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The Hubbard model is used to calculate static properties of normal-liquid He at T=O. For this,
Gutzwiller s variational approach to that model is employed. The work is based on an observation by An-
derson and Brinkman that the results of this method, obtained by Brinkman and Rice for the metal-
insulator transition in the case of one particle per site, appear to be in qualitative agreement with the experi-
mentally measured properties of that liquid. In this sense normal He can be understood to be close to a lo-
calization transition of the particles where their effective mass diverges. The incipient localization is found
to determine the properties of that liquid. Hence He is "almost localized" rather than "almost ferromag-
netic, " as often claimed by paramagnon theory. The author further investigates this motion. Discussing
Gutzwiller's approach to the Hubbard model, he shows that it is well suited for a description of a liquid
system like He. The approach and its physical implications are investigated by means of the reformulation
of the solution due to Ogawa et al. It is shown explicitly that Gutzwiller's results can be placed into the
concepts of Landau-Fermi-liquid theory and that within this model the Landau parameters Fo and E~o are
related. Furthermore, the author identifies two different kinds of spin-fluctuation processes inherent to the
model, one of which is shown to be responsible for the largeness of Fo. Going beyond these qualitative as-
pects, the author evaluates Fo and Eo quantitatively, finding that Fo agrees very well with the experimen-

tally determined values at all pressures, with Fo~ —
4 p at high pressures, where p is always close to unity.

Hence the system is never close to a ferromagnetic transition. By means of the forward scattering sum rule
for 1&2 an analytic expression for F l is obtained. Finally, the author extends the analysis to large magnet-
ic fields, finding that in the case of normal He the magnetization increases very rapidly with the magnetic
field. This is due to the large zero-field effective mass. There is a line of critical values for the interaction
and the magnetic field where a fully magnetized state is formed via a first-order transition. Calculating the
drop in melting pressure due to the magnetic field, the author finds that it essentially removes the
minimum in the melting curve. Thus the melting pressure even of fully polarized He is larger than zero, in
agreement with arguments by Castaing and Nozieres.
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A. Normal 3He and its description

Normal He [for a review, see Baym and Pethick
(1978)] is a liquid of high density whose spherical atoms

are strongly interacting. Indeed, the interparticle distance
is of the same order as the atomic diameter, and the in-
teraction is mainly given by a strong hard-core repulsion
and a weak van der Waals attraction. Owing to the small
atomic mass the zero-point motion of the atoms implies
that, at normal pressure, the kinetic and potential energies
of the noble gas atoms are almost equal even at arbitrarily
low temperatures. Therefore, He (as well as He) stays
liquid for T~O and solidifies only under a pressure of
approximately 34 bars. As He atoms are fermions, nor-
mal He constitutes a Fermi liquid below the degeneracy
temperature Tz. Its properties are then governed by the
Fermi-Dirac quantum statistics: it is a quantum liquid.

Introducing the concept of quasiparticles, the theory of
Landau (1956,1957) is highly successful in its
phenomenological description of this complicated system
(Pines and Nozieres, 1966). It views the strongly interact-
ing liquid as a system of quasiparticles having a distribu-
tion function that equals the one for a noninteracting sys-
tem. These quasiparticles are characterized by an effec-
tive mass m* (approximately three to six times larger
than the mass of the bare He atom) and an effective in-
teraction. This interaction can be parametrized by means
of an infinite set of "molecular fields, " quantified by the
Landau parameters (Leggett, 1975). The Landau theory
made it possible to understand why the physical proper-
ties of liquid He, such as the temperature dependence of
the specific heat, the spin susceptibility, transport proper-
ties, etc., are qualitatively very similar to those of an in-
teracting Fermi gas in spite of the strong interactions.
This is essentially due to the exclusion principle, which
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IOO Vollhardt: Normal 'He: an almost localized Fermi liquid

leads to a severe reduction of the phase-space volume in
the vicinity of the Fermi energy, where most physical pro-
cesses take place. For example, the specific heat c„ the
static spin susceptibility g„and the compressibility K are
given by

m*
Cq — Cp

m

o

1+F0
fll /772 pK= K
1+F0

where m*/m = 1+F &/3. Here Fo, F&, Fo are the first of
the usual Landau parameters, and c, = (n /3)N (0)T,
X, =poX(0), a. =N(0)/n are the respective quantities
for a noninteracting system; N (0)=mk~/m is the density
of states of a Fermi gas at the Fermi energy for both
spins, po is the nuclear magnetic moment, kF is the Fermi
momentum, and n is the particle density. The units are
such that k&,%=1.

As Landau theory is phenomenological in character, it
cannot make predictions about the values of the Landau
parameters —i.e., they are undetermined within that
theory. It takes a microscopic theory and an explicit
form of the interaction between the particles if one actual-
ly wants to make quantitative calculations of the parame-
ters. However, due to the high density and the strong in-
teractions in the He liquid, such first-principle calcula-
tions are extremely hard to perform and so far have not
yet yielded satisfactory quantitative results (Babu and
Brown, 1973). In that respect the rather more numerical
techniques of the correlated-basis-function approach
(Feenberg, 1969; Krotscheck and Smith, 1983), a varia-
tional method for optimizing the wave function of the
system, appear to be more promising. In view of these
difficulties one would like to tackle the problem by at
least investigating a particular model, hoping that it con-
tains the dominant physical features of the actual system.
However, an exact solution of even a highly simplified
model mostly proves to be impossible. Therefore, one has
to find an approximation. Again, it is hoped that this ap-
proximation describes most of the physics that was con-
sidered to be important when formulating the model. So,
when one is trying to describe an actual physical system
there are two fundamental sources of error: in the choice
of the model and its subsequent approximate solution. It
seems important to keep this general problem in mind
when investigating an intensively studied system such as a
strongly correlated Fermi liquid, e.g., normal He or elec-
trons in a metal. In the case of He, for T &TF, those
dominant physical features appear to be

(i) the fermion character of the atom, and
(ii) the hard-core repulsion between the atoms.

These essentials can be represented by a contact interac-
tion between two atoms that takes place only when they
have opposite spin. If we neglect the actual size of the

atoms, the interaction Hamiltonian is given by (Stoner
model)

H;„,= U J d"r n, (r)n&(r),

where U is a phenomenological interaction constant of a
5-function potential U(r —r') = U5(r —r') and n =c c
are the density operators for particles of spin o, c (c )

are the usual fermion creation (destruction) operators.
This model Hamiltonian for a contact interaction between
fermions can be used to describe a neutral system like
liquid He, ' or a charged system, like electrons in a metal,
provided the Coulomb interaction is so strongly screened
that it can be assumed to have the above 5-function form.
The high density and the strong hard-core interaction be-
tween the atoms are properties shared, in fact, by both
liquid He and He. The repulsion leads to a spatial
correlation between the atoms causing them to avoid each
other. Consequently the atoms in either system are rather
insensitive to the full microscopic details of the bare hard
core. This is one of the key points of the polarization po-
tential theory developed by Pines and co-workers [for a
recent review, see Pines (1983)], which allows for a uni-
fied description of excitations and transport in both heli-
um liquids. In the present problem, the full model Ham-
iltonian has the form

H = g s(k)aq aj, +H;„t, (3)
k, o

where aq (aq ) are the creation (annihilation) operators
for a fermion in a Bloch state with momentum k, X is the
total number of particles, and s(k) is a more or less realis-
tic kinetic energy of the particles. As there do not exist
solutions above d=1 dimensions, even for this highly
simplified Hamiltonian, one has to resort to approxima-
tions. For example, within the generalized Hartree-Pock
approximation the dynamic susceptibility is given by
(Wolff, 1960; Izuyama et al. , 1963)

(4)

where II(q, co) is the Lindhard function. Therefore, the
static susceptibility is given by

2/F
X, =X(0,0)=@O-

F

where XF is the density of states of the bare particles at
the Fermi energy of one spin direction. So, one finds that
X, is by a factor ( 1 I )

' & 1 (the s—o-called Stoner

iNote that U does not represent the true microscopic hard-core
repulsion entering, for example, in Brueckner theory (Brueckner
and Gammel, 1958), which can be of the order of 10 K, de-
pending on separation. The potential used above is rather
softer; for He we shall later find U=15 K, this being about the
interaction strength of two He atoms at their average separa-
tion in the liquid. So (2) should be viewed as a renormalized in-
teraction of (quasi)particles due to many-body effects.
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enhancement factor) larger than that of a noninteracting
Fermi system; here I=UNp. The enhancement can be
understood to be due to the existence of strong, low-
frequency spin fluctuations or "paramagnons" (for a re-
view, see Levin and Valls, 1983). However, within the
same approximation the effective mass can be calculated
via the specific heat, and one finds that (Doniach and
Engelsberg, 1966) m /m —I cain[1/(1 —I)] o:ln(X, /X, ).
So there is a renormalization of the mass, but it does not
explicitly enter the expression for X, (Levin and Valls,
1979a). For I~1 the static susceptibility diverges, indi-
cating a transition to a ferromagnetic state. It is therefore
often said that a system with a strongly enhanced Pauli
susceptibility is "close to a ferromagnetic transition" or
"almost ferromagnetic. " For X, /X, = 1/(1 I ) t—o
describe the experimental data for liquid 3He, I has to be
as large as I=0.95 and, again, He is therefore often re-
ferred to as being almost ferromagnetic.
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FICx. 1. Experimental values (Greywall, 1983) of the normal-
ized effective mass m*/m, the ratio between spin susceptibility
and effective mass, (l+Fo) ', and the normalized compressi-
bility ~/&co.

B. Fermi-liquid theory and the contact-interaction
model

Comparing the above result for X, and c„with the one
of Landau theory one finds by identification

(m'/m)L

1+E;
(m /m)p ——(m'/m)1. ,

(6a)

(6b)

where the subscripts P and L refer to the paramagnon re-
sults and Landau theory, respectively. So the one parame-
ter I appears to combine two Landau parameters at the
same time, the one describing the enhancement of the sus-
ceptibility due to the effective mass (arising from a spin-
independent interaction, i.e., Fi ), as well as the one due to
spin-dependent interaction, i.e., I'0.

In Landau theory X, can thus be large (or even diverge),
mainly for two different reasons, either

(1) FO~1; this would correspond to I~1 and would
support the claim of the approaching ferromagnetic insta-
bility, or

(2) m'/m —+00 (while 1+Fo&0), which would indicate
that the particles carrying the spin become immobile and
"localize. "

In Fig. I the experimentally determined pressure depen-
dence of the effective mass m'/m (from the specific
heat), the ratio (X, /X, )/(m /m)=(1+F0) ' of the stat-
ic susceptibility and the effective mass, and the compres-
sibility tc//co as measured by Cxreywall (1983) are shown.
Anderson and Brinkman (1975,1978) pointed out that
while m*/m increases with pressure, the quantity
(1+F0) changes very little; in particular, it is essential-
ly pressure independent at high pressures. They argued
that the strong enhancement of the susceptibility w'as

essentially due to the effective mass, rather than to the
factor (1+F0) '. In view of this, Anderson and Brink-
man suggested that normal He should not be considered
"almost ferromagnetic" but rather "almost localized" or
"solid." This notion is also supported by the fact that the

compressibility (Fig. 1) is strongly reduced as pressure
increases —a feature that one would attribute to a system
that becomes more and more solidlike (Castaing and
Nozieres, 1979; Levin and Valls, 1979a). In fact, at 34.36
bars the He liquid solidifies such that the atoms are
indeed localized.

Paramagnon calculations for X,/m' lead to a different
behavior: there this quantity is found to diverge as I~ l.
Paramagnon theory has been successful in determining
various properties of liquid He like the T lnT contribu-
tion to the specific heat [see the review of Baym and
Pethick (1978)] and the formation of spin-triplet states in
the superfluid (Layzer and Pay, 1971; Anderson and
Brinkman, 1973). It has also been applied to a calculation
of Landau scattering amplitudes Ai Fi/[ I+F~/——(21+ 1)]
(Levin and Valls, 1979a,1983). If I is chosen to fit the
spin susceptibility, the AI are in reasonable agreement
with the experiment. It appears essential that an interpre-
tation of paramagnon theory within the context of Lan-
dau theory is done via the AI parameters rather than the
Landau parameters I'I. In this way Galilean invariance is
maintained as I~ 1 and the equality (6a) is found to ap-
ply. The conclusion that normal He is close to a magnet-
ic instability, such that its properties are dominated by
the incipient ferromagnetic transition, is plausible only
within that particular picture. However, as will be seen
below, there are solutions of the Hamiltonian (3) which
come to exactly the same conclusions as those reached by
using Landau theory, namely, that He is almost localized
rather than ferromagnetic.

Anderson and Brinkman (1975,1978) argued that this
concept is closely related to that of "localization by corre-
lation". in the sense of Mott (1949) concerning the
behavior of electrons in narrow-band systems. Such sys-
tems have been investigated by the Hubbard model,
introduced by Cxutzwiller (1963,1964), Hubbard
(1963,1964), and Kanamori (1963) for 20 years now. In
this model the electrons are considered to be on a lattice,
their kinetic energy being due to hopping from one site to
another, while the interaction acts only on the same site.
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102 Vollhardt: Normal 'He: an almost localized Fermi liquid

Obviously, the Hubbard Hamiltonian is nothing but the
model Hamiltonian (3), where r is now discrete, describ-
ing the lattice sites. Initially, it was proposed for the in-
vestigation of the correlation-induced metal-insulator
transition as well as magnetically ordered states in such a
system. It is remarkable how little progress has been
made in the study of this truly fundamental and seeming-
ly simple Hamiltonian (Cyrot, 1977). Few exact results
are known and all other information is based on various
approximations and approaches which often lead to dif-
ferent results.

However, there is one treatment, due to G-utzwiller
(1965), which is different from all other methods. It is a
variational approach in which the wave function of the
interacting system is constructed from that of the nonin-
teracting system. Even in its simplest form it allows cal-
culation of the ground-state energy of the system for arbi-
trary band filling and number of up and down spins. Us-
ing this solution (initially intended for the study of the
possibility of a ferromagnetic transition), Brinkman and
Rice (1970; see also Rice and Brinkman, 1971) realized
that in the case of a half-filled band this solution actually
describes a metal-insulator transition [a so-called "Mott
transition"; see the discussion by Mott (1974)],where, at a
critical value of the interaction strength, the spins become
"localized, " so that there is only one spin per site. They
also calculated the effective mass, the static spin suscepti-
bility, and the compressibility of this system. From these
expressions they found, for example, that the enhance-
ment of the susceptibility was essentially due to the effec-
tive mass and not due to the usual Stoner enhancement
factor.

It was Anderson and Brinkman who then made an ex-
plicit connection of those results to the ones of Fermi-
liquid theory and the properties of He. Extracting the
Landau parameters I' O, I'O, F'&, they noted that their
behavior for increasing interaction qualitatively agreed
with the pressure dependence found experimentally. By
contrast, in paramagnon theory X, /m*~(1+Fo) ' is
found to be pressure dependent whereas this is not the
case experimentally. Gutz wilier's approach therefore
yields results which are in qualitative agreement with
Fermi-liquid results for He. This gives theoretical sup-
port for the observation that it is the effective-mass
behavior, i.e., the incipient localization, which dominates
the physical properties of this strongly correlated Fermi
system (Anderson and Brinkman, 1975, 1978; Castaing
and Nozieres, 1979). The importance of spin fluctuations,
being the basis for paramagnon calculations, are not
denied in Gutzwiller's approach (1963—1965); however,
they should be understood as a consequence of the ap-
proaching localization (Anderson and Brinkman, 1975,
1978). In fact, I will explicitly show that spin-fluctuation
processes are responsible for the dominant features of
Gutzwiller's results. It is interesting to note that a quali-
tatively similar result has been obtained by Kawabata
(1975,1977) by considering spin fluctuations in the Hub-
bard model. Kawabata aimed at a description of metals
like V203 with a strongly enhanced specific-heat coeffi-

cient and spin susceptibility. Using a Greens-function
approach and sum-rule arguments, he also arrived at the
result that the enhancement of the specific heat and the
spin susceptibility is due to the same factor.

I believe that the results of Gutzwiller's approach
(1963—1965) to the Hubbard Hamiltonian, and the ap-
parent connections to the properties of liquid He call for
further investigation in this direction. Therefore my in-
tention here is

(1) to understand the physical implications of this ap-
proach and thereby try to understand the reasons for its
apparent success in describing normal-liquid He,

(2) to analyze the connections to the ideas of Landau-
Fermi-liquid theory,

(3) to understand the origin of the Landau parameters
by identifying the physical processes responsible,

(4) to make a quantitative evaluation of Fermi-liquid
parameter within that approach, and finally

(5) to use this approach to go beyond the typical range
of applicability for Landau theory (i.e., perturbations with
energies much smaller than the Fermi energy).

As the Gutz wilier result allows for a more general
analysis, I shall use it to calculate the magnetization
curves for liquid He at T=O for arbitrary magnetization
and interactions (i.e., pressures). So far the magnetization
behavior of liquid He at high magnetic fields is not
known beyond general arguments (Castaing and Nozieres,
1979) because of the very complicated nature of this high-
ly correlated system. Its knowledge is a step towards a
better understanding of this quantum liquid and is also of
interest in the light of recent investigations of highly po-
larized liquid He (Castaing and Nozieres, 1979; Lhuillier
and Laloe, 1980; Chapellier et al. , 1979; Godfrin et al. ,
1980).

The paper is organized as follows. Section II discusses
the Hubbard model and the result of certain approxima-
tions used to solve it; in Sec. III we turn to Gutzwiller's
variational approach, in particular, examining the physi-
cal meaning and implications of this method, based on
the reformulation by Ogawa et al. (1975). Section IV
discusses the applicability of Gutzwiller's results on liquid
He and will argue why this particular approach should

be especially suited for such a liquid system. The results
of Gutzwiller's method are then discussed in Sec. V by
making contact with the ideas of the Landau-Fermi-
liquid theory. I identify the spin-fluctuation process
which is the origin of the pronounced pressure depen-
dence of the Landau parameter Fo. Then the Landau pa-
rameters I'O, I' o,I"~ are determined quantitatively, and, us-
ing the forward-scattering sum rule for 1 &2, I derive an
analytic expression for the parameter I'" j. As we go
beyond the limit of small magnetic fields, the magnetiza-
tion for arbitrary magnetic fields at T=O, as well as the
magnetic field dependence of the effective mass, is calcu-
lated in Sec. VI, and further comparison with the results
of paramag non theory is made. Finally, Sec. VII
discusses the results and possible improvements.
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II. THE HUBBARD HAMILTONIAN

As discussed in the Introduction, the Hubbard Hamil-
tonian (Gutzwiller, 1963, 1964; Hubbard, 1963, 1964;
Kanamori, 1963) is supposed to describe the behavior of
fermions on a lattice in a narrow-band system. The in-
teraction is assumed to be extremely short ranged so that
it takes place only on the same site. It is the lattice ver-
sion of (3):

H = g g t,jcr~cj(J+ U g nj fng
tJ CT l

(7)

The first part is the kinetic energy due to hopping be-
tween sites i and j, which can also be expressed in
momentum representation as in (3), with

and
—ikR;

a~ =X- gc, e

(1) Green's-function methods (decoupling procedures,
functional integral representation, perturbation theory,
etc.),

(2) variational methods for the wave functions and spin
configurations,

(3) renormalization-group calculations (Hirsch, 1980),
and

(4) numerical methods using Monte Carlo (Hirsch and
Scalapino, 1983, and references therein; Hirsch, 1983).

The fourth and most of the third method concentrates,
however, on the d=1,2 case. The first method has been
used most widely, and an extremely extensive literature
has accumulated. The Green's-function methods first
used (Hubbard, 1964) made approximations that a priori

etc. For nearest-neighbor hopping (summation index
(ij )) we set t;J = t. This term—makes the model in-
herently quantum mechanical. The interaction part reads
Ug, . c;,c;,c;,c;, and formally represents a four-fermion
operator. As simple as this Hamiltonian is, it still
represents a truly interacting system. Without interaction
( U=O) one obtains a pure band behavior due to the small
but finite overlap of the atomic wave functions. In the
atomic limit (t=O) the particles are localized. So the
Hubbard Hamiltonian describes a system which allows
for both these limits; naturally, the intermediate regime
t —U is of particular interest, as in this range of parame-
ters the competition beween band effects and localization
due to correlation is most subtle. So far, only the one-
dimensional case has been solved exactly (Lieb and Wu,
1968): One finds a Mott transition in the ground state for
U=O, the ground state being antiferromagnetic (Lieb and
Mattis, 1962). For higher dimensions only approxima-
tions exist besides a few exact results within perturbation
theory. The approximation methods [for a review, see
Cyrot (1977)] can be grouped into

excluded antiferromagnetism, i.e., that explicitly con-
sidered only paramagnetic states, because they considered
random distributions of the spins such that the space
average (n; ) =n was space independent. Therefore,
only the band splitting was considered to be relevant for
the transition between metal and insulator. Earlier, An-
derson (1963) had shown within perturbation theory that
in the half-filled band case (equal number of particles and
sites) for U ~&t the magnetic moments would order anti-
ferromagnetically, the states being localized. In order to
be able to obtain antiferromagnetism when calculating
one-particle quantities, a trick was subsequently used: al-
ternating lattices were introduced and the decoupling of
the Green's functions was accordingly done for these dif-
ferent lattices (Langer et al. , 1969). Thereby the different
lattice periodicity in the case of antiferromagnetism was
built into the formalism. 'The decoupling was done in the
simplest possible way, equivalent in spirit to a straightfor-
ward mean-field approximation. This yielded a BCS-type
gap equation for the order parameter (the local magnetic
moment). It turned out that the results strongly depend
on the type of lattice considered: for simple cubic (sc)
and body-centered-cubic (bcc) lattices the transition be-
tween the paramagnetic and the antiferromagnetic state
occurs in the ground state at U=O (just as in the d= 1

case!), while in the face-centered-cubic (fcc) lattice a finite
interaction strength is necessary (Cyrot, 1972). This is
due to the "perfect nesting" property of sc and bcc lat-
tices, where E(k)= —e(k+G), G being one-half of a
reciprocal-lattice vector. So the results of these mean-
field theories (Langer et al. , 1969; Cyrot, 1972) critically
depend on the lattice in question. Of course, the applica-
bility of a mean-field theory is yet another question. An
important point is that all Greens-function techniques
treat the kinetic energy part of the Hamiltonian exactly,
while approximating the interaction part.

III. THE GUTZWILLER APPROACH TO THE HUBBARD

MODEL

A. Calculation of the ground-state energy

In order to solve at T=O, the model Hamiltonian (7),
Gutzwiller (1963,1964) applied a variational method. Let
L, X„X„and D be the number of lattice points, up
spins, down spins, and doubly occupied sites, respectively;
n, =N, /L, n, =X,/L, d =D/L. Furthermore, let

~
Pp)

be the state describing the spin configuration of the un-
correlated (U=O) system. In that case the average num-
ber of doubly occupied sites Do obviously is Do ——n, n, L.
When the interaction is switched on, the number of dou-
bly occupied sites must decrease, because the interaction
energy is given just by UD, so D & Do to reduce this ener-

gy. In order to obtain the state
~
f) of the correlated

state, Gutzwiller's idea was to construct a trial wave func-
tion by starting from the uncorrelated state

~ Pp) and
then to reduce the number of doubly occupied sites. This
is the central aspect of his approach. The correlated state
is thus written as (Gutzwiller, 1963—1965)
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104 Vollhardt: Normal 'He: an almost localized Fermi liquid

I
0&= / [1—(1—g)«tn i] I Co& (8)

=g I@o&,

i.e., to obtain the correlated state the amplitude of the un-
correlated state is systematically reduced. Here g is a
variational parameter that has to be determined so as to
minimize the ground-state energy given by

(10)

t,jC,~C
ij o.

+ U n;, n;,

In the thermodynamic limit,
I g& is an eigenstate of the

number operator g,. n;, n;„and therefore the interaction
term in the expression for Eg is simply give by UD.

The choice g=1 obviously corresponds to the uncorre-
lated state (U=O), while g=O yields

I
P&&0 only if

D=O, i.e., when there are no doubly occupied sites. As,
per construction, the interaction term is treated exactly in

Eg/L =q, (d, n „n, )E, +q, (d, n„n, )E, + Ud, (12)

which still has to be minimized with respect to d. Here
q are the discontinuities in the single-particle occupation
number (aq~q~& at the Fermi surface. They are given
by

this approach (in contrast to the Green's-function
methods) the problem now reduces to the evaluation of
the norm (P I g& and, above all, an approximation for the
matrix elements of the kinetic energy (@I Mz;„ I @&. This
leads to determinants for which Cxutzwiller made certain
assumptions concerning the amplitudes of general nth-
order density functions, and phase relations between dif-
ferent spin configurations (Gutzwiller, 1965). He claimed
that the motion of the up-spin electrons was essentially
independent of the behavior of the down-spin particles
(and vice versa) and that therefore the down-spin elec-
trons could just as well be assumed to be infintely heavy,
i.e., that they acted only as an obstruction for the up-spin
particles. Although this treatment was far from tran-
sparent, it turned out that under these assumptions the
problem reduced to one of mere combinatorics. Indeed,
after minimalization with respect to the variational pa-
rameter g, Gutzwiller (1965) obtained an extremely simple
result for the ground-state energy, namely

I [(n —d)(1 n n— +d)]—' + [(n —d)d]'
n (1 n)— (13)

Furthermore, q =8d(1 —2d); (14)

—1
p =L le g ppp; pp leap)

EJ

and, minimizing the ground-state energy, they obtained

E(k) &0
Ik

~
&k~

1 Ud= —1—
4 U,

(isa)

is the average energy of the o spins in the uncorrelated
state; here kF is the respective Fermi momentum (only if
n, =n, one has k~, ——k~, ). One can easily see that always
q&1 (q=l only if U=O) as one should expect for a
noninteracting system. So, while treating the interaction
term exactly, the Gutzwiller approach concentrates on an
approximation of the kinetic energy term, calculating its
reduction due to the decrease of doubly occupied sites
(and therefore also of empty sites), which makes hopping
energetically unfavorable.

B. Properties of the solution

Using (12) Gutzwiller (1965) discussed the possibility of
ferromagnetism in this model, concluding that in three di-
mensions the ground state was never ferromagnetic. Ar-
guing from a different point of view, Brinkman and Rice
(1970) realized that Gutzwiller's result, in fact, predicted
a metal-insulator transition. For a half-filled band (n= 1)
and n, =n, they found that (q, =q, =q, E, =E,:—Ko/2)

q=1— U
'

U,
(15b)

Es/L = —
I

EoI 1—U
'

C

(15c)

where U, =8 IKo I. This implies that at a finite, critical
interaction U, the number of doubly occupied sites van-
ishes, such that every lattice point is singly occupied, i.e.,
that the particles are localized. At this point q=O (reduc-
tion of the kinetic energy to zero); and, as d=O, the
ground-state energy Eg vanishes, indicating the metal-
insulator transition. Clearly, very close to the transition,
(15c) cannot be correct (Brinkman and Rice, 1972). It is
well known from perturbation theory (Anderson, 1963)
that for U/

I so
I

or U/t » 1, when the spins are localized
and antiferromagnetically ordered, the ground-state ener-

gy is proportional to t /U. In contrast, the above result
implies the formation of a paramagnetic, localized ground
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state. It has recently been shown that in d = 1

Gutzwiller's ansatz (8) in fact does yield a ground-state
energy Eg —— a—t /U when no approximations in the cal-
culation of the matrix eleinents are made (Kaplan,
Horsch, and Fulde, 1982). However, a is shown to be too
small compared with the exact result (Bonner and Fisher,
1964). The reason for this is found to be too weak a bind-
ing of empty and doubly occupied sites. This deficiency
has been almost completely removed by the introduction
of a second variational parameter (Kaplan et al. , 1982).
To allow for the possibility of antiferromagnetism Ogawa
et al. (1975) and Takano and Uchinami (1975) extended
Gutzwiller s analysis. Introducing alternating lattices,
they found that before localization sets in (4=0), a transi-
tion to an antiferromagnetic state was indeed energetically
favorable. The results slightly differ, because different
approximations were used, but the overall feature is that
for U/U, & 0.41 (Takano and Uchinami, 1975) [or
U/U, & 0.35 (Ogawa et al. , 1975)] the system is
paramagnetic, being described by Gutzwiller's earlier re-
sults, while for an interaction strength larger than these
critical values antiferromagnetism appears. A state with
a vanishing number of doubly occupied sites is thus never
reached at finite U, in agreement with the Green's-
function results (Langer et al. , 1969; Cyrot, 1972). The
validity of these results has been questioned by Florencio
and Chao (1976), who find a first-order paramagnetic to
antiferromagnetic transition at U/U, =0.71, also using an
extended Gutzwiller approach.

As a by-product, however, the work of Ogawa et al.
(1975) clarified the physics contained in Gutzwiller s ap-
proximation. While starting from Gutzwiller's idea of
constructing a trial wave function, they applied a much
more transparent formalism to the problem. Especially,
they showed that it was one particular approximation in
their formulation which exactly yielded Gutzwiller s re-
sults. This approximation concerns the dependence of the
energy expectation values on the spin configurations of
the wave function. While spin configurations with the
same number of doubly occupied sites all have the same
expectation value for the interaction term, their expecta-
tion value for the kinetic energy will generally be different
(in some configurations the hopping is more advantageous
than in others). Ogawa et al. (1975) showed that negIect
ing the configuration dependence of the expectation
values was equivalent to all assumptions made by
Gutzwiller (1965) and leads to an identical result. So,
while the interaction term is treated exactly, the kinetic
energy is approximated in a way which includes all possi-
ble hopping processes but neglects the environment where
this hopping takes place. Recently it was shown (Razafi-
mandimby, 1982) that Gutzwiller's result for the ground-
state energy of a nonmagnetic, half-filled band system can
be reproduced by a very simple factorization approxima-
tion essentially equivalent to a one-site cluster expansion.
Furthermore, a two-site cluster expansion reduces to
Gutzwiller's results in the limit of the space dimension
going to infinity, and already in three dimensions gives
only very small corrections.

C. Comparison with Hartree-Fock approximations

In this context it is interesting to compare his results
with those of Green's-function methods using Hartree-
Fock decoupling approximations. As shown by Dichtel
et al. (1971,1972), the latter results are indeed identical to
those obtained by applying a canonical transformation on
the Hubbard Hamiltonian (7) and then using the method
developed by Bardeen, Cooper, and Schrieffer (1957) in
the problem of superconductivity. In the present problem
the order parameter is the local magnetic moment in the
antiferromagnetic phase. In both approaches the double
occupancy of a space point by a spin-up and a spin-down
particle is therefore of major importance. The results,
however, significantly differ: the Green's-function
method (Langer et al. , 1969; Cyrot, 1972) predicts a tran-
sition to an antiferromagnetic state for U=O in the
ground state for sc and bcc lattices, while in the Gutzwill-
er approach a finite correlation is necessary (Ogawa
et a/. , 1975; Takano and Uchinami, 1975; Florencio and
Chao, 1976). The ground-state energies in the two ap-
proximations for very small correlation are given by

&g/I
I o.t.= —

I
Eo

I
+——U

4

U'2

641 so
I

(16a)

U —
I &0 l

«E, /I,
I
„„=—

I
E,

I
+——o( (16b)

i.e., the Gutzwiller solution has a much lower energy.
Also, the single-particle occupation nuinbers differ signi-
ficantly: in the Gutzwiller case the momentum distribu-
tion (ni, ) has a discontinuity q & 1 for U& 0 at the Fermi
energy. This is characteristic for an interacting Fermi
system (Migdal, 1957) for which a perturbation expansion
in terms of the interaction can be used (Luttinger, 1960).
In the other case, however, the distribution is hardly af-
fected at all as is typical for a BCS condensate where all
relevant phenomena take place only in the very vicinity of
the Fermi surface. This also has consequences for the ef-
fective mass (see below). It appears to be connected to the
fact that in Gutzwiller's approach the momentum distri-
bution is constructed by systematically building up states
such that the Fermi surface always encloses the correct
volume. The latter method concentrates only on the anti-
ferromagnetic phase and hence only on the anomalous
Hartree-Fock averages of the interaction term, exactly as
in the BCS case. Thereby spin fluctuations, which are
important in the Hubbard model, do not seem to be in-
cluded sufficiently.

However, the Hartree-Fock ground state, rather than
the one of the noninteracting system, can actually serve as
a starting point in (8) for a considerable refinement of
Gutzwiller's approach, as shown by Stollhoff and Fulde
(1977). Their variational wave function even takes into
account density —density-like correlations and has been
successfully applied to molecules (Stollhoff and Fulde,
1977,1978,1980). The consequences for magnetic order-
ing in the Hubbard model have also been investigated
(Oles, 1982).
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D. The physical meaning of GUtzwiller's

approximation

Let us finally discuss how in the rederivation of
Gutzwiller's results by Ogawa et al. (1975) the discon-
tinuities q, and q, are obtained. This will later prove to
be very useful in the understanding and identification of
physical processes responsible for the structure and size of
the Landau parameters. Calculating the energy expecta-
tion value of the kinetic energy in (11) due to the hopping
of an t particle from site j to site i, we inust consider four
different configurations of spins on sites i and j as shown
in Fig. 2 (similarly for the hopping of l particles). Note,
in particular, that in the first two cases [Fig. 2(a)] the
hopping process does not change the total number of dou-
bly occupied sites D, while in the last two cases [Fig. 2(b)]
this number is changed by one. Only in the latter case,
therefore, does the total interaction energy UD change.
These four processes can also be understood in more
physical terms: the ones shown in Fig. 2(a) correspond to
the motion of an empty site to the left and of a doubly oc-
cupied site to the right, respectively; therefore they
represent the propagation of such objects. In Fig. 2(b), on
the other hand, a doubly occupied and an empty site an-
nihilate each other or are created, respectively; therefore
these processes represent the polarization of a medium of
singly occupied sites in terms of doubly occupied sites
("particles" ) and empty sites ("holes" ). When the spin-
configuration dependence of the norm (g l g) and of the
energy expectation values is neglected, as in the work of
Ogawa et al. (1975), the calculations are greatly simpli-
fied and, in fact, reduce to a mere combinatorial problem.
If we classify the spin configurations by D, the number of
doubly occupied sites, this then involves only XD, the

FIG. 2. The four possible hopping processes for an up-spin par-
ticle in the Hubbard Inodel; {a) leaving the number of doubly oc-
cupied sites unchanged, {b) changing the number by one.

number of different spin configurations for given

ND(L, N„N, )

I f

(N, D)!(N,—D)!D!(L——N, —N, +D)! (17)

and P(L,N ), the probability for a configuration of o.

spins to occur (which are all equal and independent be-
cause spatial correlations are neglected):

P(L N )=n (1 n)—
Using this notation, we can cast the expectation values
into the simple form

(lt
l
q)= yg' N (L,N„N, )P(L,N, )P(L,N, ), (19a)

( g( sic 0)= g(! [N~"(L —2 N —( N (+g Ng&(L —2 N —( ((( —2)
SJ D

+2gN (L —2,N, —1,N, —1)]P(L —2,N, —1)P(L,N, )e, , (19b)

(19c)

The expression for the l particles in (19b) is obtained by
replacing g and l.

The results are indeed plausible within the approxima-
tion scheme of neglecting spatial correlations. Take, for
example, the result for the kinetic energy as given in

2Note that in their approach q enters as a "loss factor" of the
hopping energy. Only in Gutzwiller s original work does it be-
come clear that q is the discontinuity of the momentum distri-
bution at the Fermi energy.

(19b). The four contributions, corresponding to the four
hopping processes shown in Fig. 2, can be obtained as fol™
lows. %'e take a lattice of I. sites and single out the two
sites between which the hopping on an f spin is supposed
to take place, such that there are D doubly occupied sites
in the remaining lattice. The number Pfa of spin configu-
rations in this environment of the two lattice sites de-
pends on the number of spins on these two sites. In the
first process in Fig. 2(a) there is only one t spin involved,
so the number is ND(L —2,N, —1,N, ), because we have
taken out two lattice sites and one f spin. In the second
process in Fig. 2(a) there are one t spin and two l spins
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missing in the surrounding environment, so the number of
spin configurations is ND(L 2—,N, —1,N, —2); and,
similarly, in the processes shown in Fig. 2(b) it is
ND(L 2,—N, —1,N, —1). Furthermore, in the first case
the number of doubly occupied sites of the total configu-
ration is D in the initial and the final states, leading to a
factor g g =g in the matrix elements. In the second
case it is D+ 1 both initially and finally, giving a factor
of g +'g +'=g + . In the last two cases the initial (fi-
nal) state has D+ 1 (D) such sites and vice versa, leading
to a factor of g +'g =g g +'=g +'. Finally, the ac-
tual probability for finding any t-spin configuration in
the environment of the two sites is P(L —2,N, —1).
However, the probability for the l-spin configuration is
P(L,N, ), because we left this configuration untouched,
letting only the t spin move. As spatial correlations were
neglected, the total probability is the product of both in
every case. In this way one arrives at the expression
shown in (19b) multiplied by the average energy s, of the
noninteracting case. The first term corresponds to the
first process in Fig. 2(a), the second to the second one in
Fig. 2(a), and the third to the two (factor of 2) in Fig. 2(b).

In the thermodynamic limit (L,N„N, ~oo) the sums
in (19) can be approximated by their largest terms, yield-
ing a relation between g and D (Gutzwiller, 1965; Ogawa
et al. , 197S)

d(1 n, —n, +—d}
(n, d)(n, ——d)

IV. THE APPLICABILITY OF GUTZWIl LER'S RESULTS
TO NORMAL 'He

Brinkman and Rice not only realized that Gutzwiller's
results predicted a transition to a localized state, they also
calculated the effective inass and the static spin suscepti-
bility (Brinkman and Rice, 1970) as well as the screening
constant in the strongly correlated phase (Rice and Brink-
man, 1971). Now, in the electron-phonon and paramag-
non problem the discontinuity Zi, of the momentum dis-
tribution at the Fermi surface determines the mass renor-
malization [see, for example, Brown (1972)],i.e.,

ax
Zk ——nk —nk —— 1—

F F F+ Bro EF
(21)

where BX/Bro is the frequency change of the self-energy.
Applying this result to the present problem, Brinkman
and Rice (1970) identified Zk and the discontinuity q and

obtained

where (20b) has been obtained by eliminating g. The
square brackets in (20b) with subscripts prop and pol refer
to the contributions to q from the processes shown in
Fig. 2(a) [propagation of an empty site (subscript 0) and
of a doubly occupied site (subscript T l), respectively] and
Fig. 2(b) (polarization process). This way of writing per-
mits us to keep track of the different contributions of pro-
cesses contributing to the kinetic energy.

it is symmetric in rr Inse.rting (19) into (11) leads to the
ground-state energy of the form shown in (12},with the
discontinuities now given by

2 —1

(22)

(n —d)+o-
q~ = (1 n n~—+d)—+g

ng 1 —n~ 1 —7l~ —Pl ~+6

Therefore, as U approaches U„ the effective mass
diverges. The spin susceptibility (see Sec. V) they ob-
tained as (Brinkman and Rice, 1970)

+2g (n —d) (20a)
X, = goN(0) ~ 1— U

U,

= t[( n n+d)——(n —d)
~
Q+d(n d)

~ „]p„p—
1+U/(2U, )

X 1 ——,N(0)U
[1+U/U, ]

+ [2[d (1 n n+—d)(n —d)(n ——d)]'~ ]~iI (23)

~[n (1 n)]— (20b)
So they found that the susceptibility is proportional to the
renormalized mass m ' /m and therefore is enhanced

As noted by Gutzwiller (1965), this expression shows that g is
equivalent to the Boltzmann factor in the law of mass action,
which can be obtained by the "quasichemical approximation"
[see also Chao {1974)]in the theory of mixtures. In fact, this is
also a first approximation for the Ising problem, showing that
at least at that stage both this and the present problem are
somewhat similar [Ogawa and Kanda (1978)].

4In fact, as d has already been determined as a function of the
variational parameter g, d, rather than g, should actually be el-

iminated; however, as the relation between d and g is one to one,
and as d can be directly interpreted, it is more sensible to use d
as a variational parameter from now on.
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(24)

They observed that these results qualitatively agreed with
the experimentally determined properties of normal He,
as discussed in the Introduction.

The Hubbard model to which the Gutzwiller approach
is applied treats fermions on a lattice. Normal He, on
the other hand, is a liquid, and therefore a priori it is not
evident why this model should give even a reasonable
description of liquid He. Indeed, all other methods show
that the lattice is of crucial importance to the results for
the Hubbard model. Depending on the particular type of
lattice, one obtains, at T=O, an antiferromagnetic state at
arbitrarily small interaction (sc and bcc lattice) or above a
critical value U, (fcc lattice) (Cyrot, 1972). Those results
therefore also strongly depend on the dispersion relation
E(k), which is determined by

mainly because of the effective mass m*/m and not be-
cause of the second factor in (23). In particular, the ratio
X, /(m*/m) tends towards a constant at U= U„ in con-
trast to paramagnon calculations, where this ratio
diverges, because m*/m is proportional only to the loga-
rithm of X,. The divergence of the-susceptibility hence is
seen to be a result of the ever-increasing localization of
particles carrying the spin. Investigating the static dielec-
tric constant, Rice and Brinkman (1971) calculated the
screening constant q, =(4me /V)(dX/dp), where e, N,
and p are the electronic charge, the number of particles,
and the chemical potential, respectively. Their result
shows that for U~U, q, ~1—U/U, ~(m*/m) '—i.e.,
the screening constant vanishes at U = U„and the screen-
ing length ~q, ' diverges. In terms of Landau-Fermi-
liquid theory one has (q, /q, ) =(m*/m)/[1+Fo], so
that the Landau parameter Fzcc(m*/m) diverges at
U=U, .

Anderson and Brinkman (1975,1978) suggested a con-
nection of these results for a metal-insulator transition
with the properties of normal He. Identifying (22),(23)
for m*/m and 7, and the respective ones in Landau
theory (1), they obtained expressions for the Landau pa-
rameters Fo and F', (note that the minus sign is missing in
their equation for Fo):

~g t 2 —]
U+

3

2+ U/U,
Fo ———,' N (0)U— (25)(1+U/U, )'

E = —,
' I dEEK(E), (26)

where p is the chemical potential of the o-spin particles
(with fixed number n ) and X(E) is the density of states
of the noninteracting system for both spins. Only in the
average quantity c. does the information enter whether
the system has a lattice structure or is a liquid and how
E(k) actually looks [see the discussion of the density of
states in liquid metals by Ballentine (1975)]. Also the
range of hopping of the fermions which determines E(k)
and N(E) is therefore not explicitly needed at all; it
comes in via E and only sets the scale U, =8 go ~

for the
coupling parameter U. It becomes clear that Gutzwiller's
approach is therefore well suited for the study of a system
without a fixed lattice structure like liquid He (on a short
scale a liquid resembles a solid in many aspects, anyway).
This method treats not onIy the Hubbard Hamiltonian (7)
but, more generally, the Hamiltonian (3) for a contact in
teraction between fermions which also is assumed to be a
valid model for He.

V. THE GUTZWILLER APPROACH AND FERMI-LIQUID
THEORY

not due to the normal two-particle nearest-neighbor ex-
change mechanism as in electronic magnetic materials.
Rather it appears to be of the up-up-down-down type
(Osheroff, Cross, and Fisher, 1980), which can so far only
be explained by three- or four-spin ring exchanges (for a
review, see Roger et al. , 1983). Furthermore, an incipient
antiferromagnetic instability of the normal He liquid as
proposed by Dyugaev (1976) has been rejected by Levin
and Valls (1979b) and Aldrich and Pines (1980).

Of course, in a liquid the term "localization of parti-
cles" (where sites are only singly occupied) changes its
meaning. It must rather be understood as a state where
the particles want to have a maximum separation to avoid
interaction. This makes a reduced compressibility as in
liquid He intuitively plausible.

The Gutzwiller variational approach is independent of
all these details. As seen from Eq. (12), the only quantity
appearing in the ground-state energy which does depend
on the particular features of the system is c, , the average
energy of the o.-spin particles in the uncorrelated state.
Clearly,

(i) the lattice structure, and
(ii) the character of hopping (next-neighbor or larger-

range hopping).

This in turn determines the density of states. In the He
liquid there is no lattice, however. At 34.36 bars a first-
order transition occurs, and the liquid solidifies, immedi-
ately forming an antiferromagnetic state in a bcc struc-
ture. Presumably, the antiferromagnetic state would have
formed already at lower pressure (i.e., interaction U) but
was obstructed from doing so because of the lack of lat-
tice structure. Note, that this antiferromagnetic state is

A. Changes in the ground-state energy;
Landau parameters

I now want to show that Cxutzwiller's result for the
ground-state energy of the Hubbard model is closely con-
nected to the concepts of Landau-Fermi-liquid theory.
Therefore, the possibility of extracting Landau parame-
ters from those results appears quite natural. The
ground-state energy per particle Eg= Eg/L is given by—
(12). Let us assume that, without external disturbances,
the equilibrium of the system was given by n, =n, = —,',
although this is irrelevant for the arguments to follow. If,
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due to such a disturbance, the system is forced to find a
new equilibrium, the ground-state energy changes by

5E& ——g Ep 5n p
—— , [Fo(5n, +5n, )

&
p

2N'(0)

5Eg= g(q 5s +5q E )+U5d . (27) +Fo(5n, —5n, ) ],
On the other hand, minimization of Eg with respect to d
yields

Bq
s +U=O. (28)

Therefore, (27) can be written as

5Es = g (q 5s +E 5q )
~
q, (29)

where 5E,5q imply a variation at fixed d. So the change
of the particle energy is due to two separate effects:

(i) q 5E, an explicit change of the particle energy, and
(ii) s 5q~, a change of the distribution function, charac-

terized by a change of the discontinuity at the Fermi sur-
face.

In this respect there is a close analogy to the concepts of
Landau-Fermi-liquid theory (Baym and Pethick, 1978).
There the quasiparticle energy cp is given by

p 1
spa spcr+ g fpa p (r 5n p

n'''
V P, cT

(30)

where c& is the quasiparticle energy in the ground state
and the second term is due to the interaction of the quasi-
particles reflecting the corresponding change of the quasi-
particle distribution np Ther.efore, the change of the
equilibrium by some external effect leads to a change of
the particle energy for the noninteracting case plus a
change of the quasiparticle distribution:

(33)

where N*(0)=(m'/m)N(0) and 5n„5n, are the varia-
tions of n„n, due to the change in equilibrium. The
right-hand side expresses the change of the distribution in
terms of "molecular fields" Fp,Fp, which parametrize the
quasiparticle interaction (Leggett, 197S). The similarities
between Gutzwiller's approach and Landau theory also
serve as a different way of identifying q as the inverse ef-
fective mass. In Landau theory the quasiparticle energy
Ep in the ground state is given by

Ep p /(2m ) (m /m) Ep~

where the renormalized mass m* appears. A comparison
of (29) and (32) naturally lead to the identification
q =(m*/m) ' via the comparison of the (quasi)particle
energies in the ground state. [This is similar in spirit to
the discussion of Mott (1974) concerning the effective
mass of current carriers in the Gutzwiller approach. ] In
the interacting Fermi system the discontinuity q ( 1

characterizes the quasiparticle contribution to the spec-
trum, while in Landau theory only quasiparticles are in-
volved (q= 1). It appears as if Ciutzwiller's approach
yields a quasiparticle description of the system where the
character of those quasiparticles, however, is not yet clear.

We now want to obtain an explicit expression for 5Es
within the present formulation. Note that in (33) the first
term of the right-hand side corresponds to a change in
particle number and the second to a change in the mag-
netization. We define

p 1
5epg:5Epg+ g fpg p g 5np gV

(31)
5=5n, +5n, ,

m=5n, —5n, .
(34)

The change of the ground-state energy is then

5Es ———g s~5n~

1 1+ 2 g g fp~ pgy 5npg5np~
2

(32)

where fp p
——f» +f» r r' are spin-independent and

spin-dependent parts of f», respectively, and r is the
Pauli spin matrix. Using the usual decomposition of fpp
by means of Landau parameters and neglecting higher pa-
rameters than Fp,Fp, one finds

Let us then rewrite the expression for q (23) by introduc-
ing

n =n, +n, ,

m =n, —n, =5n, —5n, ,
(35)

q~=qfn ~ (36)

where q =Sd(l —2d) and

where M =ppml. is the magnetization of the system. We
take the half-filled band case (n= 1) as equilibrium, i.e.,
5= 1 nand 0 (—m ( 1. We can then rewrite (20) as

f, (5,m)= —.1

4
+5

1 —2d 1 —2d
P&&P

+2 1+—5 1— 5
1 —28

2

I —2d'

1/2-

pol

[1—(m —5) ]
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and f, (5,m) =f, (5, —m). Obviously, f,=f, =1 for
5=m =0; furthermore,

n~= —,
' f dEN(E) . (38)

Eg ——qgf E +dU. (39)

For a symmetric density of states N(E) the chemical po-
tential for a half-filled band is zero and therefore
p, = —p, . The ground-state energy is then given by

The spin susceptibility is then obtained by 5E~
=M /(2X, ), as

X, =poN(0)
—1

ep
8 p

1 —p
8pl m=0

(49)

This result allows for a natural comparison with the cor-
responding Landau expression which has an identical
form and gives (Rice and Brinkman, 1971;Anderson and
Brinkman, 1975)

To obtain 5Eg we expand q and f in (39) in a Taylor
series up to second order in d —dp, where
do ——d(m =0,5=0). One finds

~fo 1
Fp ———p = —p 1—

Bm ~ o (1+I)2 (50)

Eg =qo Pf~,os~+ 16(d —do)~Ko+do U ~ (40)

where qo and f o are the respective quantities at d =do,
and K=K, +e„Ão=F(m =5=0). The change of the
ground-state energy is then found to be

5Eg ——qo g(5f os +f os~)+16(d —do) so

Naturally, the same expression for Fp results by explicitly
comparing (46) with the corresponding expression (33) in
Landau theory. As 0 &I & 1, Fp takes the values
—

4 p &Fp & 0, i.e., is always negative.
2. m =0. In this case one finds from (28) that

d —do= ——,'5+0(5 ), and

=qo5E+ —,
'
qo(5f i.o+5f i,o)Eo+16(d —do) eo

where

(42)
2i qo(5f &,o+5f i,o)= 4(1—4do)5 —25

1+2dp (1+5 )+qo5
p

(51)

2N(0)
m +5 (43) so that

fg, o=fg, o=fo

1 1+ 1—
2 1 —2d

2 1/2 '

(1—m ) (44)

=1+ 1 — I1

4(1—2do)
(45)

Because of do ——(1 I)/4, where I= U/U—„5Eg is —given
by

9'p 1 25Eg ——qp5F— p 1— m
2N(O) (1+I)'

qp
1

1

2N(0)
(47)

with p=2
~

go
~
N(0), where the first term in parentheses

is due to 5E and the second one due to the change of the
distribution function. It can therefore also be written as

The first term in (42) is due to the change of the particle
energy and the second one due to the change of the
momentum distribution. It is clear from the symmetry of
the problem that for 5=0 one has d —dp ~ m, and there-
fore as f, o ——f, o=fo, Eg qofoE+doU. Le——t us investi-
gate this case first.

5=0. Then (37) reduces to

5Eg+ 5=qo5e+ p —1 5
2 2N 0 (1+I)2 (52)

1

2N(0) (1 I)' 5 . (53)

We observe that BEg/B5= —p yields p= U/2, the exact
result for the half-filled band case (Methfessel and Mattis,
1968) [this term should have actually been subtracted al-
ready in the original Hamiltonian (7)]. Using
d Eg/d5 = 1/a. for the compressibility or comparing (52)
directly with Landau theory (33) provides us with a result
for the Landau parameter Fp.

1

Fp ——p —1
1

(1—I)' (54)

Fo( U) =Fo( —U), (55)

Note that this result is exact within the present approach
and is therefore slightly different from the one obtained
by Rice and Brinkman (1971), who only calculated to
leading order in (1 I) '. The main quali—tative feature,
however, is the same: As U~ U, (I~1),Eo becomes very
large and, at I=1, where localization occurs, diverges as
the square of the effective mass.

Nevertheless, the exact result for Fp is of interest when
Fp and Fp are compared; then one finds

5Eg —— qo ~fo
2N(0) am'1 —p m (48)

i.e., the Landau parameters associated with density fluc-
tuations (Eo) and spin fluctuations (Fo) are closely relat
ed and, in fact, change role when the sign of the interac-
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tion is reversed. At first sight this relation is surprising,
because Fo and Fo are so different in size and even sign.
But it can be understood by analyzing the physical pro-
cesses responsible for these molecular fields. The on-site
interaction at site i in (7) can be written as (Miihlschlegel,
1965)

Un;, n;, =—[(n;,+n;, ) —(n;, —n;, ) ] .l 4
(56)

The first term in (56) represents density fluctuations and
the second one spin fluctuations. For repulsive interac-
tion (U&0) the number of doubly occupied sites is re-
duced for increasing U, while the opposite is true for at-
tractive interaction. While in the first case spin Auctua-
tions can be expected to lead to the dominant physical ef-
fects, in the second case it will be the density fluctuation.
In fact, Gutzwiller's approach can be applied to both the
attractive and the repulsive cases. From (15c) one finds
that the ground-state energies in these two cases are relat-
ed by Eg( U) =Eg( —U)+ U/2. This is actually a rigorous
result for the Hubbard model in the case of a half-filled
band. 5

B. Comparison with paramagnon results

It is interesting to note that in the limit of weak in-
teraction, U —+0, we find Fo ——UN+, Fo ———UN+ —i.e.,
one has Fo( U) =F0( —U) as a trivial consequence. At the
same time the effective mass m*/m, (22), has only a

quadratic correction in U and therefore does not enter the
expression for the susceptibility in that limit. So our re-
sults reduce to those of paramagnon theory in lowest (i.e.,
linear) order in the interaction U, leading to
X,=(1 I)—

I now want to show that this result, correct to linear or-
der in U, is a general property of a contact interaction of
the sort used in (2) or (7). For this we start from the ex-
pectation value of the interaction term, written in the
form of (56). In linear order one has U( n;, n;, )
=U(n;, )(n;, ) =Un, n, Using the notation of (35), with
n = 1 —5, one finds

U(n;, n;, )=—[(1—5) —m ] (57)

=———5+—(5 —m ).
4 2 4

(58)

This expression yields the exact result for the chemical
potential, p, = —BE/B5 = U/2 (Methfessel and Mattis,
1968). Comparison with (33) then leads to
Fo = Fo ——2N (0)—( U/4) = UNF, as mentioned above.

It is important to point out that in the opposite limit,
U~U„ the divergence of the spin susceptibility does not
occur at UNF 1, as in ——paramagnon theory (correspond-
ing to a magnetic instability). Rather, the divergence of
7, occurs at U=U, =2@/N~, where the effective mass
diverges, i.e., at UNF 2p=2 (be——cause p=l as will be
shown in V.D).

G. The physical origin of the Landau parameters FO, FO

One can now show explicitly how, and due to what physical processes, the Landau parameters arise in the present for-
mulation. At a small but finite magnetization m, the ground-state energy Eg (40) is given by

g 4
Pl mEi+si+ (Ei —Ei) + Ei+Ei — (eg —Eg)

o
2 p

2 1/2
prop

1 2do
(s, +K, )

pol

.(1—m ) '+doU . (59)

First of all, we observe that in the general case of an unsymmetric density of states one has K,&e„and therefore the
propagation of an empty site ([ ]0) has a different kinetic energy from that of a doubly occupied site ([ ]«). However,
the sum of the energies is independent of this fact. In the case of a symmetric density of states, the Landau parameter
Fo (50) is then given by

I

[1]p„p+ 1— Pl

1 —2dp

1 —m

' 2 1/2

pol

m=0
(60)

(61)

5I am grateful to U. Wolff for pointing this out to me.
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We observe that the propagation and polarization process-
es contribute quite differently to the kinetic energy and
therefore to Fp. The propagation of empty and doubly
occupied sites altogether always lead to a negative, i.e.,
ferromagnetic, contribution to Fo. [It should be noted that
the results for the Hubbard model obtained by Nagaoka
(1966) concerning the possibility of a ferromagnetic
ground state for U= ao and N =L+1 in several finite lat-
tices are not conclusive in the present case.] In contrast to
this, the polarization effects lead to a positive, i.e., antifer-
romagnetic, contribution of 2 p at small interactions

(do ——,
'

) and to a ferromagnetic one of ——,'p close to the
localization transition, when do ——0. Qualitatively, this
can be easily understood; at small interactions a polariza-
tion process costs no interaction energy and is favorable
for the kinetic energy in a state of antiferromagnetic or-
dering. When the interaction becomes strong, however,
this process becomes unfavorable and can be suppressed
in a more ferromagnetic environment. As He is always
close to the localization transition, its value of Fo is ap-
proaching ——,

'
p & —1; we therefore find that the

enhancement of the spin susceptibility is partly due to a
ferromagnetic contribution (Fo (0), but that one is al-

ways far away from a ferromagnetic transition This.
finding is supported by recent results of Ainsworth,
Bedell, Brown, and Quader (1983) obtained from a refined

version of the induced interaction model (Babu and
Brown, 1973). These authors find that within the sim-
plest model for the direct interaction of the quasiparticles,
given by a zero range interaction (2), the value of Fo is
bounded from below (Fo& —0.63) regardless of the in-
teraction strength U. They also find that small changes
of Fp are accompanied by large changes in Fp. Although
they cannot obtain a value for Fo from this simple model
which is consistent with the experimental result (in con-
trast to our findings) their results qualitatively agree with
ours. Using the experimental values for Fo Fo and F)
the model developed by Ainsworth et al. (1983) allows
one to calculate higher-order FI parameters. The authors
explicitly note that Fp is never close to —1; if it were,
many of the FI would turn out too large, in contrast to
the experimental values (Greywall, 1983). Their results
appear to be consistent with the notion of He as an
almost-localized system —a notion which is also implicitly
contained in the most recent model approach to the quasi-
particle interaction by Bedell and Ainsworth (1983).

Our formulation explicitly allows us to distinguish be-
tween a transition to a localized or to a ferromagnetic
state. We find that normal He is almost localized rather
than almost ferromagnetic.

The contributions to Fp can be analyzed in a similar
way. One finds

a
p 85

1

2

2/2

prop

j 1+2dp
2do9'p po] e'o 5=p

(62)

2 1

p 2

1+2dp
+

prop
2d 2 (63)

For U~ U both dp the number of doubly occupied sites,
and qo, the discontinuity, vanish. Equation (63) expresses
the fact that the dominant divergent term contributing to
Fo is given by (1+2do)/(2doqo), arising from the spin
fluctuation process shown in Fig. 2(b), i.e., a polarization
process. As U~U„such processes are of dominant im-
portance, because they become more and more disadvan-
tageous. In a charged system, this explains the vanishing
of the screening constant q, in this limit (Rice and Brink-
man, 1971); the screening length diverges —there is no
screening any more because polarization of the medium is
too costly in energy. In the present case, the polarization
processes give rise to the term 1/(1 I) in Fo, which—
measures the sensitivity of the system's energy to density
fluctuations, and which leads to a strongly decreased
compressibility.

D. Quantitative results

In order to get a quantitative estimate of the results for
Fo and Fo we proceed as follows: First of all, we calcu-
late p =2

~
so

~

N (0) within some reasonable model for the
density of states N(E) of the uncorrelated system. For a

I

tight-binding band, N(E) can be approximated by
Hubbard's half-ellipse (Hubbard, 1963, 1964) for most
purposes:

2 1/2

N(E) = 1—8
(64)

where 6 is the total width of the band. Using this expres-
sion, we find N(0) =8/mh,

~
eo

~

=26./3~ and therefore

p = =1.08 .32
3m.2

(65)

lim Fp ———4p .
U U

(66)

So Fo not only stays constant for U~ U, (as found in the

With the exact density of states for nearest-neighbor hop-
ping on a simple cubic lattice one obtains about the same
value, while for a square-shaped form [N(E)=2/b, , for
~E

~
(b/2] @=1 exactly. It is not hard to see that for

any form of N(E) which is symmetric and somehow
resembles (64), p is always approximately given by p=l.
This has a very interesting consequence for Fp, because
for U~U, one finds
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FICx. 3. The pressure dependence of the scaled interaction pa-
rameter U/U, for normal He.
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FIG. 5. The Landau parameter Fo for normal He as calculat-
ed, in comparison with the experimentally obtained values
(Greywall, 1983).

=1+F)/3= (67)

we find

(68)

As the Landau parameter F~ is experimentally known as
a function of pressure, we thereby find the actual pressure
dependence of the interaction parameter I(P), which is
shown in Fig. 3. We see that at P =0, I=0.8 and at melt-
ing pressure (P =34.36 bars) I=0.9—i.e., the interaction
parameter varies like 0.8 &I &0.9 as pressure is changed.
This means that at all pressures one is rather close to the
transition I= 1. Note that the solidification of liquid He
occurs at an interaction strength U & U„where the num-
ber of doubly occupied sites is very small

experiment) but, in fact, approaches a value within a few
percent of the one experimentally measured. Using the
relation

(d =0.025—0.05) but still finite. Localization and solidi-
fication are hence not identical. This is not surprising,
because even in a solid there are interstitials and
vacancies —particularly so in a quantum solid such as
solid He (Andreev and Lifshitz, 1969). Furthermore, the
"localization" of particles in a liquid implies that they
want to keep apart as much as possible: this is then a first
step towards solidification into a crystalline structure
(Kirzhnits and Nepomnyashchii, 1971), which in the case
of He sets in by a first-order transition.

The pressure dependence of U/U, now permits us to
plot the pressure dependence of Fo, Fo according to ex-
pressions (50) and (54); using p given in (65), they are
shown in Figs. 4 and 5 in comparison with the actually

24

-Q.5
o vl 20

x 18

-0.7
Fo

-08-

Expt.

Theory

-0.9-

-1.0 I 4 I I I I I I I i

0 3 6 9 12 15 18 21 24 27 30 33
P {bar)

FIG. 4. The Landau parameter Fo for normal He as calculat-
ed, in comparison with the experimentally obtained values
(6reywall, 1983).

10

8 I I I I I I I I

0 3 6 9 12 1S 18 21 24 27 30 33
p (bar)

FIG. 6. The normalized spin susceptibility of normal He as
calculated, compared with the experixnental values (Greywall,
1983).
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0.28-
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experimental data at least at low pressures (Baym and
Pethick, 1978)], allows us to obtain an analytic result for
E1. In this approximation we have

—1 —1

0.1 6
X/X, o

002 1 1
—1 —1

+ES
1+

0.04-

0 I I 4 I I I I I I

0 3 6 9 )2 t5 )8 2t 24 27 30 33 (bar)
P

FIG. 7. The normalized compressibility of normal He as cal-
culated, in comparison with the experimentally obtained values
(Cxreywall, 1983).

We observe two points:

(i) the merely qualitative agreement between the result
for Eo and the experiment is quite unimportant here, be-
cause Fo is large and positive and therefore 1/Fo is small
in any case, and

(ii) the above expression for F& can depend only on I,
because Fo(I)=Fo( I) and —F~ ——3I /(1 I ). —

measured values (Cxreywall, 1983). While for Fo there is
only a qualitative agreement (the shapes of the curves are
very similar, and Fo is large and positive), the pressure
dependence of Eo agrees with the experimental one at all
pressures within a few percent. Using the results for Eo
and Fo, we can calculate the spin susceptibility 7, /X, and
the compressibility I~/~ as given by (1). The results are
shown in Figs. 6 and 7. Only the effective mass expres-
sion has been fitted to obtain the pressure dependence of
I; besides that, essentially no other parameter has to be
adjusted. In view of this fact, the agreement with the ex-

perimental points is indeed remarkable.
The fact that Eo approaches the value ——,'p, @=1,

finds an interesting analog in the results of Castaing
(1980). He showed that if (for any unknown reason) nor-
mal He could be described by a set of two-level systems,
such that t spins and g spins had different energies, then
Eo should tend towards a limiting value Eo ————, as pres-
sure is increased, i.e., as the solid is approached. Just as
in Gutzwiller's approach spin correlations are neglected in
his model.

We find

8+ —,pA
E1 ———3I—

8 ( 1+I ) + —,
'

pA
(71)

while

3I
1 I @=1 3+I (72)

I (2+I)
(1+I)'

In both cases these Landau parameters have the limiting
value ——, as U~U, . In general, however, p&1 al-
though, as argued above, ii is always close to one. Setting
1 —p =E, we expand to first order in c. and obtain

where 3 = —1+(4 I )(1—p—), 8=[1+I (1—p)j
4I (1 p) . —It is —interesting to note that the case

p =2
~

Eo
~

%(0)= 1 proves to be a special one. In this case
2 = —1, 8 =-1, and one obtains

E. LBA18U parafA8t8r Fq

3I' 6(5+I')1+— E +0 e3+I' 3+I' (73)

g (A('+A(') =0 .
l=o

(69)

Keeping only Landau parameters with i &2 [which is
equivalent to the s-p appmximation (Dy and Pethick,
1969) and which is known to be in good agreement with

The remarkable quantitative agreement between theory
and experiment concerning Eo leads to a possible exten-
sion of the results: the calculation of one more Landau
parameter, namely, E1, involved in spin currents. Little is
known about E1, because there is no exact relation of it to
a measurable quantity, as in the case of Eo, Eo, and F»
and therefore even its measurement is rather indirect
(Cxreywall, 1983). To obtain an expression for F& we use
the forward-scattering sum rule for Landau parameters

The prefactor of the first-order correction term is always
between 9 and 10, i.e., is large. This has the consequence
that the pressure dependence of F1 depends extremely
sensitively on the size and sign of e, particularly at higher
pressures (where the s-p approximation is not very good,
anyway). To obtain a quantitative result for F; using (71)
we have to make a particular choice for p. We find that
only the case a=1 —p &0 is able to reproduce the experi-
mentally determined behavior (Greywall, 1983) F& &0,
BF~/Bp ~0 (c,=0 is already sufficient for that). In that
case we find E1 ———0.S3 at P =0 decreasing to
E1 ———0.65 at melting pressure. However, as a small
change of c from, say, 0.01 to —0.01, already produces a
large change in the pressure dependence of F;, (71) and
(72) should not be used beyond the qualitative result that
for U—+ U, F1 approaches a constant value, as does Fo.
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equation for d: 1.0

PlI= , F—(1—4d)(1+ W')—
1 —2d

(79)
0.9

0.8

The magnetic field H leading to a magnetization M =po
I.m is obtained from the ground-state energy by

(80)

which leads to

4d ( 1 —2d)
1 —m 2

8 1 1 —mmI' 1+8'———
3m 2 (1—2d) W

0.6

0.5

0.4

0.3

o.2 .

O. l

(81)

where H'=2p HO/h. Fixing I=U/U„we choose a
value for 0&m & 1, calculate p via (75) and then solve
(79) for d. This value is inserted into (81) to obtain
H'=H*(m, I). By inversion we find d=d(H*, I), the
number of doubly occupied sites as shown in Figs. 8(a)
and 8(b) [as well as the magnetization curves
m =m (H', I) shown in Figs. 10—12].

We see that the magnetic field H* and the on-site
repulsion I have similar effects on the system: both reduce
the number of doubly occupied sites and thereby drive it
towards a localized state where the particles maintain the
maximally possible separation between each other. The
magnetic field turns the spins around so that due to the
Pauli principle fewer and fewer sites will be doubly occu-
pied. In the limit m =1 spins of only one species exist,
and therefore one finds d =0, as is evident from the rela-
tion d (n, n, = —,

' (1—m ). Note that in the uncorrelated
case ( U =0), q, the discontinuity of the distribution func-
tion at the Fermi energy, is always given by q=l, ir-

1.0

0.9

0.8

0.7

0.6
0.5

0.4

0.3

0.2
0.)
G.G

0 G. ) 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 ).0
H

FKx. 9. The critical line U/U, vs M* ~here d vanishes. The
shaded area applies to normal 3He.

0 O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.0
H

FIG. 10. The magnetization curves m as a function of the mag-
netic field H* for constant interaction I.

respective of the field. In this case the localization,
characterized by d =0, is not due to a divergence of the
effective mass, but because the average energy
e=eo(1 —p )

~ goes to zero (because p~ 1). Only at fin-
ite interaction strength does a magnetic field have an ef-
fect on q, i e , on .th. e effective mass m*/I, as will be dis-
cussed in the end of this section. As H* and I aid each
other in suppressing d, the critical interaction strength for
which d =0—i.e., where the system localizes Depends on
H* and vice versa, as shown in Fig. 9. As liquid He is
strongly correlated (0.8 &I &0.9), relatively small values
of H are necessary for that, because the number of dou-
bly occupied sites is small already and therefore the effec-
tive mass is large. This becomes even more evident from
the magnetization curves m (H*,I) in Fig. 10, where I is
shown as a function of H' for fixed I. For I &0.44 the
magnetization continuously increases with increasing
magnetic field; for I&0.44, however, there is a critical
field at which the system magnetizes completely via a
transition of first order. At this point d and m discon-
tinuously go to their limiting values d=0, m=1. As
mentioned earlier P =0 corresponds to I=0.80 and
I'=34.36 to I=0.91; in the first case the critical field is
H =0.03, while in the second case H*=0.008. For
reasons of clarity I show this portion of Fig. 10, which is
relevant for liquid He, on a larger scale in Fig. 11. The
magnetization starts linearly (M =X,H) and then its slope
increases dramatically. Finally, in Fig. 12 m is shown as
a function of the interaction, i.e., the pressure, at constant
magnetic field. Increasing the pressure also increases the
magnetization and can even induce a first-order transition
to a fully magnetized and hence localized state. Note that
any kind of antiferromagnetic state (which is energetically
unfavorable anyway because of the lack of lattice periodi-
city in liquid He) will be suppressed by the external mag-
netic fields. In terms of actual magnetic fields, H* corre-
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1.0

0.7-
090 0.88

pressure. For I=0.9 (P=27 bars) we find that a field of
2.3 T leads to a magnetization of 1%, while at 7.3 T it is
3%. These results for the magnetic field dependence of
liquid He, obtained from an absolute scale for the mag-
netic field and where only the effective mass has been tak-
en from experiment, agree with those measured by
Chapellier et al. (1979) and and Thoulouze et al. (1980).

B. The nonlinear susceptibility

0.80- The linear relation between M and H is valid only for
H' &~ 1. Let us now calculate the deviations from lineari-
ty as H* increases, i.e., higher-order corrections in H' to
the spin susceptibility X,(H, I). For this we write

X,(H', I)=X,+c(I)H* (83)

0.1
where X, =X,(O,I). The calculation of c(I) is straightfor-
ward but tedious, and the result will not be reproduced
here. One finds ( y

—=m ' /m b,«)
GQ

0 QQ1 H+ Q82 0.03 c(I) cc yX, , (84)

FIG. 11. Enlarged portion of Fig. 10 relevant for normal He.

EH= E/2H~ FH
Po Po

(82)

0.9

0.8

where EF is the Fermi energy of the uncorrelated system.
The prefactor is approximately given by
EF/po —9.88X10 ' /a (T), where a =(N/V)' is the
interparticle distance in A (Wheatley, 1975). Therefore,
EF/po —6.37X10 T at P=O and 8. 11)&10 T at melting

i.e., a very large prefactor for the lowest-order correction
to X„essentially proportional to the fourth power of the
already large zero-field effective mass. This explains why
the magnetization curves become even steeper rather than
flatter beyond the linear regime and why the transitions to
a fully magnetized state occur at such small H'. Indeed,
this fact can be expressed by a scaling relation, valid close
to the transition:

H, =(1 I )—(85)

This is in contrast to paramagnon theory (Beal-Monod,
1982), where one finds c(I) ~(1 I) ccX, —i.e., there-
c (I) is proportional to the fourth power of the zero-field
susceptibility (the Stoner enhancement factor). As al-
ready discussed in detail, we find that it is the effective
mass which leads to the strong enhancement of the sus-
ceptibility rather than the vicinity of a ferromagnetic
state.

0.7 Q. Influence on the melting curve

0.6

0.5

0.4

The magnetization curves now allow us to estimate the
change in melting pressure due to a magnetic field [see
the detailed discussion of this point by Castaing and
Nozieres (1979)]by the thermodynamic relation

0.3
BP
BH T

ML —M,
Ul —

Ug

(86)

0.2 = 0.0)

01

0.0
0 0.1 0.2 0.3 0.4

i

Q.5 0 6 L7 L8 0.9 133

I
FIG. 12. The magnetization curves m as a function of the in-
teraction I for constant magnetic field H*.

where ML ~ and UI q are the magnetization and molar
volume of the liquid and the solid, respectively. At high
fields (H )20 T) the solid will be almost fully polarized,
M, =@ON, 6 so that the change in melting pressure is given

Already at H =7 T the magnetization of the solid has reached
almost 80% (Roger et al. , 1983).
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by the differential equation

hu = —ppX[1 —m (H, P)] .
dP
dH

Here AU=1. 2 cm is the change in molar volume (we
neglect the small effect of magnetostriction) and
X=6 X 10 atoms/mole. In dimensionless units (87)
reads

non model [see also the review of Beal-Monod (1982)].
For magnetizations m « 1 q can be written as

q=(1 —I )[1—Q(I)m ],
and therefore

y(II*,I)—y(O, I)=y(O, I)Q (I)m

=y(O, I)Q (I)X,II

(89)

(90)
dP

dW
EF(P)[1—m (H*,P) ] . where y(O, I)= (1 I ) '—. For Q (I) one obtains

To estimate its solution this equation has been solved nu-
merically by using approximate analytic functions for
m (H*,P) and EF(P), assuming that the relation between
U and P, as shown in Fig. 3, roughly holds even at finite
magnetic fields. The maximum change in melting pres-
sure is then found to be

AP „=—3.4 bars .

Therefore, the melting pressure at T=O is lowered from
Pmelt 34 4 bars to Pmelt 3 1 bars. However, the result-
ing curve in zero field has a minimum of P;„=29.4 bars
at T=0.32 K [see, for example, Greywall (1983)],because
at very low temperatures (T«TF) the entropy of the
liquid, Sl, decreases linearly with temperature, becoming
smaller than that of the solid, S, =&ln2 (Pomeranchuk,
1950). We then find that this minimum almost vanishes,
as was anticipated (Castaing and Nozieres, 1979; Lhuillier
and Laloe, 1980). In fact, the minimum must disappear
completely at very high fields, because the spin entropy of
the polarized solid is zero (Castaing and Nozieres, 1979).
This is not the case here, indicating that the calculated
magnetization curves m (H*,I), Fig. 11, as a function of P
are slightly too steep close to H„where the liquid be-
comes totally polarized. It can be understood as being
due to the approximation used, in which the kinetic ener-

gy of the particles in the totally polarized system is strict-
ly zero. On the other hand, improvements in this point
do not lead to drastic changes of the results. To show
this, I have, for comparison, calculated the drop in melt-
ing pressure if the magnetization curve kept on going up
linearly with magnetic field until full magnetization is
realized. In this case one finds AP „=—12.6 bars. So
the melting pressure of the totally polarized liquid is at
any rate larger than zero. The above finding is in essen-
tial agreement with the result of Castaing and Nozieres
(1979), who obtain b,P,„=—7 bars assuming liquid He
to be "solidlike" and those suggested by the refined in-
duced interaction model due to Bedell and Quader (1983).

D. The effective mass

Finally, we can calculate the change of the effective
mass q

' =y due to a magnetic field, i.e.,
y(II*,I)—y(O, I). For electronic systems with an
enhanced Pauli spin susceptibility such a calculation has
been performed by Hertel, Appel, and Fay (1980), who
considered the magnetic field dependence of the electron-
paramagnon interaction within a two-parameter paramag-

(91)

and so the change in effective mass is given by

y(H*, I)—y(O, I) ~ [y(O, I)X,] H (92)

We have seen that Cxutzwiller's variational approach
(Gutzwiller, 1963—1965) to the Hubbard model goes
beyond the lattice aspects of this model. More generally,
it treats a Hamiltonian for a contact interaction between
fermions, which is assumed to be a valid model for nor-
mal He. Its results are in good qualitative and —in the

i.e., it is essentially proportional to the fourth power of
the zero-field effective mass. This is again different from
paramagnon theory (Beni-Monod, 1982), which calculates
this quantity via the temperature dependence of the spin
susceptibility and finds that y(H', I)—y(O, I) ccrc,II, the
prefactor being proportional to a third power of the Ston-
er enhancement factor. Although this magnetic field
dependence, in absolute terms, is still rather weak, we find
that the effective mass is affected much more strongly by
a magnetic field than previously assumed. At I=O.9
(P=27 bars) we find that y(H*, I)/y(O, I) is enhanced by
about 0.75% at 17.6 T and by 1.4% at 23.2 T.

It should be remarked that Q(I) in (90) has a peculiar
dependence on I: For I &0.5 one finds Q &0 i.e., the ef-
fective mass decreases for increasing magnetic field and
only for I &0.5 (as is the case for He) Q &0, indicating
an increase of the effective mass. The sign of the change
in effective mass is hence seen to depend on the strength
of correlation I. This might explain why in some sub-
stances like Pd or LuCo2, whose susceptibility enhance-
ment is not as large as that of normal He (where I is
therefore smaller), this change is, in fact, negative (Beal-
Monod, 1982). Such a lowering of the electronic effective
mass in a strong magnetic field has also been found in the
work of Hertel et al. (1980) who apply their results to
UAlp.

Very interesting predictions for the effective mass of
fully polarized He have recently been made by Bedell and
Quader (1983) and Bedell (1983). Based on the induced
interaction model (Babu and Brown, 1973; Ainsworth
et al. , 1983) these authors calculated the effective mass
and transport properties of a fully polarized system, in
which spin fluctuations and singlet scattering are frozen
out. They find a strong depression of m*/m to about 0.8.

VII. DISCUSSION
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case of the spin susceptibility —even quantitative agree-
ment with the static properties of normal He. For this
agreement only the pressure dependence of the interaction
strength U/U, has to be determined; in principle, no oth-
er adjustable parameter is necessary to describe the spin
susceptibility and the compressibility. The present for-
mulation allows one to distinguish between a localization
transition, where m diverges, and a magnetic instability,
where Fo~ —1. We find that while m* does diverge at a
critical interaction U„ the Landau parameter I o ap-
proaches a constant value —4p—i.e., the ferromagnetic
transition is never close. Furthermore, we have found
that spin fluctuations are important but that they are only
a secondary effect, the primary effect being the localiza-
tion of the particles at U= U, . It has been shown that, at
all pressures, He is always close to this localization tran-
sition: 0.8 & U/U, &0.9. A truly localized state is never
reached, however. Solidification takes place before that,
at U=0.91U, . In view of these facts, normal He should
be considered almost localized.

This property becomes particularly evident in the case
of high magnetic fields. The magnetization depends very
strongly on the field, bending upward beyond the linear
regime. This is due to the large zero-field effective mass.
We found the melting pressure at T=0 to be only weakly
reduced. Therefore, the fully polarized liquid still has a
finite melting pressure.

Finally, it is interesting to note that the half-filled band
case (n =1) is a very special one. Only for n =1 (equal
number of particles and sites) does the transition to a lo-

. calized state (with d =0) occur at finite U=U, . In all
other cases an infinite U is necessary for that (Gutzwiller,
1965); in fact, for large I= U/U, and 5=1 n«1 —one
finds d ~5/I . This can easily be verified by means of
(37) and (39), which then contains terms of the kind
5/v d. Taken by itself, this fact is unimportant for our
intentions because it would only rescale U. More impor-
tantly, however, in this case the discontinuity q never van-
ishes, so that the effective mass I*/m =q ' approaches
a constant for d =0, namely, m*/m =(1+5)/25. This
implies a very sensitive dependence of the possible values
that m*/m can assume on 5, the deviation from n =1.
(For m*/I to reach a value of 6, 5 may not be larger
than 5= ».) This is interesting, because changing n can
be interpreted as a change of the particle density, i.e., the
interparticle separation (smaller n means fewer particles
per lattice constant). In this sense one realizes that the
maximum value of I*/I is very sensitive to a change in
the filling factor n, i.e., density, of the system: for n =0.8
this maximum value is m*/I =3 and for n=0. 5 only
m /m =1.5. There is a certain arbitrariness in choosing
n =1 to describe liquid He: as there is no lattice, this
choice appears natural but might not be imperative. In
particular, in the case n =1 the kinetic energy of the par-
ticles is reduced to zero in the fully magnetized state
m =1. This is too strong a limitation on the energy and
the particle motion and can be avoided by working with
71 &1.

In the Hubbard model the particles are considered to be

pointlike, so that any finite-size effects (obstruction of the
movement of particles other than for reasons of spin) are
neglected. On the other hand, in a system as dense as
liquid He these effects (leading to back flow, etc.) will be
as important for dynamical properties as they are in solid
He (Roger et al , .1983). Apart from the repulsive con-

tact interaction there is also an attractive van der Waals
interaction. This could be treated by means of the extend-
ed Hubbard model (Beni and Pincus, 1974) containing an
attractive next-neighbor interaction. These points and
their consequences for the Landau parameters and the
magnetization behavior are presently under investigation.
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