

Since C commutes with the group elements and in turn
w1th P(p)d,

2 h'=
I g I

.
v=1

(6 3) CP(p)dp v b= P p)dp(v)b P p)dp v b
c a =P c a =+ c a (6.11)

The eigenequation (6.1a) can be written in matrix form,
r

I s I

(i C(s) j —a 5j u b,J=O
C(s)

(6 5)

The eigenvectors P," can be expressed in terms of the
basis vectors of L~,

)b
li I

P," = gu„,b;R;.

Therefore,

( )p(p)dp(v)b 0

From Eq. (6.1a), it follows that

C(s)(p(p)dp(v)b) (p(p)dp(v)b)

( ( )(p(p p b) p(p)d( ( )p( )b

b (p(p)dp(v)b)

Furthermore,

(6.12a)

(6.12b)

(6.12c)

The h eigenvectors P1 ',P'2 ', . . . , Ph ', with the
same v and b, span an eigenspace L( )b of (C,C(s)). Ac-
cording to Theorem 2.3 and the fact that (C, C(s)) com-
mutes with Cx, L( )b is necessarily a rep space of G. Con-
sequently, the eigenspace L of C is further decomposed
into h rep spaces of Cx,

h

L = g eL(v)br L(v)b IP,'"':a =1,2, . . . ,——h„j . (6.6)
b=1

P(P)d( C (s)P(v)b) aP(P )dP(v)b
c a =ac a

(p(p)dC( ))p(v)b yp(p)dp(v)b

Thus

( —d)P( )PP(") =0 (6.12d)

(p)d (v)b (v) (v)bPc a 8pv 8adfabc c r (6.13)

Due to the nondegeneracy of the eigenvalues of the
CSCO-III, Eq. (6.12) implies that
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where g,b, is a constant to be decided.
Applying R; of Eq. (6.10) to P, and using

one gets

g(v) (
I I

/h ))/2

Hence Eq. (6.13) becomes

(6.19)

with

R p(v)b ~ D(v)b(R )p(v)b
i a ~ ca i c (6.14a)

p(i )dp(v)b 8 p d( I g I
/h )1/2P( )b (6.20)

From (6.20) it is seen that the real positive choice for g(")

corresponds to the requirement that the coefficient u „,
in front of the identity e in P,"'be always real positive,

(v)b (v)D„(Rg)=g,b, u„„; . (6.14b)
lg vaa e )0 a 1 2 Av (6.21)

On the other hand, from Eqs. (6.14a) and (6.8a),

D'"'b(R )=(p. 'v'
I

R.
I

p' b)

From Eqs. (1.12), (6.14c), and (6.8), we have

(6.14c)
Equations (6.14), (6.15), (6.4), and (6.10) reduce to

A

R;P,' ' = g D,','(R;)P,'"', a, b =1,2, . . . , h„, (6.22a)
a'=1

D(v)b(R )D(v)b(R ) +(& J)D(v)b(R (6.14d)

Equation (6.14) shows that the eigenvectors P,'"'

(a =1,2, . . . , h ) form the basis for the bth rep (v) of the
rep group Gr with the rep matrices D'"'b(R; ),
b=1,2, . . . , h .

Similarly for the group Cx one has

R p(v)b ~ D(a)(R )p(v)d
i a ~ db i a

d=l
(v)a (v)

Ddb (Ri ) kbda + vbd, i

(p(v)d
I
R'

I

p(v)b

(6.15a)

(6.15b)

(6.15c)

D'"'(R; )D'"'(R ) =ri(j,i)D'"'(R ). " (6.15d)

Equation (6.15) shows that the eigenvectors P,' '

(b =1,2, . . . , h„) form the basis of the ath rep (v) of the
intrinsic rep group Cx with the rep matrices, D' '(R;),
a=1,2, . . . , h, .

b'=1

a, b =1,2, . . . , h

Dgb'(Rg)=Dbms'(R;)=(
I g I

/h„)'

D' '(R; )D' )(RJ ) =g(i,j)D(")(R,J ),
D' )(R;)D(")(RJ)=q(j,i)D( '(RJ;),

tsl
P,' ' =(h, /I g I

)' g D,'b'(R;)'R;,

g (h„/I g I

)' D,'b'(R;)P,' '

v= 1 a =1 b =1

while Eq. (6.9) becomes

(v)(h. /
I g I

) D'b'(«)*Dcd (Ri ) ~vp~ac~bd

(6.22b)

(6.23)

(6.24a)

(6.24b)

(6.25a)

(6.25b)

C. The standard phase. choice for P("'~

p( ) p( ) p(. )p( )b
c a 5 c (6.16)

where g'"' depends only on v, and later we shall show how
this can be achieved by a suitable phase choice.

With Eq. (6.16), (6.14b) now becomes

The eigenvector P,' ' in Eq. (6.1a) can be determined
only up to a phase factor. Until now the phase has been
assumed to be chosen arbitrarily. From Eq. (6.13) it is
seen that the constant g,'"b,' depends on the phase choice of
Pa ' . Let us make the ansatz

A„A
g (h „/ I g I

)D,'b'(R; )*D,'b'(R ) =5; . (6.26b)
v=1 a =1 b =1

The phase choice of Eqs. (6.16) and (6.19) which leads
to Eqs. (6.22)—(6.26) is referred to as the standard phase
choice. From (6.21) and (6.23) we know that the steps for
reaching the standard phase choices are as follows.

(1) The coefficient in front of the identity element e in
the eigenvector I",""should be real positive.

(2) Among the h, reps of Cx, the phases of the basis
vectors of one rep, say the first one, P,'"' =',
a =2,3, . . . , h„, can be chosen arbitrarily.

(3) The phase of the eigenvector P,' ' for b&l can be
fixed by requiring that the coefficient uv, b; in front of a
certain element R; be equal to

D,'."'(R, ) =g"u*„,., (6.17) (h„/
I g I

)' '(P'""
I
R;

I

P'"")* (6.27)
From Eqs. (6.9a) and (6.17)

IsIg I

D'"(R )
I

'=
I
4"

I

' (6.18)

Summing Eq. (6.18) over the index a from 1 to h„and us-
ing the unitarity of the rep D' ', we obtain

14'"'I'=
I g I /&. .

Choosing g(") to be real positive, we have

where the element R; can be chosen arbitrarily so long as
u ab, i&0'

Finally we need to show that the system of eigenvectors
P,'"' of Eq. (6.25a) satisfies the ansatz (6.16). Using Eqs.
(6.25a), (6.22a), and (6.26a), we may soon verify that
(6.16) is satisfied.

From Eqs. (6.22) and (6.23) it is seen that, under the
standard phase choice, the h „reps D '"'

( Cs),
b =1,2, . . . , h„, become identical; the h reps D'"'(Px),
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a =1,2, . . . , h, also become identical, and D'"'(G) is
identical to D (")(G). Therefore, we have Theorem 6.2.

Theorem 6.2. The reps D'"' (G) [D(") (G)] with the
same eigenvalue v of the CSCO of G are equivalent and
can be made to be identical to one another by using the
standard phase choice.

D. The irreducibility of 0(")(8)

Theorem 6.3. The n inequivalent reps D' )(G) result-
ing from the decomposition of the group space Ls of G
are irreducible.

Proof. Suppose that an h &&h„matrix A satisfies

There are many names for the operator P,b, such as the
normal unit (Rutherford, 1948), unit (Dirl, 1977), shift
operator (Bohr and Motteison, 1969), irreducible symme-
try operator (Folland, 1977), etc. We prefer to call it the
generalized projection operator (Elliott and Dawber,
1979), and call P,' ' the normalized generalized projection
operator.

From Eq. (6.30), we can obtain the generalized projec-
tion operator for an abstract group G with order m

I g I,
)g~ m-i

.P (v) ~ y y D(v)(R (&))eR (I)

m
I g I;=) (=0

(6.32)

aD(")(R, ) =D"(R,)W, i. =1,2, . . . , I g I
(6.28a) In the rep space L, due to Eqs. (1.1 la), (2.13), and (3.36),

the operator becomes

Q A,b D(', ,'(R;)= Q D,'b'(R; )Ab, .
b' b'

(6.28b) lgl
( )

(„) g D,'(", '(R;)"R;, v=1,2, . . . , n
I g I;=)

~ab ~ab ~cc (6.29)

This shows that the only matrix which commutes with all
the matrices of the rep D' ' is a multiple of the unit ma-
trix. According to Theorem 2.4 (the Schur lemma),
D' )(G) is irreducible.

Similarly, the reps D (G) for the intrinsic group are
also irreducible.

From Eq. (6.3) we have Theorem 6.4.
Theorem 6.4. The regular rep of G contains n in-

equivalent irreps D' ', n being the number of linearly in-
dependent class operators of G, the number of ti:s each
irrep v occurs is equal to its dimension.

This is an extension of the Burnside theore for an

abstract group Cx.

E. The generalized projection operator

Let us define the operator P,b

Multiplying both sides of Eq. (6.28b) by
(h /

I g I
)Db, (R; ), and summing over i, from (6.26a) we

obtain

0, v=n+1, . . . , &, (6.33)

which leads to Theorem 6.5.
Theorem 6.5. In the rep space I, the acceptable or al-

lowable irreps of 0 are just the n irreps of the rep group
V defined in the space L,.

To find the irreducible basis in the space L, one might
first decompose the regular rep of the abstract group G
and construct the generalized projection operator P,'b',
and then apply it to the vectors in L (Bradley and Crack-
nell, 1972). Since the dimension for the regular rep of the
abstract group G is m

I gI, whereas that for the rep
group G is only

I g I, it is much easier to decompose the
regular rep of G, construct the generalized projection
operator P b' of Eq. (6.33), and then apply it to the vec-
tors in L, .

Melvin (1956) suggested a factored form for the gen-
eralized projection operator. He considered all operations
h in the group G whose rep matrices in the irrep (v) have
a lone nonvanishing diagonal element equal to one in the
given ath row. The set of operators forms a subgroup
H= Ih I,' '. The group G can be expanded in left cosets
of H,

(v)Pb ——
h„
Igl

1/2

p(v)b
a

lgl

g D.',"'(R, )*R, .
I g I;=)

(6.30) h
P,'",'= g D,'",'(s )* g h . (6.35)

G=SH, (6.34)

where 8 =
I e =s),s2, . . . , s~j is a set of q coset represen-

tatives (or generators). Then it is easy to show that

From Eq. (6.20),
(v) (p) (v)

Pab Pcd ~vp~bc Pad

It can be easily verified that

(6.31a)

(6.3 lb)

Melvin worked out the factored projection operator P,','

for all the point groups except the icosahedral groups I
and Ig.

Folland (1977,1979) extended Melvin's technique. He
let

If j g,'"':a =1, . . .h& J is the basis for the rth irrep p of
Cx, it is easy to show that

h

(6.36)

y(v)r g g P(v)y(P)r be the generalized projection operator for the subgroup H,
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h„being the dimension of the irrep (v). The symmetry
operator for the induced rep (vTCx) of dimension qh„was
shown to be

(VtG) (V) —1
Para, vb ~aPab ~~ (6.37)

where the double index oa or vb is used to label rows or
columns of the induced rep (vtCx). If the induced rep
(vt6) is irreducible, then Eq. (6.37) gives the generalized
projection operator of Cx in terms of its subgroup H.

F. The character

In traditional group theory, the character plays a
predominant role; however, in our new approach, its im-
portance is greatly reduced. In fact, up to now, we have
not explicitly used the character. In this section, we shall
establish a simple relation between the character vector
and the eigenvector of C in the class space.

From Eqs. (6.25b) and (6.30), we get the decomposition
of the identity,

/

n

y p(v) (6.38)
v=1 a =1

Substituting Eq. (6.42) into (6.41a), we get a simple rela-
tion between q

' and 7,'"',

in (v). (6.43)

Therefore, the orthonormality and completeness condi-
tions, (3.18a) and (3.18b), for the eigenvectors of the
CSCQ-I are just the two orthogonal theorems for the
character,

n

y + y(v)ey(v')

;=i lgl
2 VV

n
~(v)v~(v)

Igl .=i J /J

(6.44a)

(6.44b)

Either (6.44a) or (6.44b) can be used as a criterion for
the irreducibility of a rep.

From Eq. (6.44) we can easily reestablish the theorems
involving the primitive characters. They are discussed
elsewhere and hence will be omitted here.

From Eq. (3.4) we know that the eigenvalue of a class
operator C; is a function of the eigenvalue of C,

(6.45)

From Eqs. (6.31) it is seen that P,', ' is self-adjoint and
also is an idempotent, the so-called primitive idempotent.

Define

By taking the trace of

D(")(C~)= g D'")(R(;„)),
v=1

(6.46)

a=1

From Eq. (6.31a) it is easy to show that

p(V)p(LM) g p(V)
VP

(6 39 )
we get

~(v) v g(v)h
l

(6.39b) From Eqs. (6.45) and (6.47) we obtain

(6.47)

According to Fqs. (6.39a) and (6.30),

jg n
p(v) v g y(v)+(

lgl;=i '

X,'"'=TrD "(8) for R C class i,
(6.40a)

(6.40b)

where g,'"' is the character, or primitive character, of the
class i in the irrep (v).

Obviously, P' ' is an eigenvector of C with eigenvalue
v. Moreover, Eq. (6.39b) is precisely Eq. (3.26). Hence
the operator P'"' in (6.39a) resulting from a contraction of
the eigenvectors P,'",' of the CSCO-III in Lg is identical
with P'"' in Eq. (3.25). Comparing (6.40a) with (3.25),
one has

h ~(v)e l (v)

lgl
qc ~ (6.41a)

—I h
(6.42)

Letting i be the identity class and using Eq. (3.28b),

h

lgl
(6.41b)

We choose the phase of il„so that it is real positive,

x,'")=
gi

(6.48)

This shows that the characters of the n classes are
functionally dependent and uniquely decided by the eigen-
value v. Since the equality of the characters is the neces-
sary and sufficient condition for two irreps to be
equivalent, Theorem 6.6 follows.

Theorem 6.6. The equality of the eigenvalues v of the
CSCO of Cx is the necessary and sufficient condition for
two irreps to be equivalent.

G. Summary and discussion

Representation group theory includes the theory for
abstract groups as a special case of m= 1. Therefore, all
the important theorems for the finite abstract group have
been reestablished through a quite different route from
the usual one. The traditional approach relies heavily on
the character theory, whereas the new approach is based
on decomposition of the regular rep space by a set of
commuting operators. The former approach may seem to
be more elegant from a mathematical point of view.
However, it has the fatal drawback that it does not pro-
vide us any practical method for reducing the regular rep.
The new approach, though a bi.t lengthy in proving some
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theorems, is very instructive in nature. It not only offers
more insights into group structure, revealing the duality
between the group G and its intrinsic group Cs, but also
gives a simple and universal Inethod for decomposing the
regular rep into irreps subducted according to any given
subgroup chain GZG(s). Furthermore, this can be done
without any knowledge of the characters. Consequently,
the main advantages of the new approach are its practi-
cality and flexibility.

On the other hand, representation group theory gives
the theory for projective irreps of the gmup g. The set of
matrices

ID(")(y;):i =1,2, . . . ,
~ g ~ I, D' )(y;) —=D'"'(R;) (6.49)

gives what is called the projective irrep of the group g.
Equations (6.22a), (6.23), (6.24a), (6.25), and (6.26) are just
the key equations for the projective irreps of the group g
for a given factor system g (Altmann, 1977; Dirl, 1977;
Mackey, 1968; Coleman, 1968; Jansen and Boon, 1967).
Several methods have been proposed for constructing pro-
jective irreps of a finite group G for a given factor sys-
tem. Dirl (1977) proposed a new method based on the in-
duction from the projective irreps of an invariant sub-

group N of G, by this method he determined complete
sets of projective irreps for all little co-groups of the non-
symmorphic space group O~.

Some of the new features of the present approach are as
follows.

(1) The inequivalent irreps are labeled by the eigenvalue
v of the CSCO of G, just as the irreps of a compact Lie
group are labeled by the eigenvalues of the Casimir in-
variants of the Lie group.

(2) The subgroup chain is introduced for classifying ir-
reducible basis and irreps. If C{s) and C(s) in Eq. (6.1a)
are to be understood as in Eq. (5.10b) with their eigen-
values a and b denoted by Eq. (6.1c), then by solving
(6.1a) we can obtain the G DG(s) and GZG(s) irreduci-
ble basis

P[v)b P 1' 2''''(v)X,X, . . .
g A, l)7(,2). . . (6.50)

which belongs to the irreps v, A, ), A,2, . . . of the groups

G+ G(1)&G(2) & as well as to the irreps
v, k), 1(2, . . . of the groups G&G(1)ZG(2)&. . .

, respec-
tively. , If GDG(s) is a canonical subgroup chain, then in

subduction from G(i) to its nearest subgroup G(i +1),
the irreps A,;+) of G(i +1) can occur at most once in a
given irrep A,; of G(i) [otherwise there would be degenera-
cy for some eigenvalues A,;+&

in contradiction with the
definition of the canonical subgroup chain for which
(C, C (s),C(s) ) is a CSCO in Lg]

For a system with G as its symmetry group, the eigen-
values v and a are good quantum numbers.

(3) Using Eq. (6.23), we can obtain all the irreducible
matrices D'"'(R) in the G&G(s) classification, which
have the useful property of decomposing immediately
into direct sums of irreps of the corresponding subgroups
contained in G(s), if the subduction is carried out.

(4) The intrinsic group G provides a new quantum

number, the intrinsic quantum number b, for distinguish-
ing the h equivalent irreps D' ' of G with the basis

[ P,'"':a = 1,2, . . . , h „I. Equation (6.14a) shows that,
under the group Cx, the basis vector P,' ' only changes its
external quantum number a.

(5) Analogously, in the group space, the irrep (v) of the
intrinsic group Cx also occurs h times. The
equivalent irreps D'"' with the basis I P,":b
= 1,2, . . . , 1) I are distinguished by the external quantum
number a. Equation (6.15a) shows that under the group
Cx, the basis vector P,' ' only changes its intrinsic quan-
tum number b.

For a given v, the external and intrinsic quantum num-
bers a and b have exactly the same h distinct values.

(6) Under the standard phase choice for the eigenvec-
tors P,' ', we have

D(v)b(G) D(v)(G)

D(vh1(G) D(v)(G)

D(v)(G) D (v)(G)

(6.51)

{7) The two orthogonal theorems for the characters
[Eq. (6.44)] and those for the irreducible matrix elements
[Eq. (6.26)], now can be interpreted as the orthonormality
and completeness conditions for the eigenvectors of the
CSCO-I and -III, respectively.

(8) Thus far, for all the irreps of G, we have adopted
the same G&G(s) basis. In fact, for different irreps (v)
we can choose different classification schemes. Otherwise
stated, the choice of the subgroup chain G(s), and there-
fore of the operator set C(s), may depend on v. Equation
(6.1a) can thus be generalized to

C V

CIv)( )
P(v)b P v)b

a a a

C (v)(s) b

(6.52)

Vll. THE EIGENFUNCTION METHOD (EFM)

A. EFM for the irreducible basis

Theorem 7.1. A necessary and sufficient condition for
a function g(") to belong to the irrep (v) of a group G is
that P(") be an eigenfunction of the CSCO of G,

where C' '(s) is the CSCO of the subgroup chain G(s)
chosen for classifying basis vectors of the irrep (v).

Flodmark and Blokker (1972) have proposed a scheme
for constructing irreps of finite groups. They first
decompose the regular rep space of a group G into sub-
spaces L, by using the projection operator P'"' [see Eq.
(3.39)], and then use a systematic but rather complicated
procedure to decompose L, into h irreducible spaces.
This procedure has been programmed by Flodmark and
Jannson (1982). The irreps constructed by this scheme
still suffer from the drawback that they are not adapted
to a definite subgroup chain.
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Cy(v) vq(v) (7.1)

Proof. The "necessary" follows from the following
consideration. Suppose g' ' is a vector of an irreducible
space L of G. Obviously L is a representation space for
any class operator of G and thus is an invariant subspace
of C. According to Corollary 2.1, g(") is necessarily an
eigenfunction of C.

Next we prove that (7.1) is a sufficient condition.
If Eq. (7.1) is true, then P(") must belong to the eigen-

space W of C with the eigenvalue v. The space Wv may
be decomposed into several irreducible spaces
~=1,2, . . . , each generating an irrep. All these irreps
are labeled by the same eigenvalue v of C and thus are
equivalent to one another on account of Theorem 6.6'.

Therefore, the function (tt(") is necessarily a basis vector
for one of those equivalent irreps, or a linear combination
of their basis vectors. This is exactly what it means for a
function to belong to the irrep (v).

Note that if both gI
' and P2

' belong to the irrep (v) of
G, it does not necessarily mean that they are two com-
ponents (or partners) of an irrep, since it may be that f')"'
is a basis vector of the first irrep (v), whereas Pz

' is a
basis vector of the second irrep (v).

A natural extension of Theorem 7.1 is Theorem 7.2.
Theorem 7.2. A necessary and sufficient condition for

f~",'», . . . to belong to the irrep v, A, (,A,2, . . . of a subgroup

chain 6DG(1)DG(2)D, is that it satisfy the fol-
lowing eigenequations:

F,'",'(R) =(Rl —c) )/c2 . (7.6b)

Suppose that the eigenvalue (v, a) is a r„-fold root; then
it indicates that the irrep v occurs r„ times, and for given

(v, a) there are r„ linearly independent solutions to Eq.
(7.5),

If the eigenvalue (v, a) is a single root, it means thttt the
irrep v occurs only once, and corresponding to each (v, a),
a =a~, a2, . . . , a~, there is only one eigenvector. These

h„eigenvectors g carry the irrep v of G.
In the foregoing procedure, a knowledge of the irredu-

cible matrices is unnecessary. However, in some cases,
certain conventional or standard irreducible matrices in
the GAG(s) scheme are given. In order that the IRB
found from the EFM be consistent (including the phase)
with the standard matrices, we can use the following tech-
nique.

We need only find one component, say g,'"', for each
possible v from Eq. (7.5). Using the known matrix ele-

ments, we can construct an operator F,','(R), a suitable
linear combination of the group elements, by means of
which the other a'th component can be derived from the
known component a successively,

(7.6a)

The form of the operator F,'",'(R) is very simple for the
commonly used finite groups and can be easily found.
For example, suppose that R;g,' '=c)g,'"'+czar,'"', then

(v)r r=1,2, . . . , r, . (7.7)

C(1)
C(2) 4)j.g», p

' .I,(v)
~ ~ ~ ~

A, 2 1 2
(7.2)

yj(X), j=l,2, . . . ,~, (7.3)

which carry a reducible rep of the group G, and we need
to find the G &G(s) IRB f,'"', which can be expressed as

.(,(v)
'Jf'a =~ vaj9j .

J
(7.4)

The set of eigenequations (7.2) can be rewritten in a more
compact form as

(v)
C(s)

(v) (7.5a)

which is a generalization of Eq. (1.5) for the SO3&SOp
IRB.

From Eqs. (7.4) and (7.5a) we obtain

( C
X ~(V j C(~) V l]) 5jI Qva I—0 (7.5b)

Equation (7.2) offers a method, the eigenfunction
method (EFM), for finding the IRB of a group G in any
chosen G D G(s) classification without need of any
knowledge of the characters or irreducible matrices.

Suppose that there are ~ orthonormal wave functions

y(v)b p(v)b(I (7.9)

The eigenvectors g,' can be chosen to be orthogonal in
the multiplicity label ~. However, it should be stressed
that the eigenvectors P,' ', a =1,2, . . . , h, thus chosen
arbitrarily except for the requirement of orthogonality
with respect to r, in general do not generate an irrep of G.
To obtain the IRB we can use either one of the following
two methods.

(1) We can use the intrinsic quantum number P; to dis-
( v)P,

tinguish the r„sets of eigenvectors {P, ' I, i = 1,
2, . . . , r„. For details see Chen and Gao (1982).

(2) For a given eigenvalue (v, a), we can get from Eq.
(7.5) r„ linearly independent solutions. After Schmidt's
orthogonalization, they become f,'"', r= 1,2, . . . , r . The
other components P,'"' can be obtained through

(7.8)

The functions g') ', . . . , (tl»"' carry the rth irrep v. Now

the index ~ is an additional label rather than the intrinsic
quantum number.

The conventional method for constructing an IRB is
the projection-operator method. From Theorem 7.2, we
know that, acting on a normalized function (I)0(X)
without any symmetry under the group G, the normalized
generalized projection operator P,'"' yields the G&G(s)
and G&G(s) IRB
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While acting on a wave function @(X) that has partial
symmetry with respect to the group G, it yields the un-
normalized G D Cx(s ) IRB

f,'"'=const&(P,' ' &b(X) . (7.10)

However, Eq. (7.10) is in general no longer the IRB of
G & G(s) (Chen and Gao, 1982).

The projection-operator method epitomized in Eq.
(7.10), though simple in principle, may well be very la-
borious, and is not convenient for groups of large order.
The eigenfunction method is simpler and especially suit-
able for computer calculation.

possible the construction of both the IRB and the irredu-
cible matrix in any given group chain, and the puzzle of
solving two interdependent problems in the traditional
theory is solved satisfactorily.

C. EFM and conventional methods
for irreducible characters

From Eqs. (3.14) and (6.43) we have Theorem 7.4.
Theorem 7.4. The eigenvectors of the CSCO-I of Cz in

the class space are proportional to the complex conjugate
of the irreducible character vectors,

B. EFM for irreducible matrices
~(c)X"*=X' '* (7.14)

Let us define the column vector

D,'(,' col(D,'b——'(R, ), . . . , D,'g", (R (s )) (7.11a)

as the irreducible-matrix-element vector. Then according
to Eqs. (6.5) and (6.23) we have Theorem 7.3.

Theorem 7.3. In the group space, the eigenvectors of
the CSCO-III of G are proportional to the complex conju-
gate of the irreducible-matrix-element vectors,

IR; C(s) RJ I
—a 5;J D~b (RJ) =0.( (7.11b)

From Eqs. (7.11b) and (6.26a), or equivalently from Eqs.
(6.5) and (6.23), and using the standard phase choice in
Sec. VI.C, we can determine all the matrices in the
(x&G(s ) classification.

Equation (7.lib) is a generalization of Eq. (1.7) for the
SO3 D SO2 irreducible matrix elements.

Sometimes we need the generalized shift operator from
the G&G(s)' IRB q&„'

' to the G&G(s) IRB P,' ', where
G(s)' and G(s) are two different subgroup chains of G.
The generalized shift operator is given by

Mkj(c;)=C~J~, i =1,2, . . . , I . (7.15a)

Let q=col(q(, q2, . . . , q„). Suppose that q' ' are sirnul-
taneous eigenvectors of &(C(), . . . , W(c(), i.e.,

u(C, )q("'=X("'q("', i =1,2, . . . , &,

and that they obey the normalization condition

(7.15b)

gg, lq'"'I'=I (7.15c)

as well as the phase convention that all q,
'"' for the identi-

ty e are real positive. Then the primitive character of Gr

is given by

This is a generalization of Eq. (1.4a) for the SO3 charac-
ter.

It should be mentioned that Theorems 7.3 and 7.4
remain true for compact Lie groups if the group (class)
space is replaced by the group (class) parameter space,
and the eigenvectors by the eigenfunctions (Chen, Wang,
and Gao, 1983).

The EFM for characters can be summarized as follows.
Using the structure constants Cz of the group G to

form the natural representative matrices &(C;) for the
classes contained in the CSCO of G,

(v)P„= h ls!
( )g u.("„'(R,)*R, , (7.12a) ~(v) ~

I I

(v)e
(7.16)

~( )(R ) (y( ) IR I
~~ ~) (7.12b)

As in Eq. (7.11b), &,'~'(R;) satisfy the eigenequations

R, C(s) R, I
—a 5,, ~.'„'(R, )*=0, (7.1»

c(s)'

where W,'"„'(R;) are the generalized matrix elements, or
the skew matrix elements (Klein and Seligman, 1982),

For example, Table III is precisely the character table
of the point group C4„, where v'1/8 =

I g I

Before the EFM was proposed, several conventional
methods were available for determining the characters of
an abstract group G with X classes. These include the
following.

1. Jones's method {1975)

where C(s)' is the intrinsic operator set corresponding to
the CSCO C(s)' of the subgroup chain G(s)'. From Eq.
(7.13) and a normalization condition similar to (6.26a)

D replaced by M, we can evaluate the generalized
matrix elements.

It is thus seen that the flexibility of the EFM makes

First find all the X eigenvalues k,'- ', v,i =1,2, . . . , N
from the characteristic equations of the X matrices
&(C~), i =1,2, . . . , N; next use the relation
=(h fg;)A, ';

' to get the % characters g,' '; and finally
use the orthogonality of the characters to arrange the X
characters into the character table.
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2. Boerner's method (1963)

From Eq. (2.18c) one obtains a set of equations for the
eigenvalues of the N classes

N~ c'x"
i j ~ ij k

k=1
(7.17a)

Multiplying both sides of Eq. (7.17a) by an indeterminate

u; and summing over i, one gets an eigenequation for
Z(")=col(z(("), . . . , X„'")),

L. (u Q, '"'=g'")Z"
where L (u) is a matrix with the matrix elements

(7.17b)

Ljk(u) = g Cqu;, (7.17c)

and

g"= +~X"u

By decomposing the determinant of the matrix
(L (u) —uoI) into linear factors,

det(L(u) —u I}=Q u —g A, ,' 'u; =0, (7.17d)

one can determine the X eigenvalues X,'"', and then use
Eq. (6.47) to obtain the N characters. Boerner's method
avoids the rearrangement of XI"', however the decomposi-
tion procedure (7.17d) is not easy for higher-order groups.

while the characters are obtained from Eq. (6.47). The
main difficulty of this method is that it involves the cal-
culation of the common eigenvectors of N matrices.

The common feature of these four methods is that the
concept of the CSCO for the class space has not been in-
troduced, and thus all the structure constants C,z of the
group are required. These methods are not easily applied
to higher-order groups.

5. Dixon's method (1967)

Dixon (1967) improved upon Burnside's method by
transposing the problem from the field of complex num-
bers into the field of integers modulo p for a suitable
prime p. It is much easier to compute the modular char-
acters in the latter field, and from these characters one
can calculate the ordinary irreducible character. An effi-
cient program has been written by Dixon.

In contrast, the equation for the EFM (7.14} is linear,
and only the natural representation matrices of the I class
operators contained in the CSCO of Ci are required. Usu-
ally l is much smaller than the class number X. The
EFM is also suitable for high-order groups; for example,
the characters of the permutation group S» with N=56
have been calculated by diagonalizing only a single ma-
trix, the natural representation of the two-cycle class
operator (Gao et al. , 1976; Chen and Gao, 1982).

6. Seeking the CSCO of G trom known characters

3. Bradley and Cracknell's method (1972}

From Eqs. (7.17a) and (6.47) one has

(v) (v) k (v)RtfJ+l ~J h V g Cljgk+k
k=1

(7.18)

From Eq. (7.18) along with (6.3) and (6.44a) (noting that
here

( g (
and n should be replaced by

~
G~ and N,

respectively), one can determine the characters. The ma-
jor difficulty of this method is that Eq. (7.18) is a non-
linear algebraic equation'for P';"'.

As mentioned before, in the new approach, the charac-
ter recedes from its predominant role in the traditional
theory. %'e can now carry out the reduction of a rep
without any knowledge of the characters. However, if the
primitive characters of a group Ci are known, use can be
made of them to simplify the calculation.

The character has the following two major applications
in the new approach.

(1) Finding the CSCO of G. With the known character
table and Eq. (6.47), we can get the following array for
the n eigenvalues k,' '.

4. Burnslde's method (1955}

Equation (7.17a) can be rewritten as

where

(7.19a)

(v2)
1
0

1

(v
2

(V2)
2
0

(v„)
2

(v))

(v2)
n

(v„)
n

(7.20)

M~ ——&(C(), (M;)p, =CJ . (7.19b)

/R; =
/
G

/
/h (7.19c)

Therefore, the N column vectors A."are common vectors
of the N matrices MI, i =1,2, . . . , N. From Eq. (7.19a)
we can find N eigenvectors A,

"normahzed according to
1,,"'= 1. The dimension h„ is decided by

If we can find a column, say column i, in the array which
(V& ) (V2) (V )

has n different eigenvalues A,; ', A, ; ', . . . , A.; ", then the
class operator C; is the CSCO of the rep group Ci. Other-
wise, we look for two colum. ns, say i and j, and if the n

(v&) (v&) (v„) (v„)
pairs of eigenvalues (A, ; ', AJ

'
), . . . , (A,; ",A~ ") are all

different, then (C~, CJ.) is a CSCO of the rep group, etc.
Consequently, if the character table is known, it is trivial
to find the CSCQ of the group.
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(2) Determining the number of times a given irrep v
occurs in a rep D. Let ~ be the number of times the irrep
v occurs in the decomposition of a reducible rep D with
characters X;,

c
b)b2 C(s) ala2(I—

0(Q2

x(v]a)v2a2
I
vra)=0 ~

a)b) a2b26 5

(7.26)
.(V)X;= gr„X; (7.21)

From Eqs. (6.44a) and (7.21) we get the well-known ex-
pression for r„,

It shows that the CGC results from a diagonalization of
the representative matrix of the CSCO-II of G in the
product basis. The matrix elements of a class operator C;
are given by

n '
x;x,"*

;=) Igl
(7.22) (v&) ( v2)

2 I i I ( 2 & g Db(a ( (ia))D, b2a (R(i,a)) ~

D. EFM for Clebsch-Gordan coefficients

Suppose that G is an abstract group (for notational
convenience, we omit the caret). Let

o=1,2, ~, t (7.23b)

:a =1,2, . . . , h I, o.=1,2,
(V )

be the G&G(s ) basis for the projective irrep D of G
with the factor system g( ',

D (R, )D (R, )=ri( )(s, t)D (R,R, ), g (v(a(v2a2 I
vra)*(v(a)v2a2

I
vr'a)=5„,

a&a2

(7.28)

(7.27)

Using Eq. (7.27) we can calculate the matrix elements of
the CSCO-II of A. From the characteristic equation of
(7.26), we can obtain the eigenvalue (v, a) along with its
degeneracy, which gives the multiplicity (v)v2v) in the CG
series (7.24).

When (v)v2v) & 1, for given (v, a), there are (v)v2v) sets
of linearly independent solutions to Eq. (7.26). Subject to
the orthogonality requirement with respect to the multi-
plicity label ~, i.e.,

The h h vectorsV) V2

(V& ) (v2)
a a (7.23c)

the (v) v2v) sets of solutions can be chosen arbitrarily.
If the solution for one component a is known, the other

components b can be found with the help of Eq. (7.8),

carry the Kronecker product rep of G (or the uncoupled
rep of G}

(V&) X(v2) (V&) (v2)gD (7.23d)

(v& ) X (v2)It is easy to show that D ' ' is a projective rep of G
for the factor system

I
vrb & =+i' (R )

I
vra &, r= 1,2, , (v) v2v) . (7.29)

Substituting Eq. (7.25) into (7.29) and multiplying (7.29)
from the left by (b) b2 I, we obtain

(v)b)v2b2
I

vrb) y (blb2 I+b (R) lala2&

rj(s, t) =rI("(s,t)r}' '(s, t) . (7.23e) )&(v)a) v2a2
I
vra) . (7.30)

The Kronecker product rep can be reduced into the
projective irreps v of G for the factor system g,

D ' ' = g (v)v2v)D", (7.24)

where (v)tv) is the number of times that the projective
irrep v occurs in the Kronecker product rep. Equation
(7.24) is referred to as the CG series. To effect the reduc-
tion, the product basis vectors of (7.23a) need to be
recombined into the G &G(s) IRB

vt.a = V1a1V2a 2 v~a a1a 2

r=1,2, . . . , (v)tv), (7.25)
where r is a multiplicity label and (v)a)v2a2

I
vra) is

called the Clebsch-Gordan coefficient (CGC) (or the
Wigner coefficient or the coupling coefficient). Notice
that the subgroup chains G(s)), G(s2), and G(s) may be
different from one another or may be identical.

According to Eq. (7.5), the CGC satisfies the eigen-
equations

Following a procedure similar to that described after
Eq. (7.7), for each possible v we take only the CGC for a
particular a from Eq. (7.26); the remaining CG coeffi-
cients of the projective irrep v should be evaluated from
Eq. (7.30).

When rj (s, t)=1, for o =1,2, s, t, =1,2, . . . , I
G I, all

the projective irreps of 0 become the vector irreps of Cx,
and Eqs. (7.24)—(7.30) continue to be valid.

It is to be noted that the multiplicity separation is arbi-
trary, and the following linear combination satisfies all
our requirements for the CCrC:

(v)a)v2a2 1»a)= X~() (v)a)v2a.
I
vra), (7.31)

where S' ' is a (v)v2v)&&(v)v2v) unitary matrix. Hence
the CGC can be determined only up to a unitary transfor-
mation.

The advantage of the EFM for the CGC lies in the fact
that here only the irreducible matrices of a few group ele-
ments are required, and these are contained in the CSCO-
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II of G, while in the projection-operator method (see Sec.
VII.E), the irreducible matrices of all the

I
G

I
group ele-

ments are required. Another feature of the EFM is that
the CG series and CGC are obtained simultaneously.

The EFM is powerful for constructing the CGC or iso-
scalar factor (ISF) of compact groups. As early as in
1966, Bayman and Lande calculated the SU2J+ ~

D SPzj+ I D SO3 ISF by diagonalizing the operator
C(SUqj+ ~) + 0.11C(SPY&+ &), where C(SU2J + &) and
C(SPqj+ ~) are the Casimir operators of SUzj. + &

and
SP2J. +~, respectively. The EFM has been used for com-
puting the CGC of the permutation groups S2—Sb (Chen
and Gao, 1981; Gao and Chen, 1985), the unitary groups
(Chen, Wang, and Gao, 1978a; Chen, Gao, Shi, Vallieres,
and Feng, 1984; So and Strottman, 1979), and the graded
unitary groups (Chen, Gao, and Chen, 1984a, 1984b;
Chen, Chen, and Gao, 1984).

It is seen that there is virtually no difference between
the treatment of the CGC for projective irreps and that
for vector irreps. Therefore, we shall discuss only the
CGC of vector irreps from now on.

E. Various methods of obtaining
CIebsch-Gordan coefficients

The conventional method for calculating the CGC is
the projection-operator method. In contrast to the EFM,
it requires a knowledge of the CG series. From Eqs.
(7.22) and (7.23d), the multiplicity (v~v2v) can be calculat-
ed by

(7.32)

(v, v,v)

I'.b = X I
v«&&v~b

I
(7.33b)

Equation (7.33b) is easily justified by showing that it sat-
isfies Eq. (6.31). Hence

&~i~2 II'ob'lbib 2&= 2 &ai~2
I
v«&&verb lbib2& .

(7.34a)

Using Eq. (7.33a), we have

(vill lv2+2
I
v«)(vibi v2b2

I

v~b)'

(7.34b)

This is the formula proposed by Koster (1958) for ob-
taining the CGC. For the multiplicity-free case
[(v~v2v) = I], the CGC can be calculated from Eq. (7.34b)
by holding a ~, a2, and a fixed, letting b run from 1 to h„
and letting b &b2 run from 1 to h„,h, . For the (v~v2v) & 1

case, a systematic procedure for obtaining all (v~v2v) sets
of CGC is given by Koster (1958) and Birman (1974, p.
38). The disadvantage of this method is that it is rather
tedious.

This method has been used for calculating the CGC of
the point groups (Statz and Koster, 1959; Koster et al. ,
1963), the permutation group S5 (Hamermesh, 1962), and
the space groups (Litvin and Zak, 1968; Berenson and
Birman, 1975; Berenson et al. , 1975).

The projection-operator method in its primitive version
works as follows (Tinkharn, 1964). By successive applica-
tion of the projection operator P,'",' and the shift operators
Pb,"' (b&a) to the basis vectors of the Kronecker product
rep, one can generate the irreducible basis vectors one by
one, whose components give the CGC. The main disad-
vantage of this method is that one sometimes performs a
good deal of work in vain if a vanishing result is obtained.
In such a case, one must apply the projection operator to
another basis vector. This procedure must be repeated
until (v~vzv) linearly independent IRB are obtained for a
given irrep v.

In the following we discuss several variations of the
projection-operator method. The original derivation for
them is rather lengthy. However, shortcuts are possible
by using the key equation (7.33b) below.

Koster's method

In the Kronecker product space, the generalized projec-
tion operator

2. Schindler, Mirman, and Oirl's method

A significant improvement in the method of computing
the CGC is due to Schindler and Mirman (1977a), who
recognized the fact that the (v&vqv) independent columns
of the projection matrix yield, after being orthonormal-
ized, the (v&v2v) sets of CG coefficients.

From Eq. (7.33b) or (6.31c) we have

P,",
I
v«&=

I
v«&,

Pb."'
I
v«& =

I
v~» .

Written in matrix form, this is

p(v)U(v)& U(v)&
aa a a

p(v)U(v)v U(v)w
ba a b

(7.35a)

(7.35b)

(7.36a)

(7.36b)

where Pb, ' and U,' ' are the representatives of I'b, ' and

I
v«& in the Kronecker product rep, respectively. The

matrix elements of Pb",' are given by

(Pbg ),b b &+la2
I Pbo

I blb2&

I""'= g D' '(R)*R
h

ab =
I
G

I

ab

can be written as

(7.33a) QD, b (R ')D, ib, (R)D,~b, (R) .
R

(7.37)
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P~,' is called the projection matrix. U,' is called the
CGC vector with components

(U,'"')...,=(via iv2a2
I
vs), aia2 ——1,2, . . . , h„,h„, .

Applying the projection operator I'~, ' to a vector
I
bib2) in the Kronecker product space, if the result is

nonvanishing we obtain an un-normalized basis vector for
the irrep vof G,

(7.38) 1»=(bib2)~ & Nb1b2Paa I blb2) (7.39a)
In Eq. (7.36a), the CGC vectors U,' ', r= 1,2, . . . , (v1v2v)
can be regarded as the vectors that span the eigenspace of
the projection matrix P,',' with eigenvalue equal to one.
From Eqs. (7.34b) and (7.31) it can be easily shown that
the matrix P,'",' has (viv2v) and only (v1v2v) linearly in-
dependent columns. Using the Schmidt process, we ob-
tain (viv2v) orthonormal column vectors which are eigen-
vectors of P,', ' with eigenvalues all equal to one, whose
components are the required CGC (via 1 v2a2

I
vs),

a= 1,2, . . . , (viv2v). The CG coefficients for the other
components b are obtained either from Eq. (7.36b) or
from Eq. (7.34b).

Dirl (1979a) went on to show how the multiplicity in-
dex of the CGC can be identified with the special column
indices of the projection matrix and to give an explicit ex-
pression for the CGC in terms of the matrix elements of
Pb",'. A simple derivation of Dirl's result is given below.

Nb", b', =
I & ib2

I

From Eq. (7.39a) one immediately gets

(7.39b)

(7.40a)

The other components
I
v8=(bib2)b ) can be obtained

from

(b 1 b2» ) Pb
I
vg (b 1 b2)& &

Using Eqs. (7.37) and (7.39), one obtains

where the multiplicity index 8 is identified with the
column index bib2 of the Kronecker product, and Nb"b'

1 2

is a norm that can be easily shown, upon using (6.31a), to
be

(v1+1v2~2 I
»=(bib2» ) =Nb'", b, &a1~2

I Pb

1/2

QD~b (R )D, I, , (R)D b (R)
R

—1/2

X gD, (R ')Db, I, , (R)Db b,(R), b=l, . . . , a, . . . , h
R

(7.40b)

If by varying the column index bib2 we can obtain
(viv2v) orthogonal vectors

I
v(9=(bib2)„,a ), v=1,2, . . . , (v1v2v),

then the multiplicity index 0 can be explained completely
by the special value of the column indices of the projec-
tion matrix. On the other hand, if we can obtain only
n & (viv2v) orthogonal column vectors in the matrix P,'",',
then we have to apply Schmidt's procedure to obtain the
complete CGC.

Equation (7.40a) clearly shows that the columns of the
projection matrix P,',' give the CGC vectors.

It is also interesting to note the connection between
Eqs. (7.40a) and (7.34a), where the multiplicity r is chosen
arbitrarily. From these two equations one has

(vi+1v2+2
I
vg=(blb2)+ )

g (viaiv2a2
I
vs)(vibiv2b2

I

vs)* .

(7.41a)

I
vr= 1,a) =Nb", b',P,', '

I b, b2),

they construct a new operator

P'"'=P.".—
I
via &&via

I
.

From Eqs. (7.33b) and (7.42b) one has

( Vi V2V)

P,','"'= g I
vs &(vs

I

(7.42a)

(7.42b)

(7.42c)

where
I
vs ), &=2, 3, . . . , (viv2v) are the CGC vectors to

be decided. Therefore, I",,' ' is again a projection opera-
tor, but it is for the [(viv2v) —1]-dimensional space, and
one can play the same game with P,','"' to obtain another
CGC vector

1

and r are related by a unitary transformation.
van den Broek and Cornwell (1978) made a further im-

provement in the solution of the multiplicity problem of
the CGC. After obtaining a CGC vector by using Eq.
(7.39a), which is now denoted as

By identifying

Ss",' Nb"b' (v, b iv2b2
I

vr——a) (7.41b)
I
vr=»& & =Nb'"b' Pa" I

b'ib2 &

where

(7.42d)

we see that Eq. (7.41a) is precisely Eq. (7.31), that is, the
two sets of CG coefficients with multiplicity indices 8

N'' '=
I (bib2

I

P''"'
I

b'ib2 ) I (7.42e)
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It is easily seen that the CGC vectors
~

vwa ), v=1,2 are
the eigenvectors of I",,'"' corresponding to the eigenvalues
0 and 1, respectively. Hence they are orthogonal. One
may proceed in this way until the (v~v2v) orthonormal
CCRC vectors are obtained.

This method in its original version was used for com-
puting the CGC of the permutation group S3 S6
(Schindler and Mirman, 1977b,1978). Later the method
was extended to treat the CGC for space groups (Dirl,
1979d; van den Broek, 1979a), for finite magnetic groups
(van den Broek, 1979b), and for space magnetic groups
(Dirl, 1980a,1980b).

3. Sakata's method

, (viv2v)

M(g). .. .= g g,(v,a1v,a, ~v~a), (7.43a)

where g is a vector

Suppose that 3 is a h h &h rectangular matrix.

Multiplying both sides of Eq. (7.34b) by (
~
G

~
/h„)Ab b b

and summing over b
& b2 and b, we obtain an equation

that can be put into the form

The total number of irreducible matrix elements is equal
to

~

G ~, which is quite large for a high-order group.
This is the main difficulty in applying the projection-
operator method.

4. Butler and Wybourne's method

Butler and Wybourne (1976a,1976b) adopted a quite
different approach to the CGC problem for compact
groups. According to Racah's factorization lemma
(1951), the calculation of the CGC for the subgroup chain
G&G(1)&G(2)& . is reduced to the calculation of
the isoscalar factors for GDG(1),G(1)DG(2), . . . . The
Butler-Wybourne method is for computing the 6j symbols
and 3jm factors of G, the latter being the symmetrized
iso scalar factors. The distinguishing feature of this
method is that it requires only a knowledge of character
theory, chiefly the product and branching rules. It is par-
ticularly useful for groups with irreps of large dimen-
sions.

This method has been used to compute the CGC for
point groups (Butler and Wybourne, 1976b; Butler, 1981)
and the 3jm factors for SU(3) &SU(2) and SU(6)
&SU(3) &&SU(2) (Bickerstaff et al. , 1982).

~b b, b( lvb1 vb22 I
v'r»*

b)b2b

(7.43b)

(7.43c)
Vill. EXAMPLE: THE lRREPS AND CLEBSCH-
GORDAN COEFFICIENTS OF- THE GROUP |4„

M(G)=M(H)+[D ' (s2)@D '(sq)]

XM(H)D'"'(s2)f+ . (7.45a)

M(H)= g [D ' (h)I3|D ' (h)]AD'"'(h)t . (7.45b)
heH

This method is suggested by Sakata (1974) and used to
compute the CGC of the double point group D3 and the
double space group D4~. The method is rather tedious
and has an ad hoc nature.

A common feature of the above methods is that the ir-
reducible matrices of all the

~

G
~

elements are required.

and M(g). . . is the'matrix element of a h„,h, Xh ma-

trix M(g) containing (v~v2v) parameters g~, . . . , g+,

M(g')= g[D '(R)eD '(R)]AD' '(R) . (7.44)
R

In the case of (v~v2v) =1, Eq. (7.43a) shows that the
CGC vectors U,'"' are obtained by normalizing the
columns of the matrix M (g= 1). In the case of
(v~v2v) & 1, by taking (viv2v) linearly independent vectors

such as g"'=(1,0, . . . , ),g' '=(0, 1, . . . , 0), . . . ,
g' '=(0,0, . . . , 1), we get (v&v2v) matrices M(g' '),
0= 1,2, . . . , (v~v2v). After normalizing each column vec-
tor of these matrices and using the'Schmidt process, we
obtain (v, v2v) sets of CGC (Sakata, 1974),

If H is a subgroup of G, and (s ~

——e, . . . , s&) is a set of
coset representatives of H in G [see Eq. (6.34)], then the
matrix M(g) =—M(G) can be rewritten as

%'e now take the group C4, as an example to illustrate
the application of the EFM for obtaining irreps and CG
coefficients. Again we consider only the m =1 case and
leave the I ~ 1 case to Secs. XIV.C and XIX.

A. Construction of irreducible
matrices

The group elements of C4, are given in Sec. III.D. The
group table of C4, is given in Table IV.

According to Eqs. (2.12) and (4.13), as well as Table IV,
it is easy to find the regular reps of the groups C4„and
C4„. In fact, the nth row of Table IV gives the rep of the
nth element R„of C4„e.g.,

D (R5 )=D (o„)= (58671342),

D(Rb) D(oy) (67583124)

D (R 7 ) =D (od, )=(75862413),

D (R8 ) =D (odb ) = (86754231),

(8.1)

D(Rs) =D(o„)=(57681324), (8.2)

where (ij kl . . ) denot.es a matrix with the matrix elements
all equal to one at the entries (a,b)=(i, 1),(j,2), (k, 3),
( 1,4), . . . , and equal to zero elsewhere, and where a (b) is
the row (column) number.

and the nth columri of Table IV gives the rep of the in-.

trinsic group element R„,e.g.,
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TABLE IV. Cxroup table of C4„.

1

2
3
4
5

6
7
8

C4z

2
3
4
1

8

7
5

6

C2, C4, Oy da

7
6
8

5

2
1

3

We can use the complete set of commuting operators
(C4, C5) of Cz„ found from the class space of C~„ in Sec.
III.D, to decompose the regular rep. However, we can
also find a CSCO of C4, directly from the group space by
looking for an operator C =g,.k;C; that has X =5 dis-
tinct eigenvalues. Let us try C =2C4+Cz. The rep ma-
trix of C in the group space is given by

D (C) =2[D (o )+D(cr )]+D(crd, )+D (crdb) . (8.3)

A diagonalization of D(C) gives

four single roots, v=6, 2, —2, —6; m = 1,
one fourfold root, v=O; m =4.

The fact that m =h implies that v= 6,2, —2, —6 corre-
sponds to four one-dimensional irreps, while v=O corre-
sponds to a two-dimensional irrep that occurs twice. The
operator C has five distinct eigenvalues, and thus it is a
CSCO of C4, .

For the four single roots, we can find four unique
eigenvectors of D(C) as listed in Table V below. They
give the IRB for the one dimensional irreps
v=6, 2, —2, —6, and are identical to the first four vectors
listed in- Table III except for a constant factor. For the
fourfold root, from the eigenequation

D(C)u=vu=O, u=col(u»u2, . . . , us),
we obtain the following equations for u;:

Q1+Q3 =0, Q2+Q4=0,

Q5+Q6=0, Q7+Q8=0 .
(8.4)

To lift the degeneracy, or to determine uniquely the
solution to (8.4), we need to introduce the operator C(s)
and C(s). Obviously, for our problem here, any element
of C&„except the identity can serve as C(s). Let us take
C(s) =cr„. It means that we choose the C4, & K, classifi-
cation for the irreps with K, =(e,o„). The solution to the
eigenequations

D(o.„)u=au, D(cr„)u=bu (8.5)

can be read out from the fifth row and fifth column,
respectively, of Table IV, i.e.,

Q =+1 Q1 =+Q5, Qg =+Q8, Q3 —+Q6p Q4 —+Q7

(8.6)
6=+1:Q1——+Quay QP +Q7p Q3 —+Q6p Q4 —+Q8

The four one-dimensional bases are of course the eigen-
functions of o. and o. , as can be seen by comparing
Table V with Eq. (8.6). By combining Eqs. (8.4) and (8.6),
we determine another four eigenvectors P1, P(0)1 (0)1

P', ' ', and P' I
' of K =(C,cr„,o„) up to some phase

factor. It is easily seen that E has eight distinct eigen-
values, as shown in the second column of Table V.
Therefore, K is a CSCO-III of C4„.

We now follow the three steps given in Sec. VI.C to

TABLE V. The irreps of C4„ in the C4„DK, classification. The parameters v, v', a, and b are the eigenvalues of C, C5, o. , and 0
respectively; ~=Qh /

~

G
~

.

p(v)b
a

p(6)l

p(2)1
1

n( —2) —1
X

p(0)1
1

p{0)1—1

n(0) —1

~(0)—1

(v, a, b)

(6,1,1)

(2, 1,1)

( —6, —1, —1)

( —2, —1, —1)

(0,1,1)

(0, —1, 1)

{0,1, —1)

(0, —1, —1)

(v', a, b)

(2, 1,1)

( —2, 1,1)

( —2, —1, —1)

(2, —1, —1)

(0, 1,1)

(0, —1, 1)

(0, 1, —1)

(0, —1, —1)

v 1/8

v 1/8
V'I/8

't/1/8
1

2

1

2

1

2

1

2

C4
2

C2,
3

C4,
4

Oy

6

0

Odb

8
' (v)D,b

A2

D 2

DE

D12
E

D22
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determine the phases of P,'"' . The phases of P'1 " and
P' '1 are fixed by step (1). The phase of P' '1' can be
chosen arbitrarily according to the step (2). Suppose that
it has been chosen as shown in Table V. To determine the
phase of p'1 ' ', we need first to calculate a nonvanishing
matrix element Dp'1(R;) from the known IRB P,' ' ='.
R; can be chosen freely; for example, we might choose
R; =R2 ——C4, . From the fifth and sixth rows of Table V
and using Table IV we can calculate

D1—1(R2) (Pl I
R2

I

P'"1'
&

=
4 &1 —3+5—6 IR212—4+7—8& = —1

where the shorthand symbols for group elements have
been used. The phase of P'1 ' ' is now determined by re-
quiring that its coefficient u 2 be equal to
V'2/8DP'1(R2)* = ——,'.

Having adjusted the phase, thanks to Eq. (6.23) we can
read out from Table V all the irreps of C4„. For instance,

I

D' '(R2)=D (C4+, )= (8.7)
l.

If the phase of p'1 ' ' has not been appropriately
chosen, say if it has been chosen as opposite to that given
in Table V, and if we still use Eq. (6.23) to obtain matrix
elements from u„,b;, we will, get

D1 '(R2) =D (C4+, ) =

and [D (C4+, )] will be equal to I, in disagreement with
[D (C4+, )] =D (R3)= —I.

In the above, we first solve the eigenequation of C and
then those of C(s) and C(s). In fact, a more convenient
way is to use first the eigenequations of C(s) and C(s) to
eliminate the non-independent variables and thus to de-
crease the order of the eigenequation of C. Let us redo
the above problem by this alternative procedure. From
Eq. (8.6) we get

(a,b) =(1,1):u1—u5 u2 —u4 —u7 —us u3 —u6

=(—1, 1):u1 ——us ——0, u2 —— u4 ———u7 — usy u3 —u6 —0

=(1,—1):u,=u, =0, u2 —— u4 —u—7 u——s u3 —u6 —0,
=(—1, —1):u1= —us, u2 =u4 = —u7 — usp u3 ——ll6 (8.8)

The eigenvalues (a,b) =(1,1) and ( —1, —1) have threefold degeneracy. For each of them we have three independent
solutions,

(a,b)=(1,1):F1——(1+5), y2
—(2+4+7+8), y3 ——(3+6),

=( —1,—I):y1——(1—5), y2 ——(2+4—7—8), A)3 ——(3—6) . (8.9)

To lift the degeneracy, we need the class operator of
C4„. Let us combine them into eigenvectors of the class
operator Cs ——(7+8). The representative matrices D (C5)
and D'(C5) in the un-normalized bases [lp;I and IyI I,
respectively, are equal to

Furthermore, we can also choose

K= C5+3o.~+2o~ (8.1 1)

as a CSCO-III of C4„. From the third column of Table V
we know that EC has eight distinct eigenvalues,

020
D(C3)= D'(C )=31 0—1

020
(8.10)

p=v'+3a +2b =7,3, —7, —3,5, —1, 1, —5, (8.12a)

where v' is the eigenvalue of C5. Similarly we can choose

A diagonalization of D(C5) gives the basis vectors
p{2)1 p( —2)1 p(0)1 nd p(2) —1 p( —2)—1 p(0) —1

1 ~ 1 ~ 1 ~an —1 ~ —1 ~ —1

is identical with Table V.
The eigenvalues (a,b) =(1,—1) and ( —1,1) have no de-

generacy, and from Eqs. (8.8) we obtain unique solutions.
It- is easy to infer that these solutions belong to the two-
dimensional irrep, and thus they are just p' '1' and p1 '

listed in Table V.
It is easily seen that the two-dimensional irrep given by

Table V corresponds to the rep with (y, —x) as the two
basis vectors.

From this example, it is seen that (C5,cr„,lr„) is a
CSCO-III of C4„, although C3 is not a CSCO-I of C4„.
The CSCO-III ( C4, Cs, cr„,cr„), (2 C4+ C5,o„,o„), and
(Cs,a„,lr„) are all equivalent in the sense that they give
identical irreps.

M = C5+3o-„ (8.12b)

i 0
D(')(R2) =DE(C4+. )= 0 (8.13)

as a CSCO-II of C4„, which has gp =6 distinct eigen-
values, 5, 1, —5, —1, 3, and —3.

Suppose that we need the irreps of C4„ in the C4, D Ã4
classification, where 4'4 is the cyclic group generated by
C4+; then C(s) should be chosen as the CSCO of K4, i.e.,
C (s) =C4+, . The simultaneous eigenvectors of
(C, C4+, C4+) are listed in Table VI, where C =2C4+C5.
The one-dimensional irreducible bases are of course iden-
tical with those of Table V, but the two-dimensional IRB
are changed. From Table VI we can read out the irreps in
the C4„&Ã4 classification. For example,
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TABLE VI. The irreps of C4„ in the C4„&X4 classification. The parameter v, a, b are the eigenvalues of C, C4„C4„respectively.

(v, a, b)

(6,1,1)

(2, —1, —1)
( —6, 1, 1)

( —2, —1, —1)
(0, i, i)

(0, —i, i)

(O, i, —i)
(0, —i, —i)

Vh„/iCii

V'1/8
V'1/8
V'1/8
V 1/8

1

2
1

2
1

2
1

2

0
1

C4,
4

—1

0

Oy

6

1

1

D 2

82

(Dg )g

(DE )g

(DE )g

(DE )g

It can be easily recognized that the two-dimensional ir-
reps given by Table VI corresponds to the rep with
[&1/2(x iy)—, V1/2(x +iy)] as basis vectors.

From the above example, we see clearly that the EFM
has great flexibility in constructing the irreps of a group
G in any G &G(s) classification.

B. Construction of the CG coefficients

Let us construct the CGC for the Kronecker product
EXE of C4„ in the C4„&Ã, classification. The CSCO-
II is chosen to be M =(Cs,o„). There are four vectors,

~
a&a2 & =f, ,f... a&az ——11,12,21,22,

in the Kronecker product space with gf=gP' and
A diagonalization of (Cq, o„) in the basis of

Eq. (8.14) gives the CGC. The diagonalization of o„ is
trivial, since

~

a ~a2 & are already eigenvectors of cr„:

(8.15a)

(8.15b)

4 '=4'
(

' ——v'1/2(
~
12&+

~

21&),

I '=qP', =v'1/2(
i

12& —
i
21&) .

(8.18)

The identification of the eigenvalues of (Cz, o„) with the
Mulliken notation is m'ade on the basis of Tables III and
V. Equation (8.18) gives the CGC for the product EXE
of C4„and shows that EXE=&~ +&p ++] ++/.

It is seen that (1) the CG coefficients are obtained
without a priori knowledge of the CG series and (2) only
the irreducible matrices of the elements od„crdb, and o.„
are required, which are contained in the CSCO-II of C4„.
In other words, here we need only 3&4=12 matrix ele-

ments, while for the projection-operator method we need
12 =144 matrix elements. The superiority of the EFM
over the projection-operator method for finding the CGC
is especially conspicuous for higher-order groups.

Diagonalizing &(C5) and &'(Cs) gives four irreducible
bases:

'=4/'=v'1/2(
i
11&+

i
22&),

0 '=0', "=v'1/2(F11& —
i
22&),

Therefore, it is only necessary to diagonalize C5 in the
subspaces (

~

11&, ~22&) and (
~

12&,
~

21&). Equation
(7.27) for the matrix elements of Cz now reads

db

&a]a2
~
C$

~ blb2& y D b (o')D b
l =dQ

(8.16)
& a/a]

~
C5

~
b]bl &

= &albl
~
C5

~
blal &

db= g tD. ,b, (o )l'.
i =da

Using Table V, we easily find the matrices of C5 in the
two subspaces,

0 2
~ —20

IX. BASIC KNOWLEDGE OF THE SPACE GROUP

Starting from this section, we shall apply the general
theory for the rep group developed in the previous sec-
tions to the space group. We begin with a brief statement
of some basic definitions and relations concerning the
space group for the purpose of easier accessibility and es-
tablishing notation. Additional information can be found
in review papers or books on space group reps, such as
those of Bradley and Cracknell (1972), Birman (1974),
and Koster (1957).

A. Symmorphic and nonsymmorphic
space groups

0 —2
~'C5)= —2 0

(8.17) A crystal is formed by arranging atoms, ions, mole-
cules, complexes, etc. , in a space lattice L = IR„I, called
an empty lattice, defined by sets of points (the lattice
points)
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n 1 tl +n 2t2+ +3t3 (9.1a) (9.7)

Iu
I
aj = (u I

V(u)+R. j (9.2a)

where u is a rotational (proper or improper) operator be-
longing to the so-called isogonal point group Cxo, or the
point group of the space group Cr. The vector V(u) asso-
ciated with u is called the nonprimitive, or fractional,
translation. V(u) is either zero or a translation which is
less than a lattice vector. V(u) has the general form

1
V(u) = (mltl+mztz+m3t3), (9.2b)

with integers n;. The t; are called the primitive or basic
translations, and R„ the lattice vector.

A11 the rotations u which preserve R„on the lattice I
form a point group P,

P=Iu:uR„EL j,
called the point group of the empty lattice or the
holosymmetric point group of the lattice.

The symmetric group of an infinite crystal is called a
space group G. Its elements are denoted by the Seitz no-
tation cxR =RI,

V(u)+uV(P)=V(uP)+R p,

(9.9)

(9.10)

where R~ and R~p are lattice vectors.
The operation of Iu

I aj on a function 1/(x) is defined
by

Iu I a}/(x) =l/r(Iu
I aj 'x) =f(u '(x —a)) . (9.11)

With this definition, the multiplication rule for the
function operator is identical with Eq. (9.5) for the opera-
tor in the coordinate space:

Therefore, the translation and rotation do not commute,
except when the translation a is parallel to the rotation
axis or the reflection plane.

Following the multiplication rule

I u
I
V(u)+ R„j I P I

V(P)+ R

= Iup I
V(u)+uV(/3)+uR +R„j, (9.8)

one infers that the lattice vector and nonprimitive transla-
tion must satisfy the following conditions:

where m takes only four possible values, m =2, 3, 4, and
6, while m;=0, 1, . . . , m —1. We always associate a
primitive translation with the identity rotation c, so that
V(c, ) =0. A space group Cx is designated by

+= f Iu I
V(u )+R j = » ~ I

G'o
I

R +L j .

Iu I a} IP I bj f(x)= Iu I a}f(P 'x —P 'b)
/

=l/(P '[u
I a} 'x —P 'b)

=l/( Iu/3 I ub+aj 'x)

= IuP I ub+ a}i/(x) . (9.12)

Iu I
ajx=ux+a, (9.4)

i.e., a rotation on x followed by a translation a. From Eq.
(9.4) we obtain the multiplication rule,

Iu I a} I p I b}= Iup I ub+a} . (9.5)

(9.3)

A space group is said to be symmorphic if its nonprim-
itive translations V(u)=0 for all u. Clearly the point
group Cyo is a subgroup of the symmorphic space group.
A space group is said to be nonsymmorphic if its V(u) is
not zero for at least one u. The point group Cio is not a
subgroup of the nonsymmorphic space group G. Among
the 230 space groups, 73 are symmorphic and 157 are

nonsymm orphic.
As mentioned before, a crystal is formed by arranging a

collection of ions or complexes in an empty lattice. Both
the arrangement and the ions or complexes have some
symmetry of their own; therefore the symmetry of the
point group Cxo is lower than that of P, unless the ar-
rangement as well as the ions have a symmetry higher
than or equal to that of the empty lattice. In other words,
Cxo is generally a subgroup of P: P D Cxo.

The operation of I u
I a} on a vector x is defined by

Ie I
ajl/(u 'x)=l/(u '(x —a))~P(u 'x —a),

Ju I
0}g(x—b)=l/j(u 'x —b)&p(u '(x —b)),

IuIO}g(P 'x)=g(P 'u 'x)&f(u 'P 'x) .

(9.13)

It is convenient to use the coordinate system with t; as
basis vectors,

k 1t I +42t2 +43t3 (9.14)

The transformation of x under a rotation u is determined

by that of t;:
ut;= QPJ.;(u)t, .

1

(9.15)

By virtue of Eq. (9.9), DJ,.(u) have to be integers + I or 0
(see Table 3.2 in Bradley and Cracknell, 1972).

From Eq. (9.11), it is easily shown that, acting on f(x),
the translation operator

Hence for simplicity we do not distinguish between the
coordinate transformation operator in Eq. (9.4) and the
function operator in Eq. (9.11). However, it is worth
mentioning that in applying a function operator one must
be very careful to notice the following points:

Setting I up
I
ub+a }= I E

I 0},we get the inverse element

(9.6)
js I

a j =exp( —a V) =exp( —ik a), (9.16a)

From Eq. (9.5) we have
where k= iV, is the m—omentum operator (choosing the
Planck constant 8= 1).
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The space group is a discrete infinite group. However,
to define a space group one need only specify the three
primitive translations t; and a finite number of elements
Ia

~
v(a}j, or more economically, just few generators.

The generators for the 230 space groups are listed in
Table 3.7 of Bradley and Cracknell (1972).

Km are called the reciprocal lattice vectors, and the lattice
formed by all K is called the reciprocal lattice, denoted
as

L '=IK
Obviously we have

B. Crystal systems and Bravais lattices
K -R„=2m& integer . (9.20b)

It can be shown that the allowable point groups P of
the empty lattice are restricted to the following seven
point groups:

Oh +D4h +D2h +C2h + i

(9.17)

where we have shown their genealogical relations.
Two empty lattices are said to belong to the same crys-

tal system if they have the same holosymmetric point
group P. Therefore, there are only seven possible crystal
systems, namely the triclinic (C~), monoclinic (C21, ),
orthorhombic (Dzf, ), trigonal ( Dzd ), tetragonal (D&d },
hexagonal (D61, ), and cubic (O~ ).

The seven crystal systems contain 14 different types of
crystal structure, known as the Bravais lattices. For their
names, symbols, and primitive translations, see Table 3.1

in Bradley and Cracknell (1972).

I e
~
R„j=exp( —ik R„) . (9.21a)

The irreducible basis of T can be found from the solution
to the eigenequation

l E
~
R„ju„(r)=e '" ""u„(r) . (9.22)

The eigenvalue k of the operator k is called the wave vec-
tor and is used to label irreps of T. Assuming

It can readily be proved that the reciprocal lattice and
the ordinary space lattice have the same symmetry group
P, and thus belong to the same crystal system, but they do
not necessarily have the same type of crystal structures.
For the orthorhombic and cubic systems, the body-
centered space lattice corresponds to the face-centered re-
ciprocal lattice, and vice versa. However, for all other
cases (including the simple or base-centered orthorhombic
and simple cubic), the space lattice and its reciprocal lat-
tice are of the same type.

The translation group T is Abelian. Therefore, its
CSCQ can be chosen simply as the group operator

k=u i bi+u2b2+S 3b3 (9.23)

C. The translation group T and its irreps

The group

one of the solutions of Eq. (9.22) is easily found to be

uk(r) =exp(ik r)

T=ljeiR jj =exp[2~ 9 ik+a2k2+p343)] ' (9.24)

is called the translation group. I is an invariant subgroup
of the space group Ci, since

(9.18)

The basis vectors t~, t2, t3 are in general not orthonor-
mal; from these vectors we can introduce another set of
dual basis vectors bI, b2, b3, such that k=k+K (9.25)

Since exp(iK .R„)= 1 from Eq. (9.19), uj, +K
=exp[i(k+K~). r) is also a solution to Eq. (9.22) with
the same eigenvalue. Consequently the irreps k and
k+K of T are equivalent. k and k+K are referred to
as the equivalent wave vectors, denoted as

b;'tj =2' J. (9.19) The CSCO of the translation group T, I E
~
R„j, can be

replaced by the momentum operator
where the factor 2m. is introduced for later convenience.

It is easily seen that the relation between b; and t; is

b; =2~ &&tk/[t; (tj &&tk)], ij,k cyclic in 1,2, 3 .

t; and b; are the covariant and contravariant bases,
respectively, while b;.t~ =2~5;J is an invariant.

The gradient operator V can be written as qr"(r) = g u(k+ K )exp[i (k+ K ) r], (9.26)

(9.21b)

with eigenvalues k modulo K
The most general form of the basis belonging to the ir-

rep k of T is the so-called Bloch function,

(9.16b) where U(k+ K ) are coefficients.
The projection operator for the translation group is

Let us define

K~ =I Ib~+m2b2+M3b3 . (9.20a)

P' '=constX +exp[i(k —k).R„] .
R„

(9.27)

Rev. Mod; Phys. , Vol. 57, No. 1, January 3 985



Chen, Gao, and Ma: The representation group. . .

D. The Brillouin zone X. THE LfTTLE GROUP

In order to visualize the region of space in which k
must lie, let us introduce the so-called signer-Seitz unit
cell, defined as the region around an origin 0 (which may
be any one of the reciprocal lattice points) bounded by the
planes bisecting perpendicularly the vectors joining the
origin to all neighboring reciprocal lattice points. This re-
gion surrounding the origin is called the Brillouin zone or
the first Brillouin zone.

According to Eq. (9.25), to obtain all the inequivalent
irreps of the translation group, one need only let the wave
vector k run over all the points in the Brillouin zone.
Nice diagrams of the Brillouin zones for the 14 Bravais
lattices are given by Bradley and Cracknell (1972, Figs.
3.2—3.15).

The points in a Brillouin zone are divided into two
gl oups.

(1) General points Aw. ave vector k is called a general
point if it does not have any symmetry, i.e., for any opera-
tor a ECko, ak and k are not equivalent.

(2) Special points. A point with a certain kind of sym-

metry is called a special point, for example, the point that
lies on a rotation axis or a reflection plane and therefore is
invariant under the rotation or reflection, or the point k
on a surface of the Brillouin zone which may be invariant
or goes to its equivalent point k'=k+K~ under a rota-
tion or reflection.

Special points are subdivided into (Bradley and Crack-
nell, 1972) two groups.

(a) Points of symmetry: k is called a point of symmetry
if there exists a neighborhood of k in which k is the point
with the highest symmetry.

(b) Lines or planes of symmetry: k is called a line
(plane) of symmetry if in a sufficiently small neighbor-
hood of k there is always a line (plane) passing through k,
all points of which have the same symmetry as that of k.

The special points in a Brillouin zone are labeled by the
standard solid-state physics symbols, e.g. , I, X, M, etc.
(see Bradley and Cracknell, 1972, pp. 96—118).

Of all the rotations in the point group P, those which
leave the wave vector k invariant modulo a reciprocal lat-
tice vector form a subgroup of P, designated as P(k):

A. Representation space of the space group

Since the translation group T is a subgroup of the space
group 6, naturally we shall choose the group chain 0DT
to classify the IRB of Cx. From Eq. (9.25) we know that

q, =exp[i(k+K ) r] (10.1a)

Wi, = Iexp[i(k+K~) r]:IC~ HL (10.1b)

Our primary task is to find linear combinations of
(10.1a) with k and K~ such that the combinations form
the irreducible bases of the space group G. As a routine
procedure, we apply all the group elements of G to the
single function Pi, and pick out the linearly independent
functions that will carry a rep of G, and then reduce this
rep into irreps of G. From Eqs. (9.11) and (10.1a),

Ia
~
ajitk ——exp[ ia(k—+K ).a]exp[ia(k+K ).r] .

(10.2a)

It is seen that the translation part Is ~
aj of the group ele-

ment I a ~
aj only affects the phase factor, whereas the ro-

tation part 0. changes the wave vector k+ K~ into
a(k+ K ). Therefore, [a

~

a j gi, belongs to the eigen-
space W i, of Ic,

~
R„j. Equation (10.2a) shows that the

.functions Ia
~

V(a)+ R„jPi, with the same a but different
R„are linearly dependent. Consequently, although the
space group G has an infinite number of elements, it gen-
erates from Pi, only

~
Go

~

linearly independent functions,
which can be chosen as

=exp[iaj(k+K ).(r —V(a )],

i =12, , IGof . (10.2b) '

carries the irrep k of T, with k restricted to the Brillouin
zone. The functions of Eq. (10.1a) with the same k but all
possible K form an eigenspace Wk of the translation
operator I e

i R„j,

P(k) = t a E.P:ak ='k j . (9.28) They form a rep space

P(k) is referred to as the symmetric group of the wave
vector k.

The symmetry groups P(k) are listed by Bradley and
Cracknell (1972) in their Table 3.6 for the wave vectors k
that lie in the so-called basic domain of the Brillouin
zone.

If a wave vector ki lies outside the basic domain, but is
related to a wave vector k that is in the basic domain by

(9.29a)

W( e k) =
f gi, i= 1,2, . ., .., f

Go
f j (10.2c)

for the space group G. In general W(ek) is a reducible
space of G.

Stated differently, in a rep space with Bloch functions
as basis vectors, the space group G has only

~
Go

~

linear-
ly independent operators Ia;

~
V(a;) j, which form a rep

space

then the symmetry group G(ki) of the wave vector ki is
obtained from P(k) by conjugation,

L(ek)= j [a; ( V(a;)j:i =1,2, . . . , t Go I j (10.2d)

P(ki) =aP(k)a (9.29b)
for the space group G. The spaces W(ek) and L(ek)
are isomorphic.
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B. The little co-group Gp(k}

The problem we face now is how' to reduce this
I Go I-

dimensional rep of G. According to the procedure intro-
duced in Sec. VI, we need first to find the CSCO of the
space group, and then to find the eigenvectors of the
CSCO in the space W( e k). However, this procedure
proves to be unsuitable, due to the fact that the class
operator of the space group has a rather complicated
structure. We have to resort to other strategy. We first
sandwich a group H between the space group 6 and the
translation group T; then we determine the HUT IRB,
and finally we get the G&HUT IRB.

Of the
I
Gp I

rotations in the point group Go, all the
rotations y which leave the wave vector k invariant
modulo a reciprocal lattice vector, i.e.,

Z(ek), and is a
I
Gp(k)

I
-dimensional rep space of the

little group G(k). W(k) is in general reducible. By
decomposing W(k), we can get the Cx(k) DT IRB.

Since W(k) is an eigenspace of [e I R„j, in W(k) we
have

[e
I
R„j=exp( —ik.R„) I, (10.8)

Xl. THE REPRESENTATION GROUPS Gk AND Gk

A. The rep group Gk

where I is a unit matrix. Therefore, in the space W(k),
the translation operator [e

I R„j commutes with any
operator of Cx(k).

yk=k+K =k,
form a subgroup of Cxp, which is designated as

(10.3)
From

[yi I
V(yi)+R. j = [E

I
R. j [yi I v(yi) j (1 l. la)

Go(k)= [yEGoyk=kj (10.4a) and Eq. (10.8), we see that the group operators of Cx(k) in
the space W(k) are related by

and is called the little co-group (Bradley and Cracknell,
1972).

It is easily recognized that the little co-group Gp(k) is
the intersection of the symmetry group P(k) of k and the
isogonal point group Cxo, i.e.,

Cxo(k) =P(k) Cl Go . (10.4b)

C. The little group G(k)

All the elements [y I V(y)+R„j, for y&Go(k) and
R„HL, form another space group designated as

G(k)= [[y; I
V( gy) +Rj:i =1,2, . . . ,

I
Go(k) I,R„KL j .

[y I
V(y )+R„j E=(jn), [y I

V(y )j,
(sj, n)= (En)=e px( —ik.R„) .

(11.1b)

(11.1c)

y, I
v(y, ) j [y, I v(y, ) j =~(i,j)[y,, I

v(y,, (11.2a)

p(i j)=exp( —ik.Ri)

To avoid notational clumsiness, we use the same symbol

[y I
V(y) j to denote both the group element and the cor-

responding operator or representative matrix in W(k).
Equation (11.1b) shows that in the rep space W(k) the

little group G(k) has only
I
Go(k)

I
linearly independent

operators [y; I V(y; ) j, i = 1,2, . . . , I
Gp(k)

I
.

Using Eqs. (9.8), (9.10), and (1 l. lb), we obtain the mul-
tiplication relation for these independent operators,

(10.5)
=exp[ ik [U—(y;)+y;V(y ) —JV(yj)]j . (11.2b)

~ =
I
Go

I
~

I
Go(k) I,

where q is an integer.
The

I
Go(k)

I
linearly independent functions

i= [y IV(y ) j0i. .

forIIl a space

W(k) = [gr i,i=1,2, . . . , I
Go. (k)

I j .

(10.6)

(10.7a)

(10.7b)

W(k) is a subspace of Wj, as well as a subspace of

Cx(k) is referred to as the little group, or the group of the
wave vector k. G(k) is a subgroup of Cx and contains T
as its subgroup. Therefore, the group G(k) is a candidate
for the group H to be sandwiched between Cx and T.
Another way of saying this is that for any subgroup H of
the space group 6, the point group of H must be the sym-
metry group of a certain wave vector k. Thus we can use
the wave vector k to label this subgroup, that is, use Cx(k)
to denote H.

The order of Cxp(k) is a divisor of the order of Go,

By identifying W(k),
I
Go(k) I, [y; I V(yi)j, and P(i,j)

with L,
I g I, R;, and ii(i,j), respectively, in Sec. I.C, we

see that all the distinct operators e(i, n) [y; I
V(y;) j form a

rep group

cubi, = [ [y; I
v(y; ) j:i' = 1,2, . . . , I

cxp(k)
I j~, (11.2c)

where m is an integer depending on k (see discussion
below).

The rep group G~ can be regarded as a faithful rep of
an abstract group Gk. The abstract group could be, for
example, - the so-called central extension G" defined by
Schur'(see Bradley and Cracknell, 1972). Notice that
what is called the representation group by Doring (1959)
and Birman (1974) is just another name for the central ex-
tension, and thus differs from our definition for the rep
group.

From Eq. (ll. lb) it is clear that the IRB of the little
group G(k) in the space W(k) is identical to the IRB of
the rep group G~, their representation matrices are related
by
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D'"" '(Iy
l
V(y)+R„j}=e "D' ""'(Iy lV(y)j),

(11.3}

rl(i, j)=expI —ik [.y;V(y ) —V(y )] j .

According to Eq. (10.3),

(11.6b)

where (k)(v) is the label for the irrep of G(k) or Gk. It is
to be noted that, in this paper, the symbol D'~'(X) is al-
ways regarded as the representative matrix of an operator
X with respect to a certain basis labeled by the index j,
and D(~)( Y) is that for another operator Y, while X and Y
may belong to different groups. This notation is con-
sistent with the convention used, in quantum mechanics
and is very convenient.

The irrep D' ""' ( Iy l cj ) is called the small rep of the
little group Cr(k).

If the wave vector k is a point of symmetry, then k is
of the form

yg 'k=k+K, , (11.6c)

where K& is a reciprocal lattice vector. Thus

ri(i j ) =exp[ iK—
&

V(y. j)] . (11.6d)

With Eqs. (9.2b) and (11.6d), the phase factor g(j, k) is
of the form

rl(j, k) =exp(2~iajk/m), m =2,3,4,6, (11.7)

where aik is an integer depending on j and k. Therefore,
in the space W(k), the m

l
Go(k)

l
operators

1k= (m )bi+ mqb2+ m 3b3), (11.4a)
RJ' '=exp(2mli lm. )RJ, j=1,2, . . . , l

Cr()(k)
l

l =0, 1, . . . , m —1, (11.8)

=exp(2~ii /m ), 1 =0, 1, . . . . (11.4b)

Hence the rep group Crk is an m-fold covering group of
Go(k) with the elements""

ty, IV(y, )j, j=1,2, . . . , IG.«)l,
l=0, 1, . . . , m —1. (11.4c)

Nevertheless, if k is a line (or plane) of symmetry, for
instance if k is of the form

where m and m; are integers. In such a case, the phase
factor p(i j ) in Eq. (11.2b) is of the form

)M( i,j)=exp( i k —RJ ).

form a rep group designated as

Crk= IR;:i =1,2, . . . , l
Go(k)

l j (11.9)

The rep group Crk is an m-fold covering group of the
point group Go(k) where the integer m depends only on
what kind of fractional translation the space group G has
and takes only four possible values, 2, 3, 4, and 6, for all
230 space groups.

Since R; differs from I y; l V(y; ) j only by the phase
factor exp[ik U(y; )], the groups Gk, Gk, and G(k) have
identical irreducible bases, and their matrices, upon using
Eqs. (11.3) and (11.5), are related to one another by

1k =, (m (bi+mqb2)+p3b3. ,
m

(11.4d)
D(k)(v)(

I y l
V(y ) j ) e

'" &(i )D( )k( )(vR)

D( )( )( Iy l
c j ) e

' 'D(k)(v)(R )

(11.10a)

(11.10b)

B. The rep group Gk

Let us make the following gauge transformation for the
group elements of G(k):

(11.5)

This transformation seems to have been used for the. first
time in the context of studying the degeneracies of elec-
tronic energy bands in crystals by Kovalev and Lyubar-
skii (1958). It follows from Eq. (11.2a) that in the space
W(k) we have

R(RJ rl(ij )R;I, —— (11.6a)

where p3 is an arbitrary number, say an irrational num-
ber, then the phase factor p(i,j ) will not have the simple
form of Eq. (11.4b). It is thus seen that the factor system
)M has the unpleasant feature that the integer
m =

l
Crk l /l G()(k) l

depends on the wave vector k and
may become very large for k in a line (or plane) of sym-
metry. To avoid this trouble, we proceed to the next sec-
tion.

where D'"" '(R;) is the irreducible matrix for the element
R; of the rep group Crk.

For notational convenience, we often use b, (y;) to
denote the matrix D'"" '(R; ), i.e.,

g(y )
—D(k)(v)(R ) D(k)(v)( [y l

V(y ) j )

Equation (11.10b) then reads

D(k)(v)( Iy l
c j ) e ~g(y )

It follows from Eqs. (11.6a) and (11.1la) that

&(y;)&(y )=rl(ij )&(y;y, ) . —

(11.11a)

(11.10c)

(11.11b)

b, is called the projective irrep of the point group Go(k),
the ray rep (Hamermesh, 1962), the multiplier rep (Mara-
dudin and Vosko, 1968), or the loaded or weighted rep
(Lyubarskii, 1957; Kovalev, 1961).

In summary, the problem of finding the irreps of an in-
finite group G(k) is converted into finding that of the rep
group Cx~ or G~. For those wave vectors k which are
lines or planes of symmetry, we must work with the rep
group G~, while for those k which are points of symme-
try, we can work either with the group A~ or with Cx~.

However, the multiplication relation (11.6a) for Gk is
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carry the rep space W(k) for Gk, which coincides with
the space W(k) of Eq. (10.7b). The group space of the
rep group A~ is denoted by

L(k) = IR;:i =1,2, . . . , ~
Go(k)

~ j . (11.12b)

The spaces W(k) and L (k) are isomorphic, and it is more
convenient to work with the latter. In the foHowing we
work mainly with L (k).

C. Special cases of the rep group Gk

The following four cases need to be considered
separately.

(1) For a general k point. This is a trivial case, since
now Gk ——Gk ——IEj.

(2) For the symmorphic space group, or the nonsym-
morphic space group whose little group G(k) is sym-
morphic for the wave vector k under consideration. For
these cases, V(y)=0, and according to Eqs. (11.2b) and
(11.6d) the phase factor p(i j ) =g(ij ) = 1, hence

Gk=Gi =Go«» (11.13)

i.e., the rep group Gk (or Gk) is identical to the point
group Go(k), whose irreps are already known. In passing
we point out that in such cases the space
L(k) = IR; j = {y;j is the regular rep space of the point
group Go(k).

(3) For an interior point of a Brillouin zone. When the
wave vector k is not on the surface of the Brillouin zone,
the only possibility for yk=k+K~ is that K~ =0, i.e.,

(11.14)

Comparing this with Eq. (11.6c), we know that now

Kr ——0, and the phase factor in Eq. (11.6a) is again equal
to one, 7)(i,j)=1. Therefore, the rep group Gk is iso-
morphic to the point group Go(k) = I y; j. Suppose D' ' is
the irrep of the point group Go(k). Then the irrep of the
rep group CJg ls

D{k)(v)(R ) D(v)(y (11.15a)

while the irrep of the little group G(k) is [Eq. (11.10b)]

D(k)(v)( [y ~

c j ) e
—ik cD(v)(y) (11.15b)

Observe that, for the origin point k=0, we again have

Cxg ——Gj, , (11.16)

i.e., the distinction between Cz~ and G~ disappears.
It should also be noted that for the case of interior

points, although the rep group Gj, and the point group
Go(k) have identical irreps (11.15a), their irreducible

much simpler than that for Gk, in the following we shall
work only with the rep group Cx~, irrespective of points of
synimetry or line (planes) of symmetry.

The
~
Go(k)

~

functions

QJ—=Riexp[i(k+K ) r], j =1,2, . . . , ~GO(k)
I

(11.12a)

bases do not coincide. For example, if
(~) (~)

g k, a = g &a, i yi0k (11.17a)

is the irreducible basis of Go(k), where u,' are coeffi-
cients and itik

——exp[i(k+K„).r], then the corresponding
irreducible basis of Gj, is

(11.17b)

D. The projective-rep method

We recapitulate the main points of Schur's theory on
projective representations (Schur, 1904,1907,1911; Bir-
man, 1974; Bradley and Cracknell, 1972) as follows. Our
starting point is still Eq. (11.11b). Under the gauge
transformation

&'(y;) =C';&(y;),

with
~
C;

~

=1, Eq. (11.11b) becomes

(11.18)

(11.19a)

(11.19b)

The factor systems g and g' are said to belong to the
same class. We need study only one factor system for
each class. One of Schur's basic theorems is the follow-
ing: The number of classes of factor systems of a finite
group g is finite, denoted by m, and every projective rep
is equivalent to a unitary one with a factor system in the
same class.

Let g* be the central extension of g with an Abelian
group A of order m such that A is an invariant subgroup
of g* and A is contained in the center of g'. (The center
of a group is the set of all elements each of which is in a
class by itself. )

Another basic theorem of Schur is the following: All
the projective irreps of g are vector irreps of g* subduced
on g.

The central extension g* of minimum order producing
all the distinct projective irreps of g is called the "rep"

(4) For a point on the surface of a Brillouin zone and
for nonsymmorphic little groups. For cases (1)—(3)
above, the irreps of the rep group Gk can be directly taken
over from those of the point group Go(k). The only case
for which the irreps of Cx~ cannot be obtained in this way
and have to be worked out anew is when the wave vector
k is on the surface of a Brillouin zone and its little group
G(k) is nonsymmorphic.

The whole machinery for constructing irreps for the
rep group has been worked out in Secs. . II—VII. All the
formulas there can be applied to the rep group G~ with

( g ~

replaced by
~
Go(k)

~

. Before going into detail on
the application of the general theory to the specific group
Gk, let us discuss briefly one of the conventional methods
for constructing the irreps of G(k), the projective-rep
method.
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group (here we added the quotation marks to differentiate
Schur's usage from our definition of the rep group).

To obtain projective irreps belonging to a given factor
system g of Eq. (11.7), we can construct the "rep" group
g" as follows: Form m

~ g ~

pairs of elements (yj, l), each
pair with a yj from g and an I from the cyclic group Z
of integers 0, 1, . . . , m —1; the group product of Z is
defined as addition modulo m. The multiplication rule
for g is defined by

of g, h„=
~
Gp(k) ~, we can determine the projective ir-

reducible matrices for these generators on a case-by-ease
basis (Lyubarskii, 1957). The whole projective rep of
Gp(k) results from matrix multiplication. The disadvan-

tage of this approach is that it is very tedious. Based on
this method, tables of the projective irreps have been con-
structed for the little co-groups corresponding to most of
the symmetry points in the Brillouin zone for all 230
space groups (Kovalev, 1961).

(yj I)(yk I ) (yj yk I + I +ajk ) (11.20)

All the projective irreps of g for the factor system g can
be found from the vector rep of g*.

Now let us return to the little co-group g=Gp(k). Its
central extension is g*=Gp(k)*, or G" in Bradley and
Cracknell's notation. The relation between the central ex-
tension Gp(k)* and our rep group Gk is clear when we
note that from Eqs. (11.6a), (11.7), and (11.8) we have

RJ 'Rk '=exp[2rri(I +I')/m]RJRk

=exp[2mi(I +I'+ ajk )/m]RJk R~'k ', ——
l"=I+I'+aj.k .

(11.21a)

(11.21b)

Comparing Eq. (11.20) with Eqs. (11.21), we see that
there is a one-to-one correspondence between (y~, I) and

RJ ', therefore Gp(k)* is isomorphic to Gj,. Being an
abstract group, the central extension Gp(k)' is just the
abstract group Gj, with the rep group Gj, as its faithful
representation.

Several approaches are available for constructing pro-
jective irreps of a point group belonging to a given factor
system.

3. Bradley and Cracknell's approach

D(y), I) =6(yj )exp(2~ii/m), (11.22)

for all j and I, Bradley and Cracknell could determine
which irreps of Gp(k)* were acceptable for G(k). They
also listed the irreducible matrices for the generators of
the little group G(k).

The disadvantage of this approach is that we have to
work with groups of large order, which can be as high as
192 for the cubic system. Since all we need are the ac-
ceptable reps, the labor involved in constructing all the X
irreps of Gp(k)* or G k seems disproportionate.

4. Dirl's approach

Bradley and Cracknell (1972) published extensive char-
acter tables for all abstract groups that may appear as the
central extension groups Gp(k)* or Gj, . However, out of
the N inequivalent irreps of Gp(k)*, only n are acceptable
irreps for the little group G(k) in the space W(k). By re-
quiring that

1. Doring's approach

Taking the simplest factor systems, i.e., taking as many
phase factors g(i,j)=1 as possible, Doring was able to
construct all the different projective irreps of the 32 point
groups (Doring, 1959). However, Doring s irreps are usu-
ally not associated with the factor system (11.6d) we need
for constructing the irreps of the little group G(k), and a
gauge transformation [Eq. (11.18)] is required to correct
the factor system. Therefore, Doring's table for the pro-
jective irreps of point groups is not in a form that permits
direct application of his projective irreps to space groups.
This is the reason why the projective-rep method was less
widespread, before Kovalev's table (1961) was published,
than the little-group method due to Herring (1942).
Herring's method is based on the factor group
G(k)/T(k), where T(k) is a subgroup of all lattice
translations through vectors R for which
exp( —ik R)=1.

The projective irreps constructed by the previous ap-
proaches are arbitrary, i.e., they do not fit into a specific
classification scheme. In practice, as in the investigation
af compatibility for space groups, one needs to construct
projective irreps of the little co-group Gp(k) in the
Gp(k) DGp(k ) classification, where k is a point lying on
.the surface of the Brillouin zone and k'= ck, 0 & c & 1, is a
point of lower symmetry.

A successive induction procedure has been established
by Dirl (1977) to construct the required Gp(k)DGp(k')
projective irreps. However, the formulation is rather for-
midable and defies a brief recapitulation here. The in-
terested reader is referred to Dirl's original paper.

The projective irreps of the little co-group have also
been obtained by Sahni and Venkataraman (1970) by in-
ducing from those of a subgroup of prime order starting
from an invariant cyclic subgroup.

XII. THE CSCO AND CHARACTERS
OF THE REPRESENTATION GROUP Gk

2. Kovalev and Lyubarskii's approach A. The group table of Gk

From Eqs. (11.11b) and (11.6d), we obtain a set of ma-
trix equations for the generators of Gp(k). With the help

Although the rep group Gk is of order m
~
Gp(k) ~, its

multiplication rule is totally determined by the multipli-

Rev. Mod. Phys. , Vol. 57, No. 1, January 1985



250 Chen, Gao, and Ma: The representation group. . .

I)(P,cr)=exP[ —i(yp 'k —k) V(y )] . {12.1a)

Since phase factors I)(p, o) are crucial for the whole
process of analysis, we give a simple formula for calculat-
ing them. To this end, we introduce the following nota-
tions. Let

cation relation among the
I
Go(k)

I
active elements Rp,

p=1,2, . . . , I
Go(k) I, which is referred to as the group

table of GI, .
The group table of Gk can easily be constructed from

the group table spy =yp of the little co-group Go(k) by
replacing y's with R's and multiplying the (po) entry
with the phase factor,

the same class of Csj„while if y; and yk do not belong to
the same class of Go(k), then R " and Rk ' for any i and
I' will never belong to the same class of Gj,.

It should be pointed out that, for an abstract group, we
never choose the identity operator as a member of the
CSCO except for the trivial identity group (consisting of
only one element), whereas for the rep group, it may hap-
pen that there is only one linearly independent class
operator for a nontrivial rep group. In such a case the
identity operator must be the linearly independent class
operator and is the CSCO of this nontrivial rep group.
Examples of finding the CSCO of Gj, are given in Sec.
XIV.A.

b= (bl, b2r b3), t= (tl, t2, t3),
C. The characters of Gk

(12.1b)

V(y )=~ .t=r Itl+r 2t2+r 3t3.

Obviously, under rotations, (pl,p2,p3 ) transforms as
(tl t2 t3), while (r I,r 2, r 3) transforms as (bI,12 b3).
Furthermore

7; 'k=1, '(p b)=p. (), 'b)=p, b

(12.1d)

Pp 1 pp (I pl rPp2rPp3)

The transformed vector p& ——y&p can be found from Table
3.2 in Bradley and Cracknell (1972) by replacing the t s
with p s. Using Eqs. (12.1a), (12.1c), and (12.1d) we fi-
nally obtain

I)(P,o)=exP[ —2Iri(Pp —P) r ],
where

(12.2a)

P= {PlrP2r P3)r 'rcr ('rcrlr'rcr2~7n3) r

Tllc wave vcctol k Rnd thc IlollpllIIlltlvc tlaIlslatloll V{1r )

can be expressed as

k =p-b =@&b&+p2b2+p3b3

(12.1c)

Although the rep group Cxk has N classes, all we need
are the characters of the n classes whose class operators
are linearly independent. The character of the remaining
class is either zero, for a null class operator, or a factor
times one of the n known characters. For example, if
C' p Cj then P ' pPj where p is a constant factor.

The procedure for obtaining the characters of the rep
group Aj, by the EFM is given in Sec. VII.C. Here it is
sufficient to mention that by working with the rep group

GI, rather than the abstract group G k [or Go(k)" ], we can
reduce the order of the eigenequations for the characters
from N to n From. the known fact that (N),„=32,
while (n),„=ll for the single-valued representations of
the 230 space groups (Bradley and Cracknell, 1972), we
can fully appreciate the importance of this simplification.

We can use the eigenvalues v of the CSCO of Gl, to la-
bel irreps of the rep group GI, or of the little group G(k).
However, to follow the customary notation (Birman,
1974), we prefer to use (k)(v) as label of the irreps of GI,
or G(k).

Xlll. THE IRREDUCIBLE BASIS
AND MATRICES OF Gk

3

{Pp P) n= r (ilpl Pl)&ut ~— (12.2b)
A. The CSCO-II and CSCO-ill of Gk

B. Classes and class operators of the rep group Gk

On the basis of the group table of Gk, it is easy to
determine the classes of Gj,. In this process the following
observation is of help.

Suppose for the point group Go(k) we have

G,' = IR, 1, R, = Iy, I V(y, ) I' . (13.1)

We also need the intrinsic group G j, of the rep group Cij,
defined by Eq. (4.11a), i.e.,

To decompose the group space L (k) of Gl„we need to
introduce a suitable group chain Gk&G,', which can be
assumed to be a canonical one without loss of generality.
For simplicity in exposition, here V,' is assumed to be
simply a subgroup of Vj, instead of' a subgroup chain, i.e.,

—j.
Xj ViVj Xk .

R;RJ =RJR; for any RJ HL(k) . (13.2)
Then for the group Cxj, we shall have

Z ZZ='= ' '"mZ .j i j e k (12.3)

This shows that if y; and yk belong to the same class of
the point group Go(k), then R; and Rk' may belong to G,' = IR, I (13.3)

Cxk and Gk are commutative and anti-isomorphic. Corre-
sponding to the subgroup G,' of Gj, is the intrinsic sub-
group
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Iy; i
cj=e '"'R;, c=V(y;)+R„. (13.4b)

The eigenvector of the CSCO-III of Cxk in the space
L(k) is denoted by P,'""' . Equation (6.1a) now reads

C V

i C(s) ,
b

(13.5)

The eigenvector P,'"" '" is a linear combination of R;,
p(k)(v)b ~ ~ 0 ~ (k)(v)~

a = ~ ) &aha I' ~ (13.6)

Equations (6.3), (6.5), and (6.9) still hold under the substi-
tutions

hagi-iG. (k) i, ,b,;- .",'"' (13.7)

Then the coefficients u~b' "' are the solutions to Eq. (6.5).
The eigenvector P,'"" ', for a, b =a~, . . . , a~ consti-

V

tutes the GI, &G,' and Gk&G,' IRB. Equation (6.3)
shows that the number of times that the irrep (k)(v) of
G), appears in the space L.(k) is equal to its dimension
hv

One of the advantages of the EFM for constructing the
IRB or irreps of G(k) is that the subgroup chain used to
classify the IRB or irrep can be chosen at will without the
restriction that the subgroup has to be an invariant sub-
group of G(k) as in Dirl's method. (Dirl, 1977). For ex-
ample, in the case studied by Dirl, we can choose
Q,'=0k, k'=ok, 0&v&1, where Gk is the rep group
corresponding to the little group G(k'). If Gk &G), is not
a canonical subgroup chain, then in addition to the CSCO
of Cxk we need to seek extra operators to form the opera-
tor set C(s). (See Sec. V.B.)

However, if for some circumstances we are only in-
terested in obtaining irreps of G(k) without the require-
ment that they be in a certain classification scheme, then
we pay attention only to the operator set C(s), without
bothering about its related subgroup chain. In such cases,
the eigenvalue of C(s) is used merely to distinguish be-
tween the components of an irreducible basis, and C(s)

of GI, . Let C and C(s) be the CSCO of GI, and G,',
respectively; then C and C(s) are the CSCO of G k and
6,', respectively, where C and C(s) are obtained from C
and C(s) by replacing the elements of Gk with the corre-
sponding intrinsic group elements. Furthermore, we still
have C=C.

If X =(C,C(s), C(s)) is a CSCO in the
~
Go(k) ~-

dimensional space L (k), then K is the CSCO-III of Gk,
while M =(C,C(s)) is the CSCO-II of GI, .

The intrinsic group G(k) of the little group G(k) is de-
fined by

G(k)= ( Iy; ~

V( y;) +R„I,i =1 2. . *
~
Go(k)

I
R.« I

(13.4a)

with

can be chosen differently for different irreps. The choice
of C(s). can be arbitrary so long as its eigenvalues can
provide enough labels for the basis vectors of the same ir-
rep. It is always desirable that C(s) contain as few opera-
tors as possible. For example, for two-dimensional irreps
the possible choice of C(s) is a (plane) reflection operator
(T, or a twofold rotation C2, for irreps with hv =3 (4) it is
a threefold (fourfold) rotation C3 (C4); and for irreps
with I) =6, it is (C2„,C2x, I) or (C3+),I), where I is the in-
version.

8. The irreps of Gk and the projective
irreps of Gp{k)

With the standard phase choice for the eigenvectors
P,'"" ', the irreducible matrix elements of Gk are simply
related to the coefficients u,'b' "'

by [cf. Eq. (6.23)]

1/2

(u, b
)* . (13.8)

h
g(X)- (G k

~

Qb y! Qb yj IJ
v a, b

(13.9a)

(13.9b)

Inserting Eq. (13.8) into Eq. (13.6), we get the normal-
ized generalized projection operator,

1/2
(k)(v)b vh 'D.(b "(R,)'R, (i3.iO)

for the rep group GI, . The generalized projection operator
for the rep group GI, or for the little group G(k) is

P(k)(v) ~ I p ID(b)(v)(R )gRQb
~

G (k)
~

~) Qb I (13.11a)

Using Eqs. (11.5) and (11.10a), we can rewrite Eq.
(13.11a)

h

XIy; ~V(y;)I . (13.lib)

C. The irreducible basis of 6{k)

The Gk DG,' and G), DG,' IRB in the rep space W(k)
is simply given by

By solving the eigenequation (6.5), we can obtain all the
irreps D'k" ' of Gk, i.e., the projective irreps 6' ' of the
little co-group Gp(k).

The rule for determining the phases of P,'"" ' so that
Eq. (13.8) holds is identical to that given in Sec. VI.C
under the substitution (13.7).

From Eqs. (6.26) and (13.8) we get the two orthogonal
theorems for the projective irreps of Go(k),
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TABLE VII. The group table of the rep group G'~ for the space group Oq.

[elOj' {c~-
I

oj' IC2dlrj' IC2fl ~j'
I ~y I

~j'
I ~.

I ~j
'

I s4-„
I
o j I ~4'-

I oI

2
1

4
3
6
5
8

7
i6

—i5

—3
l2

—7
8

E5
—i6

I, 7

l3

i8

—2
1

i4
—I 3-

7
8
5
6
4
3
2
1

g(v)b ~(k)(v)bg ( )
z

~ ~~o'"'~
u, b (13.12)

The notation for space-group operators follows that
used by Bradley and Cracknell (1972).

Notice that fk,' is also the G(k) D G(s) and G(k) D G(s)
IRB, where G(s) is the subgroup of the little group G(k),
which has G,' of Eq. (13.1) as its rep group.

Under the action of the element I y I
cj of G(k) [Iy I cj

of G(k)], gk", only changes its "external" (intrinsic)
quantum number a (b) [cf. Eqs. (6.22)],

A. Seeking the CSCO and characters

The point l4'of the space group Oh

The vector p for the point 8'is

(14.1)

jq( )b yD(k)( )(Iy
I

j)q( )b

a'
(13.13a) O~ belongs to the face-centered cubic I, with the genera-

tors

I)'
I cjfk '= QDbb""'(I)'

I
cj Wk, " (13.13b)

The h, sets of IRB of G(k), Igk", .& =1,2, , h j,
b =1,2, . . . , h„which carry h, equivalent (or identical,
under the standard phase choice) irreps of G(k), are dis-
tinguished by the intrinsic quantum number b.

XIV. EXAMPLES: THE POINT O'OF Oh

AND THE POINT R OF 0„

In this section, we give several examples of the applica-
tion of the EFM for obtaining the characters and irreps of
the rep group Cxk. , From these it is then trivial to obtain
the characters and small reps of the little group G(k) by
using Eq. (11;10b).

Since the cases (1)—(3) in Sec. XI.C are trivial, we treat
here only case (4), i.e., when k is a surface point and the
little group G(k) is nonsymmorphic.

[ C2
I
oj IC2 I

oj IC31 I oj

I C2

(14.2)

The little co-group is

GO( ~) D2d (Er C2xr C2dr C2frOyr~zr~4x~4x )

I
G0( W)

I

=8 .
(14.3)

qz
——exp[ 2vri (yap p—) r], — (14.4)

as shown in the first column of Table VII. g&
——+1,+i.

Hence the representation group G'~ is a fourfold covering
group of D2d.

If we take up the group table of Dzd, and multiply the

Using Eq. (12.2a) and Bradley and Cracknell's Table
3.2 under the heading "cubic I „"we can calculate the
phase factor,

TABLE VIII. The class structure of Cs'~.

1

2
—3

—5
—6

7
8

i6
—i5

i8
—l7

—3

—i6
i5

—l7

L3

i8
—l7

i4
—E3
—5

6
i8

—l7

—i4
—l3
—i6
—i5

7
8

1

2
i4
l3
i6
i5
7
8
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(po) entries by the phase factor riz for those columns o
which have the nonprimitive translation r, then we get
the group table of the representation group G'~, as shown
in Table VII.

By multiplying the jth column of Table VII from the
left with the element RI

' we obtain the class structure of
G~ shown in Table VIII.

From Table VIII it is easily seen that Ci~ has 14
classes with the class operators

C) ——R), CI ——iR), C)' ———iR), C)"———R),
C2 ——R2 —R2, C2 ——tC2, C3 ——R3 —R3+tR4 —sR4,

(14.5)
C3 —iC3, C4 ——R 5

—R 5 +iR 6 —iR 6, C4 ——i C4

C5 —R7 +iR 8, C5 ——iC5, C5' ———iC5, C5" ———C5 ~

However, only the class operators C& and C& are linearly
independent. Hence n =2. Using Table VII, we can easi-
ly establish the multiplication relation for the class opera-
tors C& and C5,

The group OI, belongs to the simple cubic lattice with the
generators

I Cz, ~Oj, {C2„~Oj, {C2,
~
rj,

(14.9)

The little co-group is the point group OI, of order 48, and
the little group G(k) is the space group itself.

In the same manner we can construct the multiplication
table of the representation group Gz, which is a twofold
covering group of OI, . Because of space limitations, we
do not reproduce the table here, but only mention a tech-
nical point, namely that only one-fourth (i.e., a 24X 24 ar-
ray) of the group table of Ga, which only involves the
proper rotations, is required.

The group G~ has %=14 classes and n =4 linearly in-
dependent class operators, which are

C) ——c, C2 ——C2x+ C2&+ C2z ~

(14.10)
0

C5 2i 0 Cg
(14.6a)

4 4

C3 ——g (C3;+C3;), C4 ——g (C+3; —C3;)I,

0 2i
W(C5) = (14.6b)

Then the representation matrix of C5 in the class space is where a is the abbreviation of {a
~
Oj.

The multiplication relations of these class operators are
listed in Table X. From Eq. (3.7) and Table X we get

By diagonalizing &(C5), we know that C5 has two dis-
tinct eigenvalues v=+(1+i); therefore C5 is a CSCO-I
of G'~. We could use the eigenvalues +(1+i ) to label the
two irreps of G'~, but we prefer to use the conventional
symbols 8'~ and 8'2 to label them.

The eigenvectors of W(C5) with the normalization
(7.15c) (remembering that g& ——1 and g& ——2) are

v= 1+i, q
' =V'I/8(2, 1 i ), —

(14.7)
v= —(1+i), q

' =v'1/8(2, —1+i) .

From Eqs. (7.16) and (14.7) we get the characters of the
classes C~ and Cq. Using Eq. (14.5) we in turn get the
characters of the remaining classes. The complete charac-
ter table is shown in Table IX.

0300
1 200

2 0030
0003
008 0
008 0

0
000 —4

0 0 0 —8

0 0 0 —8
~(C4)= 0 0 0

1 3 —4 0

(14.11)

2. The point R of Oh

The eigenvalues of the matrix &(Cz) are found to be

A, 2
———1 (singlet), 3 (triplet) .

The vector p for the point R is

p=( —, —, —,).1 1 j. (14.8)

The occurrence of degeneracy means that C2 is not a
CSCO-I of Gg. We try another matrix, say W(C4). Its
eigenvalues are

TABLE IX. The character table of the representation group Ci~ for the space group OI, .

1+i
—(1+l)

(v) 1

2l
2l

—2l
—2l

—2 ' 0
—2 0

2'
Class

3' 4

0
0

1+i
—1 —l

5I

—1+i
1 —i

5II 5III
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TABLE X. Multiplication relations for the class operator of the rep group G~.

Ci
C2
C3
C4

C2
3 Cl+2C2

3C3
3C4

C3
3C3

4C3+ 8C) +8C2
—4'

C4
3C4

—4C4
4C3 —8C) —8C2

A4
——0 (doublet), +4v 3i (singlet) . (14.2)

Thus C4 is also not a CSCQ-I of Gz. However, taken to-
gether, C=(Cz, C4) is a CSCO-I of Gz, since by di-
agonalizing the matrices &(Cz) and &(C4) simultane-
ously, we find four distinct sets of eigenvalues. The
eigenvalues and eigenvectors are

v= (A,z, A,4)

=(3,0),
=(3,4v 3i),
=(3,—4v 3i),
=(3,—4v 3i),
=(—1,0),

q
' =v'I/48(2, 2, 2,0),

q .
' =v 1/48(2, 2, —1, —v 3i),

q
' =v'1/48(2, 2, —l, v 3i),

q =v'1/48(6, —2,0,0) . (14.13)

The character vectors g(") of Csz are simply related to the
vector q'"' in Eq. (14.'13) by

Z(v) v48(q(v)p (14.14)

B. Seeking the CSCO-I from the existing
character table

As will be seen in Sec. XVIII, the CSCO-I is crucial for
obtaining the Clebsch-Cxordan coefficient of a space
group. For a group about which we know nothing except
its group table, we can use the foregoing method to obtain
the CSCO-I and characters of the group simultaneously.
However, if the character table of a group is known, as is
the case for all point groups and the 230 space groups, it

From the foregoing examples, one can see clearly the
power of the eigenfunction method. For both cases, the
class numbers are 14. If one uses the conventional
method, one needs to solve nonlinear algebraic equations
of order 14, which is totally out of the question for hand
calculation. By using the eigenfuncti'on method, one
reduces the problem to that of solving linear algebraic
equations of order 2 or 4, which can easily be done by
hand.

p=( —, —, 0) .

From Table T159 of Kovalev (1961), with slight changes
in notation, we can write down the characters of the rep
group Cix. We enter the characters of those elements
whose characters are not identically zero in Table XI.

It is seen that I Cz, I
rI' and —

I Czb
I

rI' belong to the
same class, and Iod, I 0) and Iodb I 0) belong to the same
class. Furthermore, according to Eq. (6.47), Table XI
after deleting the sixth and eighth columns is (accidently)
the eigenvalue table of the class operators. Hence we see
that the class operators

c) = I cz. I
rI' —Iczb

I

&I'

cz I(rda I 0) + I~db I
0I

(14.15)

have n=4 distinct sets of eigenvalues as shown in the
first column of Table XI. Therefore, ( C), Cz ) is a
CSCO-I of Cxz. F

C. Constructing irreps of the rep group Gk

1. The point Wof Oh

With n =2, and
I
&0( W)

I
=8, Eq. (6.3) reads

8=2 +2 (14.16)

Therefore, the eight-dimensional rep produced by the
space L ( W) can be decomposed into two inequivalent ir-
reps with dimension 2, each occurring twice. We choose

(C(s),C(s))=(R7,R7) . (14.17)

The matrices of the operator 8.7 and R7 in the space
L( W) can be read out from the seventh row and seventh

is trivial to find the CSCO-I of the group by the method
given in Sec. VII.C.

Now let us try to find the CSCO-I for the rep group
(xz of the space group Ob. The vector p for the point I
1s

TABLE XI. Character table of the rep group G~ for the space group OI, .

(CI, C2) I Czb I &I
'

(0,2)
(0,—2)

(2i,0)
( —'2i,0)

X)
X2
X3
X4

2
2

—2
—2

0
0
2l

—2l

0
0

—2l
2l

2
—2
0
0

2
—2
0
0

'X; are related to Kovalev's ~' by X&~~, X2~~, X3~%, X4~7 '.
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column, respectively, of Table VII,

D(R7) =(7,8, i6, i5, i3, i4, 2, 1),

D(R7) =

I

I

l

I

I

I

I

D(R7)=

I

I

I

I

I1

D(R 7 ) = ( 78564321),

where the shorthand notations stand for

(14.18a)

(4.18b)

1

equation. The same applies to the eigenvalues of R7.
Substituting the eigenvalues a, b = + 1, +i into the

eigenequations of D(R7) and D(R ), we obtain eight
simultaneous eigenvectors of (R7,R7) corresponding to
the eight distinct sets of eigenvalues, (a,b)=(1,1),(i, 1),
( l, i)(i, i),( —l. —1),( i,——1)(—1, —i), ( i—, i—) .There-
fore, (R7,R7) is already a CSCO-III of group &'~, and
the CSCO-I of Gti is redundant in decomposing the rep
space L(k). Of course it happens only by accident. If we
had chosen (C(s),C(s))=(R2,R2), the CSCO-III of Cx'a

would have had to include the CSCO-I of Cx~. Hence a
suitable choice of C(s) can save lots of labor.

The eigenvectors are listed in Table XII.
From Eq. (6.1d) or (13.5) we know that the first four

vectors in Table XII belong to an irrep labeled by 8'~,
and the other four vectors belong to another irrep labeled

by 82.
The phases of the eigenvectors in Table XII are deter-

mined by the three steps given in Sec. VI.C. The phases
for the first, fourth, fifth, and eighth rows are determined
by step (1). The phases of the second and sixth rows can
be chosen arbitrarily according to step (2). The phases of
the third and seventh rows are determined by step (3).
For example, from the first and second rows of Table XII
as well as from Table VII, we can evaluate

( 1+'1) (8' )1 ( F1)1
(R3) ($1 I

R3 I qi

These matrices are very much like the ordinary regular
rep matrices, in that in each row and each column there is
only one nonvanishing element.

The element R7 ——IS4„ I 0I obeys the algebraic equation
(R7) =1. Hence the eigenvalues of R7 are easily found
to be +1,+i without the necessity of solving the secular

= —,
' (1+2+7+8

I
3

I
3+4+5+6)=i,

where we used obvious abbreviations. Therefore, the coef-
( W1)b =2 ( W1)i

ficient in front of R3 in the third row 1ii
( W1)

must be proportional to Diz ' (R3)*= i-
Our result in Table XII differs from that of Bradley

TABLE XII. The irreducible bases and irreps of the rep group Cx'w for the space group Oq.

y(v)b

( W1)1

1

( W1)i

( W1)i

1

2

1

2

1

2

D21

D22

R1 R2 R7
I S4+

I o!'

R8

( W2) —12

( W2) —12

( W2) —i2

( W2) —i2

1

2

1

2

1

2

D gc

D21

D12

' (y;)=D ' {R;) 1 0
0 1

1 0
0 —1

0 i,
1 OJ

v

0 —i,
1 0

0 —1

1 0
0 1

1 0.
1 0
0 i. 1 0

0 —i.

2 (y;)=D (R )
1 0
0 1

1 0
0 —1

0 i,
0

0 —i
1 0

0 1—1 0
0 —1—1 0

—1 0
0 —i

—1 0
0 i.
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and Cracknell (1972, p. 168) in phase choice. However, if
we let the basis vectors in Table XII undergo the transfor-
mations

(W])1 (W])1 (W2) —1 (Wp) —1

( w& )i ( w& )i ( w2 )—i ( w2 )—i

C(s) =(I,cz„,cz~), C(s) =(I,Cz„,cq~) . (14.20)

The advantage of choosing inversion I as an element of
C(s) is that under this choice, I and I are diagonal with
the eigenvalues +1. The linear combination coefficients
u; and ui in front of the elements R; and R; =E.;I are
thus related to each other by

the two results become identical.

—3mi /4
7

+1
u; =+u;, i =1,2, . . . , 24 for I= ' (14.21)

2. The point R of Oh

From Eq. (14.13) it is known that the rep group Czz has
three two-dimensional and one six-dimensional irreps.

(R4)Let us construct the six-dimensiorial rep D . Accord-
(R4)

ing to Eq. (14.13), D corresponds to the single root
—1 of the class operator,

Cp ——C2x+ C2y+ C2z . (14.19)

Thus for our purposes, we can take Cz as the CSCO-I of
Cx~. The operator sets C(s) and C(s) are chosen as

As a consequence, the number of sought-for coefficients
is immediately reduced from 48 to 24, and to find them,
again only one-fourth (i.e., a 24X24 array) of the group
table of Cr~ is sufficient.

From the relevant one-fourth of the group table of Vz,
we can immediately write down the eigenequations of the
operators Cz, I, C2» Cz~, I, C2» and C2~. For hand
calculation, we can substitute the eigenvalues —1 for C2,
and +1 for the remaining six operators in the correspond-
ing eigenequations and find their simultaneous eigenvec-
tors. It is easily found that nonvanishing eigenvectors are
obtainable only for the following six sets of eigenvalues of
C(s) = (I,Cz„,Cq~) or C(s) = (I,Cz„,Cz„):

(1,1, —1),(1,—l, l), (1,—1, —1),( —1, 1, —1),( —1, —1, 1),( —1, —1,—1) . (14.22)

The ordering in Eq. (14.22) corresponds to the index a, b = 1,2, . . . , 6. After adjusting the phases of the eigenvectors as
in previous example, by using Eq. (13.8) we can write down the representation matrices:

IE i 0}=(123456),
Icq„~ ~}'=(465 1 32),

Icky ~

~}'=(654321),
tc» ~

o}=(312645),
IC33 ~

0}={231564),
ICz,

~

r}'=(654321),

I Cz„ i
0}= (1 2 3 4 5 6),

IC4 i
r}'=(654321),

Ic+~,
~

r}'=(546213),

I C34
~
0}=(3 12 645),

IC+3„
i 0}=(231564),

[C„~r}'=(465132),

Iczy j 0}=(123456),
Icq, ~r}'=(546213),

tc3)~0}—(312645)

Icy' io}=(231564),
ICz, )r}'={546213),
ICz, i

r}'=( 6534 21),

I cz,
~
0}=(12345 6),

Icy„~ ~}'=(4651 32),

I C32 I o}=(3 1 2 64 5),

lC+»
~
O} =(231S64),

IC„~r}'=(546213),
ICzf ~

r}'=(465 13 2).

(14.23)

The parentheses here stand for matrices as exemplified by

0

(465T32) =
0

0

0 0 —1

0 —1 0
(14.24)

0 0
0 —1 0

0
Multiplying the matrices in Eq. (14.23) by

D(I) =(12345 6), we get the representation matrices for
the other 24 elements of CxR.

It should be pointed out that the choices of the operator
set C(s), the CSCO-II M = (C,C(s) ), and CSCO-III
K=(C,C(s),C(s)) are not unique. We can choose each of
them to consist of a single operator. For example, in the
above case we can choose C(s) as

K(s) =3I+2cz„+Czy .

It has six distinct eigenvalues, 4, 2, 0, —2, —4, and —6,
corresponding to the six sets of eigenvalues in Eq (14.22)..
Vfe can also choose

7K (s ) +5 4'(s)

in place of the operator set (I,Cz„,Cz,I,Cz„,cz ), which
has 36 distinct eigenvalues (7a+5b), with a, b =0,
+2, +4, and —6. Clearly, for computer calculation, the
fewer the operators to be diagonalized simultaneously the
better. However, for hand calculation, this is not neces-
sarily so, as can be seen from the above example.

XV. IRREDUCIBLE BASIS AND REPRESENTATIONS
OF THE SPACE GROUP

A. The induced rep

We first factorize the space group Ci into left cosets
with respect to the little group Cx(k),
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o.= 1,2, . . . , q;a =1,2, . . . , h (15.2)

with the convention that t p( I V(p)) j =
I E

I
Oj. The q

wave vectors

k =P k, cr=1,2, . . . , q (15.3a)

form what is called a star, or set of mutually inequivalent
k vectors

6= &(k)+ I p& I V(p2) j &(k)+ - . .

+IP» I
I (P»)j&(k) . (15.1)

Suppose that fk,' is an IRB of the little group Cr(k) and
let us define

y( ) [p lv(p )jq( )

l

It follows from Eqs. (15.2) and (15.7a) that

D.'b, "..""'(Ia
I aj) = &0'",b I

&-,.I
0'",.' &

(15.7b)

(15.7c)

According to the left coset decomposition (15.1), we know
that 8, is either an element of the little group Cx(k) or
a coset representative Ip I

V(p) j times an element of
Cx(k). For the former, the right-hand side of Eq. (15.7c)
is just the irreducible matrix element of Cy(k), and for the
latter, Eq. (15.7c) must vanish, since A-, =IplV(p)j
~ I y I

c j will change the wave vector k into k~, while k is
the label for the irreps of the translational group T, and
the bases belonging to different irreps of T are orthogo-
nal. Hence Eq. (15.7c) can be expressed as

» k=(k), k~. . . , k»), (15.3b)

P(k~) = j fk', a = 1,2, . . . , h (15.3c)

with k1=—k. The wave vector k is called the canonical
wave vector (Birman, 1974). Any one of the q wave vec-
tors can serve as the canonical wave vector. If k is a gen-
eral point in the Brillouin zone, then k is called a general
star, otherwise it is called a special star.

The space

=Db.'""'(
Ip. I v. j

'
I a I aj t p. I

v j ) ~

(15,7d)

[Recall our convention about the representation matrix
symbol D(X), stated after Eq. (11.3).t

It is convenient to write the qh. Xqh. matrix D(ek)(.)

in block decomposition form (Birman, 1974),

is isomorphic to the space W(k), or to the group space
L(k) of the rep group Gk. Clearly, the space W(ek) de-
fined by Eq. (10.2c) is decomposed into a direct sum of
the q spaces W(k~) isomorphic to one another,

D(+k)(v)( Ia
I

a j )

D( +k)(~)
(11)

D( +k)(v)
(q1)

D( +k)(v)
(1q)

D( +k)(v)
(qq)

(15.8a)

W(ek)= g eW(k ) .
cr =1

(15.3d)

where

D(. )""'(ta
I aj }=D'""'(Ip.

I
V.j

Let us apply an element I a I
a j of Ci to Eq. (15.2),

Ialajl'".'-=IalajIP IV-jfk", . (15.4)

Ia I aj Ip I
V j must be an element of Cx and must be-

long to one and only one coset, say the Nh coset, i.e.,

Ia I aj IP I
V j =IP. I

V.jIy I cj ~ (15.5)

Assembling Eqs. (15.2), (15.5},and (13.13a), we obt»n

Ia I
ajqk".'= Ip I

V.j XDb. ""'(Iy
I
cj)&k",b

b

(15.6}
b

where D'"""'(
I y I

c j ) is the irreducible matrix of the little

group &(k). Therefore, the qh„ functions gk"', carry a

rep for the space group Cx, which is called the induced rep
and denoted by D' ""' (Birman, 1974) or D(""")tCi
(Bradley and Cracknell, 1972). It will be proved in Sec.
XVI.B that the induced rep D' "" ' is an irrep of the
space group Cx.

The induced rep is of qh, dimension, and its matrix
elements can be expressed as

D b,"""'(ta
I
aj }=&0k+ I Ia I aj I @k

(15.8b)

is a (h )&h ) matrix. According to Eq. (15.5), for given
Ia I aj and o there is only a unique ~ that enables R, to
belong to the little group Cr(k). As a consequence, in
each row and each column of the block form (15.8a), only
one matrix block differs from zero. Another way of say-
ing this is that for given o and ~, only those elements of
0' which satisfy

Ia I
V(a)+R„j= I p, I

V, j I y I
V(y)+R

X IP~ I V~j ', y H Cxo(k) (15.8c)

have the nonzero submatrices

D( )""'(Ia
I
V(a)+R„j)=D' ""'(Iy

I V(y)+R j) .
(15.8d)

Notice that there is a one-to-one correspondence between
a and y on the one hand, and R„and R on the other
hand.

Kunert and Suffczynski (1982) have written a program
for computing the full matrices D' ""' for space groups
with body-centered-cubic lattices. They first calculate the
matrices for the generators of the group, and then use ma-
trix multiplication to get all the matrices. In the follow-
ing, we shall give a simpler algorithm for the full ma-
trices.
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B. A simple algorithm for full rep matrices

So far we have only recapitulated the result given by
airman (1974). To go further, we note that Eq. (15.8d),
though simple in appearance, is not the best form for
practical construction of the full matrices of a space
group. In the following, we rewrite it in a more appropri-
ate form.

From Eq. (15.8b) we have

D(+k)(v)(
[ I aj )

6(/3, 'aP ) =0 if P, 'aP F Cxo(k) .

In other words,

5(/3, 'aP )=0
unless

p, 'ap =y,
or

(15.9c)

(15.10a)

(15.10b)

(15.10c)

=D'"""'([P aP. IP (av.—V,+a) j) .

(15.8e)

Multiplying Eq. (15.10c) from the right by k, we obtain
another form of condition (15.10b):

ak~=k (15.10d)
With the help of Eq. (11.10c), this becomes

D((, ")""'([a
I aj )= exp[ ik (—aV V,+—a)]

x&„,([ I
aj) .

where

~(, )([a
I
aj)—:b(p, 'a/3 ),

with the convention

(15.9a)

(15.9b)

Setting [a I aj =[a
I R„j, from Eq. (15.10d) we must

have o =r, while from Eq. (15.9) we have

D(, )" '([E
I
R„j)=5, e " "h(e)

(15.11)

where I is the h &h unit matrix.
Hence we see that the translation [e

I R„j is represent-
ed by the diagonal matrix

D(+k)(v)( [e I
R j )

—ik) R„
e V

—E'k R„
e V

(15.12)

Equation (15.9) gives a very convenient formula for constructing irreps of the space group Cx from the irreps
~(y)=D " '([y

I
V(y) j') of the rep group GI, . The procedure for obtaining irreps of Cx can be summarized as follows.

(1) Following our procedure for Eq. (15.8a), we first introduce a matrix W([a
I
aj ), whose (or) block is the matrix

W(, ~([a I a,j) defined by Eq. (15.9b). To obtain ~([a
I aj), let us build up an array with q rows labeled by

e,P2, . . . , P»
' and q columns labeled by E,P2, . . . , /3»,

s p~ p. p
E

p
—1

p
—1 0 0 . A(y) . . 0

for P, 'aP =y . (15.13)

0

Utilizing the point-group multiplication table, we form
the products p, 'ap for given r with varying o = 1,
2, . . . . In each step we check whether p, 'ap is an ele-
ment of the point group Cxo(k). If not, we put a zero (an
h Xh „null matrix) in the (ro ) block; if yes, e.g.,
p, 'ap =y, then we put b,(y) into the (ro) block and
zero for all the remaining entries in the Nh row and oth
column. We repeat this process for each ~= 1,2, . . . , q.

(2) Multiplying the nonzero matrices b, (y ) in Eq.
(15.13) by the appropriate phase factors
exp[ —ik, (aV —V,+a)], we immediately get the
sought-for matrix D' ""'([a I

a j ).

then

~(. )([a
I
aj ) =~(y» y=P. 'aP (15.14a)

M( )([a I aj ')=~(y ') .

Furthermore, if ex=a ', we have

~(.)([alaj)=~(y '»

(15.14b)

(15.14c)

I

(3) The following symmetries (15.14) of the matrix
D'([a

I
aj ) can be used either to save work or to check

the calculation.
From Eq. (15.9b) it is seen that if
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DI ~""'(fa laj)=e ' b(P, 'aP ),
suitable for V(P )=V(P,)=0.

(15.15)

C. The G a G(k ) &G(s ) v T irreducible basis

Finally let us take a look at the meaning of the irredu-
cible basis vectors gk ', of the space group G. We have

already seen that fk",' is the G & G(k) & G(s) & T ir-
reducible basis and obeys the eigenequations

since

~( )(I~ I
aj)=&(P '~P )=&((P, '~P ) ') .

For examples of these symmetries, see Eqs. (19.10) and
(19.21).

From the foregoing discussion we see clearly that in the
process of constructing irreps of the space group we are
able to avoid tedious space-group multiplication, and only
the much simpler point-group multiplication is required.

Another point that deserves pointing out is that, the
choice of the coset representative IP~ I

V j is arbitrary,
. i.e., any element in a coset can be chosen as the represen-
tative of that coset. Different choices of the representa-
tives correspond to different conventions for relative
phases between the basis vectors gI,"', with different o.
For practical purposes, it is always desirable to choose
elements that do not associate with nonprimitive transla-
tions as the coset representatives, since under such a
choice Eq. (15.9) is simplified as follows:

that is, PI,"', is the irreducible basis of the group G(k~).
Furthermore, as in Eq. (15.17a) we define

G(s. )
—= tP. I V.jG(s) I~. I

V. (15.17b)

C(k~)

C(s ) 1('„"',= a (15.20)

Hence we see that the partner (or component) QI,
"', of the
O

irreducible basis of a space group G is the
G & G(k~) & G(s ) D T irreducible basis. In other
words, the group chains used to classify the irreducible
basis vectors of a space group G vary with the com-
ponents. This is quite different from the usual case (e.g.,
the permutation group, rotation group, or unitary group),
where the same group chain is always used to classify all
the components in a given irrep of the group.

XYI. DECOMPOSITION OF REGULAR
REPRESENTATION OF A SPACE GROUP

Clearly G(s ) is a subgroup of G(k~). According to Eq.
(15.17), the CSCO-I of G(k ) and G(s ) are

c(k.) = IP. I
v. j CIP. I

V.
(15.19)

C(s. )= IP. I V.j C(s) IP. I
V.

With Eqs. (15.2), (15.16), and (15.19) we have

C V

C(s) gI,",' = a

k k
(15.16)

f

where C and C(s) are the CSCO-I of the rep groups Gk
and G,', respectively, and k= iV is—the CSCO-I of T.
Since the little group G(k) and the rep group GI, have
common irreducible bases and common irrep labels, for
convenience in exposition, we shall refer to the CSCO-I C
of GI, in Secs. XV—XVII as the CSCO-I of the little
group G(k); similarly, the CSCO-I C(s) of G,' will be re-
ferred to as the CSCO-I of the subgroup G(s) of G(k).

As in Eq. (10.3) we may define the little group G(k )

for the wave vector k~=P~k such that under the rotations
of the rotational part of G(k ), the wave vector k is in-
variant modulo a reciprocal lattice vector. Clearly the re-
lation between the groups G(k ) and G(k) is

A. Born-Karman boundary conditions

In order to adapt the criteria of irreducibility for a fi-
nite group to a space group, we impose the so-called
Born-Karman cyclic boundary conditions, so that the
space group becomes a finite group. The Born-Karman
conditions require (see, for example, Birman, 1974) that
we choose three large real positive numbers Xq, Xz, and

X3 such that the points in crystal space defined by r and

r+2X;t;, i = 1,2, 3, are identical and therefore the transla-
tion vectors R„satisfy the cyclic conditions

R„+2X(t( ——R„+2%2tp

=R„+F3 t3 —Rgg ~ (16.1)

In this way the translation group T becomes a finite
group with the elements

G(k )={P
I

V. jG(k)If( I

V j (15.17a) R„=n ~ t~+n2tq+n3t3,
Suppose Ia I aj is an element of G(k ); then Ia I aj is
necessarily of the form

From Eqs. (15.18a) and (15.6) we have

X; & nr &Xi' —1

Th ord r of T is denoted b N and

X=8X)XP&3,

(16.2)

(16.3)

I~ I ajar~".'a = g&ba""'(f)'I V(r)+Ra j 5'~".'b
b

(15.18b) while the space group G also becomes a finite group with
the elements
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[a; I V(a;)+R„], i =1,2, . . . , I Go
I

n=12, . . . , N, (16.4)

k
subspaces W '.

q(k)~G=XX~' ' (16.12a)

I
G

I

=N
I

GO I,
and the order of the little group G(k) is

(16.5a)

where R„are given by Eq. (16.2). The order of G is
+k v=1

k
W '= [g~'(x):i = 1,2, . . . , I

Go
I I,

where

(16.12b)

I
G(k)

I
=N

I
Go(k)

I
(16.5b) g~'(x)= [a; I

V(a;)IP 'P(x) . (16.12c)

The irreducible rep of T is still of the form (9.22)

D'"'( [ e
I
R„ I ) =exp( —i k.R„) . (16.6)

However, the wave vector k is now discrete. The values
of k in Eq. (9.23) are determined by the boundary condi-
tions D'"'([e

I 2N~tj I ) =1, i.e.,

The
I
Go

I
-dimensional space W is isomorphic to the

space W(ek) of Eq. (10.2c), and when v= 1, W 'is again
designated by W(ek). In analogy with Eq. (15.3d), the
space W ' can be further decomposed into q(k) eigen-

spaces W '(k ) of [e I R„I, all isomorphic to the space
W(k),

exp( 4miN—~pj ) =1, j=1,2, 3 .

Hence

I;p;=, i =1,2,3,
2N;

where I; are integers and satisfy

—N;(I;(N; —1 .

(16.7)

(16.8a)

(16.8b)

g 1= gq(k)=N=8N&N2N3 .
k +k

(16.9)

B. Regular representation of a space group

Suppose f(x) is a function without any translational or
rotational symmetries. Applying the

I
G

I
elements in

(16.4) of a space group G to P(x) results in
I

G
I

linearly
independent functions g„~ (x) which span the regular rep

space WG for the space group G,

~G = [yg, ~.(x):~=1,2, . . . , N, i =1,2, . . . , I Go
I I .

The N =8N1N2N3 inequivalent wave vectors k define N
inequivalent irreps of the translation group T.

The first Brillouin zone can be defined as the set of
these N points k. The N wave vector k in the zone are
grouped into distinct and disjoint stars ek, each contain-
ing q(k) wave vectors. It is clear that

~ =X~ «.), (16.13)

It is easily seen that if g(x) were a Bloch function

g(x)=g~(x)=exp[i(k+K ) x], (16.14)

(v)k b (k )(v)b
Qk~' P, ' P '—

Q—(x),

P, ' =[P, IV, IP,' ""'"[P,
I
V, I

(16.15a)

(16.15b)

where P,'"' ' is the projection operator for the rep group
GI, or Gq [see Eq. (13.10)]. Furthermore, from
k =P P, 'k, and Eq. (15.2) we have

P. I
v. I [P, I

V,

then the space WG would shrink into W(ek). Another
way of stating this result is that by applying the N

I Go I

elements of a space group 6 to a function that has
translational symmetries {or equivalently, has a definite
wave vector k), we can only 'generate

I
Go I

linearly in-
dependent functions, which is just the case discussed in
Secs. X—XIV.

(k )
The function P 'P(x) belongs to the wave vector k,.

(k )(v)b
%'e can use the projection operator P, ' of the group
G(k, ) to project out of P 'tp(x) the G(k, ) D G(s, ) D T
irreducible basis,

(x) = [e I R„I[a; I
V(a;) Ig(x) .

(16.10a)

(16.10b)

When we use Eq. (16.15), it becomes

P. I V.IP.'"""[P,
I
V,I-'P"'«x (16.16b)

Our task is to decompose completely this
I
G I-

dimensional space into
I
G

I
one-dimensional spaces, each

associated with an irreducible basis vector of G.
With the projection operators (9.27) of the translation

group T,

(16.11)

where k runs over all the N values in Eq. (16.8), the regu-
lar rep space WG is decomposed into a direct sum of N

(k )
The right-hand side of Eq. (16.16b) tells us that P ' g(x)
belongs to the wave vector k; after the action of
[p I V, I

', it belongs to the wave vector k; the projection
operator P,'"" ' of the little group G(k) projects out of it

(v)k b
the irreducible basis vector gq, ', finally the coset
representative [p I

V I transforms it into the basis vector
(v)k b

W~..' ~

(v)k b
According to Eq. (15.6), the system of functions fq, '

for cr = 1,2, . . . , q(k), a = 1,2, . . . , h „(k), with fixed k,
and b, carries a rep (the induced rep) of dimension
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TABLE XIII. The spaces WG, W(+k), W(k) and their basis vectors.

q(k)

space WG —— g eW '(k )'
k a,~=1

q(k) n

dimension X
~
Go

~

= g g [h„(k)]2
k rJ, r=1 v=1

~=1,2, . . . , q(k),
k

reducible basis: g '(x), for all possible «k, IRB:
i=1,2, . . . ,

/
Go/;

v=1,2, . . . , n
(v)k b

1(j, ,', a, b=1,2, . . . , h (k)
o.,~=1,2, . . . , q(k), for all +k

q(k)

space W(«kl= geW(k )

q(k) n

dimension
~
Go

~

= g g [h„(k)]
o =1 v=1

reducible basis: ~

1 2 ~ ~ ~ . IRB: gk '„a,b =1,2, . . . , h, (k)
CJ

o.=1,2, . . . , q(k)

n

space W(kl = g e W„(k)
v=1

/

n

dimension
~
Go(ki

~

= g [h„(k)]
v=1

gr, a= Iy; ~&(y;) ]f k(. . .„v=1, 2, . . . , n
reducible basis: '=1,2, . . . ,

~

G (k) ~. IRB: gI",'', b=1,2, . . . ,

k
'The space W '(k ) is isomorphic to the space W(k) =W (k1).
W (k) is the eigenspace of the CSCO-I of Cx(k) in the space W(k).

q(k) h (k) for the space group G. Now we move on to
prove that this reg is an irreducible representation of G,
and the irreps D' "" ' with all possible ek and v form a
complete set of inequivalent irreps. For this purpose it
suffices to show that the sum of squares of the dimen-
sions of all the irreps D' "" ' equals the order of the
space group G. This is easily done as follows:

g g [q(k)h„(k)] = gq(k) g [h„(k)]
+k v=1 k v= 1

= g q(k)
~
Go(k)

~

= g ( Go (
=X

~
Go (, (16.17)

where in the first and last steps we used Eq. (16.9), and in
the second step used Eq. (6.3), i.e., the irreducibility of the
ray rep b.'"' of the little co-group Go(k). According to
Eq. (16.5a), N

~
Go

~

is just the order of the space group
(jr. Hence the proof is finished.

To summarize, the
~

G
~

-dimensional regular rep space
of a space group G is decomposed into

~

G
~

one-
dimensional spaces spanned by each of the irreducible

{v)k b
basis vectors gk, ' given in Eq. (16.16b), for all possible

stars «k and all possible values of (o,a) and ( br). The
subscript (cr,a ) serves as the component index, while the
superscript (r, b) serves as the multiplicity label; both
range from 1 to the dimension q(k) h„(k) of the irrep
D' ""',i.e., each irrep D' ""' occurs q(k).h, (k) times.
For ease of reference, the basis vectors before and after
reductions for the spaces WGW( «k) and W(k) are listed
in Table XIII.

XVII. THE CSCO-III OF A SPACE GROUP G
AND ORTHOGONAL THEOREMS FOR THE FULL
MATRICES

A. The intrinsic space group 6

We have now completed the main steps in finding the
irreducible basis of a space group. In order to have a
better understanding of the physical meaning of the basis

(v)k b
vectors gk, , especially the meaning of their multiplicity

label (k„b), let us introduce the intrinsic group G of .the
space group G. In Eq. (13.2) we defined the intrinsic
group Cxk of the rep group Cxk, and then extended it into
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the intrinsic group G(k) of the little group G(k) [Eq.
(13.4a)]. Alternatively, we can define the group G(k) as
follows: The intrinsic group G(k) is an operator group

with the elements (operators) I y l
c j defined in the

l
G(k)

l
-dimensional group space of the little group G(k)

through

l~ I aj I&lbj = l&lbj l~ I aj «r any l&lbj «(» 3)

Cx is anti-isomorphic and commutative with the space
group Cx. Symbolically,

[G,G]=0 . (17.4)

It must be stressed that although G(k) is a subgroup of
G, the intrinsic group G(k) is not a subgroup of the "to-
tal" intrinsic group Cx. It is easy to see. this from the fol-
lowing arguments. If G(k) were a subgroup of G, then
according to Eq. (17.4) we would have

[G(k),G] =0,
while according to Eq. (17.2), G(k) only commutes with
the subgroup G(k) of G rather than the whole group G.
Hence G(k) cannot be a subgroup of G. Of course there
exists a subgroup of the "total" intrinsic group 6 which
is also anti-isomorphic and commutative with G(k); how-
ever, this subgroup of G is useless to the subsequent dis-
cussion and will not be mentioned any more. What is
needed of the subgroups of G is the intrinsic translation
group T. Its elements IE l R„j commute with any ele-
ments of G

[ I E
l
R„j,I a l

a j ]=0 for any t a l
a j C G . (17.5)

According to Sec. IX.C, the CSCQ of the translation

group T is Is l
R„j or simply the momentum operator k.

The CSCQ of the intrinsic translation group I is then

I E
l R„j,or simply the "intrinsic momentum operator" k,

which commutes with any operator I a l

a j of G,

[k, ja l
aj]=0 . (17.6)

The CSCQ-I of the space group 0 cannot easily be found
due to the complex nature of its class operators.
Nevertheless, from

for any ty'l c'j E: G(k) . (17.1)

G(k) is anti-isomorphic and commutative with the group
G(k). Symbolically, we write

[G(k),G(k)) =0 .

Likewise, we can define the intrinsic group G- of the
space-group Cx as an operator group with the elements

l a l
a j defined in the

l
G

l
-dimensional group space of G

through

~ool

IE
l
a;R„j (17.8)

g y(v) g( +k)q(v) (17.9a)

that is, the basis vector gk, is an eigenfunction of Ã
with the eigenvalue

"'=
l
Go(k) l g exp( —ik, R„), (17.9b)

which is a constant for any member of the basis 1tjI,"'„anda~'

thus is a function of the star ek. One could have used
A,
'*"' as one of the labels for the irreps of the space group

if one wished, but of course the simpler label (ek) is al-

ways preferred.
(v)k b

Combining Eqs. (15.20) and (17.9) we know that fq
is simultaneously the eigenfunction of the operator Ã and

the CSCO C(k ), C(s ), and k of the subgroups G(k ),
G(s ), and T, respectively,

(v)k b (gk) (v)k b
col(@,C(k ),C(s ),k)gz, ' ——col(i, , v, a, k )Pq, '

(17.10a)

where c l(oa, b, . . . ) denotes a column vector.
According to Eq. (4.10b), the CSCO of the space group

(vQk b
G and its intrinsic group G are equal; therefore gk, ' is

also an eigenfunction of the CSCO of G. In other words,
it is also an irreducible basis vector of the intrinsic group

( )kb
G. Now we are going to show that 1(k, ' is indeed simul-

taneously the eigenfunction of the operators K =K, and

the CSCO C(k~), C(s ), and k of the intrinsic groups
G(k ), G(s ), and T, respectively:

(v)k b
( gk) (v)k b

col(Ã, C(k ),C(s ),k)gk, ' ——col(A, , v, b, k, )gq, '

(17.10b)

The intrinsic group G(k ) and its subgroup G(s ) are de-

fined by

G(k )

G(s )

G(k)
[I) I& j (17.11a)

Therefore, their CSCO-II's are

is a translational class operator of the space group Cx and
therefore can be chosen as one of the operators making up
the CSCQ-I of the space group. As we shall see in a mo-

ment, the operator K is all that we need of the CSCQ-I of
Cx.

Applying the operator Ã to the basis vector ltjk ', we

have

f~lajI&IR. jI~laj '=Iei«. j

we know that

(17.7)
C(k ) C

(17.11b)
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(v)k~b
Applying the operators C(k ) and C(s ) to @k,' in Eq.
(16.16b), we have

(v)k b
Ip l

V j
p(k)(v)b

reducible basis of the intrinsic group G in the G D T and
G(ko) ~ G(sa) classification scheme, with ( ek)(v) as the
irrep label and (kP ) as the component label.

8. The CSCO-II and CSCO-III of 6

xIp. l v, j 'P ''y(x). (17.12a)

Combining Eqs. (17.10a) and (17.10b), we have the
simultaneous eigenequations

(v)k b
col(Ã, C(k ),k, C(s ),k, C(s ))gk a'

r

(.)k b V (v)k b

)
'4k a b Pkoa (17.12b) We claim that

Using C =C [see Eq. (4.10b)] and Eq. (13.5), it becomes
=col(A, ( k), v,k,a,k,b)gk, (17.18)

r

(v)k b
Hence jfik a' is the eigenfunction of both C(k ) and

C(s ).
Now we come to the last operator, the intrinsic

momentum operator k. The action of an intrinsic opera-

tor Ia l aj of G on the configuration functions depends
on the choice of the so-called "intrinsic state" (Chen and
Gao, 1982). From among the N

l Go l
functions f„(x)

in the regular rep space of G, we can choose any one, say
tP(x), as the intrinsic state and define the action of the in-

trinsic elements Ia l aj on it to be equal to that of the
group elments Ia l aj,

Ia l
a jg(x)= Ia l ajar(x) for any Iu l aj E G . (17.13)

The choice of the intrinsic state is arbitrary, but once
chosen, it should be kept fixed through the whole

analysis. The operation of the intrinsic element I a l
a j on

any other functions p„p= t p l
V(p)+ R„jg(x) is unambi-

guously dictated by Eqs. (17.3) and (17.13), i.e.,

Ia l ajar„p(x)= IP l V(P)+R„j Ia l
aji/J(x) . (17.14)

With this preliminary knowledge, let us apply the intrin-

sic momentum operator k to Eq. (16.16b),

krak.. =Ip lV. jP. "jp.l&. j 'P kq(x), (i7.is)

where we used Eq. (17.6). Due to Eq. (17.13), the opera-

tor k in front of g(x) can be replaced by k. Using the
fact that the operator k commutes with the projection
operator of the translation group and that the function

(k ),P ' iP(x) belongs to the wave vector k„we have

E=(g, C( 'k ),k, C(so ),k, C(s ) )

is a CSCO-III of the space G, while

M =(K,C(ko), k, C(so))

(17.19)

(17.20)

+ kvcra rb

(v)k b
The irreducible basis gk, ' can be expressed in terms of
the reducible basis gn a(x) of Eq. (16.10) as

(17.22)
ii,a

The coefficients U «b „a then obey the unitarity condi-
tions:

g U b,oar(Unaa'a'r'b', na ) ='8ka'k'~oo'~rv'svv'6aa'~bb' r

g, a
(17.23)

( +k)(v) ( +k)(~)
Uaavb, na( Uoavb, n'a') ~nn'~aa'

+kvaavb

C. The orthogonal theorems for the full rep matrices

is a CSCQ-II of G. This claim is easily supported by not-
ing that, according to the completeness condition Eq.
(16.17), the operator K has

l
G

l
distinct sets of eigen-

values and that it contains a "Casimir operator" Ã of the
space group G. K is a complete set of commuting opera-
tors in the group space of G. Therefore, its eigenfunc-

(v)k b
tions fk a' are all nondegenerate and form an orthonor-

o.+

mal and complete set

(v)k b (v')k'~b'
(fk a l

Qk', 'a) =~a'k+k'~aa~vv~vv'~aa ~bb r'
(17.21)

P 'kf(x)=kP 'P(x)=kQ 'f(x) .

Combining Eq. (17.15) with (17.16), we get

(~)k b (v)k b

krak =kA'k

(17.16)

(17.17)
qh

In analogy with Eq. (13.8), the coefficients U „b „a are
related to the irreducible matrix elements of Cx by

' 1/2

Doa,".Xb"'(
I ~ I

V(~)+Rn j )* .

(v)k b
Therefore, fk a' is an eigenfunction of the intrinsic

momentum operator k with the eigenvalue k,.
(v)k b-

To summarize, Eq. (17.10b) shows that gk a' is the ir-

(17.24)

Inserting Eq. (17.24) into Eq. (17.23), we obtain the two
orthogonal theorems for the irreducible matrix elements
of the space group Cx..
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gD'*, ",)b(")([
I
V(a)+R„I)'D',"~)'b '(Ia

I V(a)+R„I)=5gkgk5 5,g5~5, 5bb,

" D'.*.".","'([a
I
V(a)+R„ I)'D(*.".b"'(Ia

I
v(a )+R„I)=5„„5..*k...b I

(17.25}

D. The generalized projection operator of 6

The projection operator for the space group G is given by

p( +k)(v)rb
cia

qh„ yD', ",""'([a
I v(a)+R„I )* Ia I v(a)+R„I .

ea
(17.26)

Qy applying this to a general function f(x), we get the
G~G(k )~G(q )~T, G~T, G(k )DG(s ) irreducible
basis,

"~P p(+k)(v)i by(x) (17 27)

However, me have already obtained a simpler expression

I

for the same basis, as shown in Eq. (16.16b). Are these
two seemingly quite different expressions, Eqs. (16.16b)
arid (17.27), identical. Of course they have to be so, as is
shown in the following. Using Eqs. (15.8c) and (15.8d), as
well as the remark following them, we can multiply Rq.
(17.26) by (qh„/

I
G

I
)' arid recast it in the form

(k)(v) yD,(bk.".")(Ia
I V(a)+R„I)ta I

V(a)+R„]-'

gD'."""'(Iy
I
v(y)+R I)Ip. l &.] Iy I v(y)+R. I 'I p. l

v.j
' (17.28)

(17.29)

From q/ I
G

I

= 1/[
I
Go(k)

I N] and Eq. (13.11) we have

P(ek)(v) Ip I
v Ip(k)(v)~(k)Ip

I
v I

—1

t

also given by him for the diamond-structure space group
and double space group.

In analogy with Eq. (13.13), we have
where (v)k b (+k)(

'

)
',

. (&)kIa
I aj@k..' = XD *',".($a I aI Wk. ,.', (17.32a}

1/2
~(k) . P(k) y e'"RnI e IRN„

Furthermore,

'=N Xe

b'
Ia I

ajar.

.' = g D'.*b,gb'(I a
I a] )Qk., (17.32b)

bt

Th.us an element of 0 can never change the intrinsic
quantum numbers k, and b, while an element of the in-
trinsic group Cx can never change the "external" quantum
numbers k arid a.

=N Xe
E. The intrihsic ieave vector

p. lv, (1'7.30)

Inserting Eq. (17.30) into Eq. (17.29) we immediately get

p(* )( )
Ip~ I

v IP(k)( )I p (17.31)

This is exactly what is required by Eq. (16.16b).
Equation (17.29) is in the form of Eq. (6.37) and is

identical with the factored irreducible symmetry operator
(FISO) derived by Folland [1979, Eq. (22)]. Explicit re-
sults for the FISO's and syminetry-adapted functions are

co1(J,J„J,)PbIII. =col(J(J+1),IIX,K)Pox. (17.33a)

JsiriPdadPdyD~~(aPy) R (aPy) .
Sm

(17.33b)

Finally let us try to elucidate the meaning of the intrin-
sic wave vector k, in Eq. (17.17). We first recall what we
did for the rotation-gr' oup case (Chen, Wang, and Gao,
1983). The projection operator PMx of SO3 is simultane-
ously an eigenvector of the CSCO-III of SO3 [cf. Eq.
(1.7)],
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In the nuclear collective-rotation model (Bohr and Mot-
telson, 1969), we know that the intrinsic state of a de-
formed nucleus does not have a definite angular momen-
tum, but does have a definite z component, say 0, of the
angular momentum in the intrinsic frame. Let C&n(x) be
such an intrinsic state. According to Eq. (50) in Chen,
Wang, and Gao (1983),

P~~icC n(X) =4n% M (17.34)

(gk)( ) (v)k. b
Pea, rb 0 k;(x) 8k+;4k a (17.35)

This shows that the intrinsic wave vectors k; of these
states are all equal to the wave vector. k; of the "intrinsic
state" of the electron. Therefore, all these states in the
"bunch" are characterized by the same intrinsic wave vec-
tor k;. It is not known whether the energies of an elec-
tron in a crystal are grouped into bands characterized by
the intrinsic wave vectors as the energies of a deformed
nucleus are characterized by the intrinsic z component of
the angular momentum.

XVII I. THE CLEBSCH-GORDAN COEFFICIENTS
OF SPACE GROUPS

gives the nuclear wave function in the adiabatic ap-
proximation. Equation (17.34) shows that the z com-
ponent K of the total angular momentum J in the intrin-
sic frame equals the z component 0 of the angular
momentum possessed by the intrinsic state @n(X). This
means that there are no nuclear collective rotations about
the symmetry axis (i.e., the z axis in the intrinsic frame)
of a nucleus. Each intrinsic quantum number K charac-
terize a rotational energy band of the nucleus.

Now we turn back to the space-group case. In much
the same way we can obtain the following results. Sup-
pose pk (x) is an electron wave function which does not

have a definite space-group symmetry but does have a de-
finite wave vector (or momentum) k;. Let such a state be
called the "intrinsic state" of an electron. Out of the pro-
jection operator P~" b", we can build a "bunch" of states

(v)k,.b

reps can be reduced into a direct sum of the irreps of G,

D *" "(8)D(*" " = y y @(gkvgck'v'
~

gk"v")
k" v"

~D (e k")(v") (18.1)

where (ekvek'v'
~

ek"v") is an integer and is the number
of times that the irrep D'*" " ' occurs in the Kronecker
product rep. Equation (18.1) is referred to as the
Clebsch-Gordon series of the space group, and the integer
(ekvek'v'

~

ek"v") is called the reduction coefficient
(Birman, 1974) or the multiplicity. [We note that the in-

teger (ekvek'v'
~

ek'V') is called the Clebsch-Gordan
coefficient by Bradley and Cracknell (1972), but we
reserve the name "Clebsch-Gordan coefficient" for the
unitary transformation coefficient of Eq. (18.3b).]

Several methods are available for calculating the
space-group reduction coefficient (Birman, 1962,1974;
Hsieh and Chen, 1964; Bradley and Cracknell, 1972; Dirl,
1976b; van den Broek, 1979a). A complete and explicit
set of tables for the reduction coefficients has been pub-
lished (Davies and Cracknell, 1979,1980; Cracknell and
Davies, 1979).

Let pk"', and gk, ', be the basis vectors carrying the ir-

reps D'*"" ' and D""'""', respectively. The CG coeffi-
cients. of the space group are defined as the expansion
coefficients in the following equation:

vkv'k' v"k" 0
a" oao. a o. a

crao'a'

8= 1,2, . . . , ( e kve k'v'
i

e k"v"), (18.2)

( ) ( p )
vk v k v k 0

( yg )g
gpss t I ~ t I tl II fg II t ~0 o.a o. a o. aO pager ii iig O

(18.3a)

The CG coefficients can be expressed as

where 8 is the multiplicity label. The inverse of Eq. (18.2)
IS

A. The CG series

Suppose that D'*"" ' and D'*"" ' are two irreps of a
space group G. The Kronecker product of these two ir-

vk v'k' v"k"9
o.a a'a' o."a"

Using

(18.3b)

(g(v) g(v)
i I iR j iq(v )e )

I
(y(v) q(v) )

~

y(v")9) e
' o+ a' nC

where C is the abbreviation for the CG coefficient (18.3b);
we know that the CCs coefficient vanishes unless

I

vector selection rule,

+ k(8) + k' = g ( e k e k'
~

e k" ) e k" .
ek"

(18.5)

k~+k' —k" =Km . (18.4)

According to Eq. (18.4) we can introduce the wave-
The integers (skulk'

~

ek") are referred to as the wave-
vector reduction coefficients. Plainly we have
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(ekek'
I
ek")=(ek'ek

I
ek") . (18.6) or, written in matrix form,

Assuming that there are q, q', and q" points in the stars
ek, ek', and ek", respectively, it follows froni Eq. (18.5)
that

lt„( -)8 „(~)8
M{C(s)) ~™a" a" (18.9b)

qq'= g (ekek'
I
ek")q" . (18.7)

where M(C) and M(C(s)) are the representatives of the
operators C and C(s) in the uncoupled representation
with the basis

I
craa'a'), and the vector

A simple prescription for determining the wave-vector
reduction coefficients is given by Birman (1962). vkv'k' v"k"8

era u'a' 1a" (18.10)

Setting o"= 1 in Eq. (18.2), we have

vkv'k' v"k"9
era o'a ' la "

oao'a'
o.ao'a'

l) q(V) y(V')

B. The calculation of the CG coefficients

(18.8a)

(18.8b)

Il
is the representative of gk"-,', (v",a") is the eigenvalue of
(C,C(s)). In other words, the CG coefficients (18.10) re-
sult from a diagonalization of the matrices M(C) and
M(C(s) ) simultaneously. To calculate M (C) and
M(C(S) ), we must first calculate the matrices
M( Iy"

I

c"j') for the group elements Iy"
I

c"j' contained
in the CSCO-II of G~-. In this section, to avoid notation-
al clumsiness, we use the abbreviation

(18.11)
(v")8Since pk",' is the irreducible basis of the rep group

Gz-, it is necessarily an eigenvector of the CSCO-II
( C, C (s) ) of the group Cxk. :

From Iy"
I
c"j'=8'"""Iy"

I

c"j, we have

M( Iy"
f

c"}') =8'" ' M( jy"
f

c"j ) . (18.12)
tt

.],(v")8 .I.(v")8 (18.9a) The matrix elements of M( Iy"
I

c"j ) can be expressed as

(Iy"
I

c"
} ) = &r»'b'

I
Iy"

I

c"j I

oo~'o')
D(Ok)(v)(

I
.l

I

ll
j )D (4k')(v')

( I (18.13a)

or in the form of a direct product of the matrices,

M(ty"
I

c"j)=D'*""'(Iy"
I
c"j)D'"""'(Iy"

I
c"j)
(18.13b)

The matrices D'*""'(Iy"
I

c"j) and D'*"" '(ty"
I

c"j)
can be evaluated from the irreps of the rep groups Cy~ and
Cik by using Eq. (15.9) or (15.15), while the matrices
M (C) and M{C (s) ) can be evaluated by using Eq.
(18.13). From the secular equations of M(C) and
M{C(s)), we can get the eigenvalues (v"a") and their de-
generacies. If the degeneracy of the eigenvalue (v"a") is
d, then it implies that the reduction coefficient is

(ekvek'v')
I
*k"v")=d .

Substituting the eigenvalue (v",a") into Eq. (18.9b), we
can get d orthogonal eigenvectors,

r

vkv'k' v"k"8 '

(18.15)

where the component index for the vector U is (oa(T'a').

C. Relative phase of the CG coefficients

To ensure that the CCy coefficients (18.10) with the
same v", k", and 8, but different a" have the correct rela-

l

tive phase, we can use the following technique.
Suppose the matrix element of an element I y"

I

c"j' of
Cx~ has the property

I

D(k" )( v")
( I

for a specific b" and a". Then we have

(18.16)

U(v")8 ID(k")(v")(
I

ll
I

l
j )) i

( Iyll
I

cll
j
l)U(v )8 (18.18)

Hence it is only necessary to find the d orthogonal eigen-
(v" 8vectors Uk, ', 8= 1,2, . . . , d, for a specific v" and a"; all

the other eigenvectors Uk-b', b "&a", with the correct
relative phases, can be found in turn from Eq. (18.18) by
choosing in each step an element I y"

I

c"j' that obeys the
condition (18.16).

The matrix elements of irreps for the rep group Cxk are
usually very simple, i.e., requirement (18.16) can always

ll
I

ll
}
lq(v")8 D(k")(v")(

I
yll

I

II
j )yl( ) v8 (18 17)

Now suppose the d orthogonal eigenvectors Uk-, -,(v")8

0=1,2, . . . , d, with a definite v" and a" have been ob-
tained from Eq. (18.9b). Then it follows from Eq. (18.17)
that the b" component of the CCx coefficient can be
found through the formula
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be met by a certain element l y"
I

c"
I
'. Even if it were not

so, we could still use a slightly different formula, such as
(7.6), to evaluate all the components of the CGC succes-
sively.

D. The full CG coefficients of space groups

Up to now we have found only the CG coefficients
UI,-,' corresponding to cr"= 1. It follows from Eq. (15.2)

that the CG coefficients

U(v" )8
IIk a"

vkv'k' v"k"0
o.a o'a ' o"a"

for o"&1 can be found from UI,"- by the formula

(18.19)

Uq„,„M(lP -
I
V -I )U„-

)( )( IP,
I

v „I)D( ')( ')( I13 I
v I )U( ") (18.20)

where IP -
I
V I is the coset representative of the space group G with regard to the little group G(k"):

q"
G= g IP~-

I

v la(k") .
lt

(18.21)

Equation (18.20) can be rewritten as

vkv'k' v"k"0 k 'k' "k"0
l». b

aa'
(18.22)

Observe that there is no summation over o. and o', on the
right-hand side of Eq. (18.22), since the index cr (o') is
uniquely specified by r (r') and IP -

I
V -I, for which the

submatrix

D""""'(II3 -
I
v -I )(D'*""'(l~ -

I

v

does not vanish.

E. Some remarks

The following remarks should be added in regard to the
eigenfunction method for evaluating CG coefficients of
space groups.

(1) Here we only need to know a priori the wave-vector
selection rule (which is easy to work out), but not the CG
seI les.

(2) However, if the CG series is known a priori, the
eigenvalues (v"a") can be found easily from the relation
between the eigenvalues and characters (6.47), and thus
the work of solving the secular equation is saved. Of
course this point is important only for hand calculation.

(3) For computer calculation, the CSCO-II of ak- can
be appropriately chosen so that it consists of only a single
operator (see Sec. VIII.A or XIV.C).

(4) It seems at first sight that the order of the eigen-
equation (18.9b) is equal to (qh ) X(q'h„). But actually,
due to the wave-vector selection rule (18.4), the order of
Eq. (18.9b) is much smaller.

F. Summary of the eigenfunction method
for space-group CG coefficients

The scheme for obtaining the CG coefficients of space
groups can be summarized as follows.

(1) Determine the wave-vector selection rule.
(2) Pick out one star ek" among those for which the

wave-vector reduction coefficients (skulk'
I
ek")) 1 and

the CG coefficients are to be calculated.
(3) Choose the canonical wave vectors k, k', and k".
(4) For each of the canonical wave vectors, choose ap-

propriate coset representatives of G,

a= gelp. Iv.Ia(k),

a= ge[p. I
v..]a(k), (18.23)

a= g e [p.- I v.-Ia(k"),

V =V =V -=0. (18.25)

(5) Determine all the index pairs ((To') which satisfy

k~+k' =k"+K~ . (18.26)
/

For convenience in exposition, in the following we assume
that there exist only two such pairs, (ocr') and (rr.')

(6) Using the eigenfunction method of Sec. XIII, or
consulting an existing table, e.g., the Kovalev (1961) table,
find the jrreps 3~k~~ ~ D~k'~~~~ and D~k" ~&

"~ for the rep
groups Cxk, Cxk, and Csk-, respectively.

and find all the k points in the stars ek and ek' accord-
ing to

k~ =13 k, cr = 1,2, . . . , q,
(18.24)

k' =P k', a'= l, 2, . . . , q' .

To simplify calculation, in the following we always
choose as the coset representatives elements whose
nonprimitive translations are zero, i.e., we assume

Rev. Mod. Phys. , Vol. 57, No. 1, January 1985



26S Chen, Gao, and Ma: The representation group. . .

(7) Construct the irreducible matrices
D'*"""'(Iy"

I
V(y")j) and D'""" '(Iy" Iv(y") j) for the

elements ty"
I
V(y") j of the group G),-, from which the

CSCO-II of G~- is composed. However, only the subma-
trices related to the indices cr, r, (cr', r'), instead of the full
matrices D""""'(D'*"" '), are required to determine the
CCz coefficients, e.g.,

[D'*"""'(Iy-
I
v(y-) j }l=r D„„D...

D(ov) D(ao )

D(. ) =exp[ —ik. v(r")l~(P. 'y"0 ),

D(Y ') =e"pl. —ike V(r")]~(Pi r"P
(18.27b)

from Eq. (15.15).
(8) With the help of Eq. (18.13b), construct the repre-

sentation matrix of [y"
I
V(y") j in the uncoupled rep,

~7' O'0
I

M( Iy"
I

V(y") j') = D( )(3)DI,g) D(, )(8)DI~, )

(~w) ~(o's') D(~(y) D(~'~') .

(18.28a)

[D'*"" '(
I y"

I
v(r") j ) I =&' D(..) D(' )

Then form the matrix
(18.27a)

M(Iy"
I
V(y") j')=exp[ik" V(y. ")lM(I y"

I
V(y") j ) .

(18.28b)
t I rD (a'7') D (u'O')

where the bold square brackets denote a submatrix, and
The ordering for rows or columns in the matrix M is as
follows:

r2r'h,

(18.29)

Suppose the class operator C; is contained in the
CSCO-II of Gj, . By adding up the matrices
M(ty"

I
V(y") j') for all Iy"

I
V(y") j belonging to the

class i, we obtain the matrix M(C;). In this way we can
obtain the matrices M(C) and M(C(s)) of the CSCO-II
of Gj,-.

(9) By diagonalizing the matrices M(c) and M(C(s)}
simultaneously, we get the eigenvalues (v"a") and their
degeneracies d = ( e kv+ k'v'

I
e k"v"). Or equivalently,

we first diagonalize the matrix M(C) and get the eigen-
values v" and the corresponding degeneracies m -. Then
the reduction coefficient (ekvek'v'

I

ek"v")=m, /h„;
h - is thedimension of the irrep D' " 'of G' ~ .

For each v" and a specific but arbitrarily chosen a",
v" 8find the eigenvectors UI, ,', 8=1,2, . . . , d.

(10) Using Eq. (18.18), obtain all the CG coefficients
belonging to o"= 1.

(11) Using Eq. (18.22), obtain the CG coefficients for
cr"&1

(12) Pick out another star ek", choose its canonical
wave vector k" and coset representatives I P -

I
V j, then

return to step (5}and go through to the end.
A program in FORTRAN based on the EFM is now be-

ing written for computing space-group CG coefficients
(Zheng, 1985).

XIX. EXAMPLES: OBTAINING SPACE-G ROUP
CLEBSCH-GORDAN COEFFICIENTS

I

for the CG coefficients of the nonsymmorphic space
group O~.

&. The CG coefficients of Oz
«r *X(I)(8 ~X(2}~eX(v")

(1) The wave-vector selection rule is easily found:

e X +X=31"+2+X . (19.1)

(2) Pick out ek"=+X.
(3) The canonical wave vectors are chosen as

k=k'=k"=k =(—' —'0)
2 2 (19.2)

with b&, b2 b3 as basis.
Notice that the choice in Eq. (19.2) is different from

that given by Berenson, Itzkan, and Birman (1975). They
choose

k=k, k'=ky, k"=k, . (19.3)

(4) The coset representatives of 01, with respect to the
little group G(X) are chosen to be

II 2 I vzj =IC3) I0j» IP3 I V3j = IC3) I0j (194}

Under the rotation C3+~, the wave vectors k, k~, and k,
transform among themselves cyclically.

The star X contains three k points, k~=P k,

k =k=k =(—' —'0),1 z

In this section, following the prescription in Sec. XVIII
step by step, we shall give two examples of calculations

kz ——k„=(0—,
'

—,
' ),

k =k =(—0 —).1 1

2 2

(19.5)
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(p

CV

(p

(g

(p

c
Jl

II

0
'bQ

0

~ W

Ck

0

0
(Q ~

E

4?

.h

V

I ~ +

I + I

~~+~
I

~~
(

(7) From Eq. (14.15) we know that CSCO-I of the
group Ciz is

C) =
l C2. I &j

' —
l C2b I ~j ',

C~=l~d' l0j+f~.b loj .
(19.8)

The eigenvalues of (C»C2) are listed in Table XIV.
Furthermore, from this table it is seen that apart from the
identity the only elements ~hose matrices are always di-
agonalized for the irreps X)—X4 are l C4+

I
a j

' and
lC4, lrj'. Hence either [C4+, lrj' or [C4, le'j' can be
taken as the operator C(s), whose eigenvalues are used to
distinguish the two basis vectors of the irreps X)—X'4.
We choose

C(s) = [ C4+,
I
vj' . (19.9)

The eigenvalues of C(s) listed in Table XIV are inferred
from the diagonal elements of the matrices 6 '(C4+, ).

Using Eq. (15.9) or (18.27) and Table XIV, we can easi-
ly construct the space-group rep D'* " '. For example,

M([C4+
I ~j)=C

31

b, (C4, )

0

C

0 0
0 b(C2, )

C+ 0 b, (C4, )

(19.10a)

0
0

0 0
0 —Kl ~ J=1 2.

—A,i 0

(19.10b)

Similarly we have

—Ki 0 0

(5) From Eq. (19.5) it is readily seen that

k„+ky ——k, +(001). (19.6)

Hence the index pairs are (~r') =(23) and (oo') =(32).
(6) The ray or projective irreps b, '(y) for the little co-

group Cxo(X) are given in Kovalev (1961), Table T159.
We relist them here in Table XIV.

In Table XIV and in the following we often use the
symbols

10 1 0 01'= 01 ~= 0-1'+= 10
(19.7)

0 1 1 0
—10 ~= 0

D(+x)(j)(
l c 0 0 —A,i

0 —A,i 0
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D' ""(fC
—Ki 0 0
0 0 —Ki

0 —Ki 0
(19.10c)

(8) From Eqs. (18.28) and (19.10) we have

M (C) ) =M( I C2, I r) ') —M ( I C2b I
r I

')

23 32

0 0
D(+x)(J)(I~

I 0) ) ( 1)J+( 0 0
Oy0
F00

D"x"1'([ag))
I
0I)=(—1)J+' 0 0 s, j =1,2 .

Oc0

e X(1)@eX(2)= eX(1)@eX(2)@eX(3)@eX(4)

(19.13)

The eigenvalues of M(C(s)) are found to be +1, +i
Substituting the four sets of eigenvalues of
(C),C2 C(s))—(0,2, 1), (0, —2, 1), (2i, O, i—), and
( —2i, O, —i)—into the eigenequation (18.9), we obtain the
four eigenvectors listed in the odd rows of Table XV.
They are the CG coefficients for the first components
Q =1.

(10) On the'basis of Eq. (18.18) and Table XIV, the
second component of the CCr coefficients can be ex-
pressed as

(x) M(IC2
I r) ') (x)

(X)

32
-—K

M(C2) =—

K
—K (~),

0
E0, ,

s )P 0

(19.11a) (X.)= —M(IC,.IrI')U„', , j=1,2,

(xj) M( Icrd, I 0) ) (x.)

Uk@2 = (x) Uk )
~2)' (~d. )

(X.)=i( —1)JM(I~,. IOI)v„', , J =3,4.

(19.14)

M(C(s)) =i

0 A,

(19.11b) With Eqs. {19.14) and (19.11c},as well as the odd rows in
(X.)

Table XV, we can find Uk 2, e.g. ,

1 1

M([C,.I
rI')=s

0 A,

0
0

(19.11c)

(X3 )

U), z =~
—1

1

1T

00, 0
M(Ia, IO])=

, ; 0
By setting (rr')=(23), (crcr')=(32), and h =h„=2 in

Eq. (18.29), we obtain the ordering of the product basis
vectors

Ix2yl& Ix2y2&,

—i
~8 i— (19.15)

(19.12)

(X) ) (X~)
where

I xayb & represents the vector
I Pk,'P), b & .

(9) The eigenvalues'of M{C() and M(C2) are found to

(C),C2) =(0,2), (0, —2), (2i,O), ( 2i, O), —
and each has the degeneracy 2. By comparing with Table
XIV we get the CCx series

13. I
v. I = II3. I v., I

= I13.„ I v. .
(19.16)

it is a very siinple matter to obtain the CCx coefficients

(X.)
The CG coefficients Uk 2 are listed in the even rows of

Z

Table XV.
(11) In order to obtain the CG coefficients with cr"&1,

we in general need to use Eq. (18.22). However, for the
case where

ek= ek'= ek",
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with o"&1 from those with cr"=1. For example, in our
case here for o"=2, IP ! V -I =C3+~,

( —,
' }' (!y lz1) i—!y lz2) i—!y2z 1)

+!y2z2) —
! z ly 1)+i!z ly2)

+i ! z2y 1)+!z2y2)) .

Hence the CG coefficients for o"=2 and 3 result from a
cyclic permutation of x, y, and z in Table XV.

Similarly, by letting 4 k=t', we can get the CG coeffi-
cients for 4 X(1) eX(2)~l (v").

Both Saulevich et al. (1970) and Berenson et al. (1975)
have calculated the CG coefficients of Op, for
4 X(1) 4 X(2), and discrepancies were found, as pointed
out in the latter paper. Our result supports that of Beren-
son et al.

B. The CG coefficients of Oh
for +X(1)e+ PV(1)~+ h(v")

5
~ W

bQ eX(3 e 8'=2+6+ e 8'. (19.17a)

We now turn to a more general example for which the
three wave-vector stars ek, ek', and ek" are all different
and the multiplicity may be larger than one.

(1) The wave-vector selection rule is easily found (Bir-
man, 1962):

b
a
c5

r

0
~ Ioe ~ loe joe Ioe Ioe Ioe loe Ioe

(2) Pick out 4 k"= 4 b, .
(3) The canonical wave vectors are chosen to be

Star X: k=( —,
'

—,
' 0),

Star W: k=( —, —, —„),p 1 1 3

Star b, : k"=(—„' —, 0) .

(19.17b)

(4} The coset representatives and k~ for star X are iden-
tical with Eqs. (19.4) and (19.5), while the coset represen-
tatives IP ~

! V I and k'
~ for star W' are listed in Table

XVI.
It should be noted although the wave vector, e.g.,

k'= ( —,
' —

4 —,
'

), is equivalent to ( —,
'

—,
'

—, ), the former is not
replaceable by the lat;ter; otherwise errors will be incurred.

(5) From

~b

~ %~4

V

V
CP

k, +k', =k"+(011),

k, +k' =k"+(001),
(19.18)

it is seen that the index pairs are (rr') = (25) and
(pro'') = (36).

(6) The irreps D' ""' and D' ""' are given in Tables
XIV and XII, respectively.

(7) b, is an internal point, hence its representation group
G~ is isomorphic to the little co-group, the point group
C4, . From Table III we see that among the three class
operators (C3,C4, C&), any two can serve as the CSCO-I
C of C4, . Here let us choose C=(C3,C4). Besides, we
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TABLE XVI. The coset representatives [f) ~

l
V j and It' ~ for star W.

k' ~ ( ———)
1 1 3
2 4 4

1 1 1
( ————)2 4 4 ( ———)4 2 4 ( ————)4 2 4

f C311o}
( ———)4 4 2

f C32 Oj
1

( ————)4 4 2

choose C(s)=(T~; this corresponds to choosing (x,y) as
the basis vectors of the two-dimensional irrep of C4, .
Due to the isomorphism between G~ and C4„ the
CSCO-I of Az is

M(fc4+, lrj')= 25

36

0 —1

0 P

C —(C3 C4) C3 —
f C4g l rj + f C4~ l rj

c4= fo I
&I'+ f&y I

&I'
(19.19)

36
—i 0
0

—1 0
0 1 P

and the operator C(s) is

c(s)= fay I
~j' . (19.20)

M( f C4, l
vj')=

0 —i
0

By means of Eq. (18.27) and Tables XIV and XII, we can
construct the following submatrices:

M( fo.„ l
a}')=

0 1

0 K

(19.22)

[D(sx)())(fc+ l~})] (;)3.A, 0.

0 A,

[D( x)())(fC—
I I)] M(fay lrj')=

—1 0
0

0

0
i 0

[D(+x)())(
f By setting (rr')=(25), (pro')=(36), and h, =h„=2 in

Eq. (18.29), we get the ordering for the eight'product
basis vectors:

A, 0

(19.21)

l
2151),

l
2152),

l
2251),

l
2252),

326
(19.23)

[D(+)) )(1)(
f
C+

l ~j )] I rri/4—
4~ 6„* 0

(9) The eigenvalues of the
M(c3)=M( f c4+,

I
rj')+M( fc4

l

rj') and
=M( fo.

I
~j')+M(fo~

l
rj') are found to be

matrices
M(C4)

0
[D(e W)(1)(

f C —
l j )]

—rri/4

p

xi 0
[D(e W)(1)(

f l j )] e
—rri/4

0

—)pi 0
[D(+ w)(1){

f l j )] e
—rri/4

0
L

The 2 X 2 matrices a.,A,, . . . , are defined in Eq. .(19.7).
(8) Using Eqs. (18.28) and (19.21), we obtain

Single roots: (2,2), (2, —2), ( —2, 2), ( —2, —2);
(19.24)

Quartet root: (0,0),

which corresponds, according to Table III, to the point
group reps A &, A2, B&, B2, and E, respectively. The first
four are one dimensional, and the last one is two dimen-
sional. We use b, (l)—b(5) to denote the corresponding
reps for the group Cr~. The degeneracy 4 divided by the
dimensionality 2 gives the number of times that the irrep
6(5) occurs in the rep 4X(1)4 8'(I). Therefore, we
have the CCx series.
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e X(1) e W(1)
=eh(1)each(2)cab, (3)eeh(4)e2eb, (5) . (19.25)

teak

I

I I

For the first four single roots, we can immediately find
the corresponding eigenvectors, as listed in the first four
rows of Table XVII. For the quartet root (0,0), a further
diagonalization of the matrix M(C(s)) is required. Its
eigenvalues a"=1 and —1 correspond to the first and
second components of the rep 5(5), respectively. When
we substitute the eigenvalues (0,0,1) of (C3,C&, C(s) ) into
their eigenequations, a degeneracy of 2 remains. Conse-
quently there exist two linearly independent solutions.
The two orthogonal eigenvectors can be chosen as

UI,-=i"———,
' (1,—1, —1, —1,0,0,0,0),

(19.26)
Uk-=) ' = —,

' (0,0,0,0, l, i, —l,i ) .

(10) It is known that the matrix for the element C4, in
the rep Eof Cq„ is

D(E)(( +) (19.27)
L

Hence Eq. (18.18) now reads

I I

Uk"2= &s) + M(IC4
~

7 I )Ug"
(e) + r (8)

D2i (C4+. )
(19.28)

II

'0
c5

From Eqs. (19.22) and (19.26)—(19.28) we can calculate
Uq 2,

' the result is listed in Table XVII.
(11) Using Eq. (18.22), we can get the CG coefficients

with o "&1which are not listed here.

XX. OTHER METHODS FOR OBTAINING
SPACE-GROUP CLEBSCH-GORDAN COEFFICIENTS

Q
O

+ b

02

CP

Ieu (~
Ioo Ioo joo joo

In recent years there has been a remarkable number of
papers devoted to the space-group CGC. They mainly
fall into the following three categories

A. Berenson's method

The Koster method (see Sec. VII.E) has been used to
calculate the space-group CGC by Berenson and Hirman
(1975) and Berenson et al. (1975). Similar discussions
were presented by Litvan and Zak (1969), Saulevich et al.
(1970), Sakata (1974), and Cornwell (1970). To facilitate
comparison, we use Berenson's notation,

V

Cl

(8)
kv k'v' k"v"0

cram'a', cr"a" = Era CT'O' 0"a" (20.1)

for the CGC and use U(era'o") to denote the submatrix
of the (crcr'cr") block, with aa' as the row index and a" as
the column index; we refer to U(111) as the principle-
block CGC.

Equation (7.34a) now reads
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(20.2a)

From Eq. (17.26} we have
CC

II

(oaa'a'I P'*",-",-b'
I

rbr'b'& = g D'*, ,"b'([a
I
a})D'*, ",b'([a

I
a})D'*-",","-'b ([a

I
a})*,

(~ I ~)

where [a I a} [= [a I
V(a)+ R„}] is to be summed over all the N

I Go I
elements of G.

Using Eqs. (15.8e) and (15.9a) and the irreducibility of the rep of the translation group T, we have

0 for k +k' —k -&K~
exp[ —I' (k~ +k' —k ) R„] or n+ cr' cr"

7l

Equation (20.2b) becomes

(20.2b)

(20.3)

(aalu'a'l~ '."."-b-
I

~b~'b'&=
G k. XD b ([y I

V }»ah ' ([y

(20.2c)

where

y =P 'aP„V,=P~ '(aV, —V~+.V ) . (20.2d)

It is to be noted that throughout this section Eq. (18.26) is always assumed to hold, and the convention mentioned after
Eq. (11.3) is used, i.e., if y EGO(k), then D'"""'([y I Vr } ) =0. Equations similar to (20.2d) can be written for y «, V ~,
Xo' 'Tir and

For the principle-block CGC, from Eqs. (20.2a) and (20.2c) we have
I

II

I
Go«")

I

XDab ([alVa}}Dab ([alV }}D.b ([alV }}=XUiai. , i. (Uib», » ) (20.4)

where a is to be summed over those elements belonging
simultaneously to the groups Go(k), Go(k'), and Go(k").

The non-principle-block CGC can be obtained by the
following procedure. Consider the point-group operator
Px, which changes simultaneously k, k', and k" into k~,
k', and k - modulo a reciprocal lattice vector, i.e.,

I

obtain

'&k".'. = XD.'b""'([yk
I
ck })*&I",b . (20 7)

Analogously we have

Pxk='k, Pxk'='k', Pxk"='k (20.5) [Px I Vx}= [P. I
V. } [yk' I

ck'}

Due to Pxk=k, [Px I Vx} is necessarily in the crth
coset in Eq. (15.1). Thus we must have [Px I Vx}= [P.- I

V -}[yk I
ck-}

(20.6b)

(20.6a)

where [yk I ck}HG(k). Using Eqs. (20.6a) and (15.2) we

where [y„ I c, } and [y„- I
c -} belong to the groups G(k')

and G(k"), respectively.
The CGC in Eq. (18.3b) can be expressed as

Uoan a', o"a ='& [Px"I VX} (4t"aPt' .u')
I [Px I Vx} Pk" „a"& ~ (20.8a)

With the help of Eqs. (20.6) and (20.7), we finally get

((7a'g")=D k "([y
I
c })@D "~ ([y,

I
c,})U e~(111)D" + ([y „

I
c ., }) (20.8b)

The above method has been used to calculate the CGC
for eXeX of the space groups Ob and Ob (Berenson et
al. , 1975), as well as for Ob and Ob (Kunert and
Suffczynski, 1980; Suffczynski and Kunert, 1982). Saka-
ta used a similar method (see Sec. VII.E) for calculating
the CGC of the double space group D 4~. Kowalczyk et
al. (1980) have also written a program for calculating the

I

principle-block CQC.

B. Diri*s method

This method is based on Schindler, Mirman, and Dirl's
approach (Sec. VII.E). Equations (7.39a)—(7.40) can easi-

ly be transposed to the space-group CGC (Dirl, 1979c,
1979d) [cf. Eqs. (7.39a), (7.39b), and (7.40b}, respectively]
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I
*k v 8=(rb&b )~ b &=N~bea P~"b",e'b"

I
&brb &

rr rr rr kll gl
b

—
I

&rbwb IPyb yb I&bwb
tt II rlbtr ktl rr

(20.9a)

(20.9b)

(20.10)

where the matrix elements of P -,- ~ b are given by Eq.(+k")(v")

(20.2b).
The key problem in using (20.10) to calculate all the

CG coefficients of the space group G is to determine the
multiplicity index 8, i.e., to find ( ekvek'v'

I

ek"v") sets
of indices 8=sbr'b', 7 b 7'b ', . . . , so that the vectors in
Eq. (20.9a) are orthogonal with respect to 8,

& ek"v",8=(7b r'b ')~"b"
I

ek"v",8=(~b~'b')v"b" &

N„,,—&-~b-r b IP, b-,-b Irb~b &

(k"v")r"'b" — —i i (ok" )(v" )

G= y SG(kp)daG(k]), da= ta I vaI,

where d is called the double coset representative.
Let

k=nk)+k2 .

The decomposition of Cr with respect to G(k) is

G=ges. G(k), s„=IP„IV„I.

(20.14)

(20.15)

(20.16)

(Vb 7'b ')(~bHb') ' (20.11) Define a group

Dirl (1979c,l979d) demonstrated that even for the most
complicated case the determination of the multiplicity in-
dex requires only the inspection of simple equations.
Davies and Dirl (1983) have written a program for the
space-group CCRC based on Dirl's method. Similar work
has been done by van den Broek (1979a), using the double
coset approach.

The disadvantages of the previous two methods are that
they require a great many irreducible matrix elements and
the resulting CGC is in general not adapted to a definite
subgroup chain.

C. Gard's method

(k] )(&]) (v, )

G(k&): irrep D ' ', IRB gb, , ——Pr,
(kp)( V2)

G(kz): irrep D ' ', IRB gk...=g

(20.12a)

(20.12b)

The left coset decomposition of G with respect to G(k;)
ls

G= g es,G(k)), s = Ip, I
v J,

G= g es.G(k, ) ..= [P, I v. I .

(20.13a)

(20.13b)

The double coset decomposition of G with respect to
G(kg) and G(kp) is

Gard (1973) took a quite different approach to the
space-group CGC. The essential difference lies in the fact
that instead of directly reducing the Kronecker product
rep for the full space group G, as in the EFM, Berenson,
or Dirl method, Chard reduces the Kroenecker product rep
for the subgroup G of the little group G(k); then,

through induction, followed by reduction of the induced

rep, he obtains the irreps of G(k); and finally, using in-

duction again, he obtains the irreps of G.
Suppose that we have two subgroup chains G&G(kr)

and G&G(k2). The irreps and IRB of G(kr) are denoted
as

Ga =G(ak) ) A G(kp }, (20.17a)

where G(akr) is the little group for the wave vector ak~,

G(ak))=d G(kr)d (20.17b)

It can be shown that Ga is a subgroup of G(k). The
left coset decomposition of G(k) with respect to Ga is ex-

pressed as

G(k)= g eqr„G (20.18)

Therefore, Ga is the intersection of G(akr), G(kq}, and

G(k). This is the key point that enables us to form the
(akim )(v& ) (k2)(v2)

Kronecker product rep D ' ' D of the group
G, which is obtained from the irreps of G(ak~) and

G(kz) subduced to G, we then reduce this Kronecker
product rep to get the irreps D'"' of G, and later,
through two stages of induction, to get reps of the full

space group Cx.

According to Mackey (1952), the decomposition of the
Kronecker product of two induced reps can be expressed
as

= peI[D ' ' (G )eD ' '(G )]tG(k)I tG,

(20.20a)

(20.19)

where D (Ga) is the rep of Ga subduced from the ir-(k))(~))

(k )( ) (kl )(vl )

rep Dr
'

~

' [see Eq. (15.8b)] of G(akr): D ' ' (G )

=DI ~ LGa with the basis I qr„y; J, and D ' ' (G )

=D ' '
J, Ga with the basis I gj J.

The transformation from the uncoupled basis
Is,mrs P & to the IRB g~"', of G can be accomplished

through the following three steps.
(1) From the basis

I
s,mrs g & to the basis

smqx Ida&~fj &:

s~q x I dapr 0j & = g & &aim
I
a~«j &

I
s ~yrsa4~ &
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(~olm
I
acokig) =D(; ' ' (s, 's„qgd~)

& k2)(v2)
XD~j (s ~ scuqk ) (2.20b)

I
Pj',",' ) = g (Aap~s

I
vkOa )q

I
C,'"'") . (20.22)

Combining Eqs. (20.20)—(20.22) we obtain the space-
group CGC,

T

&i&i k2&2 kvO —= (~olm
I

kvOcoa )
VQ ), OQ2 COa

= y (rolm
I
a~~iJ') & aij

I
p~. &

A,ij s

X (Rapes
I
vk8a ) . (20.23)

In general, the group G~ will be small and step (2) can
be easily accomplished. However, step (3) may cause
trouble in a general case within the framework of the can-
ventional rep theory. The difficulty can be easily over-
come with the help of the EFM, i.e., by using the CSCO
of the group G(k) to decompose the induced rep space.

XXI. CONCLUDING REMARKS

Suppose that the distinct operators or matrices of an

abstract discrete group G, whose order can be infinite, in
a rep space I. form a rep group G of order m

I g I, which
is an m-fold covering group of a finite group g; then the

problem of seeking the irreps of G (or equivalently, the
projective irreps of g) in the space I. can be replaced by
that of finding the irreps of the rep group G, and the ~

group order is reduced from
I
G

I
(which can be infinite)

to
I g I

. Therefore, the construction of the irreps of the
little group G(k) is just as easy as that of its little co-
group Go(k), with the only difference being that the ma-
trix elements of the regular rep for Go(k) are either zeros
or ones, whereas those for the rep group Cxk are either
zeros or of the form e p(x2~i// ).m

The following correspondences are established for a rep
group G or an abstract group G (since the abstract group
is a special case of the rep group).

(1) The irreducible character vector —The complex con-
jugate of the eigenvector of the CSCQ-I of Ci in the class
space.

(2) The irreducible matrix element vector —The com-
plex conjugate of the eigenvector of the CSCO-III of G in

the group space.
(3) The irreducible basis vector —The eigenvector of the

CSCO-II of G in a reducible space.

(kl)( l }
(2) Reduce the Kronecker product of the reps D~ '

and D of the group Cx,
(k2)(v2)

I
@,'"'&= 2 &«J

I
p~~& Id.q;, @, & "

lj

(3) Reduce the induced rep D'"'tG(k) to get the IRB
of G(k),

(4) The CGC vector —The eigenvector of the CSCO-II
of G in the Kronecker product space.

Based on the above correspondences, a universal
method, the eigenfunction method, is set up for calculat-
ing the characters, the irreducible basis and matrices, and
the CGC adapted to any given subgroup chain. The EFM
is suitable for both hand and computer calculation. For
computer calculation it is expedient to choose self-adjoint
CSCO's, since the diagonalization of Hermitian matrices
is much easier than of non-Hermitian matrices. The
CSCO's can be easily found for point groups and space
groups, and can be chosen to consist of only a single
operator. The EFM for obtaining the irreps of the little
group G(k) adapted to any given subgroup chain has been
programmed by Zheng (1985).

%'hen the intrinsic group G is introduced, which com-
mutes with and is anti-isomorphic to the group C», the
eigenvalue of the CSCQ for the intrinsic subgroup chain
G(s) provides the multiplicity label for distinguishing the
h„equivalent irreps of G that occur in the regular rep of
G.

Based on the EFM, an easily programmable algorithm
is proposed for computing the space-group CCRC. The
new features of this method are that (a) the CGC is
adapted to any given subgroup chain, (b) the CGC and
CG series are obtained simultaneously, and (c) the method
involves only a very small number of space-group irredu-
cible matrix elements. The programming work is now be-
ing undertaken (Zheng, 1985).

The present paper, together with previous papers (Chen
and Gao, 1982; Chen, Wang, and Gao, 1983), provides a
unified CSCO approach to the permutation group, point
group, space group, and compact Lie group, Potential ap-
plications of this approach to magnetic point groups and
magnetic space groups remain to be studied.
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