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This paper reviews the theory of inflationary universe models, giving particular emphasis to the question of
origin and growth of energy-density fluctuations in these new cosmologies. The first four sections consti-
tute a pedagogical introduction to some of the important quantum field theory methods used in inflationary
universe scenarios: calculation of' the effective potential, finite-temperature quantum field theory, analysis
of the decay of a metastable quantum state, and free field theory in curved space-time.
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The discovery by Guth (1981) that inflationary universe
models elegantly solve some important cosmological
problems of the standard "big bang" scenario has sparked
a lot of interest in these new models among both physi-
cists and cosmologists.

The crucial observation was that, if matter is described
in terms of a quantum field with nonvanishing potential,
there is a natural way to generate an effective cosmologi-
cal constant in the early universe. This cosmological con-
stant leads to a phase of exponential growth of the
universe (hence the word "inflationary"), which in turn
explains the homogeneity and flatness of the universe.

In the new models, gravity is described classically by a
Friedmann-Robertson-Walker (FRW) metric, while
matter is treated quantum mechanically, using the quali-
tative behavior of quantum field theories in flat space-
time. We consider grand unified theories (see, for exam-
ple, Langacker, 1981, for a detailed review) with gauge
symmetry spontaneously broken at zero temperature by a
nonvanishing expectation value of a scalar Higgs field.
At high temperatures the symmetry is restored, but at the
cost of generating a large cosmological constant. As the
universe cools down it will therefore go through one or
more phase transitions.

The explanation of the flatness and horizon problems
(auth, 1981, and Sec. VI) is not the first striking success
of an approach combining particle physics and cosmolo-
gy. Several years ago it was realized that grand unified
theories can explain the observed nonvanishing baryon-
to-entropy ratio of the universe. The key point is to con-
sider baryon number-violating processes that occur out of
equilibrium. References on this topic include Sakharov
(1967), Yoshimura (1978), Ignatiev et al. (1978), Dimo-
poulos and Susskind (1978), Toussaint et al (1979), .
Weinberg (1979), and the review article by Dolgov and
Zeldovich (1981).

The objective of this paper is twofold. %'e want to give
an introduction to and survey of inflationary universe
models. We place particular emphasis on the generation
and growth of energy-density fluctuations in inflationary
cosmologies. To our knowledge, this is the first review of
fluctuations. Inflationary universe models have been re-
viewed by Linde (1984) and in several conference proceed-
ings (e.g., Cxuth, 1982; Linde, 1982e; Albrecht, 1984;
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Guth, 1984) and popular articles (Barrow and Turner,
1982; Guth and Steinhardt, 1984). The second objective is
to present a pedagogical introduction to quantum field
theory methods used in the recent literature on particle
physics and cosmology, and thus to bridge the gap be-
tween a graduate-level quantum field theory course and
current research. %'e begin with a nontechnical survey of
the main results in the first four sections and will mention
how these results are used in inflationary universe models.

%'hy should matter be described in terms of quantum
fields? In the early universe, matter is highly compressed
and very hot. For times earlier than 10 sec after the
big bang, the thermal energy of particles exceeds 1 GeV.
From accelerator experiments we know that at these ener-

gies elementary particle interactions are correctly
described by quantum field theory. Therefore, it seems
mandatory to describe matter in terms of quantum fields
in the early universe. It is most certainly incorrect to use
an ideal-gas approximation for matter at these high tern-

peratures.
In quantum field theory there is a natural way to obtain

a nonvanishing cosmological constant. Consider a theory
with a large positive potential V(g) for a given range of p
values. Consider a quantum state homogeneous in space
and stationary, concentrated at cp values in the above
range. Then, as discussed in Sec. VI.A, the contribution
of the potential energy to the energy-momentum tensor
dominates and acts like a cosmological constant in the
Einstein equations.

It is therefore important to be able to determine the
state of the quantum field theory at any given time in the
evolution of the universe. The theory of the effective po-
tential, discussed in detail in Sec. II, is an important tool
in determining the quantum state. Loosely speaking, the
effective potential includes the quantum corrections to the
classical potential that appears in the Lagrangian of the
field theory. To be more specific, consider a Lagrangian
containing a scalar field y with potential V(y) coupled to
other fields A„. V(y) is the energy of a homogeneous
stationary state with y(x)=q& and A& ——0. The main
reason for our interest in the effective potential V,ff(lp ) ln
the context of inflationary universe models is the follow-
ing: V,ff(p ) is the minimum expectation value of the en-

ergy density in the class of all homogeneous stationary
states with expectation value y. We derive this result in
Sec. II.B. Provided we know that the state of the universe
is homogeneous, %e can use the effective potential to
determine it. Since a stationary state will minimize the
energy, density, the state of the universe will have its ex-
pectation value of the operator @ minimize V,ff(g ).
Summarizing the above in less precise language: the
value of y in the quantum state at a fixed time will mini-
mize V,ff(g ) at that time.

The reason that V,ff and V differ is obvious: in a
quantum theory self-interactions of y and interactions
with the other fields Az will inAuenee the energy of the
state and cause it to differ from the classical value V(p).

In Sec. VI the effective potential will be used in a
second way, namely to determine the equation of motion

of the expectation value g of @:

As explained in Sec. II.B, Eq. (1.1) is the leading contribu-
tion in an expansion about a homogeneous and stationary
state. We can obtain Eq. (1.1) from the equation of
motion of the classical field p(x) in the absence of in-

teractions with other fields,

32 —V' y= V(y), (1.2)
Bt

by replacing the classical potential V(y) with the effec-
tive potential V,fr(y ). The difference is due to the fact
that the evolution of y is influenced by self-interactions
of the y field and by interactions with other fields.

In Sec. II.A we give the mathematical definition of the
effective potential and of the effective action, the quantity
of interest when considering nonhomogeneous or nonsta-
tionary processes. In Sec. II.B we derive the general prop-
erties of the effective potential we discussed above. Sec-
tions II.C and II.D are devoted to computing an approxi-
mate answer for V,fr(y), the one-loop approximation. In
See. II.C we discuss the computation for the simplest "toy
model" field theories; in Sec. II.D we extend the analysis
to realistic particle physics models, unified gauge field
theories.

The main reason for describing matter in terms of uni-

fied gauge field theories comes from particle physics.
Since we expect that all the particles observed at high en-

ergies in particle accelerators should have been copiously
produced in the early universe, we must consider the
model that best describes the interactions of observed ele-

mentary particles. A second observation renders grand
unified models very attractive for cosmology: today the
cosmological constant A vanishes (A/m~~ &10 '; see,
for example, Hawking, 1984). In order for the cosmologi-
cal constant to have been large in the early universe, a
phase transition from ( V(y) )&0 to ( V(y) ) =0 must
have taken place (( ) denotes the quantum expectation
value). Grand unified theories already have phase transi-
tions built in.

Before describing these phase transitions, we must step
back 'and explain the time dependence of the effective po-
tential. From the mathematical definition in Sec. II.A it
follows that the effective action is the free energy of the
quantum system, and the effective potential therefore the
free-energy density, provided again we restrict our atten-
tion to homogeneous states. In statistical mechanics it is
well known that the free energy is temperature dependent.
Thus the effective potential will depend on temperature as
well. In Sec. III we compute the finite-temperature
corrections to the effective potential. &e find a
temperature-dependent mass term proportional to y T
which leads to symmetry restoration at high tempera-
tures. At high temperature rp=0 will be the minimum of
the effective potential, even if it was not a minimum at
zero temperature. The high- and low-temperature ground
states will then be different.
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Most grand unified field theories are of the same struc-
ture as the models discussed in Sec. II.D: one or more sca-
lar fields (Higgs fields) are coupled to gauge fields and
Fermi fields. The Lagrangian has a large symmetry
group. The group is much larger than the symmetry
group observed at low energies and, for example, explicit-
ly prohibits mass terms for fermions. Since the fermions
we observe are massive, they must obtain their masses
through symmetry breaking; even though the Lagrangian
has a given symmetry, the theory will not be symmetric if
the ground state breaks the symmetry. In the Higgs
mechanism (Higgs, 1964a,1964b; Englert and Brout,
1964; Guralnik, Hagen, and Kibble, 1964) the symmetry
is broken by a nonvanishing grourid-state expectation
value of y. The condition for this to happen is that the
effective potential take on its minimum at a nontrivial
value of q&. In such grand unified models there is a natur-
al phase transition: due to the finite-temperature correc-
tions to the effective potential (discussed above), the
high-temperature ground state has a vanishing expecta-
tion value of y. Cxauge symmetry is unbroken. Below a
critical temperature T„which is, in general, of the order
of the scale of symmetry breaking, a new absolute
ininimum of V,rr(y) appears. As the universe cools down
in a standard big bang scenario, a phase transition must
take place below T, (see Sec. III.C). Thereafter the quan-
tum ground state is localized at the absolute minimum
Ip=cl of V ff(y). Since we must fine-tune the cosmologi-
cal constant to be zero today, i.e., V,ff(cT) —0 it iilust
have been greater than zero in the high-temperature
ground state, i.e., V,rr(0) & 0. Thus grand unified theories
with symmetry breaking via the Higgs mechanism au-
tomatically lead to phase transitions which can lead to an
inflationary universe.

Any phase transition is described in terms of an order
parameter, a parameter that distinguishes the various
phases. In our case the order parameter is y, the expecta-
tion value of y. We consider two types of phase transi-
tions. In transitions of the first type, the order parameter
jumps discontinuously in time from its value in the first
phase to that in its second. In transitions of the second
type the order parameter changes continuously. The
former were used in "old" inflationary universe models
(see Sec. VI.B). They arise when y =0 is a local
minimum of the zero-temperature effective potential (see
Fig. 19 below). In these models the phase transition
proceeds by quantum tunneling: the expectation value y
tunnels through the potential barrier. A bubble of the
new phase nucleates in g surrounding sea of the old phase.

Phase transitions via bubble nucleation in quantum
field theory are analyzed in Sec. IV. We first show that
the decay rate of an unstable state is given by the imagi-
nary part of its energy. Most of the section is devoted to
the computation of the decay rate. For notational sim-
plicity we first consider a one-dimensional quantum
mechanics problem. We express the energy of the unsta-
ble state in terms of a functional integral and then use
semiclassical techniques to evaluate the integral and pick
out the imaginary part. In Sec. IV.E we show explicitly

that, in the seiniclassical approximation, the state after
the decay event corresponds to a bubble of the stable
phase with vanishing cosmological constant expanding at
the speed of light in a surrounding sea of the unstable
phase. This process is often called bubble nucleation.

Transitions of the second type occur when y=O is a lo-
cal maximum of the zero-temperature effective potential
(see Fig. 20 below). In this ease the order parameter will
simply evolve according to Eq. (1.1). This scenario arises
in new inflationary universe models (see Sec. VI.B).

All the tools discussed so far are Minkowski space-time
methods. In curved space-time there are new effects. We
discuss some of them in Sec. V. The main point is that
there is no unique vacuum state, even for a free scalar
field. The origin of this ambiguity is the fact that in gen-
eral relativity there is no distinguished coordinate frame.
The most famous consequence of this ambiguity is Hawk-
ing radiation: an observer with a particle detector will at
late times in certain space-times observe a nonvanishing
thermal flux of particles in a state which at an initial time
was set up to be empty of particles (Hawking, 1974,1975).
In Secs. V.A and V.B we discuss Hawking radiation in
the de Sitter phase of a cosmological model. A further
consequence, which may be of even greater importance
for inflationary universe scenarios, is the nonvanishing
expectatio~ value of the energy-momentum tensor T&,
the quantity that is coupled to gravity when describing
matter in terms of quantum fields. This is discussed in
Sec. V.D. Finally, the results for Green's functions of a
free scalar field theory in an expanding universe are used
to determine the initial values of adiabatic energy-density
fluctuations in cosmological models (see See. VII.C).

Section VI is a discussion of inflationary universe
models. We explain the cosmological problems that
motivated the original proposals, describe the two stan-
dard examples, the old and the new inflationary universes,
and summarize many alternate models.

Besides solving the horizon and flatness problems, the
main success of inflationary universe scenarios is that
they provide a mechanism which for the first time ex-
plains from first principles the origin of primordial
energy-density fluctuations. In Sec. VII we describe the
mechanism, summarize the formalism to analyze the
growth of fluctuations before they enter our horizon
(gauge-invariant linear gravitational perturbation theory),
and apply it to inflationary universe models.

The'crucial point is that scales of present cosmological
interest originate inside the causal horizon in the period
of exponential expansion of the universe. This is in
marked contrast to the standard big bang model, in which
perturbations on all scales originate outside the causal
horizon. The difference stems from the fact that, in a
phase of exponential expansion, the causal horizon is con-
stant while the physical wavelength of a perturbation in-
creases exponentially. By contrast, in the usual cosmolog-
ical models the causal horizon expands faster than the
physical distance between two comoving points. %'e ex-
plain the basic mechanism in Sec. VII.A. Inside the
causal horizon, energy-density fluctuations are caused by
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g„=diag( —l, a (t),a (t),a (t)) .

a (r) is the scale factor, R the Ricci scalar.

(1.3)

II. THE EFFECTIYE POTENTIAL

A. Generating functionals

The effective potential has long been recognized as an
important concept in modern quantum field theory, in
particular when questions of symmetry breaking arise.
The concept was originally introduced by Heisenberg and
Euler (1936) and by Schwinger (1951). It was applied to
problems of symmetry breaking by Goldstone, Salam, and
Weinberg (1962) and by Jona-Lasinio (1964). The physi-
cal meaning of the effective potential was explored in de-

quantum fluctuations in the scalar field y (as discussed in
Sec. VII.C). The magnitude of these fluctuations at for-
mation time is very small, in our sample grand unified
models of the order 10 . In Sec. VII.C we discuss how
the change in the equation of state from p= —p in the
phase of exponential expansion to p = —,

'
p at later stages

leads to a large amplification factor for 5plp.
On the basis of this introduction, Secs. VI and VII are

self-contained. Readers who are interested only in a re-
view of inflationary universe models and fluctuations in
such models can start with these sections.

A few words concerning notation: greek indices run
from 0 to 3, latin ones only over the spatial indices. We
use the Einstein summation convention. m~~ stands for
the Planck mass. Unless otherwise indicated 4=k =c = 1

in our units. We write the Robertson-Walker (RW)
metric in the form

tail by Symanzik (1970). Good reviews of the early work
are those by Zumino (1970) and (in a particularly lucid
way) by Coleman (1973). Coleman and Weinberg (1973)
also discovered elegant techniques for computing the
one-loop effective potential, while Jackiw (1974) and
Iliopoulos, Itzykson, and Martin (1975) developed a func-
tional integral approach to computing the effective poten-
tial also to higher order.

There are many developments in the theory of the ef-
fective potential that we shall only mention briefly or not
have space to discuss at all. They include generalization
to composite operators (Cornwall, Jackiw, and Tomboulis,
1974), useful approximation schemes that go beyond one-
loop calculations (e.g., Jackiw, 1975), and analysis of the
gauge dependence of the effective action (e.g., Boulware,
1981;DeWitt, 1981;Abbott, 198la).

The effective potential includes all quantum corrections
to the classical field theory potential. Loosely speaking,
minimizing the effective potential gives us the field con-
figuration with minimal energy, the vacuum of the
theory. Thus by studying the effective potential we may
obtain information about the symmetries of the full
theory, not just those of the Lagrangian.

%'e begin our discussion of the effective potential by re-
viewing the formalism of generating functionals. The
generating functional Z(J) for the full Green's functions
G„(x&, . . . , x„) is defined by

Z(J)=(0 Te pi fxJtx)g(x)d4x 0), (2.1)

where
I
0) is the physical vacuum and y(x) the Heisen-

berg field, in both cases for the theory without the source
term J(x)y(x). Expanding Z(J) as a power series in J
gives the representation in terms of Green's functions:

n

Z(J)= y, fd x& . . d x„J(x&). J(x„)(0IT[y(x&). . . g(x„)] I0)
o nf

op
~

ll

d x&. . . d x„J(xi) J(x„)G„(xi x„) ..=o n! (2.2)

In functional integral representation (see, for example,
Coleman, 1973),

Z (J)=%f [dq&]expiS (y,J),

S(y,J)=fd x{W[q)(x))+J(x)y(x)] .

W(y) is the Lagrange density of the theory, S its action,
and X a normalization constant. [dy] is the (formal)
measure on function space. For notational simplicity we
express all formulas in terms of a single scalar field.

One of the main advantages of generating functionals is
the fact that the transition between full, connected, and
one-particle irreducible (1PI) Green s functions is given by
simple algebraic operations on the level of generating
functionals. As discussed below, the logarithm of Z(J) is
the generating functional i W (J) for the connected
Green's functions. The Legendre transform of 8'(J) is

the generating functional for 1PI graphs.
The generating functional for connected Green's func-

tions G„'(x &, . . . , x„) is defined as

n

i8'(J)= $ d"x~ . d x„J(x~) . J(x„)
o n!

XG„'(x&, . . . , x„) . (2.4)

The connection between Z(J) and W(J) is given by

iW(J) =lnZ(J) . (2.5)

This result is well known. Its proof, since it is unrelated
to the main focus of this paper, will be presented in Ap-
pendix A.

Before defining the 1PI generating functional, we intro-
duce momentum-space 1PI Green's functions:
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G' '(k), k2)=(2') 5' '(k(+k2)D(k)) .

For n ~2

(2.7)

(2.8)

where X are all 1PI graphs with n external lines with mo-

I' 'z'(k, —k) =
D(k)

(2.6)

D(k) is the full propagator and is related to the full two-
point function 6' ' by

menta k1, . . . , k . In evaluatirig the graphs, the follow-
ing conventions must be observed:

(a) no propagators for external lines;
(b) no overall energy-momentum-conserving 5 function;
(c) all momenta directed inwards.

The first two conventions are crucial in establishing the
functional relation between 8'(J) and I (g ). In position
space

r

d4k;I'"'(xi, . . . , x„)=f ff e ' ' I '"'(ki, . . . , k„)(2') 5' '

(2m )
gk,
i=1

(2.9)

Then the generating functional I (g ) for 1PI Green's functions is defined by

I (g)= g, fd x& . d"x„qr(xi) g(x„)I'"'(xi, . . . , x„) .
2n!

(2.10)

At this stage p stands for some source function. Why we choose this notation will become obvious later. The main re-
sult is the following.

Theorem 1. To lowest order in a,

exp —W(J) =N f [dq ]exp —1(f )+fd x J(x)y(x)
a a

(2.11)

DF(k)I ' '(k, k)=i . — (2.12)

Thus D~(k) =D(k). This result justifies defining
I ' '(k, —k) in an independent and at first sight somewhat
unnatural way. The n point vertex factors are given by

n

iI '"'(k), . . . , k„)(2n.) 5 g k;, (2.13)

The right-hand side of this equation is the generating
functional for a theory with action I (g) (I theory).
Since the I theory is given in terms of an unconstrained
functional integral, the Feynman rules can be read off in
the usual way (see, for example, Coleman, 1973): The
Feynman propagator DF(k) for the l theory is obtained
by inverting the operator coupling the two fields in the
quadratic term of I (y ):

—,
' fg(x)I' '(x,y)@(y)d x d y

6 8' 6I 6y 6ip

5J 5g) 5J 5J (2.15)

TABLE I. Comparison of Green's functions. The left-hand
column gives the I theory (tree level}. The right-hand column
gives the result reexpressed in terms of quantities of the original
theory.

l

sum of all connected diagrams of the original theory. In
Table I this is demonstrated for the lowest-order Green's
functions, and it is straightforward to generalize the pro-
cedure to all orders. From the theorem it is easy to derive
the analytic form of the relation between W(J) and I (g ).
For small values of a, the right-hand side of Eq. (2.11)
may be evaluated using the stationary phase approxima-
tion. Comparing the exponents yields

~(J):[I(g )+Jg]
~ srys —. g, ' (2, 14)

[We shall use the shorthand notation Jq) =fd "x
XJ(x)g(x) frequently in the rest of the paper. ] Since

which explains why we inserted the factor i in Eq. (2.8).
The theorem asserts that the connected Green's func-

tions of the original theory may be obtained by calculat-
ing the corresponding connected Green's functions of the
I" theory in tree approximation. (The expansion in
powers of a is equivalent to the loop expansion. We
demonstrate this in Appendix B.)

The idea underlying the proof of Theorem 1 is to write
down all tree graphs of the I theory, reexpress I propa-
gators and I vertex factors in terms of Green's functions
of the original theory, and observe that we thus obtain the

ORDER

A=2

+ 2 CROSSED TERMS + 2 CROSSED TERMS
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the inverse transformation of Eq. (2.14) is given by

(2.16)

I (~p) is thus the Legendre transform of W(J). It is
called the effective action. We can now see the reason for
denoting the source of I by g: From Eq. (2.15) it follows
immediately that y is the average field,

5W f [dy]y(x)exp[iS(q&, J)]
q(x) = (x)= (2.17)f [dy]exp[iS(p, J)]

In a translationally invariant theory y(x) will be constant.
In this case it is convenient to extract the infinite space-
time volume arising in each term of I (q& ) and to define
the effective potential V,rr(y ) by

I (g ) = fd'x[ —v,ff(g )] . (2.18)

We conclude the discussion of generating functionals
with a different proof of the relation between W(J) and
I (y ) (see Zumino, 1970). Our starting point is the defini-
tion of I'(g ) as the Legendre transform of W(J). It im-

mediately follows that

5 I (g ) 5J(x)
5y(x)5qr(x') 5g(x')

is the inverse of the connected two-point function

G(, )
5 W 5@(x)

5J(x)5J(x') 5J(x')
Hence we obtain the useful relations

(2.19)

(2.20)

5G(x,x') 5k(y, y')=G (x,y)
' „G(y', x') (2.21)

and

5 5
5J 5q

(2.22)

These equations form the basis for an inductive proof that
I (y ) is the generating functional of '1PI graphs. Consid-
er first the three-point function:

5 8
5J(xi )5J(x2)5J(x3) G(x2, x3)=G(x2,32) G(y„x3)5J(x, )

6I=G (x»3'i )G(x2,3'z )G(x 3,3'3 )

=G(xi,Pi)G(x2,3'2)«x3,3'3)l "'(3'i 3 2 3») . (2.23)

In terms of Feynman graphs this result is presented in
Fig. 1. Obviously, I' '(yi, y2,y3) is the 1PI three-point
function.

The two essential ingredients of the induction proof are

~y . (2.25)

8
8 J(z)

X) Xp

(2.24)

The I'"'(x, , . . . , x„) are defined as functional derivatives
of I (g ). We must prove that I i"' is the sum of all 1PI
graphs. Assume the claim has been shown to order n.
Now

8J(z) + 8 J( )
(REDUCIBLE)I

8.

[Eq. (2.22)], and
Xp

+ 8 J( )
(REDUCIBLE)I (2.26)

I'"+" is defined as a functional derivative of F'"'. On
the other hand, 8'„+] can also be expressed pictorially as
a 1PI piece I *'"+"defined in terms of the graphical ex-
pansion plus a sum of reducible graphs:

XI Xp X) 'Xp

FIG. 1. Decomposition of the connected three-point fonction. Xn Z

+ (REDUCIBLE)~ (2.27)
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We must show that I'*'"+'~ and I'"+" are identical.
Equivalently we prove that there is a one-to-one
correspondence between graphs in the two last terms on
the right-hand side of Eq. (2.26) and those in (reducible)2.
Obviously, all of the former graphs are reducible. Dif-
ferentiation cannot produce more connectedness. To con-
struct the inverse map, consider a reducible n +1 point
graph G. Pick the z vertex and isolate the irreducible
component it couples to, I' ' with 3 & k & n:

X
l

XI
I

(2.29)

XIIk-p

of the set (reducible)~, and 6 can be obtained in no other
way as an element of the set of graphs of Eq. (2.26).
Hence we have constructed the one-to-one map and
proved that I'"+"and I *'"+"are identical.

X.
I k-P

B. Physical meaning of the effective
(2.28) potential and effective action

If k =3 and the "rest" is 1PI, then 6 stems from taking
the functional derivative of a I '"' term in 8'"'. Other-
wise, 6 is one term in the derivative of the element

The effective potential is a very important concept in
field theory. It is the quantum field potential energy in a
sense that wi11 be stated precisely below. In addition, it
has the nice feature of being easily calculable. We shall
discuss the latter point first.

For constant cp we can write

I (g ) = g, q "f+ d x;I'"'(x, , . . . , x„)
8=2 i=I

n 4

Ip"f / dx; e '' I'"'(k, , . . . , k„)(2')5'' yk;
(2m. )

,
y"fd xlI '"'(0, . . . , 0) .

2
nI (2.30)

Therefore,

(2.31)

density expectation value in the class of all normalized
states

~

a ) satisfying (a
~ q ~

a ) =q, i.e.,

V,fr(g) can thus be viewed as the generating functional
for 1PI graphs with vanishing external momenta. We can
calculate it by summing all 1PI graphs and inserting a
factor q for each external line. The effective potential for
a theory with Lagrange density

Vrr(@)=(a i% i
a)

for a state
~

a ) which obeys

6(a iA ia)=0
subject to the constraints

(2.34)

W(q, a„q)= ,
'

a„qa&q U(q —)—(2.32)

to lowest order in lrl (see Appendix 8) reduces to the clas-

sical potential U(g ), i.e.,

ff(y )= U(q' )+ &(&) (2.33)

The proof is easy: To lowest order in fi only tree graphs
contribute. A11 tree graphs with more than one vertex are
not 1PI. Thus each term (g;/i!)y' in U(y) gives rise to
exactly one tree-level IPI graph whose value is
—g;g' ( —g; is the vertex factor, and the g' comes from
the i external lines). In V,rf(p) the minus signs cancel
and the factor 1/i is reinserted, .yielding U(g ).

The physical interpretation of the effective potential is
summarized in the following theorem (see, for example,
Symanzik, 1970, and Coleman, 1973).

Theorem 2. V,ff(y) is the minimum of the energy

5(a
~

(H E —JA)
~

a ) =0 (uncons—trained),

(a (a)=1,

(a ~A [a)=g, .

(2.36)

(2.35)

The proof of this assertion proceeds in two steps. In the
first we solve the corresponding quantum mechanics
problem Then we. translate the results into field theory.

In quantum mechanics the problem is to find a state
~

a ) such that (a
~
H

~

a ) is stationary subject to the con-
straints (a

I
a ) = 1 and (a

~

3
~
a ) =2, for some self-

adjoint operator A. We can incorporate the constraints
into the variational equation by introducing Lagrange
multipliers E and J. The new variational problem be-
comes
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Since H is assumed to be self-adjoint, the variational
equation is

(H E——JA) ~a)=0, (2.37)

which has some (in general unnormalized) solution

~

a ) =
~

a (E,J)). Using the normalization condition
(a

~

a ) =1, we can solve for E as a function of J. The
operator constraint (a

~

A
~
a) =A, will give J as a func-

tion of A, . Reinserting these relations into Eq. (2.37) we
obtain

velocity determined by its energy density e(J) and returns
adiabatically to the unperturbed ground state ~0+) at
t ~ T, picking up a total phase VTE(J) Thus —W(J) is
the ground-state action of the theory with source
J(x)y(x), and in analogy with the quantum mechanics
problem considered before we conclude that —I (y ) is the
ground-state action of the sourceless theory in the space
of states satisfying

(2.45)

[H E(J—) JA]—
~

a (J) ) =0 . (2.38)
Dividing by —VT we have thus verified that

0= (a(J)
~

(H —JA)
~
a(J))

5a 6J

—(a(J)
~

A ~a(J))—5E
6J

=2(5a
(
(H —JA)

~

a )
M 6J

Since ( a
~

a ) = 1 implies

(5a
~

(H —JA)
~
a) =E(5a

~

a) =0,

(2.39)

(2.40)

the first term of Eq. (2.39) vanishes, and we conclude

(2.41)

from Eq. (2.38),

~
a(J)) is a normalized eigenstate of H —JA. In field

theory we shall be able to make a stronger statement:
Since the only normalizable eigenstate of a Hamiltonian is
the vacuum state, we shall be able to identify

~

a(J))
with the vacuum state of H —JA. If we take the scalar
product of (2.38) with (a(J)

~

and functionally differen-
tiate the resulting equation with respect to Jwe get

Vff(g )=(a ~A ~a) (2.46)

for the lowest-energy state (i.e., 5(a
~

A
~
a) =0) in the

space of states satisfying

(2.47)

We can draw important conclusions from Theorem 2.
First, minimizing V,tt(g) with respect to g gives the
ground-state energy of the theory. Furthermore, the
value of g at which the minimum of the effective poten-
tial is taken on yields information about spontaneous
symmetry breaking. If the minimum occurs at @&0,then
all symmetries of W(y, B&y) which do not leave g invari-
ant are spontaneously broken.

Above, we have shown that the effective potential can
be obtained by a variational principle on static field con-
figurations, supplemented by constraints on the states.
Jackiw and Kerman (1979) generalized the idea and ob-
tained a variational definition of the full effective action.
We state their result as a theorem.

Theorem 3. I (y) is the stationary value of the time-
integrated matrix element of iB, —H taken between time-
dependent states

~
f+, t ) subject to the constraints

( a(J)
~

H
~

a(J) )=E(J) J—
6J

E(J) J5E/5J is therefo—re the energy of the ground state
of H in the space of states satisfying the constraint

lim ~@+,t)= ~0),t~+ oo

(2.48)

(a(J)
~

A
~

a(J)) =A, (J) . (2.43a) i.e., I (y) is the stationary value of

The translation of this result to field theory is based on
Eq. (2.16),

I (g )= W(J) —J, =q) .

Formally these equations are identical to Eqs. (2.41) and
(2.42). We obtain the physical interpretation of I (p ) by
recalling the physical meaning of W(J) and invoking the
formal equivalence of the equations. Consider adding a
source term J(x)p(x) to the Hamiltonian density. If the
source J(x) is adiabatically turned on at time zero and off
at time T, and if it is localized in a volume V, then

exp[iW(J)]=(0+
~

0 ) =exp[ —iVTE(J)] . (2.44)

The vacuum t~ —oo Schrodinger state
~

0 ) of the
sourceless theory shifts adiabatically into the ground state
of the theory with source, then propagates with a phase

(2.49)

subject to the above constraints.
The idea of the proof is similar to that employed for

Theorem 2, so we shall just sketch the main points. To
incorporate the first two constraints we add Lagrange
multiplier terms to I (y). Variation with respect to

~ g+, t ) and
~ P, t ) then yields

(2.50)

to(t) is a Lagrange multiplier. We define new states

~

+,t) by
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t

~
+, t) =exp i f dt'w(t') ~g+t),

(2.51)

equation of motion mean replacing the potential by the
effective potential. This is another justification for using
the notion of effective potential.

These new states are the asymptotic ground states. Hence

( , t—)+,t) =e' =exp i f dt w(t) (2.52)

W(J}=f dt(p, t iB, ff+ fd—x Jq ip+t},
(2.53)

It is not hard to combine the equations of motion (2.SO)

and the constraints (2.48) to conclude that

5 IV(J)

C. Computation of the effective
potential and effective action

We first present the elegant technique of Coleman and
Weinberg (1973) for summing all graphs contributing to
the one-loop effective potential, following the exposition
in Coleman (1973). We develop the combinatorial
method in the case of the theory of a single scalar field
and then generalize to theories involving Fermi and gauge
fields. The combinatorial method cannot easily be gen-
eralized to higher orders in the loop expansion. There-
fore, we sketch a method that can, the functional integral
method developed by Jackiw (1974) and Iliopoulos, Itzyk-
son, and Martin (1975). We conclude the section by brief-
ly mentioning other approximation schemes.

Consider first a scalar field theory given by the
I.agrange density

(2.55)

To conclude this section we should like to stress the
physical interpretation of

(2.56)

which follows from the definition of I" as a Legendre
transform. For vanishing source terms, the variation of I
must be zero. This is the quantum-mechanical equation
of motion for (p(x, t).

Instead of expanding in powers of cp, we can expand in
powers of momentum about the point where all external
momenta vanish (see, for example, Coleman, 1973):

(2.59)

The final three terms are renormalization counterterms
and hence of order R. Since g is constant, no A-type
counterterms are required in computing the effective po-
tential. Let V,tt(qr ) denote the effective potential to order
R' and B'" (C") the B (C) counterterms to order Pi. Us-
ing Eqs. (2.31) and (2.33), we see that V,'~t(g ) is obtained
by adding to the classical potential U(y) to order A' all
one-loop graphs with vanishing external momenta, i.e.,

I'(y)= fd x[—V,t,(q)+ ,'(d„pd~p)Z(~—)+ . ] .

(2.57)

Working to this order in momenta and renormalizing the
field such that Z(y) becomes unity, we obtain the follow-
ing equation of motion:

(:)V = —V'tt(q» (2.58)

(vanishing external sources). Thus, close to the static lim-
it, the quantum corrections to the classical scalar field

(2.60)
Since all external momenta are zero, the loop integration
is the same for each graph. This is the main reason we
are able to sum the jPI one-loop graphs explicitly. Since
there is a factor g for each external line and a factor 1/2n
from the indistinguishability of external lines (n is the
number of vertices), the sum of the graphs is

'n

(2m. ) 2n k +iE
d4k

41n 1—
(27r) k +is

a'k
ln ~+

(2~)4 2k'
(2.61)
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The initial i stems from the fact thai i I and not I is the
sum of all 1PI graphs [cf. Eq. (2.8)]. Wick rotation to
Euclidean space produces the compensating i. While it is
already remarkable that the infinite sum of graphs can be
performed explicitly, it is even more remarkable that in
the process the infrared behavior is improved. Each indi-
vidual graph has a polynomial infrared singularity which
gets worse as we proceed to higher orders in the perturba-
tive expansion. The sum of graphs, on the other hand,
has only a logarithmic infrared singularity.

Renormalization of the theory proceeds along the usual
lines. First, we regularize by imposing a momentum-
space cutoff at kz ——A . Then the integral (2.61) is ele-
mentary and yields

AA 2 k y Ac@ (2.62)

Mass and coupling-constant renormalization fix B'" and
O'". Our mass renormalization condition demands that
the renormalized mass vanish:

(2.63)

This implies

v,'I((4)

FIG. 2. Effective potential for a sample scalar field theory.
U(g) is the (tree-level effective) potential, V,'~~(y) the one-loop
effective potential.

The mechanism of spontaneous symmetry breaking via
radiative corrections does work for massless scalar elec-
trodynamics (Coleman and Weinberg, 1973) and for many
non-Abelian gauge theories.

The computation of the one-loop effective potential is
conceptua11y the same for non-Abelian gauge theories, al-
though the technical details are more tedious. Consider a
theory given by

W(A, Q, &p) = —,' Tr(F&„F—"")+iTrggg+TrgMQ

TrgI q&g—+ ,' Tr(D&p)—+D~q& U(y) . —
~(]) AA 2

327T2
(2.64) (2.69)

Due to the infrared divergence, we must perform
coupling-constant renormalization at a nonsymmetric
point y=M&0:

(2.65)

We are using the usual notation (see, for example, Itzyk-
son and Zuber, 1980): Given a non-Abelian gauge group
6 with generators r~, a set of Dirac bispinor fields f,
and a set of scalar (Higgs) fields y;, each of which forms
a representation space for 6, then

An elementary computation yields

(i) 11 A, 3A, XM
32 ~2 32~2 2~2

(2.66)

Ap ——A pz~,

Fq„——BpA„—8 A~+ig[Ap, A ],
Dp =Bp+ EgAp

(2.70)

Combining these results, we find

25
6

(2.67)

In D„ the ~~ are the matrices that represent the genera-
tors of 6 in the appropriate representation space. The
trace also refers to the appropriate representation space.
If the Higgs and Fermi fields are represented as column
vectors, the trace reduces to the scalar product, e.g.,

2

A. ln = ——"m +W(A, ) .
M

(2.68)

For small values of y this is negative. Hence this cal-
culation gives us the important result that radiative
corrections may destabilize the tree-level ground state
y=0 (see Fig. 2; Coleman and Weinberg, 1973).

A necessary condition for spontaneous symmetry
breaking via radiative corrections is that the renormalized
mass be zero (such theories are commonly called
Coleman-Weinberg-type models). Another condition is
that the effective loop-expansion parameter

~
A, ln(y /M )

~

be small (only then is the loop expansion
reliable). In the scalar quantum field theory given by Eq.
(2.59) the second condition is violated for all values of A, ,
since at the minimum of V,'rr'(g )

Tr( Dqy)+D"&p = (D~g&)+D"y . (2.71)

Tl coBpA (2.72)

and contains no Higgs couplings to ghost fields. Hence to
one-loop order no ghosts arise in our calculation of the ef-
fective potential, Therefore,

Finally, I denotes the matrix of Yukawa coupling con-
stants.

The Feynman rules in general involve extra fields, the
ghost fields co and co, scalar fields obeying Fermi statistics
(Faddeev and Popov, 1967). They arise as a consequence
of the field-dependent functional determinant in the
Faddeev-Popov ansatz for the generating functional. In
covariant gauges, the ghost term in the effective Lagrang-
ian is
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V,'ff (j ) = U(q) ) + V,',' + V) )()(&p . (2.73) The second diagram thus gives a contribution of

a'U(~)
8 8

(2.74)

In our single scalar field theory given by Eq. (2.59),
—2 (2.75)

V,",' contains all the counterterms to order A', and V$ ] p
is the sum of all one-loop graphs with external y lines at
zero momenta. The particle propagating around the loop
can be a Higgs boson, a fermion, or a gauge boson. (By G
charge conservation the particle type cannot change
within a single loop. ) The corresponding contributions to
V$ f p are denoted by V~", Vf", and Vg ". We can calcu-
late each of these contributions by following the pro-
cedure outlined in the scalar field theory example.

For Vz" the only change is the presence of more than
one scalar particle. The relevant diagrams are those of
Eq. (2.60). Consider a vertex with one internal line asso-
ciated with p;, the other with q&J. Then the effective cou-
pling constant, which includes the physical coupling con-
stant, the p factors for external legs, and the Bose com-
binatonal factors for internal links, equals

2
1 I @ JTrsf'i I ab g

f bagj ~

i,j,a, b

(2.79)

We write Trg for a trace over spinor indices. If we take
this trace and simplify the notation by introducing a trace
Trf in the fermion representation space, we get-

Trf(g&I )
1 4
2 k

(2.80)

with (gl ),b ——qr; I,'q. Analogously the graph with 2n ver-
tices yields

2 Trf(q&I )
" .1 4

2n (k 2)Il

Thus (dropping the subscript f for the trace)

(pl )'
k

d'k
Vf'"(q&)= 4i Tr g —f (2m. ) 2n

(2.81)

(2.82)

This result is analogous to Eq. (2.61), and therefore fur-
ther evaluation is identical to the procedure in the scalar
example. We obtain for the cutoff-independent contribu-
tion [cf. Eq. (2.76)]

1

64m.

If U(y) is an even quartic polynomial (the standard
Coleman-Weinberg potential for a renormalizable theory
with y~ —y symmetry), then W(g ) is a quadratic form
and hence can be diagonalized. In the diagonal basis the
different Higgs fields decouple, and V5" can be obtained

-by adding the contributions of the new basis fields. Each
individual term is given by Eq. (2.62). Neglecting the k
corrections to terms already contained in V,'fr'(g), the
cutoff-independent part of Eq. (2.62) becomes

2—2 —2

ln ~ (2.76)
2

n
2

Vf '(gr )= — 4Tr[(q)I ) 1n(yI ) ] .
64m

(2.83)

with

A1"~M
p (2.84)

Finally we come to the calculation of V~"'(y): The
contributing diagrams are given in Fig. 4. The only ver-
tex that contributes to one-loop order is the A y vertex.
It stems from the following term in the Lagrange density:

, Trf(igA&—y)+igA "p]= ,
'
g~g~Tr[(r~—A&y)+r&AI'~jp]

Therefore, in the diagonal basis M'i =g gi Tr[(r.V»+~pm] . (2.85)

V' "(y ) = g ( IV") ln W"
64m

2 Tr( W' in@') .
64~

(2.77)

The latter expression is basis independent.
Vf' '(g ) is given by the sum of the diagrams in Fig. 3

(we are considering the case M =0). Since the trace of an
odd number of y matrices vanishes, the diagrams with an
odd number of vertices are zero. If we insert all indices
explicitly, the Yukawa coupling term in Eq. (2.69) is

First a few general comments on Eq. (2.84). , (1) If 6 is
not a simple group, then in general there will be a dif-
ferent coupling constant associated with each field A P'
(2) The trace is a trace in the Higgs representation space.
(3) M~p

~

is the mass matrix for the gauge bosons in
the broke@. phase with vacuum expectation value y. At
the same time M & is the gauge boson effective-coupling-

2

constant matrix in the sense of Eq. (2.74). The last com-
ment also shows that the calculation of V'" is analogous

(&) ~ ~
g

to that of Vs . Since in Landau gauge the gauge fields
have three degrees of freedom, we obtain (with a Lie alge-
bra trace)

X O'I'bv
a, b, i

(2.78)
V~"(y)=

2 Tr(M lnM )
i (2.86)

+ ~ ~ ~

FIG. 3. One-loop graphs contributing to Vf'"(y). FICx. 4. One-loop graphs contributing to V~"(g).
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Z(J ) f [d i] is(q'+y)+iong'~ (2.87)

Here cp is the classical background field, X is the normali-
zation constant,

X '= f [d(p']e' '~'

Similarly we can define W(J, ((()) by

Z(J ) eiw(J, q&)

(2.88)

(2.89)

The combinatorial technique outlined above is an
elegant and conceptually simple way to calculate the one-

loop effective potential. Unfortunately, we know of no
easy way to generalize the method to higher orders in A.

The functional integral approach sketched below does ad-
mit an easy generalization. At any given order in A the
computation of the effective potential will be reduced to
the calculation of a finite number of Feynman graphs
with respect to a new interaction.

The crucial point in the functional integral approach
(Jackiw, 1974; Iliopoulos, Itzykson, and Martin, 1975) is
the fact that the loop expansion is equivalent to an expan-
sion about a stationary point of the action. We shall use
the background-field method, originally due to DeWitt
(1964) and extended by 't Hooft (1975), DeWitt (1981),
Boulware (1981), and Abbott (1981a). See Abbott (1982)
for an introduction.

Consider the shifted generating functional

The generating functional for 1PI graphs in the given
background field p is defined in analogy to Eq. (2.16) as
the Legendre transform of W(J, (p):

r(g, y) = W'(J, (I( ) —J(((, (2.90)

where on the right-hand side J is expressed in terms of cp

by inverting

5W(J, y)
SJ (2.91)

By shifting the integration variable in Eq. (2.87) it is easy
to check that

r(@,p) =r(g+(p) .
In particular,

(2.92)

(2.93)

Equation (2.93) yields an alternate procedure for comput-
ing the effective action I (y): r(0, (p) is the sum of all
1PI vacuum graphs of the theory in the background field

We now prove that, to any given order in A', I (O, q&) is a
finite sum of graphs in the background theory. Clearly
we must keep track of powers of A. Recall that both
terms in the exponent of Eq. (2.87) contain a factor A

We rescale the quantum field (p' by defining f'=A
For our standard example, a (i(,/4!)(p theory, we obtain

g—'S(g&'+(p)=g 'S(((()) R'~ fd—x f' a„a"y p, y—
(2.94)

The second term vanishes if we expand about a classical solution cp. In this case

fi 'S(q'+g)=))1 'S(q)+ fd'x , a„(ti'a"g'+ ——p'+—q g' + gf' + —,0' (2.95)

I =Q + ~kg

and interactions

(2.96)

(2.97)

We thus obtain a new theory expanded about a classical
background solution with mass

I

where subscripts denote the order in the loop expansion.
Thus exp[i r, (o,y)] is just the Gaussian approximation of
Eq. (2.87) about the background field (((). By Eq. (2.95),
therefore,

I )(y)= ——,'lndet[( a„a"+p + —,
'

A.y—)I]
(2.99)

In the new theory the propagator is independent of A,

while both vertices carry positive powers of A. Since to a
given order of perturbatioz theory there are only a finite
number of Feynman graphs, and since the expansion to
fixed order p in A will involve only graphs with fewer
than 2p vertices, we have demonstrated our initial claim.

The background-field method also yields an easy way
to determine the one-loop effective potential. From the
definition as a Legendre transform we have

(2.98)

I ((y) = ——,
' fd"x f „ln

(2m )"

k +p + —,'Ay

k +p

(2.100)

For p=O we immediately obtain our original result Eq.

The functional integral approach yields a closed-form
answer for the one-loop effective action. If qo is a con-
stant field we can evaluate I ((y) in momentum space and
obtain
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estimate for the order of magnitude of the three one-loop
correction terms for V,ff(g ). For a Higgs potential
V(y)=AP(y) with P(y) a fourth-order polynomial, we
can use Eqs. (2.77), (2.83), and (2.86) to conclude that

FIG. 5. The two-loop graph included in the Hartree-Fock ap-
proximation.

(2.61) for V, (y).
The one-loop approximation to the effective potential is

just one of many conceivable approximation schemes.
is the semiclassical approximation. Other approximation
schemes are discussed in Jackiw (1975) and in textbooks
on quantum-field-theoretical methods in statistical phys-
ics (e.g., Fetter and Walecka, 1971). Two popular
methods are the Hartree-Pock approximation (see, for ex-
ample, Jackiw, 1975), which amounts to improving
beyond one-loop order by [in the language of the modified
action of Eq. (2.94)] including the graph of Fig. 5, and the
Rayleigh-Ritz method. The Hartree-Pock approximation
is not systematic in A, , since it does not include the graph
of Fig. 6, but it gives the leading large-% contributions if
A, scales as N ' and qr as N'~ (Dolan and Jackiw, 1974;
Schnitzer, 1974; Coleman, Jackiw, and Politzer, 1974).

The Rayleigh-Ritz method is an approximation scheme
based not on a graphical expansion, but rather on the
variational definition of the effective potential. The idea
is to give a multiparameter family of state wave function-
als obeying the constraints of Eq. (2.47) and to minimize
the energy expectation value in this subclass of states.
The minimum will be an approximation for the effective
potential.

D. Two examples

To illustrate the formahsm established in the previous
sections and to make contact with the recent literature on
new scenarios in cosmology inspired by modern unified
gauge field theories, we shall explicitly calculate the one-
loop effective . potential for two important models, the
Cxlashow (1961) -Weinberg (1967) -Salam (1969) model of
weak and electromagnetic interactions and the minimal.
SU(5) Cxeorgi-Glashow (1974) model. We shall consider
both models in the Coleman-%'einberg mode, i.e., without
an explicit Higgs mass term in U(qr).

Before analyzing the models, it is useful to obtain an

Vs (y)-(A,g ) ink, y

Vf (g ) —(I g) ln(I g )

Vg "(g )-(gg )41n(gg )2 .

(2.101)

—2

(2.103)

where c is a constant of order unity arising from perform
ing the traces in Eq. (2.86). The natural renormalization
point is M =o.. Then the condition for o. to be an ex-
tremum of V,'ff'(g ) is

If the minimum of the effective potential occurs at @=o.,
then I o will be the order of magnitude of the fermion
masses [see Eq. (2.69)]. From Eq. (2.85) it follows that
the heavy gauge particle masses will be of order go. If
our theories contain no heavy unobserved fermions, then
I «g and Vf'"(g) can be neglected. In most gauge
theories we can take A, to be small. In that case the posi-
tion o. at which the minimum is taken on is determined
by balancing kg" against Vg"(g ). Below we shall show
that k must be of the order g . Therefore, Vs"(g) is
negligible. Hence for a wide class of models, which in-
cludes our two examples, the one-loop effective potential
is given by

V,'rf (g ) = U(g )+ Vg '(y ) . (2.102)

In these models the one-loop result predicts spontane-
ous symmetry breaking. The effective potential is again
given by Fig. 2. In contrast to a scalar field theory, sym-
metry breaking still persists at higher orders of the loop
expansion. The reason for the difference is that for gauge
theories the effective loop-expansion parameter is very
small for field values y near the minimizing point o.. To
prove this assertion, we first solve for A, in terms of o
[this step is called dimensional transmutation (Coleman
and Weinberg, 1973)]. For notational simplicity we con-
sider theories with a single Higgs field. After regulariza-
tion and renormalization following Eqs. (2.62)—(2.67),
Eqs. (2.86) and (2.102) become

V',ff (o)= —— c cr =0 .g (]) A 11g 3

6 16m.
(2.104)

g C
33 4

8m
(2.105)

FICi. 6. A two-loop graph that does not contribute in the
Hartree-Fock approximation.

Each loop will, introduce another factor g ln(p/o ). (This
is the reason we call it the effective loop-expansion pa-
rameter. ) Since it is very small for field values y close to
o., the loop expansion is indeed reliable for this range of
field values.
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on which SU(2) acts via its defining representation, while
the U(l) is an overall phase rotation. The Higgs vacuum
expectation value is

& ) (2.107)a

Since

The gauge group G of the Glashow-Weinberg-Salam
model is SU(2) XU(l). Let g and g' denote the coupling
constants of the two factors and W (a=1,2, 3) and V
the associated gauge fields. The scalar fields form a com-
plex doublet,

(2.106)
CPp

our final result is
2

Vg (g )=(i) 3 e2 2+ cos —
O

4~ sin'O~

—2
Xg' ln~

M
25
6

(2.115)

SU(5)~SU(3) X SU(2) XU(1) .

A Higgs vacuum expectation value of the form

(2.116)

In the Georgi-Glashow minimal SU(5) model the Higgs
field is in the adjoint representation. For most values of
the free parameters, the energetically favored symmetry-
breaking channel is (see Billoire and Tamvakis, 1982, and
Guth and Weinberg, 1980)

1 ~ 2
gg gW„igW—„~3+ (2.108) g=ydiag(1, 1, 1,——', , ——, ) (2.117)

the U(1) subgroup generated by the generator associated
with

g'8 p+gVp =sinO~8'p+cosOp Vp =3@
(g~2+g2)1/2

(2.109)

leaves &tp) invariant and thus remains unbroken. 2„ is
the electromagnetic field, O~ the Weinberg angle. In
terms of A&, 8'z', and Z&

——cosO~R'z —sinO~V&, the
gauge boson mass matrix in the broken phase is already
diagonal:

will break SU(5) in the required way. For field configura-
tions of this form, the effective one-loop potential can
easily be calculated using the adjoint representation for-
mula

M p =g Tr([r, (p], [rp, y) ) . (2.118)

The 12 gauge bosons associated with the residual symme-
try remain massless, the others pick up identical masses,

(2.119)

2 2

D„&q)D'&q)=' ' (W„'+W„')

~'(g'+g') Z2
4 p (2.110)

Inserting this result into Eq. (2.86) we find

Vs '((p )=,g ~y 41nq '+ d'(q 4),($) 5625 4

1024~
(2.120)

which after regularization and renormalization yields

which implies

m (W& 2)= —,'g a

T

5625 4 4
1

Pp 25

1024~2
(2.121)

m (Z)= —,'(g +g' )a
(2.111) This completes our discussion of the zero-temperature ef-

fective potential in sample field'theory models.

Thus for qr=g&y) the contribution of the gauge field
loops to the one-loop effective potential is

In terms of the measurable quantities e and O~ defined
by

and g cosO~

Eq. (2.112) becomes

(2.113)

(i) 3 e 2+ cos O~
Vs ((p)= 4 g in@ +P(g ) .

64 4m sin4O~

(2.114)

Regularization and renormalization proceed exactly as in
the scalar field theory case [see Eqs. (2.62)—(2.67)]. Thus

V( ~)(y ) [2g4+ (g2+g 2)2]~ 41 —2+ Q(
—4)

1064m

(2.112)

E. Comments

In this section we comment briefly on two questions of
importance in inflationary universe models —first, the ex-

tension of the formalism to composite operators, and
second, the question of convexity.

In many systems symmetry forces the expectation value
of the scalar field to vanish, i.e., @=0. In this case the
ordinary effective action I (g ) is uninteresting. Instead
we should like to compute the minimal energy of states
with a fixed two-point function G(x,y). The generaliza-
tion of the effective action formalism to cover this case
has been worked out by Cornwall, Jackiw, and Tomboulis
(1974).

We start by considering the vacuum persistance ampli-
tude in the presence of two source terms, the original

J(x)y(x) and a new term —,y(x)qKy)K(x, y),
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Z(JK)=N f [dp]exp i fd4x j(W[qr(x)]+J(x)y(x)

W(J,K) is defined as usual by

+ —,
' K(x,y)q (x)p(y) ]

(2.122)

Z (J,K)=exp[i IV(J,K) ] .
l

The generalized effective action I (@,6) is the double
Legendre transform of W(J,K):

I"(y, G) = W(J,K)—fd x J(x)p(x)

——,
' fd x d y[g(x)g(y)+6(x, y)]K(x,y)

(2.123)

(2.124)

with J(x) and K(x,y) determined by

5 W(J,K)
5J(x)

5 W(J,K) = —,[q (x)g (y)+ 6 (x,y)] .
5K x,y

(2.125)

In the absence of sources the equations of motion are

51 (qr, G) 0 5I (y, G)

5@(x)
' 56 (x,y)

(2.126)

If we restrict our attention to static configurations, we
obtain

r(+, 6)= E(&—,6)fdt, (2.127)

where E (g, 6) is the minimum of the energy when vary-
ing over all normalized states with the constraints

(~(x) ) =g(x)

(q(x)q(y)) =g(x)g(y)+6(x, y) . (2.128)

This statement is clearly a generalization of Theorem 2.
For homogeneous states [y(x) =const, 6 (x,y) =6 (x
—y)] we can write

E(qr, G)= V(@,G)fd x . (2.129)

V(y, G) is the generalization of the effective potential.
Hawking and Moss (1983) and Vilenkin (1983) have

used this formalism to study the evolution of the quan-
tum field in inflationary universe models.

The convexity properties of the effective potential have
caused some confusion in the literature. .It is well known
(see, for example, Arnold, 1978) that the Legendre
transform of any function, whenever defined, is convex.
Thus, as emphasized already by Symanzik (1970), the ef-
fective potential computed nonperturbatively will be con-
vex. This is true in particular for the double-well poten-

FK)r. 7. Double-well potential and its effective potential: (a)

tree-level potential; (b) effective potential by the Maxwell con-

struction; (c) perturbative result.

tial of Fig. 7. The Maxwell construction gives an easy in-
tuitive understanding for the flat segment of the effective
action for —o. & cp & o.. Given the value y =ao.
+(1—a)( —o) for 0&a& 1, we consider a state

I

+&=a'"
I
&~&+(I—a)'" III2& where III'& (

I
I~2&) is

the state with y =o (p = —o ). Then the expectation
value of the quantum field operator y in the state

I

Q ) is
the given classical value g, and the energy of the state
vanishes. Note that the effective action given in curve (b)
of Fig. 7 is nonanalytic.

The effective potential we computed to one-loop order
in the previous sections is obviously nonconvex. Since a
perturbative calculation always yields an analytic func-
tion, the best we can hope to obtain is the analytic con-
tinuation of the nontrivial branch of the true effective po-
tential. It was pointed out by Langer (1967,1969) that the
analytic continuation is important in the analysis of
metastability of statistical mechanical systems.

Also in quantum field theory the analytic continuation
of the nontrivial branch of the exact effective potential,
i.e., the function we approximated by the one-loop effec-
tive potential, plays an important role for questions con-
cerning the existence and decay of metastable and unsta-
ble states. From the background-field approach to the ef-
fective potential discussed earlier it is obvious that the
one-loop effective potential V"'(g ) gives the free-energy
density of the state consisting of Ciaussian fluctuations
with prescribed mass about qr(x) =g. This has been
stressed by Hill (1983) and more recently by Mazenko
et al. (1984). If V"'(g ) has a local minimum at the ori-
gin, it is possible to prepare a metastable state. If V"'(p )
has a local maximum at the origin, then the equation of
motion for a scalar field with potential V'"(g ) will ap-
proximate the evolution of the expectation value of a state
initially set up to be localized at some y close to the ori-
gin. These are the circumstances under which V"'(p ) is
relevant for cosmology.

Whether the initial state in a cosmological model is lo-
calized in the above sense or not is a completely separate
question. In all models of the type of the new inflation-
ary universe it is assumed that the initial state will be lo-
calized. Mazenko et al. (1984) have recently given argu-
ments to the contrary. In the opinion of the author this
crucial question is still unresolved. Work towards resolv-
ing the issue is in progress.
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16 Robert H. Brandenberger: Inflationary universe models

III. FINITE- TEMPERATURE QUANTUM
FIELD THEORY

A. Formalism and modified Feynman ru)es

TrIe ~ T[q(x, ) . (p(x„)]I
Tre-~" (3.1)

The first sum runs over a complete set of states
~
g) with

energies E(g) and thus can be written as a trace in the
space of states.

Equation (3.1) can be interpreted in statistical mechan-
ics language. It is the average value of the time-ordered
product of the n field operators in the grand canonical en-
semble with vanishing chemical potential. Thus there is a
close formal relation between methods of finite-
temperature quantum field theory and quantum statistical
mechanics.

The use of Green's functions in quantum statistical
mechanics goes back to the work of Matsubara (1955).
The correct boundary conditions for Bose and Fermi sys-
tems were derived by Kubo (1957). Martin and
Schwinger (1959) made important contributions, as did
many Russian physicists (e.g., Abrikosov, Gorkov, and
Dzyaloshinski, 1959; Fradkin, 1959; Akhiezer and Pelet-

Conventional quantum field theory is set up to describe
scattering events that take place in empty space, i.e., in a
surrounding vacuum. By the Lehmann-Symanzik-
Zimmermann (LSZ) formalism the scattering matrix ele-
ments are expressed in terms of (zero-temperature)
Green's functions, i.e., vacuum expectation values of
time-ordered strings of Heisenberg field operators (see, for
example, Itzykson and Zuber, 1980). The assumption of
an empty space in which a scattering event takes place is
very well justified when studying particle interactions in
accelerators, but in the early stages of the universe stan-
dard cosmology predicts a high matter and radiation den-
sity which renders the assumption totally inapplicable. In
analogy with thermodynamics, the background state in
which we study a scattering event should be a thermal
bath at the temperature T of the universe. Replacing the
vacuum by this thermal bath, we obtain the definition of
finite-temperature Green's functions for a scalar field cp:

Gt'(x, , . . . , x„)=pe-t' '~'

X (P
~
T[@(x)). . . y(x„)]

~
P)cy

Tr e ~ Texp i f J(x)y(x)d x

Tre -~~ (3.2)

The important observation here is that in Minkowski
space-time, as compared to the zero-temperature case, the
only changes in the functional integral are the boundary
conditions on the set of paths on which the measure has
its support. Recall that whenever the coupling in the
term in the Hamiltonian quadratic in momenta is field in-
dependent, the transition amplitude between two Heisen-
berg states f& and tP2 is given by (see, for example, Abers
and Lee, 1973)

minskii, 1960). Quantum field theory methods in statisti-
cal mechanics are also discussed in at least three text-
books (Fetter and Walecka, 1971; Kadanoff and Baym,
1962; Abrikosov, Gorkov, and Dzyaloshinski, 1965).

Finite-temperature effects in quantum field theory and
their implications for cosmology were first considered by
Kirzhnits (1972) and Kirzhnits and Linde (1972,1974).
The formalism of finite-temperature effective potentials
on which we base our discussion was developed by Wein-
berg (1974), Bernard (1974), and Dolan and Jackiw (1974).
Summaries of the early work on phase transitions in
gauge theories and cosmology have been published by
Kirzhnits and Linde (1975) and Linde (1979).

As emphasized by Bernard (1974), in gauge theories the
finite-temperature formalism is not gauge invariant. In
particular, the finite-temperature effective potential is not
gauge invariant. The reason is obvious: only in physical
gauges (gauges in which there are no spurious particles
such as ghosts) does the naive trace correspond to a sum-
mation over all physical states of the system. The parti-
tion function must clearly be defined in a physical gauge.
The functional integral for it can be written down in this
gauge. The functional integral can then be extended to an
arbitrary gauge by gauge invariance. Thus the finite-
temperature Feynman rules in any gauge may be deter-
mined. We shall not need any technical details on this
point in later sections and therefore shall not go into
them.

In analogy with the zero-temperature case we shall
derive the perturbation expansion for the finite-
temperature Green s functions in terms of finite-
temperature Feynman rules using the functional formal-
ism. The finite-temperature generating functional is

ff
H&fi lti2~H f [dV(s, x)]1(i[g(tf,x, )]q2[g(t, ,x, )]exp i f ds f d x~(y, B„p) (3.3)

In the limit f;~—ao, tf~+ oo the state wave function-
als @~(y) and g2(y) give the boundary conditions on the
functional integral. It is now obvious that the difference
between zero temperature and finite temperature is merely
a difference in boundary conditions. The product of
vacuum-state wave functionals

fl*[y(tf, xf )]fl[y(t;,x; )]

must be replaced by

g e ~ '~'P*[y(tf, xf)]g[y(t;, x;)] .

(3.4)

(3.5)

The change in boundary conditions has a remarkable
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interpretation in Euclidean space: The finite-temperature
Careen's functions, are periodic (for Bose fields) or an-
tiperiodic (for Fermi fields) in Euclidean time with period
P. Thus the paths contributing to the Euclidean function-
al integral must likewise be periodic or antiperiodic. We
can derive these results by considering the two-point func-
tions. Let p stand for an arbitrary field and set s =0 (1)
if y is bosonic (fermionic).

The first step in deriving the periodicity results is to ex-
tend the definition of time ordering to Euclidean times
tC[0, iP—] Sin. ce analytic continuation to Minkowski

space must reproduce the usual definition, we define

'cp(x)cp(y) if ixo ~iyo

( —1)'y(y)y(x) if ixo (iyo .
The two-point function

Tr je ~~T[y(x)y(y)] I
—PH

(3.6)

(3.7)

can be transformed using cyclicity of the trace and field
transformation properties under the Poincare group:

(Tre )G2(x —y)
~ „o ——( —1)'Tr[e ~ y(yo, y)@(0,x)]

=(—1)'Tr[e ~ e~ y(0, x)e ~ y(yo, y)]

=( —1)'Tr[e ~ q)( i fd,—x)y(yo, y) j

=( —1)'(Tre ~ )G~2(x —y)
~ (3.8)

Hence we have verified the claim

G2~(x —y) j „0,——( —1)'G2~(x —y)
~ „0 (3.9)

If the generating functional of a theory is given by an
unconstrained functional integral of the form

Z(J)= f [dy]e' '"' 'N, (3.10)

then we can see, by inspecting S(y,J), that the Feynman
rules follow immediately as we discussed in the proof of
Theorem 1. As in Eq. (2.12) the Feynman propagator is
iA ', where A is the operator coupling the fields in the
term of S quadratic in qr. The vertex factors are i times
the coefficients of the interaction terms in the action and
are thus obviously unaffected by modifications of the
boundary conditions. Since 3 is in general a differential
operator in position space, iis inverse in momentum space
will be a local operator and hence invariant -under tem-
perature changes. This means the momentum-space
propagator will remain unchanged when introducing a
finite temperature. The propagator in position space, on
the other hand, will depend on the boundary conditions.

Periodicity in Euclidean time direction implies discreti-

l

zation of momentum space in the iko direction. The pos-
sible ko values are given by —iso„=n.2n for Bose fields,—i Iso„=n (2n + 1) for Fermi fields. This leads to
changes in the Feynman rules summarized in Table II.

B. Finite-temperature effective potential

In Sec. II we have demonstrated that in a large class of
gauge theories with a Higgs potential U(y) of the
Coleman-Weinberg type, i.e., without an explicit mass
term —,'p y and with minimum at y=O, radiative one-
loop corrections destabilize the minimum. A new non-
symmetric minimum at y=o appears, and hence spon-
taneous symmetry breaking occurs. In this section we
shall investigate the effects of finite temperature in these
models. To this end we must compute the finite-
temperature one-loop effective potential V,'r~P(g).

Consider first the scalar field theory [Eq. (2.59)]. Since
the only change compared to the zero-temperature case is
the discretization of the ko variable, the identical steps
that led to Eq. (2.61) will give

TABLE II. Comparison of zero and finite temperature Feynman rules.

Zero temperature Finite temperature

loop integral

vertex 5 functions
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18 Robert H. Brandenberger: Inflationary universe models

V"'i'(-) = U(-) ——' g f ln 1—
2 i—P „„(2~) 2(co„—k )

1 d k=U(g)+ g f 3
ln 1+

(2n )

A,g
4m

2 n+k2

r

=U(g)+
3 g ln, n +Ek +const

1 d k " 4~~ 2 2

(2m)' „= „P' (3.1 1)

with

2
E„'=I'+ ~

2
(3.12)

(we have omitted all counterterms). The sum over n is
divergent, but the infinite part is a constant. The finite
part, which contains the only E dependence, can be calcu-
lated (see Dolan and Jackiw, 1974) by first differentiating
with respect to E, summing the resulting series using the
identity

dx 2 2i ln( —x +y —ie)=y+const .
27T

(3.15)

V ff (p)= U(g)+ —
~

ln( —ko+Ek iE)—(1)P i d4k 2 2

(2~)'

We can check Eq. (3.15) by the same trick of differentiat-
ing with respect to y inside the integral, performing the x
integral, and at the end integrating with respect to y. Ap-
plying Eq. (3.15) to the first integrand in Eq. (3.14), we
obtain

2 2
——— +—coth~y

1 7T

1y +n 2g 2 + —f 3
ln(1 —e ").1 d k —pz„

P (2m)'
(3.16)

1 m ~e
—2m+

and integrating the resulting function. We get
I

(3.13)

Rotating the second term to Euclidean space we find that,
up to a constant,

4

V,rr(g) = U(qr)+ —f &
ln 1+(1) ] d kE

2 (2m) 2k'

d k
V,'rr' (g)=U(g)+ f (2m )'

-p~,
2 P

+—ln(1 —e ") + z f dkk ln(1 —e ").
2m. P

(3.17)

Now

(3.14) The first two terms are exactly the zero-temperature re-
sult. We conclude therefore that introducing a finite tem-
perature gives an extra term

—2

b, V',&P(g)= f x ln 1 —exp —x + p2'
1/2

dx (3.18)

with

1
V,'rr' (g)=V', rr'

= (g)+ ~ I(y)
2772

(3.19)

in the one-loop effective potential.
It is very important that this extra term is finite, since

as a consequence the zero-temperature renormalization
counterterrns will also render the nonzero-temperature
one-loop effective potential finite. Thus even on the level
of renormalized potentials the relation

remains valid.
The generalization to non-Abelian gauge theories is

straightforward. Sioce the sum of all one-loop graphs is
given by Eq. (3.12) with A,g /2 replaced by the effective
coupling constant of the loop particle to the external sca-
lar field, we obtain the finite-temperature correction to
the one-loop effective potential by summing Eq. (3.18)
over all loop particles (in the diagonal mass basis
described in Sec. II.C).

In the Glashow-Weinberg-Salam model, therefore,

I(y)= f x ln(1 —e '" +~ ' )dx
0

(3.20) I»( —,
'
gv p)+I l —,

' (g'+g')'"v p1 I,

(3.21)
and in the minimal SU(5) Georgi-Glashow model

(3.22)
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b, V rp(qo) =
2 I(v'25!8g gp) (3.23)

[see Eqs. (2.111) and (2.119). Also recall that both Eqs.
(3.22) and (3.23) only hold for a one-parameter family of

field configurations given by Eqs. (2.111) and (2.117),
respectively].

For high temperatures we can expand I(y) in a power
series in y (more precisely, the condition for applicability
of the expansion is gP « 1):

I(y)= f x In(1 —e ")dx+ f x dx+6'(y )
P 2 P 1 ~

—x

f x e dx+ f dx+W(y )
n=1

+y' +&(y') .
45 12

(3.24)

In this approximation the scalar field theory result is [see
Eq. (3.19)]

minimum is temperature independent. In this approxima-
tion the criterion for T, is

7r2
V(ff)p(q ) = V(ff)'='(0 )+ 2 q

'— + 8'(q ') .
48P 90

(1.)T
V,rr '(o.)=0. (3.28)

In the Glashow-%"einberg-Salam model we get

(3.25)
To be specific, we shall consider a theory with a purely

quartic Higgs potential (e.g., the Glashow-Weinberg-
Salam model in the Coleman-Weinberg mode). By Eqs.
(2.103) and (3.25)

2

+&(g ) (3.26)

2

V,'rf' (g) = V,'rf"='(y)+, g'g' — + @(g') .
16P 15

(3.27)

1

[see Eq. (3.22)], and from Eq. (3.23) we deduce that for
the minimal SU(5) model

V,'rr' (cp)= —,g +Bg ln +, 25 +

(3.29)

with numerical constants 8 and C determined by the
specific model. The natural choice for the renormaliza-
tion point is M =o.. Replacing A, by o. via dimensional
transmutation as discussed earlier [Eqs. (2.103) and
(2.104)], we obtain

A, =888 (3.30)
The finite-temperature corrections to the one-loop ef-

fective potential in the high-temperature limit give rise to
a temperature-dependent mass term. This T y term
converts @=0from a local maximum of the effective po-
tential back to a local minimum. In fact, for high tern
peratures, the T gr and g terms dominate for all values
of g and make /=0 the absolute minimum, whereas
below some, critical temperature T, cp=O remains a rela-
tive minimum, a metastable false vacuum (see Fig. 8).

The critical temperature T, is the temperature at which
the minima are degenerate. %'e can roughly estimate T,
by assuming that the location y=o. of the asymmetric

and hence

—2

V(ff)'(g)=By 4 Inm —' +Cq, 2T2.
u2 2

(3.31)

Equation (3.28) now, immediately gives

(3.32)

By dimensional analysis alone we immediately could
have predicted the order of magnitude of T, . Since the
symmetry-breaking scale o. is the only mass scale in the
theory, any critical temperature should be of the same or-
der of magnitude.

C. Cosmological applications

FIG. 8. Finite-temperature effective potential.

The importance of finite-temperature effects in field
theories. for cosmology was realized long before the idea
of infiation was born. Kirzhnits (1972) and Kirzhnits and
Linde (1972) pointed out that at high temperatures the
SU(2)XU(1) symmetry of the Weinberg-Salam model is
restored due to the effective mass term we discussed in
the preceding section. Kirzhnits and Linde (1974)
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stressed the analogy with superconductivity. In supercon-
ductivity the order parameter vanishes at high tempera-
tures. At low temperatures Bose condensates of Cooper
pairs give a nonvanishing order parameter. The order pa-
rameter corresponds to the vacuum expectation value of
the Higgs field in field theory.

Since in standard cosmological models the temperature
starts out at infinity at the big bang, phase transitions in
the quantum field theory as a function of temperature
give rise to phase transitions in matter during the cosmo-
logical evolution. If we describe matter by a grand uni-
fied field theory there are several important phase transi-
tions (see, for example, Guth, 1982): the grand unifica-
tion transition at 10' GeV, the Weinberg-Salam transi-
tion at 10 GeV, the confinement transition at 0.5 GeV,
and recombination at 10 ' GeV. Each causes significant
changes in the description of matter. Guth (1981), how-
ever, was the first to appreciate the potential of finite-
temperature effects for solving cosmological problems.

A favorite application of finite-temperature field theory
before the advent of inflationary universe models was the
attempt to derive lower bounds on the mass rnH of the
%'einberg-Salam Higgs boson from cosmologica1 argu-
ments. Weinberg (1976) and Linde (1976) derived a lower
bound m~ )4.9 GeV by Iequiring that the symmetry
SU(2) X U(1) be spontaneously breakable, i.e., that the glo-
bal minimum of the effective potential be at a value y=o.
corresponding to broken symmetry. This bound holds as-
suming the universe started out in the symmetric phase.
If, on the other hand, the universe started out in the
asymmetric phase y =o. then, provided the tunneling
probability were sufficiently small, it could have remained
in this minimum. If this scenario were cosmologically ac-
ceptable (in the standard big bang scenario it is not), the
upper bound would weaken to mH & 450 MeV (Frampton,
1976; Linde, 1977; Steinhardt, 1980).

In standard cosmological models the lower bound on
mH can be improved by estimating the tunneling proba-
bility. The lower bound on the tunneling probability
stemming from requiring the phase transition to have tak-
en place by the present time leads to a new bound
mH & 6.9 GeV (Linde, 1977). Witten (1981) realized that
the Weinberg-Salam phase transition leads to entropy pro-
duction and hence to a dilution of the baryon-to-entropy
ratio (see also Steinhardt, 1981). Guth and Weinberg
(1980) translated this fact into a better lower bound
m~ &9 GeV. Since these topics lie outside of the main
line of this paper, we shall not go into the details. We
mention them only to give a flavor of applications other
than the inflationary scenario in which quantum field
theory and cosmology are combined.

scenarios. Big bang models predict that at very early
times the universe was extremely hot and has since then
cooled down to the presently observed temperature of 2.7
K. We shaH assume matter can be described by a quan-
tum field theory with a symmetry which at zero tempera-
ture is spontaneously broken by a scalar field. acquiring a
nontrivial vacuum expectation value.

Our analysis of the finite-temperature effective poten-
tial (see Fig. 8) shows that initially f&=0 is the only
ground state of the theory. As time increases, the tem-
perature of the universe will decrease, and at some critical
temperature T =T, the symmetric vacuum will cease to
be stable and a new energetically favored ground state ap-
pears. Thermal, gravitationally induced, and quantum
fluctuations will tend' to force the theory into the new

asymmetric ground state, the true vacuum. Provided the
potential barrier is high compared to the thermal energy
and the gravitational energy, quantum fluctuations will

dominate. The relevant quantity is the decay rate per unit
volume I'/V of the false vacuum. Its value is crucial if
we are interested in the cosmological implications of the
models, since the universe mill expand exponentially and
supercool in the false vacuum for a period (I"/V) ' until
the phase transition occurs. These cosmological implica-
tions will be discussed in detail in Sec. VI.

Here we shall neglect gravitational and thermal fluctua-
tions and focus on the quantum effects. We treat quan-
turn fluctuations in a semiclassical approximation using
functional integral methods. After quantum tunneling,
the further evolution of the fields will be determined by
solving the classical field equations.

B. Calculation of the decay rate
in quantum mechanics

We present the functional integral approach to calculat-
ing the decay rate, an approach developed by Coleman
(1977) and Callan and Coleman (1977), and simultaneous-

ly by Stone (1976,1977) and Frampton (1977) based on
previous work by Voloshin, Kobzarev, and Okun (1974).
The functional integral approach to problems of metasta-
ble states was pioneered by Langer (1967,1969) in con-
densed matter physics. We closely follow the excellent re-
view article by Coleman (1979).

For notational simplicity let us first consider tunneling
in quantum mechanics. Let g(t) denote the amplitude for
an unstable state with energy Eo a+i/3. Then th——e decay
probability per unit time I is given by

(4.1)

so

lV. DECAY OF THE FALSE VACUUM 2I = ——ImEp . (4.2)

A. The problem

As a motivation for this section we shall describe how
the problem of vacuum decay arises in cosmological

We have thus reduced the problem of calculating the
decay rate to one of determining the imaginary part of the
energy of the false vacuum.

According to Eq. (4.2) we must calculate the energy Eo
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of the false vacuum. In a first step we show that this
problem is equivalent to calculating a certain transition
matrix element. Consider a theory with Hamiltonian H
and potential U. For two position eigenstates

I x/) and
lx;)

&x/le """Ix&=Re (4.3)

where the sum runs over a complete set of energy eigen-
states. Consider the subset of states not orthogonal to ei-
th« lx/& « lx;& i.e, with &x/l~&~0and &x I~&~0.
Let Q denote the lowest-energy state in this subset and let
E0 be its energy. Then in the limit T~ op

&xf Ie HT/" IX;) ~ e ' &x/In)(nlx;) . (4.4)T~ OO

Equation (4.4) provides an elegant way of reexpressing the
energy Eo of the false vacuum. We can always choose
coordinates such that x =0 is the false vacuum. Now we
choose

I
xi' &

=
I x/& = 10) Th

E,= —A lim —ln(0
I
e -"T"

I
0 & . (4.5)

T~OO T
The second step is to transform Eq. (4.3) into a func-

tional integral. We use the Feynman-Kac formula (see,
for example, Glimm and Jaffe, 1981; the Feynman-Kac
formula is the Euclidean version of the standard function-
al integral representation for quantum-mechanical transi-
tion amplitudes described, for example, in Abers and Lee,
1973):

(x/ I
e HT/"

I x; ) =X f [dx]e

l2
dxS~(x)=f dt — + U[x(t)] (4.7)

We evaluate the functional integral (4.6) in a semiclassi-
cal approximation based on the idea that the stationary
points of SE will give the dominating contribution. We
therefore perform a Gaussian approximation about each
stationary point. The extrema of Sz are given by

x = U'(x),

with the boundary conditions given in Eq. (4.6):

(4.8)

x(T/2)=x/, x( —T/2)=x; . (4.9)

Equation (4.8) is the classical equation of motion for a
point particle in the inverted potential —U(x). This in-
terpretation will aid in the qualitative discussion of the
solutions. Nontrivial solutions of Eq. (4.8) are called in-
stantons.

The Gaussian approximation about an instanton x can-
sists of expanding S(x) about x and keeping only terms
quadratic in the fluctuation z =x —x. We can easily veri-
fy that

x(T/2)=x/, x( —T/2)=x; . (4.6)

SE is the Euclidean action

T/2 a'
SE(x)=S~(x)+—,

' f dtz(t) — + U"[x(t)] z(t)+ W(z ) . (4.10)

If we drop the correction terms of order W(z ) the func-
tional integral becomes a simple Gaussian integral and
can be performed explicitly, yielding

Sg(x)/S— —Ss(x)/0'

initial kinetic energy, bouncing off the wall at x =x at
time t„and returning to the top of the hill at T= oo. We
can easily determine the Euclidean action of this instan-
ton using Eq. (4.7) and conservation of (particle) energy:

&( Idet[ —8, + U"(x)] I
'/ . (4.11) E = —,'x —U(x) =0 . (4.12)

In the general case (more than one instanton solution) we
must sum (4.11) over all stationary points.

For potentials of physical interest there are indeed solu-
tions of Eq. (4.8) satisfying the boundary conditions (4.9).
Consider, for example, the potential of Fig. 9 and choose
x/=x;=0. The trivial solution is X(r):—0. For this ex-
tremum all eigenvalues of the second variational deriva-
tive of S~ are positive. Hence Eq. (4.11) is real and does
not contribute to the decay rate [see Eqs. (4.2) and (4.5)].
This is what we expect, since the same solution x:—0 is
the stable ground state for the harmonic-oscillator poten-
tial, and in that case ImE0 ——0. For T~oo there is a
nontrivial solution x of Eq. (4.8) satisfying boundary con-
ditions (4.9). In fact, this solution is the standard exam-
ple of an instanton. It corresponds to a particle rolling
off the hill x =0 of —U(x) at time T = —

&x& with zero

Hence

dxSE(x)= lim f dtr oO
—T~2 dt

=2 f d
dk dx
dx „„- dt

x*=2 (2U)) "dx =a .
0

(4.13)

Obviously the solution x is not unique. First, the
center t, of the instanton is arbitrary. Furthermore, since
combinations of instaritons with centers located far apart
are excellent approximate solutions, they should be in-
cluded as well. This leads us to the dilute-gas approxima-
tion.
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"U(x) "—U(x)

FIG. 9. A potential with an unstable ground state.

X

of this configuration by taking the fluctuations about the
n constituent instantons to be independent, and finally
sum over all possible instanton centers as well as over n.

Let x denote the n-instanton configuration. z =x —x
is the fluctuation about x. As sketched in Fig. 10 we
dlvldc thc IIltcrval [—T/2, T/2] lllto IloIlovc1'lapplllg le-
gions R; on which the single instantons are concentrated.
R* is the time region for which x =0. The fluctuation
field on R; is denoted by z;, on R by z . In our approx-
imation we let the fluctuations z; be totally uncon-
strained, i.e., we neglect the boundary condition

C. Dilute-gas approximation z*
i I ——(x +z')

i I (4.14)

In the dilute-gas approximation we take an approxi-
mate solution consisting of n widely separated instantons
with centers t1 ) tz & . . & t„, calculate the contribution

for all points P at the border of two regions. We also per-
form a Gaussian approximation in each region. In
greater detail,

% f [dx]e =N f [dz]e

(4.15)

d
co = 2U(x)i„

dx

Eq. (4.11) yields

(4.16)

X f [dz*]e ~,=&det '/( —8, +co )

1/2

In region R* we are evaluating the fluctuations about
X=0. With

X f [dx]e e Z e
—co T/2 Tn —nB/R~ n

n=o E1

1/2

Note that a further inaccuracy in this approximation is
tllc usc of Eq. (4.15) cvcll whcII tllc IcgloIls R; (wl11ch
have some fixed length) overlap.

We obtain the final result of the dilute-gas approxima-
tion by combining Eqs. (4.15)—(4.20):

' 1/2

—coT/2 (4 1'7) e T (co/2 —Ke —BrA']
(4.21)

for T large. (The determinant is evaluated in Appendix
C.) In regions R; the problem is the same as in the one-
instanton case discussed above. Thus

By Eq. (4.5) it follows that

E %CO ~ B/Q

2
(4.22)

(4 I&) and by Eq. (4.2) that

K =det[ —I), + U"(x )] (4.19)

Integration over all locations of the centers gives a factor

T/2 t)

—T/2 —T/2
dt1 dt2 . dt„=7l (4.20)

If we incorrectly, as will shortly be revealed, assumed that
the determinant in Eq. (4.11) were well defined, then we
would have

r = 2(Image)e (4.23)

I~e
—~/" det

—'"(—a,'+F2) = f [dx]e -s'"""
~.„„„„,„,.„.

(4.24)

We have thus reduced the computation of the decay
rate to a calculation of the imaginary part of E. E is
determined by demanding that Eqs. (4.15)—(4.18) give the
correct answer for the one-instanton configuration:

Rn RiRg

The basic reason that E has a nonzero imaginary part is
that the operator

I I

-T/2 T/2
a2 +U"(x)

Bt
(4.25)

R = [-T/2, T/2] Q U R,.
i=I

FICr. 10. Division of the time interval for an n-instanton con-
figuration.

which arises in Eq. (4.10) has a negative eigenvalue. Thus
a naive Gaussian approximation is impossible. The nega-
tive eigenvalue appears for the following reason: Let x be
the instanton with center t =0. Then
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x(r, r) =x(»+&)=x(t)+r +d'(r') (426)dx(s)
8$

x, +& (t) =x(r)+A, 'z, (r)+ @(A,') . (4.27)

If z;(t) denotes the eigenmodes of Eq. (4.25) with eigen-

is a fluctuation of x with parameter r corresponding to
shifting the center of the instanton by r. Since the Eu-
clidean action is independent of the instanton center, the
above fluctuation, which we shall denote by zo(t), is an
eigenmode of Eq. (4.25) with zero eigenvalue. But zo(t)
obviously has one node corresponding to the turning point
of X Therefore, there must be one eigenmode z)(t) of
Eq. (4.25) with negative eigenvalue A, (. Since the naive
Gaussian approximation breaks down because of the ex-
istence of fluctuations with nonpositive curvature of
Sz(x) at x, we must treat zo(t) and z)(t) separately and
perform the naive Gaussian approximation only for the
remaining fluctuation modes. By integratirig over all pos-
sible instanton centers in Eq. (4.15) we have already in-
tegrated in the zo(t) direction (up to normalization). The
integral in the direction of the z) (t) mode must be defined
by analytic continuation. (This is no surprise, since we
know that the energy of any unstable state can only be de-
fined by analytic continuation. )

The first step is to extract the integration in the unsta-
ble direction z)(t) by splitting the path integral [dx] into
the product of a one-dimensional integral over a specific
one-parameter family of paths and a path integral over
the remaining set of paths. Let A, be our path parameter
for the one-parameter family. Following Coleman (1979)
we choose the family to contain x (t) =0 for A, =O, to con-
tain the instanton x(t) for A, =l, and to proceed in the
direction of the negative mode for k & 1, i.e.,

FIG. 11. Euclidean action for the one-parameter family of
paths.

values A,; ~0 (i =2,3, . . . ), then the functional integral
appearing in Eqs. (4.6) and (4.11) can be rewritten as

f [dx]=f dA, + f [dz;](2rrfi)
i =2

(4.28)

(4.29)

The action SE as a function of A, is sketched in Fig. 11.
To keep the integral finite, we must distort the path into
the complex plane for positive A, as indicated in Fig. 12.
[This corresponds 'to analytically continuing the potential
U(x) so as to render x =0 the absolute minimum. ] After
the initial distortion the path integral can be evaluated us-
ing the method of steepest descent,

In the Cxaussian approximation the functional integral
decouples into an infinite product of one-dimensional
Gaussian integrals. Each gives a factor A,,

' . Therefore,
—S~(x)/8 f ~

~
—Ss(xg)/8

f —S~(xg) fi ~ —S~(xg)/fi —A, ( 1/2}{A,—1) /fi —8/fi
dA, e dke ~ + dA, e

OO OO y2

(4.30)

where 8 is real. The factor —,
' arises since we are only in-

tegrating over half the Gaussian peak. The imaginary
part of Eq. (4.29) thus becomes

(4.31)

(4.32)

Thus by Eq. (4.23)

We now combine Eqs. (4.24), (4.30), and (4.31) to obtain

det( —B, +co )
IrnE =—'

det'[ —(), + U"(x )]

)') - INITIAL DISTORTED CONTOUR

7~:CONTOUR FOR THE STEEPEST
DESCENT METHOD

det( —8, +a) )I =
det'[ —8, + U"(x )]

' 1/2 1/2

e —B/R
2+%'

D. 'Decay rate in quantum field theory

(4.33)

FIG. 12. Distortion of the contour into the complex A, plane.
y~.. initial distorted contour; y2.. contour for the steepest-
descent method.

The decay rate calculation in quantum field theories is
almost identical to the one just described for quantum
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mechanics. Following Eqs. (4.2)—(4.6) we can express the
decay rate as a functional integral,

with boundary condition

lim y(p) =q&
P~ 0O

(4.39)

SE(q)) lh

(4.34)
We shall evaluate the functional integral using a semi-

classical approximation. The instanton with lowest action
SE will give the leading contribution. To determine the
coefficient of the exponential, we shall perform a dilute-
gas approximation based on the minimal-action instanton
as the fundamental solution.

First consider the case of a scalar quantum field theory
with two tree-level minima (Fig. 13).

The Euclidean action is given by

(4.35)

The boundary conditions are:

11111 g7(r& x ) = tp
7.~+ 00

lim y(r, x) =y
)X

~

~0O

(4.36)

The first line is the field theory version of Eq. (4.9). It
ensures that the lowest-energy state in the sector contri-
buting to (4.34) is the false vacuum [at least to first order
in fi; see Eq. (4.41) and the comments made at that point].
The second line is the condition of finite action: Only
solutions with finite action give a nonvanishing contribu-
tion to Eq. (4.34) in a semiclassical approximation.

The equation of motion for the instantons, i.e., the con-
dition that Sz be stationary, is

Equation (4.38) is the equation of motion for a classical
point particle in the potential —U, subject to a time-
dependent damping force (3/p)dy/dp f p plays the role
of time in Eq. (4.38)].

We can easily argue by continuity that a solution of Eq.
(4.38) satisfying boundary conditions (4.39) must exist.
%'e are basing the following discussion on the notation in
Fig. 13. Let the partic1e start at time p=o with zero ki-
netic energy from some position y* with y &y' &y+.
If y' &y~, then by energy conservation the particle can
never reach cp . If y*=y+ then the particle will reach

in finite time with nonzero kinetic energy and will
overshoot. To see this in slightly greater detail, we ob-
serve that for cp*=y+ the particle will remain close to y+
for a long time. During this period, the damping will de-
crease and gradually become negligible. Hence again, by
energy conservation, the particle will overshoot. By con-
tinuity there will be an intermediate p* for which the
solution of Eq. (4.38) with initial velocity zero arrives at

after infinite time with zero kinetic energy.
The dilute-gas approximation based on the minimal-

action 0 (4) invariant solution y is almost identical to the
approximation of Sec. IV.C for quantum mechanics. The
main change is that we can translate the instanton center
in all four space-time directions. Hence integration over
al1 instanton centers for the n-instanton configuration
gives a factor (TV)"/n!. Therefore, the factor T in Eq.
(4.21) must be replaced by TV. The extra factor V per-
sists in Eq. (4.23). Denoting 8 =Sx(y), we obtain

BpB~p= U'(p) . (4.37)

3 dg =U'(y), p&0
dp p dp

(4.38)

"-U(P)

f - FALSE VACUUM, 4+: TRUE VACUUM

FIG. 13. Sample potential with an unstable vacuum. y is the
false vaccum, Ip+ the true vacuum.

Since we are only interested in the lowest-action instan-
ton, we can use the following theorem to reduce the prob-
lem to one of one degree of freedom.

Theorem 3 (Coleman, Glaser, and Martin, 1979). If an
0(4) invariant solution of Eq. (4.37) exists, its action Sz
will be lower than that of any 0 (4) noninvariant solution.

Thus we can restrict our attention to 0(4) invariant
solutions. In terms of p=(x„x„)'~ =(

~

x
~

+r )', Eq.
(4.37) becomes

r =2(Image)e ""V . -
(4.40)

As expected, it is only the decay rate per unit volume, the
physical quantity of interest, that will be finite. By Eq.
(4.33)

det[ —d + U"(p+)]=ce
det'[ —d + U"(g)]

where d =B&B„,c is some constant, and det' is defined as
in Eq. (4.31) by taking the product of the absolute values
of the eigenvalues and omitting those corresponding to
translation modes.

Up to this point the analysis has been to low'est order in
A only. To higher orders we must replace the potential
U(y) by the effective potential V, (err). The reason why
the analysis up to this point was only an approximation is
that for Eq. (4.34) to give the false vacuum energy it is
necessary to introduce a source term which forces the
false vacuum to be stable for some initial time interval.
The correct procedure therefore is to consider Eq. (4.6) as
the limit of the generating functional Z(J):
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(0~ "~0)=lime
J~O

A~O~ hm f [dq, ]e (—Ãyl+Jy)lh
J-+0

f [d—
]e

—r (p)/A' (4A2)

We can expand I (g) in powers of momentum. In posi-
tion space this expansion is

I (q ) =f d "x [—V, (q )+ —,
'

a„q a q Z (q )+ W(a„q ) ] .

(4.43)

Since we can renormalize the field to set Z(g)=1, we
have indeed verified that the potential U(y) must be re-
placed by the effective potential V,ff(y).

Since for constant g only the first term survives, the
above definition of the effective potential agrees with the
previous one (2.18). From a physical point of view,
changing U to V,f~ in the equations of motion means in-
cluding quantum effects (e.g., the back reaction of gauge
particles and fermions on the Higgs field) in determining
the evolution of the Higgs field.

For theories in which the scalar field y couples to other
quantum fields there is another way to see how the effec-
tive potential naturally emerges as the cor'rect potential to
consider in tunneling problems. To take a specific exam-
ple, consider an Abelian gauge theory. The transition am-
plitude between two specified Higgs field configurations

~ q; ) and
~ yf ) and asymptotically vanishing gauge field

configurations is given by

E. Bubble nucleation

a„a"q = —U'(q ) .

In Euclidean space, Eq. (4.48) becomes

B„B„q=U'(y),

(4.48)

(4.49)

So far we have calculated only the decay rate of the
false vacuum. In our WKB approximation we shall
describe the evolution of the field q& after tunneling by the
classical equations of motion.

Consider first the decay of a false ground state in quan-
tum mechanics (see Fig. 9). In the semiclassical descrip-
tion, the classical particle will make a quantum jump at
some time t =0 from the local minimum of U(x) to the
escape point x =o. characterized by equal potential and
zero kinetic energy. For t &0 the particle propagates
classically.

A similar analysis holds for quantum field theory. At
some. time t =0 the classical field will make a quantum
jurnp to a state with zero kinetic energy and hence poten-
tial energy equal to that of the false vacuum. Such a state
is the midpoint of the instanton g (Fig. 14). Thus

y(xo ——O, x) =qr(x, .r=O),
(4.47)

a
q7(xo ——O, x) = q)(x, r=o) =0 .

Bt
/

For t ~0 the field will evolve according to the classical
equations with initial conditions given by Eq. (4.47). The
Minkowski space equation is

I=(qf, A =0~ e "
~y, , A =())

=~ f, ,
[dy][dA]exp[ fi 'SF(p, A)]—

q( —~)=y;
&(+ao)=0

(4.44)

which is identical to the instanton equation (4.37). A
solution y(t, x ) for t ~ 0 describes the growth of a bubble
of the true vacuum in a surrounding sea of false vacuum.
In order to show this, we consider first p =r +x
=x t . In terms of p—, Eq. (4.49) is our old 0 (4) invari-

ant instanton equation (4.38),

with Euclidean action

SE(p, A ) =f d x [D„pD"y+ V ( q ) +F&,F""] . (4.45)

We now integrate out the gauge fields to obtain an effec-
tive action for the Higgs field alone. In the case of an
Abelian gauge theory the functiona1 integral over gauge
configurations is Gaussian and can be performed explicit-
ly. %"e obtain

3
, +— =U'(q) . (4.50)

~p p dp

Since the initial conditions (4.39) and (4.47) agree as well,
the classical field in Euclidean space is exactly the instan-
ton

S, (err)= f d x[d„yB"@+V(q)]. (4.46)

To lowest nontrivial order in A and neglecting nonrenor-
mglizable terms, the same gauge loop graphs which deter-
mine the effective potential (see Sec. II) contribute to
V(q). Clearly there are other graphs that contribute to
the effective potential but, as we argued in Sec. II, they
will be subdominant.

The above analysis also shows that the potential
relevant for tunneling calculations in gauge field theories
is not the exact effective potential, but rather the pertur-
batively computed potential.

CLASSICAL EVOLU TION
AFTER TUNNELING

FICx. 14. Vacuum decay for quantum field theory.
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&p(x, r) =@[(x+r )'~ ], x +r & 0 . (4.51)

y(t, x) in this region is therefore the analytic continuation
of the instanton solution back to Minkowski space, i.e.,

(p(t, x)=gr[(x2 —t )'i ]
defines the field for

~

x
~

& t &0. To obtain a qualitative
picture of the solution, we note (see Fig. 15) that p(t, x)
has the value y* at

~

x
~

=t, and as
~

x
~

increases for
fixed t, p(t, x) gradually approaches the false vacuum p

It is important to stress the dual role in which the in-
stanton appears. On the one hand, it appears as the path
that contributes most heavily to the functional integral
calculation of the false vacuum decay rate; on the other
hand, it reappears as the Euclidean space field configura-
tion after- tunneling.

To obtain the field equation for
~

x
j ~t, we set k=ip

In terms of A, , Eq. (4.50) becomes

(3) Since we keep our discussion general, we get no in-
formation on the size of the bubbles formed. %'e note
that y' is not what is conventionally called the bubble
wall. Usually the bubble wall is defined to be the y value
for which U(y) attains its local maximum between y
and y+. On the other hand, semiclassical approximations
are good only asymptotically (see the comments in Cole-
man, 1979, p. 87). Thus it is not useful to ask questions
about measurements immediately after bubble nucleation
in a semiclassical approximation.

(4) If we want to include quantum corrections to the
classical equation of motion, we must replace the poten-
tial U(p) in Eq. (4.48) by the effective potential V,ff(p).
Including these corrections leads to faster decay of the
amplitude of oscillation. In addition, it provides the
framework for calculating baryon generation and the back
reaction of these baryons on the-evolution of the Higgs
field (see, for example, Abbott, Farhi, and Wise, 1982).

(4.53)

which is the classical equation of motion for a particle in
potential U(y) starting at y=y" with a time-dependent
damping force. A discussion of the solution on a qualita-
tive level is very easy (see Fig. 14): The particle will oscil-
late about the true vacuum y+ with damped amplitude.

To summarize, we have the following field configura-
tion for fixed t:

~

x
~

~ oo false vacuum

y(t, x)= 'y*,
~
x

~

=t bubble wall (4.54)

y+, ~

x
~

=0 true vacuum (asymptotically

for t~ oo only) .

This is depicted in Fig. 15. We conclude this section with
several remarks.

(1) The semiclassical analysis predicts that bubbles of
true vacuum will form via quantum tunneling and expand
with the speed of light.

(2) This analysis is independent of any assumptions
concerning the ratio between potential barrier height on
the one hand and potential difference between true and
false vacua on the other. In particular, we have not made
the thin-wall approximation (see, for example, Coleman,
1977,1979).

F. Finite-temperature and gravitational
effects

Cosmological applications of vacuum decay have in the
past years been considered by many authors, including
Linde (1977,1981a), Couth and Weinberg (1980),
Steinhardt (1980,198la, 1981b), Sher (1981), Cook and
Mahanthappa (1981),Billoire and Tamvakis (1982), Tam-
vakis and Vayonakis (1982), Hawking, Moss, and Stewart
(1982), and Izawa and Sato (1982).

In cosmology phase transitions occur at high tempera-
ture. As pointed out by Linde (1977,1981b,l983b), there
are some minor changes in the formalism of vacuum de-
cay. At nonzero temperatures vacuum decay is deter-
mined by the shape of the finite-temperature effective po-
tential. In a semiclassical analysis based on the functional
integral approach, we must determine the finite-
temperature instantons. At zero temperature the lowest-
energy instantons had 0 (4) symmetry. Due to the
periodicity in Euclidean time at nonzero temperature, the
finite-temperature instantons can no longer have this
symmetry. On a heuristic level it is easy to guess the
form of the finite-temperature instantons: at low tem-
peratures ( T ' is much greater than the radius of zero-
temperature instanton) the field configuration will be a se-
quence of zero-temperature instantons with centers
separated by T ' in the Euclidean time direction. As the
temperature increases the boundary energies will become
more and more significant, and for sufficiently high tem-
peratures the minimal energy field configuration will be
constant in Euclidean time and have O(3) symmetry (in
space). Its action will therefore be

Sg(y) = T 'S3(p). , (4.55)

+ g i )' 1 /
\

X

where $3(q&) is the action of the instanton y restricted to
three space. The instanton equation is

FIG. 15. Qualitative picture of bubble growth.
6 2l = V(y, T) .jI" I" Ql"

(4.56)
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It is important to stress that in contrast to the zero-
temperature case there is no theorem on which to base the
conjecture that the minimal energy configuration indeed
has O(3) symmetry.

Linde (1982d) has also investigated the effect of finite
temperature on the coupling constants of gauge theories, a
further way in which finite temperature can influence the
vacuum decay.

In cosmology, curvature of space-time will be irnpor-
tant at the time of grand unification phase transitions.
The decay of a metastable state in curved space-time has
been studied by Coleman and DeLuccia (1980) and Hawk-
ing and Moss (1982), using semiclassical techniques [see
also the work by Shore (1980), Ford and Toms (1982),
Denardo and Spallucci (1982), and Allen (1983)]. Cole-
man and DeLuccia (1980) consider the action

S =I d xV g[ ,'g"—d„y—d~ V(y) ——(16~G) 'R]

(4.57)

and look for minimal-action stationary points of its ana-

lytic continuation to Euclidean space. We again make the
reasonable but unproven assumption that the minimal-

action solutions will have O(4) symmetry. In this case
the Euclidean equations of motion reduce to

(4.58)

As pointed out by Lapedes and Mottola (1982; see also
Patrasciou, 1981, and Shepard, 1983), one may be able to
improve on the semiclassical analysis summarized above
by taking complex instantons into account. The
mathematical reason for this phenomenon was explained
by Balian, Parisi, and Voros (1978): there exist functions
whose asymptotic series converge to a numerical value
which differs significantly from the exact value. The
discrepancies are explained as contributions from singu-
larities in the complex plane closer to the origin than the
closest singularity along the real axis. For details we refer
the reader to the papers cited above.

Y. HAWKlNG RADlATION

A. Bogoliubov transforraations

Standard quantum field theory, quantum field theory
in Minkowski space-time, is based on the special theory of
relativity. It crucially uses the existence of a dis-
tinguished inertial Lorentz frame. The entire second
quantization prescription is based on this frame, which
determines the space-time slicing and the definition of
positive and negative frequency-. Consider the theory of a
free scalar field. The classical field y(x, t) satisfies the
Klein-Gordon equation

and
(Cl+ m ~)y(x, t) =0 . (5.1)

p'=1+
3

(4.59)
The solution can be expanded into positive and negative
frequency modes proportional to e+' ' and e ' ', respec-
tively,

where the prime denotes d/dg and g is the Euclidean ra-

dial coordinate. Coleman and DeLuccia construct an ex-

plicit solution in the thin-wall approximation (small

energy-density difference between the two vacua). They
show that in the case in which a state with positive
cosmological constant decays into Minkowski space-time,
the bubble action decreases and the radius of the bubble at
the time of materialization diminishes compared to the
flat space-time result.

Hawking and Moss (1982) pointed out that for suffi-

ciently large curvature the radius of the bubble solution
would exceed the de Sitter radius H ' (H is the Hubble
constant). In this case the only Euclidean solution of the
instanton equations, apart from cp=O, is the homogeneous
solution y=y~, where y~ is the value of the local max™
imum of the potential. We interpret this solution as
homogeneous tunneling of a horizon volume of space
from y=0 to y=y~. y& is unstable, and therefore after
tunneling the field y will classically move towards the
global minimum (see Fig. 14). The Hawking-Moss
scenario provides a realization for an inflationary universe
(see Sec. VI). Related work has been done by Mottola and
Lapedes (1983) and Abbott and Burges (1983).

Other work on implications of curvature for vacuum
decay has been done by Linde (1982b), Hut and Klinkha-
mer (1981), Abbott (1981b), Parke (1983), and Vilenkin
(1983b).

q&(x, t)=e +—' 'y„(x) . (5.2)

We next determine a complete set y~;(x) of solutions of
Eq. (5.1) for y~:

(V +w —m )q&~(x)=0 . (5.3)

Then the most general solution of the classical field equa-
tion (5.1) can be expanded as

%'(»r) =g [a;f;(x,&)+a';f';(x, t)]
l, W

(5.4)

f~g(x, t) =e'~'q), ( )x. (5.5)

On the level of classical field theory, a~; and a'; are nu-
merical constants. The summation over m represents in-
tegration.

The quantum theory is obtained by the method of
second quantization, by replacing the constants aw,' and
a'; by operators a; and aw;. Here a; is the annihilation
operator for a particle with frequency co in mode i. The
quantum field y~(x, t) can be expanded as

pre(x, t) =g [a~;f~(x, t)+a~;f~(x, t)] . (5.6)
l, W

The vacuum state
~

0 ) is defined by
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a;
I
Q) =0, V(w, i) . (5.7)

Cosmology is based on the general theory of relativity.
General coordinate invariance has dramatic effects if we
attempt to construct a quantum field theory for matter in
curved space-time. There is no distinguished Lorentz
frame and hence no unique definition of the vacuum
state. The notions of vacuum and particle number be-
come observer dependent. An observer 0 picks a coordi-
nate frame (more precisely, there is a physical prescrip-
tion which defines an observer frame at every space-time
point). In this frame, modes that are positive and nega-
tive frequency at the observer point may be defined in
analogy to Eq. (5.2) (see below). In particular, 0 can de-
fine a vacuum state, the state that 0 sees as containing no
particles, as the state which is annihilated by all annihila-
tion operators of the mode expansion analogous to Eq.
(5.6). Since the frames of two observers 0& and 02 at
different points of the space-time manifold will in general
be different, the positive frequency modes of 0& will be
nontrivial combinations of positive and negative frequen-
cy modes of Oz. Therefore, the vacuum of 0& will con-
tain particles from the point of view of 02. This is the
basic idea behind Parker particle production (Parker,
1966,1969).

The quantitative analysis proceeds as follows:

(5.8)( s+m )y(x, t)=0

is the equation of motion of a scalar field in a space-time
manifold with metric g. In this equation, g is the La-
place operator of g, expressed in terms of the coordinates
(x, t) of the observer 0&, situated at the origin of the coor-
dinate system.

Only in static space-times or in asymptotically flat re-
gions of a nonstatic universe is the definition of positive-
and negative-frequency solutions straightforward. In
these cases the positive- and negative-frequency modes are
defined as having the time dependence of Eq (5.2). t is
the parameter along the timelike Killing vector field.
This definition may be generalized to Robertson-Walker
metrics in the following way: we expand y(x, t) in terms
of a basis of the spatial Laplace equation. For a flat
universe this can be a Fourier decomposition in space or
an expansion in terms of spherical harmonics and solu-
tions of the remaining radial equation (an example for the
second procedure is worked out in Sec. V.B). Inserting
the expansion into Eq. (5.8) we obtain a "temporal equa-
tion, " an equation for the time dependence of the expan-
sion coefficients. A solution is called positive frequency
at time to if its phase is described by exp(iwt) for t near
to. %'e denote the solutions defined to be positive and
negative frequency at to by fk(x, t) and fk(x, t) (k is a for-
mal summation index). The expansion of the quantum
field qr(x, t) in terms of the basis of Ol is

&f g&=
2,. J, ,„„d'x(fg f—g). (5.10)

A second observer 02 at a different point in space-time
will choose a different coordinate system and find a
second set g~ and gI* of positive and negative frequency
modes. y(x, t) can be expanded in this second basis:

y(x, t) =g (blgl+bl gl'), (5.11)

gl g ( ~lkfk +Plkf k ) = (Clf +Pf' ) l (5.12)

The constants alk and plk are called Bogoliubov coeffi-
cients. They can be determined by taking inner products:

&lk=(fk gl»

Plk= —(fk gt)
(5.13)

(negative frequency modes have negative norm). The Bo-
goliubov coefficients form a unitary matrix M

a p
p" a*

(5.14)
aa* —pp* = 1,

unitary since both bases are orthonormal. From Eq.
(5.14), we immediately obtain the transformation of
creation and annihilation operators,

(a a )=(b b )M. (5.15)

If any of the Plk coefficients are nonvanishing there is
particle production in the following sense: observer 02
will measure a nonzero particle number in the vacuum
state prepared by 0]. The number operator for mode k
of observer Oz is

XI ——bkbk (5.16)

The expectation value of X~ in the vacuum of 0& be-

«I &k I»= g IPkl I'. (5.17)

In a special case we obtain a thermal flux of particles.
The condition is

(5.18)

where cok is the energy of the kth mode. In this case uni-
tarity of M immediately gives

where bI and bI are annihilation and creation operators
of particles in mode gl, from the point of view of observer
02.

The modes gl, positive frequency from the point of
view of Oz, will in general be nontrivial linear combina-
tions of the modes fk and fk (using matrix notation):

'P(x t) y lakfk(x t)+akfk(x t)] (5.9)
(oi mk Io)=(e """—1)-', (5.19)

The modes fk are normalized with respect to the con-
served scalar product

i.e., a blackbody spectrum at temperature TH. In this
case we speak of Hawking radiation (Hawking, 1975).
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T~ is the Hawking temperature.
The first detailed investigation of particle creation in

expanding universes is due to Parker (1966,1968,
1969,1977). He introduced the Bogoliubov mode-mixing
technique and observed that particles are always produced
in pairs. Other early work on the subject was done by
Sexi and Urbantke (1967,1969), Zeldovich {1970),and Zel-
dovich and Starobinskii (1971). The last-mentioned paper
investigated particle production in anisotropic universes
as a means to isotropize ari initially very anisotropic
universe, a problem that was later analyzed in more detail
using path-integral techniques by Fischetti, Hu, and Har-
tle (1979) and Hartle and Hu (1979,1980). Interest in
quantum field theory in curved space-time increased
dramatically after Hawking's discovery (1974,1975) that
the spectrum of particles emitted from a collapsing black
hole is thermal and could possibly explain the large
entropy-to-baryon ratio. This discovery sparked interest
in the analysis of the Hawking effect in other space-times.
In particular, Davies (1975) and Unruh (1976), basing
their work on earlier work by Fulling (1973), noted that a
uniformly accelerated observer in flat space-time detects
Hawking radiation in the usual vacuum state of an ob-
server at rest. The mode-mixing analysis was also carried
out for de Sitter space (Lapedes, 1978) and the de Sitter
phase of an inflationary universe model (Brandenberger
and Kahn, 1982).

Parallel to the analysis of particle production in specif-
ic space-times, alternate methods of deriving Hawking ra-
diation were pursued. Hartle and Hawking (1976) gave a
path-integral derivation of black hole radiance, which was
generalized to de Sitter space {Gibbons and Hawking,
1977) and to the case of interacting scalar fields (Gibbons
and Perry, 1976,1978). These functional integral methods
are very elegant (see Sec. V.C), but they apply only to
space-times that have special symmetries. Formal aspects
of quantum field theory in curved space-time, such as the
existence of the S matrix and the back reaction of parti-
cles on the geometry, have been studied, for example, by
Wald (1975,1977,1979).

Complementary to the investigation of particle produc-
tion in specific space-time manifolds is ihe further
development of quantum field theory in curved space-
times. The problem of renormalizing the energy-
momentum tensor T& is much more serious in curved
space-time than in Minkowski space-time. In standard
quantum field theory the vacuum expectation value of
T&„ is rendered finite (and zero) by normal ordering.
Since normal ordering depends on having a fixed set of
positive and negative frequency modes, the method is
inapplicable in curved space-times. We shall briefly sum-
marize the issues in Sec. V.D.

There are many good review articles on quantum field
theory in curved space-time. Parker (1977) emphasizes
the mode-mixing technique; DeWitt (1975) stresses in par-
ticular boundary effects (Casimir effect). Parker (1979)
and Boulware (1979) discuss renormalization in detail.
Two more recent review articles are those by Czibbons
(1979) and by Sciama et al. (1981).

B. Hawking radiation in the de Sitter
phase of an inflationary universe

As an example of particular relevance to inflationary
universe models we shall analyze Hawking radiation in a
de Sitter phase of a FRW cosmology, i.e., in a
Robertson-Walker metric with scale factor

g (t) eHE (5.20)

t = — ln[e ' —(rFX)2] .
2H

(5.21)

The analysis is based on the work of Lapedes (1978; see
also Brandenberger and Kahn, 1982). This section is
more technical than the rest of the paper and can be omit-
ted by readers who are not particularly interested in
Hawking radiation.

There are four main steps in the calculation. First, we
must pick the state as the vacuum state of some initial
frame (frame of 0&). Next, we must determine the ob-
server frame (frame of 02). The third step is to write
down the coordinate transformation from one basis to the
other. This is necessary in order to express all mode func-
tions in the same coordinates. Finally, we can determine
the Bogoliubov coefficients akt and Pkt as scalar products
according to Eq. (5.13). If we want to prove that the radi-
ation of particles is thermal, we must in addition verify
condition (5.18).

As initial space-time slicing we take the FRW coordi-
nates. By symmetry this is the only distinguished frame.
There is also a good physical argument for taking the ini--

tial state as the vacuum in this frame. In inflationary
universe models {see Sec. VI), the de Sitter phase is pre-
ceded by a hot radiation-dominated FRW era. The state
after the big bang will be a thermal state in the coordinate
frame. In the initial stages of the de Sitter phase, the
thermal energy will red-shift away and the state will ap-
proach the vacuum state in the coordinate frame exponen-
tially fast.

The frame of an observer 02 at some space-time point
in the de Sitter phase will be given by the static coordi-
nates. In a more general metric the observer would pick
locally static coordinates. This choice is based on an
analysis of particle detectors (Unruh, 1976; Gibbons and
Hawking, 1977). The observer carries a particular detec-
tor, modeled as a box which is Fermi-Walker transported
with constant proper size along the world line of Oz. The
box contains a Schrodinger particle P linearly coupled to
the quantum field. An excitation of 1( is interpreted as
the detection of a field quantum. The quantum mechan-
ics calculation must be performed in static coordinates,
otherwise the spatial eigenmodes of the Hamiltonian be-
come time dependent and the measurement argument
breaks down. This dictates the choice of (locally) static
coordinates for Oz.

The static de Sitter coordinates (t,r,8,p) are given in
terms of the FRW coordinates ( t, r, 5,y) by
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These relations are valid in the region re' &H ' and can
easily be obtained by combining the well-known transfor-
mation between FRW and global de Sitter coordinates
(Hawking and Ellis, 1973) with the transformation be-
tween global and static coordinates (Lapedes, 1978). For
notational convenience the observer 02 was placed at the
origin of the FRW coordinate system. The general case
may be recovered by translating the coordinates. In terms
of the static coordinates, the metric (1.1) becomes

ds = —(1 rH —)dt +(1 rH )—'dr +r dQ

(5.22)

frequency solution for given m Their precise forms are
unimportant for the following calculations.

To obtain the positive- and negative-frequency modes
in the basis of 02, we again apply separation of variables.
We must solve Eq. (5.25) in the static de Sitter coordi-
nates. We Fourier transform in t and separate the angu-

lar dependence, which as in the first basis can be decom-

posed into spherical harmonics. The remaining radial

equation has three singular points, at r =0 and

r =+H '. The solutions that are regular at these points
can be determined by the Puiseuz method (Bieberbach,
1953). We obtain

where dQ is the usual line element on 5
dQ =d5 +sin 8dy with

g, (t, r, e,q)=exp( iuu—)r g, (r)y, (e,q) (5.29)

To obtain the positive and negative frequency modes in
the first basis, we use the method of separation of vari-
ables. We insert the ansatz

u =t —(2H) 'ln 1 —rH
1+rH

(5.30)

fw«m(r «» q )=F (t)fwI(r)yrm(»g)

into the Klein-Csordon equation (5.1)

( g')'"(—d. & gg"dbf—) =0 .

(5.24)

(5.25)

gwI(r) is the regular part of the solution of the radial
equation. It satisfies a differential equation in which w

enters linearly only in purely imaginary terms. Hence

(5.31)

The resulting differential equation for y& (8,cp) is the
equation for spherical harmonics. Hence the solutions
y«(8, g) are labeled by the usual angular momentum
quantum numbers. The radial and temporal equations be-

The Bogoliubov coefficients (5.13) are determined by
taking inner products on the t=O hypersurface (the result
is hypersurface independent). Since the inner product is
obviously diagonal in the angular momentum quantum
numbers, the only nonvanishing coefficients are

r B„(r B„f)—l(l+ 1)r f= co f, —

F +3a(t)a '(t)F = —co a 2(t)F

(5.26)

(5.27)

« =(f i gim»

~)fc
ww'Im (J im w~g l w) m+ ww'Im—

(5.32)

The radial equation (5.26) can be solved by using the stan-
dard methods to analyze singular linear differential equa-
tions (see, for example, Morse and Feshbach, 1953). The
result is

The final identity follows from Eq. (5.31). To prove that
the radiation is thermal, it is thus sufficient to evaluate
a «and investigate the effect of changing w to —w.

After inserting the coordinate transformation (5.21)
into the modes (5.29) and evaluating at t=O we obtain

fwt(r)=r e' 'y(! +1,2(l+.1), 2iwr), — (5.28)

where p(a, c,x) is the confluent hypergeometric function
(Morse and Feshbach, 1953, p. 551). The temporal equa-
tion (5.27) admits both a positive- and a negative- Therefore,

1l8o= iH=—. g t I
~=o.

1 —rH
(5.33)

c« t ————,
' dr r ~ + "e ' "y ((+1,2(I+1), 2iw'r)g I(r)—

X(1 rH)' " F*(0) aH—+
1 —rH

—iF* (0)

, [Fw (0)ilH iF w (0—)]I& ——, Fw (0)I2 . — (5.34)

The main idea of the actual computation is to write

I, (w)=i'I)(w) with U =iwH

and to show that to leading order in H

I'& ( —w) =II
*

( w) .

(5.35)

(5.36)
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After rotating the contour of integration to the imaginary r axis, I i becomes

I i(w) = —i '+ dr r "+"e "'(1+irH)'y*(l + 1,2(l + 1), —2w'r )g~i(ir)
0

i 21+3& vHUe iw—'H ds(s +iH i )—2(1+1)e—w'ssu
yO

)&q&*(i+1,2(l+1),—2w'(s+iH '))g~i(is H—') .

y is the positive real axis translated by —iH '. To leading order in H ' this becomes

Ii(w)= i —+ i'H" I dss ' + "e 's "p*(l +1,2(i+1), 2w—'s)g I(is)

—= —i '+ i "I', (w) .

Finally, since y* is a real function and by Eq. (5.31)

ds s~~t+ "e— 's "+*(i+1,2(l +1),—2w
0

=I'i* ( w) .

(5.37)

(5.38)

(5.39)

Similarly,

Ii(w) = i i—'I2(w)

with I2( —w) =I2'(w). Hence

(5.40)

an eternal de Sitter phase. The scale factor a (t) =exp(Ht)
is periodic in imaginary time with period 2mH '. Hence
the Green's functions of the theory must be periodic as
well; they will be finite-teinperature Green's functions
corresponding to the Hawking temperature

I ~~~ t I

'= i'"
I
~ ~~ t

and thus by the thermality condition (5.18)
H

TH —7
2m

' (5.43)

H
TH

27K
(5.42)

We have thus shown that an observer in the de Sitter
phase of a FRW uriiverse detects a thermal flux of parti-
cles at a temperature [Eq. (5 42)] given by the Hubble ex-
pansion constant. As we shall discuss iri detail in Sec.
VII, Hawking radiation in the de Sitter phase of an infla-
tionary universe is the source of primordial matter fluc-
tuations, classical energy-density perturbations that may
explain the origin of galaxies and clusters of galaxies.

Gibbons and Hawking (1977) use the path-integral ap-
proach to quantum field theory to prove that Green's
functions in de Sitter space-time are periodic in imaginary
time and yield the Hawking temperature (5.43). It is con-
venient to introduce Kruskal coordinates (Hawking and
Ellis, 1973). We start from the de Sitter metric in static
coordinates [see Eq. (5.22)]:

ds = —( 1 rH )dt +—( 1 rH ) 'dr +—r d A

(5.44)

C. Euclideari functional. integral approach
First, we embed de Sitter space as the hyperboloid

—T +S +x +y +z =. H (5.45)
The Bogoliubov mode-mixing method has many riice

features. Foremost among these are its conceptual sim-
plicity and physical clarity. It is based on an analysis of
the pi'ocess of measuriiig particles in curved space-time
(Unruh, 1976; Gibbons and Hawking, 1977; DeWitt,
1979). On the negative side, however, the computation of
the Bogoliubov coefficients is tedious and often requires
approximations.

For space-times with special symmetries there exists a
much more elegant method of deriving thermal radiation.
It relies on establishing an analogy with finite-
temperature field theory in flat space-time. To be more
precise, it is shown that the Green's functions of the field
theory are periodic in Euclidean time with some period ~.
They are thus identical in form to finite-temperature
Green's functions of temperature 7 ' (see Sec. III).

Intuitively it is very easy to understand our result of
Sec. V.B concerning Hawking radiation in the de Sitter
phase of an inflationary universe, at least for the case of

d$2= dTz+dS2+d—x2+dy2+dz2 (5.46)

The coordinate transformation is

T =(H —r )' sinh(Ht),

S =(H r)'~ cosh(Ht—),
x =r cos4 cosy,

y =r sin8 sing,

z =r cos5 .

The Kruskal coordinates U and V are defined by

T+S =2H 'U,

T —S =2H 'V.

(5.47)

(5.48)

in five-dimensional Minkowski space-time, i.e., R with
the metric
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Hence

2Ht yU —1

r =(1+UV)(1 —UV) 'H
(5.49)

The Hawking temperature in this example is time depen-
dent,

(5.54)

I' ( W;x, x') is given by a functional integral over all paths
x (w) from x to x':

F($;x,x')= f [Dx(m)]exp —f g(x, x)du . (5.51)
o

We continue 8' to negative imaginary values. Then on
the Euclidean 5 sphere F satisfies the diffusion equation

(5.52)

where V' is the Laplacian on the 4 sphere. Using Kruskal
coordinates it is easy to analyze the singularities of
G(x,x'). Singularities occur when x and x' can be con-
nected by a null geodesic. For other values of x and x'
the propagator is given in terms of an analytic function in
U and V. Hence by Eq. (5.49) the propagator will be
periodic in t. The corresponding temperature is our by
now familiar Hawking temperature (5.43).

The functional integral method we described above was
pioneered for the black hole metric by Hartle and Hawk™
ing (1976). Gibbons and Perry (1976,1978) investigated
the equivalence with thermal Green's functions. They
also pointed out an important further result of the Eu-
clidean approach: it shows that at least in perturbation
theory Hawking radiation persists even for an interacting
quantum field theory. Since all Green's functions can be
expanded in terms of propagators and vertex factors, they
will all be thermal provided that the free field propagator
is thermal. Hence at least perturbatively the curved-
space-time Green's functions mill be thermal.

It is important, however, to realize that while the
elegant functional integral method is only possible for
metrics with special symmetries and event horizons,
Hawking radiation is not restricted to such cases. Non-
trivial mode mixing is obviously independent of special
symmetries or event horizons. Brandenberger and Kahn
(1982) work out the example of a de Sitter —like phase of
a FR%' universe with scale factor

a (r) =a (0)exp (1—e "'
)I (5.53)

The main idea of the Gibbons and Hawking (1977)
analysis is to prove that the functional integral for the
Green's function can be given a well-defined meaning by
analytically continuing back from a region in which the
metric is positive definite, namely the five-dimensional
sphere obtained by replacing T by i r (r real). Following
Hartle and Hawking (1976), we construct the propagator
for a scalar field of mass m by

G (x,x') = lim f d WF( W,x,x')
c~O

X exp[ —(im W+ EW' ')] . (5.50)

and in particular is unrelated to the period of the scale
factor in Euclidean time.

D. Stress terisor approach

The methods discussed in the previous sections all

analyze the spectral distribution of a single quantity. In
particular, the Bogoliubov mode-mixirig method gives the
number density of particles detected by an observer. In
many examples the spectral distribution is thermal. The
Bogoliubov Inethod, however, does not allom any con-
clusions concerning the equation of state of matter.

Hawking radiation can be viewed as a consequence of
vacuum fluctuations in a nontrivial background geometry
(Unruh, 1974; Sciama et al. , 1981). An entirely different
effect is the production of real particles in an external
gravitational field, which is analogous to particle produc-
tion in an external electromagnetic field (Schwinger,
1951). These vacuum polarization effects also induce
nonzero "vacuum" expectation values, in particular for
the energy-momentum tensor.

Evaluating the vacuum" expectation value of T&
gives the equation of state of matter produced by polari-
zation effects in the background metric. In general the
equation of state will not be thermal in the sense that

p &—,
'
p. This is true in particular in de Sitter

space (Bunch and Davies, 1978) and in the approximate
de Sitter phase of a FRW universe (Bunch' and Davies,
1977a,l977b; Brandenberger, 1983). The stress tensor ap-
proach does not give the spectral distribution of physical
quantities.

The main idea of the stress tensor approach is very sim-
ple; the implementation, however, is both tedious and
conceptually delicate. The idea is to first pick the state
we want to evaluate T„ in. The choice is determined by
the dynamics of the previous evolution. Often the state is
the vacuum state in a given coordinate frame defined as
explained in Sec. V.A [see in particular Eqs. (5.6) and
(5.7)]. Then the mode expansion (5.6) of the scalar field
y(x, t) is inserted into the expression for T„„for a classi-
cal field. The final step is to evaluate the expectation
values using Eq. (5.7) and the canonical commutation re-
latioris.

We immediately must confront a delicate conceptual
problem. All expectation values diverge. They must be
rendered finite by regularization and renormalization.

Even in flat Minkowski space-time infinities arise.
They are usually interpreted as a consequence of the in-
finite vacuum energy of the ground state of a free scalar
field (the sum of the ground-state energies of all the har-
monic oscillators labeled by k, which the free scalar field
decomposes into in momentum space) and are removed by
normal ordering.
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Normal ordering is a noncovariant renormalization
scheme. It is only defined once we have picked a frame
and thus defined the meaning of creation and annihilation
operators. In curved space-time a new renormalization
prescription is needed.

The subject of renormalization in curved space-time is
too complex an issue to admit a quick discussion as an
appendix to this paper. A separate review article is re-
quired. Several reviews on the subject already exist
(Boulware, 1979; Davies, 1980; DeWitt, 1975). We shall
just say a few words in order to guide the reader to the
literature.

There exist many renormalization schemes. They
differ by the regularization method used. Once the theory
is rendered finite by regularization, renormalization
proceeds by dropping the terms which diverge as the reg-
ularization cutoff is removed. In addition, terms depend-
ing on quantities that enter via regularization must be
dropped (one example being finite terms which depend on
the direction of point splitting when using point-splitting
regularization). This renormalization scheme seems ad
hoc and not based on clear physical principles. A priori
one would expect different answers for each, scheme. If
we restrict our attention to the renormalization of the
stress-energy tensor the situation is slightly clearer. There
are certain conditions that the renormalized expectation
value of T&„must satisfy; it must be conserved, obey
causality, give the usual result for off-diagonal terms, and
vanish in Minkowski space-time. Wald (1977) has shown
that, given a precise formulation of the above conditions,
the answer is unique up to conserved geometrical tcnsors.
Since most renormalization schemes have the above con-
ditions built into them, it is not surprising they give the
same result.

Covariant point splitting is a conceptually straightfor-
ward, albeit technically tedious, method. It is very gen-
erally applicable. It was pioneered by Fulling and Davies
(1976), Davies, Fulling, and Unruh (1976), and Davies
(1976), and was widely applied to two- and four-
dimensional models by the same authors. A good general
discussion is contained in Davies et al. (1977). The basic
idea is to separate the points at which operators in T&
(or qP) are evaluated by moving them in opposite direc-
tions along a given gcodcs1c. This c11minates thc source
of divergences, namely coincident point singularities.

Earlier methods included "n-wave regularization" (Zel-
dovich and Starobinskii, 1971), and the related "adiabatic
regularization" scheme (Parker and Fulling, 1974; Fulling
and Parker, 1974; Fulling, Parker, and Hu, 1974).

The dimensional regularization scheme was applied to
curved space-time by Brown (1977) and Brown and Cassi-
dy (1977a,1977b), the idea being to render Feynman in-
tegrals finite by evaluating them at noninteger dimen-
sions.

A related approach is g function regularization, in
which a formally divergent functional determinant is
written as a generalized g function (Hawking, 1977), a
function of the power u of the operator. While the naive
sum of eigenvalues of the operator diverges, the g func-
tion converges for a certain range of u. The idea behind g
function regularization is to extend the function by ana-
lytic continuation and then to define the finite, regular-
ized value of the determinant in terms of this analytic
continuation (see, for example, Parker, 1979). g function
regularization is particularly useful in evaluating effective
potentials. It is the method used by Allen (1983,1984) to
compute the one-loop effective potential in de Sitter
space.

Pauli-Villars regularization is another regularization
scheme well known in regular quantum field theory. It
involves rendering Feynman integrals finite by introduc-
ing heavy scalar particles with opposite statistics. The re-
sulting Fermi minus sign for a closed loop introduces an
ultraviolet cutoff. The method is mentioned in the review
by Boulware (1979), but to our knowledge it has not often
been used.

The background-field method, on the other hand, is a
well-studied method, first applied by DeWitt (1975) to
quantum field theory in curved space-time. It is based on
the Schwinger (1951) -DeWitt (1964) proper-time formal-
ism. Early work on this technique includes articles by

'

Dowker and Critchley (1976), Christensen (1976), and
Christensen and Fulling (1978).

The easiest example is the theory of a conformally cou-
pled scalar field in a conformally flat FRW space-time.
As vacuum state we choose the state that is conformally
related to the standard flat space-time vacuum state.
Davies et al. (1977) have analyzed this case in detail, us-

ing regularization by covariant point splitting. The ex-
pectation value of Tz„must be a combination of two-
index conserved geometric tensors with the correct dimen-
sionality. This follows since the regularization scheme
does not break locality. It is an easy linear algebra prob-
lem to find the two linearly independent conserved
geometric tensors. Their coefficients, however, can only
be determined by going through the entire regularization
calculation. The result is

(Ol TPI0&=(2880m ) '[a(2R "p 2gqCIR+2RR—q
—2g~R )+b(Rp~R" , RRp —, g~R~p—R —~+—,'g~R—)j.

(5.55)

For a scalar field

a= ——,, b=1. (5.56)

the result becomes (Bunch and Davies, 1977b)

&0I T~ 10&=pgt (5.57)

In particular, for the de Sitter phase of a FR%' universe, w1th
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a4
960~2

(5.58)

The vacuum stress-energy tensor is not thermal; it is de
Sitter invariant. Similar results hold for the de
Sitter —like phase of an inflationary universe (Branden-
berger, 1983).

where N(T)=Nb(T)+ —,Nf(T) and Nb(T) [Nf(T)] is the
number of bosonic (fermionic) spin degrees of freedom at
temperature T. N(T) will, in general, decrease as T de-
creases, since fewer particles remain in thermal equilibri-
um with radiation.

The Einstein equations

Rp ——,gp R =8m.GT@ (6.4)

Vl. INFLATIONARY UNIVERSE MODELS

A. Problems with the standard model

where a (t) is the cosmic scale factor; k = + 1, —1,0 cor-
responds to a closed, open, or spatially flat universe.

The matter energy-momentum tensor is

T„" =diag( —p, +p, +p, +p) . (6.2)

In the standard model matter is treated as an ideal gas of
particles. For high temperature (temperatures larger than
the rest mass of the dominant particles in the universe) we
have an ideal gas of massless particles. Then the energy
density p, the pressure p, and the entropy density s are
given by

In the past three years there has been a lot of interest in
inflationary universe models. The original idea is due to
Couth and Tye (1980) and Couth (1981), who proposed
what is now called the old inflationary universe. Consid-
erable progress towards a realistic scenario was made by
Linde (1982a) and Albrecht and Steinhardt (1982) by in-
troducing the new inflationary universe based on a
Coleman-Weinberg (1973) potential for the scalar field
that drives inflation. Qther important contributions are
due to Hawking and Moss (1982) and Press (1981).

Inflationary universe models arise from an attempt to
modify standard big bang cosmology by treating matter,
not as an ideal gas, but in terms of quantum fields. For-
mally, the models involve coupling quantum field theory
to classical general relativity. The original motivation
was the realization by Guth (1981) that the modified
scenarios may solve several important cosmological prob-
lems in the standard model, foremost among these the
horizon and flatness problems. We shall begin by review-

ing the standard model and its problems.
The standard model of the early universe is based on a

homogeneous and isotropic Robertson-Wa1ker metric,

dI"
ds = dt +a (t) —+r dQ,

1 —kr
(6.1)

dQ'=d8 +sin @de

give the following first-order differential equation for the
scale factor a(t):

a
a

2
k+ 2= (6.5)

[using Eqs. (6.1) and (6.2)]. G =m„& is Newton's con-
stant, mz~ the Planck mass.

The third element in the standard model is the assump-
tion of adiabatic expansion of the universe,

d
(sa )=0.

dt

For constant N(T) this becomes

(6.6)

aT =const . (6.7)

The. FRW equation (6.5) can then be rewritten as a dif-
ferential equation for the temperature T:

2

+ET = p, 8=T 2 8~G k
T 3 2T2 (6.8)

(6.9)

T„'" stands for the energy-momentum tensor operator of
the field theory. The total classical energy-momentum
tensor is

PV PV + PV
Q (6.10)

If the state
~ p) does not break the symmetries of the

FRW background metric, then

(6.1 1)

Entropy conservation means c is constant.
It is unreasonable to expect that the classical descrip-

tion of matter as an ideal thermal gas will remain accu-
rate at high temperatures. Then the quantum nature of
matter will become important. The inflationary universe
models are based on the description of matter by a quan-
tum field theory, in particular a grand unified field
theory. In this case Eq. (6.2) is not the only term in the
classical energy-momentum tensor that couples to gravity
through the Einstein equations (6.4). If

~
P) denotes the

quantum state of the system, there is a new contribution,

p= N(T)T',
30

(6.3)

acts as a cosmological constant term in the Einstein equa-
tions.

In the standard big bang model T~ is neglected. This
is equivalent to assuming that the quantum state is one
with po ——0 (a true ground state). Since the present cosmo-
logical constant presumably is zero [the best upper bound
is (Hawking, 1984)

~

A
~

&10 GeV or A/m~~
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~10 ' ], po must vanish today or be negligibly small.
This need not hold in the early universe. As demonstrat-
ed in the previous sections, a large class of field theories
undergo phase transitions as the temperature changes. po
changes during these transitions. Before elaborating on
the cosmology of field theories with nonvanishing and
nonconstant ground-state energy density, let us look at
some of the cosmological problems of the standard model.

Both the horizon and the flatness problems are natural-
ness problems (Cruth, 1981). It is unnatural that we ob-
serve homogeneous microwave background radiation
from a region many orders of magnitude larger than that
which could ever have been in causal contact. This is the
horizon problem. The flatness problem is related to the
observational fact that the present energy density of the
umverse p is less than an order of magnitude different
from the critical energy density p„ the borderline value
which corresponds to a spatially fiat universe,

0.1« 4.
pc

(6.12)

p=p, is an unstable fixed point under time evolution.
Hence early in the universe the relative energy difference
between p and p, must have been much smaller. If we ex-
trapolate the densities back to a temperature T =10'
GeV, the relative energy-density difference becomes of the
order of 10,an unnaturally small number.

The quantitative analysis of the flatness problem is
based on an equation for the relative energy-density
difference,

I(t) «L(t) . (6.19)

Thus homogeneity and isotropy of the universe must be
postulated as initial conditions.

To give a quantitative analysis we consider the spatially
flat case E=O and take to=0. Then Eqs. (6.3) and (6.8)
yield

The fine-tuning of initial conditions required to give this
small value is related to the large present entropy density
of the universe. Any solution of the flatness problem
must reduce the entropy in the early universe.

The horizon problem is illustrated by Fig. 16. The con-
centric circles represent space at a fixed time (the radial
axis being time). Constant angle corresponds to constant
comoving coordinates. An observer at 0 determines the
visible size of the universe by finding the most distant
sources of radiation. Projecting their positions back to
time t, at constant comoving coordinates, defines a quan-
tity L (t), the physical radius at time t of the presently ob-
served universe. Is it possible to explain the observed
homogeneity and isotropy of the universe within a radius
L (r) by a causal process? The horizon problem: it is im-
possible to do so. To see this we fix an initial time to, the
time at which we want to set initial conditions I'e.g., the
Planck time t„~ defined by T(t~&)=m„~]. Then the for-
ward light cone of a point at to has a physical radius I (.t)
at time t. We understand microphysics for times larger
than some intermediate time tl (according to current par-
ticle physics models for energies lower than the grand
unification scale). But at tl the region of causal contact is
much smaller than the observed horizon, i.e.,

p
From Eq. (6.8) we have

(6.13)
1 2 8m GN(T)T t = o: =

2at 90
(6.20)

and

8m.G
pc3

(6.14)
or by entropy conservation a (t) —r '~ . Hence the particle
horizon (physical radius of causal contact) I (r) is

l(t)=a(t) f a '(s)ds =2t . (6.21)

H+cT = p,
Sm.G

3
(6.15)

where, as usual, the Hubble parameter H(t) is a(t)la (t).
Thus

The physical radius L(t) of the observed part of the
universe, on the other hand, is given by the equation for
constant comoving coordinates,

3 eT 4Se

p 4m'GNT'

which shows immediately that p, is an unstable fixed
point under expansion of the universe. By Eq. (6.3) E is
related to the total entropy S, which in turn can be experi-
mentally determined (Cxuth, 1981),

=0 (1)X S & 10 X i (6.17)
1

(aT)

If we take %-10 and evaluate (6.16) at T =10' CxeV
we obtain

(6.18)

FIG. 16. The horizon problem: I.(t) &~l(t). Concentric circles
represent space at fixed time, the radial axis is time. y indicates
a light ray from a star S to the observer at O. y' indicates the
forward light cone of the point P at t„~.
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L (t) = L (r~) = — L (t~),
T(&~)

a (tq )
~ T(t)

(6.22)

where tz is the present time, T(t~) the present microwave
background temperature. Hence by Eqs. (6.20)—(6.22)

L(r)
=[aT(t)T(t~)L (r~)] (6.23)

With %-10, T(t~)=2.7 K, and L(t&)=10' yr, and
evaluating Eq. (6.23) at 10' GeV, we obtain

—10-28
L (6.24)

The idea underlying the solution of the horizon prob-
lem is very simple. We assume a sufficiently long period
of exponential growth of the scale factor a(t) starting
after t~, and ending before t(TI). Thus l(t) will expand
exponentially during this period while L (r) remains un-
changed. The small number problem (6.24) is eliminated
provided the period ~ of exponential expansion satisfies

e Hv 1028 65 (6.25)

The solution is sketched in Fig. 17. Between tz and tz
the scale factor is increasing as a (t)-e

It is not hard to realize the above idea if we describe
matter in terms of a field theory. Restricting our atten-
tion to the spatially flat case k=0, it is obvious from Eq.
(6.5) that a period of exponential expansion (i.e., a period
of inflation) will occur if and only if p(t) is constant.
Since for a scalar field theory

p[y(x, t)]= —,'y + —,'(Vq&) + V[@(x,t)], (6.26)

this will be true if the energy density is dominated by a
constant potential-energy term. This in turn occurs in
field theory models that undergo phase transitions. The
high-temperature quantum state must have positive po-
tential energy; the low-temperature vacuum state must
have vanishing potential energy. During the phase transi-
tion, vacuum energy will be converted into thermal ener-
gy. This is equivalent to entropy generation. The entropy
will increase by a factor Z where

z Hr (6.27)

The temperature of the original thermal state decreases
exponentially during the inflationary, or supercooling,
phase. In a rapid transition (rapid compared to H '), all
vacuum energy is converted into thermal energy. Thus
the temperature after this "reheating" is of the same order
of magnitude as the temperature before inflation (see Fig.
18).

Entropy generation also solves the flatness problem. c.

is no longer constant. According to Eq. (6.8) its present
value is smaller by a factor Z than its original one.
Hence for times prior to entropy production the right-
hand side of Eq. (6.16) must be multiplied by Z . For the
value of Z given by Eq. (6.25), the initial value of

~ p —p,„~p
' is no longer unnaturally small. The above

can be explained much more intuitively: even if the
overall curvature of the universe originally was large, due
to the exponential expansion of the universe our presently
observed part of the universe originates from such a small
section as to render it essentially flat. It is remarkable
that the same minimal value for Z is required to solve
both the flatness and horizon problems.

Inflationary universe models can also solve a whole
class of cosmological problems that arise when coupling
grand unified field theories to cosmology. Many grand
unified theories predict the existence of new heavy stable
particles such as monopoles or photinos. Estimates of
their number densities based on the standard model of
cosmology exceed the experimental upper bounds. A
period of inflation, however, will dilute the predicted den-
sity by a factor Z, provided the particles are created be-
fore inflation and cannot be produced after. With the ad-
ditional factor, the predicted densities are far below exper-
imental liml ts.

The most famous of these problems is the monopole
problem (Zeldovich and Khlopov, 1978; Preskill, 1979).
Unified field theories, theories in which a large gauge
group G is spontaneously or dynamically broken down to
H=SU(3))&U(1) and where the large group contains the
U(1) factor nontrivially, predict the existence of extended
topological structures, classical static finite-energy solu-
tions of the equations of motion which correspond to the
symmetry-breaking field (e.g. , the Higgs field) defining a
nontrivial topological map from the (spatial) sphere at in-
finity into G/H, i.e., having nontrivial winding number

T'(t) (Gev)

t~

ts

tp)

( IPI4)2

FICx. 17. Solution of the horizon problem: intermediate phase
of exponential expansion of the universe for t& ~t &t~. Now
I(t) &L (t).

ta

FIG. 18. Temperature of matter in an inflationary universe.
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(see, for example, Coleman, 1975,1981). Cosmologically,
monopoles form at the energy scale T, when the U(1) fac-
tor first emerges in the symmetry-breaking process. Since
microphysics cannot act coherently outside the horizon,
there can be no correlations in the angle of symmetry
breaking outside the horizon. Hence the monopole densi-

ty nM at t(T, ) will be (Kibble, 1976)

nM[t(T, )]-1(t,) (6.28)

(density per physical volume). Explicit estimates
(Preskill, 1979) show that monopole-antimonopole annihi-
lation is negligible. , So are all other decay modes. Hence
the present monopole density is given by redshifting:

a(t, )
n~(t~)-l(t, )

'
a (tp)

(6.29)

For monopoles of mass m~ —10' GeV which form at
T, —10' GeV, the density is nM ( tz )- 10 GeV, which
exceeds the critical density pT-10 CxeV to close the
universe by many orders of magnitude. pr is the energy
density of a radiation-dominated universe at T-10
GeV. The actual critical energy density is larger by a
couple of orders of magnitude (see our discussion of the
flatness problem).

Inflation solves the monopole problem in an elegant
way (Guth, 1981): provided no monopoles can be pro-
duced after the period of exponential expansion, the
monopole density gets suppressed by a factor Z during
infIation.

In gauge theories with a nontrivial vacuum structure
there are other topological structures: one-dimensional
strings and two-dimensional domain walls (Kibble, 1976).
They arise in many grand unified theories (Kibble et al. ,
1982; Olive and Turok, 1982) and form at the scale of
symmetry breaking. Their energy density could easily
exceed p, . If strings and domain walls form before the
onset of inflation, their energy density is reduced to a
negligible value.

In supersymmetric theories, the lightest of the super-
symmetic partners of observed particles is stable. In the
standard cosmological model, the predicted densities of
these particles often exceed experimental lower bounds
(Ellis, Linde, and Nanopoulos, 1982). Inflation can cure
this problem in exactly the same way as it cures the
monopole problem, namely by suppressing n~ by a factor

- Z, provided the superpartners remain out of thermal
equilibrium after inflation. Since the particles may be
reproduced after inflation, the analysis is more complicat-
ed. See Khlopov and Linde (1984) and references therein.

A final problem that inflation easily cures is the "rota-
tion problem" (Ellis and Olive, 1983), the absence of ob-
served rotation in our universe. Due to inflation, it is pos-
sible that the universe originally was rotating, but that
this effect is unobservable today since our part of the
universe corresponds to a very small primordial region of

the universe.
Inflation makes an important prediction concerning the

flatness of the universe: As we saw above, any initial ra-
tio

~ p —p, ~
/p of the order of one before inflation will

lead to a present ratio that is infinitesimal. Q=—p/p, is
predicted to be one. Luminous matter can only account
for a small fraction of this energy density: Q&„m-10
Thus inflationary universe models predict that the energy
density in the universe is dominated by some form of
dark matter (see, for example, Primack and Blumenthal,
1983a,1983b, and references therein). Galaxy formation
in such models is then dominated by the dark matter (Pri-
mack and Blumenthal, 1983a,1983b; Bond and Szalay,
1983).

Cosmological implications of phase transitions in quan-
tum field theories were studied before the seininal paper
by Guth (1981). Linde (1974) and Bludman and Ruder-
man (1977) pointed out that there will be a large cosmo-
logical constant in the symmetric phase of a theory that
undergoes spontaneous symmetry breaking. Einhorn,
Stein, and Toussaint (1980), Einhorn and Sato (1981),and
Guth and Tye (1980) realized that exponential expansion
in the period of supercooling in the symmetric phase
would dilute the monopole density and thus solve the
monopole problem. Sato (1981a) argued that the expan-
sion could also account for the fact that the sign of CP
violation is the same everywhere in our observed universe.
He also realized that in a phase transition by bubble nu-
cleation there is no completion of the transition (Sato,
1981b). Kazanas (1980) finally suggested exponential ex-
pansion of the universe as the reason for the observed
homogeneity of the universe.

B. Inflationary universe models

Guth (1981) originally suggested realizing an inflation-
ary universe scenario by considering a field theory with a
first-order phase transition by bubble nucleation, i.e., in
which y=0 is a local minimum of the one-loop effective
potential. A "toy model" would be a pure scalar field
theory with a quartic potential, with a local minimum at
y=0 and a global minimum at y=o. A more realistic
model is the SU(5) Georgi-Glashow model of Sec. II, with
a small explicit mass term for the Higgs field (m &&o).
The finite-temperature one-loop effective potential is
given by Eq. (3.31),

—.2
VJtt' (g)=Bg ln ——+ —,m g2

o 2

+Cq 'T'+ V(0) (6.30)

and is sketched in Fig. 19 for both zero and high tempera-
ture. B and C are constants determined by coefficients of
order unity and powers of the gauge coupling constant g.
(Linde, 1982a),
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jeff(&} 6V ff(p)=0(l)g Rtp ln 2 +O(1)g y41n
P2 P3

(6.33)

FICx. 19. Sketch of the effective potential in the old infiationary
universe for zero and high temperature.

5625

C= g
75
16

(6.31)

The scenario, now commonly called the old inflationary
universe, starts after the big bang with a thermal state at
the Planck scale 10' CieV. Above this temperature quan-
tum gravity presumably becomes important, and all
present theories break down. Since the scalar field energy
is of the order o. and hence much smaller than the radia-
tion energy, the thermal T& dominates the energy-
momentum tensor. Hence there will be an initial
radiation-dominated phase, during which a (t) —t '~ . The
finite-teinperature correction's in Eq. (6.30) render the
symmetric minimum y=0 the absolute minimum of V,ff.
Ciauge symmetry is unbroken. During this phase- the
thermal energy redshifts away. As soon as T falls below
the critical temperature T, the time-independent vacuum
energy V(0) begins to dominate T„„. The universe starts
a phase of exponential expansion. The temperature T of
the original thermal ensemble supercools exponentially,

(6.32)

After a few e foldings into this de Sitter phase, @=0
ceases to be 'the stable minimum of the effective potential.
y=0 becomes a metastable "false" vacuum state. Its de-
cay rate w

' can be determined by the methods of Sec. IV.
Since T~(t) decreases exponentially, we can use the zero-
temperature effective potential.

At this point it is appropriate to comment on the role
of Hawking radiation. As discussed in Sec. V, there is
Hawking radiation even in a de Sitter phase of finite
length in a FRW universe. This radiation, however, does
not correspond to a thermal bath of particles. In fact
(Brandenberger, 1983), the equation of state is de Sitter.
Hence it is not correct simply to apply finite-temperature
field theory at the Hawking temperature TH. Instead,
one must compute the effects of curvature on the effective
potential. Shore (1980) and Allen (1983) have computed
these curvature effects for sample field theories. They
conclude that there is a gravitational correction term in
V ff(y). In the limit g y «R

p, ii
——V(0) —V(y, ) = @(1)o". (6.34)

The rest of' the energy density is thermalized,

p,h, ,i
= V(g, ) —V(~T) =&(1)o (6.35)

The universe thus reheats to a temperature T,~ of the or-
der o., only a factor of order 1 below the matter tempera-
ture at the beginning of the de Sitter phase (see Fig. 18).
Reheating is the nonadiabatic process that generates en-

tropy. The temperature of matter increases from T;„ to
T,h at virtually constant scale factor [T;„ is the matter
temperature at the end of inflation and is given by
P(1)ere ']. Hence the entropy increase factor Z is

TrhZ=
Tmin

=P(1)e (6.36)

After reheating, the scalar field is in its true vacuum
state. The only nonvanishing contribution to the energy-

Here g is the gauge coupling constant of the sample field
theory, p; are renormalization constants, and the W(1)
coefficients will in general depend on the coupling of the
scalar field to gravity, i.e., on the value for g in the term
—,'2 /Ryan in the Lagrangian. Of particular interest is the
mass term in Eq. (6.33). In the old inflationary universe
(H « m «cr) curvature corrections are negligible.

The lifetime of the metastable vacuum y=O is ~. If
r& 65H ', then the de Sitter phase is sufficiently long to
solve the horizon and flatness problems. The metastable
state will decay by tunneling through the potential bar-
rier. Thereafter the evolution of the system is determined
by the classical motion of the vacuum expectation value
of the scalar field. In the old inflationary universe, the
classical evolution starts at a large value of y (the turning
point of the instanton). It takes a short time for the field
to evolve to the absolute minimum at o (large and short
are understood as compared to H and H ') Durin. g this
brief period red-shift effects are negligible.

At values compaiable to o the Higgs field develops its
large mass. Feynman graphs corresponding to the Higgs
field decaying into a fermion-antifermion pair generate a
complex phase in the effective action. As analyzed by
Abbott, Farhi, and Wise (1982), this leads to an effective
damping term I qr in the equation of motion for
(0

~ y ~

0). Once (0
~ y ~

0} reaches cr, it will perform
damped oscillations about o. and release its energy as
thermal energy of the particles produced by the damping
mechanism. Since on dimensional grounds I will be of
the order o., the damping period, i.e., reheating period,
will be of' the order o. ' and thus negligible compared to
0 '. Reheating has also been analyzed by Albrecht,
Stein hardt, Turner, and Wilczek (1982), Dolgov and
Linde (1982), and Hosoya and Sakagami (1984).

In the old inflationary universe, the vacuum energy of
the Higgs field before tunneling is transformed into both
thermal and wall energy. If y, denotes the turning point
of the instanton solution (see Fig. 19), then
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TABLE III. Cosmology of the old inflationary universe model.

Temperature

Tp& 10 GeV

=10' 0ev

Tb

T„„—10' GeV

Time

0

tb =taUT+&

Scale

Planck

GUT

Field theory

quantum gravity

y=0: true vacuum

y=0: false vacuum

quantum tunneling

y=o' true vacuum

Cosmology

a(t)-t'
standard model

g {t) ~Hf

de Sitter phase
supercooling of matter

reheating of universe

a(t)-t'
standard model '

momentum tensor is from thermal radiation. Hence fur-
ther cosmological evolution is as in the standard model.
In particular, baryosynthesis remains unaffected. The old
inflationary universe is summarized in Table III.

Guth (1981) immediately realized that the old inflation-
ary universe does not provide a realistic cosmology. One
drawback is that it merely replaces the horizon problem .

by an inhomogeneity problem. As sketched in Fig. 20,
the bubble walls, which carry a large fraction of the initial
vacuum energy density, will remain inside our observed
horizon. They would create energy-density perturbations
of unacceptable magnitude. This problem stems from the
fact that bubbles form after inflation, and therefore the
bubble wall corresponds to the forward light cone of a
point at T~UT in the standard model, by which the ob-
served horizon (6.19) is much too small to contain the ob-
served universe.

A further problem is that the phase transition will nev-
er terminate. As time goes on, an arbitrarily large frac-
tion of space will be in the new phase. However, since the
physical size of the regions outside the bubble expands ex-
ponentially compared to the t'/ growth for regions of
the new phase, clusters of the new phase will never join
together to form large regions which could contain our
observed universe. In technical terms: the bubbles do not

percolate. This problem has been analyzed in detail by
Guth and Weinberg (1983).

To circumvent the above problems, Linde (1982a) and
Albrecht and Steinhardt (1982) proposed a modified ver-
sion of the scenario, the new inflationary universe. Since
in this proposal bubbles form before inflation (if they
form at all), the observed part of the universe lies within
one large bubble, and the above problems do not arise. A
similar proposal based on a homogeneous transition of the
entire universe was made by Hawking and Moss (1982).
The crucial feature of the new inflationary universe is the
assumption that the one-loop effective potential of the
scalar field driving inflation has a local maximum at
p=0, as is realized, for example, in a Coleman-Weinberg
(1973) model. The transition will then not occur by bub-
ble nucleation, but by spinodal decomposition (see, for ex-
ample, Langer, 1974). For the SU(5) Georgi-Glashow
(1974) model, the one-loop effective potential is given by
Eq. (6.30) with m =0. As emphasized by Linde
(1982b,1982c) this m includes both the bare-mass term
and the gravitational corrections given by Eq. (6.33):

2

(6.37)

The critical temperature T, is the energy at which the
unified gauge group SU(5) breaks spontaneously. By Eq.
(3.32),

1/2

Tc TCiUT (6.38)

Cfl+

yl

FIG. 20. The homogeneity problem in the old inflationary
universe: the bubble of true vacuum phase (y indicates the bub-
ble walls) is much smaBer than the observed horizon L (t).

The unification scale cr is of the order of 10' —10' GeV.
It can be calculated using data from low-energy physics
(see, for example, Buras et al. , 1978).

In the new inflationary universe there is 'no
temperature-independent potential barrier to stabilize. the
symmetric state y=O once T & T, . Even if we set only
the bare mass equal to zero and keep the gravitationally
induced mass term, the latter is of the order H qP, with
coefficient D. If the evolution of the initial quantum
state is determined by tunneling through this small poten-
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tial barrier, the turning point of the instanton solution
(which, as discussed in Sec. IV, equals the initial point for
the classical evolution of the expectation value of qr) is
very close to the origin, at a distance of the order H (see
Fig. 21). A simple estimate of the distance may be ob-
tained in the following way: we first approximate the ef-
fective potential (6.37) for T=O by replacing the loga-
rithm by a constant of order unity,

v(O)(

I'rr'(V»= V—'+—~
B~'. (6.39)

Then- the turning point is approximately given by the
value of cp for which

V,'fr'(y)+DH y = ,'Bcr—
The answer is

'
.1/2

H =6(1)H .
D

1,/4

(6.40)

(6.41)

A, is given by evaluating the logarithm at cp=H,

1 H
A, =4B ——ln

O
2

= 120B, (6.42)

(t —to)Ha(r)=e (6.43)

where B is giveh by Eq. (6.31).
The cosmology of the new inflationary universe is sum-

marized in Table IV. As the temperature decreases from
the Planck scale m~1 to To=o'[15B~ X(T) ']', the
thermal component of T„dominates, and the universe is
radiation dominated. As soon as the matter temperature
T drops below To, the vacuum energy begins to dom-
inate. Hence by the FRW equation (6.5) with k=O,

FIG. 21. Sketch of the effective potential in the new inflation-
ary universe (mass term of order H included). The detailed
sketch of the potential near the origin includes the instanton
solution corresponding to tunneling.

In particular, for the SU(5) Georgi-Glashow (1974)
model, o.=@(1)10' GeV and hence H =W(1)10 GeV.
It is important to realize that, in grand unified theories
with a Coleman-Weinberg (1973) potential for the scalar
field, H and o. are not independent.

At this point the scenario begins to deviate from the
old inflationary universe cosmology. Since the potential
at the origin is flat (compared to the characteristic energy
scale o., even gravitational corrections are negligible), the
evolution of the quantum state can be determined by con-
sidering free scalar field theory in the de Sitter phase of
the FRW cosmology. The idea is first to treat the scalar
field evolution quantum mechanically until quantum field
nonlinearities become important, and then to continue
semiclassically. Since in theories with symmetry under
y~ —y the vacuum expectation value of cp vanishes, the
object to consider is the classical field

with
g,i(t)=(0

i y (x, t)
i
0)' (6.45)

Hmp) —— 4m3'
1/2

o =W(l)o. (6.44)

renormalized by subtracting the flat-space result for a free
scalar field before eliminating the cutoffs. For the ap-
propriate vacuum state (we shall come back to this point

TABLE IV. Cosmology of the new inflationary universe model.

Temperature Time Scale Field theory Cosmology

Tp] 10 GeV

ToUT 10 GeV
TO

tour =to

tg~to+ t
ht-H

trh

trh ++rh

Planck
quantum gravity

y=0: true vacuum.

slow-rolling phase

acceleration phase
cp(t):H ~cr

a(t)-t'"
standard model

a (t) etH

de Sitter period

a(t)-e'
de Sitter period

T,h —10' GeV
(~,h-O. ')

oscillation phase

y=o.: true vacuum

reheating period

a(t)-t'"
standard model
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in Sec. VII) and in the case of minimal coupling, Vilenkin
and Ford (1982), Linde (1982c), and Hawking and Moss
(1983) find a linear growth of p,~(t):

(6.46)

(see also Vilenkin, 1983, and Brandenberger, 1984); This
growth by far dominates any potential effects due to
semiclassical tunneling through the finite-temperature
barrier of the effective potential.

Hawking and Moss (1983) show that y,i(t) evolves
semiclassically according to the classical field equations
of motion, with the potential V(y) replaced by the effec-
tive potential V,tt(y). Thus y,~(t) can be described as a
superposition of the homogeneous quantum growth (6.46)
and the growth due to the nontrivial potential determined
by the homogeneous solution of the Klein-Gordon equa-
tion,

(6.47)

Initially the quantum growth will dominate, later the
semiclassical evolution (see also Moss, 1984).

The semiclassical equation for y,i(t) is [by Eq. (6.39)]

qv+ 3Hy = —A,y (6.48)

Since the s1ope of V,ff is initia11y negligible we can in a
first period (from to to tie) neglect the acceleration term
(Guth and Pi, 1982; Hawking, 1982; Brandenberger and
Kahn, 1984). The solution of the resulting equation is

1/2

y(t) = 3H
2A,

3H
2A,y (0)

(6.49)

(for simplicity we set to ——0 in the following computa-
tions). The approximation under which Eq. (6.49) holds
breaks down at the time tz when jo becomes equal to
3Hjv. This occurs for

t —tg ——2H (6.50)

and the value of p at t'ai is y(t'ai) =(3A, ')' H.
In the second period of the de Sitter phase, lasting from

t~ to reheating at tz, we can self-consistently neglect the
Hubble redshift. As discussed in Brandenberger and
Kahn (1984), the solution of Eq. (6.48) in this approxima-
tion which correctly matches solution (6.49) at tie is

1/2

qr(t)= — [a (t t )] ', —u=( —,
' )' H—

(6.51)

a is approximately the length of this second period.
In both periods the kinetic energy of the scalar field is

negligible compared to the vacuum energy. Hence the
scale factor continues to increase exponentially according
to Eqs. (6.43) and (6.44). Inflation takes place while the

t*—2H 1

y'
(6.52)

To obtain sufficient inflation, this period should be longer
than 65H '. Hence y must be smaller than 0.2, while by
dimensional analysis we should expect a value of order 1.
In addition, the quantum growth of y given by Eq. (6.46)
will further shorten the period of inflation.

New inflationary universe models yield a mechanism
that, from first principles, explains the origin of primor-
dial energy-density fluctuations, a major breakthrough
which will be discussed in detail in Sec. VII. In the sim-
plest models, like our sample SU(5) model, however, the
predicted amplitude of the fluctuations is 5 orders of
magnitude too large (Guth and Pi, 1982; Hawking, 1982;
Starobinsky, 1982; Bardeen, Steinhardt, and Turner,
1983). This is the by now famous fluctuation problem.

Next, in our entire analysis we considered only one ray
in the configuration space of the SU(5) adjoint Higgs
field, the ray in the direction corresponding to SU(5)
~SU(3) X SU(2) XU(1) symmetry breaking. Our justifi-
cation for this was that the global minimum of the poten-
tial for the range of parameters we are interested in is in
the SU(3)XSU(2)XU(1) phase (Guth and Weinberg,
1981; Albrecht, Jensen, and Steinhardt, 1984). Recently,
Breit, Gupta, and Zaks (1983) have pointed out that the

scalar field is slowly rolling' down the "hill" of the poten-
tial (see Fig. 21). In the first period, the "slow-rolling"
period, the value of y remains of the order H; during the
final e folding q& rapidly approaches the minimum of the
potential.

Since the curvature of the potential at the minimum cr
is large (of order cr ), the damping term in the equation of
motion for y due to the imaginary part in the effective
action discussed before will be large, at least in models
such as the SU(5) model we are considering, in which the
Higgs field couples directly to fermions. Hence the

. reheating period will be very short (of the order o. '), and
the universe will reheat to a temperature equal to T, up
to a factor of order unity. Thenceforth cosmology
evolves as in the standard model.

The new inflationary universe was a big step forward in
attempting to improve our understanding of the evolution
of the early universe, but it has its share of problems as
well.

The most serious objection is the reliance of the
scenario on the Coleman-steinberg potential. A bare-
mass parameter can be at most of the order H. This
represents an unnatural fine-tuning of particle physics
(and it is precisely fine-tuning problems, albeit of cosmo-
logical nature, that the model was designed to solve).

Next, it is difficult to obtain sufficient inflation
without fine-tuning initial conditions for the evolution of
the classical field, a problem emphasized by Starobinsky
(1982). Considering first only the semiclassical evolution
(6.49), we notice that t* 2H ' is the le—ngth of the slow-
rolling period. Writing y(0) =yH and setting A, =0.5 [see
Eqs. (6.42) and (6.31) or Guth and Pi, 1982], we obtain
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p(tf)=&(1) p(t;) .
p

f I+w(t;) p
(6.53)

Here w(t) is the ratio of pressure to energy density, and

5plp is to be evaluated in comoving coordinates (all con-
cepts will be explained in detail in Sec. VII). If at t; the
slow-rolling approximation is valid, we obtain

shape of the potential in the multidimensional configura-
tion space is such that the inflationary transition will first
lead to the phase with SU(4) XU(1) symmetry, which will
later decay into the SU(3) X SU(2) XU(1) symmetric
minimum. Thus the new inflationary scenario cannot be
realized at all in our sample SU(S) model. Gupta and
Quinn (1984) have presented an SU(5) model with a full
Higgs sector which avoids the above problem.

Finally, as emphasized by Mazenko et al. (1984), it is
unclear whether realistic initial conditions will lead to an
inflationary phase at all (see the final comments in Sec.
II).

Since the new inflationary universe has so many strik-
ing successes to its credit, and none of the problems seems
to invalidate the entire approach, there have been many
recent efforts to construct realistic models. In particular,
Steinhardt and Turner (1984) have investigated which
conditions must be satisfied if the potential of a single
scalar field y is to produce a cosmologically acceptable
inflationary scenario (see also Albrecht and Steinhardt,
1983).

First, the potential at the origin must be flat. This is
crucial in order to have a new inflationary scenario at all.
Second, the flat portion of the potential must be suffi-
ciently long (length much greater than H), else the quan-
tum growth of the classical field given in Eq. (6.46) will
prevent enough inflation. Third, the slow-rolling phase
must be long enough to give sufficient inflation. In our
SU(5) toy model this last condition is not satisfied; the '

value of y at which the "slow-rolling approximation"
breaks down is too small [(3A. ')'~ H], since the slope of
the potential is increasing too rapidly. The problem is
tied to the specific form of the Coleman-Weinberg poten-
tial with only one free parameter, namely cr. To ensure
sufficient inflation, the potential must have very small
curvature near the origin. Fourth, the vacuum energy in
the de Sitter phase may not exceed 3 X 10 m z~ (Starobin-
sky, 1979; Rubakov et a/. , 1982; Fabbri and Pollock,
1983), else primordial gravitational waves will create an-
isotropies in the cosmic microwave background radiation
which violate the observational upper bounds. Fifth, the
curvature at the absolute minimum must be large enough
to ensure reheating of the universe above temperatures of
baryosynthesis. Finally, the potential may not be too flat
near the origin, else fluctuations are too large. Our
analysis in Sec. VII gives the following general formula
for the amplitude of primordial energy-density fluctua-
tions on a given. length scale, when that scale enters the
Hubble radius H '(t) at tf, in terms of the initial fluc-
tuations and the initial equation of state when the scale
leaves the Hubble radius in the de Sitter phase at t; (Bran-
denberger and Kahn, '1984),

5P
( ) @(I) H

y(ti )

(6.54)

Thus y(t;) should be of the order 10+ H to give the re-
quired amplitude.

C. Alternative proposals

In the following we should like to mention briefly some
of the models that have recently been suggested to avoid
the problems of the new inflationary universe (see also the
review by Albrecht, 1984). We shall start with the pro-
posals that most closely follow the new inflationary
universe.

Shafi and Vilenkin (1983) proposed a model with a
separate "inflaton field. " They start from the observation
that the problems mentioned above for the new inflation-
ary scenario disappear if A, can be tuned to a small value.
[For our minimal SU(5) model this was not possible, since
k was determined by the gauge coupling constant g; see
Eqs. (6.42) and (6.31).] By Eq. (6.49), A, must be smaller
than 10 to give sufficient inflation. By Eqs. (6.54) and
(6.49), and using t* t; =50H—', we find that A, must be
of the order 10 ' to give the correct amplitude for fluc-
tuations. Shafi and Vilenkin (1983) consider a standard
grand unified field theory and add an additional scalar
field to generate inflation, the "inflaton field. " A
Coleman-Weinberg (1973) potential for the inflaton field
is postulated. The self-couplirig k is freely specifiable, al-
though in view of the above remarks it must be smaller
than 10 ' . To be able to reheat the universe, the inflaton
must couple to fermions. Also, the curvature must be
large enough to generate sufficient reheating. This sets a
lower bound on A.. A value for A, of the order 10 ' just
barely meets the two constraints. In our opinion this is a
simple but also somewhat artificial solution of the prob-
lems of the new inflationary universe, artificial since an
extra field is introduced without any other physical
motivation but to cure cosmological problem. s of the, basis
model. In a similar spirit, Pi (1984) has recently proposed
a model in which the additional Higgs field also generates
the Peccei-Quinn (1977) symmetry, a symmetry used in
particle theory to solve the strong CP problem (see
Wilczek, 1983, for a recent review).

We have already mentioned the model by Gupta and
Quinn (1984) which gives a consistent cosmology and
consistent low-energy physics in a full SU(5) model. An
interesting feature of the model is that inflation occurs
during the transition between the SU(4) XU(1) phase and
the SU(3) X SU(2) XU(1) phase. Drawbacks of the model
are the severe fine-tunings necessary. Earlier work on the
realization of inflation in SU(5) models includes that of
Guth and Weinberg (1981)and Sher (1983).

Softly broken global supersymmetry (Dimopoulos and
Georgi, 1981) in a natural way solves many of the prob-
lems of the new inflationary universe by introducing a
second scale into the problem, the supersymmetry-
breaking scale m, (Ellis, Nanopoulos, Qlive, and Tam-
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vakis, 1982). Consider the supersymmetric SU(5) model
with Coleman-Weinberg potential, Since the one-loop
corrections to the effective potential have opposite signs
for bosons and fermions, the contributions cancel up to
supersymmetry-breaking effects. Thus in Eq. (6.39),

2

(6.55)

Veft(»

(I)p. —

(Quantities in the nonsupersymmetric model are written
without a tiMe, those in the supersymmetric version with
a tilde. ) This leads to the following rescalings:

FIG. 22. Sketch of the effective potential for the reverse-
hierarchy supersymmetric model with {dashed) and without
{pointed) supergravity corrections.

m, H,
0

(6.56)

(6.57)

3

(6.58)

Since t * is basically the length of the de Sitter period, Eq.
(6.58) makes it clear that there is no problem in obtaining
enough inflation. Also, from Eqs. (6.57) and (6.54) we
conclude that

5 ms 5(tf)= (tf) .
P 0 P

(6.59)

V(y) =c~@ —c2p, ln
mp)

(6.60)

where c ~ and cz are constants of order unity (see Fig. 22).
A natural choice of the constants. in the superpotential
gives

C2
& d'(1)10 (6.61)

The fluctuation problem can be solved as well. These re-
sults can be seen intuitively as follows: the curvature of
the potential near the origin is much smaller than in the
nonsupersymmetric version of the model. Hence the
slow-rolling phase will extend from y =H until
qr =a /m~~, leading to a much longer time period of infla-
tion. Also, since the scalar field is evolving more slowly,
scales of cosmological interest will leave the Hubble ra-
dius at a larger value of y and with a "larger" velocity jo
(larger compared to M ). Models based on softly broken
supersymmetry with m, —10 GeV (the value suggested
by particle physics) have too small a vacuum energy to
reheat sufficiently. Hence the cosmology in these models
is wrong.

Steinhardt (1982) and Albrecht et al (1982,1983).inves-
tigated the cosmology in reverse-hierarchy supersym-
metric models (Witten, 1981), based on the Dimopoulos-
Raby (1983) model of geometric hierarchy. This model
generates the scales of both weak and strong symmetry
breaking from an intermediate scale p typically of the or-
der 10' CxeV. For p &y &m ~

the potential of the scalar
field y is given by

with

' (1+-', Ht)m'„
8mc )

(6.62)

87TC )p0 =
23m pl

Hence by Eq. (6.54)

(tf ) = d'( I )
P c2 mpl

'2

(6.63)

(6.64)

which naturally lies below the upper bound of 10
From the point of view of cosmology, the problem with

reverse-hierarchy supersymmetric models is the question
of how to reheat the universe. The shape of the potential
for y-m~& (i.e., near the absolute minimum) is deter-
mined by gravitational corrections. In a theory of global
supersymmetry the curvature of the potential is too small
to reheat the universe to above 10 GeV, the minimal
value required to obtain the usual scenario of baryosyn-
thesis. In addition, there are decoupling theorems (Dimo-
poulos and Raby, 1983; Albrecht et al. , 1982,1983) which
prove that the Higgs field y is decoupled from the low-
energy sector of the theory, thus blocking reheating even
if the curvature were large enough. Albrecht and
Steinhardt (1983) have recently claimed that it is, in prin-
ciple, possible to circumvent these theorems. They con-
sider corrections due to loca1 supersymmetry and give an
example of a superpotential that leads to extra terms in
the potential for y; these terms generate a steep well near
the absolute minimum (indicated in Fig. 22).

A group of authors originally at CERN (Ellis et al. ,

In this case there is enough inflation while the Higgs field
is in the flat part of the potential for large values of y.
Since the curvature is suppressed with respect to the slope
by an additional factor rp ', the curvature can be very
small while the slope simultaneously is larger, relatively
speaking, than in the case of the new inflationary
universe. Thus it is, in principle, possible simultaneously
to obtain sufficient inflation and suppress fluctuations.
To verify the final point we note that in the flat part of
the potential beginning at qP = (3c2/8nc& )m~~ the solution
of the space-independent Klein-Gordon equation (6.47) in
the slow-rolling approximation is
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1983a,1983b; Nanopoulos, Olive, and Srednicki, 1983;
Nanopoulos et al. , 1983a,1983b; Olive, 1983) and Linde
(1983c,1983d) proposed the idea of primordial supersym-
metric inflaton, first in the context of global supersym-
metry (Ellis et al. , 1983), then in simple X =1 supergrav-
ity (Linde, 1983c,1983d; Nanopoulos, Olive, and Sred-
nicki, 1983; Nanopoulos et al. , 1983a,1983b; Olive, 1983).
Their approach, similar to that of Shafi and Vilenkin
(1983), is to introduce a separate inflaton sector to drive
inflation. If the scale of symmetry breaking for this sec-
tor is pushed toward the Planck scale, a reasonable
cosmological scenario can be obtained without unnatural
fine-tunings of the coefficients of the inflaton part of the
superpotential. We shall restrict our attention to the in-
flaton sector of the theory and consider the %= 1 super-
gravity model. The tree-level effective potential of a gen-
eral theory symmetric about @=0is (Linde, 1983d)

4

V(p)=3@ m„j 1 —a m~~ y + m~~ p6 —2 2 —2 2 —4
P P 4

(6.65)

with the addition of nonrenormalizable terms suppressed
by higher powers of the Planck scale. The proponents of
the model claim that values of p and a of the order of
10 ' wi11 give a consistent cosmological scenario
(,=Pm„).

In the model given by Eq. (6.65) the Hubble parameter
H, the inflaton mass m+, and the location yo of the glo-
bal minimum of V(y) are given by

H = 6(1)P m p~,

m„= W(1)P gamp(,

(6.66)

(6.67)

%o
—v'2(x 'm

p (6.68)

(tf ) = @(1)p a .
P

(6.69)

Nanopoulos et al. (1983a,1983b; Nanopoulos, Olive,
and Srednicki, 1983) and Olive (1983) stress the fact that
their model also reproduces the correct low-energy phys-
ics. The judgments of experts in the field on the merits of
this model differ sharply, however. Goncharov and Linde
(1984), Linde and Goncharov (1984), and Holman et al.
(1984) have also discussed realistic supergravity models.

The fact that yo is much larger than mp& is the basic
reason why we obtain sufficient inflation. It should also
be noted that in this case the theorem of Ovrut and
Steinhardt (1983) concerning the existence of extra mini-
ma in the potential does not apply. The constraint on the
vacuum energy from gravitational waves (Rubakov et al. ,
1982; Fabbri and Pollock, 1983) is also (marginally) satis-
fied. Since scales of cosmological interest leave the Hub-
ble radius when y(t) has a large value with a fairly large
slope, fluctuations will be suppressed as well, despite the
fact (Kahn and Brandenberger, 1984) that there is a pro-
longed period of reheating, and scales of interest leave the
Hubble radius in a non —de Sitter phase. The result is

One problem that reemerges in models of primordial in-
flation is the monopole problem. Since grand unified
symmetry breaking occurs after inflation, there is no sub-
stantial dilution of the monopole density. A more careful
analysis (see, for example, Linde, 1983c) shows that there
is no problem.

For a review of supersymmetric grand unified theories
we refer the reader to Ellis (1982). More recent develop-
ments in supersymmetric cosmology have been discussed
by Olive (1983) and Nanopoulos (1983). Early work on
general aspects of cosmology in supersymmetric models
includes that of Srednicki (1982a,1982b), Ginsparg (1982),
Pi (1982), Nanopoulos and Tamvakis (1982), and Nano-
poulos, Olive, and Tamvakis (1982). Linde (1983f) and
Kounnas et al. (1983) discuss supersymmetry breaking in
the context of inflationary universe scenarios. Finite-
temperature effects in supergravity models with inflation
have been studied by Gelmini et al. (1983) and Olive and
Srednicki (1984).

Finally, Linde (1983a,1983e) has recently proposed a
model of chaotic inflation. For a sufficiently flat effec-
tive potential, all values of jt should be equally probable
as initial values for the classical evolution of the scalar
field y, Linde argues. He suggests that the observed part
of the universe originates from a fluctuation region with
y(0) & 3m p~. Then a reasonable inflationary scenario
could even be obtained for a A,cp theory of a simple scalar
field. The lower bound on y(0) ensures that the initial
slow-rolling period [the period during which the j& term
in the equation of motion (6.47) is negligible and in which
the scale factor is increasing rapidly due to the dominance
of the potential energy] is long enough to generate suffi-
cient inflation. It is possible to verify that despite the
prolonged period of "fast rolling" Eq. (6.54) remains valid
(Kahn and Brandenberger, 1984). Hence one can show
that

=w(i g.'"
P

(6.70)

Provided A, ~ 10 there is no contradiction with the max-
imal amplitude consistent with observations. A more
stringent bound A. ~10 ' stems from the constraint on
the initial vacuum energy from gravitational waves (Ru-
bakov et al. , 1982; Fabbri and Pollock, 1983).

To conclude, we mention the attempts by Hawking and
Moss (1982) and Mottola and Lapedes (1983) to investi-
gate the initial evolution of the quantum field in scalar
field models with a general (not a Coleman-Weinberg
type) potential in more detail. Hawking and Moss (1982)
find an instanton solution, which they interpret semiclas-
sically as a homogeneous fluctuation of the quantum field
over a horizon volume to the maximum of the potential.
A slow-rolling phase follows. Since at the value of y for
which scales of cosmological interest leave the Hubble ra-
dius the slope of the potential is larger than in the new in-
flationary universe, the fluctuations will be smaller (Mot-
tola, 1983).
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VII. FLUCTUATIONS IN INFLATIONARY
UNIVERSE MODELS

A. The basic mechanism

The universe is not completely homogeneous. There
are inhomogeneities which we today see on different
length scales as clusters of galaxies, galaxies, stars, etc.
Gn the other hand, we note the absence of observed an-
isotropies in the cosmic background radiation (for a re-
view and further references, see Weiss, 1980; for the
theory of the connection between energy-density fluctua-
tions on large scales and cosmic background radiation an-
isotropies, see Sachs and Wolfe, 1967). In the standard
model the assumption is that present anisotropies ori-
ginate from smajl initial perturbations about a homogene-
ous and isotropic metric. A deep problem, closely related
to the horizon problem discussed in Sec. VI, is that there
is no ready way to determine the origin of these perturba-
tions. As sketched in Fig. 23, perturbations on all scales
originate outside the region of causal contact, the particle
horizon.

The particle horizon lz(t) of an observer at time t is the
maximal physical distance light could have traveled from
the comoving position in space of the observer at the be-

ginning of the universe (t =0) until time t,

Iq(t)=g(t) f a '(s)ds . (7.1)

A length scale that will be very important in what fol-
lows is the Hubble radius FJ '(t). [As in previous sec-
tions, we are considering only spatially flat FRW
universes with scale factor a(t), in terms of which
H(t)=&i(t)a '(t).] The Hubble radius is the maximal
distance over which microphysics can act coherently; it is
sometimes also called the effective particle horizon (Bar-
deen, Steinhardt, and Turner, 1983). For larger distances,
the time light takes to travel exceeds the characteristic
cosmological expansion time. In scalar field theory
language, spatial correlations are suppressed [in the case
of a de Sitter —like metric a(t)=exp(Ht) exponentiallyj
on length scales larger than H '(t). This follows from
the Klein-Crordon equation (6.47) in curved space-time
applied to plane-wave solutions.

A major success of inflationary universe models first
realized by Press (1980,1981), Sato (1981b), Lukash

(7.2)

with

W'„(k) = f d'x e '"" f d'x, (7.3)

where V„ is a sphere of radius r about the origin. Since
W„(k) =. 1 (0) if

~

k
~

r ~ 1 (
~
k

~

r ~ 1) we obtain (using the

0(t) - t
(FRw)

= X

o (t) -e™
(DE SITTER)

i 4p(t)

(1980), and Chibisov and Mukhanov (1981} and subse-
quently investigated quantitatively for the new inflation-
ary universe by Guth and Pi (1982), Hawking (1982),
Starobinsky (1982), and Bardeen, Steinhardt, and Turner
(1983), is a potential solution to the problem of the origin
of fluctuations .The same mechanism that solves the ho-
rizon problem, exponential expansion of the universe for a
finite period, naturally explains that perturbations on all
cosmologically interesting scales (scales inside the horizon
at present, but large enough to be detectable cosmological-
ly) originate inside the Hubble radius at some point in the
de Sitter phase. This is illustrated in Fig. 24. Thus, pro-
vided there exists a mechanism that generates perturba-
tions inside the Hubble radius in the de Sitter phase, we
can explain the origin of the primordial fluctuations.

Astrophysicists are interested in the quantity
(5M/M)(k, tf (k) ), the average relative rest mass excess on
a comoving length scale k '=r when this scale enters the
horizon in the FRW phase at the time tf(k). In this ex-
pression tf(k) stands for final horizon crossing in the
FRW phase; r;(k) indicates initial Hubble-radiiis crossing
in the de Sitter phase. The rest mass excess
(5M/M}(k, tf(k)) can be simply related to the Fourier
transform 5p(k) of the continuous energy-density distri-
bution 5p(x) (see Peebles, 1980, Chap. 26). We compute
the mass excess 5M„(xo) in a sphere of radius r about
some point xo, and average [5M„(xo)] over a cutoff
volume V to obtain

0
+ (t) ~

If2

{FRW)

X

FIG. 23. Evolution in the standard model. ' Fluctuations on a
given scale k ' originate outside the particle horizon /~(tj of
the observer O. The plot is in comoving coordinates.

FICi. 24. Evolution of the Hubble radius H '(t) and of the
particle horizon l~(t) in the new inAationary universe. Fluctua-
tions originate inside the Hubble radius in the de Sitter phase.
The plot is in comoving coordinates.
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random-phase approximation that 5p/p depends only on

~

k ~, and assuming a reasonable k dependence)
2 2

(k) = V-'k'
M

(7.4)

The normalization factor V ' is cancelled by a corre-
sponding factor V relating 5p{k) to the power spectrum
[see Eq. (7.77)].

A second major success of the new in Aationary
universe is its prediction of a scale-invariant Zeldovich
spectrum (Harrison, 1970; Zeldovich, 1972) for primordi-
al energy-density fluctuations, namely

5M
M

(k, ty(k) ) =const (7.5)

M
M

(k, t; (k) ) =const. (7.6).

Since microphysics cannot act coherently outside the
Hubble radius, what physically characterizes the size of
the perturbation should remain unchanged until horizon
crossing t~(k) in the FRW phase. Thus we expect a
scale-invariant Zeldovich spectrum [Eq. (7.5)].

A scale-invanant spectrum was originally postulated
because it fit the experimental constraints fairly well and
was the only power-law spectrum to do so. The observa-
tional constraints are twofold. First, the absence of ob-
served anisotropies in the cosmic background radiation
(see, for example, Weiss, 1980) imposes an upper bound
on the amplitude of primordial perturbations on large
scales (Sachs and Wolfe, 1967),

(k, t/(k)} &10 for k —10' M„~,„. (7.7)

(We follow the astrophysical convention of labeling scales
by the rest mass in a sphere of comoving radius k '.) On

t {k)——
f 2

O(t)-t"2

tR

tt(k2)-- /

(/
l
/

Xp

(t) ~t H

FIG. 25. Sketch of the evolution of fluctuations on two scales
in physical coordinates x~. The evolution inside the Hubble ra-
dius in the de Sitter phase is time-translation invariant.

It is very easy to understand qualitatively the reason for
this (see Fig. 25). We assume some mechanism that gen-
erates perturbations inside the Hubble radius in the de
Sitter phase. By time translation invariance of the de
Sitter phase, the evolution of fluctuations on two different
scales k~ and k2 up to the time when they leave the Hub-
ble radius will be identical up to time translation. Hence

the other hand, clusters of galaxies and galaxies can only
form via no~linear processes. Linear perturbation theory
breaks down when relative perturbations become of order
1. Thus knowing that perturbations on the scale of clus-
ters of galaxies must have had time to grow to order 1

after horizon crossing imposes a lower bound on small
scales,

M (k, ty(k)) ~ 10 for k —10'~M„&„ (7.8)

(see Silk, 1983,1984, for a review). This bound depends
on the details of the cosmological model. In particular,
the properties of the particles forming the dark matter of
the universe will determine the length of the period dur-
ing which perturbations on scales of interest grow, and
thus will influence the lower bound. Equations (7.7) and
(7.8) make a scale-invariant spectrum an obvious candi-
date, and the prediction of such a spectrum in the new in-
flationary universe is considered to be a very attractive
feature.

The big disappointment is the discovery (Guth and Pi,
1982; Hawking, 1982; Starobinsky, 1982; Bardeen,
Steinhardt, and Turner, 1983) that the predicted ampli-
tude is several orders of magnitude too large, namely,
larger than unity. This is the by now famous fluctuation
problem;

The qualitative argument for a scale-invariant Zeldo-
vich spectrum has its loopholes. First, it is not sufficient
that the background metric be time translation invariant
in the de Sitter phase. The initial conditions for perturba-
tions must be invariant as weH. If we consider imposing
initial conditions at a fixed time (e.g., the beginning of the
de Sitter phase), it is not at all obvious that the symmetry
should be respected. Second, the quantity 5p/p does not
remain constant outside the Hubble radius (a different
quantity, g, to be defined later, does so). We must there-
fore prove that the amplification factor relating 5p/p(ty)
to 5p/p(t; ) is independent of k.

In the following sections we shall discuss the computa-
tion of energy-density Auctuations in inAationary
universe models. We shall first summarize the formalism
we consider to be most appropriate, namely, gauge-
invariant linear perturbation theory (Bardeen, 1980; Bran-
denberger, Kahn, and Press, 1983), and subsequently out-
line its application to inflationary universe models.

%'e fix a comoving scale k and consider the evolution
of perturbations on that scale. Our approach is to divide
the evolution into two periods, a quantum period, while
the perturbation is inside the Hubble radius [t &t;(k)],
and a classical period t;(k) & t & tf(k).

Perturbations are generated in the quantum period.
The same vacuum fluctuations that give rise to Hawking
radiation in the de Sitter phase of an inflationary universe
wiH generate classical matter perturbations which couple
to general relativity. Formally, the analysis will consider
the quantum theory of a free scalar field on a fixed back-
ground metric in the spirit of Sec. V.

In the classical period t;{k)&t &t~(k), perturbations
are outside the Hubble radius. The classical matter Auc-
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tuations couple to gravity. By the Einstein constraint
equations, they will induce small metric fluctuations
about the homogeneous and isotropic background metric.
The perturbations will evolve according to the dynamical
Einstein equations linearized about the background solu-
tion. We shall use Bardeen's (1980) gauge-invariant for-
malism (see also Brandenberger, Kahn, and Press, 1983).

B. The gauge-invariant formalism

We consider small perturbations about a homogeneous
and isotropic solution of the Einstein equations

1

Gpv ~&GTpv~ G+z ——+p& 2 gp&+

The solution is given by a background metric,

gp(0) =diag( l, az(t), a2(t), a2(t)),

and a diagonal energy-momentum tensor,

(7.9)

(7.10)

satisfying the FRW equations
T

a 87rG (0)
p (7.12)

2—+ — = —87TGp' '.a a
a a (7.13)

The total perturbation is given by a perturbation g'" of
the metric and a perturbation T„' of the energy-
momentum tensor.

Perturbations can be classified according to how they
transform under spatial transformations of the back-
ground coordinates [i.e., under the SO(3) subgroup of ro-
tations of the Lorentz group]. There are scalar, vector,
and tensor perturbations.

Tensor perturbations affect only the traceless, diver-
genceless parts of the spa'tial metric g,j and of TJ. If we
write out the energy-momentum tensor for a perfect fluid,

T""=pg""+(p +p)u "u ", (7.14)

where u" is the four-velocity of matter [its background
form being u~=(1,0)], then tensor perturbations corre-
spond to

T„''=diag(p' '(t), a'(t)p' '(t),a'(t)p' '(t), a'(t)p' '(t)),

(7.11)

(1) (1) y.U(1) O (7.17)

Vector perturbations are purely rotational modes.
Scalar modes are the only modes that couple to

energy-density and pressure perturbations p'" and p'".
Since we are interested in fluctuations that generate the
primordial energy-density fluctuations necessary for
galaxy formation, we can restrict our attention to scalar
modes. Note, however, that primordial tensor fluctua-
tions will influence the cosmic microwave background ra-
diation. Since the amplitude of gravitational waves can
grow by a process of superadiabatic amplification in a
universe in which there is a period when the characteristic
time for change in the background metric is less than the
period of the wave and p' '& —,'p' ' (Grishchuk, 1974),
even small initial tensor modes may become important.
Rubakov et al. (1982) and Fabbri and Pollock (1983) have
derived constraints on inflationary universe models due to
primordial tensor perturbations.

'

The most general scalar metric perturbation can be con-
structed from scalar functions by multiplying with invari-
ant tensors or taking covariant derivatives with respect to
the spatial background metric:

E(x, t) F(x, t);
(1) 2 t F(x,t),. A (x,t)5J+B(x,t);J. (7.18)

We can Fourier-expand the perturbation in space (for a
nonflat FRW universe the g'eneralization is the expansion
in spherical harmonics; see Lifshitz and Khalatnikov,
1963, or Bardeen, 1980). In linear perturbation theory
there is no mixing between the Fourier modes. We shall,
therefore, consider perturbations on a fixed comoving
scale and analyze their evolution outside the Hubble ra-
dius.

In principle the analysis is simple. It is based on linear-
izing the Einstein equations about the background solu-
tion [Eqs. (7.10) and (7.11)].

The problem is to identify the physical modes. There
are many gauge modes, perturbations gz" which corre-
spond to coordinate transformations of the background
and do not give physical perturbptions.

The most popular approach, based on the pioneering
work of Lifshitz [1946; reviewed in Lifshitz and Khalat-
nikov (1963); the textbook treatments by Weinberg (1972)
and Peebles (1980)], has been to partially fix the gauge by
demanding

(7.15)
(1) (1)

g 00 g0i (7.19)

Hence tensor perturbations do not couple to energy-
density perturbations. They are gravitational waves.

Vector perturbations are constructed from the diver-
genceless vector Q

'
by taking covariant derivatives with

respect to the spatial background metric. The perturba-
tion of goo vanishes, that of go; is proportional to Q ",
and

Hence for vector perturbations, by Eq. (7.14)

(synchronous gauge) and, by explicitly calculating the ef-
fect of residual gauge transformations, to separate the
synchronous modes into physical and pure gauge modes.

In synchronous gauge, the interpretation of perturba-
tions whose wavelength is larger than the Hubble radius is
not always straightforward. While the difference in per-
turbation quantities such as the relative energy-density
fluctuation is negligible inside the Hubble radius, it be-
comes dominant outside. Thus the dominant terms may
be pure gauge artifacts. Press and Vishniac (1980) pro-
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posed a scheme for keeping track of gauge modes while
continuing to calculate in standard synchronous gauge.
The proposed scheme clarified a certain number of "tena-
cious myths" that had crept into the literature. For ex-
ample, the Press-Vishniac scheme shows clearly that pres-
sure perturbations on scales larger than the Hubble radius
do not give rise, at lowest order, to growing density per-
turbations.

A conceptually straightforward and mathematically
elegant approach to perturbation theory for scales outside
the Hubble radius was proposed by Bardeen (1980), based
on previous work of Hawking (1966) and Olson (1976).
The idea is to eliminate the gauge degrees of freedom
rather than just to specify and understand them. The
gauge-invariant approach is also technically straightfor-
ward in the new derivation by Brandenberger, Kahn, and
Press (1983), on which the following discussion will be
based. We call this approach the Bardeen formalism.

A brief outline of the method: we first define and dis-
cuss the gauge-invariant gravitational potential +0. Then
we derive the complete set of equations of motion for
both background and perturbative variables from a single
variational principle. Subsequently we discuss the appli-
cation of our framework. In particular, we recast the
equation of motion for O'H as an approximate conserva-
tion law.

A=2 f-0 0
a

B=2a f,
F. = —2a f
F 2fo+( 2f ).

(7.24)

O'H = —,(A +2aaF aaB)—, (7.25)

(7.26)

Later on we shall prove that at Hubble-radius crossing

There are four degrees of freedom for scalar metric per-
turbations, but two of them are pure gauge modes. Hence
there are two physical degrees of freedom. We expect to
obtain as dynamical equations either a system of two
first-order coupled differential equations for two linearly
independent gauge-invariant variables or a single second-
order equation for one of the variables.

It is not hard to find a basis of gauge-invariant vari-
ables. They will be combinations of A (x, t) through
F(x, t) which vanish for a pure gauge (7.24). The prob-
lem reduces to a simple exercise in linear algebr@. A basis
1S

1. Gauge-invariant variables C&H(tf(k)) =P(l) (tf(k)),5p

P
(7.27)

A transformation

(7.20)

of the background coordinates induces the following
change in the metric:

(7.21)

in particular,

&goo = —2k'

&g„=—k', +a'k',

5g;J =2aag 6,)+a (g'~+gj, ) .

(7.22)

(7.23)

This gauge transformation induces the following scalar
perturbation:

Since we are only interested in scalar metric perturba-
tions, it is sufficient to consider transformations that
preserve the scalar character of the perturbation. Such
gauge transformations are parametrized by two free func-
tions f(x, t) and fo(x, t) with

0

where the subscript c indicates that the right-hand side is
to be evaluated in comoving coordinates [recall that
5p(x, t) is not gauge invariant]. k labels the Fourier mode
under consideration. Since N& is so simply related to the
energy-density perturbation, the quantity we are interested
in, we choose 40 as our gauge-invariant variable.

In principle, we could have chosen any combination of
WH and @k as our gauge-invariant variable. Hinshaw
(1984) has recently derived the equation of motion for @k
[to be more precise, for @k multiplied by a function that
depends only on the scale factor a(t)j. The resulting
gauge-invariant equation of motion has a similar form to
that of our result, Eq. (7.44). It is a second-order ordi-
nary differential equation in time, with source terms that;
depend only on matter variables and the lapse function E.
Again, the coefficients of Nk and 4k depend only on the
equation of state. An advantage of Hinshaw's equation is
that the matter source terms depend only on T;J, not on
To;. In models in which the TJ are freely specifiable this
will be a significant advantage, since the source terms
would then not depend on the preceding dynamical evolu-
tion of the geometry. %hen matter is described in terms
of quantum fields, however, all components of T„„are in-
Auenced by the geometry. Hence we prefer to adopt the
more frequently used variable NH.

%'hile +0 is mathematically gauge invariant, its physi-
cal interpretation is tied to a certain -gauge. Bardeen
(1980) demonstrates that in zero shear gauge (gauge in
which the normal vectors to the constant time surfaces
have zero shear)
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a'
R. ,

k
(7.28)

2. Yariational derivation of the equations
of motion

Utilizing a technique familiar from the variational
derivation of the FRW equations, we slightly generalize
the background metric by adding a free function u(t):

where R is the intrinsic curvature of the constant time
surface.

respect to E(x, t) and F(x, t) will give the Einstein con-
straint equations (we are using the ADM language of the
Hamiltonian approach to gravity; see Arnowitt, Deser,
and Misner, 1962). Finally, the result of varying with
respect to y(x, t) will be the Klein-Gordon equation in
curved space-time, the equation of motion for matter.

It is straightforward to work out the exact form of the
equations (see Brandenberger, Kahn, and Press, 1983).
Angular brackets stand for space averaging. For nota-
tional convenience we write down tne resulting equations
in synchronous gauge.

For 5/5a(t):

g&„' ——diag( —a (t),a (t),a (t),a (t)) .

We also introduce a formal expansion parameter c.:

(7.29) a 8~6 p

3
p, p= —(To) . (7.36)

(p) (i)
Spv —gpv+~gpv . (7.30)

For 5/5a(t):

~M = [~ q,—.v, pg' + «q»]
and energy-momentum tensor

(7.31)

All formulas will be evaluated at a=a.= l. All equations
will be analyzed to lowest nonvanishing order in e.

To be concrete (and for our later application) we shall
assume that matter can be described by a single classical
scalar field qr(x, t), with matter Lagrangian

2—+ — = —8mGp, p= —,'(, T,') .
a a

(7.37)

For 5/5A(x, t):

For 5/5B(x, t):

V 3(3A+V2B) +3 "(3A—+V2B) — = 8~GT,.'—'.
a a

(7.38)

T~ =V', t
V'" 5t"[ 2 V',.V—,tg + I'(V»] . (7.32)

In the general case of a theory with matter Lagrangian
Wst, the energy-momentum tensor is given by

3+3—A = —8mGV-' a T'~ ".
a

For 5/5E(x, t):

(7.39)

Qg
2 (7.33) 0

3
a ~ a ~2~ 8 GTP(])

a2 a a
(7.40)

Here 5/5g&„st an ds for variation with respect to g&„with
all other components of the metric held fixed.

The starting point is the usual Einstein-Hilbert action,

For 5/5F(x, t):

V 3 =+8m.Ga T '"'
't

(7.41)

I=fd xV' g — A+~M
16m.G

(7.34) For 5/5y(x, t):

We consider I as a functional of all the functions that de-
fine a scalar metric perturbation about a FRW back-
ground,

I=I[a(t),a(t);A(x, t),B(x,t);E(x,t),F(x, t);qr(x, t)] .

(7.35)

The central idea is to obtain all equations of motion,
both for the background and for the perturbation, as vari-
ational equations of the above functional. It is not hard
to guess the structure of the answer. Since a(t) and a(t)
parametrize the background, variation of I with respect
to them will yield the FRW equations (7.12) and (7.13).
Since a and a are space independent, the variational equa-
tions will be space-averaged equations. Thus p' ' and p' '

in Eqs. (7.12) and (7.13) will be defined as space-averaged
quantities. Since A (x, t) and B(x, t) determine the
dynamical metric components g,J, variations with respect
to these functions will give the dynamical equations of
motion for perturbations. Similarly, variation with

( —g) ' '(&—gg ~q p) =v'(y) . (7.42)

It is not hard to combine the dynamical equations
(7.38) and (7.39) to obtain the desired second-order
dynamical equation of motion for @H. We work with the
synchronous-gauge form of the equations and derive an
explicitly gauge-invariant equation, which will thus be in-
dependent of the synchronous-gauge derivation.

By writing the general ansatz

0 =C&4'0+C2C'a+C3 (7.43)
~ ~

inserting the definition of C&tt, computing 4H and 4H,
and simplifying by using Eqs. (7.38) and (7.39), we obtain
(see Brandenberger, Kahn, and Press, 1983, for more de-
tails)

@H+(4+3c, )H4&H+3(c, w)H @H =4m.GI(t) —. (7.44)

Here w(t) and c, (t) determine the equation of state of the
background,
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w(t) = p(t)
p(&)

c, (t) = p(t)
p(t)

(7.45)

(7.46)
DYNAMICS

w (t), cB(t), I (t)
(744

~FRY)'~
4H(x, t) a(t) 4 (x, t)

Thus all coefficients on the left-hand side of Eq. (7.44) de-
pend only on the background. I(t) is a gauge-invariant
combination of matter source terms,

I(t)= Pt+—3c,Ha V P3+a HPg

+3H a ( —, —w+c, )P2+3Ha c, (p+p)F,
(7.47)

INITIAL
CONDITIONS =$(x,t)

GAUGE INVAR I ANT

(7.49)
EINSTEIN CONSTRAINT

EQUATION

GAUGE SPEC IF I C
2 2Tij (] )

Q

(7.48)
FIG. 26. Summary of the gauge-invariant formalism.

+3aa(p+p)F] . (7.49)

In particular, we can consider a fixed scale k and evaluate
the right-hand side at Hubble-radius crossing, i.e., for

Oi(1)P3 ——T;
P2 is an anisotropic stress term (the diagonal piece of
T'~'" cancels). The first two terms on the left-hand side
of Eq. (7.47) form an entropy perturbation term. The fi-
nal term is absent in synchronous gauge, but is necessary
to ensure gauge invariance of the sum of terms under
transformations which do not preserve the synchronous-
gauge condition. An entropy perturbation is a perturba-
tion p'" and p'" that obeys a different equation of state
from the background equation. The precise form (7.47)
and (7.48) of the matter source term will not be important
in what follows.

We can also combine the constraint equations (7.40)
and (7.41) to obtain a gauge-invariant constraint equation
for 4H:

@H ——4mGa V [ To"' —3aaV To'k'

constraint equation (7.49) completes the dynamical sys-
tem.

One technical point warrants further discussion. The
perturbation 5&p(x, t) of a scalar function q&(t) is not gauge
invariant. It is impossible to define a gauge-invariant
matter perturbation using matter variables alone. Sasaki
(1983) advocates an approach that is completely gauge in-
variant. His matter perturbations contain gravitational
terms to render the perturbation quantity gauge invariant.
Brandenberger, Kahn, and Press (1983) chose the gauge-
specific description of matter in which the physical
division into geometrical and matter variables is kept. A
complication in this approach is that in order to evolve
y(x, t), we must first compute the metric perturbations in
the specific gauge we choose. For example, in synchro-
nous gauge, A (x, t) and B(x,t) are determined by explicit
quadrature equations, which follow from Eqs. (7.41) and
(7.25):

A(x, r)= —8~6 a'V 'P, dt,
H '=k 'a(t) . (7.50)

(7.51)
In comoving coordinates the second term vanishes. At
Hubble-radius crossing the third is proportional to the
first, with proportionality constant of order 1. a V can
be replaced by —H, which is equal to 4m.Gp up to a
factor —,'. Hence at horizon crossing, @~ equals the
energy-density perturbation in comoving coordinates up
to a factor of order 1'[Eq. (7.27)].

The gauge-invariant formalism is summarized in Fig.
26. The dynamical system consists of three blocks: the
background metric is given by the scale factor; all infor-
mation about scalar metric perturbations is contained in
the gauge-invariant function 4&H(x, t); the third block is
matter, described in our case by a scalar field y(x, t). The
evolution of the background metric is determined by the
space-averaged part of matter via the FRW equations.
The dynamics of matter is given by the Klein-Gordon
equation in curved space-time, and the evolution of NH is
described by Eq. (7.44). This evolution depends on the
background via the equation of state (w, c, ) and H, and
on matter perturbations through I(t). The initial-value

~ 3 —2@0
B(x,r) = J dr .

aa

The gauge-invariant formalism has recently been extended
to the case of many uncoupled matter fields by Abbott
and Wise (1984).

3. General comments and an appr'oximate
conservation law

We shall add a few comments on Eq. (7.44).
(a) Equation (7.44) is not the only form of the dynami-

cal equation of motion. It is the natural one to emerge
from our variational approach, and it is also mathemati-
cally simple, since it is an ordinary differential equation.
On the other hand, to show clearly the two ways by which
classical matter can generate metric perturbations, via en-
tropy perturbations and via anisotropic stress perturba-
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tions, it is convenient to subtract the term

1
2~ +a (7.52)

from both sides of Eq. (7.44) (using the gauge-invariant
constraint equation). We obtain Bardeen's (1980) original
equation of motion,

g2
+SmGp c, Sm—GP 4&H 4m——G[ P~—c,—To'"+a HP2+SrtG( —,p —p+pc, )a Pz] .

Q

{7.53)

The first two terms on the right-hand side of Eq. (7.53)
are precisely the entropy perturbation. Equation (7.53) is
also convenient for analyzing the evolution inside the
Hubble radius. If there are no entropy and anisotropic
stress perturbations, and if w(t)=c, (t), then Eq. (7.53)
reduces to .

2

4H +(4+ 3c, )H4 H —
2 c, @H ——0 .

Q
(7.54)

Inside the Hubble radius, the Hubble damping term is
negligible. We obtain the well-known result (see, for ex-
ample, Peebles, 1980) that inside the Hubble radius NH
oscillates with the speed of sound c, .

(b) Equation (7.44) clearly shows the two mechanisms
by which Wa can increase outside the Hubble radius.
First, there is homogeneous gravitational amplification of

due to a change in the equation of state of the
universe (obtained by setting matter source terms to zero).
In a single phase of the evolution of the universe, in gen-
eral. w(t)=c, (t), so the dominant mode of Eq. (7.44) will
be time independent. During a phase transition, however,
e, —w wiH be nonzero and nonconstant, leading to a non-
trivial amplification of 4H. The second mechanism is a
nonvanishing matter source term. In particular, pressure
perturbations outside the Hubble radius will generate
energy-density perturbations at Hubble-radius crossing, in
agreement with the Press-Vishniac (1980) analysis.

Note, however, that the division into the two mecha-
nisms is not a gauge-invariant statement. Furthermore,
the matter source terms are not freely specifiable at all
times. If we specify them on some initial Cauchy surface,
then time development will be determined by the com-
plete dynamical system.

(c) Nonvanishing matter source terms can be taken into
account by an easy Green's function method (Branden-
berger and Kahn, 1984). We write

where c& and c2 are determined by the initial conditions.
The factor 4nG on the right-hand side of Eq. (7.44) has
been included in I(t). Finally,

«t') =If'(t')f i {t'}—f2{t'}fi(t'}] (7.58)

Bardeen, Steinhardt, and Turner (1983) argue that
matter source terms are negligible outside the Hubble ra-
dius for inflationary universe models. It can, in fact, be
shown (8randenberger and Kahn, 1984) that keeping
track of matter source terms using the above Green's
function method does not change the result by more than
a factor of order unity.

The analysis of the growth of perturbations outside the
Hubble radius can be greatly simplified by deriving a con-
servation law for the growing mode solution of the homo-
geneous version of Eq. (7.44}. We define a quantity g
(Bardeen, Steinhardt, and Turner, 1983) by

2 C'a+H 'Ca 2 k+@a &+—
3 1+w 9 aH

12

1+w

Thus g is conserved outside the horizon fby Eq. (7.44),
neglecting matter source terms]. In the following section
we shall show that this conservation law leads to 3 very
simple analysis of the growth of perturbations in infla-
tionary universe models. This has also recently been not-
ed by Lyth (1984).

(7.59)

Then, up to terms suppressed by an additional factor
( ka 'H ') outside the horizon,

', gH {1+w)=—4H+(4+3c, )HNH+3(c, —w)H @H .

@H =+H+~a . (7.55)
C. Application to inflationary
universe models

c'H (t)=cif~(t)+c2f2(t)

&II(t)= —f, (t)f I(t')E(t')f, (t')dt'

+f2(t) f I(t')e(t')f, (t')dt',

(7.56)

(7.57)

Here @tt is the solution of the homogeneous equation of
motion with the given initial conditions, while 4~ is the
solution of the full equation (7.44) with vanishing initial
conditions. If f, (t) and fz(t) are the two eigenmodes of
the homogeneous equation, then

In this section we first apply the conservation law to
give an analysis valid for a large class of inflationary
universe models. Next, we present the arguments and
problems concerning the generation of perturbations in
the quantum period. We conclude by giving a more care-
ful phase-by-phase analysis of the growth of N~ for the
new inflationary universe model. Our analysis is based on
the detailed analyses of Bardeen, Steinhardt, and Turner
(1983) and Brandenberger and Kahn (1984). The first pa-
per is reviewed by Turner (1982). Frieman and Turner
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(1984) have independently. confirmed the conclusions of
Brandenberger and Kahn (1984). Earlier work on the
growth of fluctuations in inflationary universe models is
due to Kahn (1981) and Frieman and Will (1982). Koda-
ma and Sasaki (1982) and Sasaki et al. (1982) have inves-
tigated the sources of perturbations in models with a
first-order phase transition. Pagels (1983) considers vacu-
um fluctuations in quantum fields other than the Higgs
field that drives inflation as the source of primordial
energy-density contrasts.

1. Application of the conservation Iaw

If we neglect matter source terms and hence can apply
the conservation law /=const it becomes trivial to obtain
the value of 4~ at final Hubble-radius crossing t~(k) ln
terms of initial data at Hubble-radius crossing t; (k) in the
de Sitter phase (Brandenberger and Kahn, 1984). We usu-
ally drop the label k. Since in the radiation-dominated
FRW phase w = —,

' and @~——0, evaluating g at r; and t~
yields

—,@H(t;)+H '@H(t; )
4~(tg) =—

5 1+w(t; )
+ —,c'H(&;) .

(7.61)

Since in inflationary universe models 1+w(t; ) &&1, the
second term is negligible.

The initial values can be expressed in terms of quantum
field variables using the gauge-invariant constraint equa-
tion (7.49), the equation

(7.67)

Equations (7.66) and (7.67) and are the main results of
this section. They are applicable to a wide class of infla-
tionary universe models, in particular models with a dif-
ferent cosmology than that of the new inflationary
universe. The crucial requirement is that there exist an
initial phase in which the scale factor increases more rap-
idly than the Hubble radius, so that scales of cosmological
interest originate inside the Hubble radius.

If the scale that determines the curvature of the poten-
tial at the point y(t;) when perturbations leave the Hubble
radius is H, then Eq. (7.66) yields

6p H
(t&) =8'(1) 5q&(r, ) =6'(1)H5&(r, ),

y(&;)
(7.68)

where 5r is the amplitude of the space-dependent time lag
in the quantum field evolution given by

p(x, t)=go[t —5rfx)) . (7.69)

The result (7.68) is originally due to Guth and Pi (1982).
Since in the new inflationary universe qr(t;)-H and

V"[y(t; )]-FS, Eq. (7.68) holds. There are academic ex-
amples of potentials for which Eq. (7.68) breaks down
(Brandenberger and Kahn, 1984). An example is the
reverse-hierarchy supersymmetric model [see Eq. (6.60)]
with coefficients fine-tuned such that scales of cosmologi-
cal interest leave the Hubble radius in the steep section of
the potential, i.e., for y(t;)-p. In this case Eq. (7.67)
gives

j (t;)1+w(t;)=
P

(7.62) 5p
(&y) =@(1)p5r(t; ) .

P
(7.70)

ij+3Hj p
—V'(y )o,——

5j+3H5j=—V"(q 0)5y,

we obtain

(7.63)

(7.64)

(7.65)

When the slow-rolling approximation is valid, i.e., if jjo is
negligible, then the first term in Eq. (7.65) dominates, and
using the equation of motion for 5y, one obtains

and the expressions for To'" and Tok in terms of the
scalar field (Brandenberger and Kahn, 1984). If we
linearize in 6y and use the equations of motion for the
homogeneous background field cpo and for 6y,

2. Generation of perturbations

In our opinion the generation of classical matter pertur-
bations in the de Sitter phase of an inflationary universe is
not yet completely understood. The problem is to obtain
classical fluctuations starting from a homogeneous and
isotropic metric and a quantum state that does not break
space-translational invariance.

Since the potential in the new inflationary universe is
flat at the origin, most attempts so far have been to
analyze the problem as one of a free, massless scalar field
in the de Sitter phase of a FRW universe.

There is a simple but nonrigorous argument that gives
the correct amplitude of primordial energy-density fluc-
tuations (Bardeen, Steinhardt, and Turner, 1983): as 'dis-
cussed in Sec. V, there is Hawking radiation in the de
Sitter phase of an inflationary universe. An observer
detects a thermal flux of particles at a temperature

(7.66) 0
TH

2m
(7.71)

When the slow-rolling approximation is not valid, then
the second term in Eq. (7.65) dominates, and thus

Hence, so the argument proceeds, there will be thermal
energy-density fluctuation with amplitude
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Sp T4 a= P(1) = 6'(1)
p p 0

4

(7.72)

(o. is the unification scale; see Sec. VI). The argument is
nonrigorous, since there is no thermal bath of real parti-
cles, which would be necessary to complete the above
analysis.

The source of Hawking radiation is vacuum fluctua-
tions in the de Sitter phase. According to our present
understanding, classical matter fluctuations are due to
these vacuum fluctuations. Following Guth and Pi
(1982), we introduce a classical field y,~(x, t) that consists
of a homogeneous part pro(t) and a perturbation 5y(x, t),

y,~(x, t)=go(t)+5p(x, t) . (7.73)

po(t) will be given by the rms value (Hawking and Moss,
1983; see also Starobinsky, 1982; Vilenkin and Ford,
1982; Vilenkin, 1983; Linde, 1982c)

v'0(t) =I:(00 I e (»t)
I
fo&l' (7.75)

Since the Fourier transform of the spatial correlation
function is the power spectrum (

I
y(k)

I
)', the

Fourier transform of 5y(x, t) must be

The power spectrum, on the other hand, is equal to the
coincident point —two-point function in morg. entum space,
up to a normalization factor (for which we adopt the con-
ventions of Peebles, 1980):
(/DIES'(k)lp(1)

I@o)=& '5'(k —I)( Ip(k, t)
I

) . (7.77)

This is essentially the definition given by Guth and Pi
(1982).

Guth and Pi (1982) evaluate the formulas using the
Green's functions of the Bunch-Davies (1978) vacuum of
de Sitter space. We can also define a vacuum state ap-
propriate for a FRW universe with a de Sitter phase of
finite length (Brandenberger, 1984). Using the latter ap-
proach we obtain for a free, massless, minimally coupled
scalar field

5/7(k, r,. ) = y ~2(2') ~ a ~ (t. )H (7.78)

and (in agreement with Starobinsky, 1982; Vilenkin and
Ford, 1982; Linde, 1982c; Vilenkin, 1983; and Hawking
and Moss, 1983)

yo(t) will describe the spread of the vacuum-state wave
functional; 5y( xt) will contain the information about
spatial correlations in the vacuum-state wave functional.
Since in a theory with symmetry under cp~ —cp there is
no drift in the expectation value of y, i.e.,

(7.74)

(7.80)

By Eqs. (7.78) and (7.79) we obtain
T

(7.81)

By Eq. (7.4) this implies a scale-invariant Zeldovich spec-
trum:

(7.82)

Definitions (7.75) and (7,76) are plausible, but not
rigorously justified. This is the main problem with the
approach discussed above. Such ad hoc definitions are,
however, unavoidable in any semiclassical analysis of
fluctuations. A further problem is to justify the time at
which the transition to classical matter quantities is per-
formed.

Hawking and Moss (1983) propose to extend the period
during which matter is treated quantum mechanically.
They must take quantum field nonlinearities into account.
The details of this step have been, in our opinion correct-
ly, questioned by Guth (1983) and Bardeen (1983). Both
Bardeen (1983) and Moss (1984) have, in fact, shown that
the semiclassical analysis outside the Hubble radius is
valid. Guth and Pi (1984) and Bardeen and Hill (1984)
are currently investigating inflationary scenarios in which
the matter evolution is described quantum mechanically
until reheating. Kahn and Press (1984) are taking a dif-
ferent approach and are trying to understand Hawking ra-
diation and the generation of perturbations purdy classi-
cally as an effect due to interactions and energy exchange
between many classical fields (see also Press, 1983).

3. Analysis of the classical period
for the new inflationary universe

The main goal of this section is to gain a better under-
standing of the physics of the amplification of perturba-
tions.

Figure 26 shows the complete dynamical system. Its
evolution is described by a complicated set of coupled dif-
ferential equations, too complicated to admit an exact an-
alytic solution. We propose the following approximation
scheme: we pick a gauge in which metric perturbations
are very small up to reheating, e.g., synchronous gauge.
In this gauge, as a mathematical approximation, we solve
the matter equation of motion without metric perturba-
tions. This has already been done in Sec. VI [Eqs.
(6.48)—(6.51)j. As a second step we determine the equa-
tion of state using

q7 (t)=(21T) 'H t' (7.79) w(t) = —1+ jP(t)
p

(7.83)

The classical field y,&(x, t) can be used to construct a
classical energy-mome@turn tensor for matter. In particu-
lar,

c, (t) = —1— 2ip(t)

3H j(t)
(7.84)
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(7.44) f, (t)=H I exp[H(t' —t)] dt',E(t')
E(t~ )

(7.87)

4„(x,t)
~~FR+~

a{t) y(x, t)

KQ

FIG. 27. Graphical sketch of the approximation scheme of Sec.
VII.C for the determination of the growth of energy density
fluctuations.

Finally, we insert the equation of state into the equation
of motion (7.44) for CH. Figure 27 paraphrases our ap-
proximation scheme graphically.

We now refer back to Eqs. (6.48)—(6.51) for an analysis
of the evolution of qr(t) in the two periods of the de Sitter
phase in the new inflationary universe. In the first period

p(t)-H, j{t)-H and thus w(t)- —1 and c, (t)- —1.
In the second period, for tz & t &t;, by Eq. (6.51)

1/2

q(t)= — f(t), f(t)=[~—(t —t, )] '. (7.85)

During this second period, f ( t) increases from ( —', )' H to
W(1)o. Hence w(t) increases from —1 to 0, while c, (t)
becomes very negative,

fz(t) =exp[ —H (t t—g )], (7.88)
.2

with E(t)=p(t)+p(t)=j (t). Hence @H(t) increases by
a factor f (tit)lf (t~)=(crlH) . @H(t) increases by
f'(t, ) If"(t~)=(~iH )'.

In the FRW period, once again w(t) =c, (t), and there-
fore the dominant mode will be constant. Due to the
mismatch in initial values of @~ and +~ at tz, WH will
increase by another factor o/H immediately after reheat-
ing. The amplification of @H is sketched in Fig. 29.

It is possible to check that the reheating period does not
change the above analysis (Brandenberger and Kahn,
1984). Using the Green's-function method, we can show
that matter source terms do not change the result by more
than a factor of order 1.

Figures 27 and 28 clearly show that the rapid change in
the equation of state is responsible for the growth of
energy-density perturbations. On the other hand, the con-
servation equation (7.61) proves that the total amplifica-
tion of perturbations is independent of the phase structure
in the cosmological evolution between the times when per-
turbations of cosmological interest leave and reenter the
Hubble radius. In particular, the amplification factor is
independent of the details of reheating.

c,'(t) —f(t)—H (7.86)
D. Conclusions

The change in the equation of state is sketched in Fig. 28.
After reheating, w(t) and c, (t) rapidly (period cr ') relax
to their equilibrium values —, in a radiation-dominated
FRW phase.

In the first de Sitter period w{t)=c,(t). From Eq.
(7.44) it immediately follows that the dominant mode is
the constant mode (the other is exponentially decaying).
Hence @H remains constant. In the second period c, (t)
becomes very large and negative. To compensate in Eq.
(7.44), C&H must become large and positive. The dom-
inant mode will be a rapidly growing mode. Given the
approximation w= —1 the eigenmodes of Eq. (7.44) in
this period are

InAationary universe models provide a mechanism
which, for the first time, explains from first principles the
origin of the primordial energy-density fluctuations re-
quired as initial conditions in theories of galaxy forma-
tion.

The crucial point is that in the de'Sitter phase the
. causal horizon has constant physical distance, while the

physical wavelength of a plane-wave perturbation expands
exponentially. Thus, in contrast to the standard big bang
model, Auctuations on all scales of present cosmological
interest originate inside the causal horizon.

We have demonstrated that vacuum Auctuations, or
more precisely spatial correlations in the wave functional
of the quantum state of matter lead to classical matter in-
homogeneities.

The initial energy-density fluctuations have a very

I/$- i
t.

(y./H—

(H/~)'-
I I

'e 'R

FRy. 28. Equation of state in the new inflationary universe
(below —1 the scale is logarithmic).

FIG. 29. Growth of @~ in the new inflationary universe (the
vertical scale is logarithmic).
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small magnitude. We measure them in terms of a gauge-
invariant variable, which at Hubble-radius crossing is
equal to the relative energy-density fluctuation in comov-
ing coordinates up to a constant factor of order l. In the
original new inflationary universe model the value is of
the order of 10

Due to the change in the equation of state of the back-
ground from almost de Sitter to radiation-dominated
FRW, the perturbations increase by a large factor before
they enter the Hubble radius. In many models, in particu-
lar in the case of the new inflationary universe, the ampli-
fication precisely offsets the initial suppression: the final
amplitude of energy-density fluctuations is of the order 1,
in conflict with requirements from the theories of galaxy
formation. In order to obtain an acceptable magnitude;
the particle physics models must in general be fine-tuned.

We show that the final amplitude of fluctuations de-
pends only on the equation of state at the time t; when
scales of interest leave the Hubble radius in the de Sitter
phase, and on the magnitude of perturbations at that
time. In particular, the result does not depend on the de-
tails of reheating, nor on the presence of other possible
phase transitions between time t; and the time tf when
the scales reenter the horizon in the FRW phase.

The spectrum of fluctuations is predicted to be a scale-
invariant Harrison (1970)-Zeldovich (1972) spectrum.

scattenng matrix S,
r

S=T exp i—f dt HI(t)

A, :f(x & )f(x ~ )y(x ~ )g(xq)g(x2)y(x2):

denotes contraction) is given by the Wick(where
graph

where Hi(t) denotes the interaction picture Harniltonian.
After expanding S in a Taylor series we apply Wick's
theorem to obtain a sum of normal ordered operators,
each represented by a diagram (Wick diagram). In these
diagrams a term in Hl is represented by a vertex. Each
field operator in the term gives a leg attached to the ver-

tex, and operator contractions are represented by linking
the corresponding legs. In contrast to the case of Feyn-
man diagrams, vertices in Wick diagrams are labeled. As
an example, we consider

~I(x)=&/(x)P(x)q (x) .

Then one of the terms of order A, , e.g. ,
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APPENDIX A- CONNECTION BETWEEN W(J)
AND Z(J)

where ~ represents the Wick graphs. The Feynman dia-
grams arise by taking the expectation value of S between
asymptotic in- and out-states. In particular

where ~„represents the Wick graphs with no uncon-
tracted legs. Similarly,

i W(J) =g~,„, (A5)

where ~,„represents the connected Wick graphs with no
uncontracted 1egs.

Below we shall demonstrate that the sum of all Wick
graphs is the exponential of the sum of all connected
Wick graphs. If we consider the subset of graphs with n
uncontracted legs, the corresponding statement naturally
is false, except for n =0 (any combination of graphs with
no uncontracted legs gives back a vacuum graph, and
conversely all connected components of a vacuum graph
have no external legs). Thus

In our case, HI in Eq. (A2) includes the source term. The
expansion of S yields

(A3)

In this appendix w'e shall review the wq11-known con-
nection (2.5) between the full generating function Z(J)
and the generating function i W(J) for connected Green's
functions (see Itzykson and Zuber, 1980),

=exp g~,„
=expiW(J) . (A6)

i W(J) =lnZ(J) . (Al)

This claim immediately reduces to a statement about the
This completes the proof of (A 1).

To prove that the sum of all Wick diagrams is the ex-
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ponential of the sum of all connected Wick graphs, we
shall for notational simplicity consider only the case in
which HI contains a single term and introduce the fol-
lowing notation: We define two diagrams as belonging to
the same pattern P if they differ by a permutation of the
vertices. The symmetry number S(P) of P is the number
of perrnutations that leave the diagram unchanged. Obvi-
ously

,
:0(P):=g (=S),

p grapks in pattern p + (P) p

where n (P) is the number of vertices [which equals the
order in the Taylor expansion of Eq. (A2)], and:0(P): is
the operator the Wick diagram represents.

%"e now consider a pattern I' consisting of ni connected
Wick diagrams of the (connected) pattern P;
(i =1,2, . . . , is an ordering of all connected patterns).
Obviously

0(P)=+0(P, )"' .
i=1

Using Eqs. (A3), (A6), and (A7), we obtain

:+0(p, ) ':

For a connected graph, each vertex fixes one internal
momentum except for one, which gives overall energy-
momentum conservation. The number of loops equals the
number of free momenta. Thus for connected graphs

I.=I—V+1 . (83)

APPENDIX C: DETERMINATION OF A DETERMINANT

Here we evaluate Eq. (4.13). Since only ratios of the
determinants exist, we write

(8+~ I)=~'det 2(I+~ 8 ) (C 1)

with 8= —t), . 8 acts on the space of functions with
period T [see Eq. (4.2)]. Hence its eigenvalues are

2

nEZ+ .

Combining Eqs. (82) and (83), we see that for connect-
ed graphs the A dependence is

(84)

which demonstrates the equivalence of A' and loop expan-
sions.

n =0
i=1 II[S(P;) 'n;!]

i=1
Thus

r

det(I+co'8 ') = 1I 1+
n=1 '7Tn

'2

(C2)

i=1n =0 n;.
0(P;)
S(P;)

0(P;)
'=""P,.~, S(P,

') ' But the representation of sin~z as an infinite product
(see, for example, Courant, 1937, p. 44S) is

In the second step we used the facts that S(P) factorizes
as in (A8) and that permuting graphs of a given pattern
will not give a different Wick graph. Now by (A7) and
(A9),

00 Z2
sinmz=a. z + 1—

n=l n

Therefore, setting z =icoT/~,
—1/2

S=:exp+~,:, (A 10) det ' (I+co 8 ') = sining T

E COT

where ~, represents the connected Kick graphs.

APPENDIX 8: LOOP EXPANSION
AND A EXPANSION For AT large,

=(coT)'~ [sinh(coT)] '~ . (C3)

In this section we shall prove the equivalence of the
loop expansion and the fi expansion. Consider a theory
with generating functional

r

det '~ (I+co 8 ') —(2coT)'~ exp( coT/2) . —(C4)

Now Eq. (4.13) follows by adjusting the normalization
constant X.

Z(J)=jtI J [dy]exp —S(q&,J) (81)
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