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The principles of the separation physics of the gas centrifuge were described in Part I of this review. In
this second section the principles involved in spinning the rotors of these centrifuges are described. Three
types of rotor can be identified, depending on the ratio of length to diameter. If the rotor is very short,
length-diameter ratio less than one, it is gyroscopically stable and easy to spin. If the length-diameter ratio
is in the region of 4 or 5, the rotor behaves as a rigid body and is relatively easy to accelerate to speed; how-
ever, it has a tendency at full speed to exhibit gyroscopic precessions. Finally, if the length-diameter ratio is
very large, the rotor becomes easy to stabilize gyroscopically, but it is difficult to get it to speed because
long rotors are very flexible and have resonant frequencies of flexure lower than the operating speed. The
problems of these three types of centrifuge (the rotor dynamics, the bearings used to support the rotor, and
the stress analysis of the rotating components) were investigated in the last century as part of classical
mechanics because of the emergence of steam turbines during the latter part of the industrial revolution.
These early principles are briefly reviewed, with particular reference to the work of De Laval, who invented
the principle of self-balancing, Reynolds and Evershed, who developed hydrodynamic and magnetic bear-
ing, respectively, and Chree, who did the most extensive early work on the stress analysis of tubes and
discs. The work is described as it applies to the centrifuges developed in America and Germany during the
war and in the Soviet Union after the war. The work of Beams in America is described in most detail, since
he and his colleagues developed all three types of centrifuge during the Manhattan Project. The other work
described is that of Groth and Beyerle, who developed subcritical machines in Germany during the war,
and of Steenbeck and Zippe, who helped to develop both subcritical and supercritical centrifuges in the So-
viet Union after the war. Little of this latter work has been published, but Zippe redeveloped the subcritical
machine at the University of Virginia. The description of this machine concludes the present review.
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radial strain
viscosity
coordinate
thermal conductivity
thickness ratio of De Laval disc
damping constant in symmetrical system
damping constant at bottom of asymmetrical
rotor
damping constant at top of asymmetrical
rotor
Poisson ratio
density
stress
equivalent uniaxial stress
radial stress
hoop or circumferential stress
angular speed
maximum operating angular speed
natural cylindrical frequency
low-speed approximation of co4
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natural conical frequency
center-of-mass shift
center-of-mass shift in couple unbalance
elastic constant
cylindrical critical in symmetrical system
conical critical in symmetrical system
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I. INTRODUCTION

All of the high-speed centrifuges reviewed in this paper
use the principles first enunciated by Gustave de Laval in
1889. De Laval, one of the great engineers of the last cen-
tury, became famous as "the man of high speed'* and
spent most of his scientific life developing high-speed
machinery. First, he developed the method of separating
cream from milk using a centrifuge which was fifteen
times faster than any previous machine. The project,
started in 1877, was an almost instant success, and within
three years he had founded his now world-famous com-
pany which revolutionized the dairy industry. He fol-
lowed this up by his development of the high-speed reac-
tion turbine, making several important inventions. The
important contributions in the present context were the
optimum shape of disc for high-speed application, and,
even more significant, his principle of self-balancing.

At about the same time that De Laval was developing
his ideas on high speed, work was proceeding on the
theory and practice of bearings, including magnetic and
pivot bearings, and also on the stress analysis of rotating
bodies. The milestones of the work, as relevant to the
three centrifuge projects reviewed, are given in Table I.
The three subjects listed in the table, rotor dynamics,
bearing technology, and stress analysis are now special-
ized disciplines, but in the nineteenth century they formed
a natural part of classical science; even now the basic
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TABLE I. Milestones in development of high-speed rotation.

Bearings
1883
1886
1891

1904

Discovery of hydrodynamic lubrication (B. Towers)
Theory of lubrication (O. Reynolds)
Development of pivot and magnetic bearings
(S. Evershed)
Theory of journal bearing (A. Sommerfeld)

Rotor dynamics
1877
1877
1883
1889
1919
1928

The first centrifuge (G. De Laval)
Flexural vibration of rotor (summary) (Lord Rayleigh)
Invention of tuned dampers (P. Watts)
The principle of self-balancing (G. De Laval)
Theory of self-balancing (A. H. Jeffcott)
Optimization procedure for tuned dampers
(J. Ormondroyd and J. Den Hartog)

Stress analysis
1850
1891
1896

Theory of rotating discs (J. Clerk Maxwell)
Complete theory of rotating discs (C. Chree)
Development of optimum disc (G. De Laval and J. Smith)

scientific principles of these disciplines remain un-
changed. For example, there is very little difference in
design philosophy between the De Laval centrifuge used
to separate cream from milk in 1879 and the first centri-
fuge used by Beams in 1936 to separate the chlorine iso-
topes, to be followed later by centrifuges for the separa-
tion of the uranium isotopes. These early machines of De
Laval and Beams were sufficiently short to be gyroscopi-
cally stable with bearings at only one end of the rotor.
However, short rotors have a limited output, and Beams
soon developed machines with rotors of length several
times their diameter. These longer rotors needed special
damping devices to prevent gyroscopic precession, but
were sufficiently short to spin as rigid bodies and operate
below their first Aexural critical speed.

The work started by Beams at the University of Vir-
ginia in 1934 was soon integrated into a much larger pro-
gram as part of the wartime Manhattan Project in late
1940. The work done during this project is by far the
most extensive in the published history of the gas centri-
fuge; in just four years the scientists at Virginia, with col-
leagues at Westinghouse and Standard Oil, developed
various types of centrifuge, including a much larger ver-
sion of the Beam's subcritical machine and an even larger
supercritical machine about three meters long. These
machines were all operated in UF6, and the separation re-
sults confirmed the general correctness of the Cohen
theory of separation, also developed during the Manhat-
tan Project.

At the same time as the Manhattan Project in America
there was a smaller but similar program of work under-
way in Cxermany. The subcritical machines developed
during this project are also described in this review.
These wartime machines developed in America and Ger-
many were very similar, mainly because of a similar phi-
losophy of design regarding the bearings and the hex feed

system. However, the postwar machines developed in the
Soviet Union and later by Zippe at the University of Vir-
ginia used a different bearing and hex feed system, and
the machines, although much smaller, were also much
simpler. The principles of these various machines are
described in this review, but for obvious national and
commercial reasons there is no discussion of the major in-
vestigations of the gas centrifuge presently underway in
the UK, Germany, and Holland (under the auspices of
Urenco) or of the work in America or Japan.

II. THE CENTRIFUGE ROTOR

Before discussing the mechanical principles of the cen-
trifuge, it is important to consider briefly the first and
most difficult problem —the specifications of the rotor.
In particular, there is no clear indication from centrifuge
theory as to the best values for the rotor radius, thickness,
or length. Indeed it is not even certain that a simple
cylinder is the best shape for a centrifuge rotor. This
latter point is discussed in Appendix A. The difficulty of
choosing the best dimensions for even a simple cylindrical
shape follows from the relationships between the separa-
tion equations and the mechanical expressions relating to
peripheral speed and rotor length. These relationships are
such that the important rotor dimensions of length, diam-
eter, and thickness all cancel out.

Consider first the two most important equations in cen-
trifuge technology, which relate to the peripheral speed.
First, in the separation theory, there is the Dirac equation,

5U-cZV

which shows that the output of a centrifuge increases only
with rotor length and peripheral speed. The equivalent
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(aP)=f(v eV Z/d), (3)

and the equation in rotor dynamics which relates to
length —say, for a subcritical rotor "an be written as

Zld = ' (E/ )'
V1/2

(4)

which equals 7 at 350 m/sec for an aluminum alloy rotor.
This equation, as well as a similar equation for supercriti-
cal rotors which differs only in the constant, gives no
direct information on the rotor length, diameter, or thick-
ness.

The only direct information that can be derived from
the mechanical equations (2) and (4) is that the material
of the rotor should be of high specific strength for max-
imum peripheral speed and also be of high specific
(flexural) modulus for maximum length-diameter ratio.
Then, for a given plant output, the separation equation (1)
gives a good estimate of the total length of all the rotors
added together, and the separation equation (3) shows that
it is desirable for each rotor to be of a high length-
diameter ratio.

This lack of information on the rotor diameter and
thickness is attested to by the widely differing values for
rotor diameter and thickness chosen by Beams, Groth,
and Zippe and given in Table II. In fact, the values
chosen for the radius and thickness of the rotor are more
closely related to the more mundane properties of the
bearings and dampers used to support the rotor, as will
become clear in the following narrative.

TABLE II. Approximate rotor dimensions of practical
machines. ( V=3SO m/sec, maximum output 4 kg S%'/yr m. )

Diameter {mm)
Thickness (mm)
Mass {kg/m)

Beams/Groth

200
12.7
20

Zlppe

76
1.27
1

theory in stress analysis, which defines the allowable peri-
pheral speed of a rotor, dates back well into the history of
elasticity. This theory was summarized by Chree (1891),
who gave the most quoted equation in high-speed technol-
ogy:

V =o/p .

This equation, which will be discussed later, sho~s that
the maximum peripheral speed of rotation of a thin-
walled cylinder depends only on the ratio of the accept-
able working strength to density of the material of which
the rotor is constructed. It is independent of the diameter
and thickness of the rotor.

Second, the separation and mechanical equations re-
garding the rotor length give expressions only for the
length-diameter ratio of the rotor. Thus the Cohen equa-
tion for the separation factor of a countercurrent centri-
fuge is of the form

III. ROTOR DYNAMICS OF SUBCRITICAL MACHINES
AND PRINCIPLE OF SELF-BALANCING

A. Effect of unbalance

The main difficulty in spinning rotors at high speed is
the engineering impossibility of making a perfectly bal-
anced rotor, one in which the geometric and mass axes
coincide. The net unbalance is usually measured either in
units of m~r, the balance mass required at a given radius
of application, or ~h, the rotor mass ~ multiplied by
the distance 6 of the center of gravity from the geometric
center. The two are of course equal. Unbalance creates a
rotating radial load of m &raP or ~hco, which can easily
destroy the bearings or wreck the shaft. This problem is
particularly troublesome in the case of a hollow body like
a centrifuge because it can have its center of gravity con-
siderably displaced from its geometric center if the central
hole is at all eccentric. A simple calculation of the center
of gravity gives this displacement as

b, =er/2t,

showing that the error manufacture —the eccentricity be-
tween the inner and outer radii —is magnified by the ratio
of radius to wall thickness.

In principle the resulting rotating load can be decreased
by careful balancing, but inspection of numerical values
shows that this is not easy for very-high-speed applica-
tion. For example, at 1000 rev/sec the rotating unbalance
force is ten times the rotor weight for a 5 value of only
25 pm (1&& 10 in. ). This load could readily be decreased
by a factor of 10 or so by precision balancing, but, as will
become clear, it can be decreased by several orders of
magnitude by the De Laval method of self-balancing.

B. Historical work of De Laval

The principle of self-balancing requires the provision of
suitable flexibility in the rotor-bearing system, so that the
rotor can find its own center and run about its center of
gravity. This principle was established by De Laval
(1889), who was becoming exasperated by frequent
failures of the bearings and shafts of his steam turbine.
According to his biographer, Jung (1957), De Laval
discovered the way to achieve self-balancing on 17 Febru-
ary 1889, when, almost as a last resort, he replaced the
usual steel shaft of this turbine disc with a flexible rattan
cane. The experiment was successful in that the turbine
wheel centered itself and ran without vibration when the
speed was increased beyond the resonant or critical speed
caused by the use of the flexible shaft. Following this ex-
periment, De Laval developed the system as a standard
feature in his steam turbine, mounting the turbine wheel
on flexible steel shafts; the stiffness was usually adjusted
to give a frequency of vibration about a sixth or seventh
of design speed, and the shafts were mounted in self-
aligning, but otherwise conventional, journal bearings.
This arrangement is shown schematically in Fig. 1(a).

Rev. Mod. Phys. , Vol. 56, No. I, January 1984



Stanley Whitley: The gas centrifuge. Part II

S~.~
I

I

I

I

I

I

I

I

2L
I

I

I

I

I

(a)

0 III Iran
1

FIG. 2. Cylindrical and conical modes of whirl: (a) symmetri-
cal bearing and rotor; (b) asymmetrical bearing and rotor.
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FICx. 1. De Laval turbine disc on flexible support: (a) direct
support to earth, using the flexible shaft in series with a flexible
damped lubricant film in a journal bearing; (b) indirect damp-
ing, using flexibly mounted bearings.

The system developed for his centrifuge was rather dif-
ferent. Here most of the fiexibility and damping was in
the mounting of the bearings, as indicated in Fig. 1(b).
This system is very similar to the dynamic vibration ab-
sorber and will be discussed later in the paper.

Surprisingly the mathematical theory of the self-
balancing mechanism was not worked out until 1919 by
Jeffcott, but it must have been understood in its main
essentials almost from its inception. It is clear from the
work of De Laval that, for the technique to work, the ro-
tor system must be deliberately designed to have natural
frequencies of resonance considerably below the operating
speed, and these resonances must be traversed on run-up
from rest to full speed. It is the phenomenon which
occurs as the rotational speed approaches and then passes
the natural resonances which is the basis of the Jeffcott
analysis of self-balancing. However, before discussing
this balancing effect, it is necessary to define the modes
and frequencies of these natural resonances, and to intro-
duce the concept of critical speeds.

C. Natural resonances

Consider first a symmetrical system. The possible
modes of whirling of the rotor are shown in Fig. 2(a).
The vibrations in which the spinning rotor remains paral-
lel to the axis are called cylindrical whirls and those in
which it tilts about its center of gravity are called conical
whirls. In both cases the whirls can be in the direction of

rotation (forward whirl) or opposed to the direction of ro-
tation (backward whirl). This is easy to understand when
the rotor is at rest; then the whirls can be considered as
two vibrations at right angles, which can combine in ei-
ther a forward or a backward direction. The frequency is
given by the standard solution for simple harmonic
motion,

co~
——+(2S/~)' (6)

Thus the conical frequencies at rest or at very low speeds
are given by the equation

co2 ——+(2Sl /I)'i

where the positive and negative signs again denote the
forward and backward whirls, respectively.

However, unlike the cylindrical eigenmodes, the fre-
quency of these conical vibrations changes with rotational
speed because of gyroscopic effects. Gyroscopic effects
will only be touched upon in this review, but they are of
considerable importance in the design of high-speed
machinery. The main problem is that although the
mathematics of gyroscopic motion is reasonably straight-
forward, it is extremely difficult to follow the underlying
physics. The authors of a recent review of gyroscopic ef-
fects, Arnold and Maunder (1961), remark rather ruefully
that although most of the mathematical theory was
developed in the 18th. century, mainly by Euler, it is still
extremely difficult to explain the physical principles. Be-

The positive and negative signs denote the forward and
backward whirls. These natural cylindrical whirls can be
excited at rest or at any frequency of rotation of the shaft,
but will always occur at the frequency given by Eq. (6).

The frequencies of the conical whirls are also very easy
to calculate if the rotor is at rest. Taking moments about
the center of gravity gives the equation

IO= —2SI 0,
where the term on the right-hand side is the restoring
couple from the bearings. The solution gives

Ice =2Sl

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984
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cause of this, most of the important gyroscopic properties
of the centrifuge will be ignored in this review. However,
the effects cannot be neglected for the conical modes of
vibration, but at least in this case the basic theorem of
gyroscopic phenomena can be used to give a simple ex-
planation. This theorem is that a couple of Pcoco3 is re-
quired to make a rotor of angular momentum Pcs precess
at angular velocity co3, and that all three vectors are at
right angles. At high speeds this gyroscopic torque can
be so great that the bearing restoring couple can be
neglected, and the simple harmonic solution (7) becomes

conical whirl. For completeness the frequencies of the
cylindrical modes, Eq. (6), are also plotted in this figure.
These four natural modes of vibration can be excited at
any frequency of rotation, but will always occur at the
frequencies given by Eqs. (6) and (12) and not at the fre-
quency of rotation. On this account they are sometimes
called asynchronous whirls to distinguish them from the
synchronous whirls excited by the unbalance forces in-
volved in the discussion of critical speeds.

D. Synchronous whirls and critical speeds
ICg) 3 =PCOC03 ~

2 (9)

Thus the high-speed approximation for the frequency of
the forward conical natural modes is given by

co3 ——Pc@/I . (10)

or
2 2

CO4 =C03C04+ 602,

giving

2co4 =co3+ (co3+4co2) (12)

This solution, derived by more rigorous methods in
standard texts such as the review of Arnold and Maunder
(1961), is plotted in Fig. 3. The solution gives the fre-
quencies of the two conical natural modes of vibration as
a function of rotational frequency, and as can be seen, the
gyroscopic effects dominate in the case of the forward

The trivial solution co3 ——0 is the asymptotic value, at
high speeds, of the backward conical mode. The general
solution allowing for both bearing and gyroscopic torques
is obtained by solving the quadratic equation

Ico4 ——Pcuco4+ 2Sl

Using Fig. 3 it is easy to calculate the critical frequen-
cies at which the rotational frequency equals the frequen-
cies of the natural modes of vibration. Thus as the speed
of the rotor is increased, its rotational frequency follows
the 45 line, and the points of intersection with the posi-
tive solutions of Eqs. (6) and (12) give the critical condi-
tions. At these frequencies, sometimes called critical
speeds, the amplitude of rotor whirl can attain dangerous
proportions. The exact frequencies of the criticals can be
obtained by solving for the intersection points, giving the
frequencies of the cylindrical and conical critical speeds
as

(13)

(14)

Most rotors have to traverse these two rigid-body criticals
as they are run up to full speed. The first critical is excit-
ed by the unbalance force acting at the center of gravity
and the second by any couple unbalance about the center
of gravity. The conical critical clearly does not exist if
the polar inertia P is greater than the transverse inertia I,
and if it does exist it is not traversed if the operating
speed is less than that given by Eq. (14).

45 LINE
E. Jeffcott theory

O
F)
IJJ

08
0

RD CONICAL

AL

ROTAT IONAL
SPEED

The effects of traversing these critical speeds were first
analyzed by Jeffcott in 1919, and a full discussion of his
approach is given in Appendix B. However, the physical
principles can be seen by considering the balance of forces
as a symmetrical rotor is increased in speed and traverses
the cylindrical critical speed. The sequence of events is as
follows.

(a) At low speeds the radial displacement is nearly in
line with the unbalance force Mb, co, and the amplitude
of whirling is given by the balance between the centrifugal
force and the bearing restoring force 2SM,

~BA C KWARD CYLINDRICAL

FICx. 3. Variation of conical and cylindrical whirl frequencies
with rotational frequency. These curves are for a symmetrical
system. The changes in frequency for the conical mode are due
to gyroscopic effects. The points of intersection with the 45
line give the frequencies of the rigid-body criticals.

M=~b, co /2S .

(b) As the speed is increased the displacement lags
behind the unbalance force (because of the effect of
damping); eventually the phase angle is 90 at the critical
frequency, and the displacement, of nearly maximum
magnitude, is at a right angle to the unbalance vector. At
this critical speed, when the phase angle is 90', the bal-

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984
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ance of centrifugal force and the damping force, 2pWQ„
gives the deflection

~=~DO&/2p . (16)

This equation is sometimes ca11ed the energy equation-
see Den Hartog (1934)—because at this condition the en-

ergy input from the unbalance equals the energy absorbed
by the damper.

(c) Thereafter, as the speed is increased beyond the crit-
ical condition, the displacement tends to be opposite to
the force, until at high speeds it is 180' out of phase and
the rotor runs smoothly about its center of gravity. At
this condition the inertial force and centrifugal force bal-
ance, giving

Thus at full speed the radial deflection of the rotor
from its original position, sometimes called the run-out, is
the center-of-mass shift h. This gives the important re-
sult that the radial bearing force at full speed is only the
restoring force 2SE instead of the full unbalance force
~homo. This ratio can be written more simply in terms of
the critical speed when a flexible shaft/bearing system is
used. Thus, using Eq. (13), the ratio of the forces is given
by

R~ ——2Sb, /~bcoo ——Qi/coo .
This equation is useful in quantifying the self-balancing

principle. For example, in the case of the X)e Laval
design, the critical speed was about one-seventh of the
running speed, so the side load was reduced by about 50.
In the case of the centrifuge design of Steenbeck and
Zippe, the critical speed was only about one-hundredth of
running speed, so the radial load was reduced to such a
small value —by a factor of 10 —that it was possible to
use small instrument-type bearings to center the rotor.

This self-balancing principle, which makes possible a
large reduction in bearing load, is probably the single
most important principle in the design of high-speed
machines.

its bearing housings. Clearly in the De Laval turbine and
most machine tools using the self-balancing principle-
for example, the high-speed gas bearing dentist's drill —it
is essential that the rotor not be displaced too much from
its normal position by sideways forces. The shaft-bearing
system must therefore be reasonably stiff. However, in
the case of the centrifuge the rotor can be allowed to de-
flect by a small amount from its central position, and
there is more freedom in the choice of the stiffness used
for self-balancing. For example, Beams set his stiffness
rather low to give a frequency of the cylindrical whirl at
about 5% of running speed, and Zippe set the stiffness so
low that the cylindrical whirl was only l%%uo of running
speed. These lower values of stiffness, and hence natural
frequency, make the initial design problem much easier
because the bearing side load is so much less—see Eq.
(18)—but the machine is more fragile and more suscepti-
ble to disturbances.

Once the stiffness is fixed, the problem resolves itself
into introducing the correct amount of damping into the
system. There are three methods of achieving this. The
first method, pioneered by De Laval in his steam turbine,
is to use the damping inherent in the lubricant film of
fixed bearings, and this method is still by far the most
widely used in modern machinery. The second method is
to use flexibly mounted bearings and provide the damping
forces on the outside of the bearing housing. This
method was also used, possibly unwittingly, by De Laval
in his cream separator, and later by Zippe in his centri-
fuge. The third method, developed by Beams and Csroth,
is to use two sets of bearings, one set fixed to earth, to
provide the stiffness, and one set floating, to activate an
external damper. This method is rather ~asteful in ener-
gy, but the separation of the two parameters makes it easy
to optimize. More details of these three methods are
given in Appendix C.

IV. AMERICAN (MANHATTAN) PROJECT

A. Length-diameter ratio

F. The stiffness and damping parameters

The main disadvantage of self-balancing is the result of
the very method of achieving it—at least one rigid-body
critical has to be traversed. Equation (16) for the ampli-
tude at the critical can be rewritten

(19)

This shows that, for a given unbalance, the only parame-
ters which affect the rotor amplitude and can be varied
are the stiffness constant and the damping constant. It is
essential to adjust these two parameters so that the amph-
tude at the critical speed is reasonable and does not itself
wreck the shaft or bearings.

Normally the stiffness is chosen first; this defines the
robustness of the machine and generally helps to mini-
rnize changes in the displacement of the rotor relative to

The methods used to provide the stiffness and damping
for self-balancing in the American, Russian, and Cxerman
machines are of great importance and have had an impor-
tant influence on the relative success of the various
designs. In particular, the choice of the stiffness of the
shaft-bearing system and the consequent reduction in
bearing load have a major effect on the power consump-
tion and on the relative stability of the machines. This
will be discussed again later. However, the most obvious
visual feature of a machine is not the bearing and damper
system, but the length-to-diameter ratio of the rotor, and
it is this feature which is used to classify machine types.
There are, in fact, three types, and all three were investi-
gated during the Manhattan Project. These are indicated
in Fig. 4 and are, in order of simplicity of spinning, the
short bowl rotor, the subcritical rotor, and the supercriti-
cal rotor. They are easily recognized by inspection; a
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length-diameter ratio of less than 1 characterizes the short
bowl rotor, about 4 or 5 to 1 the subcritical design, and
greater than 10 to 1 the supercritical design. Intermediate
lengths are not generally used because if a critical is
traversed it is only sensible to maximize the length of the
rotor without hitting the next critical. Moreover,
machines of interinediate length are difficult to spin be-
cause the last critical to be traversed is unnecessarily close
to operating speed.

FIG. 4. Rotors of varying length-diameter ratio, from the short
bowl rotor, typical of early designs such as that of De Laval, to
supercritical rotors, such as those developed during the Manhat-
tan Project.

FIT&. 5. Short bowl centrifuge, De Laval (1879). The first
high-speed centrifuge of De Laval, producing centrifugal force
5700 times gravity, and used to separate cream from milk. Fig-
ure is courtesy of the National Science Museum, London.

ical speeds and are reasonably easy to design for high-
speed rotation. The centrifuge described by De Laval in
1879 and that of Beams (1936}both fall into this category
of design. A schematic of these two machines is given in
Figs. 5 and 6, and their dimensions are given in Table II.
If anything, the De Laval rotor is the more advanced
design, having a useful length-diameter ratio of about
0.45, whereas the Beams centrifuge has a useful length-
diameter ratio of only 0.07. The two main differences are

FEED SHAFT

B. Short bow! rotors

It was shown earlier —see Eq. (14)—that there is no
conical critical speed to traverse on run-up to full speed if
the polar moment of inertia of the rotor is greater than its
transverse inertia. These favorable gyroscopic conditions
apply especially to a disc or a very short tube, both of
which have a polar inertia twice the transverse inertia. It
is well known that such very short rotors are easy to spin
at high speed, and they are sometimes referred to as disc
rotors. However, the polar inertia is still greater than the
transverse inertia up to a length-diameter ratio of 0.84 or
1.22, depending on whether the tube has end caps' or not.
Thus rotors shorter than these values have no conical crit-
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~For this calculation the end caps are assumed to be of the
same thickness as the tube.

FIT&. 6. Short bowl centrifuge, Beams (1936). This centrifuge
used to separate chlorine isotopes (1936) and uranium isotopes
(1940).

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984



Stanley Whitley: The gas centrifuge. Part II

TABLE III. Dimensions of the American centrifuge rotors (including the De Laval rotor for comparison).

Type

Short bowl
De Laval
Virginia

Length
(mm)

114
6.4

Diam.
(mm)

254
89

Angular
freq.
(Hz)

117
1550

Peripheral
speed

(m/sec)

93
433

Z/d

0.45
0.07

Thickness
(mm) Material

Subcritical
Virginia

Virginia
Virginia

Westinghouse

280

356
841

1067

76.2

76.2
166

182.9

1060

450

470

253

234

270

3.67

4.67
5.07

5.83

12.7

12.7

Chrome moly
steel

Aluminum
ST14
Aluminum
ST14

Supercritical
Virginia

Virginia

Westinghouse

857

3450

3353

69.8

186.7

182.9

885

350

470

195

270

12.28

18.5

18.33

3.2

12.7

12.7

Aluminum
ST14
Aluminum
ST14
Aluminum
ST14

that, first, the rotor in the Beams centrifuge had a much
higher peripheral speed and, second, to minimize convec-
tion currents, it operated in a low pressure of hydrogen,
requiring fairly complex sealing arrangements.

The first attempts to separate the uranium isotopes
were in fact made using this centrifuge in 1940, when
about 6 g of UF6 were centrifuged in the machine, operat-
ing in the evaporative mode. However, the samples col-
lected were apparently lost and not measured for isotope
abundance. The first experiments including measure-
ments of separation were inade about one year later, when
more UF6 was available. The full details of these early
measurements, in which a change of isotopic abundance
of about 4%%uo was achieved, have been reported extensively
by Beams (1975).

C. Subcritical stars

It was apparent to the Virginian scientists from the be-
ginning that increased length was essential for an increase
in the output of the centrifuge. The separation experi-
ments of Beams with the short bowl rotor were only tests
of principle. However, as described above, if the length-
diameter ratio of the rotor is increased beyond about uni-
ty, the transverse inertia becomes larger than the polar in-
ertia; then the conical critical speed given by Eq. (14) falls
below the operating speed and has to be traversed on run-
up. Similarly, the frequency of the conical natural mode
of vibration falls in the operating speed range, and there
has to be some damping available at operating speed to

Remember the distinction between the critical speeds and the
natural modes of vibration.

prevent excitation of this mode.
Fortunately the ratio of transverse to polar inertia in-

creases rapidly with length —to a first approximation I/P
equals —,'(Z/d); it involves only a small increase in
length-diameter ratio to reduce the conical critical to a
low value and a not much greater increase to bring the
conical natural frequency to a low value. This is dis-
cussed further in Appendix D.

D. The first subcritical centrifuge

The first subcritical gas centrifuge developed by Beams
(1938) is of historical importance. The rotor dimensions
of this machine are given in Table III and, as can be seen,
it was not an ideal design since it had a length-diameter
ratio of only 3.67. At this length diameter the ratio of
polar to transverse inertia is still fairly high, 0.2, so al-
though the conical critical speed is reasonably low, the
conical natural frequency from Eq. (10) or (12) is still
rather high at 220 Hz, one-fifth of the running speed.
Thus in this first centrifuge there was the difficult prob-
lem of developing dampers that would both allow the ro-
tor to start smoothly through the low-speed cylindrical
and conical criticals at a few Hz, and also prevent any
reexcitation of the conical natural mode of vibration at
full operating speed.

Despite this difficulty of designing a damper to cover
such a wide frequency range, Beams successfully
developed his machine and carried out early experiments
on the separation of the chlorine isotopes. Following his
experience with this rather difficult design, Beams soon
developed longer subcritical rotors of length diameter of
up to 5.07; the dimensions of some of these rotors are list-
ed in Table III. These rotors, much easier to spin, were
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all used for separation experiments culminating in the
main Westinghouse machine developed as a possible pro-
duction machine for the Manhattan Project.

E. Westinghouse subcritical centrifuge

A schematic of the Inain subcritical machine developed
during the Manhattan Project is shown in Fig. 7, and the
main dimensions are listed in Table III. Partly because of
the larger diameter and partly because of the considerably
improved length-diameter ratio of 5.8, the conical natural
frequency at operating speed is only 38 Hz. This frequen-
cy is not much greater than the critical frequencies, and it
is therefore relatively easy to design a damping system
which will both allow the criticals to be traversed on run-

up and miniinize the risk of excitation of the natural fre-
quencies at full operating speed. For example, the damp-
ing required for the critical, from Eq. (16), is only about
1000 Nsec/m, and the damping force pQiy only about
10 N for an amplitude at the critical of 0.1 mm. This
damping, allowing very smooth run-up, would normally
also be sufficient to control the rotor at full speed unless

!
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FIG. 8. Upper damper of subcritical centrifuge. Concentric
sleeve dampers used in Manhattan Project machines; theory as
for a nonrotating journal bearing with a rotating load.
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there were very severe disturbing forces.
The damping was provided at the top and bottom of

the Manhattan rotor, using a set of concentric cylinders.
Concentric sleeves attached to the floating damping bear-
ings were internested with concentric sleeves which were
attached to the machine frame to form small clearances
filled with damping oil. The arrangement is shown in
Fig. 8. If the rotating shaft began to whirl it set the
cylinders attached to the bearing into a precessional
motion, which was resisted by oil flows between the
cylindrical surfaces. Each pair of adjacent cylindrical
surfaces behaved as a nonrotating journal bearing subject-
ed to a rotating load. Precessional movement was resisted
by pressure building up on one side of the bearing with a
corresponding drop in pressure on the other side. The
average pressure difference multiplied by the projected
area of the bearing gave the damping force, the exact cal-
culation being given, for example, by Shaw and Macks
(1949).

This part of the Westinghouse design, providing the
correct damping, was very successful. There are, howev-

er, major disadvantages in this centrifuge design which
arise from the method of self-balancing. The flexibility
for self-balancing was provided by two fairly long tubular
shafts which were connected to, and rotated with, the
main centrifuge rotor. The inside of both of these flexible
shafts (each consisted of two thin-walled tubes, one sup-

FICx. 7. Westinghouse subcritical centrifuge, developed for pro-
duction application.

3A11 the Manhattan machines had two entry and two extrac-
tion pipes; therefore both the top and bottom flexible support
had to be double walled.
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ported concentrically within the other) was used to con-
duct the isotopic gas mixture into and out of the rotor
bowl, and the outside was used as the rotating element for
the support and damper bearings. This led to an inevit-
able dichotomy of interests. To give a reasonable gas con-
duction for the gas flow requires a shaft of large diame-
ter, whereas a low loss of bearing power is more easily
achieved using a small-diameter shaft. For example, to
transport the hex into and out of the rotor of the Westing-
house machine required a tube of 19 mm outside diame-
ter. The bearings on the outside of the shaft were there-
fore of large size and consisted of four journal bearings at
each end, each of diameter of 19 mm and length 6.3 mm,
giving a power loss of 1(X)0 W. The thrust bearing had a
loss of 200 W, so that the power loss of the bearings alone
was 1200 W.

This power loss itself is quite high, but the main disad-
vantage of the spinning tubular shaft system is the need
for a complex array of rotating seals at each end of the
rotor. This array of seals adds to the mechanical com-
plexity of the machine and causes further power loss. In
this particular machine there were seals to separate the
various oils used for the motor, thrust bearing, journal
bearings, and dampers from the hex in the feed and ex-
traction conduits and in the rotor. There were also seals
to prevent oil or hex vapor from leaking into the space
outside the rotor. Effectively the machine was split into
the eight separate spaces shown in Fig. 7.

The most complicated sealing arrangements were in the

spaces (2) and (7), where the hex for feed and extraction
were separated from each other and from adjacent oil
bearings. This was achieved by using close-fitting rotat-
ing seals fed at suitable positions with a buffer gas, dry
nitrogen, as indicated in the enlarged schematic in Fig. 9.
This diagram is only a schematic; the actual engineering
details were rather more daunting, and this is just one of
the seal systems.

A second disadvantage of these seals was that they con-
tributed considerably to the power loss. The total electri-
cal usage of the Manhattan machine, including losses in
the motor, was about 5 kW. This high power was not
only expensive in itself but it tended to set up temperature
gradients in the rotating system, giving unwanted convec-
tion currents of the process gas in the rotor. To eliminate
any such effect the rotor was maintained at a constant
temperature by surrounding it with a hydrogen atmo-
sphere at a pressure of about 2000 Pa or 15 Torr. This
technique, although it consumed another 100 W or so of
power, was extremely effective and is described in detail
in Appendix E.

Several of these large subcritical Westinghouse
machines were made, and one was operated for 99 days by
the Standard Oil Development Company and processed
about 500 kg of UF6 at a maximum and very high separa-
tion efficiency of about 85%. The machine eventually
developed a leak in January 1944 and was never rebuilt
because, at about this time, the project was terminated in
favor of the diffusion process.
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FIG. 9. Schematic arrangement of upper seals and pumps.
Complex array of seals caused by using flexible shaft for gas
conduits as we11 as for self-balancing.

It is clear from the previous discussion that as the rotor
is made longer the problem of the conical vibrations be-
comes trivial. However, beyond a certain length there is
the even more difficult problem of spinning the rotor
through one or more flexural critical speeds. The only
published designs of supercritical centrifuges are the ones
developed during the Manhattan Project, but there are
several publications of supercritical operation of conven-
tional machines. In fact, the basic theory of flexural
whirling of rotating shafts was studied by many scientists
at the turn of the century, and a comprehensive study of
this work is given by Gunter (1966) of the University of
Virginia.

Two of the most important early papers are by Dunker-
ley (1894) and Chree (1904), who, although viewing the
flexural criticals from different standpoints, came to the
same conclusion. The problem, as described by Dunker-
ley, is that long rotors have resonant frequencies of flex-
ure lower than the operating speed. Therefore, when the
rotor is run to full speed there are certain speeds of rota-
tion at which the rotational frequency equals the resonant
frequency. At these critical speeds the effect of any un-
balance force could be to set the rotor whirling at large
amplitudes, causing possible damage or destruction. The
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alternative description, similar to that given by Chree,
would be from the viewpoint of the experimenter, i.e., a
stationary observer. From this viewpoint the restoring
force at the criticals, given by the bent shaft, would be un-
able to provide the centripetal force required for the cir-
cular orbit, and the amplitude is only kept under control
by damping forces. Whichever definition is used, it is
clear that the problem is the same as for the Jeffcott
rigid-body criticals described earlier. In fact, the flexural
criticals and the rigid-body criticals should be categorized
collectively as system criticals, since they merge into one
another as a function of the end restraint. The effect is
described by Miller (1954), and his results are shown in
Fig. 10. However, for the centrifuges described in this re-
view, the bearings have negligible stiffness, relative to the
rotor bending or flexural stiffness, and it is permissible to
(a) calculate the frequencies of the two "rigid-body" criti-
cals as described earlier, using Eqs. (13) and (14), and (b)
calculate the flexural criticals of the rotor assuming the
bearings have zero end restraint. The only problem this
introduces is that of counting —the first flexural critical is
sometimes referred to as the third system critical.

B. Calculation of flexural critical speeds

The first problem, following Dunkerley, is to calculate
the natural frequencies of flexure of the rotor. There are

TABLE IV. Length-diameter ratio of aluminum rotors of peri-
pheral speed 350 m/sec (assuming zero cap mass) (from Vfhitley
1979, courtesy Institute of Physics, London).

Z/d 1st
Critical speeds (m/sec)
2nd 3rd 4th

7
11.6
16.3
21
25.5

400
145
74
45
30

400
204
123
83

400
242
162

400
269

both analytical and numerical methods for calculating
these frequencies, the most comprehensive modern
analysis being that of Bishop and Johnson (1955). The
calculations, if done exactly, should also allow for any de-
flection of the rotor due to shearing forces and for the ef-
fects of the gyroscopic couples of the whirling sections.
This is described by Timoshenko (1928). However, the
physical principles are best understood by ignoring these
small effects and using the method developed by Lord
Rayleigh (1877) and published in his classic book on
sound. This method is to equate the potential energy of
the thin tube when at its maximum amplitude with its
maximum kinetic energy, which occurs when passing
through the unbent condition. The Rayleigh theory, with
slight modification, gives the solution for the peripheral
velocity at the critical speeds as

-157.9
(n+ —,

'
) m

4(Z/d )2 2p
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This standard Rayleigh equation gives the critical
speeds for a given Z/d ratio or, by transposing the equa-
tion, the Z/d ratio for a given critical speed. As shown,
the critical frequencies and Z/d ratios for thin-walled
tubes are independent of thickness but dependent on the
specific modulus (E/p) of flexure of the material of con-
struction. This specific modulus is much the same for the
common high-strength materials such as aluminum, steel,
and titanium; in particular, for the aluminum alloys used
in the Beams centrifuge it is about 25.S &(10 m sec .

Substituting this value in the above equation gives the
critical speeds for various length-diameter ratios as sum-
marized in Table IV. As shown, the longest rotor that
could operate at 3SO m/sec without passing a flexural
critical has a length-diameter ratio of seven. Longer ro-
tors must pass at least one flexural critical speed —for ex-
ample, a rotor of length-diameter ratio of 16.3, similar to
the rotor in the supercritical machine developed during
the Manhattan Project, has two flexural criticals at 74
and 204 m/sec and would then operate below the third
critical, set by Eq. (20), at 400 m/sec.

FIG. 10. Natural frequencies of a beam on spring end supports
(m=mass/unit length of rotor; I=moment of inertia of area).
At low end-spring stiffness the first three criticals comprise two
rigid-body criticals and a "free-free" flexural critical. At high-
support stiffness all criticals are flexural criticals with minimum
movement at rotor ends.

4Real subcritical rotors are rather shorter than this because of
the effect of the mass of the end fittings, ignored in this simpli-
fied explanation.
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C. Damping forces

The Rayleigh equation gives the frequencies of the
flexural critical speeds, but it gives no information re-
garding the problem of traversing them. Some indication
can be deduced from the energy equation (16), which
shows that the damping constant required to control the
amplitude of a critical speed is proportional to the fre-
quency of the critical, and the damping force is propor-
tional to the frequency squared. Thus the task for super-
critical rotors is twice as difficult as that for subcritical
rotors, in that not only is the required damping itself
much greater, but it has to be provided at a much higher
frequency.

The more exact calculations of Miller (1954) show that
the optimum damping for the flexural criticals, given as a
constant times ~co, is a little less than that given by Eq.
(16). This is because the effective mass of the vibrating
rotor to be used in the equation reduces for increasing
mode number. Thus the optimum damping for the first
flexural critical is about 0.2~co, where co is the angular
frequency of rotation of the critical. This damping ap-
plied at each end of the rotor restricts the bend of the tube
at its first flexural critical to about double the initial
value. The optimum damping for the higher criticals is
greater because of the higher frequency, but at least the
constant is reduced in approximate proportion to the
number of the critical, i.e., it is 0.1, 0.066, and 0.05 for
the second, third, and fourth criticals, respectively.
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D. Manhattan supercritical centrifuge FIG. 11. Manhattan Project supercritical centrifuge.

These principles of supercritical design are exemplified
by the two big supercritical machines developed at the
University of Virginia and at Westinghouse during the
war. The rotors in these two machines were of virtually
identical dimensions, 3 m in length and 0.2 m in diameter.
The important dimensions are given in Table III, and a
schematic of the Westinghouse machine is given in Fig.
11. A comparison of Figs. 7 and 11 shows that the ends
of the Westinghouse subcritical and supercritical
machines are similar. In particular, the design of the
seals is virtually identical, and these need not be described
further. The main difference between the two machines is
in the value of the damping that is required for successful
negotiation of the various critical speeds. The subcritical
rotor has only to negotiate the two rigid-body critical
speeds at 10 and 30 Hz, whereas the supercritical rotor
also has to traverse two flexural critical speeds at 100 and
300 Hz. The actual values of damping constant used in
these Westinghouse machines are not quoted in the litera-
ture, but the values can be estimated from the simplified
principles given in this review and these estimates are
given in Table V.

The problem of achieving the high damping forces re-
quired for supercritical operation was avoided in the cen-
trifuge at Virginia. The damping was not optimized. In-
stead a 33 kW steam turbine was connected to the lower

end of the centrifuge, and it was rapidly accelerated
through its two flexural criticals, giving no time for the
amplitudes at the criticals to build up to dangerous levels.
In this way the machine at Virginia was successfully spun
to full speed (350 Hz) and extensive separation measure-
ments made from September 30, 1943 to January 31,
1944.

This method of achieving full speed was acceptable for
a laboratory machine in which the main objective was to
obtain separation measurements to confirm the separation
theory. However, the Westinghouse machine was re-
quired as a production machine, with its power limited to
about 5 kW, and it was therefore necessary to optimize
the dampers. The Westinghouse scientists had no diffi-
culty in designing the dampers to pass through the two
rigid-body criticals and the first flexural critical at about
100 Hz. However, optimization for the second flexural
critical at 300 Hz was more difficult because the dampers
suffered from cavitation problems.

The actual damper used is shown in Fig. 12. As
described earlier, these dampers resist precessional move-
ment by building up pressure on one side with a corre-
sponding drop in pressure on the other side. For the
heavy damping force required for the second flexural crit-
ical, the pressure drop was larger than the available pres-
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TABLE V. Comparison of Westinghouse subcritical and supercritical machines [power and force as-
sume in each case a precession amplitude of 0.1 mm, and damping for cylindrical critical from Eq. (15)
to give M/6=5].

Length
Mass

Cylindrical critical
Frequency
Damping constant
Damping force
Damping power

Conical critical
Frequency
Damping constant
Damping force
Damping power

First flexure critical
Frequency
Damping constant
Damping force
Damping power

Second flexure critical
Frequency
Damping constant
Damping force
Damping power

Units

meter
kg

Hz
N sec/m
newtons
watts

Hz
N sec/m
newtons
watts

Hz
N sec/m
newtons
watts

Hz
N sec/m
newtons
watts

Subcritical

1.07
33

16
660

6.7
0.067

30
310

5.9
0.11

Supercritical

3.35
85

16
1700

17
0.17

33
880

18
0.38

100
10700

670
42

300
16000

3000
570
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supercritical centrifuge.

sure head, and cavitation occurred. It was found during
the experiments that this cavitation could be inhibited by
increasing the ambient pressure —indeed, it was found
that the damping could be increased about tenfold by in-
creasing the pressure in the damper housing from about
3.5 to 55 kPa (0.5—8 psi). Several attempts were then
made to accelerate the rotor through the second critical
using this housing pressure as a means of damping con-
trol. In these trials, if the rotor failed to accelerate
through the critical speed, the limited power available
prevented any serious damage; the damping power
equalled 5 kW at an amplitude of 0.3 mm, thus making
the test self-limiting. By careful coaxing, and adjustment
of the damping pressure, the test engineers did eventually
succeed in passing the second critical and accelerating this
large rotor to full test speed. Once past the critical the ro-
tor ran very smoothly.

However, run-down is, or actually was, a different

matter. One has only one chance to get the damping
right; if it is incorrect, the amplitude of the vibrations can
increase to dangerous levels. On run-down there is no
limit from power considerations because of the large
amount of kinetic energy available in the rotor, in this
case 100000 I for a IO-Hz reduction in speed at the criti-
cal. Unfortunately, on run-down of this first Westing-
house prototype and on approaching the critical, the am-
plitude of rotor whirl did increase beyond an acceptable
limit, causing a crash which completely wrecked the cen-
trifuge. This crash coincided with the cancellation of the
centrifuge project, and so the machine was never rebuilt.
The timirg was unfortunate in that it would have been
relatively straightforward to develop the damper to be of
the same value on run-up and run-down.

January 1944 was thus an eventful month for the
American centrifuge project. Researchers at Virginia
were completing their separation measurements on their
large supercritical machine, the subcritical machine on
life test at Standard Oil had operated continuously for
100 days and then developed a leak, and the Westing-
house supercritical machine crashed; then as a final blow
the project was canceled when on the brink of success.

VI. THE GERMAN PROJECT

A. Early machines

At much the same time as the above machines were be-
ing developed during the Manhattan Project in America a
similar program of work was underway in Germany. The
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centrifuges were initially developed by Groth of Bonn
University and Beyerle of the gyroscope firm of An-
scheutz and Co., Kiel. Their first designs, the UZ1 and
the UZ111B, followed the same principles as the early
designs of Beams (1938), in that the flexible shafts used
for the self-balancing mechanism consisted of thin-walled
tubes, the inside used for gas passages to the rotor and the
outside for support bearings and damper bearings. The
tubular shaft connected to the top of the rotor provided
the feed passage and one exit passage for the gas, and it
was also connected to a drive motor at the top. The tubu-
lar shaft at the bottom served as the second gas exit pas-
sage, but since the German machines were developed on
the single feed system this shaft did not need to be double
walled.

The rotors, of dimensions given in Table VI, were
thick-walled cylinders made of a high-strength aluminum
alloy, Bondur, and most experiments were made at peri-
pheral speeds of 252 and 280 m/sec. As with Beams's
machines, there was a complex array of bearings,
dampers, and seals at each end and on the outside of the
flexible shafts. These seals have been described in several
papers, for example by Groth (1961), and need not be
described here. Again, as with the Manhattan machines,
there was a high power loss, about 2 kW, creating the
possibility of unwanted temperature gradients and there-
fore undesirable countercurrents, which could diminish or
destroy the separation effect. The solution to this prob-
lem in the German machines, as in the Manhattan
machines, was to introduce hydrogen into the casing, so
maintaining the rotor at a constant temperature. This
work on the temperature stabilization of the wartime Ger-
man machines has been described in detail by Groth and
Beyerle (1958) and is summarized in Appendix E.

B. Postwar machines

The German work on centrifuges continued after the
war. The first machine developed, the ZG3, incorporated
a number of design improvements, mainly relating to the
design of the flexible supporting shafts, the dampers, and
the bearing power consumption. The dampers have been
described in detail by Groth (1957); in the final machine
they limited the maximum amplitude of oscillation of the

rotor to 0.1 mm. The power consumption was reduced to
about 1.7 kW at the slightly higher speed of 300 m/sec.
As before, hydrogen at a pressure of a few hundred pas-
cals was used in the casing, of gap 4 mm, for temperature
stabilization. The ZG3 also included for the first time a
technique, with external control, for setting up a tempera-
ture difference between the top and bottom end caps, to
set up the thermal countercurrent. The top end cap was
heated using eddy currents generated by a small elec-
tromagnet, and the heat was extracted by a ring-shaped
cooler below the bottom cap.

This arrangement was also used in the ZG5, the last
machine developed by Groth and his associates. The ZG5
incorporated two other major improvements. First, as
shown in Table VI, the machine was much longer, simpli-
fying the problems of rotor dynamics, and second there
was a change in design principles regarding the method of
gas feed and extraction. In all the previous designs of
Beams and Groth the gas inlet and outlet pipes were part
of the rotating shaft, with the almost inevitable difficul-
ties of rotating seals and high power loss. In this latest
machine, described by Bulang et al. (1960) and shown in
Fig. 13, the gas inlet and outlet system used stationary
pipes. The gas inlet was via a central stationary pipe ex-
tending right through the Aexible rotating hollow shafts
of the rotor. The top half of the pipe was used to feed the
gas in, and the bottom half used as a pressure tapping to
measure the axis pressure.

The gas extraction for the light and heavy fractions
from the rotor ends utilized the stationary tube inside the
flexible shafts shown in the figure. Attached to this sta-
tionary tube were two arms which extended outwards to a
radius of 79 mm and which were bent around to face the
gas stream. Following the terminology of the Steenbeck-
Zippe machine described later, these are called scoops.
The scoops utilized not only the high pressure at the in-
creased radius but also the momentum of the rotating gas
against the stationary scoop. The pressure given by this
dynamic head was approximately equal to pV /2, greater
than the static head at the scoop by a factor of
MV /2RT. In this relationship V is the gas velocity at
the scoop radius and therefore slightly less than the peri-
pheral speed of the rotor.

The main disadvantage, found in tests with isotopes of

TABLE VI. Dimensions of Cxerman and Russian rotors.

Type
Length Diam.
(mm) (mm)

Angular Peripheral
freq. speed
(Hz) (m/sec)

Thickness
(mm) Material

German
UZ1
UZ1118
ZG3
ZGS

400
635
665

1130

120
134
185
185

665
520
520

280
302
302

3.33
4.74
3.60
6.11

Bondur aluxQlnuID

alloy

Russian
Steenbeck
Zippe

3000
332

250
350

50
4.48 aluminum 7075T6
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Zippe, it is useful to consider the basic principles of bear-
ings, another key item in the development of high-speed
machinery. The development of bearings was an essential
part of the industrial revolution of the last century, and
several advanced bearing systems have been developed in
the present century.

There are several ways of classifying bearing systems,
but so far as rotating machinery is concerned they all
have one main objective. This is to constrain the rotor to
spin in some prescribed equilibrium position. To this end
they behave like springs, giving a restoring force if the ro-
tor is displaced from its equilibrium position, and the
spring constant or stiffness of the bearing is one of the
most important parameters in any classification system.
This is mentioned because of the interesting fact that
Beams and Groth chose one of the stiffest bearing sys-
tems available (hydrodynamic journal bearings) and
Steenbeck and Zippe chose one of the weakest bearing
systems available (the magnetic and pivot bearing), and
that the physics of both bearing systems was developed at
almost the same time at the end of the last century. The
essentials of these two bearing systems are described in
Appendix F, partly to give an insight into the principle of
bearings and partly because these were the bearings actu-
ally used in the specific machines described in this review.
There are several other bearing systems that could be used
and have been used in high-speed centrifuges, but these
are not relevant in the present review.

TAPPING POINTS FOR
ENRICHED L DEPLETED GAS

PRESSURE TAPPING

FIG. 13. Simplified diagram of ZG5 machine developed in
Germany. This machine, the last developed by Groth, had a
controlled method of setting up thermal countercurrent and
used stationary scoops for gas extraction.

xenon, was that the scoops caused disturbances to the gas
flows in the main countercurrent, reducing the separation.
This was overcome by installing rotating partitions within
the rotor, which were sealed at the perimeter but con-
tained openings in the center of 40 rnm diameter. The
purpose of these partitions was to shield the gas in the
main chamber of the rotor from the effects caused by the
scoops in the end chambers. The experimental results
with this arrangement showed that the separation was ful-
ly restored, although, for some reason not given, it was
necessary to have a higher temperature difference between
the ends than had been used in the earlier tests. This re-
port in 1960 on the ZG5 machine was the last publication
from the team initially set up during the war by Groth
and Beyerle.

VII. PRINCIPLES QF BEARINGS

Before discussing the final machine in this review, that
originally developed in the Soviet Union by Steenbeck and

VIII. RUSSIAN MACHINES

These machines, initially developed in the Soviet Union
during the period 1946—1954, are the most recent
machines described in the literature. According to Zippe
(1960), the team in the Soviet Union about 60 strong, was
composed of both German and Russian workers, with
Steenbeck directing the theoretical work and Zippe the
mechanical and separation work. Initially they developed
a supercritical centrifuge using short elements of tubes
connected together by sylphons to give an overa11 length
of 3 m and a ratio of length to diameter of 50:1. The
tubes were made of aluminum alloy, giving a maximum
peripheral speed of 250 m/sec, but few details of this su-
percritical centrifuge have been disclosed.

However, much more information is available on a
small subcritical rnachine developed by the same group.
This information is available because Zippe repeated his
work during the period 1958—1960 at the University of
Virginia and reported on the work in detail in 1960.
Some of the mechanical work was also repeated at Degus-
sa, Frankfurt, Germany, as described by Steenbeck, Zippe,
and Scheffel (1957). The essential features of this subcrit-
ical machine are shown in Fig. 14, and the leading dirnen-
sions are given in Table VI. This machine, although still
based on the De Laval self-balancing principle, differed in
three respects from the Beams machine. These, of vary-
ing degrees of importance, were the bearing system, the
rotor dynamics, and the hex feed and extraction system.
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whose sole purpose was to obtain convection-free separa-
tion, and it was perhaps natural to follow this develop-
rnent when the work became part of the Manhattan Pro-
ject.

Nevertheless, the decision by Steenbeck and Zippe to
use the less robust combination of pivot and magnetic
bearing enabled them to reduce the bearing po~er con-
sumption by a factor of 1000 to only 2 or 3 W per
machine.

B. Rotor dynamics

FEED
PIPE ~CASING~ROTOR

PRODUCT
SCOOP

PIVOT BE CTRIC MOTOR

FIG. 14. Subcritical centrifuge supported by pivot and magnet-
ic bearings. This machine, developed by Steenback and Zippe,
used stationary feed and extraction systems and avoided the
need for a complex array of seals.

f

A. Bearing system

As shown in Fig. 14, the rotor rests on a pivot bearing
and is held upright by coaxial magnets. This magnetic
bearing is also used to give an upward force to relieve the
load on the bottom bearing, just as in the system
described in Appendix F and originally developed by
Evershed for his electricity meter. The rotor mass of 0.4
kg is about twice the Evershed limit, but Zippe used a
larger pivot bearing and more powerful magnets. In re-
trospect it is surprising that magnetic bearings were not
considered for the early American machines. There is a
long history of development of Inagnetic bearings at the
University of Virginia (see, for example, Beams, 1938,
1940), but there is no mention of their use in the history
of the Manhattan Project. Instead the Virginia group
chose the more robust conventional bearings, with a con-
sequent power loss of about 2 kW per machine. This
came about partly because in the original prewar work of
Beams the power consumption was of no importance; the
machine was designed as a one-off laboratory machine,

The rotor, made of aluminum alloy, was much thinner
than those used by Beams and Groth, and was supported
by the bearing system described above. The bearings used
in Zippe's Virginian model were very asymmetrical, the
bottom pivot assembly being very much stiffer than the
top magnetic bearing. In such an asymmetrical system
the low-speed cylindrical and conical modes of vibration
shown in Fig. 2(a) are replaced by the two conical modes
shown in Fig. 2(b), with the nodes at the bottom of the ro-
tor and one-third down the rotor, respectively. These two
conical modes of vibration were damped out using the
tuned vibration absorber system. Both the top magnetic
bearing and the bottom pivot bearing were flexibly
mounted, with damping means between the moving part
of the bearing and the machine frame. In the machine
developed at Virginia the weak top magnetic bearing was
tuned for the low-frequency precessions, and the much
stiffer bottom pivot assembly was tuned for the high-
frequency conical precession at operating speed.

At high speeds, after traversing the low-speed criticals,
the rotor spun about its center of mass in much the same
way as the Beams tubular rotor described earlier; also at
these high speeds the gyroscopic torques took over, and
the rotor precessions tended to the symmetrical modes
with the frequencies given earlier. The amplitude of the
low-speed criticals, as shown in Appendix B, can be de-
rived from a Jeffcott-type analysis or by applying the en-

ergy equation to each mode separately.

C. The hex system

As described earlier, the hex was passed into, and taken
out of the Beams centrifuges by means of hollow shafts
attached to the rotor. This is satisfactory at low speeds,
up to, say, 300 m/sec, when the pressure ratio from rotor
wall to axis is only about 500 and the axis pressure is
reasonably high. However, the Zippe machine at Virginia
operated at 350 m/sec, with a pressure ratio of 5700.
This gives too low an axis pressure for the gas to be ex-
tracted from the center. Because of this, and to allow the
use of magnetic bearings, Steenbeck, Zippe, and Scheffel
developed the system shown in Fig. 14. The feed and ex-
traction system is a stationary assembly, entering the ro-
tor through an opening in the magnets. The feed tube
ends in the middle part of the rotor, while the extraction
tubes terminate at opposite ends of the rotor and have, at
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their extremities, hook-shaped Pitot tubes in a plane per-
pendicular to the axis of rotation. These scoops make use
of the high impact pressure in the vicinity of the peri-
phery, and, as described earlier for the ZG5 machine, the
dynamic pressure head is greater than the static pressure

by a factor of MV /2RT, which is about ten at 350
m/sec. Detailed experimental results for various scoop
arrangements are given by Zippe (1960).

The scoops used in the Groth ZG5 machine were
shielded by baffles to prevent disturbances to the flow of
gas in the main chamber of the centrifuge rotor. In the
Zippe design, however, it was normal practice to shield
only the product scoop assembly with a baffle, thereby
preventing disturbance from only this scoop to the flow in
the main hex chamber. The waste scoop was not shielded,
and its disturbance was used to good effect to set up the
axial countercurrent; at this unshielded scoop the gas is
slowed down, caused to spiral inwards and then move axi-
ally, so inducing the required countercurrent.

Using this technique, Zippe performed a sequence of
separation tests, the best of which gave an enrichment
factor and a depletion factor of 1.09 at a throughput of
10.8 mg/sec UF6. This corresponds to a separative work
output of 0.39 kg SW/yr, or a Dirac efficiency of 34%.
In this test the rotor power loss was only 10 W, most of
which was attributed by Zippe to drag on the scoops. Al-
though this po~er loss was small, it had to be dissipated
to the outer casing by radiation, and so the rotor ran a
little hotter, relative to the casing, than the earlier Groth
machines. This question of heat transfer is discussed in
more detail in Appendix E.

IX. POSTSCRIPT

It is clear from this review that all three investigations
before 1962 were highly successful projects, none more so
than the Manhattan investigation. The conclusions of
this project are listed by Beams (1975), and his last con-
clusion is the most important. To quote: "the limiting
factor in the gas centrifuge was clearly the strength divid-
ed by the density of the rotor material. If this ratio could
be increased, the effectiveness of the method would be in-
creased accordingly. " This consideration of the speed
limitation of centrifuges is discussed last because it is the
area of development in which the centrifuge specialist has
least control, and yet it is this area in which the main ad-
vances of the centrifuge have been made. The develop-
ment of materials of high specific strength has been al-
most entirely motivated by the requirements of the
aerospace industry, and will be discussed briefly in this
last section.

A. Stress analysis

There are two important requirements of the centrifuge
rotor so far as stress analysis is concerned. These are that

(a) the stress levels of the rotor components be no

greater than the acceptable working stress of the material
of construction, and

(b) the strain levels of the component be such that indi-
vidual parts do not become loose at speed.

o.=p V (21)

This equation, discussed at the beginning of the review,
shows that the peripheral speed of a centrifuge is fixed
only by the specific hoop strength of the material of con-
struction. The Chree analysis also showed that the radial
and axial strains depend on the specific modulus and the
Poisson ratio of the material of construction according to
the equations

e, =pV /E,

e, =vpV /E .

(22)

(23)

The analysis of discs is slightly more complicated, but
the general result is that the stress levels of discs are
much lower than those of tubes made of the same materi-
al and spinning at the same peripheral speed. This is be-
cause a disc can provide inward radial forces, like the
spokes of a wheel, holding the whole disc in with a small-
er overall strain relative to that of the tube given by Eq.
(22). A summary of the exact Chree analysis is given in
Appendix G, but the most important general result is that
the maximum peripheral speed that can be attained by
various tubes and discs is in every case limited by the
strength-to-weight ratio of the material of construction.

B. High-strength materials

At the time of the Beams investigation the strongest
available aluminum alloy had a working strength-to-
weight ratio of 6.25)& 10 m /sec; this had about doubled
by the time of the Zippe investigation at the University of
Virginia. However, since that time there have been only
modest increases in the strength of aluminum alloys. The
major increases have been attained in the strength of ti-
tanium and steel alloys and in composite materials such
as glass, carbon, and other fibers embedded in epoxy

It is therefore necessary to perform a detailed stress
analysis of any rotating system to ensure that these condi-
tions are met T. he theory of stress analysis forms part of
the science of elasticity, probably the oldest discipline in-
volved in the design of the centrifuge rotor. The full his-
tory of this science has been given by Timoshenko (1953),
and so it is only necessary to give here the important
features relevant to the stresses in rotating cylinders and
discs, the two important components part of the centri-
fuge rotor.

The first more or less complete exposition of the
stresses and strains in cylinders and discs was that of
Chree (1891, 1982a, 1892b), following some earlier work
by Maxwell (1850). The Chree stress analysis for a thin-
walled cylinder is particularly important, giving the equa-
tion
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resin. With these modern materials it is possible to more
than double the rotor peripheral speed used by Beams.
However, the application of these materials to centrifuge
design will not be discussed here, since this is best left to a
review of work from 1962 onwards. Suffice to say that
the latest American centrifuge has an output of well over
thirty times that of the best Manhattan rnachine. Thus
instead of 30000 machines being required for the wartime
plant, the number now would be fewer than a thousand.
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APPENDIX A: THE ROSETTE ROTOR

Apart from the three major developments reviewed in
the main text, there was a smaller project in the UK
completed between 1946 and 1954 to assess the usefulness
of the centrifuge relative to the UK diffusion plant. Most
of the development work was done by the General Elec-
tric Company (GEC) on behalf of the United Kingdom
Atomic Energy Authority. During this work a Beams-
type centrifuge was fully developed, but one which ran at
a much higher speed, necessitating the development of
scoops for gas removal. None of this work has been pub-
lished except for the novel design of rotor, which allowed
operation at a speed fifty percent faster than in the
equivalent projects in America and Germany.

As described earlier, the cylindrical rotors used by
Beams and Groth were operated at speeds of up to about
300 m/sec, this limit being set by the specific strength of
the highest-strength aluminum and steel alloys available
during and immediately after the war. Boyland (1946) of
DEC considered this speed to be too low for economic
operation and developed the concept of the "rosette" rotor
shown in Fig. 15. The principle of this design is that
stresses are lower in surfaces of small radius of curvature
than in surfaces of larger radius of curvature. In a con-
ventional cylindrical rotor the curvature is fixed by the
radius, which also determines the centrifugal force and
the surface area. However, in the rosette design loops of
small radius of curvature are supported at a distance from
the axis of rotation several times their own radius, so giv-
ing an enhanced performance relative to a conventional
cylinder. In the Boyland design, shown in Fig. 15, the
shape and thickness of the supporting spokes are designed
to give a uniform tensile strength in the material of
0.7X 10 N/m at 450 m/sec. A conventional rotor at
this stress level would have a speed of only about 300
m/sec.

This fifty-percent or so increase in speed gives a poten-
tial increase in output, using the Dirac equation, by a fac-
tor of about 5. However, the volume taken up by the

FIG. 15. The rosette rotor. Developed by Boyland for high-
speed operation, approximately 50% faster than conventional
cylinder.

spokes and the shape of the perimeter reduce this by fac-
tors of 0.92 and 0.64, respectively. Moreover, it is more
difficult to achieve a high separation efficiency at the
higher speed; Boyland achieved a maximum efficiency of
only about 60%, compared with the 80% possible at the
lower speed. These factors, taken together, give an overall

improvement of about two for the rosette rotor at 450
m/sec compared with a cylinder at 300 m/sec. The possi-
ble improvement at other speeds requires individual cal-
culation.

APPENDIX B: THE JEFFCOTT ANALYSIS

OF SELF-BALANCING

Symmetrical rotor

The rotor and bearing system in the early machines of
Beams and Cxroth were very nearly symmetrical. There-
fore, the original analysis of self-balancing given by
Jeffcott (1919) is immediately applicable to them. For ex-
ample, for the system shown in Fig. 2(a), resolving the un-
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~x+2px+2Sx =~Ace sincot (81)

balance in two planes gives for the symmetrical cylindri-
cal whirl

Resolving the forces gives

~Mco =2SM —~Ace cos5,

2pMco =~hen sin5 .

(86)

(87)
and

~y+2py+2Sy =~Ace cos~t . (82)

These equations can be solved independently (they are
the standard equations for forced damped harmonic
motion) or by using complex numbers, giving

~i+2pi +2Sz =Mdtro exp(idiot) . (83)

The standard solution for these equations —see, for ex-
ample, Wood (1940)—gives the amplitude and phase an-
gle as W/b, =~QI/2p . (88)

Solving these equations again gives the standard solu-
tion for forced damped vibrations, which is plotted as am-
plitude versus speed in Fig. 17(a) and amplitude versus
phase angle in Fig. 17(b). These curves show the gradual
transition of the rotor from the low-speed condition of
spinning about its geometric axis, through the critical
condition of maximum amplitude, to the high-speed con-
dition of spinning about its mass axis. The amplitude at
the critical is approximately equal to

CO

[(Q( co ) +—(2@co/~)]'~

tan5=2pco/~(QI —co ) .

(84)

(85)

Exactly the same considerations apply to the conical
mode, as shown, for example, by Allen, Stokes, and Whit-
ley (1961). The Jeffcott equation for this mode, neglect-
ing gyroscopic effects, is given by

Alternatively the sequence of events can be followed us-
ing a rotating vector method and studying the balance of
forces on the rotor when it is spinning at speed co, as
shown in Fig. 16. The first diagram shows the necessary
centripetal force required to keep the center of gravity of
the rotor moving in the circular orbit. This force is from
the center of gravity to the initial position at the origin.
The second diagram shows the stiffness and damping
forces available to provide this centripetal force. In this
diagram all of the vectors are rotating at angular speed co.

IO+2pl B+2Sl 6= Yco exp(icot) . (89)

A /b, ~
——~Q2/4p . (810)

(a)
5-

4-

The rotor amplitude IO, at the phase change position, is
given by

(a)

U

CC

Lij

0-
A
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FIG. 16. Forces during self-balancing at cylindrical critical: (a)
forces required to support shaft during whirl; (b) available bear-
ing forces.

FIG. 17. Amplitude variations during self-balancing: (a)
amplitude-frequency diagram showing high amplitude at criti-
cal; (b) polar diagram showing amplitude variation with phase
change as speed increases (in the counterclockwise direction).
The numbers 0.92, 1.0, and 1.10 define the speed relative to the
critical speed.
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(a)
STANDARD ABSORBER

(b)
DYNAMIC ABSORBER

FIG. 18. Amplitude variations during self-balancing: (a) amplitude-frequency diagram showing high amplitude at critical; (b) polar
diagram showing amplitude variation with phase change as speed increases (in the counterclockwise direction). The numbers 0.92,
1.0, and 1.10 define the speed relative to the critical speed. The critical speed and the maximum amplitude are greater than given by
Eqs. (13) and (16). These values apply when the phase angle is 90'.

TABLE VII. Mathematical model of dynamic absorbers. (In a standard absorber it is easiest to set the mass ratio g equal to m/~
and work out the stiffnesses; in a bearing absorber one proceeds the opposite way. It is usually best to have a large mass ratio for the
standard absorber and a small one for the bearing absorber. ) (a) is for a standard vibration absorber while (b) is for a dynamic bear-
ing absorber.

(a)
Excitation
constant

Excitation
squared

Excitation
squared

(b)

General

p
1.5Sm

g
(1+g )'

g 2

(1+g)'

(g +2)1/2
1/2

g
1+g

2g
(1+g)(2+g)

21/2

lg (1+g))'"

p
1.SKm

Ek +ES+Sk
(K+S)'

2g (K+S)
K

KS
(X+S)

1+ 2g

In this equation the couple out of balance is written as
~h&l/2, which is equivalent to a center-of-mass shift of
6& for the top half of the rotor and 5& for the bottom
half, but on the opposite side.

2. Asymmetrical rotor

second at the bottom, of values

Ã =(X/2+ Y /L) Q3/ll42

= ( 6/2+ 6) /4)M Q3/jll2

and

&=(X/4+ 3 Y/2L )Q4/p,

(813)

I2B+p2L B+S2L B=(XL/2+Y)co exp(idiot),

I,B+p&( , L) B+S&( , L)B=(—XL/6+Y)co—exp(icot) .

(811)

(812)

The first gives a maximum amplitude at the top and the

The rotor and bearing system in the machines of Steen-
beck and Zippe was asymmetrical —in fact, the machine
was so asymmetrical that the two rigid-body criticals are
as shown in Fig. 2(b). In this extreme case the two rigid-
body resonances have modes at the bottom and one-third
down the rotor, respectively. The completely general case
has been treated by Timoshenko (1928), but in the ex-
treme case of Fig. 2(b), the equivalent of the Jeffcott
equations (Bl) and (89) can be written down immediately

=(b /4+38 ~/8)~Q4/p~ . (814)

Notice that in all cases the peak amplitude at the criticals
is of the same form as and proportional to the nondimen-
sional group ~Q/p.

APPENDIX C: METHODS OF DAMPING

De Laval in his self-balancing turbine used the stiffness
of the shaft in series with the stiffness of the bearing film
as the restoring force, and the damper force of the bearing
film itself as the energy-absorbing force. His turbine is il-
lustrated in Fig. 1(a) and is similar to the model treated
by Jeffcott. The bearing and damping forces of hydro-
dynamic bearings are given in standard text books such as
those of Pinkus and Sternlicht (1961) and Cxrassam and
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Powell (1964). If the shaft is very flexible, most of the de-
flection in the self-balancing process occurs in the shaft,
and the bearing movements are minimal —this is the De
Laval case—but if the shaft is very stiff, most of the self-
balancing occurs in the bearing film. Examples of this in
gas bearing technology have been given by Fischer,
Cherubim, and Decker (1959) and by Allen, Stokes, and
Whitley (1961). However, this method was not used in
the various centrifuges discussed in this review and will
not be discussed further here.

The second method of providing damping, used in
some centrifuges, derives from a most unexpected source
which predates even the principle of self-balancing.
Watts (1883), working for the Admiralty, developed a
very simple method of reducing roll in warships and so
increasing the stability of the gun platform. He adjusted
the level of water in a tank, situated in the ship, to give it
the same frequency as the rolling motion of the ship.
Then, as the ship rolled, it set the water in resonant
motion so dissipating energy and hence reducing the roll
of the ship. Watts was able to reduce the roll of the
9200-ton warship "Inflexible" by a factor of 2 using only
50 tons of water. The important principle developed by
Watts was to set the small mass into motion with an am-
plitude much greater than that of the main mass. The
damping in the system is then very effective because the
energy dissipated in a damper is proportional to the
square of the velocity and hence the square of the dis-
placement within the damper.

This device, sometimes called a tuned or dynamic vi-
bration absorber, is now used extensively for vibration
control, and a detailed method of optimization was given
for it by Ormondroyd and Den Hartog in 1928. The
dynamic model of this vibration absorber and the tuned
bearing-damper system are compared in Table VII and
Fig. 18. As can be seen, they are not quite identical, but
the physical principles and the method of optimization of
both devices are the same. Both employ Watts's ap-
proach, tuning the small mass so that it executes large
movements, typically three or four times that of the main
mass, and then optimizing the damping constant for max-
imum removal of energy. The optimum values given in
Table VII are from the original paper by Qrmondroyd
and Den Hartog (1928), from Sauer and Garland (1948),
and from Kirk and Czunter (1972). This last review paper
is from the University of Virginia, where this system has
been extensively developed for both gas and medical cen-
trifuge application.

In the early American machines and in all of the Ger-
man machines, a slightly different Inethod was used in
which the damping was provided by extra floating bear-
ings which activated an external damping member. This
third system, illustrated in Fig. 19, is very easy to use and
allows the stiffness and damping to be set independently
of each other, but it is wasteful in cost and energy usage,
requiring two extra bearings per rotor. Strictly this
method of providing damping is not so different from the
other two, and all three methods can be derived from the
general model shown in Table VII and Fig. 18.
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FIG. 19. Dynamic model showing separate damper. Two bear-
ings at each end, one to support shaft and one to move and ac-
tivate damper.

APPENDIX D: CONICAL MODE OF PRECESSION
FOR SUBCRITICAL ROTORS

The main problems in spinning subcritical rotors are
that

(a) they have to traverse both the cylindrical and coni-
cal rigid-body criticals, usually at low speed, and

(b) the rotors must be stable at operating speed, and
therefore the cylindrical and conical natural modes must
be well damped.

The difficulty is usually the conical mode at speed be-
cause of the normally large disparity in frequency be-
tween this mode and the others, making it necessary to
design dampers to cover a wide frequency band. The
relevant equations (12) and (14) for the conical frequen-
cies are given in the main text; from these equations, the
critical speeds and natural frequencies have been calculat-
ed and the results summarized in Table VIII. The calcu-
lations are given for various lengths of rotor and for three
examples of bearing stiffness: a weak bearing typical of
the Russian-type machine, a medium-stiff bearing system
typical of the American/German machines, and a fairly
stiff system typical of the original De Laval design. It is
assumed that the stiffnesses are set in these three exam-
ples such that the cylindrical criticals are at l%%uo, 5% and
10% of the operating speed. This gives, from the self-
balancing equation (18), reductions in bearing. load of ten
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TABLE VIII. Conical critical speed and conical natural frequencies of vibration (given as ratio to
cylindrical critical speed in each case).

Length-diameter ratio 1.75 3.5 7.0 11.6 16.3

Polar/transverse inertia
Rotor mass kg
Stiffness for critical at
1% of full speed 10 N/m

0.68
3.77

4.60

0.23
7.55

9.20

0.063
15.1

18.4

0.023
25

30.5

0.012
35

Critical speed
Backward natural
Forward natural

2.50
0.03

68.5

Cylindrical critical set at 1% of full speed
1.85 1.76 1.74
0.12 0.43 0.91

23.1 6.73 3.25

1.74
1.23
2.42

Critical speed
Backward natural
Forward natural

2.50
0.14

13.8

Cylindrical critical set at 5% of full speed
1.85 1.76 1.74
0.52 1.19 1.50
5.12 2.45 1.97

1.74
1.61
1.85

Critical speed
Backward natural
Forward natural

2.50
0.28
7.12

Cylindrical critical set at 10% of full speed
1.85 1.76 1.74
0.84 1.42 1.61
3.15 2.05 1.84

1.74
1.67
1.79

thousand, four hundred, and one hundred, respectively.
The values of mass and stiffness assumed in the table are
those for an aluminum tube of 200 mm inside diameter
and 6 mm thick, the nominal dimensions of the Westing-
house machines developed during the Manhattan Project.

It is clear from the table that to reduce the frequencies
to reasonably low values, we must make the length-
diameter ratio as large as possible, particularly if soft
bearings are used. It is then easy to provide optimum
damping because not only are the conical frequencies low,
but also the amount of damping required is small, as
shown by the energy equation (16). The shorter rotors
can be operated more easily using the stiffer bearings, but
then the radial load is high and the bearing may be unable
to accept this higher load. As discussed earlier, the radial
deflection at speed in a flexible bearing system is of the
order of the center-of-mass shift 6, and is independent of
stiffness. In general, softer bearings have bigger clear-
ances and allowable movements and can therefore accept
this displacement in the bearing system more easily than
stiff bearings.

This discussion of subcritical rotors is of course much
simplified; more detailed information on the principles of
subcritical rotors, including effects of asymmetric bear-
ings, effect of end-mass, gyroscopic effects, rotor bow-
balancing techniques, etc., is available in standard texts of
machine design. Much useful information has been pub-
lished by Anderson (1966) and Kelley (1963),but as point-
ed out by Anderson, the progression from principles to a
workable machine is often as much an art as a science.
"Years of accumulating information, developing design
criteria, and correlating test data are required to advance
a given high-speed centrifuge design to a firm basis. " The
complexity of a real design is apparent only from a de-
tailed study of any one of the machines described in this

review, and a good example is the Westinghouse subcriti-
cal machine developed during the Manhattan program.

APPENDIX E: METHODS OF ACHIEVING
CONVECTION-FREE OPERATION

Hydrogen stabilization

TABLE IX. Temperature stabilization of Cxroth machine.

Rotational speed
Inside velocity
Outside velocity
Critical pressure
Gas friction
hT

Hz
m/sec
m/sec

Pa

oC

667
281
314

1890
55
2.26

833
351
393

1520
84.4
3.45

1000
421
471

1270
124.3

5.08

In the American and German projects undesirable tem-
perature gradients were minimized by introducing hydro-
gen into the centrifuge casing. This hydrogen, although it
helps to even out spurious temperature gradients, itself
adds to the power usage due to drag on the rotor. To
keep this extra power loss to a minimum it is necessary to
reduce the pressure of hydrogen to a value which ensures
laminar flow. Several measuretnents were made by Groth
and his collaborators (1958) of the transition from lami-
nar flow to turbulent flow, and their results are summa-
rized in Table IX. Their results correspond to a Reynolds
number at the transition of 350, rather higher than the
value of 41(d/2h)'~ or 150 quoted by Taylor (1923) for
the onset of Taylor vortices. These results are not neces-
sarily inconsistent because, as discussed by Schlichting
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Half of this heat is given directly to the casing and the
other half to the rotor. The temperature of the rotor
therefore rises until the temperature difference is just
enough for the hydrogen to conduct the heat to the out-
side casing. At equilibrium the temperature rise is given
by the equation

bT =AVIV /2a=MV /4C, , (E2)

the latter equality being for a diatomic gas. Since all dia-
tomic molecules have the same number of degrees of free-
dom and hence the same specific heat per mole, it is clear
that hydrogen, with its small molecular weight, is the best
gas to use for the purpose of temperature stabilization.
The results given by Groth are summarized in Table IX.

The critical pressure listed in Table IX is the upper
limit allowed before the flow becomes turbulent. If in-
stead the pressure is set too low, the conditions tend to be
molecular, and the efficiency of the heat transfer is di-
minished. The effect can easily be seen using the stan-
dard equations for molecular flow given by Kennard
(1938). These are

Heat flow/unit area =p (1.2C„/M)(M/2mRT)'~ b, T, .

(E3)

Power/unit area =p (M/2nRT)' V (E4)

Strictly speaking, both these equations should be modified
by factors to allow for the efficiency of energy and
momentum transfer during individual molecular
collisions —the accommodation coefficients. Assuming
these coefficients are equal, the equations show that the
temperature risc during rnolccular corlditiorls is

(1954), the flow can remain laniinar well after the onset of
Taylor vortices.

If flow conditions are laminar, then the power loss,
which appears as heat, is given by the usual Petroff equa-
tion,

(El)

significant —about 55 W at the lower speed —it was negli-
gible compared with that of the bearings and seals, and
the rotor temperature was only 2'C or 3 C hotter than
the casing.

2. Vacuum operation

The main advantage of the centrifuge developed by the
Russian team is that the power loss in the bearings is
negligible and hence external spurious heat sources are
eliminated. Moreover, the heat generated in the rotor it-
self, mainly from the scoop system, is only about 10—20
W, and this amount of heat can easily be transmitted
from the rotor to the casing by radiation without the
rotor's getting too hot. This means that it is practical to
operate the rotor in a vacuum, which is the best method
of eliminating unwanted heat sources and hence unwanted
convection.

However, in this type of centrifuge, hex can leak out of
the rotor through the annular gap between the stationary
feed system and the top end cap. It is therefore difficult
to ensure that the cylindrical part of the rotor runs in a
high vacuum. The Russian team solved this problem by
using the outer surface of the rotor as part of a molecular
pump, arranging the direction of pumping such that the
hex was confined to the top end of the machine, with only
a minute partial pressure outside the rotor.

Molecular pumps were first developed by Gaede (1913),
before the advent of the diffusion pump, and then
developed for cylindrical surfaces by Holweck (1923) and
for discs by Siegbahn (1940). The pump shown in Fig. 14
is a Holweck cylindrical type, with the spiral grooves cut
into the inside of the stationary vacuum surface, and the
outside of the centrifuge rotor providing the rotating part
of the pump.

If the pressure is sufficiently low for conditions to be
molecular, then these pumps have a pressure ratio which
depends on the ratio of rotor velocity to molecular veloci-
ty, giving, for a simple linear slot,

b, T =MV /2. 4C„, (E5)
1n(p2/p&) =2LV/3hP .

rather worse than for the viscous condition. Moreover, if
the working pressure is set at too low a value, the absolute
value of the thermal conductivity decreases, and the hy-
drogen is less able to equalize out temperature gradients
caused by spurious heat sources. To avoid these molecu-
lar conditions it is necessary to set the pressure higher
than about 25 Pa (0.2 Torr), since at this pressure the
mean free path is 0.05 mm, one-tenth of the gap.

The pressure can be set at any value between the upper
and lower limits defining laminar conditions, and Groth
normally set the pressure at about 400 Pa (3 Torr). Then,
although the viscous drag due to the use of hydrogen was

5From Kennard (1938). M~/qc„=(9y —5)/4-2 for diatomic
molecule s.

As can be seen, in contradistinction to the diffusion
pump, these pumps are far more effective for the slower-
moving heavy molecules, a decided advantage in this ap-
plication. If the pressure is higher, so that the flow is
laminar, the pump gives a constant pressure difference

Ap =6rIVL/h (E7)

These Gaede equations apply only when the flow and
pressure change are in the direction of movement, as in
his pumps. In the case of the Holweck and Siegbahn
pumps, the flow and pressure change are at right angles
to the rotor movement, and for these pumps optimized
groove patterns must be used, as described, for example,
by Whipple (1951) and Sickafus, Nelson, and Lowry
(1961). In general the pressure ratios at these optimum
values are much lower than those given by Eqs. (E6) and
(E7), and the right-hand side of these equations must be
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multiplied by about 0.1.
Zippe (1960) has confirmed the validity of these

theories for molecular pumps, showing it is easy with a
Holweck pump to get pressure ratios for hex of 10 or
more. This, together with the low axis pressure of a
high-speed centrifuge, effectively eliminates any power
loss due to gas friction on the outside of the rotor. For
exainple, the axis pressure for the Zippe centrifuge at 350
m/sec is a few pascals, so the partial pressure of UF6 in
the rotor casing will be of the order of 10 Pa. At this
low pressure the mean free path for UF6 is about 20 m, so
the flow is in the molecular regime. At this pressure, us-
ing Eq. (E4), it can be shown that the power loss due to
drag on the rotor of the Zippe machine is less than 0.1 W.
Thus, since there is negligible power loss both in the bear-
ings and on the outside of the rotor, there is no possibility
of undesirable convection currents to disturb the desired
countercurrents.

APPENDIX F: BEARING SYSTEMS

(a) (c)

Petroff's equation (El) is proportional to only I/h, so that
the ratio of power to load is proportional to the gap. For
example, the power-to-load ratio for the infinitely long
journal bearing, at an eccentricity of 0.5, is given by

FIG. 20. Principle of self-acting bearing: (a) flow into bearing
caused by viscous drag; (b) opposing Poiseuille flow caused by
pressure buildup in the converging gap; (c) pressure rise at
equilibrium.

1. Hydrodynamic bearings
H/&=cob/6 . (Fl)

The original experiment showing the pressure rise
which occurs in a hydrodynamic journal bearing and
which lifts rotors away from contact with the bearing sur-
face was made in 1883. Towers, investigating locomotive
bearings, was puzzled by the constant ejection of a plug
which blocked up a hole in the bearing. The moment he
attached a pressure gauge and observed the pressure rise
in the bearing, the principle of hydrodynamic lubrication
became clear, and it was not long before Reynolds (1886)
had worked out the theory of the effect. The principle is
that between the two eccentric cylinders of the rotor
and the journal bearing there is a converging gap a
"wedge"—into which lubricant is pumped by the relative-
ly rotating surfaces. This produces a pressure rise suffi-
cient to lift the rotor away from the bearing. The exact
pressure rise which occurs for a given bearing configura-
tion involves solving ihe Reynolds equation, and the solu-
tion for a long journal bearing was first given by Sommer-
feld (1904).

However, it is not necessary to consider bearing theory
in detail, since a cursory examination of a stepped bearing
is sufficient to demonstrate the "wedge" effect in bearings
and give the relationship between load capacity and power
consumption. The effect is indicated in Fig. 20. The lu-
bricant is dragged along by the moving bearing surface in
the direction of the converging gap at a mean velocity of
U/2. Since this flow is too great to get out at the end of
the converging gap, the pressure rises, inhibiting the entry
flow and helping the exit flow so that they are equal.
Thus at equilibrium the pressure rise is a balance between
viscous drag flow, proportional to the gap h, and the op-
posing laminar or Poiseuille flow, which is proportional
to 1/h . This gives a resulting pressure rise and load
capacity proportional to 1/h .

On the other hand, the frictional power loss given by

This equation is derived from the Sommerfeld solution
for a long bearing. Similarly for a short journal bearing,
described by Dubois and Ocvirk (1953), the ratio is

H/W =4coh/(Wja) (F2)

This dimensional-type equation is fairly general; a similar
equation exists for thrust bearings. For example, the con-
stant in Eq. (Fl) is 2.34 instead of 0.16 for an optimized
hydrodynamic spiral groove bearing (see Whitley, 1967),
and is 1.75 for an optimized hydrostatic bearing. This
latter figure is easily derived by the methods given by
Fuller (1956), assuming the step extends to half the radius
of the bearing.

A similar relationship can be simply deduced for the
other important parameter, the bearing stiffness. If the
load capacity is proportional to I/h, it follows by dif-
ferentiation that

(F3)

and therefore

H/S-cob (F4)

6In these equations no account is taken of the attitude angle,
i.e., the angle between the load and the displacement.

These nondirnensional equations are important in show-
ing that, for the lowest power consumption, it is better to
use precision bearings working at a small gap rather than
large-clearance conventional bearings.

The failure to develop such optimized but conventional
bearings was one of the main problems with the Beams
and Groth machines. These machines were developed
under wartime conditions, and the decision was taken to
use robust journal bearings on the outside of the rotating
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gas pipes, along with the complex rotating seals they
made necessary. This sequence of design philosophy
leads almost inevitably to a high power consumption,
with the consequent danger of creating unwanted convec-
tive currents in the gas in the centrifuge rotor, so destroy-
ing the separating effect. Then, to prevent these convec-
tion currents, it is necessary to introduce hydrogen at low
pressure into the centrifuge casing to thermally stabilize
the machine, and this consumes more power again.
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2. The Evershed bearings
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In retrospect, the design philosophy leading to such
high power loss in the American and German centrifuges
should not have been inevitable because the problem of
making precision bearings of low power consumption for
instruments, etc., was not itself new; the same problem
had to be solved in the last decade of the 19th century in
the design of electricity meters for the emerging electrici-
ty industry. In this application minimum friction is
essential. However, these meters are essentially low-speed
devices, for which hydrodynamic bearings are not ap-
propriate. Instead pivot and magnetic bearings were
developed. Figure 21 shows the system designed by
Evershed (1900).

In this arrangement the pivot bearing at the bottom
consisted of an accurately rounded shaft which ran in a
spherical cup of radius of curvature rather larger than
that of the shaft end. The earlier rule relating power to
load capacity also applies to these bearings. This can be
seen by examining an annular shaft running on a plane
surface as in Fig. 22. Here

H/W =flub,

FICx. 22. Power loss in pivot bearings: (a) annular contact,
H=fcoWb; (b) elastic contact, I'=(3m/16)fcoWb; (c) wearing

contact, P= , fco8'—b

where the friction coefficient is about 0.1 for lubricated
bearings (see, for example, Shotter and Tagg, 1960).

It can be seen from Eq. (F5) that to reduce the power
consumption it is necessary to minimize both the load and
the radius of contact of the two surfaces. These two self-
evident truths were the basis of the work of Evershed in
his search for a "frictionless" electricity meter in the last
ten years of the nineteenth century.

a. Pivot bearing

First consider the Evershed pivot bearing. This
comprises a hard steel pin, rounded to a diameter of
0.25—0.35 mm, sitting in a cup of 1—2 mm diameter.
This type of bearing, sometimes called a jewel bearing be-
cause the cup is often made of sapphire or diamond, is
now used in a variety of sizes, from small watch bearings
to large compass bearings. There is now an extensive
hterature on these bearings, e.g., Grodzinski (?942) on
their manufacture, Stott (1931) on their wear characteris-
tics, Shotter and Tagg (1960) and Kauzlarich, Wavrik,
and Friedericy (1967) on general principles. Essentially
the earlier theory of Shotter and Tagg is an elastic theory,
while the later theory developed at the University of Vir-
ginia is a wear theory. Both theories, however, confirm
the relationship between the power and load given by Eq.
(F5), with a correction factor of 3m/16 on the elastic hy-
pothesis and 0.5 on the wear hypothesis.

One of the earliest to write on the elastic theory, Hertz
(1896), showed that the radius of elastic contact between
two spherical surfaces is given by

=3Wil/rip2/16(ri y2) (F6)

PI VOT
BEAR IN 6

where 0', a modified elastic constant, is equal to
0.16)&10 ' m /N for steel. The specific load Q between
the two surfaces is a maximum at the center of the circle
of contact and zero at the outside, according to the equa-
tion

Q =1.5Qi(l r /b )'i— (F7)

FiCx. 21. Details of Evershed s magnetic suspension in a fric-
tionless meter. The first practical pivot-magnetic bearing sys-
tem developed for electricity meters (1900).

With the use of this equation it is easy to ensure that the
peak pressure between the contacting surfaces is within
acceptable limits for the materials of construction and to
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show that the power loss is just 3m./16 of that given by
Eq. (F5).

The wear theory of the pivot bearing is more difficult,
particularly in the prediction of long-term performance.
A lubricated pivot bearing has a friction factor of about
0.1; this is typical of boundary lubrication, and conse-
quently some wear is to be expected. It is assumed by
Kauzlarich et al. (1967) that the wear will follow the law
given by Archard and Hirst (1956), i.e., that the volume
of material removed at any given radius is proportional to
the applied load and the distance traveled. It is clear
from this law that, if wear occurs, the load distribution
must change such that the specific load varies inversely as
the circumferential velocity at each point of contact—
otherwise the pivot would not wear down uniformly.
This gives

difference in the radii of the pivot and cup in order to in-
crease the radial stiffness of the bearing. Then, from Eq.
(F6), the area of contact increases, and these conditions
eventually do not apply. In the limit, as the difference in
radii tends to zero, the bearing merges into a hydro-
dynamic bearing, and the theory becomes more complex.
The cylindrical part of the pivot bearing begins to behave
as a conventional journal bearing, setting up a pressure
difference around its periphery. The oil in the high-
pressure zone is pushed out axially, some up and out
through the equatorial part of the bearing, but some also
down into the crescent shape under the spherical tip, giv-
ing some axial lift. The theory of this effect is given by
Shaw and Strang (1948), with more recent work by Pan
(1962).

Q =Q(b/2r . (F8)
b. Magnetic bearing

S= W/(r& r2) . — (F9)

For most pivot bearings, the radial and axial load capaci-
ties are approximately equal, so that Eq. (F9) is effectively
of the same form as Eq. (F3) for journal bearings. More
exact calculations are given by Shotter and Tagg (1960).

In these theories it is assumed that the area of contact
between the surfaces of the pivot and cup is small, and
therefore entails a very high specific load and elastic de-
formation between the contacting surfaces. However,
from Eq. (F9), we see that it is necessary to decrease the

Clearly at the center of the area of contact the peripheral
velocity is zero and the load, from Eq. (F8), is infinity. In
fact, of course, the central zone of the area of contact de-
forms plastically. If this small plastic zone is neglected, it
is easy to show that the power loss is one-half of that
given by Eq. (F5).

According to Kauzlarich et al. (1967), the load varia-
tion changes from the elastic condition to the wear condi-
tion after only about 100 revolutions. Thereafter, at least
in principle, the friction should gradually increase as the
area of contact increases. However, the problem becomes
complicated by the presence of wear debris between the
contacting surfaces and the possible onset of abrasive
wear. The main experimental evidence available is that of
Shotter and Tagg (1960), who investigated the effect of
lubrication and the pressure between the bearing surfaces.
They also did important work showing that with sapphire
cups it was best to have the optic axis of the sapphire at
right angles to the axial load. In the experiments of
Shotter and Tagg, the maximum number of revolutions
tested was about 2)& 10, which, while sufficient for elec-
tricity meters, corresponds to only about 20 days of
operation for the centrifuges described in this review.

The other important bearing parameter required is the
radial stiffness. If the spherically shaped pivot were to
slide up an inclined plane, the restoring force would be
constant. However, as it slides up the gradually increas-
ing slope of the spherical cup the restoring force increases
linearly with radial displacement, thus giving a stiffness

Perhaps the most important results from the above dis-
cussion are the stiffness equations (F3) and (F9). These
equations are dimensionally correct and apply, as well, to
passive magnetic bearings. They give the radial stiffness
(apart from a constant) as the radial load divided by radi-
al gap. Thus for a given load capacity the stiffness is in-
versely proportional to the radial gap. Typically the radi-
al gap of a small journal bearing is about 25 p, m, that of a
pivot bearing 250 pm, and that of a magnetic bearing 2.5
mm. Therefore, for equivalent bearings, each designed to
carry, say, a radial load of 10 N, the relative stiffnesses
would be 400, 40, and 4 N/mm.

This last stiffness is extremely low, and therefore mag-
netic bearings, at least on first acquaintance, may seem
unusual. Most people's concepts of a bearing are that it
can carry a load of hundreds of newtons force, with a
clearance of about 25 pm, and, if it is overloaded, it hits
metal to metal and is destroyed. A typical magnetic bear-
ing may carry a load of only say 5 N with an acceptable
radial movement of 0.5 mm, but then if it is overloaded it
falls out of the magnetic field and, if there is no physical
restraint, the rotor it supports will fall over. Magnetic
bearings can be categorized as being of very small load
capacity, large clearance, and low stiffness. They do,
however, have two major advantages: they have almost
zero power loss, and they can work in a vacuum.

The description given here is from an early paper by
Evershed (1900), in which he developed the system shown
in Fig. 21 which has a pivot bearing at the bottom and a
magnetic bearing at the top. Evershed discussed these
two bearings as a total system. He recognized that for
minimum power consumption of the bottom bearing it
was necessary to relieve the applied load as much as pos-
sible. This, as described earlier, has the effect of reducing
not only the load, but also the radius of contact. Thus the
Evershed magnetic bearing not only gave the required ra-
dial stiffness at the top of the rotor without itself causing
any power loss, but it also gave an upward attractive
force, thereby improving the performance of the bottom
bearing.

There is, however, a danger in using the upward attrac-
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tive force of a passive radial magnetic bearing, because in
this direction the bearing is unstable. For example, if the
rotor in Fig. 21 is moved upwards in the axial direction,
the force between the magnets increases. If the axial lift
increases too much it can lead to contact and failure. If
the upward force follows an inverse square law of attrac-
tion, then it follows by differentiation that there is a nega-
tive stiffness in the axial direction of 2W/h.

The instability of magnetic bearings at right angles to
the direction of stability is a consequence of a basic law of
magnetic bearings. This law, enshrined as Earnshaw's
theorem (1839), and given by Maxwell (1881), is that it is
impossible for a pole placed in a static field of force to
have a position of stable equilibrium when an inverse
square law relates force and distance. From this it fol-
lows that it is impossible to achieve magnetic levitation,
stable in three dimensions, using only static magnetic
fields. A corollary of this, important in the present con-
text, is that in a radial magnetic bearing the stabilizing
stiffness S in the radial direction must be less than half
the negative destabilizing stiffness; this incidentally con-
firms the relationship between stiffness, load, and gap.

In 1900 Evershed discussed these problems as follows
(he called his magnetic bearing a magnetic pivot and his
pivot bearing a step bearing):

"A magnetic pivot of this type may easily be made to
support a weight of from 100 to 200 grammes. Qf
course the position of the axle is one of unstable equi-
librium in a vertical direction, the magnetic attraction in-
creasing rapidly if the axle rises towards the supporting
pole. But if means are adopted to confine the possible
travel of the axle within narrow limits, it will run with
very little pressure on the step bearing. "

The end plate shown in Fig. 21 is in fact to stop the rotor
from jumping. If the meter rotor gets a jolt and lifts off
the pivot bearing, it will hit the end plate and fall back
agaIn.

As discussed above, by reducing the force on the pivot
bearing, one can reduce the wear and power consumption
considerably. The power consumption of the magnetic
bearing itself is negligible, providing it is symmetrical
about the axis to avoid eddy current losses. Thus, quoting
again from the Evershed paper,

"We thus arrive at an essential principle for magnetic
suspension of meter axles: the induction density in the
magnetic devices used for support must remain absolute-
ly constant during rotation of the axle. This at once
disposes of unsymmetrical bipolar arrangements; nothing
of the nature of the two poles attracting a piece of iron
will serve. To secure uniform induction density in the
rotating part of the magnetic circuit, the attracting pole
must be a figure of revolution, with its axis coincident
with the axis of rotation. As an example, the attracting
pole might be a ring concentric with the axle. "

In fact, the centrifuge described by Steenbeck and Zippe
uses a magnetic bearing which is made of such concentric
annular rings, as shown in Fig. 23.

Although magnetic bearings are now well established
and in considerable use over 300 papers on them are list-
ed by Geary (1964)—a theoretical assessment is not yet
available. The designs usually use semiempirical methods
such as those described by Milligan and Green (1953).
The problem is that it is difficult to calculate the magnet-
ic force, given by the standard equation (Rotor, 1941)

F = , (mmf—) dq/dz,

where the permeance q is the inverse of magnetic reluc-
tance. To determine the reluctance or permeance involves
solving the magnetic field equation for the prescribed
boundary conditions defined by the magnet surfaces.
This in itself is a sufficiently difficult problem to solve,
particularly since most magnets in bearings have sharp
corners and hence saturation effects can occur. However,
to determine the stiffness of a magnetic bearing it is
necessary not only to calculate the permeance, but also to
calculate the second derivative of permeance with dis-
tance, and this is a virtually intractable problem without
the use of large computers.

Further details of the theory of magnetic bearings are
beyond the scope of this paper, but this short description
of both pivot and magnetic bearings shows that very little
in modern machine design is truly novel. Even Evershed,
who did most of his work between 1891 and 1900, found
he was not alone in working on magnetic and pivot bear-
ings. In fact, at the meeting in 1900 other workers
claimed precedence over his invention, and T. Lockwood,
President of the American Institute of Electrical En-
gineers, reminded the meeting of the quotation,

"People of old times had very little honesty: they have
stolen all our best inventions. "

This quotation seems particularly apt when one studies
the work of Steenbeck, Zippe, and Scheffel, who
developed their centrifuge initially in the Soviet Union
and later in Germany and America. Their bearing sys-
tem, shown in Fig. 14, is virtually a replica of the first
EVCI shed design.

N

~There are also "active" magnetic bearings using electromag-
nets with feedback control loops. These, not discussed here, can
take much bigger loads —see Geary (1964).

FIT+. 23. Enlarged view of Evershed's top magnetic bearing: (a)
equilibrium condition, attractive force 8, attractive instability
d 8'/dh =28 /h; (b) displaced condition, radial stiffness
S & 2 d8'/dh & 8'/h.
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TABLE X. Stresses and strains in discs (values for plain discs divided by p V ).

Disc with central hole Radial stress
Circumferential stress
Circumferential strain

Inner radius

0
(3+ v)/4

Outer radius

0
(1—v)/4

(1—v)/4E

Solid disc Radial stress
Circumferential stress
Circumferential stress

(3+ v)/8
(3+ v)/8

0
(1—v)/4

(1—v)/4E

De Laval disc Radial stress
Circumferential stress
Circumferential strain (1—v)a/E

APPENDIX G: STRESS ANALYSIS OF DISCS

One of the earliest satisfactory expositions of the theory
of rotating discs was that of James Clerk Maxwell (1850),
who completed his study before he was 19 years old.
However, the best early papers on the stress in both discs
and cylinders are those by Chree (1891, 1892a, 1892b),
and his theory is still used today. Chree was a dis-
tinguished authority on terrestrial magnetism and atmos-
pheric electricity and was Superintendent of Kew Obser-
vatory for 32 years. He was also a past President of the
Physical Society and the Royal Meteorological Society.
This is inentioned to show how the theory of elasticity
and mechanics was considered the proper province of dis-
tinguished scientists during the industrial revolution.

The Chree analysis for a thin-walled cylinder is given
in the text, and his Eq. (2) is probably the best known re-
sult in the mechanical theory of centrifuges. This result
shows that the maximum peripheral speed of a spinning
rotor depends only on the specific strength of the material
of construction, i.e., its working strength divided by its
density. Providing the cylinder is thin, it does not depend
on its thickness. (If the thickness and hence mass is dou-
bled, the hoop force or tension is doubled, but the hoop
stress is unaltered. )

The analysis for discs is more complicated, but the gen-
eral result is that stress levels in discs are much lower
than in thin cylinders. This is because a disc can provide
inward radial forces, so keeping the disc to a small overall
strain. For example, for a plain disc the circumferential
strain and stress at the perimeter is only about 6 of that
of a thin cylinder. Although both the radial and circum-
ferential stresses increase as one moves towards the
center, their maximum and equal values at the center are
still less than half that of the hoop stress in a thin
cylinder spinning at the same peripheral speed. The exact
values are listed in Table X. For a disc with a small cen-
tral hole, the radial stress at the center falls to zero, and
this weakening of the radial restraint causes the inner
tangential stress to exactly double.

This Chree analysis for discs with and without a center
hole gives only the values of the radial and hoop stresses;
before application to design, it is necessary to combine
these stresses in some way. This has been the subject of

t =t~exp( pc@ r l—2o') . (Cr2)

Rearranging gives the maximum speed of operation of a
De Laval disc as

(&3)

A typical De Laval disc of thickness ratio from center to
edge of, say, A, =5 could thus spin faster than the
equivalent tube by a factor of 1.8. In this design of tur-
bine disc there is an outward radial stress (equal to the
working stress o) at the periineter of the disc, and the
whole disc strains radially by (1 v)o/E. Without —this
large outward stress the disc could spin even faster.
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