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This paper reviews recent work related to modulational instability and wave envelope self-focusing in
dynamical and statistical systems. After introductory remarks pertinent to nonlinear optics realizations of
these effects, the author summarizes the status of the subject in plasma physics, where it has come to be
called "strong Langmuir turbulence. " The paper treats the historical development of pertinent concepts,
analytical theory, numerical simulations, laboratory experiments, and spacecraft observations. The role of
self-similar self-focusing Langmuir envelope wave packets is emphasized, both in the Zakharov equation
model for the wave dynamics and in a statistical theory based on this dynamical model.
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I. INTRODUCTION

This review mill survey developments over the last
twelve years concerning certain nonlinear dynamical and
statistical models of electron plasma waves in a nonmag-

This paper is based on an invited review paper presented at
the 25th annual meeting of the Division of Plasma Physics of
the American Physical Society, held in Los Angeles, November
7—11, 1983.

netic plasma. We shall focus on a particular set of phe-
nomena, rich in physics and mathematics, and significant
for plasmas, fluids, and nonlinear optics.

Among the dynamical effects we consider are modula-
tional instability (in which a high-frequency wave en-
velope breaks up into shorter wavelengths) (Vedenov and
Rudakov, 1964; Nishikawa, 1968), the related nonlinear
spatial self-focusing of localized wave envelopes (Za-
kharov, 1967,1972), and manifestations of these processes
during external driving and dissipation of wave energy
(Sudan, 1973,1975; Kim, Stenzel and Wong, 1974; Haflzi
et al. , 1982).

Statistical treatments of such effects differ from the
conventional "weak" turbulence, based on three-wave in-
teractions of randomly phased plane waves. Nonlinear
wave structures may be used instead of plane waves as the
building blocks of the turbulence (Kingsep, Rudakov, and
Sudan, 1973; Cxaleev, Sagdeev, Sigov, Shapiro, and
Shevchenko, 1975), or else one goes beyond the usual
random-phase approximation to admit phase-coherence
and renormalization effects, as in the application of the
"direct-interaction" approximation to this problem (Du-
Bois et al. , 1979; DuBois and Rose, 1981). Such theories,
together with the dynamical equations upon which they
rest, have come to be called "strong" turbulence, to distin-
guish them from conventional "weak" turbulence.

This review has been prompted in part by intense ac-
tivity in the Soviet Union during the last decade on the
problem of Langmuir turbulence. Much less attention
has been paid to this class of problems outside of the So-
viet Union, and it is our purpose to try to stimulate in-
terest and research by presenting a summary and interpre-
tation accessible to the general physics community. For
this reason we have chosen to suppress derivations and
details and concentrate on heuristic explanations of the
physics and mathematics wherever possible.

After a few introductory and technical remarks con-
cerning elementary plasma physics (Sec. II), we proceed to
develop the fundamental concepts of modulational insta-
bility, solitons, and self-focusing phenomena in a general
physics context (Sec. III). Qur starting point is the notion
of a nonlinear index of refraction, which enters into the
simplest wave equation describing such phenomena —the
nonlinear Schrodinger equation. This simple dynamical
model is relevant to optics and fluid dynamics, as well as
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7tO Martin V. Goldman: Strong turbulence of plasma waves

to plasmas. The important roles of spatial dimension and
of self-similar solutions are stressed. We then draw upon
selected examples of relevant experiments from nonlinear
optics, hydrodynamics, and astrophysics, which demon-
strate the relevance of the basic phenomena (Sec. IV; Gar-
mire et a/. , 1966; Feir, 1967; Campillo et al. , 1973; Yuen
and Lake, 1975). This section is designed only to
highlight the relevant concepts and is not comprehensive.

In Sec. V, we address the historical development of
these ideas in theoretical plasma physics and the role of
ponderomotive force, which underlies Langmuir wave-
wave interactions in plasmas. Encouraging results are
displayed from recent two-dimensional particle-in-cell nu-
merical simulations which demonstrate spatial self-
focusing and eventual dissipation of the energy of an ini-
tial Langmuir envelope wave packet (Anisimov et al. ,
1982; Forslund, 1983).

An important dynamical model describes Langmuir
wave spatial collapse and other wave-wave interactions-
the so-called Zakharov equations (Hasegawa, 1970; Za-
kharov, 1972). We examine the stability of the Zakharov
equations and show that they contain the cubic
Schrodinger equation in a certain adiabatic limit, but that
they also describe dynamical ion phenomena, such as
Langmuir wave scattering off ion-acoustic waves, super-
sonic collapse, and radiation of sound waves from density
cavities. Numerical solutions of an initial-value problem
are shown to lead to self-similar collapse (Pereira, Sudan,
and Denavit, 1977).

Section VI is devoted to possible applications of these
ideas to physical plasmas. A number of experiments are
cited which invoke the notions of strong Langmuir tur-
bulence in their interpretations. Special emphasis is
placed on observations of electron-beam-excited instabili-
ties in the laboratory (Cheung et al. , 1982, Leung et al. ,
1982; Michel et a/. , 1982) and in interplanetary space
(Gurnett and Frank, 1975; Gurnett and Anderson, 1977;
Gurnett et al. , 1980,1981), which seem to involve self-
focusing and/or modulational instability. Measurements
taken in conjunction with so-called Type-III solar radio-
wave emission are presented and interpreted (Lin et al
1981;Goldman, 1983).

In Sec. VII, we modify the two-dimensional Zakharov
equations to include an electron-beam driver and present
numerical solutions relevant to the Type-III burst prob-
lem (Nicholson et al. , 1978; Hafizi et al. , 1983). These
solutions exhibit a (short) "cascade" from beam-resonant
Langmuir modes down to long wavelengths, followed by
modulational instability and collapse of the long-
wavelength "condensate. " Criteria are developed for
when such wave-wave saturation of a (warm) beam insta-
bility dominates the more familiar wave-particle satura-
tion in which a quasilinear plateau is formed on the beam
distribution function.

Finally, in Sec. VIII, one particular strong-turbulence
statistical theory is described, which is based on self-
similar solutions for spatially collapsing wave packets
(Galeev et al. , 1975,1976,1977a,1977b,1977c; Pelletier,
1983). The theory includes quasilinear dissipation of col-

lapsed wave-packet energy into self-consistently diffused
electrons. A set of wave kinetic equations follows. They
possess a steady-state power-law solution for the Lang-
muir wave spectral function and the electron distribution
function.

In the conclusion (Sec. IX) we summarize the status of
strong Langmuir turbulence, both theoretically and exper-
imentally, and attempt to define the "cutting edge" of
current research.

For those readers familiar with plasma physics, it may
be useful at the outset to mention that we treat only
"fluidlike" theories of strong plasma turbulence, in which
the particle trajectories are essentially linear (or, at most,
quasilinear). That is, we do not consider particle trapping
or particle phase-space "structures" which may follow
from a full Vlasov treatment. [Such processes have been
considered, for example, in connection with low-
frequency turbulence by Dupree (1972), Boutros-Ghali
and Dupree (1981), and Berman et al. , (1983).] It is also
important to note that the nonlinear self-focusing struc-
tures we deal with in more than one dimension are intrin-
sically dynamical and should not be confused with sta-
tionary nonlinear "equilibria" such as Bernstein-Greene-
Kruskal (BGK) modes (Bernstein et al. , 1957).

It. WAVES AND PARTICLES IN PLASMAS

A. Linear theory

In a fully ionized plasma, the dynamical variables are
the particle distribution functions and the electric and
magnetic fields which are self-consistent with the charge
and current densities arising from those distribution func-
tions. When the plasma is sufficiently dilute, close col-
lisions may be neglected, and the particles are only influ-
enced by the long-range self-consistent fields. In a uni-
form, infinite plasma with no externally imposed fields,
the resulting nonlinear equations may be linearized, and
there are linear solutions for electrostatic plane waves of
two kinds (see the discussion in the basic reference, Krall
and Trivelpiece, 1973).

(i) Electron plasma waves, or Langmuir waves, in
which electrons oscillate out of phase with neutralizing
ions to produce compressional waves near the plasma fre-
quency co~:

co=cop[1+(3/2)k A,D],

co& (4mne /m——)'~
(2.1)

Here n, e, and m are the electron density, charge, and
mass, and A,D is the Debye wave number, equal to U, /co~,
where U, is the electron thermal velocity in one degree of
freedom (k~ T/m, ).

(ii) Ion-acoustic waves, in which electrons oscillate al-
most in phase with ions to produce waves with small
charge separation near the frequency

(2.2)

Rev. Mod. Phys. , VOI. 56, No. 4, October 1984



Martin V. Goldman: Strong turbulence of plasma waves

where c, is the sound speed, c, =(T, /M)'~, and M is the
ion mass.

These dispersion relations also come out of a reduced
"moment" description, in which "fluid" velocity and den-
sity variables replace distribution functions as the dynam-
ical variables. (The nonlinear wave-wave interactions we
shall be describing are also fluidlike, in the following
sense: The trajectories of those particles mediating the
wave-wave coupling are taken as linear and nonresonant.
A fluid description is therefore appropriate for the non-
linear wave coupling coefficients, as well as for the linear
mode frequencies. )

In order to treat the dissipation of Langmuir waves as
kA~~1 (and of ion-acoustic waves) a kinetic description
is requirmi in terms of the original particle distribution
functions. In the resulting theory of linear wave damping
it is well understood how a prespecified distribution func-
tion, such as a Maxwellian, produces wave dissipation. If
the reduced (one-dimensional) electron distribution func-
tion in the direction of propagation k is F, (v), then the
damping rate for a wave of wave vector k is (Krall and
Trivelpiece, 1973)

~ F ("}
I u =co/k ~ (2.3a)

B. "Quasilinear" theory and "weak" turbulence

For a Maxwellian electron velocity distribution func-
tion, this linear damping of waves by particle is called
"thermal Landau damping" and has the following form:

I

yk =(m. /8e )' (kAD) exp[ —(kA&) /2] . (2.3b)

For distribution functions with nonthermal features, in
which the local slope of F, can be positive (such as elec-
tron beams), negative damping or instability is produced,
and wave growth at the rate given by Eq. (2.3a) can be
used to "drive" the turbulence. Such beam instabilities
are sometimes called "bump-on-tail" instabilities.

For nonthermal distributions F„which have negative
slopes in certain velocity ranges, there arises a "non-
thermal Landau damping" of magnitude given by (2.3a).
This is often stronger than (thermal} Landau damping.
We shall append such linear damping/growth terms to
our nonlinear fluid equations as needed, recognizing that
they come from a linear kinetic description.

Ion-acoustic waves are damped by an analogous mecha-
nism. At comparable electron and ion temperatures, there
is heavy Landau damping to ions. However, when
T, »T~ there is relatively weak Landau damping (by
electrons), and the ion-acoustic modes have a long life-
time (Krall and Trivelpiece, 1973).

statistical ensemble of growing Langmuir waves.
I.et Wk be a measure of the energy per k-space volume

d3k. The "damping" rate given by Eq. (2.3a) causes the
waves resonant with the beam to grow and others to
damp. Neglecting spontaneous emission, the kinetic
equation for Wk is

According to Eq. (2.3a), yk depends on F,(v) In. the
quasilinear theory, F,(v) is determined by

B,F, (v) =B„DB„F,(v),

where D(v) is a diffusion coefficient that is a linear func-
tional of Wk.

Bump-on-tail instabilities are generally thought to satu-
rate when such velocity-space diffusion removes or flat-
tens the positive velocity gradient in F, (v) which had
been the source of the negative sign of yk [Eq. (2.3a)].
This is called "plateau" formation (Krall and Trivelpiece,
1973).

%e shall argue that bump-on-tail instabilities need not
saturate by quasilinear velocity-space "plateau" forma-
tion. This is apparently also understood from certain lab-

oratory experiments (Malmberg, 1984). In the proper pa-
rameter regions it will be shown that saturation can occur
via wave-wave interactions which include the "strong"
turbulence effects of Langmuir wave modulational insta-
bility and spatial collapse to short scales.

Quasilinear wave-particle interactions are a part of
what is called "weak" turbulence in plasma physics, since
the spectral function Wk is assumed to be composed of
randomly phased plane waves (Kadomtsev, 1965).
Another part is the scattering of Langmuir waves off
ion-acoustic waves (for the case T, »T;) (Qraeevski and
Sagdeev, 1962). Such scattering can take Langmuir wave

energy out of resonance with a source of free energy such
as an electron beam and lead to a wave cascade (Ka-
domtsev, 1965; Nicholson and Goldman, 1978). This pro-
cess is sometimes represented by an additional "stimulat-
ed scattering" term in the kinetic equation for Wk. The
stimulated scattering term is quadratic in 8'k.

C. Smallness parameters for strong
and weak turbulence

Our theoretical discussiop will be limited to mean
Langmuir wave energy densities ( ~E

~
)4m, which are

small compared to the background particle energy density

nkvd T:

(2.4}

There is a mell-known nonlinear wave-particle interac-
tion capable of saturating the "bump-on-tail" beam insta-
bility. In the so-called "quasilinear" theory (Krall and
Trivelpiece, 1973), the unstable Langmuir waves are per-
mitted to react back on the beam to a limited extent and
remove its free energy. The mechanism by which this is
accomplished is velocity-space electron diffusion from a

The dimensionless energy density is thus measured by S'.
It is important to recogo, ize that the term "strong" does

not here refer to wave energy densities 8'&1, although
such regimes are certainly of interest in plasma physics.
As is often the case in nonlinear wave theories, certain
small parameters permit the reduction of impossibly non-
linear equations to more tractable, less highly nonlinear
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models. One such small parameter in the theories we
shall describe is the ratio of the characteristic rate of non-
linear processes T ', to the plasma frequency co&

..

cop T)) 1 (2.5)

The nonlinear phenomena we consider are time averaged
over a plasma period 2~/co&.

carrier wave at ~,:

[ia, +p'+nN, (
I
& I')]&=0. (3.3)

Ek(t) = 8'k(t)e

Transforming back into real time, we obtain a non-
linear Schrodinger equation, which, in dim ensionless
units, may be expressed as follows:

III. NONLINEAR SCHRODINGER EQUATION

A. Derivation

One may understand many of the basic physical phe-
nomena which underly strong Langmuir turbulence in
terms of nonlinear index-of-refraction effects for a scalar
field E in a dispersive, nonlinear medium. We assume the
Fourier transform of E obeys a wave equation of the fol-
lowing form:

(g co uk )E—k=0. (3.1)

Here, u is a characteristic linear velocity of the wave,
such as the speed of light, and k is a mode wave number.
The combination U k represents the physical effect of
linear dispersion. The quantity g is the refractive index
of the medium, which contains both a linear part, g~;„(co),
and an additive nonlinear part, gNL, which we here as-
sume depends on the square of E [such a term usually
arises from a perturbative expansion of the nonlinear
current in the medium, in which case one makes use of a
smallness parameter, such as that of Eq. (2.4)]:

rt =i)iin+VNi, «) . (3.2)

Suppose the linearized wave equation (with gNL
——0)

possesses a solution for a nonzero frequency of a mode at
zero wave number:

co=too(k =0) .

The Langmuir wave dispersion relation in Eq. (2.1) is
of this type. (Other examples are radiation in a plasma or
optical phonons in a solid. )

We now seek a solution to the nonlinear wave equation
in which all frequencies are "close" to coo (Hasegawa,
1975). That is, processes such as harmonic generation,
which occurs at 2coo, will not be considered. This means
that we expand all frequencies about ~o and keep only the
lowest-order terms:

co g);„=a(co —coo),2 2

2 2 2 2
9NL ~09NL

Note that gNL will contain only frequencies that are
low compared to uo. This is equivalent, in real time, to
an average over the period coo

' of terms such as E(t) in
the nonlinear index of refraction. The wave equation now
has the following form:

~0) u k +~09NL]E, k
2 2 2

We introduce the slowly varying envelope 8'(r, t) of the

Note that the nonlinear index of refraction depends
only on the modulus of the envelope, as a result of the
slow-time-variation requirement. In Eq. (3.3), the dimen-
sionless units of time are a/coo, and of distance are u/coo.

The simplest and most instructive limit to examine is
the one in which the nonlinear index of refraction is ex-

panded to its lowest nontrivial order in
I

8'
I

nN~( I
& I')=

I
& I'. (3.4)

We now obtain a cubically nonlinear Schrodinger equa-
tion:

(iB,+v'+
I

8'I')8'=0.
Here, the

I

8'
I

term corresponds to nonlinear refrac-
tion, and the V term to dispersion.

B. Stability

I =
I

@'0
I

(3.6)

In the same manner, from a balance of the time derivative
term (expressed as T ') against the nonlinear refraction
term, we find that the growth rate is

T—i Ig I2 (3.7)

The perturbation at wave number k grows because the
peaks of its interference pattern with the pump corre-
spond to high nonlinear index of refraction. Regions of

Let us first consider the stability in one dimension of a
spatially uniform, time-independent envelope 8'o, which
extends from —Oo to +ao. In this case it is desirable
(and justifiable, in many physical models) to subtract
from

I
8'

I
m Eqs. (3.4) and (3.5) a constant equal to

I

8'o
I

. This guarantees that 8'0 is an exact solution of
the nonlinear equation (3.5) [and also that
gNL( I

8'o
I

)=0, in Eq. (3.4)].
A linear one-dimensional stability analysis of (3.5) may

then be performed by assuming 8'=8'0~8', er'coskx
(Nishikawa, 1968). This analysis reveals that the zero-
order envelope 8'0 (which we shall refer to as the "pump"
wave) is linearly unstable to "breakup" or "modulational
instability" into a fastest-growing standing-wave en-
velope, with wave number k=

I
8'OI and growth rate

r=
I

&o I'.
This result is, in fact, predictable from a dimensional

analysis of Eq. (3.5): From a balance of the dispersion
term (which contains a self-consistently determined scale
length L ) against the nonlinear refraction term, we find
that the natural breakup scale length is
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high index of refraction are regions of total internal re-
flection for rays. The self-focusing of these rays increases
the index of refraction still further, and so the process is
unstable.

The long-time nonlinear one-dimensional (1D) evolu-
tion of an initially uniform envelope N'o has been studied
numerically (Morales, Lee, and White, 1974). The grow-
ing sinusoidal standing-wave perturbation of wave num-
ber k steepens with time into a shape resembling an ellip-
tic function, but this structure then gives way back to a
state resembling the original uniform envelope. The sys-
tem continues to show recurrent behavior (Thyagaraja,
1979,1981,1982; Yuen and Ferguson, 1978) and oscillates
in time between the "brokenup" and uniform states.
More general 1D solutions to Eq. (3.5) have been found
recently (Tracy and Chen, 1983).

This result, that a uniform envelope breaks up into an
envelope containing smaller "natural" lengths L, general-
izes to broad initial envelopes which are only uniform
over some large scale size L,o, but which ultimately go to
zero as x~+00. The condition for breakup of such
finite-energy wave packets is simply that Lo »L, or

I
@'o

I
»Lo (3.8)

The characteristic rate and wave number k =t. ' for
this breakup or "modulational instability" are then still
given approximately by Eqs. (3.6) and (3.7).

C. One-dimensional solitons

Equation (3.4) is valid for finite-energy wave packets
without any additive constants, and we obtain the classic
form of the 1D scalar cubic nonlinear Schrodinger equa-
tion,

(3.9)

This equation possesses a very interesting particular
solution, which we may find by looking for an envelope
of form

A (x)=L 'sech(x/L) . (3.10)

This solution is a standing-wave envelope, in the form
of a localized disturbance of size L and maximum ampli-
tude t. ', which precisely retains its spatial shape as time
evolves. [Linear wave packets, of course, do not have this
property; they disperse in space as time goes on (Bohm,
1951).] The soliton envelope solution is very easily under-
stood in terms of the nonlinear Schrodinger equation
(3.9). The shape is preserved because the dispersion and

N'= A (x)exp(itL /2), L &0,
where A(x) is independent of t and goes uniformly to
zero as x —++ ao. With this substitution, the equation for
A is second order in x, and formally identical to the equa-
tion for a particle in a nonlinear potential well, except
that x plays the role of t. The solution that satisfies the
boundary condition is the hyperbolic secant "soliton"
solution,

nonlinear refraction exactly balance each other, a result
which turns out to be unique to one-dimensional solu-
tions. Hence the 1D soliton state is one in which

(3.11)

Clearly, if we take a soliton state as an initial condition,
it will persist, but are there different initial states which
will relax in time into a soliton state'? The answer to this
question requires study of a more general class of solu-
tions to Eq. (3.9). As it turns out, Eq. (3.9) possesses an
exact solution, found in 1971 by Zakharov and Shabat
(1971), using the inverse scattering method, for the time
evolution of an arbitrary initial envelope.

Inverse scattering solutions show that a broad initial
envelope of length Lo»L =

I
8'o

I

' can break up into
an N-soliton state, containing roughly N =Lo/L solitons,
usually accompanied by a small amount of energy in "ra-
diated" plane waves. This is the basis for the condition
(3.8) for breakup. It is in this sense that soliton solutions
similar to the type in (3.10) are "natural" nonlinear struc-
tures, or "attractors" for the solutions to the 1D cubic
nonlinear Schrodinger equation. (The terminology "at-
tractor" is more commonly used for dissipative systems
which exhibit phase-space contraction. )

However, at least two qualifications are in order: First,
the class of soliton solutions is more general than Eq.
(3.10) and may involve propagating envelopes, rather than
"standing-wave" structures. Thus solitons may be mov-
ing through each other.

.Second, and more important, there are other kinds of
solutions (Satsuma and Yajima, 1974). A "pulsating" sol-
iton, or "breather" is obtained when the inequality (3.8) is
only marginally filled (Goldman, Hafizi, and Rypdal,
1980; Satsuma and Yajima, 1974). For certain more ener-
getic initial wave packets (real and not antisymmetric), it
is common to find evolution into a "bound state" of
several solitons, which manifests itself as a dynamically
recurring multipeaked state. These evolutions are usually
accompanied by propagating plane-wave envelopes, which
are cast off as "radiation. "

D. Higher-dimensional self-similar collapse

Our main concern, however, is with the behavior of
solutions to the cubic nonlinear Schrodinger equation in
higher dimensions. We retain the approximation of a sca-
lar field. In this case, Eq. (3.9) reverts to (3.5):

(iB,+v + I

8'
I

)8'=0 .

The solutions to this equation in two or three dimen-
sions are significantly different from the solutions in one
dimension. No exact solution such as the inverse scatter-
ing solution in one dimension is known to exist. Sohtons
like that in Eq. (3.10) are not stable initial conditions for
2D or 3D numerical solutions (Pereira et al. , 1977;
Schmidt, 1975). They are. no longer "natural" structures
in these higher dimensions.

However, breakup still occurs when condition (3.8) is
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satisfied for an initial localized envelope of characteristic
dimension Lo (more precisely, Lo -L„+L~,in two
dimensions). The breakup or modulational instability size
and growth rate are still given by Eqs. (3.6) and (3.7), in

many cases involving localized envelopes which are not
propagating (Vedenov and Rudakov, 1964). However, the
situation is more complicated for an initial wave with fi-
nite wave vector (Bardwell and Goldman, 1976).

What happens in the nonlinear evolution of' the "bro-
kenup" initial envelope, now that we have a set of en-
velopes localized to the smaller size L, = 8' ', where 8' is
the maximum amplitude of each newly localized field?
The answer, provided by a number of different ap-
proaches, is that such a localized envelope in two or more
spatial dimensions collapses or self-focuses to a point
singularity in a finite time whenever its mean intensity
exceeds its mean inverse square width. The condition for
collapse is therefore

i
S'i'&L (3.12)

which represents the dominance of ray self-focusing (into
the region of high index of refraction gNL —

~

S'
~

) over
the linear tendency of the rays to disperse or diffract.

One way to derive this result is through a "virial
theorem" (Vlasov et al. , 1971; Zakharov, 1972; Glassey,
1977; Goldman and Nicholson, 1978) for the time evolu-
tion of the wave-packet-averaged width of an initial wave
packet. This will be discussed briefly later.

A more useful insight for our purposes is provided by
the existence of a particular class of solutions to the 3D
nonlinear Schrodinger equation which, according to many
numerical studies, act as "attractors" for initial localized
wave packets that satisfy Eq. (3.12). These are "self-
similar" solutions, which may be of the following form
(Zakharov, 1972):

S=g 'f(r/g), g=g(t)=(t, t)'~'. — (3.13)

[It should be noted that anisotropie self-similar forms
have also been proposed {Zakharov and Rubenchik, 1973;
Zakharov, Mastryukov, and Synakh, 1974; Rudakov and
Tsytovich, 1978; Sulem et al. , 1981).]

A solution of this form can easily be seen to satisfy Eq.
(3.5). When it is inserted, the localized function f (x) is
seen to satisfy a time-independent equation related to
(3.5). The function g' goes from g(0) =L to zero in the
finite time t, [t, is of th. e same order as T in (3.7).]

The form of solution in (3.13) is called "self-similar"
because the initial spatial shape f[r/g(0)] is preserved at
later times, although contracted, since g(0) is replaced by
the smaller scale sizes g(t}, which eventually go to zero.
The solution S' is therefore similar to itself at later times,
except it becomes narrower, and also larger, because of
the factor g

' in front of f.
Numerical solutions of the evolution of a radially

Gaussian envelope wave packet with assumed spherical
symmetry show that it tends towards a self-similar shape
as it collapses. (Budneva et al. , 1975; Goldman et al. ,
1980; Hafizi and Goldman, 1981). The self-similar region
is in a small volume about the origin, which intensifies

and narrows, eventually reaching a mathematical singu-
larity at the finite time t,

Recent studies of the nonlinear Schrodinger equation in
two dimensions also show self-similar collapse (Sulem
et al. , 1983).

There are usually physical effects, missing from Eq.
(3.12), which prevent the singular limit from being
reached, although very high energy densities

~

S'
~

may
be achieved. It is also important to recognize that these
high-energy densities are over a very small volume, so
that the spatially integrated energy over the half-width
forms only a small fraction of the total wave-packet ener-

gy (Goldman et al. , 1980).

E. Integral invariants and virial theorem

There are a small number of known integral invariants
of the cubic Schrodinger equation (3.5) in higher dimen-
sions (Vlasov et al. , 1971; Goldman et al., 1980). We ex-
press the "number, " momentum, and. energy invariants,
respectively, as follows:

P= J d r —(S'*VS'—S'VS'*),
2l

A = f d r( ,'}(/VS'f —/—S'/4).

These invariants are based on the symmetry of the cu-
bic Schrodinger equation under gauge, space, and time
transformations, and may be derived from a Lagrangian
density for Eq. (3.5). [In addition, there is an angular
momentum invariant which expresses rotational symme-
try (Gibbons et al. , 1977).] The ¹invariant is actually an
action integral and has the interpretation of total "boson"
(sometimes called "plasmon") number for the Langmuir
waves. The P invariant assumes the given form in the
present case because current and rnornentum densities
happen to be equivalent for Eq. (3.5).

The A invariant is actually a Hamiltonian for the cu-
bic Schrodinger equation. The term

~

VS'
~

represents
dispersion, and the term

~

S'
~

represents the nonlinear
refraction. It is important to note that A need not be
positive definite, and is in fact negative when the non-
linear refraction term dominates 'the dispersion term.
This is precisely the condition for collapse to occur, as we
can demonstrate by means of a "virial theorem. "

Consider a single localized wave packet which is not
translating (P =0}. Let us form measures of its spatial
properties by taking spatial averages of r-dependent quan-
tities, using the "probability" distribution p=

~

S'~ /X
(i.e., as though we were doing quantum mechanics). Then
it is quite easy to show that the mean spatial width of a
wave packet, defined by ((hr) ) = ((r —(r ) )2), obeys a
virial theorem (Goldman and Nicholson, 1978):

Hence if the dimension D )2, and if A & 0, then
((b,r) )~0 in a finite (collapse) time. This proves that
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collapse occurs in two or more dimensions when non-
linear refraction dominates dispersion. The condition for
A to be less than zero is identical to the condition (3.12).

L-2

VAC.
t

NONLINEAR MEDIUM

FOCUSED

(o)

F. Graphic summary

The results of this section are summarized graphically
in Fig. 1. Figure l(a) illustrates modulational instability
of a broad envelope of initial size Lo, which breaks up
into smaller sizes L =

~

5'
~

', provided Lo &&L (i.e., for
a sufficiently intense field 8'). This phenomenon is illus-
trated in one dimension, but, in fact, occurs in higher di-
mensions under analogous conditions. Figure 1(b) shows
a one-dimensional hyperbolic secant soliton solution to
(3.9), and Fig. 1(c) illustrates its analog in higher dimen-
sions, a self-similarly self-focusing wave packet, whose
field strength

~

I'
~

and initial inverse scale size Lo are
comparable.

DIFFRACT(ON

~ ~ e 0
b g y &I 4 4

CAL
LENGTH

IV. SEI F-FOCUSING AND MOOULATIONAL INSTABILITY
IN OPTICS AND FLUIDS

We now describe a variety of interesting physical reali-
zations of the phenomena of self-focusing, modulational
instability, and soliton formation treated in Sec. III.

Figure 2 shows experimental observations of self-
focusing and modulational instability in nonlinear optics.
Figure 2(a) is a sketch of the configuration for observing
spatial self-focusing of laser beams in nonlinear media,

(o)
MODULATIONAL INSTABILITY IEI && Lo

HIGHER INTENSITIES: )Q) )O I

FICi. 2. Nonlinear optics realizations of self-focusing and
modulationa1 instability. (a) Sketch of configuration for spatial
self-focusing of a laser beam discussed in text, when

~

g'
~

~ &L (L is the aperture width governing diffraction). (b)
Apparatus and sequence of observed cross sections of laser
beam. a, linear medium gives diffraction. b, nonlinear medium
shows self-focusing (Garmire et al., 1966). {c)Modulational in-
stability of Fresnel diffraction pattern at higher intensities

~

8'
~

&&L . Azimuthal breakup scale size decreases with in-
tensity in accordance with Eq. (3.6) (Campillo et aI., 1973).

(b)
l D ENVELOPE SOLITON IEI = Lo

(c)
2D OR 50 COLLAPSING WAVE PACKET IE) ~ Lo

FICk. 1. Basic nonlinear wave envelope phenomena described by
Eq. (3.5). (a) Modulational instability. Broad envelope of initial
size Lo breaks up into sizes L =

~

g'
~

', provided

~

8'
~

~ &&Lo . (b) One-dimensional soliton solution [Eq. (3.10))
when

~

g'
~

=Lo . (c) Two-dimensional or three-dimensional
spatial collapse for

~

I'
~
~&LO . A self-. similar solution to Eq

(3.5) is illustrated, with scale size g(t) given in Eq. (3.13).

such as CS2. The incident radiation is introduced through
an aperture of radius L. When the incident intensity is
sufficiently high, the nonlinear refraction

~

I'
~

over-
comes the linear diffraction L, and self-focusing
occurs. Here the (steady-state) self-focusing is along the z
axis, and it is z which plays the role of time t in Eq. (3.5).
The laser-beam self-focusing is in the radial direction, and
V is replaced by the radial part of the Laplacian.

Beneath the sketch is Fig. 2(b), which shows the actual
experimental results from one of the earliest observations
of self-focusing (Garmire, Chiao, and Townes, 1966). A
sequence of cross sections of the laser beam inside the
nonlinear medium is shown. In sequence a, the nonlinear
medium is removed, and the successive beam cross sec-
tions show a slight radial increase due to diffraction. In
sequence b, the nonlinear medium is present, and the suc-
cessive beam cross sections show an unmistakable con-
striction, due to self-focusing.

For much higher incident intensities, the condition (3.8)
is fulfilled, and modulational instability occurs. Figure
2(c) shows experimental observation of modulational in-
stability when

~

5'
~

&&L (Campillo, Shapiro, and Suy-
dam, 1973). Pictures a, b, and c represent cross sections
at a fixed plane in the nonlinear medium of successively
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more intense incident radiation. The breakup is observed
in the laser-beam Fresnel diffraction pattern. The dom-
inant and striking feature of these photographs is the reg-
ularity of the spacing of the focal spots about the rings.
This spacing can be predicted from the scaling arguments
[Eq. (3.6)] of modulational instability applied to an az-
imuthal angular variable (Suydam, 1975). Note how the
azimuthal breakup scale size decreases as the intensity of
the laser beam is increased, in accordance with Eq. (3.6).
The spots represent the spatially self-focused end result of
spatial modulational instability which began closer to the
entrance aperture.

Another application of these ideas comes from the
theory of nonlinear deep-water waves. Engineers who test
models of ships in long tanks generate long trains of wa-
ter waves for this purpose. For decades they had been
troubled by the generation of steep waves, which tend to
break up into a series of wave groups, and discussed the
malformation of those waves as being due to imperfec-
tions in their apparatus.

In 1967, Benjamin and Feir showed theoretically and
experimentally that such deep-water waves can be
described by a one-dimensional nonlinear Schrodinger
equation, and are unstable to modulational instability
(Feir, 1967). (Deep-water waves are not to be confused
with nonlinear shallow-water waves, which are described

by a Korteweg —de Vries equation. )

In the experiment shown in Fig. 3 (Yuen and Lake,
1975), waves are launched at one end of a water tank with
a paddle, and absorbed by a "beach" at the other end.
The paddle can be programmed to launch a particular
waveform of interest. For both of the cases depicted, the

evolution of the wave can be traced in the vertical se-
quence of profiles, reading from the top down.

In case a, the initial pulse has a soliton profile, as in
(3 IO) (N«e thi»mphes

I
e I'=L ')

quent propagation shows no significant change in shape.
In case b, however,

~

8'
t

=2L . According to Eq.
(3.8), this is the condition for modulational instability (ap-
propriately termed the Benjamin-Feir instability by hy-
drodynamicists). The evolution for case b indeed shows
the breakup of the wave packet. (Note, the scale of inten-
sity for the more intense wave packets is condensed in the
figure. ) The observed behavior is consistent with Za-
kharov and Shabat's inverse scattering theory.

Another example of modulational instability and self-
focusing comes from astrophysics. The so-called Jeans
instability is a modulational instability in which stars are
formed out of gravitationally collapsing interstellar gas
clouds (Spitzer, 1978). While this process is not described
by precisely a nonlinear Schrodinger equation, there is a
close relation, and common mathematical methods (such
as generation of equivalent hydrodynamic equations in
which

~

8'
~

acts as a density and the phase of 8' is relat-
ed to a flow velocity) lead to similar conditions on col-
lapse or breakup.

V. DYNAMICS OF STRONG TURBULENCE
IN PLASMAS

A. Modulational instability and Langmuir collapse:
a brief history

We begin with a brief historical survey of the theoreti-
cal development of some of these ideas within the frame-
work of plasma physics.

A key observation was provided by Vedenov and Ru-
dakov (1964), who demonstrated that modulational insta-
bility can occur in ensemble or phase-averaged spectra of
Langmuir turbulence. They considered a kinetic equation
for the spectral function of the Langmuir wave field and
found the condition for modulational instability to be

W= (
~

8'
~

) /4n. nkvd T )&b,k A,D,
where hk is the effective half-width of the spectral func-
tion

Wk ——lim (
~

g'k
~

)/4mnk~TV. (5.2)

and W [also defined in Eq. (2.4)] is the integral over Wk,

W= I (dk/2')Wk . (5.3)

FIG. 3. Deep-.water wave realizations of soliton and modula-
tional instability. Spatial propagation of an initial wave packet
is traced in the vertical sequence of profiles, starting at the top.
Case a, initial pulse with soliton profile {

~

g'
~

=L ) Eq.
(3.10) retains shape. Case b, when

~
g

~

~=2L, packet breaks
up due to modulational instability (Yuen and Lake, 1975).

These definitions are illustrated in Fig. 4.
The instability condition (5.1) is consistent with the

condition (3.8), that we found from the dynamical (cubi-
cally nonlinear) Schrodinger equation for an unstable en-

velope field. Here the role of wave-packet scale size Lo is
played by the inverse spectral width hk

Several years after the publication of this key result,
plasma physicists began to consider modulational instabil-
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w=(IEI &/4~nT && Dk xD
2 2 2

FKx. 4. Modulationally unstable Langmuir spectrum Wk, with
total energy S'&~6k A,~. The width of the spectrum is 5k. T
is the temperature in energy units.

ity of coherent magnetohydrodynamics (MHD) plane
waves. Taniuti and Washimi (1968) and also Karpman
and Krushkal (1968) showed that the dynamics is
governed by a cubic Schrodinger equation, and recognized
the connection with optical self-focusing. Their treat-
ment was one dimensional, however, and they were con-
cerned with soliton solutions rather than with self-
focusing behavior.

Nishikawa (1968) showed that modulational instability
plays a prominent role in the parametric instability of a
uniform Langmuir wave pump and has the same order-
of-magnitude growth rate as the decay instability into
another Langmuir wave and an ion-acoustic quasimode,
in a plasma characterized by equal electron and ion tem-
peratures. The modulational instability is sometimes
called an "oscillating two-stream" instability, because the
breakup occurs into a standing wave of wave number
k= W'~, which decomposes into two oppositely propa-
gating Langmuir waves ("streams").

In 1970, Hasegawa generalized the cubic Schrodinger
equation model of modulational instability (Taniuti and
Washima, 1968) to include a possible additional resonance
with low-frequency waves. He showed how to generalize
the Schrodinger equation so that the nonlinear "index of
refraction" [e.g., rlNi in Eq. (3.3)] itself obeys a dynamical
wave equation "driven" by an inhomogeneous source term
proportional to

~

8'
~

. In the linear limit, this latter wave
equation describes low-frequency waves. Although
Has egawa was concerned only with enhancement of
modulational ins'tability due to possible resonance with
low-frequency (MHD or ion-cyclotron) waves, his equa-
tions had the same formal structure as the pair of equa-
tions that govern Langmuir collapse, and whose proper-
ties and major implications were elucidated by Zakharov.

In 1972, Zakharov published his seminal paper contain-
ing not only the more general set of dynamical equations
which describe the evolution of nonlinear Langmuir
waves, but also virial theorems and self-similar solutions
which predict spatial self-focusing in more than one di-
mension. In these equations, which have come to be
called the .Zakharov equations, the nonlinearity comes
from ponderomotive force, which is quadratically non-
linear in the Langmuir envelope field and can drive a
low-frequency particle response in the electron density nz.
The density then couples back into the Langmuir wave
equation through the nonlinear electric force n2E. In the
adiabatic limit (8'«rn/M, where m/M is the electron-

to-ion mass ratio), the Zakharov equations reduce to the
cubic nonlinear Schrodinger equation. They contain con-
siderably more physics, however, and include supersonic
collapse as well as decay instabilities. We shall return to
these equations later.

At about the same time, Zakharov and Shabat (1971)
produced their inverse-scattering-method solution to the
one-dimensional cubic Schrodinger equation in an infinite
medium.

The first statistical model associated with the Zakharov
equations came with the publication by Kingsep, Ru-
dakov, and Sudan (1973) of a theory of "strong" Lang-
muir turbulence. They were motivated by numerical
simulations of plasmas driven unstable by intense electron
beams or powerful lasers. In their treatment, the strongly
turbulent state consisted not of a Fourier superposition of
plane waves, but of a collection of one-dimensional soli-
tons, localized in space with random positions and an
ad hoc distribution of amplitudes. They found a spec-
trum proportional to k and noted that near k=A,&
there would occur strong absorption of wave energy by
Landau damping, and that this would cause the spectrum
to fall off faster in this (dissipative) region of k space.
They also provided estimates of the statistical behavior of
a set of "blobs" distributed in three dimensions, but did
not attribute any internal dynamical structure such as
self-focusing or damping to the blobs. While their theory
provided a number of conceptual advances, the details
have never been confirmed by experiment or by numerical
simulation.

Cialeev, Sagdeev, Sigov, Shapiro, and Shevchenko
(1975) provided a more complete model of strong Lang-
muir turbulence, valid in three dimensions and based on
the self-similarly collapsing solutions to the Zakharov
equations. An "ideal gas" of such self-focusing wave
packets was constructed, and an isotropic, stationary
spectrum proportional to k ~~ was found at intermedi-
ate wave numbers. Here collapse provides the mechanism
for energy transfer to high k. The spectrum at wave
numbers near the Debye wave number is reduced to
Wk cck, due to energy transfer from (independent)
wave packets to electrons. This wave-particle interaction
is treated self-consistently by a modified quasilinear
theory, in which the electrons undergo diffusion by re-
peated scattering off the packets as they damp, and the
electron distribution function is thereby also modified.
An isotropic velocity distribution going as u ~ was
found in the dissipative regime.

In a subsequent refinement of the Cxaleev et al. (1975)
theory of strong Langmuir turbulence by Pelletier (1982),
self-similar solutions are extended into the dissipative re-
gime, and the Langmuir wave spectrum and electron dis-
tribution function are found to fall off less rapidly:

W, ~k-'" f (U)~U-'"

Pelletier's theory will be dealt with later in this paper.
The idea of using nonlinear wave structures instead of

plane waves as the building blocks of a statistical theory
is stimulating and promising. Such an approach has also
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been employed in other branches of continuum physics,
such as solid-state physics, where the partition function
that describes the nonlinear statistical mechanics of
structural phase transitions (Krumhansl and Schrieffer,
1976) had been constructed out of "kink" or topological
solitons (representing long-range order in alternate equi-
librium positions of ions) as well as out of the typical
phonon plane-wave contribution. However, strong Lang-
muir turbulence (like certain models of fluid turbulence
involving Burger s equations) is an application to a statis-
tical system which is far from equilibrium.

We mention at this point that theories based on non-
linear "structures" as the building blocks of strong tur-
bulence do not constitute the only possible approach to
nonlinear systems. Recently a class of renormalized
theories, which can be shown to be consistent perturbative
schemes, have been applied to strong Langmuir tur-
bulence. We cite the application of the direct-interaction
approximation (DIA) as an example (Dubois, Rose, and
Goldman, 1979; Dubois and Rose, 1981; Hanson and Ni-
cholson, 1983).

It is perhaps worthwhile to digress a moment to com-
pare the "independent structures" type of strong-
turbulence theory with statistical closure theories such as
the DIA. Independent structures models are closest in
spirit to the well-known Kolmogorov (1941) scaling
theory of incompressible fluid turbulence. These theories
for Langmuir turbulence are based on the Zakharov equa-
tions (e.g., solitons, self-similar solutions). The assump-
tion that these special local properties can be used global-
ly in an independent soliton model has not been proven
directly from the Zakharov equations. These models are
quite tractable and have led to a set of detailed predic-
tions. To date, however, no compelling long-time statisti-
cal data is available from numerical simulations in two or
three dimensions or from experiment to compare with
these predictions.

The statistical closure theories are closest in spirit to
the approach of Kraichnan (1958,1959) in fluid tur-
bulence, which has been successful in describing moderate
Reynold's number turbulence. The closure methods,
which are renormalized perturbation theories, are derived
in a, systematic but nonrigorous manner from the Za-
kharov equations. These theories suffer from the serious
technical problem of being difficult to compute. Recent
results of DuBois, Nicholson, and Rose (1984) and Rose
(1984) for d =1 have shown qualitative agreement be-
tween the direct-i:nteraction approximation predictions
and mode simulation for the initial evolution of the
modulational instability. DuBois, Rose, and Goldman
(1979) (see also DuBois and Rose, 1981) introduced the
DIA for Langmuir turbulence as a natural extension of
weak-turbulence theory in which the modulational insta-
bility can be described in a statistical context; this theory
provides a systematic description for this instability
driven self-consistently by a spectrum of Langmuir modes
and so provides a self-consistent generalization of the
work of Vedenov and Rudakov (1964) and Bardwell and
Goldman (1976). It is not expected that the DIA will suc-

cessfully describe situations which are highly intermittent
in both space and time, e.g., situations dominated by a
few short-lived "solitons. " In two or three dimensions, if
there is sufficient symmetry (e.g., isotropic turbulence),
the DIA equations may not be significantly harder to
compute than for d = 1.

8. Ponderomotive force and particle-in-cell
simulation

mB,xo —— (dldx)[q E(—xo)I4mco ] (5.4)

Note that the equation of motion is identical to that of
a particle in a conservative force. That effective force, on
the right side of (5.4), is tQe "ponderomotive force." It is
proportional to E and so to the energy density of the
I,angmuir field. Electrons will drift down a gradient in
this energy density, whereas ions are virtually unaffected
because of their high mass m.

The situation is illustrated in Fig. 5. A profile of
~

E
~

which is localized in space is assumed in Fig. 5(a). This
causes electrons to drift out of the localized region. The
resulting separation of charge produces an ambipolar field
which then drags the ions out of the localized region.

ECTRONS ~ IONS IGH INDEX
OF

EFRACTION

(b)

~ DENSITY
tp CAVITY

a D I SS I PAT ION

(c)

FIG, 5. Self-focusing of a Langmuir wave packet by pondero-
motive force: (a) At time to, electrons drift out of intense wave
region with guiding-center trajectory given by solution to Eq.
(5.4). (b) Charge separation field pulls out ions at time t&. (c)
This results in a density cavity at time t2, which self-focuses the
wave packet to short scales, where dissipation to particles can
occur.

The physics of strong Langmuir turbulence can be un-
derstood through the concept of ponderomotive force,
which we next elucidate using a very simple, single-
particle approach. Consider a single particle of mass m
and charge q, moving in a standing Langmuir wave pack-
et of form E(x)cosset, where co is a frequency close to the
plasma frequency, ~&.

mB,x =qE(x)coscot .

When E(x) is a slowly varying function (to be charac-
terized more fully in a moment), the solution may be ex-
panded in a "guiding-center" approximation:

x =xo(t) —[qE(xo)/mes ]coscot .

The first term is the (drift) coordinate of the instantane-
ous guiding center of the motion, and the second is recog-
nizable as the oscillating solution to the equation of
motion in a uniform field equal in value to E(x) at the
drift coordinate x =xo. The equation of the drift coordi-
nate xo is easily seen to be

Rev. Mod. Phys. , Vol. 56, No. 4, October 1984



Martin V. Goldman: Strong turbulence of plasma waves 719

To understand these nonlinear index-of-refraction ef-
fects, we define an effective index of refraction for a
Langmuir wave,

'

in which the electron thermal velocity U,
replaces the speed of light c [see Eq. (2.1)]:

(0) q=~3U, klco=(1 —cozlco )'~ (5.5)

BURNOUT I

(b)

FIG. 6. Particle-in-cell simulation of two-dimensional Lang-
muir collapse and "burnout": (a) Initial wave packet, (b) and {c)
self-focusing, (d) "burnout" due to surrender of short-scale wave
energy to electrons (Anisimov et al., 1982).

The result of evacuation of both species of charged parti-
cles is the creation of a density cavity, which can trap the
Langmuir energy and, in more than one spatial dimen-
sion, produces self-focusing.

Since the index of refraction increases in spatial loca-
tions where the density is depressed (due, in this case to
ponderomotive force), the localized field sees a higher in-
dex of refraction than the surrounding region. This is the
origin of the "trapping" of the Langmuir energy density
in such regions (think of a ray undergoing a total internal
reflection). In two or more dimensions, this situation can
be shown to be unstable: the Langmuir field becomes
more localized, pushing out more particles, deepening the
density cavity, increasing the index of refraction, and
thereby localizing the field to ever smaller spatial dimen-
sions as time passes. The resulting spatial self-focusing
proceeds to a singularity in a finite time, according to the
nonlinear Schrodinger or Zakharov equation descriptions,
when dissipation is neglected.

However, dissipation due to Landau damping begins to
cut in at short spatial scales on the order of the Debye

ELECTROSTATIC ENERGY T~O
( )l.27

ELECTROSTATIC ENERGY T~ ISO (b)I.27
I I

0.95 0.95—

0.63 O
0.63—

0.32 0.32—

0 0.32
I

0.63
x (.iO)

0.95 0.27
l

0.32 0.63
x ( xl0)

0.95 0.27

4.00

&. 3.00
CQ

W

~ 2.00
CO

1.00

T I M E HI S TORY

1.06
~~ I.O4
~ I.02—~ I.OO-
~ 098—
9 O.96—

0.94—

KY= 0
I I I

I.05
& I.oo
~ O.95—x
O 0,90—

I I I

0.32 0.65 0.95 I.27 0
x(~IO)

KY= 0 (d)

I I I

0.32 065 0.95 l.27
x(xlo|

T =200
I

1.50
I

O. 50
I

0 I.OO 2.00
T~ME (.i02 j

FIG. 7. Particle-in-cell simulation of two-dimensional Langmuir collapse. (a) %ave energy contour map at t =0. (b) Self-focused
contours, a short time later. (c) Time history of average energy density. (d) x dependence of y-averaged density profile at initial and
later times (Forslund, 1983).
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length (large k in the Fourier spectrum of the field). This
dissipation can cause the collapsing wave packet to "burn
out" in a finite time at a finite energy density. (As we
shall see later, dissipation may be put into the
Schrodinger or Zakharov equations in a primitive linear
fashion using straight-line particle trajectories. )

The collapse and burnout can be seen most dramatical-
ly in a recent series of particle-in-cell plasma simulations.
These simulations are performed in two spatial dimen-
sions for an electron-ion plasma: In Fig. 6, we see the re-
sult of a 2D simulation (Anisimov et al. , 1982) in which
the initial state of the plasma consists of a localized wave
packet (whose intensity exceeds the collapse threshold)
and an associated density cavity. The dimensionless ener-

gy density 8'= 0.1, initially. This exceeds (2~/L ),
where I. is the initial localization size (the size of the cell).
By Eq. (3.8), the collapse condition is fulfilled, and Figs.
6(a)—6(c) indeed show the collapse as the plasma and ini-
tial field are allowed to develop, with no impressed
sources. At shorter scales, the burnout is evident in Fig.
6(d).

The results of Anisimov ei al. have been confirmed in
recent preliminary studies of Forslund (1983), using the
Los Alamos particle-in-cell code, wavE. In Fig. 7(a), we
see the contours of electrostatic Langmuir wave energy of
the initial state. In Fig. 7(b), a short time later, the con-
tours clearly define a more localized packet. Figure 7(c)
exhibits the time history of the electrostatic energy densi-
ty (averaged over one plasma period). The energy in-
creases during the self-focusing stage and begins to de-
crease during the burnout phase of the field evolution.
Figure 7(d) shows the evolution of the x dependence of
the (y-averaged) density profile, from an initial broad
form to a more highly localized cavity.

Figure 8 is significant because it illustrates the evolu-
tion of the electron velocity distribution function: The in-
itial Maxwellian distribution function is shown in a semi-
log plot in Fig. 8(a) (U„and U~ velocity-space profiles) and
the time-evolved distribution is in Fig. 8(b). A tail has
clearly developed on the distribution function, due to the
transfer of wave energy to electrons during the

burnout phase of wave-particle evolution.
Such simulations are very encouraging because they

permit interactive numerical studies at a fundamental lev-
el. Particles are pushed by Coulomb forces, so there is no
question of the validity of partial differential equation
(PDE) models or of the proper form of dissipation terms
at short scales. In the next section we shall see that the
PDE models do indeed reproduce much of this behavior.

C. The Zakharov equation: nonlinear Langmuir
wave dynamics

We can easily provide a heuristic "derivation" of the
Zakharov equations based on Eqs. (2.1)—(2.3) and the idea
that density cavities can be produced by ponderomotive
force [right side of Eq. (5.4)]. In dimensionless units, the
generalization of the Langmuir wave dispersion relation
(2.1) to inclu'de linear dissipation/growth [like yk in Eq.
(2.3a)] and density cavity formation by ponderomotive
force 1s

co=co~(1+k +5n) i yk . — (5.6)

E(r, t) =Re[S'(r, t)exp( ico~t)] . — (5.7)

The resulting nonlinear wave equation for S' is the first
of the so-called Zakharov equations:

The term k comes from the linear dispersion. The
term 6n is the nonlinear density depression caused by
ponderomotive force (proportional to

~

S'
I

). It arises
formally because the plasma frequency co&, defined in Eq.
(2.1), can be shown to depend on a sum of both the linear
background density and the nonlinear density modifica-
tion 6n. The term 5n can also be thought of as governing
nonlinear refraction, since Eq. (5.5) has demonstrated that
a change in the density (and hence in the plasma frequen-
cy co&) means a change in the index of refraction g.

The nonlinear dispersion relation (5.6) leads to a non-
linear wave equation in real space for the slowly varying
Langmuir wave field envelope, 8', defined by

V (i d, +V 5n +i—y ) S' =0 . (5.8)
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FIG. 8. Evolution of electron velocity distribution functions
during particle-in-cell simulation of 2D Langmuir collapse por-
trayed in Fig. 7. (a) Initial Maxwellian distribution (semi-log
plot). (b) Later distribution, showing formation of tail due to
burnout (Forslund, 1983).

Here, V comes from the dispersive term in (5.6), 5n
from the nonlinear refraction, and y from the damping.
(y S' is the Fourier inverse of yk S'k and hence a convolu-
tion. We should think of y as a linear operator in real
space. ) The divergence is present because the Langmuir
field is electrostatic (S'k ———VP). Cxeneralization to in-
clude electromagnetic polarization is straightforward
(Kuznetsov, 1974).

The second Zakharov equation is for the nonlinear den-
sity 5n and may be derived from low-frequency ion and
electron fluid equations, together with the quasineutral
approximation. The adiabatic electron response is deter-
mined by the time average of the convective term, v.V'v,

in which v is the (hf) response to the Langmuir field.
This term becomes the ponderomotive force (Nicholson,
1983). The result is
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(8, —C, V )6n =C, V
~

5'
~

(5 9a) L/T«C, or
~

5n
~

&&m/M (adiabatic limit) . (5.13a)

In these equations, time is measured in units of co, dis-
tance in units of ( —, )'~ Aii, field in units of 8(n nT) ~, and
density in units of 2nD, where no is the background densi-
ty. In simple units, then, sound speed is given by

C, =(—,
' )(m/M) . (5.9b)

D. Supersonic effects in the Zakharov equations

For those conditions under which ion inertia may be ig-
nored, Eq. (5.9b) reduces to V 5n = —V

~

8' ~, or

Density perturbations are driven by the (divergence of
the) ponderomotive force, on the right side of Eq. (5.9a).
These density responses in general are governed by the
linear "ion-acoustic-wave" operator on the left side,
which corresponds to the dispersion relation (2.2). The
second derivative in time comes from ion inertia, and the
Laplacian from particle pressure. Quasineutrality has
been assumed, so 5n can be thought of as either an elec-
tron or ion response (the ambipolar field has been elim-
inated).

The Zakharov equations possess solitary wave solutions
in one dimension (Nishikawa et al. , 1974). There is no
inverse scattering solution as for the cubic Schrodinger
equation, but one-dimensional dynamics has been studied
extensively (Gibbons et al. , 1977; Degtyarev et al. , 1980;
Rowland et al. , 198-1).

Higher-dimensional behavior has also been studied in
detail (Rudakov and Tsytovich, 1978; Degtyarev and Za-
kharov, 1974; Degtyarev et al. , 1975,1976). Integral in-
variants exist, but there is no virial theorem proof of col-
lapse for the Zakharov equations. As we shall see, there
are a profusion of self-similar solutions in various limits,
although none for the full Zakharov equations. Numeri-
cal studies do show, however, that collapse can occur
under a variety of conditions.

Since r},5n « C, V 5n, Eq. (5.10) obtains, and (5.11)
guarantees that the natural time and space scales of the
cubic Schrodinger equation prevail. In this limit the viri-
al theorein predicts that

~

Ã
~

(and hence 5n) becomes
singular in a finite time. However, according to (5.13a),
when

~

5n
~

or
~

8'
(

begins to exceed the electron-to-ion
mass ratio C, ~m/M, the inward velocity of spatial col-
lapse, as measured by L/T in (5.12), becomes "superson-
ic," and 8,5n can no longer be neglected. Unless dissipa-
tion has set in to stabilize or burn out the collapse, the
Langmuir wave packet will always become supersonic
when

L/T »C, or
~

5n
~

&&m/M (supersonic limit) .

(5.13b)

»m/M (supersonic limit) . (5.13d)

These arguments also apply when performing a linear
stability analysis of the Zakharov equations for modula-
tional instability of a "pump" wave (Nishikawa, 1968; Su-
dan, 1975; Bardwell and Goldman, 1976). The scaling is
once more given by Eq. (5.11), so the modulational insta-
bility growth rate goes as

(5.14a)

and the fastest growing modulational unstable mode has
wave number

In the supersonic limit, Eq. (5.10) is no longer valid. The
solution to Eq. (5.9) with V 5n neglected is nonlocal in
time, but we can see that 5n scales as (C, T/I. )

~

8'
~

or

(5.13c)

Hence the rate of collapse of (5.11) and (5.12) is slowed
relative to the adiabatic case. Note that (5.13c) yields a
useful alternate form of the condition (5.13b) for the su-

personic limit, namely

&n = —
~

8'
~

+const . (5.10) k cc [(m /M)
~

N'
~

]'~ (5.14b)

With this adiabatic result inserted in the first Zakharov
equation (5.8), we obtain a cubic nonlinear Schrodinger
equation generalized for a particular vector field.

Let us develop a criterion for when this adiabatic result
is an appropriate limit. The issue is whether

~
B,5n « [ C, V 5n

~

(adiabatic limit) or
~
B,5n

~»
~
C, V 5n

~

(supersonic limit). The question may be
posed in terms of the characteristic velocity 1./T, where
T and I. are characteristic time and space scales of 5n
and O'. From Eq. (5.8) we have

(5.11)

Hence the characteristic velocity for collapse (of a non-
translating Langmuir wave packet) is

(5.12)

The adiabatic or supersonic limit is obtained by compar-
ing 1./T in Eq. (5.12) with C, in (5.9b):

E. Self-similar collapse and "burnout"

Numerical solutions of the Zakharov equations in two
dimensions have demonstrated many of the effects ob-
served in particle-in-cell simulations. Among the first to
solve these equations were Pereira, Sudan, and Denavit
(1977). Their two-dimensional solutions have shown
modulational instability of an initial-value problem (with
8'=0. 1) in which the initial field contours were uniform
in y and solitonlike in x. The subsequent evolution, after
the linear instability stage, consisted of collapse, followed
by burnout when yk was given by the linear Landau-
damping term, Eq. (2.3b). In the absence of dissipation,
the collapse was shown to be of an anisotropic self-similar
form, given by

(5.15)
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where self-similar forms also exist in the supersonic regime, but
are still different (Zakharov, 1972; Galeev et al. , 1975}.
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FIG. 9. Numerical solutions of Zakharov equations (5.8) and
(5.9) in two dimensions, showing collapsing Langmuir wave
packet at the late stages of evolution of an initially unstable
(1D) soliton. (a) Self-similar collapse. (b) Top: Landau damping
produces wave-packet burnout. Bottom: Density cavity begins
to decompose into ion-acoustic waves as burnout occurs (Pereira
et aL, 1977).

These results are illustrated in Fig. 9. Note that
~

8'
~

increases as the collapse to smaller scales proceeds in se-
quence (a), for y =0. In sequence (b), Landau damping is
present, and, after initial collapse,

~

8'
~

begins to de-
crease due to burnout. At the same time, the density cavi-
ty which had trapped the Langmuir wave energy begins
to break apart when there is no longer any ponderomotive
force to carve it out. The broken up density cavity is ex-
pected to propagate away in the form of ion-acoustic
waves [Eq. (2.2)], since the second Zakharov equation per-
mits such propagation once the ponderomotive force has
vanished.

There is not universal agreement concerning the "prop-
er" form of self-similar solutions to the Zakharov equa-
tions. In the adiabatic regime, the reduction of the Za-
kharov equations to the cubic Schrodinger equation yields
analytic self-similar solutions which are either isotropic
(Zakharov, 1972) or anisotropic (Rudakov and Tsytovich,
1978), but which do not agree with Eq. (5.15). Other nu-
merical work on the Zakharov equations in two dimen-
sions yields dipole collapse which does not scale as Eq.
(5.15) (Degtyarov and Zakharov, 1974,1975). Analytical

VI. PLASMA EXPERIMENTS AND OBSERVATIONS

A. Brief historical survey

Some of the effects of ponderomotive force are starting
to be observed in experiments on real plasmas. After the
pioneering work of Kim, Stenzel, and Wong (1974), a
number of workers have observed laboratory density
"cavitons" and associated Langmuir wave envelope locali-
zation, driven by electric fields or beams. We cite the re-
cent observations of spiky turbulence and radiation driven
by a cold electron beam (Cheung, Wong, Darrow, and
Quian, 1982; Leung, Tran, and Wong, 1982; Michel,
Paris, Schneider, and Tran, 1982; %'ong et a/. , 1983; and
Wong and Cheung, 1984), and the two-dimensional col-
lapse driven by an electron beam in a homogeneous plas-
ma (Wong and Cheung, 1984) and driven by a capacitor
electric field along a density gradient in an inhomogene-
ous plasma (Eggleston, Wong, and Darrow, 1982}.

In Fig. 10, we see the results of one such experiment
(Leung et al. , 1982, Wong, Cheung, and Tanikawa, 1983).
Oppositely directed weak electron beams create a Lang-
muir envelope wave packet which is localized in space,
and a slight density depression associated with it [Fig.
10(a)]. A coherent signal triggers a breakup or modula-
tional instability, followed by spatial collapse, as shown in
Figs. 10(b) and 10(c). Figure 11 shows the electron veloci-
ty distribution function before and after the collapse.
Note the formation of a tail, reminiscent of the particle-
in-cell simulation results, Fig. 8.

In an even more dramatic, very recent experiment,
Wong and Cheung (1984) studied three-dimensional
Langmuir collapse induced by a weak pulsed electron
beam in a spatially homogeneous plasma. A single wave
packet was observed to collapse in a highly reproducible
manner from shot to shot, thus enabling an ensemble-
averaged time history of collapse to be constructed. Since
W was on the order of 0.3 &~m jM, the collapse would be
expected to be supersonic. The early radial contraction of
the packet was observed to be consistent with supersonic
self-similar behavior [see Eq. (8.1)], although the axial
contraction rate was different.

Another realm in which strong Langmuir turbulence is
thought to be produced is the solar wind. There is direct
evidence from spacecraft that weak electron beams in the
solar wind can drive Langmuir turbulence at levels up to
W=10 . This can occur in conjunction with radio-
wave emissions near the plasma wave frequency and its
second harmonic, in the well-documented "Type-III" so-
lar radio-wave emission (Gurnett and Frank, 1975; Gur-
nett and Anderson, 1977; Gurnett et al. 1980,1981; Lin
et al. , 1981). The associated Langmuir turbulence has
been studied using the Zakharov equations in one (Papa-
dopoulos et al. , 1974; Rowland et al. , 1981) and two or
more dimensions (Nicholson, Weatherall, Goldman, and
Hoyng, 1978; Nicholson and Goldman, 1978; Hafizi
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FIG. 11. Electron distribution function evolution for the exper-
iment shown in Fig. 10. Note formation of high-energy tail
when spatial wave collapse has proceeded to short scales (Leung
et al., 1982).
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FIG. 10. Experimental study of modulational instability in a
plasma. Spatial profiles of ion density and of Langmuir wave
energy density. (a) Oppositely directed electron beams have
driven a localized Langmuir envelope wave packet and slight
density depression. (b) and (c) Coherent signal triggers modula-
tional instability and spatial collapse (Leung et al., 1982).

et al. , 1982; Goldman, 1983; Weatherall et al. , 1983). We
shall return to this subject momentarily.

A second example of Langmuir turbulence in the solar
wind is offered by measurements near the planetary bow
shocks of the Earth and Jupiter. In particular, near the
Jovian bow shock very narrow spatial Langmuir en-
velopes (Fig. 12) and high-k Langmuir spectra have been
detected (Gurnett et al. , 1981). It is still not clear wheth-
er these waveforms are collapsed wave packets, as alter-
nate explanations for the production of short-scale low-

level turbulence have been offered (Russell and Goldman,
1983).

Sheerin et al. (1982) have suggested that Langmuir sol-
iton collapse can occur in the F region of the Earth' s
ionosphere, when it is irradiated by high-power hf radar
from a ground transmitter. Their numerical solutions of
the Zakharov equations show that the radar electric field
near the reflection point (=300 km) drives a modulational
instability, and that the nonlinear stage of wave evolution
involves self-focusing wave packets. This result is not in-
consistent with radar backscatter observations.

Soviet scientists (Sigov and Khodyrev, 1976; Galeev
et a/. , 1977a,1977b,1977c; Al'terkop et a/. , 1977) have
consistently cited the importance of Langmuir wave self-
focusing effects in laser-plasma interactions. Langmuir
waves can be produced in laser target plasmas by resonant
conversion of radiation at the critical density or, at lower
densities, by stimulated Raman scattering, or the 2coz in-
stability. Hot electron formation due to burnout could
have an adverse effect on the isentropic compression
necessary for inertial fusion schemes. In addition, the ob-
served harmonic generation (Rubenchik, 1981) in the radi-
ation from laser-irradiated plasmas may be affected by
strong Langmuir turbulence. In the laser-plasma context
there are generally strong density gradients, and spatial
inhomogeneity must be taken into account. Self-focusing
of the electromagnetic radiation within laser-irradiated
pellets has also been proposed (Valeo and Estabrook,
1975).

Finally, we cite several applications of these ideas to
magnetic wave phenomena in plasma physics. Musher
and Sturman (1975) have considered the collapse of lower
hybrid waves. It is conceivable that this process is
relevant to attempts to radiatively heat plasmas that are
toroidally confined. In another magnetic application,
upper-hybrid solitons and modulational instability of
upper-hybrid waves have been studied (Kaufman and
Stenflo, 1975; Porkolab and Goldman, 1976).
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FIG. 12. Narrow Langmuir envelope wave packet excited by electron beam at Jupiter's bow shock. The electric field waveforms of
three Langmuir wave bursts of unusually short duration are shown. These bursts consist of very intense wave packets, which have
collapsed down to spatial scales as short as a few Debye lengths (Gurnett et al., 1981).

B. Type-Ill solar radio-wave emission

%'e return now to a more detailed description of a pos-
sible example of strong Langmuir turbulence excited by
weak electron beams in the solar wind, during so-called
Type-III solar radio-wave emission. This example is in-
teresting because it involves a class of three-wave interac-
tions, also described by the Zakharov equations, and be-
cause it raises the issue of competition between a variety
of possible saturation mechanisms for beam-excited Lang-
muir waves, including the traditional "weak" turbulence
processes of (quasilinear) diffusion of particles by waves,
and of transfer of wave energy out of resonance with the
beam by scattering from ion-acoustic waves.

A complete account of the observations and plasma
physics associated with Type-III bursts can be found in
the review article by the present author (Goldman, 1983)
and in the theoretical work of the following authors:
Papadopoulos et al., 1974; Bardwell and Goldman, 1976;
Smith et al., 1976,1979; Nicholson et al., 1978; Papado-
poulos and Freund, 1978; Goldstein et a/. , 1979; Goldman
et al., 1980,1981; Kruchina et al., 1980; Hafizi et al.,
1981,1983. For the present we touch on some of the
relevant observations and one attempt at an explanation.

The scenario associated with a Type-III burst is illus-
trated in Fig. 13. An electron beam is excited on the sur-
face of the sun, possibly as a result of the release of mag-
netic reconnection energy during a solar flare. The result-
ing electron beam propagates along open solar magnetic
field lines to the Earth and beyond. In so doing, it passes
through the denser plasma close to the sun and moves out
in the solar wind, through plasma that is progressively
more dilute. As the beam front progresses outwards, it
excites electron plasma (Langmuir) waves.

The plasma waves are nonlinearly converted into radia-
tion near the electron plasma frequency and near its

second harmonic. Since the plasma frequency increases
with density [see Eq. (2.1)], the frequency of radiation ob-
served at a given point in interplanetary space decreases
as a function of time, from high values (=200 MHz),
generated when the beam is near the surface of the sun, to
low values (tens of kHz), generated when the beam is
closer to the Earth.

This Type-III emission was first observed from ground
stations on the Earth, but since the Earth's ionosphere re-
flects radiation below around 5 MHz, only the emission
from close to the sun could be observed. With the advent
of satellite experiments, it became possible to observe the
lower-frequency emission as well. Figure 13 shows the lo-
cation of the solar orbiting satellites, Helios 1 and 2, and
the Earth-orbiting spacecraft, ISEE-3 and IMP 6,8, all of

TYPE III EMISSION
~ '.'. ~

:gf::~ .~:.':.; ~ .'.' .',:.".." ~ !'.:. . . , ~ ~

LARE

EL, EC TRON SEAM

: ' PLASMA WAVES

HELIOS I, 2~.".::.. ." .. .:, , ' ~ ~ . . (
('.

200MHz). . .
CU p

. RADIATION

( lal p

~ ISEE-3

X~ IMP 6, 8
(~p -20 kHz)

EARTH

FIG. 13. Hlustraiion of Type-III solar radio emission. Electron
beam propagates out from the sun after a flare and excites
Langmuir waves of progressively lower frequencies. These
waves are nonlinearly converted into emission at co~ and 2'~.
Spacecraft that have detected the electron beam, Langmuir
waves, and electromagnetic emission are shown (Goldman,
1983).
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which have provided important data on the radiation
spectrum, the Langmuir waves, and the electron beam.

In Fig. 14, we show the results of measurements of the
beam and Langmuir waves from ISEE-3, some 200 Earth
radii from the Earth (Lin et al., 1981). An effective one-
dimensional electron velocity distribution function is con-
structed and depicted in Fig. 14(a) at two different times.
The dots represent the ambient local interplanetary plas-
ma electron distribution function, before the arrival of the
beam from the sun. The squares show the beam as a
"bump" on the tail of the distribution, near U =c/3, some
35 minutes later.

In Fig. 14(b), the Langmuir turbulence measured by the
spacecraft antenna at 31 kHz is given as a function of
time. The first appearance of the turbulence is simultane-
ous with the first appearance of the "bump-on-tail" distri-
bution function. This is consistent with Eq. (2.3), which
says that negative damping, or Langmuir wave growth, is
associated with a region of positive slope on the reduced
one-dimensional electron distribution function. The in-
stability is called the "bump-on-tail" instability in plasma
physics, and the growth rate of Eq. (2.3) is called the
"quasilinear" growth rate. The measured value of the
integrated-wave energy density, W=

~

E
~

/4wnT, is on
the order of 10 . This is an average that tends to em-

phasize wavelengths of order 8 km or longer (i.e., wave-
lengths longer than the beam-resonant Langmuir wave-
length k=c/3f~ =3 km).

In the next section, we show how certain aspects of the
Langmuir wave dynamics underlying Type-III solar
radio-wave emission can be modeled by the Zakharov
equations.

Vll. NONLINEAR EVOLUTION OF A "BUMP-ON-TAIL"
INSTABILITY

A. "Driven" Zakharov equations

Let us return to the Zakharov equations, (5.8) and (5.9).
In the numerical solutions of Pereira et al. (1977; Fig. 9),
yk was taken to be purely dissipative and given by the
Landau damping expression (2.3b). The wave evolution
followed from an initial value for the field 8' and for the
density cavity 5n Th.is is an example of an "undriven"
problem. However, we have seen from the discussion of
Sec. VI that real plasmas are usually "driven" by external
sources of free energy, such as an electron beam.

We may study the nonlinear dynamics of a plasma
driven by a weak bump-on-tail electron beam, such as the
one associated with solar Type-III radio-wave emissions,
by using the Zakharov equations, but allowing yk to be
negative in the regions of k space that correspond to wave
growth, and positive in the regions that correspond to
damping (Nicholson et a/. , 1978; Hafizi et al., 1983; Gold-
man, 1983). A bump-on-tail electron distribution func-
tion like that shown in Fig. 14 will give rise to both
growth and damping of Langmuir waves at the appropri-
ate wave vectors [see Eq. (2.3)]. The damping regions of
k space arise from nonthermal Landau damping, which
can be quite strong (damping rates on the order of the
beam growth rate). Note that the dissipative region is
close to the growth region for the electron distribution
function of Fig. 14.

Turning now to the second Zakharov equation, (5.9),
we shall allow for the ion-acoustic wave operator on the
left to include possible damping of ion-acoustic waves
through a linear operator v;8„for which the Fourier
transform v;(k) is the appropriate damping rate. The Za-
kharov equations therefore assume the following form:

(b)
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V'(&~q+V —~&+&'Yb)@ =0i Ybk ~ ~ufe I ~ /k

(B,+v;8, c, V )5n =—c, V
~

8'
~

B. Wave-wave interactions

(7.la)

(7.1b)

FIG. 14. Results of ISEE-3 spacecraft measurements of elec-
tron beam and Langmuir waves during a Type-III burst (not
shown). (a) Reduced one-dimensional electron velocity distribu-
tion function before (0) and during (~ ) the passage of the
beam. (b) Corresponding Langmuir turbulence, which onsets at
the time of appearance of beam "bump. " Logarithmic average
weights wavelengths are greater than 8 km (Lin et al., 1981).

The Zakharov equations contain wave-wave interac-
tions of the conventional three-wave decay variety, as well
as of the (four-wave) modulational and self-focusing type.
Such three-wave dynamics are part of the basis of conven-
tional "weak" Langmuir turbulence. To show how
three-wave interactions arise in the Zakharov equations,
suppose we consider the stability of an initial Langmuir
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yww= I
@'o

I
(7.2a)

In this instability, the pump wave 8'o gives energy to
the scattered wave 8'„„.„and to the ion-acoustic wave,
represented by 6n. The linear stability analysis is, of
course, actually performed on the Fourier transform of
the Zakharov equations, so there is a wave vector attached
to each of the three waves. The kinematics is illustrated
in Fig. 15.

There is a special wave number in the kinematics,
which is proportional, in physical units, to the square root
of the electron-to-ion mass ratio m /M. We shall call this
wave number k~:

k, =(m/M)'~ k

For a pump wave number much larger than k„the
scattered Langmuir wave is always in the backward direc-
tion, relative to the pump wave vector [Fig. 15(a)], and re-
duced in magnitude by the small amount k, . In this lim-
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FIG. 15. Wave scattering and cascade described by Zakharov
equations. (a) Wave-vector geometry for backscatter of a Lang-
muir wave kb from an ion-acoustic wave q;,„.(b) Cascade to
low k when kb »k+. (c) Scatter directly into condensate when
kb &k~.

wave field 8'0. Then, Eq. (7.1a) tells us that the beating
of 8'0 against a density fluctuation 5n (associated with an
ion-acoustic wave) will produce a scattered Langmuir
wave 8'„,«, and (7.1b) tells us that the scattered wave will
beat against 8'0, to act as a source for 5n:

8'„.„=@'Dan,

+o@sca«

This feedback gives rise to a "wave-wave decay" or
"stimulated scattering instability, "with growth rate yww,

it, the ion-acoustic frequency is negligible compared to
the incident and scattered Langmuir wave frequencies,
and the ion-acoustic wave only serves to take up momen-
tum.

For somewhat smaller pump wave numbers, ko&k~,
the scattered wave will have essentially zero wave number
(large wavelength). This is because the ion-acoustic wave
frequency becomes comparable to the dispersive ( k ) part
of the pump wave frequency [Eq. (2.1)] at such small
pump wave numbers and can no longer be neglected. For
still smaller pump wave numbers, ko Q k~, the three-wave
interaction is no longer possible kinematically (although
modulational instability may occur, since it represents a
"four-wave" interaction with nonresonant adiabatic ion
response).

Let us now consider the pump wave to be one of the
beam-driven waves. Its wave number is kb cop /Ub,
where Ub is the beam speed. For beams that are not very
energetic (Ub «co&/k~), the beam-amplified pump wave
backscatters. As the backscattered wave grows [at the
rate given by Eq. (7.2)], it eventually becomes sufficiently
energetic to act as a pump for a forward scatter. This
process may continue for a number of back-and-forth
scatters. At each scatter, the wave number is reduced by
the amount k~.

The result is a cascade of wave energy to lower wave
numbers [see Fig. 15(b)]. Such cascades are well known
in weak turbulence, and have been observed as numerical
solutions to the Zakharov equations (Nicholson and Gold-
man, 1978). If there is sufficient dissipation at wave
numbers lower than kb, the beam instability can be
saturated, and the resulting turbulence is termed "weak"
(Kadomtsev, 1965; Kaplan and Tsytovich, 1967,1973). If
there is insufficient dissipation, energy begins to build up
at long wavelengths, in the so-called Langmuir wave con-
densate.

Since there is usually virtually no Landau damping at
very long wavelengths, the condensate eventually becomes
unstable to the modulational instability discussed by
Vedenov and Rudakov (1964) (see Sec. V.A). The evolu-
tion of the modulational instability will involve the spa-
tially collapsing wave packets discussed earlier. Modula-
tional instability and collapse are both strong-turbulence
effects, described by the Zakharov equations. The col-
lapse causes an eventual transfer of energy up to large k,
where thermal or nonthermal Landau damping (or, more
appropriately, "transit-time" damping) provides the dissi-
pation that saturates the instability. (Such damping may
also lead to Langmuir wave-packet burnout in real space. )

For very energetic beams, we may have kb on the order
of k~. In this case, the stimulated scattering will carry
energy directly into the condensate [see, Fig. 15(c)], rather
than indirectly (i.e., after a prior cascade). The Langmuir
turbulence excited during Type-III solar emission behaves
in this way, since Ub=c/3. For still more energetic
beams (e.g., relativistic beams), the beam-driven waves
may go unstable to modulational instability directly, rath-
er than after scattering off ion-acoustic waves (Sudan,
1973,1975).
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C. Wave-particle (quasilinear} saturation

The reader may wonder at this point what has hap=
pened to the traditional quasilinear processes (Sec. II.B) in
the nonlinear evolution of Langmuir waves driven by a
bump-on-tail electron beam. In quasilinear theory, the
nonlinear interactions are between the beam-driven waves
and the beam particles only. Wave-wave interactions
such as stimulated scattering, modulational instability,
and collapse are all omitted from the theory. Saturation
starts to occur when the beam-driven modes become as
energetic as the beam. . At this time they begin to cause
velocity-space diffusion of the beam particles, causing a
plateau to appear where there was formerly a positive
slope. This removal of free energy quenches the instabili-
ty [Eq. (2.3)], as described in Sec. II.B.

In the Zakharov equations (7.1), the electron distribu-
tion function f, is fixed, so there can be no reaction of the
waves back on the beam particles. The Zakharov equa-
tion treatment (in this approximation) is complementary
to the quasilinear description in this sense, so we-must ask
which is the proper description. The problem is illustrat-
ed in Fig. 16, which suggests that the beam-driven modes
can either react back on the electron beam' or transfer
their energy to other waves, leading, in the strong-
turbulence case, to the formation of a condensate which is
unstable to collapse.

The answer is that the more rapid process dominates.
If wave-wave interactions begin rapidly to transfer wave
energy out of resonance with the beam at an early time
(i.e., when the beam-excited modes contain only a small
fraction of the beam energy), the beam modes will not be
sufficiently energetic to react back on the beam and re-
move its free energy by quasilinear diffusion. In this case,
the wave-wave interactions certainly cannot be ignored,
and strong turbulence may prevail. Whether or not the
waves will eventually alter the beam depends on the shape
and intensity of the spectrum of fully developed wave. tur-
bulence. If the asymptotic spectrum contains appreciable
wave energy in resonance with the beam, then quasilinear
diffusion may once more become possible.

f, (v)"

r
I
I
I

/~ CONDENSATE

COLLAPSE

FIG. 16. Two possible saturation mechanisms for a "bump-on-
tail" beam-excited Langmuir wave instability. The growing
waves either react back on the resonant electrons, causing quasi-
linear plateau formation, or they scatter down to a nonresonant
long-wavelength condensate, which may undergo modulational
instability.

We may formulate a rather simple criterion for wheth-
er the evolution of Langmuir waves driven by a beam is
initially dominated by wave-wave or by wave-particle in-
teractions. The wave-wave scattering rate is given by Eq.
(7.2a) or, in proper dimensionless units, by

yww= ~/16 (7.2b)

where W—= ( ~E
~

}/4rrnk~T, as in Eq. (2.4). Wave-
wave scattering can only begin to depopulate the beam-
resonant region of wave k space when yww is comparable
to or greater than the growth rate of the beam-resonant
waves, yb. This occurs at a wave energy density

8'= W,„=16yb/cop . (7.3)

If W,
„

is significantly less than the beam energy density
nmub (in units of the background particle energy density
nT), then wave-wave interactions will preempt the wave-
particle interactions which cause quasilinear plateau for-
mation. Qnly in this situation is it self-consistent to in-
troduce an unchangeable beam distribution function into
the Zakharov equations, as in (7.la). We thus have as the
criterion for wave-wave saturation of the instability

16yb/co& «nm(hub/ub)ub/nT . (7.4a)

For a bump-on-tail distribution function, the maximum
growth rate of the beam modes is given by yb

~

=(nbln, )(ublhvb) . Hence the criterion (7.4a)' may be
rewritten as

4 U, /Ub .« ( b,ub /Ub ) (7.4b)

There are various limitations on the validity of this
simple inequality. The (quasilinear) expression we have
used for the maximum growth rate of the beam modes is
only valid in the "warm-beam" limit ( nb /n, )

'

«hub lub. In addition, for very high beam energy densi-
ties, the relevant wave-wave interaction for removal of
beam-resonant wave energy density may be intense modu-
lational instability (Sudan, 1973,1975; Galeev et al.,
1975,1976,1977a,1977b,1977c), rather than stimulated
scattering. Also, for beams sufficiently strong that 8'«
exceeds the mass ratio m/M, the rate of stimulated
scattering is reduced from 8' to (m/M)'~ W'~ [Eq.
(5.13) and (5.14); Sudan, 1973,1975; Papadopoulos, 1975].
In any of these regimes, the condition (7.4b) is appropri-
ately modified. However, in the example of strong tur-
bulence we consider next, nb/ n, is of order 10, W« is
of order 10, and (7.4b) is the proper criterion, and is
well satisfied.

Does the criterion (7.4a) also serve as a criterion for de-
ciding if the Langmuir turbulence will be strong or weak?
The answer is somewhat subtle. When we speak of weak
and strong turbulence we are making a distinction that
belongs in the domain of statistical theory. As mentioned
earlier, three-wave interactions, together with quasilinear
wave-particle interactions, constitute "weak" turbulence.
Hence the dominance of one or the other is not by itself
sufficient to distinguish when the "strong"-turbulence ef-
fects of modulational instability and collapse come into

Rev. Mod. Phys. , Vol. 56, No. 4, October 1984



728 Martin V. Goldman: Strong turbulence of plasma waves

play. However, when the wave-wave scattering dom-
inates, it is usually the case that a condensate forms and
becomes modulationally unstable.

This has been shown for the parameters of the Type-III
burst problem by Grognard (1982), who solved the com-
plete one-dimensional weak-turbulence equations for a
bump-on-tail electron distribution function and the self-
consistent resonant and nonresonant (i.e., wave-scattered)
portions of the Langmuir wave spectral function. He
found that wave-wave interactions caused a long-
wavelength condensate to build up to a high energy level,
at which time the weak-turbulence equations broke down
because the collapse threshold was exceeded. His equa-
tions also included advective effects of the beam propaga-
tion through space. The buildup of the condensate was
found to be sufficiently rapid that a quasilinear plateau
was never able to form on the advecting beam distribution
function.

Of course, one can envisage other situations where
weak turbulence may indeed be a sufficiently complete
description. For example, a weak low-velocity beam
could cause an extensive cascade to occur. If the plasma
were sufficiently collisional, there might be enough col-
lision damping (free-free absorption) to prevent the cas-
cade from terminating in a long-wavelength condensate.

D. Numerical solutions to the 2akharov equations

We assume, based on the above discussion, that Eq.
(7.1), the Zakharov equation description of the Langmuir
turbulence excited by a Type-III burst-associated beam, is
justified. There have been a number of numerical treat-
ments of the two-dimensional dynamical wave evolution
which exhibit the phenomena of modulational instability
and collapse (Degtyarev and Zakharov, 1974; Pereira et
a/. , 1977; Nicholson et al., 1978; Hafizi et al., 1982; Ni-
cholson et al. , 1983).

Here, we present an unpublished numerical treatment,
due to Dr. J. Weatherall (1982), in which the measured
velocity distribution function of Fig. 14 is used to calcu-
late ybk in Eq. (7.1a). The beam-mode growth rate is very
weak (yb ~

~»-10 ), and nonthermal Landau damping
occurs on either side of the bump. The condition kb & k,
is satisfied, so scattering into a condensate is expected.
The ion-acoustic wave that participate in the scattering
process are heavily damped (v;k =c,k).

A grid of 128)& 128 is employed, and the initial condi-
tions consist of random-phase low-level wave noise. The
wave evolution is exhibited in Fig. 17, which shows the
contours of constant

~
Ek ~, ~

E(x,y) (, and 5n( y)x
(reading from left to right) at three different times (read-
ing from top to bottom).

In Fig. 17(a), we see that the k-space energy has grown
to a sufficiently high level ( W'= 10 ) that the wave-wave
interaction of stimulated scatter of beam-excited waves
off ions is beginning to fill up a long-wavelength conden-
sate faster than the beam can continue to drive up the lev-
el of resonant waves. It is at this point in time that

saturation begins. In Fig. 17(b), we see that the energy
density of waves in real space still appears to carry the
random phasing of amplified initial noise. The pattern is
one of valleys and hills produced by the interference of
these plane waves. Figure 17(c) shows that ion-acoustic
plane waves have built up, due to the stimulated scatter.
Their momentum is essentially that of the beam-resonant
Langmuir waves, since the scattered Langmuir waves re-
side in the (zero-momentum) condensate.

Figure 17(d) shows the energy density of Langmuir
waves in real space at a later time. Now there is evidence
of a more coherent, self-focused wave packet's having
formed. Its origin is presumably the modulationally un-
stable k-space condensate.

In Fig. 17(e), we are at a much later time. The conden-
sate is fully formed, and very little energy is in resonance
with the beam; the-total energy of the waves has remained
uniform since the preceding figure because the rate of in-
crease of total energy is proportional to the intensity of
resonant energy. Figure 17(f) shows that the self-focused
wave packet appears to be relatively stable and stationary.
Presumably the small amount of incoming wav'e energy
due to the beam instability is balanced by the small
amount of nonthermal Landau damping of the spectrum
at low and high k. In this steady state there does not ap-
pear to be any burnout of the collapsed wave packets, as
in the particle-in-cell simulations (Figs. 6 and 7). Figure
17(g) shows the density cavity that has been dug out by
the ponderomotive force of the collapsed wave packet. It
too is stationary.

From these results we can draw several conclusions re-

garding the Langmuir turbulence that underlines Type-III
solar radio emission. The long-wavelength condensate
that forms has most of the spectral energy. There is a siz-
able energy component at scale sizes of 8 km and longer,
so this part of the turbulence would indeed be observable
and consistent with the limitations of the spacecraft
measuring apparatus discussed above (short scales do not
register, except in a logarithmic average). The. mean ener-

gy density of the condensate agrees with observation
( &=10 ) and also the wave-scattering criterion, Eq.
(7.3). Preliminary estimates indicate that the condensate
can give rise to the observed intensities of electromagnetic
emission at the plasma frequency and its second harmonic
(Newman, private communication). Collapse and cavita-
tion occur, but although the collapsed wave packets have
a high energy density, they do not have a high integrated
energy. [However, the integral over

~

I'~ can be large,
and is perhaps a significant measure (Kaufman, private
communication). ]

This computation took one hour of Cray-1 time. Al-
though it appears that we have found an asymptotic
steady state, it is hard to be certain that enough time has
elapsed, or that we have sufficient resolution in k space to
believe the absence of burnout, for example (Zakharov,
Rubenchik, and Sagdeev, 1983).

It may be useful to try to classify the wave dynamics in
the language of fluid turbulence: The so-called injection
range of k space is where wave energy is introduced by
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FICx. 17 Numerical solution of Zakharov equations for beam-excited strong Langmuir turbulence, corresponding to Type-III solar
radio-wave burst parameters. (a) and (e) Wave energy density contours in k space at t =3.75y ' and at t =14y ', where y is the
beam-mode growth rate. Scatter into a condensate is evident. (b), (d), and (f) Wave energy density contours in real space, showing
collapse of a Langmuir wave packet at t =3.5y ', 4.5y ', and 14y '. (c) and (g) Contours of constant ion density in real space at
t =3.5y ' (showing ion-acoustic waves generated during scatter into the condensate) and at t =14y ', showing density cavity sup-
ported by ponderomotive force of collapsed Langmuir wave packet. See text for further discussion. From J. Weatherall (1982).
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the beam to the beam-resonant modes. The dissipation
range is presumably at large k, but there is also some dis-
sipation at the edges of the condensate; both are due to
nonthermal Landau damping. The so-called inertial
range is supposed to be a region of wave evolution that is
free from sources or sinks. In the Type-III burst problem,
it appears that the inertial range is absent or very narrow.
Other recent studies have been made of narrow-inertial-
range turbulence (Weatherall et al., 1983). Such tur-
bulence may be less amenable to a statistical theory than
situations in which the inertial range is wider. We now
turn to a discussion of a different parameter regime ap-
propriate to one such statistical theory.

VIII. STATISTICAL THEORY OF STRONG LANGMUIR
TURBULENCE

Our discussion so far has dealt with the physical phe-
nomena and dynamical equations which underlie strong
Langmuir turbulence. A statistical theory is often im-
plied when we speak of "turbulence, " although since the
rise of modern dynamics this is no longer strictly neces-
sary. A statistical theory is desirable because the resulting
kinetic equations are usually (but not always) simpler than
the original dynamical equations, and analytic solutions
and scaling laws are often possible. Such a theory also
has a distinctly different flavor, introducing concepts
such as the rates of energy transfer between scales and
various possible transport phenomena, such as particle or
wave diffusion.

A brief history of statistical theories based on the Za-
kharov equations was presented in Sec. V.A. In the fol-
lowing discussion we limit ourselves to a description of
the strong-Langmuir-turbulence theory developed by
Galeev et al. (1975,1976,1977a,1977b, 1977c), after the in-
troduction of seminal ideas by Kingsep, Rudakov, and
Sudan (1973). Our treatment is based on the corrected
and refined version of this theory developed by Pelletier
(1982).

The model is illustrated in Fig. 18. The basic struc-
tures are self-similarly collapsing Langmuir envelope
wave packets, rather than plane waves. Thus a high de-

TIME

COLLAPSE =

INERTIAL RANGE

ELECTRONS

FIC~. 18. Ideal gas of self-similarly collapsing Langmuir wave
packets which surrender their energy to electrons at short scales.
This is the model of strong Langmuir turbulence due to Galeev
et al. (1975).

gree of phase coherence is built in from the beginning, in
contrast to the usual weak turbulence theories, which rely
on the assumption of randomly phase plane waves. It is
important to stress that it is largely an article of faith,
based on some experience with numerical solutions of the
Zakharov equations, that collapsing wave packets tend to-
wards a self-similar form (i.e., that the self-similar solu-

tions are "attractors").
Additional assumptions are made in the original ver-

sion of this theory: Weakly turbulent Langmuir plane
waves are neglected altogether. The interaction between

collapsing wave packets, which may proceed by the emis-

sion and absorption of ion-acoustic sound waves, is like-
wise neglected, as are possible effects of radiated ion-
acoustic waves. Thus it is assumed we have an ideal gas
of such self-similar wave packets. (Some of these restric-
tions are lifted in later work. )

Dissipation of wave energy is provided by quasilinear

coupling to electrons at short scale sizes. That is, when a
wave packet has collapsed to small scales (large k), it can
surrender its energy to relatively low-velocity electrons
(v =co&/k). This transfer of energy is probably more
correctly described as transit-time damping of the Lang-
muir wave packet by the local electron distribution func-
tion. However, in the statistical description considered
here, we use Landau damping by the average distribution
function. The trajectories of these electrons are permitted
to diffuse in the collection of Langmuir wave packets, so
the resulting self-consistent electron distribution function
will be non-Maxwellian.

In the original work of Galeev et al. (1975), the tur-
bulent "inertial" range arose from the dynamical process
of free collapse. Energy was injected at large scales and
extracted at short scales, but, for most of the range of col-
lapse, sources and sinks of energy were assumed to be
negligible. This is very much in the spirit of the concept
of inertial range familiar from fluids: the dynamics in the
inertial range is that of a conservative system (i.e., the Za-
kharov equations, with yk ——0 and with no inhomogene-
ous source term). Pelletier showed how to build the ef-

fects of dissipation into the self-similar solutions in a
self-consistent manner, and this is the version we shall
describe.

One virtue of the theory is that the underlying dynami-

cal collapse can be taken to be three dimensional. In the
resulting kinetic equations for the spectral function Wk

of Langmuir waves and quasilinearly coupled electrons, a
statistically isotropic and homogeneous steady state is
sought and found. The spectrum is illustrated qualita-
tively in Fig. 19. An unspecified driver injects energy at
large scales (small k). Modulationally unstable wave-

packet collapse gives rise to an inertial range in which the
spectrum falls as k, and at large k, quasilinear Lan-
dau damping to electrons reduces the spectrum still fur-
ther to a k shape, while the self-consistent electron
distribution function is found to go as v . These re-

sults are modified for realizations of this model (such as
simulations) in spatial dimensions other than three.

Based on an isotropic supersonic self-similar solution to
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FIG. 19. Langmuir spectrum 8'k, given by turbulence theory
depicted in Fig. 18. Collapse to short scales corresponds to
spectral transfer to large k. This spectrum is the solution to the
kinetic equations (8.6) and (8.7).

the Zakharov equations, (5.8) and (5.9), the square
modulus of the Langmuir wave envelope is given by

equation in the g-s phase space:

B,p =Bg(pvg)+ B,(pe2y) . (8.4)

This equation can easily be derived by letting
p=5[e —s(t)]5[('—g(t)], where E(r} and g(t) satisfy Eqs.
(8.3). The function p can now be used to perform aver-
ages over quantities which depend on the energy and the
scale size. The quantity of most interest to us will be the
spectral energy Wk. It is therefore desirable to introduce
the spectral shape of a self-similar solution, which we de-
fine as gg(kg). The spectral energy Wk may then be de-
fined by an appropriate average energy c.:

Wk a:n„f dc, dgsp(s, g)[gg(kg)] . (8.5)

Likewise, we may define yk( Wk) in terms of y(g ', s)
and vk( Wk) in terms of v(g, s), by averaging over pgg. A
kinetic equation is derived by taking the time derivative
of Eq. (8.5) and using the Liouville equation (8 4). [Note,
that p is the only time-dependent term on the right side of
(8.5).] The resulting kinetic equation is

I@'I'=so 'F(rC» (8.1)
~k[(&k Wk) Wk] 2yk Wk (8.6)

B,g= —v(g, E)g,

B,E= —2y(g ', s)s .

(8.2)

(8.3a)

Here v has the interpretation of the "collapse rate" and is
given analytically (Pelletier, 1982) by

where the time-dependent scale size g and the time-
dependent wave-packet energy e satisfy the following
first-order (autonomous) ordinary differential equations in
time:

The first term on the right is the k-space divergence of
the power flow which corresponds to collapse (see Fig.
19). The term in parentheses is the rate of change of k
with time, corresponding to vkk.

Let us first consider the inertial-range steady state, in
which B,S'k, the damping term, and any driver term
[which may be added to the right side of Eq. (8.6)], are all
set equal to zero. The vanishing of the divergence of the
power flow then gives us

( &gg3)1/2 (8.3b) k —5/2

The damping rate y(g ', E) is essentially the quasilinear
Landau damping rate as a function of the scale size g
(corresponding to wave number) and the wave energy s
(corresponding to a wave energy dependence in the quasi-
linear diffusion coefficient).

This form of self-similar solution can be understood as
part of the solution of the Zakharov equations (5.8) and
(5.9) in the following sense: The function F is not arbi-
trary, but must satisfy a time-independent equation based
on (5.8), with the same boundary conditions as (5.8). The
self-similar form of the density cavity, 5n, has been
suppressed, but it is a solution to (5.9) in the asymptoti-
cally supersonic limit, in which 8, dominates V . A new
set of dimensionless units has been adopted, in which C,
has been absorbed.

Up until this point we have merely characterized a par-
ticular (self-similar) dynamical solution to the Zakharov
equation. A statistical hypothesis is introduced as fol-
lows: A noninteracting ensemble of self-similar solutions
with a distribution of sizes and energies is assumed to ex-
ist and to have a spatial density n„set by the driven
modulational instability. That is, we focus our attention
on one self-similar solution, and allow g and s to be ran-
dom variables. Their distribution is governed by a proba-
bility density p(a, g), which obeys the following Liouville

yk= fdvk B„f5(co~.—k v) . (8.7a)

We assume the distribution function f(v ) undergoes
quasilinear velocity space diffusion governed by a dif-
fusion coefficient D„,although this assumption may be
difficult to support if the local electron distribution func-
tion is strongly modified in a single "transit-time" in-
teraction with a collapsing wave packet:

a,f=a„D„a„f,
D= fdk Wk5(co& —k.v)kk . (8.7c)

These equations appear identical to the usual quasiljn-

This is the k dependence of the spectrum in the inertial
range. The argument here is very familiar from Navier-
Stokes turbulence, where it is called the Kolmogorov hy-
pothesis.

Next, let us consider the dissipative range, where the
steady-state spectrum is determined from a balance of the
two terms on the right side of Eq. (8.6), that is, from the
balance of power flow with dissipation. How is yk deter-
mined. As in Eq. (2.3}, it is a function of the electron
velocity distribution f(v). In the present theory, f is tak-
en to be the average distribution function. An, equivalent
form IS
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ear equations (Sec. II.B). However, we should bear in
mind that the spectral energy density 8'k, which governs
the electron velocity-space diffusion, must be a self-
consistent solution to the kinetic equation (8.6). The dif-
fusion is therefore physically off an ensemble of collaps-
ing wave packets whose average plane-wave decomposi-
tion is given by W~, rather than off randomly phased
plane waves. A steady-state solution of Eqs. (8.6) and
(8.7) can be found by assuming isotropy in v space and k
space, and looking for power-law solutions. The result,
generalized to arbitrary dimension D, is

II/ k 2+D/2 f ( )
3D/2 1—

It is easy to show further that the Landau damping rate

yk is equal to the collapse rate vk, so that a collapsing
wave packet vanishes due to dissipation in precisely the
same time that it takes to collapse. The collapse time is
found to be finite in three dimensions, but in two dimen-
sions the scale size g decreases exponentially with time.

This model has a number of limitations besides the ob-
vious one that the premise of an ideal gas of self-similarly
collapsing wave packets is an unproven assumption. Pel-
letier points out that at large k the condition for strong
turbulence [Eqs. (3.12) or (5.1)] is violated, so the dissipa-
tive range might include weak-turbulence effects.

A more serious shortcoming has to do with the effect
of ion-acoustic waves on the large-scale Langmuir waves.
Ion-acoustic waves can be generated in several ways. We
have seen in Fig. 17(c).that ion-acoustic waves are pro-
duced in the early weak-turbulence evolution of beam-
driven Langmuir waves. Another source may be the den-
sity cavities left after a collapsing Langmuir wave has
burnt out due to Landau damping.

When the density cavity that had trapped the packet is
no longer present to supply the ponderomotive force
which had been self-consistently maintaining the cavity,
the latter is free to radiate away all or part of its energy in
the form of ion-acoustic waves (Sec. II). This is evident
from the Zakharov equation (7.1b). When the right side
is zero, the solution to the problem of the evolution of an
initial cavity 5n will always involve the generation of
ion-acoustic waves with a short wavelength, commensu-
rate with the small collapsed cavity size.

The effect of the ion-acoustic waves depends on several
factors, including the number of spatial dimensions and
the temperature of electrons relative to ions. If the elec-
tron and ion temperature in the plasma are equal, these
waves will quickly dissipate away [i.e., v; in Eq. (7.1b) is
larg~see discussion of Sec. II]. When the electron tem-
perature is high compared to the ion temperature, howev-
er, the short-scale ion-acoustic waves persist and may
cause the anomalous absorption of long-scale Langmuir
waves by a nonresonant conversion process. In this pro-
cess, the long-wavelength Langmuir waves scatter off the
short-scale ion-acoustic turbulence, and are converted into
short-wavelength Langmuir waves which are strongly
Landau damped by electrons (in the dissipative range).

One-dimensional numerical solutions of the Zakharov
equations for the case T, » T; have shown the generation

of intense ion-acoustic turbulence, which has a profound
effect on the evolution of the high-frequency Langmuir
waves (Sagdeev and Khodryev, 1977; Galeev et al.,
1975,1976,1977a,1977b,1977c; Degtyarev et al., 1980).

Another possible effect of ion-acoustic turbulence in-
volves the formation of a "sea" of cavities capable of
driving Langmuir wave packets localized to their own
(short) scale length. Doolen et al. (1984) have recently
claimed that long-time one-dimensional simulations of
plasmas driven near k =0 do not agree with the predic-
tions of the "independent-self-similar-collapse" statistical
theory of Galeev et al. (1975) and Pelletier (1982). This
is because trapped Langmuir wave fields renucleate in
cavities whose (small) spatial scale is nearly the size at
which strong dissipation occurs by Landau damping.
Thus "solitons" are reborn near the dissipation subrange,
and the well-developed inertial range required for self-
similar collapse is not observed. (At long scale sizes a flat
Langmuir spectrum is found numerically and thought to
be associated with equipartion of mode energy. )

Finally we remark that the very recent pulsed-beam ex-
periments on three-dimensional collapse by Wong and
Cheung (1984) do not appear to show burnout or signifi-
cant ion-acoustic turbulence. A single Langmuir wave
packet forms and collapses supersonically in a manner
consistent with supersonic self-similar collapse (in the ra-
dial direction).

It is quite likely that there are many different parame-
ter regimes for strong Langmuir turbulence. The applica-
bility of the statistical model described in this section
remains to be demonstrated, either by comparison with
higher-dimensional long-time numerical simulations or in
terms of real experiments exhibiting many collapsing
wave packets.

IX. CONCLUSIONS

In this review, we have attempted to show, on a heuris-
tic level, some of the physics, mathematics, and philoso-
phy that go into a particular set of nonlinear phenomena
involving Langmuir waves in a nonmagnetic plasma. We
have explored a number of concepts relevant to dynamical
and statistical models of strong Langmuir turbulence. In-
cluded among the physical processes treated were wave
modulational instability, self-focusing of wave packets
and of self-consistent density cavities, wave cascade down
to a low-k condensate, and driving and dissipation due to
coupling of waves to particles.

Developments in this subject area appear to be ac-
celerating, with a number of recent experiments and com-
puter simulations demonstrating the existence of the basic
physical phenomena of modulational instability,
ponderomotive-force-induced cavities and localized wave
packets, saturation of bump-on-tail beam instability by
nonlinear wave interactions, and particle tail formation by
collapsing Langmuir wave packets.

However, there are still a number of open questions
which provide rich material for theoretical and experi-
mental research.
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There have been no simulations on numerical solutions
of the Zakharov equation dynamical model for driven
waves in three dimensions, although there are indications
that there may be important differences between one, two,
and three dimensions. Even in two dimensions the fine
grid spacing and short time steps required for numerical
analysis provide severe restrictions and lead to the con-
sumption of hours of Cray-1 time. Two-dimensional
particle-in-cell simulations which show strong-turbulence
effects have not been performed in the presence of a
driver, such as an electron beam. [However, very recent
preliminary results by Russell (1984) appear to show col-
lapse driven by a spatially uniform Langmuir field in a
2D particle-in-cell simulation. ] Particle-in-cell simula-
tions have also not been able to treat the important case in
which a number of wave packets are simultaneously self-
focusing, so that one could study their interaction, densi-
ty, etc.

Statistical theories based on the Zakharov equations are
beginning to emerge, but many assumptions have not been
justified. In the model of Galeev et al. (1975), the as-
sumed shape and independence of collapsing wave packets
have not been fully justified, and the role of a driver, of
ion-acoustic waves, and of cavities in the evolution of the '

Langmuir turbulence is poorly understood. Other statisti-
cal theories, such as the direct-interaction approximation
(DuBois and Rose, 1981; DuBois, Rose, and Nicholson,
1984) have shown qualitative agreement with numerical
studies of modulational instability in one dimension, but
predictions for higher dimensions have not yet been ex-
tracted. Neither statistical theory has as yet been applied
successfully to laboratory (or space) experiments. The
large, parameter space for strong Langmuir turbulence
suggests that there may -be room for more than one sta-
tistical model, depending on the strength, structure, and
duration of the driver and on the background plasma con-
ditions.

Finally, in the case of experiment, many of the effects
need to be measured in more quantitative detail, to enable
checks with theory. Further laboratory study of two- and
three-dimensional wave evolution in a homogeneous,
weakly driven plasma would be very desirable. The
dynamical spatial evolution of nonlinear wave packets
should be probed directly as a. function of time, in a
time-asymptotic regime. In particular, the existence of
self-similar collapse should be examined, and the criteria
for distinguishing between weak- and strong-turbulence
saturation of beam instabilities should be established. In
the case of spacecraft observations of Langmuir wave tur-
bulence in the solar mind, the single most important
development would be the ability to make absolute short-
scale measurements of the Langmuir wave spectrum.
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