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Photon-assisted tunneling of electrons through an insulating barrier may be used to detect long-wavelength
radiation with a sensitivity approaching the limit imposed by the Heisenberg uncertainty principle. A new
generation of ultra-low-noise millimeter-wave receivers, currently being developed for astronomical obser-
vation, utilizes the extremely sharp nonlinearity produced by single-electron quasiparticle tunneling between
two superconductors in a superconductor-insulator-superconductor (SIS) tunnel junction. At millimeter
wavelengths, the quantum energy #iw /e may be larger than the voltage width for onset of quasiparticle tun-
neling in a SIS junction; and under these conditions the absorption of a single photon can cause one addi-
tional electron to tunnel through the barrier. Several newly discovered quantum effects become possible in
this regime, including power amplification of an incoming signal during the process of frequency down-
conversion in a heterodyne receiver. The experimental development of SIS millimeter-wave receivers is re-
viewed, along with the quantum theory of mixing which predicts their performance.
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I. INTRODUCTION

Quantum detection of electromagnetic radiation is a
familiar concept in the visible and near-infrared portions
of the spectrum. The devices used as detectors in this
region—photomultipliers, photoconductors, and photo-
diodes—are all conceptually based on the photoelectric ef-
fect. An individual electron is ejected off the surface of a
metal, or out of a bound state in a semiconductor,
through the absorption of a single quantum whose energy
#iw is sufficient to create a free carrier. These carriers are
then amplified and counted to yield a measure of the in-
cident flux. Each such device possesses a long-
wavelength cutoff, beyond which an incident photon will
no longer have sufficient energy to create a carrier.

At much lower frequencies in the microwave and
millimeter-wave portions of the spectrum, quantum detec-
tion has until recently been possible only within narrow
bandwidths centered on the resonant frequencies of a few
molecular maser amplifiers. By contrast, the standard
detection technique over most of this region employs non-
linear resistive elements, usually Schottky barrier diodes,
as classical rectifiers and heterodyne mixers. Applied ra-
diation induces oscillatory potentials across the diode, and
these potentials combine via the nonlinearity to generate
an output signal at difference frequencies suitable for
electronic processing. The performance of nonlinear
resistive devices as detectors and mixers is typically mea-
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sured in terms of the conversion of power between fre-
quencies, rather than the conversion of quanta to carriers.
This characterization is fundamentally classical, and em-
ploys language and concepts far removed from those used
to describe the high-frequency quantum detectors.

Recent research on nonlinear effects in photon-assisted
tunneling has provided a link between classical and quan-
tum behavior in a new class of resistive mixers; and this
understanding has opened the way to quantum-limited
detection at millimeter wavelengths. The primary re-
quirement is a tunnel junction whose dc I- ¥V characteris-
tic is extremely nonlinear. An extraordinary nonlinearity
is created by the gap in available energies for single-
electron quasiparticles on both sides of a superconductor-
insulator-superconductor (SIS) tunnel barrier. In these
SIS junctions, a very sharp onset of normal tunneling
current is observed beyond a dc threshold voltage equal to
the superconductor energy gap. This abrupt nonlinearity
in the single-particle tunneling, as distinct from the
Josephson pair tunneling, is then used for resistive mix-
ing. When the quantum energy #w /e at the incident fre-
quency exceeds the voltage width of the threshold for on-
set of quasiparticle tunneling, a SIS junction ceases to
behave classically and instead responds to individual
quanta through the mechanism of photon-assisted tunnel-
ing.

Several newly discovered quantum effects occur in non-
linear quasiparticle tunnel junctions at high frequencies
that are forbidden in the low-frequency classical regime.
These phenomena arise from coherent modulation of the
relative phases of the quantum-mechanical wave func-
tions for electrons on opposite sides of the barrier in the
presence of an applied potential. At frequencies suffi-
ciently low that #iw /e is smaller than the voltage scale of
the nonlinearity, the net result is simply a classical modu-
lation of the dc I-V curve. At higher frequencies, howev-
er, the coherent phase modulation produces new effects
which depend upon the magnitude #w of the quantum en-
ergy. The most important of these is known as conver-
sion gain, and it allows the incident signal power in a
heterodyne mixer to be amplified during the process of
frequency down-conversion. This internal amplification
reduces the importance of output amplifiers in determin-
ing the overall system noise temperature, and makes
quantum-limited detection a practical possibility at very
long wavelengths.

Heterodyne receivers which utilize SIS quasiparticle
tunnel junctions as the mixing-element have recently
demonstrated sensitivities approaching the quantum limit
at frequencies between 36 and 115 GHz. There now ap-
pears to be no major obstacle to detection at the level of a
single quantum across the entire microwave and
millimeter-wave portion of the spectrum. This emerging
capability to detect ultra-low-level signals at these fre-
quencies is expected to have a profound impact on future
progress in radio astronomy, and eventually on spectros-
copy, space communications, and many other branches of
science and engineering.

The function of a heterodyne receiver is to mix a weak
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incoming signal at frequency wg with a large-amplitude
local oscillator (LO) at wyqg, in order to produce an
intermediate-frequency (IF) output at wp= |ws—wyo |
suitable for electronic processing. Phase information car-
ried by the incoming signal is preserved in the mixing
process, and noise is greatly suppressed by filtering the
output to retain only a relatively narrow bandwidth cen-
tered on wyr. The key component of a heterodyne receiver
is the nonlinear mixing element. The performance of the
mixer is characterized by (1) its conversion efficiency
(gain or loss) in transforming signal power to the output
frequency, (2) the response time (instantaneous band-
width) of the mixing element in its embedding network,
and (3) the mixer noise temperature T, defined as the
noise power kT, per unit bandwidth added to the signal
in the process of frequency down-conversion. There is a
fundamental limit to the noise temperature Ty, > fiw/k
imposed by the Heisenberg uncertainty principle on any
simultaneous measurement of the amplitude and phase of
the electromagnetic field. This may be appreciated by
noting that a bandwidth Av represents an effective mea-
surement time (Av)~!, so that the detection of a single
quantum within this interval corresponds to an incoming
signal power AvAv. The minimum uncertainty of any
coherent measurement must be of this order, and in fact
the true ‘“quantum-noise”-limited mixer temperature is
Ty =hv/2k. A quantum-limited heterodyne receiver can
thus detect the presence of a stream of photons with an
arrival rate approximately equal to its inverse bandwidth.
In typical receivers this would correspond to a signal of
~ 10° photons per sec. .

Realization of mixer noise temperatures approaching
the quantum limit does not, of itself, imply a capability to
detect at the level of individual quanta in the millimeter-
wave region. The output signal from the mixer must be
amplified before it can be processed, and present state-of-
the-art IF amplifiers suitable for this purpose have noise
temperatures in the 10-K range. This amplifier noise
must be multiplied by the mixer conversion loss in
evaluating the overall input noise temperature Tk of the
entire receiver. Since the quantum energy is Av/k~5 K
for v=100 GHz or A=3 mm, for example, even very
modest amounts of conversion loss can result in an IF
amplifier component of receiver noise temperature far in
excess of the quantum limit at millimeter wavelengths.
An ideal quantum-noise-limited receiver in this region
must therefore be based upon a heterodyne mixer with (1)
a mixer noise temperature Ty ~#iw/k near the funda-
mental limit, (2) a modest amount of conversion gain in
order to suppress the IF amplifier noise contribution to
the overall receiver temperature, and (3) a large instan-
taneous bandwidth (fast response time), potentially on the
order of 1 GHz or larger.

Under appropriate conditions in the quantum regime,
SIS quasiparticle mixers have demonstrated all of these
properties required in order to construct millimeter-wave
receivers that approach the fundamental limits of perfor-
mance.

The rapid progress in developing SIS quasiparticle
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mixers is the result of an unusual community of interest;
which includes recent advances in widely separated dis-
ciplines, based upon (1) new techniques for fabricating
high-quality superconducting tunnel junctions, (2)
millimeter-wave receiver technology created for Schottky
diode mixers, and (3) the interest and expertise of the ra-
dio astronomy community in engineering new ultra-low-
noise millimeter-wave receivers. The SIS diodes used in
these receivers are made possible by substantial previous
investments in research to produce high-quality small-
area superconducting tunnel junctions. Much of this ef-
fort, particularly at IBM, has been aimed at the reliable
fabrication of large numbers of junctions for Josephson-
effect logic circuits. Pb-alloy junctions with accurately
controlled current densities can now be routinely pro-
duced down to submicrometer dimensions. Methods have
also been devised to minimize degradation due to electri-
cal shock and thermal cycling. Progress in developing the
new millimeter-wave quantum receivers, which do not
utilize the Josephson effect, has thus been greatly ad-
vanced by the extensive fabrication technology developed
in order to produce small-area superconducting tunnel
junctions with high current densities.

Millimeter-wave astronomy has grown rapidly since the
discovery of the cosmic background radiation in 1965 into
a broad exploration of the interstellar medium. An essen-
tial component of this progress has been the development
of increasingly sophisticated techniques for engineering
low-noise receivers. A new generation of millimeter-wave
telescopes is currently under construction, and the new
SIS quantum receivers are expected to enhance their capa-
bilities greatly. The present expertise in millimeter-wave
engineering is being directly translated into the develop-
ment of these ultra-low-noise quantum receivers, since the
only essential change is the substitution of a supercon-
ducting tunnel junction in place of a cryogenically cooled
Schottky diode. Tunnel junction mixers have been uti-
lized for astronomical observations almost from their in-
ception, and a recently constructed A=2.6 mm wave re-
ceiver designed to observe the 115-GHz rotational emis-
sion from interstellar CO has achieved an overall receiver
noise temperature T ~70 K, only a factor of 10 above
the nominal quantum limit %o /k ~6 K at this frequency
(Pan et al., 1983a,1983b). The SIS mixer in this system
was not designed to operate in the conversion gain regime,
so that only a small fraction Ty ~15 K of the noise is
due to the mixer itself, with the majority coming from the
intermediate-frequency amplifiers. Nevertheless, this
115-GHz receiver represents a factor of 2—3 improve-
ment in noise temperature over the previous state-of-the-
art cooled Schottky diode systems. Future designs which
utilize the conversion gain effect are expected to produce
dramatically lowered receiver temperatures in the range
Tr~20K at 115 GHz. Mixer noise temperatures Tps ~9
K approaching the quantum limit have already been
achieved in the presence of large conversion gain
L~'> +4 dB at 36 GHz (McGrath et al., 1981). It now
appears likely that tunnel junction mixers will reduce re-
ceiver temperatures by at least a factor of 7—10 over most
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of the millimeter-wave region within the next few years.
When they are used as radiometers for astronomical ob-
servation, the integration time required to discriminate a
given difference in sky temperature depends upon the
square of the receiver noise temperature. Therefore the
advent of this new generation of quantum mixers is ex-
pected to improve the potential for millimeter-wave as-
tronomy by factors of 50—100, and perhaps more. Al-
though full utilization of this potential will eventually re-
quire radio telescopes deployed in space, in order to es-
cape thermal radiation from the Earth’s atmosphere, this
increased capability to observe at millimeter wavelengths
should eventually produce major advances in exploring
the structure of the Universe.

The physical phenomenon that provides the basis for
this work is the photon-assisted tunneling of single-
electron quasiparticles across a SIS tunnel barrier. This
effect was discovered experimentally by Dayem and Mar-
tin (1962), and their results are reproduced in Fig. 1(a).
Microwave radiation of frequency v=38 GHz applied to
the junction was found to induce structure onto the dc
I-V curve, with current steps appearing at voltage dis-
placements corresponding to integral multiples of
hv/e~0.16 mV above and below the sharp onset of
single-electron  tunneling at a dc voltage ¥,
=(A;+4,)/e~0.9 mV. The essential features of this ef-
fect were soon explained theoretically by Tien and Gor-
don (1963), and can be understood in terms of the simpli-
fied energy-band diagram shown in Fig. 1(b). The super-
conductors on both sides of the tunnel barrier are in their
ground states at 7 =0, and there is an energy gap 2A for
each electrode required in order to break up a Cooper pair
to produce two single-particle excitations. The energies of
the available quasiparticle excitations are given according
to the BCS theory (Bardeen et al., 1957) by ‘

E =(ei+AY)'2, (1.1)

where €; is the normal-state quasiparticle energy mea-
sured from the Fermi level. The density of states for
single-particle excitations in the superconductor therefore
becomes

D(E)IE ~N(0)2% g
- dE,

E
=N(0)WdE , (1.2)

where N (0) represents the density of states at the Fermi

~ level in the normal metal above the superconducting tran-

sition. The divergence in this density of states near the
gap edge for both superconductors is illustrated in Fig..
1(b). The onset of single-particle tunneling then takes
place at a dc voltage eVy=A,+A,, where there is suffi-
cient energy to allow the tunneling electron to enter an
available quasiparticle state above the gap on the right in
Fig. 1(b) and leave an unpaired electron quasiparticle
behind on the left. The steep increase of the single-
particle tunneling current seen in Fig. 1(a) at the sum of
the gap voltages arises from crossing of the divergences in
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FIG. 1. (a) Photon-assisted tunneling steps (dashed curve) in-
duced onto the dc I-V characteristic (solid curve) of a Al-
Al,Os-In tunnel junction by applied microwave radiation at 38
GHz with #iw/e=0.16 mV (Tien and Gordon, 1963), and (b)
densities of states vs energy for quasiparticle excitations in su-
perconductors on opposite sides of a tunnel barrier.

the densities of states, and in an ideal junction this would
produce an infinitely sharp discontinuity. '

The step structure is induced by the process illustrated
in Fig. 1(b). In the presence of a microwave field, the ab-
sorption of n quanta inside the barrier can provide
enough energy to open this channel for quasiparticle tun-
neling when eVy>A;+A,—n#iw. The current steps
below the dc onset in Fig. 1(a) then represent the thresh-
old voltages for which the absorption of at least
n=1,2,3,..., microwave photons is required for
single-electron tunneling. The representation in terms of
a semiconductorlike band picture shown in Fig. 1(b)
neglects the mixture of “electron” and “hole” properties
involved in constructing quasiparticle wave functions near
the gap edge in a superconductor. The “coherence fac-
tors,” which in general enter linear response functions be-
cause of this admixture, were shown to cancel out for
single-particle tunneling between two superconductors by
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Cohen, Falicov, and Phillips (1962). Their pioneering
work developed the Hamiltonian formulation of tunneling
theory, based on a concept introduced by Bardeen (1961);
and their results confirmed Giaever’s (1960a,1960b) origi-

“nal interpretation of a direct observation of the energy

gap in his tunneling experiments, using total quasiparticle
densities of states and energy-band diagrams similar to
those shown here. The simplified band picture in Fig.
1(b) thus ignores important physical properties of the
quasiparticle excitations in a superconductor, but those
properties do not enter in determining the total single-
particle tunneling current.

Two important observations can be made with regard
to the results illustrated in Fig. 1. First, the step structure
induced onto the dc I-V curve by applied microwave radi-
ation reflects the extremely abrupt onset of quasiparticle
tunneling at the sum of the gap voltages for the two su-
perconductors. This rise is perfectly sharp for an ideal-
ized SIS junction, but in a real diode it will be spread over
a finite voltage range by a variety of physical mecha-
nisms. The existence of the induced photon steps in Fig.
1(a) will therefore be evident only for frequencies suffi-
ciently high that #iw/e is large compared to the voltage
width of the dc nonlinearity. At lower frequencies, an ap-
plied ac potential will smoothly average the dc I- ¥ curve,
and the response will be essentially classical. New phe-
nomena predicted by the quantum mixer theory can
therefore be observed only in this high-frequency quan-
tum regime. The second important observation is that the
process of photon-assisted tunneling illustrated in Fig.
1(b) is capable of generating one additional carrier flowing
across the junction for each microwave photon absorbed
inside the barrier. Such a device thus has the capability,
at least in principle, to detect individual quanta at very
long wavelengths.

In addition to the single-particle current, a tunnel junc-
tion between two superconductors can also support the
tunneling of Cooper pairs (Josephson, 1962). This pair
tunneling results in a dc supercurrent through the junc-
tion up to a maximum critical value I, =wA/2eR, for
identical BCS superconductors at low temperatures,
where R, is the normal-state resistance. With a finite dc
voltage bias applied to the junction, the pair current oscil-
lates at the Josephson frequency v;=2eV,/h=484
GHz/mV. The junction shown in Fig. 1(a) has sufficient
capacitance to short-circuit these high-frequency oscilla-
tions on the millivolt scale shown here. This capacitive
shunting of the ac Josephson current allows the diode to
operate on the nonlinear quasiparticle portion of its I-V
characteristic; and in fact the existence of Josephson pair
tunneling was unknown at the time of the Dayem and
Martin (1962) experiments. Josephson’s enormously im-
portant discovery focused the attention of the physics
community on the many strange and beautiful pair tun-
neling phenomena that now bear his name. Much work
in the ensuing years was, in fact, devoted to attempts at
constructing low-noise millimeter-wave receivers utilizing
the ac Josephson effect. The Josephson heterodyne mixer
experiments, however, used point-contact junctions in or-



J. R. Tucker and M. J. Feldman: Quantum detection at mm wavelengths 1059

der to avoid capacitive shunting of the pair current.
These junctions are nonhysteretic, and their quasiparticle
current is generally linear. The basic problem with
Josephson point-contact mixers is that noise originating at
a large number of harmonics of the signal frequency is
mixed into the IF output. Even though the nonlinear
reactance due to the ac Josephson effect could produce
conversion gain, the mixer noise temperatures were found
to have a practical lower bound T, > 40%iw /k, far in ex-
cess of the quantum limit (Claassen and Richards, 1978),
and so provided no significant advantage over the more
conventional Schottky diode receivers.

More than ten years elapsed between the Dayem and
Martin (1962) experiments and the invention of the
super-Schottky diode by McColl, Millea, and Silver
(1973). This device consists of a Schottky barrier between
a degenerate semiconductor and a superconducting metal
contact. Extremely heavy doping in the semiconductor
produces a depletion layer sufficiently thin that tunneling
of electrons near the Fermi surface, rather than thermion-
ic emission over the barrier, dominates the diode’s con-
duction at low temperatures. Below the superconductor’s
transition temperature, the opening of the energy gap for
quasiparticle excitations produces an exponentially non-
linear dc tunneling current Iy «<exp(eVy/kT) for bias
voltages kT <eV < A below the gap. At operating tem-
peratures T=~1 K, this extraordinary nonlinearity was
utilized to construct direct detectors and heterodyne
mixers at 9 GHz with record sensitivities (Vernon et al.,
1977; McColl et al., 1977). Even though they surpassed
all previous microwave receivers, the performance of
super-Schottky mixers was essentially classical at the fre-
quencies employed, since their dc I-¥ nonlinearity was
considerably less sharp than that of the SIS diode shown
in Fig. 1(a). The anticipated extension of the super-
Schottky operating frequency toward 100 GHz, however,
stimulated an inquiry by Tucker (1975) and Tucker and
Millea (1978,1979) into the potential relationship between
photon-assisted tunneling and detector performance. An
extension of the Tien-Gordon analysis clearly indicated
that tunnel junctions should respond to individual quanta
when #iw /e is larger than the voltage width of the dc non-
linearity. A full quantum generalization of classical mi-
crowave mixer theory was subsequently developed (Tuck-
er, 1979) in order to predict the high-frequency behavior
of nonlinear single-particle tunnel junctions as heterodyne
mixers, and it was demonstrated that mixer noise tem-
peratures could be reduced toward the fundamental limit
Ty ~%iw/k in the high-frequency quantum regime.
Super-Schottky mixers were eventually operated at 31
GHz (McColl et al., 1979), still as classical devices, but
their operating frequencies could not be successfully ex-
tended into the projected quantum region near 100 GHz
(Dickman et al., 1981) because of parasitic losses due to
increased spreading resistance in the semiconductor as the
diameter of the diodes was reduced. Nevertheless, the ex-
traordinary detection and mixing properties demonstrated
by the super-Schottky diode, together with the predictions
of the quantum mixer theory, stimulated progress along a

Rev. Mod. Phys., Vol. 57, No. 4, October 1985

more technically feasible direction.

The concept of utilizing the nonlinear quasiparticle I- V'
characteristic available in a SIS junction for detection and
mixing originated independently, and roughly simultane-
ously, in several laboratories. By the mid-1970s, work on
high-current-density superconducting tunnel junctions
had progressed to the point where small-area SIS devices
could be fabricated having characteristic frequencies
(R,C)~! in the microwave region and impedance levels
R, ~100 Q suitable for detector applications. The first
published description of work in progress on SIS mixers
appeared in an article by Richards (1978).

In the spring of 1979, three groups reported initial
heterodyne mixing experiments using the quasiparticle
nonlinearity of SIS tunnel junctions. The results of
Richards, Shen, Harris, and Lloyd (1979) at 36 GHz,
shown in Fig. 2, gave clear evidence of photon-assisted
tunneling on the output mixing signal and a noise tem-
perature T, <7 K=~4%iw/k strikingly close to the quan-
tum limit. Dolan, Phillips, and Woody (1979) directly ob-
served the photon steps induced onto the dc I- ¥ curve by
their 115-GHz local oscillator and placed an upper bound
T < 100 K on the mixer noise temperature. Rudner and
Claeson (1979) demonstrated the use of a 40-element
series array of tunnel junctions operating as a heterodyne
mixer in the classical regime at 9 GHz, with a low noise
temperature T); ~10—40 K. The observation of photon-
assisted tunneling effects in heterodyne mixing at the
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FIG. 2. dc I-V curves of a Pb-alloy junction SIS mixer at 1.5 K
a, without and b, with applied LO power at 36 GHz. Curves ¢
and d represent the output of the IF amplifier obtained with
matched 1.5-K loads placed at the output and input ports of the
mixer, respectively, and are used to deduce noise temperature.
Curve e is the IF output with a calibrated 36-GHz signal ap-
plied at the input, and is used to determine conversion efficiency

‘(Richards et al., 1979).
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higher frequencies greatly stimulated interest in compar-
ing experimental results with the quantum theory. The
nonclassical response of SIS junctions to individual quan-
ta in low-level direct detection was soon confirmed by
Richards, Shen, Harris, and Lloyd (1980) at 36 GHz, and
subsequently by Hartfuss and Gundlach (1981a) at 70
GHz, in agreement with theoretical predictions.

A computer simulation based on the quantum mixer
theory was developed in order to characterize the hetero-
dyne mixing properties of a SIS tunnel junction, and this
model produced several extraordinary predictions (Tuck-
er, 1980). It showed that these devices should not only be
capable of quantum-limited mixer noise temperatures, but
that conversion gain would also be possible in the quan-
tum regime. In addition, the low-frequency output im-
pedance [the dynamic resistance on the steps in Fig. 1(a)]
was predicted to become infinite and then negative under
appropriate conditions. The available small-signal con-
version gain in this case approaches infinitely large values
as the output impedance increases, and remains infinite in
the negative-resistance region.

‘The first observation of conversion efficiencies slightly
in excess of the classical limit was made only a few weeks
after its prediction in SIS mixer experiments at 36 GHz
by Shen, Richards, Harris, and Lloyd (1980). Similar re-
sults were soon achieved at 73 GHz by Rudner, Feldman,
Kollberg, and Claeson (1981a,1981b), using a six-element
series array. This latter work demonstrated the potential
advantages of series arrays in terms of dynamic range and
relaxation of fabrication constraints at high frequencies,
and the quantum mixer theory was shown to provide a
detailed interpretation of their data. Meanwhile, high-
current-density  single-junction SIS receivers were
developed and tested in astronomical observations at 115
GHz by Phillips, Woody, Dolan, Miller, and Linke (1981)
and in collaboration with Sollner (Dolan et al., 1981).
Negative resistance and infinite available conversion gain
were confirmed in experiments at 115 GHz by Kerr, Pan,
Feldman, and Davidson (1981). Negative resistance and a
net conversion efficiency greater than unity were reported
by Smith, McGrath, Richards, van Kempen, Prober, and
Santhanam (1981) at 36 GHz; and in collaboration with
Batchelor (McGrath et al., 1981) they obtained a large
conversion gain L _124 dB together with a mixer noise
temperature Ty =9 K < 5%iw /k near the quantum limit.

Research in this field has recently taken several new
directions. Greatly improved experimental measurements
of noise temperature are now being implemented in order
to evaluate the performance of mixers operating near the
quantum limit. The properties of series arrays, and in
particular the question of whether these devices show any
excess noise over their single-junction counterparts, is an
area of intensive investigation. The possibility of submil-
limeter quasiparticle mixers is being addressed, using ei-
ther SIS junctions or superconductor—insulator—normal
metal (SIN) junctions. SIN junctions are less nonlinear,
but are free from the adverse effects of Josephson pair
tunneling.

It is already clear that these new receivers will have a

Rev. Mod. Phys., Vol. 57, No. 4, October 1985

major impact on the science and technology of ultra-low-
noise detection across the millimeter-wave and microwave
region. It also appears that the concepts upon which this
work is based may be successfully extended toward both
higher and lower frequencies, and perhaps to the descrip-
tion of radically different types of tunneling phenomena
as well (Bardeen, 1980). Here we shall attempt to present
a review of this subject which can serve as both an intro-
duction to the field and a summary of progress thus far.

lil. BACKGROUND

The development of photon-assisted quasiparticle tun-
neling as a means of detection has, to a great extent, been
motivated by the need for low-noise millimeter-wave re-
ceivers in astronomical observations. The experimental
successes to date have been made possible by the recent
sophisticated development of Josephson junctions intend-
ed for digital applications. In this section, these two
topics are briefly reviewed, along with previous efforts to
utilize the Josephson pair tunneling for mixing and detec-
tion.

A. Millimeter-wave receivers

The most immediate practical application of SIS
mixers is in millimeter-wave astronomy. This field has
advanced rapidly in the last decade and has revolutionized
our understanding of the colder components of the
Universe. For instance, millimeter-wavelength observa-
tions have resulted in the discovery of giant molecular
clouds, the most massive objects known in our galaxy.
An intricate organic chemistry in the interstellar medium
has been revealed. The detection of massive and energetic
molecular outflows from young stellar objects, generally
collimated into pairs of oppositely directed jets, suggests a
total revision of our concepts of early stellar evolution.
This cursory list could be extended for pages. In the near
future, important new results are likely in studies of the
3-K microwave background, the evolution of galaxies, the
interstellar medium, star formation, stellar chromo-
spheres, and the planetary system.

In light of this rapid progress, a number of new
millimeter-wave observatories are under construction or
are being planned. For example, the NSF Subcommittee
on Millimeter- and Submillimeter-Wavelength Astronomy
has strongly recommended the design of a large aperture-
synthesis array of many millimeter-wave antennas (Bar-
rett et al., 1983). The potential of all of these new facili-
ties will be greatly enhanced by utilizing SIS receivers.

It is universally acknowledged that a rapid increase in
receiver sensitivity has been one of the major factors driv-
ing millimeter astronomy research. Yet the present re-
ceivers leave considerable room for further improvement.
At millimeter and submillimeter wavelengths, more so
than in any other spectral region, astronomy systems are
still receiver limited: the receiver’s noise contribution is
larger than the other contributions (telescope losses, the
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atmosphere, and the celestial background). Ideally,
millimeter-wave receiver noise temperatures would be
considerably less than 100 K for ground-based observa-
tories, and 10 K for space telescopes. Over most of the
millimeter- to submillimeter-wave spectral region this cri-
terion is far from being met, so that any further improve-
ment in receiver sensitivity will yield immediate rewards
for the observer.

Almost all spectral line millimeter-wavelength observa-
tions use heterodyne receivers. A rough prototype of a
heterodyne receiver is shown in Fig. 3. The input signal
radiation at frequency wg from the telescope is coupled
into the mixer through a feed horn or some equivalent
structure. The mixer combines the signal with local oscil-

-lator radiation at frequency @y to produce a beat at the
intermediate frequency wr= | wg—wro|. The IF output
is then amplified, perhaps mixed down to a still lower fre-
quency, and fed to some sort of spectrometer to reproduce
and display the spectrum of the input signal.

Note that in heterodyne detection the primary amplifi-
cation is achieved in the second major component of the
receiver. Thus both the IF amplifier and the mixer must
have low noise. An alternative to this somewhat hybrid
technique is, of course, to use an amplifier as the first
stage of a receiver, with sufficiently high gain that the
subsequent signal-processing stages can add little noise.
But with present technology, the high-gain amplifiers
having the lowest noise temperatures, less than 10 K, are
cooled GaAs FET (field-effect transistor) devices (Wein-
reb et al., 1982) operating in the frequency range 1—5
GHz. Heterodyning takes advantage of these amplifiers.
The job of the mixer is to reproduce the signal at the ap-
propriate IF, with as little loss and as little added noise as
possible. This is evident in the equation for the total re-
ceiver noise temperature,

Te=Ty+LTF . @.1)

Here T), is the noise due to the mixer itself referred to its
input, Tr is the noise temperature of the IF amplifier re-
ferred to its input, and L is the conversion loss of the
mixer. The definition of a “noise temperature” is dis-
cussed in Sec. VL.LE. We use this term to represent a noise
power, expressed as a temperature by equating it to kT Awv.

An important complication arises from the heterodyne
technique. Most mixers operate in the double-sideband
(DSB) mode; that is, since wyr is relative small, most
mixers will convert incoming radiation both at wy o+ o

LOCAL
OSCILLATOR

Ws

HORN

TUNING
AND BIAS

FIG. 3. Block diagram representing a heterodyne receiver.
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and at @1 o—wrF to the same output frequency wyp. If the
performance of a receiver is measured using broadband
thermal input signals, which have equal power in both
sidebands, the inferred noise temperature is called
TR(DSB), and this value is commonly quoted. Likewise,
DSB values of T), and L may be defined. For spectral
line observations, however, the narrow-band signal ap-
pears in only one sideband, whereas noise is contributed
from both, unless some arrangement is made to remove
the unwanted “image” sideband frequency. The appropri-
ate figure of merit for a spectroscopic receiver is thus the
single-sideband (SSB) value of Ty, which is twice
Tx(DSB) if the mixer responds equally to both sidebands.
On the other hand, a receiver may be designed to operate
in the intrinsically single-sideband mode, accepting input
radiation in one sideband only. In this case measurements
of the performance give Tx(SSB) and L(SSB) directly.
Equation (2.1) is correct if either SSB or DSB values are
used consistently. In this paper, SSB noise temperatures
will be quoted throughout, except where explicitly noted.

Numerous variations of Fig. 3 are possible. The local
oscillator may accompany the signal through the input
horn. The local oscillator may be at one-half of the usual
frequency: subharmonic pumping. Various image-
rejection schemes may be used. Note that any real re-
ceiver will have some loss between its input and the mixer
and between the mixer and the IF amplifier, and this will
always modify Eq. (2.1) to increase Tg.

Tr measures the sensitivity of a receiver. A receiver
will give a signal-to-noise ratio of unity in an integration
time At for a signal channel of bandwidth Av if the
equivalent temperature of the signal is (on the order of)
Tgr/V AvAt (see, for example, Tiuri, 1966). Thus reduc-
ing Tx allows the observer to cut his integration time by
the square of the improvement. Alternatively with the
same integration time, weaker signals become observable.
Figure 4 shows a plot of the best reported receiver noise
temperatures for a number of different mixer types, as a
function of frequency. Also shown is the approximate
lower limit for a receiver’s noise temperature T ~fiw /k.
It is seen that no millimeter-wave receiver has as yet come
within an order of magnitude of this “quantum limit.”

Most millimeter-wave astronomy observations have
used Schottky diode heterodyne receivers, recently re-
viewed by Schneider (1982). The last ten years have seen
a remarkable improvement in their performance: the SSB
Ty for these receivers at 115 GHz has been reduced from
~2000 K to less than 150 K at present. A large increase
in sensitivity came with the development of Schottky
diodes that show a marked reduction in intrinsic noise
when cooled to cryogenic temperatures. Schottky diode
technology is now relatively mature, and there appears to
be little prospect of a further dramatic improvement in
performance, at least in the (30—120)-GHz range. At fre-
quencies above 300 GHz, the InSb bolometer mixer re-
ceiver has achieved the lowest noise temperatures (Phillips
and Woody, 1982). However, this receiver is unsuitable
for many purposes, because its instantaneous bandwidth is
only ~1 MHz, limited by the hot-electron recombination
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FIG. 4. Lowest reported single-sideband noise temperatures Tr
for complete receiver systems in the millimeter and
submillimeter-wave regions: ®, Schottky receiver results (Pred-
more et al., 1984; Erickson, 1984; Ré4ser and Wattenbach,
1984); A, InSb receiver results (Phillips and Woody, 1982; Wil-
son, 1983); M, SIS receiver results (Pan et al., 1983b; and Sut-
ton, 1983).

time. Below about 50 GHz, maser amplifier receivers
have provided extremely low noise temperatures. Unfor-
tunately, these solid-state masers are extremely difficult to
fabricate, require large amounts of pump power, and are
cumbersome to operate; and the extension of this
technology to higher frequencies is problematic.
Superconductor-based receiving elements, discussed in the
next section, have been used only sporadically for radio
astronomy, generally for purposes of demonstration, until
the recent development of SIS mixers.

All of these receivers require an input system to couple
the signal radiation into the detecting element, with as lit-
tle loss as possible. The input system may also perform
the functions of filtering, diplexing (combining the LO
and signal waves), switching, and calibration. Much work
has gone into developing Schottky diode mixer coupling
systems, and most if not all of this technology is directly
adaptable to SIS mixers. Therefore we shall discuss this
topic in some detail.

In the long-millimeter-wavelength region, low-noise
Schottky mixer mounts have become somewhat standard-
ized, as sketched in Fig. 5. The diode is mounted along
the broad wall of a waveguide, and the contact wire,
which serves as an antenna to couple the microwave radi-
ation into the diode, is connected to the opposing broad
wall. The current path for the IF and dc must be filtered
to prevent rf radiation from escaping the waveguide. The
waveguide is generally of reduced height, usually one-
quarter of the standard, to give an impedance transforma-
tion (to about 100 Q at the diode) and to suppress an out-
of-band resonance inherent in this type of mount. A slid-
ing backshort and perhaps a second tuning element are
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FIG. 5. Typical Schottky diode mixer mounting configuration
used at long millimeter wavelengths.

used to optimize the coupling of radiation into the diode.
The signal radiation is introduced into the waveguide
through a feed horn, and the LO generally enters through
a directional filter. As we shall see, this receiver design
has been adapted for use in most SIS experiments, with
only minor variations.

At higher frequencies, in the submillimeter region,
waveguide-mounted receivers are much less successful,
for two reasons. Most importantly, the machining dimen-
sions required to scale waveguide components accurately
to higher frequency become very difficult or impossible to
fulfill. But even with exact scaling, the surface loss per
wavelength of the waveguide increases as the square root
of the frequency, and this loss compounds every design
problem. Therefore submillimeter-wavelength receivers
have instead used a variety of quasioptical coupling sys-
tems, recently reviewed by Archer (1984), each with its
own advantages and drawbacks. Among them are the
planar slot-line antenna (Thungren et al., 1982), in which
the diode is suspended across a slot line which opens out
into a planar antenna, the cavity-backed slot radiator
(Kerr et al., 1977), in which the diode is mounted across
two parallel slots in a substrate, and the corner cube re-
flector (Krautle et al., 1977), in which the diode is
mounted near the vertex of a three-wall metallic corner.
These techniques are still rudimentary, and great oppor-
tunity remains for new, clever, coupling schemes. Filter-
ing and diplexing of the incident submillimeter radiation
is generally accomplished by a dual-beam (e.g., Martin-
Puplett) or multibeam (e.g., Fabry-Perot) interferometer.

In the short-millimeter-wave region some combination
of waveguide and quasioptical techniques is generally
used. For instance, the diode may be mounted in an over-
sized waveguide and the radiation applied through an in-
terferometer which serves as a diplexer and an image-
rejection filter. The variations are legion. Waveguide
techniques are being used at ever higher frequency (Erick-
son, 1983), and it remains to be seen how far this technol-
ogy can be successfully extended.

One marked advantage of a waveguide mount is that
sliding short circuits and other tuning elements can pro-
vide a wide in situ tuning range. In most quasioptical
coupling schemes it is difficult to include adjustable tun-
ing elements. In this circumstance it is especially impor-
tant that the mixer embedding circuitry be well character-
ized and appropriate. But complex impedance measure-
ments are extremely difficult at millimeter wavelengths.
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Instead, the complex embedding impedance seen by a
diode in a mixer circuit can be determined using a low-
frequency network analyzer on a scale model of the
mixer. One example of this technique is given by Held
and Kerr (1978). To analyze an (80—120)-GHz Schottky
mixer, a 65X scale model was constructed of the entire
mixer mount, but not including the Schottky diode itself.
The diode was replaced by the tip of a small coaxial cable.
The other end of the cable was connected to a network
analyzer, which then measured the complex impedances
seen by the Schottky diode at the various relevant fre-
quencies, as a function of the position of the tuning
backshort. This same technique was successfully adapted
to analyze a SIS mixer (Feldman et al., 1983), as is
described in Sec. V.B. Scale modeling is valuable in actu-
ally designing the mixer circuitry as well; elements of the
scale model can be adjusted while monitoring to achieve
the requisite impedance range. One potential problem
with scale models is that skin effect loss does not scale
directly with frequency, so care must be taken when this
is important.

The SIS junction performs the same function as the
Schottky diode, so it is only natural that the first SIS
mixers used straightforward modifications of existing
Schottky mixer mount designs. But there are significant
differences between the two types of diode. Most impor-
tant in this context is that the most sensitive Schottky
diode is a three-dimensional point-contact device, and
Schottky mixers have been designed around this
geometry. The SIS junction is a planar, thin-film struc-
ture, which is potentially much more versatile. SIS
mixers could be built using integrated-circuit techniques
to combine coupling structures, tuning circuits, and even
IF signal-processing circuits on the same substrate as the
SIS junction. To date, little advantage has been taken of
this possibility. Another difference is that SIS mixers re-
quire much less LO power than Schottky mixers.
Schottky design constraints due to inadequate LO power,
important at higher frequencies, can be avoided. In time,
one may expect that mixer structures more appropriate
for SIS junctions will be developed.

The various coupling and tuning structures that have
been used in experimental SIS mixers are discussed in Sec.
V.A. In addition, Irwin et al. (1985) have demonstrated
an 88-GHz SIS direct detector, which is integrated with a
planar vee-type antenna. Two suggestions have appeared
for electrically adjustable tuning elements for SIS mixers.
Whiteley (1982) notes that a pumped SIS junction that is
inductively terminated at its IF port presents an inductive

reactance at its rf port; this can serve as a tuning element °

for a second SIS junction, the mixer junction. Irwin
et al. (1981) propose using the kinetic inductance of a
Josephson junction for tuning a SIS mixer. These tech-
niques have not yet been tried.

B. Superconductor tunnel junctions

The phenomenon of superconductivity was originally
discovered early in this century by Kamerlingh Onnes
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(1911). After a rich experimental and theoretical history,
the understanding of superconductivity reached a major
milestone with the BCS theory (Bardeen, Cooper, and
Schrieffer, 1957). In brief, this theory states that the
electron-phonon interaction results in a weak attraction
between electrons, which, in certain materials and at low
enough temperatures, is sufficient to cause the electrons
to form bound pairs. Although a single electron is a fer-
mion, an electron pair is a boson, and all of the electron
pairs in the metal are condensed into the same state, the
superconducting ground state, whose collective degrees of
freedom are described by a single quantum-mechanical
wave function. A single-particle excitation above this
ground state requires a minimum threshold energy A (the
“energy gap”), and consists of a quasiparticle with both
“electron”- and ‘“‘hole”-type properties.

Cohen, Falicov, and Phillips (1962) formulated a Ham-
iltonian theory describing quasiparticle tunneling through
a potential barrier between two bulk superconductors; and
their formalism provides the starting point for the quan-
tum mixer theory described in Sec. IV.A. Very shortly
thereafter, Josephson (1962) made the remarkable predic-
tion that superconducting pairs could also tunnel through
a potential barrier, and deduced the consequences of this
“Josephson tunneling,” using the same Hamiltonian
model. The lossless pair tunneling current was found to
depend upon the difference between the phases of the con-
densate wave functions for the superconductors on either
side of the barrier as

I=I;sing, (2.2)

where @ is the phase difference and I; is the critical
current, the maximum zero-voltage current which can be
passed, dependent upon the specific physical structure.
When a finite potential drop V occurs across the barrier,
the phase difference varies in time as

%ste - .__2;" , 2.3)

In the presence of a time-independent voltage V,, Eq.
(2.3) can be integrated and substituted into Eq. (2.2) to
predict an alternating current which flows across the bar-
rier at frequency

VJ=2(:‘V0/h . (2.4)

This Josephson frequency, v; =484 GHz/mV, is in the
appropriate range to encourage attempts to use pair tun-
neling for the detection of microwave and millimeter-
wave radiation. In spite of a great deal of effort spent in
exploring various detection modes, Josephson detectors
for a variety of reasons have never been fully competitive
with conventional detectors. Even so, there is still strong
reason to believe that practical Josephson-effect radiation
detectors may yet be developed. In addition, the
Josephson-effect detection work is important in the con-
text of this paper, since it set the stage for the eventual
development of SIS mixers, which rely on quasiparticle
tunneling.
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In this section we shall briefly review a few of the vari-
ous types of Josephson junctions and some of the high-
frequency experimental work using these devices. In oth-
er areas, Josephson junctions have come into widespread
practical use only in the SQUID (superconducting quan-
tum interference device), which is the most sensitive mag-
netic field sensor, and to establish the standard of voltage,
which is now defined through a frequency measurement
by Eq. (2.4). In addition, a great deal of effort has gone
into the development of digital circuit elements which
rely upon Josephson junctions, with the long-range hope
of building a Josephson-based computer. An offshoot of
this work is the development of junctions, discussed
below, that are quite well suited to the requirements of
SIS mixers.

All of the topics mentioned in this section are discussed
at much greater length in Barone and Paterno (1982) and
the references therein. An excellent general introduction
to the subject of superconductivity may be found in Tink-
ham (1975).

1. Types of junctions

Any Josephson junction consists of two bulk supercon-
ductors which are ‘“weakly” connected, so that a pair
current can pass between them but only by tunneling
through the weak barrier. The archetypical Josephson
junction is the superconductor-insulator-superconductor
(SIS) sandwich, illustrated in the inset of Fig. 1(a). The
insulator is most often the oxide of the base superconduc-
tor electrode, leading to the term ‘“‘oxide-barrier junction.”
In an insulator-barrier junction the quasiparticle current,
as well as the pair current, must tunnel through the bar-
rier, which leads to a quasiparticle-branch I-V charac-
teristic of the type seen in Fig. 1(a). The junction may be
biased on its supercurrent branch or on its quasiparticle
branch. The physical geometry of this junction is that of
a parallel plate capacitor with a very narrow dielectric
gap. This considerable capacitance and the attendant hys-
teresis can mask certain Josephson-related effects, and so
much of the earlier experimental work aimed at high-
frequency applications used other types of Josephson
junctions. At the present time, however, experimental in-
terest is largely focused on insulator-barrier junctions be-
cause of their many advantages: they are very stable,
operate at a moderate current density, and lend them-
selves to photolithography and modern integrated-circuit
fabrication techniques.

There are many other types of Josephson junctions; the
major criterion is that Eq. (2.2) apply on a microscopic
scale. For our purposes we need mention only a few.
Perhaps at the furthest extreme from the insulator-barrier
junction is the Josephson microbridge (Anderson and
Dayem, 1964). The weak connection in a microbridge is a
very narrow and short constriction, generally only a few
tenths of a micrometer in dimension, in what would oth-
erwise be a single superconducting region. Very roughly,
the “size” of a superconductor’s electron pair wave func-
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tion is the coherence length &, and if the maximum di-
mension of the constriction is less than &, then pairs can-
not inhabit the constriction region and must in some sense
tunnel through it. The quasiparticles, on the other hand,
pass through the microbridge by direct conduction. An
advantage of the microbridge is that it can be rather
faithfully represented in many cases by a very simple
model, the resistively shunted junction (RSJ) model, in
which the junction’s linear resistance to the quasiparticle
current is in parallel with the supercurrent given by Egs.
(2.2) and (2.3), with negligible capacitance. This model
gives a nonhysteretic dc I- V curve, illustrated as the solid
line in Fig. 6. The pair current oscillations described by
Eq. (2.3) are not in this case shunted through a parallel
capacitance, as in the insulator-barrier junction, and this
introduces a complicated time-dependent behavior onto
the finite voltage portions of the dc I- ¥ characteristic in
Fig. 6 that must be accurately modeled in analyzing any
Josephson-effect device. Perhaps the strongest objection
to microbridges has been that under reasonable operating
conditions the current densities in the bridge region can
become large enough to create a nonequilibrium quasipar-
ticle distribution, an undesirable effect in some ways simi-
lar to heating.

Most high-frequency experiments have used the
“point-contact” junction, which consists of a very fine su-
perconducting point pressed onto a flat superconductor.
Depending upon the nature of the point and upon the
pressure, the point contact’s physical and electrical
characteristics can span the range from oxide-barrier
junction to microbridge. The point-contact structure as-
sures a reasonably low capacitance and an adequate sink
for nonequilibrium quasiparticles. The adjustment of the
point-contact pressure is extremely critical, and although
this provides considerable versatility, the mechanical in-

NI
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FIG. 6. dc I-V curves calculated for an ideal Josephson ele-
ment shunted only by a linear resistance. Without microwave
radiation (solid curve) the maximum zero-voltage supercurrent
is I;. When microwave radiation at frequency o is applied
(dashed curve) the dc supercurrent is depressed and Josephson
steps appear at integral multiples of % /2e. The optimum bias

‘point for a Josephson-effect mixer is circled.
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stability of these devices has been a serious problem,
much more so than for the pointed structures used for
high-sensitivity Schottky mixers, where the point is used
to contact the junction rather than to form it.

The subject of this paper is nonlinear quasiparticle tun-
neling, as opposed to Josephson pair tunneling. The SIS
junctions used in quasiparticle mixers are, indeed, Joseph-
son junctions, even though the name “SIS junction” was
coined to maintain this distinction. By happy cir-
cumstance, the best Josephson junctions for digital com-
puter elements are also the best SIS junctions for quasi-
particle mixing. This is in part because the digital re-
quirement of rapid response time, i.e., relatively low capa-
citance, is also a requirement for good high-frequency
performance.. A great deal of developmental research has
been directed towards designing Josephson junctions for
digital circuits, and the availability of these junctions has
been essential to the realization of practical SIS mixers.

Most experimental SIS mixers, reviewed in Sec. V.A,
are based on Pb-alloy junctions. Lead is a favorable ma-
terial because it is relatively easy to work with and has a
relatively high superconducting transition temperature,
T,=7.2 K. A high T, is important for two reasons. The
quasiparticle current is most nonlinear at low tempera-
tures, “low” meaning <7, /2, and it is convenient experi-
mentally to work at 7'>2 K or preferably at T =4.2 K,
the boiling point of helium at atmospheric pressure.
Also, the “gap frequency” w, =2A /% is in some sense the
characteristic frequency for SIS mixing, and it appears
advantageous to operate at a frequency ® <<wg. For
physical temperatures T'<T,/2, 2A=3.5kT, in a BCS
superconductor (Tinkham, 1975). Thus lead, or better a
substance with a higher transition temperature, is re-
quired for SIS mixers to operate in the mid-millimeter- to
submillimeter-wavelength region.

Unfortunately, pure lead films have a disqualifying
property. Upon thermal cycling from liquid-helium tem-
peratures to room temperature, lead films form stress-
induced hillocks, which puncture the thin oxide barriers
of SIS junctions. To circumvent this problem, and others
less serious, researchers at IBM have developed a type of
Pb-alloy junction consisting of a base electrode of
Pi b0.84In0. 12All0.04 and a counterelectrode of P b0.71Bi0_29
(compositions in weight fraction), and a procedure for
reproducibly fabricating these junctions (Huang et al.,
1980); and they have thoroughly characterized these junc-
tions. The IBM junctions are in all ways at least “al-
most” suitable for use in a Josephson computer requiring
millions of junctions, and so they are clearly overdesigned
from the standpoint of SIS mixers. Most SIS mixers have
used the IBM-type junctions or a variant thereof.

The standard IBM junctions are (2.5 um)? in area,
formed by a photoresist-stencil liftoff technique. With a
specific capacitance of 4.2 uF/cm? (Magerlein, 1981),
these junctions have ®RC =3.3 at 100 GHz and R =50
Q. For many purposes, especially at higher frequencies or
with a higher-dielectric-constant insulator, smaller junc-
tions are required, and two very clever techniques have
been developed to make these small-area junctions reli-
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ably. The first is the photoresist overhang technique (Do-
lan, 1977), for which a thin finger of photoresist is
suspended above a substrate. The junction base electrode
and counterelectrode are deposited at different oblique an-
gles, so that the overlap region, which is under the pho-
toresist finger, constitutes the junction. A suspended pho-
toresist segment and its resulting SIS junction are shown
in Fig. 7. The second technique (Kleinsasser and Buhr-
man, 1980) is to form an “edge” junction on the (sloped)
edge of the base electrode thin film, so that one junction
dimension, corresponding to the film thickness, is very
small and quite precisely controlled. _

Eventually it will be desirable for SIS mixers to use
junctions of all-refractory materials, for their indestructi-
bility. The Nb-based mixers described in Sec. V.A.6 are a
step in this direction, even though their counterelectrodes
are Pb alloy. Unfortunately, the native oxide of Nb has

(b)

FIG. 7. Scanning electron microscope photographs of (a) a
suspended photoresist bridge structure, and (b) a small-area SIS
junction fabricated by angle evaporation past this photoresist
bridge (Phillips et al., 1981).
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poor tunneling properties (discussed by Halbritter, 1985),
and so Nb-based junctions benefit from using a deposited
insulating barrier. Some such junctions (e.g., Kroger
et al., 1983) appear suitable for SIS mixers. The transi-
tion temperature of niobium, 7,=9.3 K, is the highest of
any metallic element, but is only marginally better than
that of lead. Good quality SIS junctions made of high-T,
materials, for instance NbN, whose ‘7T, =16 K, may soon
be available.

In this section we have only glanced at the body of
Josephson-junction fabrication literature, which is very
extensive and still rapidly growing, much to the benefit of
SIS quasiparticle mixers.

2. High-frequency results

When a SIS tunnel junction is irradiated with mi-
crowave radiation of frequency w, as was seen in Fig. 1(a),
photon-assisted tunneling steps are induced onto the
Quasiparticle branch of its dc I-V characteristic, arrayed
about the energy-gap voltage with step separation
8V =#w/e. In addition to this, any Josephson junction
that is irradiated will show constant-current steps on its
I-V characteristic at integer multiples of the voltage
V;=7%w/2e. This can be seen by integrating the time-
dependent voltage V(t)=V,+v coswt in Eq. (2.3), substi-
tuting the result into Eq. (2.2), and expanding. These
“Josephson steps” are illustrated by the dashed curve of
Fig. 6 for the resistively shunted junction (RSJ) model.
The factor of 2 in the step spacing in these two effects re-
flects the difference between pair and single-particle tun-
neling.

Only recently have these steps been seen in SIS junc-
tions irradiated with submillimeter radiation. Danchi
et al. (1982) studied the Josephson steps in small-area SIS
junctions under 604-GHz radiation. The results were
close to, but could not distinguish between, the full Wer-
thamer (1966) theory (see Sec. IV.A) and the simpler
resistively shunted model. The same group also investi-
gated the photon-assisted tunneling steps under the same
conditions (Habbal et al., 1983) in both SIS and SIN
junctions and found excellent agreement with the Tien-
Gordon (1963) theory (see Sec. IIL.A). Morita et al.
(1983) measured the response of very small Nb-SnO,-Sn
tunnel junctions to radiation at frequencies as high as 1.4
THz, which is 2.7 times larger than their gap frequency,
and found very distinct Josephson steps and photon-
assisted tunneling steps. These important experiments
hold open the possibility that superconductor tunnel junc-
tions can be useful detection elements, for quasiparticle
mixers or for Josephson-effect devices, at these very high
frequencies. ‘

Many possible modes for using the Josephson effect in
sensitive high-frequency detection have been explored,
both theoretically and experimentally. Although in many
cases the initial results are encouraging, the Josephson-
effect devices were never fully competitive with conven-

tional detectors. At present, this work has largely abated
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in favor of SIS mixers. In this section we shall briefly re-
view a few of the Josephson-effect detection modes that
appeared most promising, with emphasis on the major
problems encountered. This work formed the historical
background for the emergence of quasiparticle mixers.

We feel that it is premature to dismiss the possibility of
practical Josephson-effect high-frequency detectors. Al-
though the earlier experiments were quite varied, they had
certain common elements. As we shall see, most of these
experiments were adversely affected by the extreme non-
linearity of the Josephson effect. They focused almost en-
tirely on point-contact junctions (except at frequencies
below 35 GHz) and suffered from the problems inherent
with these junctions. SIS junctions were considered un-
suitable because of their large capacitance and because
their I-V curves are hysteretic. But the very-small-area
SIS junctions available today may make competitive
Josephson-effect detectors possible, in particular for sub-
millimeter wavelengths. The Josephson nonlinearity will
be less extreme for high frequencies, both because of the
moderate junction capacitance and because the minimum
response time is on the order of the inverse gap frequency.
And at high enough frequency the junction’s response
should be nonhysteretic. This possibility is completely
unexplored.

a. Josephson-effect mixer

The Josephson mixer generally uses a point-contact
junction with LO power at frequency o applied sufficient
to depress the dc critical current to half of its full value,
and is biased with a constant dc current at the point cir-
cled in Fig. 6. A small signal at wg sees a real impedance
and produces an output at frequency |w—wg| due to
modulation of the magnitude of the pair current by the
combined ac potential. The Josephson-effect mixer can
have conversion gain (Taur et al., 1974). A variety of ex-
perimental and theoretical results find that the best noise
temperature of this mixer is on the order of 40 times the
larger of either the physical temperature or iw/2k
(Claassen and Richards, 1978), most of this noise being
attributed to the down-conversion of many high-
frequency noise components by the strong Josephson non-
linearity. Note, however, that this figure has been sur-
passed (Taur and Kerr, 1978). Josephson point-contact
harmonic mixers are used, without regard to noise tem-
perature, to determine accurately the frequency of far-
infrared laser lines (see, for example, Blaney, 1978).

b. Externally pumped parametric amplifier

Examination of Egs. (2.2) and (2.3) shows that an un-
biased Josephson junction behaves like a nonlinear induc-
tor with a small-signal inductance L,=#%/2el;. If the
unbiased junction is “pumped” by radiation at frequency
o, and signal radiation at wg is applied, the signal is
parametrically amplified in reflection and “idler” radia-
tion at wj is also generated (Feldman et al., 1975). The
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symmetry of the junction to physical inversion implies
that the nonlinear inductance depends only upon even
powers of the current, so w;=2w—ws and the amplifier
is generally operated with wg ~w; ~w, the “doubly degen-
erate” mode. If the junction is dc current biased, the
symmetry is broken and the parametric amplifier is
operated in the singly degenerate mode, ws~w;=~w/2
(see, for example, Soerensen et al., 1980). Much of the
experimental work on these parametric amplifiers has
used small SIS Josephson junctions, but at relatively low
frequencies below ~35 GHz. The major problem en-
countered has been a “noise rise” with the peculiar prop-
erty that the input noise temperature rises in direct pro-
portion to the amplifier’s gain, rather than being indepen-
dent of the gain as in all other linear amplifiers. The ori-
gin of this noise rise is disputed (Feldman and Levinsen,
1981), but it seems clear that the Josephson nonlinearity
that produces the gain must also in some way produce the
noise.

c. Internally pumped parametric amplifier

This device takes advantage of the Josephson oscilla-
tion in a dc-voltage-biased junction to provide a pump, at
the Josephson frequency of Eq. (2.4), for parametric am-
plification. An extensive analysis by Vystavkin et al.
(1977) gives a relatively high noise temperature, due to
very-low-frequency noise on the dc bias voltage appearing
as phase noise at the pump frequency, and to high-
frequency noise down-converted by the strong Josephson
nonlinearity. Nevertheless, Kuzmin et al. (1979) con-
clude that this mode is the most promising in the short
submillimeter band. Recently Calander et al. (1982), the
first to use SIS Josephson junctions in this mode, achieved
a noise temperature of less than 30 K at a signal frequen-
cy of 10 GHz. They succeeded in shorting out the very-
low-frequency noise by means of an inductive shunt,
whereas the high-frequency noise was suppressed by the
junction capacitance.

l. SIMPLIFIED MODELS

A full quantum theory of mixing due to photon-
assisted - tunneling of single-electron quasiparticles is
described in Sec. IV. The formal complexity inherent in
such an analysis is considerable, however, and tends to ob-
scure the important physical results. Fortunately, most of
the significant new effects that arise from the quantum
response of nonlinear tunnel junctions at high frequencies
can be appreciated on the basis of two simplified models.
Section III.A discusses the case where the applied high-
frequency radiation is weak and the junction acts as a
direct detector. Section IIL.B treats the case where the ap-
plied radiation is strong and the junction acts as a hetero-
dyne mixer, responding to small changes in the amplitude
of the incoming radiation.

A. Direct detection of millimeter-wave
quanta -

The quantum response of a nonlinear tunnel junction at
high frequencies may be illustrated by an extension of the
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original Tien-Gordon (1963) picture of photon-assisted
tunneling (Tucker, 1975; Tucker and Millea, 1978,1979).
Suppose that one side of the junction is grounded, and
consider the Schrodinger wave function representing a
single-electron quasiparticle eigenstate on the opposite
side of the tunnel barrier. The presence of a high-
frequency ac signal may be represented by a time-
dependent voltage applied across the junction in addition
to the dc bias:

V(t)=Vy+V,coswt . ‘ (3.1)

This applied voltage will be assumed to modulate adiabat-
ically the potential energy for each quasiparticle level on
the ungrounded side of the barrier. (This assumption is
expected to be valid below the plasma frequencies of the
two electrodes, typically well into the ultraviolet.) The
time dependence of the wave function for every one-
electron state in the ungrounded electrode will therefore
be modified according to

(%, 8) = (x)exp -% [ ar'[E,+evien]
=1);(x)exp[ —i (E; eV )t /]

X S Ju(eV, Hiwe =it (3.2)

n=-—c0

where E; is the unperturbed energy of the Bloch state.
The adiabatic modulation of the Fermi sea on this side of
the junction can thus be viewed in terms of a probability
amplitude J,(eV, /fiw) for each quasiparticle level to be
displaced in energy by n#iw. This interpretation of Eq.
(3.2) is illustrated schematically in Fig. 8. Since all one-
electron states are modulated together, these (virtual) dis-
placements in energy are equivalent to dc voltages
(Vo+nfiw/e) applied across the junction with a probabili-
ty J2(eV,/#w) that depends upon the ac signal ampli-
tude. The resulting dc tunneling current will, therefore,
be given by the expression

IoVo Vo= S JeV, /i) s Vo+ntwle), (3.3)

n=—w

—_— JZ( )e-Ziun
Ei(t)= Ei + e(Vo+ \[,coswt) it
Jie
Hw
_ JoleV, /fiw)
E IeVo

J, ettt

+2iwt
— 3,00

FIG. 8. Virtual energy levels generated according to Eq. (3.2)
by adiabatic modulation of the energy E;(¢) for each quasiparti-
cle state within the ungrounded electrode of a tunnel junction in
the presence of a microwave field.
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where I4.(V,) represents the unmodulated dc I-V charac-
teristic.

This result of Tien and Gordon (1963) for the dc tun-
neling current in the presence of an ac potential may be
seen to account for the behavior observed in Fig. 1(a) in a
particularly simple way. The effect of the applied mi-
crowave field is to superpose contributions from the un-
modulated I-V characteristic, displaced in voltage by in-
tegral multiples of the quantum energy #iw/e. The abrupt
rises in current on the steps in Fig. 1(a) are caused by re-
flections of the sharp onset of dc quasiparticle tunneling
at the gap voltage ¥V, =(A;+A,)/e; and the magnitude of
the nth photon-assisted tunneling step is determined,

|

2 Idc(Vo+ﬁw/e)—21dc(V0)+Idc(Vo—ﬁw/e)

through J2(eV,, /#w), by the amplitude of the microwave
potential actually impressed across the barrier. Under ap-
propriate experimental conditions, an analysis of this step
structure may be utilized to infer ¥V, as a function of V,
in order to deduce the high-frequency source impedance
seen by the junction.

In this section we shall consider the nonlinear tunnel
junction as a direct detector for small incoming signals.
The rectified component of the tunneling current may be
obtained by expanding the Bessel functions in Eq. (3.3)
and retaining only the lowest-order terms in the ac poten-
tial V,. Using Jo(x)~1—x2/4, Jip(x)~(£x/2)"/n),
this gives

1
Al (Vo)=—V
a«Vo)=74Va (Fico /)

(3.4)

The quantity in large parentheses is a finite second difference of the unmodulated I-V characteristic that reflects the

emission or absorption of a single quantum during the tunneling. All higher-order processes n =2,3, ...

, contributing

to the dc current may be neglected in the limit of small ac amplitude. This second difference form is seen to reduce to
the second derivative of the dc I- ¥ curve, reproducing the standard classical result for the rectification, when the photon
energy #iw /e is smaller than the voltage scale of the dc nonlinearity.

The dissipative, in-phase, component of the junction current induced at the applied ac frequency w111 be derived in Sec.

Iv.C:

I1,(Vo,V,)=

n=-—co

This result may be appreciated by noting that the phase
difference between adjacent virtual levels in Fig. 8 is
e The tunneling amplitude for transitions between
the modulated state shown in Fig. 8 and any unmodulated
eigenstate across the barrier will contain quantum in-
terference terms proportional to J,(eV,, /#iw)e "% aris-
ing from these virtual levels. When the tunneling ampli-
tude is squared to obtain the current, there will be terms
proportional to J,J,+1e **** due to this quantum interfer-
ence that generate a current component at the applied ac
frequency. In the limit of small ac amplitude, expanding
the Bessel series in Eq. (3.5) yields

Idc( Vo+ﬁﬂ)/€)—1dc( Vo—ﬁw/e)
I = .
o=Vo 2tiw/e) (3.6)

Here the classical conductance dI4. /dVy is replaced by
the corresponding first difference involving single-photon
absorption or emission for weak incoming signals. The
expressions in Egs. (3.4) and (3.6) thus constitute simple
and intuitively appealing quantum generalizations of the
classical analysis to account for the effects of photon-
assisted tunneling.

The current responsivity of a direct detector is defined
as the induced change in dc current per unit ac signal
power absorbed by the detecting element. Combining
Egs. (3.4) and (3.6) yields
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S Tu(eVy /H0) Ty 11V i) 4T _1(eVy /i) Mo Vo +nfico /e) . : (3.5)

[
Ri=Aly/ Vol
e Idc(V0+ﬁ(0/e)-—2ldc(V0)+IdC(Vo—ﬁa)/9)

#iw Idc(V0+ﬁ0)/e)~Idc( Vo—ﬁw/e)
1 d Idc/dVO classical limit
2 ————-dIdc JdvVy ssical limi
a*ﬁ%, quantum limit . 3.7)

The standard classical expression for rectification is
recovered when the dc I-V characteristic changes slowly
on the quantum voltage scale #iw/e. This classical result
would imply that a direct detector could be made arbi-
trarily sensitive by increasing the curvature d?I 4. /dV3 of
the dc nonlinearity. Photon-assisted tunneling theory,
however, demonstrates that there is a fundamental limit
R;=e/fiw to the current responsivity for. any single-
particle tunnel junction. The quantum limit corresponds
to the tunneling of one additional electron across the bar-
rier for each signal photon absorbed. The general expres-
sion obtained in Eq. (3.7) characterizes direct detection
for any single-particle tunnel junction, and describes a
continuous transition between classical behavior and
quantum response as the photon energy becomes compar-
able to the voltage scale of the dc I- ¥ nonlinearity.
Quantum-limited responsivity can be achieved in prac-
tice for an SIS junction biased immediately below the
energy-gap voltage V,=(A;+A;)/e, in the range
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Ve —#iw/e < Vo < Vg [see Fig. 1(a)]. This region is called
the “first photon step,” with other photon steps defined
accordingly. Over this region, the value of
I4.(Vo+%iw /e) will be much larger than either I4.(Vy) or
I4(Vo—*%iw/e), and the quantity in large parentheses in
Eq. (3.7) approaches unity. It is clear that quantum-
limited responsivity will be attained, irrespective of the
detailed shape of the dc I-V curve, so long as
I (Vo+tiw/e) >14.(Vy),Ia.(Vo—Fiw/e), and that this
can occur only when the photon energy #w/e is larger
than the voltage scale of the quasiparticle current onset at
the gap voltage.

The sensitivity of a nonlinear tunnel junction as a direct
detector is limited by noise due to the bias current. For
dc voltages eV >2kT larger than thermal energies, the
mean-square noise current is given by the usual shot-noise
expression,

(I2)=2el4(Vy)B , (3.8)

where B represents the output bandwidth. The noise-
equivalent power (NEP) is defined as the incident power
required to give an output signal equal in magnitude to
the average output noise. For a nonlinear tunnel junction,
Egs. (3.7) and (3.8) may be combined to yield an estimate:

( I,% ) 172
NEP=—"7F—
NR;
v Lovy |72
_ Y2#iwB | Ta' "o , quantum limit .  (3.9)
n eB

Here 7 is a factor characterizing the efficiency for
impedance-matching incoming signal power into the
diode. The quantum limit for NEP shown here has a
simple  physical interpretation. The  quantity
N =1I4(Vy)/eB is the average number of electrons tun-
neling through the barrier due to the dc bias voltage dur-
ing a resolution time ~1/B determined by the output
bandwidth. Since these individual events are statistically
uncorrelated, the mean fluctuation in the number of elec-
trons tunneling during this interval is VN. The
quantum-limited value for NEP in Eq. (3.9) therefore
represents the absorption of ~V'N photons per resolution
time, in order to generate a signal current equal in magni-
tude to the average noise. Equation (3.9) is, in fact, iden-
tical to the corresponding result for a photomultiplier, a
photodiode, or a photoconductor. For these more fami-
liar quantum detectors, the dc bias current in the above
expression would be replaced by either the dark current or
by generation-recombination currents in determining the
noise-equivalent power (see, for example, Yariv, 1976).
The general form of Eq. (3.9) is characteristic of all types
of direct quantum detectors in which the dominant source
of noise is not due to the signal itself.

The first experimental demonstration of direct detec-
tion in the quantum regime was reported by Richards
et al. (1980), using a Pb(In,Au) alloy SIS junction at 36
GHz. Their results for current responsivity as a function
of dc bias are reproduced in Fig. 9, along with the mea-
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FIG. 9. (a) dc I-V characteristic of a ~4-um? Pb(In,Au) alloy
SIS tunnel junction at 1.4 K, and (b) measured and calculated
current responsivity for direct detection, as a function of dc bias
voltage (Richards et al., 1980).

sured dc I-V characteristic. The dashed curve illustrates
the quantum theory prediction obtained by inserting mea-
sured values for the dc tunneling current into the finite
difference form of Eq. (3.7), and the dotted curve is the
classical result calculated from the first and second
derivatives. Although the differences between the classi-
cal and quantum predictions are not generally large in
this case, the photon-assisted tunneling theory provides a
significantly better overall fit to the experimental data.
One characteristic feature of the quantum theory is that it
will average out small anomalies in d?I4./dV?3 which are
narrow compared with #iw/e=0.15 mV. The classical
analysis thus predicts a sharp negative peak in the current
responsivity near ¥;=2.25 mV which is not present in
the quantum prediction, and is not observed. The peak
value for the current responsivity R;~3500 A/W ob-
tained in this experiment is within a factor of 2 of the
quantum limit e /7%w=6700 A/W at 36 GHz. The op-
timum NEP=~2.6X107!® W/Hz!/? achieved using this
junction is also in very good agreement with predictions
based on Eq. (3.9), and represented the lowest value ever
reported for a direct microwave detector at the time. It
should be noted, however, that the noise power was
evaluated within a bandwidth about 50 MHz in this ex-
periment. At the much lower frequencies suitable for
mechanical chopping, 1/f noise may increase the total
NEP of a radiometer.
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Hartfuss and Gundlach (1981a) subsequently measured
the direct response of Pb-alloy junctions to 70-GHz radia-
tion. Their best result was an NEP of 1.7x10~"
W/Hz!/? at a chopping frequency of 400 Hz, along with
a responsivity of 0.46e/#iw. They mention that their
direct detector was saturated by an input power of
10~° W. Habbal et al. (1983) investigated the submilli-
meter response of superconductor—insulator—normal
metal (SIN) junctions, using very small Sn-SnO-Pb junc-
tions at a physical temperature of 4.2 K. Though not able
to measure the signal power, they experimentally inferred
a responsivity of 0.4e/%iw under 604-GHz radiation, in
good agreement with the theory of this section. Note that

the signal frequency in this experiment is approximately

twice the gap frequency A/h ~310 GHz for these SIN
junctions.

The dc bias current for a SIS direct detector can be
made much smaller than the “leakage” current observed
below the gap voltage in Fig. 9, and this will yield much
lower values of NEP. For a theoretically ideal SIS junc-
tion, the dc quasiparticle current vanishes in this region at
absolute zero. Thus in principle, though not in practice,
it would be possible to reduce the bias current sufficiently
that the average number of electrons tunneling during a
resolution time of the detector, N =14.(V,)/eB, becomes
less than unity. Under these conditions, the noise generat-
ed by the signal itself could no longer be neglected in es-
timating the noise-equivalent power. The rectified
current Al4, =7nR;P; proportional to the incoming signal
power should therefore be added to the bias current
I4(Vy) in Eq. (3.8) for the shot noise. When
I4.(Vy)/eB <1, the limiting form of Eq. (3.9) in the
quantum regime then yields an NEP ~#wB for good im-
pedance matching that approaches the level of single-
photon detection. By analogy with other photon
detectors—a noisy photomultiplier, for example—it
might be expected that this limit could be approached in
practice by utilizing heterodyne techniques to suppress
the background noise due to the dc bias current. The full
quantum mixer theory predicts this result, and experi-
mental measurements of noise temperature for SIS hetero-
dyne mixers are observed to be within small factors of the
nominal quantum limit #w /k.

B. A simplified heterodyne mixer model

The full quantum theory of mixing described in Sec. IV
is so complex as to obscure the most important physical
results. In particular, it can be difficult to trace the origin
of the differences between the quantum mixer theory and
the standard classical analysis. Therefore, for maximum
clarity, we present in this section the simplest mixer
analysis which still faithfully describes the relationship of
the mixing element to its environment. This discussion is
a condensed version of the phenomenological theory of
mixing, which can be found in more general form in
Torrey and Whitmer (1948).

The phenomenological theory of mixing treats the case
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of very low intermediate frequency. The IF is so low that
the mixing element sees the same high-frequency rf cir-
cuit at the signal, image, and LO frequencies; and there-
fore the incoming signal can be treated as a small dif-
ferential change in the applied LO waveform. For simpli-
city we shall also assume that the mixing element sees the
same circuit at both IF and dc, so that the generated IF
amplitudes can be considered as small differential changes
in the dc current and voltage. The equivalent circuits
seen by the mixing element, both at rf and at low frequen-
cy, are shown in Fig. 10. The local oscillator is represent-
ed as a current I} o with source conductance Gg. The dc
bias is applied by an ideal voltage source in series with the
output load conductance G;. Two further implicit as-
sumptions have been made in presenting Fig. 10: that no
harmonic voltages appear at the rf terminals of the mix-
ing element, and that the equivalent embedding circuits
are purely resistive.

So far, this model is very closely approximated by the
most common experimental mixer configuration. For ex-
ample, SIS junctions usually have a relatively large
geometrical capacitance, which effectively shorts out any
harmonic currents. This capacitance can (and should) be
tuned out at the LO frequency so that the rf equivalent
circuit is purely resistive. If this tuning is not critical,
then for the relatively low IF generally used, the signal,
image, and LO frequency embedding circuits will in fact
be identical. Although the IF and dc embedding circuits
generally do not coincide experimentally, this makes no
difference in the analysis of the mixer. Nevertheless, it
should be emphasized that this model will not provide an
accurate description of mixers designed to operate in the
single-sideband mode or with a large IF.

A more serious departure from the reality of the quan-
tum mixer will occur when we assume, below, that the
currents and voltages across the mixing element are in
phase. It will be seen in Sec. IV that the complete quan-
tum response of a tunnel junction generates nonlinear
reactive components, which cannot, in principle, be com-
pletely tuned out. Nevertheless, it has been argued that
these “quantum reactances” do not have a significant ef-
fect on the optimum performance of a properly tuned
mixer (Feldman, 1982), and therefore this model should
provide a reasonable guide to understanding many of the
new phenomena that are observed in tunnel junction
mixers.

One final simplification is necessary to avoid much of
the complicated mathematics of Torrey and Whitmer’s

v T I, 6,
Two Gs X ‘jc: Yo T Vac
rf CIRCUIT dc CIRCUIT

FIG. 10. Equivalent circuits for the simplified heterodyne
mixer model at the rf and at low frequencies.



J. R. Tucker and M. J. Feldman: Quantum detection at mm wavelengths 1071

(1948) treatment. We shall choose our “signal” to pro-
duce a pure amplitude modulation of the applied LO
waveform. With our previous assumptions, this will
mean that all rf quantities are in phase. In general, an ar-
bitrary signal results in a combination of amplitude and
phase modulation of the LO. Any general calculation,
such as Torrey and Whitmer’s, must treat the LO fre-
quency o, the signal frequency wg, and the image fre-
quency 20 —wg as separate and distinct. By choosing to
consider only amplitude modulation of the LO, we are in
effect assuming that the “signal” consists of input radia-
tion at both the signal and image frequencies, of the same
amplitude and coherently phased with respect to the LO,
such that there is no resulting phase modulation. Thus all
of our signal and IF current and voltage amplitudes will
be twice as large as in a more standard treatment. This
radiation could, for example, be derived from a
sinusoidally varying attenuator in the LO input line. Our
justification for choosing this very uncommon special
case is the simplicity it provides while yielding precisely
the same results (see Sec. IV.F) as a more general
analysis.

Within the assumptions of this model, the physical
description of the processes taking place inside the mixing
element is contained entirely in the expressions for the rf
and dc components of the current generated by the com-
bined applied potential:

V(t)=Vy+ V,cosmt . (3.10)

Here V, and V,, are the dc bias voltage and the ampli-
tude of the local oscillator waveform, respectively, ap-
pearing across the mixing element. ¥, and ¥V, will be
treated as independent variables. The current components
will be treated as dependent variables, functionally
represented by

Io=14(Vo, V)
(3.11)
Iw=Iw(V0’Vw) ’

whose specific forms will be specified below for both clas-
sical and quantum mixers. The following definitions for
the various differential conductances will prove useful:

A, al,
Oozm’ sza—Vm— ’
(3.12)
aI,, oI,
Gw=m, M=‘$/—m- .

(Only monotonically increasing unpumped I-V curves
will be considered: dI,/dV,>0 everywhere for V,=0.
Then it can be shown that Ggy,G,, >0 under arbitrary
conditions.) The properties of the mixer will be formally
worked out in terms of these conductances. The only
difference between classical mixer theory and quantum
mixer theory in this model lies in the specific forms taken
by the current components in Eq. (3.11). In the end, how-
ever, it will be seen that the predictions of this model will
be fundamentally altered in the quantum regime.
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The mixer analysis begins with a differential expansion
of small changes in the junction currents:

d10=—a{9—dvo+il°—dV =GoodVo+GondV, (3.13)
v, v, e @r
aI, aI,

dIm:‘5—1—/;dV0+5T/:de=GwodV0+Gmdew . (3.14)

The rf circuit equation, by examination of Fig. 10, is
I,o0=GgV,+1I,. A small differential change in I;g is
thus given by

dl1o=(Gg+Gpy)dV,+GuodVy . (3.15)

In the absence of such a change in the applied LO power,
dI{ =0, and this relation yields

de Ga)O
dVy Py Gs+Gup

(3.16)

An increase in the dc bias voltage thus results in a reduc-
tion in the amplitude of the LO voltage across the ele-
ment, since G is generally positive. This may be under-
stood as a result of holding the available rf power con-
stant, while altering the reflection coefficient at the LO
frequency. The differential dc conductivity is found by
inserting Eq. (3.16) into Eq. (3.13):

| _ . GG
TdVo |pyy L Gs+Gup

GY (3.17
It is important to note that G, the slope of the pumped
dc I-V characteristic, will remain positive for any value
of source impedance, provided that the following inequal-
ity is satisfied:

(G00Gow—GowGao) >0 . (3.18)

We shall show that this condition is always satisfied for a
classical resistive mixer. In the quantum regime, howev-
er, the expressions for the conductance components are al-
tered by the quantum nature of photon-assisted tunneling.
Under suitable experimental conditions, the inequality of
Eq. (3.18) can be violated for a quasiparticle tunnel junc-
tion; and this can lead to induced negative-resistance re-
gions on the measured dc I-V curve, and thus the possi-
bility of theoretically infinite conversion gain.

The conversion efficiency of a mixer is both measured
and calculated with the dc voltage source held constant,
dV4.=0. Therefore we must determine the relationship
between ¥V, and ¥V, under this condition. The dc circuit
equation from Fig. 10 is V4. =G I+ V,. Differentiat-
ing this and using Eq. (3.13), we find that

Vo | ___Gw (3.19)
av, |v, G +Gy )

As discussed previously, we consider the signal to be a
small amplitude modulation of the LO. Thus, with Vg4
held constant, .
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GOwGwO

= |dVe
G +Gwo

Isig=dIL0 I Ve = GS+wa_
(3.20)

where we have used Egs. (3.15) and (3.19). The effect of
this signal along with the LO is to produce a small modu-
lation of the dc current Iy; this modulation is seen to be
the IF current amplitude,
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GL GOm

Ig=dly |y, = G, +Gon
where we have used Egs. (3.13) and (3.19). The conver-
sion efficiency (conversion gain, inverse conversion loss)
of the mixer is defined as the ratio of the IF power
delivered into the load resistance to the total available in-
coming rf signal power. Using the results obtained in
Egs. (3.20), (3.21), and then (3.17), this ratio may be writ-
ten in the form

av,, , 3.21)

|

1% /726G,
L—l( Vd ’PLO’GS’GL)E——_“
¢ I%,/8Gs

G 2

Ow
=4GsG
7 | (Goo+GL)(Gop+Gs)—GooGuo ]
GsG3, 4G,

T (Gyu+Gs) (GL+GP?

The small-signal properties of the mixer may be most
clearly represented by the Norton equivalent circuits
shown in Fig. 11. The IF output of the mixer is charac-
terized by a current generator I3 in parallel with the out-
put conductance Gg given by Eq. (3.17), which is also the
differential dc conductivity in this low IF limit. The
magnitude of this equivalent current generator may be
found by combining Egs. (3.19) and (3.20) to obtain an ex-
pression for dVy=I%(Gy +G7)~!, with the result

Gow
sig Gmm+GS .

Note that neither I nor G{ depends upon the load con-
ductance Gr. Therefore it is clear from Fig. 11, as it is
from Eq. (3.22), that the maximum available conversion
efficiency will be obtained for a matched load,
GL=| GLO |-

In the signal frequency circuit of Fig. 11, the mixing
element is represented by its small-signal conductance

dI, GooGao

GgE =Uwpo—
de Vie G00+GL

Ig=—I (3.23)

) (3.24)

where we have used Egs. (3.14) and (3.19). The fraction
of the signal power reflected off the mixing element and

—O0 O— O O
IV
0 o 0
TLsig Gs Gs Iie G G,
O O O O

SIGNAL CIRCUIT IF CIRCUIT

FIG. 11. Linearized equivalent circuits for the simplified
heterodyne mixer model at both the signal frequency input and
at the IF output.
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(3.22)

I

returned to the signal source is seen to be given in terms

of this conductance by the standard formula
Pgg(reflected) Gs—G? 2

Pgglincident) | Gg+G? (3.25)

The functional structure of the mixer equations will be
more clearly displayed by defining the following dimen-
sionless parameters:

Gwo GowG w0
Ly= , M= s
Goo GoGun
(3.26)
_ Gs _ G
8s= Goy’ gL= Goo
The conversion efficiency may then be rewritten
_1 "M8s 4gr
L~Y(V4e,PL0,Gs,Gr)=Lg! ,
dc»PL0>Gs,GL 0 (1+gs)? (g1 +8°)°
(3.27)
where the output conductance Eq. (3.17) is normalized as
0_ Ot 1——1— (3.28)
L= Go l+gs )

The maximum available conversion efficiency, that for
0 .
gL=18r|,is

N8s
(1+gs)1+gs—m)

L zait(VaesPro,Gs)=Lg !

forgd>0, (3.29

but is infinite if g is negative. This last equation em-
phasizes the fact that the conversion properties of the
mixer depend critically upon the strength of the non-
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linearity through the parameter 1.

Thus far, we have defined general expressions for many
of the important properties of this simplified heterodyne
mixer model in terms of the conductances defined in Eq.
(3.12), without any reference to the specific properties of
the mixing element itself. We shall now examine the
form that these conductances take in both the classical
and quantum theories. The results will illustrate how the
physics of the mixing process dramatically determines the
mixer’s overall properties.

For a classical nonlinear resistor, the current carriers
respond to the driving voltage with no time delay, and so
I(z) is an instantaneous function of V(z), whose form
must be the unpumped dc I- ¥ curve:

I(1)=14.(Vo+V,cos0t) . (3.30)

The Fourier components of this current required for Eq.
(3.11) are given by

1 T
IVo,Vo)=— [} d@t)s(Vo+Vcoson) ,

(3.3

I,(Vo,Vy)= % fowd(wt)cosa)tldc( Vo+ V,cosmt) ,

and explicit expressions for the conductances defined in
Eq. (3.12), for this classical mixer, are therefore

1 pm 81 4.(Vo+ V coswt)
=— [, dn ave ,
_2r" 2 . 04 (Vo+V ,coswt)
Gaw=" [ dlw)cos(w1) 57 L (6.32)
3l 4.(Vo+ V cosmt)

G 0=2Gq,= % foﬂd(mt)cos(mt)

aVy

From the form of these expressions we immediately see
that the parameter L, is identically equal to 2, and also
that the inequality of Eq. (3.18) is always satisfied for the
classical resistive mixer:

1
(GG ow —GowGwo)= 77_-2—

Therefore 7<1. This implies that the output conduc-
tance G? of the classical mixer at the IF will always be
positive, according to Eq. (3.28), and so regions of nega-
tive differential resistance can never be induced onto the
dc I-V curve by the LO drive. Since <1, Egs.
(3.27)—(3.29) imply that the classical mixer has a max-
imum theoretical conversion efficiency L ~'=0.57/
(14V 1—77)2, which is reached for source and load con-
ductances given by gg=g; =V 1—. If it is possible to
approach the limit — 1, then the maximum conversion
efficiency is L ~'=0.5.

Some classical mixers can approach the limit n—1 in
principle. In a well-designed Schottky diode mixer, for
example, modulation of the exponential nonlinearity
T4 (Vo) <exp(eVy/kT) leads to an expression (McColl,
1977) for the parameter 7 in terms of the modified Bessel
functions Iy,1,,1,:

21%(eV,, /kT)
= To(eV, /kDIoeV, /kD) + I eV, /kT)]

1
= 2eV, /kT)?

for eV, >>kT , (3.34)

so that 7 approaches unity asymptotically in the limit of
local oscillator amplitudes ¥V, large compared to the volt-
age scale kT /e of the dc nonlinearity. Thus Schottky
mixers are expected to be able to approach L ~!=0.5, and
in fact they do typically achieve conversion losses L ~4
to 6 dB, within a factor of 2 of this limiting value.
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- 7 B go(Vot Vacospy) 3l go(Vo+ Vocosps)
f do, f de; v,

(cosp;—cos@,)?>0 . (3.33)

av,

The absolute limitation on the conversion efficiency of
classical resistive mixers is more general than the restrict-
ed nature of our model might imply. A more complete
calculation (Torrey and Whitmer, 1948) verifies our con-
clus1on that the double-sideband mixer is limited to
L~'=0.5, and also finds that the single-sideband mixer
is theoretically limited to L ~'=1.0. A classical mixer
cannot have conversion gain. The simplicity of this result
has given it the appearance of a general physical law.
This is not the case. We have seen that the prohibition of
conversion gain arises solely from the assumption of in-
stantaneous response, as embodied in Eq. (3.30). At high
enough frequency, in the quantum regime, the mixing
element’s response cannot be perfectly instantaneous, and

c

T
fw
Vg Vot &

(e Vo

FIG. 12. dc I-V characteristic for a SIS tunnel junction, indi-
cating a bias voltage V; in the center of the first photon step
below the gap voltage V,. The slope of the dashed line
represents the left side of Eq. (3.37) for n=0.
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Eq. (3.30) must be discarded. The correct form for the to-
tal time-dependent current due to the process of photon-
assisted tunneling will be derived in Sec. IV. But we al-
ready have in hand the equations necessary to show that
the performance of a tunnel junction mixer operating in
the quantum regime will be radically altered.

For the simplified mixer model described in this sec-
tion, the only results of the photon-assisted tunneling
theory that are required are Egs. (3.3) and (3.5) for the dc
current and the ac component induced at the applied fre-
quency, and these are reproduced here for convenience:

dIdc( Vo +ntiw/e)
dVy

’

3 JeV, /Hw)

n=-—o0

S TV /)Ty s 1(eV o /o) +T, _1(€V /Hid)]

n=-—o0

0

wa Zha)

n=-—o

L(Vo,Vy)= 3 JieV,/fiw)la(Vy+nw/e) ,
n=-—oo

(3.35)
I,(Vo, Vo= 3 JuleV,/f)ld, o 1(eV, /fiw)

n=-—oo

+J,_1leV, /fw)]

X14.(Vo+ntiw/e) .

Differentiating these expressions yields the following re-
sults for the small-signal conductances defined in Eq.
(3.12):

dl (Vo +ntiw/e)
dv,

’

(3.36)

z eV /o), o 1(eV /) I [Vo+(n +iw/e]l—14(Vo+ntiw/e)} ,

2 [JX eV, /fiw)+T, _ eV /Fi)T, 11V /i) (T4 [Vo+(n + Dfiw/e]l—Ia[Vo+(n —Diw/e]} .

It may be shown that these Bessel series expressions explicitly reduce to the classical limit of Eq. (3.32) if the photon en-
ergy #w/e is small compared to the voltage scale of the dc nonlinearity at all values of dc bias (Tucker, 1979). In the
high-frequency quantum regime, however, these quantities can behave very differently. As an example of the changes
brought about by the finite energy #w /e of the rf quantum, let us examine the quantity Lo =Gy, /G- Comparing the

above series expressions, it may be seen that 2Gy,, can be larger than G, if

L[ Vo +(n +Vfiw/e]—LaoVo+ntio/e)

dl 4 [Vo+(n + 1w /e]

Vo-+no
| Al Vot ntiv/e) 337

1
tiw /e 2

for the values of n which contribute significantly to the
Bessel series. Figure 12 illustrates a SIS junction dc-
biased in the region of the first photon step below the gap
voltage. In this example the frequency is high enough
that the photon energy #w/e is larger than the voltage
width of the current onset at V,=(A;+A;)/e. Under
these conditions, the term on the left in Eq. (3.37) for
n =0, which corresponds to the slope of the dotted line in
Fig. 12, is large, while the terms on the right, the deriva-
tives at both “photon points” ¥, and (Vy+7#w/e), are
much smaller. At this bias point the n =0 term will, in
fact, dominate the Bessel sum for Gg,; and this quantity
will be large compared to G,, because the quantum
response “steps over” the region where dl ;. /dV, is large.
For a SIS junction operated at a high enough frequency,
therefore, the quantity Ly ! =G, /G 0 is no longer iden-
tically equal to 0.5, as it is in the classical limit, but can
become much larger than unity. On this basis, it might
be expected that the conversion efficiency expression in
Eq. (3.27) could lead to net conversion gain, and this is
indeed the case.

The most spectacular change that results from the
physics of photon-assisted tunneling, however, is associat-
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dvy dvy

ed with the fact that under these same conditions it is
possible to have values of the mixing parameter 7 which
exceed unity. That this can happen is certainly not obvi-
ous by inspection of the series expressions in Eq. (3.36),
and this possibility was initially discovered quite by ac-
cident in the course of computer simulations (Tucker,
1980). The implications of this effect are, nevertheless,
very profound. The most direct and striking consequence
is that the low-frequency output impedance of the
pumped diode can become negative. This may be appreci-
ated by examining Eq. (3.28), which shows that G} will
be negative for 7> 1 provided the source impedance is
sufficiently large.

The dc I-V curves for a Sn SIS junction with an ex-
tremely sharp current rise at the gap voltage are repro-
duced in Fig. 13 (McGrath et al., 1981), for increasing
values of applied local oscillator power at 36 GHz. Nega-
tive resistance is seen to be induced onto the first photon
step below the gap voltage in these experiments, for cer-
tain values of LO power. Moreover, the output im-
pedance is extremely large on the first photon step, so
that GY ~0, over almost the entire range of applied local
oscillator power shown here. An examination of Eqgs.
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FIG. 13. dc I-V curves for a ~10-um? Sn SIS junction at 1.5
K. The lowest curve is the unmodulated characteristic, and
higher curves are for applied LO powers at 36 GHz increasing
upward in 2-dB increments starting with 0.2 nW. To the left of
the dashed line these.curves are sensitive to magnetic field, indi-
cating that Josephson pair tunneling is important. The inset
shows a region of induced negative resistance (McGrath et al.,
1981).

(3.27) and (3.28) indicates that, when G is very small,
the conversion efficiency becomes
L-lzL(;‘—4g—s~—L for g2 ~0 .
1+gs 8L
The remarkable conclusion is that, under these conditions,
the conversion efficiency will go up linearly with the load
impedance. The mixer thus acts as a constant-current
source at the IF when G} ~O (this is also clear from Fig.
11), and the available output power will scale with the
dynamic resistance Rp=(G?)~!. This important aspect
of SIS mixer performance was first appreciated by
McGrath et al. (1981), and results of their mixing experi-
ments performed on Sn junctions similar to the one
shown in Fig. 13 are illustrated in Figs. 14 and 15. The
linear increase of conversion efficiency with the dynamic
resistance Rp at the operating bias point is dramatically
illustrated, along with the realization of considerable net
conversion gain. From Egs. (3.28) and (3.38), it is ap-
parent that values of source impedance corresponding to
gs somewhat less than unity are consistent with achieving
large or negative output impedance, but that extremely
large rf impedances gg <<1 would severely degrade the
conversion efficiency. While the best value of Gg relative
to the normal impedance Ry of the junction will involve
detailed design considerations, the rough criterion that the
optimum gg <1 is found to be about the same as for clas-
sical mixers. The quantum response of quasiparticle
mixers will not, therefore, make qualitative changes in the
rf matching conditions required for efficient performance.
On the low-frequency side, however, the optimization of
SIS mixers will require the utilization of impedance-
transform techniques to present an effective IF load resis-

(3.38)

Rev. Mod. Phys., Vol. 57, No. 4, October 1985

1(V, Po)

e e e s S e s o e

o

dv/dl

Signal

Noise

1 1 1 1
06 1.0 1.4

vV (mV)

FIG. 14. Performance curves for a 36-GHz mixer using a Sn
SIS junction similar to that of Fig. 13, with tuning optimized
for maximum conversion efficiency. The signal and noise
curves are measured at the IF amplifier output, and yield a
maximum conversion gain + 4.3+1.0 dB with a mixer noise
temperature 9+6 K (McGrath et al., 1981).

tance to the diode considerably larger than values typical
for a classical resistive mixer.

The available conversion gain becomes infinite when
the output impedance goes negative, and this effect was
first observed by Kerr et al. (1981) in experiments at 115
GHz on 14-junction Pb-alloy arrays as illustrated in Fig.
16. A detailed consideration of performance for such ar-
rays is presented in Sec. VL.B. For N junctions in series,
the voltage scale will be expanded by a factor of N. The
step interval is therefore given by N7iw /e, and this feature
is apparent in Fig. 16. The dc bias circuit in this case had
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FIG. 15. Conversion gain of a 36-GHz mixer using a Sn SIS
junction similar to that of Figs. 13 and 14, measured for various
values of dc bias on the first photon peak below the gap voltage
and plotted as a function of the dynamic resistance Rp. The
measured gain values (crosses) saturate for large Rp due to IF
impedance mismatch. The available gain (circles), however,
which is corrected for IF mismatch, is nearly proportional to
Rp, as expected from the inset equivalent circuit (McGrath
et al., 1981).

a relatively low internal impedance, and this allowed for
stable mixer operation in the negative-resistance region.
Note that the converted output signal varies smoothly
through this region, though the available power is in-
finite, consistent with the nonsingular form of Eq. (3.38).
The experimentally realized conversion efficiency was
found to be a net loss of L =11 dB due to the low value
of load resistance R; =50 () relative to the very high out-
put impedance | Rf | >>Ry ~600 Q for this junction ar-

I(pA) T(K) 11500

14fhwre
60 —_—
d
1000
40F c
—~ e

Nepv, 7\
\

\1{\‘4 A RY

g 500
20

30
BIAS VOLTAGE (mV)

FIG. 16. Experimental curves for a 115-GHz SIS mixer using a
14-element series array of ~ 6-um? Pb-alloy tunnel junctions: a,
unpumped dc I-V characteristic, and b, dc I-V curve with ap-
plied LO power 0.375 uW showing a region of negative dif-
ferential resistance. Curves c—e show the output of the 1.4-
GHz IF radiometer with ¢ a noise source applied to the mixer’s
IF port, showing a region of reflection coefficient greater than
unity, d a calibrated 115-GHz signal source applied at the
mixer’s input, and e no applied signal; all for a LO power of
0.375 uW (Kerr et al., 1981).
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ray. Much improved conversion efficiencies could, there-
fore, have been achieved by better matching on the IF

~output.

At first sight, it might be thought that operation with
very high gain in this negative-differential-resistance
mode would be beneficial. According to Eq. (3.22), the
conversion efficiency may be arbitrarily increased when
G is negative by designing the mixer so that the load

- conductance G; ~ —G} at the operating point. However,

it may easily be seen from Egs. (3.17) and (3.24) that

(Gs+G=(GL +G )G pyp+Gs)/(Goo+GyL) . (3.39)

The properties of the mixer at the signal port will there-
fore become singular when G, — —G?. According to Eq.
(3.25), the signal power “reflected” from the mixer will
tend towards infinity. In a more general treatment it can
be shown that the reflection coefficient at the image port
and at every harmonic sideband port, here assumed short-
ed, will tend towards infinity as well (Feldman, 1982).
This is clearly an unstable situation, which must be avoid-
ed. It is even dangerous to operate in the negative-
resistance region with low or moderate gain. The nega-
tive resistance at dc implies a negative output impedance
over at least some range of low frequencies, and the mixer
is liable to oscillate somewhere within this range. It is in-
teresting, however, to note that quasiparticle tunnel junc-
tions could potentially be used as high-frequency reflec-
tion amplifiers, rather than as mixers, if the tuning cir-
cuits were properly designed (Lee, 1982).

Fortunately, a very large conversion gain is not re-
quired in order to approach quantum-limited sensitivity
in the millimeter-wave region. The “temperature” of a
single quantum T =#w/k corresponds to a few degrees
Kelvin at these frequencies, and a conversion gain of
L~'=2—4 is sufficient to reduce the contribution of a
T1r~10 K amplifier below this level. An optimized SIS
millimeter-wave receiver might, therefore, be designed to
operate with very large, but still positive, output im-
pedance and a modest conversion gain, achieved in part
through an IF impedance transformation.

This discussion of the quantum performance charac-
teristics for quasiparticle mixers in terms of a simplified
model has not dealt with the question of mixer noise tem-
perature. From a practical point of view, this is not a sig-
nificant omission because extensive experimental data and
computer simulations have demonstrated that T, tends
to be very small in these devices when the conversion effi-
ciency is high. It may at first seem mysterious that the
noise should be so small, since the local oscillator drive
induces substantial currents through the junction, which
should produce shot noise. That this shot noise can
indeed be very small can be understood from an argument
first discussed by Uhlir (1958) for a classical p-n junction
mixer with an exponential diode I- ¥ characteristic. For a
very large LO drive, the conductance of this device ap-
proaches its maximum only during a short interval of the
LO cycle, and the combination of dc bias and LO current
is passed almost entirely in a short burst during this inter-
val near the turning point in the cycle. The resulting
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Fourier components G, and G in Eq. (3.32) for such a
classical mixer can thereby be seen to approach the values
for Gy and G, respectively, producing efficient hetero-
dyne conversion. Shot noise occurs because the current
flow results from discrete events, which are statistically
independent; even if the average rate is uniform, there will
be fluctuations due to the statistical variation in the total
during a given interval. In the presence of only a dc
current, the mean-square noise current in a bandwidth B
about the output frequency would be given by the familiar
shot-noise result of Eq. (3.8), which may be rewritten in
the form

172

B

2
Idc

(I}y=2el4 B=2|e (3.40)

A bandwidth B corresponds to a sampling time interval
~1/B during which it is possible to make independent
measurements of the current. The average number of
electrons passing through the barrier during this interval
is N =1I4./eB. The fluctuations about this mean value
will then be of order VN when the individual events are
randomly distributed throughout this time interval.
When the current through the junction is passed during a
sharp spike, whose duration is short on the time scale of
all relevant frequencies in a mixer, however, the number
of electrons passing through the barrier during each cycle
at these frequencies will be accurately determined. Devia-
tions from the mean value of the time-dependent current
due to the random nature of the independent events dur-
ing the current pulse cannot be resolved by the mixer
under these conditions, and the shot noise is therefore ef-
fectively suppressed. '

A complete description of shot noise in a heterodyne
mixer requires detailed analysis, and a theory of noise in
quasiparticle tunnel junctions is summarized in Sec. IV.E.
The argument presented here, however, is intended to
demonstrate that efficient heterodyne conversion and low
noise are not incompatible, but in fact tend to go hand-
in-hand.

IV. QUANTUM MIXER THEORY

In this section a systematic quantum generalization of
microwave mixer analysis is presented, which describes
the performance of nonlinear quasiparticle tunnel junc-
tions as detectors and mixers (Tucker, 1979). The basis of
this quantum mixer theory is the transfer Hamiltonian
formulation of tunneling originally put forward by
Cohen, Falicov, and Phillips (1962). In this approach, the
effect of the coupling through a tunnel barrier is included
via an additional term in the system Hamiltonian:

Hr= X (T cic,+ Tigeler)
kgo

Here c; and c, are second-quantized operators represent-
ing Bloch states for electrons on the left- and right-hand
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sides of the junction, respectively, and the spin indices
have been suppressed for simplicity. Terms in H7 thus
transfer electrons from right to left across the barrier,
while those in H7 correspond to tunneling in the oppo-
site direction. The matrix elements that characterize bar-
rier penetration between states of comparable energy are
given by (Bardeen, 1961)
2
Tig=— 2 [ dSWiVY,— 9, V40, 4.2)

where 1, and 1, are the appropriate Schrodinger wave
functions calculated for the left- and right-hand systems
separately, assuming a barrier of infinite width, and the
surface overlap integral may be evaluated over any plane
lying within the junction. The current flow through the
barrier is then to be evaluated by including the transfer
Hamiltonian of Eq. (4.1) to lowest order, utilizing time-
dependent perturbation theory.

The result obtained in Sec. IV.A for the average quasi-
particle tunneling current may be written in the form
(Werthamer, 1966)

(I(2))=Im f_ww do'do" W) W* (")
Xe =Py L fiw' fe) . (4.3)

Here the effect of a time-dependent potential ¥'(¢) across
the junction is expressed in terms of the Fourier
transform of the phase factor:

© ., 1 t ,
[ do'W@)e = =exp | =2 [Tdr[V(e)=Vol |,

(4.4)

where the dc bias voltage ¥, has been explicitly removed
for convenience. This function represents the additional
time dependence introduced coherently onto the wave
function for every electron quasiparticle state on the
ungrounded side of the junction, and may be seen to be
the appropriate generalization of Eq. (3.2) to an arbitrary
applied potential.

The physical response of the tunnel junction is com-
pletely characterized by the complex function j( V). For
the special case of a time-independent potential, Eq. (4.4)
gives W(w)=8(w), and the result of Eq. (4.3) for the tun-
neling current must reduce to the dc I- ¥ characteristic of
the junction:

Idc( Vo)=Im](VQ) . (4.5)

Thus Imj ( ¥) may be directly measured.

The real part of the response function Rej( ¥) charac-
terizes the reactive portion of the tunneling current, and it
can be related to the dissipative part Imj(¥) through a
Kramers-Kronig transform which reflects the require-
ment of causality. This Kramers-Kronig transform of
the dc I- ¥V curve may be defined in the form

dV 1a(V)—V /Ry

= (4.6)
™ V—Vv

Ixk(M=Rej(N=P [~
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Here it is assumed that the dc current becomes Ohmic in
the limit of large bias voltage, exhibiting a normal resis-
tance Ry. The arbitrary subtraction of the second term
in the integrand of Eq. (4.6) is allowed because only the
nonlinear portion of I4. (V) need be considered in evaluat-
ing the reactive part of the response. All physical quanti-
ties depend on differences between values of Rej(¥) and
not on its absolute magnitude. The particular definition
chosen in Eq. (4.6) turns out to be very convenient, how-
ever, both conceptually and for computational purposes as
well. In this form, the nonlinear region of I4 (V) which
gives rise to the reactive response may be approximately
bounded when computing the Kramers-Kronig transform
Ixk (V). It should be pointed out that the reactances cal-
culated in terms of Ixg(V) are nonclassical, and are
present in addition to the ordinary junction capacitance.
This effect is negligible so long as photon energies #w /e
are small compared to the voltage scale of the dc non-
linearity. The current can then be described as an instan-
taneous classical modulation of the dc I- ¥V characteristic.
In thé quantum regime, however, the time-dependent
current becomes a nonlocal function of the applied volt-
age, as described in Sec. IV.G. The quantum reactances
computed using Ixk (¥) must then be included in order to
obtain a physically consistent description of the tunneling
process.

The form of Eq. (4.3) for the quasiparticle tunneling
current was originally derived by Werthamer (1966), and
is based upon an early calculation by Ambegaokar and
Baratoff (1963) of the Josephson effect. When both elec-
trodes of the junction are superconductors, a second term
must be added in order to describe the coherent tunneling
of Cooper pairs. The structure of the time-dependent
response in Josephson junctions has been investigated
theoretically by Werthamer (1966), Harris (1974,1975),
and many others, and the results of these studies provide
a detailed understanding of the complex and beautiful
phenomena associated with the pair tunneling. The
single-electron quasiparticle contribution to the tunneling
current given by Eq. (4.3), however, was for many years
perceived as comparatively uninteresting, and only recent-
ly has it been appreciated that new and remarkable quan-
tum effects can occur by these processes as well. Here we
are concerned exclusively with quasiparticle tunneling
phenomena under conditions where the Josephson pair
tunneling is either absent or suppressed. In typical SIS
mixer diodes, this suppression takes the form of a sub-
stantial capacitance, which shunts the pair current at the
Josephson frequency wj;=2eV,/# generated by the ap-
plied dc bias voltage. An external magnetic field is also
applied in some cases to reduce the overall magnitude of
the pair tunneling by inserting flux quanta into the junc-
tion. A basic hypothesis of the quantum mixer theory is
that pair tunneling may be ignored, and this assumption
will break down in SIS junctions for low dc bias voltages
or when the capacitance of the junction is small.

Equations (4.3)—(4.6) completely characterize the ac
response of a single-particle tunnel junction. It is remark-
able that no microscopic calculation is required. The en-
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tire physical response for a particular junction is con-
tained in its measured dc I-V characteristic, so long as
that characteristic represents only quasiparticle tunneling.
This ability to project accurately the complex ac behavior
of a tunnel junction using only its measured dc current
gives the theory an extraordinary predictive power.

A. Microscopic theory

The transfer Hamiltonian description of Eq. (4.1) arose
historically in response to direct observations of the su-
perconductor energy gap in the tunneling experiments by
Giaever (1960a,1960b). A new method was required in
order to include consistently the many-body correlations
that occur between superconducting electrons within the
tunneling framework. Bardeen (1961) introduced the idea
of considering exact wave functions for electrons on each
side of the junction when the barrier is infinitely wide.
An approximate expression for the tunneling matrix ele-
ment is then calculated in Eq. (4.2) due to the small over-
lap of these exponentially decaying wave functions
representing right- and left-side Bloch states within the
barrier region. Cohen, Falicov, and Phillips (1962) uti-
lized this picture to construct a theory in which the total
system Hamiltonian for the tunnel junction is given by

H=H2+H+eV(t)N, +Hy . 4.7

Here H 2, r represents the full many-body Hamiltonians
for the left- and right-hand electrodes in the absence of
coupling through the barrier. Modulation of the junction
is included via a time-dependent potential multiplying the
left-side number operator Ny, while the right side is taken
to be grounded. Finally, the coupling between the two
systems by tunneling is represented through the transfer
Hamiltonian of Eq. (4.1), using any convenient set of
Bloch wave functions for the electrons on both sides.

The tunneling current is obtained by the artifice of cal-
culating the time derivative of the right-side number
operator:

dNg

I=
¢ dt

=i~ [HrNg]
=i%(HT+ —HF)

=TI, +I_. 4.8)

Notice that the current operator separates naturally into
two pieces. Here I transfers electrons from right to left,
while I_ is its Hermitian conjugate. Electrons are sup-
plied and extracted through electrical contacts to each
side of the junction at the rate determined from Eq. (4.8)
in order to preserve macroscopic charge neutrality.

The modulation by the applied potential is assumed to
be sufficiently slow and weak that both bulk regions
remain close to equilibrium. This will not be true under
all conditions. Considerations of nonequilibrium' effects
in quasiparticle tunneling between superconductors may
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be found in Entin-Wohlman (1980), Yu and Entin-
Wohlman (1981), and Yu (1984). Here, the density ma-
trix describing the uncoupled system is taken to be

exp[ —BH’—uN)]
Triexp[ —B(H°—uN)]}

In the absence of coupling through Hr, the left and right
electrodes are independent, and the density matrix factors
accordingly. The addition of the potential term to the
left-side Hamiltonian is offset by the change in chemical
potential:

po: (4.9)

ur(t)=p-+eV(t), (4.10)

so that the thermal equilibrium ensemble of Eq. (4.9)
remains unaffected. The only impact of the applied po-
tential on the uncoupled system then appears as a simple
phase modulation of all left-side single-particle operators:

ce(t)=cP(t)exp —i% ftdt’V(t')

—i(eVy /At
=cP(t)e 0

[7 dowiene=t. @1
Here c(¢) denotes the Heisenberg operator for a left-side
Bloch state in the absence of an applied potential, and the
Fourier transform of the ac-induced phase modulation is
given according to Eq. (4.4).

This coherent modulation of the quantum-mechanical
phase for all Bloch states on the left side of the junction
appears directly in the forward and reverse components of
the current operator. Inserting the form of Eq. (4.11) into
Egs. (4.1) and (4.8) yields

I_(=I° exp[ —i(eVot /)] [~ do'W(a'e=",
(4.12)

I.()=I" ().

The expectation value for the total current is calculated
by including the coupling through the transfer Hamiltoni-
an to first order, using time-dependent perturbation
theory. The standard calculational technique employs the
interaction representation. The operators of the system
are taken to evolve according to the Heisenberg picture
with the unperturbed Hamiltonian H°. The interaction is
then included via an additional time-development opera-
tor, which depends only upon the weak perturbation ac-
cording to

.. d
tﬁ—E;UI(t)zHT(t)UI(t) .

To first order, this time-development operator may be ap-
proximated

(4.13)

1 d Lt ’
Uyl — [ dre™Hy(e), (4.14)

where in the exponential factor 7—07 is included to turn

on the perturbation adiabatically. The current through
the barrier is then given by
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(I(0)) =TrlpoUi I (U (1)]

1 d ’ ' ’
~ o S dre™ (L), Hr(t)])o

=tm [*_arem 2, @, 1w

(4.15)

The expectation values in the integrand are to be evaluat-
ed for the uncoupled system using the equilibrium density
matrix of Eq. (4.9).

Explicitly withdrawing the time dependences of the
current operators in Eq. (4.12) induced by the applied po-
tential, we may write the result of Eq. (4.15) for the tun-
neling current according to the form quoted in Eq. (4.3).
The complex response function for the tunnel junction is
thus found to be given by

jn=J_arem 2t .10,

g HileV /ANt —t) | 4.16)

The current commutator that appears in this expression
depends only upon the time difference for the equilibrium
system, and so may be represented in the form

X4 _(t—t)=+5([I%®),I° ("], . (4.17)

In terms of the Fourier transform of this function, the
current response of the tunnel junction in Eq. (4.16) may
be written

. _i © _ Xi-(a—)-)
im==[_d (4.18)

Q— .
o—eV/fi—in
An examination of the symmetry properties of the current
commutator in Eq. (4.17) reveals that X _(w) is real and
antisymmetric. The real and imaginary components of
the current response function are thus seen from Eq.
(4.18) to be related through a Kramers-Kronig transform.
Explicitly identifying Imj(¥V)=1I4/(V) as the dc current
in Eq. (4.3), when W(w)=258(w) and there is no applied ac
potential, then leads to the results quoted in Egs. (4.5) and

(4.6), with .

Tl V)=47’Tx1_<ewﬁ> : (4.19)
The subtraction of the limiting Ohmic conductance from
the nonlinear dc I-V characteristic within the integrand
of Eq. (4.6) removes a formal divergence in the definition
of the Kramers-Kronig transform, and the observable
current in Eq. (4.3) may be seen to remain unaffected by
this choice.

The result derived in Eq. (4.19) may be used to generate
predictions for the dc tunneling current based on a micro-
scopic model for each electrode, and this procedure is il-
lustrated in the following section for an ideal SIS junction
between identical superconductors. In practice, the exper-
imentally measured I-V curve can be inserted into Egs.
(4.5) and (4.6) to determine the current response function
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j(¥), and no microscopic calculation is required. The
formal development outlined here in terms of the current
components defined by Eq. (4.8) and their correlation
functions is essential, however, to a systematic inclusion
of noise within this framework.

Just as the entire ac response may be expressed in terms
of the dc I- ¥V curve and its Kramers-Kronig transform, it
will be shown that all noise properties of the tunnel bar-
rier may be calculated using the equilibrium anticommu-
tator:

G _(t—t)=5([I% (1% ()], )0 (4.20)

Employing the grand canonical ensemble of Eq. (4.9), this
quantity may be related to the corresponding commutator
determining the response function in Eq. (4.17) by insert-
ing a complete set of eigenstates (Rogovin and Scalapino,
1974):

|

2me

14.(V)=
d ﬁz “

Here f(g)=(e®*T4+1)~! is the Fermi factor describing
the equilibrium occupation of quasiparticle states of ener-
gy € on either side relative to the chemical potential.

The quantities A4y g(k,w) appearing in this equation
are the single-particle spectral distribution functions for
the left- and right-side electrodes. The spectral distribu-
tion function represents the weighted probability for
creating an excitation with energy #iw when an electron of
momentum K is either added to or removed from the
ground state of the system:

Alko)=|{(m|c}|0)|®(w—alt"

m

+3 [ {m|cx|0) | B(0—l™") . (4.23)
m

Here the sum is over a complete set of energy eigenstates

(see, for example, Schrieffer, 1964). The first term sums

over states of the n + 1 electron system, whose energies

with respect to the n electron ground state are written in

the form

EXV _El—p+holt!. (4.24)

When k > kp in a normal degenerate Fermi system, the
sum in Eq. (4.23) will be dominated near the Fermi sur-
face by a single term, whose frequency equals the energy
of the long-lived quasiparticle excitation of momentum k.
The second term in Eq. (4.23) sums over states of the
n —1 electron system, where

El—Er =y fioh !, (4.25)
The quantity #o? "' is thus defined as the négatz've of the
excitation energy for the n —1 electron system. When
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¢4 (@) =coth(Bfiw/2)X| _(w)

= —ﬁr—coth(ﬁﬁw/ﬂldc(ﬁw/e) ) 4.21)
Expressions of this type are known as Kubo relations, and
are widely employed in analyzing fluctuation phenomena
(Kubo, 1959). Such relations can be considered generali-
zations of the well-known Callen-Welton (1951)
fluctuation-dissipation theorem. '

B. dc /-V curve for an ideal SIS junction

A microscopic expression for the dc tunneling current
of a SIS junction can be obtained by utilizing Green’s
functions and the techniques of many-body theory. This
calculation was initially performed by Ambegaokar and
Baratoff (1963), and is summarized for the quasiparticle
component of the tunneling current in Tucker (1979, Ap-
pendix A). The result of this microscopic calculation
gives

4.22)

r

k <kp the spectral distribution will be dominated in a
normal degenerate Fermi system by a single negative-
frequency component representing the quasihole excita-
tions near the Fermi surface. ‘

The spectral distribution function for a normal metal in
the vicinity of the Fermi surface is simply '

Apormal (K, @) =8(w —gx /%) , (4.26)

where g is the single-particle excitation energy referenced
to the chemical potential: positive for quasiparticles, and
negative for quasiholes. Substitution of this form into
Eq. (4.22) immediately yields an expression for the tunnel-
ing . current between two normal electrodes given by
Fermi’s golden rule.

The spectral distribution function is most useful, how-
ever, for including correlations within the superconduct-
ing ground state in a calculation of the tunneling current
(see Schrieffer, 1964). The BCS theory is based upon an
electronic ground-state wave function of the form

| o) =TT (ux +vcire i) [0) 4.27)

k

The creation operators represent Bloch states of the nor-
mal metal, and the superconductor ground state is seen to
be characterized by coherent pairing in the occupation of
states (k1) and (—kl): they are either both empty or
both occupied. The probability that the individual pair
(kt,—kl) is occupied within the BCS ground state is

given by the function
vi=1—uf=+1—er/Ey) . (4.28)

The value of E; turns out to be the energy needed to
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create a quasiparticle excitation of the superconductor
with momentum k:

Ep=(e2 +A»)12 (4.29)

and the spectrum thus contains an energy gap A at the
Fermi surface in the superconducting state. The form of
this quasiparticle energy spectrum is illustrated in Fig. 17,
along with the occupation probability v? for pairs in the
ground state.

The quasiparticle excitations of the ground state con-
tain a single unpaired electron of momentum k. The am-
plitude that such a state can be reached by inserting an

additional electron of momentum k is seen to be u; ac-.

cording to Eq. (4.27), since the portion of the BCS ground
state already containing a pair with this momentum is
unavailable by the Pauli exclusion principle. Similarly,
the amplitude is v, for obtaining an unpaired quasihole
by removing an electron of momentum k from an occu-
pied pair. The spectral distribution function of Eq. (4.23)
is therefore given according to the BCS theory by

A(k,0)=upd(w—E) /%) +vE8(w+Ey /%) . (4.30)

In the neighborhood of the Fermi surface, u; and v, are
each nonvanishing, and the single-particle excitations thus
have both a particlelike and a holelike component. The
dependence of A4 (k,w) is on the squares of the matrix ele-
ments, however, and so no “coherence factors” of the
form wupv enter into determining the quasiparticle tun-
neling current. Substituting the results of Eqgs. (4.28) and
(4.30) into Eq. (4.22) readily yields an expression for the
dc current between two superconductors:

<> =vE

(b)

FIG. 17. (a) Quasiparticle energy E; with respect to the Fermi
energy for single-particle excitations of the superconducting
ground state, plotted as a function of wave vector. The energy
Ej =(g} + A%/ differs from the normal-state value |g; | only
very near kp. The gap A, is the minimum energy required to
inject or withdraw an unpaired electron. (b) The average occu-
pation number {n; ) for individual Block states within the BCS
ground state. Pair correlations alter the normal state over a
very small region at the Fermi surface. (After Schrieffer, 1964.)

zdcw):ﬁﬁfizvz(m | T |2 [ “deyde, { [f(Ei)—f(E,)18(eV + By —Ep)+[f (Ex)—f (—Eg)1(eV + By +E,)

+[f (—Ep)—f(Ep)18(eV —Ey —E,) + [f(—Ex)—f(—E,)18(eV —Ex + E,)} .

Here N (O) represents the density of states for each spin
near the Fermi surface in the normal state, and the tun-
neling matrix element Ty, =T is assumed to be indepen-
dent of energy in this region. The various terms in the in-
tegrand in Eq. (4.31) may be seen to characterize tunnel-
ing processes between particlelike states with energies
+E; or +E,; and holelike states with energies — E; or
—E, on opposite sides of the barrier. Since all depen-
dence on the coherence factors has canceled out of the
calculation, the net result of Eq. (4.31) may be represented
by the simplified band diagram in Fig. 1(b) using the ef-
fective density of states given in Eq. (1.2).

Analytic expressions have been derived by Werthamer
(1966) for the quasiparticle tunneling current in Eq. (4.31)
between two BCS superconductors in the limit of zero
temperature. The result for an ideal SIS junction between
identical superconductors is shown graphically in Fig. 18.
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(4.31)

i(v)eRy/b (0)
T

2
ev/d ©)

FIG. 18. Quasiparticle current response function j(¥) for an
ideal SIS junction between identical superconductors in the
low-temperature limit kT <<A. The solid line is the dc I-V
characteristic Imj(¥V)=1I,4(V), and the dashed curve is its
Kramers-Kronig transform Rej ( V)=1Igk(V).
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The solid line shows the ideal dc I-V curve I4.(V), with
its infinitely sharp onset of quasiparticle tunneling at the
gap voltage eV'=2A. The dashed curve represents the
Kramers-Kronig transform Igg(V), which determines
the reactive ac response. This function contains a mild
logarithmic singularity at the gap voltage that is
smoothed into a peak in real junctions by rounding of the
current onset over a finite voltage region. The arbitrary
constant involved in the definition of Ixk(¥) has been
chosen here so that the value of this function vanishes at
V =0. The dc current I4 (V) is, of course, an odd func-
tion of the applied voltage, and so its Kramers-Kronig
transform Igg (V) will be even. These two functions give
the dissipative and reactive components, respectively, of
the total response function j(¥) for the ideal SIS tunnel
junction at zero temperature.

C. Local oscillator waveform

The first step in constructing a quantum mixer theory
is to solve self-consistently for the large-amplitude local
oscillator waveform impressed across the tunnel junction.
In general, this is an extremely difficult task, which re-
quires consideration of all harmonics of the applied local
oscillator frequency. Ingenious methods have been em-
ployed to deal with this problem in classical mixer theory,
such as the multiple reflection method of Kerr (1975) and
the voltage update method of Hicks and Khan (1982).
These methods have recently been adapted for analysis of
SIS mixers (Hicks et al., 1985). Both techniques require
that the junction’s response be treated in the time domain
(Sec. IV.G) rather than using the frequency domain Eq.
(4.3). However, the mathematical complexity involved in
obtaining a complete solution to the large-signal problem,
together with uncertainties in the values of the termina-
tion impedances seen by the diode at the various harmon-
ics, usually precludes this approach.

Rather than discussing the general problem, for the
remainder of this section we shall make the simplifying
assumption that only the sinusoidal ac voltage at the ap-
plied local oscillator frequency need be considered, i.e.,
that any current generated at a higher harmonic frequen-
cy is short circuited. This condition is commonly
achieved in practical SIS mixers by the relatively large
geometrical capacitance of the junctions. The capacitance
can be tuned out at the signal frequency by a movable
backshort, and this configuration has the virtue of
preventing the conversion of signal power into the
unwanted harmonic sidebands. The effect of harmonic
frequencies on the performance of practical SIS mixers is
discussed in Secs. V.B and VL A.

When all harmonics are assumed shorted, the time-
dependent voltage across the tunnel barrier will be of the
form

V()= Vo + VLoCOSC()t . (4.32)
The additional phase factor multiplying the Schrodinger
wave function for each quasiparticle state on the left side
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of the barrier due to the local oscillator is given by
ie rt,, , . .
exp | — % f dt'Viocoswt’ | =exp[ —i(eVy/fiw)sinwt ]

= 2 J,,(eVLo/ﬁw)e“”“" .

(4.33)

The Fourier transform of this phase factor defined by Eq.
(4.4) then becomes
W)= 3 J,(eVio/tfiw)do —ne) . (4.34)
n=—ow
Substituting this result into Eq. (4.3) for the induced tun-
neling current gives

Io(=Im 3 J(a), m(a)et ™ j(Vy+ntiw/e)

nm=—oc

=ao+  (2a,cosmwt+2b,sinmwt) , (4.35)

m=1
where the amplitude of the local oscillator waveform is
contained in the argument of the Bessel functions:

a=eVio/fiw . (4.36)

The average current induced by the local oscillator thus
contains components at all the various harmonic frequen-
cies, with magnitudes given by

2ap= S T @) 4Ty (@) ee(Vo+ntiw/e) ,

n=-—o

(4.37)
2bp = 3 J )Ty im(a)—Ty _m(a)]

n=—oo

XIKK(V0+nﬁa)/e) .

The expressions derived here for ay and 2a; are seen to
reproduce the results quoted in Egs. (3.3) and (3.5) for the
dc tunneling current and the dissipative component of the
current induced at the applied frequency.

In the classical limit, the quantum energy #iw /e is small
compared to the voltage scale of the dc nonlinearity. The
above results may then be shown (Tucker, 1979) to reduce
to a simple time-dependent modulation of the dc I-V
curve:

Iilo(t)=1dc( Vo+ VL()COSCUt)

=al+ > 2acosmaot | (4.38)
=1
where
. ;
208 = % [ d(wncosmatl (Vo + Vipcosot) . (4.39)

The simple Fourier transform in Eq. (4.39) for the various
current components is seen to be replaced in Eq. (4.37) by
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complicated Bessel series expressions, which involve the
dc current Iy (Vy+n#iw/e) displaced from the dc bias
voltage by integral multiples of #iw /e. It is this feature of
the quantum theory that accounts for the dissipative ab-
sorption and emission of particular numbers of photons in
the tunneling process. Note that the quantum expression
for the tunneling current, Eq. (4.35), also contains addi-
tional reactive terms, which depend upon the Kramers-
Kronig transform Ixg (V) of the dc I-¥V characteristic,
and these quantum reactances vanish in the classical lim-
it. In the high-frequency quantum regime, however, the
current is a nonlocal function of the applied voltage, and
the instantaneous current will not be in phase with the
voltage. The reactive components involving Ixg (V) must
then be included to obtain a physically consistent descrip-
tion of the tunnel junction.

The equivalent circuit for the mixer at the LO frequen-
cy o is illustrated in Fig. 19. The local oscillator is
‘represented by a current generator with complex ampli-
tude #1o and an effective source admittance Y,
=G, +iB, determined by the input waveguide and
mounting structure. The susceptance B, will include a
contribution ©C due to the junction’s geometrical capaci-
tance. With the assumption that the higher harmonics of
the local oscillator are short circuited, the only physically
relevant component of the large-signal ac current through
the tunnel junction is Re(Ifpe t7%). Thus the dissipative
and reactive currents defined in complex notation by

ITo=Iio+ilfo (4.40)

may be obtained directly from Eq. (4.37):

Io= 3 Ju(@)Jy_1(@)+J, (@) g Vo+ntio fe)
- (4.41)
II’.:O: 2 J,,(a)[J,,_l(a)~J,,+1(a)]IKK(V0+n‘ﬁa)/e)

n=-—ow
According to Fig. 19, the circuit equation may be written
in the form »

Fro=I8+Y,Vio . 4.42)

The total local oscillator power incident on the mixer
diode is equal to the available power from the current
source:

‘QLOeﬂw'CD lj:! Y=Gy * 1By

w _+iwt +iwt
‘ILOe Vice

FIG. 19. Large-signal equivalent circuit for a heterodyne
mixer. The LO is applied at frequency w; all higher harmonics
2w,3w, . . ., are assumed to be short circuited.
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| Frol?
Pro=—21
Lo 8G,,

=s<1; [Tio+GuVio)+U{o+B,Vi0)]. (4.43)

The large-signal problem, within the context of this
model, then consists of an iterative solution to Egs. (4.41)
and (4.43) in order to determine the amplitude Vg of the
local oscillator waveform across the junction in terms of
the incident power P;o and the effective source admit-
tance Y, created by the mixer mounting configuration.

D. Small-signal admittance matrix

The small-signal mixing properties of the tunnel junc-
tion may be calculated once the amplitude of the local os-
cillator waveform has been determined. A schematic dia-
gram of a general heterodyne mixer is shown in Fig. 20.
Strong pumping at the LO frequency w mixes the output
frequency w, with all sidebands:

Om=mo+wy, m=0,+1,+2,.... (4.44)
Each of these sidebands is represented in Fig. 20 by a
mixer port with a termination admittance Y,,. The in-
coming signal at frequency wg=w, is represented by a
current generator £ ¢ with a source admittance Yg=1Y.
The function of the mixer diode is to convert this incom-
ing signal power to the output frequency g, and couple it
into the load admittance Y,=1Y; representing the first-
stage IF amplifier.

The voltages and currents at the sideband frequencies
may be represented in the form

NONLINEAR
DIODE -

MIXER
=
Wy =mw + w 0
Y= vnei"’nl
i
It

j Jsei wgt

Vgt D w

FIG. 20. Schematic diagram of a general fundamental hetero-
dyne mixer, with applied LO frequency w, signal frequency
ws=wm1, and IF output at w,. The equivalent embedding net-
works at all of the sideband frequencies w,, =mw+wy are indi-
cated, with termination admittances Y,,.
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+iwmt

vsg(t)=Re 3 vpe ,
m=—ow
(4.45)
isg(t)=Re 3 igeOmt '
m=—ow
These voltage and current components will be linearly re-
lated for small signals by an admittance matrix

im =2 Yy U - (4.46)
oy

The values of the admittance matrix elements are deter-

mined by the large-signal solution, and depend on the

strength of the local oscillator and the nonlinear dc I-V

characteristic of the tunnel junction. They are calculated

by expanding the total current through the tunnel barrier
and identifying those terms that are linear in the small-
signal voltages.

The total voltage and current across the tunnel barrier
may be written in the form

V(t)=Vo+Vio(t)+uvg,(t) ,

(4.47)
(1)) =Io()+igg(0) .

The inclusion of vg;,(¢) in the applied voltage in Eq. (4.4)
requires additional terms in the time-dependent phase fac-
tor, which multiply the result of Eq. (4.33) for V()
alone. Retaining only terms to first order in the sideband
voltage components v,,., we generalize Eq. (4.34) to

e
2ico

W)= 3 Jn(eVio/fw) |80 —na)+ 3

m'=—c

[ (0 =1 — @) — V(0 — O+ @pyr) ] (4.48)

n=-—oo

Inserting this result into Eq. (4.3) for the total current, and again retaining only terms linear in the sideband voltages v,,,
we find the admittance matrix elements that give the signal currents i,, in Eq. (4.46) to be

Ymm‘szm’+iBmm’ ’ (4.49)
where
Gmm'=ﬁ_ 2 Ty (@) i nt - § [Lac(Vo+n'fiw /e +Hwy, /€) —I 3 (Vo+n'fiw /e)]
m’ nn'=—co
+[L4(Vo+ntiv/e)—14.(Vo+ntiow/e —#iw,, /e)]} (4.50)
and
Bw= ZhZ) : S T @y ()8 it —n { [Tk (Vo +n'#w /e +Fio,, /e) —Ixg (Vo +n'#iw /e)]
m’ pn'=—c
—[Ixx(Vo+ntiw/e)—Ixx (Vo +ntw/e —tiw,, /e)l} . (4.51)

The elements of the small-signal admittance matrix in
this model are seen to separate into real and imaginary
parts, which depend only upon the dissipative and the
reactive components, respectively, of the junction
response.

In the classical limit, the photon energies fiw/e at all
frequencies of interest will be small compared to the volt-
age scale of the dc I- V nonlinearity. The modulation due
to the local oscillator in Eq. (4.38) then produces a time-
dependent conductance

GCI(t) = dLIdc( Vo + VL()COS(Ot)

Vo
= 3 GYmow)e™* (4.52)
m=—o
and a small-signal admittance matrix
Y, =GN (m —m"w] . (4.53)
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The quantum expression of Eq. (4.50) for the real part of
the admittance matrix may be shown to reduce to this re-
sult in the classical limit, while the reactive elements
given by Eq. (4.51) are found to vanish (Tucker, 1979).
The mathematical complexity of the quantum expressions
arises from considering effects due to absorption or emis-
sion of particular numbers of photons during the tunnel-
ing process; and this is unnecessary in the low-frequency
classical regime.

Once the admittance matrix elements Y,,,, relating the
small-signal currents and voltages at the various sideband
frequencies have been determined, the analysis of mixer
performance is straightforward. In general, there may be
incoming radiation applied to the diode at any of the side-
band ports in Fig. 20. An arbitrary set of current genera-
tors {-#,,} placed at each sideband port w,, of the mixer
will produce small-signal current and voltage components
across the junction satisfying
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I m=im+Y,om

=3 (Yo' + Y S, Wi - (4.54)
<

Inverting these equations, one obtains the signal voltages
produced by this arbitrary set of current generators,

vm=zzmm’jm’ ’ 4.55)
oy
where, in matrix notation,
U Zmme | | =1 | Yo+ Yon By | | 71 (4.56)

In particular, the output voltage at wy may be written in
the form

Vo =ZO()27\'Om'/m s (4.57)
m
where the quantity
Aom=Zom/Z (4.58)

does not depend upon the output load termination
Yo=Y;. This conclusion is obtained by explicitly per-
forming the matrix inversion in Eq. (4.56), and will prove
useful in analyzing the noise properties of the mixer. The
effect of a current source .#,, at frequency w,, is thus
equivalent at the output to a fictitious source Ag,,.#,, of
frequency wg, which depends upon the properties of the
mixer but not on the value of Yo=Y, .

In a fundamental heterodyne mixer, the incoming sig-
nal may be represented by &, =.#5 at frequency o+ w,
as illustrated in Fig. 20. The total signal power available

- at the input is therefore
Py,=|55|?/8Gs . 4.59)

The power that is frequency down-converted and
delivered into the output load may be written in the form

Pou=7GL 00| =3GL | Zot || F5|?. (4.60)
The conversion efficiency of the mixer is then given by

L__1= Pout

=4GSGL ‘ZOI |2 . (4.61)

m

In these expressions, Gs and G represent the real parts
of the source and load admittances Y5 and Y;, respec-
tively. The conversion efficiency is therefore readily cal-
culated in terms of the small-signal admittance matrix
Y,um' and the terminations Y, of the diode at each of the
sideband frequencies.

E. Noise properties

The combination of dc bias voltage and local oscillator
waveform in Eq. (4.32) produces large tunneling currents
through the junction at frequency multiples mwo of the
LO drive. The total current has an expectation value
given by Eqgs. (4.35)—(4.37). Because this current results
from the tunneling of individual quasiparticles, however,
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fluctuations about the average will produce noise currents
at other frequencies; and some of this shot noise will be
mixed into the output of the receiver. The theory present-
ed in this section is based conceptually upon Uhlir’s
(1958) beautiful analysis of shot nose in p-n junction fre-
quency converters.

The shot noise in a tunnel junction mixer may be
analyzed by placing a noise generator [I(#)—{I(¢))] in
parallel with an idealized “noiseless” mixer, where I(t) is
the current operator for the tunnel junction. The average
current {(I(t))=1Io(¢) is given by Eq. (4.35), and the
noise generator characterizes the fluctuations about this
mean value. Over a long time interval T, which will be-
come infinite at the end of the calculations, the Fourier
transform of the current operator may be defined

© . T T
I — I —iwt = -
0= [_ doli@e™™, —><t<-,
o (4.62)
Irto)= [ Sevieryy).

Since the expectation value Iyo(¢) of the local oscillator
current contains no components at the sideband frequen-
cies w,, =mao +wq, the noise source [I(t)—(I(¢))] can be
represented by placing a set of current generators 81I,,(t)
at each terminal of the heterodyne mixer illustrated in
Fig. 20, with amplitudes given by

wm+1rB L,
81,(0= [ " do'[Ir(ae "

+I(—w')eti? . - (4.63)
Here B represents the IF bandwidth about w, Noise
components at frequencies outside this interval about each
sideband will not be mixed into the load and can be
neglected. The ideal “noiseless” mixer on which these
current sources are placed now contains no fluctuations.
The current operators of Eq. (4.63) are, therefore,
transformed by the same matrix Eq. (4.55) that relates the
expectation values of the sideband voltages to the external
sources. The effect of a current generator at frequency
w,, may be represented at the output by an equivalent
source, as in Eq. (4.57), whose strength is determined by
the parameter Ay, defined in Eq. (4.58). The entire set of
current sources in Eq. (4.63) is thus equivalent to a single
such source at the output frequency:

w0+7rB , " i
I ()= fwo_ﬂB do'[ If(w' e~
+If(—w)e o], (4.64)
with

If(w0") = SAspIrimo+o') . (4.65)
m

The parameter Ag,, appears conjugated in this expression

because the sign convention used to define the Fourier

transform in Eq. (4.62) is opposite to that of Eq. (4.45) for

the time dependence of the sideband voltages and
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currents. This reflects the difference between standard
conventions adopted for Fourier transforms in electrical
engineering and quantum physics, and every effort has
been made to preserve their appropriate use.

The time-averaged mean-square noise current
represented by the effective source in Eq. (4.64) is a mea-
sure of the noise produced by the local oscillator that ap-
pears within the output bandwidth:

.1 pT2 e
([8Io1*)1o0= Jlim — f _T/Zdt([SIoff(t)]2)

2
=B lim 4-;—< L5 (w00), IS — 0], )

=B E A'Om}‘g‘m’Iimm’ . (4.66)
m,m’

Because these are operator equations, the ensemble aver-
age in this expression involves the anticommutator of the
effective current fluctuations at +w,. The quantity H,,,,
is known as the current correlation matrix:

Hpyw=e S Ju(eVio/#0)ueVio/#0)8m _m i —n

nn'=—c

Hipe= lim iTﬁqIT(—wm ) Ir(om)]y) . (4.67)
The elements of this matrix may be calculated by insert-
ing the time-dependent phase factor of Egs. (4.33) and
(4.34) induced by the local oscillator into Eq. (4.12) for
the current operators in the forward and reverse direc-
tions. The result is
I_(0=I"(t) S, J,(eVio/ha)e ' "oToPr
n=—cw
(4.68)
I.(0=I"(1).

Here I%(t) represents the Heisenberg operators for the
current components in the equilibrium system. The sum
of these two pieces is the total current operator of Eq.
(4.8), whose Fourier transform defined in Eq. (4.62) may
be substituted into Eq. (4.67) to give an expression for the
current correlation matrix. After considerable manipula-
tion, the result may be written in terms of the Fourier
transform of the equilibrium anticommutator defined in
Egs. (4.20) and (4.21), to give

X { coth[B(eVy+n'fiw + #iw,, ) /21 3. (Vo +n'tiw /e + Fiw,, /e)

+coth[ B(eVy+ntiw —#w ) /2 4o (Vo +ntiw /e — i, /e)} .

A standard measure of the sensitivity of a heterodyne
mixer is the minimum detectable power: the incident sig-
nal power required in order to produce an output equal to
the noise output. The signal generator .#¢ at the input
port in Fig. 20 is equivalent, according to Eq. (4.57), to a
current source Ag£g at the output frequency whose
square may be expressed in terms of the available incident
power Eq. (4.59) in the form

([8101)sig=7 | A1 | | #s |

=4Gs | Aot | *Pip - (4.70)

Equating this to the mean-square noise in Eq. (4.66)
yields a minimum detectable power P;,=kT}°B, with a
mixer noise temperature given by

*

4GS ’ ;\'01 |2 mé'}"Om)‘Om Hmm .

This contribution to the total mixer noise temperature
Ty represents the shot noise generated by the combina-
tion of dc bias voltage and the local oscillator waveform
impressed . across the tunnel junction. An additional
source of noise in a practical mixer can arise because
thermal fluctuations in the dissipative terminations
ReY,, =G,, at the various sideband frequencies in Fig. 20
may be mixed into the output. Noise of this type can be

LO 1

kTE 4.71)
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(4.69)

f

included in the theory without difficulty, although great
care is usually taken to ensure that such effects are mini-
mized in practice. One additional noise source that is not
included within this semiclassical theory is the “quantum
noise” due to quantization of the electromagnetic fields,
and this contribution is discussed in Sec. VLE. General
uncertainty principle arguments give a lower bound to the
noise temperature of order Ty, ~#w/k for any heterodyne
mixer. This quantum limit may be approached in practi-
cal SIS heterodyne mixers, since calculations based upon
Eq. (4.71) often yield a local oscillator shot-noise contri-
bution Tx° < #w/k in regions of high conversion efficien-
cy; and experimental measurements of mixer noise tem-
perature in many instances give values within small fac-
tors of this nominal quantum limit.

F. Simplified heterodyne mixer
model revisited

A simplified model was developed in Sec. IILB to illus-
trate the new quantum effects that are observed in SIS
quasiparticle mixers at high frequencies. In this section,
the complete quantum mixer theory will be applied to
construct a heterodyne receiver model using the three-
frequency approximation in the low IF limit. It will be
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seen that the results of the simplified model are recovered
in the special case where the signal and image frequency
terminations are equal and all reactances are neglected.

As before, the tunnel barrier is assumed to have suffi-
cient capacitance so that all harmonics 2w,3w, ..., of
the local oscillator are effectively shorted, along with
their associated sidebands. The waveform impressed
across the junction by the local oscillator will then be
sinusoidal, and its amplitude Vi, may be determined
from the incident power Py and the source admittance
Y,=G,+iB, through a self-consistent solution to Egs.
(4.41) and (4.43). The only unshorted sideband frequen-

cies are the signal, output, and image frequencies, w, g,
and w_, respectively. The second assumption is that the
output frequency is sufficiently small compared to the lo-
cal oscillator frequency that the approximation
w;~w~ —w_; may be used in evaluating the small-signal
admittance and current correlation matrices, and that the
quantum energy fiwy/e is so small that the response of the
tunnel barrier at the output frequency is essentially classi-
cal. The signal and image frequency terminations, how-
ever, are not necessarily equal.

With these assumptions, the admittance matrix ele-
ments given in Egs. (4.50) and (4.51) simplify to

il
Go= 3 Jz(a) Idc(Vo+nﬁw/e)
Gio=G_po=7 3 J(a)[J,,_,(a)+J,,+1(a)] Idc(V0+nﬁw/e)
G01=G0_1=“ﬁi‘; _2 J,,(a)[J,,_l(a)— n+1(a)]Idc(Vo+nﬁw/e) 5 (4.72)
G“_-G_l_,-_Z;w P> [J,f_l(a)—J,fH(a)]Idc(Vo+nhw/e)
Gi1=G =7~ 2 Tl @[Ty — (@) =T 4200 U ao( Vo +nticr /e) ,
and

Byp=Bo=B¢_,=0,
B10=—B_10=‘;‘ 2 J,,(a)[J,,_l(a) n+1(a)] d IKK(V0+nﬁ0)/e)

. ° (4.73)
Bu=—B_1=%~ 3 2 _1(a) =22 (a) +J7 1 (@) Mgk (Vo +nfiw /e)
Bl_l—*—B_u-——z'h—w" 2 [J _z(a)-, (a)— n_l(a)J,,+1(a)+J (a)J,,+2(a)]IKK(VO+nﬁa)/e)

n=—o

In these expressions, the parameter a=eVy o /#iw charac-
terizes the amplitude of the local oscillator waveform.
The conversion efficiency of the mixer is determined by
the small-signal admittance matrix elements .Y,
=Gpm'+iBpy,, together with the external terminations
Y,,Y,,Y_, seen by the tunnel junction at the signal, out-
put, and image frequencies, as illustrated in Fig. 20.
These termination admittances are added along the diago-
nal of the 3 X3 admittance matrix, as in Eq. (4.56), and
the combination is then inverted to yield the 3 X3 im-
pedance matrix Z,,,,- which characterizes the conversion
properties of the complete mixer. The load admittance
Yo=G; at the output frequency will ordinarily be real,
and represents the conductance of the IF amplifier as seen
by the tunnel junction. The source admittance Y, =Yy at
the signal frequency and the image termination Y_;=Y;
depend upon the design of the mixer mount. For a
double-sideband mixer, Yg=Y;. For a single-sideband
mixer, the real part of Y; is either zero (shorted) or infin-
ite (open). In general the performance of a mixer depends
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upon both Y5 and Y; in addition to G. Inversion of the
3X3 augmented admittance matrix in Eq. (4.56) is, of
course, straightforward for arbitrary values of these ter-
minations.

The double-sideband mixer, in which the signal and the
image frequencies are equivalent, presents a commonly
realized special case. Under these conditions,
Y,=Y*,=Ys=Gg+IiBg, and the result of Eq. (4.61) for
conversion efficiency leads to the expression

(E+g5)+(bg—7)?
[(E+gs)(1+gs)+ (b —vD]?

L~'=Lg'4ngse;

1
—_— . 4.74)
(g +82)?

The dimensionless parameters appearing here are defined
in terms of the admittance matrix elements and the source
and load terminations by
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2G o 2Gy1Gro
0= G0 " 1T Goo(Gy+Gy_y)
Gs GL
&= Gu+Gi_’ gL= Goo ’
(Gu=Cii , B 4.75)
Gu+Gi_’ Gy’
y— B_; by By +Bs .
Giu+Gi-1 Gu+Gi-1

The output conductance of the mixer is real in this case,
and is obtained by subtracting the load conductance from
the total mixer conductance at the output frequency:

1

o__~
GE=5-

-Gy . (4.76)
This quantity is simply the slope of the dc I-V curve in
the presence of the local oscillator drive. In dimensionless
units, the result obtained in this model for the output con-

ductance may be written in the form

o_ﬁﬁg___ B (E+gs)+Bbs—7)
= G Tletes)Nltgs) +bi—70)

(4.77)

These results of the complete theory for a double-
sideband mixer are seen to be identical to the simplified
model discussed in Sec. IILB, if all reactive elements are
neglected. When S, bg, and y are all set equal to zero,
Eq. (4.74) for the conversion efficiency reduces to the
form of Eq. (3.27), and the result of Eq. (4.77) for the out-

J

put conductance becomes identical to the expression ob-
tained in Eq. (3.28). - The correspondence between the di-
mensionless parameters defined in Eq. (4.75) and their
counterparts in Eq. (3.26) may be verified by noting the
following relationships among the series expressions of
Eq. (4.72) and those of Eq. (3.36) for the conductance
components of the small-signal admittance matrix:

Guw0o=2G0 »

Goo=Gor1 »
Goo=G11+Gi_1 -

(4.78)

It is interesting to note that the reactive terms will disap-
pear from Egs. (4.74) and (4.77) if the mixer is adjusted so
that bg=y. The quantity bg contains the termination
susceptance Bg, which is, in principle, a free experimental
parameter. Therefore the simpler expressions of Egs.
(3.27) and (3.28) are always exact for at least one possible
tuning condition. This is not in general the optimum tun-
ing condition (Feldman, 1982), but often represents a
good approximation for efficient conversion in practical
SIS mixers. In most model calculations performed thus
far, the numerical impact of the quantum reactive terms
on predicted performance has indeed been found to be
very small.

To complete this analysis of a quasiparticle mixer in
the three-frequency and low IF approximation, the ele-
ments of the current correlation matrix in Eq. (4.69)
reduce within these assumptions to '

Hp=2¢ 3 JXa)coth[(eVo-+nfin)/2kT Uo(Vo+nticr/e) ,

n=-—o

HIO:H-—IO:H01=HO—1=e 2 J,,(a)[J,,_1(a)+J,,+1(a)]coth[(eV0+nﬁw)/2kT]Idc(Vo+nﬁa)/e),

n=—o0

4.79)

Hiy=H_,_1=¢ S [J2_{(@)+J2, (@)]coth[(eVo+nfiw) /2KT g (Vo+niar /e) ,

n=-—oo

Hy_=H_j =2 3 Jy_\(@),,i(@)coth[(eVo+nfiw) /2kT U 4o(Vo+nfiw/e) .

n=—o

Inserting these results into Eq. (4.71) then yields an ex-
pression for the local oscillator shot-noise component of
the single-sideband mixer noise temperature. For the spe-
cial case of the double-sideband mixer, the single-sideband
noise temperature is found to be given by

1
kT =———5[Hoo+2(ho1+A3)H 10
4Gs | Aot |?
+ A5 +HASDH 1 +2 | Aot | H 111
(4.80)
where
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-
=Gy (E+8s)—ilbs—v)
T Gn+Gi_y (E+gs)14gs)+(bF—7H)

The results of the complete quantum mixer theory that
are specific to the double-sideband model may be easily
generalized to a mixer with different terminations
Y;=Yg and Y_,=Y; at the signal and image frequen-
cies. The special case of a shorted-image sideband mixer
is treated in Tucker (1979), Eqgs. (6.33)—(6.40), neglecting
the quantum reactances. Sollner (1981) gives the conver-
sion efficiency for this case including the quantum
reactances. [Note that the definition bg=(Bg+B;,)/G;
must be used for his equation to be correct.] The output
admittance in the shorted-image case is not in general

(4.81)

)LOI
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real. A model for another mixing mode, harmonic mix-
ing at zero dc bias in an inversion-symmetric tunnel junc-
tion, is given in Tucker (1983, Appendix B). Infinite
available conversion efficiency is possible using SIN junc-
tions in this configuration in the quantum regime (Shen
and Richards, 1981). It is also straightforward to general-
ize all of the equations of this section to the case where
the output frequency, the IF, is not small.

The major assumption necessary to produce any of
these relatively simple models is that higher harmonics of
the local oscillator may be ignored. When this approxi-
mation cannot be made, the large-signal calculation of the
local oscillator waveform impressed across the mixer
diode becomes vastly complicated. The effects of such
harmonics are expected to be detrimental to the mixer’s
performance; and evidence that this has reduced the con-
version efficiency in some experiments is discussed in Sec.
VI.A. Therefore the assumption of a sinusoidal local os-
cillator potential is expected to provide a reasonable
model for most receivers of practical interest.

G. Response of a tunnel junction
in the time domain

The quantum mixer theory described in this section has
been constructed using Eq. (4.3) for the expectation value
of the quasiparticle tunneling current. The form of Eq.
(4.3) is designed to facilitate calculations in the frequency
domain. Following Harris (1976), we may alternatively
express the quasiparticle tunneling current in a form suit-
able for analysis in the time domain (Tucker, 1983, Ap-
pendix C):

V(t)

1wy =L tm [vro) f* arxe o] .

(4.82)

The time-dependent phase factor induced by the potential
across the tunnel barrier is here represented as

U(t)=exp (4.83)

—_ﬁﬁf:mdt‘V(t')

and the response function characterizing the nonlinear
behavior of the junction is found to be given by

14w /e) — 0| Ginot . (4.84)

— 2 ©
== ["do R

The dc I-V characteristic is assumed in these expressions
to be antisymmetric, I4.(—V)=—1I4(¥V), and to ap-
proach an Ohmic resistance Ry at large bias voltages.
Equations (4.82)—(4.84) may be obtained by inserting
the expression given in Eq. (4.12) for the time-dependent
current operators into Eq. (4.15) for the average tunneling
current. Using the equilibrium current commutator de-
fined in Eq. (4.17) then yields
X’J,_(t—t YU(t')

(1)) =Im |U*(1) f_ dt’ (4.85)
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According to Eq. (4.19), the Fourier transform of the
response function in this expression is directly related to
the dc I- V characteristic:
X(t)——)(;t_(t)—— [ dolatwsee=io .  4.86)
The real function X(¢) is not well defined here because the
dc tunneling current is unbounded at large argument.
This difficulty may be circumvented by subtracting out
the Ohmic behavior in defining the modified response
function of Eq. (4.84). The outcome of this procedure
gives

XD =X(— - 5(1) . 4.87)

eR N

Using this expression in Eq. (4.85) then yields the result
quoted in Eq. (4.82) for the quasiparticle tunneling
current.

The function X(¢) is plotted in McDonald et al. (1980)
for an ideal SIS junction at T =0. X(¢) oscillates in time
with the energy-gap frequency 2A/h, and its amplitude
falls off only inversely with ¢ at large times. The current
can therefore depend upon the voltage history infinitely
far into the past. This slow falloff in X(¢) is a reflection
of the perfectly sharp onset of quasiparticle tunneling in
an ideal SIS junction. For a real junction, the nonlineari-
ty occurs over a finite voltage range and X(z) dies off
within a finite time, more quickly for a more smeared
nonlinearity. In the limit where X(z) becomes insignifi-
cantly small after a time corresponding to the applied fre-
quency, the response will be effectively instantaneous. In
this case, the tunneling current may be shown to follow a
time-dependent modulation of the dc I-V characteristic,
and the assumptions of classical mixer theory are valid.
If, on the other hand, the nonlinearity is sharp enough
that X(¢) remains significant over the rf period, then the
current becomes a nonlocal function of time and the
quantum theory must be used. Because the junction
response is no longer instantaneous, nonlinear reactances
appear in the quantum regime, and the in-phase conduc-
tance depends upon frequency as well.

This frequency dependence of the in-phase part of the
response breaks important symmetries obeyed in classical
theory at low frequencies. The effect is illustrated by the
example in Sec. IIL.B, where 2G, can become larger than
G,o when the rf photon energy #iw/e becomes greater
than the voltage scale of the nonlinearity. In the language
of Sec. IV.D, Gy;5%G o and the classical symmetry rela-
tion implied by Eq. (4.53) breaks down. The violation of
these symmetries leads, as shown in Sec. IILB, to the pos-
sibility of conversion gain and negative differential resis-
tance. From this point of view there is no need to attri-
bute these effects to the nonlinear quantum reactance; and
indeed in Sec. IV.F it was shown that the results of the
simplified model ignoring these reactances could be
recovered, within its assumptions, for a particular choice
of tuning. Nevertheless, the time-domain representation
of the tunneling current clearly demonstrates that the fre-
quency dependence of the conductance and the appear-
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ance of the quantum reactance are inseparable results of
the noninstantaneous response of the tunnel junction at
high frequencies.

V. EXPERIMENTAL MIXERS

The history of SIS mixers has been one of rapid pro-
gress, with the most striking new results achieved almost
simultaneously in a few laboratories. It had long been
clear to a number of researchers working with Josephson
junctions that quasiparticle tunneling in these devices of-
fered the prime requirement for a superior mixer: a sharp
resistive nonlinearity. But the relatively large capacitance
of the SIS junctions available prior to the mid 1970s was
discouraging. It was not until 1978 that the first mention
of the possibility of SIS millimeter-wave mixers appeared
in the literature (Richards, 1978).

Shortly thereafter, three different laboratories reported
experimental SIS mixers. Richards et al. (1979) measured
a SSB noise temperature as low as 14 K; Dolan et al.
(1979) demonstrated a SIS mixer at 115 Ghz; Rudner and
Claeson (1979) found 5.8-dB conversion loss. Even at
that early date the potential for SIS mixers was apparent.
Could all of these attributes have been combined in a sin-
gle device, that SIS mixer would have been superior to the
best Schottky mixer.

When the quantum theory of mixing (Tucker, 1979)
was applied to analyze their performance, it became clear

* that SIS mixers were not limited by the classical proscrip-
tion of conversion gain (Tucker, 1980). This remarkable
prediction was soon verified by Shen et al. (1980) and by
Rudner et al. (1981a). In both cases this demonstration
was marginal: both found a SSB conversion slightly
better than 3-dB loss, implying a slight gain for double-
sideband operation. The quantum theory prediction was
more firmly established when McGrath et al. (1981; see
also Smith et al., 1981b) and Kerr et al. (1981) reported
infinite available conversion gain at 36 and 115 GHz,
respectively. This meant that arbitrarily high small-signal
gain could be achieved with an appropriately matched IF
load. McGrath et al. (1981) actually realized a +4.3-dB
conversion gain, still an experimental record.

The progress in building practical receivers using SIS
mixers has been equally impressive. At least four
millimeter-wave observatories, at the time of this writing,
routinely utilize SIS receivers.

The experimental results thus far achieved with SIS
mixers are reviewed here in some detail. Most of the
junctions employed were fabricated using a variation of
the Pb-alloy technology developed at IBM (Broom et al.,
1980, and other articles in the same journal issue). These
junctions are designed to be stable over long periods of
time and with frequent cycling between room temperature
and liquid-helium temperature (so long as they are pro-
tected from humidity and from severe electrical shock).

A. SIS mixer results

The initial experiments on SIS mixers and receivers
have been carried forward in a few major laboratories,
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and the results are summarized in this section by research
group.

1. Berkeley

The Berkeley group’s experiments, all at 36 GHz, were
carried out using a measurement system designed for the
quantitative evaluation of mixer parameters, rather than
for use as a low-noise receiver. A diagram of their mixer
block is shown in Fig. 21. This is a standard Schottky
mixer mount, described in Sec. II.A, which has been
modified to provide a wider tuning range. The junction
substrate is placed across a full-height Ka-band
waveguide. The two rf tuning elements are an adjustable
stub 3A/4 in front of the junction and a sliding backshort
behind it. At the rf entrance to the mixer block a high-
loss cold attenuator (not shown in Fig. 21) is inserted to
prevent room-temperature radiation and noise due to the
oscillators from saturating the mixer.

The IF output from the mixer is amplified by a string
of room-temperature transistor amplifiers, centered on a
frequency of 50 MHz, having an input noise temperature
of T1z=50 K. Even though this is an extremely low
value of Tr for room-temperature amplifiers, these am-
plifiers must be precisely calibrated as a function of input
impedance, frequency, temperature distribution along the
IF cable, etc., in order to extract the mixer noise tempera-
ture from Eq. (2.1) with reasonable precision. The Berke-
ley group accomplished this by installing three identical
IF cables into their Dewar, one terminated with a short
circuit to measure IF cable losses and one terminated in a
50-Q cold load to provide a noise source for calibrating
the IF amplifiers, in addition to the one connected to the
SIS mixer.

The first Berkeley experiments (Richards et al., 1979)
used ~ S-um? area Pb(In,Au) SIS junctions of the type il-
lustrated in Fig. 21. The unpumped dc I- ¥ curve of one

Movable
Plunger

SIS Junction on
Si Substrate
Eccosorb

Terminations

FIG. 21. Mixer block and SIS junction mounting configuration
used in 36-GHz experiments at Berkeley (Richards et al.,
1979).
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such junction, shown in Fig. 2(a), has the quasiparticle

current rise at the energy gap smeared over a range of
perhaps twice #iw/e in voltage. Nevertheless, the mixer
conversion response curve, Fig. 2(e), displays a distinct
modulation on the quantum voltage scale #w/e. Figure
2(e) is the first demonstration of nonclassical mixing
behavior in published experimental data. The best result
from these experiments was a mixer conversion loss of 8.0
dB with better than 14-K SSB noise temperature, for an
Ry =100 Q junction with ®RyC ~2. The noise tempera-
ture was determined by comparing the curves of Fig. 2(c)
and 2(d).

Subsequently the Berkeley group (Shen et al., 1980)
used Pb(Bi) junctions with a much sharper energy-gap
current rise. A typical junction was ~9 um? in area, had
Ry =22 Q, and apparently had oRyC on the order of
unity. In these experiments the small modulation seen in
Fig. 2(e) now dominated the mixer conversion trace, and
maximum conversion was obtained on the fifth peak
below the energy-gap voltage. The best result was a re-
ported 2.0-dB conversion loss with better than 3-K SSB
noise temperature, although this noise temperature figure
has not been repeated in subsequent publications. The
mixer was noted to begin to saturate at an input signal
power of 30 pW, which is equivalent to room-temperature
radiation in a 7-GHz bandwidth. This dynamic range is
uncomfortably small, but still satisfactory for many appli-
cations.

In a further series of experiments, the Berkeley group
(McGrath et al., 1981; Smith et al., 1981b) used Sn junc-
tions of about 10 um? area, with typical Ry=22 Q and
oRNyC ~7. Even though the energy-gap current rise of
these Sn junctions appears perhaps somewhat less sharp
than for their previous Pb(Bi) junctions, the results,
shown in Figs. 13—15, are distinctly more dramatic. The
pumped dc I-V curve, which for the Pb(Bi) junctions of
Fig. 2(b) appeared featureless, is now clearly modulated
on a voltage scale #iw/e. This modulation is so strong
that the pumped curve shows a region of negative dif-
ferential resistance in Fig. 13 on the first step below the
energy-gap voltage. Since, in the limit of zero IF, the out-
put impedance of the mixer is equal to the dc differential
resistance, this means that essentially infinite conversion
gain is available into an appropriately matched low-
frequency load. The gain would be limited only by sa-
turation of the large output signal. Furthermore, as the
mixer was tuned towards increasing differential resis-
tance, approaching this negative-resistance region, the
measured mixer conversion gain into the 50-Q IF load in-
creased, as shown in Fig. 15. The maximum conversion
efficiency was achieved on the first step below the gap in
Fig. 14, and corresponded to a 4.3+1 dB gain. The SSB
noise temperature at this point was 9+6 K, the same
noise temperature measured in later experiments (van
Kempen et al., 1981) using Pb-alloy junctions. The same
mixer began to saturate with 1.5-pW input signal power
(Smith and Richards, 1982). This experiment clearly es-
tablishes the excellence of SIS mixers, with the practical
caveats that Sn junctions do not properly recycle to room
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temperature, and that the dynamic range here is impracti-
cally small.

No other group has to date demonstrated actual con-
version gain from a SIS mixer. What distinguishes these
Sn junction results from the earlier Pb(Bi) junction re-
sults? One likely factor, discussed in Sec. VLA, is the
large @Ry C product, coupled with the ability to tune out
the capacitance at the signal frequency, which allows this
mixer to operate near the energy-gap voltage and better
take advantage of the nonlinearity. In addition, the Sn
junctions had an extremely high dynamic resistance below
the gap, as seen in Fig. 13, and this may also be impor-
tant.

Most recently, the Berkeley group (McGrath et al.,
1985) has constructed a (30—40)-GHz SIS mixer test ap-
paratus which provides a much greater measurement ac-
curacy. The mixer input is thermal radiation from a
cryogenic variable-temperature rf load, and the mixer out-
put is compared to a variable-temperature IF load. Using
a single Pb-alloy junction in the SSB mode, their most
precise result was T3,=9.2+0.9 K with L =6.21+0.1 dB,
and the lowest noise temperature measured was
Th;=5.6+2.5 K with L =4.6+0.4 dB. This last figure
represents a mixer noise of only three times the nominal
quantum limit #%w /k at 36 GHz. ‘

2. Caltech/Bell Labs

Researchers from the California Institute of Technolo-
gy and from Bell Laboratories have concentrated upon
developing and improving SIS receivers for millimeter-
wave astronomy, for the most part at 115 GHz and more
recently at 230 GHz. They have used extremely small-
area Pb-alloy junctions made by the photoresist bridge
method described in Sec. IL.B.1 (see Fig. 7), to give an
@oRyC product of less than unity at 115 GHz in all of
their reported experiments.

Their initial results (Dolan et al., 1979) used a mixer
block modified from an InSb bolometric mixer, with an
IF of only 2 MHz. A 0.4-um? area, Ry =50 Q SIS junc-
tion was suspended across a full-height 115-GHz
waveguide, with a sliding backshort and an E-H tuner as
coupling elements. The mixer had a SSB noise tempera-
ture <100 K with 10-dB conversion loss. The mixer
response showed a clear modulation on the voltage scale
#iw /e, as was true for all subsequent experiments.

As early as mid 1979, a prototype of the next-
generation receiver was operating on the Bell Telephone
Laboratories Telescope (Phillips et al., 1981), with a SSB
receiver temperature of 400 K at 115 GHz. The LO is in-
troduced through a 1% dielectric beam splitter, which il-
lustrates the flexibility possible when one can be wasteful
of LO power. In the SIS mixer, described by Dolan et al.
(1981), the junction is suspended across a quarter-height
waveguide with a single tuning element, a sliding
backshort. The best mixer result was T,(SSB)=62 K
with 7.6-dB conversion loss. By 1981 a modified version
of this receiver had a SSB noise temperature of 130 K, us-
ing a SIS mixer with T,,(SSB)=280 K and with 8-dB con-
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version loss (Phillips and Woody, 1982). The current Bell
Labs receiver uses the same basic design (Stark, 1983), but
many of the elements of the system have been improved,
and the overall performance is now extremely good. In
every SIS mixer, the rf blocking structure on the IF out-
put connection acts as a fixed tuning element; this struc-
ture was varied in these experiments to provide extra tun-
ing flexibility. The receiver (Stark, 1984) operates at 4.2
K, is intrinsically double-sideband, and has a noise tem-
perature measured on the telescope of less than 50-K DSB
from 108 to 115 GHz. The best measured noise tempera-
ture is 28-K DSB at 112 GHz. This corresponds to a SSB
receiver temperature of ~ 80 K, when the Fabry-Perot fil-
ter used for astronomical observations is included.

The Caltech receivers emphasize simplicity of design
and operation (Woody et al., 1985). These receivers,
cooled to 4.5 K by closed-cycle refrigerators, are of basi-
cally the same design as the Bell Labs receiver. An im-
portant difference is that the SIS mixers use a circular
waveguide, which is much more simply and accurately
machined than rectangular waveguides, but which also
has a narrower range for single-mode operation and the
unfortunately high waveguide impedance of ~400 Q. A
SIS junction is suspended across the circular waveguide,
which immediately flares into a scalar feed horn. Behind
the junction is a noncontracting adjustable backshort.
The 1.4-GHz FET IF amplifiers have noise temperatures
of ~10 K. The receivers operate from 85 to 115 GHz,
with noise temperatures often in the range of 100- to
120-K DSB, and are generally tuned for moderate image
rejection. These receivers have been in routine operation
on the three telescopes of the Owens Valley Radio Obser-
vatory millimeter interferometer for more than four years,
and are used for continuum and line observations and for
both linked interferometry and very-long-baseline inter-
ferometry.

60
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FIG. 22. Performance curves at 250 GHz for a SIS mixer using
a ~0.5-um? Pb-alloy junction. The unpumped and pumped
(LO power ~ —43 dBm) I-V curves are shown, along with the
IF output power for room temperature and liquid-nitrogen tem-
perature loads applied at the mixer’s input. At the points
marked J3 and J4 the ac Josephson frequency is an integral
multiple of the local oscillator frequency (Sutton, 1983).
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The first 230-GHz SIS mixer was reported by Phillips
et al. (1981). These results were impaired by Josephson-
effect noise (Sec. VI.D); and a magnetic field large enough
to suppress this noise degraded the mixer’s performance
as well. A more recent 230-GHz SIS receiver has, howev-
er, been more successful (Sutton, 1983). This was a ver-
sion of the Caltech 115-GHz receiver with a mixer block
scaled to the higher frequency, and used a 0.5-um? area
Pb-alloy SIS junction with Ry=68 Q (oRyC~2)
suspended across the circular waveguide. The best perfor-
mance obtained was a receiver noise temperature of 305 K
(SSB) at 241 GHz (more sensitive than the best Schottky
receivers at this frequency), with an input-to-IF conver-
sion loss of 10.5 dB. This remarkable result bodes well
for high-frequency SIS receivers. Some results from this
experiment are shown in Fig. 22. Note the structures on
the pumped dc I-V curve and the IF response curves at
the points marked J3 and J4, which are integral multi-
ples of the ac Josephson voltage #iw/2e for this LO fre-
quency. A magnetic field suppressed these structures, but
without greatly affecting the sensitivity of the receiver.

3. Chalmers

All of the mixing experiments performed at Chalmers
University of Technology, in Gothenburg, Sweden, used
series arrays (see Sec. VI.B) of SIS junctions. The junc-
tions were made in an in-house dedicated evaporation sys-
tem, which allowed the testing of a large number of
diverse samples to explore the physics of SIS mixing. The
method of fabrication, thermal evaporation through bime-
tallic stencil masks, produced relatively large (~25-um?
area, in general) junctions connected by a relatively large
series inductance. The first experiments (Rudner and
Claeson, 1979) used many-junction Pb arrays mounted in
microstrip and connected to a coaxial cable at 9 GHz.
The best result was a conversion loss of 5.8 dB with a
mixer noise temperature of (10—40)-K SSB. At this low
frequency the conversion curve showed no sign of
photon-assisted tunneling modulation.

The subsequent experiments at Chalmers used a novel
mixer design which takes some advantage of the planar
character of SIS junctions. The pattern seen in Fig. 23(a)
was deposited onto a glass substrate, and includes the Pb-
alloy junctions [Fig. 23(b)] and a monopole antenna for rf
coupling to a full-height waveguide. When assembled
[Fig. 23(c)] in the mixer block with a tuning backshort,
the junctions lodge in a recess, tightly sandwiched be-
tween two ground planes, to minimize the series induc-
tance arising from the junction interconnections.

A large number of N =6 junction arrays (Rudner
et al., 1981a,1981b) and N =36 junction arrays (Rudner
et al., 1980,1981b) were tested for mixing at 75 GHz.
The 6-junction arrays were short, of length 0.035A, but
the 36-junction arrays were over half a wavelength long
and thus showed little sign of photon-assisted tunneling
structure in the conversion. The 6-junction arrays showed
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FIG. 23. Experimental configuration for a 75-GHz SIS mixer:
(a) glass substrate with evaporated pattern, including (b) magni-
fied 6-junction Pb-alloy series array within a recess, and (c)
full-height waveguide with backshort and substrate in place
(Rudner et al., 1981b).

distinct structure in their conversion efficiency on the
voltage scale of 67w /e, and in fact all published results
for short ( <<A) SIS arrays show this structure on the
voltage scale N7iw/e and never on the scale #iw/e. The
6-junction arrays generally reached their maximum con-
version value on the second peak below the energy gap. A
summary of the better conversion results obtained for dif-
ferent array structures is shown in Fig. 24, reprinted from
Feldman and Rudner (1983). The best conversion for the
short 6-junction arrays was (2.0%£0.9)-dB loss for
Ry ~24 Q, at which point ®RyC=2 for the array. A
conversion loss of 7.8 dB was reached using the 36-
junction arrays. A mixer noise temperature of less than
~100 K was found for all of the samples measured.

More recently, a (35—50)-GHz SIS receiver (Olsson
et al., 1982,1983) was built and is now operational at the
Onsala Space Observatory. This receiver uses a series ar-
ray of six Pb-alloy SIS junctions, each with ~25-um?
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FIG. 24. Minimum conversion loss achieved using various SIS
arrays for mixing at 75 GHz by Rudner et al. (1981b). Three
types of arrays were tested: - @, 6-junction Pb(In) arrays; O, 6-
junction pure Pb arrays; 17, long 36-junction pure Pb arrays
(Feldman and Rudner, 1983).
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area. The optimal Ry for the array is 30—50 Q, giving
an oRyC product of roughly two for the array. The in-
put signal enters the mixer through a long quasioptical
lens guide terminated with a corrugated horn. The mixer
output is fed to a 4-GHz IF system with a noise tempera-
ture of 22 K, whose first stage is a commercial parametric
amplifier cooled to 2 K. This relatively large value for
the IF is a distinct advantage for this receiver; the
backshort is invariably adjusted to short out the lower
sideband, so the mixer operates in a truly single-sideband
mode. At 47 GHz, the mixer’s conversion loss was mea-
sured to be 5 dB. The mixer noise temperature there was
11+6 K, which is as good as most single-junction mixers.
The receiver noise temperature varied smoothly from
~220 K at 35 GHz to ~140 K at 50 GHz, except for a
resonance near 42 GHz. The receiver saturated at an in-
put signal power of 1.7 nW, fully sufficient for radio as-
tronomy.

4. NASA—Goddard Institute

The experiments performed at NASA—Goddard Insti-
tute for Space Studies also used series arrays of SIS junc-
tions, in this case at 115 GHz. One distinction from the
other experiments discussed here is that a 40X scale
model of the mixer block was used in conjunction with
computer simulations of the junctions’ response to deter-
mine the optimal design of the printed circuitry immedi-
ately surrounding the junctions (Feldman et al., 1983).

In the earlier experiments (Kerr et al., 1981; Feldman
et al., 1983), an array of fourteen series-connected 8-;Lm2
area Pb-alloy junctions, with Ry =600 Q (wRyC ~10)
for the array, was mounted in a stripline circuit suspend-
ed across a quarter-height waveguide with an adjustable
backshort. Note the negative-resistance region on the
pumped dc I-V curve shown in Fig. 16(b). The maximum
realized conversion was poor, about 11.5-dB loss, due to
the drastic IF impedance mismatch. The mixer SSB noise
temperature was 70+40 K at the better operating points,
and this was true for large positive, infinite, or negative
output impedance with about +10 K scatter.

Subsequently, the NASA—Goddard group constructed
a (110—118)-GHz SIS receiver (Pan et al., 1983b) which
is at present in use on the Columbia-GISS CO Sky Survey
Telescope. This receiver uses a series pair of Pb-alloy
junctions with Ry=94 Q and wRyC~7 for the pair.
The mixer block and junction chip are illustrated in Fig.
25. Again, the junctions are mounted across a quarter-
height waveguide with an adjustable backshort, but here
the suspended stripline couples to a second waveguide
with its own backshort to serve as a second tuning ele-
ment. This configuration has the virtue of giving a high-
ly tuned circuit to resonate the relatively large capacitance
of the junctions (the instantaneous bandwidth was ~ 300
MHz) and to give large image rejection. The second
backshort, however, adds perhaps an extra 2 dB of Ohmic
loss to the mixer’s conversion. Two leveling loops, for the
LO power and the dc bias current, maintain a near-
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FIG. 25. Single-sideband 115-GHz receiver: schematic draw-
ing of the 2-junction SIS chip and a cross-sectional view of the
mixer block (Pan et al., 1983b).

optimum bias point during mixer adjustment and are
described in Pan et al. (1983a).

The receiver’s best recorded performance was a SSB
noise temperature of 68+3 K (with 12-dB image rejec-
tion). This is twice the sensitivity of any other receiver at
this frequency. With >20 dB image rejection, the re-
ceiver had T ~80 K over most of its operating band.
Most of this noise was due to the 1.4-GHz IF amplifier,
whose noise temperature was 10.5 K, multiplied by the
mixer conversion loss. That loss was measured to be 6.9
dB at 115.3 GHz, and the mixer’s noise temperature at
that point was inferred to be 15+14 K. The 1-dB gain
compression point was 4 nW, sufficient for observing an
object one hundred times brighter than the sun. A scaled
version of this receiver was also built (Pan et al., 1983b),
for observations of the 3-K cosmic blackbody radiation at
46 GHz, which used a larger pair of junctions with
Ry =34 Q and wRyC ~2.5. Its SSB receiver noise tem-
perature was 55 K. These results should firmly establish
the SIS mixer as the first choice for ultra-low-noise
millimeter-wave receivers.

5. West Germany/France

SIS junctions developed at the Max-Planck-Institut in
Garching, West Germany, are described by Gundlach
et al. (1982). These junctions have a base electrode of
Pb(Bi,In) and a counterelectrode of Pb(Bi). A typical I-V
characteristic is shown in Fig. 26, curve 1. Note the large
value of the energy-gap voltage, which is typically 3.45
mV at a temperature of 2 K. This is considerably higher

than for any other junction reviewed in this paper. Also, -

the current rise at the gap voltage is extremely sharp, in-
dicating that these junctions should be very well suited for
SIS mixers.

After an early concentration on video detection, mixing
experiments were performed at 70 GHz (Hartfuss and
Gundlach, 1981b). The SIS junction, with Ry ~18 Q and
oRyC approximately unity, was placed across a full-
height waveguide with both a sliding backshort and an
adjustable stub for tuning. The best result was 3.7-dB
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FIG. 26. Performance curves for a 150-GHz SIS mixer using a
~0.7-um? Pb-alloy junction: 1, unmodulated and 2, modulated
dc I-V curve in the presence of the LO, and IF output noise
power with a a hot load and b a cold load applied at the mixer’s
input, where for curves a and b one vertical division corre-
sponds to 21.5 K at the mixer output (Ibruegger et al., 1984).

conversion loss and a SSB mixer noise temperature of
<100 K.

These experiments were continued (Blundell et al.,
1982) at the Institut de Radio Astronomie Millimétrique
(IRAM) in Grenoble, France, with the aim of building
competitive SIS receivers for 80—100 GHz and more re-
cently for the 150-GHz frequency range. A quarter-
height waveguide with a single tuning backshort was
used. Only DSB measurements were reported, even
though the IF was a relatively high 4 GHz and the junc-
tion capacitance was in some cases large enough (the
®R 5 C product was as much as ten) to expect that the re-
ceiver operated in the SSB mode. In the lower frequency
range (Blundell ez al., 1983) the best result was a receiver
noise temperature of 73-K DSB at 92 GHz, for a 2-um?
junction with Ry =54 Q (i.e., »RyC ~3). In the upper
frequency range (Ibruegger et al., 1984) the best result
was a receiver noise temperature of 81-K DSB at 141
GHz (see Fig. 26), for a 0.7-um? junction with Ry =51 Q
(i.e., oRyC ~1.3). In both cases Tjp~16 K. These re-
ceivers are slated for installation at the IRAM 30-m tele-
scope in Spain.
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Two unusual aspects of these experiments were noted.
At both frequencies the best performance of the SIS
mixers was obtained on the second photon-assisted tun-
neling step below the energy gap, whereas one would ex-
pect that the first step would be superior, especially above
100 GHz. Also, the experimenters note that almost all of
the SIS junctions that they tested at both 100 and 150
GHz, covering a very wide range of Ry and of wRyC,
gave approximately the same receiver sensitivity.

In a separate application (Hartfuss and Tutter, 1983b),
a SIS mixer is being used in Garching as a calibration
channel of a conventional receiver for the measurement of
electron cyclotron emission from fusion experiments.

6. Other laboratories

The first SIS mixer experiments using Nb-based junc-
tions were performed at Cornell University (Callegari and
Buhrman, 1982). The edge of a Nb film was oxidized and
covered by a Pb(Bi) counterelectrode. This process pro-
duced extremely tiny junctions, typically 3<0.15 um?,
which were suspended across an eighth-height waveguide
with a sliding backshort and were irradiated at 55 GHz.
The junctions tested had either very high or very low
resistance. The high-resistance junctions had quite sharp-
ly nonlinear I-V curves. One, with Ry=600 Q and
oRNyC =S5, had its best conversion of 7.4-dB loss on the
first photon step above the energy-gap voltage. The low-
resistance junctions were considerably less sharply non-
linear and had their best conversion at lower voltages. An
Ry =8 Q junction (wRyC=0.16) gave 7-dB conversion
loss with T, <27 K SSB. In light of the severe
mismatch at both input and output of the mixer, these re-
sults must be considered extremely encouraging.

Further Nb-based SIS mixer experiments were reported
from the Soviet Union (Gubankov et al., 1982,1983).
Again, the Nb was oxidized and covered with Pb(Bi), but
in this case the junction was of much larger area,
~15um? so its capacitance was very large
(@C=0.6 Q~!, Ry not quoted). The junction was
suspended across a full-height Ka-band waveguide with a
sliding backshort and a tuning stub, and gave a conver-
sion loss of 4+3 dB when irradiated at 50 GHz.

A very recent (90—120)-GHz SIS mixer developed at
the National Radio Astronomy Observatory (D’Addario,
1984) is the first to use integrated circuit tuning tech-
niques. The junction substrate sits in a milled channel
with one metallized end sticking into a full-height
waveguide to act as a coupling probe. Two adjustable
waveguide tuning elements are provided by a movable
backshort and a second sliding short placed in a side
channel located half a guide wavelength in front of the
substrate. On the substrate is a 6-um? Pb-alloy SIS junc-
tion and integrated circuitry for rf and IF coupling; five
layers of photolithography are used. The circuitry in-
cludes a transmission line, which appears as an inductive
shunt at the junction, and which is designed to cancel the
junction’s capacitive susceptance at the rf frequency.
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This works well enough that for the two samples tested,
with Ry equal to 48 and 74 Q and hence wR yC equal to
~6 and ~ 10, the mixer is intrinsically double-sideband,
using a 1.4-GHz IF. In fact, the mixer is so broadband
that it is badly saturated by an input temperature of 50 K.
Therefore the performance of the mixer was measured us-
ing a variable-temperature waveguide load maintained be-
tween 8 and 20 K. All of the measurements quoted for
the two junctions, at various frequencies, gave a realized
SSB conversion of 3-dB loss, with at most unity available
gain. The DSB mixer noise temperature was between 20
and 40 K. Four-junction SIS arrays were less completely
tested. The measurements were made at a physical tem-
perature of 3.1 K, achieved with a closed-cycle refrigera-
tor. :

B. Comparing theory and experiment

All of the qualitative predictions of the quantum theory
of mixing have been repeatedly verified in the experi-
ments discussed above. For instance, the SIS mixer con-
version efficiency is modulated with a dc voltage periodi-
city #iw /e (N#iw /e for N-junction series arrays). A rela-
tively small local oscillator power is required for a SIS
mixer. As the LO power is increased, the conversion effi-
ciency increases to its maximum and then oscillates as a
function of Ppo until, at larger powers, the junction’s
nonlinearlity begins to be washed out. Conversion gain
has been achieved, and induced negative differential resis-
tance. has been observed as well. The mixer noise tem-
perature is very small, often a few times the nominal
quantum limit %o /k.

In this section we shall discuss the quantitative predic-
tions of quantum mixer theory, and in particular their
range of applicability and agreement with experimental
results. Once confidence in the theory is established, it
can be a powerful tool for the design and optimization of
practical mixer circuits. For any particular experiment,
the theory can predict how much improvement is to be
expected from modifications of the tuning structures, the
use of different SIS junctions, etc.

In principle, it is a simple matter to use the theory to
predict quantitatively the behavior of a given experimen-
tal mixer. The only data required are the junction’s un-
pumped dc I-V curve and the complex embedding im-
pedances seen by the junction at all relevant frequencies.
This last is generally understood to include the junction’s
own geometrical capacitance. Given this information, the
theory of Sec. IV predicts the mixer’s performance, most
notably the conversion efficiency and the noise tempera-
ture, as a function of the applied LO power and dc volt-
age, for comparison with the experimental results. The
predictive power of the quantum theory of mixing is ex-
traordinary in that all of the quantitative predictions of
the theory are specific to a particular nonlinear tunnel
junction, characterized by its dc I-V curve, rather than
applying to a general class of devices. .

The emphasis in this section will be on the conversion
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efficiency, because it is difficult to make a meaningful
comparison of noise temperature results with theory. One
reason for this is that the theory’s prediction of mixer
noise temperature is incomplete; it does not include quan-
tum noise, and it is not certain how this should be includ-
ed. Another more practical reason is that the predicted
noise is generally so small that it is difficult to perform
noise temperature measurements with sufficient precision.

The quoted errors in noise temperature measurements are
usually of the same order as the measured noise tempera-

ture itself. :

In practice, a complete calculation of a quantum
mixer’s performance requires an extremely complicated
self-consistent solution to obtain the large-amplitude local
oscillator waveform, as noted in Sec. IV.C. This has only
recently been performed by Hicks et al. (1985), who treat
the SIS junction’s large-signal response in the time
domain (Sec. IV.G) rather than using the frequency-
domain equation, Eq. (4.3). The results of this complete
calculation are not yet extensive enough to justify general
conclusions.

Every other quantum theory calculation of mixer prop-
erties has relied upon a number of simplifying assump-
tions, of varying accuracy. First, all of the harmonics of
the LO, and the sidebands of those harmonics, are usually
assumed to be short circuited. This is known as the
three-port mixer approximation, because, except for the
LO whose voltage amplitude can be taken as real, three
frequencies, the signal, the image, and the IF, remain to
be analyzed. Second, the classical IF approximation is al-
ways made: The output frequency is assumed to be small
enough that the junction response at the IF is essentially
classical. The IF is further assumed to be sufficiently
small compared to the LO frequency that the approxima-
tion wg ~®~w; may be used in the calculations. In fact,
the IF is generally taken to be effectively at zero frequen-
cy, so that the complex embedding admittance seen by the
junction at the LO and at its sidebands are all equal. The
high-frequency source admittance, Gg-+iBg, and the
(real) IF load conductance G are then the only experi-
mental quantities required in order to characterize the
mixer’s environment. Equations (4.74) and (4.77) are used
to calculate the conversion efficiency. In some very few
cases, less restrictive assumptions are made.

Even with this drastic simplification, a major problem
remains: for most experiments Gg and By are difficult to
determine. Each published paper deals with this problem
in a different manner. In many papers all reactances are
ignored; that is, Bg, which includes the geometrical capa-
citance, is assumed to cancel exactly the conversion ef-
fects of the nonlinear quantum reactance when the
backshort and other tuning structures are adjusted for ef-
ficient mixing. This appears to be a valid procedure in
many circumstances (Feldman, 1982).

One technique for determining Gy and By from experi-
mental data is the “method of intersecting circles” of
Shen (1981). For a given dc current point on the pumped
I-V curve, Eq. (3.3) is inverted (by computer) to give the
LO voltage amplitude, V,=V;o. The complex LO
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current Ifo can then be found from Eqgs. (4.40) and
(4.41). Knowing these quantities, one considers the LO
power equation, Eq. (4.43), as a circle in (Ggs,Bg) space
whose radius and central coordinates are functions of
Py, Vio, and ITo. This circle is the locus of values of
Gs and Bg which will result in the measured dc current.
This same procedure can be repeated for many points
along the pumped I-V curve, or for many different values
of P, to produce many circles in ( Gg,Bg) space. If the
experiment data are precisely known and the three-port
model is valid (all LO harmonics shorted), then all of
these circles must intersect in the one point which gives
the actual LO termination admittance, Gs+iBg. A
pumped I-V curve calculated wih G5 and Bg determined
by this method is shown in Shen (1981), and it is in
reasonable but not exact agreement with the experimental
curve.

The beauty of this technique is that Gy and Bg can be
obtained from a limited amount of easily accessible exper-
imental data. Unfortunately, in some cases at least, it is
of limited accuracy and may leave large ambiguities in
the determination of Gg and Bg. Oné of us (M.J.F.) at-
tempted to apply this technique to a SIS mixer for which
it is known, in retrospect (Feldman et al., 1983), that the
three-port model is quite precisely valid. The resulting
circles in ( Gg,Bs) space, unlike the three idealized circles
in Shen (1981), Fig. 6, did not intersect in a single point.
Rather, they tended to delineate fwo loosely defined re-
gions. The reason for this ambiguity must be that small
errors in measuring the pumped dc current are magnified
by the calculation. Nevertheless, the method of intersect-
ing circles should be valuable to find a first approxima-
tion for Gg and Bg. Note that this method gives no in-
formation about the signal and image port embedding ad-
mittances when these are not equal to the LO port admit-
tance.

The first attempt to calculate a working mixer’s con-
version efficiency (Shen et al., 1980) was not very suc-
cessful. Whereas the experimental conversion reached a
maximum of 2-dB loss at the fifth photon step below the
energy gap and declined as the energy-gap voltage was ap-
proached, the calculated conversion efficiency, with Gg
and Bg from the intersecting circle method, became ex-
tremely large near the energy-gap voltage. On the as-
sumption that significant harmonic effects depressed the
experimental conversion near the energy-gap voltage,
these authors subsequently applied a five-port mixer
model (Richards and Shen, 1980). The calculated conver-
sion efficiency curve no longer diverged in this case, and
the agreement with the experimental conversion was
within a factor of 2, but still the shapes of the two curves
were quite dissimilar.

The technique used to perform the five-port mixer
analysis is explained by Shen and Richards (1981). First,
it is necessary to know the embedding impedance at the
second harmonic frequency and its sidebands, as well as
the fundamental terminations. The simplest assumption,
used by these authors, is that the SIS junction’s own capa-
citance is the primary component of the harmonic ter-
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mination. The most difficult aspect of the five-port
analysis is the determination of the LO waveform. In ad-
dition to the fundamental voltage Vo, one must consider
the second harmonic voltage, with components in phase
and out of phase with Vig. Therefore the result of Eq.
(4.34) is generalized to a product of three Bessel function
series. These series must be summed separately by com-
puter for each iteration of the computation, in which the
juction response is compared with the embedding network
response to converge (hopefully) to a self-consistent solu-
tion, which gives the complex second harmonic voltage.
Once the self-consistent LO waveform is obtained, the
five-port small-signal analysis, which induces the IF to-
gether with the sidebands of both the fundamental and
second harmonic frequencies, is a straightforward gen-
eralization of the three-port solution.

A much simpler approach to comparing experimental
data with the three-port model was taken by Dolan et al.
(1981). No attempt was made to ascertain the embedding
impedances. Rather, these authors ignored all reactances,
assumed the signal and image terminations to be equal,
and plotted the predicted conversion efficiency against dc
voltage for a wide range of values Gg, between 20 and 200
Q. Their results agreed with the general shape of the ex-
perimental conversion curve, but the predicted conversion
was more than 5 dB too large on the first photon step
below the energy-gap voltage. These results, and those
above, indicate that some important element is missing
from the theoretical model for these experiments.

A more extensive series of experiments demonstrated
the quantitative accuracy of predictions based on the
quantum theory of mixing (Rudner et al., 1981a,1981b).
A large number of 6-junction arrays were tested as SIS
mixers; the maximum experimental conversion obtained
for some of these is shown in Fig. 24. The unpumped dc
I-V curve of each array was used in the theory to predict
the size of each of the conversion peaks. All reactances
were ignored in the calculations, and the value 1/Gg=50
Q was ascertained by reflection measurements. The
predicted conversion was in every instance larger than the
respective experimental result. The discrepancy between
the predicted and the experimental conversion loss is
shown in Fig. 27. This figure includes the results for the
first and the second conversion peaks below the energy-
gap voltage, for all of the Pb(In) arrays tested, except for
two arrays in which the junctions were clearly heterogene-
ous. Additional, less complete, data from the third con-
version peaks and from 6-junction pure Pb arrays are not
shown, but those data fit along the trends seen in Fig. 27.

In one region of Fig. 27, the second peak conversion for
those arrays having less than ~25 ) normal resistance,
there is excellent agreement between theory and experi-
ment. More data were in fact available in this region.
Figure 9 of Feldman and Rudner (1983) shows this re-
gion, the dashed area in our Fig. 27, with a magnified
scale, and includes a total of thirteen data points, the oth-
ers derived from the third conversion peak for the same
samples and from the pure Pb arrays. Each of these thir-
teen data points represents a completely independent ex-
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FIG. 27. Discrepancy between the optimum theoretical and ex-
perimentally observed conversion loss at 75 GHz for each
Pb(In) SIS series array tested by Rudner et al. (1981a,1981b),
shown for both the first and second mixing peaks below the
energy-gap voltage (Feldman and Rudner, 1983).

periment; each experimental result is predicted by the
quantum theory, using no adjustable parameters, with a
discrepancy of 0.5+0.3 dB. (A discrepancy of ~0.5 dB
was expected from antenna mismatch measurements.)
These thirteen points included all of the available data in
this region. It is clear that, for this experiment, the quan-
tum theory of mixing quite accurately predicts the con-
version efficiency for those arrays with R4 <25 Q, except
on the first photon peak below the energy-gap voltage.

Note that all of these SIS arrays had the same junction
areas and hence about the same capacitance. Therefore
the wRyC product, which measures how effectively the
capacitance is able to shunt the junction currents, is
directly proportional to R4 (oRyC ~2 for R,4=25 Q in
this experiment). Figure 27 indicates that the theoretical-
ly calculated results are valid only for smaller R, and
hence smaller Ry C, and the authors conclude that their
experimental structures were not capable of resonating the
array capacitance for larger wRyC. The unresonated
capacitance would increase the conversion loss for large
R, as seen in Fig. 24, and hence would create the consid-
erable discrepancy in the theoretical calculation seen in
Fig. 27 for large R 4.

But what is the cause of the first peak discrepancy seen
in Fig. 27, of up to 5 dB for low wRyC? A similar
effect—the experimental conversion efficiency appears to
be severely depressed near the energy-gap voltage for low
oRyC junctions—was seen in the other experiments dis-
cussed immediately above. In Fig. 27 the relative depres-
sion of the first peak disappears above wRyC ~4. We
shall use these results in Sec. VLA to argue that harmonic
conversion effects are important near the energy-gap volt-
age for low wR yC junctions.

A more elaborate technique for determining the mixer
embedding impedance from internal experimental evi-
dence is illustrated in Fig. 28 for a ~115-GHz mixer
(Phillips and Dolan, 1982). The pumped dc I-¥ curve is
calculated for many values of Gy and Bg and compared
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FIG. 28. The experimental unpumped (solid curve) and
pumped (crosses) dc I-V curves for a Pb(In) junction in a
~115-GHz SIS mixer are repeated in each box. The latter
curve is to be compared to the various theoretical pumped I-V
curves, which are calculated with the LO power as a free pa-
rameter, for the given values of amplitude and phase of the
source admittance Yy (Philips and Dolan, 1982).

to the corresponding experimental curve to find the best
detailed fit. The applied LO power is a free parameter
adjusted in each case to give the experimental current at
the center of the first photon step. This method is essen-
tially a generalization of the intersecting circles method to
include all points on the pumped I-V curve, and its suc-
cess will also depend upon the assumption that all LO
harmonics are unimportant. If the signal and image port
embedding impedances are not equal to the LO port ad-
mittance, the admittance must be separately determined
by applying this technique at all three frequencies.

Phillips and Dolan (1982) used the values of the param-
eters determined by means of Fig. 28 to compute the re-
sults shown in Figs. 29 and 30. Figure 29 shows the
pumped dc I-V curve calculated for the Gg, Bg, and LO
power giving the best fit (curve C), as well as the calculat-
ed results for half that LO power (curve B) and twice that
power (curve D), all compared to the corresponding ex-
perimental data. Figure 30 shows the conversion loss of
their mixer calculated using the best-fit parameters from
Fig. 28, again compared to the experimental values. The
agreement is in all cases excellent. Note, however, that
the only other extensive attempt to employ this three-
parameter-fit method to an experimental mixer (Phillips
and Woody, 1982) gave discrepancies of up to 2 dB be-
tween the predicted and experimental conversion losses.
McGrath et al. (1981) also used this technique to calcu-
late their mixer’s conversion efficiency, at a single operat-
ing point. ‘
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FIG. 29. dc I-V curves in reduced units for the SIS junction
shown in Fig. 28, for several values of applied LO power near
115 GHz: curve a, zero power; curve ¢, the same LO power as
in Fig. 23; curve b, 3 dB less than c; curve d, 3 dB more than c.
The crosses are experimental data, and the corresponding solid
lines are calculated using the best-fit values of LO power and
source admittance determined from Fig. 28 (Phillips and Dolan,
1982).

The quantum theory of mixing can serve as a powerful
tool for the design and optimization of a practical SIS
mixer only to the extent that the mixer embedding im-
pedance is known. Much of this section has detailed the
approximations made and the techniques that have been
used to infer the embedding impedance of various experi-
mental mixers. These were necessary because direct mea-
surements of the embedding impedance of a millimeter-
wavelength mixer mount are extremely difficult with
current technology.

This unsatisfactory situation can be avoided. A low-
frequency network analyzer can be used to determine the
embedding impedances of a larger-scale model of the
mixer block. Scale-model measurements, described in
Sec. II.A for a Schottky mixer, are straightforward and
accurate, and can give the harmonic embedding im-
pedances in addition to those at the LO, signal, and image
frequencies. Feldman et al. (1983) adapted this technique
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FIG. 30. Conversion loss as a function of reduced bias voltage
for the ~115-GHz SIS mixer characterized in Figs. 28 and 29.
The experimental values are represented by crosses, and the
solid line is calculated using the parameters determined from
Fig. 28 (Phillips and Dolan, 1982).
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to a 40X scale model of their SIS mixer block. For this
experiment the harmonic impedances were not needed be-
cause the sample, a 14-junction array, had a large enough
capacitance (wRyC=10) to ensure that the three-
frequency approximation was valid.

Relying upon the scale model, Feldman et al. (1983)
used experimental SIS mixer results to make a detailed
test of the predictions of the quantum theory of mixing.
The experimental conversion efficiency and the pumped
dc current were measured at both the first and the second
photon steps below the gap voltage, for nine different po-
sitions of the backshort spanning almost half a guide
wavelength. Then using the complex embedding im-
pedances at the LO, signal, and image frequencies, mea-
sured on the scale model as functions of backshort posi-
tion, Feldman et al. calculated the LO voltage from Eqgs.
(4.41) and (4.43), the pumped dc current from Eq. (3.3),
and the conversion efficiency from equations analogous to
Egs. (4.74) and (4.77) (generalized to allow unequal signal
and image impedances), all as functions of backshort po-
sition. The results are shown in Fig. 31. It is clear that
the quantum theory of mixing is quite successful in quan-
titatively predicting the experimental results, at least for
this large-capacitance SIS array. '

The largest uncertainties regarding Fig. 31 were in the
measured values of the array capacitance and the LO
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FIG. 31. Performance curves for a 115-GHz SIS mixer using a
14-element series array of ~2.5-um? Pb-alloy junctions with ar-
ray capacitance C =22.5+2.0 fF: a, the dc current and b, the
conversion gain, both measured at a dc bias voltage on the first
photon peak below the gap and with constant P;o=180+40
nW, for nine backshort positions spanning almost half a guide
wavelength. Curves ¢ and d are the same as a and b, respec-
tively, but measured on the second mixing peak. There are 36
experimental points, and the solid lines are theoretical predic-
tions calculated for C=22.5 fF and P =173 nW (Feldman
et al., 1983). .
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power, which were known to an accuracy of about +10%
and +25%, respectively. The excellent agreement seen in
Fig. 31 was obtained for the nominal values of C and
P, but allowed a range of variation of these quantities
of only about +2% and *5%, respectively. It is interest-
ing to note, therefore, that this procedure can be inverted:
the quantum theory of mixing can be fitted by computer
to experimental mixer measurements to determine a SIS
junction’s capacitance with greater precision than by pre-
viously available techniques (for instance that of Mager-
lein, 1981).

The experiments discussed thus far in this section test
the quantitative predictions of the quantum theory of
mixing only at applied frequencies less than one-fifth of
the energy gap. In a more recent experiment (Winkler,
1984; Winkler et al., 1985), aluminum junctions were
measured at 75 GHz, which is more than 80% of the gap
frequency 2A,1/h ~90 GHz, using the mixing design il-
lustrated in Fig. 23 in a He dilution refrigerator. The
samples were arrays of six junctions, each of area
~25 um?. Both Al(In)-oxide-Al (SIS) and Al(In)-oxide-
Ag (SIN) junctions were tested. A SIS array with
Ry =620 Q and wRyC =27 gave a maximum conversion
of 10-dB loss, while a SIN array with Ry =320 Q and
oRyC =23 gave a maximum conversion of 28-dB loss.
In spite of these large values of conversion loss, mainly
due to severe impedance mismatch, the authors were able
to compare their results to the quantum theory predic-
tions, using a scale model to determine the source im-
pedance. For both of these samples, the mixer conversion
loss and the pumped dc current plotted against bias volt-
age agreed quite well with the theory. This is the first

" time that such a comparison has been made for SIN junc-

tions. Josephson-effect noise (Sec. VI.D) was not a prob-
lem for the SIS junctions because of the large relative
capacitance and because a magnetic field could be used to
suppress the Josephson currents. These results give confi-
dence that the quantum theory predictions for mixer con-
version remain valid at applied frequencies approaching
the energy gap, so long as Josephson pair tunneling can be
neglected. '

A number of authors have calculated the theoretical
performance of SIS mixers (in general, double-sideband),
using the equations of Sec. IV over a wide range of pa-
rameters, without an immediate application to experimen-
tal results. Shen and Richards (1981) addressed the case
of the ideal SIS junction at T=0 (see Fig. 18). The
infinite-gain and the unity-gain contours were plotted
against Gs and P;, ignoring all reactances, for a variety
of reduced frequencies and dc voltages. The region of pa-
rameter space for which the calculated mixer noise tem-
perature due to shot noise falls below #iw/k was given as
well. With the same assumptions Sollner (1981) plots
some results for the shorted-image single-sideband case.
Sollner and Powell (1983) plot the conversion efficiency
versus frequency for a variety of synthetic I-V charac-
teristics intended to represent realistic SIS junctions.
These results disagree with all others in that the conver-
sion efficiency never becomes infinite. Zorin (1985) plots
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the shot-noise temperature for some special cases, as well
as for synthetic I-V characteristics. Other papers have
based their calculations upon measured Pb-alloy junction
I-V curves. Phillips and Woody (1982) plot conversion
efficiency against Gy and By at 112 GHz. Hartfuss and
Tutter (1983a) plot conversion efficiency against G¢ and
the LO voltage amplitude, at 88 GHz, for several choices
of Bg. These authors (Phillips and Woody, 1982; Hart-
fuss and Tutter, 1984) have also presented similar results
for the mixer noise temperature, including the quantum
noise contribution through some questionable assump-
tions. D’Addario (1984) calculates the conversion effi-
ciency for two measured I-V curves in the DSB mode,
with the image shorted, and with the image open circuit-
ed. The open-circuit image case gives the best result for
the parameters considered. These various calculations
can be valuable for general reference.

C. Other mixing modes

Subharmonic pumping is a favored technique for
Schottky diode mixers. Most commonly, two diodes are
mounted back-to-back to give inversion symmetry, and
are pumped at approximately one-half of the signal fre-
quency. This has the advantages that sufficient LO
power is more easily obtainable at the lower frequency
and that the symmetry of the device prevents the noise
sidebands of the LO from appearing at the mixer output.
These considerations are not important for SIS mixers,
whose very small LO requirement permits any commer-
cial LO source, with its noise sidebands, to be greatly at-
tenuated. Nevertheless, the likelihood that the fundamen-
tal SIS mixer results described above were degraded by
harmonic effects, especially near the energy-gap voltage
where the I-V curve has an approximate inversion sym-
metry, suggested that a SIS harmonic mixer might be
worthwhile to attempt.

After Richards and Shen’s (1980) discussion of SIS har-
monic mixing at the gap voltage, the Berkeley group
(Smith et al., 1981a,1983) operated their Sn-based mixer,
which had achieved 4.3-dB conversion gain in the funda-
mental mode (described in Sec. V.A.1), in this harmonic
mixing mode. With an 18-GHz LO, they measured 3.2-
dB conversion loss for a 36-GHz signal. As expected, the

maximum conversion occurred quite near the energy-gap -

voltage. These results are encouraging, although no mea-
sure of the noise temperature was quoted.

A SIS’ tunnel junction, made from two different super-
conductors with unequal energy gaps A and A’, can have
a negative resistance on its umpumped I-V curve at volt-
ages above |A—A'| /e. Roesler and deZafra (1982) sug-
gested that this structure can be utilized for a high-gain
mixer. Smith et al. (1983) measured the mixing proper-
ties of a SIS’ junction that showed this negative-resistance
region, but it was not clear that the negative resistance
had any effect on their results. A practical application of
the SIS’ junction’s negative resistance appears doubtful,
for two reasons. First, the structure has a very small am-
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plitude in current, so on general grounds one expects that
it would saturate at very low powers. Second, even if sa-
turation can be avoided, experience with other devices
having an intrinsic negative resistance, such as tunnel
diodes, indicates that extreme care must be taken with the
junction’s embedding environment to prevent oscillations
and other noisy phenomena.

VI. DISCUSSION OF SIS MIXER PERFORMANCE

We have reviewed the quantum theory of mixing and
the various experiments which, on the whole, give confi-
dence that this theory is appropriate for describing quasi-
particle mixing in SIS tunnel junctions. But both the
theory itself and the application of the theory to practical
mixers are based upon a number of assumptions and ap-
proximations which will not be perfectly satisfied in all
situations. In this section we shall discuss several topics
that fall outside the scope of the simplest models.

One example is the assumption that the significant
currents through the tunnel junction are due to single-
particle tunneling. For the theory to describe realistically
an experimental mixer it is required that all other current
mechanisms in the active element, for instance supercon-
ducting pair tunneling, multiparticle tunneling, and resis-
tive leakage currents, not be important in the interesting
region of parameter space. This appears to be true in
most cases. Multiparticle tunneling (Wilkins, 1969)—the
simultaneous tunneling of two or more quasiparticles, un-
paired, through the barrier in- a single process—is dis-
cussed for SIS mixers by Rudner et al. (1981b). It is in
general not an important effect. Another example is the
implicit assumption that the local oscillator waveform is
perfectly cyclic. As with any sufficiently nonlinear de-
vice, however, a SIS junction may respond chaotically
under certain circumstances. Hicks and Feldman (1983)
found chaotic solutions in a time-domain analysis (Sec.
IV.G) of a SIS mixer, for very small values of wRyC.
Whether chaotic noise can be a problem for realistic SIS
mixer parameters has not been determined.

A. Optimum wRyC product

The quantum mixer theory treats the nonlinear effects
of single-particle tunneling currents. In a -SIS junction
there is also a considerable displacement current due to
the geometrical capacitance. The SIS junction has the
form of a parallel-plate capacitor with the narrow separa-
tion between its superconducting electrodes filled with a
relatively high-dielectric-constant insulator. This linear
capacitance is included in a theoretical calculation simply
by treating it as an element of the embedding impedance,
the linear circuit surrounding the junction. Experimental-
ly the capacitance acts as a parasitic element that tends to
short-circuit the desired junction nonlinearity. Because of
this the lateral side of a SIS millimeter-wave mixer junc-
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tion is constrained to be quite small, measured, at most, in
micrometers. Before such small junctions were-available,
an effective SIS mixer was not possible.

The standard measure of the parasitic effect of the
geometrical capacitance is the junction wRyC product,
the ratio of the junction’s normal-state resistance to its
capacitive impedance. Note that wRyC is actually in-
dependent of the area of a junction, because Ry and C
scale oppositely with area. Rather, for a given type of SIS
junction, RyC depends only upon the thickness of the
tunnel barrier: thinner barriers, and hence larger Joseph-
son critical current densities, give smaller values of RyC.
A graph of Ry C versus Josephson critical current density
for Pb-alloy tunnel junctions is given by Harris and Ham-
ilton (1978). Once a SIS junction is considered for a de-
vice application, Ry is constrained to be in a relatively
narrow range for reasonable input and output impedance
matching. To achieve a smaller Ry C product for a SIS
mixer therefore requires using smaller junctions and
thinner barriers.. Considerable research at present is
aimed at making SIS junctions of very small area and
with very high Josephson critical current densities, and
this should not be a limiting factor for SIS mixers at high
frequencies.

Although it is clear that too large an wRyC product
will prevent effective SIS mixing, the optimum value of
oRyC is still in question. One might assume that wR5C
should be less than unity to prevent the capacitance from
dominating the junction’s dynamics. Two obvious quali-
fications are necessary. First, it is the SIS junction’s input
impedance in the mixing mode, rather than Ry, which
should properly be compared to its capacitive impedance.
The input impedance, given by Eq. (3.24) for the simpli-
fied model, is a complicated function of the mixer’s
operating point, but it is generally of the same order as
Ry. Second, since a SIS junction’s electrodes are super-
conducting, with very small rf resistance, any capacitance
can in principle be almost perfectly resonated by an exter-
nal tuning circuit. Still, insofar as the capacitance serves
no constructive purpose, @Ry C should be made as small
as possible, certainly no larger than about unity.

There is strong evidence that this view is incorrect, and v

that the junction capacitance does play a constructive role
in practical SIS mixers. It was noted by Feldman and
Rudner (1983) that experiments using SIS junctions with
very small Ry C products tended to give relatively poor
mixer conversion, and, on the other hand, that two most
promising SIS mixer experiments (McGrath et al., 1981;
Kerr et al., 1981) had wRyC ~10. These results are ex-
plained by the hypothesis that the large junction capaci-
tance improves the conversion efficiency by suppressing
harmonic conversion effects.

The quantum mixer theory in the three-port approxi-
mation predicts that a SIS mixer’s conversion efficiency is
largest for dc bias voltages relatively close to the energy-
gap voltage, in most cases on the first conversion peak
below the gap. But the three-port approximation ignores
harmonic conversion effects, by assuming that all
currents at the harmonic and harmonic sideband frequen-
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cies are short circuited. A large junction capacitance
(which should of course be tuned out at the signal fre-
quency) assures that these currents are in fact short cir-
cuited. And, indeed, when wRyC is large, the three-port
theory agrees very well with experiment (Feldman et al.,
1983).

When wRyC is small, there is considerable evidence
that harmonic conversion effects can be important. Re-
call from Sec. V.B that the results from a number of ex-
periments disagreed with the three-port mixer theory cal-
culations, and, to generalize, the discrepancy appeared to
be larger close to the energy-gap voltage. It is precisely
here, near the gap voltage, that one expects the harmonic
currents to be more important (Richards and Shen, 1980),
due to the approximate inversion symmetry of a SIS
junction’s I-V curve in this region. Theoretical support
for this hypothesis is given by the calculations of
Richards and Shen (1980) in the five-port approximation,
discussed in Sec. V.B, which predict that their mixer’s
conversion would be severely depressed near the gap volt-
age compared to the three-port model. Thus it appears
that harmonic effects can reduce the conversion efficiency
of a SIS mixer, most strongly near the energy-gap voltage,
where the predicted conversion is largest. This would
prevent a SIS mixer from realizing its full potential.

Contrary evidence is provided by the excellent perfor-
mance of the current Bell Labs receiver (Sec. V.A.2),
which presumably uses a SIS junction with a small @Ry C
product. Moreover, the good three-port-theory fit to the
experimental data of Figs. 28—30 (from Phillips and Do-
lan, 1982), using a similar SIS junction, tends to argue
against the importance of the harmonic frequencies.

A thorough investigation of this question will require a
SIS quantum mixer analysis that explicitly includes the
higher harmonics, like that of Hicks et al. (1985), men-
tioned in Sec. IV.C. Until this is done one can only
roughly estimate how large a capacitance is required to
suppress the harmonics. Figure 27 (discussed in Sec.
V.B), supported by auxiliary data (Feldman and Rudner,
1983, Fig. 9), shows good agreement between experiment
and three-port mixer calculations for those arrays having
low resistance, and hence low wRyC, except at the first
conversion peak below the energy-gap voltage. On the
first peak the experimental conversion appears to be
depressed by about 5 dB, which is comparable to other ex-
periments using low wRyC junctions (Shen et al., 1980;
Dolan et al., 1981). For larger array resistance in Fig. 27,

‘above about R,y =50 @ (wRyC~4), this relative
. depression of the first conversion peak disappears. This is

presumably due to the suppression of harmonic conver-
sion effects by the larger relative capacitance. Therefore,
on the basis of this one series of experiments, it is tenta-
tively inferred that optimized SIS mixers should be
designed with Ry C >4.

The choice of wRyC >4 rather than <1 relaxes some-
what the requirement of very small SIS junction area.
However, it places much more stringent requirements on
a SIS mixer’s tuning circuits, which must be able to com-
pensate the large capacitance at the signal frequency.
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B. Arrays

Many SIS mixer experiments have employed a series
array of junctions, rather than a single junction, as their
active element. This greatly increases the versatility of
SIS mixers, with apparently little cost in complexity or
performance. Mixing with SIS arrays has been reviewed
by Feldman and Rudner (1983).

The most important advantage of array mixers is that
they afford a greatly increased dynamic range. Single-
junction SIS mixers generally saturate at a very low signal
power, in one extreme case about a picowatt (quoted in
Smith and Richards, 1982), but the dynamic range in-
creases as the square of the number of junctions in series.
Additional advantages arise from the larger size (dis-
cussed below) of arrayed junctions. Josephson-effect noise
(Sec. VI.D) is more readily suppressed by an applied mag-
netic field in larger junctions. The arrays of larger junc-
tions are also less susceptible to electrical transients, and
they can be made with less sophisticated equipment and
techniques. These are crucial factors for many labora-
tories.

Most of the disadvantages of using arrays are apparent.
Since the same currents must flow through all of the junc-
tions in series, any heterogeneity in the arrayed junctions’
characteristics will cause the voltages to divide unevenly
among them. If this effect is large enough, it will inter-
fere with the mixer’s performance and make theoretical
comparisons almost impossible. In past experiments,
though, the array heterogeneity appears to have been ac-
ceptably small. Another consideration is that the series
inductance along an array will be larger, for a given
overall device impedance. More disconcerting, however,
is the possibility, raised by the experiments of van Kem-
pen et al. (1981), that SIS array mixers have higher noise
temperatures than single-junction mixers, contrary to the
simple theoretical arguments given below.

The most straightforward way to understand the
behavior of a series array of N SIS junctions is to postu-
late an “equivalent single junction,” a junction with the
same barrier thickness but whose area is only 1/N of the
area of a typical junction in the array. The equivalent
single junction then has an I-V characteristic identical to
that of the array, but reduced in both current scale and
voltage scale by the factor N. All of its impedances, both
real and imaginary, are equal to those of the array. The
equivalent single junction is not one of the junctions in the
array; it is the junction one would expect to most closely
simulate the mixing behavior of the entire array, if placed
in the same environment.

It is useful to review the argument from Feldman and
Rudner (1983) that leads to the concept of the equivalent
single junction, giving the conditions necessary for an ar-
ray to behave in this simple manner. Figure 32(a) is an
equivalent circuit for an array of SIS junctions, connected
by small series inductances, with each element consisting
of a nonlinear resistance, a nonlinear reactance, and a
capacitance. To simplify Fig. 32(a) one must make cer-
tain assumptions.
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FIG. 32. Construction illustrating that, with certain assump-
tions, the equivalent circuit for a series array of N SIS junctions
reduces to that for a single element with all impedances multi-
plied by N. )

First, assume that the current is in phase all along the
array, i.e, that the total current at every position along the
array is the same. This will certainly be true for an exper-
imental array that is very short compared to the effective
wavelength at the frequencies of interest. If the currents
are in phase along the array, then the ordering of the ar-
ray elements is not important, and Fig. 32(a) is equivalent
to Fig. 32(b). /

Second, assume that all of the elements of the array are
identical. If this is true, then the two example current
loops drawn in Fig. 32(b) carry equal currents. This
means that the total current carried by the horizontal con-
necting bars between the array elements is zero. These
bars can thus be eliminated, so that Fig. 32(b) becomes
Fig. 32(c). The impedances are then added in series to
give Fig. 32(d).

Although Fig. 32(d) is identical in form to a single ele-
ment of Fig. 32(a), it does not represent a physically real-
izable junction. The voltage scale in Fig. 32(d) is N times
that for a single junction, so, for instance, its energy-gap
voltage is N times the single-junction value. To replace
the equivalent circuit in Fig. 32(d) by a real junction one
must reduce its voltage scale, and also its current scale to
maintain impedance levels, by the factor N. The resulting
junction is then the “equivalent single junction” of the ar-
ray. ‘

This argument leads to three important conclusions re-
garding array devices that obey these assumptions. First
of all, no complexity is introduced because N > 1.
Second, note that an array differs from its equivalent sin-
gle junction in that it requires N times the current and N
times the voltage. Therefore an array behaves like a sin-
gle junction with N? times the power. The required LO
power and the saturation power will both scale as N2.
Noise powers are discussed below. Third, since the
equivalent single junction has the same Ry and C as the
entire array, it must be N times smaller in area than any
one junction in the array. These last two attributes of ar-
rays, larger power flow and larger junction size, lead to
the advantages mentioned previously.
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The equivalent-single-junction picture of arrays is
borne out very well in practice, so much so that in Sec. V
very little notice was taken as to whether an experiment
used single junctions or SIS arrays. In fact, two of the
most detailed analyses of SIS mixers (Rudner et al.,
1981b; Feldman et al., 1983) were performed for array
mixers, and found in good agreement with the quantum
theory by postulating an equivalent single junction. This
indicates that the two assumptions made above, (1) that
the current is in phase all along the array, and (2) that all
of the elements of the array are identical, are well enough
satisfied for these experiments. This is fortunate, because
whenever either of these assumptions is clearly violated
the SIS mixer performance deteriorates (Rudner et al.,
1981b). Moreover, an exact solution for the equations of
a heterogeneous array would be exceedingly difficult, even
for the case N =2.

We have not yet considered the noise properties of ar-
rays. If array mixers are noisier than single-junction
mixers, then arrays will not be widely used. But there is
good reason to believe that the noise temperature of an ar-
ray mixer should not be necessarily worse than that of a
single-junction mixer.

Consider first the effects of shot noise in classical
mixer theory. Shot noise is the predominant contribution
to the noise temperature of most SIS mixers. Figure 33(a)
represents a series array of identical elements, each with
characteristic impedance Z. An instantaneous current [
through the array generates shot noise in each of the ele-
ments with mean-square amplitude (i?)=2eIB. These
shot-noise generators are not correlated. Figure 33(a) can
also be represented by the Thévenin equivalent circuit Fig.
33(b), where (v2)=2eIB |Z |2. The noise sources are
added incoherently to produce Fig. 33(c), with
(V2)=2eIBN | Z | Since the total impedance of the
array is NZ, Fig. 33(c) can be transformed to the Norton
equivalent circuit of Fig. 33(d), giving (I¥)=2eIB/N.
This result must be compared to the shot noise of the
array’s equivalent single junction, which passes the
current I/N and hence has a shot-noise generator of
mean-square amplitude (i) =2e(I/N)B, exactly equal to
that for the entire array. The shot-noise current for an
array is therefore equal to that of its equivalent single
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FIG. 33. Construction illustrating that the shot noise for a
series array is identical to that for an equivalent single junction,
not shown, with the same total impedance as the array.
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junction. It is clear that an even simpler construction suf-
fices for any Johnson noise component, generally
represented as a series voltage noise generator.

This is, admittedly, a heuristic demonstration. But any
noise mechanism operating within an individual junction
should be treatable in the same fashion. Even quantum
noise, discussed in Sec. VLE, which has not yet been
solved for the SIS mixer, must eventually be represented
by one or more noise generators, using an equivalent cir-
cuit such as those suggested by Haus and Mullen (1964),
in order to allow the output noise to be calculated. The
quantum noise-equivalent circuit could then be treated ex-
actly like the equivalent circuits for shot noise or thermal
noise. Under these reasonable assumptions, it appears to
be a general result that the noise properties of an array are
no worse than those of its equivalent single junction.
Thus, although signal and LO powers scale as N? for an
array, noise powers are expected to be independent of N.

Contrary to this expectation, there is some experimen-
tal evidence that SIS array mixers do in fact have higher
noise temperatures. van Kempen et al. (1981) measured
the mixing properties of 1-, 10-, and 50-junction SIS ar-
rays at 36 GHz. These arrays were made with the same
oxide thickness, and the areas of the individual junctions
were chosen so that the three samples were “equivalent,”
each with the same total normal-state resistance of 55 Q.
As expected, the three samples gave roughly the same
conversion: the conversion efficiency for the N =50
junction array was more than two-thirds that for the sin-
gle junction. But the mixer noise temperature showed a
dramatic dependence upon N. The measured SSB mixer
noise temperature for the 1-, 10-, and 50-junction arrays
were 9.8%5, 34112, and 85125 K, respectively. Thus, in
this experiment, the mixer noise temperature increased
roughly as V'N.

This experiment has recently been repeated by
McGrath et al. (1985), using an apparatus that allows
much greater accuracy in noise measurements, with dis-
tinctly different results. The performance of a 36-GHz
SSB mixer was characterized using series arrays of N =1,
5, 10, and 50 Pb-alloy tunnel junctions, all with approxi-
mately the same total normal-state resistance. Those with
N=1, 5, and 10 showed similar noise temperatures
Ty ~8—9+1 K, with conversion efficiencies L ~'~0.2,
while the N =50 array had a somewhat larger
Ty =16.31+0.6 K and a lower L ~'~0.1. The mixer
noise temperature in these experiments thus depends only
weakly, if at all, upon N, and the apparent contradiction
with the earlier results of van Kempen et al. (1981) is
puzzling. The more recent work used junctions with
@Ry C ~3 rather than ~ 1.5, was in the purely SSB mode
rather than being roughly DSB, showed more variation
among the arrays in conversion efficiency, and had some-
what poorer overall conversion efficiency.

The question of excess noise in SIS array mixers is an
important one in view of the greater dynamic range af-
forded by the longer arrays, and this should be an active
area for further theoretical and experimental investigation
in the near future.
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C. LO power and saturation power

A simple intuitive argument (Feldman and Rudner,
1983) is remarkably successful in predicting the required
LO power for SIS mixers. If a SIS junction or array is to
be effective as a mixer, then the amplitude of the rf volt-
age swing Vo around the dc bias voltage V4. must be at
least large enough to sample the nonlinearity at. the
energy-gap voltage: Vo> Vg—Vy.. In particular, if the
mixer is operating on the nth conversion peak below the
energy-gap voltage, then Vo> (n ——%)N fiw/e. A closer
estimate of Vpg is given by the observation (Rudner
et al., 1981b) that, to a very rough approximation, the
conversion at peak n varies like the Bessel function J,(a).
Thus the conversion on peak n is optimized when
Vio=N#wa, /e, where a, is the value that maximizes
J,(a). Also to rough approximation, the LO input im-
pedance of a double-sideband SIS mixer is on the order of
its normal-state resistance Ry. Therefore the optimum
LO power required for a double-sideband SIS mixer is

Pio~(N#wa, /e)?/2Ry . (6.1)

This formula successfully predicts the optimum P;g
for all published SIS mixers for which the necessary in-
formation is available, except for the single-sideband re-
sult of Pan er al. (1983b). It is found to correctly esti-
mate the observed Py to within 2 dB, covering a very
wide range in published experimental values for Py from
1 nW to 30 uW. Note that the required P;g increases as
the square of the number of junctions arrayed and also as
the square of the operating frequency, everything else
held constant.

A SIS quantum mixer will begin to saturate for an in-
put signal power larger than a certain value Pg,. All of
the calculations in this paper have assumed that the input
signal amplitude is small enough to be treated as a pertur-
bation on the applied LO drive. The equations for the
sideband currents are expanded to first order in the signal
voltage, and therefore the IF output power is linearly re-
lated to the rf signal power. When the signal power is in-
creased beyond the value P, this assumption is no
longer perfectly true, and the mixer response begins to
saturate.

The gain-versus-bias voltage curve of a SIS mixer con-
sists of a series of peaks, each of width N#w /e, along the
V4 axis. The mixer is normally operated at a value of
Vg4c corresponding to the top of the largest of these gain
peaks. The IF response of the mixer can be considered as
a low-frequency modulation of the instantaneous bias
point around this value of V4. Smith and Richards
(1982) recognized that if this IF voltage swing is large
enough, the instantaneous bias point will sample regions
of slightly lower gain, and that this will be seen as a sa-
turation of the mixer’s response. Specifically, saturation
at the IF port begins to occur when the amplitude of the
IF voltage swing Vg equals some small fraction of the
width of the gain peak: Vig=vy,N#w/e. The quantity
Y0, small compared to unity, depends upon the allowable
gain compression and can be calculated from the mea-

Rev. Mod. Phys., Vol. 57, No. 4, October 1985

sured gain-versus-voltage curve for a particular SIS mixer
by treating the effective gain as an average of the instan-
taneous gain over the IF voltage swing. Since the IF out-
put power of the mixer is V%F /2R, , it is concluded that a
SIS mixer with conversion gain L ~—! begins to saturate at
an input rf signal power of

Py =(yoN#iw/e)*/2L 'R, . (6.2)

Thus, like the required LO power, P, increases as the
square of the number of junctions arrayed and also as the
square of the operating frequency, everything else held
constant.

Some examples are enlightening. For a SIS mixer
operating with 3-dB gain, Smith and Richards (1982) esti-
mate yo=0.1 for 0.2-dB gain compression. Equation (6.2)
then predicts Py, =2 pW, whereas the observed 0.2-dB
gain compression point occurred at 1.5 pW. The SIS re-

" ceiver of Pan et al. (1983b), with 7.5-dB overall conver-

sion loss, also gives y(=0.10 for 0.2-dB gain compression.
It is interesting that ¥, is independent of all of the factors
distinguishing these experiments. For a 1.0-dB gain
compression Y(=0.20 and thus Pg,,=2.1 nW, whereas
Pan et al. (1983b) observed the 1.0-dB gain compression
point at 4 nW. The argument leading to Eq. (6.2) con-
sidered only saturation at the IF port. The good agree-
ment with these two experiments indicates that this is the
dominant saturation mechanism for SIS mixers in the
quantum regime.

The range of signal power over which a receiver may be
used, from the minimum detectable power to the satura-
tion power, is called the “dynamic range.” Photon fluc-
tuation noise over a bandwidth Av limits the minimum
detectable power to fiwAv in the best possible receiver
(Sec. VLE). Therefore Eq. (6.2) implies that a SIS mixer
has at most a dynamic range given by

#vd N2

Py /Pin < ' .
SR 2e2R, L (Av/v)

(6.3)

This can be a rather stringent restriction. To appreciate
the magnitudes involved, let us assert that a practical re-
ceiver requires a dynamic range at least of order 103, al-
though a much larger value is preferred, and a fractional
bandwidth on the order of one percent. Assuming
Y0~0.1 and R; =50 Q, Eq. (6.3) then implies that
L' <N?/4. Thus, for this reason alone, a practical SIS
receiver employing a single junction should have a gain
less than unity. Here again, the potential advantage of
series arrays is apparent.

D. Josephson-effect noise

A SIS mixer’s output noise rises very sharply below a
certain threshold bias voltage Vy. For instance, in Fig.
22 the IF output power rapidly goes off-scale below
Vy ~1.45 mV, and the mixer cannot distinguish between
the hot and cold inputs. Figure 34 shows the IF output
noise power for one SIS mixer (Rudner et al., 1981b) with
constant LO power, for various values of applied magnet-



J. R. Tucker and M. J. Feldman: Quantum detection at mm wavelengths 1105

T T T I T
| 1,=1400A |
IJ=30,uA
o
ke
~ Ino dB
.
@
3
o
[s]
@
o
o
C
-
3
af
£
3
S
4
1 1 L I |
-20 =10 o] 10 20

Bias voltage (mV)

FIG. 34. Output noise power in the IF band as a function of dc
bias voltage for the 75-GHz SIS mixer using a 6-junction Pb(In)
series array illustrated in Fig. 23. The applied LO power is 1.11
#W, and the gap voltage is V;=18 mV for the array. The un-
pumped magnetic-field-depressed Josephson critical current I
is listed, beginning with the zero-field value. The arrow indi-
cates the noise threshold ¥y for one curve (Rudner et al.,
1981b).

ic field. The magnetic field depressed values of the un-
pumped Josephson critical current for the SIS array are
listed. For larger values of bias voltage, above ~10 mV,
the mixer is relatively quiet; the oscillatory noise seen in
the figure is due to the converted rf input noise and the
reflected noise from the IF circuit. But below the thresh-
old bias voltage Vy, marked by an arrow in Fig. 34, the
output IF noise suddenly becomes extremely large. When
a magnetic field is applied to suppress the dc Josephson
critical current I;, the noise threshold voltage Vy is re-
duced, and the magnitude of the noise is diminished. In
Fig. 34 the mixer output noise temperature is thereby re-
duced from more than 2000 K without magnetic field to
about 65 K on the lowest trace. The strong magnetic
field dependence implies that this noise in the region
below V) arises from the Josephson effect.

1. Explanation

The explanation of the Josephson-effect noise was first
suggested by Dolan et al. (1981) and clearly established
by Rudner et al. (1981a,1981b). In general, an un-
pumped, capacitively shunted, Josephson junction cannot
be stably biased on the quasiparticle branch of its I-V
curve below a certain voltage, which is called the drop-
back voltage V;. If one attempts to reduce the dc voltage
below this value, the voltage hysteretically switches to
zero. This can be clearly seen in Fig. 22, where for this
junction the switching occurs at V; ~1.2 mV. Now con-
sider a SIS mixer biased at a dc voltage V4. > V,;. The
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applied LO causes a voltage swing of amplitude Vig
around this bias point. If Vg is large enough that the
instantaneous voltage across a junction ever falls below
V4, the junction will switch to its zero-voltage state. The
current must then increase to exceed the critical current
before the junction can switch back to its quasiparticle
branch. This hysteresis loop will be traversed on every
cycle of the rf field.

According to this interpretation of the Josephson-effect
noise, the threshold bias voltage Vy for a given level of
LO power is simply

Ve=Vi4+Vio - (6.4)

Rudner et al. (1981a,1981b) verified this relationship by
showing that Vjy increases linearly with (Pyp)!/? for
small Py and that, in the limit of zero Pio, Vy is
indeed equal to V,;. This was true for a variety of sam-
ples in various magnetic fields. A magnetic field applied
to a SIS junction reduces ¥V, and hence reduces Vy by
Eq. (6.4). It is, moreover, reasonable to suppose that the
magnitude of the Josephson-effect noise diminishes when
a magnetic field suppresses I; because then less time is
spent in traversing the hysteresis loop.

What is the cause of the switching at ¥;? The general-
ly accepted explanation is that the ac Josephson oscilla-
tions make it impossible to maintain a stable bias point at
a voltage below V,. This problem was first examined by
McCumber (1968) and by Stewart (1968). Their model as-
sumed that the quasiparticle branch could be represented
in the region of interest by a simple linear resistance R.
Then, using the Josephson equations (2.2) and (2.3), the
total current through a capacitively shunted SIS junction
is given by

fiCd’ % do
=— —_— I . 6.5
I 2e dt>  2eR dt +lssing 65

This equation cannot in general be solved analytically. By
numerical integration it is possible to show that for a con-
stant I less than some critical value I, the only solution
is ¢=sin"!'(I/I;)=const. Thus for I <I; no solution
exists with nonzero average voltage, and it is not possible
to sit on the quasiparticle branch. I;/I; is found to be a
simple function of the parameter B, =2el;R*C/#; and
this relationship is given graphically by McCumber
(1968). In the limit of small I;/I;, which is the only re-
gion of interest for building a practical SIS mixer, the
critical value of dc current is given to first order by
I;=I;(2/B.)"%. If I; is identified with the dropback
voltage through I;=V,/R, then the result may be writ-
ten

Va=kVy , (6.6)

where the plasma voltage V,=(#l 7/2eC)'? is the
Josephson voltage 7w, /2e given by the resonance fre-
quency of the Josephson inductance #/2el; with the
capacitance, and where k =V2 for this linear model.

This simple result for I; is very sensitive to the as-
sumption of a linear quasiparticle current. Any other as-
sumed quasiparticle current, including that appropriate to
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a real SIS junction, will give quite a different value of I,.
This has been the topic of much investigation in recent
years (e.g., Tarutani and Van Duzer, 1983; Murayama,
1983) because of its relevance to Josephson-effect comput-
er elements. It is interesting to note that a parabolic
quasiparticle current I =a¥V? gives an equation analogous
to Eq. (6.5) which can be solved analytically for I,
(Stewart, 1974). Although the result for I; is very dif-
ferent from the linear-current case, once again
Vi=WU;/a)"*=V V2 in the limit of small I;/I;. This
last result has not to our knowledge been noted in the
literature. Could this be evidence that ¥; is in general in-
dependent of the form of the quasiparticle current, for
small 1;?

The junctions used for SIS mixing experiments yield
somewhat larger values of the proportionality constant
than the analytic value k =V2. Rudner et al. (1981b)
verified Eq. (6.6), with k=3.0, showing that V,; was
indeed proportional to (I,)!/? for a few samples with
various magnetic fields. Shen (1981) quotes the value
k =~3.5 for his junctions. The data given both by Dolan
et al. (1981) and by Sutton (1983) imply k~2.1. It is
possible that the experimental values for k are larger than
the analytic result because noise in real junctions forces
the instantaneous voltage into the region of instability
from an otherwise stable bias point.

2. High-frequency limitation

The Josephson-effect noise is not a problem at the rela-
tively low frequencies of most SIS experiments reported
thus far. The mixer is biased securely above ¥y, and the
unstable region is never entered. But for high-frequency
operation the Josephson-effect noise imposes severe design
limitations on SIS mixers. Recall from Eq. (6.4) that the
mixer must operate at a bias voltage Vg > V;+Vio.-
This condition becomes harder to fulfill at higher fre-
quencies for three reasons. First, the optimum bias point
is approximately V4, =V, —#w/2e, which decreases with
frequency. Second, the optimum value of a should be rel-
atively insensitive to frequency, so Vo=7%wa/e must in-
crease with frequency. Third, a mixer design is scaled by
maintaining a constant Ry and wRyC, so C should de-
crease with increasing frequency; and therefore V, in-
creases as Vo by Eq. (6.6). In other words, a straightfor-
ward scaling of a SIS mixer to higher frequencies causes
the optimum bias point to approach and eventually enter
the Josephson-effect noise region, making low-noise mix-
ing impossible.

This argument can be quantified. The upper frequency
limit for SIS mixing occurs when V.~V —#iw/2e =Vy,
which, with Eq. (6.4), becomes

Ve —#iw /2e =kVy +Hiwa /e . (6.7)

Since for lead junctions at low temperature
I;Ry=0.27V, (Ginsburg et al., 1976), the plasma volt-
age can be written
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fio m Ve

e 10 wRyC 68

Vp1 =

If the quantity wRyC is considered to be a design con-
stant independent of frequency, Eq. (6.7) is a quadratic
equation in V' %o whose solution is

- . 2
Fomas eV, \/x+a+11/2 Vix , 69)
a+~5
where
k2 k
=, 6.10
* = 400R,C (6.10)

This, then, is the approximate upper frequency limit for
SIS quasiparticle mixing with Pb-based junctions in the
conventional mode. For junctions made of other materi-
als the numerical constant in the definition of x will be
different, by at most 15% (Ginsberg et al., 1976).

The upper frequency limit given in Eq. (6.9) increases
for smaller x, for smaller a, and for larger V,. For a gen-
erous numerical estimate we choose k=2.1 as in Sutton
(1983), the rather low value a=1.0, and Ve=3 mV.
Then if wRyC=2 the upper frequency limit for a SIS
mixer is estimated to be 250 GHz. For wRyC=10,
which would require sophisticated tuning structures, the
upper frequency limit becomes 350 GHz. Note that the
upper frequency limit increases proportionally to ¥, so
that eventual SIS junctions made of very-high-T, super-
conductors, such as NbN, should work to roughly twice
these frequencies.

The limit for high-frequency SIS mixers imposed by
Eq. (6.9) is not at all absolute. There are a number of pos-
sible ways a mixer might be designed to extend this limit,
such as the recent suggestion by Imai et al. (1985) of us-
ing SIS junctions with an insulator containing magnetic
impurities. In addition, Eq. (6.9) is derived from purely
classical arguments, which are appropriate only at low
frequencies. The extrapolation to establish a high-
frequency limit must be incorrect, at least in its details.
For one thing, Eq. (6.4) assumes that the LO voltage sam-
ples the junction I-¥ curve as a classical waveform, oscil-
lating smoothly between V4. — V1o and V4. + Vio, when
in fact the LO voltage samples the I-V curve only at
quantized photon points separated by #iw/e. Also, at high
frequencies the dropback switching time (see McDonald
et al., 1980) becomes comparable to 1/wy o, and this must
affect the junction dynamics. The switching behavior of
a Josephson junction driven at high frequencies requires
more study. :

There is little experimental evidence at present to test
Eq. (6.9). Only Sutton (1983) has reported detailed results
at 230 GHz and above. For the data given in that paper,
Eq. (6.9) predicts an upper frequency limit of a little over
200 GHz, and yet Sutton tested his SIS mixer up to ~400
GHz. The interpretation of this experiment, however, is
problematic: in our Fig. 22 the conversion appears to re-
sult from Josephson-effect mixing as well as quasiparticle
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mixing. Indeed, Sutton notes that Josephson-effect mix-
ing contributions become severe at frequencies of 230
GHz and above. Equation (6.9) does not apply to Joseph-
son mixing.

Serious attention should be paid to the possibility of
employing Josephson-effect mixing in SIS junctions. As
discussed in Sec. II.B.2, essentially all of the work on
Josephson mixing, both theoretical and experimental, has
been concentrated upon point-contact Josephson junc-
tions. A major problem in this work has been the down-
conversion of noise from higher harmonic sidebands. The
larger capacitance afforded by SIS Josephson junctions
should ameliorate, and may completely eliminate, this
problem. If this is the case, Josephson-effect mixing
could become the favored mode at frequencies approach-
ing the energy gap.

The most straightforward way to avoid the Josephson-
effect noise limitation is to suppress the Josephson critical
current with a magnetic field. As noted in the discussion
of Fig. 34 at the beginning of this section, a magnetic
field reduces ¥; and hence Vy and also reduces the mag-
nitude of the noise. To suppress I; to zero requires a
magnetic field large enough to place one flux quantum
within a SIS junction, and so smaller junctions require
larger fields for an equal effect. Unfortunately, the junc-
tions used for high-frequency single-junction SIS mixers
are in general so small that the required fields are large
enough to begin to destroy the bulk superconductivity of
the thin films, and so degrade SIS mixer performance.
Phillips et al. (1981) show a very clear example of this at
230 GHz. This problem can be circumvented by using a
series array of SIS junctions in place of a single junction.
The larger size of the arrayed junctions allows a weaker
magnetic field to suppress I, and hence avoid the
Josephson-effect noise. This is a strong incentive for us-
ing series arrays for high-frequency SIS mixers. An alter-
native possibility is to employ a single small-area “edge”
junction (Sec. II.B.1) with one long dimension.

E. Quantum noise

There is a fundamental lower limit to the noise tem-
perature of any high-gain linear amplifier, Ty >#iw/2k.
The term “high-gain linear amplifier” refers to any device
whose output radiation field is linearly related to its input
signal field with a large multiplication of photon number,
and which preserves the phase information of the input.
This definition includes the mixers described in this paper
as well as classical mixers. The irreducible noise, general-
ly called “quantum noise,” arises as a result of the uncer-
tainty principle.

The problem of quantum noise in tunnel junction
mixers has not been solved. Even though the theory
presented in this paper can be called the “quantum theory
of mixing,” in that the charge carriers have been quan-
tized, the radiation fields are treated as classical fields in
Sec. IV, and so the noise temperature of a tunnel junction
mixer given in Eq. (4.71) has no absolute lower limit.
This expression can approach zero, and is found to be ex-
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tremely small compared with #w /k over a wide and quite
realistic range of parameters. A complete quantum
theory of tunnel junction mixers must quantize the radia-
tion fields as well as the charge carriers, and then, it is ex-
pected, the quantum noise limitation will result.
Nevertheless, we shall see that Eq. (4.71) does contain
some traces of the quantum noise.

Experimental SIS mixers are, indeed, approaching the
quantum noise limit. For example, McGrath et al. (1985)
measured a mixer noise temperature of 3.5+1.5 times
#iw /k at 36 GHz. There is a strong expectation that more
precise measurement techniques and further exploration
of experimental parameter space will improve on previous
results. Therefore a discussion of quantum noise in tun-
nel junction mixers is timely. But since no specific theory
exists for tunnel junction mixers, this discussion must be
a more general one. We shall rely for the most part upon
the concepts of quantum noise in linear amplifiers that
were developed up to the early 1960s, when it had become
clear that both maser amplifiers and parametric amplifi-
ers had limiting noise temperatures of #iw/2k. This early
work is now discussed in standard textbooks, for instance
Robinson (1974). A recent and quite thorough treatment
is given by Caves (1982).

The concept of “noise temperature” has become widely
used because it is a convenient shorthand for noise power.
The standard definition of noise temperature is as follows:
Ty is the temperature of the input termination of a
noise-free equivalent of a device, which would result in
the same output noise power as the actual device connect-
ed to a noise-free input termination. Unfortunately, this
definition has two serious problems when applied to a
noise temperature near the quantum limit. First, it is am-
biguous; it is not clear whether or not the idealized noise-
free input termination should include zero-point fluctua-
tion noise. Second, under this definition the noise tem-
perature is not simply proportional to power, because the
full Planck blackbody radiation formula must be used
rather than the linear Rayleigh-Jeans limit. Thus noise
temperatures are not additive, and equations such as Eq.
(2.1) must be rejected. To avoid these problems we shall
use the term “noise temperature” to signify the input-
equivalent noise power which a device adds to an incident
signal, expressed as a temperature by equating it to
kTyAv. Then Ty is directly determined, with no quan-
tum correction factor, by the standard hot/cold load tech-
nique, so long as the hot and cold loads are themselves in
the Rayleigh-Jeans limit.

1. Heffner’'s treatment

A familiar form of the uncertainty principle states that
if one measures the energy E of a system and the precise
time ¢ at which the system possesses this energy, the un-
certainties in these quantities are related by AEA? > #/2.
If E is the energy in a signal wave packet at some central
frequency w, then E is related to the number of quanta in
the wave packet by E =n#w, and the phase of the signal
is p=wt. This leads to the equation
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AnAgp> + (6.11)

relating the uncertainties in the simultaneous measure-
ment of the quantities n and . Thus one cannot measure
both the amplitude and the phase of a sinusoidal signal
precisely.

Most radiation-sensitive devices fall into either of two
distinct categories. At one extreme is the ideal photon
detector, such as an x-ray counter, which can count arriv-
ing quanta with no uncertainty (An—0) but which gives
no phase information at all (Ap— ). An amplifier, on
the other hand, attempts to reproduce its input radiation
field with larger amplitude while maintaining the phase
information, subject to Eq. (6.11). One may also imagine
other types of radiation-sensitive devices with varying de-
grees of phase sensitivity (Serber and Townes, 1960;
Caves, 1982).

The arrival time of the photons at a photon detect will
of course fluctuate, if only because of the zero-point vac-
uum fluctuations. Nevertheless, an ideal detector is usu-
ally considered noiseless, in the sense that it adds no noise
to these fluctuations already present in its input. A com-
pelling heuristic argument given by Heffner (1962) shows
that a high-gain linear amplifier cannot be noiseless in
this same sense. A noiseless linear amplifier would per-
fectly reproduce its input (including fluctuations) with
larger amplitude: n; photons received at its input would
produce no=Gn; output photons, where G is the (in-
tegral) amplifier photon gain, and further, the output
phase @y would be equal to the input phase ¢; plus some
constant phase shift 6. Both G and 0 can be precisely
determined at large signal levels. The amplifier output
quantities can be measured with an uncertainty
AngA@o=+. But since the amplifier is noiseless, this
means that the input signal quantities have been measured
with an uncertainty An;A@; =+G ~!, which violates the
uncertainty relation Eq. (6.11) if G> 1. The conclusion is
that a linear amplifier must add noise to its input signal,
to remain consistent with the uncertainty principle.!

Heffner carried his argument further to show that an
ideal high-gain linear amplifier, one that minimizes the
product AnAg to 5, has a minimum total output noise,
referred to its input, equivalent to one photon per unit
bandwidth of the input signal radiation. Since the input
radiation is itself accompanied by one-half photon of
zero-point vacuum fluctuations, the process of amplifica-
tion has somehow added a minimum of one-half photon
of input-equivalent noise.

ICaves (1982,1983) takes exception to this argument on the
grounds that it requires the hypothesis of a noise-free input sig-
nal, which in itself violates the principles of quantum mechan-
ics. As presented here, though, Heffner’s argument concerns
the measurability of an arbitrary input signal, including its in-
herent fluctuations.
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2. Caves’s treatment

A very different argument given by Caves (1982) finds
the same result as Heffner and has the virtue of being
more mathematically explicit. Caves’s argument is based
upon the commutation relations for the conjugate vari-
ables describing the input and output modes of an ampli-
fier. We shall give a brief account of an already abridged
version of this argument found in Caves (1983).

The complex amplitudes of the input and output sig-
nals of an amplifier are written X,+4iX, and 3,4+ ip,,
respectively. If the amplifier is linear, its evolution equa-
tions must be of the general form

$1=GX;+G,a,,

(6.12)
¥2=G1%,+G,a, ,

where @, and @, have zero expectation value and com-
mute with X, and X,. The operators @; and @, are re-
sponsible for any noise added by the amplifier. In general
(but not necessarily) the term “linear amplifier” connotes
a device that treats both quadrature phases identically.
Then G?=G2%=G, the commonly defined photon number
gain of the amplifier. The total output signal is thus
given by

[ (P1+iP2) | 2=G | (£,+i%,) | 2. (6.13)

The total output noise is given by
[(Ap1)*+(Ap;)*1=G[(Ax)*+(Ax,)*1+ G4 , (6.14)

where the “added noise number” A4=(Aa;)*+(Aa,)?
represents the photon-number-equivalent noise added by
the amplifier to the input signal, referred to the amplifier
input. In proper units, A4 is the noise temperature of the
amplifier.

The Hermitian operators X; and X, must obey the
commutation relation [X,,X,]=i/2. This implies that
the uncertainties of their expectation values obey
Ax;Ax, >+, which further implies (Ax;)>+(Ax;)?> 3.
This last is the uncertainty principle, whose lower limit
gives the half-quantum of zero-point input noise which
appears (amplified) on the right side of Eq. (6.14). Since
the same relations must be true for $; and $,, the com-
mutation relation can be applied to both the input and the
output operators in Eq. (6.12), yielding

[21,8,]=(G~"—1). (6.15)
The corresponding uncertainty principle is

Aajhay > 7 [([@,8,]) | =1 [1-G7!|, (6.16)
and therefore

A>|1-G71) /2. (6.17)

Thus a high-gain linear amplifier has an added noise
number 4 > %; it must add at least a half-quantum of
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noise, referred to its input, to the half-quantum of zero-
point noise already present at its input. Therefore
Ty >#iw/2k. In Caves’s terms, the amplifier indepen-
dently enforces the uncertainty principle which is already
obeyed by the input radiation. The total output noise in
Eq. (6.14), referred to the input, is equivalent to at least
one photon per unit bandwidth, the same result as found
by Heffner.

Assuming that blackbody radiation at physical tem-
perature T accompanies the input signal, the total output
noise power referred to the input of a linear amplifier is

Py =[A + +coth(#iw /2kT)fwAv , (6.18)

as in Caves (1982) Eq. (3.33). The second term on the
right describes the blackbody radiation (Callen and Wel-
ton, 1951), including the zero-point fluctuations. It is en-
lightening to plot the minimum of this expression (i.e.,

=) as a function of the physical temperature 7. This
is done in Fig. 35, with all quantities expressed in photon
units. This figure illustrates some of the various values
that have been quoted for the minimum noise temperature
Ty of a high-gain linear amplifier. If Py at T=0 is sim-
ply expressed as a temperature by equating it to kT yAv,
then Ty =#w/k. If Ty is defined as the physical input
temperature required to double the output noise compared
to a T=0 input, then Ty =%#w/k In2. If Ty is defined as
the physical input temperature required for a hypothetical
noise-free equivalent of the amplifier to equal the noise
output of the actual amplifier with 7=0, then
Ty=%w/k 1n3. Finally, the (minimum) noise tempera-
ture extrapolated from high-input-temperature measure-
ments of the amplifier’s output power is Ty ="%w/2k.
Such an extrapolation is most often used to determine ex-
perimentally the Ty of real devices. This last value, not
coincidentally, is equal to the minimum noise power add-

2+

MINIMUM OUTPUT NOISE POWER/Ghwav

|
|
1
1
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|
|
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FIG. 35. The total output noise power, referred to the input, of
an ideal linear amplifier with photon gain G >>1 is plotted
against the physical temperature of the amplifier’s input ter-
mination, in photon units (heavy curve). The light lines help in

understanding the various definitions which give different

3o 66

values for the amplifier’s “quantum noise temperature.”
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ed by the amplifier, expressed as a temperature by equat-
ing it to kT yAv.

3. Quantum noise in tunnel junction mixers

As already noted, the problem of quantum noise in tun-
nel junction mixers has not been solved. However, the
tunnel junction mixer acts as a “high-gain linear ampli-
fier” in that it is linear, it preserves the phase information
of its input, and it virtually always operates with a large
multiplication of photon number. Therefore one may
state with some assurance that the minimum noise added
by a tunnel junction mixer is at least the equivalent of a
half-photon per unit bandwidth at its input. But can the
tunnel junction mixer, in principle, approach this limit?

Equation (4.71) gives the contribution to the noise tem-
perature of a tunnel junction mixer arising from shot
noise in the local oscillator currents. This should be the
only unavoidable source of noise except for quantum
noise. In the tractable low-IF three-frequency approxima-
tion with equal signal and image termination conductance
G5 (the DSB case), it is not difficult to show that the shot
noise, Eq. (4.80), can indeed approach zero as a limit for
one and only one choice of parameters. For an I-V curve
whose nonlinearity covers a finite range in voltage this
occurs if, and only if, I4.(Vy—#iw/e)=0, I4.(V,)=0, and
I4(Vo+#iw/e) >0 (e.g., an ideal SIS junction at T=0);
in the small LO power limit a<<1; and for
Gs=el4.(Vo+fiw/e)/2%iw. If the output impedance of
the mixer is matched, the mixer’s power gain approaches
infinity at this point. These conditions are, admittedly,
virtually impossible to fulfill in an experiment, but are al-
lowable in principle. (For an unlimited exponential non-
linearity in the DSB case the shot-noise contribution goes
to zero only in the limit of very large LO power.) Al-
though the mixer can have zero shot noise, the quantum
noise limitation has not been violated. For these parame-
ters, the zero-point fluctuations in the image termination
will contribute exactly a half-quantum to the mixer’s
equivalent input noise power.

The question immediately arises: what happens if the
image frequency is short circuited? In this case the
three-frequency approximation becomes in effect a two-
frequency approximation, with an infinite terminating ad-
mittance at the image (the SSB case). It is not difficult to
show that the shorted-image mixer’s shot-noise tempera-
ture has a distinct limiting minimum value, Ty, =%w /2k,
and that it approaches this value for one and only one
choice of parameters. For an I-V curve whose nonlineari-
ty covers a finite range in voltage, this occurs for the

' same parameters as listed for the DSB case. If the output

impedance of the mixer is matched, the mixer’s power
gain is not infinite, but equal to 2Gs/G,; at this bias
point, where G,; is the slope of the I-V curve at
V =Vy+#iw/e. [Tucker (1979), Eq. (7.34), shows that for
an unlimited exponential nonlinearity in the large LO
power limit the minimum shot noise in the SSB case also
approaches T)s=7%w/2k.] In the shorted-image case, the
image termination cannot contribute to the mixer’s noise
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temperature; the half-quantum of mixer equivalent input
noise power required by the uncertainty principle is pro-
vided by the shot noise.

For both of the cases just considered, the tunnel junc-
tion mixer’s minimum equivalent added-noise power is
exactly one half-quantum, and it is natural to call this
quantum noise. In the DSB case the quantum noise re-
sults from zero-point fluctuations in the image termina-
tion, while the shot-noise power can approach zero. In
the SSB case, where the image noise cannot be matched
into the mixer, the shot noise is finite and constitutes the
quantum noise.

This discussion suggests a procedure for calculating the
noise temperature of a tunnel junction mixer, in the ab-
sence of a rigorous theory for quantum noise. The noise
temperature is assumed to be the sum of the shot-noise
contribution, Eq. (4.71), and a thermal-noise contribution
that includes zero-point fluctuations. The thermal-noise
contribution is calculated by including in parallel with the
terminating conductance G; at the image frequency w; a
current noise generator of mean-square amplitude

(i}) =2G#w;Av coth(#w,; /2kT) , (6.19)

where T is the physical temperature of the image ter-
mination. (The generalization to include thermal noise
from the harmonic sidebands is straightforward.) This
procedure succeeds in giving the anticipated minimum
noise temperature in the two important limiting cases just
considered. Zorin (1985) maintains that this approach is
equivalent to a complete quantum-mechanical treatment.

Neither Heffner’s argument nor Caves’s argument iden-
tifies the origin of an amplifier’s quantum noise.
Nevertheless, even though it is not required in his treat-
ment, Caves (1982) asserts that the added half-quantum
of noise arises from the zero-point fluctuations in some
“internal mode,” whose existence, he states, is required
for any linear amplifier. He gives the example of a
parametric amplifier, whose only internal mode is the
idler. The idler’s zero-point fluctuations appear amplified
at the output and are responsible for the added noise. The
preceding discussion questions the generality of this inter-
pretation. For an ideally optimized tunnel junction mixer
in the DSB case, the external electromagnetic field fluc-
tuations at the image frequency produce the quantum
noise, and this is clearly Caves’s “internal mode.” But in
the SSB case the quantum noise is a remnant of the inter-
nal shot noise, and it is hard to identify a single quantum
mode that is responsible. It does not appear useful to at-
tempt to ascribe the quantum noise in both of these cases
to some irreducible internal mode. Rather, this example
illustrates the impossibility in quantum mechanics of
separating a measuring apparatus from the system to be
measured.

VIl. CONCLUSION
Recent progress in utilizing photon-assisted tunneling

to approach quantum-limited detection at millimeter
wavelengths has been remarkable. This success is rooted
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in a deep and powerful understanding of the tunneling of
electrons across a thin oxide barrier separating two met-
als. If a theory is judged by its ability to predict new and
unexpected phenomena, then the Hamiltonian formula-
tion of tunneling created by Bardeen (1961) and by
Cohen, Falicov, and Phillips (1962) must surely be ac-
counted a great success. This was the framework utilized
by Josephson (1962), along with the BCS theory, to
predict the extraordinary pair tunneling phenomena
which bear his name. This same framework has now been
combined with the concept of photon-assisted tunneling,
due to Dayem and Martin (1962) and Tien and Gordon
(1963), to obtain surprising new effects in quasiparticle
tunneling as well. The successful prediction of such
varied and unusual behavior, based upon phase modula-
tion of the quantum-mechanical wave functions for both
Cooper pairs and single electrons, is a very substantial
theoretical achievement. It is-also an important practical
development, since the theory allows precise experimental
control over the quantum response of superconducting
tunnel junctions.

Beyond their scientific interest as quantum phenomena,
both Josephson tunneling and quasiparticle tunneling
have major technical applications. The quasiparticle
mixers and receivers described here are destined to have a
far-reaching impact, most immediately on ‘millimeter-
wave astronomy. Already, receivers with noise tempera-
tures approaching the quantum limit are being construct-
ed for the frequency range between 30 and 300 GHz.
These techniques should eventually be extendable to both
higher and lower frequencies as well, opening up a large
new portion of the spectrum to quantum detection. Such
receivers will, in fact, be among the most nearly ideal ra-
diation detectors available at any frequency in view of
their ultra-low operating power, very large bandwidth,
and quantum sensitivity. As these advances become more
widely known, other applications will surely follow.
Quasiparticle mixers may, for example, be well suited to
quantum nondemolition experiments for gravity wave
detection.

The development of this field has required the integra-
tion of major ideas generated in several branches of sci-
ence and engineering, from basic millimeter-wave tech-
niques to the latest materials research on superconductor
tunnel junctions. We believe that the combined result of
this work constitutes a major advance in understanding
and control of processes at the quantum level. As such,
the methods described here are not simply technical inno-
vations that will someday be superseded, but fundamen-
tally new science that is expected to stimulate research in
new directions.
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FIG. 7. Scanning electron microscope photographs of (a) a
suspended photoresist bridge structure, and (b) a small-area SIS
junction fabricated by angle evaporation past this photoresist
bridge (Phillips er al., 1981).



