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This paper brieAy describes the hydrothermal growth process and then discusses the important defects in

quartz (twins, inclusions, dislocations, and impurities) and the correlations among them. The properties of
quartz are reviewed and tabulated under the headings of intrinsic properties and defect-related properties.
Resonator theory and fabrication techniques are outlined, with particular reference to aspects related to de-

fects in the crystals. At this stage, it is possible to list the circuit design factors which must be taken into
account when the application calls for very high performance. The. paper then looks at the approach of a
device maker faced with problems caused by impurities, inclusions, dislocations, and other nonideal proper-
ties of real crystals. This question leads to a specification of the crystals suitable for device use. The major
parameter of this specification is the infrared Q, which must exceed about 1.8 million for satisfactory per-
formance and yield. Acceptance test procedures are discussed, and finally the present state of the subject
and the future prospects are brieAy described.
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I. INTRODIJCTIQN

~I use Q, here for the electrical quality factor, because in the
field of quartz for piezoelectric devices the symbol Q is univer-
sally used to denote the infrared quality factor which is the
value of Q, for a carefully specified and fabricated device
operating in a particular way (see Sec. VII.A). For almost all
devices Q, is less than the Q of the material. There is, of
course, a third quality factor, Q, which describes the mechani-
cal performance of a device. Q is small compared to the other
quality factors: quartz has a significant elastic viscosity (see
Sec. IV.B, Table XXVI).

Quartz resonators are widely used in timing devices and
in circuits which generate or filter radio frequency sig-
nals. The high electrical quality factor, Q„'and great
stability of such resonators make them almost irreplace-
able. Without them the widespread use of mobile radio
and high-quality color television would not be possible,
telephone systems would be more cumbersome, and accu-
rate clocks and watches would be much more expensive.
By current standards these applications in general call for
easily met specifications: single devices or monolithic ar-
rays of devices with fractional frequency deviations of +5
to 20 parts in 10 (ppm) over a temperature range of
—20'C to +70'C and device Q, 's of &10 are usually
adequate. Broadcasting and professional telecommunica-
tions (particularly in military applications) generate much
more onerous specifications: maximum frequency devia-
tions of much less than 1 ppm are commonly requested.
For some applications, e.g., satellite navigation, deviations
of &0.01 ppm are called for, and measurement systems
need even greater accuracy, e.g., frequency deviations of
& 1 in 10 (1 ppb) or even & 1 in 10'o.
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It is still not easy to meet all these specifications, and
there is a gap between what can be achieved occasionally
in research and what is regularly available commercially
at a reasonable price.

Cady (1922) gives the first published data about quartz
resonators .For further historical information, see Hol-
lom (1981)and Heising (1946).

This paper looks at the problems caused by the imper-
fect character of available crystals and reveals why device
makers have pressed crystal producers to make more
nearly ideal crystals. In order to develop these ideas in a
coherent manner, it is necessary to give a considerab1e
amount of background information. Thus the next sec-
tions consider in turn crystal growth (both practically and
as far as necessary theoretically), the defects that can exist
in quartz, the properties of quartz (some of which depend
on defects), device theory (in outline only), and device
construction, and then in more detail 1ooks at the results
of using real crystals. Finally, in the conclusions section,
the present state and future prospects are summarized.

The aim is to give a readable account of a complex sub-
ject. Some aspects have not yet been explored as
thoroughly as is desirable. Since device properties can be
correlated with several variables which are themselves in-
terdependent, time may reveal defects in some of the con-
clusions. However, the current state is one in which we
can say with confidence that quartz to the specification
suggested in Sec. VII.F wi11 make high-quality devices
with excellent yields, so that even if some of the argu-
ments are found to be false, the conclusions given should
have some lasting value.

Plunger

Cr ystals

Baffle

Heaters

Main nut

Seal r ing

Nutrient
in basket

II. THE GROWTH OF QUART2 CRYSTALS

A. The hydrothermal growth process

FIG. 1. A schematic drawing of an autoclave for the hydro-
thermal growth of quartz. Note that different vertical and hor-
izontal scales have been used: typically the height of a system is
18 times its internal diameter. In the most recent autoclaves
heights can be up to 8 m.

The hydrothermal growth process is a technique for
growing crystals from a solution near or above its critical
temperature. Essentially, the method involves dissolving
a nutrient of natural quartz chips at a high temperature.
The saturated solution so produced moves by convection
to a cooler region where it is supersaturated. To relieve
this supersaturation the solution deposits quartz onto seed
crystals. High temperatures ( &300'C) are necessary to
ensure adequate solubility even when mineralizers are
added to increase the solubility. Typical solutions for the
growth of quartz are between about 0.5M and 1M (i.e.,
they contain between 0.5 and 1 mole per liter) NaOH or
NazCO3. It is believed that natural quartz also grows
from aqueous solution but at much smaller rates.

Crystal growth occurs only when the growth solution is
supersaturated. For natural quartz, this supersaturation
is probably created by cooling over geological time inter-
vals. For the growth of synthetic quartz, the necessary
conditions are produced in a steel autoclave. See Fig. 1.
Small (5- to 6-mm) chips of quartz are placed in a basket
filling the lower 40%%uo of the autoclave, and suitably
oriented seed crystals are held in clips in the upper por-

tion. The autoclave is filled with water so that roughly
80% of the volume is fi11ed and the system is sealed.
Power is supplied to the heaters so that the lower portion
of the vessel reaches about 400'C and the upper portion
about 350'C. A baffle with 5—10% opening helps to
maintain the temperature difference.

As the temperature is raised, the liquid expands to fill
the autoclave at some temperature below the critical point
(375'C for pure water). At the temperatures mentioned
previously, the pressure often exceeds 1000 bars. (The
pressure depends on the actual temperature and fraction
filled with water. ) When NaOH is used as the mineraliz-
er, pressures up to 2000 bars are used. When NazCO3 is
the mineralizer, lower pressures are adequate.

Apparatus for growth is usually bought from specialist
suppliers who produce autoclaves of up to about 50 cm
internal diameter. External diameters are usually
1.8—2.5 times the internal diameter, and the length is
usually 10—20 times the internal diameter.

Apparatus for growth is discussed by I.audise and Niel-
sen (1961). Rudd and Lias (1967) discuss production
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equipment. For a survey of recent equipment see Lias
et al. (1973) and Key et al. (1974) (both these papers dis-
cuss problems with constructional materials). A series of
reports by Nagai and Asahara (Toyo 1977,1979,1980)
gives a fascinating account of the development and per-
formance of large autoclaves.

Qne practical point worth mentioning is that all com-
mercial autoclaves are constructed of steel, which is pro-
tected from attack by a self-renewing layer possibly of ac-
mite (NazO. Fe304.4Si02). Inclusions of silicates are oc-
casionally found in synthetic quartz but as shown in the
next section the iron content of synthetic quartz is usually
negligible. Systematic studies of impurity effects have
been made by Flickstein and Schieber (1971,1974) and
Yamashita et al. (1975), concluding in general that al-
most all impurities are undesirable. Thus V, Ga, Mg, Ge,
and Zn slow down the growth. Fe, Al, and Mg cause in-
clusion formation. Zn, K, and Rb increase the considera-
tions of undesired impurities and Al and Fe degrade the
properties of the crystals. From the data in Secs. III.C
and VII.B it seems that avoiding significant amounts of
these impurities is not especially difficult, but some
research workers use small autoclaves with noble-metal
liners and for some critical applications swept quartz
(which has been subjected to solid-state electrolysis) is
used. See, for example, Young et al. (1978), Euler et al.
(1978), and the references they quote.

B. Relevant growth theory

There exists a considerable body of literature providing
at least a semiquantitative understanding of the processes
involved in crystal growth —see, for example, Brice
(1973,1977), Wilke (1973), Rosenberger (1979), and Pamp-
lin (1980). Studies of the growth of quartz are described
or reviewed by Laudise and Nielsen (1961), Ballman and
Laudise (1963), Rudd and Lias (1967), Laudise (1970),
and James and Kell (1975). For the purposes of this pa-
per we need only a qualitative understanding of the pro-
cesses involved. The main theoretical conclusions
relevant to our purpose can be stated as follows.

(a) It is possible to distinguish two main types of faces
on crystals. Singular faces are usually the natural faces of
a crystal and correspond to sharp (cusp-shaped) minima
in a plot of surface free energy against crystallographic
direction. For quartz the main singular faces are usually
labeled z, y, m, X+, and X, corresponding to (1011),
(1011), (1010), (2110), and (2110) in the conventional la-
beling [see the recommended conventions (IRE, 1949)].
Singular faces can be subdivided into two classes: perfect
and imperfect. Imperfect faces are those intersected by a
screw dislocation or, if we are loose in our definition of a
crystal, by a twin plane. All faces which are not singular
are called rough, because on an atomic scale they are not
flat. Singular faces are atomically smooth (if we neglect
the occasional steps which occur on real crystals). The
important rough face is Z (0001).

(b) For growth. to occur the growth medium must be
supersaturated with respect to the material being grown.

For hydrothermal growth at a temperature T with the nu-
trient zone at a temperature T+4T, the supersaturation
is essentially a linear function of hT for any given T.
Under all likely conditions for hydrothermal growth the
growth rate f is a monotonically increasing function of
b, T. (Increasing T, the pressure, or in some cases the
opening in the baffle, increases f.)

(c) Rough faces grow by the random addition of atoms
or molecules at any suitable site. This gives a linear
growth law with f-hT when other conditions are con-
stant. On imperfect singular faces growth proceeds by
the addition of atoms or molecules at the step created by
the screw dislocation or twin plane. These steps are self-
renewing. The resulting growth rate is slower than
growth on a rough face. On a perfect singular face,
growth requires the deposition of a nucleus which ex-
pands either to cover the face or until it meets the growth
originating at another nucleation site. The growth rate on
a perfect singular face is usually extremely small. See
Table I. The Z face is the only rough face. The y and m
faces are usually dislocation free and are therefore likely
to be perfect singular faces. The other faces are usually
imperfect singular faces. At very large growth rates the
rate-limiting process is diffusion in the fluid phase. Large
concentration gradients can be established at the growth
face with the result that any projection on the face grows
more rapidly than the rest of the face. This makes the
growth unstable and solution can become trapped between
projections. The halo of inclusions around the seed crys-
tal in some crystals (see Sec. III.A) is usually attributed to
unstable rapid growth at the beginning of a growth run.

(d) While growth normal to a singular face is slower
than on a rough face, the rate of step advance across a
singular face is very rapid. Thus while on a rough face an
impurity atom on the growth face can be desorbed, one on
a singular face is much less likely to be desorbed. Thus
impurity segregation coefficients on singular faces are
larger than on rough faces. Segregation coefficients are
the ratios of impurity concentration in the crystal to that
in the growth fluid. Thus material grown on the X+ face
contains about 3 times as much hydrogen, 10 times as
much aluminum, and 15 times as much germanium as

Face

Z(0001)
z(1011)
r(1011)
X+(2110)
X (2110)
m(1010)

Na2CO3

1

0.4
0.05
0.6
04
0

NaOH

1

0.6
0.03
0.3
0.1

0.04

TABLE I. Typical relative rates of growth. Here growth on
the Z face is assumed to occur at unit rate. Note that growth
from NaOH is several times faster than from Na2CO3. Chang-
ing growth parameters (AT, T, pressure, mineralizer concentra-
tion, etc.} can result in up to 50% variations from these ratios.
The data used to construct this table can mostly be found in the
references quoted in Sec. II.A.

Miner'alizer
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FKJ. 2. Hydrogen content (in atomic ppm relative to silicon) as
a function of growth rate on a rough face (0001) and a singular
face (0110}. Most other impurities should behave in the same

way. The data given are typical for growth at 350 C.

material grown on Z faces of the same crystal. There-
fore, in any critical applimtion only material grown on
the Z faces is used. (Further data are given in Sec. III.D.)

(e) Most segregation coefficients are less than 1: incor-
porating an impurity almost always involves distorting ei-
ther the bonding or the lattice positions and the energy of
distortion increases the free energy of the crystal with
respect to unstrained material [see Brice (1975) for a
quantitative description]. Since segregation coefficients
are usually less than 1, the growth face rejects impurity
and the fluid at the growth face becomes enriched by an
amount which increases with the growth rate. Thus with
a constant impurity concentration in the bulk of the fluid,
faster growth muses an increase in the impurity concen-
tration in the crystal.

From the data presented later, it will become clear that
hydrogen (probably incorporated as hydroxyl ions) is the
major impurity in quartz. Thus from the arguments
given above, we expect the hydrogen content to increase
with growth rate. Figure 2 demonstrates this effect and
also shows that growth on a rough face [(0001)] results in
less incorporation than growth on a singular face [(0110)].
Note that we can take hydrogen as a typical impurity and
can expect other impurities to behave in the same qualita-
tive way. Thus if the growth conditions yield a large hy-
drogen content, we expect large contents of other impuri-
ties. We shall see that on a statistical basis this occurs.

obvious to the naked eye.
Almost all crystals have a veil of inclusions around the

seed crystal. In some cases this veil is very prominent and
the seed portion may fall out of slices cut from such crys-
tals. Normally the seed portion of a slice is not used to
make devices, and it is reasonable to recommend that this
region should never be used. However, as discussed in
Sec. III.B, a prominent seed veil mn imply a high disloca-
tion density and brittleness. The inclusions around the
seed are the results of rapid initial growth and were prob-
ably originally full of solvent.

Outside the seed veil occasional inclusions are found.
These can be of the original solvent-filled type, or the in-
clusion can be a speck of acmite (from the autoclave
wall). Very occasionally other solids are found, presum-
ably insoluble matter introduced with the nutrient when
the autoclave was loaded. %'ork within Philips and else-
where (Toyo, 1975) suggests that inclusions in the Z zone
(i.e., material grown on the Z face) have a roughly con-
stant size distribution. See Table II. If there are N in-
clusions of a given size in unit volume, then simplistic ar-
guments suggest that in a volume V {for example, the ac-
tive region of a device), the probability of finding no in-
clusions is 1 —NV. However, a more refined argument
shows that of aH the possible volumes of size V, some
contain more than one inc1usion, so that in a set of
volumes cut from a crystal, the yield of inclusion-free
samples is actually exp( —NV) For XV. about unity, the
difference in yield is important. Similarly, we can evalu-
ate the yield of samples with surface area A in which no
inclusions intersect the surface. This yield is
exp(A J XD dD), where the integral is taken over the size
range of interest and X is the volume concentration of in-
clusions with size D. This relation has uses in surface-
wave devices which have transducers composed of inter-
laced sets of fingers. In these devices the pit left by an in-
clusion might cause a break in the finger (with a width of
perhaps a few pm). In this case the lower limit of the in-
tegral could be, say, half the finger width.

Two types of sheet defects occur commonly in natural
quartz. Boundaries between left- and right-handed quartz
are often seen. The defect, called a Brazil twin, corre-
sponds to a reflection across a [1120I face. The other

TABLE II. Relative concentrations of inclusions of various
sizes. Relative concentrations vary by +30%. A typical useful
crystal contains 30 inclusions in the 1- to 10-pm range, 6 in the
10- to 30-pm range, and perhaps 1 with dimensions over 30 pm
in each cubic centimeter.

III. DEFECTS IN QUARTZ CRYSTALS

A. Gross defects

Two- and three-dimensional defects are discussed in
this section. In synthetic quartz these defects are usually

Size {pm)

) 100
70—100
30—70
10—30
1—10

Relative
concentration

1

5
12
60

300
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twin type, a Dauphine twin, corresponds to a rotation of
180' about the c axis. Such twins can be created and
moved by mechanical and thermal stresses (Anderson
et al. , 1976). The other sheet-type defect is caused by the
intergrowth of two crystals forming one or more grain
boundaries. In synthetic quartz, homogeneous nucleation
or nucleation on insoluble particles in the growth solution
can result in the presence of small crystallites which can
come to rest on the face of a growing crystal.

All these sheet-type defects are uncommon in synthetic
quartz. Certainly, less than 1% of boules sold show
them. They are usually revealed by the presence of
grooves on the natural faces of the crystal. (Remember in
this context that the Z face, which is usually grooved and
which may have a cobblestone structure, is not a natural
face. ) Crystals with sheet defects should not be used, and
the possibility of Dauphine twinning caused by mechani-
cal and thermal stresses should be remembered when

designing production processes.
Examination of the internal structure of synthetic crys-

tals frequently shows sector boundaries between material
grown on different faces. See Fig. 3. Such boundaries
should not cross the active region of any device, and as
shown elsewhere the zones other than Z tend to be dirty
and the sector' boundaries are appreciably strained. Nor-
mal practice is to use only material grown on a Z face.

g::c~w~~.'~:;::;.':@;~~;..:@..g:::.,;:,:,'. "~~:.., 4:;: ..":-:.':.::"-.',~

f~t'::":::di'' i""i'lir"'wj"':ii'i:ikey

P IH h

,.+g$"'i" 'v f"+

(a)

6

X

if'
.$ 'C, 4

B. Dislocations

X-ray topographic studies by Takagi et at. (1974),
I ang and Miuscov (1967), Homma and Iwata (1973), and
others show that dislocations exist in a quartz and mostly
lie normal to the growth face of the zone being examined.
Klapper (1972,1975) shows that this orientation is in gen-
eral favored, since it minimizes the elastic energy of the
dislocation. McLaren et al. (1971) show that three types
of dislocations are common:

(b)

FIG. 3. X-ray topographs of sections from two crystals. Note
in (a) that the dislocations (white lines) originate from the in-
cluded area around the seed.

screw dislocations: b =c [0001], i.e., with axes perpen-
dicular to c;

edge dislocations: b =(1210), i.e., with axes parallel
to c;

mixed dislocations: b =(a +c)(1123).

Here b is the Burgers vector. Since we are primarily in-
terested in Z zone material, the dislocations of major im-
portance are the edge type. Figure 3 shows x-ray topo-
graphs of sections perpendicular to I'in typical bad [Fig.
3(a)] and good [Fig. 3(b)] crystals. The crystal shown in
Fig. 3(a) had an obvious seed veil, and it is clear that the
dislocations originate mostly from the inclusions forming
this veil. The crystal shown in Fig. 3(b) had a nearly in-
visible veil, and it is obvious that most dislocations are
continuations of those in the seed. Other topographs, not
reproduced here, show that both these effects are general
and that in crystals without prominent veils the disloca-
tion density depends almost entirely on the dislocation
density in the seed. Thus with selected seeds,

dislocation-free crystals can be grown, as has been demon-
strated by workers in the Bell organization and elsewhere.

McLaren et al. (1971) suggest a correlation between
dislocation density and hydrogen content. Griggs (1974)
has shown that the presence of hydrogen makes the dislo-
cations mobile and able to multiply. Data given in Sec.
III.D confirm the dislocation density correlation with hy-
drogen content.

C. Impurities
I

Table III gives typical ranges of impurity concentra-
tions found in quartz. The table is based on analyses of
about 50 natural quartz samples and 70 synthetic sam-
ples. Only the purest of these samples would be suitable
for device use. Sections III.D, VII.B, and VII.F discuss
actual results on crystals offered for device use and indi-
cate which should be accepted.
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TABLE III. Impurities in quartz (values in atomic ppm relative to Si). The concentration ranges given
include roughly the central 67% of reported values. The maximum values are lowest estimates of the
sohd solubilities. Brown and Thomas (1960) suggest that 390 ppm is the maximum solid solubility for
Na. Further data are given in Sec. III.D. The table is based on data from many sources, including un-

published analyses by G. Grainger and D. Hilton (Philips, Redhill).

Impurity
Typical concentration

Synthetic Natural
Maximum

concentration

H
Li
Al
Na
Ca
K
Fe
Ge
Mg

250—2500
0.5—35

1—30
0. 1—15
0. 1—2

0.03—2
0.01—1

&0. 1

&0.6

200—1200
200—2000

1000—4000
100—300
30—100

&1
100—900
100—900
50—200

15 000
8 000

20 000
390

1 000
4

1 000
1 000
8 000

Impurities can either substitute for the main constitu-
ents or sit in interstitial sites. Interstitial atoms are par-
ticularly likely in quartz because of its open structure (see
Sec. IV.A). Table IV gives what is known (or perhaps
more accurately, inferred) about the position of various
impurities in the lattice. Armed with these results, the
ionic radii in oxides (Shannon and Prewitt, 1969), and a
knowledge that the interstitial sites have radii of about 1.4
A, one can construct Table V and deduce that most of the
listed impurities could be interstitial. Indeed, the ionic ra-
dii marked ( —) probably exclude substitutional sites
which for anions and cations have radii of, respectively,
1.35 and 0.26 A.

One reason for the interest in the sites occupied by im-
purities is that the position influences electrical and
mechanical losses at high frequencies. The other reason is
that interstitial species move more rapidly than substitu-
tional ones. Both diffusion and electromigration are of
interest. Table VI gives the activation energies for vari-
ous species and directions which apply to electromigra-
tion and Table VII gives the same data for diffusion.
Studies of electromigration have shown that in an electric
field of 400—1000 Vcm ' at 400'C to 500 C many im-

purities can migrate at rates of several mmh '. Migra-
tion of Na, Al, and Fe has been studied by Lushnikov and
Khadzhi (1967), of Ag by White (1968), and of Cu and
Ag by Mortley (1969). Because quartz resonators have
very large resistances (of order 10' 0 is usual), they
can—even with blocking capacitors (resistances of which
can be 10 0 or less)—be exposed to significant fields (of
order 100 V per cm of quartz). Thus electromigration
which might change the mass distribution in the long
term is a real possibility and electromigration effects are
known (Filler et al. , 1984). Similarly, diffusion from
electrodes or caused by strains must be considered. There
are plausible suggestions that migration is quicker along
dislocations which must also therefore be considered.

It should be noted that the rate of diffusion of hydro-
gen at room temperature appears to be large enough for
significant out-diffusion to occur from relatively thick
slices. Table VIII shows the values of the extinction coef-
ficient at 3500 cm ' (which is proportional to hydrogen
content) measured immediately after cutting (1972) and
six years later (1978). Between measurements the slices
were stored in a desk drawer.

TABLE IV. The positions of impurities in quartz. For further data see Dodd and Fraser (1965), King
(1959), Passaret and Regreny (1974), %Veil (1973), and papers given at the Symposium on Defect Struc-
ture of Quartz and Glassy Silica [J. Phys. Chem. Solids 13, 271 119601].

Impurity

H

Li, Na, K
Al, Fe, Ga

Location

Probably present as OH on 0 sites but behaving as if
it were interstitial, i.e., diffusing' rapidly parallel to
the c or Z axis.
Interstitial.

For material grown on the Z face may be interstitial.
For material grown on other faces (including natural
crystals) may also be substitutional.

Substitutional to 5400 ppm. At higher concentrations
probably also interstitial.

Rev. Mod. Phys. , Vol. 57, No. 1, January 1985
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Ion Substitutional'

TABLE V. Effective ion sizes (A).

Interstitial 10

Q (&10 }
0.5 0.2

O2-
Si4+
(oe)'-
Ge4+
Al'+
Fe+
Ga'+
Mg2+
Ca'+
Li'+
Na'+
K'+
Cu'+
Ag'+
Au'+
Pt4+
F1—

1.35
0.26
1.48
0.40
0.39
0.49
0.47
0.49
0.95( —)

0.59( —)

0.99( —)

1.33( —)

0.46
0.67( —)
1.33( —)

1.285

1.38
0.$0
1.52
0.54
0.53
0.55
0.62
0.72
1.00
0.74
1.02
1.38
0.96
1.15
1.37
0.65
1.31

'Substitutional sites are twofold coordinated for anions and
fourfold coordinated for cations.
Interstitial sites are fourfold coordinated for anions and sixfold

coordinated for cations.

10

~

~

N

O 4 ~

D. Relations between defects

10"

Dislocation densities and inclusions

The topographs in Fig. 3 and many similar ones make
it clear that inclusions act as nuclei for dislocations. Thus
we expect and find that as the inclusion density rises the
dislocation density also rises, and it is reasonable to sug-
gest that most inclusions nucleate at least one dislocation.
The inverse correlation does not hold: crystals can have
low inclusion contents and large dislocation densities if
the seeds are highly dislocated.

10
0.05

I

0.1 O. 2 0.5
0, 3goo (6ITl )

1.0

FIG. 4. The correlation between dislocation density and extinc-
tion coefficient o..

TABLE VI. Activation energies for electromigration. Column A is the total energy involved. Column
B is the same less the energy of activation between the crystal and the source film.

Energy (kJmol ')
Solute

Li
Li
Na
Na
K

Ag
native interstitial

Oor Si
Au
Pt

'Verhoogen (19S2).
"Gibson and Vogel (1950).
'Snow and Gibbs (1964).
Milne and Gibbs (1964).

'%'hite (1968).
VanAeet et al. (1963).

~Wenden (1957).

Direction

82 '8l 78

96, '94 "98

125'
80'

150'

145~
1600'

67'
129'
75

129'

92
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TABLE VII. Diffusion in quartz. We assume D =Do exp( —Q/kT).

Solute

H'
Na"

2+ b

Na+
Ag'
CU'
02—d

Direction Do (cm sec ')

7&& 10
1.64 &&

10-'
I && 10'

2&& 10'

c D =(3.0+1.5)&(10 ' at 345 C

g (kJmol ')

24
72

273

165
97

113

'Sosin (1973).
Frischat (1970).

'J. C. Brice (unpublished).
Sawyer (1976).

2. Dislocation densities and hydrogen
content or Q

The infrared absorption at various infrared frequencies
including 3500 cm ' is used to measure hydrogen con-
tent. Thus Fig. 4 suggests a correlation between hydrogen
content and dislocation density (determined from x-ray
topographs). The error bars indicate the range between
the upper and lower quartiles. At any a value the loga-
rithm of the dislocation density has a Gaussian distribu-
tion (see Fig. 5). The line on Fig. 4 can be represented by

log~~D ——5.00+0.48+2.5 log~oa,

where XD is the dislocation density (cm ) and a is the
absorption coefficient at 3500 cm ' (in units of cm ').

99
98
95

o o 90V

v) ~
U 4

o 60
CL

Q
Q

~x 20
Q

10
O 5—
o cS

CL o

measured
t points

y from

10
~ s s a s s I

10
Dis loc at i o n density (cm )

10

FIG. 5. A cumulative frequency diagram for dislocation densi-
ties of crystals from one supplier plotted on log-probability pa-
per. The diagram proves that with 99% confidence the loga-
rithm of the dislocation density has a normal (Gaussian) distri-
bution. The data refer to samples with o.=0.043+0.007 cm
(g=2.0+0.2 million).

However, this line represents the population of all the
samples examined by my colleagues. If we look at similar
plots for individual suppliers, we find that we can draw
different lines, e.g.,

log~~D =4.75+0.26+2.5 log&or& (2)

log~~D =5.36+0.20+2.5 log&orz (3)

for two suppliers. Again at any Q value, log&~D has a
Gaussian distribution, but these lines and the distributions
that they represent are in a statistical sense significantly
different from one another and from the overall distribu-
tion. Thus while for each supplier we can say that ND in-
creases with o. in a way which allows us to predict ND
from a within a factor of about 2, there is no unique re-
lation between a and ND. At a given e value, the disloca-
tion densities for the two suppliers differ by a factor of
7.4 on average. Thus to explain the result we cannot in-
voke McLaren's (1971) suggestion of a direct relation be-
tween XD and hydrogen content and instead must look at
the suggestion by Griggs (1974) of easier dislocation
movement as the hydrogen content rises and postulate
that the conditions employed by the various suppliers in-
volve different amounts of strain and hence different
amounts of dislocation climb and multiplication. Howev-
er, it is not easy to think of a process which gives

XD —[H] (4)

2The estimates of dislocation densities probably involve errors
of this magnitude. For further data see Brice (1984).

where [H] is the hydrogen content.
We shall later discuss the relation between a and a

commonly used quantity Q (the infrared quality factor of
the quartz). For the present we can assume an empirical
relation in which Q & 2 million implies a35oo(0.06 cm
or [H] (300 ppm relative to silicon and a Q of 1 million
corresponds to a3soo ——0. 12 or [H] =600 ppm. Using this
notation, we can, however, use our data inversely to say
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TABLE VIII. A variance ratio (F) test shows that we can be 95% confident that the variation of yt~ is
less than that of y. Thus we can assume that the fractional decrease is inversely proportional to the
square of the slice thickness which is consistent with loss by diffusion. Unpublished data from Philips
Research Laboratories.

Slice thickness
( t, cm)

0.70
0.75
0.80
0.90
0.90
0.95

1972

0.215
0.225
0.059
0.124
0.080
0.071

a {cm ')
1978

0.082
0.095
0.034
0.075
0.052
0.051

% decrease

62
58
42
40
28
28

43+14

30
32
27
32
23
25

28+4

TABLE IX. Median impurity concentrations as a function of Q. The distrihution of resuits is skewed.
A few samples have very large impurity concentrations, but the results are much more consistent than
those for minor impurities given in Table 'X: for Na, Al, and Li, 90% of samp1es contain less than 2.5
times the median values given. The logarithms of the concentrations of Na, Al, and Li have roughly
Cxaussian distributions with a standard deviation of 0.3. Note that these results apply in the Z zone. In
the X zones impurity concentrations are much larger. For a11 impurities except H and Li the values are
10—30 times higher than the values in this table and Table X. For H and Li the concentrations are
about a factor of 3 higher.

QxlO ' H
Concentrations (atomic ppm)'
Na Al Li

2.5
2.0
1.5
1.0
0.5

250
300
400
600

1200

0.5+0.4
1.0+0.5

3+2
10+5
10+5

2+1
2+1
3+2

10+5
20+ 10

1+0.5
2+1

20+ 10
30+10
25+10

'Errors are half the interquartile ranges —i.e., for x+Ax, half the values found lie between x —M and
x+M.

Hydrogen content (pprn)
250 500

—2.0

0.20 2

Y bar data
2 mm beam r esults
5mm beam results
Brice and Cole (]978

1 x10
I

70-
tO

O
x

C

U

—1.5
C

O
t

CO

a~o 0.10—
C5

S
U)

O. 05-
U

40 I

2
Q.„(xlo)

1.0
I I

0,05 0.10
Mean 0.3~8~ (cm ")

0.15

FICx. 6. The correlation between thermal shock to fracture the
crystals and infrared Q (Brice et a/. , 1981i.

FICx. 7. The change of a with mean a for a 1-cm displacement
in the z direction.
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TABLE X. Median impurity concentrations (atomic ppm rela-
tive to silicon). The logarithms of the concentrations have
roughly Gaussian distributions with standard deviations of
about 0.5, i.e., the equivalent of a factor of 3. Thus 90% of
samples tested have concentrations of less than four times the
median values given. These results apply to Z zones only. See
footnote to Table IX. Batch

Seed veil
prominent

Shock to break
Seed veil nearly

invisible

TABLE XI. Thermal shock data. The tabulated quantities are
the mean shock + its standard deviation together with the sam-
ple size in parenthesis.

Impurity
Samples with

Q =(2.0+0.4) &&10

Samples with

Q =(1.0+0.4) X 10

1

2
58.4+9.8 (13)
55.8+6.0 (10)

55.4+5.4 (14)
57.0+1.6 4,

'6)

Ca
Cb

S
F
Cl
Ca
K
Br
Zn
Co
Fe

'Grown from Na2CO3.
Grown from NaOH.

24
4
0.6
0.5
0.5
0.3
0.1.
0.1

0.1

0.03
0.03

70
15
2
2
1

0.6
0.6
0.2
0.2
0.1

0.3

that for Q (2 million the dislocation density is most un-

likely to exceed 10 cm (see Fig. 5).

3. impurity concentrations and Q

When we come to consider impurities, there are fewer
data available. Dislocation densities were measured on
about 200 samples by x-ray topography. Solid-source
mass spectrometric measurements of impurities were per-
formed on about 60 samples. The results now discussed
apply to the Z zone only. (In the X zones impurity con-
centrations are typically 10—30 times larger for impuri-
ties other than Li or H, both of which have concentra-
tions in the X zone of about three times the level in the Z
zone. )

The rather smaller amount of data makes it difficult to
be certain what occurs. From ihe data in Tables Ix and
X, it is clear that there is a general tendency for all im-
purity concentrations to rise as Q falls. The results from
different suppliers suggest that some suppliers' material is
consistently purer than the average. This would be ex-
pected from the use of 'different raw materials, but we
cannot prove it from our data. The differences of sup-
pliers averaged values were less than the standard devia-
tions. The only certainty was that, as might be expected,
the carbon content of material grown by the carbonate
process was much higher than the concentrations found
when NaOH was the mineralizer. Thus again we have an
overall trend but individual suppliers probably differ. In-
verting the data gives the result that we can be 90% con-
fident that the impurity concentrations will not exceed the
tabulated values by more than a factor of 2.5 in Table IX
or a factor of 4 for Table X.

4. Strength and Q

The thermal shock required to break a crystal is a mea-
sure of the breaking strain. The general correlation with
Q is shown in Fig. 6. There is no doubt that as Q falls,
the boules become more fragile. A somewhat unexpected
result was that the results obtained appeared to be in-
dependent of damage. Thus, for example, from a given
batch selecting an apparently undamaged sample of
specimens and comparing the result with a sample of ob-
viously chipped boules gives the result that the undam-
aged sample of 18 boules broke with a mean shock of
56. 1+7.4'C and the sample of 9 chipped boules broke
with a mean shock of 57.3+8.9'C. The median shocks to
break both samples were 57.5'C. Thus we can conclude
that all boules have sufficient crack nuclei in the as-
received state, but note that the standard deviation of the
damaged sample is larger at a 95%%uo confidence level. In
any batch the distribution of shock to break has an ap-
proximately Gaussian distribution. Different batches
even from the same suppliers had significantly different
means and standard deviations. If samples were selected
from a given batch on the basis of the density of the seed
veil, we obtain the results in Table XI. Clearly, the means
do not differ in any significant manner but the standard
deviations of the samples with prominent seed veils are
larger at least at a 95%%uo confidence level. Thus batches
with prominent seed veils contain a greater proportion of
easily broken crystals than batches with nearly invisible
seed veils. Note that in a given batch (i.e., crystals grown
in the same autoclave at the same time) a sample selected
to have prominent seed veils has a lower Q than a sample
selected to have a nearly invisible veil. However, the
prominence of the veil is difficult to quantify in a repro-
ducible way.

Note that from the thermal shock data it is possible to
deduce the maximum strain to which the surface is sub-
jected. This strain is a reasonable estimate of the break-
ing strain of the sample.

For further discussion of thermal shock testing see
Brice (1984), who shows that a 50 C shock breaks a frac-
tion of boules in a batch which falls rapidly with the

Some of the batch had broken free of their packing.
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TABLE XII. Cutting forces. The X force is the load needed to
maintain a constant rate of cut. In this case 0.25 mmsec
The F force is the drag on the wheel. This force multiplied by
the rate of peripheral movement of the blade (1676 cm sec ') is
the energy dissipated in the sample. The lubricant was Shell
Fusus A. The data were obtained by I. S. Baldwin (Mullard,
Southampton), using a modified Capco Q35/M12 machine.

(in millions) '

1.8
1.2
1.0
0.8

Dislocation
density (cm )

10
]03
104
10'

X force
(N)

176
191
43/
446

F force
(N)

5
16
24
46

batch mean Q (typically 5% at Q =2.0 million to 0.1%
at Q=2. 7 million).

5. Hardness and Q or dislocation density

6. Uniformity and Q

The uniformity of crystals is of great interest. Marked
nonuniformity might result in some parts of the crystal
being useful for device fabrication and other parts yield-
ing poor devices. %'e have already noted that the seed re-
gion is not suitable for use in devices and that material
grown on faces other than Z is also usually too impure
and strained to yield good devices. In this section we

TABLE XIII. The range of Q values found when varying x
coordinate with z constant' for large crystals.

Mean
g X IO-'

2.6—2.9
2.1—2.5
1.5—2.0
0.9—1.4

Range
X 10-'

3.0+1.3
3.1+1.1
3.0+1.5
2.6+0.9

Fractional
-change %%u~ cm

Number of
samples

'These data are for z= 8 or 10 mm.
'The range is the difference between the maximum and
minimum values found.

A quantity related to the breaking strain is the hardness
of the material. It is not easy to measure the hardness of
a brittle material like quartz. The usually quoted values
of Mohs hardness are about 7 corresponding to a mi-
crohardness of about 800 kgmm . Most values fall in
the range 700—850 kgmm, but there is a wide varia-
tion. Even on one sample the hardness varies with posi-
tion and not all of this variation is attributable to the
material's being in a different growth zone (X-zone ma-
terial is harder than that of the Z-zone, for example).
Data relating to the related quantity —cutting forces—are
given in Table XII. Clearly more force is needed to cut
low- Q material.

shall therefore examine effects in material grown only on
Z faces. Since almost all the properties of potential in-
terest are correlated with the hydrogen content, we can
limit attention to how either the hydrogen content or
some parameter (a or Q) immediately relatable to the hy-
drogen content varies.

We are interested in two types of uniformity. We need
to know about the uniformity of material in one crystal
and how far crystals grown in the same batch differ from
one another.

Looking first at the uniformity of one crystal, let us
consider a coordinate system with the origin at the
geometric center of the crystal and with an x axis parallel
to the a crystallographic axis and z parallel to c. In Fig.
7 the solid line represents the data gathered by Brice and
Cole (1978) for relatively small crystals grown on bar-
shaped seeds with their long axes parallel to y. The
solid-line results were obtained with a 5-mm-diam beam.
The individual points we obtained with a. 2-mm-diam
beam. From this figure it is clear that da/dz tends to in-
crease with a—i.e., on the average crystals with large a
are less uniform in the z direction than ones with low a.
At a constant value of z changes with x and y in the Z
zone are small. For large crystals grown on platelike
seeds, the results of varying the z coordinate are similar to
those shown in Fig. 7, but show a larger spread —e.g., for
a=0.07 cm ' the changes found range from 0.012 to
0.030 cm ' per cm and for a=0. 12 cm the range was
0.006—0.015 cm ' per cm. In terms of infrared Q these
correspond to 20—50% changes for Q =1 million and
10—25% for Q =2 million. At constant z, the variations
found by changing y were small. Table XIII shows data
for constant z with x varying.

In order to discuss sensibly the uniformity of Q (or a)
in a batch we need to define a mean Q (or a) in a boule.
Since it is useful to think about only large batches ( & 100
boules), we can restrict our attention to small crystals, i.e.,
to ones with bar seeds. From the preceding discussion it
is clear that the only important parameter is the z coordi-
nate of the measurement and we have therefore somewhat
arbitrarily selected a point for the measurement which is
halfway from the seed to the outside of the crystal.
Without knowing the form of the distribution we can use
the standard deviation as a measure of dispersion (i.e., the
inverse of uniformity), but with an appreciably skewed
distribution some other measure may be better. Brice and
Cole (1978) implicitly assumed that Q was distributed in
a Gaussian form. There is evidence for this at Q )2 mil-
lion. Figure 8 shows the cumulative frequency curves for
two batches, and analysis of the data shows that for these
batches the probabilities that the distributions are not
gaussian is &10% in one case and 5% in the other.
However, there is some evidence that for lower Q, Q is
described by a skewed distribution. Q is inversely related

4This is usually the location of the active region of a device.
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FICx. 8. Cumulative frequency curves for Q in two batches of
quartz. The parameters given are the mean Q and its standard
deviation in millions, the sample size, and the probability that
the points deviate significantly from the hnes.

to a and on general grounds we might expect o. to be ran-
domly distributed. At Q=2 million the standard devia-
tions of Q and a are both about S%%uo and we would not ex-
pect to be able to distinguish which is a Ciaussian distri-
bution. However, at Q =1 million the standard deviation
of Q is about 20% of the mean. At this level the evidence
favors a's being the variable with a Cxaussian distribution.
The upper portion of Fig. 9 shows the difference between
mean Q values calculated in the two possible ways and
makes it clear that Q calculated individually from the a
values gives a higher mean value than calculating the
mean value of a and then deriving Q. The lower part of
the figure shows that expressed as a fraction of the mean
the standard deviation of o.' is less than the standard devi-
ation of Q. This shows that a is a better measure of
dispersion than Q and that for small Q, Q has a skewed
distribution. For Q & 1.8 million, the differences are
negligible. Figure 9 gives the standard deviation of Q
(o&), and the standard deviation of a can be deduced
from the dashed line. The break in the curve of Q=2. 3

million, and the constant values of the standard devia-
tions for higher Q are artificial, illustrating the fact that
our techniques introduced a random error equivalent to a
variation of 0.05 million. Note that each point is a mean
of several batches.

Results are given later (Sec. IV.B) for the variation of
lattice constants with Q. There it is shown that not only
the parameters change as the Q falls but the spread of
values found also increases.
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To summarize we can say the following.
(a) For a given Q value, in general we find that the log-

arithms of the dislocation densities and impurity concen-
trations have Gaussian distributions.

(b) For a given batch, the extinction coefficients and the
breaking strains have Gaussian distributions. The pres-
ence of inclusions increases dislocation densities and the
fraction of crystals with low breaking strains.

(c) As the measured mean Q of a batch falls, the dislo-
cation densities and impurity concentrations rise, but ma-
terials from different suppliers follow curves with dif-
ferent intercepts. Also, as the mean Q falls, the batches
become less uniform and have lower breaking strains.
Again, different suppliers' materials behave differently.

(d) In cases where the supplier affects the relation
found, we can expect that the best supplier's material will

be at most a factor of only about 3 better than the average
for a given Q.

IV. THE PROPERTIES OF QUARTZ

FIG. 9. Mean Q derived from individual a values minus mean

Q derived from mean a values (upper part). The lower part
shows the standard deviations cr of Q and a (normalized to the

Q scale). Since o &o&, a is more likely to be distributed nor-
mally.

Quartz has been studied for a long time because it was
and indeed still is of geological interest. Its optical prop-
erties were exploited before the discovery of piezoelectrici-
ty by Pierre and Jacques Curie in 1880. This long history
has created many property data, not all of whibh are reli-
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able by modern standards. Thus some handbook data
need to be viewed critically. The best handbook data
sources are Frondel (1962) and Landolt-Bornstein
(1966,1979), who cover some properties in depth, and
Gray (1972), who gives carefully selected values of some
properties. Up-to-date files on the properties of quartz
are maintained by the Electronic Materials Information
Service (EMIS). The values given in this section are
selected on the basis that they are widely accepted and
their use gives reasonable agreement with experiment.

Where possible the spread of apparently reasonable
values is indicated. The data are treated under two head-
ings: intrinsic properties and defect related properties. It
may well be that some properties are placed in the first
category simply because the work necessary to establish
the effect of defects has not yet been done. Thus it may
eventually be found that some properties here called in-
trinsic may vary slightly with purity or perfection [see
Ward (1984)].

A. intrinsic properties

1. Structural and thermodynamic data

The material of interest to us is a-quartz, which is the
thermodynamically stable form of SiO2 at temperatures
up to 573'C. At higher temperatures and atmospheric
pressure, p-quartz or p-tridymite is stable to 867'C, a-
tridymite is the stable form between 867'C and 1470'C,
and the cristoballite phases are the stable structures from
1470'C to the melting point at 1723 C. These other
forms of SiOz exist metastably at room temperature.

Unless otherwise specified, we shall now be concerned
only with a-quartz. The crystal structure is discussed by
Wyckoff (1960) and Evans (1966). The bonding is about
60% covalent and 40% ionic. The structure has class 32
symmetry, a space group D3-P3~2, with atoms at the po-
sitions given in Table XIV. Conventionally (IRE, 1949),
the Z or c axis is parallel to the threefold axis and the X
or a axes are parallel to the three twofold axes. In a
right-hand set of rectangular axes, Y is at right angles to
Z and X. (In a right-hand set of axes, Z is the thumb, X
is the first finger, and Y is the second finger. ) Quartz can
exist in two forms —right- or left-handed. Most but not
all synthetic quartz is right-handed. The rule for deter-
mining the type is given (IRE, 1949) as follows: "on ex-
tension, the positive ends of' the a axes, and therefore the
X axes, become negatively charged with right quartz, pos-
itively charged with left quartz". (IRE, 1949, p. 1385).
Note that a right-hand set of axes is used to describe both
right- and left-handed quartz. This- has the following
consequences: for all quartz, s&4 is positive, c~4 is nega-

Y

TABLE XIV. Coordinates of atoms in the unit cell. xI is a
distance along one a axis and x2 a distance along the other a
axis used to define the cell edges. z is a distance parallel to the
c axis.

silicon 0.535
0.465

0

xq/a

0.535
0

0.465

z/c

0.333
0

0.666

oxygen 0.415
0.857
0.143
0.272
0.585
0.728

0.272
0.585
0.728
0.415
0.857
0.143

0.120
0.453
0.880
0.547
0.213
0.787

Actval size

/ Channel
I

1 r adl US

i 0.75A
1

3

tive, d~~ ———d~q ——dz6/2, e» ——e~2 ———e26, d« ———dz5,
and e&4= —e25,' for right quartz d~~, d~4, and e~~ are
negative and e&q is positive; for left quartz d~i, d&&, and
e&& are positive and e&4 is negative. These parameters are
defined and discussed later.

The structure of quartz leaves a tunnel shown in Fig.
10, where the small circles are Si atoms and the large ones
0 atoms. Neutral particles with radii less than 0.5 A can
pass easily along the pipe; ones with radii between 0.5 and
0.8 A, have to follow a zigzag path; and particles with ra-
dii up to 1.4 A can be accommodated without significant

o
lattice distortion. For particles with radii over 0.8 A,

5For information about the EMIS computer data bank, which
can be accessed in most countries, contact EMIS, The Institu-
tion of Electrical Engineers, Station House, Nightingale Road,
Hitchin, Herts SG5 1RJ, England.

FIG. 10. A vertical projection of the a-quartz structure. The c
axis is normal to the plane of the diagram. The edges of the
unit cell are parallel to a axes. The small ions are silicon and
the large ones oxygen. The numbers are the vertical positions of

0
the ions as a percentage of the c-lattice parameter (5.404 A).
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however, movement 'requires cooperative movement of
other atoms. Si—O bonds occur in pairs with lengths of

0
about 1.598 and 1.616 A. Each silicon is coordinated by
four oxygens and each oxygen lies slightly off a line join-
ing two silicons. Both the axial ratio and the lattice con-
stants depend on purity; a discussion of their values is
given in Sec. IV.B. Bond energies are about 468
kJ mol

Thermodynamically quartz is very stable: the enthalpy
of formation at 25 C is 860 kJmol ' and the free energy
of formation is 805 kJmol '. (Here we consider the reac-
tion Si+. 02~SiOz. ) Thus of the possible electrode ma-
terials, only Al, Cr, and Ti are likely to reduce quartz: all
the other likely electrode materials (Ta, Ni, Cu, Pt„Ag,
and Au) have oxides with lower free energies of formation
[see, for example, Samsonov (1973) and Weast (1964)].

The vapor pressure of o,-quartz has not been deter-
mined. The vapor pressures of 13-tridymite and vitreous
silica are quoted by Samsonov (1973). From these data
we can infer that the vapor pressure of a-quartz should
not exceed 10,10,10,or 10 Pa at, respective-
ly, 0 C, 200 C, 400'C, and 600 C (1 bar =10 Pa). Thus,
for example, the rate of evaporation at 500'C should be
less than about 10" atomscm yr ' or less than 10
monolayers per year.

Figure 11 gives specific-heat data and is based on the
data given by Weast (1964) and Touloukian (1967). Sam-
sonov (1973) gives a molar specific heat of

C =47.0118+3.4358& 10 T—1.131)&10 T

tables given by Gray for the Debye function suggest that
a Debye temperature of 700+50 K is more appropriate
for the temperature range in which devices are fabricated
and used.

Figure 12 gives the thermal expansion data quoted by
Cxray (1972) from a critical study. Ackerman and Sorrell
(1974) give very similar values. McSkimin et al. (1965)
give data for 77 ~ T & 300 K in the form of a polynomial

I

1=/p(1+a)0+a28 +n36 +aug ), (6)

where I is a dimension at O'C and l'o is the dimension at
O'C. Values of u&, o.2, o.3, and a4 are 7.030&10
10.25 & 10, 6.58)& 10 ', and 48.5 & 10 ', respectively,
when l is parallel to the c axis and for / parallel to a, the
values are 13.20~10, 22.85~10 9, 86.36&&10
276)& 10 ', respectively. Equation (6) essentially gives
the integral of the thermal expansion over the tempera-

25

20

where T is the absolute temperature. Since the molar
weight is 60.085 g, this agrees well with the data in Fig.
11. Cxray (1972) quotes a Debye temperature of 470 K,
and other higher, values are mentioned, but taking

Cz —Cz ——0.075 J(gatom'C) ' and using Fig. 11 with the

1 ~ 2

1.0
O
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15
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I

0 200
Temper oture ('C)
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FIG. 11. The specific heat of n-quartz as a function of tem-
perature.

FIG. 12. The thermal expansion of n-quartz. The curve
marked a is for the direction parallel to a(x), and the curve
marked c is for the direction parallel to c(Z). Actual values at
—100 C, —50'C, 0 C, 25'C, 100 C, and 200'C are 4.9, 6.0,
7.0, 7.5, 8.8, and 10.4&10 'C ' in the e direction and 10.3,
11.8, 13.1, 13.7, 15.6, and 17.9X10 K ' in the a direction.
Errors should not exceed 2%.
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0.20- electric strain could reduce the symmetry and make py-
roelectric effects possible. No problems with pyroelectric
origins seem to have been reported.

2. Elastic constants

0 15

~ 0-10

"0
C0

-100 0
I I

200
Temper atur e ('C)

FICi. 13. The thermal conductivity of a-quartz parallel to the a
and c crystallographic axes.

ture interval 0 to 0. The agreement-between these data
and Fig. 12 is excellent.

The density of quartz varies with purity and is dis-
cussed in Sec. IV.B with the data on the lattice parame-
ters.

Figure 13 gives the thermal conductivities as a function
of temperature. The curves are smoothed values through
a variety of handbook data. The scatter of data suggests
that the curves are unlikely to be in error by more than
5%, but it is not clear whether purity and perfection
cause variations at this level of accuracy.

The symmetr yof quart'z does not permit any pyroelec-
tric phenomena. However, nonuniform heating reduces
the symmetry so that an apparent pyroelectric effect can
sometimes be observed. (This phenomenon is often called
a tertiary pyroelectric effect. ) Similarly a mechanical or

The elastic constants of prime interest for resonator
design are the elastic stiffnesses. The constant c;J. is used
for the tensor which written fully would be cl~„z. The
rules for obtaining i and j from Im and np are given in
Table XV.

The elastic constants o'f quartz have been determined
many times. See Koga et al. (1958) and Bechmann (1958)
for references to early work. The values of c,j and their
temperature coefficients usually used are those given by
Bechmann et al. (1962) or the very similar values given
by Mason (1951). The calculated quantities given in Sec.
V are based on the first of these sets of values and give ex-
cellent agreement with experiment. However, it must be
remembered that the values are deduced from measure-
ments on resonators so that any set of data based on a
representative set of samples should produce reasonable
results, but it is not advisable to use part of one set and
part of another. In particular, this applies to temperature
coefficients. Thus in Tables XVI—XXIV we give all the
relevant data quoted by Bechmann et al. Using other sets
of temperature coefficients, e.g., those due to Koga et al.
(1958) and Mason (1951),also gives good results.

For comparison in Table XVI, I also give the mean and
the standard deviation. of the values of c;J given by Bech-
mann (1958), Koga et al. (1958), McSkimin et al. (1965),
Ludanov et aI. (1976), and Shevel'ko and Yakovlev
(1977). These mean values could be regarded as unbiased
estimates of the c,j values. The standard errors of the
various means could then be taken as half the standard
deviations quoted. The final column of this table gives
the deviations found by Ludanov et al (1976), wh.o found
systematic changes in c,z when they irradiated their sam-
ples with o. rays. These results suggest that the c,j may
depend on the sample, so that some of the spread of
values may be real, and it would be advisable to assume
that the standard error of each mean is the same as the
standard deviation of the distribution of means.

The c;J values quoted in Table XVI are the values of
the elastic stiffnesses at constant field and under adiabatic
conditions (constant entropy). These are usually labeled

Three other stiffness coefficients exist: c;z (con-
stant displacement and entropy), c,j (constant field and
temperature —i.e., isothermal values), and c;~ (constantDT

displacement and temperature). These other values differ
by small amounts from the values quoted (see Table
XVII).

TABLE X&. The convention for compressing tensor notation. For quartz only terms up to i or j=6 are needed, because the sym-
metry of the lattice ensures that C22 ——C~~, C55 ——C44, —C~4 ——C56 ——C~4, C23 —C/3 and C66= —,

'
(C~l —C~2)

lm or np
l Ol J

33 23
4

31
5

12
6

32
7

13 21
9
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TABLE XVI. Elastic stiffnesses of quartz at 25 C.

Bechmann (1958)'
GNm

All values Change when irradiated

C33

C12

C13

C14

86.74
107.2

6.97
11.90
57.93
39.89

—17.91

86.80+0.04
106.2+0.8
7.10+0.09

11.91+0.01
58.17.+0.13
39.85+0.03

—18.02+0.07

+ 0.02
+ 0.006
—0.02

—0.006
+ 0.02

'Bechmann's data were for 20'C. They have been corrected here to 25'C. All values are c;J . Kahan
(1982) gives very similar values except for c11, c13, and c33, for which he obtains 83.63, —0.88, and
77.60, respectively.

From a device designer's point of view, small errors in

c,j are not usually important. It is often possible to
correct the frequency during manufacture (see Secs. V
and VI).

For completeness Table XVIII gives the values of elas-
tic compliances s,j and Table XIX gives the changes in
values for different conditions.

While the data for c,z. and s;J. are reasonably consistent,
the published values of the temperature coefficients are
less homogeneous. The notation used to describe the vari-
ous parameters is unusual. Consider a parameter which
has a value po at some reference temperature To (usually
25 'C). Then its value at some other temperature
T =To+ b T is p and this is given by

p=p (1+T"hT+T hT +T' 'AT ),
so that

(8)

Most workers fit data to only a cubic approximation, and
the values of Tz"' give very poor estimates of (r)"pldT")
as n increases. This is why one should use sets of tem-
perature coefficients as sets rather than attempting to
determine the "best" value of each coefficient by looking
at several determinations. However, T,"' should be the

1J

least affected by the fitting routine. Table XX gives the
available data. The first column gives Bechmann's data.

TABLE XVII. Differences in elastic stiffnesses. The data are
from Bechmann (1958) except for values in parenthesis which
are from McSkimin et al. (1965), marked with a superscript a,
or-from Ludanov et al. (1976), marked with a superscript b.

The second column gives the mean values of other avail-
able data deduced in the same way. The final column
gives the data of Sinha and Tiersten (1978,1979), which
were deduced differently. The only coefficients deter-
mined by Sinha and Tiersten's method appear to be first-
order ones. Note that the two types of data have to be
used differently. Either used correctly gives good results.

In most cases we are interested in T'E,', and the coeffi-
tJ

cients of c,z under other conditions should be very similar.
There are, however, minor differences. See Table XXII,
which also gives data for the first-order coefficients of s;J.
Values of T,'."are given in Table XXI.

lj
Tables XXIII—XXV give the data available about

second- and third-order temperature coefficients of c;J
and s;J. As expected, individual sets of data show consid-
erable divergence.

The basic temperature coefficient data used by Bech-
mann et al. (1962) have been reappraised by Kahan
(1982), Hruska (1983) (see the footnote to Table XX), and
Lee and Yong (1983). Looking at all the data suggests
that since the temperature coefficients given by Bech-
mann et al. are a representative set which work in prac-
tice for quartz with a Q of two million or over, this set
should therefore be recommended. However, the possibil-
ity that the temperature coefficients of different samples
may vary must not be forgotten, and variations of, say,
10%%uo cannot be excluded.

So far, I have treated only the real portions of stiffness
tensor c and the compliance tensor s. A rigorous treat-
ment attributes imaginary parts to these tensors to allow
for losses. Lamb and Richter (1966) and Ballato (1978)

TABLE XVIII. Elastic compliances of quartz at 25'C.
DS ES
lJ lJ

DT ET
EJ 0

DT ET
&J 'J

or c- —c"
EJ V

In units of 10 ' m N
Bechmann (1958) McSkimin et al. (1965)

11
33
12
13
44

.66
14

0.746 (0.770)
0

—0.746
0

0.0415
0.746 (0.800)

—0.177

0.288 (0.32)'
0.193 (0.20)'
0.288 (0.32)'
0.236 (0.25)'

0
0
0

$33

$12

$13

$44

$14

12.77
9.60

—1.79
—1.22
20.04
29.12
4.50

12.777
9.735

—1.807
—1.235
19.985
29.167
4.521
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TABLE XIX. Differences in elastic compliances. Data in

parenthesis are from McSkimin et al. (1965); other data from
Bechmann (1958).

$33

$13

$66

$14

In units of 10 m N
DS ES
tJ IJ

DT ET
EJ EJ

—0.134
0

0.134
0

—0.0132
—0.536
—0.042

ES ET
SJ EJ

DS DT

—0.028 (—0.032)
—0.008 ( —0.008)
—0.028 (—0.032)
—0.016 {—0.017)

0
0
0

have done this for quartz. Essentially in this approach we
write Hooke's law in the form

t& ——c+g s&at
(9)

(10)

where t is time, tI is stress, s is strain, g is viscosity, and

g is called fluency. Lamb and Richter (1966) measured
the viscosity of quartz in the range 0.5—5 6Hz but did
not characterize their samples. Ballato (1978) used their
data to evaluate the fluency, and the two sets of data are
given in Table XXVI. Ballato shows that at an angular
frequency co

S=(c—co g c ')

(14)

Clearly, the rewritten forms of Hooke's law will lead to
resonant frequencies which depend on the fluency and
viscosity. In Sec. V we shall deal with this problem by
using an equivalent circuit parameter R~, which takes
into account losses additional to those in the quartz. Both
the viscosity and fluency would be expected to depend on
the purity (particularly the hydrogen content) of the
quartz, so that the data in Table XXVI should be treated
with caution.

McSkimin et al. (1965) give what are essentially
compressibility data. They express a length l in the form

I =la(1+aP),
where P is the pressure and lo is the length when P—+0.
When l is parallel to the c axis, a =s33+2s)3 ——7.3063 in
units of 10 ' m N ', and when l is parallel to the a
axis, a =s» +s ~2+s ~3

——0.8156. Here the values for
25 C and values at —195.8 C are, respectively, 6.9307
and 9.3779 in units of' 10 ' m N '. The numerical
values are those quoted in the paper. Using the values of
s;~ tabulated here gives slightly different values.

McSkimin et al. (1965) give pressure derivatives for c;J,
and the same team later gives the third-order elastic con-
stants needed for calculating the effects of strain on de-
vice frequencies (Thurston et a/. , 1966). See Table
XXVII.

3. Piezoelectric constants

g=c —'gs,
and in the limiting case co~0

S=c—1 (13)

Quartz has eight independent piezoelectric constants.
The values due to Bechmann (1962) are given in Table
XXVIII. Koga et al. (1958) give values of d~~ and d~4, of
2.37&10 ' CN ' and 0.77&10 ' CN ', respectively.
Koga et al. give e&&

———0.175 Cm and e)4 ——0.00407
Cm z. Shevel'ko and Yakovlev (1977) give e» ———0.17,1
Cm and e&4

——0.04 Cm and give the temperature
coefficients listed in Table XXIX. Ludanov et al. (1976)

TABLE XX. First-order temperature coefficients of c;J at 25'C.

Temperature coefficient in units of ppm C
8echmann

(1958)' Literature
Sinha and Tiersten

(1978,1979)

C33

C12

C13

C14

—48.5
—160

—3000
—550
—177

178
101

—46.4+2. 1

—172+24
—2901+183
—476+ 111
—170+13

177+8
105+8

18.16
—66.60

—1222
—178.6
—89.72
126.7

—149.2

'Hruska (1983) has reappraised the data on which these values were based and obtains slightly different
values for some coefficients. Thus he suggests that values of —2635, —736+35, —232+15, and —174
ppm C ' would be appropriate for the coefficients of c12 c13 c33 and c44, respectively.
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122 J. C. Brice: Crystals for quartz resonators

Mason
(1951)EJ

TABLE XXI. The first order coefficients of s;~ at 25'C.

Temperature coefficient in ppm C
Bechmann Zelenka and Lee

(1958) (1971) Tc DS ~cES
(1) (1)

EJ EJ

TDS TES(&) (&)

V EJ

TABLE XXII. The variation of first-order coefficients of c;J
and s,J. (in units of ppm'C '). The data are from Zelenka and
Lee (1971).

11
33
12
13

66
14

15.5
140

—1370
—166

210
—145

134

8.5
139.7

—1296.5
—168.8

211.1
—151.9

140

13.6
127.3

—1241
—573

191
137
137.5

11
33
12
13
44
66
14

—2.5
0

—285
0

—2
—9.9

17

5.3
0

—61.2
0

—1.5
7.6

—0.9

TABLE XXIII. Second-order temperature coefficients of c;J at 25'C (in units of 10 'C ). The
values due to Mason (1950) and Koga et al. (1958) were determined at 50'C and 20'C, respectively.
They have been adjusted to 25 'C using the values of T,' '.

lJ

EJ

11
33
12
13

66
14

Bechmann
et al.
(1962)

—107
—275

—3050
—1150
—216

118
—48

Mason
(1950)

—73
—243

—1787
—2090
—180

20
—175

Koga et al.
(1958)

—418
—1419
—7119
—763
—231

178
—32

Shevel'ko
and Yakovlev

(1977)

—104
—106

3000
—209

96
—80

TABLE XXIV. Third-order temperature coefficients of c,J (in units of 10 ' C ). The temperatures
at which the values were measured is given at the top of each column.

EJ

11
33
12
13
44
66
14

Bechmann
et al. (1962)

(25 C)

—70
—250

—1260
—750
—216

21
—590

Mason (1950)
(50'C)

—15
410

1910
600

—65
—167
—630

Koga
et al. (1958)

(20 C)

—371
—243
4195

—5559
—190
—777
—625

Shevel'ko
and Yakovlev (1977)

(25 'C)

—17
650

390
—850

—1400

Mason (1950)
(50'C)EJ

TABLE XXV. Second- and third-order temperature coefficients of s;~.

T,' ' (in units of 10 'C ) Tg
' (in units of 10 ' 'C )

1J 1J

Bechmann Bechrnann
et al. (1962) et al. (1962)

(25 C) (25 C)

11
33
12
13
44
66
14

85.3
247

—1385
—718

262
—85

93

58.5
144

—575
—2100

200
—18

40

147
300

—2287
—823

162
—135
—465

33
570

—215
610

—26
3

—54
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lj

11
33
12
13
44
66
14

Fluency
(in units of 10 secPa ')

18.56
6.21
3.21
3.80

17.65
30.70
7.87

Viscosity
(in units of cP)

1.37
0.96
0.73
0.71
0.36
0.32
0.01

give e~~ ———0.174 Cm and record that after irradiation
with x rays the value fell by 1.5% (dose greater than 10
rad). Thus the piezoelectric constants may be sample
dependent.

If t
&

is the stress, s
&

is the strain, E is the electric field,
and D is the electric displacement, then the parameters d,
g, e, and h are related as follows:

r

Bs1 BD
aE, =

ar,
(16)

TABLE XXVI. The fluency and viscosity matrices of quartz.
The matrices have the same symmetry as c;J and s;~. Note that
these values are based on one set of data and that the values are
expected to be sample dependent.

Strain

d» = —2.31 X 10 CN
d]4 ———0.727)&10 ' CN
g» ———0.0578 m C
g]4 ———0.0182 m C

Stress

e» ———0.171 Cm
e]4 ——+ 0.0406 Cm
h]] ———4.36~ 10 N C
h]4 ——+ 1.04)& 10 NC

eij
~11 ~

h
(21)

The notes to Table XXVIII give the relations between
listed and unlisted components of the piezoelectric ma-
trix. These data with the above relations enable us to
work out most of the desired values.

TABLE XXVIII. The piezoelectric constants at 25 C. Note
that the signs of d;, , etc., are those conventionally given for
right-handed quartz. The other components of the matrix can
be found by using the relations d» ———d]2 ——2d26, d]4 ———d25
—e]2 =e» =e25 =e]4, and —e2e =e]]. Note that the existence
of the twofold symmetry axis in the X or a direction ensures
that there is no piezoelectric effect along any axis perpendicular
to a. Landolt-Bornstein (1966) gives temperature coefficients of
—200 to —350 ppm C ' and 1290 to 1770 ppm'C ' for d»
and d 14, respectively.

BE
Bt1

BS1

BD
(17) 4. Dielectric constants

Bt1

BE s,

BD
B$1

Bechmann et al. (1962) give values of the dielectric
constants as follows:

Bt1

BD s,

BE
BS1

and if e.11 is the dielectric constant, then

Eggj
11

(19)

(20)

E.11——E.P2 ——39.97,T T

c33——41.03,
F11—611= —0.76,

s T
633 611 0 ~

and

TABLE XXVII. Third-order elastic coefficients (in units of
GNm

where the units are 10 ' Fm '. Other authors quote
values differing by up to 1.5% for E» and 0.7% for s33
[see Landolt-Bornstein (1966)]. Bottom (1972) measured
the dielectric constants and found s

~ ~
——39.93 and

C 112

C]13

c»4
C123

C 124

C]33
C 134

C]5S

C222

C333

C 344

c444

—210
—345
+ 12
—163
—294
—15

—312
+2

—134
—200
—332
—815
= 110

276

T(1)

T(2)
11

T(3)
11

T(1)
14

T(2)
14

T(3)
14

—300~ 10-'C-'
—3 600~ 10-'C-'

—21 000X 10-"'C-'
—2450~ 10-'C-'
—1.5 600~ 10 C

—95 000~ 10-"'C-'

TABLE XXIX. The temperature coefficients of e]1 and e]4 at
25'C. Landolt-Bornstein (1966) gives T,'"= —160 ppm C»
and T,'"= —1440 ppm'C

14
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124 J. C. Brice: Crystals for quartz resonators

TABLE XXX. Recommended lattice parameters at 25'C. Over small temperature ranges values can be calculated by taking
(da/d'r)=6. 7X IO A'C ' and [d(c/a)/de= —6.9XI0 C ' and the rate of decrease of density with temperature as 9.2)&10
K

Grade of quartz

pure

premium
(Q & 2 million)
medium
(Q=1 million)
low

(Q &1 million)

Type

natural
synthetic
natural
synthetic
natural
synthetic
natural
synthetic

a (A)'

4.9127+2
4.9134+1
4.9129+2
4.9134+2
4.9132+3
4.9136+3
4.9138+5
4.9138+5

c/a'

1.10013+4
1.100 13+2
1.100 10+6
1.100 12+4
1.10004+9
1.10008+6
1.099 92+ 12
1.10004+ 10

Cell volume (A )

112.96
113.01
112.97
113.01
112.99
113.02
113.02
113.03

X-ray density

(gem )

2.6497
2.6486
2.6495
2.6486
2.6488
2.6484
2.6484
2.6482

'The uncertainties quoted are in the last digit.

633—40.73 at 20 C with errors of +0.09. These are prob-
ably the best available estimates of values at constant tem-
perature. The variations of c values with temperature are
usually justifiably ignored in the calculation of resonator
properties, but Landolt-Bornstein quotes temperature
coefficients of 28 and 39 ppm'C ' in the range 25'C to
100'C for e)t and s33 respectively.

B. Defect-related properties

In this section, the presence of impurity atoms is re-
garded as a defect. The discussions in Secs. III.C and
III.D showed that dislocation densities and the concentra-
tions of impurities other than hydrogen both tend to in-
crease with hydrogen content. Thus we can concentrate
our attention on what happens to properties when the hy-
drogen content changes. However, it must be borne in
mind when we do this that hydrogen may not be the
direct cause of the effects reported: the causes could be
other impurities or dislocations. Since quartz is usually
specified in terms of infrared Q which is inversely pro-
portional to the hydrogen content, we tend to use this pa-
rameter.

Lattice parameters and related properties

Brice (1980) has given a critical review of lattice pa-
rameter data and recommends the values given in
columns 3 and 4 of Table XXX as being appropriate to
various types of quartz. Note that here "pure" quartz is a
hypothetical material (the data related to it are the result
of extrapolation to zero impurity). It is believed that the
spreads (shown as variations in the last digit) are real.
Thus we expect the a values of premium synthetic quartz
samples to vary over the range 4.9132—4.9136 A and the
c /a value to vary from l. 10008 to 1.100 16. The calcu-
lated cell volume (column 5) varies very little and there-
fore the x-ray density in column 6 also varies very little.
Reliable measured density values lie in the range
2.648—2.650 gcm at 25'C. Frondel (1962) quotes an
absolute density (i.e., value determined in vacuum in
2.6484 gem with an uncertainty of 5 in the last digit.
He also gives a rate of decrease with increasing tempera-
ture of (9.4+0.3)X10 gcm 'C ' over the range 0 C
to 35'C. The expansion coefficient data given in Sec.
IV.A give a value of (9.1+0.3) && 10 g cm 'C

Brice (1980) determined the coefficients ao and b; in
the relation

TABLE-XXXI. The values of b; in a =ao+ gb, C;.
0

Impurity b; (pA per atomic pprn)

Fe
Cr
Ca

Mg'
Al'
Na
Ge
H
T1
Li

1

I
0.3
0.2
0.2
0.2
0.1

0.09
0.05
0.01

'These values are applicable only to 2000 ppm. At higher con-
centrations these elements have small or even negative effects.
Cohen and Summer (1958) suggest that at high concentrations
some impurities sit on interstitial sites, which because of the
channel in the quartz crystal structure does not necessarily in-
volve much lattice dilation.

a=ao+ gb;C;, (22)

TABLE XXXII. Ranges of strains resulting from changes of a
and c between zones in the same crystal.

[(aj —a, )/a, ]X 104

0.6 to 1.4
0.2 to 1.2

[(c —cz)/cz) X 10"

0.2 to + 1.2
—1.4 to —0.4

which gives the lattice parameter a as a function of the
lattice constant ao of "pure" quartz and the concentration
C; of impurity i (measured relative to silicon). Values of
ao are 4.91269 A for natural quartz and 4.91337 A for
synthetic quartz. The values of b; are given in Table
XXXI. To calculate the effect of an impurity on c or
c /a, it should be remembered that d (c /a ) /da is
—(0.20+0.03) A

The fact that natural and synthetic quartz behave dif-

Rev. Mod. Phys. , Vol. 57, No. 1, January 1985



J. C. Brice: Crystals for quartz resonators 125

TABLE XXXIII. Optical properties.

A, (pm)

refractive no
indices n,
no —n,
(dno/dT) &&10' ( C ')
(dn, /dT)X10' (C ')

(dno/dA, ) (pm ')

(dn, /dA, ) (pm ')

0.4

1.558
1.568

—9.6~10—'
—0.477
—0.557
—0.113
—0.117

0.6

1.534
1.543

—8.8X10
—0.541
—0.644
—0;029
—0.030

1.0

1.535
1.544

—8.8 ~10-'

—0.014
—0.014

3.0

1.499

—0.028

ferently can be explained in two ways. First, synthetic
quartz is typically grown at 350 C and natural quartz at a
lower temperature (possibly 200'C to 250'C), so that the
equilibrium defect densities will be different. Brice (1980)
points out the difference in infrared spectra. The second
possible mechanism is the difference in the growth mode.
The synthetic quartz used is grown relatively quickly on
rough faces. Natural quartz grew slowly on singular
faces. In this context it is worth noting that synthetic
quartz grown on singular faces has appreciably different
lattice constants from material grown on the rough Z
faces of the same crystal. Table XXXII gives some typi-
cal ranges of differences expressed as strains.

2. Optical properties

The optical properties of quartz are of little relevance
to piezoelectric resonators. Table XXXIII gives the data
which might be needed for polarizing microscope or in-
frared examination. Gray (1972, pp. 6-26 and 6-248)
gives comprehensive tabulations, but there are significant
differences between measured values, and I have mea-
sured significant changes in the birefringence due to the
hydrogen content: if A, is the wavelength in pm and Q is
the infrared quality factor in millions, the birefringence
changes roughly as 4(A, /Q) X 10, so that no —n,
changes by 2A, X 10 when Q changes from one million
to two million. Here the wavelength A. is in pm.

V. BASIC DEVICE THEORY

A. General aspects

Much of the theory of quartz resonator design is based
on the work of Christoffel (1877), who formalized the
treatment of plane acoustic waves in anisotropic linear
media. [Here linear means that the material properties do
not vary with wave amplitude. For most quartz resona-
tors it is reasonable to assume linearity at power levels up
to about 100 pW, but some of the losses at surfaces are
nonlinear even at these power levels, giving rise to drive
level dependence (DLD).] Christoffel's work was extend-
ed by Lawson (1941) to include piezoelectricity, giving a
theoretical base which could describe many cases in which
single vibration modes were excited. Tiersten (1963) pro-

duced the exact solution showing that the three bulk
waves were piezoelectrically coupled at the device surface.
Tiersten (1969) gives a comprehensive review of th' e
theory and Bottom (1982) gives a simpler one.

A general description of device theory lies outside the
scope of this paper. Indeed, it is possible to "design" per-
fectly adequate resonators at least at high frequencies
(above 10 MHz for fundamental mode devices) on the
basis of very simple theory and tabulated data [e.g., those
given by Ballato (1977)], and lower frequency devices can
be designed on an empirical basis. The design of mono-
lithic filters (several acoustically coupled resonators on
one quartz blank) is best done with recourse to reasonably
complete theory, but again an experienced semiempirical
approach works. Many formerly theoretically naive small
firms exist in the industry and their customers have only
recently started to demand devic performance which
calls for near optimum design. In this paper I only out-
line the theory. Readers who wish to go further could
usefully consult Mason (1950), Tiersten (1969), Holland
and EerNisse (1969), Ballato (1977), Bottom (1982), and
the many excellent reviews in the Academic Press (New
York) series Physical Acoustics, edited in early years by
W. P. Mason and in recent years by Mason and R. N.
Thurston, and then move on to selected papers appearing
in the Proceedings of the Annual Symposium on Frequency
Control (which contains about half the relevant papers
each year). For guidance to the more recent literature see
Gerber (1979), Ballato et al. (1982), and Besson et al.
(1982). Brice (1981) gives a simple outline of the theory
as applied to simple structures and Ballato (1977) gives a
more complete one. Both authors essentially assume an
infinite quartz plate with electrodes of negligible weight
and then look at the modifications that are produced by
adding electrodes which have mass but which do not
cause any viscous damping. This type of theory is quite
useful provided that the lateral dimensions of the plate
exceed its thickness by a large factor.

In an infinite solid it is possible to excite three types of
waves. These can be approximately described as one long-
itudinal mode (with particle motion parallel to the propa-
gation direction) and two shear modes (with particle
motion normal to the propagation direction). In an aniso-
tropic material like quartz iri most propagating directions
the modes are mixed —i.e., there may be three distinguish-
able waves but each has longitudinal and shear com-
ponents. In a finite solid other vibration modes are
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326 J. C. Brice: Crystals for quartz resonators

possible =.g., plates can both flex and twist and waves
can propagate on surfaces, but in the majority of commer-
cial devices we use a slow shear mode.

The essential theoretical problem is to find the condi-
tions under which standing waves exist and then to deter-
mine the way in which the resonant frequencies change
with temperature. It is, of course, also necessary to be
able to couple to the waves piezoelectrically. The ap-
proach used is to determine a wave velocity usually given
by (c;/p)'/, where c; is an elastic stiffness appropriate to
the wave and p is the density. We then look at the di-
mension h of the device in the appropriate propagation
direction and find that there is a resonance condition
when h is an odd number of half wavelengths. If this
number is m, then we say that for I = 1 we have the fun-
damental mode, m=3 is the third overtone, and so on.
Ballato (1977) tabulates all the properties needed to
describe bulk wave devices in this sort of theory and gives
their variations with temperature. Thus we can easily cal-
culate the resonant frequencies of a plate in the longitudi-
nal mode or in either of the shear modes. In general, we
are interested in a slow shear mode with small tempera-
ture coefficient of resonant frequency.

When we add electrodes to our plate, the theory be-
comes more complex. The resonant frequency falls (be-
cause the mass to be vibrated increases) and the tempera-
ture coefficient changes. However, these problems are
familiar and we can draw on tabulated data to predict

, what effects the electrodes will have and with somewhat
less reliability what will happen if we use a plate which is
not a plane parallelopiped. Particularly, at low resonant
frequencies, say, less than 8 MHz, it is an advantage to
have a device with curved faces [see Bennett (1960)].
Both convex surfaces and electrodes in the center of the
face serve to concentrate the vibration in the center of the
device. This energy trapping i.s important, since if energy
leaks to the mounting devices, the resonator becomes los-
sy and its electrical Q, falls. Energy loss to the electrodes
and to the gas in the envelope enclosing the quartz can
also occur. There are a number of semiempirical rules for
minimizing the losses .g., there are preferred locations
for mounting clips (at the nodes of possible spurious vi-
bration modes), the use of polished surfaces (to give less
energy scatter to spurious modes), the choice of electrode
material, etc.

Even with perfect construction, rea1 devices have some
losses and these (as in all damped oscillators) cause a fre-
quency change. The easiest way to look at the effect of
losses is to consider the electrical equivalent circuit. Fig-
ure 14(a) shows an isolated device and Figs. 14(b) and

Lq R„
0 (a)

Rq

co
RL

cL cc ~~co (c)

FIG. 14. The equivalent circuit of a quartz resonator and its
behavior near to resonance is shown in (a). (b) The same for a
device with a series-load capacitor CL. (c) The same for a'de-
vice with a parallel-load capacitor. In the right-harid diagrams
the solid lines give the reactance and the dashed lines the resis-
tance as functions of frequency. Typical equivalent component
values are Cp, 3—30 pF; L ~, 2—20 fF; L ~, 6—60 mH; R ], 5—50
Q; CL, 5—60 pF. The use of the circuit in (c) is rare.

14(c) show more realistic circuits in which there is a load
capacitor CI. Table XXXIV relates the various quanti-
ties. In these circuits Co represents the static capacity of
the device and L

&
and C& are related to the kinetic and

potential energies of the resonating quartz. R& is com-

1

2m(L i C] )' (a)

TABLE XXXIV. Relations between circuit parameters. For-
mulas (a)—(c) assume that R& is zero. The presence of a finite
series resistance R

&
decreases f, by an amount which is approx-

imately f„CoR~/2L~, which is typically a few parts per million
of f„.This is of importance only if R~ varies, which can hap-
pen in devices with loose particles (dust, chips of quartz, etc.) on
the plate surface.

Mason (1950) gives the method for calculating the value of c;
appropriate for the cut and mode of vibration. For cuts with
/=0 (see Fig. 15 below) working in the slow shear mode (e.g. ,
an 2 T-cut device) c;=c66cos 0+C44sin 0—2C&4sinO cos0,
where 8 is as defined in Fig. 15.

1

2~[L i Ci Co/(Ci +Co)]'"
1

27r [L ) C ) ( Co +Cl. ) /( C] +Cl. ) ]
RL, ——R i ( 1+Cp /CL )

f.Ci

2(Co+ Cl. )

1
Q. =—

2vrf, R ) C)

(b)

(c)

(e)
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posed of two components: the first and usually smallest
is R~, the losses due to motion in the quartz which has a
finite viscosity. The residue of R i represents all the other
losses. These losses include significant components in-
volving energy transfer to the electrodes, mounts, and gas
ambient. Ballato (1977) justifies the use of these
equivalent circuits near the resonant frequencies and
derives the following values for a plate:

Li ——h /8Cok U;,

C) ——SCpk /m m

(23)

(24)

R~ ——m m gh/8e A, (25)
FIG. 15. The angles 0 and y used to define the cut of a crystal
plate.

where h is the plate thickness, k is the coupling constant
(discussed later), U; is the wave velocity, g is the viscosity
of quartz, e is the piezoelectric coefficient, and A is the
effective area of the electrode which is bigger than its
physical area because there are significant fringing fields.
The ranges of the various parameters can be very large,
but typical values are 3—30 pF for Co, 2—20 fF for C„
6—60 mH for Li, and 5—50 II for Ri for m= 1 at 10
MHz, are 1—10 pF for Co, 2—20 fF for C~, 10—20 mH
for L;, and 4—30 Q for R ~. Load capacitors are often in
the range 5—60 pF.

The electrical quality factor of a device is

Q, =(2m fR i Ci ) (26)

and typical devices have Q, in the range 10 —105.
The coupling constant k is a function of the cut and

the mode of vibration. It can be calculated from the elas-
tic, piezoelectric, and dielectric constants [see Mason
(1950)]. (Figure 17 below gives some calculated values. )

In a simple theory if the mass of one electrode is p
times the mass of the quartz between the electrodes, then
a pair of electrodes of this weight changes the frequency
of the device by a fraction equal to p. This is a reason-
able approximation for fundamental mode devices. For
overtone modes the effect is much larger (e.g. , a factor of
10 for a seventh overtone) [see Ballato (1977) and Ballato
et al. (1982)]. The effect of mass loading on the tempera-
ture coefficient is that p =0.01 produces a change by one
or two parts in 10. A more complete theory [Mindlin
(1961,1963), Tiersten and Mindlin (1962), and Suchanek
(1982)] shows that for large values of p and for large elec-
trode to plate area ratios there are significant deviations
from these simple ideas. See Ballato et al. (1982) for
some examples.

The effect of electrode masses on resonant frequency is
significant when we are interested in long-term stability.
One monolayer of extra atoms produces an easily measur-
able frequency change. (In a typical case the change can
be 0.1—1 ppm. ) Thus if the electrodes outgas or become
contaminated by material left in the sealed device, the de-
vice frequency will change with time. In this context ma-
terial interchanged between the electrodes and the quartz
can change the mass distribution and hence the resonant

frequency. %"e have already mentioned that electromigra-
tion is a serious possibility.

In general, the metal electrodes are deposited by
evaporation. This can result in significant strain in the
electrodes which in turn can modify the elastic constants
of the quartz and so change the resonant frequency. Thus
strain relaxation has often been implicated in the aging of
devices.

Finally, it is worth noting that the temperature coeffi-
cient of frequency is not a completely independent param-
eter. Differentiating the equations in Table XXXIV
shows that the value of Cl is important. Thus trimming
the frequency by varying CI can push the equipment out-
side the hoped-for specification. Ballato (1979b) explores
this aspect. Note also that CL is temperature dependent:
its temperature coefficient can easily be 100 ppm'C

B. The AT cut

The cut of a crystal refers to the orientation of its faces
with respect to the crystallographic axes. Most platelike
crystals can be described conveniently in the O, y notation
given in Fig. 15. For the AT cut, y is nominally zero and
small departures ( & 1') from this condition have negligible
effect on the temperature coefficient of frequency. If this
coefficient is fT, then dfT/dy is zero at q&=0 and the
second differential is small. The value of 8 has been a
matter of some dispute. Depending on how you do the
calculations, the theoretical value for an unelectroded
plate is between about 35.25' and 35.33'. Practical values
depend, as we have seen, on the electrode thickness, but
for most purposes we can take a value in the range

7The experimental data suggest that the angle change as a
function of mass loading is within a factor of 2 of what would
be expected, which is for the required value. of 0 to increase by
0.1' for a mass loading of 3%%uo. However, it should be noted that
some materials, e.g., chromium, create strains which themselves
change the required angle.
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35.22'—35.27' for fundamental plane parallel devices with
diameter to thickness ratios of 25 or more. For similar
devices with smaller diameter to thickness ratios, the
value of 8 falls as the ratio decreases and is about 34.90,
for example, for a ratio of 10. Contouring the blank (i.e.,
making it lens shaped) increases 9 for a fundamental crys-
tal with a large diameter-to-thickness ratio to about
35.30 —35.35'. Contoured crystals with small diameter-
to-thickness ratios can have much smaller 0 values, say,
about 35.0 for a ratio of 10. Overtone crystals with large
diameter-to-thickness ratios need 0 in the range of about
35.42 —35.48, and those with small ratios require smaller
angles. Here the 0 values are those required to' give zero
first- and second-order temperature coefficients which
occur at 27'C. Other angles mentioned in the literature
correspond to obtaining zero first-order temperature coef-
ficient at a different temperature. Figure 16 gives the fre-
quency temperature characteristics; each curve is labeled

with the deviation from the values discussed here. Thus,
for example, a plane parallel device with a large
diameter-to-thickness ratio would follow the curve
marked + 0.25 if its 8 angle were about 35.40. This de-
vice would have a zero first-order temperature coefficient
at about 90'C and if it were maintained in an oven at that
temperature would perform well. However, many users
do not wish to use ovens, because their products have to
be inexpensive, for example, or because the power drain is
not acceptable. If we look at the curve for + 0.1', we see
that by making a device which follows this curve we can
help such customers because in the range —55'C to
+ 105'C the frequency change by only +15 ppm. Over

smaller ranges we can do even better. Thus the curve for
+0.05 deviates by only +5 ppm over a range from
—30 C to + 80'C. Until recently most crystals sold
were AT cut. In part this was because of the very desir-
able temperature characteristics just discussed. However,
the other reason was connected with the coupling coeffi-
cient k, which is a variable in the relation for the
equivalent circuit parameters. The coupling coefficient
for a given mode of oscillation is defined in either
mechanical or electrica1 terms so that

50

or

I

electrical energy converted to mechanical energy
input electrical energy

25

C0
O

S
U

-50

0 40
Temperatur e ('C)

FICz. 16. The fractional deviation of frequency from the value
at 25'C as a function of temperature for AT-cut devices. The
parameter marked is the angle deviation in degrees from the
value giving the curve marked 0. Note that the curves are
drawn as if d fldT =0 at 26'C. This is correct to +1'C for
flat or bevelled plates in their fundamental modes. Approxi-
mate temperatures for d f/de =0 for the devices are 28 C
(plates in overtone modes), 32'C (planoconvex devices), and
35'C (biconvex devices). The temperature scale can be moved
horizontally to describe these devices (data supplied by W. S.
Metcalf, Cathodeon Crystals, Linton, U.K.).

mechanical energy converted to electrical energy
input mechanical energy

Obviously, k &1 and for the cuts usually considered,
k &10%%uo for all modes. For the AT cut, k for both the
a and b modes is zero (see Fig. 17), producing a very sig-
nificant advantage: the response frequency plot contains
responses for only the fundamental c mode and its over-
tones. Thus there is very little chance of a spurious
resonance's being established. However, while the AT-cut
family of devices is and will continue to be very useful,
these devices do have some disadvantages. In particular,
they are very sensitive to strains due to mechanical and
thermal stresses. Vibration, acceleration, temperature
gradients, and temperature changes, as well as construc-
tion faults (electrode and mounting strains which can
change with time), all produce very easily discernible fre-
quency changes. Designers have worked very hard to
minimize these problems, but except under unrealistically
favorable conditions, frequency variations of order 0.01
ppm are almost unavoidable. Also, it is not possible to

Note that it is possible to design circuits in which a varactor
diode is used to compensate for temperature variations.

Until the sales of digital watches became significant, 90% of
crystals sold were AT cut. The residue were mostly low-
frequency devices, e.g., XT-cut devices.
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FKx. 17. The coupling coefficient k arid its temperature coeffi-
cient as a function of y along the AT-to-SC locus. Figure 18
gives the corresponding 0 values.

make small low-frequency devices, ' and although k is
not large for the AT c mode, there is still a large effect of
circuit conditions on the resonant frequency. Thus we
have to look at other cuts.

C. Other cuts

Only a limited number of cuts have zero (or very small)
temperature coefficients, and further restrictions on the
choice of cuts can be imposed by stating that the zero
coefficient must occur at a reasonable working tempera-
ture. Here let us impose an even greater restriction: we
shall look only at platelike devices using a slow shear
mode. We shall then be limited to the AT to SC locus de-
fined in Figs. 17 and 18 (and its extension to higher y
values), but the negative 8 loci involving the BT cuts
(with O, y values of about —49.20,0) and the RT cuts
(near to —34.50,15) should also be mentioned. See Balla-
to (1977) for more detail about these cuts.

This is a slight overstatement and is correct only for plate-
type resonators. Using the AT cut in a bar-type resonator al-
lows much smaller dimensions, and such devices can have excel-
lent frequency-temperature characteristics. Okano et aI. (1981)
show frequency changes of +1 ppm in the range —20 C to
+ 70 C. However, such resonators have many possible vibra-

tion modes and designing them is not easy.

FIG. 18. The value of O~o is the value of 8 to give zero first-
and second-order temperature coefficients of frequency, and T;o
is the temperature at which this point of inflection occurs. The
spreads of values indicated are the deviations between calcula-
tions carried out in different ways by Ballato (1977) and G.
Simpson and R. F. Milsom (Phillips, Redhill, unpublished).
The results strictly apply only to large plane-parallel devices
without electrodes. Data obtained with 10-MHz devices with
very thin electrodes show the same spreads, possibly because of
the difficulty of measuring both 0 and y accurately, but there
are indications that some of the spreads may be real, i.e., be
caused by technological factors —electrode and mounting
strains, for example. The dashed line in this figure represents
the locus of orientations (in O, y coordinates) for which there is
no effect of strain. At larger values of y, 8;0 is not single
valued. See Hruska (1983).

As Fig. 18 shows, moving along the AT to SC locus
away from the AT cut to the IC, IT, and SC cuts raises
the temperature of the inflection point. Even with devices
in ovens it is an advantage to work at the inflection point
rather than a minimum in the frequency-temperature
curve. (The fact that both the first- and second-order
temperature coefficients are zero gives a much longer
range of temperatures in which the frequency does not
change appreciably. ) A bigger advantage, however, is that
in the region of the SC cut, strain in the device does not
affect the frequency. The locus of zero strain effect is
shown as a dashed line in Fig. 18. Strain can arise from
bad technology (electrode strains, mounting strains), from
unfavorable environments (vibration and acceleration), or
from thermal stresses (temperature gradients or tempera-
ture variations which create gradients as heat Aows in and
out of the quartz). These effects are discussed by Keyes
and Blair (1967), EerNisse (1976), Kusters and Leach
(1977), Ballato et al. (1977), EerNisse et al. (1978), Balla-
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130 J. C. Brice: Crystals for quartz resonators

to (1979), Fletcher and Douglas (1979), Brice and Metcalf
(1982), and many others. The conclusions are that cuts
near the SC cut have significantly better properties (good
frequency stability in unfavorable situations, lo~er aging,
etc.) but are more difficult to make (both 0 and y have to
be closely controlled) and require better designed circuits
(the b-mode frequency is near the c-mode frequency and
it is possible to excite either or even both modes). There
seems to be little doubt that in many critical applications
the SC cut will replace the AT cut, but the AT cut will
still be widely used in applications where cost is critical.

As reference to the various volumes of the Proceedings
of the Annual Symposium on Frequency Control shows,
many other cuts have been developed for various special
purposes. In particular, many cuts using nonshear modes
have been developed to give very small devices operating
at low frequencies, e.g., the edge mode devices
(Vangheluwe and Fletcher, 1981). It seems unlikely that
any of these cuts will be widely used in the same way that
the AT cut has been used for the last few decades.

VI. DEVICE CONSTRUCTION

In this section, as in Sec. V, we shall concentrate atten-
tion on plate resonators. Extension of the ideas to mono-
lithic filters fabricated on plates is obvious. Much of the

discussion can also be made relevant to other resonators.
e.g., bar types. Plate resonators and filters made on plates
currently constitute about 90/o of the market by value
and probably by number. The only significant market for
nonplatelike devices is for very small devices, e.g. ,

watches.

A. Blank preparation

X-ray orientation

As noted in the theory section (V.B), it is necessary to
have the face of a plate accurately parallel to a particular
orientation. (The exact angles to be cut depend on details
on the device design —size, mode, electrode mass, surface
curvature, etc.) The accuracy needed varies with the type
of resonator and its application but as an order of magni-
tude we can consider 0.01, which is equivalent to an error
of order 0.1 ppm C ' in the device temperature coeffi-
cient or a change of 6 C in the position of the minimum
in the frequency-temperature coefficient. For an AT cut
we need only one accurate orientation angle. For a dou-
bly rotated cut, we need two accurate angles. Methods
exist which allow angles to be measured with precisions of
about 0.002' (Darces and Merigoux, 1978; Clastre et al. ,
1978; Kobayashi et al. , 1978). Bond (1976) and Heising

TABLE XXXV. Intense x-ray reflections from n-quartz.

Reflection
hk. I

01.0
01.1
01.2
01.3
02.0
02.2
02.3
02.6
03.1

03.2
03.4
04.3
04.4
05.2
11.0
11.1
11.2
12.2
12.3
22.0
22.3
22.5
23.2
23.4

Positive I

24
100

2
5.5

18
10
32
17
18
19
6
3

12
1

13
4

17
9
6
1

5
6
0.4

26

Intensity"
Negative I

24
41
14
3

18
2

63

1

27
3

1

13

17
3
1

1

5
6
2
4

Bragg angle'
(deg}

10.4297
13.3200
19.7336
27.6631
21.2267
27.4375
34.0719
68.2081
34.1575
37.8306
51.9358
57.2378
67.1550
71.6142
18.2733
20.1461
25.0703
33.8722
39.9417
38.8364
49.3731
71.6569
57.0325
76.7728

6Id

(deg}

0
38.2103
57.5781
67.0506
0

38.2103
49.7397
67.0506
14.7031
27.6908
46.3867
30.5581
38.2103
17.4783
0

24.4417
42.2706
30.7558
41.7525
0

34.2839
48.6492
19.8594
35.8442

'Intensities are expressed as percentages of 01.1.
Reflections with intensities & 1 include 00.3, 00.6, 11.3, 11.4, 11.5, 11.6, 12.0, 12.1, 12.5, 12.6, 13.0 13.1, 13.2, 13.3, 13.4, 13.5, 14.0,

14.1, 14.2, 14.3, 22. 1, 22.2, 22.4, 23.0, 23.1, 23.3, 24.0, 24.1, 33.0, 33.1, and 33.2.
'Bragg angles are for Cu Ko,'~ at 25 C.
"These are face angles in O, g notations. For values of y see Table XXXVI.

Rev. Mod. Phys. , Yol. 57, No. 1, January 1985



J. C. Brice: Crystals for quartz resonators 131

TABLE XXXVI. Possible values of y for various reAections.

Reflection Approximate 0 values'

0
19.1067
23.4133
30.000
36.5867
40.8933
60.000
79.1067
83.4133
90.0000

'For exact values see Table XXXV.

Ok. l
12.I
23.l
hh. l
23.T
12.I
Ok. 1

12.1

23.1

hhl

0,15,17,28,31,38,46,49,58,67
31,42
20,36
18,20,25
20,36
31,42
0,15,17,28,31,38,46,49,58,67
31,42
20,36
18,20,25

(1946) discuss the basic x-ray methods used and Bond and
Kusters (1977) describe the basic method used to obtain
the two accurate angles needed for doubly rotated cuts.
For the 2 T cut, the strongest reflection in the lattice 0111
is usually employed. Tables XXXV and XXXVI give a
list of possible reflections. The practical problems are
severe: refraction effects are significant, variations in lat-
tice constant (Brice, 1980) need to be considered, and ex-
act alignment of equipment (Asanuma and Asahara,
1980) is necessary. Anyone thinking of getting involved
with really accurate work should read these eight papers
and some of the background references which they quote.

A crystallographic face in quartz can be written (hkil).
Symmetry dictates that

alV 3tanO=
2c(h +k +hk)'

(29)

A, =2d slnOg (30)

where for Cu KuI, the wavelength A, is 1.540 597 4 A with
an error usually assumed to be about I ppm; but, as Hart
(1981) has pointed out, the wavelength scale for x rays is
not consistent. The interplanar spacing d is given by

The lattice parameters a and c were chosen to give
a=4.9134 A and c/a=1.0012 with errors in the last
places of 2 and 4, respectively (i.e., they are values for
high-grade quartz).

To a first approximation, Bragg's law may be written

6+k+i =0. (27)

Thus one index is redundant and usually i is omitted to
give a face written (hk. l). A reflecting plane is usually
written without parentheses, i.e., hk. l. The set of faces
(hkil), (ihkl), and (kihl) are equivalent: they represent
the effects of the threefold axis. The twofold axes pro-
duce a further three equivalent faces (hkil), (hkil), and
(hkil). Finally, for x-ray purposes only, Friedel's law' sug-
gests that the reflections from one side of a plate are the
same as those from the other, so that hk. l is equivalent to
hk. l. Friedel s law is an approximation in structures like
that of quartz which have no center of symmetry. How-
ever, the effects are small: the intensities vary by only a
few percent and the intensities are identical if the plane is
parallel to a twofold axis. Thus one set of indices hk. l
represents up to twelve reflections. Note that there is one
restriction: faces (0001) give reflections only if 1 is a mul-

tiple of three —i.e., 0003 and 0006 are the only planes of
this type which will reflect the radiation. Tables XXXV
and XXXVI give most of the possible reflections. In
these tables, since hk. l is equivalent to kh. l, the values
listed are restricted so that h (k. These tables give the
values of 8 and qr (see Fig. 15) deduced from

sine@ =

f( —', )(h'+k +hk)+1 /(c/a) ]'~'

Any solid has a refractive index for x rays given by 1 —5,
where

5=2.71X10 pi, gZ gA, (32)

5=1.44~10 'k'

or for Cu ICa&

5=3.43&&10 '.

(33)

Allowing for refraction changes Bragg's law to

A, =2d sin8~(1 —5/sin 8~ )(1—5) (35)

Of

A, =2d sin8& (1—5/sin 8& ), (36)

where 8 and 0~ are the apparent Bragg angle and its
calculated value, respectively (see Fig. 19). For small
values of 5 and 6' (defined in the figure) and small 5, the
following approximations for angles in radians are

0
where p is the density, A, is the wavelength (in A), g Z is
the sum of the atomic numbers of all the atoms in a unit
cell, and g A is the equivalent sum of the atomic
weights. For quartz

8 =8~+5cot(8~+a), (37)
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aW

Re f lect ing
planes

face

2a 1 =2m+6[cot(8~ + a) —cot(8~ —a)J, . (39)

where the positive sign is taken when we measure 3 be-
fore 8. This type of double measurement has a number
of advantages. For example, when only a single measure-
ment is made, the value of 8~ needs to be known and it
changes measurably with the purity of the quartz, the
measurement temperature, and the amount of tilt. The
tilt is the angle ( t) which the plane being measured makes
with the normal to the plane which is defined by the x-ray
beams. A tilt f reduces 8~ by about (1—cost)tan8~ radi-
ans (e.g. , for 8~ ——45' and t =2' the change in 8~ is about
0.035 ).

FiCy. 19. Refraction effects in x-ray measurements. 2. Cutting

8' =8~+5cot(8~ —a) . (38)

Reflecting
plane

These corrections are significant and the second one is
larger than the first, so if we do one measurement we
should choose the setup shown in the upper part of Fig.
20. However, -we have the possibility of doing two mea-
surements, i.e., measuring the angle change between the
upper and lower parts of Fig. 20. If a is in degrees, the
correction for the measured a to the real one is
6.94 X 10 a/sin 8~. More generally, for angles in radi-
ans

Given an accurately oriented boule on a cutting jig, the
next stage is to saw the boule into a set of oriented blanks.
This is often done with a slurry saw, which is basically a
set of reciprocating tensioned steel blades over which dur-
ing cutting a slurry of silicon carbide or alumina abrasive
in water is poured. The alternative cutting machines use
rotating diamond wheels which cut either at the outside
edge (peripheral wheels) or at an inside edge (annular
wheels). In all cases, particularly when the saws have
been in use for some time, the cuts are V shaped and the
blanks are tapered; Clearly this causes the faces to be
misoriented and can introduce errors in face orientation
of up to, say, 0.03'. The amount of misorientation can be
minimized by mounting the boule on a glass plate and
continuing the cut into this "waster. " However, it is in
practice difficult to avoid errors of about 0.01' from this
source. Table XXXVII gives cutting yields which show a
pronounced dependence on the Q of the raw material.

Sut-tace
~(El = ea-CE

FICs. 20. X-ray reAections in quartz, ignoring refraction ef-
fects. Taking refraction into account makes 2 =8 +o; and
8=8' —a.

3. Lapping

After cutting, one cuts or grinds the blanks to the
desired lateral dimensions unless the boule was trimmed
to size before cutting. The semifinished blanks are then
lapped (or occasionally ground) to nearly the desired
thickness. A typical lapping process involves upper and
lower metal laps and the blanks are placed between the
laps in a plastic carrier (i.e., a sheet of plastic with holes a
little larger than the blanks and a thickness less than the
final thickness needed). An abrasive slurry is fed between
the laps and the, thickness is often monitored by connect-
ing a radio receiver between the upper and lower laps
(which now have to be insulated appropriately). The ac-
tion of the abrasive is sufficient to produce a piezoelectric
signal at the resonant frequency of the blank.
Manufacturers regard the details of the lapping process as
trade secrets and most have empirically optimized their
processes. Several factors are important. The process
inevitably produces a further degradation of orientation
which even with an optimized process varies with the ma-
terial used. This effect does not appear to be correlated
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TABLE XXXVII. Approximate cutting yields as a function of method, thickness, and Q.

Yield %

)2.2
=1.8
= 1.0
(0.5

1 mm

95—98
80—90
70—90
40—60

Slurry saw
0.5 mm

92—97
80—85
70—75
30—60

90—95
70—90
50—70
40—60

Rotating saw
0.5 mm

70—90
60—70
40—60
20—40

'These data represent the types of results obtained with a reasonably optimized process. The values
given are approximately the upper and lower quartiles reported The data come from many sources
using different processes and yields, particularly with rotating saws, depend very strongly on the process

with Q. Different high-Q (greater than two million)
batches produce different results. Possibly, dislocation
derisity may be the important parameter. Typically the
angle change is 0.01 —0.02 and its direction is largely
predictable: the spread of orientations increases only
slightly but the mean orientation changes significantly.
Inevitably the lapped blanks are not flat. The edges are
thinner than the centers. Comparing a thickness 1 mm
from the edge (which is usually appreciably rounded) with
a thickness at the center usually reveals a few microns'
difference. The difference is related to the mean abrasive
size and is typically a small fraction ( & 0.2) of the
abrasive particle diameter. A slightly curved surface is
not usually a disadvantage. Deliberately curved surfaces
are produced either by using curved laps (for small radii
of curvature) or by tumbling (for radii of a few cm).
Tumbling involves putting the blanks in a tube with an
abrasive. The tube is then rotated about its axis and the
axis is rocked slowly through an angle of, say, +10 to
+20 from the horizontal. The process is slow, so that
blanks can be removed every few hours to see if they~ are
near the final thickness required. The radii of curvature

of the surfaces are both ultimately equal to the radius of
the tube. Lapping processes damage the surface. Figure
21 gives the depths of damage found for a double-sided
lapping process and a grinding process. The smaller
amount of damage done by grinding is due to the fact
that the abrasive is embedded in the wheel. The amount
of damage depends slightly (say, +50%) on the pressure
between the blank and the lap and on the abrasive used:
silicon carbide does more damage than alumina. Surface
damage is undesirable. Manufacturers remove the dam-
age either by using successively finer abrasives finishing
with a submicron abrasive (i.e., polishing) or by etching.
%'ith regard to polishing, the exact mechanisms involved
are not well understood. It should be noted that polishing
to a visually satisfactory finish does not guarantee remo-
val of all surface strain. Figure 22 illustrates this point by
giving the x-ray rocking curve widths of a set of samples

25-

Q = 1 million
lopping

moving abr asive)

Q = 2 million

1 million/
gr inding

(f ixed abr asive)

8~ 20-
U

U

S

D '}5-
CA

10-
0

Vl

S
C
LJ

0.1
1 10

Abrasive size (pm)
100

5
CA

S
I

U

0
1.0 1.5 2 0 2.5

Q (xlO )

3.0

FICx. 21. Thickness of the damaged layer on quartz as a func-
tion of abrasive size.

FIG. 22. The half-height widths of x-ray rocking curves as a
function of Q for samples polished to a "mirror'* finish, as
judged by the eye.
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(for infrared measurements) as a function of infrared Q.
It can be seen that for low-Q samples very significant
strains remain. 80

4. Etching

Etching is another complex technology. The final sur-
face needed is smooth. Roughness with an amplitude or
wavelength comparable to about one-tenth of the wave-
length of the elastic waves in the quartz will cause appre-
ciable scattering of the energy in the wave and will de-
grade the device performance ( Q, falls, R

&
rises). How-

ever, some manufacturers like a slightly rough surface to
provide a "key" for the electrodes. Certainly it is neces-
sary that in the final device there should be no loose parti-
cles of either quartz or the electrode materials. Failure to
meet this condition results in drive level effects [R ~

and f
vary with the input power; see Knowles (1975)]. Howev-
er, with appropriate cleaning before the electrodes are ap-
plied a polished surface will retain its electrodes. Etching
depends on many parameters.

(a) The nature of the etchant: fluorides —e.g., ammoni-
um fluoride or ammonium bifluoride —are commonly
used, but hydrofluoric acid and caustic soda have also
been used successfully.

(b) The etchant concentration: the rate etching and the
surface finish depend critically on this parameter. Typi-
cal concentrations are 0.5—10 moles per liter.

(c) The nature of the quartz: most etchants preferen-
tially attack the quartz around dislocations, and it is pos-
sible to form a channel linking both faces of a blank (an
"etch tunnel" ). For this reason natural quartz with low
or zero dislocation density is sometimes preferred. Cer-
tainly, low dislocation densities are desirable. Increasing
the temperature changes the spread of etching rates in a
batch of blanks. Typical spreads are 50% at 25'C and
25%%uo at 55 C. The etches giving the most uniform rates
give spreads of about 25% at 25'C and 12%%uo at 55'C.
The advantage of a high temperature is obvious. Howev-
er, since we want to apply a constant (or as near as we can
get to a constant) thickness of electrodes, the spread in the
etch rates provides a problem. For example, to maintain
the thickness of the quartz constant to 0.1% over the
batch, we cannot etch more than 0.8% of the thickness-
i.e., the maximum removal is limited to 0.4' of the
thickness on each side. Thus for a 10-MHz device we can
etch only about 0.6 pm from each face.

(d) The temperature: common choices range up to
75 C. Apparent activation energies for fluoride-based
etchants range from 23 to 44 kJmol '. Thus rates of
etching at 55 C can range from 2.5 to 5 times the rates at
25 C. With ammonium bifluoride, excess etchant is often
added, so that the etching temperature will also fix the
concentration.

(e) The amount of surface damage: damaged material
etches more rapidly than undamaged material, so that the
rate of etching of a lapped blank is initially high and then
falls and finally becomes constant (see Fig. 23).

E
60—

40
0
S

20
C3

0 20 40
Time (min}

60
0

80

FICr. 23. Etching rate and amount removed as a function of
time. The etchant used was a saturated aqueous solution of am-
monium bifluoride at 80'C. Unpublished data produced by J.
R. Cox (Philips, Redhill).

(f) The nature of the face being etched (i.e., its orienta-
tion): for example, rates of etching for a 5.4 molar solu-
tion of ammonium bifluoride at 25'C are 0.015 pmh
(on an X face and a F face), 1.1 pmh ' (Z face), and
0.48 pmh ' (AT blank face). Faces more than 5 —10
from a natural (singular) face etch at about the same rate
as the Z face. With many etchants the final form of an
AT face is stepped with (0111)treads and risers which ap-
pear to be 1'and X faces. The ratio of step length to riser
height depends on many parameters but ratios of about 20
are common. The mean face orientation changes slowly
with etching time.

(g) Additives: sugar, glycol, and various detergents are
often added to improve" the performance of an etch.
There appears to be a real advantage in adding a deter-
gent: perhaps it removes small amounts of grease which
would otherwise make the etching less uniform. As a per-
centage of blanks unbroken after cutting, the yields of
blanks after lapping and etching are very similar to the
cutting yields in Table XXXVII. Thus there is a very
clear economic advantage in using high- Q material.

When thin wafers are needed, the problem of "etch tun-
nels" linking both faces can be serious. As already men-
tioned, low dislocation density material can be used to
give reasonable yields. It is also found that in "swept
quartz" (i.e., material which has been subjected to solid-
state electrolysis) there are fewer channels. Sweeping is
known to remove some impurities, particularly alkali met-
als, so that perhaps only decorated dislocations give rise
to deep pits.

As far as obtaining an accurately oriented blank is con-
cerned, it is clear that each of the necessary processing
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steps causes a loss of accuracy and that the batch of
blanks produced will have an appreciable spread. (In
some cases a histogram of number in a particular angular
range can even have two maxima. ) However, at the stage
of the nearly finished blank the manufacturer can recover
a lot of the loss by remeasuring the orientation and classi-
fying the blanks into angular ranges. " The blanks nearest
the target orientations are then used for the most critical
applications. Inevitably this wastes some blanks which
can perhaps be reprocessed for use in higher-frequency
devices but which are mostly sent for scrap. Remeasuring
and classifying with the scrapping of out-of-tolerance
blanks is cheaper than making out-of-specification de-
vices.

Electrodes

Electrode materials are usually applied by evaporation
but sputtering is occasionally used. Evaporation has the
advantage that the electrodes contain no gases. (We have

already seen that changes in the electrode weights are ex-
tremely undesirable. ) The most popular electrode materi-
al is silver. Gold is used in some high-quality devices.
Other materials, e.g., evaporated aluminum or copper and
sputtered chromium, have been used. It has been reported
that aluminum and chromium cause some problems. The
oxides of both elements have free energies of formation
which exceed that of quartz, and they might therefore
reduce the surface of the quartz. However, it is likely
that the poor results obtained by some workers are due to-
strains. Aluminum is commonly used for high-frequency
devices, for which its low density is an advantage. Elec-
trodes are usually applied in two stages. First a keyhole-
shaped basecoat is applied to both faces. The shaft of the
key is used as an electrical connection. The second stage
is to apply a circular coat over the central region. This is
done with the device operating, and the deposition is
stopped when the frequency falls to the target value.

C. Mounting and encapsulation

The quartz plate is held in some mount which serves as
a mechanical holder and also provides the electrical con-
nection. Often the blank is held in the clips by a cement
(silver-loaded epoxy resins or water glass are common
choices but polyimides have some advantages). The type
of mount used depends on the application of the device.
Two-, three-, and four-point mounts are used. The posi-
tions of the mounts can be optimized to minimize the ef-
fects of the inevitable tensile or compressive forces or the
twisting and bending moments which can be applied.
Ballato et al. (1977), EerNisse et al. (1978), and Fletcher

Before electrodes are applied, a light etch is desirable.

and Douglas (1979) gives resumes of the theory and prac-
tice in this field. See also Mingins et al. (1963) and Lee
et al. (1976).

Finally, the device is sealed in a case, which can be
made of glass, ceramic, or metal. The metals used include
stainless steels, plated mild steel, copper, and nickel. The
final seal can be made by soldering, cold welding, or resis-
tance welding. Ceramic cases have given excellent results
but are uncommon. It is possible to compare the other
enclosures in terms of long-term stability, but it should be
noted that very large variations can occur. The following
results are widely quoted: if solder-sealed enclosures have
unit stability, resistance-welded devices will be four times
better, cold-welded devices wi11 be eight times better, and
glass enclosures will be ten times better. The results ob-
tained in practice depend on the final stages of treatment.
For example, baking the components in vacuum before
use always increases long-term stability. Similarly, the
ambient in the enclosure is important. The best results
are obtained in a high vacuum, but some manufacturers
use dry nitrogen, hydrogen, or helium. The use of a gas
ensures that the blank heats rapidly to its operating tem-
perature. For fairly small enclosures the time constants
range from about 80 sec for an evacuated glass enclosure
down to about 10 sec for a helium-fiHed metal enclosure.

D. Manufacturer's and user's responsibilities

Most of the important device properties have now been
introduced and the factors to which they are sensitive
have been mentioned. Here I collect these two sets of pa-
rameters and introduce a few additional ideas necessary
for the discussion in Sec. VII. I also introduce some new
evidence to illustrate relations not previously demonstrat-
ed adequately.

The first parameter always specified is the device fre-
quency. To a first order of approximation this is fixed by
the thickness of the quartz blank. It depends also of
course on the blank orientation, but, as we have seen, the
device manufacturer does not usually measure the thick-
ness directly; instead he measures the resonant frequency,
and with reasonable technology at the lapping stage a
spread of resonant frequencies after lapping should be
about +0.4%. After etching, because of the spread of
etching rates the spread of resonant frequencies will be
larger, but not enormously larger: a spread of
+0.5—0.6% is a reasonable target.

To a second order of approximation, the device fre-
quency is fixed by the mass of the electrodes. As we have
seen, the manufacturer trims the frequency by adding a
little extra mass. At this stage any reasonable device
should be within SO ppm of the target at the adjustment
temperature, and a good device should be within about 5

ppm of the target. Note that at this stage the target may
differ from the device's operating frequency to allow for
the difference in temperature and ambient pressure, and a
good manufacturer may well set this target to allow for
other factors so that when the device is delivered it will be
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1 d(hf)
fr. der.

(40)

falls as CL increases. Thus, since Cl will vary, there is
an advantage in using a large value of CL.

So far, the technological factors involved are only the
obvious ones of quartz size and electrode mass. We now
turn to the third-order approximations for the device fre-
quency and look at some of the more subtle effects.

The customer will specify an allowable frequency varia-
tion with temperature, either in terms of a temperature
coefficient or the position of an extremum in the
frequency-temperature plot. To a first approximation
these factors are fixed by- the blank orientation, so that
the spread of, say, temperature coefficients is strongly
correlated with the spread of orientation. However, the
mass of the electrodes and the value of the load capacitor

within the target range specified by the customer. Note
that the customer's target must allow for the load capaci-
tor. Figure 24(a) shows a typical variation of frequency
with load capacitor for an AT-cut device. Other cuts can
have smaller changes. Note that Fig. 24(b) shows that the
pullability

also have significant effects. The value of the load capa-
citor is controlled by the user, and in attaining the target
frequency, the device maker has already made use of the
electrode mass. Thus to attain a target behavior the only
free parameter is the spread of orientations. Thus if the
manufacturer cannot achieve the desired behavior by con-
trolling the orientation, he must revise his targets for the
blank thickness and surface curvature or electrode mass.
Note that if the frequency-temperature plot is not
smooth, poor technology has been used or an error made
in the device design.

The next parameter fixed by the customer is the con-
stancy of frequency with time, i.e., the aging characteris-
tics of the device. Device aging is a subject which can
lead to animated discussion among device makers. The
main problem is that many factors are involved and that
these factors are not independent so that it is possible to
have present two or more factors which change the fre-
quency in different directions as a function of time and
thus obtain spuriously good aging over a particular time
interval.

The study of aging is obviously time consuming and
thus most aging studies make two assumptions. The first
is that aging is temperature dependent in a predictable
fashion. Although making presumptions without know-

ing the exact mechanisms involved is clearly dangerous, it
is useful and in a large-scale manufacturing context
(moderate technology) it works. For small-scale high
technology operations it may not be valid. Typical as-
sumptions are that about 25 days at 85'C is equivalent to
a year at room temperature and that about 30 days at
110 C to 130'C is equivalent to a year at 85'C. The oth-
er assumption is that the rate of aging falls with time.

0',

20-

( ppm/pF)

]0-

10

10

~ ~

TTC cut 85'C
r ~

~ e

.~

~ .

);"
)(

10

S
U

CAt:
U)

y -0.1

20
cL &nF

60

0.1

I

10

l

10
I

']0

Time from fabrication

I

10 (hout-s)

10 (days)

FICJ. 24. Frequency change hf as a function of CI and pulla-
bility [S=(1/fL, )(db f/dCL, ) J as a function of CL. FIG. 25. Aging rate as a function of time from fabrication.
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TABLE XXXVIII. Data on diffusion of electrode materials into quartz. The measurements were made using Rutherford back
scattering.

Annealing
temperature

('C)' polished
Copper'

lapped polished lapped

0

Penetration (A)"
Silver'

polished
Cxold'

lapped

400
300
200

1000
160
60

1400
500
130

1200
250
100

2200
1200
300

250
80

1000
250

'The samples were annealed for 6 h.
Absolute accuracy probably a factor of 2. Relative accuracy +25%.
Polished samples were finished on Syton. Lapped samples were finished on 15-pm alumina.

Two mathematically equivalent forms are used. The first
states that the frequency change in each time decade is
constant —i.e., with times measured from the time of
manufacture the measured change from day 1 to day 10 is
equal to the change from day 10 to day 100, which in
turn is equal to the change from day 100 to day 1000, and
so on. The second form is to say that the logarithm of
the rate of aging is inversely proportional to time. Figure
25 shows that this second form is only an approximation,
and indeed many plots for individual devices show that
devices which initially show an increase of frequency with
time can, after some time has elapsed, show a decrease of
frequency with time.

With regard to aging, it is generally agreed that two
factors are of prime importance (Hafner and Blewer,
1968), but these can be subdivided (Besson et a/. , 1982).
The first factor is changes in mass distribution and the
second is changes in strains. These are not always com-
pletely independent.

Consider first changes in mass distribution. We have
already seen that adding or removing one monolayer from
the electrodes changes the frequency very significantly.
Thus any volatile material on or in the electrodes or on
the case and able to reach the electrodes can change its lo-
cation (particularly when the device's temperature
changes: during heating the case is hotter than the elec-
trodes, and during cooling the case is cooler). Hafner and
Blewer (1968) have shown the excellent results which can
be attained by high vacuum processing, eliminating all
contact with fingers and similar greasy sources of con-
tamination. Because contamination with organic materi-
als is so common, Vig (1976) developed a method involv-

ing exposure in air to short-wavelength ultraviolet light
which locally creates ozone and literally burns away or-
ganic material. Most manufacturers submit blanks to
rigorous cleaning and the use of vacuum baking of all
components before final assembly has been mentioned
earlier. Similarly, particulate matter must be removed,
e.g., by ultrasonic cleaning. (Failure to do this can lead to
step changes in frequency, as discussed later. )

Changes in the mass distribution can occur which do
not involve mass transfer between the blank plus elec-
trodes and the case of the ambient gas. Many electrode
materials can move into quartz by diffusion which is
greatly enhanced by surface damage (see Table
XXXVIII). Movement from the electrodes can be

enhanced by electric fields which can also move impuri-
ties in the quartz. Brice and Metcalf (1982) report rever-
sible time-dependent effects due to the movement of lithi-
um in devices exposed to electric fields. This is a dif-
ferent effect to the instantaneous frequency change due to
a field which can produce changes of a few ppb per volt
(Hruska, 1980). Thus the device manufacturer must pro-
duce devices with undamaged surfaces on pure quartz
blanks, but the user has a responsibility for not exposing
devices to electric fields, particularly changing ones. Note
that the dc resistance of a typical quartz resonator is
greater than or comparable to the dc resistance of most
capacitors, so that a simple blocking capacitor is not ade-

20-

't0 1

Drive level (rn W }
10

FICi. 26. The variation of frequency with power level for a typ-
ical AT device. Data from Philips (1982). At low powers, the
frequency change hf is probably a result of the variation of
elastic constants with strain. This effect will also be noticeable
at high power levels when there can also be effects due to heat-
ing. The rate of loss of heat from a typical quartz blank is
10—100 mWcm 2 per degree by which the blank temperature
exceeds the case temperature, Thus with a power input of 100
mW the temperature of the blank can be 1'C to 10'C above the
case. This is why large devices are needed at high power levels.
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quate protection. A resistor (say, 10 or 10 Q) in parallel
with the resonator and a blocking capacitor in series with
this parallel combination should not affect the behavior of
the circuit but will protect the device from electric fields.

Jaroslavsky and Lavrentsov (1982) have shown that ag-
ing rates rise at high power levels, and here high indicates
100 pW or more. Thus crystal users have a responsibility
for minimizing the power level if good aging characteris-
tics are required. Note in any case that frequency
changes with power level (see Fig. 26).

Turning now to strain related effects, we can note first
that electrode or impurity migration can be enhanced by
strain. Impurities cause lattice-constant changes and
these changes can cancel elastic strains. Even if material
migration and other long-term stress relaxation processes
cause no mass distribution effects, the relaxation of stress
causes frequency changes. Some cuts of quartz are more
sensitive to strains than others. The SC and TTC cuts
were developed with this in mind. With moderate tech-
nology these cuts are typically a factor of 5 better than
AT devices made using identical technology. For exam-
ple, Brice and Metcalf (1982) report aging rates of 1 ppb
day-1 for TTC devices and 6 ppb day-1 for identically
processed AT devices. Thus the device manufacturer has
a responsibility for optimizing electroding and mounting
to minimize strain or for choosing cuts which show small
strain effects. However, the user also has some responsi-
bilities in this field: acceleration, vibration, ' temperature
gradients, and temperature changes all produce stresses in
the active region of the device and even power level
changes can produce frequency changes (Fig. 26) so that
the user must either eliminate these effects or specify (and
be prepared to pay for) a device which will withstand
them.

Users would like devices with good short-term stabili-
ties or noise performance. The factors which govern-
these parameters have not been completely isolated. Ob-
viously, the electrical Q of the device is involved. Cuts
which show small strain effects give better performance.
Devices which are superficially the same but come from
different suppliers differ in performance so that techno-
logical factors must be involved. Low-noise devices can
be made but it seems likely that the sophisticated technol-
ogy used is more elaborate and expensive than necessary.
Besson et al. (1982) discuss these problems and make it
clear that both circuit and device parameters are involved.

Table XXXIX summarizes the circuit design factors
which must be taken into account when high performance
is needed.

~~A frequently discussed parameter is the response of the de-
vice to low-frequency vibration (microphony). Appropriate
choices of cut, mounting orientation, and mounting methods
and materials can significantly reduce microphony.

TABLE XXXIX. Design factors for high-performance circuits.

(1) Use the specified value of CL, to attain the desired
frequency and frequency-temperature variation.
Specify a large value of CL to reduce variations
caused by changes in CL. (Note that Cl. is the to-
tal capacity seen by the device, not just the capaci-
tance of the component labeled load capacitor. )

Use as low an operating temperature as possible to
reduce aging but remember that at low temperatures
hysteresis may occur.
Maintain a constant operating temperature (even
small rapid temperature excursions affect some de-
vices).
Use a low power level to reduce aging, but remem-
ber that at low power levels the noise performance
can be severely degraded.
Use a constant power level (frequency is a function
of power level).
Minimize the dc voltage across the device to elim-
inate frequency changes caused by electromigration.
Keep the dc voltage across the device constant (fre-
quency depends on voltage).
Specify a high device Q for good noise performance.

(4)

(7)

A. The measurement of infrared Q

Quartz is usually specified in terms of an infrared Q
which is sometimes called a material Q or more often just
Q. This quantity is the electrical quality factor ( Q, ) of as
nearly as possible an ideal device, which is specified as
follows.

Frequency: 5 MHz+5 kHz, 5th overtone.
Cut: AT 2'5l'+2' from the z (minor rhombohedral)

face rotated in the direction of the F cut.
Quartz: cut from the Z zone.
Crystal Element: 14 mm diameter, planoconvex, radius

of curvature 50 mm, finished to a polish.
Electrodes: 8.5 mm diameter, silver or gold, plate back

2kz (i.e., the mass of the electrodes decreases the resonant
frequency by 2kz).

Supporting points: at the intersections of the Z axis
with the periphery.

Seal: in vacuum &10 Nm

The Q, value of these or similar devices can be correlated
with infrared absorption in the quartz, as was shown by
Sawyer (1972), Fraser and Dodd (1966), Rudd and
Houghton (1966), Toyo (1975,1977), and others. Brice
and Cole (1978,1979) have studied the measurement of
the infrared Q which is well correlated with the hydrogen
content of the crystal. Indeed, the general belief is that
the important parameter is that part of the infrared ab-
sorption which depends on the hydrogen content.

The parameter actually measured is an extinction coef-
ficient o, , which is defined so that with a sample of thick-

Vll. THE RESULTS OBTAINED USING REAL CRYSTALS
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ness t, the fraction of the incident light transmitted is

(1 R)210—~~
T=

g 210—2at (41)

TABLE XL. Value of Cin the relation Q=CX10'/a3585.

Spectrometer resolution
' (cm ')

where R is the reflection coefficient of the surface. For
quartz R is about 0.04 but depends on the surface finish.
The coefficient a is a function of frequency (usually quot-
ed as a wave number v ). From the work of Kats
(1962a,1962b) and others it is known that the frequencies
of interest are 3585, 3500, and 3410 cm '. [See Brice and
Cole (1978) for other possible frequencies. ] In order to
deduce a from a plot of T against v (easily obtained using
a double-beam spectrometer) it is apparently necessary to
use more than one sample having different values of t
Doing this is time consuming and involves expensive sam-
ple preparation if the values of R are not to change be-
tween samples. However, since R is small and we can
find a value of v (v„r)with very low absorption, we can
approximate to the formula defining a, by writing

( 1.2
1.4
1.6
1.8

& 2.0

a*,q, 0 ——[log&0( T«t/T34io) ]/t —0 019 ~

and the various a* are related by

3410 1 ~S+3SOO

and approximately

0'3sss 1.03cx3soo .

1.60
1.56
1.46
1.41
1.39

(47)

(48)

(49)

a =[log&0(T„t/T„)]/t. (42)

If, at v„t, a is exactly zero, the fractional error is
R 10 ', which should be less than (0.04) . The usual
values of v„rare in the range 3800—3900 cm '. Brice
and Cole (1978) showed that at these frequencies there is a
small absorption (0.025+0.002 cm ') which has to be
added to the value given by Eq. (42) so that the best easily
measured value of a, is

Q =CX10 /a*,
where

(50)

The second of these relations is approximate, because the
measured value of a35g5 depends on the resolving power
of the spectrometer used. An empirical correction for
this will be given. Using these data in the relations be-
tween Q and a, given by the previously quoted workers
gives

a,= [log&0(T„r/T,)]/t +0.025, (43) C=1.35 for v=3500,

a =
2 (ai+a2)+0. 025 . (44)

However, we do not wish to know o. ; we want only that
part o.* which is related to the hydrogen content. Direct
absorption of energy by the lattice is likely and couM be
significant. Brice and Cole (1978) and 8rice (1984)
showed that comparing data at 3SSS and 3410 cm ' with
results at 3500 cm ' (on which most prior calibrations
had been based) gave lattice absorptions of zero at 3585
cm ', and 0.044 at 3410 cm '. (Note that these values
are strictly extra contributions: we cannot be certain that
there is no lattice absorption at 3500 cm '.) The value of
the lattice absorption causes us to overestimate u*. Thus
the best estimates of a* are

a3500 [log10( Tref /T3500 )]/t +0.025,

a35g5 [log~0( T&ef/T3sss )]/t +0.025 (46)

when a~ is in cm '. However, a depends on polariza-
tion (and all spectrometers produce light which is slightly
polarized). Brice and Cole (1979) showed that if two mea-
surements of a„were made and the sample was rotated by
90 about the beam axis between the measurements, then
the mean of these measurements was a constant depend-
ing only on the sample and not on the initial angle be-
tween the polarization and some reference direction (say,
the optic axis) in the sample. If we write a& and a2 for
the a values deduced using (42), then from (43) we obtain
a best estimate

C =1.69 for v=3410,
(51)

~3Above an apparent Q of 2.5 million, the value of Q deter-
mined at 3585 cm ' systematically exceeds the values deter-
mined at other wave numbers. This divergence reaches 7% at
Q=3 million when a spectrometer with a resolution of 1.7 cm
is used.

and the values of C for 3585 cm ' are given in Table XL.
These relations have now been tested on several hundred
samples in five establishments using a total of seven spec-
trometers (some of which were used in different modes, so
that different resolutions in the range 0.6—4 cm ' were
obtained). On any one machine the Q values obtained at
the various frequencies were the same to within on aver-
age about 7% in the range 0.3~ QX10 &3.' Measur-
ing Q on the same sample on different instruments gave
agreement to within an average 7—10%. These results
are consistent with the expected experimental errors of
5—7% in the individual measurements. Thus we have a
consistent method to produce a Q value but it should be
noted that the scale given by (50) is not universally ac-
cepted. In the critical range (1.8—2.0 million) divergences
between the scales are generally only 10% and at most
20%.
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It should be noted that while the device Q of a nearly
ideal device is well correlated with the infrared Q, the
correlation is not perfect and the scatter of the data is
larger than we would like to admit as being caused by ex-
perimental error. Thus some other factor may influence
the device Q. One possibility is the dislocation density
(see Sec. VIII.E).

40

B. Oevice properties affected by Q

1 1——+
Q, g

I

Q.
(52)

We have already noted that on a statistical basis we ex-
pect that as the infrared Q falls, the concentrations of
most impurities rise, dislocation densities increase, and
the material becomes more fragile. Thus to separate ef-
fects caused by these parameters from ones due intrinsi-
cally to the material Q is likely to be difficult.

Obviously from the definition of Q (Sec. VII.A) the Q,
of a nearly ideal device will correlate well with material
Q. Most resonators now manufactured are far from ideal:
the majority of devices fabricated in large numbers have
Q's in the range from 20000 to 200000. If we write the
electrical quality factor Q, of the device in the form

20
1.0 '1.5 2.0

Materioj Q (XYLO 3

l

2.5

FIG. 27. Device Q as a function of material Q.

hR i ——(0.9+0.3)b,R i,
hf =(0.9+0.6)b.f,

(53)

(54)

and

and hR, the maximum differences between values with
power increasing and decreasing (see Fig. 28)], and the
temperature coefficient. They also looked at the spreads
of these quantities. Figures 28—32 outline their results.
They also found that

where the Q; are related to the electrical and mechanical
energy losses in the electrodes, at the quartz surface, and
to the mounts, then for a constant processing schedule we
might expect that the Q; values would be constant. Con-
sider now two cases calculated on this basis. We use first
a material with Q=1 million and make devices with

Q, =2.7X10 . Without otherwise changing the process
we substitute material with a Q of 2 million. We then ex-
pect Q, to increase by about 2%. However, from the
data in Fig. 27 we find an increase of about 17%. The
second example involves using material with Q= 1 mil-
lion to make devices with Q, about 2X 10 . The expected
change on substituting material with Q=2 million is
about a 10% rise in Q, . However, from the published
data of Asahara and Taki (1972) our experimental finding
is an increase of 20%. Thus we find that as the material
Q rises, the quality factor of the devices (Q, ) rises faster
than is consistent with Eq. (52) if all the Q; terms are
constant. Thus at least one of the terms Q; must depend
on Q or a parameter correlated with Q.

The fact that device yield falls with Q has already been
illustrated (Table XXXVII), and Fig. 21 showed that the
depth of damage increases as Q falls. A consequence of
this is that a damage removal process which works well
for a high-Q material may easily not be satisfactory for
lower- Q materials.

Brice et al. (1981) carried out a systematic study of the
influence of Q on device properties for 1.3 & Q
& 10 & 2.6. They examined batches of identically
prepared devices and looked at the equivalent series resis-
tance E.&, the variations of R& and resonant frequency
with power level [using four parameters, bf and AR,
which are the differences between extreme values, and hf

Af =(9.5+6.0)AR ), (55)

10 666 900-

10 666 800'
)0-8

I I

)0-6

Power (W)

I

)0 4

FIG. 28. The variation of frequency witb power level for a de-
vice, showing drive-level dependence. Note that the power lev-
els are low compared with those in Fig. 24. Note also that the
parameter hf is not the same in the two figures. In this figure
d,f is the total frequency deviation, and hf is the maximum
difference between values for power increasing and power de-
creasing.

where bf is in hertz and bR
&

is in ohms. Clearly bf and
hf are vital quantities. The power range (six decades)
used is more than would be encountered in practice.
Changes over one decade are typically factors of 6 and 3
less, respectively. These results show quite clearly that
below Q= 1.8 million, average values deteriorate and pro-
duction spreads increase. It is also noticeable that at
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FIG. 31. The variation of temperature coefficients (left-hand
axis) or the apparent deviation of angle from the expected
(right-hand axis) as a function of Q. The differences between
the two sets of data are probably not significant: the angles cut
may well not have been the same.

0 I

2
Q (xi& )
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20-

FICx. 29. The variation of R~ and bR& with material Q. The
solid lines are the median values and the dashed lines are the

upper and lower quartiles.

high-Q values the distributions are symmetrical (probably
Gaussian) but at low-Q values the spread of results is de-
cidedly asymmetric. Clearly with any reasonable specifi-
cation the production yields would deteriorate rapidly.
Consider, for example, a specification calling for R

&
to be

less than 25 Q. For Q&2 million the yield would be
about 90%%uo. At Q=1.75 million it is 75%. At Q=1.4
million it is 50%, and for Q=1 million it is 25%. As
discussed earlier, the effect on R

&
is probably largely but

not entirely due to the extra damping by low-Q material.
The residual effects on R ~ could be attributed to strain or
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quartiles.

FIG. 32. The spread of temperature coefficients (measured as
the standard deviation) as a function of material Q.
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perhaps dislocations. The deterioration of hR
&

and hR
&

could reasonably be attributed to damage's leaving loose
chips on the quartz surface. Note that after a device has
been run at a high power, AR& is much less. Figure 28
refers only to the first cycle of power increase followed by
power decrease. Subsequent cycling gives values of AR&
and hR which are much smaller. The degradation of b,f
and hf found as Q falls can be directly accounted for by
the changes in b,R& and hR

&
(see Table XXXIV). These

results are particularly marked because they refer to pro-
duction techniques which are barely adequate. Better
technology (particularly lapping and etching to ensure
that all surface damage is removed) makes the effects
much less marked although still discernible.

The results in Fig. 31 relating to temperature coeffi-
cients can be interpreted as showing a change in the effec-
tive value of the angle of cut 0. Similar data due to
Asahara and Taki (1972) are plotted as circles and a
dashed line. The differences between the two sets of data
in terms of the mean parameter angle are not significant:
they merely represent minor errors in target setting.
However, the slopes of the trend lines are significant and
strongly suggest that an angle change does occur and that
over the Q range considered the angle change is of order
0.02 .

From the results given here and earlier, it is apparent
that a material Q of about 1.8 million is in some way crit-
ical. The use of material with a much higher Q does not
bring significant advantages, but the use of a material
with a much lower one can bring very significant disad-
vantages which become more onerous as the Q falls.
However, Q is not the only parameter involved, so we
shall now consider others.

C. The effect of impurities

The effect of hydrogen has already been discussed. The
only other impurities likely to be present at over 1 ppm
relative to silicon are carbon, aluminum, lithium, and
sodium (see Tables IX and X).

There appears to be no information about effects due to
carbon or its location on the lattice. As a substitutional
impurity it should be harmless (no charge compensation
would be needed and it should diffuse slowly). As an in-
terstitial impurity its small size and mass would allow ra-
pid diffusion. Since crystals grown by the carbonate pro-
cess contain much more carbon than ones grown by the
hydroxide process, and since it seems no one has said that
carbonate process material is markedly inferior to hydrox-
ide process material, ' we can conclude that carbon is not
likely to be a source of trouble.

Both lithium (Brice and Metcalf, 1982) and sodium
(Iwasaki and Kurashige, 1982; Warner et al. , 1965) seem

My colleagues at Philips have looked for differences and
failed to find them.

to have deleterious effects "aused, apparently, by their
high mobility in the devices [see Filler et al. (1984)].

It has been known for many years that the presence of
aluminum degrades the behavior of quartz devices sub-
jected to ionizing radiation. Other more mobile impuri-
ties may also affect performance, since it is known that
swept quartz (see Sec. III.C) behaves better in high radia-
tion fluxes. Taking the logarithm of the fractional fre-
quency change per rad as a guide figure, for natural
quartz we get —11, for high-grade (Q&2.2 million) syn-
thetic quartz we get —11.5, and for swept quartz about
—12.

Thus for most purposes using high-grade quartz we
need only worry about the lithium and sodium contents,
which in critical applications (low aging, high fields) may
need to be well below 1 ppm. If high radiation Auxes are
unavoidable, a more widespread purity specification may
be needed.

D. The effect of inclusions

Asahara et al. (1975) have studied the effects of in-
clusions on device properties and have found that in ma-
terial with Q & 2.4 million, inclusions in the active region
of a device had little effect on any device parameter, even
when the total volume of the inclusions was 0.2% of the
volume of the sample. They recommend that for a wide
range of applications densities in the size ranges ~ 100,
70—100, and 30—70 pm should not exceed, respectively,
1, 4, and 8 cm . However, it is noteworthy that their
devices were plates about 200 pm thick and that the larg-
est recorded inclusion size was 100 pm. Inclusions with
sizes equal to the plate thickness almost certainly could
not be accepted. In practice, significant inclusion densi-
ties are rare in the bulk of high-Q boules. High densities
in the seed veil are more common and lead to dislocation
formation. See Secs. III.B and III.D. Dislocations are
undesirable, first intrinsically (see Sec. VII.E) and because
they tend to be decorated with hydrogen, giving a low Q.
Thus isolated crystals with prominent seed veils in a
batch which gave high- Q values on a few test samples
may be atypical and should probably be discarded.

E. The effect of dislocations

As mentioned earlier, heavily dislocated crystals
machine differently from low-dislocation ones. Here high
means of order 10 cm and low means of order 10
cm . Thus mixtures of high- and low-dislocation densi-
ty boules could create problems in a production environ-
ment: the two types would require different cutting an-
gles to accommodate the different changes in orientation
during lapping. There is also some evidence to suggest
that highly dislocated crystals crack at lower thermal
shock values. See Fig. 33 but note that this correlation
may be a consequence of the correlations on Figs. 4 and 6
between Q and dislocation density and between thermal
shock and Q.
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F. Other parameters affecting devices

40-

10 10
Dislocation density (cm )

FIG. 33. The correlation between thermal shock necessary to
break a boule and the dislocation density.

We have already shown that the resistance to fracture is
an important parameter which affects performance and
yield. This parameter depends on Q and possibly disloca-
tion density and is therefore not an independent variable.

Bye and Cosier (1979) show that growth striations af-
fect R& adversely. Growth striations are bands of strain
resulting from variations in the growth rate of the crys-
tals. Modern temperature control equipment makes this a
rare phenomenon, which is most easily revealed by x-ray
topography. Any batch of crystals giving consistently
high R ~ values should be examined for this effect, which
should not vary much from crystal to crystal in the batch.
Thus one topograph of a Y-cut or an AT-cut sample
should be sufficient to establish whether the effect is
present. It it not currently possible to give an exact nu-
merical value of the allowed strain, but from analogy with
the effects of growth sector boundaries (Table XXXII)
which are known to be harmful, we can suggest that
strains of order 10 could produce significant effects.
Certainly strains of this order affect R

~ [Bye and Cosier
(1979) and Toyo (1975)]. Toyo (1975) also shows an ef-
fect on temperature coefficient. Thus further evidence ex-
ists that only Z-zone material should be used.

Similarly, as stated earlier, twinned material is not ac-
ceptable (Toyo, 1975).

The material near a dislocation is strained and a high
density of dislocations may change the etching charac-
teristics. Again this could adversely affect a production
line.

A single dislocation and its strain field should not ap-
preciably affect the operation of a resonator, but arrays of
dislocations may well do so, and Bye and Cosier (1979)
list such arrays as defects affecting the Q of the device.
They actually use the equivalent series resistance R& as
the key parameter in their discussion of 1.4-MHz devices.
Looking at their topographs' shows that resonators with
obviously low dislocation counts (&10 cm ) had R&
values from 124 to 219 II and that ones with obviously
high densities ( & 10 cm ) had R

&
in the range 209—614

Q. Thus there does seem to be a significant effect.
If we assume that the increase in RI is due to energy

scatter by the dislocations, we can propose that for effi-
cient scattering the spacing between dislocations should
be significantly less than the wavelength of the sound
wave, say, by a factor of 4. Since the velocity of sound in
quartz is about 3X 10 cmsec ', the wavelength at a fre-
quency f(MHz) is 0.3/f(cm) and the critical density of
dislocations should be about 80f (cm ). Since Bye and
Cosier were studying 1.4-MHz devices, the critical con-
centration would be about 300 cm in their case. See
Brice (1984) for further discussion.

~50r. Bye provided me with copies of all the topographs taken
during the study.

G. The selection of suitable material

On the basis of the evidence given or cited here, we can
draw up a specification for quartz which should give high
yields of devices to technically high specifications with
the minimum effort and waste. The same specification
also allows the most economic production of devices to
low technical specifications. The important points are as
follows.

(a) An infrared Q&1.8 million. (An even higher Q
might be needed if a device Q & 2 million were required. )

(b) A dislocation density ~ 80f (where the resonant
frequency f is in MHz and the density is in cm ). The
occurrence of etch tunnels (see Sec. VI.A) may impose a
much lower limit to dislocation densities in high-
frequency devices (fundamental mode devices at frequen-
cies over 16 MHz or other devices with wafers & 100 pm
thick). For such devices densities of a few tens per cm
may be needed.

(c) Only Z-zone material to be used in the active region
of a device and bulk lattice strains to be. less than 10

(d) A lithium content of less than 1 ppm relative to sil-
icon.

(e) No large inclusions in the bulk of the quartz. Here
large is about the minimum device dimension.

(f) Ability to withstand a 50'C thermal shock (imposed
by heating a boule in water at 70'C and, immediately
after removal, plunging it into water at 20 C) is also a
useful guide. See Brice (1984).
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To enforce these specifications we need acceptance
tests. The most important of these is the Q test discussed
in Sec. VII.A. To avoid having to test an excessive num-
ber of samples I above suggest quoting a minimum Q
about 0.2 million larger than that suggested by (a). Doing
this permits a very small test sample, three to six speci-
mens, measured in the regions which will be the active
parts of the device should be adequate. Readers with sta-
tistical interest should note that the sampling situation is
unusual: we have a good estimate of how the standard
deviation of the population should vary with the mean Q
value. This considerably reduces the sample size needed
for any desired degree of confidence.

Once a small sample Q test is done, every boule must
be examined visually for twins and pronounced seed veils.
This inspection should also result in the discovery of any
boules with large inclusions. The material manufacturer's
quality control should eliminate crystals with obvious
external defects (suggesting twins), large inclusions, or
heavy veiling, but any batch may contain a few percent of
boules which could give trouble.

Batches given a Q test and visually inspected should be
satisfactory for most purposes, but cannot be guaranteed
to reach the desired dislocation density, strain, level, and
purity specifications. Thus it is recommended that in
critical applications these quantities be measured directly.
Testing for purity is most easily done with a solid-source
mass spectrometer but other methods are possible. The
purities of all the boules in a batch should be similar; thus
small-sample testing is usually safe. As noted above, a
small sample subjected to topographic measurements (us-
ing also the rocking-curve data) should give a safe esti-
mate of the strain. However, dislocation densities (XD)
in a batch do vary significantly. The distribution of
log%a is roughly Gaussian, so that knowing the spread of
Q values and the relation between Q and %D discussed
earlier allows us to estimate the expected spread of XD
values. For a batch mean Q of two million, the calculated
and measured standard deviations of logXD are about 0.3,
i.e., equivalent to factor of 2 deviations.

%'hen the samples are being visually inspected, it is not
terribly laborious to do a thermal shock test on a 100%
test basis. This should destroy only bad crystals. A 50 C
shock seems a reasonable level for small crystals. The
breaking strain involved with a particular shock can be
calculated from the theory given by Timoshenko and
Cxoodier (1951) and Carslaw and Jaeger (1959). If a is the
mean expansion coefficient, the strain associated with a
shock AT is of order ~ahT and variation with the size of
the boule should be negligible if the boules are quenched
in a water bath.

Details of specifications, sampling procedures, and test
methods need to be agreed upon with the supplier of the
quartz.

While most of the physics of device design and perfor-
mance is well understood, there are some gaps in our
quantitative understanding. In particular, we can relate
measurable material properties to the electrical quality
factor and to device yield in only a qualitative manner.

The main topic of this paper has been the effects of us-
ing less-than-ideal crystals (i.e., ones which can be ob-
tained in large quantities) to fabricate devices. Attention
has been concentrated on platelike devices using shear
mode vibrations but the same general conclusions can be
applied to other resonators or indeed to other devices
made from quartz. '

The defects found in quartz include twins, inclusions,
dislocations, and impurities of which the most important
is hydrogen. The presence of twins makes any boule un-
suitable for use. The presence of inclusions leads to dislo-
cation formation, and high dislocation densities degrade
device performance either directly or by facilitating hy-
drogen incorporation during growth. Hydrogen (probably
as hydroxyl ions) can degrade device performance directly
(low device Q), but more usually it is the weakening of
the quartz which causes problems which are both
economic (low yields, large spreads of properties, etc.) and
technical (drive-level-dependent effects, poor aging, etc.).
Lithium and sodium can degrade device properties, be-
cause they migrate easily. Other impurities affect radia-
tion hardness. On a statistical basis all impurity concen-
trations and dislocation densities rise with the hydrogen
content —i.e., they increase as the infrared Q falls. For a
Q below about 1.8 million, decreasing the Q tends to have
understandable catastrophic effects on performance and
yield. Thus for both technical and economic reasons the
most important factor in a specification is that the in-
frared Q exceed 1.8 million. Because of the spread of Q
in a batch, a 1.8 million minimum level probably implies
a batch mean Q of 2 million or more. This level would in
any case be desirable, because it allows only a small sam-
ple to be tested. In some applications it may also be
worthwhile specifying a maximum dislocation density
(which might in critical cases be less than 10 cm ).
Similarly, in critical cases a maximum level of some im-
purities might need to be specified (e.g. , & 1 ppm lithium,
&0.5 ppm aluminum). The specification should also al-
low for the rejection of twinned boules and ones with high
in.elusion contents.

Armed with our current understanding of device
theory, process technology, and the relevant materials sci-
ence, we can already mass produce resonators which give
day-to-day stabilities of about 5 ppb in favorable situa-
tions, and this figure could be reduced. Special devices
can be made at present in small numbers which in com-

VI I I. CONCLUSIONS

Quartz resonators are remarkable devices, offering at
their best unparalleled stability and reproducibility.

Within the Philips Concern we have shown that the materi-
als specifications given in Sec. VII.Cz are necessary and suffi-
cient for material to be used in surface wave and optical com-
ponents.
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rnercially available oscillators give day-to-day stabilities
of 0.1 ppb.

It is not possible to predict the future accurately, but
current laboratory results suggest that improvements by
at least a factor of 10 are possible in the professional mar-
ket. Crystals for consumer use are only a little less stable
( = 10 ppb on a day-to-day basis) than the ones used at the
lower end of the professional market. However, they tend
to have less favorable temperature dependences, so that
their performance in inexpensive systems is appreciably
worse. However, improvements are possible and will be
implemented if demanded, so that if a popular application
is found we can expect that inexpensive devices will be
produced with properties similar to the ones now used in
professional equipment.

ACKNOWLEDGMENTS

This paper is one product of a very fruitful collabora-
tion with Dr. E. D. Fletcher (Philips, Redhill), Mr. D. J.
Grevink (Philips, Eindhoven), Mr. W. Koelewijn (Philips,
Doetinchem), and Mr. J. Dowsett (Cathodeon Crystals,
I.inton, U.K.). Many of the illustrative data are taken
from unpublished work by colleagues in various parts of
the Philips Concern. Some of these are acknow'ledged in
figure captions and tables. Many manufacturers of
quartz crystals cooperated by supplying quartz to non-
standard specifications and in providing information. Dr.
J. Asahara (Toyo), Dr. D. R. Kinloch (Sawyer), and Dr.
R. W. T. Rabbetts (STC) were particularly helpful.

REFERENCES

Ackermann, R. J., and C. A. Sorrell, 1974, J. Appl. Crystallogr.
7, 461.

Anderson, T. L., R. E. Newnham, L. E. Cross, and J. W.
Laughner, 1976, Phys. Status. Solidi A 37, 235.

Asahara, J., E. Yazaki, K. Takazawa, and K. Kita, 1975, Proc.
Ann. Symp. Freq. Contr. 29, 211.

Asanuma, N. , and J. Asahara, 1980, Proc. Ann. Symp. Freq.
Contr. 34, 120.

Ballato, A., 1977, in Physical Acoustics, edited by W. P. Mason
(Academic, New York), Chap. 5.

Ballato, A., 1978, IEEE Trans. Sonics Ultrason. SU-25, 107.
Ballato, A. , 1979a, IEEE Trans. Sonics Ultrason. SU-26, 299.
Ballato, A., 1979b, IEEE Trans. Sonics Ultrason. SU-26, 186.
Ballato, A. , E. P. EerNisse, and T. J. Lukaszeh, 1977, Proc.

Ann. Symp. Freq. Contr. 31, 8.
Ballato, A., T. J. Lukaszek, and G. J. Iafrate, 1982, Ferroelec-

trics 43, 25.
Ballman, A. A., and R. A. Laudise, 1983, in The Art and Sci-

ence of Growing Crystals, edited by J. J. Gillman (Wiley, New
York), Chap. 13.

Bechmann, R., 1958, Phys. Rev. 110, 1060.
Bechmann, R., A. Ballato, and T. J. Lukaszek, 1962, Proc. IRE

50, 1812.
Bennett, R. E., 1960, Quartz Resonator Handbook: Manu
facturing Guide for AT Type Units (Comptometer Corp. , Niles,
Illinois, for the Department of the Army).

Besson, R. J., J. M. Groslamber, and F. L. Walls, 1982, Fer-

roelectrics 43, 57.
Bond, W. L., 1976, Crysta/ Technology (Wiley, New York),

Chap. 4.
Bond, W. L., and J. A. Kusters, 1977, Proc. Ann. Symp. Freq.

Contr. 31, 153.
Bottom, V. E., 1972, J. Appl. Phys. 43, 1493.
Bottom, V. E., 1981, Proc. Ann. Symp. Freq. Contr. 35, 3.
Bottom, V. E., 1982, Introduction to Quartz Crystal Unit Design

{Van Nostrand, New York).
Brice, J. C., 1973, The Growth of Crystals from Liquids (North-

Holland, Amsterdam).
Brice, J. C., 1975, J. Cryst. Growth 28, 249.
Brice, J. C., 1977, Rep. Prog. Phys. 40, 567.
Brice, J. C., 1980, J. Mater. Sci. 15, 161.
Brice, J. C., 1981, Phys. Educ. 16, 162.
Brice, J. C., 1984, Proc. Ann. Symp. Freq. Contr. (in press).
Brice, J. C., and A. M. Cole, 1979a, Proc. Ann. Symp. Freq.

Contr. 32, 1.
Brice, J C., and A. M. Cole, 1979b, J. Phys. D 12, 45.
Brice, J. C., J. Dowsett, and E. D. Fletcher, 1981, Proc. Ann.

Symp. Freq. Contr. 34, 312.
Brice, J. C., and W. S. Metcalf, 1982, Philips Tech. Rev. 40, 1.
Brown, R., D. K. Martin, and R. K. Potter, 1926, Proc. IRE 14,

57.
Cady, W. G., 1922, Proc. IRE 10, 83.
Clastre, J., C. Pegeot, and P. Y. Leroy, 1978, Proc. Ann. Symp.

Freq. Contr. 32, 310.
Darces, J. F., and H. Merigoux, 1978, Proc. Ann. Symp. Freq.

Contr. 32, 304.
Dodd, D. M. , and D. B. Fraser, 1965, J. Phys. Chexn. Sol. 26,
673.

EerNisse, E. P., 1976, Proc. Ann. Symp. Freq. Contr. 30, 3.
EerNisse, E. P., T. J. Lukaszek, and A. Ballato, 1978, IEE
Trans. Sonics Ultrason. SU-25, 132.

Euler, P., P. Ligor, A. Kahan, and P. Pellegrini, 1978, Proc.
Ann. Symp. Freq. Contr; 32, 24.

Evans, R. C., 1966, Crystal Chemistry {Cambridge University
Press, Cambridge), p. 187.

Filler, R. L., J. A. Kosinski, V. J. Rosati, and J. R. Vig, 1984,
Proc. Ann. Symp. Freq. Contr. (in press).

Fletcher, E. D., and A. J. Douglas, 1979, Proc. Ann. Symp.
Freq. Contr. 33, 346.

Flickstein, J;, and M. Schieber, 1971,J. Cryst. Growth 8, 157.
Flickstein, J., and M. Schieber, 1974, J. Cryst. Growth 24/25,
603.

Frischat, G. H. , 1970, J. Am. Ceram. Soc. 53, 357.
Frondel, C., 1962, The System of Mineralogy (New York, Wi-

ley), Vol. 3 ~

Gerber, J., 1979, Proc. Ann. Symp. Freq. Contr. 33, 569.
Gray, D. E., 1972, The American Institute of Physics Handbook

(McGraw-Hill, New York).
Griggs, D., 1974, J. Geophys. Res. 79, 1655.
Hafner, E., and R. S. Blewer, 1968, Proc. IEEE 56, 336.
Hart, M., 1981,J. Cryst. Growth 55, 409.
Heising, R. A. , 1946, Quartz Crystals For Electrical Circuits

(Van Nostrand, New York); reprinted 1978 (Electronic Indus-
tries Association, Washington).

Holland, R., and E. P. EerNisse, 1969, Design of Resonant
Piezo-electlric Devices (MIT, Cambridge, Mass. ).

Homma, S., and M. Iwata, 1973, J. Cryst. Growth 19, 125.
Hruska, C. K., 1980, IEEE Trans. Sonics Ultrason. SU-27, 87.
Hruska, C. K., 1983, IEEE Trans. Sonics Ultrason. SU-30, 324.
IRE, 1949, Proc. IRE 37, 1379.
Iwasaki, F,, and M. Kurashige, 1982, Ferroelectrics 43, 43.

Rev. Mod. Phys. , Vol. 57, No. 1, January 1S85



146 J. C. Brice: Crystals for quartz resonators

James, J. A. , and R. C. Kell, 1975, in Crystal Growth, edited by
B. R. Pamplin (Pergamon, Oxford), Chap. 14.

Kahan, A. , 1982 Proc. Ann. Symp. Freq. Contr. 36, 159.
Key, P. L., E. D. Kolb, R. A. Laudise, and E. E. Bressnahan,

1974, J. Cryst. Growth 21, 164.
Keyes, R, W. , and F. W. Blair, 1967, Proc. IEEE SS, 565.
King, J. C., 1959, Bell System. Techn. J. 38, 573.
Klapper, H. , 1972, Phys. Status Solidi A 14, 99.
Klapper, H. , 1975, Acta Crystallogr. Sect. A 31, S212.
Knowles, J. E., 1975, Proc. Ann. Symp. Freq. Contr. 28, 230.
Kobayashi, Y., 1978, Proc. Ann. Symp. Freq. Contr. 32, 317.
Koga„ I., M. Argua, and Y. Yoshinaki, 1958, Phys. Rev. 109,

1467.
Kusters, J. A. , and J. G. Leach, 1977, Proc. IEEE 65, 282.
Lamb, J., and J. Richter, 1966, Proc. R. Soc. London Ser. A
293, 479,

Landolt-Bornstein, 1966, Xumerica/ Data and Functiona/ Ae/a-

tionships in Science and Technology, New Series Vol. 111/1
(Springer, Berlin).

Landolt-Bornstein, 1977, Xunzerica/ Data and Functiona/ Re/a-
tionships in Science and Technology, New Series Vol. 111/11
(Springer, Berlin).

Lang, A. R., and V. F. Miuscov, 1967, J. Appl. Phys. 38, 2477.
Laudise, R. A., 1970, The Growth of Single Crystals (Prentice-

Hall, Englewood Cliffs).
Laudise, R. A. , and J. W. Nielsen, 1961, Solid State Phys. 12,

149.
Lee, P. C. Y., and Y. K. Yong, 1983, Proc. Ann. Symp. Freq.

Contr. 37, 200.
Lias, N. C., E. E. Grudenski, E. D. Kolb, and R. A. Laudise,

1973, J. Cryst. Growth 18, 1.
Ludanov, A. G., A. A. Fotchenkov, and L. A. Yakovlev, 1976,
Akust. Zh. 22, 612 [Sov. Phys. —Acoust. 22, 343 (1976)].

Lushnikov, V. G., and V. E. Khadzhi, 1967, Dok. Akad. Nauk
SSSR 172, 1072 [Sov. Phys. —Dokl. 12, 116 (1967)].

Mason, W. P., 1950, in Piezoelectric Crystals and their App/ica-
tions to Ultrasonics (Van Nostrand, New York).

Mason, %'. P., 1951, Bell Syst. Tech. J. 30, 366.
McLaren, A. C., 1971,Phys. Status Solidi 4, 235.
McSkimin, H. J., P. Andreatch, and R. N. Thurston, 1965, J.

Appl. Phys. 36, 1624.
Mortley, W. S., 1969, Nature 221, 359.
Okano, S., T. Kudama, K. Yamazaki and H. Kotake, 1981,

Proc. Ann. Symp. Freq. Contr. 35, 166.
Pamplin, B. R.„1980,Crystal Growth (Pergamon, Oxford).
Passaret, M. , and A. Regreny, 1974, J. Cryst. Growth 22, 80.
Philips, 1982, "Piezoelectric quartz devices, " Phi lips Data

Handbook, Components and Materials (Philips, Eindhoven),
Part 9.

Ralph, J. E., 1982, J. Phys. E 15, 722.
Rosenberger, F., 1979, Fundamentals of Crystal Growth I

(Springer, Berlin).
Rudd, D. W., and N. C. Lias, 1967, High Press. Techn. 63, 32.
Samsonov, G. V., 1973, The Oxide Handbook (IFI/Plenum,

New York).
Sawyer, B., 1976, J. Cryst. Growth 36, 345.
Sequin, CH.H. , 1971, Solid-State Electron. 14, 417.
Shannon, R. D., and C. T. Prewitt, 1969, Acta Crystallogr. Sect.
B 25, 925.

Shevel'ko, M. M., and L. A. Yakovlev, 1977, Akust. Zh. 23, 331
[Sov. Phys. —Acoust. 23, 187 (1977)].

Sinha, B. K., and H. F. Tiersten, 1978, Proc. Ann. Symp. Freq.
Contr. 32, 150.

Sinha, B. K., and H. F. Tiersten, 1979, J. Appl. Phys. 50, 2732.
Sosin, A. , 1973, Proc. Ann. Symp. Freq. Contr. 27, 136.
Suchanek, J., 1982, Ferroelectrics 43, 17.
Takagi, M. , 1974, J. Cryst. Growth 24/25, 541.
Thurston, R. N. , H. J. McSkimin, and P. Andreatch, 1966, J.

Appl. Phys. 37, 267.
Tiersten, H. F., 1969, Linear Piezoelectric Plate Vibrations (Ple-

num, New York).
Touloukian, Y. S., 1967, Thermophysical Properties of High

Temperature Materials (MacMillan, London).
Toyo, 1975, Toyo Technical Bulletin C-5.
Toyo, 1977, Technical Paper 77-10.
Toyo, 1979, Technical Paper 79-11.
Toyo, 1980, "Crystal Growth of High Quality Synthetic

Quartz, "Toyo Technical Paper.
Vangheluwe, D. C. L., and E. D. Fletcher, 1981, Proc. Ann.

Symp. Freq. Contr. 35, 157.
Vig, J. R., 1976, IEEE Trans. PHP-12 365.
Ward„R.W. , 1984, Proc. Ann. Symp. Freq. Contr. (in press).
Warner, A. W. , D. B. Fraser, and C. D. Stockbridge, 1965,
IEEE Trans. Sonics Ultrason. SU-12, 52.

Weast, R. C., 1964, Handbook of Chemistry and Physics (Chem-
ical Rubber Company, Cleveland).

Weil, J. A. , 1973, Proc. Ann. Symp. Freq. Contr. 27, 153.
White S., 1968, Nature 219, 1248.
Wilke, K. T., 1973, Krista/ Zuchtung (VEB, Berlin).
Wyekoff, R. W. G., 1960, Crystal Structures (Interscience, New

York), p. 312.
Yamashita, S., A. Shinomiya, and H. Kumasaki, 1975, J. Cryst.

Growth 30, 27.
Young, T. J., D. R. Koehler, and R. A. Adams, 1978, Proc.
Ann. Symp. Freq. Contr. 32, 1978. .

Zelenka, J., and P. C. Y. Lee, 1971, IEEE Trans. Sonics Ul-
trason. SU-18, 79.

Rev. Mod. Phys. , Vot. 57, No. 1, January 1985




