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This review covers the experimental and theoretical progress over the last 15 years in the study of systems
of interacting Josephson junctions. Such systems are of interest for device applications and for investiga-
tions of nonequilibrium phenomena in superconductors. In the description of coupled Josephson elements
the emphasis is on the "physics" involved in a number of interaction mechanisms and not so much on the
technical problems encountered in the construction of arrays of coupled juntions.
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(1.2)

where I, is the maximum supercurrent the junction can
support (typically 1 pA —1 mA). vz ——co&/2m. is the
Josephson frequency. The fundamental constant in the
voltage-frequency relation (1.2) is

VJ

V
2e
h

=484 MHz/pV . (1.3)

A Josephson junction constitutes a voltage-controlled os-
cillator capable of generating very high frequencies —up
to the energy-gap frequency of the superconductor
va =25/h =k~ T, /h (typically up to 1000 6Hz).

The early work on the Josephson effects was primarily
concerned with tunnel junction structures that were, and
still are, the best-characterized Josephson junctions. Since
then it has become clear that a great variety of supercon-
ductor diode structures exhibit the same effects. Figure 1

shows the main types of Josephson junctions. ' They have
all been used in experiments with arrays of coupled
junctions —the subject of this review. For recent reviews
on the Josephson effects in general, we refer to Waldram
(1976) and to Likharev (1979).

In a Josephson junction the stationary (dc) Josephson
supercurrent I, is a periodic function of the quantum-
mechanical phase difference P between two weakly con-
nected superconductors. In the nonstationary state the
voltage V across the junction is proportional to the time
derivative of P. The basic Josephson equations are
(Josephson, 1962,1964,1965)

I, =I,sing

and

I. INTRODUCTION

A. The Josephson effects

According to the Ginzburg-Landau theory, the super-
conducting state of the conduction electron sea can be
characterized by a complex order parameter (or wave
function) P(r) =foe'~ with @0

——n, (r), the local density of
superconducting electrons.

~Throughout this review we shall use the terms Josephson
junction, element, or weak link to mean the same thing.

This review deals only with systems that are of a well-defined
discrete nature. We do not attempt to cover the literature on
collective phenomena in inhomogeneous superconductors.
Readers interested in this subject may consult one of the origi-
nal papers (Parmenter, 1967) or the proceedings of a recent
conference on the subject (Gubser et al. , 1980).

Reviews of Modern Physics, Vol. 56, No. 3, July 1984 Copyright 1984 The American Physical Society



432 Bindslev Hansen and Lindelof: Josephson junctions

(c)

(b)

means that the high-frequency Josephson oscillations in
all the junctions occur at the same frequency and with the
phases locked together. The frequency and phase locking
are the hallmarks of a coherent array of Josephson junc-
tion oscillators. The apparent similarity to the coherent
action of a great number of atomic or molecular oscilla-
tors in a laser (or a maser) was noted early on, and the
term "superradiance" was used to describe the coherent
radiation from a Josephson junction array (Tilley, 1970).
However, more recent experimental and theoretical work
within this field shows that phase locking between Josep-
son junction oscillators is well described by the classical
theory of phase-locked oscillators and that stimulated
emission of photons is apparently not taking place.

2 Applications

FICi. 1. Different types of Josephson junctions: (a) 1D phase-
slip center, (b) proximity effect bridge, (c) 2D microbridge, (d)
3D microbridge, (e) tunnel junction, and (f) point contact.

B. The resistively shunted junction model

=I,sing+
1 A' dP

R~ 2e dt
(1.4)

Here R& is the resistance in the junction that the normal
electrons see (the quasiparticle resistance). This is the so-
called RSJ model (the resistively shunted junction model).
This simple model has turned out to be adequate in
predicting the principal behavior of Josephson junctions.
It is very useful in designing Josephson electronics.

C. Why arrays?'

1. General considerations

The study of interacting Josephson junctions has been
stimulated by the interest in constructing coherent arrays
of junctions for technical applications and by the desire to
achieve a better understanding of the fundamental static
and dynamic properties of the nonequilibrium state in and
around superconducting weak links, noting that these
phenomena, which involve rapid temporal and spatial
variations of g and V, are often most sensitively moni-
tored by using another weak link as detector (Giaever,
1965). Over the last couple of years, large arrays of
Josephson junctions have been used to investigate collec-
tive behavior of the two-dimensional flux vortex lattice,
which is linked to such an array system,

Coherent action of a number of Josephson elements

Using the two-fluid model of a superconductor there is
in a Josephson junction in addition to the supercurrent I,
a contribution I& from the normal electrons

I=I,+I&——I,si Pn+
V

R~

From the point of view of applications the Josephson
junction constitutes an interesting high-frequency
voltage-controlled oscillator with extremely high tuning
agility. Furthermore, the nonlinear properties of the junc-
tion also make it a sensitive detector and mixer of elec-
tromagnetic waves. It is therefore natural that a substan-
tial effort has been spent in applying the Josephson junc-
tion in radio frequency (rf) devices like oscillators, detec-
tors, mixers, and parametric amplifiers. The break-
through for this technology is, however, yet to be seen.

The usefulness of Josephson elements in device applica-
tions is limited by a number of factors.

(1) The need to cool the junctions to low temperatures
(T & 10 K).

(2) The inherently low voltage (V&1 mV) and power
level of the junctions.

(3) The high-frequency coupling problem, i.e., the
problem of impedance matching low-resistance junctions
to the high impedance of conventional microwave
transmission lines ( Zo —10 0).

(4) The rather fragile nature of many of the existing
types of junctions, e.g., their high susceptibility to electri-
cal and/or mechanical shocks or to thermally induced
processes.

The first two of these limiting factors are of a funda-
rnental nature. They stem from the small value of the en-

ergy gap in superconductors (2b, /e =k~ T, /e = 1 mV) and
from the small value of the magnetic-flux quantum
@0——h/2e =2.07)&10 ' Vs. The last two factors listed
above are more technologically determined. The pros-
pects for overcoming these obstacles to potential applica-
tions can be summarized as follows.

(1) Concerning the need for low temperatures, recent
developments in small-scale cooling engines seem promis-
ing. The construction of systems like the Stirling cryo-
cooler (Zimmerman, 1980; Sullivan et al. , 1981) and the
miniaturized Linde refrigerator working on the Joule-
Thomson cycle (Garvey et al. , 1983)—possibly combined
with the use of high-T, superconductors —show the feasi-
bility of the ultimate goal in superconductive electronics:
the superconducting device and the refrigerator integrated
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into "a single package, the size of a miniature vacuum
tube which would be inexpensive, replaceable and dispos-
able" (Little, 1978). The required cooling power is typi-
cally 100 mW at 5 K.

(2) As to the second fundamental factor, an array of
Josephson elements working coherently in phase could
raise the available voltage and power to a useful level, say,
1 V and 1 pW. As we shall see, the state of the art of
constructing such arrays has progressed steadily since its
start about 15 years ago (Clark, 1968).

(3) The high-frequency impedance-matching problem
may be solved using compact, coherent arrays of series-
connected junctions combined with microwave coupling
structures based on microstrip or on coplanar strip-line
configurations made in thin superconducting films
(Stsrensen et al. , 1981).

(4) Arrays of junctions are less vulnerable to electrical
burnout than single elements. This is particularly impor-
tant for microbridges and small-area, high current-density
tunnel junctions.

We conclude that the development of miniature re-
frigeration systems and of coherent arrays of robust
Josephson elements would overcome the major limitations
to a wider utilization of the Josephson junction.

II. ARRAYS OF JOSEPHSON JUNCTIONS

B. Array configurations

Irrespective of the synchronizing mechanism involved,
Josephson arrays may be characterized by their dc
coupling configuration: series or parallel. Series- and
parallel-connected arrays present different technological
problems, which, for the sake of clarity, we shall discuss
first.

1. Series arrays

For a series arI"ay to work coherently, the junctions
must be almost identical —i.e., the same dc bias current
through all the junctions must produce nearly the same dc
voltage (frequency) for all the junctions. A high-
frequency interaction between the junctions may then pull
them all into the desired phase-locked state. Up to now it
has not been possible to construct a large number of junc-
tions with identical parameters. The best results so far
have been obtained with tunnel junctions. A spread of
10%%uo in I, for 85% of the junctions is a typical result
(Harris et al. , 1978; Hebard et al. , 1978; Greiner et al. ,
1980; Davidson, 1981). This fabrication problem arises
from the fact that the tunneling probability and hence the
junction current depends exponentially on the thickness of
the insulating layer.

A. Basic concepts a. Matched series array

As stated above, in a coherent array the ac Josephson
oscillations in all the junctions are phase locked at the
same frequency. The construction of such coherent sys-
tems is based on the frequency-pulling and phase-locking
effects that arise when the ac Josephson oscillation in a
single junction interacts nonlinearly with the high-
frequency signal from another source, which can be
another Josephson junction or a conventional (room-
temperature) rf oscillator. There are thus basically two
ways of achieving coherent behavior from an array of ele-

ments: either a sufficiently strong high-frequency interac-
tion exists internally between the junctions, pulling them
into an intrinsicaIIy coherent state—provided their volt-

ages (frequencies) are nearly equal or a sufficiently
strong external monochromatic rf source can frequency
pull and phase lock all the junctions into an externally
synchronized coherent state. In this review we shall
mainly be interested in the intrinsically coherent Joseph-
son array. In particular, we intend to emphasize the
"physics" behind a number of static and dynamic interac-
tion mechanisms that are relevant in systems of coupled
Josephson junctions. Such coupling mechanisms natural-
ly fall into two classes: (1) short-range interactions, i.e.,
proximity interactions, within the nonequilibrium region
around a junction (Sec. III), and (2) long range couplin-g,
i.e., coupling through external (lumped or distributed) cir-
cuit elements (Sec. IV).

If a coherent n-junction series array is impedance
matched to the external load, i.e., RL ——nR~, we get the
maximum (rms) value of the power available from the ar-
ray,

P„'"'""=n(R~I, ) l8R~ n(RNI, ) I8R——I
(for V &I,R&) . (2.1)

Since R~I, =(ml4)(h lek+T, ) is a constant for a given
superconductor at a given temperature (Ambegaokar
et al. , 1963; Aslamazov et al. , 1969), we have the impor-
tant result that for a given load the available power in the
coherent, matched case considered here increases propor-
tionally to n (namely, inversely proportional to
R& ——RL/n and proportional to n). Note also that this
result favors the use of low-resistance junctions in series
arrays (Sandell et al. , 1979a). Owing to magnetic self-
field effects there exists a lower limit for the resistance of
a single junction, R~ & 10 mQ (see Sec. II.B.2 below).

If such a coherent impedance-matched series array is
made (the reactive components of the impedance should
also be matched), the power into a 50-Q load would be of
the order of 5 pW for typical values of the parameters for
low-resistance junctions with ideal R&I, product
(R&-0.1 0, R&I, =0.1 mV, n =500).

In the case of an incoherent series-connected n-junction
array, the maximum available power in the impedance-
matched case is given by
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Pmax, incoh n(R I )2/8R (2.2)

i.e., n times smaller than for the corresponding coherent
case.

b. Mismatched series array

For an n-junction series array that is not matched to
the external load—most often because RL, »nR& —we
have (again for V & I,R~)

P„'"""=nP)——,' n(I,—R~) /RL, (2.3)

for the incoherent case, and

P„""=nP) ——,' n (I,—R~)/RL,

for the in-phase coherent case.

(2.4)

2. Parallel arrays

3SQUID is an acronym for superconducting quantum interfer-
ence device; see Sec. IV.C.

In a parallel-connected array with superconducting con-
nections between the elements, the junctions need not be
identical. Since the dc voltage is the same across all the
junctions, they will all have the same period of oscillation.
In such a parallel array, however, the junctions will in
general shunt each other out unless reactive decoupling
circuit elements are used. Generally, the impedance will
therefore be just Rtt/n i e , —the . i.mpedance mismatch to
the surroundings will increase. Also, the self-induced
magnetic field of the bias current of the array will set an
upper limit to the critical current of the system. This will
be of the order of 50 mA —i.e., there will never be any
desire to match impendances smaller than about 10 mA
(assuming an ideal R~I, product of about 0.5 mV for the
junctions).

Even if the self-field can be neglected, another
phenomenon is encountered in arrays of parallel-
connected junctions. This is the fundamental quantiza-
tion of the magnetic flux (the fluxoid) threading the large
number of superconducting loops inherent in such a sys-
tem. An array of n junctions in parallel can be thought
of as n —1 coupled two-junction SQUID's. In such a
system, the phase difference between the oscillations in
the junctions will be modulated by an externally applied
magnetic flux through the loops. In general, with n

nonidentical junctions, this phase modulation produces
randomly distributed phase differences between the junc-
tions that will counteract attempts to establish a state of
in-phase coherence between the Josephson oscillators by
means of some other high-frequency phase-locking
currents. The existence of screening currents and flux
quantization has therefore been considered an obstacle.
These effects have been diminished by increasing the loop
inductance and thereby decreasing the magnitude of the

fluxoid currents to a level well below that of the phase-
locking currents.

In the ideal, somewhat hypothetical, case of n identical
parallel-connected Josephson junctions constituting n —1

coupled symmetrical two-junction SQUID s the junctions
will oscillate coherently in phase if the magnetic flux
through each of the loops is equal to a multiple of the
flux quantum @=nC&o——nh/2e. On the other hand, if
the flux through each loop is equal to 4c/2 (modulo @c),
the phase difference between adjacent junctions will be
m.—i.e., each pair of junctions will oscillate coherently in
antiphase.

It is worth noting that if such an ideal system with n

identical parallel-connected junctions could be made and
if all the loop areas were the same and the junctions were
equally spaced, the resulting array device would constitute
an interesting flux-tuned directional microwave source.
Such a highly symmetrical array interferometer would be
closely analogous to an optical-diffraction grating with
continuously variable spacing of the scattering centers
(e.g., the grooves). The sharply peaked spatial interfer-
ence pattern could be controlled by applying a uniform
magnetic field to the array, thereby introducing small
constant phase shifts between adjacent Josephson oscilla-
tors in the array.

Such an array would, of course, also constitute a sensi-
tive magnetometer. As noted by Feynman (1965, p. 21-
18), its flux sensitivity could be greatly enhanced over
that of a single symmetrical two-junction SQUID (cf. de
Waele et al. , 1968, and Silver et al. , 1979,1981). Since
the energy sensitivity of two-junction SQUID s has now
reached the quantum level -h (Planck's constant), there
seems at present to be no reason to use Inultiple-junction
SQUID's in order to enhance the sensitivity.

III. SHORT-RANGE INTERACTIONS

A. Nonequilibrium superconductivity

In a superconductor a nonequilibrium state may be gen-
erated by injection of normal electrons (quasiparticles), by
changing the energy of the quasiparticles or by breaking
pairs. This disequilibrium state will relax through elastic
scattering processes, inelastic (mostly electron-phonon) in-
teractions, and diffusion (if possible). A Josephson junc-
tion in the voltage-sustaining state carries a quasiparticle
current that generates such a nonequilibrium state. This
is particularly the case of high current-density junctions
like microbridges. In contradistinction to large Josephson
tunnel junctions, with low current-density, whose proper-
ties are described well by tunneling theory, the voltage-
sustaining state of microbridges and of other high
current-density weak links has not yet been covered by
any complete, generally accepted theory. The reason for
this lies precisely in the nonequilibrium state generated in
and around Josephson junctions with high current densi-
ty. The nonequilibrium situation is complex. It consists
of coupled nonequilibria in three systems: the pair con-
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densate, the quasiparticle system, and the phonons, all of
which are undergoing rapid temporal and spatial varia-
tions in the weak link. Owing to the different relaxation
mechanims involved, these variations take place on dif-
ferent time and length scales in the three systems. Hence
elements of the theory for superconductors out of equi-
librium must be added to the Ginzburg-Landau theory to
form the basis for a detailed description of the properties
of high current-density weak links. The same theoretical
framework is also, of course, needed to describe short-
range interactions between two or more of these weak
links that are located so close together that their non-
equilibrium regions partly overlap. We shall therefore
now, before proceeding with a review of short-range in-
teractions between weak links, give a short survey of the
characteristic times and lengths associated with the non-
equilibrium around a weak link. We shall look at an
idealized junction, the one-dimensional phase-slip center
[see Fig. 1(a)]. Such "quantized" resistive structures
develop in a one-dimensional superconducting strip or
filament when the current exceeds the critical value at a
particular point along the strip (Notarys et al. , 1971,
Meyer et al. , 1972, and Skocpol et al. , 1974). For recent
reviews on nonequilibrium superconductivity see Tink-
ham (1979), and Gray (1981).

center and the amplitude of the order parameter oscillates
with the Josephson frequency vJ [Eq. (1.3)]. The oscilla-
tion of the order parameter will create a nonequilibrium
distribution of the excitations (the quasiparticles) out of
the superconducting ground state. Since a redistribution
of excitations in energy takes place over a characteristic
time of the order of the inelastic (energy) relaxation time,
rz (=10 ' s for tin at T=T, ), the length scale for vari-
ation of properties pertinent to the nonequilibrium excita-
tions will normally be much longer than the coherence
length (Pippard et al. , 1970). The changing voltage
across a phase-slip center implies that the excitations
must change their electrochemical potential pq~ relative to
the pair condensate. This again implies a quasiparticle
charge imbalance Q' (as will be discussed in the next sub-
section). Such a quasiparticle charge iinbalance decays
over a characteristic time

4keT g(0)
~h( T) b.( T)

1/2

c T (3.1)

The corresponding quasiparticle charge imbalance dif-
fusion length is (Tinkham et al. , 1972; Waldram, 1975)

Ag~
——(Dvg, )' = [ 3 U~«~b (0)Ib (T)]'~

=10pm (in tin), (3.2)

B. Characteristic length and time scales
in equilibrium and nonequilibrium
superconductivity

1. Order parameter

A supercurrent through a superconducting filament
will depress the order parameter g. For currents above
the critical value for the strip, a deep suppression will
occur spontaneously at one (or more) points along the
filament (this occurs even in a perfectly homogeneous
filament). The order parameter will be suppressed over a
length determined by the temperature-dependent coher-
ence length g(T), of the superconductor [example, in
"dirty" tin at T=0.99T„g(T) =3 pm].

where vF is the Fermi velocity of the metal, r is the usual
momentum-transport relaxation time in the metal (the
elastic relaxation time), and D = , UF~ is the—diffusion
constant. The quasiparticle resistance of a one-
dimensional (1D) phase-slip center is determined by A&~.
The length of the center can be taken to be 2A, . The

spatial variation of p~ over A&~ has been observed

directly by Dolan et al. (1977), Skocpol et al. (1981),and
Aponte et al. (1983) in tin strips and by Stuivinga et al.
(1981) in aluminum strips. They also verified the tem-
perature dependence of A ~ inherent in Eq. (3.2)

1/4

(3.2')

2. Supercurrent

The supercurrent I, runs only in a surface layer of the
filament given by the London penetration depths, (T, ).
This is the so-called Meissner effect in superconductors,
i.e., the perfect diamagnetism of a bulk superconductor
[example, in "dirty" tin at T=0.99T„A,(T}=2pm].
The supercurrent response time rq is given by

rnIn, (=——2k~T, Alnb in the dirty case). Here r is
the elastic relaxation time and n, In is the fraction of the
conduction electrons that belong to the superfluid.

3. Quasiparticle charge imbalance

If the current through the strip or filament exceeds the
critical value, a voltage appears across the phase-slip

4. Neutral quasiparticle energy imbalance

The excitations may, however, also just be redistributed
from their thermal energy distribution. Such a neutral
energy imbalance decays with the inelastic relaxation
time, rE. Hence the corresponding diffusion length is

AE=(D&E} =( 3 UF«E) (3.3)
For dirty tin, as above, we have A@=5 pm (note that AE
is only slowly varying with the teinperature}. The non-
thermal energy distribution of the excitations may lead to
a suppressed as well as an enhanced energy gap. The ef-
fect on the energy gap is sometimes characterized by an
effective temperature T which corresponds to that
equilibrium temperature where the energy gap would have
the same value.
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5. Phonons "sII

In a superconducting filament suspended in a vacuum,
the Joule heat generated at the phase-slip center can es-
cape only through the ends. The temperature will there-
fore vary linearly from the phase-slip center towards the
two ends. In the case when there is a good thermal con-
tact with the substrate (or the helium bath), the tempera-
ture will naturally decrease much faster from the value at
the phase-slip center towards the substrate (or bath) tem-
perature. Usually, however, the acoustic matching be-
tween the thin metal film and the substrate/helium is
poor. The phonons are therefore trapped in the film. For
such a one-dimensional system a simple heating model
was developed by Skocpol et al. (1974) and Skocpol
(19S1). In this model the electrons and the phonons are
characterized by the same elevated equilibrium tempera-
ture. If IC is the thermal conductivity of the strip and if
a is the heat transfer coefficient across the interface (the
Kapitza conductance), then the temperature will decay to-
wards the bath temperature over a characteristic length
ri=&ICt/a, , where t is the thickness of the metal film.
For an indium or tin film with a thickness of 100 nm on a
glass substrate one finds roughly ri=S pm. If the dissi-
pation in the phase-slip center raises the temperature
above the transition temperature, a normal "hot spot" is
created. A superconductor-normal-superconductor (SNS)
junction is formed. The Josephson effects are eventually
quenched when the normal region grows to break the
coherence between the two superconductors.

The relaxation around a two-dimensional bridge with
dimension L will be somewhat faster, since a logarithmic
factor ln(L/r+1) will be multiplied on all the exponen-
tial functions of the distance r from the bridge middle. A
three-dimensional bridge will have the spatial variation
"speeded up" by a factor L/r. This means that the quasi-
particle charge imbalance length A ~ will not be deter-

mining the electrical resistance of the 3D microbridge
(Tinkham et al. , 1977; Bindslev Hansen et a/ , 19SO). To.
give a qualitative idea of the five characteristic lengths, A, ,
g, A&~, AE, and g, we have made an instantaneous pic-
ture of the situation around a 1D phase-slip center, Fig. 2.

Phase-slip center

I

I

I

I

I

l

I

I

I

FIG. 2. Spatial variation of the relevant parameters around a
one-dimensional phase-slip center (PSC) illustrating the irnpor-
tant characteristic lengths in nonequilibrium superconductivity.
From the top: the supercurrent density J, across the strip {A,);
order parameter

I g ~

variation (g); quasiparticle charge imbal-
ance Q* (A +); effective temperature, T of the quasiparticle

distribution (Az); and the equilibrium temperature T of the lat-
tice (q).

particle charge imbalance is created and released only by
currents in the superfluid and in the normal fluid
separately (by diffusion) and not by relaxation (i.e.,
r&~ Oe). To give a better description, the nonequilibrium
situation in the immediate vicinity of the weak link, as
described in Sec. III.B above, must be taken into con-
sideration.

C. Short-range interactions between two
weak links

We shall now deal with two closely spaced weak links
or phase-slip centers located in the same superconducting
medium and interacting through (i) order parameter varia
tions, and (ii) quasiparticle diffusion currents. The simple
RSJ model is not in general capable of giving an adequate
description of such proximity coupled weak links. The
RSJ model is derived on the basis of the time-independent
Ginzburg-Landau (GL) equations in combination with the
(time-dependent) Schrodinger equation (Aslamazov et al. ,
1969). It is used to describe the time variation of the volt-
age across the weak link. This model, in fact, describes a
nonequilibrium situation in the weak link where a quasi-

dc order-parameter interaction

When the distance d between two weak links is of the
order of the coherence length d =g each of the links can
feel the order parameter variations taking place in the
center of the adjacent junction. In the stationary (zero
voltage) state, where the order parameter g depends only
on position and not on time, this interaction is caused by
the supercurrent-induced depression of the order parame-
ter which reduces the critical current in the vicinity.
Close to T„this dc interaction can be fully described by
the Ginzburg-Landau (GL) equations with appropriate
boundary conditions. For single weak links smaller than
g these equations give the well-known sinusoidal current-
phase relation [Eq. (1.1)] with a predictable critical
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current. According to such calculations, the super-
current suppresses the pair density (the order parameter)
in a region extending over a coherence length around the
middle of the weak link. For two (or more) closely spaced
weak links (d =g) connected in series, the GL equations
were solved numerically by Blackburn et al. (1972,1975)
and Howard et al. (1975), and by a perturbation method
by Demoniva et al. (1979). Figure 3 is a simple one-
dimensional picture of the geometry and the spatial varia-
tion of P [after Jillie (1976)].

The supercurrent-induced depression of the order pa-
rameter will depend on the current distribution in the re-
gion between the weak links. For the opposed-biased case
(with supercurrents flowing in opposite directions through
the weak links) the supercurrents will tend to cancel each
other in the interlink region. Way et al. (1977}solved the
equations for both supercurrent configurations [series-
biased (~—+) and opposed-biased (~~)]. They found
that the depression of the critical currents M, was typi-
cally 10% smaller with the currents in opposite directions
(opposed-biased) than with the currents in the same direc-
tion (series-biased). The observed M, reported by Jillie
(1976) showed only qualitative agreement with the theory
(the observed asymmetry in I!!I,was 30—50%%uo). Figures 4
and 5 show the sample geometry used by Jillie and the re-
sults of the bJ, measurements (here both for V=O and
V&0; we shall return to the latter case in Sec. III.C.3).
The measured temperature dependence of the dc order-
parameter interaction is plotted in Fig. 6. The interaction
is strongest close to T, where g is long. A related
phenomenon is the "locking" of the critical currents of
two bridges reported by Jillie et al. (1976} [and by Octa-
vio et al. (1979)]. This phenomenon may intuitively be
viewed as a mutually reinforced depression of the order
parameter in the two bridges. Figure 7 gives an example
of such an observation. Similar results were obtained by
Neumann et al. (1982), who interpreted their observation
of critical current locking in terms of the modulation of
I, of the stronger of the two junctions by the high-
frequency radiation from the junction with the lower I, .

2. ac order-parameter interaction

In the nonstationary state, when finite voltages develop
across the two weak links, the order parameter interaction
becomes much more complex and, in addition, other in-
teraction mechanisms come into play (charge imbalance
currents, lattice heating, and/or an excess of "hot" quasi-
particles). The order parameter in the middle of the weak
links goes to zero periodically with the Josephson fre-
quency. Its time average (l(!) in the center of a weak link
will be lower than in the stationary state, and the corre-

4Effects of the magnetic self-field of the current are neglected.
This is justified for weak links smaller than the Josephson
penetration depth, A,J. For thin-film microbridges this condi-
tion is normally fulfilled, since!(,J-!(,& g for thin films (type-II
superconductors).

X

0.05 st)i(„018

bridg

=&c

d = l.6p, rn

g= 1.2p.m

FIG. 3. dc order-parameter interaction. Both weak links are in
the stationary state. The figure shows a simple 1D case with
I2 ——I,2 and I& ——0. According to the GL theory the maximum
supercurrent through bridge 2 causes a depression of the order
parameter to 82% of its unperturbed value (1(! =

3 $0). p recov-

ers exponentially as shown in the upper part of the figure. In
the example shown, with d=1.6 pm and /=1.2 pm, g is
suppressed by 5% in the unbiased weak link 1 (after Jillie,
1976).

sponding depression of (f) in the other weak link will
also be deeper than in the stationary state. The depression
in the critical current M, of one weak link will conse-
quently increase rapidly as the other weak link passes
from the stationary zero-voltage state into the nonstation-
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FIG. 4. Scanning electron microscope picture of two indium
thin-film microbridges made with electron beam lithography
technique (Jillie et al. , 1975). The light areas are 100 nm indi-
um film. The bridge separation d is here 1.2 pm.
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FIG. 5. Experimental results for two proximity-coupled indium microbridges (d =2 pm), showing the dc interactions explained in
Figs. 3 and 8. (a) the measured change AI, &

in the apparent critical current of bridge 1 as a function of the current through bridge 2.
The data include both current configurations (series biased and opposed biased). The voltage across bridge 2 for I~ =I

& is denoted
V,2. For I2 & 85 pA both bridges are in the stationary state ( V, 2

——0), and the dc order-parameter interaction (Fig. 3) is observed.
For I» 85 pA the dc quasiparticle interaction (Fig. 8) is seen (see Sec. III.C.3). The dashed line (long-dash marks) is the symmetric
or average component of AI, ~ for the two directions of I2. (b) Inset: the antisymmetric component AI,"~ of EI, ~ as a function of
Iqp2: V,2/R» ( R&2——0.32 0 ), the quasiparticle part of I2. The slope of this plot yields the coupling parameter a2 (Jillie et al. ,
1977b).

ary voltage-sustaining state.
Naturally there also exists a high-frequency interaction

between two weak links less than g apart and both biased
at finite voltages. The order-parameter oscillation in one
weak link modulates g in the other weak link directly. If
the two dc voltages are nearly equal (or one is close to a
simple fraction of the other), the ac Josephson oscillations
in the two weak links will tend to phase lock. This
dynamic interaction was treated in detail by Deminova
et al. (1979), who extended their perturbation calculation

to the nonstationary state with current control. In their
solution to the CxL equation the interaction took the form
of a first-order correction to the zero-order approximation
which was the well-known solution to the Laplace equa-
tion V2$=0 with the usual boundary condition V'ig=O.
They sought solutions describing the phase-locked system
with the two weak links running at a single frequency and
obtained curves representing the boundaries of the phase-
locked regions in currents and voltages for both current
configurations and for various values of the coupling

0.5" BRIDGE I

0.20-
&&cI
yo

CI 0 iP

0.5"
d V/d I{Ll)

BRIDGE 2

0.980
I I

0.990
7/ TC

I.O"
H BRIDGES

FIG. 6. Measured temperature dependence of the dc order-
parameter interaction (Jillie, 1976). The change in critical
current AI, ~ is plotted as a function of reduced temperature
T/T, . EI, ~ is taken at I2 ——I,2. The spread in AI, ~ is due to
the difference in AI, ~ for the two current configurations. The
solid line is the theoretical estimate based on the simple picture
given in Fig. 3 (1D GI. theory).

0
0 20

FIG. 7. Measured critical current locking between two indium
microbridges 2 pm apart (Jillie, 1976). Note the reduction in
the critical currents and the sharpening of the resistive transi-
tion when both bridges are biased in series as compared to being
biased alone.
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3. Quasiparticle interaction

In this section we will consider the case of two weak
links with one or both of them in the voltage-sustaining
state and placed so close together in the same supercon-
ducting medium that their nonequilibrium regions
overlap —i.e., the oscillating quasiparticle potential and
charge imbalance current around one weak link can be
felt by the adjacent junction. This requires that d (A
A very simple description of this interaction is obtained

by including in the RSJ model the quasiparticle currents
injected from one bridge into the other (Jillie et al. ,
1980). The equations are (for the opposed-biased case)

and

V)
I1 +Eq 2 =I 1sin$1+

R~)

V2
I2+iq1 I,2sinp2+-—

Rx2
'

(3.4)

(3.5)

strength and of the ratig between the two critical currerits.
They predicted that for strongly coupled planar thin-film
microbridges the widest locking range LU~ k should be
observed for the opposed-biased current configuration.
For pairs of point contacts or variable-thickness bridges
(VTB) (in which the coupling would be weaker), the oppo-
site should be the case—i.e., the coupling should be
stronger for the series configuration. So far, there are no
reports on measurements that could test these predictions
for the asymmetrical ac order-parameter interaction.

The upper cutoff frequency for this dynamic interac-
tion will be of the order of the gap frequency v2~ ——2b, /h.
Even close to T, this limit is so high (e.g. , v2~=90 GHz
in indium at 0.99T, ) that very well-cooled weak links
(VTB's or point contacts) would have to be used in order
to reach it. In the samples of closely spaced planar mi-
crobridges studied so far, heating effects would interfere
with the dynamic direct order-parameter interaction al-
ready at low voltages (frequencies). In order to distin-
guish between such an interaction and the ac quasiparticle
charge imbalance interaction —which we shall deal with a
little later —a very careful study of the frequency and spa-
tial dependence of the coupling would be needed for a
pair of well-cooled weak links. In this connection we note
that any type of short-range interaction is strongest pre-
cisely between planar weak links that do not fulfill the
rigid boundary conditions well, i.e., between structures
without current concentration, and that these types of
junctions are also the ones in which the heating effects are
most severe (Likharev, 1979; Tinkham et al. , 1977). The
voltage-locking interaction observed by Jillie et al.
(1977b) in their pairs of planar microbridges did exhibit
the same form of symmetry as predicted by Deminova
et al. (1979) (opposed-biased stronger). The much
stronger interaction via the ac quasiparticle currents that
we shall now turn to is, however, a more likely cause of
the observed phenomena.

where iq2 is the part of the quasiparticle current generated
in bridge 2 that flows through bridge 1—and similarly for
iq &. R& &

and R&z are the normal-state resistances of the
two junctions. The total quasiparticle current through
junction 2 is

Iqz —I2 I&2slnfz+ lq 1

of which a fraction a2 flows through junction 1

iq2 ——a2Iq P ——a2(I2 —I,2sin$2+iq1),

and similarly for iq1

iq1 ——a1Iq1 ——a1(I1—I,1stnp1+iq2) .

(3.6)

(3.7)

(3.8)

Combining these equations and assuming that the cou-
pling parameters a& and az are small, so that all terms in
a~aq may be neglected, we have

V)
I1 I, 1sinp, +—— —a2(Iz —I,zsinpq), (3.9)

V2
I2 ——I,@sin/2+ —a1(I1—I,1sinp1) .

RÃ2
(3.10)

Using simple substitutions, Jillie et al. (1980) showed that
these equations are the same as the ones describing a sys-
tem of two weak links shunted by a common external
resistor (see Sec. IV.B).

For large values of a& and o.2, we should expect this
analogy to break down, since in that case there will be
non-negligible feedback currents, meaning that each of
the weak links will be affected by the quasiparticle
current it injects into the other one. In the nonstationary
situation these feedback currents, which also contain in-
formation of the phases, become important for the lock-
ing mechanism for even small a' s.

From a more general point of view, the use of the RSJ
model in this simple picture of the quasiparticle interac-
tion implies that the spatial and dynamic characteristics
of the nonequilibrium situation around the weak links
will not be correctly described (conversion from quasipar-
ticle current to pair current does take place in the inter-
link region). Already for that reason we expect only
rough agreement between the experimental results and the
predictions of this model. However, the very complex
character of the nonequilibrium situation around the
weak links requires such a simple picture to get anywhere
at all.

A consequence of this model is that a finite voltage
across weak link no. 2 will influence the critical current of
weak link no. 1, and vice versa. Although this is a simple
consequence of Eqs. (3.9) and (3.10), we shall present a
qualitative argument, as illustrated in Fig. 8. As shown,
weak link no. 2 is biased at a voltage which drives a pro-
portional quasiparticle current Iq~2

——V2/R&2. A small
fraction azIqp2 of this current is injected through weak
link no. 1. Link no. 2 is shown biased in the same direc-
tion as weak link no. 1 (series) or in the opposite direction
(opposed-biased). If weak link no. 1 carries only a super-
current (Iq~1 ——0), the maximum zero-voltage current will
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generator detector generator detector

qp2

Isz'

{a) series aiding (b) series opposing

FIG. 8. Asymmetrical dc quasiparticle interaction between two
closely spaced microbridges. Both current configurations, series
biased and opposed biased, are shown for the case where I» I,2

and I& &I,~. A fraction a2 of the quasiparticle current through
bridge 2 is injected through bridge 1. In the series configuration
this injected current a2Iqp2 adds to the intrinsic critical current
of bridge 1 and therefore enhances the measured (apparent) crit-
ical current. In the opposed-biased case the injected current
subtracts from the intrinsic critical current.

be the sum of the intrinsic critical current of weak link
no. 1 and a2Iq~2. Therefore, in the series case the (ap-
parent) critical current I, &

will be larger (by aqIq~2) than
the intrinsic value —and in the opposed-biased case it will
be smaller by the same amount. This is the antisymmetri-
cal dc quasiparticle interaction reported by Jillie et al,
(1977a); see Fig. 8. They found a coupling constant
a2=0.2 for a pair of planar indium microbridges placed
d =2 pm apart. With d =4 pm between two indium
bridges they observed aq=0 (i.e., no coupling). More re-
cently, Dai et al. (1982) found uq-0. 8 for d =0.5 pm
and a very restricted geometry between their pair of indi-
um bridges.

A similar, although less transparent, stationary interac-
tion is expected in the case when both weak links are
biased at a finite voltage (Iq»~0 and Iq~2&0 in Fig. 8).
Again an antisymmetrical interaction based on the inject-
ed diffusive quasiparticles will help the total currents I,
and I2 in the series configuration and hamper them in the
opposed-biased case. The two bias current configurations
will also give a different quasiparticle potential pq~ in the
region between the weak links, as illustrated in Fig. 9.
The pair potential pz has no anomalies in the interlink re-
gion as long as the weak link separation d is much greater
than the coherence length g (note that g & A&, ).

The effect of the second-order terms proportional to
a&a2 was considered by Neumann et al. (1981), who
found a suppression of the critical current of one junction
caused by the ac quasiparticle current flowing through
the other junction. The effect was independent of the rel-
ative current directions.

At this point it seems appropriate to discuss the effect
that the dimensionality of the system may have on the in-
teraction strength. For short-range interaction experi-
ments planar (2D) microbridges may be superior to the
more well-cooled quasi-three-dimensional microbridges
(VTB). The fact that the two-dimensional geometry lets
the temperature drop only slowly from the weak link out
into the background film (Tinkham et al. , 1977) means

V)- V2

I] I2
2I

FICx. 9. Qualitative picture of the instantaneous variation of the
pair potential p~ and the quasiparticle potential pqp in the re-
gion around two closely spaced microbridges (shown in the
upper part of the figure). The variations are shown for two dif-
ferent interbridge spacings and for both current configurations,
(a) series biased, and (b) opposed biased (Lindelof et al. , 1981).

that the quasiparticle potential also drops slowly. The
implication is that a pair of two-dimensional micro-
bridges will interact over a somewhat longer distance than
three-dimensional (or quasi-3D) microbridges. In particu-
lar, if the heat flow across the interface between the film
and the substrate is appreciable, two-dimensional weak
links should interact more strongly via the oscillating
quasiparticle potential than weak links in variable-
thickness geometries that allow for a rapid diffusion of
quasiparticles, thus "diluting" the nonequilibrium quasi-
particles around the bridges. One-dimensional systems
should exhibit even stronger coupling phenomena. The
measurements reported by Meyer et al. (1977) of coupled
phase-slip centers in tin whisker crystals seemed to con-
firm this, and the recent, extensive study of interacting
phase-slip centers in a one-dimensional tin strip by
Aponte et al. (1983) clearly showed the longer range of
the dc quasiparticle interaction. For d =2 pm the mea-
sured value of the coupling strength in this one-
dimensional system was a =0.7. In their two-dimensional
indium system Jillie et al (1977) found. a =0.2 for
d =2 pm.

The nonequilibrium quasiparticle distribution created
in the common electrode between two tunnel junctions
may be used to obtain a device with current gain. The
gain stems from an enhancement of the tunneling current
in the detector junction caused by the quasiparticles in-

jected into the common electrode by the generator junc-
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tion (cf. Fig. 16). For moderate injection currents, Gray
(1970) achieved a current gain of about 4. Using very
strong injection currents that suppress the energy gap sig-
nificantly, Faris et al. (1983) have obtained higher gain
( =8) in their so-called "Quiteron. " Work along the same
lines has recently been reported by Hunt et al. (1983),
who have made a faster device (but with correspondingly
smaller gain) using two small Nb junctions less than 0.1

pm apart in a geometry that allows rapid diffusion of the
quasiparticles out of the common electrode.

4. Voltage-locking quasiparticle
interaction

When the voltages across two closely spaced weak links
have the same absolute value (or one is a simple multiple
of the other), their ac Josephson oscillations can become
synchronized and their voltages can lock together over
some finite current range LU~„k—see Figs. 10 and 11,
where results taken from Jillie et al. (1980) and Lindelof
and Bind slev Hansen (1977b) are reproduced. Such
voltage-pulling and -locking phenomena are also predict-
ed by the simple model discussed above. This is illustrat-
ed in Fig. 12, which shows some of the results of comput-
er simulations of the system described by Eqs. (3.9) and
(3.10) (Nerenberg et al. , 1980).

The limitations of the simple phenomenological model
discussed above are obvious. It would be of interest to
construct a model in which the interaction strength de-
pends on frequency, temperature, distance, and material.
The experimental evidence for such dependence is strong
It has been found that pairs of microbridges in tin could
phase lock and radiate coherently over a longer inter-
bridge distance than similar bridges in indium (12 pm as
compared to 4 pm) and that the locking strength was
strongly temperature dependent —see Figs. 13 and 14
(Lindelof and Bindslev Hansen, 1977b). Moreover, the
voltage- and phase-locking between tin and indium micro-
bridges has been found to vanish at voltages (frequencies)
higher than about 30—40 pV (vz-15 —20 GHz) (Jillie
et al. , 1977b).

Experiments on pairs of closely spaced aluminium mi-
crobridges have so far been unsuccessful in showing any
of the static and dynamic interaction phenomena observed
for similar systems in tin and indium (Daalmans et al. ,
1977; Lindelof et al. , 1978). This is surprising since the
inelastic relaxation time 2E (and therefore also A&~) is

much longer in aluminiurn than in the two other super-
conductors. Recently Stuivinga et al. (1983) have mea-
sured A + in a one-dimensional aluminium strip to be

about 25 pm at T =0.99T,.
One of the most interesting observations made by Jillie

et al. (1977b) in their system of two thin-film indium mi-
crobridges (d =2 pm), was the strong temperature and
voltage dependence they found for the strength of the
voltage-pulling and -locking as measured by the max-
imum change in the dynamic resistance b(dV/dI). The
interaction was generally strongest just below T, and fell 2 A k2)+ 2 Wk4) ' (3.11)

off rapidly with decreasing temperature. Already at
T =0.98T, full voltage locking (opposed-biased) could no
longer be obtained. At T =0.9T, the interaction could
just still be observed. For constant temperature, the
strength exhibited an oscillatory behavior (and at the
same time a general falloffl as a function of increasing
voltage, as shown in Fig. 15(a). The voltages correspond-
ing to the extrema values increased systematically with
decreasing temperature like the energy gap (or perhaps
slightly quicker), i.e., approximately as (1—t)o s. Fur-
thermore, the voltages corresponding to the first four ex-
trema seemed to fall in a series with the ratios 1:2:~:—,', as
shown in Fig. 15(b) (Jillie et al. , 1980).

In the following we shall discuss two different quasi-
particle interaction mechanisms that could give rise to
voltage locking. This discussion will be concerned with
collective modes for the electronic system in superconduc-
tors.

(i) An asymmetrical, energy selective -quasiparticle in
teraction mechanism. This coupling mechanism only in-
volves quasiparticles within a narrow range of energies.
The idea is that the quasiparticle diffusion currents can
perturb each other at energies around the gap edge singu-
larity (Lindelof and Bindslev Hansen, 1977,1981). It as-
sumes that the energy distribution of the quasiparticles
diffusing through the interlink region is not a smooth
function but has a sharp maximum at the energy corre-
sponding to the gap singularity in the superconductors
beyond the weak links. This idea is illustrated in Fig. 16.
The voltage bias V2 across the weak link shown to the
right is constant. The three pictures display the quasipar-
ticle distribution in the semiconductor picture for three
different voltages V~ across the left bridge. From top to
bottom, this corresponds to the series situation V&

——0 and
the opposed-biased configuration. The small peaks in the
distribution correspond to the injection from the gap
singularity through a weak link to another superconduc-
tor. Only the opposed-biased case will show voltage lock-
ing. The locking comes about because the diffusion
current from bridge 1 which is injected through weak link
no. 2 (compare with Fig. 8) will be particularly large when
the gap singularity of the right superconductor is on the
same level as the peak in the injected distribution in the
middle superconductor. This interaction has been ob-
served in experiments with two tunnel junctions back to
back (Kaplan et al. , 1977).

We note that the asymmetry inherent in this interaction
has the same "sign" as the one observed by Jillie et al.
(1977b). This again was the same as the sign for the
antisymmetrical dc interaction due to the effect on the
critical currents of the injected quasiparticle currents.

Forming a linear combination of the wave functions for
the degenerate states of electronlike and holelike character
at the energy E and the wave numbers k4. and —k2, as
shown on the quasiparticle dispersion curves in Fig. 17,
we get
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If these wave functions have plane-wave character, we
have

qI, cosi e le —E(E —k)t/'5
F (3.12)

will give a wave vector which in the free-electron approxi-
mation is determined by

Ruzq=(E 6)'~ =—v'2eVb, (3.14)

for q/kz «1 and V«b, /e. The relation (3.14) predicts
a decreasing wavelength both with increasing voltage and
increasing gap (decreasing temperature). For indium at
T =0.97T, we get A, =2m. /q =400 pm/V'~, where V is
measured in pV. Hence for T =0.97T, and V=20 pV,
A, =90pm. The characteristic decay length of the injected
peak in the spectrum is much shorter. If the interbridge
region can be considered to be an isolated piece of super-
conductor, this length will be Az (D~z)'~ . T——his is an

upper limit. Normally, diffusion will wash the peak out
quicker than that. In indium AE -2 pm. Consequently,

where q =kF —k2 ——k4 —kF. The resulting de Broglie
wavelength A, =2m. /q for quasiparticles in the injected
peak will be much longer than for electrons in a normal
metal. An excitation energy

(3.13)

the mode is heavily damped. It might be a relevant mode
for a pair of aluminium bridges with a restricted
geometry between the bridges, since for Al Az ——60 pm
and A, =800 pm/V'~ ( V in pV) and therefore Az-l, /3
for V=20 pV.

(ii) Diffusing or propagating quasiparticle charge irnbal
ance. The second quasiparticle coupling mechanism in-
volves the dynamics of the charge imbalance generated in
and around Josephson weak links. The quasiparticle po-
tential pq~ decays over a length which at low frequencies
is the charge imbalance diffusion length, A&,
=(Dr, )' . When the frequency exceeds I/rz, the in-gQ

verse inelastic relaxation time, the length becomes shorter
due to a skin-depth effect, A„=v'2D/co & A ~. At evengQ ~

higher frequencies, when co & 1/&J ——(1/w)(n, /n) (but still
to&26./A to avoid the anomalous absorption above the
gap frequency), a charge imbalance collective mode with a
soundlike spectrum may propagate through the supercon-
ductor, as observed by Carlson et al. (1975,1976) and
treated theoretically in the clean limit by Artemenko
et al. (1979) (~z is the supercurrent response time).

Based on the description of the charge imbalance
within the generalized two-fluid model of Pethick et al.
(1979), Kadin et al. (1980) derived the following charge
imbalance wave equation, valid for b, /kzT & 1 (see also
Lindelof, 1978)

Ag~V Q =~g~z z +(~g+rz) +Q2 2 e d'Q' dQ*

dt dt
(3.15)

10

{ai

I

20 (pA)

d V1.2
di1

(b)

dVT

dl1
(c)

FIG. 10. Experimental results (a), (b), and (c) for an opposed-
biased pair of indium microbridges 2 pm apart showing voltage
locking. (a) V~ —I& and V2 —I& curves with 12 held constant
(91 pA) and I~ swept; (b) the differential resistance of the two
curves shown in (a); and (c) the total differential resistance
dVT/dI~ ——dV~/dI~ —dV~/dI~. During voltage locking
dVT/dI~ ——0. In the locking region h(dVT/dI~) is a measure of
the strength of the interaction (Jillie et aI.. 1980).

For co 1Jrz»co(1 J+ T z) i.e., for co»~z ',~z ', this equa-
tion describes propagating charge imbalance waves with
velocity u =A ~(sJrz)' . In the dirty limit

u =V2Db, /Pi=0. 6uF(l/go)' (1 t) ~". In this lim—it the
same propagating collective mode has been treated by
Schmid and Schon (1975,1981) (within a different frame-
work ). The dispersion relation is linear co=uq. It con-
sists of a countermotion of normal fluid and superfluid
which ensures charge neutrality and therefore screens the
Coulomb interaction.

Kadin et al. (1980) provided new insight into the na-
ture of such propagating charge imbalance waves by
demonstrating that, for the case of a one-dimensional
nonequilibrium superconductor close to T„they are com-
pletely analogous to electromagnetic waves on a transmis-
sion line as described by the classic telegraph equation. It
should be noted that, in general, such a charge-imbalance
wave is heavily damped by the dissipative processes in-
volved in the oscillation of the normal fluid. It exists
only close to T„seeFig. 18. At high frequencies, the ac
decay length A„=2A,(~z~z)' /(~~+~z) is only of the

Q
order of the coherence length g.

Imagine now two weak links placed close together and
both in the voltage-sustaining state. Close to T, and at
appropriately high frequencies, the ac Josephson oscilla-

5It is called the transverse mode in the terminology of Schmid
and Schon.
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FZG ] ].. Experimental results showing voltage locking between two indium microbridges placed 1.8 pm apart. I- V and dI/dV vs V
curves are shown for bridge 2 with bridge 1 biased at six different fixed currents (in A I& ——0). The phase-locked steps are seen at
V2 ——V& and also at V2 ——2V&. The critical current of bridge 2 is enhanced already for I& &I, ~ (see broken I- V curve for I& ——I, &), an
observation that cannot be explained by the interaction models discussed here (Lindelof et al. , 1977).
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FIG. 12. Numerical simulation of the quasiparticle interaction,
Eqs. (3.9) and (3.10). The measured values for the coupled
bridges in Fig. 10 (a& ——u2 ——0.21) have been used (Jillie et al. ,
1980).

tions in one weak link will generate outgoing charge im-
balance waves that will interfere with the same oscilla-
tions in and around the other weak link. The oscillations
in the two weak links will lock together due to this oscil-
lating potential. Mutually induced steps in the I- V curves
and the generation of coherent Josephson radiation would
be the result.

The outgoing charge imbalance wave generated in a

weak link is reflected in the other weak link and comes
back to its source with a phase that depends on the fre-
quency, the distance between the weak links, and the
phase shift in the other weak link. The amplitude of the
wave will naturally die out over the characteristic length
A„.Note that even at lower frequencies where the charge
imbalance waves cannot propagate, a phase shift will still
occur within the skin depth. Figure 19 illustrates qualita-
tively the amplitude of the reflected wave that comes back
to its origin after having undergone reflection in the other
weak link (Lindelof and Bindslev Hansen, 1977b). Con-
structive or destructive interference will be observed de-
pending on the distance between the weak links as shown.
This effect is, of course, reciprocal. The wave train from
one weak link may injection-lock the oscillation in the
other weak link, provided the amplitude exceeds the noise
level. If that happens, the reflected wave will normally be
both amplified and phase shifted by the injection-locking
process. To treat this charge-imbalance-wave coupling
quantitatively, including the spatial resonance phenomena
connected with the "Fabry-Perot resonator" formed by
the two weak links, Kadin et al. (1980) suggested the
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FIG. 14. Observed temperature dependence for the broadband
high-frequency interaction between weak links placed close to-
gether. The (in-phase) coherence ratio C is plotted vs the re-
duced temperature t =T/T, for the same pair of tin bridges as
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times A&~. An example of the calculated temporal and

spatial variation of the quasiparticle potential pqp for
d =A, is reproduced in Fig. 21. The low-Q spatial res-gg
onances expected in the system could not be seen in these
numerical simulations. Amatuni et al. (1982) have found
analytical solutions for the charge-imbalance-wave cou-
pling between two planar (two-dimensional) weak links
for I,R& & V«h. They also predicted weak spatial res-
onances in the coupled strength. In experiments with
coupling between tin microbridges 3 to 30 pm apart they
did observe the predicted distance-dependent phase-
locking effects but only when the two series-connected
junctions were synchronized by an external microwave
source. It is not clear to what extent this external pertur-
bation masked the intrinsic coupling effect.

In our opinion, clear, quantitative, experimental evi-
dence for the existence of charge imbalance waves near a
Josephson weak link is still lacking. Resonant self-
detection of such waves in and around a single weak link
may have been observed by Kadin et al. (1981), though
the temperature dependence of the observed mode velocity
seemed to deviate from the theoretical prediction

r)1/4]

IV. I ONG-RANGE INTERACTIONS

FIG. 13. Example of observation of coherent (in-phase) mi-
crowave radiation from a pair of tin thin-film microbridges
placed close together in the same superconducting medium
(d=12 pm). The upper figure shows I, and the microwave
power at 8.7 GHz vs V~. The lower figure shows the same for
bridge 2 but with bridge 1 biased both at a and b. The interac-
tion is symmetrical in the bias current directions (Lindelof
et al. , }977).

transmission line equivalent circuit shown in Fig. 20.
Blackburn (1983) carried out numerical simulations of
this one-dimensional system and found strong phase-
locking effects when the distance was less than a few

A. General principles

A long-range dynamic coupling between Josephson
weak links may be established by means of suitable exter-
nal circuitry, e.g., a common resistive or superconducting
shunt, or a common transmission line or resonator. In
this case the spacing between the weak links may natural-
ly be much larger than the characteristic length scales of
the superconducting medium. The nonequilibrium effects
(including heating) that may give rise to the short-range
interactions can therefore be made negligibly small. This
can be a desirable property in practical applications of
systems of coupled weak links, although for other reasons
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comparatively closely packed arrays of junctions are often
needed.

In order to describe long-range interactions the RSJ
model will alxnost always give a fully adequate descrip-
tion of the properties of the Josephson elements.

As mentioned previously, the impedance of a weak link
is, in general, low coxnpared with the characteristic im-
pedance of conventional microwave transmission lines
Zp 100 Q. Therefore, the oscillating potential across a
Josephson weak link will be able to drive only an extreme-
ly weak ac current through the outer circuit having this
large impedance. This impedance mismatch problem
must be solved if we want to couple a decent amount of
power out of the weak link or if we want to establish a
long-range coupling between two or more weak links.

Two series-connected weak links may be coupled sim-
ply by providing thexn with a common low-impedance
shunt that allows a circulating ac current to be set up by
the oscillating potentials across the two links; see Fig.
22(a).

Connecting two weak links in parallel [Fig. 22(b)], of
course, also provides a path for a circulating coupling
current. If the loop is made superconducting, we simply
have a dc-SQUID, a two-junction quantum interferome-
ter.

80
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Y (pV)

60
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B. Two weak-links series coupled through
a common shunt

The advantage of using an external shunt loop is the
wide band over which coupling can be achieved. For
nearly identical junctions with a common shunt, the lock-
ing range bcoi~k is to first order (Z, &~R ) proportional to
the shunt loop admittance Y, (co ), where 1/Z,
=(1/R, )+i Y, (Likharev et al. , 1981, and Kuzmin et al. ,
1982). The reactance of the shunt introduces an elec-
tromagnetic phase shift bO between the junctions. In the
case of two series-connected weak links with an R-l.
shunt loop we have

40

0. 97 0.98
l

0.99

66I= tan
coL

&x i+&x2+&s

For a pair of identical weak links coupled by an R-L
loop, the current locking range Ll~ k becomes maximum
for 68=m. /4, i.e., for col. =R~i+R&2+R, (Jain et al. ,
1979; Likharev et al. , 1981). This phase difference en-
sures that both junctions are biased close to the centers of
their mutually induced phase-locked "steps" in the I-V
characteristics, thus providing a wide range for change in
the common bias current before going out of lock.
58=m./2 would correspond to the centers of the steps,

6The close packing may be necessary in order {1)to reduce the
self-inductance of the connecting pads between the weak links
(to increase the upper frequency limit) and (2) to accommodate
the array within a small fraction of a wavelength, so that all
junctions are located in the same phase plane.

FIG. 15. (a) Measured variation of the voltage-locking strength
6{dVT/dI) with temperature and voltage; see Fig. 10(c). Full
locking (i.e., d VT/dI=O) is observed on the main peak in the re-
gion from t =T/T, =0.998 to t=0.980 and also near zero volt-
age in the region very close to T, . These data were obtained for
a pair of planar indium microbridges (film thickness equal to
100 nm) in the opposed-biased current configuration. As the
temperature is lowered further, A(d VT/dI) becomes smaller and
finally disappears at t-0.90 (Jillie et al. , 1980). (b) Measured
voltage positions V~ of the minima and maxima of the locking
strength 5(dVrldI) [from (a)] plotted as a function of the re-
duced temperature t =T/T, . The solid lines are proportional
to (1—t)'; the dotted line is proportional to (1—t)' . The two
arrowed points indicate the estimated maximum effect due to
heating. The solid curves for the first minimum, second max-
imum, and second minimum are, respectively 2, 4, and 2 times

the curve for the first maximum, which may be related to a res-
onance phenomenon (Jillie et aL, 1980).
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FIG. 17. Dispersion curves around the Fermi level for the
quasi particles in a 1D superconductor.

V1 = V2

but that would require L~oo, and no coupling current
would flow. The characteristic frequency of the circuit is

R~ )+R~2+Rs
2+L

(4.2)

which sets the frequency scale for the coupling band-
width. This frequency is typically of the order of a few
GHz. For a capacitive shunt loop the two series-
connected junction will oscillate in antiphase at the mid-
dle of the step. Likharev et al. (1981) and Kuzmin et al.
(1982) have calculated the I Vcurves in the loc-king re-
gion for series- and for parallel-connected junctions with
inductive or capacitive shunt loops. They showed that for

FICx. 16. Qualitative illustration of the asymmetrical quasipar-
ticle dc voltage-locking mechanism. The superconducting film
with the two closely spaced microbridges are shown at the top.
Below that and with the same x axis, the variation of the pair
potential p~ through the system is shown for three different bias
situations ( V2 is constant): V~ ——V2 (series), V~ ——0, and
V~ ———V2 (opposed biased). The quasiparticle distribution in
the three regions with the injected peaks due to the diffusive
currents is also shown. The dc voltage locking occurs only for
the opposed-biased current configuration (lowest picture), as dis-
cussed in the text (Lindelof et al. , 1981).

applications the optimal configuration is a series array
with an R-L, shunt loop that yields in-phase oscillations
at the center of the phase-locked region. In order to avoid
impedance discontinuities at the ends of the array they
proposed a ring-formed series array (i.e., establishing a
periodic boundary condition for the array system).

Systems with capacitive coupling between weak links
have also been treated theoretically by Giovannini et al.
(1978). Zhang et al. (1983) have recently investigated a
bistable flip-flop circuit with two weak links coupled
through an R-C shunt.

Investigations of long-range coupling via R-L shunts
have been reported by Varmazis et al. (1978), Sandell
et al. (1979a), Jain, Mankiewich, and Lukens (1980), Jain,
Kadin et al. (1980), and Jain et al. (1982a,1982b).

These experimental results obtained for the R-L
shunt-loop coupling between two microbridges in many
ways resembled the results described above for
proximity-coupled weak links, e.g., two 0.1-Q indium
bridges, 12 IMm apart and shunted by a 0.2-0 gold resistor
placed 4 pm from the weak links, exhibited strong dc
voltage-pulling and -locking effects when both junctions
were biased around the same voltage. A few differences
in the detailed behavior of the two systems were, however,
also seen. The most important distinction from the
proximity-coupled case was the absence of any strong
temperature or voltage dependence of the coupling
strength.

Phase locking was also observed for two resistively cou-
pled bridges, as proved by the detection of (in-phase)
coherent radiation Here the only dissimilarity with the
proximity-coupled case lay in the shape of the coherent
radiation peak, whose linewidth was 50%%uo and 150% of
that of a single bridge for the series and opposed-biased
configurations, respectively, Sandell et al. (1979a). A
much stronger linewidth-narrowing effect (10%%uo) for two
phase-locked proximity-coupled microbridges was report-
ed by Varmazis et al. (1978).

For both bias configurations, Sandell et al. (1979a)

Phase coherence was observed up to 18 CxHz (=40 pV)—at
temperatures close to T, limited by the characteristic frequency
v=R /2+L =6 GHz of the coupling loop; at lower temperatures
limited and eventually destroyed by heating effects in the thin-
film planar bridges.
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(4.7)

S

For the unperturbed case (R,—+ ao ) Eqs. (4.3) and (4.4), of
course, reduce to

(4.8)

V2
I2 ——I,2sinp2+

RN2
(4.9)

l,'a,'l

icX 1 c2X 2

l', b',
l

~z I"

RN2
CX2 =

RN2+R,

and where the following notation has been used:

(4 6)

FIG. 22. (a) Two series-connected weak links with a common
shunt Z, . I,

'b) Two parallel-connected weak links. If Z, is pure-

ly inductive, a dc SQUID (superconducting quantum interfer-
ence device) is formed. (c) Equivalent circuit diagram for two
RSJ-model weak links coupled by an external resistive shunt
and biased by two independent current sources. The two
current configurations are shown (opposed biased, solid lines;
series biased, broken lines).

The following simple description of the effect of the
resistive-coupling shunt on the microbridges in the non-
stationary state may now be given: a fraction a2 of the
unperturbed normal current through bridge 2 is running
through bridge 1 (the direction is determined by the
current configuration), and the voltage across bridge 1 is
loaded by a resistance which is R» in parallel with

R&2+R,—and similarly for bridge 2. This description in
terms of extra ("injected") normal currents is the same as
that which was used in the case of direct proximity cou-
pling through the oscillating quasiparticle potential; see
Sec. III.C.3.

Analyzing the similarities in the experimental results
on bridges coupled by a resistive shunt and on proximity-
coupled bridges, and deriving the above-mentioned iso-
morphic formulas (to first order) for the two cases, Jillie
et al. (1980) were led to suggest that a common mecha
nism might be responsible for coupling in both resistively
shunted and closely spaced microbridge pairs. There are,
however, physically significant differences in the observa-
tions reported for the two systems. First and foremost is
the temperature dependence of the interaction strength,
but also in the voltage dependence and in the linewidth of
the coherent radiation, not to speak of the material depen-
dence.

The connection between the observation of coherent ra-
diation from weak links and the observation of dc voltage
locking and pulling was addressed by Nerenberg et ah.

(1980) and by Deakin et al. (1982,1983). Solving Eqs.
(4.3) and (4.4) both by a perturbation-theory approach and

by numerical integration, they predicted the shape and the
width of the dc voltage-locking intervals. They found,
moreover, that just outside the locking regions phase
coherence between the Josephson oscillations still pre-
vailed, only interrupted regularly by rapid phase slips of
2m. This behavior offered a natural explanation of the
observation of coherent radiation from two bridges whose
dc voltages differed by as much as a few percent (Lin-

Note that ( V& )&( V2 ) implies only (fi/2e )(P& )
~(fi/2e)($2). Therefore, since it is only the dc components of
P~ and P2 that differ, it is still possible to have the {average)
phase difference P~ —P2 stable, e.g., around 0 (modulo 2'), over

romany Josephson peiaods, to have it then quickly slip by 2m. , to
have it be stable again over many cycles, to have it slip again,
etc. , so that (P~ —$2)&0 is fulfilled, while the phase coherence
is virtually not affected.
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delof and Bindslev Hansen, 1977; Varmazis et al. , 1978).
The calculated voltage range over which coherent radia-
tion should be observed exceeded by far the observed
range (Deakin et al. , 1983). The effect of noise was,
however, not included in these calculations. The stability
of the phase-locked state of two Josephson oscillators in
the presence of noise has been analyzed by Ambegaokar
et al. (1981) and by Jillie (1981). Recently, Jain et al.
(1982a,1982b) have shown experimentally that two weak
links close to phase lock behave like one weak link biased
at a voltage corresponding to the difference between the
voltages of the two weak links (in the same way as the
properties around a microwave-induced step closely
resemble the properties close to the supercurrent).

C. SQUID coupling

SingIe two-junction SQUID

2—

2lc

= Lxt. ISO

1/2 L
lcirc.

1/2 L

I~X IR

I2
1(

lclrc.

As said previously, the two-junction SQUID may be
viewed as a pair of junctions coupled through a purely in-
ductive shunt L; see Fig. 23. Investigations of the high-
frequency behavior of dc SQUID's by measuring the radi-
ated microwave power have been carried out by a number
of groups [Silver et al. (1967); de Bruyn Ouboter et al.
(1970) and references therein; Sandell et al. (1979b);
Bindslev Hansen (1982)].

The quantization condition for the magnetic flux link-
ing the loop leads to a flux-modulated phase shift,
hP =P& —Pz, between the two Josephson oscillators

2K
2m.n =(5)—P2+

0

(4.10)

6+ (+.—, +«.;,.),21T

0

where i„„=—,(I~ —Iq) is the circulating current in the
ring, N,„,is the externally applied flux, 4& is the total flux
linking the ring, n is an integer, and @o——i't /2e is the flux
quantum (No ——2.07 X 10 ' V s).

The calculated periodic variation with @,„,of the max-
imum zero-voltage current I,„andof the phase differ-
ence b,(t =P& —Pz is shown in Fig. 24. For @,„,=nC&o the
difference is zero (in phase), whereas for 4„,=(n + —,

'
)@o

it is n. (antiphase).

"
lo)„~~T
COUPLED

LOOPIl I

eOUPLCO

2

FIG. 24. Parameters describing the symmetrical dc SQUID
(Fig. 23) plotted as a function of the applied magnetic flux. The
upper three plots are theoretical curves. From the top: (1) total
magnetic flux linking the SQUID loop (solid line) and self-
induced flux, Li„„(brokenline) (taken from de Bruyn Ouboter
and De Waele, 1970); (2) maximum zero-voltage current; (3) the
difference of phases across the two junctions. The lower two

curves are experimental traces (Silver et al. , 1967) showing the
rf amplitude measured at 30 MHz; (4) rf detector symmetrically
coupled to the SQUID across the current source (see Fig. 23);
and (5) rf detector antisymmetrically connected to the SQUID
(loop coupled).

There are essentially two orthogonal coupling schemes
for probing the ac voltage amplitude across the dc
SQUID: by measuring directly (symmetrically) across the
current source or by inductive coupling to the oscillating
voltage across the two L/2 inductances in series (see Fig.
23). Silver et al. (1967) coupled in both ways to their
niobium double-contact SQUID and observed the periodic
variation of the rf amplitude at 30 MHz shown in Fig. 24.
Thus what we see here is the dynamic interference of two
quantum oscillators that run at the same frequency and
with constant rf amplitudes while their phase difference
varies periodically with the applied flux, i.e., a flux-
modulated rf generator.

As before, the bandwidth for the rf currents in the
SQUID loop has an upper rolloff frequency determined

by the R/L ratio:

FIG. 23. Equivalent circuit diagram for a symmetrically biased
dc SQUID. For simplicity the junction parameters are assumed

to be identical.

2R~
+rolloff =

2+I. (4.1 1)
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2. Inductive coupling between SQUID's

100

(a)

SQUID's placed close together may couple dynamically
through their mutual inductance (Bindslev Hansen et al. ,
1981; Chi et al. , 1981). In the voltage-sustaining state
high-frequency currents are set up in the multijunction-
SQUID loops by the ac Josephson effects in the junctions.
Via the mutual inductance, these currents modulate the
flux through the adjacent SQUID's, and thereby modulate
their voltages. The ac Josephson oscillations in the
SQUID junctions may as a result lock together. The
strength of the locking is dependent on the fluxoid state
of the SQUID's. Coherent behavior of two broadband os-
cillators like the Josephson weak links requires a mutual
interaction, i.e., a flow of "amplitude and phase informa-
tion" in both directions. It is therefore necessary that the
fluxoid state of the SQUID's be such that each of them
can induce and detect an ac voltage/current in the others.
For coupled symmetrical dc SQUID's it turns out that
the locking strength becomes maximum for 4'= (n
+ —,

'
)No (Bindslev Hansen, 1982).

In wide Josephson junctions (w &A,, e.g., proximity-
effect bridges) the current density across the junction will
be nonuniform. For junctions of this kind, closely spaced
in series, the circulating currents connected with the pres-
ence of one or more flux quanta in the junctions may give
rise to an inductive coupling similar to the one just
described for coupled SQUID's (Imry et al. , 1978; Frank
et al. , 1978; Mineev et a/. , 1981; Weiss-parmeggiani,
1982).

O. Coupling via a low-impedance
transmission line

10
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FIG. 25. (a) Inset: thin-film microwave transmission lines suit-
ed for coupling to and between Josephson thin-film devices: I,
microstrip line (balanced microstrip), II, microstrip, and III, slot
line. The hatched areas indicate dielectric material, the heavy
lines metallic film. (b) The characteristic impedance Z of the
three transmission line structures shown in (a) plotted vs the
geometrical ratio W/H. W is the width of the strip (slot), and
H is the thickness of the dielectric. Here Z vs W/H is plotted
for a dielectric with E„=16.0. Z scales with E„' [for a recent
textbook on these structures see Gupta et al. (1979)].

dielectric layer has to be made very large ( 8'/If & 200).
In practical microstrip design (with W=l mm) this im-
plies that an extremely thin dielectric layer is needed
(H &5 pm). Moreover, in order to minimize dispersion
and dielectric losses, the solid dielectric may, with great
advantage, be replaced by vacuum (or helium) —a so-
called inverted microstrip configuration. Weak links
would couple strongly and over a wide band via a micro-
strip transmission line which could also be made to in-
clude a tapered or stepped impedance-transformer section
to match the outer circuit —at least over a restricted band-
width; see Fig. 26. Impedance matching configurations

Up to now we have considered only simple circuits that
can be described by lumped passive circuit elements. %'e
will now treat high-frequency coupling schemes that are
most appropriately characterized by distributed circuit
elements, that is, microwave transmission lines and cavity
res onators.

As already discussed, a long-range electromagnetic in-
teraction between weak links requires a circuit of suffi-
ciently low impedance, Z linking them together. Conven-
tional microwave transmission lines in the form of wave
guides and coaxial cables are not very useful in that
respect. However, transmission lines of stripline, micro-
strip, or slotted line type [see Fig. 25(a)] can be designed
to have a suitably low impedance. In addition, these
transmission-line structures can be fabricated in the same
thin film as the weak links; it is, in fact, in many cases
essential that these thin-film low-impedance transmission
lines be made from superconducting materials. If not, the
surface losses are high and the signals are heavily
damped. Figure 25(b) shows the characteristic impedance
as a function of dimensions for these transmission-line
structures. It is clear that in order to construct a
transmission line with a Z at the 0.1-Q level, the ratio be-
tween the width 8' of the line and thickness H of the

FIG. 26. Drawing showing in principle how to couple two
Josephson weak links via a low-impedance microstrip transmis-
sion line with a large W/H ratio (see Fig. 25) and how to use a
tapered impedance-transformer section of the microstrip to
establish a good coupling to an external high-impedance
transmission line. Since the width of the line should not exceed
X/2, the 10K, tapered section is considerably compressed in the
drawing.
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with a low impedance of the order of 1 0 or less have
been realized experimentally for coupling to a single junc-
tion at 35 GHz by S@rensen et al. (1981) and by
Hohenwarter et al. (1981). There have not yet been any
reports on similar systems including arrays of junctions.

E. Coupling via a resonator

Making the transmission line resonant, i.e., forming a
cavity, and using that as the coupling medium Inay estab-
lish a strong coupling at the resonance frequency at the
expense of a narrow bandwidth for the coupling. The
case of a single Josephson weak link coupled to a series
resonator has been studied by many groups. For a low-
capacitance weak link, we can summarize the main
characteristics of the complex nonlinear interaction be-
tween the Josephson junction and the series resonator as
follows (Vystavkin et al., 1974; Gubankov et al., 1975;
Krech et al., 1979): (i) at resonance the impedance
mismatch between the junction and the microwave circuit
is reduced by a factor of Q, the loaded quality factor of
the cavity; (ii) due to the regenerative interaction between
the nonlinear junction and the cavity field the linewidth
of the Josephson radiation is narrowed ("self-detection");
(iii) in the dc I Vcharact-eristic a cavity-induced step ap-
pears, protruding downwards towards the low-current
side of the I- V curve; and (iv) parametric generation of
so-called "non-Josephson" radiation is observed at the res-
onance frequency v„,when the junction is biased just
below the cavity-induced step, ( V) (hv„,/2e. This radi-
ation is emitted simultaneously with the Josephson radia-
tion at the frequency vj ——2e ( V) /h.

Let us now consider two weak links coupled to a com-
mon series resonance circuit and connected to two
separate current sources. At resonance, the impedance of
the series resonator is minimum and given by the real
part, r, of the resonator impedance, thus providing an ef-
fective short circuit for the ac currents at the resonance
frequency. Figure 27 shows the simplest possible
equivalent circuit. If we again use the RSJ model for the

»x I~i

L I

]0 mm

(b)

FIG. 28. (a) Example of a thin-film microstrip circuit used to
study the coupling of two microbridges to a resonator
(v, =10.6 GHz). The dc bias leads are provided with multisec-
tion low-pass filters. The microbridges are shown by crosses.
The geometry is due to Finnegan et al. (1977). (b) Sample with
two indium microbridges in a microstrip resonator mounted in a
microwave integrated circuit box (1)& 1 in. '). The ground plane
below the glass substrate is made of copper. Indium press con-
tacts are used to connect the eight thin dc bias leads to the mi-
crostrip pads (Bindslev Hansen et al. , 1981).

c
&c2X

weak links (and neglect noise), the equations describing
the behavior of this system are

FIG. 27. Equivalent-circuit diagram of two RSJ-model weak
links coupled to a common series resonance circuit.

I) ——I, )sing)+ +~res ~2eR ) dt

dg2I2=I, si2pn2+ + I'CS
2eR2 dt

(4.12)

(4.13)
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FIG. 31. Analog computer simulation of two RSJ-model weak
links coupled to a common-series resonator, Eqs. (4.12)—(4.15).
In this simulation I, ~

——I,2 ——1 and E~j ——R~2 ——1, the unloaded

Q is 100. For the time scaling used v, =783 Hz=0. 504
machine units (M.U.). (a) The I Vcharacteristic (I-~,P~) for one
bridge alone and for one bridge with the other biased at reso-
nance (displaced curve). The hysteresis (broken lines) around
the self-induced resonance step is a consequence of the current

control. (b) The simulated curves of V, vs V2 (P~, &P2) around
the resonance frequency (only sweeps with increasing Ij and I2
fixed). Both Josephson and non-Josephson locking are seen in
the simulation [cf. (a)] (Bindslev Hansen et a/. , 1981).

oscillators (Bindslev Hansen er a/. , 1981). Dai and Kao
(1981) have also treated the case of N almost identical
series-connected junctions coupled to a common resona-
tor. They found a typical allowed variation in the critical
currents of a few percent (provided the resistance in the
pads connecting the bridges is negligible).

Historically, the first unambiguous observation of
coherent coupling between Josephson junctions was in
fact made on a resonant system. It was a pair of large-
area lead tunnel junctions which happened to have inter-
nal geometrical resonances that coincided in frequency
(v=9 6Hz, Q=110) (Finnegan et a/. , 1972,1977). At
the common resonance frequency, coherent radiation was
observed from the two junctions. We note that this cou-
pling scheme involving two coupled parallel-resonance
circuits differs from the one discussed above.

A system which is a practical realization of the circuit
drawn in Fig. 27 is shown in Fig. 28 (Bindslev Hansen
et a/. , 1981). It consists of two indium microbridges cou-
pled to a common resonator consisting of a section of 50-
Q microstrip transmission line.

Some experimental results on such a system are repro-
duced in Figs. 29 and 30. In Fig. 29 the self-induced
step structures in the I Vcharacter-istics of the two
bridges (here called 2 and 8) and the dc voltage-pulling
and -locking effects are shown.

The phase locking of the Josephson oscillations at the
resonance frequency is shown in Fig. 30 for the same
sample as in Fig. 29 at a number of points in the ( V~,' V~ )

plane around the self-induced step structures and also for
the two bridges, radiating alone, individually. The total
power radiated when both bridges are biased and locked
together on resonance is about 70% more than the expect-
ed coherent in-phase total power [expected Pz +z
=(+P„++PE)=4.6 pW, measured P~+~ ——7.8 pW
(spectrum 3)]. Moreover, the linewidth is narrowed down
when both bridges are running coherently in phase. These
two phenomena are due to a regenerative increase of the
effective Q of the resonator when both bridges are excit-
ing the resonance. Both of these effects were also report-
ed by Stern et a/. (1978,1981) for two microbridges cou-
pled via a waveguide resonator.

Finally, Fig. 31 shows some of the results of analog
computer simulations (Hansen et a/. , 1981). The general
features on the dc voltage-pulling and -locking effects
seen in the (P&', Pz) plot [Fig. 31(b)] are in fact very similar
to the experimental results (Fig. 29, part III). In addition
to the strong coupling at the resonance frequency ("non-
Josephson" locking), the simulation also shows locking
("Josephson" locking) when P~ ——Pz in a wide band around

This set of four coupled equations is not analytically
tractable. Dai and Kao (1980,1981a,1981b) have solved it
numerically in a first harmonic approximation and found
the voltage-locking curves for a number of different cases
with two dissimilar weak links. The full system of equa-
tions has also been simulated on an analog computer us-
ing an appropriate time scaling ( X 10 ") so as also to in-
clude the effect of the higher harmonics in the Josephson

This is the microstrip used by Finnegan et al'. (1977,1978) in

attempts to couple two tunnel junctions via an external resona-

tor. The complex interaction between the internal and the exter-

nal resonances made achieving such a coupling impossible. This
problem is not encountered with low-capacitance weak links

(any internal resonances would here be shifted to much higher
frequencies).
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the resonance frequency. This interaction also goes via
the transmission line, which off resonance acts as a pas-
sive filter. Experimentally, this type of locking is indeed
observed in resonant systems, as may be seen in Fig. 29,
part I, just above the resonance.

V. LARGE ARRAY SYSTEMS

Large arrays of parallel- and/or series-connected
Josephson junctions have been studied for two main
reasons:

(1) to construct high-frequency devices based on
coherent ac Josephson effects in the junctions of the ar-

ray; and
(2) to investigate the nature of the two-dimensional sys-

tem of magnetic flux vortices associated with the super-
conducting screening currents in the multiply connected
array system.

tions are of limited use, due to the problems discussed
above in Sec. I.C. Coherently working arrays of many
junctions have therefore been used or suggested for a
number of devices: (1) Uoltage standards (Finnegan et al. ,
1975; Finnegan and Wahlsten, 1978; Levinsen et al. ,
1977; Sullivan et al. , 1979; Koyanagi et a/. , 1979; Kautz,
1980; Kobayashi et al. , 1983); (2) parametric amplifiers
(Parrish et al. , 1974; Feldman et al. , 1975; Chino et al. ,
1976; Wahlsten et al. , 1978; Rudner et al. , 1979; Goodall
et al. , 1979; Levinsen et al. , 1980) and (3) Josephson
mixer s (Claasen et al. , 1978). A number of different
fabrication techniques have been suggested in these pa-
pers. Other articles on fabrication techniques for large ar-
rays have been published by Clark (1968,1973), Tsang
et al. (1974), Mooij et al. (1974), Palmer et al. (1974),
Lindelof et al. (1979), and Lukens et al. (1979).

Most of the coupling schemes described above for two
Josephson elements have been applied to construct large
coherent arrays or to explain the behavior of such sys-
tems.

In a sense, these two approaches to the behavior of large
Josephson arrays are complementary. One is concerned
with the dynamic interaction between the high-frequency
oscillations in the junctions through coupling currents
flowing in the array system. In the other approach the in-
terest is centered on the interaction between the lines of
quantized magnetic flux, the flux vortices, that are linked
to the screening currents flowing in the array.

Recently most of the work on large arrays has been
focused on the discrete two-dimensional vortex lattice and
its behavior. This field, which includes the observations
of a vortex-unbinding (Kosterlitz-Thouless) transition as
well as interesting commensuration effects in an external
magnetic field, is growing rapidly and deserves a review
of its own. Here we will limit ourselves to mentioning
that experimental work on large two-dimensional Joseph-
son array systems has been reported by Sanchez et al.
(1981), Resnick et al. (1981), Voss and Webb (1982), and
Abraham et al. (1982) [see also Webb et al. (1983) and
Tinkham et al. (1983)], and that related collective flux
line behavior in thickness-modulated superconducting
thin films has been observed by Martinoli (1978) and by
Fiory et al. (1978) [see also Cxubser et al. (1980)]. The
connection to inhomogeneous (granular) superconducting
films has also been investigated (Davidson et al. , 1981).

The high-frequency behavior of large arrays of Joseph-
son junctions has been treated theoretically along the
same lines as described previously for long-range coupling
in smaller array systems with two junctions: broadband
interaction (Nerenberg et al , 1981;Likh. arev et al. , 1981)
and resonant, narrow band coupling -(Khlus et al. , 1979,
and Dai and Kao, 1980). Naturally, in the large, multi-
junction arrays the same interaction mechanisms, which
exist between two junctions, come into play, and further-
more collective, long-range phenomena and flux quantiza-
tion become of paramount importance in these large ar-
rays.

For many device applications single Josephson junc-

(1) Coupling uia a Fabry Perot res-onator (Clark,
1968,1970,1971,1973,1974; Repici et al. , 1972); or via a
resonant microstrip or slot line structure (Bindslev Hansen
et al. , 1981;Davidson, 1981).

(2) Quasiparticle coupling (see Fig. 32) (Palmer et al. ,
1974,197S,1977; Artemenko et al. , 1978,1979).

(3) SQUID loop coup-ling (Clark et al. , 1975,1976;
Frank et al. , 1978; Silver, 1979; Sandell et al. , 1979b;
Bindslev Hansen et al. , 1981).

(4) RL-loop coupling (see Fig 33) . (Sandell et al. ,
1979a,1979b; and Jain et al. , 1980; Jain, Mankiewich, and
Lukens, 1980).

FIG. 32. ReAection microphotograph of a portion of a series-
connected array of proximity-effect microbridges (Palmer et aI.,
1974). The junctions are the dark lines separated by narrow
(lighter) superconducting regions. Spacing (center to center) of
the bridges is 0.7 pm, the superconducting material is 30 nm
niobium/tantalum film. The bias current flows in the horizon-
tal direction. The inset shows a low-magnification view of the
whole array: the white area is the sapphire substrate, the dark
is the "strong" film (high T, ), and the gray area is 200 bridges
in series.
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The last of these couplings schemes has so far bee«he
most successful. Jain et al. (1980) and Jain, Mankiewich,
and Lukens (1980) obtained up to 5-nW output power at
10 GHz over a linewidth of about 1 MHz. This array
consisted of 99 microbridges biased in a dc-parallel/ac-
series-connected array configuration; see Fig. 33.

It is worth noting that for many applications where the
Josephson array is pumped by an external microwave

source (voltage standards, parametric amplifiers, mixers)
it is possible in this way to synchronize all the oscillating
junctions into a coherent state. For such applications it is
therefore not necessary to construct arrays in which an
internal high-frequency interaction mechanism ensures an
intrinsic coherent state. For these devices to work well it
is, however, necessary to construct series-connected arrays
of almost identical junctions —for instance, Claasen et al.
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FIG. 33. (a) and {b): Two views of an array of 10 indium microbridges made using electron-beam lithography technique {Jain et al. ,
1980a,1980b). The distance between the bridges is 10 pm. The bridges are placed in a dc-parallel/ac-series configuration as dis-
cussed in the text. In the view on the left, the connections of the array to the 50-Q microstrips on the top and bottom are visible, as
are the SQUID lbops and the bias leads on the sides. The bridges lie under the central bar, and are too small to be seen even-in the
magnified view on the right. The small loop towards the rig'ht of the array constitutes the inductance of the RL-feedback loop. {c}
Schematic of the 10 bridge array. The feedback RL loop is not shown. It is connected between the points C and D. The micro-
bridges are denoted by )&'s. The separation into two sections A and 8 is also shown.
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(1978) found, theoretically, a maximum allowed spread of
1% for the junction parameters in a mixer array. There-
fore, as long as the fabrication of a large number of high-
ly uniform junctions remains a technological problem,
dc-parallel/ac-series-connected array configurations will
be useful also for these applications.

The dc-parallel/ac-series arrays have been made in or-
der to circumvent the problem of differences in the volt-
age (frequency) across the nonuniform Josephson junc-
tions in a (dc-) series-connected array; cf. Sec. II.B.1. The
use of suitable reactive decoupling circuit elements allows
the junctions to be connected in parallel at dc while main-
taining an rf-series configuration —i.e., the same mi-
crowave current passes through all the junctions (Lindelof
et al. , 1979; Likharev, 1979; Sandell et al. , 1979b; Jain
et a/. , 1980; Jain, Mankiewich, and Lukens, 1980). Such
a configuration, however, poses new problems of its own
(see Sec. II.B.2). When biased in parallel, loops are
formed that together with the junctions constitute
SQUID's. Unless measures are taken to minimize the ef-
fect of flux quantization within these SQUID loops, the
relative phases of the oscillating currents through the
junctions will be modulated by the magnetic flux linking
the loops. In practice, these flux-induced phase shifts will
always destroy the desired overall in-phase coherent oscil-
lation. The solution to this problem lies in quenching the
circulating high-frequency SQUID currents. This was
done by Jain et al. (1980) and Jain, Mankiewich, and
Lukens (1980) by making the loop inductances so large
that the amplitudes of these currents fell below the level
of the ac coupling current.

A geometry resulting from these considerations is
shown in Fig. 33. The results by Jain et al. (1980) and
Jain, Mankiewich, and Lukens (1980) are indeed very en-
couraging and give promise for the ac Josephson effect
working at hitherto unseen power levels, thereby making
the effect more useful for device applications.
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