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This paper is focused mainly on the subject of elastic magnetic electron scattering and how it has come to
be a useful tool for studying the spatial distributions of convection and magnetization currents in the nu-

clear ground state. Using such a probe, emphasis is clearly placed on the electromagnetic currents provided

by the valence nucleons in the nucleus, indeed, by neutrons as well as protons. These do not yield a com-
plete description of the problem, however, and more complex nuclear many-body configurations are gen-
erally required. Various models are employed (shell-model configuration mixing, core-polarization effects,
models of deformed nuclei, for instance), giving rise to quantitative comparisons with experimental mea-
surements. Moreover, to achieve such successful descriptions, especially at high momentum transfers, it is
frequently necessary to go beyond a purely one-body nucleonic reaction mechanism and to include the ef-
fects of two-body meson-exchange currents based on non-nucleonic degrees of freedom (m;p, h, . . . ). The
authors discuss all of these various facets of the problem, beginning with surveys of the historical develop-
ment of the field and of the experimental techniques employed in such studies. They present a detailed
treatment of the formalism needed in discussions of elastic electron scattering, including an introduction to
the density-matrix approach to the nuclear many-body problem, with simple examples to clarify the ideas
involved. For the nonspecialist a separate section of illustrative examples is supplied in which qualitative
discussions of various aspects of the physics accessible in such (e,e ) studies are highlighted. Experimental
and theoretical results for a large number of nuclei ranging from A =2 to 2O9 are described in detail; this
represents a compilation of virtually all of the high-quality data that are available at present. The paper
concludes with projections as to which directions may be followed in the future, in particular, with a rela-
tively complete discussion of the use of polarization in elastic electron scattering.
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I ~ INTRODUCTION

This paper deals with elastic scattering of high-energy
electrons from the nuclear convection and magnetization
distributions. Significant progress in the use of this tool
for investigations of nuclear structure has been made over
the past 15 years, and we feel that a review of both experi-
mental and theoretical achievements is appropriate at this
time.

For a number of reasons, electron-nucleus scattering in
general turns out to be an excellent tool for the study of
nuclei. The main asset of the electron as a probe resides
in the weakness of the electromagnetic force by means of
which the electron interacts with the nucleus. The cou-
pling constant a = 1/137 is much smaller than the
characteristic strength of the nuclear force which is re-
sponsible for most of the properties of the nucleus.
Therefore, the electron hardly perturbs the nucleus under
investigation. Moreover, the electromagnetic interaction
is well known and described by an exact theory, quantum
electrodynamics. As a consequence, the nuclear proper-
ties can be extracted from data in a quantitative way. In
fact, the same comments pertain more generally to the
larger subject of electroweak interaction studies of nuclei.

The weakness of the electromagnetic interaction has
additional consequences: calculations performed in the
impulse and plane-wave approximation are already quite
close to reality; hence the refinements needed for a quan-
titative calculation of electron-nucleus scattering are of
manageable complexity. The one-step nature of the
electron-nucleus scattering process implies that a given
momentum transfer to the nucleus is a direct measure of
the spatial resolution of the "electron microscope. " Due
to the weak absorption of the electron, this probe is nearly
the only practical way to investigate the interior of nuclei.
These unique properties of electrons explain why a con-
siderable effort in experimental and theoretical work has
been expended in this field.

Over the years it has become increasingly possible to
overcome many of the difficulties closely linked to the ad-
vantageous features cited above. In particular, the con-
struction of accelerators that provide electrons of several
hundred MeV energy has led to considerable progress.
This high energy is required in order to achieve a small

wavelength for the electron despite its small mass. The
technology of accelerators and beam optical systems to-
day allows one to work with the excellent relative energy
resolution b F./E & 10 needed to obtain the absolute en-

ergy resolution ~& imposed by nuclear level spacings.
The high-intensity beams (of order 50 pA) required to
overcome the small cross sections also are within range of
today's technology.

With these tools, extensive work on the scattering of
electrons by the nuclear charge distribution has been per-
formed. Experiments at low momentum transfer provide
us with accurate nuclear radii and transition probabilities.
Data taken at large momentum transfer measure ground-
state and transition charge densities with 0.5 fm spatial
resolution. The results and their interpretation have been
summarized in a number of review papers (Hofstadter,
1957; de Forest and Walecka, 1966; Uberall, 1971; Bar-
rett, 1974; Donnelly and Walecka, 1975; Ciofi Degli Atti,
1980). The main characteristics of the results obtained
concern collective properties of nuclei. In general, the in-
formation deduced refers almost exclusively to the
charged constituents, i.e., protons.

While the bulk of the work is devoted to the investiga-
tion of (transition) charge densities, this does not cover all
aspects of coherent electron-nucleus scattering. High-
energy electrons also scatter from the nuclear electromag-
netic current distributions. The experimental observation
of this process provides valuable information on the spa-
tial distribution of intrinsic magnetism and convection
currents within the nucleus. This is the topic we shall
concentrate upon in this review. In order to keep the size
of the review manageable, and in order not to discuss
things in too superficial a way, we limit ourselves to elas-
tic magnetic scattering.

The process of magnetic scattering has the same advan-
tages and drawbacks as the electromagnetic probe men-
tioned above. The physics studied, however, is quite dif-
ferent. Four main differences from charge scattering
merit attention.

(1) According to the shell model, most of the nucleon
spins and orbital momenta pair off to yield zero contribu-
tion to the magnetic scattering. The nuclear magnetism
thus is determined by a few valence nucleons. As a conse-
quence, magnetic scattering mainly provides information
on the single-particle properties of nuclear wave func-
tions; the collective aspects that dominate charge scatter-
ing show up only in special cases.

(2) It is the intrinsic magnetization that dominates
magnetic scattering cross sections, and the intrinsic mag-
netic moments of protons and neutrons are quite similar
in magnitude. Magnetic electron scattering, therefore,
will provide information on both protons and neutrons; it
does not suffer from the inherent drawback of charge
scattering, which (basically) is blind to more than half of
the nuclear constituents.

(3) The information obtained via magnetic electron
scattering is very directly related to the main body of data
gathered using strongly interacting probes. Much of what
has been learned from hadronic probes of (most often)
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low energy concerns the outermost, least-bound shells.
Magnetic scattering deals with these same shells, although
with a different emphasis. Due to the different radial
sensitivity —surface domination for strongly interacting
probes, volume domination for electrons lectron and
hadron scattering complement each other in a nice way.
The connection of magnetic electron scattering to the
main body of theoretical calculations concerning valence
nucleons very much enhances the relationship between the
physics learned from electron scattering and that learned
from other probes.

(4) Electrons also scatter from the convection current
distributions within nuclei. While this contribution in
general provides little additional insight, it becomes cru-
cial for the study of exchange currents. The exchange of
mesons between nucleons, the process we picture to be re-
sponsible for the nucleon-nucleon force, creates currents
observable in magnetic scattering. These effects of
meson-exchange currents (MEC) represent both a compli-
cation and an asset of magnetic scattering. In selected
cases, the MEC contribution can be very large; then ex-
periments on magnetic scattering represent the best and
cleanest tool available for the study of non-nucleonic con-
stituents of the nucleus. The results obtained in this field
are most relevant for modern nuclear physics, which in-
creasingly has to cope with the internal degrees of free-
dom of the nuclear constituents.

For these reasons, magnetic electron scattering is a
topic of high current interest and represents a domain in
its own right; this paper tries to present a first reasonably
complete review. Our goal is to describe both the experi-
mental and the theoretical methods relevant for this field
and to discuss the most important physics results ob-
tained.

The organization of this paper is as follows: Sec. II
traces the historical development of magnetic electron
scattering, in order to put into perspective the ideas and
their connection to traditional charge scattering. We then
discuss in Sec. III some experimental aspects of the sub-

ject; in this we mention some of the typical high-energy
facilities in order to describe, without much detail, the
state of the art. In Sec. IV the formalism needed to
understand magnetic scattering in terms of the simplest
theoretical framework, the plane-wave Born approxima-
tion, is presented; this section develops the understanding
to a point where explicit expressions for magnetic form
factors can be calculated starting from nuclear wave func-
tions characterized by density-matrix elements. In this
regard, both one-body and two-body meson-exchange-
current contributions are considered and framed in the
density-matrix language. To demonstrate the results and
the physics contained in magnetic form factors, Sec. V
presents a number of illustrative cases that have been par-
ticularly striking; this section is intended explicitly for the
reader who is not interested in more detailed aspects of
the theory or in going through a nucleus-by-nucleus dis-
cussion of the results obtained. For this reader, Secs. I
and V give an adequate, though superficial, summary of
the field.

In Sec. VI we summarize many of the results obtained
by magnetic electron scattering from nuclei with A &4;
here we discuss in a fairly detailed way the physical prob-
lems addressed by experiment and calculation. Since this
section is by no means exhaustive of the work performed,
a table of work arranged by nucleus follows; in this table,
we present what we hope is a reasonably up to date and
complete bibliography of experimental work. The mag-
netic form factors of the few-body nuclei (A =2,3) are
covered in Sec. VII; they are discussed separately, since
they deal with nuclear structure phenomena of a quite
different type. Section VIII discusses the new possibilities
opened up by the use of polarized electrons and targets.

In order to guide the reader through the paper, we have
indicated by the symbol L sections that treat more spe-
cialized topics that can be skipped in a first reading (viz. ,
Secs. IV.D, IV.E, VI, and VIII). The reader who wishes
to get a general flavor of the physics involved in magnetic
scattering is encouraged to proceed directly to Sec. V,
where a few illustrative cases are qualitatively discussed.

II. HISTOR ICAL PERSPECTIVES

In this section we try to trace some of the important
developments that determined the directions taken by the
field of magnetic electron scattering. To do so, we em-
phasize here the appearance of new ideas; a systematic ac-
count of actual results obtained will be given in later sec-
tions. While many of the ideas discussed did develop dur-
ing the time the authors were actively involved in the
field, our account of the earlier developments is based
largely on published material. The recollections of several
individuals involved in magnetic electron scattering from
its very beginning have been very helpful in putting the
early ideas into proper perspective.

Electron nucleus scattering actually is quite an old
field; it got its start with the historical work of Sir Nevill
Mott, who applied the new wave equation of Dirac
(Dirac, 1928) in 1929 to the problem of "scattering of fast
electrons by atomic nuclei" (Mott, 1929). Much of the
activity in this field during the following years was devot-
ed to an experimental check of the Mott scattering cross
section (for pointlike charge Ze) using 0.5—3-MeV elec-
trons. The sizeable discrepancies observed led to calcula-
tions of scattering not only by the nuclear charge, but also
by the nuclear magnetic moments. In particular, the
work of Massey (1930) dealt with "scattering of fast elec-
trons and nuclear magnetic moments. " In the publication
of Jauch (1940), the different angular dependences of the
incoherent charge and magnetic scattering cross sections,
expressed today by the "Rosenbluth formula, " were al-
ready clearly presented. These authors found that for
electrons of a few MeV energy the magnetic cross section
was orders of magnitude smaller than the charge cross
section, and hence unobservable.

With the improvement of experimental data the
discrepancies with the Mott scattering formula largely
disappeared; the field of electron-nucleus scattering with
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electrons of wavelength much larger than the nuclear size
ceased to receive much attention. The investigation of
nuclear properties got its start through the use of hadron-
ic probes, which achieve small wavelength at much lower
energy.

The field of electron scattering took a new turn once
higher-energy electrons started to become an experimental
possibility. Now, electrons could be used as a probe of
nuclear properties, rather than as a vehicle to test quan-
tum mechanics and the Dirac equation. In its early
phase, the work on electron-nucleus scattering was devot-
ed entirely to charge scattering; magnetic scattering was
ignored.

The potential of electron-nucleus scattering for nuclear
structure investigations was brought into focus by an ear-
ly paper by Guth (1934). Guth showed that large effects
due to finite nuclear size could be expected if the momen-
tum transfer q of the electron to the nucleus became com-
parable to the inverse of the expected size of the nucleus.
Using the Dirac theory and plane-wave Born approxima-
tion, Guth derived the low-q expansion of the elastic form
factor He. pointed out the possibility of obtaining by
electron scattering a Fourier analysis of the electrostatic
potential produced by the nucleus. This paper fore-
shadowed the application of electrons as a probe of nuclei
and anticipated by about 15 years the first experiments, as
well as the exact calculations by Rose (1948) and Elton
(1950).

The first experiment sensitive to nuclear size was pub-
lished in 1951 by Lyman, Hanson, and Scott. Working
with the external beam of the University of Illinois beta-
tron, these authors scattered 15.7-MeV electrons off five
nuclei ranging from ' C to ' Au. The ratio between the
experimental and the Mott cross section, reaching 0.5 at
the highest scattering angle, clearly measured the nuclear
size. The implication of the differences between experi-
ment and prediction —a nuclear radius 20% smaller than
the accepted value 1.45 A' determined using hadronic
probes —was a first sign of the information to be gathered
using the electron as a probe. This pioneering experiment
on elastic (charge) scattering was the beginning of a beau-
tiful series of ingenious experiments and sophisticated in-
terpretations started in 1953 by Hofstadter and coIlabora-
tors using the (initially) 200-MeV Stanford accelerator.

Nuclear magnetic electron scattering, the topic of main
interest in this review, was largely neglected during the
early phase of electron-nucleus scattering. Schiff (1949),
in a report on the physics potential of the Stanford ac-
celerator then under construction, mentioned that for
electron-proton scattering the magnetic moment should
be expected to contribute, and gave numerical estimates
for the magnetic cross sections. While this report on
scattering off nucleons presented a strikingly clear
foresight of the things to come, no mention was made of
nuclear magnetic scattering; the cross sections were
presumab1y estimated to be much too small. The first ob-
servation of the finite size of nuclear magnetization densi-
ties subsequently was made via the Bohr-Weisskopf effect
(1950), i.e., the hyperfine splitting of atomic energy levels.

The work of Rosenbluth (1950) was an important step
towards the exploitation of magnetic electron scattering.
In a remarkably modern calculation Rosenbluth derived
the cross section for scattering off a nucleus with charge
and both normal and anomalous magnetic moment con-
tributions. The familiar form of the total elastic cross
section as it is now used up to very large momentum
transfer, the equation identified today with Rosenbluth's
name, was introduced and its numerical consequences for
e-p scattering discussed.

In 1955, finally, the first experiment on electron
scattering off a magnetization distribution was published.
Hofstadter and McAllister (1955), during an experiment
on electron-proton scattering between 100- and 236-MeV
energy, found at backward scattering angles a cross sec-
tion exceeding the Mott cross section. They correctly
identified the origin of this effect, where the finite size of
the charge distribution necessarily leads to a cross section
smaller than the Mott cross section: "Deviations from
the Mott formula such as we have found may be antici-
pated at large angles because of additional scattering from
the magnetic moment of the proton. We have observed
this additional scattering, but in an amount smaller than
predicted by theory. " To explain the devi. ation found,
some speculation was required: "Ifwe make the naive as-
sumption that the proton charge cloud and its magnetic
moment are both spread out in the same proportions, we
can calculate simple form factors for various values of the
proton 'size. ' When these calculations are carried out we
find that the experimental curves can be represented very
well by the following choices of size. . .. A comparison
value fitting all the experimental results is [an rms radius
ofj 7.4+2.4 && 10 ' cm" (Hofstadter and McAllister,
1955). This observation was to withstand later scrutiny
remarkably well.

A calculation of considerable importance for magnetic
scattering in general and the understanding of the two-
body system in particular was published in 1956. Jankus
(1956) calculated the cross section for CO, M 1,C2 scatter-
ing off the deuteron by including the deuteron D state. A
calculation of the breakup cross section featuring an exact
treatment of the (I =0) final-state n-p interaction was
presented as well. (The then justified neglect of the D
state in calculation of the magnetic breakup cross section
was to influence significantly our early perception of the
role of meson-exchange currents in electron scattering. )
This calculation was very useful for the study of nucleon
form factors and deuteron properties, two topics that
represent some of the most remarkable achievements of
early electron scattering work.

The study of magnetic scattering from "real" nuclei
(A & 2) got started at Stanford after Peterson and Barber
(1962) built a magnet system to measure cross sections at
180' scattering angle. The construction of this 180 sys-
tem paved the way for measureinents of magnetic cross
sections for heavier nuclei. The motivation for building
the first 180 scattering system actually was not the mea-
surement of elastic magnetic scattering, but rather the
measurement of inelastic transitions which could be per-
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formed more cleanly above the greatly suppressed radia-
tion tail associated with the elastic charge scattering.
Moreover, magnetic transitions could be measured in the
relative absence of most electric transitions (Peterson and
Barber, 1962). The first application of the 180' scattering
method was to the low-momentum-transfer magnetic di-
pole (M 1) electrodisintegration of the deuteron.

In 1962, Peterson published results from the first exper-
iment, which measured the Li and Li magnetic cross
sections at 41 MeV and 8=180. In accordance with the
relative size of the inagnetic moments, Li was found to
have a —10 times larger magnetic cross section. At the
same time the theoretical basis for elastic magnetic elec-
tron scattering at 180' from complex nuclei was beginning
to be established (Pratt et al. , 1965).

With the progress of experimental techniques, further
experiments on magnetic scattering quickly reached a
high level of performance. This was documented best by
the work on p-shell nuclei by Rand et al. (1965). These
experiments covered a large range of momentum transfer
(up to 2.4 fm ') and revealed the important contribution
of the magnetic octupole form factor. The shape of the
octupo1e distribution turned out to agree reasonably well
with expectations, while the overall value of the octupole
moment was too small. These data were interpreted using
the shell-model calculations of Griffy and Yu (1965),
which clearly pointed out the sensitivity of magnetic form
factors to the assumed coupling —jj, I.S, intermediate of
the valence nucleons. This demonstrated one of the main
assets of magnetic scattering, its usefulness as an excellent
configuration analyzer.

Two experiments in the mid sixties were, in retrospect,
to provide the clearest evidence for the role of meson-
exchange currents (MEC). The magnetic transition to the
singlet-S state of the deuteron was measured by Rand
et al. (1967), and the A =3 elastic magnetic form factor
was determined by Collard et al. (1965). Both experi-
ments reached a momentum transfer of q-3 fm ', at
which MEC effects are much more important than at
q-0, where a very early calculation of Villars (1947) had
already indicated an observable contribution to the mag-
netic dipole moment. The dominating contribution of
MEC at high q was not realized, however, despite the fact
that MEC were repeatedly alluded to in discussions of the
experimental results. Due to the neglect of S- to D-state
transitions, impulse-approximation calculations neglect-
ing the contribution of MEC satisfactorily explained the
data; there seemed no need to introduce the "complica-
tions" due to non-nucleonic degrees of freedom.

With the work of Li et al. (1970) the potential of inag-
netic electron scattering really began to be realized. From
earlier experiments (Stovall et al. , 1967) it seemed that
higher multipole magnetic form factors were beyond ex-
perimental capabilities, and that the observation of M3
contributions remained a singularity only accessible for
p-shell nuclei. Li et a/. found that the M5 form factor of

Al could be measured even at scattering angles & 180',
and they showed that for Bi magnetic scattering froin
the 2 pole moment could be observed. Together with the

calculations of Donnelly and Walecka (1973a) this work
pointed out some of the .important simplifications that
occur in the study of high multipole form factors and
paved the way for the use of magnetic scattering for the
determination of accurate valence nucleon radial wave
functions.

The field of magnetic elastic scattering at low q was
greatly extended through the work done with the 180 fa-
cility at the EVA accelerator (Van Niftrik et al. , 197la).
The ineasurement of very accurate cross sections of
neighboring even-even and even-odd nuclei allowed one to
deal with the dominant charge contributions at low q, and
led to a systematic investigation of Ml form factors for
medium-heavy nuclei (for a review see Lapikas, 1978).

An important step in the understanding of magnetic
form factors was taken with the work of Hockert et al.
(1973) and Brandenburg et al. (1974). For the case of the
deuteron magnetic transition to the singlet-S state, the
triplet-D to singlet-S transition had previously been
neglected. This term leads to the appearance of a very
pronounced diffraction minimum in the form factor, in
complete disagreement (by a factor of 10) with experi-
ment. Agreement with the experimental cross sections
can be achieved only once meson-exchange currents (the
pair and pionic currents in particular) are allowed for. A
similar situation occurred for the He magnetic form fac-
tor, in which Brandenburg et al. found a large effect of
the elastic S-D transition. With those new calculations
the great importance of non-nucleonic degrees of freedoin
in nuclei became obvious. These two magnetic form fac-
tors today provide perhaps the best and cleanest testing
ground for mesonic-exchange-current effects. The
theoretical work done for light nuclei has paved the way
for more systematic applications to complex nuclei, such
as those of Suzuki (1978) and Dubach (1980).

The complementary role of magnetic and charge
scattering by electrons was brought to bear most clearly
by the work of Sick et al. (1977) and Platchkov et al.
(1979), which led to the determination of accurate radial
wave functions for neutrons. While previously informa-
tion on neutrons was obtained only by hadronic probes
and so was affected by uncertainties in the reaction mech-
anism, now valence neutron rms radii accurate to +1%
could be obtained from magnetic electron scattering.
This became feasible once scattering off the 2 and 2 pole
distributions could be measured with the necessary experi-
mental accuracy. Recently the theory of magnetic form
factors has been extended to very deformed nuclei by
Moya de Guerra and Dieperink (1978). For a deformed
nucleus the magnetic form factor differs drastically from
the one for a spherical nucleus. Both the coupling of the
unpaired nucleon to the deformed core and the currents
connected with the collective rotation play a ro1e. With
the improvement of experimental capabilities the study of
the magnetic form factors of deformed nuclei is becoming
a realistic possibility. A first experiment (Rad et al. ,
1980) has already been performed, but only the surface
has been scratched. For the lighter nuclei, in the p and
s/d shell, magnetic electron scattering has now been es-
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tablished as a standard spectroscopic tool. The systematic
work done at Bates Linear Accelerator Laboratory (Peter-
son, 1983) shows the great variety of questions on nuclear
structure that can be addressed with magnetic scattering.

III. EXPERIMENT

The experimental facilities used for electron scattering
experiments obviously are of considerable diversity.
Descriptions of various installations have been given by
Hofstadter (1956), Ehrenberg et al. (1972), De Vries et al.
(1984), Bertozzi et al. (1979), and Leconte et al. (1980).
In this paper we can only describe a "typical" setup by
discussing selected aspects of the apparatuses used at the
three highest-energy facilities, at Amsterdam, Bates, and
Saclay. We shall give a general overview of the complete
system, but shall emphasize the special features important
for magnetic electron scattering.

The electron accelerators presently in use for the inves-
tigation of nuclear physics deliver electron beams of ener-
gies up to about 700 MeV. These linear accelerators pro-
duce beams with an average intensity of up to a few hun-
dred pA, a relative energy resolution b,E/E of a few
times 10, an emittance of a few tenths of mmmrad,
and a duty cycle of up to a few percent. For the experi-
ments to be described here the beam intensity is often
marginal. The relative energy resolution is more than an
order of magnitude worse than that desired for most nu-
clear physics experiments. The duty cycle is of little con-
cern for the noncoincidence experiments of interest in this
paper.

Two considerations governing the choice of the experi-
mental setup for beam preparation and detection of the
scattered electron are as follows:

(1) The electromagnetic interaction is very weak. This
main asset of the electron as a probe of nuclei has to be
paid for by the fact that cross sections are very small, typ-
ically a times smaller than the ones for hadronic probes.
Experimentally, this smallness can be compensated for to
a very limited degree only through the use of thicker tar-
gets or spectrometers of larger solid angle. In order to ob-
tain sensible counting rates, the experimental setup there-
fore must be designed to allow for the maximum beam in-
tensity on target.

(2) The momentum transfer q one would like to reach
in an electron scattering experiment is imposed by the
desire to observe the smallest features present in nuclear
wave functions. These features are of the size of a few
tenths of a fermi for nuclei with A &4. This spatial reso-
lution of the "electron microscope" amounts to roughly
1.5/q (full width at half maximum). This dictates
momentum transfers of the order of 4 fm ', which im-
plies electron energies of more than 500 MeV. The ener-

gy resolution, on the other hand, is fixed by the spacing of
nuclear levels one wishes to separate. Even to observe the
lowest states of deformed nuclei (let alone higher-lying
levels) an energy resolution of the order of 50 keV is re-
quired. The resulting relative energy resolution AE/E of

10 or better represents a formidable challenge.
The desire to perform experiments with a very good

relative energy resolution and with the full beam intensity
delivered by the accelerator has led to the general use of
so-called energy-loss spectrometer systems. In order to
use the full beam despite its wide energy band, the beam
is energy dispersed on target in such a way that electrons
differing in energy by AE are separated by a distance
x =BEE. The magnetic spectrometer used to energy-
analyze the scattered electrons is designed to have, for a
given point in the focal plane, an energy dispersion
dx/dE identical to —D. In this case a measurement of
the coordinates of an electron trajectory in the focal plane
yields directly the quantity of interest, the electron energy
loss, which amounts to the sum of nuclear excitation plus
recoil energy, independent of the absolute energy.

The energy-loss systems used are special cases of a
more general setup where the coordinate x, together with
the absolute energy of the scattered electron, is measured.
This more general system actually provides more freedom
in optimizing solid angle, etc., at the expense of little ad-
ditional complexity in the detectors.

Usually the system that distributes electrons to the dif-
ferent experiinental halls deflects the beam in the horizon-
tal plane, for obvious reasons. An energy dispersion in
the horizontal plane is thus easily available. The spec-
trometers are built to deflect in the vertical plane so as to
achieve the largest range in scattering angles (a considera-
tion most important for magnetic scattering). A magnetic
device that moves the dispersion from the horizontal to
the vertical plane is thus required.

Moreover, spectrometers with the energy dispersion in
the plane orthogonal to the scattering plane are advanta-
geous. In general the scattering angle has to be known
with an accuracy 10 times that given by the solid angle
defining spectrometer slits. Gnly then can the variation
of the recoil nucleus kinetic energy with scattering angle
be corrected for, and the excitation energy determined
with the resolution desired. The decoupling of scattering
angle and energy dispersion is achieved easily if they
occur in orthogonal planes.

With these general considerations in mind, we can now
discuss the various elements of the apparatus used.

A. Beam transport system

The beam transport systems used at different »b«a-
tories are quite different, and specific to the particular
sites. For this subject, we shall therefore discuss only one
specific setup in any detail: we take as an example the Sa-
clay AI.S accelerator and the HE1 experimental hall
shown in Fig. 1 (Leconte, 1976).

Downstream of the last cavity of the accelerator the
beam is brought to a focus in the horizontal direction.
This focus forms the object point for the beam transport
system. A collirnator of 0.5 mm width, useable only at
low average beam intensity (low repetition rate) allows
one to check the fraction of the beam that is within the

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



T. W. Donnelly and I. Sick: Elastic magnetic electron scattering 467

VIEW SCREENS

SACLAY 600 HeV
ELECTRON LINAC

FIG. 1. Beam switchyard and HE1 experimental end station at the Saclay linear accelerator (Leconte, 1976).

desired spot. The location of the beam is constantly mea-
sured by a position-sensitive ferrite monitor. A fast
switching magnet (not shown) allows one, on a time basis
of tens of ms, to switch the beam from the main to
parasitic users. The magnet B4 deflects the beam -45;
its magneto-optical properties, adjusted by the inclination
of entrance and exit pole tip angles, are such that it
focuses electrons of a given energy, originating from the
"point" object, to a vertical line at the location of the
energy-defining slit. These slits are set to select from the
beam a given band hE in energy; for the energy-loss mode
operation hE/E is typically 10—20 times the final energy
resolution desired. Electrons outside this band, up to a
maximum lost beam power of 50 k%', are energy degrad-
ed by the slits and ultimately removed.

The quadrupole lens situated in front of the energy slits
has a double function. In the conventional achromatic
beam transport mode it refocuses the beam; electrons of
different energies, separated spatially at the location of
the slit, then form a single beam at the exit of magnet B5.
In the energy-loss mode, the quadrupole defocuses the
beam in the horizontal plane in order to increase the ener-

gy dispersion produced by B4 by a factor of -2. In this
mode, the quadrupole allows one to tune the dispersion to
the value imposed by the spectrometer. The magnet 85
bends the beam by another 45' and sends it towards the
experimental hall HE1. The main function of B5 is to
clean up the beam by removing all electrons energy de-
graded by the energy slits. Various collirnators before and
after BS absorb these showers of low-energy electrons.

At the entrance to the experimental hall HE1 the ener-

gy dispersion is shifted from the horizontal to the vertical
plane. The rotator consists of five quadrupole magnets
tilted by 45 relative to the normal quadrupole orientation.
This tilt introduces a coupling of horizontal and vertical

phase space; by appropriate choice of strength and dis-
tance of the five magnetic elements, the exchange of hor-
izontal and vertical coordinates is obtained without fur-
ther change of the optical properties of the beam. The
pair of quadrupole lenses upstream of the target produces,
for a monochromatic beam, a horizontal line focus at the
target. For an energy-dispersed beam of hE/E=10
the vertical dispersion amounts to —1 cm. The decou-
pling of various parameters, dispersion, rotation, and
monochromatic image, helps to adjust the beam proper-
ties desired efficiently.

A zinc sulfide screen at the end of the accelerator al-
lows one to adjust the beam position visually. The focus
to a vertical 1ine required by beam transport optics can be
checked by using the removable slit mentioned above.
Another screen near 84 allows one to align the beam
along the optical axis of the transport system. Screens
near the center of the rotator and at the location of the
target determine the alignment of the beam along the 0'
axis of the spectrometer. Various horizontal and vertical
steering magnets at the end of the accelerator, near 84, R,
and QI', allow various small corrections to the beam posi-
tion.

Downstream of the target, the beam is stopped in a
Faraday cup. This beamstop is located in a well-shielded
separate ha11 in order to avoid excessive background due
to neutrons produced via (y, n j reactions by the large flux
of bremsstrahlung gammas. The particular cup used at
Saclay has a useful aperture of 60 cm and is able to dissi-
pate up to 100 kW of beam power.

The primary measurement for the integrated beam
current is also provided by the Faraday cup. Cooling
with very pure water ensures that leak currents are of the
order of a few nA only; these residual currents are com-
pensated for by injecting a current of opposite polarity.
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Unless the electrons are refocused after the target, as is
done at lower-energy facilities where this prob1em is
much more severe, a few percent of the electrons miss the
cup due to multiple scattering in the target. Using a
nonintercepting toroid beam intensity monitor placed
upstream of the target, one can determine the losses of the
Faraday cup from toroid to Faraday ratios with and
without target. The overall precision of the absolute in-
tegrated charge derived from the Faraday cup is better
than 1%.

B. Targets

For most magnetic scattering experiments the targets
are solid ones. Liquid or gas targets require rather special
techniques, which are discussed in the literature cited in
Sec. VII for A =2,3. The solid targets used have
thicknesses of 20—100 mg/cm and sizes of 5—10 cm
determined by the energy dispersion on target. The tar-
gets are fabricated by rolling, pressing, electroplating, or
casting, depending on the mechanical and thermal proper-
ties of the isotope of interest.

The maximum target thickness is imposed by the ener™

gy resolution desired; energy straggling in the target gives
a contribution of approximately 0.4 keV/mg cm . Target
homogeneity is restricted by the accuracy of the cross sec-
tions one intends to achieve, since in general the intensity
distribution of the beam over the target is poorly known.
Absorption of y or P rays has proven to be the best
method for measuring the relative density profile of the
target. The combination of relative density profiles with
the average areal density obtained from weight and sur-
face area yields absolute target thicknesses for the area
covered by the beam to an accuracy of & 1%.

The removal of heat deposited in the target by the
high-intensity electron beam requires additional ap-
paratus. This is particularly important for experiments at
medium to large q, i.e., for small cross sections. The ver-
tical dispersion of the beam required by energy-loss sys-
tems is very helpful in this respect, but additional hor-
izontal movement of the target is often required to spread
the heat further. The most efficient way to remove heat
is to cool the target with a jet of Hz gas of —1 Torr pres-
sure. Circulating the H2 gas with Roots pumps at high
speed through nozzles pointing at the target (Kowald,
1976) allows a very high heat extraction rate. The thin
windows needed to separate the scattering chamber from
accelerator and spectrometer vacuums can be made thin
enough to have no disturbing effects upon the energy
resolution or multiple scattering.

the plane-wave Born approximation, and for electron en-
ergies much larger than the electron rest mass, the elastic
cross section is given by

(8)=4iruM(8, E)[EI'.(q)+( —, +tan 8/2)ET'(q)] .

INCIDENT BEAM
TO SPECTROMETER TARGET

At a given momentum transfer q, the transverse form
factor I'T that contains the inforination on nuclear mag-
netic properties can be determined by measurements at
different scattering angles 8 and different energies s, but
constant q=2esin8/2. The ratio of the term containing
IT to the one containing I'I is largest at 0=180', where
crM tends towards zero while o.ltan 8/2 remains nonzero.

For many cases, it is indispensable experimentally to
enhance as much as possible the ratio of magnetic to
charge scattering. Charge form factors depend basically
on collective nuclear properties; for elastic scattering, Fz
thus contains a factor Z, while magnetic form factors
are basically single-particle observables that lack this fac-
tor. At low and medium momentum transfer, and for all
but the lightest nuclei, IT can be measured only if the
charge contribution is minimized by taking data at
0=180.

The first 180' system was built at Stanford (Peterson
and Barber, 1962). It consisted of a rectangular magnet
placed directly upstream of the target to bend the incom-
ing and backscattered electrons by 10' in such a way that
the 180' scattered electrons could be observed with the
18" spectrometer placed at an angle of 160' relative to the
beam. Downstream of the target the (low-intensity) elec-
tron beam was directed to a beam dump using a per-
manent magnet. Over the years, the setup for 180'
scattering has been vastly improved and various draw-
backs removed. The system developed for the EVA facil-
ity at Amsterdam (Van Niftrik et al. , 197la) and reused
with the new NIKHEF accelerator (Donne et al. , 1984)
already showed most of the features of modern 180' sys-
tems.

The most sophisticated 180' system in use at present is
the one installed at the Bates accelerator (Peterson et al. ,
1979); it is shown in Fig. 2. It consists of four magnets
upstream of the target; an additional magnet of very
small deflection angle between target and Faraday cup
(not shown) keeps electrons backscattered by the cup from
reaching the target and spectrometer. %'ith this system
no special beam line for "normal" and 180' scattering is
needed; for both types of experiments the incident and
outgoing electron beams have the same direction and use

C. 180 scattering

For experiments aiming at a determination of magnetic
form factors, scattering at 8=180 is of special inipor-
tance. As we shall discuss in more detail in Sec. IV, the
electron scattering cross section can be separated into
longitudinal (charge) and transverse (magnetic) parts. In

7" F
02 03

FIG. 2. 180' scattering system used at the Bates accelerator
C,'Peterson et al., 1979).
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FICx. 3. Angular dependence of the cross section around the
scattering angle 0= 180' (Peterson et al., 1979).

the same beamstop and beam monitoring equipment. The
passage from normal to 180' scattering requires only that
magnet D4, together with the 180' scattering chamber, be
shifted over onto the spectrometer pivot. For any inelas-
ticity of the scattering process an angle of 8=180' can be
maintained by appropriate tuning of magnets Dl D—4.
This results in a constant spectrometer solid angle, in-
dependent of inelasticity. The optical properties of
D1—D4 have been designed to be compatible with the
large extension of the beam required by the energy-loss
system. The operation of this 180' system has shown that
the high-resolution capability of the energy-loss system
can be maintained, the degradation being a contribution
of &10 to 5E/E.

With such 180' systems the contribution of charge
scattering can be suppressed to a very high degree. It can-
not be eliminated completely, since multiple scattering in
the target and finite spectrometer angular acceptance and,
at low energy, finite electron mass lead to an effective
average scattering angle of 178'—179'. In this case the
cross section around 8=180 is a quadratic function of
the angle 180 —8. A measurement of the quadratic term,
as shown in the experimental result of Fig. 3, allows one
to remove the nonmagnetic contribution to a large degree.
In general this is sufficient to remove charge scattering al-
most completely, and magnetic form factors have been
measured down to q -0.5 fm ' even for heavy nuclei.

The availability of 180' facilities does not imply that all
magnetic form factors are indeed measured at 180'. The
overall energy resolution of an experiment is often dom-
inated by the energy loss in the target. This contribution
amounts to twice the electron energy loss in the target at
180'. For "normal" scattering, with the target plane
bisecting the incident and scattered electron direction, the
corresponding contribution is due to straggling and
amounts to 20% of the energy loss in the target only. If
the ratio of magnetic to charge contributions is not too
low, and if cross sections are very small —both of these
conditions occur at large momentum transfer —then
scattering at, say, L9= 160' increases the counting rate by a
factor of 10 for the same energy resolution. For gas tar-

gets and high momentum transfer, measurements at
8= 180' hardly allow one to move the windows of the tar-
get outside the spectrometer acceptance. In this case,
scattering under "normal" angles again might be advanta-
geous, despite the increased difficulty in removing the
charge contribution.

D. Spectrometers

For an energy-loss spectrometer, the magnetic systems
for beam transport and scattered electron analysis form a
single unit. They differ only in the emittance of the
"beam" with which they have to deal.

The design of the magnetic spectrometer is governed by
a number of considerations, chief among which are the
desired energy resolution, the solid angle, and, for certain
applications, the momentum acceptance. Additional cri-
teria such as large angular range, smallness of back-
ground, or shape of the focal plane are often considered as
secondary.

The spectrometer most widely used in electron scatter-
ing features a deflection of the scattered electron in an in-
homogeneous field by —180'. This type of spectrometer
was introduced to electron scattering by the pioneering
experiments performed at Stanford. A modern version,
used at the Saclay ALS (Leconte, 1976), features curved
entrance and exit pole faces and achieves an intrinsic reso-
lution of b,E/E —1.5X 10 with a 5 msr solid angle and
a 10% momentum acceptance. With corrections of aber-
rations, feasible since the trajectory of the electron in the
focal plane is measured, the resolution reaches &10
This type of spectrometer is very compact. With its large
deflection angle and narrow focal plane, resulting from
the double-focusing property, it provides for excellent
background suppression.

The spectrometer used at the Bates accelerator (Bertoz-
zi et al. , 1979) differs in several respects. Two separate
45 bending magnets with a hoinogeneous field are used to
energy-analyze the scattered electrons. The four curved
pole faces are used to achieve focusing and to correct
higher-order aberrations. In particular, aberrations due to
finite source (target) extension can 'be controlled. The
Bates spectrometer features properties siinilar to those
used at Saclay, as far as solid angle and momentum ac-
ceptance go. Its momentum resolution is superior, due to
the better control of higher-order aberration, and has
reached & 5)& 10 . This type of split-pole spectrometer
has a rather large distance from target to focal plane and
is not very compact, a feature which, together with a
bending angle of only 90', complicates shielding and
makes background suppression more difficult.

The spectrometer installed at the NIKHEF accelerator
in Amsterdam (De Vries et al. , 1984) features a quad-
rupole —two-dipole (QDD) system (Fig. 4) similar to the
ones used in hadron spectrometers. The dipoles, with a
homogeneous field and curved pole faces, deflect the elec-
trons by 75' each. The quadrupole focuses the electrons
in the nondispersive plane, thereby creating a crossover of
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FIG. 4. QDD and QDQ spectrometers at the NIKHEF accelerator (De Vries er al., 19g4).

electron trajectories; for a given solid angle this leads to
an important decrease of dipole gap (i.e., cost). The de-
focusing of the quadrupole in the dispersive plane has no
detrimental effects, since in this direction the spectrome-
ter acceptance is very large anyway due to the large
momentum acceptance. An additional multipole element
between the two dipoles can serve to correct optical im-
perfections.

This QDD system achieves a solid angle of 6 msr, a
momentum acceptance of 10%%uo, and an energy resolution,
at the present time, of ~6&10 . The degrees of free-
dom offered by pole face curvature and the use of the
quadrupole have permitted the creation of a flat focal
plane, a feature that is very helpful in reducing the com-
plexity of the focal plane detector and/or on-line data
reduction system. The compactness of the QDD design,
together with the good possibilities for shielding, leads to
very low backgrounds.

All of the spectrometers described above are true
energy-loss spectrometers, with identical energy disper-
sion of switchyard and spectrometer. The next generation
of spectrometers probably will no longer respect this con-
dition, but will feature one additional element, a position-
sensitive detector after the first dipole, at a place where an
intermediate image of the target is formed. In such an ar-
rangement (Zeidmann, 1982) the first part of the spec-
trometer serves to measure the target coordinates, while
the second part serves to measure the scattered electron
energy. Decoupling these two quantities introduces new
degrees of freedom and promises excellent resolution (a
few times 10 ) with large ( -20 msr) solid angle.

High-resolution spectrometers in general have field
maps measured with good precision for the verification of
the optical properties required for good energy resolution.
Using the field map, one can calculate the electron energy
if the absolute field is measured during the experiment at
one point using a nuclear-magnetic-resonance probe. This
allows one to determine the energy of scattered (hence in-
cident) electrons to an accuracy of a few times 10 in
5E/E. This type of measurement in general is more reli-
able than the determination of energy via recoil energy
differences or floating wire measurements.

The spectrometer solid angle is defined by accurately
machined collimators of various sizes. The collimators
determine the solid angle with an accuracy of & 1%. For
the largest solid angle the accuracy in general is worse,
since ill-determined pieces of the vacuum chamber and
the like define the solid angle.

Due to the large amount of radiation produced by a
high-intensity electron beam, the spectrometers involve
large amounts of shielding. Typically 0.5—1 m of heavy
material (iron, loaded concrete, lead) is used to surround
the focal plane in order to protect it from the neutrons
produced via (y, n) reactions by bremsstrahlung.

E. Focal plane detectors

The detector system located in the spectrometer focal
plane has a double function. Identification of the scat-
tered particle as an electron allows one to suppress the
large amount of radiation present despite good shielding.
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Measurement of the coordinates and direction of the scat-
tered electron in the focal plane yields accurate energy-
(loss) measurements.

The identification of the particle detected is generally
performed using signals provided by plastic scintillators
and a Cerenkov counter. The fast coincidence between
these signals also serves as a trigger for the more complex
localization detector readout. The plastic scintillators, of
the order of 1 cm thick, are often segmented into many
individual units and are arranged in one or two planes in
order to reduce pileup and increase directionality. The
Cerenkov counter is used to identify the particle via its
velocity v. When using Lucite or some liquid-
hydrocarbon compound as a material, the index of refrac-
tion is such that one accepts particles with U/c ~0.8;
such a detector does not eliminate the pions that are
abundant at the higher incident energies and at large ener-

gy loss. Gas Cerenkov counters using a gas of high
molecular weight (freon) at atmospheric pressure, as uti-
lized for example in the Saclay spectrometer, allow one to
eliminate all particles but electrons.

The detector used for the localization of the electron
trajectory varies in complexity according to the type of
spectrometer used and the number of aberrations to be
corrected. The minimum number of measurements re-
quired occurs with spectrometers that have no residual
aberrations and a focal "plane" which is a plane indeed.
In this case one needs to measure the localization of the
track only along the dispersive direction. The track posi-
tion has to be measured with a resolution of a fraction of
a millimeter, in order to define a peak of width
bE/E —10 by a number of points. For light nuclei it
is important to determine the nuclear recoil energy, i.e.,
the scattering angle, with equivalent resolution. To this
end a second measurement of either trajectory angle or
transverse position of the track in or after the focal plane
is required. Often spectrometers have a focal plane of
complicated shape with residual aberrations; in this case
two coordinates in the focal plane plus two angles have to
be measured. With this information one can extrapolate
the trajectory measured at the location of the detector to
the focal plane or target, and a number of known aberra-
tions can be removed.

Drift chambers have found general acceptance as local-
ization detectors and replace the scintillation or solid-state
counter ladders used previously. In such a multiwire pro-
portional chamber, the secondary electrons produced by
the high-energy electron drift to one or several collection
wires before proportional gas amplification. The drift
time is used to locate the track accurately. This provides
an economical measurement, since a spatial resolution of
-0.1 mm can be obtained with a wire density of a few
wires per cm (Bertozzi et al. , 1977). Since this detector
causes little multiple scattering of the high-energy elec-
tron, successive measurements of several coordinates of
the track are possible. Such drift chambers require a frac-
tion of a microsecond to process one track, a time that
has become acceptable with modern electron accelerators
of duty cycle & 10 . The readout electronics and inter-

face to the data acquisition computer have to be rather
fast, in order to deal with the high data rates that can
occur at very low momentum transfer. The dynamical
range of cross sections measured with a given installation
then can reach a factor of —10".

For the determination of accurate cross sections, a
number of factors, as discussed above, must be known. In
this respect, the quantity which is usually most difficult
to measure is the focal plane detector efficiency. It is
often determined via a measurement of an accurately
known reference cross section; the ' C and 'H elastic
cross sections are generally used for this purpose. An in-
dependent determination of absolute efficiency is possible
if the detector has enough elements to overdetermine elec-
tron identification and track measurement. In this case
the redundancy of the detection system can be exploited
to determine the efficiency of every individual element.
With today s combinations of several multiwire propor-
tional counters, plastic scintillators, and Cerenkov
counters, this redundancy is available at low momentum
transfer, where background rejection is of no concern.
This procedure can be expected to provide in the future
the standard method for determining absolute efficiencies
to within —1% accuracy. An alternative procedure, us-
ing a special spectrometer with a particularly simple
detector, has been developed at Mainz (Reuter et al. ,
1982). For experimental parameters determined with the
accuracies quoted above, cross sections can be measured
with systematical uncertainties of one to several percent.
The most precise experiments, aiming at the determina-
tion of absolute reference cross sections, have reached
0.5% systematical error (Cardman et al. , 1980).

F. Data redoction

The raw data furnished by the experimental hardware
require considerable manipulation during the transforma-
tion to publishable cross sections. A number of correc-
tions have to be applied, imperfections of the apparatus
removed, spectra decomposed into contributions of indi-
vidual nuclear levels, target impurities eliminated, etc.
Many of these corrections can be applied on-line during
the experiment; others have to be performed after a de-
tailed study of the results has revealed some unwanted ef-
fect. These procedures require considerable effort, and
they are specific to the given installation and experiment.
Since they are of little interest to the reader who wants to
obtain a general idea of the state of the art of electron
scattering experiments, we shall not discuss them further.
We will, however, mention two particularly large "correc-
tions. "

Due to the small electron mass, the scattering of an
electron is accompanied by emission of bremsstrahlung.
Every peak in the energy spectrum corresponding to a
well-defined nuclear level, therefore, has a radiative tail
that extends to higher excitation energies. The cross sec-
tions required for a theoretical understanding have these
radiative effects removed.
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The radiative correction method commonly used is a
rather simple one for the (magnetic) elastic scattering of
interest here. For the highest-energy (elastically scattered)
electrons all we need to know is the fraction of electrons
that have radiated more than the energy cutoff used to in-

tegrate the elastic peak; this energy in general is imposed
by the excitation energy of the first excited state. The
fraction of electrons radiated outside can be calculated re-
liably using the work of Mo and Tsai (1969) and Tsai
(1971). These radiative corrections have in principle been
calculated using QED, an exact theory; in practice, some
approximations have been made. Unfortunately, there is
little information available on the uncertainty of this pro-
cedure. Experimentally, one can check radiative correc-
tions by extrapolating form factors to momentum transfer
zero, where F(0) is known. Such checks lead to an esti-
mate that the radiative corrections for elastic
scattering —they amount to a correction of the order of
-30%—have a reliability such that the final cross sec-
tion is accurate to significantly better than 1%.

The second correction concerns the effects of Coulomb
distortion. For the interpretation of experimental data on
magnetic scattering, the plane-wave Born approximation
(PWBA) offers great advantages; the connection between
observable and underlying physical quantities is much
more transparent, and calculations are much easier.
Therefore it is desirable to convert magnetic cross sections
to plane-wave form factors that can be used in a PWBA
interpretation.

The effects of Coulomb distortion can be treated in a
quantitative way using the distorted-wave Born approxi-
mation (DWBA). The theory of DWBA and calculations
for a number of practical cases have been given by
Uberall (1971) and Prewitt and Wright (1974). The
second-order Born approximation has been discussed by
Bergstrom (1975). Here, we do not discuss DWBA in de-
tail. For the combination of q range and atomic numbers
of interest for magnetic electron scattering experiments
available today, the effect of Coulomb distortion is not
very large. A conversion from cross-section to plane-
wave form factors can therefore be performed in a quanti-
tative way.

The most important effect of distortion is a change of
the q scale. The effective energy of the electron when be-
ing scattered is larger than the c.m. energy, due to the at-
traction in the nuclear Coulomb field. The increase in en-

ergy, by roughly the factor 1+—', (Za/R, ~e), leads to a
corresponding increase in the effective momentum
transfer q,tt, and to a shift of diffraction minima and
maxima. This dominant effect of Coulomb distortion can
be accounted for by defining F,„~(q,tt) =do/dQ, „~/oM«,
as a function of q, tt rather than q.

For heavier nuclei, or low q, the use of q,ff does Ilot
represent the distortion effects with sufficient accuracy.
In this case a second step in the removal of distortion ef-
fects can be used. Starting from a model wave function,
one calculates magnetic scattering cross sections both in
PWBA and in DWBA, using one of the DWBA programs
like DUELS (Tuan et al. , 1968) or HEINEL (Heisenberg,

1981). If the model wave function is reasonably close to
reality, the distortion effects calculated with it are precise
enough to be used for a conversion of the data to PWBA.
The ratio cT ~ ~

and cr ~,~
F——~,~(q,tf)oM « then can

~ DWBA PWBA 2

be used to convert experimental cross sections o., p to ex-
perimental PWBA form factors F,„z(qeff).

The above procedure has been shown to work with
satisfactory precision for the data available at present. It
might fail once very precise data covering diffraction
minima in I"~ become available. This will not occur too
often, though. As long as no polarization observables are
measured, magnetic form factors for Jo & —,

' are in-

coherent sums over different multipolarities; minima in
one multipolarity are filled in by maxima of others, and
for form factors without too much structure the above re-
cipe works well.

The form factors shown in this review in Sec. VI are
displayed as functions of effective momentum transfer.

IV. FORMALISM

(4.1)

and three-momentum transfer

q =
~ q ~

=(k +k' —2kk'cos8)'~ (4.2)

to the nuclear system. Generally speaking, we have
E=(k +rn, )'~ and e'=(k' +m, )'~, where m, is the

We indicate four vectors by A„=(A,Ap), B„=(B,Bp), etc.
Then we have for the scalar product A .B=A„B„
=A B—ApBp where the summation convention is employed.
Furthermore, the magnitude of a three vector is indicated by
A = [A[.

In this section the basic formalism for discussing elec-
tron scattering from nuclei is summarized and applied to
a few illustrative cases. Our approach is based on the pa-
per of Donnelly and Walecka (1973a), in which much of
the required formalism is presented. For further discus-
sions of electron scattering in general the reader is re-
ferred to several review articles or books on the subject (de
Forest and Walecka, 1966; Uberall, 1977; Donnelly and
Walecka, 1975). Much of the past work has been present-
ed somewhat piecemeal, and here we attempt to bring to-
gether the several different parts of the problem in a more
coherent whole. We stress the density-matrix formalism
as a common thread running through the discussions of
the nuclear many-body problem.

Let us begin by considering electron scattering in the
one-photon-exchange approximation, as shown in Fig. 5.
Here an incident electron with four momentum'

k& ——(k, e, ) is scattered through an angle 8 to four momen-
tum k& ——(k', e'). In the process a virtual photon with
four momentum qz ——(q, co) is exchanged with the nu-
cleus. Conservation of four momentum implies that

q& ——k& —k&, that is, we have energy transfer
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where

f„,=1+ sin —,2a . 28
M,g 2

2to=q~/2M, s,

q = 2M,ga) 1+
1/2

(4.10)

(4.11)

(4.12)

and
—1

E =frees (4.13)
FICx. 5. Electron scattering in the one-photon exchange or first
Born approximation. Typically, for all but the lightest targets at very high

momentum transfers, we shall be interested in q «M, s,
in which case we have

electron mass, although at energies of interest (hundreds
of MeV) the extreme relativistic limit (ERL) may be tak-
en:

to-=q /2M, s—-0,
0Q=q—=2esin —.
2

'

(4.14)

(4.15)

k= /k
/

=e, k'=
/

k'
J

=e' .

In this limit Eq. (4.2) may be rewritten (for ERL)
1/2

~2 +4~~rSin2
2

(4.3)

(4.4)

The four-momentum transfer is then given by (for ERL)

q =q —~ =4c.c'sin —. (4.5)

For convenience of notation we also use Q:—(q&)' . We
note that the four momentum transferred in the scattering
must be spacelike:

q& &0, q&co . (4.6)

This is true whether or not the extreme relativistic limit is
taken. In the special case of real-photon interactions with
the nucleus, such as gamma decay, photoexcitation, etc.
(see de Forest and Walecka, 1966; Uberall, 1971;Donnelly
and Walecka, 1975, for discussions of these processes in
the context of electron scattering), one has q&

——0 (q =co).
In the general situation the nucleus may absorb the en-

ergy co and momentum q transferred from the electron
and proceed from initial ground state

~
i) to some (in

general excited) state
~ f). In this paper our focus is on

elastic electron scattering, in which case the state
~
f)

refers to the ground state as well, now recoiling with
momentum q. If we denote the target mass by M„s, then
the energy transfer for elastic scattering must be

Of course it is not necessary to use these approximations,
and Eqs. (4.9)—(4.13) will generally be applied in this pa-
per.

Returning now to the general situation of elastic or in-
elastic scattering, if the electrons in Fig. 5 are considered
to be plane waves, then we have the plane-wave Born ap-
proximation. The cross section for unpolarized electron
scattering, involving a transition from state

~
i ) to

state
~ f ), may be written (de Forest and Walecka, 1966;

Uberall, 1971;Donnelly and Walecka, 1975)

dQ
=4moMf, „'F (q, 8) . (4.16)

Here, for a given momentum transfer q and scattering an-

gle 8, the energy transfer co is fixed by the excitation ener-

gy Ef—E; and the recoil energy. The elementary cross
section is given by

g 2

a cos—
2

2c sin—. 28
2

(4.17)

the Mott cross section, where a is the fine-structure con-
stant. The recoil correction is given in Eq. (4.10). The
electron scattering form factor is given by

&'(q, 8)= (Q/q)'I'L, (q)

to=(q +M,s) —Ms,2 2 1/2

and the four-momentum transfer is given by

(4.7) + —,(Q/q)'+ tan' —I r2(q), (4.18)

2q„=2M,geo . (4.8)

q& f, 2e sin———2

2
(4.9)

Alternatively, we may eliminate the variables q and co

(and hence q„) in favor of the incident electron energy e
and scattering angle 8:

Polarization in electron scattering is discussed in Sec. VIII.
The reader is cautioned about the presence of the factors 4m

in Eq. (4.16) and a instead of Za in Eq. (4.17); while these are
exactly the conventions used in some of the basic published
works on the general subject of electron scattering from nuclei
(e.g., de Forest and Walecka, 1966; Donnelly and Walecka,
1975, used here}, they are not uniformly adopted by everyone in
the field.
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where Fl (q) and I' T(q) are the longitudinal and trans-
verse form factors, respectively. By fixing q and co (and
so q&) and varying 8 it is possible to separate IL (q) from
I' T(q) (a Rosenbluth separation). Alternatively, by work-
ing at 8=180' one ensures that only the transverse form
factor contributes and so may be isolated. In this latter
case note that the combination of crMtan (8/2) is well
behaved as 0—+180':

28 A
oMtan ——+

2 8—+180' 2E,
(4.19)

This discussion has been made within the context of the
ERL: for low electron energies and for extreme angles
(8=0' or 180') corrections due to the finite mass of the
electron should be retained. These form factors are in
turn related to matrix elements of the nuclear electromag-
netic current operator J„ taken between states

I
i & and

I f&. The nuclear electromagnetic current-density opera-
tor J&(x)= [J(x),P(x)] contains a "time" component
(p =0), the charge-density operator

Jp(x) =P(x), (4.20)

and three spatial components making up the three-vector
current-density operator

J(x)=J,(x)+J (x), (4.21)

where the latter has been further subdivided into a con-
~ ~

vection current J, and a magnetization current J . The
magnetization current-density operator may be rewritten
in terms of the nuclear magnetization density operator
p(x):

~ Coul MJ
M@M (q) = f dx Mg (qx)p(x), (4.24)

with J=0, 1,2, . . . , where J is the multipole order, Mz is
the z projection of angular momentum, and where

MJ (qx) =j~(qx) YJ (0„) (4.25)

is defined in terms of spherical Bessel functions and
spherical harmonics. The three-vector current-density
operator may be written in terms of two components
orthogonal to the momentum transfer q (i.e., two trans-
verse components, say J„and J~) and a component along

q (i.e., a longitudinal component, say J, ), where we have
chosen a coordinate system with the z axis along q. The
latter is eliminated using current conservation:

"d„&f I
J„(x)

I
i & =0

q„&f I
-J„(q) li &=0

(4.26a)

(4.26b)

1 MJ
T&M (q)= f dx VXM—Jq (qx) .J(x),J (4.27)

wIIIRg MJ
TJ~ (q)—:f dxMgg (qx) J(x) (4.28)

with J= 1,2, 3, . . . , where

—&f I
J.(q)

I

& & =—&f Is"(q)
I

E &

q
(4.26c)

The remaining two transverse projections may be ex-

pressed in terms of the electric and magnetic multipole
operators (de Forest and Walecka, 1966; Uberall, 1971;
Donnelly and Walecka, 1975):

P

J (x)=VIP(x) . (4.22)
MJ MJ

MJL (qx) =jl (qx)Yql )(0„) (4.29)

It is Inore convenient when plane-wave electrons are as-
sumed to work in momentum space, and so we shall con-
sider the Fourier transforms of the components of the
electromagnetic current-density operator,

J„(q)= f dxe'~ "J„(x).

Furthermore, as we shall deal with states
I

i & and
I f &

having definite angular momenta J; and Jf, respectively,
it is useful to expand the exponential in a multipole series
(Edmonds, 1960) and consider specific electromagnetic
multipole operators. The multipole projections of the
charge-density operator are the Coulomb rnultipole opera-
tors

is defined in terms of spherical Bessel functions and vec-
tor spherical harmonics. A useful identity permits the
curl to be rewritten (Edmonds, 1960)

MJ $ /2 MJ—V)&M~J (qx)=i I
—J Mqq+)(qx)

q

+(J+1) Mgg i(qx) I /[J], (4 30)

where [J]—:V2J+1.
The cross section may then be expressed directly in

terms of matrix elements of these multipole operators.
Since we are dealing with states with well-defined angular
momenta, we may use the Wigner-Eckart theorem (Ed-
monds, 1960),

JI—MJ ~f J JI'

&~pe I TJ~,(q) I J@6,. &=(—) '
M, M, M, &J/IITJ(q)IIJ;&, (4.31)

4A circumflex over a symbol, e.g., J„,is used to denote a second-quantized operator operating in the nuclear Hilbert space.
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where the M dependence is all contained in the 3-j symbol
and the detailed dynamics are contained in the reduced

A
1

A
matrix element. Here T is any one of M ", T', or
T 'g. Once the M dependence has been made explicit,
using Eq. (4.31) it is straightforward to perform the aver-
age over initial substates and sum over final substates (for
the unpolarized cross section),

to express the result in the form given in Eqs.
(4.16)—(4.18) (see de Forest and Walecka, 1966; Uberall,
1971;Donnelly and Walecka, 1975, for further details):

2 I &Jf IIM z'"'(q)
I I
J & I

' (4 32)2J+1 J 0

XI I &JfllT~«)IIJ & I'
2/)+1 J,

+ I & JfllT J "(q)IIJ & I'I (4.33)
Thus the cross section may be expressed directly in terms

TJ~,(q)= f dx 1 MJ—VXMzz (qx) .J,(x)
q

+qMqq (qx) js(x) (4.34)

Tg (q)= f dx Mqz'(qx) J,(x)
T

+q —V XMqq (qx) P(x)
1 M~

q
(4.35)

where Eq. (4.30) may be used for the curl terms.
As we frequently consider the nuclear states to have

well-defined isospin, it is useful to employ Eq. (4.31)
again, now in isospin space as well as angular momentum:

of Coulomb (CO, C1,C2, . . . ), electric (E l,E2, . . . ), and
magnetic (M 1,M2, . . . ) multipole matrix elements. Note
that in general both electric and magnetic multipoles have
convection and magnetization current contributions;
indeed, using Eq. (4.22), we may write

& JfMJ 'TfMr
I ~~,;rM, (q)

I JMJ, 'TMr, .

Z~ —M,
—MJ MJ MJf

T T.Tf
—M M MT T T.

(4.36)

Here the symbols:: denote matrix elements reduced both in angular momentum and isospin. Now for electromagnetic
interactions T =0, 1 and Mz ——0, so we have from Eqs. (4.32) and (4.33)

F,'(q) =
i + J)0 T=01

Tf T Ti
(Jf ' Tf ''M J r(q):'J' ' TI &.

TQ 0
(4.37)

Fz.(q) =
i+ J&1 T=0, 1

T=0, 1

Tf
—M, OM,TQ TQ

Tf T Ti

0 M (Jf, Tf...T J.'p( q ):Zj, Tj
TP TQ

2

(4.38)

where Mz. ——Mz —=Mz, since Mz ——0. The 3-j symbols may be evaluated (Edmonds, 1960) to yieldf i 0

MT
FI(q)= g 5r r (Jf Tf M J 0 (q)::J;;T;&+ (Jf Tf"M J.'i (q):4;;T, &2Jj+1 2Tj+1 q~o f ' ' (T;(T;+1))'~2

(Tf Mz' ) ~—
—5z' z' +i i~z (Jf Tf ~ .M J ~ i'(q)::Jj;T' &

(Tf )' [Tf]
(4.39)

where of course the second term vanishes when T; =0.
There is an additional term with Tf ——T; —1 which we
have omitted; generally the ground state has the lowest
isospin allowed. Analogous expressions are obtained for
the electric and magnetic contributions to Fz (q) using Eq.
(4.38).

Next let us consider the parity and time-reversal prop-
erties of the multipole operators. The former is obtained
by examining the behavior of the spherical harmonics
under the transformation x~ —x, along with the nature
of the electromagnetic current itself, which is a polar vec-
tor. From Eqs. (4.24), (4.25), and (4.27)—(4.29) it is

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



476 T. W. Donnelly and I. Sick: Elastic magnetic electron scattering

straightforward to show that the Coulomb and electric
multipoles are of natural parity, while the magnetic mul-
tipoles have non-natural parity:

CJ EJ: 77=( —)

(4.40)
MJ: 77=( —)

+' .

Thus, for elastic scattering where 77=77f77; =+, conserva-
tion of parity implies that only even- J Coulomb and elec-
tric multipoles and odd-J magnetic multipoles survive.
The consequences of time-reversal invariance are less easy
to demonstrate. Details on T invariance are presented in
the review article by de Forest and Walecka (1966) and
expanded upon in Donnelly and Walecka (1976). The im-

plications for our purposes are that, for elastic scattering,
time-reversal invariance permits only even-J Coulomb
and odd-J electric and magnetic multipoles to survive.
Thus for elastic electron scattering we have the following
situation:

CJ, J=even only

EJ, absent

MJ, J=odd only .

(4.41)

In summary, for elastic electron scattering from a state
with Jf——J.=Jp Tf'=T =Tp and MT ——MT. =Mz- wef i 0
have

2

MT
FL(q) = g & Jo»0::Mz;o (q)::Jo'To&+,~2 & Jo'To::M z;i (q)::Jo&T0&2Jp+ 1 2Tp+ 1 z) 0

' (Tp(T0+ 1))'
even

(4.42)

MT
X &J.;T.::T:(q)::J.;T.&+ &Jp'T0::T~;1(q)::Jp To&~0+ 1 2T0+ 1 j& i (To(T0+ 1))
Odd

(4.43)

Of course it is this latter result, elastic magnetic electron scattering, which is the focus of the present paper.
Before turning to a more detailed discussion of the matrix elements themselves, let us end this subsection by discuss-

ing the low-q or long-wavelength limit of the expressions in Eqs. (4.42) and (4.43). The scale for momentum transfers in
scattering from nuclei is set roughly by the nuclear radius R. Thus a characteristic scale of momentum transfer ap-
propriate for nuclear physics is approximately Q~ -77/R. The long-wavelength limit then pertains when q &&Qz. Let
us write Eqs. (4.42) and (4.43) as sums of multipoles:

+L(q)=— g I
~J(q) I

'=1
4~„, (4.44)

FT(q) —= g I
~z(q)

I

'=1
477 J)

Odd

where Wq(q) is defined using Eqs. (4.42) and (4.43)

(4.45)

&4~
[Jo][To]

MT
&J.; T.::M',."'(q)::J.; T.&+ i&& & Jp,'Tp.".Mg i (q)::Jo,'Tp&, J=even

(Tp(Tp+1))' '
(4.46)

TQ

& Jo, Tp. .[—iTg. p (q)]::Jp,Tp&+, & Jo, Tp. .[—iT g.'i (q)]::Jp',To &, J=odd,
(Tp(Tp+1))' '

and where, with the inclusion of the factor —i in the
magnetic terms, all MJ(q) may be considered to be real
(de Forest and Walecka, 1966; Donnelly and Walecka,
1976). Focusing on Mp(q) for the moment, we note that
this inultipole projection involves Mp(qx)
=(1/&477)jo(qx) [see Eqs. (4.24) and (4.25)]. When

q «Q~ we may take the leading term in the small-
argument expansion of the spherical Bessel function
jp(qx)~1; thus in the long-wavelength limit (LWL) the
Coulomb monopole operator simply becomes proportional
to the integral of the charge-density operator, that is, be-

comes the charge operator Z itself with eigenvalue Z.

l

Equivalently, examining the isoscalar and isovector pieces
of Eq. (4.46), one finds in the low-q limit

& Jo , To::Mo;o'" (q)::Jo, To& ~ '[Jo][To]z~ (447a)
LWL 477

& Jp To™0;i (q)::Jp Tp& ~ [Jp][TO]
LwL 477

X(T0(To+1))', (4.47b)

where the fact is used that the nuclear state involved is
considered to be an eigenstate of the total baryon number
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Wp(q) ~ —,'A+MT ——Z .
LWL 0

(4.48)

Similar arguments can be applied to the rest of the even- J
Coulomb multipoles. Following Uberall (1971),we define
electric (really Coulomb) multipole operators

operator 3, with eigenvalue A, and of the z component of
isospin T„with eigenvalue MT, . Thus we find that (4.52)

q Qz
J

This implies that the low-q limits of the Coulomb form
factors are proportional to the corresponding moments,

(2Jo+J+ 1)!(2Jo—J)!
(2Jp+ 1)!(2Jp)!

v'4~ MJ
QgM = dxx Fg (Q„)p(x), (4.49)

(4.53)

Qz —= & Jo Mz =Jo
I Qzo I Jo MJ, =Jo & . (4.50)

With our definition of the Coulomb operators in Eqs.
(4.24) and (4.25) we have, using the long-wavelength ex-
pansion of the spherical Bessel function

jz(qx) ~ (qx) /(2J+1)!!,
LWL

the following relationships:

(4.51}

with the ground-state inoments being defined as the ex-
pectation values of these operators in the state with
MJ ——Jp..

0

where J=even and satisfies 0&J(2Jp. Since Qo=Z,
we recover Eq. (4.48); also for J=2 (C2 moment) we find

Jo+1 [Jo+1]
W2(q) —+

LwL 3v 5 Jp [Jp —1]
(4.54)

where Jo) 1 for this expression to be applicable and
where 2Qz is the usual ground-state electric quadrupole
moment. Similarly, all moments CO, C2, C4, . . . , up to
a maximum J(2Jo occur as the low-q limits of the
Coulomb form factors. Likewise for the odd- J magnetic
multipoles, we may make use of an alternative way of
writing the magnetic operators (Donnelly and Walecka,
1973):

1 M~
i Tgj(—q)=q f dx v'J(J+1) q

—VMz (qx) .L,(x)+ ——V XMJq (qx) p(x)c (4.55)

where we have used the identity (Edmonds, 1960)

Mqi (qx) = (x X V)Mq (qx)J(J+1) (4.56)

and have introduced the orbital angular momentum densi-

ty operator L,(x) corresponding to the convection
current-density operator J,(x),

ps= 2Mx& Jo,Mz—,=Jo

Iaido

I
Jo ~~,=Jo& (4.61)

I

Indeed, this was the reason that the factor —i was chosen
in Eq. (4.46), since we have the usual definition of the
magnetic moments as expectation values of the operators
p,J~ in the state with MJ, ——Jo, multiplied by 2MN,

where M~ is the nucleon mass (from the nuclear magne-
ton equi/2M&c; Uberall, 1971):

L,(x)=xXJ,(x) . (4.57)

The curl term in Eq. (4.55) may be re-expressed using the
identity in Eq. (4.30); furthermore, the gradient terms
may be rewritten using (Edmonds, 1960)

—VMJ (qx)= I(J+1)' Mph+i(qx)

Thus we find that the low-q limits of the magnetic form
factors are proportional to the corresponding moments:

[J] (J+ 1)(2J'p+J+ 1)!(2Jo—J)!
wg(q) ~

i.wL (2J + 1)!! J(2Jo+ 1)t(2Jo )!

+J'"M„',(qx) I /[J] . (4.58)

qJ
X Pgp

N
(4.62}

Now if we define odd-J magnetic multipole operators
(Uberall, 1971)

where J=odd and satisfies 0&J (2Jo. For example, for
J=1 we obtain

PgM, —= fdx[V[x JY~™(n„)]I Wi(q) —+ v'2/3
LWL Jo

p, i, Jp )—, , (4.63)
N

X L,(x )+ps(x ), (4.59)J+1
where pj ——p is the usual ground-state magnetic dipole
moment, so that we find

then we find in the long-wavelength limit that

&J + 1[J]
i.wi. +4m v J (2J+ 1)!!

(4.60)

Fi( )
1 o qJ +1

Lwr. 6m Jo 2MN

2

(4.64)

since the M1 moment dominates at low momentum
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transfer. Similarly, all moments M 1,M3,M5, . . . , up to
a maximum J(2Jp occur as the low-q limits of the
respective magnetic form factors.

A. Nuclear many-body problem

m. m

Anlj, m;1/2, m~(X ) +njl(X)[+l(IIx )~1/2)j kl/ i2 (4.65)

where the R„lj(x) are radial wave functions normalized
according to

J x dx IRnij(x) I
=1 . (4.66)

Having summarized the basic formalism required in
describing electron scattering from nuclei, including the
low-q relationships of the elastic form factors to the static
ground-state moments, we now turn to questions of nu-
clear dynamics. We wish to establish a connection be-
tween, say, a shell-model description of the nuclear states
involved and the resulting electromagnetic form factors.
%"e shall work in second quantization, where the nuclear
states are represented as sums of A-fold products of nu-
cleon creation operators acting on the vacuum. That is,
our many-body description will be in terms of nuclear de-
grees of freedom, with only implicit dependence on non-
nucleonic degrees of freedom (see, for example, Sec. IV.E,
where meson-exchange currents are discussed). We as-
sume that some single-particle basis set of wave functions
has been specified

I4 (x))
where a labels the single-particle quantum numbers ap-
propriate for the chosen basis. For example, in many
cases Hartree-Fock wave functions provide a good start-
ing point for such many-body descriptions. We shaH gen-
erally assume that {al refers to the set of single-particle
quantum numbers.

Ia I~t nlj, mj; —,
'

m, l,
where n =1,2, 3, . . . is a node number (note that the con-
vention n =0, 1,2, . . . is alternatively used by some au-
thors), I is the orbital angular momentum, j is the total
single-particle angular momentum [we couple orbital an-
gular momentum 1 and spin- —,

' in the order (1—,
' )j], and

mj is the z projection of angular momentum. Also useful
is the principal quantum number defined by
%=2(n —1)+1 =0, 1,2, . . . . In addition we have
isospin- —,

' with projection m„where m, = + —,
' corre-

sponds to a proton and m, = ——,
' to a neutron. Thus ihe

single-particle wave functions P (x) are two-component
spinors in both spin and isospin spaces:

gin positive at the origin. The spin- —, spinors are denoted
m

X»2 and the isospin- —, spinors gi/2. We have used a con-
densed notation for the coupling of two quantities with
good angular momentum quantum numbers:

~j.~j = 2 (j(m»2m2 I (jij2)j3m3)~, , '&,,
' .

and to let I a I stand for the set of quantum numbers oth-
er than mj and m, :

I a I~I nlJ'; —,
'

I .

Now it is useful to perform a canonical transformation
from a second-quantized description in terms of particles
only to one in terms of particles and holes with respect to
some chosen Fermi surfaces (Fetter and Walecka, 1971),

c =6)(e —eF)a +8(EF E)S —b
c~ =0(e EF)a~+0—(eF E)S~b—

(4.68a)

(4.68b)

Here c is the single-particle energy corresponding to the
quantum numbers a, c+ is the Fermi energy, and

S =(—) '( —) (4.69)

is a phase factor chosen so that c transforms as an ir-
reducible tensor operator (Fetter and Walecka, 1971).
Thus in Eq. (4.68a), the first term destroys particles above
the Fermi sea, while the second creates holes below the
Fermi sea. Equation (4.68b) is interpreted similarly.

A general operator may then be expanded in the follow-
ing manner:

T T(p)+ T (~)+ T (2)+ (4.70)

where the various terms correspond to a zero-body (c-
number) piece, a one-body piece, a two-body piece, and so
on. The c-number piece contains no e~ or c~ and is trivi-
al to handle. The one-body contribution appears as

T"'=g (a'
I

T"'
I
a)c c

a'a
(4.71)

where the e numbers multiplying the creation and de-
struction operators, that is, the factors (a'

I

T"'
I a), are

single-particle matrix elements, Let us suppose that in
first quantization we have

(4.67)

Furthermore, it will prove useful to define I
—ul to stand

for the same single-particle quantum numbers, but with—m& and —m„

I a—I~Injl—m .—' —m, I

In fact we shall assume that a phase convention has been
chosen in which the radial wave functions are real and be-

T(1) y T(l)(x ) (4.72)

50f course it should be noted that the opposite convention is
also frequently used in nuclear physics.

Here we have made explicit the dependence on the nu-
cleon coordinates x; one at a time; of course it should be
understood that in general there will also be dependence
on the discrete coordinates, spin and isospin, as well,
which has been suppressed for the time being. The
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single-particle matrix elements in Eq. (4.71) are then

&a'
l

T"'
l
a& = fdr P (r )T"'(r )P (r ), (4.73)

where r is any coordinate from the set Ix~, . . . , x~ l.
With discrete degrees of freedom, such as spin or isospin,
the product P T'"P may be understood to be a matrix
product (row vectorXsquare matrix)&column vector) in
each space. Similar considerations hold for the two-body
piece of Eq. (4.70). In first quantization we have

contributions. This, however, is not a general statement:
we shall see when we return to discuss two-body meson-
exchange-current contributions, in Sec. IV.E below, that
under some conditions a one-body analysis would be
inadequate. For the present let us focus on the one-body
pieces of the various multipole operators discussed in the
preceding section.

Let us begin this one-body discussion by generalizing
Eqs. (4.71)—(4.73) to include density operators:

AT"'= g T"'(x, ,x, ), (4.74) (4.77)

T""'=+&a'p'
l

T"'
l
ap&ct cItr circ

a'a
O'P

(4.7S)

yielding in second quantization the two-body operator f'"(x )= g &a'
l

T"'{x) l
a &c c

a'a

&
a'

l
T' "(x ) l

a & =f dr {{) (r )T"'(x;r )P (r ) .

(4.78)

(4.79)

where the two-particle matrix elements are given by

&a'P'
l

T' '
l
aP& =fdr fdr 'P (r )P~ (r')

~ T"'(r,r')P (r )/II(r') .

(4.76)

Note that the coordinate x specifies the density depen-
dence, whereas x;, i =1, . . . , A and r specify the depen-
dence on the nucleon coordinates. To help clarify this, let
us consider a specific example, that of the charge density.
If we take the nucleons to be point particles (see Sec. IV.B
for a discussion of this point), then we have

Succeeding terms in Eq. (4.70), involving three-body, etc.,
terms, may be handled following the same procedures.
For more discussion of the transition from first to second
quantization see one of the standard books in many-body
theory, such as Fetter and Walecka (1971, especially
Chaps. 1 and 15).

Fortunately (because of the great complexity of han-
dling multibody operators in practice), electromagetic in-
teractions with nuclei are usually dominated by one-body

p'"(x)= g e(i}5(x x;)—, (4.80)

e ( i)= —,
' [1+T3(i ) ]= ~

1 for protons
0 for neutrons. (4.81)

Then the single-particle matrix elements [Eq. (4.79)] be-
come

&a'
l
p'"(x )

l

a & =fdr/ (r ) —,
'

( I+T3)5(x—r )p (r )

=5m„+inks'(x )4~(x }

=5 „+iy25 R~II'(x}R,II(x) g &1'mI —,m,
'

l

(I' —,)j'mj &&imI , m,
l
(l—,—)jm.&

I
mi mI

Im

(4.82a)

(4.82b)

I

X YI
' (Q„)*YI '(Q„}5 (4.82c)

X &a'
l &~M;TM, «)

l
a &c' c- . (4.83)

Note that matrix elements in spin and isospin spaces (of
the unit matrix and of T3) have been taken, resulting in
factors 5, and 5 +&&z5, . These single-particlem'm mr + m, mr

matrix elements may then be inserted in Eq. (4.78) to ob-
tain the second-quantized one-body charge-density opera-
tor p "'(x).

Now we wish to exploit the multipole projections that
were discussed in the preceding section. Let us suppose
that the general one-body operator in Eq. (4.78) is charac-
terized by definite angular momentum and isospin quan-
tum numbers JMz and TMT and multipole projected as
in Eqs. (4.24), (4.27), and (4.28):

I

By reducing the single-particle matrix element [using the
Wigner-Eckart theorem, cf. Eq. (4.36)], this may be writ-
ten

M~;MT
ti JM~ , TM (+'u }—= '[ca'3~a]J;T (4.85)

and where we also define c—:S c . Reduced matrix
elements of such one-body multipole operators between
nuclear many-body states having definite angular momen-

T JMJ, TMT(1) 'g & " J;T('V) "~ &4 JMJ, TM (II + } (4'84}
a'a

where we have defined a one-body creation operator built
by coupling the ca and ca to total angular momentum
and isospin, JMJ and TMT,
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turn and isospin quantum numbers, J„MJ
TnMT n = l, 2 are then given by

& J„T,::T (q). :4,;T &= +&a'::T . (q)::a &

a'a

Xitr". '(a'a),

and

(4.86)

T,"M ,M (q) = & &a'p'
I T,'M, ,M, (q)

I
ap&c." cJrcJic

a'P'
aP (4.88)

As before, we have Fourier-transformed to momentum
space. Using the %'igner-Eckart theorem and working
with matrix elements reduced in angular momentum and
isospin, we have [cf. Eq. (4.84)]

where we have defined one-body density-matrix elements

PJ; T(a a )= &Jl T1"P J;T{a a )"J2 T2 & (4.87)

Thus all of the single-particle dependence (and q depen-
dence) has been isolated in the single-particle reduced ma-
trix elements, &a'::TJ.'T(q)::a &, while the complexities of
the nuclear many-body problem have been isolated in the
one-body density-matrix elements.

So far we have discussed the basic formalism as it per-
tains to one-body operators. Let us now turn to Eqs.
(4.75) and (4.76) and conclude this subsection by summa-
rizing the extensions which occur when two-body opera-
tors must be handled. Specifically we shall be interested
in two-body meson-exchange currents and return to dis-
cuss these in Sec. IV.E. As in the one-body operator
development, we wish to exploit the multipole projections
of the current operators, and so we suppose that the gen-
eral two-body operator is characterized by definite angu-
lar momentum and isospin quantum numbers JMz and
TMT, respectively [cf. Eq. (4.83)]:

T JM;TM (q)= g&(a'b')g'~'::TJ;T(q)"(ab)g~&
a'b'
ab

X+JM;TM («'b'V''~'(abV ~)
(4.89)

where the two-particle configurations have been coupled
to tota1 angular momentum and isospin, e.g.,

I
(ab)g~~;~~~&

&J.IJJ brriJ
I {J.jb)/~J &

m. m.
a P

mr mra P

X& —,'mr —,'mr I( —,
'

—,')MM~& Iap& . (4.90)

Thus in Eq. (4.89) we have two-particle double-reduced
matrix elements multiplying a two-body creation operator
defined by

1 t t MJ, MT{(a'b')g '~';(ab)+~) = — [[c,c ]~ [c, cs. ]J, ]JT. . (4.91)

to be compared with Eq. (4.85). The reduced matrix elements of this general two-body operator between nuclear many-
body states, as required for instance in calculating MEC contributions to the electromagnetic form factors, are then
given by [cf. Eq. (4.86)]

& Ji, Ti ...T J.'T(q):Z2, T2 & = g & (a'b') g 'M'::TJ T(q)::(ab)gM&.VJ.T((a'b') g 'M'; (ab)gM) .
(a'b') g''W'

(ab)+M

(4.92)

We now have the two-particle dependence (and the q dependence) isolated in two-particle reduced matrix elements, while
the complexities of the nuclear many-body problem have been isolated in two-body density-matrix elements defined by

%J' T((a'b') g 'M. '; (ab)g M) =
& Ji, Ti.".O' J. T({a' b')g 'M'; ( ab)g M)::J2,T2 &, (4.93)

in close analogy to the one-body density matrix defined in
Eq. (4.87). Of course this formulation of the nuclear
many-body problem may alternatively be handled using
coefficients of fractional parentage [see, for example, de
Shalit and Talmi (1963)].

We turn next to the relevant single-particle currents
and multipole matrix elements. Only after completing the
discussion of analyses based on one-body operators will
we return to summarize the treatment of two-body
meson-exchange currents in Sec. IV.E.

1966; Uberall, 1971; Donnelly and Walecka, 1975); the
conventions used here for Dirac y matrices and spinors
are those of de Forest and Walecka (1966) and Donnelly
and Walecka (1975):

m'f
(0)

I p~. mr &='Np' ~r' 41J'2

X (I'1 Yrr F2rrrrA„)—
Xg'1 J'2u(p, m, ) . (4.94)

B. Single-particle matrix elements

We begin by discussing the general form for the single-
nucleon electromagnetic current (de Forest and Walecka,

Here the single-nucleon states are labeled with linear
momentum p (p '), spin projection (helicity really)
m, (m,'), and isosPin Projection mr (mr' ). The momen-
tum transfer is q„=p& —p&. The two terms in Eq. (4.94)
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1, T=O, MT ——0

z 1 w0=v3 T=1 MT=0IT =—X
1

r~ i +——(xi+i ~i ),&2

(4.96)

T=l, MT ——+1 .

%'hile we need only the MT ——0 operators in considering
electromagnetic interactions with nuclei, in fact it is little
extra work to extend the analysis to include MT ——+1
pieces, which occur, for example, when considering the
charge-changing weak interaction (O' Connell et a/. , 1972;
Walecka, 197S; Donnelly and Peccei, 1979). The form
factors in Eq. (4.95) may be rewritten in terms of isoscalar
and isovector single-nucleon form factors,
Fi (2q )~, T =0,1:

F1 2
——F1 2I0+F1 2I1, (4.97)

where

F1,2=F1,2+F1,2 ~

(0) p n (4.98a)

F1,2 F1,2 F1,2
(1) p n

Instead of Fz ', we shall in general use the combination

(4.98b)

(T) F(T) +2M F(T)

At zero four-momentum transfer we have

Ei '(0)=F'i"(0)=1,

(4.99)

(4.100)

»nce Fi (0)=1 and Ei (0)=0, the proton and neutron
charges, respectively, and

LM' '(0) =p~+p"=0.8798,

p"'(0) =pi' —p"=4.7059,

(4.101a)

(4.101b)

the isoscalar and isovector single-nucleon magnetic mo-
ments, respectively. The q„dependences of the four basic
single-nucleon form factors are in general different; how-
ever, for simplicity in dealing with complex nuclei at
moderate momentum transfers we shall frequently take as
an approximation an overall universal dependence,

f~(q~ ) = [1+q~/(8SS MeV) ] (4.102)

although this is not a necessary assumption. (For better
parametrizations see Gourdin, 1974.) Naturally, in mak-

involve the Dirac contribution (-yz) and the anomalous
magnetic moment contribution (-n&„q„), each multi-
plied by its corresponding form factor

Fi z
——Fi,2(q~) .2

In turn these depend on whether the single nucleon is a
proton or a neutron:

Fi z ——Fi z —,(1+F3)+Fi 2 —,
' (1—v3), (4.95)

where the operators —,'(1+~3) project protons and neu-

trons, respectively.
Since we shall only be dealing with isoscalar and iso-

vector operators (T =0, 1 only), it is convenient to define
the following general isospin operators:

ing comparisons with experimental data better parametri-
zations of the single-nucleon electromagnetic form factors
are used, including the neutron electric form factor. This
inclusion, for example, is especially important in the con-
vection current contributions for odd-neutron nuclei and
can amount to a few percent change in the form factors.

To make contact with the usual nonrelativistic descrip-
tions of the nuclear many-body problem we next reduce
the spinor matrix element in Eq. (4.94) through order
p /Mg =(u/c)„„,& „. To do this we write the four-
component nucleon spinors in the form

1/2
Ep+M~

u(p, m, )=
p

m
+1/2

~p ~ s

Ep+M~

(4.103)

We shall hereafter omit the (1) to indicate single-particle or
one-body operators; in the rest of this section they are assumed

abvays to be so.

where Eq ——(p +M& )
' is the nucleon's energy and

where 7~~2 is an ordinary two-component Pauli spinor
[X~~2 =(0),X~~2 ——(i)], as used in Sec. IV.A. Substitut-
ing into Eq. (4.94), using the explicit forms for the y ma-
trices, and keeping terms to order Mz, we find the re-
sulting single-nucleon current to be (McVoy and Van
Hove, 1962; de Forest and Vr'alecka, 1966; Donnelly and
Walecka, 1975)

(p'm, 'm, '
~
J&(0)

~
pm, m, )

m' f m f (0) 0 (1) 0 m m
=Xinkn (~i 10+~„li)kii2Xiiz ~ ( 04)

where ~& ' ——(~' ',~0 ), T =0, 1 and we have

~o ' Fi '+ [q&I8M——~+iq (n&(q )/4M&](FI ' —2p' '),

(4.105a)

~' '=[(p+p')/2M~]F'i '+(in&(q/2M~)p'T' .

(4.105b)

In arriving at these results we have assumed that F2 ' is
already of 0(M+ ') and that qo ——co, which for a free nu-
cleon is qo ——(p' —p )/2M~ ——(q +2p.q)/2M~, is also
of 0(M~ '). Thus qo does not appear above. In addition
to the leading term of 0(M~), Eq. (4.105a) contains
corrections of 0 (M~ ). These are the well-known
Darwin-Foldy and spin-orbit terms. The three-vector
part of the current in Eq. (4.105b), on the other hand,
contains no terms of 0 (M~ ). Let us ignore the
0(M~ ) terms in Eq. (4.105a) and assume that an
overall universal single-nucleon form factor f&(q„) [Eq.
(4.102)] has been extracted to represent all of the qz
dependence in these currents (these are not necessary as-
sumptions; rather they are made to help clarify the
analysis). Then it follows from these results that the ap-
propriate single-particle nuclear densities to be considered
in first quantization are
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p(x ) = g [Io(i)+I)(i)]5(x—x;),

J,(x)= g [I()(i)+I,(i)] 5(x—x;)
i=1

(4.106a)

, sym

(4.106b)

With the remaining space-spin dependence —(1, V, or
o) X5(x—x;) in Eqs. (4.106) we need to make the mul-
tipole projections discussed above [Eqs. (4.24), (4.34), and
(4.35)]. This leads us to define the following five single-
particle multipole operators (O' Connell er al. , 1972; Don-
nelly and Peccei, 1979; Donnelly and Haxton, 1979,
1980):

p(x)= g [p' '(0)IO(i)+p'"(0)I)(i)]5(x—x, )

(4.106c)

MJ (qx),
M

(qx)=MJJ (qx) —V,

(4.110a)

(4.110b)

Note that, having removed the single-nucleon q„depen-
dence, which takes into account the finite size of the nu-

cleon, as an overall factor, we are left in Eqs. (4.106) ef-
fectively with point nucleons to consider. Furthermore,
at this juncture we mention another effect which we shall
treat throughout this paper in a rather simplified way
without detailed elaboration, viz. , center-of-mass correc-
tions. The use of shell-model degrees of freedom involves
many-body wave functions specified by 3 A coordinates
x;. In fact three of these, R=g,.x;/A, are just the coor-
dinates of the center of mass and do not reflect true
(internal) nuclear structure. In general, the problem can-
not be separated into internal and center-of-mass depen-
dence, but for a few special cases it can. One in particular
is the shell-model problem using harmonic-oscillator wave
functions as a single-particle basis on which to build the
many-body wave functions. In that case the problem is
separable, and it can be shown that the calculated shell-
model form factors for any nonspurious ground state
should be multiplied by a center-of-mass correction
f, (q)=exp(y/2) where y=(bq/2) and b is the oscil-
lator parameter (Tassie and Barker, 1958; see also de
Forest and Walecka, 1966). We shall assume that this is
done in all of the following examples.

We are now in a position to bring into play the develop-
ments thus far to obtain the requisite single-particle mul-
tipole matrix elements. First the isospin dependence is all
displayed in Eqs. (4.106) and can be handled immediately.
Let us write the isospin dependence of a general single-
particle operator [e.g., one of those in Eqs. (4.106)] in the
orm

MJ 1J(qx)—: i ——V

XMAS&

(qx) —V,
q

M~ MJ
Xq (qx)—:MJJ (qx) o,

Xq J(qx) =— i ——V X MJJ (qx) .a,~ M M~

(4.110c)

(4.110d)

(4.110e)

where Eq. (4.110a) is defined in Eq. (4.25). The curl
terms may be rewritten using Eq. (4.30), so that projec-

MJ
tions MJz+& occur for 6' and for X'. For completeness let
us note that two other multipole operators also enter
when a similar analysis is made for the entire electroweak
interaction (O' Connell et al. , 1972; Donnelly and Peccei,
1979; Donnelly and Haxton, 1979, 1980):

Xq' &(qx) = VMq (qx—) cr, . (4.110f)

M~ MJ
QJ (qx)—:Mz (qx)cr V. — (4.110g)

The gradient term [Eq. (4.110f)] may be reexpressed using
Eq. (4.58). The isoscalar and isovector single-particle
electromagnetic multipole operators may then be written
in terms of these basic operators:

MJM"' TM (qx) =E'( .'(0)MJ (qx)IT (4.111a)

TJM .TM (qx) = [E( (0)EJ J(qx)
M~

+ —,p' )(0)Xq (qx)]IT, (4.111b)

Tr~M~ (x ) = g T(T)(x'x ~ )IT (i) (4.107)
i TJM'~ TMT(qx) = [.F', '(0)b,z '(qx)

where the subscript ( T) is to remind us that, while the ex-
M

plicit isospin operator dependence is in the factors Ir (i),
the remaining space-spin dependence may be different for
isoscalar and isovector contributions. Since the isospin
reduction is simply

( —,
l l

IT l l
—, & = [T]/W2,

we have

(4.108)

(4.109)

where only matrix elements reduced in angular momen-
turn remain to be considered.

T~p (0)XJ ~(qx)]IT

(4.111c)

[The axial-vector current multipole operators which occur
when considering the weak interaction are discussed by
O' Connell et al. (1972), Donnelly and Peccei (1979), and
Donnelly and Haxton (1979,1980).]

General expressions and tables of these single-particle
matrix elements have been made available by Donnelly
and Haxton (1979,1980). Here we shall restrict our atten-
tion to elastic scattering, and so must deal only with M,
b„and X'. In Donnelly and Haxton (1980) the single-
particle matrix elements we require are written

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



T. W. Donnelly and I. Sick: Elastic magnetic electron scattering 483

(4m. ) &n'1'j'I IM~(qx)l lnj/&= ~J(/'j'/j) &n'/'j'
IjJ(p) I n/j &

(4w) (n'l'j'~~EJ(qx)~~nlj) B=~(lj 'jI',)(n l j''—' j~(p) nljlp'

(4.112a)

=[J]-B.(/'j"/j)[&'/'J'I j.+~(p) I
n/j&+&'/'j'I jj ~(p) ln/j&], (4.112b)

(4~)'"&n'1j''I
I
&~(qx)

I InV &
= J'"—D~+(1j'';/j) & n'1j''

I jJ+ i(p) I
n/j &+(J+1)'"DJ (/'j'~»& n'1j''

I jJ i(p) I
n/J &

where p =qx and where the radial matrix elements of the spherical Bessel functions,

&
n'1'j'

I jL (p) I
n/j & = J x dx +n'Ij''(x)jl (qx»nlj (x

(4.112c)

(4.113)

with I.=J for Coulomb multipoles and I. =J+1 for magnetic multipoles, have been left quite general —arbitrary
single-particle radial functions labeled by nlj may be used here. The coefficients Az, BJ, and DJ may be —written expli-
citly in terms of 3-j, 6-j, and 9-j symbols (Donnelly and Haxton, 1979; see also de Forest and Walecka, 1966):

l' j'
g( 'j'iV)=( ) ( V+ [ '][ ][2'][j][ ] 1 J 0 0 0l J 000

l' j' —,
' l' l J—1

B (/'j'/j) =( )'+'( ——V+'"[/'][/][j'][j][J] j 1 J 0 0 0
f(/'+/+1) —J I [J —(1'—1) I

4J(J+1)

(4.114a)

(4.114b)

l' l J+1
DJ+-(/'j', /j) =(—)' v 6[/'][/][j'][j][J+1] —,'. —' (4.114c)

J&0, even for Az,

J) 1, odd for BJ and Dz

l'+i =even for AJ, BJ, and DJ

(4.115a)

(4.115b)

(4.115c)

Ij' j I
&J&j'+j—for AJ, Bz, and Dz , (4.115d)-

Several constraints on these coefficients may be deduced
immediately. We summarize below the allowed values of
the angular momentum quantum numbers for which in
elastic electron scattering the coefficients may be nonzero: for TJ ——MJ, hJ, and XJ.

Note that when 1 =0 and j= —,
'

we have

1'=J for Aq,

BJ——0,
for j'=l'+ —,

'

(4.118a)

(4.118b)

I

& njlI ITq(qx)I In'/j''& =(—V &n'1'j'I le(qx) I ln/j &

(4.117)

I

1'—1
I

&J&1'+/ for &~,

I

1' l
l
+1 &J—& 1'+1 1 for B, , —

I

1'—1
I

—1&J&1'+1—1 for DJ+,

I

1'—1
I
+1 &J&1'+1+1 for DJ

(4.115e)

(4.115f)

(4.115g)

(4.115h)

1'=J—1 for Dq and Dq+ =0

1'=J+1 for DJ+ and Dz 0. ——

(4.118c)

(4.118d)
Of course the above conditions all must be satisfied
simultaneously. Under interchange of primed and
unprimed arguments, a common phase factor occurs for
AJ, BJ, and Dg—.

/j''~jl~( —V (4.116)

Since the radial matrix elements in Eq. (4.113) are
symmetrical under this interchange, this implies that the
overall single-particle matrix elements in Eqs. (4.112) also
have the same phase relationship (Donnelly and Haxton,
1979,1980),

~o(/'j';/j ) =5I I5jJ[j]. '
(4.119)

Second, for the magnetic dipole (M 1) we require

Similarly, the case where l' =0 and j'= —, can be obtained
from this by using the turnaround relations in Eq. (4.116).

Two eases that will be of special interest later may be
obtained in simple form. First, for the Coulomb mono-
pole ( CO) we require
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B,(Ij'';lj )= v—361 I
&I (I +1)

[Il
X

V 1 [1+1], j'=j =I + —,
'

1, j'=l+ 21, j.=l —21

(4.120)

v'I +1[1—1], j'=j=I ——,

Dt (I'j';Ij)=&2/36pt X ~

[Il

v I+ 1[1+1], j'=j =I+ —,

—2V'I(l+ 1), j'=I+ T~, j=I —T~

+2v'I(1+1), j'=I ——,', j=I+ —,

—v I [I —1], j'=j =I ——,

(4.121)

In addition, there are coefficients Dt+(I'j';Ij) which may
be evaluated, although some of them yield more compli-
cated expressions than those above. We shall not require
these Dt+ cases except when specific values of I'j' and lj
are known, arid under those circumstances the tables of
Donnelly and Haxton (1979,1980) may be employed (see
below). It is worth noting in passing, however, that some
of these coefficients may simply be obtained from the DJ
results using (Donnelly and Haxton, 1980)

Since the same phase enters when the single-particle ma-
trix elements are turned around [Eq. (4.117)], effectively
we need consider only one order for the quantum numbers
a'a and use symmetrized one-body density-matrix ele-
ments, indicated by curly brackets:

QJ. r(a ), a'=a
6;rI~'u]= 2,

'
(4.126)

t

(J+1)'~'[rl,', +rl,; (J+2)]D—+(Ij'';jI)
=J' [ fIJ t +'rIJI+(7+1)]DJ (Ij'', jl),

where

(4.122)

Several special constraints on the ground-state density
matrix may be derived by considering the basic one-body
operator matrix element equation [Eq. (4.86)]:

—I, j=I + —,
'

9jl l+1, j =l ——,
' . (4.123) a'a

X & "TJ;T( I)::~&gJ;T I & & ], (4.127)a')a

C. One-body density-matrix elements

Having dealt with the single-particle Inatrix elements
required for descriptions of elastic electron scattering in
the preceding section, we turn now to a discussion of the
many-body content in the nuclear matrix elements, name-

ly, the one-body density-matrix elements defined in Eqs.
(4.85) and (4.87) and rewritten here for elastic matrix ele-
ments:

IPJ ~ r(a'a )= & Jp; Tp [c, c ]J.r.'.J...p, Tp & . (4.124)

Vhth the phase conventions chosen here it may be shown
that the density-matrix elements are real (Donnelly and
Walecka, 1975). This further implies for the matrix ele-
ments that

where in the latter form we use the symmetrized one-body
density-matrix elements and indicate by g, , , that only
one ordering (say, by single-particle energies) of a'a is to
be considered here. The ground state has been assumed to
be an eigenstate of the total nucleon number operator 3,
of the z component of isospin T, (i.e., equivalently, of the
charge and neutron number operators, Z and %, respec-
tively) and of the z component of angular momentum J, .
Inserting these in succession for the one-body operator
Tz r, with J=T=0. for 3, J=0, T= 1 and T„andJ= 1, T =0 for J„and using the known single-particle
matrix elements in each case, we obtain three identities in-
volving the diagonal matrix elements:

yJ ,7(«')=( —)' 'y.J., r(~'a) . (4.125) Q[j]Pp;pI~'I = I:Jo][To]~, (4.128a)

~We shall suppress the labels (12) on the g's, since only the
ground state is involved here.

80ne choice for this ordering is suggested by Donnelly and
Haxton {1979),but any consistent convention wi11 suffice.
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Q[jlfo;i fa'I =&2/3[Jolf To][To(To+1)l'" (4 12g»

gv j(j+1)[j]fiofa I = [Jo(Jo+1)] [Jo][T ]2
(4.128c)

These were obtained previously (Donnelly and Walecka,
1976) for the special case of To ———,

' [also compare Eqs.

(4.47) above).

Now let us return to the elastic electron scattering form
factors defined in Eq. (4.46). These may be recast in
terms of integrals containing products of spherical Bessel
functions and spe:ific proton or neutron coordinate space

ultipole densities (denoted by m, =+—,
' as usual). We

obtain

00

r drjg(qr)pg(r)+i/2 J =even

~,(q)= q I r dr jz(qr)aJ(r)+»z+ —, g [J/+i(qr)p/ (r) +jq i(qr)pJ (r) ], J=odd,j. +
M~ qr rn =+1/2

(4.129)

where

pJ(r)—:P AJ(l'J';lj)it/~(a'a ) p, ,(r) /[ Jo)
a'a

aj(r)—:—QBJ(1j'';jI)QJ(a'a) p, ,(r) /[Jo],
a'a

P~ (r)~ —= —~~(&m, +1/2 p +~m„—I/2 p") QD~+(I'J "ljW'J(a'a ),p'. (r), /f Jol
a'a

P7 (r)m ——&J+'1(&m +i/2P +&rn i/2P") +DR(lj'';lj')A(a'a)~P, ,(r)~ /[Jo],
a'a

with

(4.130)

(4.131a)

(4.131b)

(4.131c)

(4.131d)

p, . (r) =—R„ i 1 . (r)R„ij. (r). (4.132)

and

2V 3m, Mr
A(a'a), = —A,o(a'a)+ QJ; i(a'a )

2[To] '
f To(To+1)]'/'

(4.133)

2Jp

[Jo) Jo+1 Bi(lj'';lj')fi(a'a)+i/2+@'3/2Di ( jl'; j)l[p 1(i(a'a)+i/2+@"il i(a'a) i/2]3a'a

(4.134a)

In obtaining these expressions we have defined linear combinations of the basic one-bogy density-matrix elements in Eq.
(4133), where specific mixtures of the isoscalar and isovector pieces occur. Note that if +~& ~—~r, then
QJ(a'a)~, ~tpz(a'a) ~; i.e., the proton density matrix for +Mr is equal to the neutron density matrix for —~T . In
Eqs. (4.131) we have defined proton (charge) and neutron multipole densities pj, convection-current multipole densities
aq, and two contributions to magnetization-current multipole densities Py. These involve the coefficients AJ, B/, and
Dq, which were discussed in the preceding section. Finally the elementary densities p, ,(r) defined in Eq. (4.132)
enter into these expressions weighted with the nuclear structure factors. Any radial wave function can be used here. Of
course, for special analytic forms such as harmonic-oscillator wave functions, the results given here may be simplified.
General expressions and tables of single-particle harmonic-oscillator matrix elements are available (Donnelly and Hax-
ton, 1979).

In passing, let us mention the long-wavelength limit for the J= 1 case, where, by Eq. (4.63), we have an expression for
the magnetic moment of the ground state:

1/2

where explicit results were given in Eqs. (4.120) and (4.121) for the coefficients Bi and Di . To obtain this result we
have used the fact that

r dr J,(qr)p, ,(r)~ ~ s,ob„.„.0 aa m~ (4.134b)

Thus for a given ground state having Jo & —,, where the dipole moment is known, we have another relationship involving
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486 T. W. Donnelly and I. Sick: Elastic magnetic electron scattering

one-body density-matrix elements to be considered together with the three basic identities discussed above [Eqs. (4.128)].
This magnetic dipole momentum identity was obtained previously (Donnelly and Walecka, 1976) for the special case of

1
Tp p ~

It is also possible to define a magnetic radius in analogy with the familiar charge radius that comes from elastic
charge scattering. Following the fo~ found in the latter case (see Uberall, 1971) and using the above results for the
magnetic moment, let us write

1/2Jp+1 qW((q) ~ &2/3 (4.135a)
L%L Jp 2M~

Then the basic expressions in Eqs. (4.130)—(4.133) allow us to write for the square of the magnetic radius
1/2

& t') .,=-
IJ, Jo+ 1

00

r dr —,'a((r)+(~q+ g [—,'P( (r) ——,P~ (r) ] (4.135b)
mt ——+ l/2

This contains contributions from integrals containing both jp and j2 spherical Bessel functions. Magnetic radii are dis-

cussed in more detail and collected together in the compilation of de Jager et al (197.4). In passing we note that com-

plementary information on M 1 moments and radii can be obtained from hyperfine splittings of energy levels of muonic

atoms (Hiifner et al. , 1977).
Another special low-q result involving the one-body density-matrix elements may be obtained for the special case of

To= —, (Donnelly and Walecka, 1976). Then the ground state of interest is a member of an isospin mirror pair. In this

situation there will also be a P decay from one member of the isospin doublet to the other. Since we consider the nuclear

states to be eigenstates of isospin and have cast the formalism in terms of matrix elements reduced in isospin as well as

angular momentum, it is straightforward to incorporate semileptonic weak interactions into the present electromagnetic

analysis (O' Connell et al. , 1972; Walecka, 1975; Donnelly'and Peccei, 1979). Here we shall not discuss this general

analysis, but rather quote only the results for the mirror P decay. From Donnelly and Walecka (1976) we have for the

P-decay rate

62 8'0—

cp += (ge (Wo —E) F—+ (Z, s)dE 1+ (Jo, To ——,' iT .' ((—0().
..::J oTp —,

' )——
P— 2~3 m [Jo]'

(4.136)

Here 6 is the Fermi weak-interaction coupling constant, GM& ——1.023&10, with M& the proton mass. 8'o is the

maximum electron energy, and the integral over the electron energy c. extends from m, to Wp. The integrand contains

the factors P=[1—(m, /e) ]'~ and F+(Z, E), where—the latter accounts for the distortion of the electron in the Coulomb

field of the daughter nucleus (see Donnelly and Walecka, 1976, for an approximation for this Coulomb factor). We have

assumed that the momentum transfer in such mirror P decays is so low that the nuclear matrix elements may be taken

from under the integral and evaluated at q =0. The factor 1 in Eq. (4.136) accounts for the Fermi contribution, whereas
el5

the term involving the axial-vector multipole operator —iT( (accounts for. the Gamow-Teller contribution (Donnelly

and Walecka, 1976). This in turn simply involves the same magnetization-current X'( discussed above, now multiplied

by the axial-vector coupling constant F~"(0)= —1.23 instead of vector couplings as before. Specifically, we have
2~ el5

4w( Jp Tp = T~.".t'T (.((0)::Jp'Tp =
& ) =3 Fg (0) g 5 ' D( (lj'';Ij )f( ((a'a). (4.137)

a'a

where once again the coefficient D( is given in Eq. (4.121). Thus, given the ((3-decay rate in such a Tp —, case, we ob-——
tain yet another relationship involving one-body density-matrix elements.

At this point it is perhaps useful to discuss some simple examples of the one-body density-matrix elements. Let us be-

gin with a closed-shell 0+0 l(i =Z configuration to define the Fermi surface and add or subtract a single particle to form

one-particle ( 1 p) or one-hole ( 1 h ) states, respectively. Indicating the closed shell by l 0), we have

I lp: JoMJ, 'ToMr, &=a,
~
o&

i
lh: JoMJ, ToMr, ) =b „ i

0),
(4.138a)

(4.138b)

where Ia&I =Inzlzj~, mj&, 2,m&I with s~ &E~ and Iat, I =In', l~jt„mjt, 2, m, t, I wi. th et, (E~. For a lp state we must

have Jp jz, MJ ——mjz, Tp ———,', a——nd Mr m,~, whereas f——or the lh state we must have Jp ——jp„MJ, m~t„Tp —,', a——nd-—
Mr ——m(1, . To obtain the one-body density-matrix elements using Eq. (4.124), we evaluate the matrix elements

0

1 — o;o
lh .JoMJ ,

.TpMr, [c, c((]J';r
~a Qa

oo
:JoM~;ToMr ——0 b [c, (Ic,]jr.

CX)

(4.139)
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using the anticommutation relations for the a's and b's
(Fetter and Walecka, 1971)and using the fact that

—-----~---
V

Fn

ip:
~. I

o&=b.„ I
o&=o. (4.140)

The Vhgner-Eckart theorem and the general expression
for the one-body density-matrix elements [Eq. (4.124)]
then yield immediately

5aa ~ Ea &EF
P

tb. T(12'u) =&,, X (4.141a)

2~JO~TO[jl[JO], e. & EF

0, Ea &EF

1tjJ;T(+ u)=~ ' X '2~JO~TO[j][JO] —( —) + 5„,(4.14lb)

a(E
Thus, for elastic magnetic electron scattering where J is
odd (and so cannot be zero), we have

]P
1)jJ T (a a )=5a 'a 5aa

(4.142)
A'";T(u'&) =+&a a&aa„

where the + ( —) sign in the 1h case occurs for T =0 (1)
density-matrix elements. Similar results hold for
Coulomb scattering, with the + ( —) sign in the 1h case
now occurring when T =1 (0), except when J=T =0.
Then the extra core terms in Eq. (4.141a) and (4.141b)
enter (i.e., a term 2[j][Jp] for each nucleon below the
Fermi surface). This leads immediately to the coherent
Z effect found for the Coulomb monopole cross section
[see Eq. (4.48)].

These ideas may be generalized to the situation where a
I

FIG. 6. Configurations contributing to one-particle and one-
hole states built on an X & Z closed-shell core.

single particle or single hole is added to an & &Z even-
even core having closed neutron and proton shells. Let us
denote the core by

I
C) and presume that it has N, neu-

trons and Z, protons giving angular momentum and iso-
spin quantum numbers J, =M+, ——0, T, = —MT,

, (N, —Z,—). By applying single-particle or single-hole
creation operators to this core and ensuring that the re-
sulting state has good angular momentum and isospin
quantum numbers, we may obtain approximations to the
odd-A ground states. Let us assume that the single parti-
cle or hole is added in a valence orbit characterized by the
single-particle quantum numbers

av~ I jtvrvj v' ,' I—
Then we have

1
TP ———MT ——Tc+ 2 ~ Ey& EF12av,'mjv, —1/2 I

C )

I Ep:JpMJ, T11MT ) =
2Tc

2T.+1

1Tp= —MT =T —,EF &Ey&FFP ~ n P

av' j v'+1/2 I

( 1 )1/2 av', mjv, —1/2 +
C +

(4.143a)

(4.143b)

where the + —,
' refers to m, v as before and where we have

respectively. We have defined the state

IC )=—,/, T IC)
(2T, )'/

by applying the isospin raising operator to the core state

when adding a single hole we have
r

To ———MT ——T, ——,', av & EF, (4.143c)

denoted the neutron and proton Fermi levels by EF and EF,
n P

(4.144)

I
C). En all cases we have Jp ——jv and MJ ——mjv. E.ikewise

V, mJV

lb.JpMJ. TpMT ), av™jv
2Tc

2T.+1,

1

Tp ———MT ——T, + 2, EF & Ey0

1TP= MT =Tc 2~ EF &EV&EF
0 C n P

/2

aV m'v +1 2 I
' '- — . )1/2 av, mjv, —1/2, +

(4.145a)

(4.145b)

Tp —— MT ——T, ——,', EF &sv . —(4.145c)
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These configurations are indicated pictorially in Fig. 6. Once again using these states in the general definition [Eq.
(4.124)], we obtain the one-body density-matrix elements. When Tp ——M—r T——,+ —,

' and e~ & sF„we have

aa & Ea)~F

QJ T(+ +) 8 ' KT(TQ)X '~JQ[J][JQ] EF

2&JO&ro[j][JO]

(4.146a)

(4.146b)

(4.146c)

where we have defined the function

1, T=0
Kr( Tp )—:( To+ —,

'
)
' J2 x . To+ 1 T=1

3TQ

(4.147)

When To ———MT ——T, ——, and eF &cz) cF wehave

0, Ea)EF

4;T«'& ) =5.'Kr(To) x ( —) &- +&JOU][JO], EF & E. & sF

24Q&ro[J][JQ] sF & s

(4.148a)

(4.148b)

(4.148c)

and finally, when To ———MT ——T, ——,
' and c.z & vF we have0 n

TQ
TO T 1

~T1 ~aa ~ ~a &~F
Q+ V n

gr(& a)=5a'aKT(TQ)X To 2TQ+3
&To+ T 1 2T 1

&Ti 4o[J]P'o]~ ~F &ea &~Fp+ p+ a

24O&ro[j][JO] &F, & E. .

(4.149a)

(4.149b)

(4.149c)

Specifically, for elastic magnetic electron scattering where J is odd (and so cannot be zero), we have

11, T,= —MT =T, + —,, cy) cF0 n

T
y (, ) ~ ~ K (T )

( —) ~ Tp= —Mr =T& —
2 ~ EF )Ey)BF

Tp
~TO — ~T1~ TO ——MT —Te —

2 ~Tp+1 n

(4.150)

Following the same procedures for the case where a single hole is added to the core, using the states in Eqs. (4.145), we
obtain for the Tp —Mr ——T, + —,—'—, eF & EF configuration

BIJOU][JO] &F„&e & sF
eJ;T(+'& )=8 ' KT(Tp) X

26JO8TO[j][JO]—( —)'+ 8-, &F, & &.

(4.151a)

(4.151b)

and f« the Tp = —Mr =T, ——,, &F & Ey & EF configuration

4O[j][JO]—( —)'&..„, EF &s. )EF
PA;T(a'~) =8..KT(TO) X-

26JO8TO[j][JO], EF, & e.
(4.152a)

(4.152b)

and finally for the Tp ———MT ——T, ——,', cF & c,v configuration
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QJIhr(a'a ) =5a aKT(Tp) X

Tp 2T0+3
5T, + Tp+ 1 2Tp+ 1

&TI 40[1][JO] &F„&&a & EF
n — a

p

240&rp[J][JO] ( ) &TO ~rl tIaa ~ SF & Ea .J+T 0

To+ 1 V p

(4.153a)

(4.153b)

As above, for the specific situation of elastic magnetic electron scattering where J is odd (and so cannot be zero), we
have

0 T a+Y~~ F V

1

1h 0 T0 c 2& F„V+ F
IIJJ;T(a'a ) =5a a &aa,I~ T( Tp ) X

T TO 1

~ro ~rl ~ Tp MT Tc 2 ~ sF &EvT +1

(4.154)

Using the specific lp and 1 h results in Eqs. (4.146)—(4.149) and Eqs. (4.151)—(4.153), it is straightforward to verify that
the general density-matrix identities [Eqs. (4.12S)] are satisfied.

To illustrate more complicated situations, let us conclude this section by considering the following 2p-lh and lp-2h
states (i.e., with respect to an N =Z core):

M~,'M~

I 2P lh:7' JoM-J, ToMr, & =~; a, [[a; aa, ]J,;T,ba„]J, T,

M~,'M~

I
lp-2h:y JOMJ, »OMT, & =~.„.„[ a[b. „b. „]J„;T„]J;T

(4.155a)

(4.155b)

where the normalization factors are given by

(4.156)

I

coefficients),

I JoMJ, 'ToMr, & =~"
I
lp:JoMJ, ; ToMr, &

Thus, for the 2p-lh states, two particles with single-

particle quantum numbers ap and ap (ap, and

without the magnetic quantum numbers) are coupled to
J&,T&, and then this combination is coupled to the single

hole with quantum numbers a~ to the total
JpMJ,'TpMT . We choose the orderings to be the ones in

0 0

Eqs. (4.155a) and (4.155b). Of course, in the usual way, if
a& ——a&, then J&+T& must be odd. Since now there mayP~ P2'
be many configurations, all with the same values of
JpMJ,'TpMT, we include another label y to summarize01 0
the rest of the quantum numbers. Thus for the 2p-lh
states y stands for (ap ap )ah and Jp, Tp. Clearly the

nomenclature for the lp-2h states in Eq. (4.155b) is inter-
preted in an analogous manner.

Suppose now we represent the entire ground state as a
combination of lp and 2p-lh configurations (with real

AyP
I 2p lh y JpMJ TOMT &

y

where

(g 1p)2+ y (g 2p-1h )2

r

(4.157)

(4.15S)

ItJ T(a'a)=(JI' )'q. J T(a'a).
+g 1p y g 2p-lhqii, (( g

)

y

+ y g 2p-Ihg 2p-1hyiiip'y(

y'y

where fJ T(a'a ) =g'T(a'a. ) [see Eq. (4.141a)],and

(4.159)

If this is inserted into Eq.(4.124), we obtain for the one-

body density-matrix elements

&aa ~ ~a &&F
p6;T= '

2~JO~T0[J][Jo 1
(4.160a)

Jo Jo J To To
[Jo)[TO][JF][TF)' ' J ''

i
2 2 P

aah[~a'a 'sa a ( ) ( —) 5aa 5a a ], S (EF, S5 jp, J +T
p p) (4.160b)
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III

p1 p2 p1 p2

J +T Jo Jp J Tp To T T& T& T
X [&' ][T' j[J ][T j(—)"+"

a!as~ J J J
e

Jp,
—

Jp, J,+T,

JP JP P—( —) ( —) ' '&, ,-&, ,&, ,5,p1 pz J +T

e

+( )
~ 2( )

& 2( ) p p( ) p p -a a~a a"'Ba, a''sa, a"j When ea)ey'» Ca )Epp' J +T J'+T' ~
1 2 p1 pz

(4.160c)

and

Qjn;T (a a)=~2~ ' ~y'y~/0~To[J][JO][TO]

r

+]J' Jo+To J +T o Jp J TO Tp T
( —)

' '( —) P P5J, / 5, [Jo] [To]2 ' .
p Jy Jp J T Q Qg QQh. Q Q ~Q

2 2 p p p1 p pz

When ~Q (~F~ &Q'(CF (4.160d)

Naturally, applying the same ideas to the situation where
a combination of 1 h [Eq. (4.138b)] and lp-2h [Eq.
(4.155b)] states occur, we may obtain similar expressions
for the density matrix (Donnelly and Gokalp, 1981).
Rather than discuss this situation in detail we shall end
this section with a specific example of the lp/2p-lh
Problem. Let us consider ' C with Jp ——Tp ———MT ———,

to be of the following form:

(1—n')'"
I
lp:(lp1/2) &

1+g, a'=a = 1p)~2

fo.o(a'a) = 4%2— g, a'=a = lp3/2
2

4, a'=a =1s)g2,

I
1 —g, a =a =1p&&2

6;I(a a)= '

a'=a = 1p3/2~2
+n12p- ih:( lp, /2 lp, /2), .oip 3-/2 ) . (4.161a) (4.162)

That is, we have the above situation with

g 1P ( 1 2)1/2

with —1 & g & +1,
(4.161b)

where the 1p state has a single 1p»2 neutron added to the
( 1s1/2) ( lp3/2) closed core, while the 2p-1 h state has two
1p]~2 particles coupled to Jz ——1,T&

——0 and these in turn
coupled with a lp3/2 hole to form the total state with
Jp = Tp = —MT =

2 . In the 1p model space only this one

2p-lh configuration can occur. Using Eqs. (4.159) and
(4.160), we then have the following nonzero density-
matrix elements:

21 ——,g, a =a =1p&j2

$1.O(a'a)= t g, a'=a = lp3/23~2
V2/3g(l —2) )' ', a'=lp, /2, a =lp3/2,

r

1 —g, a =a =1p&&2
2

5
1(1.1(a a ) = — 2l, a =a = lp3/23V'2

—v'2/3q(1 —21 )', a'= lp1/2, a = lp3/2

To help bring the ideas presented in this section into
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better focus, let us consider one very simple specific ex-
ample. Let us treat the ground state of Al with
Jo= I' To =,', and Mr, = ——, as a si~gl~ 1 ds/2 proton

hole in a closed (ls~/q) (lp3/g) (lp~/z)"(ld5/z)' shell (a
naive model for Si). Then the ground state of Al is of
the form given in Eq. (4.138b) and yields one-body
density-matrix elements as in Eq. (4.141b):

0; (~'u)=5. 'I25 o5rolj]l Jo]—( —)'+ 5-„] (4163}

p(r}=
I
+ ~d,», +~n(r)

I

'

and then have

(4.169)

pg(r)+ )/2
——— Ag(2 —,;2—, )p(r), J=2,4

Similar results hold for the other form factors, al-
though now only the id&/z proton hole contributes [see
Eq. (4.165b)]. We define

with aq~id5/2 and a'=a restricted to lie below the Fer-
mi surface (i.e., the closed 1d5/z shell). The proton and
neutron one-body density-matrix elements in Eq. (4.133)
then become very simple:

~J(r)+)/2 ——— Sg(2 —,;2—,)p(r), J=1,3,5

Pz (r)+&/z= — p~DJ+(2 —,;2—', )p(r), J=1,3, 5

(4.170b)

QJ(a'a) =5, , I5JO[j][JO]—( —) —,
' (1+2m, )5„j,

(4.164)

that is, specifically the nonzero cases are

(4.170c)

P/ (r)+~/2 —— p~DJ (2—,;2—, )p(r), J=—1,3,5 .
V'J+ 1

6

(4.170d)

2V3, Q~1$I/2~ Mt +
2

1to(a ) = 2V3, 1

]/2~ ~t =+
2

15„a~ldsn ~t =+T
16, Q~ICSgg2 &

I
& 2

(4.165a)

The coefficients A/, BJ, and D/+may b—e obtained from
existing tables [Donnelly and Haxton (1980); in fact, this
example was presented by Donnelly and Haxton (1980).
The odd- J cases are given on pp. 8—9 of that reference,
with one typographical error —D3+ (2—,;2—, ) should have a
minus sign]. Using the tables, we obtain for the even-J
cases A2(2 —', ;2—', )= —4V'3/7 and Az(2 —,';2 —,

' )=6V 7. If
we define

f~(q) —= J r drjL (qr)p(r), (4.171)

(4.165b}

Let us first compute the ground-state magnetic dipole
moment using Eq. (4.134} with 8~(2—', ;2—', )=—6V'7/5
and D& (2—,';2 —,

' )=v'l4/5, obtained using Eqs. (4.120)
and (4.121), respectively. We then find that p=2+pz,
which is the expected result, namely, the Schmidt limit.
Next, to illustrate the use of the basic expressions for the
form factors [Eqs. (4.129)—(4.132)] let us calculate the
CO contribution:

po(")+ ~/z = 2 0(I'J'QWO«'& )+ i/2pa a(r)+ i/2/[Jo]
a'a

po(r)+vn~= g &' I &.~/;+i/2«) I
'=pp«» (4.167)

where n~ is the number of protons in the shell labeled a (2
for 1 s~/z, 4 for ip3/p 2 for 1p&/2, and 5 for 1ds/2) and
pz(r) is the total nuclear charge density. Then Eq. (4.129)
g1ves

Wo(q)= I r drj o(qr)pz(r),

as expected for the monopole charge form factor.

(4.168)

(4.166)

using Eq. (4.129). The density-matrix elements are given
above in Eq. (4.165a), and the coefficient Ao was calculat-
ed in Eq. (4.119). So we have

for l. =0,2,4, then we find, using the above results,

w 2(q) =2v 2/7fz(q),

~4(q) =«/7f4(q»
(4.172a)

(4.172b)

~ i(q) =v'14/15 I [fo(q}+f2(q)l

+ I'P [f0(q }—' f2(q}]I

(4.172c)

I [f2(q)+f4(q) ]M~

+4m'ff 2(q}—6 f4(q)] I

W5(q) =V'5/7 p~f4(q) .
M~

(4.172d)

(4.172e)

Gf course, with harmonic-oscillator wave functions, the
form factors in Eq. (4.171) can be written in terms of sim-
ple functions, and the form factors calculated above in-
volve simple polynomials in q (Donnelly and Haxton,
1979). We note in passing that this example illustrates
the absence of a convection-current contribution to the
highest multipole with a stretched J=5+ —, configura-
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tion: only the magnetization current (which is proportion-
al to p~) enters in M5.

D. Deformed nuclei 4
The subject of electron scattering from deformed nuclei

has been discussed in a series of papers (Moya de Guerra
and Dieperink, 1978; Moya de Guerra and Kowalski,
1980; Moya de Guerra, 1980), and here we shall extract
only the main ideas to illustrate what is seen in elastic
magnetic scattering from such systems. The general
structure of deformed nuclei is discussed in many places
(see, for example, Nilsson, 1955; Bohr and Mottelson,
1975; de Shalit and Feshbach, 1974). In particular, a de-
tailed treatment of the transverse form factors in the pro-
jected Hartree-Pock (HF) approach is presented in Moya
de Guerra and Kowalski (1980). In fact, in that work it
was seen that the gross behavior of the form factors is al-
ready largely accounted for by a simple approximation to
the more involved HF formalism, namely by the Nilsson
model (Nilsson, 1955). Thus in this subsection we shall
restrict our attention to this special case, as it is clearer.
Of course, in discussing comparisons with experiment in
subsequent sections we shall give the projected Hartree-
Fock results when available.

I.et us begin by summarizing the basic formalism as it
pertains to deformed nuclei and the Nilsson model in par-
ticular (Nilsson, 1955). We shall largely use the nomen-
clature of de Shalit and Feshbach (1974, Chap. VI), where
there is a clear (and available) exposition of this formal-
ism. The unified model begins by expanding the nuclear
wave functions in a separable form,

%'(IKM) = [DMx(Bk)Xx(r,' )
[I] I.
4m

+( ")' 'DM, —rc(Bk» x(r')l-
(4.173)

where we consider only E ~0. The angular momentum

quantum numbers in the problem are defined in Fig. 7.
Here the total angular momentum I with projection M on
the laboratory z axis u, has been resolved into a collective
angular momentum R and an internal angular momen-
tum I, with I=R+J. The total angular momentum I has
projection K along the body-fixed z axis u,', and the inter-
nal angular momentum has projection Q as shown in the
figure. In fact, assuming that axial symmetry is retained
all throughout the motion, we have 0=K. In Eq. (4.173)
the rotation matrices depend on the angles Ok, which
determine the orientation of the body-fixed axes as a
function of the particle coordinates r;. These functions

FIG. 7. Labeling of angular momenta used in discussing de-
formed nuclei. The z axis is in the laboratory frame and the z'
axis in the body-fixed system.

contain the rotational content of the problem. The
remaining factors in Eq. (4.173) involve the intrinsic wave
functions P with dependence only on coordinates r,'-.
These may be expanded in eigenfunctions of J,

Xx(r,')= ga~Xx (r,'), (4.174)

where J Xx. (r,' ) =g (g ~ 1)Xx (r,' ). Furthermore, we
follow de Shalit and Feshbach (1974) and introduce the
notation

( —") X x(r,')= pa&( —)+X'+x(r,') . (4.175)

The occurrence of terms with K and IC in the speci—fic
combination given in Eq. (4.173) is a consequence of the
symmetry under a rotation by 180' about the y' direction,
which must be obeyed for an axially symmetric nucleus as
we assume here.

Let us next consider an irreducible tensor operator

TJ~ referred to the laboratory coordinate system so thatJ
it is related to irreducible tensor operators referred to the
body-fixed system in the following way:

~M,(')= & M*M ( k) .M ('' ) ~-
MJ

(4.176)

(
)M' —K' J I I' J I

—M'M~ M (4.177)

yields the following basic equation for the reduced matrix
elements:

Inserting this between states of the form given in Eq.
(4.173) and using the identity involving rotation matrices

' J~IIkDMI'. (Bk)DM M. (Bk)DM'x(Bk)
8

I' J I
—K' M,' K ~ '~

~M,'~ )+
I' J I

( —)'(K'i T, ,
i

—K)

(4.178)
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where

&K'I T,M IK&= Jd@&«(k»,M (4)&«(f »
(4.179)

( —)I&K'
I T~M, I

K—) =fdg X«(g )&~~ (g )

x( —")'-'x «(4)
and Ig I stands for a set of 3A —3 internal coordinates.
Specifically, we shall be interested in the electromagnetic
multipole operators and the calculation of their reduced
matrix elements using Eq. (4.178).

Let us turn now from this general situation to the
specific case of the Nilsson model. We assume that the
intrinsic states have a single unpaired nucleon moving in
a deformed potential plus an even-even core (thus we re-
strict our attention to odd-A nuclei here) Th. e core may
be treated in various ways, for example, as a rigid rotor or
as irrotational fluid flow. Indeed, as may be seen in expli-
cit model calculations (Moya de Guerra and Kowalski,
1980), these collective core contributions yield form fac-
tors which generally peak at low momentum transfer and
then fall rapidly with increasing q. Thus, except in the
low-q region, they may frequently be neglected with
respect to the dominant contribution from the single un-
paired nucleon. We shall do so in the rest of this section,
although in any detailed comparison with experiment one
should include the collective form factors as well.

The single unpaired nucleon is assumed to move in a
potential of the form (Nilsson, 1955)

neglected, and so conventionally the actual eigenstates of
the full Hamiltonian are labeled by the above set of
"asymptotic" quantum numbers which are approached in
that limit.

It is useful to expand the eigenfunctions of II in terms
of spherical solutions (i.e., of H with 5=C =D =0) la-
beled

I
NlAX) with K =A+X:

I
NKy) = gag"r InlAX=K A)—.

lA
(4.183)

Here the principal quantum number N has been taken to
be fixed, and the expansion coefficients are determined by
diagonalizing the Hamiltonian H in the subspace with
fixed N, K, and y, the last corresponding to all other
quantum numbers needed to characterize the state (for ex-
ample, the asymptotic quantum numbers discussed
above). We shall simplify the notation in the following
and consider the set [NKy I to be given. For fixed choo,

C, and D (or equivalently, fixed oooo, «—= —C/2fico~, and

p:2D/C; —see Nilsson, 1955), the energy eigenvalue corre-
sponding to the state in Eq. (4.183) may be obtained as a
function of 5. The expansion coefficients ai~ have been
tabulated by Nilsson (1955), who expressed them in
terms of p, , which is fixed for given N to reproduce the
shell-model sequence of levels as well as possible in the
spherical limit (5=0), and in terms of
q =—(5/«)(1 ——,

' 5 ——,", 53)

Finally, since we prefer to work with spherical states
where orbital and spin angular momenta are coupled to a
total j, (l—,

'
)j, we write

2 2 16mV= —M~coor M~coor 5—2 45

1/2

ro(e, y)
I NKy ) = g aij I

N (l ,' j), rnj. =K )—,
Ij

(4.184)

+Cl.s+Dl (4.180) tzij ——g & l A —,
' X=K —A

I
(l ,' )JK &ad~-

A
(4.185a)

with Hamiltonian II = —(A' /2M&')V' +V. Here 5 is a
deformation parameter (5 ~ 0+-+ prolate deformations,
5&0~oblate deformations) and C and D are constants.
The first two terms in this potential arise from assuming
that we have an axially symmetric harmonic-oscillator
potential with oscillator frequencies

with

co, =coo(1——,5),
co~ =coy =coo( 1 —

3 5) p

aio(1 ——,52 ——„53)' 6—:choo
——const .3 1/6

(4.181a)

(4.181b)

(4.182)

The eigenstates of the Nilsson Hamiltonian with
C=D =0 may be labeled by the quantum numbers,
K [Nn, A] where N =n„+n~+n, is the number of oscil-
lator quanta, n, (1V is that quantity for the z direction,
and A is the z projection of the orbital angular momen-
tum satisfying

I
A

I
=N n„N n, —2, . . .——, 1 or 0. In

fact the parity m is given by n=( —) . The. z projection
of the spin must satisfy X=K —A=+ —,'. For large de-
formations 5 the terms Cl.s and Dl in Eq. (4.180) can be

v'l +1/2 Kamic+ it~+&—l +1/2+Kar«
for j=l+ —,

'

Yl +1/2+KaI«+ i/2 —&I + 1/2 —KaI«
for j=l ——,

'

(4.185b)

where as above we suppress the labels Ply which are
common to all of the a's or a' s. In fact, for fixed N and
j, only one value of I can occur, since the states have a de-
finite parity, and so the sum over l can actually be omit-
ted.

It is then straightforward to reexpress the reduced ma-
trix elements in Eq. (4.178) for this single Nilsson orbit in
a form which is closely allied to our discussions in the
preceding formalism sections:

Note that, in contrast to the aI~ defined above, the numerical
values given by Nilsson (1955) are not normalized. %'e use
+&~a~~ ——1, which implies that g, . aIJ = 1.
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& &Kr;I'I
I Tz(q) I INKS;I &

(4.186)

given by

' '(a a)=y, ' '(j;j)ap,'a„NKp; I'I r K;I'I
(4.187)

a'a

where now the one-body density-matrix elements are
and where we have defined the following convenient func-
tion:

4, "'(j;j)=—( —)'-j'[I ][I]
j' J j . I' J I j' J j

—E 0 IC —IC 0 IC —IC 2K —E —IC 2IC —IC+(—) (4.188)

Using properties of the 3-j symbols, it is easy to show that

yK; II'( ~ . i
) ( )I' I( )j' —jyK; I'I—

(
~ i. (4.189)

Now, specifically for elastic electron scattering, we shall be interested in the case where the ground state begins a rota-
tional band with I'=I =IC, so that we have

yK( .r.
) yK;KK( .i.

) ( )K —j'[K]2
E J E j' J j . IC J E j' J j—E 0 E

)
—IC 0 E —E 2E —E —E 2E —IC

+(—)K '

(4.190)

The density-matrix elements [the f's in Eq. (4.187)] are to
be interpreted as proton or neutron densities, as discussed
in Sec. IV.C. That is, we have elastic magnetic electron
scattering form factors given by Eq. (4.130), where for the
quantities QI(a a)~ required in calculating the densities

[Eqs. (4.131)] we use exactly our present 1t 's with

m, =+—,
'

only for an odd-proton deformed nucleus and

m, = ——, an odd-neutron case.1

Furthermore, note that the second terms in Eqs. (4.188)
and (4.190) vanish unless J)2K. Generally one finds
that the 3-j symbols occur in such a way that this second
term is relatively large, whereas the first term may be
quite small. Thus intermediate multipoles (such as M3
when M 1,M3,MS can occur) are generally suppressed
with respect to the spherical single-particle form factors,
while the M 1 and the higher allowed multipoles having
J)K are not suppressed. We shall return to specific ex-

amples which illustrate this suppression in Sec. VI.D. Fi-
nally, we remark that these developments must in fact be
modified somewhat for IC = —,', where decoupling parame-
ters occur (Nilsson, 19SS) and where the problem does not
separate as easily into a collective core plus a valence nu-
cleon contribution. We shall not consider the peculiarities
of this K = —, case in the present review, as the published
literature has not treated this special problem.

To conclude this section let us discuss this suppression
in more general terms. I.et us consider a given major
shell (N fixed) and specifically take all Nilsson configura-
tions which merge into a given spherical state (i.e., specif-
ic quantum numbers lj) in the 5=0 limit. While we real-
ly cannot take 5=0 in this model (since various couplings
which have been neglected for finite 5 would then be im-
portant), we can consider 5 to be small, and so in Eq.
(4.187) we have ajj'=aII =1. Then we have, using Eqs.
(4.186) and (4.187),

I &K;I IITI(q&IIK;I=K& I'

=1&VIITI«&IIIj& I'[A" V j&]'. (4.191)

1&IV& I &IJIITI«&lllj& I'2j+1
(4.192)

~here

Rz(j)=2 g g [PI' (j;j)] (4.193a)
1

K &0 + I'&K

2

J J J J J
K —Ko + KK —2K

K&0

2

(4.193b)

j j J
2J+) + IC E —2IC+2

'2

(4.193c)

For a spherical single-particle orbit labeled lj we would
have

Let us now average over initial states and sum over final
states in the following way. For final states we sum over
the entire rotational bands built on each bandhead labeled
K; that is, we have QI, K for each K. In averaging over
initial states we have a statistical factor (2K+1) ' and
then must sum over K with a degen'eracy factor
nj:(1/nj)QK 0. Here nj ——j+—,

' (i.e., there are j+—,
'

positive K values for a given value of j). Performing
these operations, we have

2 I
&K'I'I

IITI(e&l IIK I =K & I

'
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2

(4.194)

spherical case contains in general a wider selection [see
Eq. (4.194)]. A special situation occurs when j= 2, for
then all magnetic substates can couple, and indeed the
strength is unity (see Fig. 8).

R„ (i)

0.8

0.6

0.4

0.2

/2

I

S/
I

9/

FIG. 8. The quantity RJ(j) defined in Eq. (4.193) as a function
ofj for various multipolarities J.

and so the above expressions reflect the equivalent total
single-particle strength in this simple deformed model.
We have averaged over the different K states which
merge into the same spherical limit and have summed
over the entire rotational bands built on each EC state,
since these (in general inelastic transitions for 5&0) all be-
come part of the spherical limit strength when 5~0. In
Fig. 8 we show the intensity reduction factor Rz(j) for
typical values of the quantum numbers J and j. For
many cases the strength lies between about —, and —,'.
This is to be contrasted with results for a given value of K
and where we do not sum over the rotational band built
on this bandhead. Then a given multipole may be very
drastically reduced from the spherical single-particle esti-
mate. For instance, we shaH see in Sec. VI.D examples
where specific multipoles may have strength reductions
below 10 . The above exercise was performed to answer
the question: Where does all the strength go? Clearly a
lot of it goes into the inelastic excitations of the rotational
band and into other states with different bandheads (dif-
ferent K values). Beyond this, the remaining reductions
typically by 2 or 3 in strength, result from the limited
number of magnetic quantum numbers which can be con-
nected in the deformed case. The nature of the overlaps
which occur when a deformed core is present allows only
K to couple with +K [as in Eq. (4.193b)], whereas the

E. Meson-exchange currents L

In this section we shall summarize some of the main
features involved in discussing meson-exchange currents
(MEC) for elastic magnetic electron scattering. The first
attempts to include MEC effects in a realistic way were as
corrections to one-body calculations of magnetic moments
of nuclei (that is, the extreme long-wavelength limit of the
elastic magnetic form factors). These calculations, as ex-
emplified by the work of Villars (1947) and Miyazawa
(1951), in general accounted for many of the existing
discrepancies between experimentally measured values
and previous one-body calculations, thus providing evi-
dence for the presence of electromagnetic exchange
currents. In more recent times MEC contributions to
form factors have been explored over a wide range of
momentum transfer.

The few-body nuclei in particular have been intensively
studied, as they provide an ideal testing ground where nu-
clear dynamics and the nature of the electromagnetic
responses come together in a reasonably controllable way.
We shall return in Sec. VII to a discussion of the few-
body ground states in more depth, including reference to
current MEC calculations, and so at this point let us only
note a few of the highlights of such studies. The 2 =2
system has been an important building block in discus-
sions of such two-body effects as meson-exchange
currents. For example, in considering np radiative cap-
ture, n +p~d+y, Risks and Brown (1972) found that
inclusion of such effects led to a 10% increase in the
cross section near threshold and brought the theoretical
predictions into agreement with experiment. Important
MEC effects can also be seen (Hockert et al. , 1973; see
also Lock and Foldy, 1974,1975) in the electrodisintegra-
tion of the deuteron (e+d~e'+n+p). These effects
substantially change the shape of the differential cross
section near threshold and account for as much as an or-
der of magnitude increase at momentum transfers of
q =650 MeV/c (i.e., compared to simple impulse approxi-
mation calculations). This brings the theoretical calcula-
tion into rather good agreement with the experimental
data. Meson-exchange-current effects in elastic electron
scattering from the deuteron have also been studied (note
that these are isoscalar currents and not the isovector ones
we shall be focusing on for complex nuclei). We shall re-
turn in Sec. VII.A to the 3 =2 problem in more detail,
and here only note a few of the published papers on this
subject —Chemtob et al. , 1974; Fabian et al. , 1974; Jack-
son et al. , 1975; Gari et al. , 1976. In Sec. VII.A we
shall also mention alternatives to these "standard" treat-
ments of MEC, mainly through the use of relativistic
two-nucleon wave functions.

The A =3 systems, He and H, have also received con-
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siderable attention in studies of meson-exchange currents.
Now both isoscalar and isovector contributions are
present in elastic electron scattering. Since the nonrela-
tivistic Schrodinger equation can be solved numerically
with a high degree of accuracy using Faddeev or varia™
tional techniques, these nuclear ground states also provide
special testing grounds for MEC studies. When high-q
measurements on both He and H become available, it
will be possible to separate the isoscalar and isovector
contributions from one another. Predictions have been
made for elastic magnetic electron scattering from both
targets, and we shall return in Sec. VII.B to a more de™
tailed discussion of the results of such calculations and
comparisons with existing data.

For complex nuclei the problem is further complicated
by uncertainties in the nuclear many-body wave func-
tions. The general form of the lowest-order currents was
discussed by Chemtob (1969), Chemtob and Lumbroso
(1970), and Chemtob and Rho (1971), as it applies to
complex nuclei. Building on this, calculations were per-
formed using shell-model wave functions for a variety of
nuclei (Dubach, 1975,1980; Dubach et a/. , 1976), and we
shall use these references as the basis for the rest of the
discussion in this section. In addition to the work of Du-
bach and collaborators, the problem has also been con-
sidered by other authors (Suzuki, 1978; Mathiot and
Desplanques, 1980; Suzuki et al. , 1981), and we shall
quote their results when specific nuclei are discussed in
Sec. VI.

A general approach to studies of meson-exchange
currents was developed in early papers such as the work
of Osborn and Foldy (1950) and modified and extended
by Bosco and Piazza (1970), Stichel and Werner (1970),
Lock et al. (1974), and Lock and Foldy (1975). Several
recent papers provide useful discussions of the subject
(Friar et al. , 1982; Friar, 1983; Riska, 1983). Let us be-
gin by looking at the diagrams shown in Fig. 9, which are
representative of typical meson-exchange-current contri-
butions. Figure 9(a) shows a pion in flight between two
nucleons, interacting through the electromagnetic field
(i.e., in our case, with the virtual photon which is being
exchanged with the electron, as in Fig. 5). Figure 9(b), on
the other hand, has the photon interacting with a nucleon
and producing an intermediate % or X, which then ex-
changes the pion with another nucleon and goes to a final
two-nucleon state. In the discussion to follow we shall see
that our main interest is in the % intermediate state. Fig-
ure 9(c) is similar except that an intermediate nucleon res-
onance N* is present. Important here is the inclusion of
the b.33(1232). One common feature of Figs. 9(a)—9(c) is
the exchange of a pion which will make these currents rel-
atively long ranged, just as the one-pion-exchange part of
the nuclear force provides a good representation of its
long-range nature. In contrast, Figs. 9(d) and 9(e) have at
least one heavier meson (e.g., p, co) and so lead to shorter-
ranged contributions to the overall meson-exchange
current. The prevailing approach to this general problem
of an infinite series of MEC diagrams has been assumed
that these longest-ranged pieces are likely to be dominant

N

N

(c)

(e)

FIG. 9. General diagrammatic expansion including meson-
exchange contributions. Here M, M' denote all exchanged
mesons other than pions.

and that all shorter-ranged pieces will be suppressed by
the repulsive short-range behavior of the XX interaction.

Alternatively, one might argue that the short-range na-
ture of both the NN interaction and the MEC may be
better described with quark-gluon degrees of freedom
rather than the baryon-meson language we are using here.
We shall not develop these parallel approaches further
here, but instead follow the more conventional procedure.
Thus we shall only consider contributions from pion-
exchange MEC, although in discussing specific cases in
the rest of the review we shall refer to work which goes
beyond this limited scope whenever it is appropriate.
Furthermore, we shall only consider the leading contribu-
tions in an expansion in powers of M~ . As we shall see
below, this leads us to conclude that the leading MEC
contributions are (1) purely isouector and (2) purely trans
Verse (i.e., with no charge contributions). Finally, we shall
set up the problem in a form that is suited to discussions
of complex nuclei, although the few-body systems are, of
course, not excluded. As mentioned above, these latter
systems are generally treated somewhat differently (and,
in fact, the diagrams we are ignoring here are frequently
included in contemporary calculations for the A =2 and
A = 3 nuclei).

Following Dubach (1975,1980; Dubach et al. , 1976),
let us consider the currents corresponding to some of the
Feynman diagrams in Fig. 9. We assume a pseudoscalar
coupling of the pion to the nucleon and use the conven-
tions of Schweber (1961) (in this subsection only). We be-

gin with Fig. 9(a). Here a charged pion in flight between
two nucleons undergoes an interaction with the virtual
photon. We take the incoming nucleons to have four-
momenta (pi)„and (p2)„, the outgoing nucleus to have
four-momenta (p'i )& and (pz )&, and the virtual photon as
usual to bring in the four-momentum q&. Overall
momentum conservation requires that q& ——(p'i+p2 —pi
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(4.195)

—P2)„. The fact that a charged pion must be exchanged
forces the two-nucleon current to have a purely isovector
isospin structure:

'" "'—"' "'=—( "'x "')

where the labels (1) and (2) refer to the two nucleons. In
momentum space this diagram then yields the current (we
indicate by a 2 that this is a two-particle operator and in
second quantization will yield a two-body operator)

~ 2 M(2)( I I . &eg N ()) (2)
p (Pl F1 iP2sP2 ~I()pionic 3, , (r X r )35(pi +p2 —pi —p2 —q)(pi —P 1 +P2 —P2)(21r) (E1E1E2E2 )

'~2 IJ

X[(P'1 —Pi) —I +'&] '[(P2 —P2)' —II1'+is] '[U(Pl)y5U(P1)][U(P2)y5U(P2)],

(4.196)

where e is the proton charge, g is the pion-nucleon cou-
pling strength [note also that f =(gm /2M' ) 14m], and.
where Ei ——(

~ pi ~
+Mdiv)'~, etc. The two factors con-

taining the pion mass m are propagators corresponding
to the pion exchanged between nucleon 1 and the photon
interaction vertex and between this vertex and nucleon 2.
The final two factors contain the nucleon spinors U and
U and involve y5 corresponding to the pseudoscalar cou-
pling. The product of the two pion propagator factors
may be rewritten (Dubach et al. , 1976) using the Feyn-
man parametrization,

(4.198)

+ i/2
1 2 2 ~ —2f dU I [pi —pi+ —,q(1 —2U)] +L~ is j— , (4.197)

where
L =[I'+—,'q (1——4U')]'~',

and where we take the lowest-order nonrelativistic reduc-
tion and neglect the nuclear recoil energy (i.e., take
qo ——0). Doing this as well for the spinor matrix elements
leads to the conclusion that, in this limit, the current de-
pends only on pi —pi and p2 —p2 for fixed q and not on
these independent momenta. Then, upon Fourier-
transforming

I I 1y» 2 2 q)pionic 6 f pidpidp2dp2exp[E(pi xi +p2 x2 —pi'xi —p2 x2)]J (pi, pi, p2, p2.q), , (4 199)

we may define the coordinate space two-nucleon current corresponding to this "pionic" or "pion-in-flight" diagram by
(2) I I (2) I IJp (xjyxi yx2tx2 jq)picnic= Jp (xiyx2yq)5(xi xi )5(x2 x2) (4.200)

For the three-vector components (1M =1,2,3) of this current (which we need for the magnetic multipole operators) we
have

(X1 X2 q)pionic e(f~& ) [7 X& ]3(cT V )(0' 'V ) f dU(lqfU+x) iq.(R—ur)8 (4.201)

where r=xi —x2 and R= —,'(xi+x2) are the relative and
center-of-mass coordinates for the nucleon pair, and
where we define x=L r. Note that for the time com-
ponent of this current (p =0), we have to lowest order

JL )i
7 ii Ji

+
1&—

+

(2)Jo (xi,x2, q)p.. .-0, (4.202)
(a) (b) (c)

since by Eq. (4.196) it is proportional to (pi —Pi+p2—p2)o-O(p /Miv) and so is of higher order in an expan-
sion in powers of MN '. Thus this meson-exchange
current does not contribute to the Coulomb operator to
the order we are considering.

Next let us consider Fig. 9(b), which has an intermedi-
ate nucleon or antinucleon between the photon-nucleon
vertex and one of the pion-nucleon vertices. This contri-
bution is expanded in Fig. 10 into a set of time-ordered

+ „N + iiN
ii + ~ ~ ~

(d) (e)

FIG. 10. Decomposition of Fig. 9(b) into time-ordered contri-
butions.
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diagrams (the downward-going solid line now represents
an antinucleon N). Figures 10(a)—10(c) are called "pair"
diagrams, since the process here is one where the photon
creates an NN pair, after which the N annihilates with
another nucleon and creates an (exchange) pion. Such
terms give rise to two-body currents and must be includ-
ed, since they would not exist unless a pion were ex-
changed. Figures 10(d) and 10(e) are, on the other hand,
not proper exchange contributions to the current. These
may be cut to separate the one-body electromagnetic part
from the simple nucleon binding via one-pion exchange,
and this is part of the nuclear force which is handled dif-
ferently (i.e., we actually use proton and neutron wave

functions in a nucleus where NX interactions are incor-
porated by solving the many-body Schrodinger equation
to some level of approximation). Finally, Fig. 10(f) shows
a contribution stemming from the interaction with a nu-

cleon that is at the same time exchanging a pion with
another nucleon, the so-called "recoil" term. This term
can be shown (Chemtob, 1969) to be down by a factor of
m /M)v compared to the contributions from Figs.
10(a)—10(c); moreover, over much of the q range, this
term is canceled by the wave-function renormalization
graph. Thus, from all of these diagrams [all parts of Fig.
9(b)], we extract only the pair terms (of course the photon
may attach to any of the four nucleon hnes). To guaran-
tee that only the N line occurs, we need to keep only the
negative frequency part of the nucleon propagator and

make the replacement (Chemtob and Lumbroso, 1970)

~&p+r p —M)v

p M—~+ t E 2E~ po+E~ —t s
(4.203)

when applying the Feynman rules to these diagrams. The
spinor matrix element for the particle labeled 1 then takes
the form

0

U(P1 )1 p[PEp' q +P (Pl q) ™)v]P5U(P))

(4.204)

which reduces to

o'" (p=1,2, 3),
(4.205)

Thus once again the meson-exchange current makes no
contribution to the Coulomb operators in lowest order:

(2)Jo (x),x2, q)~„,=0 . (4.206)

Upon taking the nonrelativistic limit of the spatial part of
this current and neglecting qo as before (the details are
given in Dubach et al. , 1976), and then performing the
Fourier transform as above, we find for the pair currents

J' '(x x q) = ef (~'"—X~' ') [(o"'u )o' 'e '+o'"(o' 'u )e '](1+x )e "Ix (4.207)

where u, is a unit vector in the r direction and where

x =I r. Note that once again the isospin dependence is

contained in the factor (v' 'Xv' ')3. When the two-body

currents generated by taking the sum of these pionic and

pair contributions are combined with the usual one-body

electromagnetic current discussed above in Secs.
IV.A—IV.D, we have a model for the total current to
lowest nontrivial order in an expansion in powers of
M)v '. lt can be shown (Dubach et al. , 1976) that when

the nuclear Hamiltonian is taken to be the sum of the

one-body kinetic energy and a two-body potential energy

which includes the one-pion exchange potential (OPEP),

+2
V J (~(().~(2) )(o(1).P(1) )

tion dressings that occur (Arenhovel, 1979). This may be
done in a variety of ways (Riska, 1980), but care must be
taken to maintain the current conservation condition dis-
cussed above (Fabian and Arenhovel, 1976). Further-
more, different electromagnetic form factors may be used
for the different particles (e.g., nucleons and pions as we
have in the contributions discussed above), whereas in

many calculations they are all taken to be equal to the
single-nucleon electromagnetic form factor. If the former
is done, then special provisions must be made to preserve
gauge invariance (Friar, 1983).

Next let us turn to the nucleon resonance term [Fig.
9(c)]. For this we quote the results of Dubach (1980) and
Chemtob and Rho (1971) without elaborating further on
their derivation:

(4.208)

and any pieces due to the exchange of neutral mesons,
then the principle of current conservation is satisfied.

Note that the currents described above [Eqs. (4.201)
and (4.207)] have been obtained using point couplings for
the NX vertices. In fact, vertex functions can be incor-
porated into the formalism to reflect the strong interac-

~ONote that the sign here is the opposite of that in Dubach
(1980), where it must be remembered that we always have q
entering the nuclear vertex. This difference in conventions on
the direction of q led to the wrong sign in the above-quoted
work (see Hicks, 1982).
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Pg ~ p"'(0) 4h2 (qXu )u (r")o'"e' *'+~'"~"' 'q*')
12~~ dx~

+qX(~"'cr")e"*'+ '" '"e""')

—hi(~'"x~"') qx (~"'x~"')(e '+e ')

8

dx~ x~
(4.209)

where h I
——0.074m and h2 ——0.0658m are the cou-

plings used by Chemtob and Rho (1971) to take into ac-
count both the 633 and Roper resonances. In fact, the
values of h i 2 are mainly given by the 533 Note that now
we have both charged pion exchange involving the factor
(v")Xv( ')3 and vr exchange involving the factors v.3" and

Since this current may be shown to be divergence
free by itself (Villars, 1947; Chemtob and Rho, 1971), it
makes no contribution to the continuity equation dis-
cussed above. Once again the X* MEC contributes noth-
ing to the Coulomb operators to the order we are work-
ing:

This is especially relevant for the few-body systems
when the measurements extend to high q, and p-exchange
diagrams for example have been considered in those cases
(see Sec. VII). However, for complex nuclei, where the
accessible range of momentum transfers is more limited,
generally such extensions are not yet felt to be necessary.

To construct second-quantized operators, as in Eq.
(4.89), we require two-particle reduced matrix elements of
these currents. First, let us note the isospin dependence
occurs in two (purely isovector, T= 1,MT ——0) forms:

~12) i (~(1)x ~(2))
2

Jo (x),x2, q)&, -0 .(2) (4.210) (]) (2) (&) (2)7+ T+
Then, neglecting contributions from heavier-meson ex-

changes [Figs. 9(d) and 9(e), for instance] and considering
the present set of one-pion-exchange diagrams in lowest
order only, we have as total MEC contributions

)P = P3 ~ n —1~2
n) (n)

Their reduced matrix elements are simply obtained:

(4.212)

Jo (xi x2'q) =0

(4.21 la)

(4.211b)

&( g z )~'I l~i"'l l( z & )~& =~3(&~0&~)+&~i&~o),
(4.213)

&( 2 2 )~'I l&i"'l l( z z )~& =~3[(—)"(&~0&~i—&~)&~0)

This diagrammatic analysis of meson-exchange-current
contributions may be pursued to include effects which go
beyond the lowest order. For example, expansions to
higher order in M)v may be studied, relativistic effects
may play a role, or heavy-meson exchanges may be incor-
porated into the formalism. For instance, as the momen-
tum transfer is increased, shorter-range phenomena are
expected to be of greater importance.

+~2&~ i&~i] .

In dealing with the rest of the dependence in the operators
we wish to make multipole projections in the usual way
[Eq. (4.28)]. In fact, in the expressions for the meson-
exchange currents above we have Fourier transformed
from x dependence to q dependence and, after a little ma-
nipulation, we can write equivalently

TJM
' (xi,x2', q ) = ( i ) f dQ—~ [ Yq(Q~ )13)J' '(xi, xz, q)]J

4m.
(4.214)

where J' '(xi, xz,q) is the sum of the MEC contributions
discussed above (and is a rank one or three-vector opera-
tor) and where we have suppressed the isospin dependence
for clarity. The two-particle matrix elements required in
Eq. (4.89) may then be calculated. While this is straight-
forward in principle, it is in practice rather tedious, usual-

ly involving a Brody-Moshinsky (1960) transformation to

I

the relative and center-of-mass coordinates of the pair of
particles and requiring considerable nontrivial Clebsch-
Gordanry (Dubach et al. , 1976; Dubach, 1980; for anoth-
er approach see Suzuki and Hyuga, 1983). We shall not
pursue these developments any further in the present re-
view.

As in the treatment of one-body electromagnetic opera-
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tors, the problem factors into one- and two-particle ma-
trix elements, which we have now discussed, and one- and
two-body density-matrix elements, which contain the de-
tailed nuclear many-body problem input into the entire
nuclear matrix elements. The one-body formalism pro-
ceeded from Eq. (4.86); now the two-body contributions
are to be calculated using Eq. (4.92), with the two-body
density-matrix elements defined in Eq. (4.93).
Equivalently (and this is what was done, for example, by
Dubach et al. , 1976), one may use coefficients of frac-
tional parentage (de Shalit and Talmi, 1963). In fact it is
necessary in general to consider operators with arbitrary

l

ranks, which require an extension of the usual formalism
as it applies to the special case of the two-body nuclear
potential (Glaudemans et al. , 1964). Rather than discuss
this approach further, let us conclude this section by con-
sidering the two-body density-matrix elements in one spe-
cial case where the nuclear structure is very simple.

Let us return to a configuration which has one particle
above a 0+0 N =Z closed shell

I
0), previously discussed

within the context of one-body operators in Sec. IV.C [see
Eq. (4.138a)]. Using this as the ground state and taking
matrix elements as in Eq. (4.93), we find that

1+J;i((a b )g M;(ab)gM)= /~ i/~i — ($~o$~$+$,$$ ) [g 'j[g ]

where we are only interested in isovector operators and so have taken T= I, and where we consider only cases with
J=odd. Clearly the single-particle labels (a', b', a, and b) are contracted together so that two become the quantum
numbers of the valence particle a~ (a, & EF) and two become those of a core particle a„(s„(sF).

Now if this two-body density matrix is used with the two-particle matrix elements discussed above, we have two situa-
tions to discuss, m

—+ exchange involving Xio ' and n. exchange involving Xio', n= 1,2 [see Eq. (4.212)]. This leads to (see
also Dubach, 1980)

Jp J~ J
( lp&o,'To:.TJ.I (q)::lp& To)o+ &

———2W6 g [X'][X]g '+r g ((JpJx V I ITz (q)I I(JxJp V ) ~

a„&F

(4.216)

(1p:J;T::T'.', ' (q)::lp:J;T ) o, „,
(4.217)

Here Jo ——jz and To ———, [we are using the ground state
given in Eq. (4.138a)], and we have explicitly taken care
of the isospin dependence in these matrix elements, leav-
ing only matrix elements reduced in angular momentum.
Note that only exchange terms can contribute in Eq.
(4.216) and only direct terms in Eq. (4.217). In fact, look-
ing even more closely at the isospin content in the prob-
lein, in the case of the m

—+-exchange terms (the pionic,
pair, and part of the N diagrams), if jz refers to an odd
valence proton, then the sum over a„within the Fermi
sea involves only neutrons and vice versa. In the case of
the m. -exchange terms (the rest of the N diagram), the
sum extends over the entire Fermi sea in both cases.

V. ILLUSTRATIVE EXAMPLES

This section is of rather special character. It is intend-
ed to give a few examples of the physics accessible via
Inagnetic electron scattering. This section is oriented to-
wards the reader who is not interested in details, the

smaller effects, or a quantitative comparison of theory
and experiment. For a more thorough discussion, the in-
terested reader is referred to Secs. VI and VII. Here, only
a qualitative and superficial sketch of the physics of mag-
netic elastic form factors is given.

A. Configuration mixing

The first example we want to present concerns the
magnetic form factor of ' C. This nucleus has a spin of

, which makes the interpretation of magnetic form
factors particularly straightforward. The only multipo-
larity that can contribute is MI. For most nuclei, with
spin Jo& —,', the multipoles MI,M3, . . . , 2JO contribute
to the magnetic form factor. While charge and magnetic
form factors can be separated via Rosenbluth plots, indi-
vidual multipolarities cannot be separated experimentally
unless polarization observables are measured (see Sec.
VIII). An incoherent sum over different multipolarities
containing different bits of physics obviously complicates
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with

Fmi(q)-& lp
I jo(qr) —ajar(qr)

~
lp)

(
~ ~

) = I R (r)r ji(qr)dr .

(5.1)

(5.2)

Here R(r) is the radial wave function, assumed to be
identical for p3/z aiid pi/2 nucleons. The coefficient a
depends on the coupling scheme and the amount of con-
figuration mixture in the ground-state wave function.
Specifically, a =2 for jj coupling, a =0.29 for I.S cou-
pling, and a=1.18 for the Cohen-Kurath wave function
(Bernabeu and Ros, 1974; Lapikas et al. , 1975). An
overall factor in front of the matrix element in Eq. (5.1)
also depends on the coupling scheme. If this factor and
b„, are fine tuned to fit the low-q data, then one obtains
the curves shown in Fig. 11 (Hicks et al. , 1982). It
should be noted that the curves in Fig. 11 have been ob-
tained with different values for the radial parameter (b or

the interpretation.
For '3C, the dominant configuration is that of a lpi/2

neutron outside a closed ' C core. However, this configu-
ration has a spectroscopic factor of only 0.81 (Gubler
et al. , 1977), and so other configurations cannot be
neglected. The next dominant configuration involves an
unpaired p3/z nucleon coupled to some excited state of
the 2=12 core. The shell-model calculation of Cohen
and Kurath (1965) clearly shows the importance of this
configuration.

For the qualitative discussion given here we shall re-
strict ourselves to configurations involving only unpaired
p i /Q p3/z nucleons, and we shall ignore the difference be-
tween protons and neutrons (for a detailed discussion see
Sec. VI). In this case the magnetic form factor retains a
very simple structure [see Eq. (4.130)],

ro) in order to reproduce the position of the diffraction
mlnlmum.

Ignoring for the moInent the experimental data, we
note that FM is very sensitive to the single-particle config-
uration assumed. The form factors for the two extreme
models differ by more than a factor of 10. This is to be
contrasted with the charge form factor which, in the
simple-minded model used here, would not depend at all
on the configuration mixture; even for a more realistic
model, F,h would be quite insensitive to such nuclear
structure effects.

The agreement between theoretical prediction and ex-
periment in Fig. 11 is not good for q & 1 fm '. This is
due to the fact that, for such a weakly bound neutron, a
harmonic-oscillator wave function is obviously too primi-
tive. Using a more realistic radial wave function calculat-
ed in a Woods-Saxon potential well leads to a much larger
I'I for q &2 fm ' and allows a better, though not per-
fect, fit to the data (Fig. 11).

It is clear that the above interpretation of the data is
deficient in several ways. In particular, the neglect of
configurations other than lp is doubtful. This neglect is
probably responsible for the lack of fit for q &2.5 fm
For the present purpose this does not change things in a
decisive way. Figure 11 shows that FM ~ strongly depends
on the exact configuration of the unpaired nucleon. This
results from the fact that magnetic form factors contain
interference terms involving different components of the
ground-state wave function. M1 transitions provide ex-
cellent observables for the study of spin-fhpj= 1+—,~j= 1 ——,

' transitions. Such interference terms
are responsible for the high sensitivity of magnetic
scattering, and have led us to think of magnetic form fac-
tors as configuration analyzers (Donnelly and Gokalp,
1981).

t 0 —tC1)

F (q)

tO

l04-
(b)

10

10 I I

2 3
q (fm ')

FICx. 11. Elastic magnetic electron scattering from ' C. (a)
Data for the M 1 form factor FTZ /4m. of ' C with predictions
using harmonic-oscillator wave functions and different coupling
schemes. (b) The effect of using a more realistic Woods-Saxon
wave function (Hicks et al., 1982).

B. Radial wave functions and high multipolarity

As a second example involving magnetic scattering we
discuss nuclear moments of very high multipolarity.
Here we try to go to the extreme opposite of the previous
example and suppress the effect of configuration admix-
tures on F(q) to the highest possible degree. If this is
possible, then the momentum-transfer dependence of F(q)
can be exploited for a determination of the valence nu-
cleon radial wave functions (Sick, 1980).

Having shown in the previous ' C example the strong
sensitivity of magnetic form factors to configuration mix-
ing, we find that it is not immediately obvious how to
eliminate this sensitivity. To understand how this can be
done we shall consider a nucleus that has one unpaired
particle (or hole) outside a closed shell. We assume that
the j value of this nucleon (j=I+—,) is the highest of all

occupied shells, and that the ground-state spin Jo is rath-
er large ( —', , —', ,. . .). For this particular case we can easily

show that the form factor of the highest allowed multipo-
larity A=2Jo has a strikingly different sensitivity from
that discussed above (Donnelly and Walecka, 1973a).
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F~~(q)=constX J R (r)j A i(qr)r dr (5.3)

shows the direct relationship of F~z to R (r). Equation
(5.3) applies in particular near the main lobe of the MA
form factor, which results from the optimal overlap of
the (surface) peak of R (r) and the pronounced first max-
imum of jA i(qr}. A plot of R (r) and j~ i(qr) for
A=9 and two values of q is shown in Fig. 12 for a lg9&2
neutron radial wave function. For q -2.5 fm ' there is a
strong constructive interference that is important in
suppressing wave-function admixtures that show up
mainly via the interference of smaller components respon-
sible for diffraction minima and secondary maxima of

Magnetic form factors of very high multipolarity,
M7,M9, are rather exotic subjects, and their geometric
structure is less than obvious. For J aligned parallel to

The electromagnetic interaction being very weak, the
electron interacts only with one nucleon at a time. More-
over, magnetic scattering of multipolarity 2Jo corre-
sponds to a complete spin-flip of the nucleus. Conse-
quently, this form factor cannot receive any contribution
from shells with j &Jp. The nuclear ground state will
contain, for example, 2p2h admixtures even for "closed-
shell" nuclei. Most of these will concern states with

j &Jo (since Jo is large) and will not contribute to mul-

tipolarity 2Jp. Only those 2%co excitations including
states with j & Jp will give a nonzero contribution to this
form factor. A quantitative study of such excitations
(Arita, 1977; Platchkov et al. , 1982) shows that for
selected cases involving large Inultipolarity A their contri-
bution is negligible at the present level of precision.

If F~~ is indeed very insensitive to configuration ad-
mixtures, then the shape of E(q) gives direct and precise
information on the radial wave function of the valence
nucleon. The equation

the z axis, the direction of the magnetization p(r) is
parallel to the z axis. The radial dependence of the mag-
netization density is shown in Fig. 12. The azimuthal
structure of

~
p(r)

~
=p(r) is determined by the corre-

sponding spherical harmonic. We can represent this an-
gular part by the length of the radius vector defining a
closed surface. To avoid negative radii we shall take for
values of p(r) the difference between this radius and that
of the unit sphere. The resulting surface (Sick, 1980) is
shown in Fig. 13. It allows one to visualize the M9 mag-
netization density in the same way we usually employ to
represent a quadrupole deformation by an ellipsoid.

Although these magnetic form factors of high multipo-
larity are somewhat exotic, they can actually be observed
experimentally without too much difficulty (Li et al. ,
1970). The main maximum of FMa occurs at large q (-3
fin '), where the charge form factor(s) and magnetic
form factors of lower multipolarity have already become
quite small. As an example, the M7 form factor of 'V, a
nucleus with an unpaired f7/2 proton, can be observed
even at 8=155', as shown by Fig. 14 (Platchkov et al. ,
1982}. The main peak of the M7 form factor stands out
clearly and can be analyzed with little ambiguity.

From the FM~ form factor, the rms radius of the corre-
sponding radial wave function has been extracted with an
accuracy of —1%. The calculation of configuration mix-
ing (Arita, 1977) shows that wave-function components
with j &Jp lead to changes of the extracted rms radius of
& 1%. The meson-exchange-current contributions give a
non-negligible effect that, expressed in terms of a change
of rms, amounts to -2%. Using modern calculations

87S

0.02

0.01

-0.01

r (fm)

FICx. 12. 1g9/2 radial wave function squared of Sr (solid
curve) together with remainder of integrand [Eq. (5.3)] for two
momentum transfers.

FIG. 13. Angular shape of the 29 pole (pentekosiadodekapole),
magnetization density.
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F (q)
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FIG. 14. The magnetic form factor FT4m of 'V (solid curve), together with the contribution of individual multipoles. The charge
form factor contribution CG is given for a scattering angle of 8= 155'.

(Mathiot and Desplanques, 1980), one can correct for this
MEC contribution with an uncertainty of perhaps —1%
in the final rms radius. These numbers demonstrate that
by appropriate choice of nucleus, multipolarity, and
momentum transfer, the radial-wave-function sensitivity
of magnetic scattering can be enhanced such that all other
influences get reduced to manageable "corrections. "

It is clear that such a precise measurement of the radial
wave function R(r) can be performed for a few special
cases only. Even this limited information is most valu-
able, however. For unpaired neutrons, it provides the
least ambiguous information on the neutron radial distri-
bution (Sick et al. , 1977). For the interpretation of the
many nuclear reactions that depend on a precise
knowledge of R (r)—nucleon transfer reactions in
particular —these cases can serve as valuable benchmarks
(Dieperink and Sick, 1982).

C. Coupling to a deformed core

Our third example concerns the magnetic form factor
of strongly deformed nuclei. With this case we want to il-
lustrate that magnetic form factors not only provide in-

formation on the valence nucleon(s); they can also reveal
very interesting properties of the core. On deformed nu-
clei, there is at present little work available from electron
scattering. For charge scattering this is because of the ex-
tremely good energy resolution required to resolve levels
at large q; only recently could the relative energy resolu-
tion be pushed down to a few times 10, and a number
of deformed nuclei be studied (Bertozzi, never to be pub-
lished). For magnetic scattering, the smallness of the
magnetic cross sections further complicates things. Inves-
tigations of deformed nuclei by magnetic electron scatter-
ing therefore at present are more characterized by prom-
ise than by achievements.

Two bits of physics are of particular interest. For
even-even deformed nuclei, the magnetic form factor
yields a measurement of the current distribution related to
the collective rotation. A study of these current distribu-
tions is expected to allow much better insight into the way
the deformed nuclei rotate. For odd-A nuclei the strong
coupling of the unpaired nucleon to the deformed core is
a subject of particular interest. For both problems, it is
clear that the magnetic elastic form factor should not be
considered in an isolated way, but combined with results
on the magnetic form factors of the ground-state rotation-
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al band; these form factors contain similar information.
As in the ease of charge form factors (Rad et al. , 1978),
they can be expected to provide a powerful tool useful in
disentangling the various charge and current distribu-
tions.

As an example, Fig. 15 shows the elastic magnetic form
factor of ' 'Ta, a nucleus with an unpaired g7&2 proton.
The magnetic form factors for two levels of the ground-

state rotational band are given as well. The data in Fig.
15 (Rad et a/. , 1980) are compared to predictions ob-
tained from Hartree-Fock calculations (Moya de Guerra
and Kowalski, 1980) performed using the pair-filling ap-
proximation. The result for the magnetic form factor of
a 1g7/2 proton in the spherical shell model is indicated as
well.

Figure 15 shows that the coupling of the nucleon to the
deformed core has a drastic effect on the magnetic form
factor. For example, the highest multipolarity, M7, is

changed by a factor of 4. This large change is due to the
fact that some of the strength previously accounted for in
the spherical limit has gone into inelastic scattering to
states in the rotational band built on the deformed ground
state. In addition, the very nature of the deformed states
differs in a significant way from their spherical limit:
states with different K appear as distinctly different con-
figurations, only one of which approximates the specific
deformed ground state. And yet several such states with
different K all merge in the spherical limit. Indeed, each
predicts drastically different relative strengths for the
various magnetic multipoles. The large change of FM be-

tween spherical and deformed calculations clearly indi-

cates that FM is a very sensitive tool for the study of
particle-core coupling.

The calculation of F~(q) (Moya de Guerra and Kowal-
ski, 1980) points out another interesting feature: The Ml
form factor receives a large contribution from the convec-
tion current, which dominates over the intrinsic magneti-
zation by a factor of 4. This reverses the usual relative
contributions of convection current and intrinsic magneti-
zation, and shows that the current distribution can indeed
be measured once experiments of this type become feasi-
ble on a more routine basis. At the low momentum
transfers, the collective contribution to FMA for inelastic
scattering is also expected to show up in the transverse E2
form factor.

IO

ilg +
D. Meson-exchange currents

8
lO

E2

lO I

0.5 l.Q

(fm ')
2.0 2.5

FIG. 15. Magnetic form factors for the ' 'Ta ground-state rota-
tional band. The solid curves are calculated using projected
Hartree-Pock theory; the dotted-dashed curve corresponds to a
1g7/p proton in a spherical harmonic-oscillator potential (Rad et
al., 1980).

Our last example is intended to illustrate magnetic elec-
tron scattering from a very different viewpoint. This ex-
ample deals with the sensitivity of magnetic form factors
to the presence of meson-exchange currents (MEC) in nu-
clei. This topic has received increased attention recently,
since it has become progressively clear that non-nucleonic
degrees of freedom in nuclei are important for a quantita-
tive understanding of nuclear properties.

The contribution of non-nucleonic nuclear constituents,
such as n., 6, etc., is in general hard to separate from the
usual nucleonic effects. In particular, for processes in-
volving strongly interacting probes (or reaction products),
the uncertainties in multistep reaction mechanisms often
cover up the effects of interest. For electron scattering,
on the other hand, the reaction mechanism is sufficiently
well understood to allow a search for more "exotic" ef-
fects. If, by appropriate choice of nucleus and type of
form factor, the meson-exchange contribution can be
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enhanced significantly over the (usually dominant) one-
body contribution, then electron scattering can be the
ideal tool for the study of MEC.

Magnetic electron scattering is particularly suitable for
the study of MEC. The magnetization density of a nu-
cleus receives a zeroth-order contribution from the
currents connected, for example, to the presence of m, and
so to the dominating one-pion-exchange nature of the NN
force. Normally this contribution is of the order of, say,
10%%uo of the magnetic moment. Such a contribution is
very difficult to isolate in the presence of nuclear struc-
ture uncertainties such as configuration mixing, even for
the case of near-magic nuclei. These difficulties do not
occur for the Ml form factor of He. At large momen-
tum transfer, a cancellation reduces the one-body form
factor by orders of magnitude. For such a case, the MEC
effect dominates the total form factor and can be isolated.

The one-body (nucleon-only) magnetic form factor of
He can be calculated with reasonable confidence. The

exact (though numerical) solutions of the Faddeev equa-
tions for a given nucleon-nucleon potential yield quite re-
liable results for the medium-range observables. The Ml
magnetic form factor receives two contributions from the
S-to-S state and the S-to-D state transitions. This latter
contribution dominates F~i at large q; in the charge form
factor, in the absence of S Dinterferenc-es, the short-
range S-S amplitude would dominate. All predictions for
the He one-body magnetic form factor yield a pro-
nounced diffraction minimum at medium inomentum
transfer, q-2.5 fm ' (see Fig. 16).

The experimental data (Cavedon et al. , 1982) strongly
deviate from these predictions. A diffraction ininimum

occurs only near q=3.5 fm ', and the magnitude of the
second maximum is 50 times lower than the one predicted
by Faddeev calculations (Laverne and Gignoux, 1973).

To understand the experimental data, one must include
the interaction of the electron with ~ or b, in the nucleus.
These MEC contributions are rather large for two
reasons: (1) Very small values of the one-body magnetic
form factor occur at large q, since the higher multipoles
that usually cover up the small M1 contribution at large q
are not allowed (Jo ———,

' ). (2) He has an appreciable
D-state component (-9%%uo), which enhances the S-D in-
terference that dominates in the resonance term.

The inclusion of MEC contributions (Riska, 1980)
yields quite acceptable agreement with experiment. Fig-
ure 16 demonstrates that by suitable choice of q, J, and A
magnetic scattering can be an excellent tool for isolating
MEC contributions to a point where a quantitative study
becomes possible.

Vl. RESULTS FOR NUCLEI WITH A )4 A

A. 1p-shell nuclei

In this section we describe what is known about elastic
magnetic electron scattering from lp-shell nuclei. All of
the practical (i.e., stable) cases have been studied experi-
mentally, and we catalog all known data here. For some
of these nuclei a variety of nuclear models have been ap-
plied, and so we show how some of the theoretical calcu-
lations fare in comparisons with experimental data. In
fact the lp shell is somewhat special in this regard, since
shell-model calculations (Cohen and Kurath, 1965) have
been available for some time now. Allowing the lp shell
to be fully active does not lead to an overly large model
space as it does for higher major shells (see below). Alter-
natively, other nuclear models (cluster model, Faddeev
three-body model) can be applied in certain cases, and we
refer to some of these where appropriate.

1. The nucleus 6Li

1P -c

-6

1p-8 I

20 30

Q (frn )

FIG. 16. Magnetic form factor SmM~F~/q p of He. The
dashed curve ignores non-nucleonic contributions; the two solid
curves include meson-exchange effects.

We begin our discussion of the lp shell with the first
stable ground state beyond He, namely, Li. In fact it is
not typical of what we shall be discussing in most of this
review: it is an odd-odd nucleus, whereas the vast majori-
ty of cases we consider are odd-even or even-odd nuclei.
Only four stable odd-odd nuclei exist, H (discussed in
Sec. VII.A) and Li, ' B, and ' N (discussed in this sec-
tion). The small number of density-matrix elements need-
ed to describe Li in the p-shell space then makes a
phenomenological analysis of the data possible. As we
saw in Sec. IV.E, the leading MEC effects are of an iso-
vector nature, and consequently we do not expect meson-
exchange currents to be important for elastic magnetic
electron scattering froin Li (possibly) until very high
momentuin transfers are reached. Thus we shall ignore
MEC effects for elastic scattering from Li (and also ' B
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and ' N) for the same reason, viz. , To =0.
Let us begin by showing the data in Fig. 17. The earli-

est major measurements were taken at Stanford by Rand
et al. (1966), using the 180 scattering system. A 0.259
g/cm target of enriched Li with a 0.7% Li impurity
was used in this experiment. At the energies considered
(up to E= 140 MeV) there are large corrections from elas-
tic charge scattering because of the small magnetic mo-
ment of Li (p=0.82 n.m. ), which yields a relatively small
elastic magnetic form factor. Indeed, for energies above
120 MeV, the small impurities of Li in fact dominate
(the magnetic moment of Li is large iM=3.26 n.m. ), re-
sulting in large error bars for the higher momentum
transfers explored. In this experiment momentum
transfers q=0.85—1.39 fm ' were covered. Somewhat
later the low-q range (q &0.9 fm ') was studied at the
(former) Institute voor Kernphysisch Qnderzoek (IKO) by
Lapikas (1978), also using a 180 scattering system. More
recently Bergstrom et al. (1982) performed an experiment
at Bates covering the range q=0.8—2.8 fm ', that is, ex-
tending over the diffraction minimum at q=1.41 fm
and spanning the second maximum (see Fig. 17). Again a
180' scattering system was employed (Peterson et al. ,
1979) for some of the measurements, to suppress as much
as possible the sizable Coulomb contributions found at en-
ergies below 200 MeV. At higher energies the Coulomb
form factor decreases rapidly, allowing measurements to

+C
I (Pi/2) '1+0&,

with the normalization condition

+2+jP2+ C2 1

(6.1)

(6.2)

Using the standard formalism discussed in Sec. IV [in
particular, evaluating Eq. (4.87) with this ground state],
we can show that the ground-state one-body density ma-
trix has the form (see Donnelly and Peccei, 1979)

po. o((p3/2) ) =v'3/2(A + —,
' 8 )

it'o o((Pi/z) ) =V3( 28 +C )

with po.o((lsi/2) )=2v 3,

(6.3a)

be made at scattering angles of 150 —160, where targets
could be oriented in the transmission mode to achieve op-
timum resolution and counting rates. For the data shown
in Fig. 17 no corrections were made for Coulomb distor-
tion effects.

Let us now turn to a theoretical discussion and begin by
describing the ground state of Li in terms of two parti-
cles in the lp shell, with a closed ls-shell core ( He). Fol-
lowing Donnelly and Walecka (1973b), we use j-j coupling
and write (see also Bergstrom et al. , 1982, for an I.S-
coupling description)

I
1+0&=~

I
(P3/2)" 1+o&+8 IP3/zP1/2~1

0i;o((P3/2) )= ~ +

FT (q) 4i;o«P in )')= — 8'+ v 2C'
2 2

(6.3b)

io-'-

ia-5

Pl; 0(P 3/2P I /2 ) 01;0(P1 /2P3/2 )

AB —-'BC
4

2v3, v3+42;o((P3/2)') =—

42;0(P3/2P1/2) 02;0(Pi/2P3/2)~ ~8 ~BC.
2v10 2

(6.3c)

IO-7
0

I I

I 2
q (frn ')

FIG. 17. The Li data of Lapikas (1978) (solid circles), Rand
et al. (1966) (crosses), and Bergstrom et al. (1982) (open cir-
cles), shown together with calculations (solid curve) using
Cohen-Kurath (1965) (8-16)POT matrix elements and fitted
Woods-Saxon radial wave functions ( ro ——1.52 fm). The dashed
curve is calculated using the same radial wave function and the
phenomenological matrix elements of Donnelly and Walecka
(1973b).

Note that the special identities [Eqs. (4.128)] are automat-
ically satisfied, as they should be. If we now use Eq.
(4.134a) for the ground-state magnetic dipole moment,
with Eq. (4.120) for Bi and Eq. (4.121) for D i, and with
Eq. (4.133) for the density-matrix elements used in the ex-
pression for p, we obtain

p = ,
'

I [2'+ ,' 8'—+2C'+—(v 5/2A —C)8]

+p' '(0)[A + —,8 —C —2(v'5/2A —C)8]} .

(6.4)

Using the experimental value of the magnetic moment,
one then has a second relationship in addition to the nor-
malization condition, Eq. (6.2), involving the amplitudes
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A, 8, and C. Furthermore, it is possible to write a simi-
lar expression for the ground-state quadrupole moment in
this 1p-shell model. This is obtained by taking the long-
wavelength limit of the C2 form factor [see Eq. (4.54)].
We have for the quadrupole moment

A+C B(r )~
1

10 ~3/2~1/2
(6.5)

where (r )z,z is the mean-square radius computed using
J J

1pj and lpga
radial wave functions. Following Donnelly

and Walecka (1973b), let us use harmonic-oscillator radi-
al wave functions and then (r )z z ——, b, i—ndependent ofj Jj' and j, where b is the usual harmonic-oscillator parame-
ter. Fits to ip-shell information for Li yield a value
b=2.03 fm, and upon using the experimental value for
this quadrupole moment, Q2 ———0.80+0.08 mb
(Ajzenberg-Selove and Lauritsen, 1974), we have a third
independent relationship involving the amplitudes A, 8,
and C. Solving these three equations in three unknowns
yields A =0.810, 8= —0.581, and C=0.084 (Donnelly
and Walecka, 1973b). Thus, by Eqs. (6.3), all of the
ground-state density-matrix elements are known and, for
a given set of radial wave functions, the complete CO,

Ml, and C2 elastic form factors may be calculated [i.e.,
using Eqs. (4.129)—(4.133)]. Before displaying the calcu-
lated Ml form factor together with the existing experi-
mental data, let us collect together with the phenomeno-
logically determined J= 1 density-matrix elements the re-
sults of lp-shell shell-model calculations (see Table I).
Specifically, for the latter we consider Cohen and Kurath
wave functions (Cohen and Kurath, 1965) and the result-

ing density matrices (Dubach, 1983). It is clear that,
while qualitatively similar, in detail the results here show
a spread in values. Of course, by construction, the
phenomenological set of density-matrix elements yields
the experimental dipole and quadrupole moments of the
ground state, given that the 1p-shell nuclear size is
correctly represented by harmonic-oscillator wave func-
tions having b=2.03 fm. Other authors have followed
similar approaches, and two bear mentioning at this
point: (1) the phenomenological analysis of Bergstrom
et al. (1975), which yields results in complete agreement
with those above for the ground state, and (2) shell-model
calculations of Vergados (1974), including core excitation,
which span a range of amplitudes, but are generally rather

similar to the results above.
In order to calculate form factors, we also need the

Ip3/2 i@i/2 radial wave functions. For Li as well as the
other p-shell nuclei, these radial wave functions are calcu-
lated using Woods-Saxon potentials. Only when the
separation energy is large, or the quality of the data rather
poor, will we use harmonic-oscillator wave functions; in
these cases, the difference between these wave functions
has no effect on the comparison of experiment with
theory.

The parameters of the Woods-Saxon potential are
chosen in the following way: The radius parameter is fit
to I'~(q) and basically fixed by the high-q falloff of
I' T(q). The surface thickness, to which I' T(q) is insensi-
tive, is taken from fits of the charge scattering data, with
densities calculated using Woods-Saxon potentials; this
procedure is justified by the fact that density-dependent
Hartree-Fock calculations give very similar surface
thicknesses for the effective potentials seen by nucleons in
different shells. The depth of the Woods-Saxon potential
is fit to the experimental separation energy; this ensures
that the large-radius behavior, which influences the low-q
behavior of F(q), is realistic. For the spin-orbit depth, we
use a constant V„=24 MeV.

Figure 17 shows that the Cohen-Kurath matrix ele-
ments do quite well in explaining the experimental form
factor. The phenomenological matrix elements, although
fit to q =0 properties only, give an excellent representa-
tion of the data.

Next let us consider the a-d cluster model as a basis for
describing the Li ground state. The phenomenological
version (Kudeyarov et al. , 1971) was among the first an-
tisymmetrized cluster models to be applied to descriptions
of the electromagnetic form factors. Here antisymmetri-
zation was shown to play a vital role. In a subsequent
study (Bergstrom, 1979) applied to Li, it was concluded
that the longitudinal form factors of the ground and first
excited states can be understood within the context of the
basic phenomenological cluster model, but not the trans-
verse form factors of other levels (notably the 3.56-MeV
0+1 level, which has received considerable attention). Of
particular interest to us here is the fact that this simple
model was unsuccessful in describing the elastic magnetic
form factor of Li.

More recently the basic cluster model with spherical
clusters has been extended to permit the deuteron to de-
form, or stretch, along a line connecting the cluster
centers of mass (Bergstrom et al. , 1982). With this

TABLE I. -M1 ground-state density matrix for Li.

0i;o((P3n )')
0i;o((P in)')

2/1;0(P 3/2P 1/2 )

Phenomenology'

0.482
—0.109
—0.696

(6-16)2BME

0.519
—0.227
—0.658

Shell model"'
{8-16)2BME

0.518
—0.225
—0.620

{8-16)POT

0.518
—0.222
—0.779

'Using A =0.810, B = —0.581, and C =0.084 (Donnelly and %'alecka, 1973b).
Cohen and Kurath, 1965.

'Dubach, 1983.
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ad hoc modification Bergstrom and co-workers show that
a consistent description of all of the available form fac-
tors (including the elastic Ml form factor) can be ob-
tained. In particular, they take the ground state to be
made up from Gaussian-shaped clusters multiplied by an
s-wave relative-motion function (also of Gaussian form).
The a cluster is characterized by range parameter a,
whereas for the d cluster they take the basic Gaussian
form with range parameter P and add a term which
elongates the cluster along the direction R=R~ —R,
where R~ and R~ are the deuteron and alpha cluster
centers, respectively. This elongation is characterized by
the parameter b,P, where the limit AP=O corresponds to
the usual (spherical) cluster model referred to above. Fi-
nally the relative-motion Gaussian (in R) is characterized
by a range parameter y. The parameter u was determined
from the free He radius (a=0.582 fm ), and the other
parameters, P, AP and y, were constrained by fits to the
Li charge radius and to general features of the elastic

form factors. They obtained values P=0.29 fm
b.P=0.099 fm, and y=0.24 fm . The resulting elas-
tic magnetic form factor is displayed in Fig. 18. Clearly

FT (q)

lO-'—

q(fm )

FIG. 18. The Li data of Fig. 17, shown together with a fit ob-

tained using a generalized cluster model (Bergstrom et al.,
1982).

this is an excellent representation of the data. Bergstrom
et al. (1982) note that, upon expanding in more shell-

model-like language, this is reflected in different oscilla-
tor parameters for the (Is) core and for each of the two

lp particles (differing by a factor which is proportional to
6/3). In addition there is an effective harmonic-oscillator
interaction potential characterized by —,

' (a —3y+2P)
=0.11 fm (which of course vanishes in the in-

dependent-particle shell-model limit a =P=y).
In the same analysis described above (Bergstrom et al. ,

1982) there is also a representation of the Ml data as a
coordinate space density. Using Eqs. (4.28) and (4.29), we

may write

where the angular integral in Eq. (4.28) has been absorbed
into the definition of the current density J~z'(r), a func-
tion only of r =

i
r ~. It is perhaps worth noting at this

point that, when the ground state has spin- —, or spin-1,
the only allowed magnetic multipole is M1 and a model-
independent analysis similar to the one used for (CO) elas-
tic charge scattering can be attempted. The decomposi-
tion into convection and magnetization current contribu-
tions of course cannot be accomplished using only elec-
tron scattering information. The resulting M1 current
density for elastic scattering from Li is given by
Bergstrom et al. (1982) and is seen to bear a striking
resemblance to the (isovector) M1 transition current den-

sities for the 3.56-MeV state of Li (Bergstrom et al. ,
1979) and for the 15.11-MeV state of ' C (Deutschmann
et a/. , 1980).

Before leaving this discussion of the ground state of
Li, let us mention one further approach that has been

taken. Lehman and Parke (1983) used a three-body
(ad%) model which included Si~2, Pi&2, and P3/2 partial
waves of the aN interaction and considered a 3S&- D

&
NN

interaction (leading to a 4% D-state component in the
deuteron). The authors calculated the probabilities of the
orbital components of the wave functions, the
configuration-space single-particle orbital densities, and
the configuration-space two-particle wave-function ampli-
tudes in j-j coupling, with the nucleon coordinates re-
ferred to the a particle as the core. The results of this
Faddeev calculation were compared with those from
phenomenological or shell-model calculations of the type
summarized above. The authors found that none of these
have a distribution of orbital probabilities across shells
that is like the distribution predicted in their three-body
model. They found, for example, that the pi&2 orbital lies
outside the p3/2 orbital, in contrast to pure harmonic-
oscillator 1p-shell wave functions, which are the same.
As expected, the three-body orbital densities at large radi-
al distances decay with exponential rather than Gaussian
factors. However, the three-body model densities differ
even from densities calculated using Woods-Saxon wave
functions (which do fall off at large distances correctly).
Furthermore, the authors note that allowing for core exci-
tation in shell-model calculations (see, for example, Ver-
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gados, 1974) tends to move the distribution of orbital
probabilities towards the three-body values, but that this
serves to emphasize that an apparent need for core excita-
tion may actually indicate a need to move from "effec-
tive" two-body dynamics to three-body dynamics. Unfor-
tunately no predictions for the elastic magnetic form fac-
tor are available. Hopefully this promising approach will
be pursued and predictions will become available in the
future.

2. The nucleus "Li

The low-q data for Li have been measured by Van
Niftrik et al. (1971) using the IKO 180' scattering sys-
tem. The high-q data come from an experiment per-
formed by Lichtenstadt et al. (1983) at the Bates ac-
celerator. The data, shown in Fig. 19, are successful in
defining the first maxima of the Ml and M3 form fac-
tors.

Predictions for the Li form factor in terms of shell-
model calculations (Van Niftrik et al. , 1971; Bernabeu
and Ros, 1974; Lichtenstadt et aL, 1983) are quite sensi-
tive to the coupling scheme employed. Cohen-Kurath-
type wave functions explain the data well, as demonstrat-
ed by Lichtenstadt et al. (1983), who use the (8-16)POT
matrix elements and harmonic-oscillator radial wave
functions. The main difference from the data is an
overall factor of 1.2 by which the calculation is high. In

F (q)

lO-'—

Fig. 19 we show a curve similar to that of Lichtenstadt
et al. (1983); the same matrix elements, but a Woods-
Saxon radial wave function, is employed here.

For comparison with theory, the data shown in Fig. 19
have been corrected for the contributions of MEC as cal-
culated by Dubach (1983). These MEC contributions
turn out to be fairly small, however, and change I"z. by
only 7—15 % over most of the q region probed by experi-
ment.

The M3 part of the data is explained very well. On the
other hand, the main peak of the Ml is too large, while in
the limit q~0, the magnetic form factor (moment) is
predicted correctly (p=3.26 vs 3.24 n.m. ). These two ob-
servations cannot be reconciled by changing the p»2 or
p 3/2 matrix elements; the corresponding magnetic form
factors are too similar in shape. A change of the p~/2-
p3&z matrix element, or admixtures of other shells, is
needed to change FM (q =0.7 fm ') without changing p, .
Both can be expected to have a q dependence different
from that of the p -diagonal terms; indeed, the p~/2 p3/2
contribution, for example, peaks at 1.5 fm ' where the
p ~/2 contribution has a zero.

The Li form factor has also been studied by Kruger
and Van Leuven (1969), who calculated the Li ground-
state wave function using the projected Hartree-Fock ap-
proach. These authors use an expansion in terms of oscil-
lator wave functions up to the f/p shell, and a soft-core
interaction proposed by Brink. In this calculation the en-
ergy of Li is minimized by adjusting both the oscillator
parameter and the occupation numbers. In the q region
where M1 dominates, the results for F~ are similar to
those shown in Fig. 19. In the region where M3 dom-
inates, the calculation is successful in explaining the
summed elastic plus inelastic (0.478 level) data measured
by Rand et al. (1966); as compared to the elastic data
shown in Fig. 19, the form factor obtained via the project-
ed Hartree-Pock method falls off much too quickly, so as
to be low by a factor of 3 at q=2.5 fm '. This probably
indicates that the 1p wave function obtained by the pro-
jected Hartree-Fock calculation has too large a radius.

3. The nUclei'Be, ' B "B

IO-'—

lO-6
-0

FIG. 19. The 7Li data of Van Niftrik et al. (1971) (crosses) and
Lichtenstadt et a1. (1983) (solid circles), corrected for the MEC
contribution obtained by Dubach (1983), and corn.pared to a cal-
culation that uses Cohen-Kurath (1965) (8-16)POT matrix ele-
ments and fitted Woods-Saxon radial wave functions. The dot-
ted curves show the M1 and M3 contributions separately,
while the solid curve shows the total.

These nuclei near the middle of the p shell have re-
ceived relatively little attention. Theoretical calculations
are largely restricted to Cohen-Kurath-type wave func-
tions, and the experimental data in most cases still have
rather large uncertainties. Given this situation, we shall
discuss these nuclei together.

Many of the data available are due to the pioneering ex-
periment of Rand et al. (1966), an experiment that for the
first time reached the region of transfer where a multipo-
larity larger than Ml dominates. Rand and collaborators
used an early two-magnet, 180 system, together with the
Stanford 1-GeV Mark III accelerator and 72" spectrome-
ter. Data were measured in the region q=0.7—2.4 fm
thereby covering the region where both M1 and M3 form
factors peak. Less extensive, lower-q data were measured
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by Goldemberg et al. (1965) using the Orsay accelerator.
At very low q=0.3—0.9 fm ', most of the data have
been obtained at the Amsterdam IKG machine, using the
three-magnet 180 system (Lapikas et al. , 1975; Lapikas,
1978). These data, together with some isolated points
from other experiments (Goldemberg and Torizuka, 1963;
Vanpraet and Kossanyi-Demay, 1965), are displayed in
Figs. 20—22.

Most of the early experiments on p-shell nuclei were in-
terpreted using a phenomenological model derived from
shell-model calculations. Assuming that the active nu-
cleons are restricted to the lp shell, and ignoring the
difference between neutron and proton radial wave func-
tions, one finds that the form factor [Eq. (4.129)] is given
by a simple expression, since all the radial dependences
factorize into two terms,

FT (q)

-4
10

-S
10

I

x

M3

10B

F&(q)=f, ~ (q)f&(q.) ~ J R'(rj)0(qr)r'dr

+P I R (rj)2(qr)r2dr (6.7)

Here, f, represents the center-of-mass correction (Tas-
sie and Barker, 1958), fz the single-nucleon form factor
[see Eq. (4.102), for instance], and a,P are constants that
depend on the particular coupling scheme used (Griffy
and Yu, 1965). These constants are combinations of the
T=0,1 p3/2/p~~2-space density-matrix elements used in
Eq. (4.131) and are obtained by ignoring the difference be-
tween p~~q and @3~2 wave functions.

Much of the database on magnetic form factors has
been interpreted using the above equation together with
harmonic-oscillator radial wave functions; in this case the

10
0 2

q(fm ')
FIG. 21. The ' B data of I.apikas (1978) (solid circles) and
Rand et al. (1966) (crosses), shown together with a calculation
that uses p-shell matrix elements of Van Hees and Glaudemans
(1984) and fitted Woods-Saxon radial wave functions ( rp = 1.10
fm}. The dotted curves show the M1 and M3 contributions
separately, while the solid curve shows the total. The other data
shown are referred to in Table III.

above integrals can be performed analytically (Griffy and
Yu, 1965). The quantities b (the oscillator parameter), a,
and P in this case are the ones used to parametrize the
data. A recent systematic analysis of this type, done by
replacing the harmonic-oscillator by Woods-Saxon radial
wave functions of the dominant valence shell, has been
performed by Lapikas (1978).
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FICx. 20. The Be data of Lapikas et al. (1975) (solid circles)
and Rand et al. (1966) (crosses), compared to a calculation that
uses Cohen-Kurath (1965}(8-16}POTmatrix elements and fitted
Woods-Saxon radial wave functions (rp ——1.0 fm). The dotted
curves show the M1 and M3 contributions separately, while
the solid curve shows the total. The other data shown are re-
ferred to in Table III.

q(frn )

FIG. 22. The "B data of I.apikas (1978) (solid circles), Gol-
demberg et al. (1965) (open circles), and Rand et al. (1966)
(crosses), compared to a calculation using Cohen-Kurath (1965)
(8-16)POT matrix elements and fitted Woods-Saxon radial wave
functions (rp ——1.20 fm). The other data shown are referred to
in Table III.
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On a microscopic level, the shell model provides a
deeper understanding of FT(q). In particular, the many-
body wave functions obtained by Cohen and Kurath
(1965) have been employed extensively. These calcula-
tions again use as an active model space the 1pj/q, lp3/g
shells, treating the 1s shell as closed and ignoring &2fuu
admixtures involving higher shells (most calculations
neglect lfuu excitations as well, but these are of no impor-
tance for magnetic elastic scattering, as they are of the
wrong parity). These intermediate coupling calculations
of the type pioneered by Cohen and Kurath start from
two-body matrix elements fitted to reproduce the energy-
level systematics of 1p-shell nuclei. Calculations within
this framework, mostly using harmonic-oscillator radial
wave functions, have been published by Kabachnik and
Grishanova (1966), Bernabeu and Ros (1974), Lapikas
et al. (1975), and Dubach et al. (1976). Below we con-
centrate on a discussion of analyses where more realistic,
Woods-Saxon wave functions are used. Once one of the
1p)/2, 1p3/2 subshell contributions no longer dominates
FT(q), differences in the shape of R(r) due to different
binding energies become important, and show up in FT
mainly through the p~/2-p3/2 mixed terms.

For light nuclei, a number of calculations of a different
type are available as well. The Nilsson model, often with
admixtures of &2fico shells included, has been employed
by Vinciguerra and Stovall (1969), and Slight et al.
(1973), and projected Hartree-Fock calculations (Bouten
et al. , 1969) have been used to study nuclei with
3=7—11. These calculations, however, have been ap-
plied mostly to charge scattering, which is less sensitive to
details of the ground-state configuration than is magnetic
scattering (Bernabeu and Ros, 1974).

In Figs. 20—22 we show the results of calculations done
using Woods-Saxon radial wave functions and density-
matrix elements obtained from Cohen-Kurath-type shell-
model wave functions. The density-matrix elements have
been calculated by Dubach (1983) or by Van Hees and
Glaudemans (1984). Dubach uses the (8-16)POT two-
body matrix elements (Otic) of Cohen and Kurath in his
calculation. Van Hees and Glaudemans perform a shell-
model calculation in the OA'cu and 1fico harmonic-oscillator
space, using interaction matrix elements which satisfy
translational invariance. The two-body matrix elements
of Van Hees, also fitted to energy levels of nuclei
A =8—16, are, roughly speaking, between the
phenomenological ones of Cohen and Kurath and the
more microscopic ones which result when the Sussex in-
teraction is used. Differences between the two sets of
density-matrix elements lead to minor differences in Fz.,
unless otherwise noted. The radial wave functions are
calculated using standard parameters, with the size pa-
rameter ro fit to the magnetic scattering data at large q.

On the whole, agreement with experiment is quite
reasonable, although many smaller discrepancies appear.
For Be, agreement is found only when a rather small ra-
dius parameter (ro ——1.0 fm) is used, while for the other
nuclei the ro values are more in line with what is known
from charge scattering. This peculiarity of Be, partly

linked to the small neutron separation energy (1.7 MeV),
is discussed below. For all nuclei, the radial wave func-
tions are not well fixed by the data; the dynamical range
over which FT is measured is too small, and FT(q) as a
function of q has too little structure.

In all cases, the calculations have a tendency to un-
derestimate the value of FM i in the Ml peak, even though
the magnetic moments [FM i(q~0)] are reproduced quite
well. This points to the presence of MEC or contribu-
tions of configuration admixtures involving shells other
than 1p. When only 1p contributions are present, and
particularly in situations where one of the subshells dom-
inates, the q dependence of FT is difficult to change effec-
tively, even when allowing for large changes of the matrix
elements.

We note that the nucleus Be is unusual in that it has a
low neutron separation energy. In this case large differ-
ences occur between the radial wave functions found
when using harmonic-oscillator or Woods-Saxon poten-
tials. Normally, the difference between these two types of
radial wave functions shows up mainly in the falloff of
FT(q) at large q. For very small separation energies, a
large effect also is visible in the maxima of the Ml, M3
form factors, where FT is 1.5—2 times lower for Woods-
Saxon radial wave functions. Woods-Saxon wave func-
tions R iz(r) have a peak that is more pointed and is lower
in amplitude, and have a larger tail at large radius. This
leads to the reduction of the amplitude of the first max-
imum of FT, together with an increase of the second max-
imum of FM, . The difference between the 1p&/2, 1p3/i
and neutron-proton radial wave functions also affects the
mixed pi/2 p3/p and T =1 terms and affects the form
factor in those cases where the ground-state configuration
is far from an extreme single-particle model configura-
tion.

For the case of Be, a study of the magnetic form fac-
tor in terms of an alternative theoretical approach, that of
the projected Hartree-Fock calculation, has been pub-
lished. Bouten et al. (1969) use harmonic-oscillator wave
functions and a basis extending through the f /p shell. In
this large model space one can expect to account more
successfully for those features of p-shell nuclei that are
reminiscent of well-deformed systems. Bouten et al.
(1969) have applied their projected Hartree-Pock calcula-
tions to both charge and magnetic form factors, and find,
with no free parameters, good agreement with the data.
As compared to the shell-model calculations shown in
Fig. 20, the major difference appears to be a value of FT
near the maximum of F~3 which is somewhat higher.

It is perhaps worthwhile to point out one peculiarity of
the magnetic form factor of ' B. This nucleus has a

ground state with Jo To ——3+0, thus allowing a maximal
magnetic multipolarity of M5. Shell-model calculations
restricted to the 1p shell, on the other hand, give at max-
imum an M3 contribution. Moreover, the M3 density-
matrix elements predicted for ' B are quite small; the
doininant wave-function configuration, with an unpaired
proton and neutron aligned and all other nucleons paired
off, does not give a diagonal contribution to M3. Thus,
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despite the large spin, the magnetic form factor of ' B is
dominated by M1. The M3 peak that dominates the form
factors of Be and "B at medium q is barely visible for
10B

A study of ' 8 at somewhat higher q can be expected to
show the M3 contribution. This would allow a very use-
ful test of the wave functions employed here; F~3 as2

predicted by the calculation of Van Hees is more than a
factor of 2 lower than the prediction of Dubach. It would
be of particular interest to push the measurements to even
higher q, q-2 —2.5 fm ', where an eventual M5 form
factor would peak. Such an M5 contribution could be a
signature for d- or higher-shell admixtures, and is
perhaps easier to interpret than the coherent admixtures
occurring in F~& and F~3. The isoscalar nature of ' B
can be hoped to make MEC contributions sufficiently
small so as not to introduce too much uncertainty at large

q, and thus allow the identification of FM ~.

F (q)

-4
10

-5
10

10
0

C

q(fm ')

4. The nucleus '3C

Magnetic scattering from ' C has received considerable
attention both experimentally and theoretically. This in-
terest is related mainly to its spin- —, nature, which makes
the interpretation of FM particularly straightforward;
only one multipolarity (M 1) is present. The data at low

q (q&0.8 fm ') come from an experiment of Lapikas
et al. (1975) performed using the 180 scattering system
of the IKO accelerator. An experiment performed at
Stanford to measure the charge form factor (Heisenberg
et al. , 1970) produced a few points near q=2 fm
where the magnetic contribution showed up in the very
deep minimum of F,h(q). An extensive coverage of the
higher-q region is provided by the recent experiment of
Hicks et al. (1982a), who used the Bates 180' scattering
system. The experimental data, shown in Fig. 23, exhibit
a pronounced diffraction feature, characterized by a
second maximum as high as the first one, with a rather
slow falloff of FM, at large q.

An interpretation of FM naturally starts from the ex-
treme single-particle model, which assumes ' C to have a
pure 1p&/2 neutron configuration outside a closed 1p3/p
shell. The form factor calculated using this assumption
fails to explain the data (see Fig. 11); the amplitude of the
second maximum of FT in particular is far too large.
More realistic wave functions (Mosconi and Ricci, 1974;
Cheon, 1983) allow a much improved fit. The result of a
calculation done using the p3/p, p~/2 space and density-
matrix elements calculated by Dubach (1983) with
Cohen-Kurath (8—16)POT matrix elements, is shown in
Fig. 23. The matrix elements obtained by Van Bees and
Glaudemans (1984) give a very similar result.

The effects of additional configuration mixing have
been explored by Suzuki et al. (1981a,1981b). Starting
from Cohen-Kurath wave functions and harmonic-
oscillator radial wave functions, Suzuki et aI. added
core-polarization terms calculated in first-order perturba-
tion theory, taking into account excitations up to 12%co.

FIG. 23. The ' C data of Lapikas et al. (1975) and Hicks et al.
(1982) shown together with a calculation that uses p-shell ma-
trix elements of Van Hees and Glaudemans (1984) and fitted
%'oods-Saxon radial wave functions ( ro ——1.14 fm).

As residual interactions, Suzuki et al. (1981a,l981b) used
both phenomenological forces (with a Rosenfeld mixture
for the exchange terms) and a set of the Michigan State
three-range interactions. They found that core polariza-
tion improved the agreement with the data by further
reducing the amplitude of F~ in the second maximum,
and that the diffraction minimum was shifted to larger q.
The reduction of FM in the maximum was attributed
mainly to the effects of the tensor interaction. The best
fit obtained by Suzuki et al. (1981a,1981b) by variation of
the residual force parameters still does not satisfactorily
reproduce the data. In particular, at large q FM falls off
more quickly than the experimental data.

Attempts to explain FM in terms of delta-hole admix-
tures in the framework of Landau-Migdal theory have
been described by Delorme et al. (1981). These authors
achieve a rather good description of the data, at the ex-
pense of introducing a Landau-Migdal parameter
g'=0.44 having a very small value. At the large q of in-
terest, the use of 5 interactions leads to further uncertain-
ties.

An attempt to understand the ' C form factor within a
different framework has been described by Lin (1983)."
Recognizing that there exists ample evidence that ' C is
deformed, Lin treats ' C in terms of the Nilsson model in
order to study the collective aspects of core polarization,
aspects that might be difficult to account for by a shell-
model calculation. This Nilsson calculation includes
hX =2 admixtures and uses harmonic oscillators to

Note that the published version of this work (Lin and Zam-
ick, 1981) contains errors (Zamick, 1983) which were corrected
by Lin (1983).
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describe the radial structure. Furthermore, the Nilsson
model is generalized to allow the deformation to depend
on the relative orientation of the nuclear spin and the core
symmetry axis, a feature that qualitatively has proven to
be very helpful (Zamick, 1978) in explaining the M3
suppression in, for example, '70 (see next section).

The calculations of Lin show that the bN =2 mixing is
beneficial in explaining F~(q); it reduces FT in the
second maximum by -30%. The generalization intro-
duced, which basically allows core neutrons and protons
to have different deformations, also helps to improve
agreement with experiment, although the effect on the ' C
form factor is not large. Lin also calculates the
rotational-current contribution of the core; as pointed out
in Sec. IV.D for the special case K= —,

' this core contribu-
tion cannot be ignored. The quantitative contribution of
this core term is found to degrade agreement with experi-
ment, since FT in the first diffraction maximum is in-
creased by a factor of —1.8.

On the whole, the description of ' C in terms of the
Nilsson model is no more successful than the one in terms
of the shell model. It does, however, allow some addition-
al insights into the mechanisms that are possibly irnpor-
tant for a more quantitative understanding of FT.

The comparison of experiment and the various theoreti-
cal calculations discussed above shows a systematic
discrepancy. The amplitude predicted for the second
maximum of FT is too high, and the form factor falls off
too rapidly at large q. From such a discrepancy one
could hope to learn additional physics, and below we
describe some attempts to uncover its origin. For such a
detailed study of FM, at large q,

' C turns out to be par-
ticularly favorable. The one-body contribution stays large
up to high q, in which case the MEC contributions, which
become progressively more uncertain as q increases, pro-
duce a small change of FT.

The approach taken to interpret magnetic form factors
for ' C (and for other nuclei in general) is the following:
Using Woods-Saxon radial wave functions R (r) with pa-
rameters largely fixed by charge electron scattering, and
using shell-model (Girth) density-matrix elements f, one
fits the data, allowing for small changes in i}'j or in R.
Given the systematic discrepancy with experiment that
appears for ' C, we have explored an extended space of
quantities that possibly can be "freely" adjusted to repro-
duce the data. Some of the parameters explored can be
taken as sufficiently poorly fixed by our theoretical
understanding to be varied at will; others are strongly
constrained by other data, or prejudice, and their varia-
tion should be taken as a test that serves to find out
whether magnetic scattering is sensitive to this particular
ingredient.

When exploring the degrees of freedom of interest for
' C we have constrained the density-matrix elements and
radial wave functions by a number of observables beyond
Fz-. A sum rule involving M1 diagonal matrix elements
[Eq. (4.128c)] has to be fulfilled to guarantee that the spin
projection of ' C is —,. The beta-decay rate ' N~' C is
well known, and fixes [Eq. (4.137)] a combination of ma-

trix elements. The asymptotic norinalization of the lp&&2
neutron radial wave function is well known from sub-
Coulomb transfer reactions (Gubler et al. , 1977) and fixes
a combination of @~&2 diagonal matrix elements and the
radial-wave-function radius. The asymptotic normaliza-
tion of the pi&i proton is determined by an interpretation
of p+ C scattering in terms of forward dispersion rela-
tions (Meyer and Plattner, 1977), although with an error
bar that is not very constraining when fitting FT.

We do not intend to give here a complete account of
the possibilities explored, and only list some of the con-
clusions reached. The parameters explored cover the
values of 1p density-matrix elements, possible 2%co admix-
tures of higher shells, and the effects of the shape of the
radial wave functions involving harmonic-oscillator,
Woods-Saxon, and double Woods-Saxon potentials. The
conclusions to be discussed below are valid for data both
corrected and not corrected for the MEC contribution,
calculated by Dubach (Hicks, 1982a; Dubach, 1983).

The density-matrix elements used in the interpretation
of p-shell magnetic form factors come largely from
Cohen-Kurath-type wave functions. The space of these
calculations is restricted to the lp&y2 and 173/2 shells.
The calculations of Dubach (1983), Bakkum and Glaude-
mans (1982), and Van Hees (1982) give density-matrix ele-
ments that are reasonably close together. Allowing for a
free variation of all six density-matrix elements leads to
considerable improvement of the fit, although the falloff
of FT at large q cannot be reproduced (see also Hicks,
1982). However, some of the matrix elements are very far
from the shell-model predictions, and probably are not
very realistic. Fitting the data with constraints that keep
the density-matrix elements reasonably close to the shell-
model predictions shows that the 1p ] &2T= 1 density-
matrix element is the main one that needs to be changed
to improve the fit to data. The value of 0.55—0.65 found
is significantly smaller than the one predicted, 0.75—0.85.
This is found systematically in the fits described below,
and is required in order to decrease the value of FT in the
second maximum down to the observed value.

The difference between harmonic-oscillator (HO) and
Woods-Saxon radial wave functions is appreciable, since
the lp, &2 separation energy is rather small (EsE=4.9
MeV). The lack of a large-radius tail for RHo can be ex-
pected to have a significant effect; indeed the use of a
more reahstic Woods-Saxon radial wave function does
improve the fit to the data by reducing the value of F(q)
in the second maximum. On the other hand, the exact
shape of the tail of R(r) is of less importance. Using a
separation energy changed by +2 MeV, a typical inherent
uncertainty due to differences between separation energy
and energy eigenvalue, does not change the fit significant-
ly.

More drastic variations of the shape of R (r), obtained
by large changes of the potential radius parameter, could
yield a further improvement of the fit. Reducing the ro
parameter from the standard value of ro = 1.20 fm to 0.9
fm allows one to improve significantly the agreement
with experiment at large q. This change results in a dis-
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placement of the peak of R (r) to smaller radius, together
with a narrowing of the peak. However, such a large
change of ro is not very reasonable, and is assumed to
mock up some other deficiency in the analysis.

We also have explored the effect of using potentials
with shapes different from the standard Woods-Saxon
form. Both microscopic optical potentials and
intermediate-energy proton-nucleus scattering motivate
the use of double Woods-Saxon potentials (Von Geramb,
1983). Parameter sets for double Woods-Saxon potentials
that allow a good fit of I'z- can be found. The changes of
R(r) which result show the same features as discussed
above, moving the peak of R (r) to smaller r and sharpen-
ing it as required to fit the data. However, the shapes of
the effective potentials found have little to do with the
shapes expected from a microscopic calculation (Von
Geramb, 1983) for the low energies of interest here.

Given the lack of success in finding plausible changes
of 8 (r), an enlargement of the shell-model space seems
imperative. In order to affect F~, admixtures of )2%co

need to be considered. Shell-model calculations in such a
large space are still at the limit of what is feasible, and the
first systematic calculations are at present underway (Du-
bach and Haxton, 1982; Glaudemans, 1983).

In order to find out which matrix elements could be
important, we have fitted the data with combinations of
2%co density-matrix elements involving the 1s, 2s, 1d, and
2p shells. In order not to allow undue freedom, the 1p-
shell density-matrix elements have been included as data,
with an "error bar" of +0.05, and the Woods-Saxon po-
tential well has been constrained to have a reasonable ra-
dius (ro ——1.2+0.1 fm). From a rather systematic ex-
ploration of 2%co contributions we conclude that the most
likely admixture is the one involving the (2p) configura-
tion; with a reasonably small /=0. 04, the data can be fit-
ted over the entire range of q. Admixtures of other shells
(2s, ld), as well as lp-2p transitions (see also Hicks, 1982),
are insufficient to explain the data, and require large g's
for a moderate improvement of the fit.

The effect of (2p) admixtures is the same as described
above when discussing changes of R&z. The M1 form
factor receives its main contributions from an integral
over the incoherent sum of lp and 2p radial wave func-
tions squared [Eq. (4.130)j, and the 2p contribution leads
to a shift and narrowing of the peak of the integrand, as
described above for R(r)~~

One might speculate that the (2p) term could be relat-
ed to the deformation of the ' C core, a model in which a
(2p) term appears in a natural way. The calculation of
Lin (1983), however, gives (2p) matrix elements much
smaller than those found above. At present, therefore, the
' C magnetic form factor is not satisfactorily understood,
despite a rather extensive exploration of different possible
causes.

5. The nucleus "N

For this nucleus, much of the data presently available
comes from a very recent experiment performed at the

F,'(q) l4
N

lO-4

IO

(0-7—

iO-8 I I
l

I

0 I 2 3
q (~~-')

FIG. 24. The ' N data of Rand et al. (1966} (crosses) and
Huffman et aI. (1984) (solid circles) compared to a calculation
that uses Cohen-Kurath (1965) (8-16)POT matrix elements and
fitted Woods-Saxon radial wave functions ( ro ——1.27 fm).

6. The nucleus "N

In the extreme single-particle model, ' N is described
by a pure 1p~&2 proton hole in a closed-shell ' O, and, as
for the ' C case, has a single magnetic multipole (Ml).
Deviations from this configuration that are of interest for
studies of I'T involve excitations of &2Aco. For the ex-
ploration of such adrnixtures, ' N is a particularly in-
teresting case.

An experiment on ' N has been performed recently by
Singhal et al. (1983), using the Bates 180 scattering sys-
tem. With a gaseous ' N target of thickness 20—100
mg/cm, data were taken in the q range 0.8—3.2 fm

Bates accelerator (Huffman et al. , 1984). Little theoreti-
cal study has been devoted to I' T, although we note that a
phenomenological analysis which parallels the one dis-
cussed within the context of Li [Eqs. (6.1)—(6.5)] can be
performed. In the case of ' N we have two holes in a
closed-shell ' O, rather than two particles above He as
we had there. For completeness, we show instead in Fig.
24 the data together with results obtained using Cohen-
Kurath (8-16)POT density-matrix elements (Dubach,
1983) and Woods-Saxon radial wave functions.
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tailed study of the tensor correlations in the nucleonic
ground-state wave function will be needed. One of the
most important results that has emerged from the investi-
gations of the deuteron electrodisintegration at threshold
(Bernheim et al. , 1972; Hockert et al. , 1973) is the im-
portance of the tensor correlation (i.e., the deuteron D
state) in calculating the effects of MEC. It is therefore
questionable whether realistic estimates for exchange
currents can be obtained with overly simplified shell-
model wave functions. The importance of the tensor
correlations is very well illustrated by the work of Mathi-
ot and Desplanques (1980) for 2p lf shel-l nuclei and the
case of the magnetic form factor of He (Sec. VII.B).

B. 2s/1d-shell nuclei

In this section we describe what is known experimental-

ly about the magnetic form factors of nuclei with

17 & A (39 and what has been learned from the compar-
ison of experiment and theory, and give some predictions
for those cases where data are likely to be taken and phys-

ical effects of special interest might show up. Partly the
results described are taken from the literature; to a large
extent, however, they have been calculated for the present
review in order to allow a reasonably systematic compar-
ison of experiment and shell-model calculations.

The s/d shell is a very nice region for nuclear structure
investigations by magnetic electron scattering. In the
same shell one goes from nuclei which are well described

by the single-particle shell model to cases exhibiting
features of deformed nuclei. This allows one to study

how the "core" contributes to the magnetic properties,
whereas the transition nuclei allow one to understand

better the nuclei ~here the extremes are realized. In addi-

tion, the s/d shell exhibits a wide variety of features,
since two subshells of very different radial wave functions
R(r) contribute. The magnetic form factor being, basi-

cally, the Fourier transform of R(r), this leads to quite
different patterns for E(q), allowing one to disentangle

the different pieces of the physics involved more effec-

tively.
Several shell-model calculations for s/d-shell nuclei are

available. These calculations differ by the completeness

of the shell-model space, the mass dependence of the pa-

rameters involved, and the way the two-body matrix ele-

ments have been fit to experimental data. In this section
we shall refer most often to calculations performed by
Brown, Chung, Wildenthal, and their collaborators at
Michigan State University (Wildenthal and Chung, 1979;
Brown et al. , 1980; Wildenthal, 1984), calculations that
are perhaps the most extensive available.

The calculation of Wildenthal (1984) assumes ' 0 to be
an inert core, and uses the full 1d5/z, 2s &/2, ld3/2 space for
the valence nucleons; excitations to the lf7/2 shell and
beyond are ignored. The Hamiltonian used contains one-
and two-body terms. The two-body matrix elements have
been obtained by starting from those calculated using the
Hamada- Johnston nucleon-nucleon interaction. These
matrix elements then have been adjusted empirically to fit

experimental binding energies. Unlike earlier calculations
that used different matrix elements for the upper and
lower parts of the s/d shell, the most recent calculation
(Wildenthal, 1984) incorporates a simple mass dependence

for the matrix elements.
The results of previous calculations have been com-

pared in detail to dipole moments (Wildenthal and
Chung, 1979), multipole moments (Brown et al. , 1980),
and some magnetic form factors (Singhal et al. , 1982).
Here we compare systematically to magnetic form fac-
tors, and do not discuss moments for J& 1. The experi-
mental values for these moments, determined from
phenomenological fits using form factors with a q depen-
dence obtained from the extreme single-particle model are
quite uncertain due to model-dependent extrapolations to
q=O; moreover, with increasing multipole order they de-
pend increasingly on the tails of the radial wave functions
used.

In many of the previous studies, effective g factors and
charges were employed (see, for example, Wildenthal and
Chung, 1979; Singhal et al , 1982.). For the magnetic
properties, the effective g factors brought little improve-
ment, however. In the present calculations we use free g
factors throughout. For integral properties (q=0), effec-
tive g factors perhaps represent a sensible attempt to ac-
count for deficiencies of the wave functions resulting
from truncations of the space. A.t momentum transfers
q&0, we see no reason why this should be the case. The
q dependence of form factors resulting from configura-
tion admixtures is very different for a different major
shell, and cannot in general be absorbed as a q-
independent scaling.

When comparing experimental form factors and shell-
model calculations, we take the following approach: the
single-particle matrix elements are taken from theory; the
radial wave functions, which are not fixed by theory, are
fit to experiment. The basic set of equations used for
these calculations comprises Eqs. (4.130)—(4.133). Nu-
cleon finite-size effects (4.102) and corrections for center-
of-mass movement (Tassie and Barker, 1958) have been
accounted for. As radial wave functions we take
harmonic-oscillator or Woods-Saxon wave functions, the
latter if the quality of the experimental data warrants the
use of a more realistic radial dependence.

The parameters of the Woods-Saxon potential are
chosen in the following way: The radius parameter is fit
to Iiz (q) and is basically fixed by the highest multipole
form factor. The surface thickness, to which present data
on ET(q) are insensitive, is taken from fits of the charge
scattering data employing densities calculated using
Woods-Saxon potentials; this procedure is justified by the
fact that density-dependent Hartree-Fock calculations

give very similar surface thicknesses for the effective po-
tentials seen by nucleons in different shells. The depth of
the Woods-Saxon potential is fit to the experimental
separation energy; this ensures that the large-radius
behavior, which influences the low-q behavior of F(q), is

realistic. For the spin-orbit depth, we use a constant
V„=24 MeV [in the notation of Gubler et al. (1977)].

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



T. W. Donnelly and I. Sick: Elastic magnetic electron scattering 517

1. The nucleus ' 0

The first s/d-shell nucleus we want to discuss is ' O.
Starting from the shell model, we expect ' 0 to be a rath-
er clean case of a single d5~2 neutron outside a closed ' 0
core. This simple picture is confirmed by the spectrum of
excited states and the spectroscopic factors determined
from one-nucleon transfer reactions. The magnetic mo-
ment (p= —1.894 n.m. ) is also very close to the Schmidt
value (p= —1.913 n.m. ). We can therefore consider ' O
as a good test case for the interpretation of magnetic
scattering in terms of simple models.

An experiment on magnetic electron scattering from
' O has been performed at the Bates accelerator by Hynes
et al. (1979). The data were taken using targets of BeO
enriched to 20—85%%uo in ' 0 with target foils of thickness
20—40 mg/cm . The magnetic cross sections were mea-
sured at 160' and at 180, using the Bates 180' scattering
facility (Peterson et al. , 1979). The charge scattering con-
tributions (Miska et al. , 1979) were measured at forward
scattering angles, and subtracted. The magnetic cross sec-
tions, taken at energies between 60 and 300 MeV, cover a
momentum transfer range q=0.6—2.7 fm

The cross sections have been converted to PWBA form
factors using a DWBA calculation (Hicks, 1982). The re-
sulting form factors are shown in Fig. 28. They mainly
cover the q region where the first maxima of the M3 and
M5 form factors are expected to dominate. Little is
known experimentally about the Ml form factor that is
expected to peak near 0.4 fm '. [Of course, the q=0
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FIG. 28. The ' 0 data of Hynes et al. (1979) compared to pre-
diction of the extreme single-particle model calculated using a
harmonic-oscillator wave function (solid curve). The long-
dashed curve is calculated using a Woods-Saxon radial wave
function.

behavior provided by the magnetic moment is accurately
known. Since FT(0)=0, this information does not show
in the figures, but is always taken into account in the fits
or the discussion of theoretical results. ]

In Fig. 28 the data are compared to a prediction of
F(q) obtained by Hynes et al. (1979). These authors use
a harmonic-oscillator radial wave function (b», ——1.80
fm) and a pure 1d5~2 neutron configuration
($5.o ——1'&. ~

——1). Also shown is a calculation using a
Woods-Saxon radial wave function with parameters deter-
mined by 2 =15,17 energy levels, and ' 0 charge scatter-
ing. 0ne observes a pronounced disagreement between
prediction and experiment.

The results of several theoretical studies are important
for an understanding of the ' 0 magnetic form factor.
Suzuki (1978) and Arima et al. (1978) have investigated
the role of configuration mixing and meson-exchange
currents (MEC). They show that MEC, dominated by the
pair contribution, change FT(q) by a non-negligible
amount at large momentum transfer. They also show
that the Ml and particularly the M5 form factors are lit-
tle changed by configuration mixing in the q region of in-
terest. Zamick (1978) and Bohannon et al. (1980) point
out that the M3 operator is very similar to an E2 X M1
operator. This leads to a pronounced influence of E2 core
excitations on the M3 form factor; in particular, a general
decrease of M3 strength is expected near the first lobe of
the M3 form factor. Vary et al. (1980) have performed a
self-consistent Brueckner calculation for ' O. They show
that the 1d5&2 radial wave function is peaked at a smaller
radius than the R (r) calculated from a Woods-Saxon po-
tential fit to the ' 0 charge density. We shall discuss
these calculations in more detail below, and show how
they lead to an understanding of the transverse form fac-
tor.

The interpretation of Hynes et al. shown in Fig. 28
does not include two important pieces of physics men-
tioned in the preceding paragraph. The radial extent of
R (r) is smaller than that deduced via Woods-Saxon po-
tentials fit to (basically) the 1p-shell orbit. This observa-
tion has previously been made in the study of magnetic
form factors of high multipolarity M7, M9 (Platchkov
et a/. , 1982), and is discussed in more detail in Sec. VI.C.
The second physical effect not accounted for in Fig. 28
concerns the expected reduction of the M3 contribution.
From the comparison shown in Fig. 28 it is clear that
these two effects will reduce the discrepancy with experi-
ment. A smaller radial extension of R (r) will move the
maxima of individual multipole form factors F~z to
larger momentum transfer; this will lead to a better fit for
q&1.5 fm . A reduction of the M3 contribution will
lead to a better reproduction of the data for 0.8& q&1.4
fm —'.

A phenomenological analysis of the ' 0 data that al-
lows for these two effects has been presented by Burzyn-
ski et al. (1983). Given the small sensitivity to configura-
tion mixing, the M5 form factor is parametrized as the
Fourier transform of a radial wave function calculated in
a Woods-Saxon potential well. This M5 form factor is
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FICx. 29. The ' 0 data of Hynes et al. (1979), corrected for the
contribution of MEC, compared to the fit of Burzynski et al.
(1983),calculated using a Woods-Saxon radial wave function.

multiplied with a factor a& close to one that accounts for
an eventual depletion of M5 strength due to partial occu-
pation of this shell. CTiven the comparatively minor effect
of configuration mixing near 0.5 fm and the very limit-
ed amount of data concerning Ml, the Ml form factor is
parametrized in a similar way. The q dependence of the
M3 contribution is strongly dependent on configuration
mixing. If the M3 contribution is parametrized similarly,
then no significance can be attributed to the resulting pa-
rameters other than the demonstration that a small value
of n3 indeed shows that the M3 contribution is strongly
reduced relative to the single-particle prediction, and
barely visible in the data.

Figure 29 shows again the ' 0 data. There the form
factors (converted to PWBA) have been corrected for the
MEC contribution as calculated by Suzuki (1978) and
Arima et al. (1978). The data have been fit using a
Woods-Saxon radial wave function with radius parameter
ro 1.232——fm. The surface thickness a=0.6 fm is taken
from a fit of the ' 0 charge form factor using a density
computed in a Woods-Saxon well (Poth et al. , 1978). The
spin-orbit depth is 24 MeV. The value of the parameter,
as ——0.94+0.09, indicates that the dz&2 contribution is
quite close to that predicted by the extreme single-particle
model (a5 ——1), as does ai ——0.99. The small value of
o.3——0.67 clearly shows the mixing with core-excited
states. The fit of the data is excellent, with a X of 0.7 per
degree of freedom.

This fit yields two results that are independent of the
complications brought on by configuration mixing and
that can be interpreted in a quantitative way; the parame-
ter a& and the shape of R (r) are derived from the fit to

the M5-dominated part of the magnetic form factor. The
radial wave function, together with n5, determines the
asymptotic normalization C of the 1d5~2 wave function,
defined for large r by

4'(r) = Y2 (Q„)Nab~(i~r), C 2=SN2/2~, (6.8)

where S is the spectroscopic factor, h2 the Hankel func-
tion, and i~ the wave number of the bound state. This
same quantity is measured by transfer reactions. Transfer
reactions involving projectiles of energies below the
Coulomb barrier (Franey et al. , 1979; Burzynski et al. ,
1983) in particular yield a value of X insensitive to uncer-
tainties of the reaction mechanism. The values of
C =0.79+0.05 obtained agree perfectly well with the
value of 0.82+0.08 derived from magnetic electron
scattering. Phrasing this comparison differently, one can
say that the asymptotic normalization determined from
transfer reactions, together with the knowledge on the
shape of R (r) furnished by electron scattering, determines
the spectroscopic factor S=1.03+0.07 of the 1ds&2 neu-
tron configuration. [Note that in the standard convention
used in transfer reactions the ' 0 spectroscopic factor has
a maximum possible value of ( A /A —1) =1.13; for a de-
tailed discussion of center-of-mass effects, see Dieperink
and Sick (1981) and Clement (1973).] To the extent that
no other ld5~2 strength is observed in transfer reactions
(Mairle et al. , 1978), the parameter a5 (plus a correction
due to c.m. movement; Dieperink and Sick, 1981) directly
gives this spectroscopic factor S=l.06+0.10, again in
perfect agreement with transfer reactions. Given the
strong dependence on R(r) of S values derived from
transfer reactions —as discussed in Sec. VI.C, S changes
typically by 10% for a 1% change of the orbit rms
radius —this agreement constitutes a significant check on
the R (r) deduced from magnetic electron scattering.

The value of the spectroscopic factor, S=1.05, is
unusually high and indicates that the 1dq~q configuration
is a quite pure one.

How, then, can we understand the small value of a3
that demonstrates a large effect of configuration mixing?
The reduction of M3 strength in general has qualitatively
been explained by Zamick (1978) and Bohannon et al.
(1980), using a simplified model. With a zero-range in-

teraction, a valence neutron will only interact with core
neutrons of opposite spin, due to the Pauli principle. Ac-
cordingly, the valence neutron will deform those core nu-

cleons only. This introduces a correlation between
valence nucleon spin and core neutron quadrupole defor-
mation. Such a correlation has a pronounced effect on
the M3 moment, since the M3 operator is basically a
quadrupole operator coupled with the magnetic dipole
operator to J=3; the term involving the orbital angular
momentum is often smaller. Using qualitative estimates,
Zamick shows that a reduction of the M3 moment by a
factor 0.35—0.5 can be expected for ' O. Bohannon et al.
(1980) have investigated this point in more detail by per-
forming a deformed Hartree-Fock calculation for ' O.
Using a simplified Skyrme interaction, they confirm that
spin-up and spin-down core nucleons have different de-
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formations. For ' 0, the reduction of the M3 moment
and the M3 form factor in its inain lobe (q —1.1 fm ')
amounts to a factor of approximately 2, with little change
of the Ml or M5.

The shell-model calculations of Suzuki (1978) and Ari-
ma et al. (1978) confirm the above result. Using a large
space (6%co) and harmonic-oscillator radial wave func-
tions, these authors calculate core polarization in first-
order perturbation theory, using two phenomenological
finite-range residual interactions with a Rosenfeld mix-
ture. These calculations show that the core polarization
for a single nucleon outside a closed L Sshell -is rapidly
decreasing with increasing multipolarity. The direct
term, which decreases with increasing J, at high J largely
cancels the exchange term. Given the fact that, in the
long-wavelength limit, the first-order core polarization
vanishes for Ml, the largest effect occurs for M3, which
consequently changes markedly in size and q dependence.
These calculations show again that the core acts in a
diamagnetic way such that the M3 form factor F~3(q) is
reduced by a factor of 2 in its main lobe.

The calculation of Suzuki also gives the effect of con-
figuration mixing on the M5 form factor. The only pos-
sible changes result from admixtures of shells with j)—,',
which are not very large. The numerical calculation gives
an increase of F(q) for momentum transfers beyond the
principal peak at q-2 fm . If the resulting F(q) is in-
terpreted in terms of a pure ld5~z configuration, the ra-
dius of the resulting orbit becomes 0.6% too small. This
change of 0.6% may be taken as a typical systematical
uncertainty of any interpretation of I'~5 that neglects
configuration mixing.

A quantitative study of the d5&2 radial wave function
in ' Q has been performed by Vary et al. (1980}and Coon
et al. (1982). These authors perform a renormalized
Brueckner calculation for the A=16 core and use the
self-consistent core results as input for the A=17 effec-
tive interaction. Using a large harmonic-oscillator space
(11fuu} as a basis, they determine the wave function start-
ing from the Reid soft-core nucleon-nucleon interaction.
Due to the large basis size, the resulting d5&2 radial wave
function assumes a shape quite close to the one calculated
in a Woods-Saxon potential, with a tail that is correct out
to r-8 fm. The d5~2 state is underbound, its energy be-
ing —2.97 rather than —4.11 MeV. The ' 0 core has a
radius that agrees closely with that determined from
charge electron scattering (2.72 fm).

The radial wave function calculated by Vary et al. is
compared in Fig. 30 to one determined via magnetic elec-
tron scattering. A straightforward comparison actually
would be somewhat misleading, since the separation ener-

gy of Vary et al. is low; for a loosely bound nucleon this
leads to a significant shift of strength into the large-
radius tail. We therefore show in Fig. 30 the R (r) calcu-
lated using the Woods-Saxon geometry derived from mag-
netic (e,e'), but with a depth slightly decreased to pro-
duce a separation energy identical to that of the
Brueckner calculation. The resulting radial wave function
agrees closely with that predicted by Vary et al. To
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0 2 6
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FIG. 30. The 1d5~2 radial wave function of Burzynski et al.
{1983),adjusted to yield the separation energy of Vary et al.
{1980),is shown as a solid curve. The Brueckner calculation of
Vary et al. {1980)is shown as a dashed curve, the wave func-
tion obtained from the fit to the ' O charge density as a dotted
curve.

within 1% the peak of R(r), the quantity mainly mea-
sured by ( e,e'), occurs at the same radius.

Figure 30 shows that an R (r) calculated self-
consistently in a mean field produced by a core of the
correct size closely agrees with experiment. The fact that
the radial wave function is peaked at a radius smaller
than that predicted by a Woods-Saxon potential fixed (ba-
sically) by the lp wave function (Fig. 30) thus is reason-
ably well understood.

We have also compared the radial wave function deter-
mined by electron scattering to that calculated by Campi
(1982) in the framework of density-dependent Hartree-
Fock theory. The main peak of R (r) in this theory
occurs at a radius 3.3% larger than that given by experi-
ment.

To summarize the ' 0 case, we can comment on the
two outstanding features visible in Fig. 28. The shape of
R (r) connected to the displacement of the M5 peak is
quite well understood. The reduction of the M3 form
factor is qualitatively understood by different theoretical
approaches, but a quantitative explanation of the exact
amount of configuration mixing is not yet available.

2. The nucleus Na

The next s/d-shell nucleus we want to discuss is Na.
For this nucleus a very small amount of experimental
data is available. We show the calculated forin factors,
since they exhibit some unusual features.

The nucleus Na has a ground-state spin of —,', so
naively a 1d3/2 odd-proton configuration might be as-
signed. Spectroscopic factors, however, do not confirm
this assignment, and the experimental magnetic dipole
moment @=2.218 n.m. is far from the Schmidt value
0.126 n.m. Shell-model calculations clearly show that the
main contributing configurations involve the proton d5&2
shell.
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In Fig. 31 we show the experimental form factors ob-
tained by Torizuka (Goldemberg and Torizuka, 1963;
Singhal et al. , 1982). The curves shown are calculated us-
ing the shell-model wave functions of Brown and Wil-
denthal (1982); the difference between these curves and
the results of Wildenthal and Chung (1979) is very small.
Given the very limited amount of data, the harmonic os-
cillator with b=1.69 fm was chosen for the radial depen-
dence of R (r).

Figure 31 shows the individual contributions of mag-
netization, proton convection current, and neutron mag-
netization. [Note that we present F (q) for the individu-
al, coherent contributions. ] The nucleus Na is unusual
since, contrary to the normal case, the convection current
provides a large contribution. It accounts for -40% of
the magnetic moment and the Ml form factor as a whole.
Only at large q does the magnetization contribution start
to dominate, as it does for the entire M3 form factor.
The neutron contribution to F is a very minor one.

Figure 32 shows the contributions of different shells to
FT The . effect of the d5/z piece is large. The main
difference between d5/2 and the full form factor results

from the d3/2-d5/2 interference term. This emphasizes
that d5&2 is indeed the dominant shell; if d3/2 were the
major component, FM ~ at low q would be 10 times small-

er, and F~3 at large q 10 times larger. Figure 32 also
shows that the 2s»2 shell is of minor importance; only at
large q & 2 fm ' does the d3/2 s'[/Q interference term start
to show up.

F, (q)
Na
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0

FIG. 32. The full shell-model result of Fig. 31 (solid curve),
compared to the contribution of individual matrix elements:
1 d 3/2 (dotted-dashed curve), 2s ~ //2 (dotted curve), 1 d 5~& (dashed
curve).
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FICx. 31. Shell-model prediction for Na calculated using
density-matrix elements of Brown and Wildenthal (1982) and
oscillator radial wave functions (solid curve) ~ The contributions
of proton magnetization (dashed curve) and convection current
(dotted-dashed curve} are shown. The effect of neutron magnet-'

ization is too small to appear.

The nucleus Mg has received considerable attention
both experimentally and theoretically. Experiments have
been performed at the (former) Instituut voor Kern-
physisch Onderzoek (IKO) in Amsterdam (Euteneuer
et al. , 1977) at the Bates accelerator (Euteneuer et al. ,
1977), and more recently at Bates again (York and Peter-
son, 1979). While the latter Bates data (q=0.9—2.2
fm ') and the IKO data were taken at a scattering angle
L9= 180', the earlier Bates data were obtained at 0= 160 .
The resulting cross sections have been converted to
PWBA form factors using DWBA codes. These form
factors, with error bars that include the statistical and
systematical errors, are shown in Fig. 33.

At low transfer, the data cover the region where the
Ml form factor is expected to peak. Uncertainties are
large, due to the large correction required to subtract the
charge contribution to the measured cross section. At
q —1.5 fm ' the M3 form factor is expected to peak. In
this region the data from the 0=160' and 180 Bates ex-
periments disagree somewhat. We shall see later that the
180 data are much closer to anything that can be ex-
plained using reasonable wave functions. We estimate
these data to be more reliable than the 160 cross sections.
The latter required large corrections for the charge contri-
butions, amounting to 84% at the lowest q of 1.44 fm
such large corrections are subject to systematic experi-
mental uncertainties unless the technique of normaliza-
tion relative to a very similar nucleus, Mg, for instance,
Il.s Used.
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FIG. 33. The Mg data of York and Peterson (1979) (large cir-
cles) and Euteneuer et al. (1977) (crosses), taken at 180'. The
points (dotted curve) of Euteneuer et al. (1977) were taken at
160'. The solid curve uses the matrix elements of Brown and
Wildenthal (1982) and a fitted Woods-Saxon radial wave func-
tion. The dotted-dashed curve uses the same R(r), but the ex-
treme single-particle model. The dashed curve is calculated us-

ing the Woods-Saxon potential determined from charge scatter-
ing [Li et al. (1974)].

Mg is an interesting case for the study of magnetic
form factors: the unpaired 1d5~2 neutron is coupled to a
core that is far from inert or spherical. In the shell
model, Mg is a nucleus near the middle of the s/d shell,
with a rather complicated structure. In the language of
the collective models, Mg has a considerable deforma-
tion. Either fact is expected to influence the magnetic
properties appreciably. In order to demonstrate this
point, we show in Fig. 33 the form factor calculated in
the extreme single-particle model, with a pure (1d5&2)
configuration. The magnetic dipole moment is off by
more than a factor of 2, and a similar or larger factor in

F(q) occurs for the M5 and M3 multipoles.
Euteneuer et al. (1977) have shown that the magnetic

form factor is explained quite well once the shell-model

calculation of Chung (1976; Wildenthal and Chung, 1979)
is utilized. In Fig. 33 we show a similar calculation per-
formed using the more recent s/d-shell matrix elements
of Brown and Wildenthal (1982). This calculation ex-
plains quite well the magnetic dipole moment (@=0.90
n.m. , p,„z——0.85 n.m. ) and the first maximum of the Ml
form factor. It predicts a very large reduction of FM3 by
a factor —100, in agreement with the data, and a reduc-
tion by a factor of -4 for FM5. According to this calcu-
lation, the main contribution to I'T comes from d5~2 neu-

trons; the protons give a small contribution of similar q
dependence. The main change of the q dependence rela-
tive to the extreme single-particle model prediction results
from the convection-current contribution to Ml, which is

quite important for q&1.5 fm ' (Singhal et al. , 1982}.
The form factor of Fig. 33 is quite similar to the one ob-

tained using the matrix elements of Chung (1976); the
main difference occurs for M3, which is a factor of 2
smaller for Brown and Wildenthal (1982). Given the very
small contribution of M3 and the error bars of the data in
the relevant q region, it is not yet possible to check upon
this difference.

We note from Fig. 33 that the agreement with experi-
ment in the region 1.0—1.5 fm ' is not very good, even if
we ignore the 160' data (see above). Apparently, the con-
tribution to FT(q) of the second lobe of F~, is too large.
This second maximum results mainly from an interfer-
ence term involving the d5~2 neutron magnetization and
the proton convection current, which gives a significant
contribution for q&1 fm ' and accounts for a —45%
contribution to the magnetic dipole moment.

The form factors shown in Fig. 33 are calculated using
wave functions calculated in a Woods-Saxon potential.
The surface thickness, a=0.72 fm, is taken from a fit of
the charge form factor of Mg, using a Woods-Saxon
density (Li et al. , 1974). The value of the parameter a is
larger than usual, since the deformation of Mg in a
spherical calculation is mocked up by a larger effective
surface thickness. This large value of a accounts in part
for the small ro 1.06 fm——-used to fit EM(q). Singhal
et al. (1982), who fit FM using the s/d-matrix elements
of Whitehead et al. (1977), have also observed that the
d5g2 orbit size required to fit I~ is smaller than the one
derived from charge scattering. In order to obtain agree-
ment with F~(q), the rms radius of the d5~2 orbit (which
dominates F~ as discussed above) has to be —10%%uo small-
er than that derived from F,h(q). This point is exempli-
fied by the curve in Fig. 33 calculated using the matrix
elements of Brown and Wildenthal (1982) and the
Woods-Saxon parameters of Li et al. (1974} (ro 1.35——
fm). The smaller radius of R (r) improves both the agree-
ment at large q for F~& and the agreement for the Ml
peak near 0.5 fm

We note that when using the matrix elements of Brown
and Wildenthal (1982} and harmonic-oscillator radial
wave functions, one can obtain a fit to the data of similar
quality. The resulting oscillator parameter, b= 1.73 fm,
yields an orbit radius 3% smaller than the Woods-Saxon
wave function. This shows the need to supplement, via
the separation energy, information on the large-radius
behavior of R (r) if the low-q data are not precise enough
to fix its shape.

In connection with the use of FT data of high multipo-
larity to determine R(r) (Sec. VI.C), we may mention
here one test performed using the theoretical Mg form
factors. When determining phenomenological radial wave
functions from I' T, one usually neglects the contributions
of configuration mixing. Using the magnetic form factor
calculated with the matrix elements of Brown and Wil-
denthal (1982) (Fig. 33) as "data, "we have determined the
R (r) obtained when ignoring all configuration mixing in
the analysis, as was done, for example, for
2=17,49,51,87,93. The resulting R (r) has a radius that
differs from the starting value by —1%. This difference
is quite small despite the fact that Mg is very far from
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the configuration of a single particle or hole outside an in-
ert core. This test establishes the negligible role of config-
uration mixing due to multipoles J&2Jo assumed in the
single-particle —single-hole cases.

For Mg, the magnetic data have been interpreted in
an alternative way. Moya de Guerra and Dieperink
(1978) and Moya de Guerra and Kowalski (1980) have
calculated form factors of odd-even axially symmetric de-
formed nuclei using the projected Hartree-Fock approach.
They also give the expressions for magnetic form factors
using the Nilsson model and deformed harmonic-
oscillator wave functions. This work shows that in gen-
eral the elastic magnetic form factors of intermediate
multipolarity 1&J &2Jo are strongly quenched as com-
pared to the spherical single-particle values. The formal-
ism is discussed in more detail in Secs. IV.D and VI.D,
where the appearance of large reduction factors is ex-
plained as weil. The predictions of Moya de Ciuerra and
Dieperink (1978), obtained using the rotational model, are
shown in Fig. 34. For the M5 multipole, a q-independent
quenching of F(q) by a factor of 0.55 relative to the
single-particle prediction is found; this factor is indepen-
dent of the deformation as well, and results from the frag-
mentation of a given shell-model orbital into several
Nilsson orbitals. For M3, a quenching factor of -0.12 in
FM 3 is obtained; the collective contribution reduces FM 3

further, but is generally small. For Ml, the overall reduc-
tion in amplitude is significantly modified by the collec-
tive contribution of the 3=24 core. This term, calculat-
ed using a spherical ' 0 and eight nucleons in the [220]

and [211] —,
' Nilsson orbitals, shifts the first

minimum of FM j from q=0.95 to 0.75 fm . The result-
ing form factor F~ agrees quite well with experiment; the
difference present at large q results from an oscillator pa-
rameter which is too large.

For comparison, we have repeated in Fig. 34 the shell-

model results, calculated this time using the same
harmonic-oscillator parameter (b=1.83 fm) as used by
Moya de Cxuerra and Dieperink (1978). Figure 34 shows
that, despite apparently very different physics input, the
collective and shell models give a similar prediction for
I'r(q). In particular, the strong quenchings of the M3
and M5 multipoles closely agree. Moreover, the shift of
the first zero of FM(q) due to the collective contribution
of the d~&2 protons is quite similar. This convergence of
different theoretical approaches is quite satisfying.

4 The nucleus 27Al

The next s/d-shell nucleus we shall briefly discuss is
Al; in the extreme single-particle model Al has a pro-

ton hole in the closed 1d5~2 subshell.
Experimental form factors have been measured at for-

ward and backward angles and energies up to 500 MeV by
Li et al. (1970,1974). The magnetic data were taken at a
"normal" scattering angle of 145', using the Stanford
HEPL accelerator. They cover a q range of 1.5—2.5
fm ', where the M5 form factor dominates. The data at
low momentum transfer were measured by I.apikas et al.
(1973), using the IKQ 180' scattering system. The result-
ing cross sections cover the Ml region 0.3—1 fm
Some data points near the expected maximum of the M3
form factor have been obtained by Macauley et al. (1977),
using the Glasgow accelerator. Recently, an experiment
covering a large region of q was performed at Bates
(q=0.8—2.9 fm '), at scattering angles 8=160'—180'
(Hicks et al. , 1983). The resulting cross sections, convert-
ed to PWBA form factors using a DWBA calculation, are
displayed in Fig. 35.

F,'(q)
Mg

F,'(q)

ta-4—

ia-4—

lO ~
0

M5 ':Ml

I

I

q (~m-')

FICr. 34. The shell-model prediction (solid curve), compared to
the results of Moya de Guerra and Dieperink (1978) obtained
using the Nilsson model (dotted curve). The data are identified
in Fig. 33.

FIG. 3S. The Al data measured by Lapikas et ah. (1973)
(crosses), Macauley et al. (1977) (dots), Li et ah. (1970) (solid
points), and Hicks et al. (1983) (triangles), compared to the
shell-model prediction calculated using the Brown and Wil-
denthal (1982) matrix elements and a Woods-Saxon radial wave
function.
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A comparison of a shell-model calculation with the ex-
perimental data has been performed by Lapikas et al.
(1973), with the wave function calculated by Wildenthal
and Mcorory using a modified surface-delta residual in-
teraction; quantitatively quite good agreement was ob-
tained. The same is true for the prediction obtained by
Singhal et al. (1982), who used the matrix elements of
Whitehead et aL (1977), obtained by using the effective
interaction of Wildenthal and Chung (1979). In Fig. 35
we show the most recent calculation, using the matrix ele-
ments of Brown and Wildenthal (1982). Again quite good
agreement with the data is found T. he form factor shown
in Fig. 35 is calculated using a Woods-Saxon radial wave
function ( ro ——1.12 fm, a =0.72 fm) with parameters
determined as discussed for Mg.

For all three shell-model calculations the M1 contribu-
tion is somewhat too small. The reduction by nearly a
factor of 2 in I"~ relative to the extreme single-particle
model is too large. The magnetic Inoment, on the other
hand, is well explained by the shell-model calculation
(p, ,„~=3.67 n.m. , psM

——3.58 n.m.). The M3 contribution
near the M3 maximum is roughly correct in all calcula-
tions and about five times smaller than the extreme
single-particle value. The M5 form factor, which is re-
duced very little, agrees reasonably well with experiment
for all calculations.

A closer study of the theoretical form factors reveals
that the neutron contribution to I~ is negligible. The
Ml form factor at low q receives a large convection-
current contribution, which accounts for 50% of the mag-
netic dipole moment. M3 and M5 depend nearly ex-
clusively on the proton intrinsic magnetization. The d5~q
term dominates the entire form factor. The only other
matrix element of importance is the 115~2-2s~~2 M3 con-
tribution. This matrix element is responsible for the large
suppression of M3, and reduces FM3 near the maximum

by a factor of 2. The contribution of other matrix ele-
ments, given in the work of Singhal et al. (1982), is very
small.

Coven the dominating role of one shell and one type of
nucleon, the magnetic form factor of Al is a good case
for the determination of the d 5~2 radial wave function us-
ing the M5 form factor. A purely phenomenological fit
of data available before 1983 shows that the quality of the
data was marginal; the uncertainty of the resulting radius
amounted to several percent. The M5 form factor was
measured over too small a q range (or, more precisely, the
dynamic range in IiM5 was too small). In this case the
M5 form factor could not be separated well enough from
the M3 contribution, the shape and overall amplitude of
which is subject to large uncertainties due to configura-
tion mixing. The recent data taken at Bates up to 2.9
fm ' (Hicks et al. , 1983) have greatly improved this situ-
ation. The rms radius of the 115~2 orbit is now well
determined (3.26 0.04 fm) and insensitive to variations of
quantities (FM3) that are quite uncertain. Both this orbit
radius and the ra obtained when using shell-model
single-particle matrix elements show that the radial wave
function required to get a fit has a radius significantly

smaller than the one implied by the charge form factor,
3.55 fm (Li et al. , 1974).

5. The nuclei Si,

The nuclei Si and 'P are very interesting cases for the
study of magnetic form factors. For a ground-state spin
of —,', only the multipolarity Ml will contribute over the
whole q range. In this case, the Ml form factor can be
treated in the same way as the Coulomb monopole CO
charge form factor; a Fourier transform of I'~& yields the
magnetization density in radial space.

In the extreme single-particle model the structure of
these nuclei corresponds to an unpaired 2s~&2 neutron or
proton, respectively. The Fourier transform of a 2s radial
wave function should lead to a very distinctive pattern
due to the node present in R(r). Cxiven this particular
pattern, configurations involving shells with nodeless ra-
dial wave functions, ld5~2 and 1d3/2 in particular, should
stand out clearly. Due to the distinct shape of the 2s ra-
dial wave function, we might hope that the interpretation
of the Si and 'P form factors actually could be easier
than for the analogous ' C case.

Before we compare experimental results and theory, we
briefly discuss different predictions for the magnetic form
factor of Si; this allows us to illustrate the role of d5~2-
d3&2 spin-flip transitions and the differences among some
of the most recent shell-model calculations (see also
Brown et al. , 1983).

The solid curve shown in Fig. 36 represents the predic-
tions for ET(q) obtained using a harmonic-oscillator wave
function (b=1.69 fm) and the matrix elements of Brown

F (q)

la-6

FIG. 36. Elastic magnetic electron scattering from Si. The
solid curve is calculated using the Si matrix elements of Brown
and VA'ldenthal (1982); the dotted curve represents the 2s~&2
contributions alone. The dashed curve uses the matrix elements
of Wildenthal and Chung (1979), the dotted dashed curve uses
the matrix elements of Whitehead et al. (1977).
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and Wildenthal (1982). The dashed curve was calculated
using the matrix elements of Wildenthal and Chung
(1979). The dashed-dotted curve, taken from Singhal
et al. (1982), was obtained using the matrix elements of
Whitehead et al. (1977) and an almost identical ( b=1.70
fm) harmonic-oscillator wave function. Very pronounced
differences occur at low q, in the region of the first max-
imum and minimum of I~&.

The work of Singhal et al. (1982) shows that the region
q&1.5 fm ' is strongly influenced by configuration ad-
mixtures, while for q& 1.5 fm ' the form factor is dom-
inated by the 2s~/2 shell. This is emphasized by the dot-
ted curve in Fig. 36, which represents the 2s &/z contribu-
tion alone. This dominance of 2s at large q results from
the high-frequency Fourier component introduced by the
node in the 2s radial wave function.

The main difference between the 2s contribution and
the full calculation results from the presence of the d5/2-
d 3/p matrix element, which interferes destructively with
the 2s term. The d5/2 d3/2 matrix element is smallest in
the calculation of Whitehead et al. (1977) due to the fact
that in this calculation the full s/d space was not allowed
for; the number of holes in the d5/2 shell was restricted to
(2. The difference between the two calculations per-
formed by the Michigan State University group is mainly
due to an increase in the 2s term in Brown and Wil-
denthal (1982). This increase results from a continuous
mass dependence of the two-body matrix elements
through the s/d shell that replaced the previous discon-
tinuous change at A =28.

The large effect of the d5/2 d3/2 interference on mag-
netic moments (Wildenthal and Chung, 1979) and Ml
form factors is clearly demonstrated by Fig. 36. The im-
portance of this spin-flip term is similar for the other s/d
nuclei and plays a major role in the understanding of oth-
er M1 form factors, such as the one in the ' C case.

A calculation using a Woods-Saxon radial wave func-
tion also shows that the shape of the first maximum and
minimum of I'~ is quite sensitive to the R (r) used. This
is to be expected once two amplitudes interfere signifi-
cantly. Under these circumstances, the effects of configu-
ration mixing and the shape of 8 (r) will be difficult to
disentangle unless independent experimental information
(spectroscopic factors, etc.) is included.

An experiment on Si and 'P has recently been per-
formed by Miessen (1982). Using the Bates and Mainz
accelerators, he measured both charge and magnetic form
factors, the latter at scattering angles 8=160'—180. The
resulting form factors, which cover the q region 1—2.8
fm ', are shown in Figs. 37 and 38.

The solid curves shown in Figs. 37 and 38 are obtained
using the matrix elements of Brown and Wildenthal
(1982) together with Woods-Saxon radial wave functions.
The radius parameter ( ro ——1.27 fm) has been fitted to the
data; the surface thickness (a=0.72 fm) has been taken
from a Woods-Saxon fit to the charge density (Li et al. ,
1974). For 'P, this calculation reproduces rather well the
experimental data, except for the lowest q point. The
minimum near 1.2 fm, which is inQuenced considerably

F, (q)
29'

l

lO'

2
q (fm ')

FIG. 37. The Si data of Miessen et al. {1982)compared to a
calculation based on the Brown and Wildenthal (1982) matrix
elements and Woods-Saxon radial wave functions. The dashed
and dotted-dashed curves give the 2s and d5/2 d3/2 contribu-
tions, respectively. The dotted curve gives the extreme single-
particle model prediction.

F (q)
3I p
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FIG. 38. The 'P data of Miessen et al. (1982) compared to a
calculation based on the Brown and Wildenthal (1982) matrix
elements and Woods-Saxon radial wave functions. The dashed
and dotted-dashed curves give the 2s - and 1d-shell contribu-
tions, respectively.

by the interference of the s and the 15/z d3/p terms, is
quite well predicted. The magnetic moment (p,„~=1.13
n.m. , p„~,——1.02 n.m. ) is well accounted for also.

For Si, the agreement between experiment and shell-
model calculations is not as good. The amplitude of the
second diffraction maximum —mainly due to the (2s~/z)
term —is too large. Figure 37 also shows a calculation for
a pure 2s~/z particle, with spectroscopic factor 1. Cxiven
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the large reduction in the amplitude of the peak predicted
by the shell-model calculation, we may conclude that a
moderate further reduction of the 2s occupation could
lead to agreement with experiment in the range 1.5—3
fm '; the d-shell amplitudes contribute very little in this
region. The amplitude of the first peak predicted by the
shell-model calculation seems too small, although the
agreement with experiment at q=O (p,„~=—0.56 n.m. ,

p „=—0.50 n.m. ) is quite good. Better data for q& 1.2
fm ' would be very interesting, and would allow one to
detect the large quenching due to d-shell contributions
predicted for q&1 fm

We should add here one comment concerning the sign
of FT(q). The various figures always give curves for FT,
features loosely referred to as "diffraction minima" in in-
dividual multipole contributions MJ usually correspond
to a sign change in FMJ. For Si and P, this is not the
case. Both Ml forin factors exhibit near q-1 fm ' a
true ininimum without sign change. The Si ( 'P) form
factor remains negative (positive) all the way up to 3.4
fm '. As pointed out by Sick (1974), the Fourier
transform of a 2s radial wave function leads to a true
minimum, and the admixtures due to d-shell contribu-
tions to FMi do not change this. These two maxima for
Fr result from the overlap of the first lobe of sin( qr) with
the two peaks of R (r).

This absence of a sign change of Fr has important
consequences for phenomenological analyses in terms of
magnetization densities (Miessen, 1982) in cases where the
experimental data are not extensive enough to determine
the sign of F(q) via continuity starting at q=O.

6. The nucleus 39K

For K the extreme single-particle model predicts a
ld3/z proton-hole structure. The same configuration is
assumed in shell-model calculations that do not allow for
excitation outside the s/d shell. From experimental spec-
troscopic factors we know that Z=20 in general, and

Ca in particular, are not actually a good shell closure.
Accordingly, the (1d3/2)

' configuration is not expected
to explain the magnetic form factor. The nucleus K
should be a particularly favorable place to study admix-
tures of configurations from the next-higher f/p shell.

Two sets of data are available for electron scattering.
At IKO, De Jager has measured cross sections at 180'
scattering angle in the q range 0.7—1 fm ' (see Lapikas,
1978); the data measured at Bates (Lapikas, 1979) cover
the range 1.4—2.5 fm ' (Fig. 39).

The experiinental form factor of K is rather far from
a 13/Q configuration; the Ml form factor is reduced by a
factor of -0.8 in F relative to the extreme single-
particle value, the M3 form factor by a factor of -5. In
the absence of theoretical form factors, the data have been
fitted using a phenomenological parametrization
(Lapikas, 1978) similar to the one described for '7O. The
Ml data and the magnetic dipole moment can be fit
simultaneously only if a multipole-dependent effective g

la-4—

Ml '.

la-'
0

FKx. 39. The K data of De Jager et al. (1979) compared to a
phenomenological fit made using d 3/2 and f7/2 matrix elements
and a harmonic-oscillator radial wave function.

factor is allowed for. This clearly shows that pure
( d3/Q )

' form factors, even with phenomenological
reduction factors, do not allow one to describe properly
the physics contained in the data.

Several theoretical calculations have dealt with the
open-shell nature of K. Zucker (1971) and Poves et al.
(1977) performed shell-model calculations in the d3/z-
f7/2 space. They found an appreciable occupation of the
f7/z shell, which according to Poves er al. ( 1977)
amounted to occupation numbers n (f7/z ) =0.31,
n„(f7/z) =0.54, and n (d3/z)=2 69 W. hi. le d3/z f7/2-
matrix elements give no contribution to the magnetic elas-
tic form factors (due to parity conservation), the (f7/i)
terms could lead to an appreciable influence.

In order to see whether such an f7/z admixture could
explain the magnetic form factor, we have made a fit to
the data using phenomenological matrix elements. In ad-
dition to the Ml and M3 (d3/2) matrix elements, we
have allowed for an Ml (f7/p) contribution; the M3
(f7/2) contribution turns out to be rather poorly deter-
mined and brings with it little improvement of the fit. In
order to constrain the fit as much as possible, we allowed
only for contributions of protons. Given the limited
amount of data, a harmonic-oscillator wave function
( b = 1.80 fm) was employed.

The resulting fit of MJ form factor data and magnetic
moment is quite good, as shown in Fig. 39. The
( T=O)d3/i matrix elements have values that reflect the
reduction relative to the extreme single-particle model,
0.77 and 0.55 for Ml and M3, respectively. The f7/z ma-
trix element, which is very important in fitting the full
M1 region, turns out to be reasonably small, 0.069. The
goodness of the fit and the smallness of the f7/2 contribu-
tion could make this a plausible parametrization of the
data. However, the f7/2 matrix element found is much
larger than that resulting from the above-mentioned
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F,'(q)
59K

shell-model calculation of Poves (1982), who obtains Ml
matrix elements of 0.002 (0.008) for T=O ( T= 1), respec-
tively.

A detailed study of magnetic scattering from K has
recently been performed by Suzuki (1978,1983), who stud-
ied both the effects of core polarization and meson-
exchange currents. In this calculation, the single-particle
wave functions were calculated using Woods-Saxon wells.
The core-polarization effects were estimated using first-
order perturbation theory and the Green's-function
method. This allows one to perform a calculation
without explicitly restricting the configuration space. As
a residual interaction, the Michigan three-range interac-
tion is used.

The results of this calculation are shown in Fig. 40.
Comparison of the dashed curve and the dotted curve
shows the effect of configuration mixing. The largest
part of this core-polarization effect is actually due to the
tensor part of the interaction. This study reveals an in-

teresting difference between nuclei of jackknifed
(j = l ——, ) or stretched (j = l+ —,

'
) valence nucleon con-

figurations. For the former, the magnetic form factor is
dominated by the (o YJ+&)z term, which has a destructive
interference with the (o.YJ &)J amplitude. As this ampli-
tude is increased by the tensor part of the residual interac-
tion, an overall decrease of FM results. For the stretched
configuration, the dominant term contributing to I'M is
(crYq &)z In th. is case the central and tensor terms cancel
to some degree, and lead to an overall increase of FM.

The contribution of MEC is also calculated by Suzuki:
the pair current is found to increase the form factor,
while the pionic currents and the isobar diagram lead to a
smaller reduction. The isobar diagram is particularly ef-

fective in the M3 form factor, in accordance with experi-
ence in other nuclei. The total effect of meson-exchange
currents plus core polarization is shown in Fig. 40 as a
solid line.

The calculation of Suzuki shows that for MEC, as well,
the jackknifed case differs considerably from the
stretched configurations mainly studied in the past. For
j = l ——,', MEC play a role at a relatively smaller momen-
tum transfer. They lead, for example, to a change of the
magnetic moment of kpMEc ——0.26 n.m. ; given the small
one-body magnetic moment (0.13 n.m. ), the MEC effect
at very low q turns out to be quite large.

7. Other s/d-shell nuclei

Above, we have presented a detailed discussion of those
s/d-shell nuclei that hold special interest due to the
availability of experimental data or of theoretical calcula-
tions. A number of other nuclei —' F, S, Cl, Cl-
remain to be investigated in more detail. For complete-
ness we present in Fig. 41 a set of predictions, all calculat-
ed using harmonic-oscillator wave functions and the ma-
trix elements of Brown, Chung, and Wildenthal (1980).

We do not intend to discuss these predictions in detail,
but we point out a few peculiarities. The ' F nucleus is
another case where only Ml contributes, and it is again
the s matrix element that dominates at large q. In con-
trast to the case of Si and 'P, however, the d-shell
terms interfere constructively and greatly increase the am-
plitude of the first lobe of FT. Again, the total form fac-
tor shows a true diffraction minimum, without sign
change.

For S, both Ml and M3 give a sign change near 0.9
fm ', with a resulting near-zero in FT. The pure ( d 3/2 )

Ml contribution in the first diffraction lobe is larger by a
factor of 2; the reduction to the low I'M& results mainly
from the 85~2-d3&2 interference term. The individual M3
contributions at low q largely interfere anyway; the struc-
ture of I'M3 resulting from this interference should serve
as a warning against attempts to deduce M3 moments by
extrapolating phenomenological fits (done in the region
1—3 fm, where FM3 can be measured) to zero momen-—1

turn transfer (Lapikas, 1979).

to '—

la-'
0

FiG. 40. Elastic magnetic electron scattering from K. The
dashed curve represents the single-particle result of Suzuki
(1978,1983); the dotted curve includes core polarization; the
solid curve includes MEC in addition.

C. 2p/1f and 1g-shell nuc-lei

As compared to the p and s/d shells, the region of
2 & 40 is poorly explored by magnetic electron scattering.
This is mainly because of increasing difficulties in per-
forming experiments as the separation of the magnetic
contribution for large Z becomes harder due to the Z
dependence of the charge contribution. In this situation,
one depends on the availability of 180' scattering systems,
of which there are few, and one has to deal with experi-
ments that are considerably more time consuming.

The complexity of the form factors, largely due to the
higher number of multipolarities contributing, also makes
more difficult the interpretation of experimental data.
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and Walecka, 1973a; Sick, 1980; Platchkov et al. , 1982).
This topic has been covered in a fairly systematic manner
for both theory and experiment. The interpretation of the
high-multipolarity form factors is straightforward enough
to be carried out even in the absence of shell-model calcu-
lations; much of the physics contained in the data can be
extracted by a phenomenological analysis, without undue
recourse to phenomenological concepts.

The plan of this section is to develop the basic idea
starting from the formal properties of magnetic form fac-
tors, as presented in Sec. IV, to discuss corrections that
apply to these simple-minded ideas, and to describe the
extraction of orbit sizes from FM(q).

3. Radial wave functions and high
multipolarity

In the following, we first consider nuclei having a par-
ticularly simple structure. We assume that the magneti-
zation density for a nucleus having a spin Jo is entirely
given by one shell containing the unpaired valence nu-
cleon of spin j=Jo. Nucleons in all other shells are as-
sumed to be paired off. We select cases where this un-
paired nucleon has the highest spin j of all occupied or-
bits, and we restrict ourselves to cases of stretched config-
uration j=I+—,'. For such nuclei, we study magnetic
form factors of the highest possible multipolarity A=2j.
For this particular case, the description of magnetic
scattering simplifies considerably (Donnelly and Walecka,
1973a).

According to Eqs. (4.115) and (4.131), the term involv-
ing pJ jz+, (qr) vanishes, since the selection rules for D+
require J& 2l —1. The term proportional to azjz(qr), the
contribution of the convection current, vanishes as well,
since the selection rules for B impose J&2/ —1. These
selection rules basically express the fact that for multipo-
larity A=2JO both the nuclear spin and the valence nu-
cleon j have to undergo a complete flip. The spin-flip
contribution is given by the term proportional to
pJjq ~(qr) Consequen. tly, the magnetic form factor of
multipolarity J=A is given by I'Eq. (4.130)]

«+1/V'4' g IR (r)R (r)j~ &(qr)D~ (jI;Ij'')

the valence nucleon radial wave function, in striking simi-
larity to elastic charge CO scattering. The only difference
appears in j~ &

rather than jo, and the numerical con-
stant DA.

The remarkable features of Eq. (6.10) result from the
terms that are absent: The convection current for protons
does not contribute. This is due to the fact that scattering
from the convection current, together with nucleon spin-
flip, is a two-step process negligible for a weakly interact-
ing probe. Configuration mixing involving all shells with
j' &Jo does not appear either. Since the electron interacts
with only one nucleon at a time, a shell with j' &J cannot
contribute to multipolarity 2JO ——A (this is true as long as
we neglect MEC). To the extent that the assumptions
leading to Eq. (6.10) are realistic, a measurement of FM~
allows a determination of the valence shell radial wave
function, independent of the complications usually prom-
inent in the interpretation of magnetic form factors.

Equation (6.10) is most attractive for another reason: it
applies to both protons and neutrons (Donnelly and
Walecka, 1973a; Sick et al. , 1977). Unlike charge elec-
tron scattering, which is basically blind to neutrons, MA
magnetic scattering places both types of nucleons on an
equal footing. The reduction in cross section occurring
for neutrons, a factor

(@nip&�)

resulting from the smaller
intrinsic magnetic moment of neutrons, is quite accept-
able.

The extreme case discussed above immediately raises a
number of questions. (1) Experimentally, only the in-
coherent sum of multipole contributions FMq can be
determined (unless we observe ground-state nuclear-spin
observables; see Sec. VIII). Can the MA multipole be iso-
lated from the other multipoles over a large enough q
range to make Eq. (6.10) interesting'? (2) Configuration
mixing involving shells with j &Jo may be small; to what
degree can one extract quantitative information when en-
tirely neglecting their contribution? (3) The impulse ap-
proximation used to derive Eq. (6.10) is modified by the
contributions of meson-exchange currents; to what degree
do these MEC quantitatively modify the results? These
questions are discussed in turn below.

a. Separation of multipolarity A =2J0

)&IJ,„Q„(aa') &&2r dr (6.9)

FMA(q) =«+»v'4~D~ (V;IJ)CJI n

)& IR (rj)~ &(qr)r dr . (6.10)

The MA form factor is given by the Fourier transform of

for neutrons, and the same with p„(P~) &&2 replaced by
p~(QJ )+,&2 for protons.

Exploiting now the condition that j be the highest of all
occupied shells, we reduce the sum over a,a' in Eq. (6.9)
to one single term for a =a'= j. All other terms drop out
due to the triangle condition b.(J—1, /, I') for DJ . We
thus obtain the very simple result

The first question to be discussed is the extent to which
the MA contribution can be measured and isolated. For
most odd-3 nuclei, the ground-state Jo does not corre-
spond to the highest j of all (normally) occupied shells.
For the heavier nuclei in particular, the shells of large j
are filled pairwise, and the odd nucleon regularly occupies
a state of low j. For A & 120, however, there are a num-
ber of nuclei where the ground-state Jo value of —', , —,, or

conforms with the conditions rneritioned above. In
these cases the M5 —M9 form factors can be obtained, in
principle.

For these high multipolarities, the separation of the
MA multipole actually becomes reasonably easy. The ra-
dial wave functions for large l (large j) exhibit a well-
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defined peak at the nuclear surface. The MA form factor
consequently shows a pronounced peak at a momentum
transfer where the maximum of R (r) coincides with the
maximum of the first lobe ofj~ i(qr) [Eq. (6.10)], which
occurs near qr =1.1A for large A. The highest allowed
multipolarity A thus will lead to a form-factor inaximum
at a q higher than for all lower multipolarities. This peak
occurs at a momentum transfer where the usually dom-
inating charge form-factor contribution, which peaks at
q=0, has fallen off by many orders of magnitude. As
was shown in Fig. 14, the M7 contribution indeed dom-
inates over a fairly large q region. This allows one to per-
form experiments at 8 & 180'; with targets in transmission
geometry, this greatly facilitates data taking at large q
and low cross sections.

The separation of the MA contribution from the mag-
netic multipoles J & A is possible in a rather limited re-
gion of q only, near the maximum of FM~. At larger
transfer, after F~A has fallen off by 2—3 orders of magni-
tude, the MA form factor usually reaches a diffraction
minimum. In this region, secondary maxima of the
FMJ &z form factors are likely to become important again.
At lower q, the A —2 form factor is a priori quite large
and quickly dominates I' T, in the extreme single-particle
model at least. In practice, the A —2 form factors are
systematically quenched by factors 2—10. In this case,
the MA term sticks out over a considerable q range.

Since FMz can only be isolated over a limited region of
q, Eq. (6.10) cannot be inverted to give R(r) as the
Fourier transform of FMz. Consequently, only specific
aspects of R (r) can be determined experimentally. R (r)
is measured reasonably well in the region where R (r) is
larger than —10% of its maximum value (see Fig. 12).
The small-radius behavior could be measured only if MA
could be isolated at large q; for wave functions with large
orbital angular momentum /, however, this small- r
behavior is of little interest. For large radii, the low-q
shape of FMa is of importance, but not accessible experi-
mentally. For an interpretation of F(q) in terms of R (r)
this lack of information has to be made up for by model
assumptions or independent experimental evidence. For-
tunately, for radial wave functions of individual shells,
the large-r behavior is well known and largely constrained
by the separation energy. This compares favorably to the
situation encountered for charge scattering, where the
large-r shape, resulting from the sum of many different
shells, is much more difficult to predict on general
grounds (Sick, 1982).

The influence of multipoles of order J & A has been in-
vestigated by Donnelly and Gokalp (1981). These authors
allow a free variation of matrix elements involving lp-2h
admixtures to the one-hole states of interest. They show
that multipoles J & A can lead to appreciable changes of
I'T in the q region where MA is expected to dominate. In
particular, the secondary maxima of I'M~ 2 can modify
the form factor in the q region used for the determination
of valence nucleon radial wave functions. Donnelly and
Cxokalp (1981) also point out that a few experimental
points in the q region, where FM~ 2 peaks, are very effec-

tive in constraining the amount of configuration mixing
admissible.

In order to determine quantitatively the influence of
such admixtures for specific nuclei, one needs shell-model
calculations for the single-particle matrix elements. Here
we cite two cases where such calculations have been per-
formed. For s/d-shell nuclei (Sec. VI.B) we have avail-
able a rather complete set of wave-function calculations.
The form factors calculated from these matrix elements
using a given R (r) can be interpreted in terms of radial
wave functions by ignoring the configuration admixtures
that were used to calculate F(q). The resulting change in
R(r), needed to simulate this neglect of configuration
mixing, then yields a good estimate for the uncertainties
introduced by this procedure. One of these tests was
described in Sec. VI.B for Mg, a nucleus that obviously
is very far from the assumptions made above; Mg is lo-
cated in the middle of the s/d shell, and is quite de-
formed. The rms radius of the 1d&~2 orbit, extracted
from a calculated form factor by ignoring the configura-
tion admixtures as given by the wave functions of Wil-
denthal et al. , differs by 1% from the one injected into
the full calculation. This leads us to expect that the
neglect of configuration admixtures of multipolarity
J & A, for reasonably pure single-particle cases, will intro-
duce uncertainties of much less than 1% in the radii ex-
tracted.

For the nuclei 2 =49,51,87,93, discussed below, Suzuki
(1978) and Suzuki et al. (1979) have performed shell-
model calculations using a large harmonic-oscillator space
( —14%co) and different schematic, finite-range residual
interactions, both central and tensor. Qualitatively, these
calculations correctly reproduce the reduction of the
A —2 multipole strength, which shows that the amount of
configuration mixing is of the right size. Using Suzuki's
form factors as "data" for the determination of R(r),
again ignoring configuration mixing, one can make yet
another test of the importance of these admixtures.
Again, the effect on the extracted rms radius is signifi-
cantly less than 1%.

b. Wave-function admixtures with j' & J0

The second question raised above concerns the influ-
ence of configuration admixtures with j &Jo. Due to
conservation of parity, &2%co excitations with j )Jp are
required in order to change the MA form factor in a way
not accounted for by Eq. (6.10). Even for nuclei exhibit-
ing relatively pure single-particle or single-hole states,
such 21m excitations will in general be present. The large
radial overlap of shells with low orbital angular momen-
tum l will, however, favor states with I lower than is re-
quired to change I'M~. In addition, np-nh excitations in-
volving paired-off nucleons are not effective in changing
magnetic observables.

For a quantitative estimate, we again refer to the calcu-
lations of Suzuki (1978) and Suzuki et al. (1979). Using a
& 14%co space and realistical finite-range residual interac-
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tions, Suzuki allows for contributions of j'& Jo shells.
From his calculated form factors one can deduce that the
neglect of admixtures with j'& Jo in the interpretation of
the 3=49,51,87,93 form factors leads to an error in the
rms radius extracted of -0.5%

Larger effects have been obtained by Desplanques and
Mathiot (1982), who use a residual force that, besides m.

and p exchange, contains a 5-force term proportional to a
phenomenological parameter g'. Such a parametrization
has been used recently in many cases to simulate the ef-
fects of residual interactions at low momentum transfer.
At large q, q-3 fm ', the use of a 5 term can be expect-
ed to produce unrealistic effects, however. This is shown

by the slow convergence of F(q) (requiring 35fico for q= 3
fm '); much faster convergence (-8Rco) and smaller ef-
fects on F(q) are obtained if a finite-range force is em-

ployed (Suzuki, 1978). The same tendency is also shown

by Suzuki (1980), who compared the core-polarization ef-
fects in magnetic scattering calculated with zero-range
and with finite-range interactions; much smaller effects
are found with the latter. The large renormalization of
F(q), by a factor of 0.3—0.5, needed by Desplanques and
Mathiot (1982) to get the calculated form factor into
agreement with experiment, also indicates that the results
obtained using this g'5 term are unrealistic at large q.

c. Contribution of exchange currents

The third complication that interferes with the concep-
tually simple interpretation of FMA via Eq. (6.10) relates
to the presence of meson-exchange currents. Processes
where the virtual photon couples to a pion or an XN pair
are of some importance for magnetic properties in gen-
eral; unlike in charge form factors, MEC give a first-
order effect in FM. Already the magnetic dipole moment
receives a 5—10% contribution of MEC. At large q, a
larger influence of MEC can be expected, since MEC pro-
cesses allow one to split the momentum transfer and dis-
tribute it to two nucleons. The larger nuclear form factor
at -q/2 compensates to some extent for the smaller prob-
ability resulting from the two-body nature of the MEC
process.

On the whole, MEC contributions fall with increasing

q only somewhat less quickly than the one-body form fac-
tor [Eq. (6.10)]. As described in Sec. VII, an important
effect of MEC can be expected only if the one-body form
factor becomes very small, due, for example, to the ap-
pearance of a diffraction minimum. This is not the case
near the maxima of the MA form factors of interest here.
As a consequence, MEC effects on MA form factors are
comparatively small. They still require careful discus-
sion, since one aims at a determination of accurate
valence nucleon radial wave functions.

For a detailed discussion of MEC we refer the reader to
Sec. IV.E. Here, we mention only those points specific to
form factors of high multipole order. We have to discuss
some of those points separately because the history of cal-
culations on the quantitative effect of MEC on MA form

factors has been somewhat confusing.
Some of the early calculations were performed using an

incorrect sign for the b.-resonance term (Dubach, 1980) or
by omitting it entirely (Suzuki, 1978). This led to an
overestimation of the MEC contribution. In a number of
calculations, the important S-D transitions were not ac-
counted for; according to Mathiot and l3esplanques
(1981), this led to an underestimation of the MEC contri-
bution. Many of the calculations (Suzuki, 1978; Dubach,
1980) ignored the effect of the mNN vertex form factor.
Experimentally (Bongardt et al. , 1974), these vertex form
factors fall about as quickly with q as the nucleon form
factor, an observation in agreement with the naive expec-
tation that assigns similar form factors to systems
(vr, X,b, ) of similar size. Allowing for realistic vertex
form factors reduces the MEC contributions considerably.
For computational reasons, many of the MEC calcula-
tions are performed using harmonic-oscillator wave func-
tions. If the resulting FMEC is added to a one-body con-
tribution [Eq. (6.10)] computed using a radial wave func-
tion with a different overall size (oscillator parameter), a
potentially incorrect picture will result. Beyond the max-
imum of FM~ the ratio of MEC to one-body form factors
at large q may depend significantly on the relative falloff
due to different radial wave functions.

The approach taken by Platchkov et al. (1982) to ob-
taining a realistic estimate of the MEC effect tries to
avoid these problems. MEC form factors not including

F~~~ have been multiplied with a factor F ~&(q/2).
From a calculation performed using a given type of radial
wave function, only the relative effect of MEC is extract-
ed. This is done by fitting the calculated one-body or
one-body —plus —two-body form factors with radial wave
functions in order to determine the relative change of the
orbit radius due to MEC.

The overall effect of MEC on the radius of the valence
orbit, as extracted from MA form factors, is given by
Platchkov et al. (1982). Ignoring the MEC contribution
would yield rms radii —1.5% too small. Given the
present state of the art of MEC calculations, a fairly large
error bar, +50%, say, should be attributed to this correc-
tion.

If we compare MEC with the other effects that compli-
cate an interpretation of FMz in terms of Eq. (6.10), we
see that the MEC yield the largest correction. At the
present level of experimental accuracy, one needs to take
the MEC effect into account, while the uncertainties due
to configuration mixing can be absorbed into the overall
error bar. A more firmly based calculation of MEC ef-
fects on MA form factors is therefore desirable.

2. Experimental resUlts

Experiments to date on scattering from high-
multipole-order moments have produced data for M7 and
M9 moments and 3=49,51,59,87,93,115. For a number
of cases, the conditions discussed above apply; in those
cases, the data can be used to determine the valence nu-
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cleon radial wave functions.
Ti is a nucleus with a neutron hole in the closed f7/2

shell, 'V has three f7/2 protons and a closed neutron
shell, Sr has a hole in the closed g9/2 neutron shell,
while Nb has a single unpaired g9/2 proton. As indicat-
ed by transfer reactions, magnetic scattering (see below),
and the calculations of configuration mixing (Suzuki,
1978) mentioned above, these nuclei have reasonably pure
single-particle configurations that allow an application of
Eq. (6.10) to the MA form factor. Co, on the other
hand, is quite deformed, and a quantitative interpretation
of FM 7 cannot be attempted in terms of Eq. (6.10). For" In, only preliminary data (Lapikas, 1979) are available
at the present time.

The cross sections for the highest multipole MA have
all been measured at Saclay, where a systematic investiga-
tion of high-A scattering has been pursued (De Witt Hu-
berts et al. , 1976; Sick et al. , 1977; Platchkov et ah. ,
1979,1982). The (mainly) magnetic cross sections were
measured at energies of 100—350 MeV and at a scattering
angle of 8= 155'. Using targets of thickness —100
mg/cm and electron intensities up to 30 pA, cross sec-
tions were Ineasured at Saclay down to a level of
2)& 10 cm /sr. The (mainly) charge contribution was
measured at 500-MeV electron energy and forward angles,
and subtracted. To reduce the influence of systematic er-
rors in the charge contribution subtraction, neighboring
spin-zero isotopes in general were measured simultaneous-
ly at both forward and backward angles.

The data, converted to PWBA form factors, are
displayed in Figs. 42—46. Cross sections for the region
where the lower multipoles dominate are available only
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FIQ. 43. The 'V data of De Vries et al. (1978), Arita et al.
(1981), and Platchkov et al. {1982,1983) compared to the
density-dependent Hartree-Fock-Bogoliubov prediction of
Decharge and Gogny (1980) (secondary maxima of FMq have
been suppressed).
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FIG. 42. The Ti data of Platchkov et al. (1982) shown to-
gether with a fit calculated using a Woods-Saxon radial wave
function; the dashed curves represent the M5 and M7 contribu-
tions.

FICz. 44. The Sr data of Platchkov et al. (1982) shown to-
gether with a fit calculated using a %'oods-Saxon radial wave
function; the dashed curves represent the M 7 and M 9 contribu-
tions.
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FIT&. 46. The " In data of Box et al. (1976) (crosses) and De
Jager et al. (1979) (solid circles) compared to a fit calculated us-
ing a Woods-Saxon radial wave function.

FIG. 45. The Nb data of Box (1976) (solid circles), York and
Peterson (1979) (open circles), and Platchkov et ah. (1982) (tri-
angles) compared to the density-dependent Hartree-Fock-
Bogoliubov prediction of Decharge and Gogny (1980) (secon-
dary maxima of FM~ have been suppressed).

for some cases. These cross sections have been measured
using the Bates 180 scattering system; the very-low-q
data covering the M1 region have been measured at IKO
(De Vries et al. , 1970; Box, 1976; York and Peterson,
1979; Arita et al. , 1981).

These experiinental form factors have been interpreted
in terms of the radial wave function of the valence shell

by parametrizing F~/, according to Eq. (6.10). A
Woods-Saxon radial wave function is used to calculate the
radial integral. The overall factor a~ ——(g~)+i/z accounts
for the depletion of the 1f7/2 (lg9/2) strength due to ad-
mixtures with j & z ( 2 ). The main information extract-
ed, the localization of the peak of R (r), is fixed by the

F~~ data at and beyond the maximum. The region where

FM~ falls by the first factor of 10, say, basically fixes the
radial scale.

For the lower multipoles, J & A, Eq. (6.10) is not ap-
propriate; configuration mixing is expected to influence
strongly the shape of E~z. Near the first maximum of

2, and for data of limited accuracy, a fit using the
equivalent of Eq. (6.10) for J=A —2 can be tried. Little
significance can be attributed to the parameters resulting
for J=A —2. The smallness of a~ 2 often found does
qualitatively indicate, however, that the A —2 form factor
is systematically quenched due to configuration mixing.

As radial wave functions entering Eq. (6.10), those cal-

culated in local %'oods-Saxon wells have been used. The
fit to F~A in this case determines the radius of the poten-
tial well. The surface thickness, which is poorly con-
strained by the F~J, data available at present, has been set
to a standard value, a=0.65 fm, determined by fitting
charge form factors by densities computed from Woods-
Saxon wells. This procedure is suggested by self-
consistent Hartree-Fock calculations, which give for dif-
ferent shells practically the same surface thickness of the
effective potential (Negele, 1970). An important feature
of interpretations using Woods-Saxon wave functions is
their use of the experimentally known separation energy
to fix the large-radius behavior of R(r). This tail of
R (r), which is not measured by magnetic scattering due
to the lack of low-q MA data, is strongly constrained by
the separation energy.

Fits to the experimental form factors using the above
approach have been described in detail by Platchkov
et a/. (1982). Some results are shown in Figs. 42—45, and
some numerical results are given in Table II. These fits
show that (i/j~)+ i/2, the MA "quenching factor, " is
reasonably close to one, as it should be for a single-
particle state of reasonable purity. The accuracy of the
rms radii of R(r) quoted in Table II is of the order of
1—1.5 %.

It is clear that the experimental data do not directly
determine these rms radii. EMA basically fixes the loca-
tion of the peak in r space of R2(r). Model assumptions
(a Woods-Saxon shape) and other experimental informa-
tion (the separation energy, mainly) yield the ingredients
needed to proceed to the rms radius. Because rms radii
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TABLE II. Theoretical and experimental point nucleon valence rms radii expressed in fm.

Nucleus

49Ti
51~
87Sr

93Nb
49Tiy51~

87Sr/"Nb

Orbit

1f7n
&f5/z
1g 9/2
& g'9/2

f7n /f5/2
g9/2/g$/2

4.210
4.246
4.946
5.047

DDHF

4.124
4.140
4.880
4.954

DDHFB'

4.068
4.107
4.732
4.931

Expt.

4.042(56)
4.063(53)
4.823(76)
4.946(64)
0.980(10)
0.968(10)

'DME, density-matrix expansion (Negele and Vautherin, 1972).
DDHF, density-dependent Hartree-Fock (Campi and Sprung, 1972).

'DDHFB, density-dependent Hartree-Fock-Bogoliubov (Decharge and Gogny, 1980).

provide a convenient way to discuss the results, a brief
consideration of the ambiguities inherent in the deduction
of rms radii is in order.

While F(q) fixes the main peak of R(r), the detailed
shape is influenced by the shape of V(r) Thi.s influence
is rather indirect, though, and makes R(r) much less
model dependent than, for example, the charge density
used to fit charge scattering. The radial wave function
R(r) is a solution of the Schrodinger equation; this
suppresses many unphysical features introduced by the
somewhat arbitrary shape of the potential V(r). The
most important property of V(r) turns out to be the sur-
face thickness a. A typical uncertainty of +0.05 fm in
the choice of a leads to an uncertainty of the rms radii al-
ready included in the error bars quoted in Table II.
Another effect of importance concerns the nonlocality of
V(r) From . the interpretation of transfer reactions, we
know that the relation between R (r) near the nuclear sur-
face and R (r) in the tail region can depend strongly on
the nonlocality of the effective potential assumed. This is
true in particular for wave functions with nodes. For
magnetic electron scattering and the nodeless R (r) of in-
terest, the contribution to the rms radius of the tail of
R(r) is rather small. In contrast to transfer reactions,
electron scattering measures R (r) in the region where it is
large; an "extrapolation" depending on model assump-
tions is needed only for the region where R (r) is small.
Passing from a nonlocal to a local potential changes rms
radii for a fixed large-r tail by -0.02 fm (Chapman
et al. , 1976). For the interpretation of FM/, this translates
into an entirely negligible uncertainty in rms radii. Ambi-
guities in the choice of the separation energy, due to ad-
mixtures of core-excited states, also present no problem,
due to the small contribution of the tail region to r~, .
Given the unimportance of these effects, it seems reason-
able indeed to condense the information provided by mag-
netic electron scattering into one single number, r „and
hereby facilitate comparison with theory.

A quantity of particular interest, the difference between
the radii of neutron and proton orbits, actually can be ob-
tained with model assumptions considerably weaker than
those discussed above (Sick et al. , 1977). According to
Hartree-Fock calculations, the wave functions of protons
and neutrons in the same shell and for neighboring nuclei
are very similar in shape. These wave functions differ
mainly by a change of a few percent in radial scale. If

R (r) differs in radial scale only, by a factor p= 1, then
the form factors differ by a factor p ' in q scale only. A
comparison of the experimental MA form factors for
pairs of neighboring nuclei with an odd proton/neutron
then allows a precise determination of the relative
proton/neutron orbit size, largely independent of model
assumptions on R (r).

Such a direct neutron/proton comparison has been per-
formed for the pairs Ti/ 'V and Sr/ Nb. The result-

ing ratios p have been corrected for very small differences
due to the neutron/proton difference of the large-radius
tails, to which F~~ is not very sensitive. In addition,
these ratios have been corrected for the residual difference
of MEC effects; these MEC corrections again are very
small, since the MEC contributions largely cancel in the
ratio analysis. The resulting ratios of neutron to proton
orbit sizes are quoted in Table II.

3. Comparison with theory

A detailed comparison of the radii determined by mag-
netic scattering and those predicted by Hartree-Fock cal-
culations has been undertaken by Platchkov et al. (1982).
These authors employ three different mean-field calcula-
tions that use effective, density-dependent nucleon-
nucleon interactions. The calculation of Campi and
Sprung (1972), denoted in Table II as DDHF, uses the
Sprung and Banerjee (1971) effective interaction and
treats the open-shell nature of the nuclei of interest, using
the filling approximation and the BCS equations. The
calculation of Negele and Vautherin (1972), abbreviated
as DME, uses the density-matrix expansion, a simplified
version of the full DDHF calculation previously per-
formed by Negele (1970). Decharge and Gogny (1980)
perform a Hartree-Fock-Bog oliubov calculation
(DDHFB), which treats the pairing in a self-consistent
way, using the same finite-range effective force.

The first two calculations use effective interactions de-
rived via Brueckner 6-matrix calculations from the Reid
soft-core nucleon-nucleon interaction. The third calcula-
tion (DDHFB) uses a purely phenomenological effective
interaction of finite range. In all cases, certain parame-
ters of the effective force have been adjusted to fit specific
nuclear properties. In particular, the charge radii and
binding energies of selected (magic) nuclei have been used
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to adjust parameters. Accordingly, the total proton densi-
ties are very well reproduced by these HF calculations; the
total charge rms radii agree with experiment to better
than 1%. Table II compares these HF calculations and
experiment for the valence-orbit radii of f and-g-shell
nuclei.

From Table II we can observe two trends. First, the
valence-orbit radii predicted by HF theory are systemati-
cally too large by a few percent. Second, the ratio of neu-
tron to proton radii predicted by HF theory is too large
by 1—2%. We shall discuss this latter observation first.

The ratio of n and p orbit radii as predicted by HF cal-
culations actually is quite close to experiment; the size of
the neutron orbits relative to that for proton orbits is too
large by only 1—2%. The EM& data thus constitute a
very significant test of the predictions of the HF ap-
proach. Given the small systematic uncertainty in the ra-
tio of neutron to proton orbit size, magnetic scattering
provides us with the most discriminating test of Hartree-
Fock neutron wave functions available at present. Of
course, this test concerns the valence neutron shell only,
and not the entire neutron density radius generally dis-
cussed. %'e note, however, that both Ti and Sr are
single-hole nuclei for which the valence shell measured by
(e,e') contributes -30% of the total neutron rms radius.
This shell entirely dominates p„(r) at those radii where
strongly interacting (absorbed) probes are sensitive to
p„(r) (Platchkov et a/. , 1982).

The second point that emerges from Table II concerns
the absolute value of the valence-orbit radii. Here the ex-
perimental values are systematically smaller than those
predicted by HF calculations. This difference is largest
for the density-matrix expansion calculation and light nu-

clei, and smallest for DDHFB and heavy nuclei. Such a
systematic deviation, which occurs for both neutrons and
protons, calls for an explanation. One might have expect-
ed the proton radii to agree with experiment, given the
fact that the parameters of the HF theories have been ad-
justed to fit experimental total proton radii.

A number of calculations relating to this point are
available, and basically concern the energy dependence of
the nucleon effective mass. In a shell-model calculation
such as the Hartree-Fock, nucleons move in an average
field that, to first approximation, turns out to be state in-
dependent. In real nuclei, individual single-particle states
are not pure, but couple mainly to collective states of the
core. It was shown by Bertsch and Kuo (1968) that this
coupling is responsible for the fact that near the Fermi
level the nucleon effective mass m is larger than far
from it. Near the Fermi level m*/I = 1, while
I*/m=0. 7 elsewhere. This change of m* leads to a
compression of the single-particle spectrum near the Fer-
mi edge (Brown et al. , 1963) and to an appreciable de-
pletion of single-particle spectroscopic factors; both
consequences are in agreement with experiment. The de-
crease of the valence-orbit rms radius due to this variation
of m' was pointed out by Zamick (1979). Estimates ob-
tained by various authors (Zamick, 1979; I.ejeune and
Mahaux, 1979; Castel and Goeke, 1979; Lejeune, 1980;

Ma and Wambach, 1983) indicate that this effect is of the
right size, amounting to a few percent of the valence-orbit
radius. This particle-core coupling thus can be taken as
the main explanation of the differences in valence-orbit
radii obtained from Hartree-Fock theory and magnetic
electron scattering.

4. Other aspects

The above discussion of a selected aspect of the inter-
pretation of F~A of some f/g-shell nuclei presents only
one particular facet of the general problem. We have
chosen to discuss it in detail since reasonably systematic
work is available. Obviously, a number of other nuclei,
the sensitivity of Fz(q) in other q regions to different
physics questions, etc. , have been investigated both experi-
mentally and theoretical1y. Form factors at low q have
been used to determine radii of magnetization densities
(De Vries et al. , 1970; De Vries, 1973; Box, 1976; Selig
et al. , 1982); data at intermediate q have been studied in
connection with configuration mixing (York and Peter-
son, 1979; De Jager et al. , 1979; Donnelly and Gokalp,
1981). Deformed nuclei have been investigated (De Vries
et al. , 1970; Platchkov et al. , 1982) in order to study the
coupling of valence nucleons and core, a topic discussed
in the next section. Here, we rite only one additional ex-
ample for a form factor of large multipolarity. Figure 46
shows the data of De Jager et al. (1979) for the magnetic
form factor of " In. The detailed analysis of these data
will allow one to follow the change of g9/2 proton radii
through the g shell; the value of r, for the fit shown
(with no corrections for MEC) is 5.54 fm.

D. Deformed nuclei

5
2

2J—5
2

0 5
2

2
5 5J2 2

(6.11)

In this section we deal with magnetic scattering from
deformed nuclei. The focus of the discussion is on the re-
gion of well-deformed nuclei, 120 & 3 & 200. In addition,
we also come back to some of the lighter nuclei,
2=24,59, for which an understanding in terms of the
Nilsson model is desirable. The discussion in this section
also serves to illustrate some aspects of the formalism
developed in Sec. IV.D.

%'e start by studying a simple case, Mg, a nucleus for
which data and interpretation in terms of the shell model

are already given in Sec. VI.B. Mg has Jo' ———,

To = —~T =
2 . Treating this as a pure single-neutron

Nilsson state labeled K [Kn,A]= 2 [202], we have as
the only nonzero expansion coefficients in Eqs. (4.183)
and (4.184) the terms a 22 ——1 and, by Eq. (4.185b),
a25&2 ——1. Thus I'=I =X'=j*=j= —,', and so we have
from Eq. (4.190)
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Of the three cases that can occur in elastic magnetic
electron scattering ( J=1,3,5), only for the highest mul-

tipole, M5, can the second term here contribute. We have
explicitly [cf. Eq. (4.133)]

—, =0.71, J=1
—=0 125
42

4~
——0.55,23

J=3
J=5 .

(6.12)

Thus we immediately see a strong suppression of the M3
compared to its single-particle spherical value (where the
g's are all unity). The form factors are obtained in the
usual way, employing Eq. (4.130) [with no az(r) densities,
since this is an odd-neutron case]. The densities Py(r)
presented at the end of Sec. IV.C in discussing the case of

Al may be used, necessitating only the change p~—+p" in
Eqs. (4.170c) and (4.170d). In Fig. 47 we show the results
of such a calculation. Clearly the Nilsson model does
much better than the pure 1d5/2 neutron configuration in
yielding reasonably good agreement with the data, which,
together with the shell-model predictions, were discussed
in Sec. VI.B. In fact the M1 contribution at low q should
not be taken too seriously since, in addition to the pure
odd-neutron contributions shown here, there must also be
a core contribution, as discussed by Moya de Guerra and
Dieperink (1978).

Another example of a deformed lighter nucleus is Co,
a nucleus that has been studied in several experiments.
An experiment performed by De Vries et al. (1970) using
the IKO 180' scattering system produced data in the q
range 0.4—0.9 fm '; an experiment performed at Saclay
by Platchkov et al. (1982) at scattering angles up to 155'
measured data in the range 1.8—3.1 fm '. While the
former experiment essentially covers the region where the
Ml form factor dominates, the latter measures mainly the

—, =0.78, J=1

(6.13)

~„=0.53, J=7 .

Again the suppression of the intermediate multipoles with
respect to the spherical single-particle limit, where the tP's

are of unit strength, is evident. As usual, once these
density-matrix elements are multiplied into the appropri-
ate single-particle (lf~/q) form factors, we obtain the
MJ(q)'s using Eq. (4.130). The results are shown in Fig.
48 together with the data. In fact the M5 contribution is
so much suppressed here that it does not appear in the
figure at all. Once again the M1 contribution at low q

F (q)

lo

59 Co

M7 form factor. Data for the intermediate q region, the
one where the largest effects due to deformation can be
expected, unfortunately are not yet available. The form
factors are shown in Fig. 48.

In the extreme spherical shell model Co, with
mo

Jo ———, , would be approximated by a single If7/2 hole
in Ni, treated as a closed-shell nucleus. Let us instead
treat it as having a single unpaired proton in the Nilsson
orbit labeled —, [303]. As above, the only nonzero expan-
sion coefficients are a33 —1 and hence o.37/2 —1. Then
for this configuration having I'=I =K =j'=j =—we
obtain for Eq. (4.190) [cf. Eq. (4.133)]

7/2 7. 7 20J ( 2 2 ) PJ( lf7/2) =+1/2

F (q) 10

10 —510

-5
10

)0
0 2

q (fm ')

FIG. 47. The Mg magnetic form factor for the extreme
single-partic1e model (dashed curve) and the Nilsson model
(solid and dotted curves), all calculated using harmonic-
oscillator radial wave functions ( b = 1.63 fm).

10
0 2

q(fm ')

FIG. 48. The Co data of De Vries et al. (1970) (open circles)
and Platchkov et al. (1982) (solid circles) shown together with
predictions from the extreme single-particle model (dashed
curve) and the Nilsson model (solid and dotted curves). Both
are calculated using Woods-Saxon radial wave functions
( ro ——1.11 fm, a =0.65 fm).
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2K~+ 1
+J, 2K (6.14)

4K~+ 1

For J= 1, the first term gives K~/(KM+ 1). For
J=J,„=2KM, the first terin gives (2K~)!(2KM
+1)!/(4KM+1)! which, for KM large, is very small. On
the other hand, the second term also contributes for this
highest multipole and gives (2K~+1)/(4KM+1), which
is always greater than —,', even for very large K~. For
K =J,„—2, the next-to-highest multipole, the first term
is again small for large K~, and yet now the second term
cannot contribute, and so clearly the overall density-
matrix element is suppressed with respect to unity (the
spherical single-particle value).

Next, let us turn to a case which is not of the simple
stretched nature discussed above, and consider ' 'Ta.
This nucleus has Jo' ———,",which might be interpreted in
the spherical limit as a g7/2 proton configuration. For
such a "jackknifed" configuration, we may expect a more
complicated pattern for I' T(q), given the interference
terms between several shells that now can occur even for
the highest multipole.

Following Moya de Guerra and Dieperink (1978), let us
represent the ground state as a —', [404] configuration and
fix the deformation parameter at 5=0.3. Then in Eq.
(4.183) we have two expansion coefficients, a~ ——0.976
and a43 —0.218, or equivalently, using Eq. (4.185b),
ex/ 7/g —0.993 and a4 9/2 —0.120. Using Eq. (4.1 87) with
these a's and with the P's calculated from Eq. (4.190), we
obtain

0.767, J=1, a'=1g7/2 a = 1g7&2

6(~'~) =.

J=3
J=5
J=7
J= 1~ a = 1g9/2~ a = 1g7/2

J=3
J=5
J=7

J=1, a'= 1g9/2, a =1g9/2

0.209,
0.016,
0.526,
0.044,

0.032,
0.005,

—0.042,
0.008,

—0.001, J=3
—0.001, J=5

(6.15)

—0.005, J=7,
where by Eq (4.189) an. d a'= lg7/2 a = 1g9/i cases have

should not be taken too seriously, as it lacks the core con-
tribution.

Let us investigate such "stretched" Nilsson cases a little
more fully. They all have contributions only from a sin-
gle expansion coefficient ai/, (and hence ai~) of unit
strength, and involve the geometric factor P in Eq. (4.190)
with j'=j =K =K~, where K~ is the maximum value
that can occur within a given major shell. Substituting
for the 3-j symbols we obtain

(2KM )!(2KM+ 1)!
(2K —J)!(2K +1+J)!A(J'J)]'= =x=x =

)0

F (q)
)81

TQ

M1. & I/ ~M1$t"
&

--- Spherical f g 7/g orbit
—.—.NIisson t;404&i orbit

IM& ~.
I I I I I

2 5 4 5 6 7
10

8

y = (bq/2)
FICz. 49. Form factor of ' 'Ta (arbitrary normalization) in the
extreme single-particle model and the Nilsson model (Moya de
Guerra and Dieperink, 1978).

(
the opposite signs from the a'=1g9/2 a =lg7/2 cases
given here. Thus we see that the main effect here is to
reduce the strengths of the ( lg7/p) multipole matrix ele-
ments from their spherical limit values (where the P's are
unity), with only very small admixtures of lg9/ilg7/p ol
( 1g9/2) contributions. Specifically, these contributions to
the elastic magnetic electron scattering cross section are
reduced approximately by (0.767) =0.588 for the Ml,
0.044 for the M3, 2.6&&10 for the M5, and 0.277 for
the M7. Clearly the intermediate multipoles show the
characteristic drastic suppression discussed above.

In Fig. 49 we show the resulting form factors (Moya de
Guerra and Dieperink, 1978), together with the experi-
mental data. An experiment on ' 'Ta has been performed
by Rad et al. (1980) using the Bates 180' system and a
high-resolution spectrometer. The data, shown in Fig. 49,
cover the region 0.7—2.5 fm '. The lower limit in q was
imposed by the subtraction of large Coulomb scattering
contributions that occur even at 8= 180', due to finite an-
gular resolution and multiple scattering and taking into
account the finite mass of the electron. For ' 'Ta, these
Coulomb contributions at low q were obtained by interpo-
lation between cross sections of neighboring even-even W
isotopes.

Naturally, in the developments presented here, we have
taken a somewhat pedagogical approach in stressing the
simple Nilsson model. Of course, more sophisticated
treatments of deformed nuclei exist, and we wish to direct
the reader to some of the published literature which
focuses specifically on the subject of electron scattering
froin deformed nuclei. Notably the work of Moya de
Guerra and collaborators (Moya de Guerra and Dieper-
ink, 1978; Moya de Guerra and Kowalski, 1979,1980;
Moya de Guerra, 1980) provides a foundation for such
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discussions. The projected Hartree-Fock approach, in
particular, provides a plausible first step for investigating
the properties of the first few states in the ground-state
rotation band, including the elastic electron scattering
form factors. Although in this case projection after varia-
tion does not usually lead to the correct inertial parame-
ters (Peierls and Yoccoz, 1957; Peierls and Thouless,
1962; Villars and Schmeing-Rogers on, 1971) and its
description of rotational properties is open to question,
Moya de Guerra and Kowalski (1979) have shown that it
does lead to collective gyromagnetic ratios in good agree-
ment with experiment. One might therefore expect that it
would give a reasonable description of the collective
current distributions. To first order in (Ji ) ' the pro-
jected Hartree-Fock approach leads to a decomposition of
the transverse form factors in terms of single-particle and
collective form factors, as discussed by Moya de Guerra
and Kowalski (1980) (the K= —,

' case is a special one
which must be handled somewhat differently). The re-
sults presented in that reference used intrinsic wave func-
tions @x determined using Negele's DME effective in-
teraction (Negele and Rinker, 1977). This required a gen-
eralization of the formalism to permit odd-A nuclei to be
studied. In particular (Moya de Guerra and Kowalski,
1979,1980), the pair filling approximation of Flocard
et al. (1973) was adopted.

Here we shall not go into any detailed discussion of the
formal aspects of projected Hartree-Fock calculations, but
rather shall extract from the work of Moya de Guerra
and Kowalski (1980) some of the results for the case of
'8'Ta. Other targets of interest in studying elastic mag-
netic electron scattering were also considered there (name-

ly,
' 9Tb and ' Ho); however, we show results only for

the one case where experimental data exist. In Fig. 50 the
projected Hartree-Fock results for the single-particle form
factors are compared to the Nilsson calculations discussed

above. Generally speaking, we see that the simple Nilsson
model does very well in reproducing the behavior seen for
the much more involved projected Hartree-Fock calcula-
tions [and, of course, as we saw before (Fig. 49), both
differ significantly from the extreme spherical predic-
tions]. The differences between the projected Hartree-
Fock and Nilsson results seen in Fig. 50 are due to the
fact that the projected Hartree-Fock single-particle wave
function contains many small admixtures of higher N
shells. As a consequence, the strengths of the Ml and
M7 peaks are slightly reduced, and the latter is shifted to
lower momentum transfer. In Fig. 50, (dot-dashed curve),
we also show the collective form factor (multiplied by 10)
calculated by Moya de Guerra and Kowalski (1980). This
collective contribution is clearly only important at rather
low momentum transfer. It added coherently in that re-
gion to increase the first peak of the Ml from 8.4X 10
to 9.1&&10 (see Fig. 50). Finally, in Fig. 51 we show
the data of Rad et al. (1980) and comparisons with the
form factors calculated by the projected Hartree-Fock
method.

E. Nuclei in the lead region

The next group of nuclei we want to discuss is that of
the odd-3 nuclei around Pb, in particular Tl, Pb,
and Bi. The theoretical study of nuclei near Pb has
received considerable attention due to the doubly magic
nature of Pb. With this magic nature of Pb we
might hope that an interpretation of magnetic scattering
data in terms of single-particle (hole) states would be par-
ticularly applicable. As we shall show below, the magnet-
ic form factors demonstrate that the structure of those
nuclei is more complicated. Core polarization must be
understood if the magnetic form factors are to be
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FIG. 50. Single-particle contributions from the projected
Hartree-Fock calculation of Moya de Guerra and Kowalski
(1980) (solid curve) and the Nilsson model (long-dashed curve).
The short-dashed curve gives the collective core contribution
multiplied by ten.
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FIG. 51. The ' 'Ta data of Rad et al. (1980) compared to pre-
dictions of the extreme single-particle model (dotted-dashed
curve, bHO

——2.0 fm) and Hartree-Fock theory of Moya de
Guerra and Kowalski (1980) (solid curve).
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described quantitatively.
The Pb region offers two types of extreme situations

for magnetic scattering: Tl and Pb have, as the dom-
inant wave-function component, a 3s ~&2 proton hole and a
3p~~2 neutron hole, respectively. In these two cases, the
only multipolarity is M1. Given the pronounced struc-
tures in the radial wave functions R (r), each having two
nodes and three maxima, a very structured form factor
can be expected. This has two consequences. First, the
form factor at large q is quite sensitive to the inner part
of the wave function; the main Fourier component of
R (r) shows up only at fairly large q, 2 fm ' (Cavedon
et al. , 1983). Second, the form factor becomes quite sen-
sitive to MEC contributions; their effect on the M 1 form
factor at large q is not covered up by higher multipole
contributions.

The nucleus Bi, on the other side, has a 1g9/2 un-

paired proton. Multipolarities M1 through M9 contri-
bute, and lead to a form factor similar in appearance to
the ones described for f/g-shell nuclei. The major differ-
ence between these nuclei and those in the f/g shell
comes from the fact that Bi has a jackknifed configura-
tion. In this case, configuration mixing can be expected
to influence even the highest multipolarity in a major
way.

The first case we should like to discuss concerns Pb.
Data are available from an experiment of Papanicolas
(1979) aimed mainly at inelastic scattering (Papanicolas
et al. , 1980). Using the Bates accelerator, Papanicolas
et al. have measured cross sections at scattering angles of
90' and 160', and a variety of beam energies. Elastic mag-
netic form factors were determined in the q range 1.5—2.6
fm '. At smaller momentum transfers, the separation of
magnetic and dominating charge scattering was no longer
possible. The resulting data are shown in Fig. 52.

The solid curve in Fig. 52 gives the prediction of the
extreme single-particle model, obtained by Hamamoto
et al. (1980) using a Woods-Saxon radial wave function.
This form factor shows a pronounced dependence on
momentum transfer, displaying four minima and maxima
before the principal maximum at q=2. 3 fm ' is reached.
This structure is due partly to the presence of three nodes
and three maxima in the 3p radial wave function. The
overlap of R (r) with the dominant j2 term [Eq. (4.130)]
accounts for the maxima at 0.5, 1.3, and 2.3 fm ', and
yields a form factor with minima without sign changes.
The additional contribution due to the Jp term gives fuI-
ther structure that shows up predominantly at low q
(q (1.3 fm ').

Comparison with the data shows that the extreme
single-particle model overestimates the amplitude of the
main peak of FM(q) near 2.3 fm '. In order to under-
stand this difference, we must consider core polarization
effects and the contribution of MEC. Several calculations
(Sagawa, 1980; Hamamoto et al. , 1980; Suzuki et al. ,
1982; Suzuki and Hyuga, 1983) are available, and are dis-
cussed in turn below.

Hamamoto et al. (1980) calculate the effects of first-
order core polarization resulting from admixtures of one-

207pb

io-'-

tO-7—

q (fm ')

FIG. 52. The Pb data of Papanicolas (1979), together with

the predictions of Hamamoto et al. {1980) for the single-

particle model without {solid curve) and with (dashed curve)
core polarization.

particle —one-hole states to the dominant one-hole config-
uration. This calculation is performed using a 5 force as
a residual interaction. Only the direct matrix elements
are included, while exchange terms are neglected. The pa-
rameters of the 6 force are estimated by fitting energy
shifts of high-spin particle-hole states in Pb, and by a
derivation from the nucleon-nucleon scattering amplitude
via the T-matrix approximation.

The main goal of the calculation of Hamamoto et al.
(1980) was to explain the strong reduction of the observed
strength for high-spin (12,14 ) particle-hole states in

Pb (Papanicolas et al. , 1980). The magnetic form fac-
tor predicted for the Pb ground state, calculated in
DWBA, is shown in Fig. 52 as a dashed line. For q ~ 1.3
fm ' the form factor gets more or less uniformly reduced
by a factor of 2; for smaller q, a small reduction with a
more complicated q dependence is found. In the limit
q~0, this calculation does not change the magnetic mo-
ment and predicts the Schmidt value (0.64 n.m. ) rather
than the experimental one (0.59 n.m. ). This calculation of
Hamamoto et aI. appears to explain the experimental
data quite well.

Suzuki and Oka (1980), on the other hand, have per-
formed similar calculations and studied the effects of
finite-range interactions and exchange contributions.
They find that the results strongly depend on both the
range of the interaction and the exchange nature of the
force. A 5 interaction moves the strength to a very high
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excitation energy (&Mao), a feature not observed with
finite-range interactions. At nonzero momentum
transfer, 5 interactions (the use of which have become
popular with the application of Landau-Migdal theory)
may be expected to give unreliable results.

In the calculation of Sagawa (1980), a different mecha-
nism for core polarization is investigated. The coupling
of the unpaired particle (hole) to the core vibrations is a
mechanism known to influence static magnetic properties.
The collective vibrations are calculated by Sagawa, using
the random-phase-approximation, including OAco and 2%co

one-particle —one-hole states. The main configurations
found to contribute to magnetic scattering are the n.h ii~i-
A 9/2 and ~i ~3/2 1 ]$ /2 states, which occur around 7-MeV
excitation energy in Pb. The peaks of the radial wave
functions of these orbits occur at large radii, 6—8 fm.
Accordingly, they affect the magnetic form factor mainly
at low q. Other configurations that turn out to inAuence
the magnetic properties are high-lying 1+ states. Their
transition density again has little structure as compared to
the 3p single-particle wave function, and their effect on
the M 1 form factor for q & 1 fm ' is small.

The main change of F(q) in the region where data are
available (q & 1.5 fm ') is predicted by Sagawa to result
from MEC. The contribution of the pair and pionic
current diagrams is found to increase the form factor sys-
tematically for q &1 fm '. Consequently, the total form
factor is predicted to be, for q &1 fm ', about twice as
large as the single-particle form factor given in Fig. 52.
This enhancement of FMi is clearly in contradiction to
the experimental results. The contribution of MEC as
calculated by Suzuki and Hyuga (1983; see below) is much
smaller.

From the calculation of Sagawa we can learn that the
coupling of the single hole to collective excitations of the

Pb core leads to a core contribution that mainly affects
the form factor at low q. We also can expect (Krewald
and Speth, 1980) that this coupling should lead to a
spreading of single-particle strength over several levels, so
as to yield an overall reduction of single-particle M 1

strength seen in the Pb ground state. A decrease of the
3@i~i spectroscopic factor similar to that observed in
charge scattering for the 3s i~q proton hole in Pb
(Cavedon et al. , 1983) can be expected.

The effects of core polarization and meson-exchange
currents on the magnetic form factor of Pb have been
studied in detail by Suzuki et al. (1982) and Suzuki and
Hyuga (1983). The core polarization is calculated in first
order using a finite-range residual interaction, the three-
range Yukawa interaction of Bertsch et al. (1977). This
interaction includes tensor components and has parame-
ters fitted to the Reid G-matrix and Elliott matrix ele-
ments. The exchange contributions, which are important
at large q (Suzuki et a/. , 1982), are included. In the cal-
culation of Suzuki et al. (1982) the magnetic scattering
from the unperturbed single-particle (hole) configuration
receives a first-order contribution that sums over all pos-
sible intermediate particle-hole states of the configuration
space used. The matrix elements are partly calculated in
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FIG. 53. The Pb data of Papanicolas (1979), together with
predictions of Suzuki and Hyuga (1983): single-particle model
(dashed curve), with core polarization included (dotted-dashed
curve), and with MEC in addition (solid curve).

radial space using Green s-function techniques in order to
avoid restrictions of the configuration space size. The ra-
dial wave functions employed both for single-particle pre-
dictions and for configuration mixing are calculated using
%'oods-Saxon potentials.

Also included in the calculation of Suzuki and Hyuga
(1983) are the effects of meson-exchange currents. The
contributions of the pionic current and pair and isobar di-
agrains are calculated, and the effects of both m and p ex-
change are accounted for.

The results for the Pb magnetic form factor are
shown in Fig. 53. As compared to the single-particle pre-
diction (dashed curve), the form factor is strongly
changed by configuration mixing. Much of this change
results from the tensor component of the residual interac-
tion. The core polarization influences the entire q range;
the magnetic moment is reduced from the single-particle
value (0.64 n.m. ) to 0.47 n.m. , as compared to the experi-
mental value of 0.59 n.m.

The effect of adding the meson-exchange currents is
shown by the solid curve in Fig. 53. While the pair and
pionic currents largely cancel the pionic 6 piece, thus
leading to a small overall reduction of F~, the addition of
the p term leads to an overall enhancement of FT for
q &0.5 fm . This is shown by the solid line in Fig. 53.
At very low q, the MEC lead to enhancements or reduc-
tions of FT according to the changing sign of the one-
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205T)

/

/ r

io-'

0
I

2
q (fm ')

FIG. 54. Predictions for 'Tl of Suzuki and Hyuga (1983) for
the single-particle model (dashed curve), with core polarization
included (dotted-dashed curve), and with MEC in addition (solid
curve).

body form factor.
The full form factor calculated by Suzuki et a/. fits the

data quite well in the main diffraction lobe near 2.3 fm
The amplitude of the maximum near 1.5 fm ', strongly
reduced by configuration mixing, turns out to be too low.
The pronounced changes of I' T(q) due to both configura-
tion mixing and MEC at lower q await confirmation by
an experiment which, via 180 scattering, can push the
data to lower momentum transfer.

The nucleus Tl has two features that make its form
factor quite similar to that for Pb. Due to the ground-
state spin of 1/2, again only an M 1 contribution to the
magnetic form factor occurs. The 3s ~~2 radial wave func-
tion (the dominant ground-state configuration is
m 3s ~~qv3p ~~q) again has pronounced radial structure, with
three maxima and two zeros; this leads to a very struc-
tured form factor. The magnetic form factor will, howev-

er, be somewhat simpler than that of Pb. The dom-
inant wave-function component does not contribute to the
convection current, and the term containing jJ+&(qr) in
Eq. (4.130) does not occur. Accordingly, in the extreme
single-particle model, the magnetic form factor of Tl is
simply the Fourier transform of R (r).

Predictions for the magnetic form factor have been ob-
tained by Suzuki and Hyuga (1983) in the same way as
described above for Pb. The result is shown in Fig. 54.
The single-particle prediction (dashed) shows the three
maxima expected from the three maxima of R (r), with
no sign change of FT in the minima. The core polariza-
tion reduces I'T in a very pronounced way for momentum

transfer q ~ 2 fm '. This reduction is much more
dramatic than for Tl, a more ideal (but unstable)
single-hole nucleus. The v3p3/$3p]/2(1+) excitation pos-
sible in Tl leads to a strong interference at medium
momentum transfer. The effect of MEC, on the other
hand, turns out to be much smaller.

Figure 54 demonstrates that the magnetic form factors
of low multipolarity are particularly sensitive to configu-
ration mixing, an observation repeatedly made when dis-
cussing p- and s/d-shell nuclei. The effect on Fz from
configuration mixing is much larger than the equivalent
effect in charge scattering. There, the radial wave func-
tion, as extracted from the difference between the cross
sections of Tl and Pb, is much less affected (Cavedon
et a/. , 1982).

The calculation of Hamamoto (quoted in Cardman
et a/. , 1983) shows a reduction of I'z. that is much less
structured than the prediction of Suzuki and Hyuga
(1983). Basically, Hamamoto's calculation yields a form
factor that, relative to the single-particle prediction, is re-
duced more or less uniformly by a factor of 0.6. This
reduction is reminiscent of the reduction in the 3s occu-
pation number found by charge scattering (Cavedon
et a/. , 1983). An experiment by Cardman et a/. (1983)
that should allow one to decide between the various pre-
dictions for FT is currently in progress at the Bates ac-
celerator.

The last nucleus of the Pb region we discuss is Bi.
Due to its large ground-state spin, Jo ———,', the magnetic
form factor is very different from those of Pb, Ti,
and resembles those encountered for the f/g-shell nuclei
(Sec. VI.C). This resemblance is a superficial one, though.

Bi has an unpaired h9/2 proton with a jackknifed con-
figuration, and both proton and neutron shells with j & —',

are occupied. For these reasons (discussed in detail in
Sec. VI.C), the magnetic form factor of Bi must be ex-
pected to be more complicated and to exhibit a high sensi-
tivity to configuration mixing.

Several experiments, compiled in Fig. 55 have been per-
formed, all in the region q=1.9—2.7 fm ', where a
separation of magnetic scattering from charge scattering
is possible at angles away from 180'. As pointed out in
Sec. II, Bi was the first nucleus for which a large mul-
tipolarity form factor was observed (Li et a/. , 1970). In
an experiment designed to investigate charge scattering
and performed at Stanford at 250 MeV, the contribution
of the M9 form factor showed up at an angle 8=120'
(Sick, 1973); this was a surprising result, which showed
that what were then regarded to be exotic multipolarities
&M3 were observable. The experiment performed by
Moreira et a/. (1976), using the Tohuku accelerator, pro-
duced data in the region 1.9—2.3 fm; the difficulties
encountered in subtracting the charge contribution show
up in the fluctuations of the form factors. The most ex-
tensive experiment was performed at Saclay by Platchkov
et a/. (1982) at energies from 170 to 300 MeV and a
scattering angle of 155. The data from this experiment,
converted to PWBA form factors and plotted as a func-
tion of effective momentum transfer, are also shown in
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Fig. 55. While they define quite well the M9 form fac-
tor, little is known experimentally about the lower mul-
tipolarities.

Calculations concerning Bi have been performed by
Moreira et al. (1976},who estimated the effects of first-
order core polarization using schematic finite-range resi-
dual forces. This calculation showed that, depending on
the exchange character of the force employed, appreciable
reductions of Fz at large q could be expected.

The most complete calculation of the effects of config-
uration mixing and MEC is that of Suzuki et al. (1982)
and Suzuki and Hyuga (1983), described in more detail
above when discussing Pb. This calculation shows
that, for a realistic residual interaction, core polarization
significantly enhances (reduces) the low (high) multipole
form factors. At very low q, the form factor is enhanced,
so that the single-particle magnetic moment of 2.63 n.m.
gets increased to 3.73 n.m. , which agrees with experiment
(p =4.12 n.m. ) once the MEC contribution of -0.4 n.m.
(Arima and Hyuga, 1979), is added. For the high mul-
tipoles, on the other hand, central and tensor components
contribute coherently to reduce FM by a factor 2—3. This
is related to the jackknifed configuration for which the
high- J form factors are dominated by the (o Yq+ i)J terms
[see Eq. (4.112}t. The core-polarization effect is mainly
determined by the (a Yz i)z term which, greatly enhanced
by the tensor force, interferes destructively, and reduces
F~ at large q.

I

2
q (fm ')

FIG. 5S. Data for Bi of Platchkov et al. (1982) (solid dots),
Li et al. (1970), (open circle), and Moreira et al. (1976)
(crosses). The predictions of Suzuki and Hyuga (1983) are
shown for the single-particle model (dashed curve), with core
polarization included (dotted-dashed curve), and with MEC in
addition (solid curve).

Suzuki et al. also observe that the shapes of individual
rnultipoles change appreciably as (tensor) configuration
mixing is turned on. In particular, the peak of the highest
multipole M9 gets shifted by 2—3% in momentum
transfer, a feature absent for the stretched high-J cases
discussed in Sec. VI.C.

Meson-exchange currents, as calculated by Suzuki and
Hyuga (1983), lead to an increase of FT over the entire re-
gion of q. This calculation shows that the isobar current
contribution is particularly important in those q regions
where configuration mixing is effective. The b, effect cal-
culated by Suzuki and Hyuga (1983) is largest for the
higher multipolarities, and suggests that this might be a
better case to test their relevance than the M 1 form fac-
tors employed for this purpose up until now.

Calculated form factors and experiment are compared
in Fig. 55. The large effect of configuration mixing is ex-
hibited by the difference between the dashed and dashed-
dotted curves. The solid curve, which includes MEC as
well, explains the (rather limited) experimental data quite
well.

The theoretical calculations for nuclei 3 &4 discussed
in this section all treat the nucleus as a system of nonrela-
tivistic nucleons and use the Schrodinger equation to
describe the purely nucleonic wave function. Relativistic
quantum field theories for nuclei recently have been
developed (Miller, 1974; Walecka, 1974; Hrockmann and
Weise, 1977; Horowitz and Serot, 1983). In these calcula-
tions mesonic degrees of freedom are included explicitly,
since the theory contains baryon, scalar and vector meson
fields. Nucleons are described by the Dirac equation,
thereby assuring a more correct treatment of relativistic
aspects. Fits to nuclear matter properties yield the
strength of the coupling constants required. These rela-
tivistic calculations have been shown to yield a good
description of nuclear ground states and have been found
to improve greatly our understanding of spin observables
in proton-nucleus scattering. One such calculation (Serot,
1981) has been applied to a spin observable of interest for
this review, the Bi magnetic form factor, and is dis-
cussed below.

Serot uses the self-consistent relativistic Hartree ap-
proach to describe the core Pb. The resulting depth of
the scalar and vector potentials is of the order of half the
nucleon mass; this implies that the binding effects are
large and that relativistic effects cannot be calculated us-

ing the usual nonrelativistic reduction plus an eventual
u/c expansion. The calculation shows that the large com-
ponent of the Dirac wave function is quite similar to the
corresponding Schrodinger wave function. The main
difference from the nonrelativistic calculation results
from the small component; according to the calculation of
Shepard et al. (1984), the small component is about a fac-
tor of 1.7 larger than the one calculated from the large
component using the usual free-space relation between
small and large components.

This enhancement of the small component is of impor-
tance for the magnetic form factor, which contains a
cross term between small and large components. This is
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the case in particular for the 4J term [Eq. (4.11M)],
which contains the convection-current contribution to ET.

In the calculation for Bi, Serot uses a simple model
for the nuclear structure, a 1h9&2 proton coupled to a
closed Pb core. Both the nonrelativistic and relativistic
approaches are used to calculate FT. The results show
that, over most of the q range, 0—3 fm ', the Dirac form
factor I'T is a factor of 2 larger than the nonrelativistic
result. This increase is largely due to the fact that in the
relativistic calculation the velocities are larger, because of
the lower effective mass m *=M&—Us resulting from the
large depth of the scalar potential Us-450 MeV.

At present, a comparison of this calculation with exper-
iment is not yet conclusive, given the simple model used
for the Bi nuclear structure. The reduction in I' T(q)
expected from core polarization (see Fig. 55) should be
calculated first. The calculation of Serot does show, how-
ever, that magnetic form factors are very sensitive to
differences between relativistic and nonrelativistic
descriptions of the nucleus. A more extensive comparison
with magnetic form factors, elastic or inelastic (Shepard
et al. , 1984), holds promise for investigating the conse-
quences of strong scalar and vector nucleon-nucleus po-
tentials, and the validity of the Dirac approach.

F. Compilation of experimental data

In the preceding sections, the experimental data for a
number of selected nuclei have been presented. Many
cases were not discussed, for lack of space and because
data and/or theory are not very extensive. In Table III
we give a more complete account of the experimental data
presently available. Data for A =1, not listed here, have
been compiled by De Jager et al. (1974).

Vll. FEW-BODY NUCI El

This section on A=2, 3 nuclei is of a somewhat special
character. The emphasis of the discussion is not, as in
Secs. VI.A—VI.E, on nuclear structure. Rather, questions
concerning the fundamental understanding of the simplest
systems in terms of their constituents and interactions are
discussed. Internal degrees of freedom of the nucleonic
constituents also play a much more important role. Due
to the (relative) simplicity of the systems under considera-
tion, the A =2,3 nuclei can serve as examples for a num-
ber of ideas which are most useful within the more gen-
eral context of our study of electron-nucleus scattering.

This section is split into two subsections, on the deute-
ron and on the A =3 nuclei. In connection with our
understanding of meson-exchange currents, another ob-
servable for the deuteron, electrodisintegration at thresh-
old, provides relevant information. For a detailed discus-
sion of this process, the reader is referred to Bernheim
et al. (1981), Arenhovel and Leidemann (1983), and
Mathiot (1983). A topic that repeatedly will come up
without receiving due attention, the properties of the nu-
cleon magnetic form factors, is discussed in detail in
Gourdin (1974).

A. The deuteron

dQ :OMfpgg [3(Q)+tan (8'j2)B(Q)] (7.1)

For reasons of experimenta1 feasibility more than physical
significance, the terms are separated in a way different
from the usual split into electric and magnetic contribu-

The deuteron form factors have been studied extensive-
ly over the past 20 years. This continuing interest stems
from a combination of reasons. (1) For a given nucleon-
nucleon interaction, the wave function and one-body form
factor can be predicted accurately; experimental data al-
low one to check the calculations, in particular the predic-
tions concerning the short-range behavior of the wave
function's observables at large q. (2) The loosely bound
deuteron, for certain types of experiments, can serve as a
neutron target; the electromagnetic neutron form factors,
needed for an understanding of both the neutron and the
form factors for heavier nuclei, can be measured. (3) For
a simple system like the deuteron, the purely nucleonic as-
pects of the wave function are reasonably well under-
stood; non-nucleonic degrees of freedom, MEC in particu-
lar, then can be isolated.

The many kinds of physics input cited above indicate
that the individual pieces might be hard to sort out
(Lomon, 1980). It can be done if the proper observables,
F&0, FC2, F~~, tensor polarization, and inclusive scatter-
ing cross section, are studied together. The different sen-
sitivities to the various ingredients allow us to separate
them. If the complementarity of observables until now
has been exploited in part only, then that is mainly be-
cause some of the important observables, such as the ten-
sor polarization or quadrupole form factor at large q,
have not yet been measured because of accelerator limi-
tions in energy and duty cycle (see also Sec. VIII). In the
following, we shall limit the discussion to the observable
of interest for this review, the magnetic form factor.

A variety of experimental techniques have been devised
to measure the deuteron magnetic form factor. Besides
the conventional single-arm scattering at large scattering
angle (Friedman et al. , 1960; Goldemberg and Schaerf,
1964; Grossetete et a/. , 1966; Rand et a/. , 1967; Ganichot
et a/. , 1972; Simon et a/. , 1981; Bernheim et a/. , 1981;
Cavedon et al. , 1984), the recoil deuterons have been
detected at 0 (Benaksas et al. , 1964,1966), and the elec-
tron and deuteron have been measured in coincidence
(Buchanan and Yearian, 1965; Martin et al. , 1977). The
latter techniques profit from the absence of particle-stable
excited states of the deuteron; in this case an experiment
with very bad energy resolution still allows one to identify
the elastic scattering properly. Data taken with the recoil
detected at 0' exploit the increase in effective solid angle
occurring under this kinematical regime. A coincidence
measurement allows one to reduce the background drasti-
cally, without loss in count rate, owing to the fixed angu-
lar correlation between electron and deuteron.

The experimental data in general are expressed in terms
of the structure functions 3 (q),B(q),
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TABLE III. Experimental data on elastic magnetic electron scattering.

Nucleus

H

H

He

Spin

1+
2

1+
2

q range
(fm-')

1.5—2.2

0.5—0.7
2.4—3.5
1.1—1.4
1.7—2.2
2.2—3.2
0.7—2.4
5.0
0.5
1.2—2

2.4—4.2
2.7—5.3

1.0—2.8

1.0—2. 8

1.3—4.0
3.0—3.9
0.6
2.7—5.6
0.9—3.4

0.4
0.4
0.8—1.4
0.5—0.9
0.8—2.8

0 range
(deg)

—+145
180
180

~145
—+ 145

180
180
180

—+82

180
—+157

155

155

—+135

—+135

~135

180
155

160

180
180
180
180
150—180

Main A,

M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1
M1

M1
M1
M1
M1
M1

M1
M1
M1
M1
M1

Reference

Friedman et a/. , 1960
Benaksas et al. , 1966
Goldemberg and Schaerf, 1964
Buchanan and Yearian, 1965
Grossetete et al. , 1966
Benaksas et al. , 1966
Rand et al. , 1967
Ganichot et al. , 1972
Martin et al. , 1977
Jones et a/. , 1980
Simon et al. , 1981
Bernheim et al. , 1981
Auffert et al. , 1984

Collard et al. , 1965

Collard et a/. , 1965

McCarthy et al. , 1970
Bernheim et al. , 1972

Jones et al. , 1979
Cavedon et al. , 1982a
Dunn et al. , 1983

Peterson, 1962
Goldemberg and Torizuka, 1963
Rand et al. , 1966
Lapikas, 1978
Bergstrom et al. , 1982

Li 3
2 0.4

0.4
0.7—2.0
0.3—0.9
0.8—2.9

180

180
180
180
150—180

M1

M1
M1,M3

M1
M1,M3

Peterson, 1962

Goldemberg and Torizuka, 1963
Rand et al. , 1966
Van Niftrik et al. , 1971a
Lichtenstadt et al. , 1983

'Be 0.4

0.4—0.7
0.7—2.5

0.3—0.9

180

180
180
180

M1
M1,M3
M1,M3

Goldemberg et al. , 1965

Vanpraet and Kossanyi-Demay, 1965
Rand et al. , 1966
Lapikas et al. , 1975

10B 3+ 0.4
0.7—1.7
0.5—0.7
0.7—2.0
0.3—0.9

180
180
180
180
180

M1
M1,M3

M1
M1,M3

M1

Goldemberg and Torizuka, 1963
Goldemberg et al. , 1965
Vanpraet and Kossanyi-Demay, 1965
Rand et al. , 1966
Lapikas, 1978

11B 0.4
0.7—1.7
0.5—0.7
0.7—2.3

0.3—0.9

180

180
180
180
180

M1

M1,M3
M1

M1,M3
M1

Goldemberg and Torizuka, 1963

Goldemberg et al. , 1965
Vanpraet and Kossanyi-Demay, 1965
Rand et al. , 1966
Lapikas, 1978
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TABLE III. ( Continued).

Nucleus Spin
q range
(frn ')

0 range
{deg)

Main A, Reference

13C 1

2 1.8 —2. 1

0.4—0.8

0.8—3.3
180
180

M1
M1

Heisenberg et a/. , 1970

Lapikas et al. , 1975

Hicks et al. , 1982a

14N 0.4
1.0—1.8
1.7
0.8—3.3

180
180
50—90

M1
M1
M1
M1

Goldemberg and Torizuka, 1963

Rand et a/. , 1966

Dally et al. , 1970
Huffman et a/. , 1984

1.7

0.7—3.2 180

Dally et al. , 1970

Singhal et al. , 1983

5+
2 0.5 —2.7 180 M1—M5 Hynes et al. , 1979

19F 1+
2 0.4

1.6—2.4
0.4—2. 8

180

45 —90
154—180

M1
M1

Goldemberg and Torizuka, 1963

Williamson et al. , 1983
Donne et al. , 1983

Na
3+
2 0.4

1.4—1.8

180

180 M3

Goldemberg and Torizuka, 1963

Torizuka, 1977

25Mg 0.4—2.6

0.9—2.2

160—1-80 M 1,M 5

180

Euteneuer et a/. , 1977

York and Peterson, 1979

0.4
1.5
1.5—2.5

0.4—1.0
1.2—1.5
0.8—2.9

180

180
80—140

180
180

M3, M5
M1,M3
M3,M5
M3,M5

Goldemberg and Torizuka, 1963

Stovall et a/. , 1967
Li et a/. , 1970

Lapikas et al. , 1973

Macauley et al. , 1977
Hicks et al. , 1983

29S1 1+
2 1.0—2.8 M1essen, 1982

31p 1 +
2 0.4

1.0—2.8

180

156—180

Goldemberg and Torizuka, 1963

Miessen, 1982

39K 3 +
2 0.4

2.0
0.7—2.4

180

180

Goldemberg and Torizuka, 1963

Likhachev et a/. , 1975

De Jager et al. , 1979

4'Sc 7
2 0.4—0.9 180 M1,M3 De Vries et al. , 1970

49T1 1.9—2.0

1.8—3.3
0.7—1.4

150

155
180

M5, M7
M1—M5

L1khachev et al. , 1976

Platchkov et al. , 1982

Selig, 1984

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



T. W. Donnelly and I. Sick: Elastic magnetic electron scattering 545

TABLE III. ( Continued).

Nucleus

"v
Spin

q range
(fm-')

0.4—0.9

1.5
1.2—2.4
1.8—3. 1

0.9—2.4
3.3—4.0

0 range
(deg)

180

90
155

155

180
155

Main A,

M1,M3

M5
MS,M7
MS,M7
M3—M7
MS,M7

Reference

De Vries et al. , 1970

Peterson et a/. , 1973
Nascimento et al. , 1974

Platchkov et al. , 1982

Arita et al. , 1981

Platchkov et al. , 1983

5
2 0.4—0.9 180 M1 De Vries, 1973

"Co 7
2 0.4—0.9

1.8—3.1

180

155

M1,M3

M7
MS,M7

De Vries et al. , 1970

Likhachev et al. , 1975b

Platchkov et al. , 1982

"Cu 3
2 2.1—2.4

0.4—0.9 180 M1,M3

Schwentker, 1977

Selig et al. , 1982

65Cu 3
2 2.1—2.4

0.4—0.9 180 M1,M3

Schwentker, 1977

Selig et al. , 1982

87S 9 +
2 2.0—3.0 155 M7, M9 Platchkov et al. , 1982

93Nb 9 +
2 0.5—1.1

1.7—2.5

0.9—2.3
1.8—2.9

180

155

180
155

M1,M3

M7, M9
M3—M9
M7, M9

Box, 1976

De Witt Huberts et al. , 1976

York and Peterson, 1979

Platchkov et al. , 1982

115In 0.4—0.9
1.3—2.7

180

180

M1,M3

M5, M7

Box, 1976

De Jager et al. , 1979

181Ta 0.7—2.5 180 M1—M7 Rad et al. , 1980

207Pb

209B1

+
2

9
2

1.5—2.6

2.3

1.9—2.3

1.9—2.7

180

122

155

155
M7, M9
M7, M9

Papanicolas, 1979

Li et al. , 1970

Moreira et al. , 1976
Platchkov et al. , 1982

tions [cf. Eq. (4.18)]. For a nucleus as light as the deute-
ron it is worthwhile to emphasize that Q represents the
four-momentum transfer squared q —co with

Q (Q2)1/2) ()
A compilation of the available experimental data is

given in Fig. 56. The data at low and medium q come
mainly from the experiments of Buchanan and Yearian
(1965), Rand et al. (1967), and Simon et al. (1981), while
many of the higher-q results come from unpublished
work done in connection with electrodisinteg ration
(Bernheim, 1981) and an experiment (Auffret et al. , 1984)
currently underway at Saclay.

In order to understand the ingredients that go into the

magnetic form factor, we first study the impulse approxi-
mation contribution (Gourdin, 1963) given by

with

B(Q)=—', g(1+g)GM(Q)

g=Q /4Md

(7.2)

(7.3)

GM(Q) =[GMp(Q)+ GM. (Q) ]&$(Q)

+ —,
'
[Gs~(Q)+ GE„(Q)]CL,(Q) (7.4)

and GM(0)=p, where G~ is given in terms of the electric
and magnetic nucleon form factor GE~, Gz„,GM~, GM„,
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FIG. 56. The data (see Table III) for the deuteron magnetic
form factor GM(Q), compared to the one-body ca1culation of
Mathelitsch and Zingl (1978}done for the Paris XX interaction
and dipole nucleon form factors. The S2 (dashed curve}, D
(dotted curve), and S-D contributions (dotted-dashed curve) are
shown separately.

I i I

4 6
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FIG. 57. Deuteron magnetic form factor of Mathelitsch and
Zingl (1978) for different nucleon-nucleon potentials: Paris
(dotted-dashed curve), Reid soft-core (solid curve), Reid hard-
core (dashed-curve), and Bonn (dotted curve).

and integrals over the deuteron S- and D-state wave func-
tions u and m,

Cs(g)= f (u w /2)jo(g—r/2)dr

+ f (uw/v 2+w /2)J2(Qr/2)dr, (7.5)

Cl (Q)= f 3w /2[ jo(gr/2)+j2(gr/2)jdr . (7.6)

Here, the indices I and S refer to orbital and spin contri-
butions to the magnetic dipole density. In Fig. 56 we

show the magnetic form factor broken down into the dif-

ferent contributions from the S and D states and the S-D
transition. The curve in Fig. 56, calculated using the in-

tegrals of Mathelitsch and Zingl (1978, and private com-

munication) for the Paris potential, shows thai at low Q
the form factor is entirely dominated by the intrinsic

magnetization piece due to the S state. In the region 4—6
fm ', most nucleon-nucleon potentials produce a diffrac-

tion zero in the S-state contribution. In this region the D
state amplitudes will thus dominate, mainly through the
S-D interference term. This latter contribution affects
the magnetic form factor in a very pronounced way, and

its influence leads to a characteristic difference in the
"charge" structure function A(Q). In B(g) there is an

interference that decreases 8(g) for Q&5.5 fm '; for
A (g) the D-state contribution occurs mainly through in-

coherent terms that increase A(g) throughout. A com-

parison of A and B in the region 4—7 fm ' thus should

be very instructive for a separation of the D-state contri-
bution to the deuteron form factors.

Figure 57, taken from the work of Mathelitsch and

Zingl (1978), shows the sensitivity of &(Q) to different

%X potentials. Changes in the S- and D-state wave func-
tions show up in a very pronounced way at large Q. The
form factor shows a diffraction structure mainly influ-

enced by the repulsive core of V~& at short range —the
more strongly repulsive the potential, the lower the
momentum transfer of the minimum of the S-state form
factor. The S Dinterferenc-e amplifies these differences,
to the point where, for example, the earlier version of the
Paris potential (Lacombe et a/. , 1975) used by Mathel-
itsch and Zingl (1983) displays no minimum in B(g),
while the more recent version used to calculate the results
in Fig. 57 does have a minimum at Q=6 fm '. While
some of this sensitivity to V» is reduced by the non-

impulse-approximation contributions (see below), much of
it remains (isoscalar MEC are small) and can serve as a
sensitive test of the deuteron wave function.

In order to calculate B(g), one has to know the nu-

cleon electromagnetic form factors. The deuteron mag-
netic form factor depends mainly on the isoscalar nucleon
form factor GM~+GM„(Rand et aI , 1973). Th.is com-
bination is actually a difference of two comparable num-

bers (G~„&0), and therefore sensitive to experimental er-

rors. On the other hand, GM„can be determined from
quasielastic e-d scattering, and the interpretation of these
e-d data is largely independent of the deuteron wave

function assumed. As a consequence, G~„+ G~~ is

known with a reasonable accuracy and a small systematic
error. Among the popular nucleon form-factor models

(Gourdin, 1974), the dipole form factor and the param-
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etrization of Iachello et al. (1973) reproduce the
rather well for Q&5 fm '. The fits of Blatnik and
Zovko (1974) and Hohler et al. (1976) for the specific
quantity of interest, G~, (q & 5 fm '), are systematically
larger than the data. When discussing only those
parametrizations that correctly fit G~, for Q &5 fm
an error of —10% for 8(Q) results from the uncertainty
in the nucleon form-factor input.

As compared to the "electric" form factor A (Q), 8 (Q)
has the advantage that the neutron electric form factor
plays a minor role. The intrinsic magnetization terms
dominate, and the convection current [terms proportional
to G~z+ G~„ in Eq. (7.4)] only gradually increase with Q,
and reach a total of 30% at the highest Q where data are
available. A realistic assessment of the error of G@„of
+50% leads to a negligible uncertainty, +5%, in 8 (5
fm ').

At the large momentum transfer achievable experimen-

tally for light nuclei, non-nucleonic degrees of freedom
are expected to play an important role. Historically, both
the charge and magnetic form factors have been taken as
test cases for non-nucleonic contributions and have pro-
vided a continuing impetus to developments in the theory
of meson-exchange currents (Chemtob, 1971; Chemtob
et al. , 1974). Many of the more exotic exchange effects
(Adler and Drell, 1964; Blankenbecler and Gunion, 1971)
were investigated for the deuteron before the calculations
centered on the diagrams considered to be important to-
day. It now has become clear that the MEC contributions
are not of dominating importance for the deuteron form
factor; the deuteron being an isoscalar object, MEC in

general are small. Despite this fact a study of MEC in

the deuteron is of great interest. The simplicity of the
two-nucleon system allows alternative theoretical ap-
proaches to be explored, which can be used to check the
standard MEC calculations.

The standard approach used to calculate MEC is
described in detail in Sec. IV.E. For the deuteron, the im-

portant diagram at low Q is the one for the pair current,
while at higher Q the spy current dominates. The pionic
current, a contribution that is usually important at low Q,
is absent due to 6 parity. The 6 contribution, although
at present still of somewhat uncertain magnitude, also

plays a role at low Q.
The calculation of Fabian, Arenhovel, and Miller

(1974) includes the diagrams of the pair current and one-

boson exchange. In order to describe these currents in a
way consistent with the calculation of the nucleonic wave

function, Fabian, Arenhovel, and Miller (1974) use the
one-boson exchange (OBE) potential of Bryan and Scott.
Strong-vertex form factors and the effect of 4h com-
ponents (see below) are included. The calculation of Jack-
son, Lande, and Riska (1975), done for the Reid soft-core
NX potential, includes pair, recoil, and wave-function re-

normalization diagrams. The calculation of Gari, Hyuga,
and Sommer (1976), performed for a modified Reid soft-
core potential, includes the same diagrams and allows in
addition for the exchange of heavier mesons (p, co), which

become more important at large momentum transfer. In

addition, Gari, Hyuga, and Sommer (1976) calculate the

~py contribution to 8(Q) (these calculations use a p
width of I 12 MeV, while more recent data suggest
I z

—150MeV); the importance of this term already at
medium q was first pointed out by Adler and Drell
(1964).

Both the calculations of Fabian, Arenhovel, and Miller
(1974) and of Gari, Hyuga, and Sommer (1976} include
the presence of bb components in the deuteron ground
state (Weber and Arenhovel, 1978). While the earlier cal-
culations (Fabian, Arenhovel, and Miller, 1974) treat the
hh perturbatively, the later ones (Arenhovel, 1975; Gari,
Hyuga, and Sommer, 1976) describe the hb. by a
coupled-channel approach. The hh probability predicted
by different calculations varies somewhat, I'~~ ——0.5—
1.5%, and depends on the strong-vertex form factors
chosen. As Gari, Hyuga, and Sommer (1976) point out,
the hh component in addition depends on the inclusion
of short-range exchange processes; for example, co ex-

change is omitted by Gari, Hyuga, and Sommer (1976),
since it would lead to "unphysically large" Ah probabili-
ties. Given the range of variation of I'~~, the bb, effect
predicted for 8(Q) strongly depends on the specific cal-
culation under discussion. For Gari, Hyuga, and Sommer
(1976), the b, A component increases 8 (4 fm '), by
7X10; for Fabian, Arenhovel, and Miller (1974), the
b, b, effect amounts to an increase of 4.8)& 10 . Much of
this difference is due to the fact that Gari, Hyuga, and
Sommer (1976) use the same isoscalar magnetic moment
for the nucleon and 4, while Fabian, Arenhovel, and
Miller (1974) use a three times larger b, isoscalar moment,
as given by the quark model (Arenhovel, 1983).

In Fig. 58 we compare the calculations discussed above
to the experimental data. In order to present sets of
curves that are reasonably comparable, we have selected
individual contributions from the calculations cited, and

partly supplemented them by MEC terms provided by
other calculations. In particular, for the calculation of
Fabian, Arenhovel, and Miller (1974},we have added the

spy contribution as calculated by Gari, Hyuga, and Som-
mer (1976}. For Jackson et al. (1975},we have done the
same, and we have omitted the recoil and wave-function
renormahzation contributions. These latter terms are of
relativistic order in Q /M&, and the calculation of Jack-
son et al. (1975) neglects some of the terms of this order.
For Gari, Hyuga, and Sommer (1976), we include their
full MEC calculation. For all references, we omit the b,b.
contribution, although it could be quite important; as dis-

cussed above, this contribution is poorly determined at the
present time.

Figure 58 shows that the differences predicted for
8 (Q) are quite appreciable at large Q. The calculation of
Fabian et al. (1974) gives the largest value for 8(Q), a
consequence of the use of the Bryan-Scott (BS) potential.
At Q=5 fm ', the impulse approximation contribution
using the BS potential exceeds that for the Reid soft-core
potential by a factor of 2. Comparison of calculation and
experiment shows that the impulse approximation result,
calculated with the Reid soft-core potential, is somewhat
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FIG. 58. Deuteron structure function B(Q) with different
theoretical predictions. Impulse approximation: Mathelitsch
and Zingl (1978) (solid curve). Full calculations including MEC:
Fabian et al. (1974) (short-dashed curve), Jackson et al. (1975)
(long-dashed curve), Gari et al. (1976) (dotted curve). Relativis-
tic calculations: Arnold et al. (1980) (dotted-dashed curve), and
Zuilhof and Tjon (1980) (dash —double-dotted curve).

low at large Q. Adding the MEC (but not the Ah) leads
to good agreement for the calculation of Gari and Hyuga
(1976a; Gari et al. , 1976). The result of Jackson et ar.
(1975) is somewhat high, presumably because they have
not included strong-vertex form factors which cut down
MEC at large Q.

The calculations summarized above obtain the deuteron
wave function from a solution of the (nonrelativistic)
Schrodinger equation for a given XX potential. Meson-
exchange diagrams, which partly account for relativistic
effects, are added -to order Q /M&. The pair diagram in
particular corresponds to a perturbative inclusion of the
N component of the two-body wave function. An alter-
native theoretical approach (Buck and Gross, 1979; Ar-
nold et al. , 1980; Zuilhof and Tjon, 1980) is to solve the
relativistic Bethe-Salpeter equation for a given NN in-
teraction. In this case the relativistic aspects are included
to all orders in Q/M~. Such a relativistic calculation can
be expected to be equivalent to a nonrelativistic calcula-
tion supplemented by the antinucleon diagram (pair term)
plus the usual electromagnetic relativistic corrections dis-
cussed by Friar (1973) and I.icht and Pagnamenta (1970).
As shown by Gross (1978), these approaches are indeed
formally equivalent to first order in Q /M~.

For the deuteron, with its smoothly falling magnetic
form factor, the electromagnetic relativistic corrections
actually are very small; the use of 6, and the argument
shift, where the form factor is evaluated at a shifted effec-
tive momentum transfer (Friar, 1973), nearly cancel.

Consequently, the relativistic calculations should give the
same result as the nonrelativistic impulse approximation
plus the pair contribution.

Two relativistic calculations for 8(Q) are available at
present. Arnold et al. (1980) calculate form factors start-
ing from the wave function of Buck and Gross (1979),
who use a quasipotential model which approximates the
Bethe-Salpeter equation by a three-dimensional relativistic
wave equation. Buck and Gross (1979) calculate the
deuteron wave function for several one-boson exchange
potentials, and assume that one of the nucleons is off-
shell. Zuilhof and Tjon (1980,1981) solve the Bethe-
Salpeter equation in the ladder approximation, using
again OBE potentials. Both calculations thus include the
physics described in nonrelativistic calculations by the
pair diagram. In order to get curves that are comparable
to each other, we have added the spy contribution of
Gari et al. (1976). The resulting predictions for B(Q) are
shown in Fig. 58. Both relativistic calculations are lower
than the experimental data.

Clearly, Fig. 58 shows a disturbing result, the nonrela-
tivistic calculations give a 8(Q) systematically larger
than the impulse approximation result, while the relativis-
tic calculations give a smaller form factor. Two sup-
posedly equivalent approaches give qualitatively different
answers. This difference could perhaps be attributed to
the treatment of MEC to order Q /Mg only; at Q=5
fm ' this could lead to problems (the typical expansion
parameter is Q /4M&). The calculation of Cheon (1981)
indeed points out that relativistic effects lead to a de-
crease of the pair contribution at large Q. In addition,
Zuilhof and Tjon (1981) point out that in pseudoscalar
mX coupling the two-pion exchange current gives a con-
tribution comparable in size to the pair current, but oppo-
site in sign. This could explain why the pair contribution
leads to too large a 8 (Q).

Given this comparison, one may wonder whether the
standard MEC calculations (Sec. IV.E) overestimate the
relativistic effects. It seems most desirable to make a
more detailed study of the theoretical approaches alluded
to above, in order to take care of this worrying contradic-
tion. Comparison with experiment at the present time
cannot determine which of the approaches is more
correct; depending on the size of the hb contribution, ei-
ther could be in agreement with the data.

B. The A=3 systems

The 3=3 system is distinguished by a number of
unique properties. The nucleonic wave function can be
calculated "exactly" for a given nucleon-nucleon poten-
tial. By Faddeev or variational techniques, the (nonrela-
tivistic) Schrodinger equation can be solved numerically
with a fair degree of accuracy. Calculations using dif-
ferent techniques and truncation schemes are in reason-
able agreement, so the nucleonic part of the wave func-
tion, and certainly the long- and medium-range proper-
ties, are under control. The presence of three nucleons in
a (mainly) relative S state leads to a large density (in con-
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trast to the loosely bound deuteron) that makes the A =3
systems interesting for study of short-range phenomena.
The investigation of isovector meson-exchange currents
then promises to be a fruitful subject, particularly if ob-
servables receiving a large MEC contribution such as
magnetic form factors are studied. The existence of a
pair of (almost) stable mirror nuclei, H and He, is
unique; once sufficient data for H become available, the
separation of form factors into their isospin components
promises to be very instructive.

There is a large body of literature on the three-body
problem. Much of the work related to electron scattering
deals with the charge form factor. Here, we shall concen-
trate on those aspects accessible via magnetic scattering.
We shall mainly discuss He, for which more accurate
and much more extensive data are available. A discussion
of H will become more fruitful once the experiments on
H magnetic form factors, at present in progress at the

Bates and Saclay accelerators, are carried out. Theoreti-
cal calculations concerning differences between H and
He can be found in Villars (1947), Schiff (1964), Gibson

(1965), Kloet and Tjon (1971), Harper et al. (1972), Bar-
roso and Hadjimichael (1975), Bornais (1981),and Hajduk
et al. (1983).

The pioneering experiment on both helium and tritium
was performed by Collard and collaborators (1965) at
Stanford. Using sealed gas targets, cylinders 20 cm long
filled to a pressure of 230 atm, this group measured cross
sections between 100 and 680 MeV energy and 40 —135
scattering angle. From these data the magnetic form fac-
tors in the Q range 1—2.8 fm ' were extracted. The
magnetic form factors obtained showed an exponentially
falling tendency as a function of Q, similar to what was
found for the charge form factors (see Fig. 59). The data
were extended to higher momentum transfer by
McCarthy et al. (1970), who used a liquid- He target 2
cm long, cooled to 1.8 K. Data were taken at energies
200—750 MeV, and 8=30'—145'. The main emphasis of
this experiment was the charge form factor (McCarthy
et al. , 1977); the resulting F,h(Q) showed the diffraction
feature that has received so much attention since. For
magnetic scattering, the experiment produced form fac-
tors (other than upper limits) up to Q=3.5 fm '. Within
the error bars, IiM continued to fall smoothly, in agree-
ment with theoretical predictions (ignoring S Dinterfer--
ences and MEC) of the time. The subsequent impulse ap-
proximation predictions including the S-D term produced
a diffraction minimum not present in the data.

The next major experiment devoted to magnetic scatter-
ing was that of Cavedon et al. (1982), performed at Sa-
clay. Using a gas target with 12-atm pressure cooled to
liquid-hydrogen temperature (22 K), the experimentors
were able to increase substantially the product of target
density times maximum electron current (40 pA). With
the gas-cell windows not visible to the spectrometer, the
measurements could be pushed to very small cross sec-
tion, 2X10 cm /sr. With the maximum accelerator
energy of 700 MeV and 0= 155, a momentum transfer of
Q=5.6 fm ' was reached. This experiment discovered
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FIG. 59. The 'He data (with reasonably small error bars), com-
pared to the prediction of Maize and Kim (1983) for impulse
approximation (dashed curve) and impulse approximation plus
MEC (solid curve). See Table III for a listing of the data.

the diffraction feature predicted by the theory that in-
cludes MEC.

The experiment of Dunn et al. (1983) was performed at
the Bates accelerator. Using a He gas target, 15-atm
pressure, and 80-K temperature, measurements were car-
ried out at energies from 60 to 350 MeV and
0=60 —160'. This experiment greatly increased the accu-
racy of data in the Q range 0.8—3.4 fm '. The form fac-
tors measured in these experiments, together with isolated
points produced by others (Bernheim et al. , 1972; Jones
et al. , 1979) are shown in Fig. 59. The data are plotted in
terms of the form factor traditionally used for M 1,
F =FT&&8nM~/q p [with E(0)=1]. In order not to
clutter the picture, we have omitted data points that have
rather large error bars. In the following figures, we shall
show only the most recent data sets, the ones measured at
Bates and Saclay.

One feature of the data perhaps needs explaining: the
diffraction minimum, in the region Q=4—4.5 fm, is
poorly defined. In this region, the charge form factor
(McCarthy et al. , 1970) has its diffraction maximum; ex-
periments carried out at 8&180' (imperative in order to
eliminate the large contribution of quasielastic electron-
window scattering) will thus mainly measure F,h and pro-
duce large error bars for I'~.

The theoretical interpretation of the 2 =3 form factors
has received extensive attention, starting with the first ex-
periment (Schiff et al. , 1963; Schiff, 1964). While the
emphasis initially was put on phenomenological analyses,
more and more calculations using sophisticated wave
functions were published (Sarker, 1964; Gibson, 1965;
Tjon et al. , 1970; Malfliet and Tjon, 1971; Yang and
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Jackson, 1971; Hennel and Delves, 1971). Much of this
work, however, ignored the fact that, besides the diagonal
contributions of S and D states (the only ones to occur in
charge scattering), the magnetic form factor also receives
a contribution from the S-D interference term. The pres-
ence of this contribution was already realized in some of
the earliest work (Schiff, 1964; Gibson, 1965), where the
close connection of the interference term to MEC was al-
luded to as well. In most of the subsequent work this
term was omitted, and only the calculation of Branden-
burg et al. (1974) showed its numerical importance and
the striking change of FM this S Dint-erference produces.

The presence of this S Dter-m gives F~ a character
quite different from that seen in F,h. The latter at large

Q is dominated by the short-range properties of the S-
state wave function, which are still rather uncertain. The
magnetic form factor is given at large Q by the S Dterm-,
which is dominated by the better known medium-range
properties.

Today, a number of calculations for the three-body
magnetic form factor are available. Figures 59—61 show
some of the results. The prediction of Maize and Kim
(1983) is obtained using the wave function of Branden-
burg et al. (1974), and that in turn is obtained by solving
the Faddeev equation in momentum space for the Reid
soft-core potential. The form factor of Strueve et al.
(1983) is calculated from a solution of the Faddeev equa-
tions for the nucleon-delta coupled-channel system and
the Reid soft-core or Paris XN interaction. Torre et al.
(1981) solve the Faddeev equations in configuration space
for the de Tourreil —Sprung super soft-core (SSC) interac-
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FIG. 60. Meson-exchange current contributions to He form
factor calculated by Strueve et al. (1983): pionic pair {dashed,
upper curve), pionic current (dashed, lower curve), p pair
current (dotted-dashed curves), and full 6 contribution (dotted
curve).
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FIG. 61. He data of Cavedon et al. (1982) and Dunn et al.
(1983) compared to predictions of Strueve et al. (1983) obtained
using GE (solid curve), I'& (dashed curve), and without MEC
{dotted curve).

tion. The impulse approximation results for the calcula-
tions shown in Figs. 59 and 61 agree quite closely. Some
dependence on the nucleon-nucleon interaction used
emerges: the Reid soft-core potential, for example, gives a
value of F in the maximum, which is —30go larger than
for the Paris potential.

The im.portance of meson-exchange currents for the
magnetic properties of He has been known since the early
calculation of Villars (1947), who found that the isovector
magnetic moment receives —15%%uo contribution from
MEC. Much of the development of MEC theory (Chem-
tob and Rho, 1971) actually is linked to this question of
the A =3 magnetic moments (Kuroboshi and Hara, 1958;
Rho, 1970; Horikawa et al. , 1972; Hadjimichael et al. ,
1972; Ichimura et al. , 1972; Gerstenberger and Nogami,
1972; Green and Schucan, 1972). Using a realistic wave
function, obtained from a Faddeev calculation, Harper
et al. (1972) found that the discrepancy between the
nucleon-only prediction and experimental magnetic mo-
ments could be quantitatively understood. Harper et al.
(1972) showed, in particular, that the S Dmatrix ele--
ments were important for MEC as well, especially for dia-
grams involving the delta.

The magnetic form factor at large Q was calculated by
Kloet and Tjon (1971) using Faddeev wave functions. Al-
though still done without the S-D term, this calculation
pointed out the increasing importance of MEC at large Q.
Subsequent calculations (Hadjimichael and Barroso, 1973;
Barroso and Hadjimichael, 1975) involving additional re-
finements, were mostly carried out using more
phenomenological wave functions.

A systematic investigation of the role played by dif-
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ferent ingredients entering the calculation of MEC contri-
butions has been performed by Riska (1980). For this
work a phenomenological Irving wave function was used;
in order to assess properly the sensitivity to short-range
MEC, a wave function with a sensible short-range
behavior was selected. Riska found that the total form
factor is not very sensitive to the D-state probability; the
S-D impulse approximation contribution and the MEC
effect largely cancel [in analogy with deuteron electro-
disintegration at threshold (Hockert et al. , 1973)]. The
total p-exchange contribution shifts the diffraction
minimum only by -0.2 fm ', although individual pieces
involving the p have a large effect. Interestingly, for He
the p contribution goes in the same direction as the pion
exchange effects; ordinarily, the p has the effect of cutting
down the ~ contribution at large q. The strong vertex
form factors turn out to be quite important, even though
only monopole form factors with large cutoff masses were
employed. When passing from a cutoff mass A=1200
MeV to A=2000 MeV the diffraction minimum shifts by
0.5 fm ', more realistic (smaller) A's would lead to larger
changes.

The contribution of diagrams involving the 6 can be
included in the standard perturbation way (see Sec. IV.E).
In the case of He, the wave function is still simple
enough to make a coupled-channel calculation for nucleon
and 6 components feasible. This has been done by
Strueve et al. (1983), who calculate the N, h wave func-
tions by solving the coupled Faddeev equations in
momentum space. The total 6 effect, the sum due to po-
larization of the nucleonic wave function plus diagonal
and nondiagonal 6 pieces, differs considerably from the
perturbative calculations. In particular, the 6 effect at
large momentum transfer, Q & 5 fm ', becomes the dom-
inant MEC contribution.

In order to show the relative size of the different MEC
pieces discussed above, Fig. 60 gives the individual contri-
butions to FM(q) as calculated by Strueve et al. (1983).
The data are displayed only in order to indicate where the
relative MEC contributions are large. Recent work has
shown that current conservation plays an important role
in the calculation of MEC. The electromagnetic form
factors appearing in the one-body and two-body pieces
have to be the same if current conservation is to be
respected. Csiven the fact that the electric form factors
G@ are used in the one-body form factors, GE (rather
than F~) should be used in the MEC calculation as well.
It has been pointed out by Strueve et al (1983) and Maize
and Kim (1983) that this has important consequences for
the calculation of the He form factor at large q; this is
demonstrated by Fig. 61. It is important to respect
current conservation, since this very law was the major
reason for introducing MEC in the first place.

The importance of using GE rather than F& points out
that relativistic corrections to the standard MEC opera-
tors are non-negligible. Mathiot and Riska (1983) recent-
ly derived these for one particular case, the pair diagram
for deuteron electrodisintegration. They showed that for
this particular case, the relativistic corrections produce an

additional term of the same size as the difference of F~
and GE, this term goes in the same direction (Maize and
Kim, 1984) as the replacement of F, by GE, and makes
agreement with experiment even worse (see below). As al-

ready remarked in ihe section on the deuteron, the relativ-
istic effects in MEC need further study. Relativistic ef-
fects in the wave function clearly must also be understood
to the same order in Q/M~.

In Figs. 59 and 61 we show the predictions of two re-
cent calculations for FM, those of Maize and Kim (1983)
and Strueve et al. (1983). The former use the Faddeev
wave function of Brandenburg et al. (1974), calculated for
the Reid soft-core NN interaction. Strueve et al. (1983)
solve the coupled N/b Faddeev equations for the Paris
potential. Both use GE for the calculation of MEC, but
the curves obtained by Maize and Kim do not include
strong-vertex form factors that would cut down the MEC
contribution at large momentum transfer (see Maize and
Kim, 1983). Additional calculations, using F, rather
than GE, can be found in Hadjimichael et al. (1983). In
view of the ambiguities still present in the treatment of
MEC—particularly as concerns relativistic effects and
uncertainty in strong-vertex form factors —the agreement
between prediction and experiment, while qualitatively sa-
tisfactory, is not quantitatively as good as one could hope
for. Given the very large effect of MEC on the He mag-
netic form factor, further study of this observable should
help to eliminate some of the questions that are still open.

To conclude this section, we should like to point out a
few topics that will become important in the future. The
first is the measurement of data for H at high momen-
tum transfer. We have not discussed H above, since the
existing set of data is very limited; it will be most impor-
tant to change this, and to explore the features predicted
by theoretical calculations concerning the difference be-
tween H and He. A determination of both form factors
would allow a separation into isoscalar and isovector con-
tributions. The isovector form factor would allow us to
study in a very clean way the dominating MEC diagrams.
The isoscalar form factor would represent an ideal com-
plement to that for the deuteron; the higher densities
present in 2=3 would allow the study of short-range ex-
change phenomena hardly accessible in the deuteron.

An extension of the data for B(Q) to higher momen-
tum transfer also is of high priority. The B (Q) is
predicted (Gari et al. , 1976) to flatten out at large Q, as a
consequence of the S-state diffraction maximum and the
contribution of the mph' exchange term. The cross sec-
tions predicted are large enough to be measured once
high-intensity electron beams of energy &700 MeV are
available. The features offered by the use of electron and
recoil nucleus polarization (see Sec. VIII) are most
promising; amplitudes that are generally difficult to iso-
late can be measured as interference terms. Experiments
exploiting these ideas can be performed once CW beams
of appropriate energy, as planned for the CEBAF facility
and others, become a reality. Once this high-Q region be-
comes accessible, then a topic not touched upon in this
review —the role of quark degrees of freedom —will re-

Rev. Mod. Phys. , Vol. 56, No. 3, July 1984



T. W. Donnelly and I. Sick: Elastic magnetic electron scattering

ceive a great deal of attention. For light nuclei and large
Q, this topic is certainly very relevant. The currents ob-
served in magnetic electron scattering can be expected to
depend sensitively on the submesonic degrees of freedom;
for instance, even in the absence of believable theoretical
predictions, an extrapolation from what we already know
about the important role played by MEC suggests that the
results observed under these conditions will be sensitive
probes at the microscopic level. This topic will be a ma-
jor frontier of, among other fields of study, magnetic elec-
tron scattering.

Vill. POLARIZATION IN ELASTIC ELECTRON
SCA+sERING 4

In this section we discuss the special problem of elastic
scattering from nuclei, with nucleus and/or electron po-
larized. This topic has received little attention in the past
(Weigert and Rose, 1964; Gourdin and Piketty, 1964;
Schildknecht, 1965; Arnold et a/. , 1981). Only two exper-
iments for A & 1, electron scattering from a polarized hol-
mium target (Uhrhane et al. , 1971; Ravenhall and
Mercer, 1976), and elastic scattering from the deuteron
with a measurement of the recoil deuteron vector polari-
zation (Prepost et al. , 1968), have been published. Here,
we include a discussion of polarization, since progress in
experimental techniques will make feasible the use of po-
larization in electron-nucleus scattering. The additional
information accessible via polarization observables
renders this new tool most valuable, and justifies a large
effort in this direction.

In analogy with hadron-nucleus scattering, one might
expect the "obvious" polarization experiment to be the
one in which polarized electrons are scattered off an un-

polarized target, in order to measure the analyzing power.
Experimentally, this is the easiest observable to measure,
given the fact that intense sources of polarized electrons
today are available (Prescott et al. , 1978). Unfortunately,
for single-arm scattering, this type of experiment does not
produce any new information. At the energies of interest
for nuclear physics, electrons are ultrarelativistic
(E,s'»m, ), the electron helicity is conserved, and the
scattering cross section is independent of electron orienta-
tion (provided we take parity conservation for granted).
New information is obtained only once target or recoil
nucleus polarization observables are measured. Then in-
coherent mixtures of form factors can be separated, and
small form factors can be measured through their in-
terferences with large ones.

Two developments in experimental techniques point to
an increase in the importance of polarization in the fu-
ture: (1) The construction of CW facilities with high
beam intensity makes coincidence experiments orders of
magnitude easier than in the past; experiments involving
the analysis of the recoil nucleus polarization then become
feasible. (2) The construction of stretcher rings will allow
experiments using internal targets in the form of polar-

ized atomic beams; the high intensity of internal electron
beams produces luminosities that approach those needed
to do electron scattering experiments over extended ranges
of momentum transfer.

A. Formalism

The formalism and calculations summarized here are
taken from a more general treatment of the problem
(Donnelly, 1983; Donnelly and Raskin, 1984), in which
both elastic and inelastic electron scattering involving
discrete nuclear states were discussed. Here, we allow for
two situations for the electron spin: (1) where the elec-
trons are unpolarized and (2) where the incident electron
beam is assumed to be longitudinally polarized. We dis-
cuss only the extreine relativistic limit (s, E' »me), and so
the incident electrons are assumed to have specific helici-
ties h =+1. The helicities of the scattered electrons are
summed over. The more general situation of arbitrary in-
itial and/or final electron polarizations is discussed by
Donnelly and Raskin (1984). For the nuclear spin we also
allow for two cases: (1) initial nucleus polarized and
recoil nucleus spins summed over, and (2) initial nucleus
unpolarized, recoil nucleus spin orientation measured.

The electron scattering cross section may be written
~ h

de
dQ

=Xp+hAf;, (8.1)

where fi refers to a transition from the initial state la-
beled i to a final state labeled f. Here, Xf; is the
electron-spin-averaged cross section

- +1 ~ —1-
do
dQ
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and Af; is the electron polarization cross section
- +1 r

dt's

dQ
d(7
dQ
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The six electron kinematic factors are given by

vL ——(Q'/q')',

(8.5)

(8.6)

vT ———,(Q /q )+tan —,
2 '

1/2

vT —— (Q /q )+tan — tan —, (8.7)

In the single-photon exchange or first Born approxima-
tion it may be shown that the cross sections take on the
forms (Donnelly, 1983; Donnelly and Raskin, 1984)

—1 L T TT TL~fi=+Mfrec (VL~fi+VT+fi+VTT+fi +VTL~fi ) &

(8.4)
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1/2

vTL, = — (Q'/q') (Q'/q')+tan'—
2 2

Rf'—= Ip(q)p I'

Rf IJ(q +1)'f
I

'+
I
J(q —1)f'

I

'
Rf;—:2Re[J(q;+1)f J(q; —1)f;],
Rf; —= —2Re{p(q)f;[J(q;+1)f;—J(q; —1)f;]I,
Rf, =

I J(q;+1)f, I

' —
I
J(q; —1)

I

',
Rf; ——2Re{p(q) f[J(q;+1) f+J(q 1)f]I'(8.9)

Here J" is the Fourier transform of the nuclear elec-
tromagnetic four-vector current density for the transition
i ~f, and we employ spherical vector projections labeled
+1, defined in the standard way [see Donnelly (1983),
Sec. 5, for details]. Throughout we employ the coordinate
system shown in Fig. 62, where the z axis is along q and
the electron scattering occurs in the xz plane. Conserva-
tion of the nuclear electromagnetic current has been used
in obtaining the above results. Thus far we have not in-
voked any detailed knowledge of the nuclear states in-

Uy

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

,~ ~ o r

- Ux

vTI ——— (Q /q )tan —.1 i p 8
2 2

'

The first two are the usual factors occurring in the Rosen-
bluth formula; vTT and vTI. also occur in studying coin-
cidence reactions [(e,e'x); see, for example, Donnelly,
1983, Sec. 6]; vT and v@1. are peculiar to polarized elec-
tron scattering.

Typically for elastic electron scattering at high momen-
tum transfer, Q /q =1 and so, even at rather high ener-
gies and forward electron scattering angles, vL, vT, vTT,
and vTL are all of order unity. On the other hand, if 8 is
very small (and E very large so that q is fixed), then vT

and UTI will be suppressed by the multiplying factor
tan(e/2) [see Eqs. (8.7) and (8.8)], and so the overall effect
of hf; will be diminished.

The nuclear structure physics is then contained in the
remaining nuclear response functions defined by

Xp(&)(Mg ) . (8.10)

In particular, fp' 1/(2Jp+——1)', regardless of the de-
tailed population of the magnetic substates. Frequently
we shall be interested in the situation where

p~;~(Mz ——+Jp)=1 and all other probabilities equal 0
(100% polarization), in which case

(2Jp)!&2g + 1f [(2J,+1+/ )l(2Jp —g )&]'~'
(8.11)

We may now make use of multipole expansions of the nu-
clear current matrix elements involving the basic mul-
tipole operators (see Sec. IV),

M z~"'(q) =—f dxMJ (qx)p(x),

(8.12)

T PP (q) = f dx M~~ (—qx).J(x),

defined in the standard way. However, in contrast to the
situation in which no nuclear polarizations are involved,
here, where the initial nuclear polarization is specified,
the developments are considerably more comphcated [a
full treatment of this problem, including situations when
initial nuclear polarization, final nuclear (recoil) polariza-
tion, or both are specified, is given by Donnelly and Ras-
kin (1984)].

Now it may be shown for the case of a polarized target
with no final nuclear polarization measured (indicated by
fi) that

R~; 4m g f&P&(c—o—s8~) W&(q)y;,
+&0

volved, but we shall in the following.
Now let us focus on elastic electron scattering in which

J;=Jf=J0 and m; =mf ——m0. Furthermore, let us assume
that the initial state is polarized (i.e., the nuclear target is
polarized whether or not the electron is polarized). In
other words, the target is prepared with its magnetic sub-
states labeled M& populated in a nonuniform manner

with probabilities p&;~(MJ ). An unpolarized target then

has p&;&(MJ )=(2Jp+1) '. In fact, because it is more

convenient in what follows to work with spherical tensors,
we define the Fano tensors by

J0—MJ

f~ = g ( —) '(JpMg Jp —MJ
I
(JpJp)g 0)

MJ
0

Uz

FICx. 62. Orientation of the nuclear polarization axis and defi-
nition of the electron scattering coordinate system. The incident
electron of momentum k and scattered electron of momentum
k' define the xz scattering plane with momentum transfer q in
the z direction and with u~ =k Xk'/

I
k Xk'

I
as a unit vector

normal to the scattering plane.

R&;=4~ g f&P&(cos8*)W&(q)y;,
g&0

Ry; =4mgf&P&(cos8*)co.s2$ *W& (q)~;,
g&2

R~; 4~ g f&P&(cos8*)cosg——~W& (q)~;,
+&2

(8.13)
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where only tensors of even rank occur in the terms which
contribute to Xy;, and

Ry; ——4m. g fy-'P&(cosg¹) Wy- (q)y;,
g&1

odCIi

(8.14)

RJ; =4m g fy-'Py-(cosg¹)cosg ¹Wy- (q)y;,
g&1

odd

where only odd-rank tensors contribute to A~;. The an-

gles (8¹,$ *) refer to the axis along which the target M-
state populations have been specified, so that, for exam-
ple, the f 's in Eq. (8.11) are to be used if the target is po-
larized with MJ ——+Jo in the direction (8¹,$ *). These

angles are given with respect to the momentum transfer

direction q (see Fig. 62).
The W's now contain the nuclear structure informa-

tion in the form of bilinear products of the ground-state
Coulomb and magnetic multipole matrix elements. Thus
W contains only Coulomb matrix elements together
with the interferences between CJ and CJ' multipoles;

, and W contain only magnetic ~ultipoles
with MJ!MJ' interferences in general; finally W and
W contain Coulomb-magnetic interferences, CJ!MJ '.
In all cases only interfering multipoles satisfying

~

J' —J
~
&g &J'+J are permitted. Furthermore,

0 &g & 2Jo for this case of polarized targets.
To display the complete (8¹,$ ¹)dependence of the

cross sections and to separate this dependence from their
(q, g) behavior, it is useful to rewrite Eqs. (8.4) and (8.5) in
the form

&yi—:&o 1+ g [Pg(cosg )R~($8)y;+P~(cosg*)cosp *R&(q,g)y;+P&(cosg¹)cos2$ ¹R&( q, 8) y]
g&2
even

(8.15)

~yi =&o g [Py-(cosg*)R&(q, g)y;+Py( cogs)¹cso(t ¹R&(q,g)y,].
gp1

odd

(8.16)

where

unpolarized

=4moMf, „'F (q, g), (8.17)

Rg (q, g)y; =f~'uT W~(q)y;/F'(q, g),

R~(q, g)y; =fyvTI Wy (q)y;/F (q, g) .
(8.19b)

with

F (q 8)=fo [vL Wo(q)y +vr Wo(q)y ]

= ui Fi (q) +uTFT(q), (8.18)

The above equations apply for the case where the target
is polarized and the recoil nucleus polarization summed
over. A second case of interest is that in which the target
is unpolarized but the recoil nucleus polarization mea-
sured. This case, denoted by f/, is very closely related to
that discussed above, and simple relationships exist be-
tween the response functions in the two cases (elastic elec-
tron scattering):

R&(q, g)y; =f~[vt. W~(q)y;+uTWy-(q)y ]/F (q 8)

Ry-(q, g)y; =f&uTI Wy. (q)y;/F (q, g),

R~(q, g)y; f~vrTWy- (q)y; /F (q,——g),
and for g odd,

(8.19a)

the usual unpolarized (e,e') elastic form factor with its
longitudinal and transverse pieces, I'I and I z, respective-
ly. The quantities Ry-(q, g)y;, the tensor polarizations,
are then given by, for g even,

K ERfI ——+Ay;, (8.20)

with similar relationships for the W s [see Eqs. (8.13) and
(8.14)], where the plus sign occurs for IC =I., T, TT, and
TI ' and the minus sign for K = TL and T'. Thus all of
the above analysis applies (up to a sign) whenever either
initial or final nuclear polarizations are specified. In the
situation when the final-state recoil polarization is mea-
sured, it is convenient to express the cross section in terms
of analyzing powers and polarization tensors. The latter
are given in terms of the quantities discussed in the
present work by

1, ~=0, 0&/ &2Jo

t~~(Jo)= y X . —,Vg (/+1), M= 1, 1&/ &2Jo
( —) R y- (q, g)yI

[J ]f(f)
—, (/(g —1)g(/+1)(/+2), M=2, 2(g (2Jo .

(8.21)
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We shall return to an example where these are used (viz. ,
the deuteron) a little later.

If both initial and final nucleus polarizations are speci-
fied then the analysis is somewhat more complicated [see
Donnelly and Raskin (1984)]. Perhaps the most obvious
case of interest of this last type would be a vector-
polarized deuterium target with the vector polarization of
the recoiling deuterons in elastic scattering measured to
obtain information that presently can only be accessed by
use of a tensor-polarized target or measurement of a
recoil tensor polarization.

Let us now return to explicit expressions for the re-
duced response functions W&(q)y;, K=L, T, TT, TL,
T ', and TL'. Let us define the elastic form factors by

This agrees with the usage in Sec. IV, but additionally
yields real quantities (once time-reversal invariance is in-
voked) and constitutes a specific choice of sign conven-
tion. Then we may write

8"~(q)y; ——g Ag g.~(Jp )FJ (q)FJ (q),
J'J

(8.23)

K=T,TT, T': J'=odd, J=odd

K=TI., TI.'. J'=even, J=odd .

where, of course, only the appropriate even- or odd-J
multipole form factors occur:

K=L: J'=even, J=even

& JoIIM z "'(q)IIJo&
FJ(q) =

[Jo]
&Jo I li T7"(q)

I I
Jo & J=odd .

(8.22) The expansion coefficients may be expressed in the form
(Donnelly and Raskin, 1984)

+J J gp K

jfJ J gy K TyT

AJ.q.~(Jp) =XJ J~(Jo) X 'E 2v 2
pJ g.g & K =TL y TL

&g (g +1)

j J./ ~K —TTv'(g —1)g (g +1)(g +2)

(8.24)

where we have defined functions

XJv~(Jo) —= ( —) 'I Jo]'[J'][Jl[E]
J' J g

X '
Jp Jp Jp

J J'
0 0 0

(1/2)( J '+J)

and

(8.25)

(8.26)

(i) Jp ——0
We recover only the usual unpolarized cross section

Xyg
——Xp, hy; ——0 . (8.29)

FI (q) —= & —,
'

I IM ()
' (q) I I

—,
'

&,
2

(8.30)

(ii) Jp ———,
'

Only CO and M 1 multipoles, respectively, can occur:

J J'
y(1/2)( J '+J—~)

1 m —1

~=0,1,2 and g &~ only . (8.27)

2

Then we have, using Eq. (8.11),

(8.31)

From these definitions we see that X coefficients are com-
pletely symmetrical under permutations of J', J, and g,
and that aq J.&, Pz z &, and Pz J &are . symmetrica. l under
interchange of J' and J (since only J'=odd, J=odd,
g =even enters for the TT term where ~=2). Thus the
summation in Eq. (8.23) may be written

[we assume p(;)(MJ ——+Jp) = 1]. In this case we find

Xy; ——X
(8.32)

h~; =Xp[cos8*R i (q, 8)y;+ sin8*cosP*R i (q, 8)y;] .

g( )= g ( )+2 g ( )
J'J J'=J J'&J

for the L, T, TT, and T' cases.

B. Specific examples

(8.28) Using expressions (8.23)—(8.32), we obtain

hy = —Xp[cos8*uT(FT(q) )

+sin8*cosg *uTi. (2FI.(q)Fr(q) )]F '(q, 8)

(8.33)

Let us now turn from the general to the specific and
look at a few examples.

With a polarized target and yet no electron polariza-
tion, one does not learn anything beyond the usual unpo-
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larized (e,e' ) cross section. In cases where

I FL, (q) I
«

I
FT(q)

I
«

I
FI.(q)

I
» I Fr(q) I

form factor is hard to separate from the large one by us-

ing the usual Rosenbluth separation method [i.e., varying
uT for fixed q to separate Fl (q) and FT(q) in Eq. (8.18)],
as they occur as their squares. On the other hand, for po-
larized targets and polarized electrons, one may determine

which involves the interference Fl. (q)Fz.(q) and
hence is a much more sensitive probe of the small piece.
A specific example is provided by the proton itself, where
at high q FT(q) dominates over FI (q) (see Arnold et al. ,
1981, for more discussion on this point).

We also note that if the target is aligned [i.e.,
pi;i(+MJ )=pi;i( —MJ )], then f& 0 for od——d g and so

the corresponding R's are zero [see Eqs. (8.19b)] and

b~; =0. This is a general statement, true for arbitrary Jp
and not just Jp ———,

'
as above. Qf course, the situation

considered in Eq. (8.11) is not an aligned one, and so the
odd Pano tensors do not vanish.

(iii) Jo=l
The possible multipoles are now CO, M1, and C2,

respectively,

3

Fi(q) —= & 1 lliT i "(q)II»3
(8.34)

F2(q) =—
3

and we have for the unpolarized cross section,

Xo=4~~Mf, ' [uiF&q)+urFT(q))

with

Fl. (q) =Fo(q)+F2(q)

FT'(q) =Fi (q),

F2(q, 8) =uI.FL, (q)+uTFr(q) (8.35)

Thus, with unpolarized scattering, only the sum of the
squares of the CO and C2 contributions may be deter-
mined, not the CO and C2 pieces separately. With polar-
ized targets, however, we have

X~;——Xp[1+[Pz(cos8 )R z(q, 8)~;+Pz(cos8*)cosP*R i(q, 8)~;+Pz(cos8*)cos2$*Rz(q, 8)~;]),
h~; =Xp[Pi (cos8~ )R, (q, 8)y;+P i (cos8*)cosg ~R i (q, 8)y; ],

(8.36)

(8.37)

where, again using Eq. (8.11) in which f", i= 1/v 2 and
fp'= I/v 6,

R2(q~8)fi ' uL ~2F2 Fo+0 1

2 2

I

expressions to the forms appropriate for measurements of
the recoil polarization (Rz and R i change sign) and use
Eq. (8.21) to obtain the polarization tensors for spin 1:

tpp(1) =R o ——1,
rip(1) =v'2/3R i,

+uT[ —,'Fi]

R2(q, 8)y; =uzi1 F F1 2 F (q, 8),

Rz(q, 8)~; uTT[ ,'Fi)/F ——(q, 8), — (8.38)

tii(1) = —&1/3R', ,

t2p(1) =V2R2,

rzi(1) = —v 3R2,

t»(1)=2& 3R,' .

(8.39)

R, (q, 8)~; ———uT [ „Fi ]/F (q, 8),— Upon employing the following relationships between the
F 's as used here and the 6's as used elsewhere,

R i (q 8)y& = —uTI V 6Fi Fp+ F2
2 2

F (q, 8) .

Thus, for example, a measurement of R2, either as here
with polarized targets or by measuring the recoil polariza-
tion, together with the unpolarized longitudinal and trans-
verse form factors, allows us to determine the CO and C2
contributions separately. Note that these tensor moments
may be separated by using the (8~,$~) dependence above.
In particular, X~; and h~; may be separated using the
dependence on the electron helicity h =+1. Then R I and
R

& may be separated using either the 0* dependence or
the P* dependence or both. Likewise R2, R2, and R2
may be separated from each other and from the unpolar-
ized cross section.

For completeness, let us use Eq. (8.20) to convert these

'i/4irFo ——( 1+g )G, ,

'1/4m Fi ——— V'g(1+ il )G~,2
3

2v2
g(1+ g)Gg,v'4~F, =

(8.40)

Note that the sign of t2o is reversed in Arnold et al. (1981),
t20 +p /W2, ——and that the expression for t2& in Haftel et al.
(1980) should be multiplied by V 2/3. Both sets of authors use
capital letters for the tensor polarization, whereas the Madison
convention advocates the use of lower-case t's.

where g—=(Q/4Miv), we obtain the usual expressions for
the polarization tensors as applied to the case of elastic
scattering from deuterium. '
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Let us briefly discuss the experimental situation for
elastic scattering from the deuteron. Via Rosenbluth
plots, the magnetic form factor FM~ has been separated
from the charge form factors Eco+Fcz (see Sec. VII.A).
The CO and C2 contributions, at large transfer, have not
been separated. These two form factors contain very dif-
ferent pieces of physics, which one would like very much
to measure individually.

The monopole form factor is expected to exhibit a dif-
fraction minimum near q -4—4.5 fm ', and a maximum
at somewhat higher transfer (5—6 fm '). This diffraction
feature is very sensitive to the short-range properties of
the S-state wave function, a property well known from
the A=3,4 charge form factors. The wave function at
short range, in turn, is sensitive to the short-range S-wave
N-N interaction and internal nucleon degrees of freedom.
The quadrupole form factor at large q depends on the
short-range properties of the D-state wave function, par-
ticularly in the region of the expected minimum
(q-8—11 fm ') and following maximum. In contrast to
the long- and medium-range properties, these short-range
properties are poorly known and represent the major gap
in our understanding of the D-state wave function.

The existing measurements on A (q) do not allow one
to separate these two ingredients. The quadrupole form
factor obscures the diffraction minimum of Fco com-
pletely. The diffraction maximum of Fco complicates the
interpretation of A (q) at large q in terms of the dominat-
ing contribution of FC2. Measuring one of the tensor po-
larization observables mentioned above would allow one
to separate the two ingredients.

A first experiment involving the measurement of tensor
polarization observables is underway at the Bates ac-
celerator. In Fig. 63 we show the first results, obtained
using a low-duty-cycle accelerator, a water target, and a
conventional He(d, p) polarimeter (Schulze et al. , 1984).
The goal of future experiments of this type will be to
reach the region q-4 fm ', where a separation of CO
and C2 is most interesting. To achieve this, a high duty
cycle, a liquid-deuterium target, and a polarimeter more
appropriate for high-momentum deuterons (see, for exam-
ple, Sick, 1984) will be needed.

-0.4

—0.8

-$.2

—- —GRAZ (TOT)
----- GRAZ (IA)

—1.6 ) I ) I

0 1 2 4
Q(fm )

FICy. 63. The experimental results of Schulze et al. (1984) com-
pared to predictions calculated using different models for the
nucleon-nucleon potential. The curves labeled TOT include the
contributions of MEC.

(iv) Jo ———,
'

Turning now to a more complicated example, here we
have multipoles CO, M1, C2, and M3, respectively:

Fo(q}—= '
& r'I IM o

El(q) —= 2 & T~
I
I~T i "(q}

I I 2 &

F2(q)—= 2 & 2 IIM z "(q)ll-'&

F3(q)= T~& 2 I I~T3 "(q) I IT~ &

and form factors

El'. (q) =Fo(q)+F2(q),

Er'(q) =E~(q)+E3(q) .

(8.41)

(8.42)

Using Eq. (8.11), we obtain the Fano tensors fI' ——3/2V 5,
fq' —,, and f3' ——1/2~——5. The cross section X~; takes
the same form as in the previous example, except now
with

R z(q, 8)y; = —IuL [2FoEz]+uT [ 5 (Ei+v 3/2F3 )']]/F (q 8)

F (q, 8),R 2 (q, 8)yg urL, F2 (F) ——V2/3F3 )—
5

(8.43}

1 2 2 1
Rp(q, 8)y; uTT —Fi E3—+— FiF3—

5 V6
E (q, 8) .

The polarization cross section now includes rank-3 tensors:

hy; =Xo[P&(cos8*)R~(q, 8)~;+PI(cos8 )cosP R ~(q, 8)y;+P3(cos8*)R3(q, 8)~;+P3(cos8*}cosP*R3(q,8)y;]

(8.44)

with
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R, (q, 8)y; = —Ur[ —,'(FR+F3)]/F (q, 8),
r

vSR
& (q, 8)&;= —

UTL, (Fo+ —,F, )F, + E,F,
5 5

'(q, 8),

R3(q 8)y =Uz'[ 5 E3(F3+2~6Ei )]/F (q 8)
(8.45)

R 3(q, 8)&;——UTL

1/2
3 6(Eo+ —,E2)F3+ F2Fg

5
E (q, 8) .

3As a specific example of such a case, consider the —,

ground state of Li (Donnelly, 1983; Donnelly and Ras-
kin, 1984). The form factors Fo, F~, Eq, and F3 were
calculated using Cohen and Kurath wave functions.
Some of the results are displayed in Figs. 64—67. In par-
ticular we show curves for the situations when the target
nucleus 7Li is polarized with p~;~(+ —,

' )=1 along the
directions labeled I. ("longitudinal, " along the incident
electron direction), N ("normal, " perpendicular to the
electron scattering plane, along the direction specified by
u& in Fig. 62), and S ("sideways, " orthogonal to the
above so that uq ——u~ &uL, and u~ also lies in the scatter-
ing plane along with uL, ).

To achieve these polarizations, the angles (8,$*) are
chosen so that, even as the direction q changes, the polari-

zation axes are fixed in the laboratory system. Figure 64
shows the cross section XL obtained by polarizing Li
along the direction of the incident electron beam (L), but
not requiring polarized electrons. A discussion of lumi-
nosities obtainable with internal targets and a stretcher
ring (Bates, 1984) shows that a practical minimum cross
section is of the order of 10 cm sr '. With electron
energies of order 0.5—1 GeV one can hope to reach
beyond q-400 —500 MeV/c. The interesting high-q re-
gion (q&3 fm ') may be inaccessible in such experi-

TLi (e,e) Elastic Scattering

Oj'40—

"Li (e, e) Elastic Scot ter ing

lO-"—

ZL

(cm2/sr )

IO

—lop
lpp 2pp Zpp 4OO 5pp

tG
0 l00 200 500 400 500

q (MeV/c)
FM. 64. Elastic scattering from polarized Li with unpolarized
electrons. The target is assumed to be polarized along the direc-
tion of the incident electron (ul. ).

q ( MeV/c)
FIG. 65. Unpolarized elastic electron scattering from polarized
Li at an incident electron energy of 300 MeV. The target is as-

sumed to be polarized along the direction of the incident beam
(L, longitudinal), normal to the electron scattering plane (%), or
sideways (5: uq ——a/up). Xo is the usual unpolarized cross
section.
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7Li (e,e) Elastic Scattering

O/

0

100 200 300
q (MeV/c)

400 500

FIG. 66. Same as for Fig. 65, but at c, =500 MeV.
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-20

-40

7~
Li (e,e') Elastic Scattering

(%%uo)

-10

Z/0
-50

/

ZOO ~
————-50-

t5'

-70

N -90
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FIG. 67. Scattering of polarized electrons from polarized ~Li.
The asymmetries 5/X are shown for sideways (S) and longitu-
dinal (L) polarizations. The curves are labeled with the elec-
tron scattering angle 0 and have dots on the curves to denote the
places at which the cross section drops to 10 cm sr '; solid
lines correspond to larger cross sections and dashed curves to
smaller cross sections. The numbers beside the dots give the
electron energies c, corresponding to these conditions.

ments, however. To illustrate the polarization sensitivi-
ties we show in Figs. 65 and 66 various asymmetries, for
example, (Xl —X~)/Xo, where Xo is the unpolarized cross
section [also Xo=(XL +X&+Xs)/3 here]. Clearly large
asymmetries are present in regions where the cross sec-
tions are greater than 10 cm sr '. As just one exam-
ple of what is reasonable for the asymmetries plotted,
consider the dip in (X&—Xs)/Xo at about 325 MeV/c
momentum transfer for s =300 MeV (see Fig. 65). Of the
—75% asymmetry, —71.6% comes from the purely
Coulomb contributions involving EOEz (see above),
+9.8% comes from the magnetic contributions, involv-

ing (FI+V'3/2F3), —4.0% comes from those involving
(Ef F3+—1/W6F&E3), and —9.2% comes from the
Coulomb-magnetic interference terms involving Fz(F,

v'2!3—F3). The other curves contain different weight-
ing of these four pieces, and so overall, when these are
combined with the usual longitudinal and transverse form
factors, Fr„and FT, we have six pieces of information
from which to extract four form factors at each value of
q. Thus the problem is overdetermined even without
resorting to experiments with polarized electrons. The
asymmetries are large over a significant range of momen-
tum transfer, and all of the various pieces play sufficient-
ly important roles in arriving at the overall asymmetry to
suggest that the entire set of elastic form factors may be
separately determined. For completeness, in Fig. 67 we
show the asymmetry 6/X obtained when polarized elec-
trons are considered along with the Li target polarized in
the I. or S directions (the X-direction polarization yields
zero for b, ). Again quite large asymmetries are found in
regions where the cross sections exceed 10 cm sr
Both purely magnetic and Coulomb-magnetic interference
terms (see above) contribute significantly when the asym-
metry is large, with the former generally dominating at
high q. From such analyses, still different combinations
of the four basic form factors can be obtained.

(v) Jo& —',

The formalism summarized above permits elastic
scattering from any target, no matter what its angular
momentum, to be analyzed in terms of its component
ground-state Coulomb and magnetic form factors. Of
course, for large values of Jo the analysis becomes rather
complicated. Nevertheless, as Jo grows, so does the num-
ber of terms in the (associated) Legendre expansions.
With sufficient measurements in polarization space, i.e.,
different values of 8* and P*, the experimentally accessi-
ble cross sections may in principle be decomposed into the
basic nuclear ground-state form factors.

We refrain here from giving further examples for
heavier nuclei and higher spins. The choice of nuclei to
be studied initially will depend on the technical options of
atomic beam sources and polarimeters. The formalism
presented above is sufficiently general to treat all these
cases.

To conclude this section we summarize some of the
points discussed above.

(a) Practically speaking, for energies s »m„only lon-
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gitudinally polarized electrons appear to be of interest for
nuclear physics studies. They may prove difficult to ob-
tain under conditions where such experiments are likely to
be most practical, viz. , internal targets in electron stretch-
er rings. In such a case, when electrons are constrained to
closed orbits, the spins will precess, and so one will not in
general have a beam of longitudinally polarized electrons
unless special geometries such as "figure 8" rings are
used.

(b) For inclusive scattering with polarized electrons, the
cross section hf; will vanish unless a nuclear polarization
is also known (that is, ignoring parity-violating effects
from the weak interaction).

(c) With polarized targets and unpolarized electrons
there is new information in the cross sections Xf;. These
contain CJ/CJ', MJ/MJ', and CJ/MJ' interferences in
general, in addition to the usual unpolarized cross sections
which depend only on X(CJ) and X(MJ), where the dif-
ferent multipole form factors cannot be separated from
one another. By varying the direction of polarization of
the target, it is possible in principle to determine separate-
ly each of the multipole matrix elements for a given tran-
sition.

(d) With polarized electrons and polarized targets the
cross section hf; will be accessible. This generally con-
tains MJ/MJ' and CJ/M J' interferences, which may be
separated from one another by varying the direction of
polarization as in case (c) above. Xf; and bf; may be
separated by taking sums and differences of the overall
cross section with electron helicities +1. Note that the ef-
fects due to bf; are diminished by a factor tan(8/2) with
respect to Xf; when the electron scattering angle becomes
small. Typically this occurs when E is large and 8 small
to fix q at some not-too-large value.

(e) Over a significant range of electron energies and
scattering angles the typical cross sections remain above
10 cm sr ', and so, from the criteria established in
discussions of internal target physics with an electron
stretcher ring, appear to yield practical counting rates.

From the above points it appears that nuclear structure
studies involving electron scattering from polarized tar-
gets may enter a new era once the required experimental
facilities become available. The ability to separate all of
the various electromagnetic multipole matrix elements as
functions of q in a mixed multipole situation is highly
desirable and yet is not possible with inclusive electron
scattering, lacking information about nuclear polariza-
tions.

IX. GONCLVSIONS

In the preceding sections we have presented an exten-
sive general review both of theoretical developments and
of experimental results within the context of magnetic
elastic electron-nucleus scattering. For many of the nu-

clei investigated, we have made relatively detailed corn-
parisons of model calculations (including our own
analysis) and experimental data. What overall message
can we deduce?

For nuclei with A &4 we have found that magnetic
form factors are reasonably well explained in terms of
conventional nuclear structure calculations, provided that
the model space employed is large enough. The s/d-shell
nuclei in particular best demonstrate the degree to which
the great variety of different from factors results from the
pronounced sensitivity of I'z- to the spatial distributions
of valence neutrons and protons, and the extent to which
they can be understood in terms of she11-model calcula-
tions. For a number of cases, however, pronounced
differences between calculation and experiment occur at
large q. For those few cases where a detailed study has
been made, it has become apparent that our understand-
ing of I'r is incomplete. The effects of core polarization
and configuration mixing are not satisfactorily under-
stood at present. We believe that only the advent of 2iruo

calculations will allow further progress to be made in the
understanding of magnetic scattering. We emphasize the
need for such calculations; if we want to learn from nu-
clear systems with 2 ~ 4 anything about the more "exot-
ic" effects =.g., MEC or other non-nucleonic degrees of
freedom —believable 2%co calculations are a prerequisite.

We note that, as calculations include more complex
configurations, the question of the best interface between
theory and experiment becomes more important. The
density-matrix formalism developed in this review
presents a convenient way to condense the information
contained in the wave functions into a few numbers suffi-
cient for calculations with arbitrary one- and two-body
observables. A computer code, MAGFo, written for this
review to calculate form factors starting from density-
matrix elements, is available and provides many of the fit-
ting options needed to interpret experimental data.

For light nuclei (A & 3) the great sensitivity of the mag-
netic form factors to ground-state current distributions
makes them an ideal tool for the study of non-nucleonic
degrees of freedom. While the level of agreement found
in comparisons with data testifies to the success of MEC
calculations, many questions remain open. In particular,
the interplay of MEC and relativistic effects, both in the
interaction and in the nuclear wave functions, poses a
challenging problem for the future.

A number of topics have not been covered by this re-
view, in order to keep the discussion reasonably coherent
in scope and manageable in size. Although q=0 proper-
ties are covered by a large body of literature, we have
given them very little weight; indeed we have concentrat-
ed on the q dependence, which is ideally suited to disen-
tangling contributions mixed up in the magnetic mo-
ments. The relationship between magnetic form factors
and studies of nuclei with hadronic probes has not been
pursued either; this field certainly deserves more attention
in the future. Nucleon magnetic form factors have not
been discussed in any detail. Until QCD becomes gen-
erally applicable to calculations of nuclear structure and
dynamics, the concepts required to deal with these form
factors are very different from those generally of interest
for nuclei. Non-nucleonic degrees of freedom beyond the
standard MEC and relativistic effects have hardly been
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touched upon; these topics will receive more attention
once higher momentum transfers become accessible ex-
perimentally. The relationships between magnetic form
factors and weak interaction processes, although quite
close, have not been discussed.

Looking forward, we can identify fields of nuclear
physics where magnetic scattering can contribute to the
investigation of some exciting problems. "Conventional"
nuclear structure studies can be put to much more
stringent tests by the measurement of form factors of in-
dividual multipolarities, and the investigation of light nu-
clei at large q opens the possibility of a quantitative study
of submesonic degrees of freedom.

Considerable progress in electron-nucleus magnetic
scattering can be expected to result from the measurement
of polarization observables. This will become a realistic
possibility when facilities now in the planning stage go
into operation with polarized electron beams, recoil polar-
imeters, and intense atomic beam sources for use in pulse
stretcher rings. The possibility of separating multipolari-
ties and measuring new form factors will give access to
the intermediate q range between the maximum of the
M j. and the highest multipole. The great sensitivity of
these form factors to details of nuclear structure predicted
by calculations can then be exploited.

Pushing magnetic scattering experiments on light nu-
clei to very high q will increase the visibility of currents
due to constituents other than nucleons or pions. As we
reach finer spatial resolution, the quark structure of
nuclei —a new frontier for nuclear physics —will become
accessible. By analogy with the achievements associated
with MEC, we may expect magnetic electron scattering to
play a major role.
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