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There are two sets of principles involved in the development of the gas centrifuge, the internal separation
physics and the external means of spinning a rotor at very high speeds. Only the first aspect is discussed in

this part of the review. First, the industrial requirement for the separation of the uranium isotopes is de-
fined so that the separation history can be put in a modern perspective. The history of separation physics
itself is then traced back to the theory of centrifugal force by Huygens and the equivalence of this force to
that of gravity. The barometric equation giving the variation of atmospheric pressure with height and the
law of partial pressures can then be adapted to the centrifuge to give the steady-state theory of separation.
This work was completed in the last century but was not confirmed in its application to isotope separation
until 1936. The detailed separation physics for non-steady-state conditions required for a production centri-
fuge was developed during the American wartime Manhattan Project. During this work the theory giving
the maximum output of a centrifuge was developed by Dirac, and soon afterwards Cohen and Kaplan
showed that the best method of operation for a production centrifuge is in a countercurrent mode of opera-
tion. This method gives a large separation factor at relatively small flow rates through the rotor. The
theory of how to set up an internal countercurrent was given by Martin during an equivalent wartime Ger-
man project, and refinements to the theory, showing how the countercurrent persists along a centrifuge ro-
tor, was given by Dirac and Steenbeck, the latter during a postwar Russian project. This theory was ex-
tended by Parker, Ging, and Mayo of the University of Virginia, whose work was completed by 1962, the
limit of this review.
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I. INTRGDUCTION

A. Prodoction Of QArichecl UraNUfA

Nuclear fission of the light isotope of uranium, U
now provides a significant contribution to the electricity
production of the Western world. Most of this energy, al-
ready exceeding 100 CiW (electrical), is generated in reac-
tors which use uranium in which the concentration of the
light isotope has been enhanced from its natural level of
0.71% to over 2%. Although this degree of enrichment
is only about three, the separative capacity of the enrich-
ment plants required to produce the enriched uranium is
very large. For example, a power station of 2000 M%
(electrical), thermal efficiency 0.4, would require 100
tonnes of enriched fuel per year. This figure assumes that
2% of the uranium atoms undergo fission, either directly
or indirectly, and each fission generates 200 MCV of ener-

gy.
In the production of uranium enriched in the light iso-
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tope there is necessarily a corresponding production of
uranium depleted in this isotope, the exact amount being
given by simple calculations of mass balance. For exam-
ple, to make 100 tonnes of uranium enriched by a factor
of about 3 requires a plant to convert 400 tonnes of natur-
al uranium into two separate streams, one stream contain-
ing the required enriched product and the other contain-
ing 300 tonnes of depleted or tailings uranium, which has
a residue of about 0.24% of uranium 235. It is not usual-
ly economical to reduce the U content in the tailings
stream to a value much lower than this. This size of
plant, to produce sufficient enrichment for a 2000 MW
power station, is given as an example because two plants
of this size are now operating, one in the UK and one in
Holland. These plants were built under the auspices of
Urenco, a joint Dutch/German/British enterprise set up
as a result of an agreement between the three governments
in 1970, and further plants are presently under construc-
tion. Similarly it has been announced by the Department
of Energy that the next US enrichment facility will be a
centrifuge plant; this, when complete, will provide suffi-
cient enrichment capacity for 80000 MW of electricity.

For reasons of national security all of the present work
in Europe and America is classified, and no details of the
centrifuge technology have been released except photo-
graphs of the plants. Therefore, this review will be limit-
ed mainly to work prior to 1962.' However, this is not
too serious, since most of the principles of the centrifuge
were worked out before this date. In fact, much of the
physics of the process was worked out in the 19th centu-
ry, with little development in the present century until
about 1936, when Beams started his work on isotope
separation at the University of Virginia. This work at
Virginia rapidly expanded following the discovery of fis-
sion of U and the outbreak of war in Europe in 1939; it
was incorporated into the wartime "Manhattan Project"
in America. Most of the present technical knowledge of
the gas centrifuge used for separating the uranium iso-
topes derives from this investigation, as well as from simi-
lar smaller projects in Germany and Russia during and
immediately after the 1939—45 war.

The gas centrifuge described in these three investiga-
tions comprised a vertical cylindrical rotor, spinning at
high speed with means for both feeding the mixture of
isotopes into the rotor and extracting ihe two streams, one
enriched in the light isotope and one depleted in the light
isotope. A simplified drawing of a centrifuge rotor is
given in Fig. 1; this shows the two important parameters
of the centrifuge rotor, so far as its separation perfor-
mance is concerned, its length Z, and its peripheral speed
V.

VrASTE =
FEED

= PRODUCT

Z METERS

V METERS/SEC

FIG. 1. Simplified diagram of centrifuge. Feed stream: L
mole/sec (abundance ratio R); product flow: OI mole/sec
(abundance ratio aR); waste flow: (1—8)L, mole/sec (abun-
dance ratio R/a). Conservation of mass gives l9=[(1+aR)/
(1+8)]/(1+a).

B. l3irac equations

b, U =1.[(a—1)/(a+1)]inJ . (2)

This change of value is called separative work (SW) and
has the same units as the feed flow. Thus, for the plant

To facilitate the review and to emphasize the impor-
tance of these two parameters, length and peripheral
speed, it is useful to summarize the two major contribu-
tions to separation theory made by Dirac during the
Manhattan Project. The first contribution was to give an
accurate measure of the usefulness of a separating element
which is independent of the concentration of the isotope
mixture being used and which is also independent of the
size of the element —for example, it must apply equally to
a single centrifuge or a large plant. Dirac devised a func-
tion, discussed in Appendix A, which correctly deter-
mines the value, per mole, of a mixture of isotopes. This
value function, very similar to and related to the entropy
function of a perfect gas, is given by

V(J)=[(J—1)/(J+1)]lnJ .

%Then a mixture of isotopes is passed through a separating
element, there is a net change of the value of the gas
entering and leaving the element; this is used as a measure
of the usefulness of the element. For example, in a
symmetrical system, in which L moles of feed of abun-
dance ratio J divide into a product stream of abundance
ratio aJ and a depleted stream of abundance ratio J/a,
the change in the Dirac value function reduces to the sim-
ple form

There have been several reviews, mainly of the early work on
the gas centrifuge, and the author is indebted to them for some
of the ideas expressed in this historical review. These reviews
are Von Halle et al. , 1965; Glander, 1972, 1978; Whitley, 1979a,
1979b.

The value function was derived by Dirac as a mathematical
function from cascade theory. At about the same time, Peierls
derived the same function by physical considerations of entropy,
and it is this version which is given in Appendix A.

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984
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described earlier, the feed flow was 400 tonnes/yr and the
enrichment factor and depletion factor were both equal to
three (in actual plants these factors are rarely equal to
each other, but were set equal in this example for simpli-
city). Substituting these values into Eq. (2) gives the
separative work required from the plant as

This amount of separative work per year (sometimes
called separative power) is far greater than that given by
any individual centrifuge. This latter value can be calcu-
lated from the single most important result in centrifuge
technology, namely the proof, by Dirac (1941), that ir-
respective of the method of operation, the maximum out-
put of a centrifuge, in separative work units per unit time,
is given by

5U,„=pa(b,MV /2RT) ~Z/2 .

This equation will be discussed in more detail later, but a
numerical example immediately gives the scale of the
problem. Inserting the constants into the equation shows
that the maximum output of 1 m of rotor spinning at 300
m/sec is only 2 kg SW/yr. Thus more than 110000
machines of this length and speed would be required to
give the 220 tonnes of separative work for the small plant
described above. This requirement for so many machines
makes it necessary to pay more attention to detailed phys-
ical principles than may be considered usual in the design
of most high-speed devices. This will become clear in the
following narrative.

C. Gutline of review

The first requirement in the separation of the uranium
isotopes is to convert the uranium metal into the gaseous
phase. The most convenient gaseous compound of urani-
um is uranium hexaAuoride UF6. Some of the physical
properties of this compound are listed in Table I, taken
from the more comprehensive data of de Witt (1960). As
shown, UF6 has quite a high vapor pressure at modest
temperatures and has the added virtue that fluorine exists

only with one atomic mass of 19. Therefore, the gaseous
compound consists only of the binary mixture U F6 and
U F6, of molecular weights 349 and 352, respectively.

The partial separation of these gases in the centrifuge is
based on the same principle as the partial separation of
gases in the terrestrial atmosphere, as discussed by
Lindemann and Aston (1919) soon after the discovery of
isotopes. From this similarity it follows that the basis of
the separation effect can be traced back to Huygens, who
first proved that centrifugal force was more or less the
same as gravitational force, to Bailey, who derived the
equation for the pressure distribution in the atmosphere,
and to Dalton, who perceived the law of partial
pressures —the fact that in a mixture of gases, each
behaves independently of the others.

These facts were first quantified by Bredig (1895), who
also proved them experimentally by partially separating
the gases in a binary mixture. The technique was refined
and improved by Beams (1936), who partially separated
the isotopes of chlorine in his first experiment at the
University of Virginia. The uranium isotopes were then
separated by using the centrifuge during the last war as
part of the Manhattan Project and in similar projects in
Germany and Russia during and after the war.

The historical lineage of the separation theory is out-
lined in Fig. 2, and the present review will follow this
plan. The main problem in the review involves the dis-
cussion of the early work. Plagiarism appeared rife in the
17th century, and at least two discoveries in the centrifuge
story were first transmitted to the Royal Society in the
form of anagrams to establish precedence. These were the
explanation of centrifugal force by Huygens and the law
of elasticity by Hooke. However, within the limitations
caused by ibis procedure, it is believed that the various
precedents given in this review are correct.

I I. HISTGR ICAL BACKG RGUND

A. Centrifugal force and the barometric equation

The most important physical principle involved is that
of centrifugal force itself. The effects of the forces asso-

TABLE I. Physical properties of hex.

Temperature ('C)
Vapor pressure mm Hg

(Pa)
Diffusion pa 10 ' Ns/m'
Viscosity g 10 ' Ns/m2

q/pD
Specific-heat
ratio y
Specific heat Cp

J/0; mol 'C
J/kg C

Thermal conductivity
10 W/m C

4+y/(9y —5)gC

0
17.7

2360
2.00
1.58
0.79

1.0704

61.1
0.966

27
128

17000
2.19
1.72
0.79

1.0687

68.0
0.986

50
527

70200
2.32
1.84
0.79

1.0666

133
378

73,9
0.983

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984



Stanley Whitley: The gas centrifuge. Part I 45

CENTRIFUGAL
'

LAW OF
FORCE ATMOSPHERE

Huygens 1659 Halley 1685

LAW OF PARTIAL
PRESSURES
Dalton 18Q1

DISCOVERY OF
RADIOACTIVITY
Becquerel 19QQ

RECOGNITION OF
ISOTOPES

Soddy 191Q-1913

DISCOVERY OF
FISSION

Hahn 1939

$F 1(
FIRST SEPARATION OF GASES

Bredig 1895 Fl RST SEPARATION OF
I SOTOPES

Beams 1936 MANHATTAN
PROJECT

Cohen, Dime
1940-44

GERMAN
PROJECT

Martin 1939-45

RUSSIAN
PROJ ECT
Steenbeck
1946-52

FIG. 2. Centrifuge separation history.

ciated with circular motion have been known for at least
five thousand years, as evidenced by fragments of potters'
wheels dated by Woolley (1930) as 3250+250 B.c. An-
cient potters used the forces involved with rotation to
practice their art. However, this and other clear experi-
mental evidence of centrifugal forces was of little impor-
tance to the early scholastic philosophers, and even
Galileo thought that motion in a circle was a perfect and
natural form of motion. It was left to Huygens to recog-
nize the existence of centrifugal forces. His main work,
De vi Centrifuga (written in 1659), was not published until
1703, after his death, but he had previously published his
theories, without proof, in his Horologium Oscillatorium
(1673) and had sent a summary of his work to the Royal
Society in the form of anagrams in 1669—see Crew
(1935).

These theorems of Huygens were included in the pub-
lished teachings of Keill (1702), the Professor of Astrono-

my at Oxford in the late 17th century. His early books
are in Latin, but later editions of his works were pub-
lished in English. The work of Keill, who derived the
proof of Huygens's theories for himself, is the earliest
reference to the teaching of Huygens's theory. The vari-
ous theorems of Huygens, proved by the complicated
geometrical methods of the era, were the equivalent of the
modern formula V Ir for the radial acceleration in a cen-
trifuge. However, the main importance of Huygens's
work was his recognition that this centrifugal acceleration
and the resulting force were as real as the effects of gravi-
ty. Centrifugal force, as defined by Huygens, is the out-
ward force experienced by an observer taking part in the
circular motion. It is related to, but has no direct connec-

tion with, centripetal force, calculated and discussed by
Newton (1687), since this force is defined in a different
frame of reference. Centripetal force is the force required
to give the inward radial acceleration of an object moving
in a circle at a uniform speed, as seen by an observer at
rest.

The complete works of Huygens, including his treatise
on centrifugal force, were translated into French in 1934.
According to the translators and other scholars —for ex-
ample, Taton (1958)—Huygens anticipated Einstein by
over 200 years, since, according to modern relativity
theory, the forces of inertia, in this case centrifugal force,
are not only equivalent to gravitational forces, as averred
by Huygens, but identical. This identity is important in
the theory of the centrifuge, since much of the theory of
the terrestrial atmosphere can be adapted, with a suitable
change of geometry, to the centrifuge. In particular, the
separation of gases in the centrifuge is based on the same
principle as that which gives the variation of gas density
in the terrestrial atmosphere, heavy gases tending to con-
centrate near the ground and lighter gases tending to con-
centrate in the upper atmosphere.

The pressure distribution in the atmosphere is easily
found by balancing the forces on a unit at height h, giving
the well-known equation

dp fdh = —pg . (4)

Assuming isothermal conditions and integrating gives the
barometric equation

p =p (0)exp( —Mgh/RT) .

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984
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or

p =p(a)exp[ Mco (a —r)/2RT] —.

(6)

This barometric-type equation is the key to the separa-
tion effect, since it can be shown that in a gas mixture it
applies to each gas separately. This in fact is an expres-
sion of the law of partial pressures given by Dalton
(1801), which states that in a mixture of gases each gas
behaves independently of the presence of the others.
Thus, for two gases which differ in molecular weights by
bM, the ratio J(r) of the partial pressures at radius r
compared with that at the perimeter would be given by

-5
1

This exponential pressure distribution was derived by
Halley (1685), who, by using Boyle's law and logarithm
tables, correctly gave the pressure distribution for an iso-
thermal atmosphere, showing that the pressure falls off
exponentially by a factor of e every 9 km. This height,
H =RT/Mg, is often called the "height of the homogene-
ous atmosphere. " Sometimes it is more convenient to de-
fine the distance HI, in which the pressure falls off by a
factor of 10. This distance for the atmosphere is about 20
km. Thus at a height of 100 km (5 decades of pressure
fall) the pressure is reduced by a factor of 10 and the at-
mosphere merges into space, being composed mainly of
light molecules moving around in parabolic paths with
few intermolecular collisions. This reduction in pressure
is indicated in Fig. 3.

An interesting note on this work is recorded in the
correspondence of Newton (edited by Turnbull in 1957) to
the effect that Halley, when Deputy Controller of the
Mint in Chester (1696—98), ascended Mt. Snowdon in
North Wales to see if he could determine the height by
observing the change of pressure readings on his barome-
ter. It is not recorded whether or not he observed the ex-
pected reduction of about 10% in pressure. However, the
importance of Halley's work in the present context is that
the application of his principles immediately gives the
pressure distribution in the centrifuge. The result is given

by Eq. (6), the form depending on whether the pressure at
the axis or at the periphery is used as reference. Thus

p =p(i)exp(Mco r /2Rt)

J=J(a)exp[DMs (a r—)/2RT]

=J(a)exp[A, (a —r )] .

From Avogadro's law (1811), the number of molecules
per unit volume of gas is proportional to its partial pres-
sure, so that J(r) is not only the ratio of the partial pres-
sures but also the ratio of the molecular concentrations of
the two constituents. This ratio, N/(1 —X), is usually
called the abundance ratio. Thus the basic equation (7),
which defines the separating effect in the centrifuge,
derives from the original discoveries of Huygens, Halley,
and Dalton.

However, the physical understanding of Dalton's law,
Avogadro's law, and the Halley assumption that condi-
tions in the atmosphere are isothermal came only with the
advent of the kinetic theory of gases. It is well known
from this theory that the pressure of a gas is given by
2ne/3, where n is the number of molecules per unit
volume and e is the kinetic energy of each molecule. The
demonstration by Maxwell (1860) of the principle of the
equipartition of energy then gave the mathematical proof
of Avogadro's and Dalton's laws. Actually the demon-
stration of the equipartition of energy was given much
earlier, in 1845, by Waterton in a paper that was rejected
by the Royal Society but eventually published in 1892.

The assumption of isothermal conditions in deriving
Eqs. (5) and (6) is more difficult to justify without de-
tailed recourse to the kinetic theory of gases and the sta-
tistical concepts of the Maxwell-Boltzmann distribution
law; the argument is summarized in Appendix B.

From the foregoing it is clear that the semiempirical
laws required for the separation of gases were understood
by 1811 and the theory by 1860. However, it was Bredig
(1895) who finally gave Eqs. (6) and (7) in their present
form, although he himself gives credit to some earlier
work by des Coudres (1893). Bredig not only derived the
separation equation, but attempted to prove it experimen-
tally, achieving a partial separation of a mixture of hydro-
gen and hydrogen iodide. The tube shown in Fig. 4, with
the glass stopper open, was filled with a uniform mixture
of gases, clad in cork and brass to minimize frictional
heating, and then spun for a few hours at a rotational fre-
quency of 42 Hz. This gave a maximum peripheral speed
at point B of 55 m/sec equivalent to a centrifugal force of
1470 times gravity. To do this work Bredig borrowed an
analytical-type centrifuge from the Amsterdam Universi-

1
-4

1
3

1
-2

1
-4

1
3

1
-2

20km

FIG. 3. Pressure distribution in (a) atmosphere and (b) centri-
fuge, showing first five decades of pressure. First decade con-
tain 90% of gas, second 9%, third 0.9%, etc.

FICx. 4. The Bredig experiment. Peripheral speed at point
B =55 m/sec; pressure ratio from B to A =1.084 for hydrogen
iodide and 1.001 for hydrogen. Thus the separation factor
= 1.083 (from Bredig, 1895).
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ty Hygiene Laboratory. After stopping the centrifuge, he
closed the stop value as soon as possible. The measured
change in concentration between spaces 1 and 2 was 3%,
in approximate agreement with the theoretical value of
4%.

Thus it can be seen that the physical principles of the
gas centrifuge and an experimental proof were given even
before the discovery of radioactivity in uranium by Bec-
querel. The work in the 20th century has been in increas-
ing the output; this has, of course, involved significant
improvements in the length and peripheral speed of the
rotor. For example, the output of the Bredig experirnen-
tal centrifuge, in modern terms, was about 10 kg
SW/yr. The output of the latest American machine has
been given at -100 kg SW/yr, an improvement of 10 .

B. Isotope separation

Following the discovery of radioactivity at the turn of
the century and the new radiochemistry, the existence of
isotopes was soon recognized and the word "isotope"
given by Soddy in 1913. However, there was no rush to
separate isotopes, and it was not until 1936 that the suc-
cessful experiments of Bredig were repeated with an isoto-
pic gas mixture. This delay was due in part to the prob-
lem of convection, an effect that is more serious for isoto-
pic mixtures of small mass difference than for the gases
used by Bredig. In the case of isotope separation, the
slightest heating of the rotor can cause mixing by convec-
tion, so destroying the small separating effect.

However, in 1934 Beams and others at the University
of Virginia undertook the development of a convection-
free centrifuge, a development which is still proceeding 50
years later. Convection-free operation was achieved by
operating the rotor in a vacuum or sometimes by intro-
ducing hydrogen to establish thermal equilibrium and so
reduce unwanted convection to a minimum. After only
two years Beams and Haynes (1936) announced the par-
tial separation of the chlorine isotopes. He used a disc-
type rotor, spinning at 433 m/sec, nearly ten times faster
than the speed achieved by Bredig. The centrifuge was
operated in what is called the evaporative mode. A small
amount of liquid, in this case carbon tetrachloride, was
condensed on the periphery of the rotor, forming a large
reservoir of nearly constant composition. In equilibrium
the light gas in the vapor phase concentrates near the axis
and is drawn off via a central hollow shaft which sup-
ports the rotor.

Following this early work, Beams (1938) quickly
developed his first tubular rotor and Beams and Skar-
strom (1939) repeated the experiments with the chlorine
isotopes under more controlled conditions. In this new
experiinent 16? g of liquid carbon tetrachloride were con-
densed on the periphery and up to 0.05 g/sec withdrawn
from the axis. As the vapor moves from the periphery to
the axis, it tends to spin faster due to the conservation of
its angular momentum, so causing possible stirring and
mixing of the separated isotopes. This effect was prevent-
ed by using a star-shaped spider to divide the rotor into

sector-shaped cells, so forcing all the fluid to spin at the
same speed. With this arrangement the experimental re-
sults were found to be in good agreement with theory.

These tests using Beams's tubular rotor marked the end
of the prewar work. The tests fully confirmed the theory
of the separation process, for both steady-state and.
dynamic operation.

The rest of the story of centrifuge development is main-
ly concerned with the separation of the uranium isotopes
and efforts to increase the output of the rotor and make it
more suitable for production use. The main problem that
arises is that, contrary to what is said in most popular ex-
positions of the centrifuge, the separation process depends
on the absolute molecular weight and not just on the mass
difference of the constituents, as implied by Eq. (1). This
dependence of separation on molecular weight (actually
on the group MV /2RT) is particularly important at the
higher speeds needed for economic operation. The effect
arises because of the extremely large pressure ratios that
are set up across the centrifuge rotor. The theoretical
pressure ratios can in fact be so large that, if the pressure
is set at a reasonable value at the axis, the wall pressure
would be so high that it would destroy the centrifuge; ac-
tually the gas would condense on the rotor wall with
much the same consequence. Conversely, if the wall pres-
sure is set at a reasonable value —say, atmospheric
pressure —the central region is a void and the efficiency is
reduced. This effect will become clear from the theoreti-
cal analysis of the centrifuge developed during the
Manhattan Project.

III. THE MANHATTAN PROJECT

The separation of uranium isotopes on a large scale be-
came a subject of national importance following the
discovery of the fission of the uranium nucleus by Otto
Hahn and the outbreak of the Second World War in 1939.
A major investigation of the gas centrifuge started in
America, and the work was eventually unified under the
auspices of the Manhattan Engineer District, or, as it
came to be known, the Manhattan Project. The develop-
rnent work was done at the University of Virginia, pro-
duction machines were designed and tested at %'esting-
house, and the pilot plant operations were the responsibil-
ity of the Standard Qil Development Company. Eventu-
ally, in 1944, the project was dropped in favor of gaseous
diffusion, but not before almost the whole theory and
practice of the process had been established.

The experimental work had a flying start due to the
prewar work just described, and the scientists at Virginia
and Westinghouse soon developed the mechanical aspects
of the three main types of centrifuge disc, subcritical,
and supercritical —and successfully tested three methods
of operation of the centrifuge, the evaporative, the con-
current, and the countercurrent methods, respectively.
Dirac, as already mentioned, contributed some fundamen-
tal studies, and Cohen and others worked out isotope dif-
fusion theory for the centrifuge at the non-steady-state
conditions required for a production rnachine. The com-
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piete theory of cascade design was also established, this
being necessary for both the centrifuge and the gaseous
diffusion process. Most of the work has been published
by Cohen (1951), but in the present context it is the iso-
tope separation theory which is the most important.
Cohen divided the work into two parts; first, he derived
the steady-state solution following the work of Bredig
(1895), and second, he derived the diffusion equation and
gave its solution for various modes of operation.

A. Steady-state conditions —the Bredig equations

The basis of the separation effect for isotopes is exactly
the same as that derived by Bredig. The mass difference
for isotopes, however, is small, so that the pressure ratio
across the rotor is only slightly different for the two iso-
topic species; thus the change of molecular abundance
from periphery to axis is also small. At 300 m/sec the
pressure ratio for U F6 is 575, and for U F6 it is 544.
The ratio of these two numbers, 1.056, gives the ratio of
isotopic abundance from periphery to axis and is called
the radial separation factor, or sometimes the equilibrium
simple process factor. This radial separation is the basis
of every production mode of operation of the centrifuge.
However, the output of a centrifuge is zero at equilibrium
conditions, since no isotopes are being withdrawn from
the rotor. To determine the solution for the nonequilibri-
um case it is necessary to consider the equilibrium pres-
sure distribution in the centrifuge as one of dynamic
equilibrium between sedimentation and diffusion.

Before examining this concept, however, it may be use-
ful to examine the numerical values of the equilibrium
pressure ratio and separation factor given by the Bredig
equations (6) and (7). At equilibrium, these values are, for
the maximum pressure ratio,

0.4 mm, and the hex atmosphere merges into a void near
the center, with only a few hex molecules randomly mixed

up with the light gas impurities, just as the earth s upper
atmosphere merges into space. At these low pressures the
central core of the rotor cannot contribute any useful
separation, with the result that the output at high speeds
increases only as the square of the peripheral speed in-

stead of fourth power as given by the Dirac law. This
same conclusion emerges from the hydrodynamic theories
discussed later.

A simple way of understanding the effect is to note
that the output, in this simplified description, is indepen-
dent of radius and depends only on peripheral speed. &t is
therefore permissible to compare the output at different
peripheral speeds at radii adjusted to give a constant set
value of the centrifugal acceleration at the periphery. For
a given peripheral speed this radius equals V /g&, where

g, is the set value of the centrifugal acceleration. At this
constant g~ value, the pressure distribution inwards from
the periphery will be independent of speed and will follow
the same barometric law. At high speeds it is permissible
to unwrap the centrifuge, as shown in Fig. 5. Then the
only effect of speed is to increase the useful area 2~aZ of
the centrifuge, and this, substituting for the radius a, is
proportional to the square of the peripheral speed.

The effect can be quantified by setting a pressure p&
below which useful production is impossible; the limiting
pressure could be so low that it is impractical to sustain
an axial flow or it could correspond to the transition from
laminar to molecular flow, when the relationship
pa=const breaks down. Once a limit is set, the max-
imum possible output can easily be calculated by perform-
ing the Dirac integration over the outer annulus, bounded

by the radius at which the pressure is p~ and the outer ra-
dius at pressure p(a). This gives an output equal to the
Dirac maximum, Eq. (3), reduced by an efficiency factor,

p (a)/p (i)=exp(MV /2RT),

and for the maximum radial separation factor,

(8)
e~ ——(2v/3 )(1—v/2A ), (10)

(aI3)„=exp(AMV /2RT) . (9) where

The theoretical maximum pressure ratio and maximum
separation factor above, together with the Dirac output
per meter given by Eq. (3), are summarized in Table II.
As can be seen, at the peripheral speeds used during the
early projects, the pressure ratio is reasonably small, and
it is possible to fill the centrifuge completely with urani-
um hexafluoride. Thus, if the wall pressure is set at
50000 Pa, the axis pressure at 300 m/sec is still at the rel-
atively high value of 100 Pa. At this pressure the mean
free path of hex is still sufficiently small, 0.02 mm, for
the gas to behave as a continuum with pD constant.

However, at higher speeds the theoretical pressure ra-
tios are unrealistic. The real situation is very similar to
that in the atmosphere. The pressure of uranium hex-
afluoride, set at the periphery, reduces exponentially as
one moves radially inwards, and falls by a factor of 10 in
the small distances given in Table II. After the pressure
has fallen by, say, four factors of 10, the mean free path is

v=ln[p(a)/p~] .

At high speeds the second term can be neglected; the
equation then shows that the efficiency is proportional to
the number of decades of pressure ratio that can be uti-
lized as one moves in from the wall and the efficiency is
inversely proportional to the square of the peripheral
speed. As mentioned earlier this result has been given by
theoreticians using more complicated and more rigorous
theories. These are discussed later.

An interesting aside is that if one sets the rotor radii to give

g~ ——10 m/sec and divides the resulting rotor area into the area
of the earth, one can calculate the potential separative output of
the earth. The earth, if covered with hex, would have an output
of 50& 10 tonnes of SW per year.
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TABLE II. Pressure ratio, enrichment factor, and separative work at various peripheral speeds.

V
(m/sec)

300
400
500
600
700
800
900

1000

6.35
11.29
17.64
25.40
34.57
45.16
57.15
70.56

Pressure Ratio
for

U235F

573
80~ 10'
46~10'
11~10"
10~ 10'4

41' 10"
66' 10"
44&&10"

1.056
1.101
1.162
1.242
1.343
1.469
1.628
1.825

& Umax

kg S%"/yrm

2.15
6.78

16.55
34.32
63.59

108.51
173.81
264.8

M) /a

0.181
0.102
0.0653
0.0453
0.0333
0.0255
0.0201
0.0163

H4/a

0.571
0.309
0.202
0.144
0.108
0.084
0.068

B. Sedimentation and diffusion

Before discussing these theories, it is necessary to re-
view the dynamic equilibrium between sedimentation and
diffusion in gases and solve the full diffusion equations
for isotope separation. This rather complicated theory of
dynamic conditions was worked out by various theoretical
physicists during the Manhattan Project and eventually
published by Cohen (1951). Full references to the various
scientists involved are given by Cohen and therefore are
not listed in the following summary.

It is known from the kinetic theory of gases that the
molecules in the atmosphere are in a state of continuous
motion and that the equations for the pressure distribu-
tion represent the statistical average for a large number of
molecules moving at random according to the Maxwell-
Boltzmann distribution laws. The pressure distribution in
a field of force also follows immediately from these laws,
and this is discussed in Appendix B. However, apart
from this molecular viewpoint using the kinetic theory, it
is useful, following Cohen, to consider the pressure distri-
bution as a dynamic equilibrium between the opposing ef-
fects of sedimentation and diffusion.

Sedimentation is the effect of gravity trying to pile all
the molecules in the atmosphere onto the surface of the

earth, or of centrifugal force trying to pile all the mole-
cules inside the rotor onto its wall. Sedimentation can
readily be calculated by various techniques in kinetic
theory, but possibly the easiest to understand is that de-
rived using the Nernst-Einstein concept of mobility.
Nernst and Einstein showed that the average drift veloci-
ty of molecules per unit of force, or "mobility, " is related
to the diffusion coefficient and equals DlkT. This rela-
tion gives the sedimentation rate in a field of force as the
product of the mobility, the force on the molecules, and
the density. Thus, in the atmosphere, for one molecular
species, mass m2,

sedimentation flow =um qgp .

The balancing flow, diffusion, is the natural tendency of
gases to spread out and try to erase pressure or concentra-
tion gradients; its value is given by Fick s law,

diffusive flow = Ddpldh . —

Equating the sedimentation and diffusive flows at equili-
brium, and integrating, immediately gives the standard
barometric formula

p=poexp( —Mgh iRT) .

FIG. S. Centrifuge rotor in planar geometry. At high speeds nearly all the gas is near the periphery, and it is permissible to unwrap
the rotor. The useful height for separation is constant at constant acceleration, so the output is proportional to 2m.aZ, which is pro-
portional to V .
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It is interesting to note that the sedimentation and dif-
fusive flows, given by Dp/H, are constant and indepen-
dent of height in the atmosphere. The reduction in densi-
ty with height is just compensated for by the increase in
mean free path and hence in the diffusion constant. The
result that Bp is a constant, one of the well-known deriva-
tions of the kinetic theory, is of considerable importance
in centrifuge theory because in every mode of operation it
determines the rate of product removal —see, for example,
the basic Dirac equation (3).

q =L/4vrZpD . (19)

The flow L is the inward convective flow of both isotopic
species over a total area of 2n.rZ. Therefore, the inward
convective flow of the light isotope, per unit area, is

concentration of the light isotope, but this is neglected in
this simplified analysis, originally given by Humphreys
(1939). In this mode of operation the optimum rate of re-
moval of the vapor is proportional to the length of the ro-
tor and the diffusion constant and therefore can be writ-
ten nondimensionally as

C. Equilibrium separation factor convective flow =2NqpD/r . (20)

The advantage of considering the atmosphere on the
earth or in a centrifuge as one in dynamic equilibrium is
that the method can easily be extended to calculate the
sedimentation and diffusive Aows for a single gas in a
mixture of gases and so to determine the separation fac-
tor. For example, consider the two isotopic components
of a binary gas mixture in the centrifuge, of densities p&

and pz, respectively. The total density and density gra-
dient in the centrifuge are given by

r dJ!dr+2Ar J= q(1+J—)J .

The Cohen solution of this equation is

J (r) =J(a)exp[A(a —r )/(1+q)],

(21)

(22)

giving

Adding this flow, with the correct algebraic sign, to the
sedimentation and diffusion flows gives the modified dif-
ferential equation

p =pM &N/R T+pM2(1 N) /& T, —

dp/dr =co r(p~+pq) .

(14)

(15) and

(a13),=exp[A ~/(1+q)] (23)

Using these equations, we obtain the sedimentation Aow
and diffusive flow, D dp&/dr, of the light isotope:

sedimentation flow= p, (m ~co r )D/kT,

diffusive flow =DM& (p dN/dr +N dp/dr )/8 T .

(16)

Setting these two Aows equal to each other gives the sim-
ple differential equation, again for the equilibrium condi-
tion,

r dJ/dr+2ArJ =0 . ,

5U/5U, „=4q/(1+q) (24)

Equations (23) and (24) are plotted in Fig. 6. As can be
seen, the maximum efficiency is 100%%uo and occurs when q
is unity and dJ/dr is exactly one-half of the equilibrium
value of —2i,rJ.

Although the evaporative centrifuge achieves the Dirac
maximum output, it operates by a batch process not easily
adapted to continuous production. It does show, howev-
er, that the maximum separative effect occurs when every

In this equation the dependent variable has been changed
from the concentration to the isotope abundance ratio.
Integrating gives the standard steady-state solution, Eq.
(7), for the variation of abundance ratio with radius.

In a production centrifuge this dynamic equilibrium is
necessarily disturbed as feed gas enters and the enriched
product and the depleted waste are withdrawn from the
centrifuge rotor. Cohen has set up the diffusion equation,
solved it, and optimized it for the three modes of opera-
tion investigated during the wartime project. The solu-
tions for these three cases are discussed in the following
sections.

(n(aP)~
(n(aP)~

100%

D. Evaporative centrifuge

In this model of operation a small amount of liquid is
introduced into the centrifuge, forming a layer at the peri-
phery, and thus creating a large reservoir of the isotopic
mixture. During the spinning of the rotor, vapor is re-
moved slowly through a shaft along the axis. In practice
the reservoir of liquid at the periphery is depleted in its

L/L 2

FIG. 6. Cohen theory for evaporative centrifuge, plotted from
equations in Cohen (1951). The maximum output, of 100 jo ef-
ficiency, occurs at a flowrate of Lo, when the radial gradient of
the abundance ratio is one-half of its equilibrium value.
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volume element of the rotor is working at one-half of the
equilibrium value. Dirac showed this in a more elegant
and general way, and this solution is included by Cohen
in his book.

E. The concurrent centrifuge

r dJ/dr+2K, r J=(LM/2~pD)dJ/dz . (25)

The solution of this equation, including the separation
factor and the separative work output, is given by Cohen
in terms of a parameter 8, which is an inverse function of
the feed flow per unit length of the rotor. This function
and the solutions can be written

The next method of operation investigated in the
Manhattan Project, the concurrent method, is illustrated
in Fig. 7. The gas mixture is introduced at one end of the
rotor, and two streams are taken off at the other end, one
from near the axis and one from near the periphery. As
developed by Beams, the two streams are confined to the
thin annuli shown in the figure. During the passage
through the rotor, the isotopic concentrations of the two
gas streams change, tending towards the radial equilibri-
um distribution. The diffusion equation, which includes
axial as well as radial mass balance, is given by Cohen as

L /Z =8npD/. 8 ln(a lb ),
aP=exp[A, (1 b /—a )(1—exp —8)], (27)

5U/5 U,„=4FG, (28)

where F is a function of the flowrate and G is a function
of the geometrical arrangement as defined in the nomen-
clature. The two functions both have the same maximum
value of 0.407 at a 8 value of 1.256 and b/a of 0.534,
respectively. The fact that these functions have the same
maximum value is a mathematical quirk of no
significance —the functions can be transformed, one to
the other, by setting exp —8 equal to (b/a) or vice versa.
At these optimum values,

CAP

L =32pDZ,

aP=exp(0. 51bMV /2RT),

5U=0.665U,„.

(29)

(30)

(31)

These optimal values are shown on the graph of output
against flow in Fig. 8.

F. The countercurrent centrifuge

RQTOR
WALL

The third mode of operation investigated by Beams and
Cohen, which was adopted as the choice for the proposed
production machine in 1944, is the system in which an
axial countercurrent flow of gas is induced in the rotor.
A thin axial Aow near the wall becomes enriched in the
heavy isotope as it moves along the wall. Similarly an op-
posing flow in the main body of the rotor carries gas en-
riched in the light isotope to the opposite end of the rotor.
This results in a concentration gradient in the axial direc-

WQRK

SHAFT

FIG. 7. Countercurrent mode of operation in Beam's centri-
fuge. Reversing direction of either stream gives the concurrent
mode (from Cohen and Kaplan, 1942, and Cohen, 1951).

L/' Dz 100
e

FICx. 8. Cohen theory for concurrent centrifuge (adapted from
Cohen, 1951). The maximum output, efficiency 66%, occurs at
a feed rate of 32')Z.
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r dJ/dr+2Ar J= [P(r)/2rrpD]dJ/dz . (32)

The simplifications involved in this integral have to do
with the radial concentration gradient and the effect on it
of axial back diffusion, as discussed in a more exact
theory given by Herman (1962). However, the main prin-

P—

tion similar to that in the radial direction. Then, if the
length of the centrifuge is much greater than its diameter,
the countercurrent has the property of multiplying the ra-
dial separation factor many times in one unit.

There are two variants of the countercurrent system.
The first, adopted during the Manhattan Project and
shown in Fig. 9(a), uses a forced countercurrent in a
"once-through" or "flow-through" system. The second
variant, used in the German and Russian projects and
shown in Fig. 9(b), uses a continuous internal counter-
current with only partial removal of the product and
waste flows at the two ends. The theory is similar for
both types, since an internal countercurrent can be con-
sidered as two of the ance-through systems joined togeth-
er, one acting as the rectifier and the other as the stripper.
This is indicated in Fig. 10 for two cases, one in which
the incoming feed gas enters the outer stream of the inter-
nal countercurrent, and one in which it enters the inner
stream.

The full diffusion equation for the countercurrent cen-
trifuge is rather difficult to solve analytically, but approx-
imate solutions are possible, following a method originally
developed by Furry, Jones, and Onsager (1939) for the
thermal diffusion column. Cohen, using this method, has
calculated the first integral of the diffusion equation,
which is
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FIG. 10. Two flow-through rotors joined to make internal
countercurrent rotor. (a) Feed enters outer stream; (b) feed
enters inner stream (adapted from Von Halle et a/. , 1965).

ciples can be followed reasonably well using the Cohen
solution, Eq. (32), which shows that the axial concentra-
tion gradient, and hence the efficiency, depends only on
the function

r
g(r)= I pm2mrdr . (33)

This function, usually called the stream function, defines
the mass flow of the countercurrent in the central core of
radius r, and its value depends on the magnitude and velo-
city profile of the countercurrent flow. Cohen solved the
differential equation (32) and gave his results in terms of
three definite integrals, P&, P2, and P3 of the stream func-
tion. If these integrals are computed for a given profile,
the efficiency can be written as

E=4gz/a P3 . (34)

iL ik il kk kk )k

The absolute value of the circulation required to achieve
this efficiency is

S=p)Sp/2($3)' (35)

G. Optimum profile of countercurrent

Up

0——
Up

0--—
dowfl

FIG. 9. Flow-through and internal countercurrents. (a) Flow-
through rotor, showing two-shell profile; (b) internal counter-
current, showing three pipes and ideal profile (adapted from
Kanagawa and Oyama, 1961, and Von Halle et al. , 1965).

Using this solution Cohen was able to examine the
properties of several types of axial velocity profile', in par-
ticular, he showed that the most efficient profile is one in
which the axial velocity w at a given radius is inversely
proportional to the pressure (or density) at that radius.
This condition, velocity times density equals a constant,
means that the axial mass flux in the inner countercurrent
is spread out uniformly across the rotor cross section.
This "ideal profile" is, of course, a mathematical op-
timum which is impossible to achieve in a real centrifuge
at even moderately high speeds. This is apparent from
the theoretical pressure ratios given in Table II—these
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pressure ratios become so great that there is no possibility
of achieving the inverse relationship with axial velocity.
As mentioned earlier, the central core of a high-speed ro-
tor is essentially a void. Nevertheless the ideal profile is
easy to calculate and is useful as a reference for compar-
ison with other theoretical or practical profiles. If this
ideal internal circulation is set up at a total flow value of
mSo and no product and waste flows are extracted, i.e., if
there is no feed flow, the solution given by Cohen reduces
to

b,MV v 2Z 2ma =exp
2RT d 1+m

(36)

p)
kMV W2Z

P (37)

This solution for the ideal profile was originally derived
by Cohen and Kaplan (1942), but not published until
1960. In the meantime it was derived independently by
Los and Kistemaker (1958). Since the length-diameter ra-
tio of a centrifuge rotor is much greater than unity, it is
clear from Eq. (37) that it is possible to obtain a separa-
tion factor from end to end much bigger than the basic
radial separation factor given earlier by Eq. (7).

However, this maximum value cannot be attained in a
production centrifuge since, as always, it is necessary to
have some feed, product, and waste flow to obtain an out-

07-

0.5

0.4
LniaP)

0.3

0.2

0.1

0,

In this expression the efficiency term v E is included to
allow for less efficient profiles, to be discussed later. For
the optimum profile the value of E is unity.

The dependence of the axial separation factor on the
circulatory flow factor m is illustrated in Fig. 11. Clearly
at zero circulation there is no axial separation (and the ra-
dial separation achieves its maximum equilibrium value),
while at infinite circulation both the radial and axial
separation tend to zero. However, at the optimum flow
when the parameter m equals unity, the radial separation
gradient is just halved and the axial separation achieves
the maximum possible value of

r

put of separative work. The equations for these condi-
tions are also given by Cohen and are summarized here
only for the simple case of machines with one feed
stream. Two equations are necessary, one for the length
of the rotor in which the light isotope is enriched —the
"rectifier"—and one for the other length in which the
light isotope is depleted —the "stripper. " The equations
for these two parts, illustrated in Fig. 10, are

1+P]
Pi +exp[Aqp(1+Pi )]
—Wi +exp[A 2p(1+ Wi ) ]

1 —8)

(38)

(39)

L=npDd (1+mo)/0. 81Z,

aP —1 = [0.81A2po/~2)

(40)

(41)

The separative work from these values, given by
L (aP 1) /8 and divided —by the Dirac maximum, is

5U/5U, „=0.81Emo/(1+me) . (42)

This final equation for the output of the countercurrent
centrifuge shows that the overall efficiency depends on
three factors. The factor 0.81 is a loss associated with the
use of only one feed stream since the machine of Fig. 9(b)
is effectively a square cascade with an inherent loss of
19%. The profile factor E, already defined, is to allow
for the more general conditions of less efficient profiles.
The final factor expresses the necessity, in a rather round-
about way, of operating with a finite feed rate. The out-
put of the countercurrent centrifuge increases asymptoti-
cally with increasing feed rate, providing that at each feed
value the internal circulation is reset at its optimum
value. Thus, for a feed rate corresponding to mo ——3, say,
the overall efficiency for the optimum profile is 73%%uo.

In using these equations care must be taken to conserve
the mass balance of both isotopes —see Fig. 1—and the
total length of the centrifuge must be shared between the
rectifier and the stripper sections such that the desired en-
richment factor and depletion factor are obtained. Nor-
mally the enrichment factor and depletion factor are set
equal, to avoid mixing losses in cascades in which the en-
riched and depleted fractions move up or down by only
one stage.

For every given feed flow it is necessary, in order to
maximize the separation factor, to increase the total value
of the internal countercurrent flow to a new optimum
value. The new optimum value of this circulation, de-
fined as mo times the value for zero feed rate, is readily
found by iteration using Eqs. (38) and (39), or, more easily
at high flow rates, by the simplified but approximate
equations of Olander (1972), given in his detailed review
of the early work on centrifuges:

FIG. 11. Variation of enrichment with internal circulation.
The ordinate is 1n[2m/(1+m 2)]. The optimum separation fac-
tor for zero throughput occurs at m =unity.

40lander's equations (40) and (41) are effectively the first
terms of a power series of Cohen's equations suitably modified

by the factors 0.81 and E.
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In practice the efficiency factors cannot be separated
out so easily because of the effects of axial decay of the
countercurrent, a phenomenon to be discussed later. This
axial decay of the countercurrent towards the end of the
rotor diminishes the overall output by reducing the profile
efficiency, an effect partially compensated for by reduced
mixing losses in the decaying countercurrent.

However, these effects are neglected in the simplified
equations of Cohen and Olander. A comparison of these
two solutions is given in Table III for the two main
machines developed during the Manhattan Project. As
can be seen, the agreement is quite good, even at reason-
ably high enrichment factors. Thus it is normally suffi-
cient to use the simple Olander equations, and they are
particularly useful for comparing the countercurrent and
concurrent modes of operation.

H. Comparison of countercurrent
and concurrent machines

In the Manhattan Project both the countercurrent and
concurrent modes of operation were tested experimentally
at 270 m/sec, and both gave more or less the predicted
outputs. Normally the machines were operated with a
dual feed inlet, but for simplicity they will be compared
here for the single-feed design. The comparison given
here is taken from the paper by Cohen and Kaplan (1942).
As described earlier, the concurrent design has an op-
timum value of feed rate, giving a maximum efficiency of
66%%uo and a separation factor of about one-half of the
basic radial separation factor. The countercurrent
machine has an ideal efficiency of about 73%, but uses a
much lower feed rate, and has a separation factor much
greater than the basic radial separation factor. The effect
can be quantified by dividing the equations for the coun-
tercurrent machine by the values at optimum conditions
for the concurrent design. Thus

ratio of feed rates=0. 12(1+ma)/[(Z/d) ];
ratio of separation factors= 1.6[2mc/(1+ I0)][(Z/d )] .

These equations confirm that the feed Aow is smaller
and the separation factor larger the greater the length-
diameter ratio. Consider the two most important
machines developed during the Manhattan Project, one
with a subcritical rotor of length-diameter ratio of five,
and one supercritical with a rotor three times longer. For
the subcritical rotor, Eq. (43) gives the ratio of feed flows
at m =3 as twenty; for the longer supercritica1 rotor, the
ratio of the flows is 180. The actual values are listed in
Table III.

Thus the first major advantage of the countercurrent
centrifuge is that it makes it much easier to extract the
gas; not only is the flow very much smaller but, in can-
tradistinction to the concurrent machine, the enrichment
is from end to end, so that fractions can be removed from
near the periphery where the pressure is higher. An im-

portant incidental advantage is noted by Cohen and Ka-
plan. Removal of the product and waste flows is one of
the major causes of power loss in a centrifuge, so the con-
siderable reduction in feed flow has major beneficial
consequences for both machine and plant design.

The second major advantage of the countercurrent
design is the increased separation factor, making possible
great simplification in cascade shape. To appreciate this
advantage it is not necessary to discuss cascade theory in
detail, since the two most important parameters of the
cascade, its size and length, can be determined by elemen-
tary algebra. First, using the concept of separative work,
one obtains the total number of machines in a cascade by
dividing the separative work of the cascade by the separa-
tive work of the individual machine. Second, since each
stage of a cascade multiplies the abundance ratio by o.' go-
ing up the cascade (the rectifier) and divides it by a going
down the cascade (the stripper), it follows that

s =1neo/lna,

t =lnPo/lna,

(45a)

5This applies for the standard cascade case of a =P.

where s is the number of stages in the rectifier, o,o is the
total enrichment achieved by the cascade, t is the number
in the rectifier, and Po is the total depletion of the cas-
cade. Since the feed stage does one enrichment and one
depletion, it counts twice, so the total length of the cas-
cade is (s+ t —1).

Cohen and Kaplan discussed this advantage with refer-
ence to the wartime plants, but here it is more relevant to
consider the 220-tonne plant described earlier. The
theoretical separative power of the Manhattan long
machine is 4.26 kg SW/yr operated in the concurrent
mode and 4.70 kg SW/yr operated in the countercurrent
mode. Dividing these values into the 220000 kg SW/yr
of the plant shows that 52000 or 47000 machines would
be required, respectively, for the two modes of operation.
This is not much of a difference, but the difference in
shape is considerable. Applying Eq. (45) shows that the
concurrent machine would have to be arranged in a long
narrow cascade of 157 stages, each effecting a change of
concentration of only 1.014, whereas only 11 stages, each
effecting a change of 1.20, are required for the counter-
current mode. Cohen and Kaplan decided that it would
be difficult to control the long thin cascade of concurrent
machines and opted for the countercurrent design in their
final report in January 1942 to the Manhattan Project of-
fice.
To quote,

"We may say without exaggeration that the problem
of running a successful cascade does not exist for coun-
tercurrent centrifuges. In general the advantages of the
countercurrent centrifuge are its great flexibility, allow-
ing us to determine widths, lengths, temperatures, and
peripheral velocities on purely mechanical grounds; the
elimination of the cascade problem; and the diminution
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TABLE III. Comparison of exact and approximate solutions for rotors of 100 mm radius, V=300
m/sec, T =300 K.

Countercurrent mode

Feed
rate

mg/sec Cohen Olander

Length=1 m
Enrichment factor Feed

rate
mg/sec Cohen Olander

Length=3 m
Enrichment factor Optimum

circulation

17.3
34.6
58.8
89.9

1.089
1.077
1.067
1.058

1.088
1.076
1.066
1.058

5.77
11.53
19.6
30.0

1.281
1.207
1.160
1.130

1.263
1.197
1.155
1.126

1.014
Concurrent mode

2100 1.014

of the power loss in the bearings. Since pumping gas and
friction are the sole expenditures of energy in the centri-
fuge plant, the countercurrent centrifuge separation plant
will be the most economical to run, by several factors, of
all the plants considered. And since operation of a cas-
cade is the chief obstacle to the transition from small-
scale to large-scale production, the countercurrent centri-
fuge is the most suitable apparatus for immediate pro-
duction of U F6."

IV. PRACTICAL FLOW PROFILES

A. Two-shell profile

[1—(b2/g2)]2
ln(a /b )

(46)

Similarly, the internal circulation from the generalized in-
tegrals is

Following the demonstration by Cohen and Kaplan of
the great advantage of the countercurrent machine, all of
the work in the period under review concentrated on op-
timizing this mode of operation. The optimum profile
derived by Cohen is a rnathernatical ideal giving the best
isotope diffusion between the opposing countercurrent
flows. However, the three main experimenters, Beams,
Cxroth, and Zippe, made no attempt to achieve this ideal
profile; they used velocity profiles which aimed for the
highest possible efficiency within the limitations set by
the respective designs of their machines. The difficulty is
that the flow patterns which actually occur within a cen-
trifuge rotor are governed by hydrodynamic equations,
none of which are concerned with isotope diffusion or
even with the fact that the gas is a binary mixture.

The theoretical problem of solving these hydrodynamic
equations was avoided in the Manhattan Project by the
decision to use external pumps to circulate the gas
through gas ports in the end caps, which confined the
countercurrent to two opposing thin streams, as shown in
Fig. 7. The efficiency of this type of profile, derived from
the generalized Cohen integrals and given in Appendix C
is

5 =So/2[in(a/b)]'~ (47)

At low speeds, when the pressure ratio is small, the
inner shell can be positioned at the optimum radius ratio
of b/a of 0.534, the same as for the two-shell concurrent
machine. At this radius the profile efficiency is 0.81 and
the optimum integral circulation at zero product rate is
0.61Sp. The overall efficiency of this optimum two-shell
profile is obtained from Eqs. (40)—(42) by setting E equal
to 0.81; it is about 59% at mo ——3.

However, a problem with this two-shell profile is that
to obtain the optimum mass flow at the position of the
inner shell requires a high gas velocity because of the low
pressure. For example, at 300 m/sec the density at the
inner shell is only one-hundredth of that at the perimeter,
and so the gas in this inner shell has to move at a very
high axial velocity. As the speed is increased the pressure
at the optimum radius of the inner shell becomes too low
to maintain the required mass flow, and it is necessary to
move the shell out to a position at a higher pressure. The
effect is discussed in the review by Von Halle, Hoglund,
and Shacter (1965) and can easily be quantified. Thus, if
the pressure at the shell is set at one-hundredth of the
peripheral pressure as in the Beam's machine (actually the
pressure ratio was 94), the required radius of the inner
shell is given from Eq. (6) as

2 [1—(b /a )]=ln100 . (48)

b/a =1—(v/2A ) . (49)

Inserting this into Eq. (46) gives the approximation

E=2v/A (50)

This is the same as the first approximation of Eq. (10).
Similarly, Eqs. (47) and (49) give the approximate internal
circulation as

Inserting this value of b/a into the efficiency equation
(46) gives the values listed in Table IV. The result at high
speeds is very similar to that given by the simple equation
(10). If the pressure at the inner shell is set at the same
limiting pressure p~, then the first Taylor expansion of
Eq. (48) is
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TABLE IV. Profile efficiency of two-shell and thermal profiles.

Radius
ratio

Two-shell profile
Flow Profile
ratio efficiency

Thermal profile
Flow Profile
ratio efficiency

300
400
500
600
700
800
900

1000

6.35
11.29
17.64
25.40
34.57
45.16
57.15
70.56

0.534
0.773
0.862
0.906
0.932
0.948
0.959
0.967

0.63
0.99
1.30
1.59
1.88
2.17
2.46
2.74

81
63
45
32
25
19
15
12

1.94
2.49
3.06
3.64
4.22
4.81
5.39
5.98

70.2
52.6
37.8
27.8
21.2
16.5
13.3
10.9

S/So ——(A /2v)'i

This work on the two-shell profile, together with
theoretical work by Cohen and the experimental work by
Beams, virtually marks the end of the centrifuge develop-
ment which can properly be ascribed to the Manhattan
Project. The last theoretical work to be done during the
project was that of Dirac on the stability of the axial
countercurrent, and this will be described later.

B. Hydrodynamic theory

Most of the theoretical work in the German and Rus-
sian projects was concerned with the solution of the hy-
drodynamic equations which govern the shape and size of
the axial countercurrent. There are six equations: the
equations of motion for each of the three coordinates, the
equations of conservation of mass and of energy, and the
equation of state. There is the added complication that
for high-speed centrifuges the gas conditions vary from a
continuum at high Mach number at the periphery to free
molecular flow at the center. These six equations are
given and approximate solutions of them are discussed in
more detail in American and British work by Parker and
Mayo (1961)and by Whipple (1962).

However, important solutions of particular aspects of
the theory were given earlier by Martin, Dirac, and Steen-
beck. These early solutions were in two parts. The first
part was concerned with flow conditions at the ends of
the rotor, where there is good heat transfer between the
end fittings and the process gas. The good heat transfer
enables one to set up radial flows and so calculate the
flow profile of the thermal countercurrent, as was shown
by Martin (1950). The second part of the theory consid-
ers flow in the main body of the rotor, where there is poor
heat transfer and radial flow is inhibited. Thus a counter-
current, once set up, will continue along a considerable
length of the rotor and will decay away only slowly. The
eventual decay is caused by the viscous drag between the
various annular layers of the countercurrent, which travel
along the tube at different axial velocities.

C. The thermal profile and friction profile

The solution of the hydrodynamic equations at the ends
of the rotor involves boundary layer theory, a subject first

studied by Prandtl in 1904 and now an established sci-
ence. By a fortunate coincidence there were two early and
exact solutions of boundary layer hydrodynamics of direct
relevance to the centrifuge, which aid in understanding
how axial countercurrents are set up. These two exact
solutions of the Navier-Stokes equations are for the case
of an incompressible fluid; the first, given by Cochran
(1934), is for the flow of initially stationary fluid in the
neighborhood of a rotating disc, and the second solution
is for the converse case, solved by Boedewadt (1940), of
rotating fluid impinging on a stationary surface. These
solutions and the modifications by Martin and Whipple
are discussed in more detail in Appendix D and are sum-
marized here only insofar as they are relevant to separa-
tion efficiency.

Consider first the thermal countercurrent, which is set

up by having one end cap hotter and the other colder than
the circulating gas. The mechanism is that the gas near
the hot end cap is heated and rises in the centrifugal
field —moving radially inwards —and the gas at the cold
end cap does the opposite. The net effect of these end
flows is to set up an axial countercurrent, with an inner
flow from the hot end to the cold end and with an outer
opposing flow. The stream function, which is the total
mass flow inside a given radius r, must equal the inner ra-
dial flow across the hot end cap at this same radius. This
equality was used by Martin in his calculations. He first
showed that the radial flow at the hot end cap is confined
to a layer sufficiently thin for adequate heat exchange be-
tween the gas and the end cap. The radial velocity of this
flow is of course zero at the cap surface, rising to a max-
imum within the boundary layer and then falling to zero
again at distance 52. Beyond this distance, as is normal in
boundary layer theory, there are small decaying oscilla-
tions of the radial flow, but these can be safely neglected.

The method used by Steenbeck and Zippe for setting up
the countercurrent is similar in principle, but instead of
using a temperature perturbation to cause an inward flow
at the ends of the rotor and a resulting axial flow, they
used a perturbation of the rotational speed. In practice
they used a stationary surface such as a disc at the drive
end (equivalent to the hot end of a thermal drive), giving
the effect indicated in Fig. 12. There is no exact solution
for such a drive. However, for the present purpose it can
be assumed that the friction drive is set up by having a
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f(r) =f(r)(AT/T 2—hco/co) . (52)

The countercurrent in the central region of the rotor is
from the hot and/or slow end, with the return flow in the
opposite direction confined to a thin layer near the peri-
phery.

If the perturbations are small it is possible to linearize
the hydrodynamic equations and obtain approximate
solutions for the stream function. At low speeds the solu-
tion of Boedewadt (1940) is reasonably accurate, whereas
at high speeds that of Martin (1950) is more appropriate.
Thus at low speed

P~(r) =f~ (r)(b.T/T 2hco/—co),

where

f&(r) =mr(rjoop). '~ l2, (53)

and at high speed

$2(r) =f2(r)(&TIT 2&~/~),—
where

f2(r)=~(x. T /rj)' (2rp)'~ /co . (54)

5 10 I5

DISTANC, E —UNITS (~('/q) /a

FIG. 12. Rotation near stationary disc, showing variation of
gas velocities with distance from disc. Radial velocity=rcuF;

tangential velocity = r coG; axial velocity = (geo /p )
' H. Most of

the radial flow is within the boundary layer thickness given by
Eq. (133). The upward flow, above the boundary layer, tends to
a constant velocity of 1.38(geo/p)' and carries on indefinitely
until dissipated by viscous forces. (From Schlichting, 1951,
courtesy of McCsraw-Hill. )

disc at each end of the rotor, one spinning slightly faster
than the rotor and one slightly slower. Thus if the gas in
the body of the rotor is at temperature T and spinning at
angular velocity co and (a) one cap is at temperature
Z +b, T and speed co —b,co and (b) the other cap is at tem-
perature T —hT and speed co+Aco then the stream func-
tion will be of the form

With these stream functions, defined by Eqs. (52)—(54), it
is easy to calculate the separation efficiency using the
Cohen integrals. The calculations for the low-speed ap-
proximation are especially easy, and the results are given
in Table IV. The calculations for the high-speed approxi-
mation involve numerical integration but are almost iden-
tical because in both stream functions the dominant vari-
able is the square root of the density. A unified solution
for both speeds was given by Whipple (1962).

As shown in Table IV, the profile efficiency is reason-

ably good at low speeds but falls off rapidly at higher
speeds, tending in the limit to 8/A . The reason the effi-
ciency falls off with speed is much the same as that
described for the two-shell profile; too much of the useful
axial countercurrent is concentrated near the periphery.
This is because the velocity profile of the thermal coun-
tercurrent, obtained by differentiation of the stream func-
tion, is one in which the axial velocity is approximately
proportional to the inverse of the square root of the pres-
sure instead of the inverse of the pressure, as required for
optimum separation. Thus, moving inward from the peri-

phery, the axial velocity increases less quickly than re-

quired for optimum separation. The combination of the
low axial velocity and the low pressure near the axis
means that the central region of the rotor contributes
hardly any useful mass flow to the axial countercurrent,
and hence hardly any separation. The effect is much the
same as that given earlier using the Bredig solution in Eq.
(10)

V. STABILITY OF THE COUNTERCURRENT

A. Stabilizing forces

All of the three practical countercurrents described, i.e.,
the two-shell profile used by Beams, the thermal counter-
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(b) Centrifugal force I'
&

(Qp)rc——o,
dFi 2(gp)rco ——dco

4(gp)co dr . — (55)

This small restoring force for a small displacement cor-
responds to the standard equation for simple harmonic
motion; it shows that if a packet of gas is displaced from
its equilibrium position it will oscillate at an angular fre-
quency equal to twice the angular speed. The particle of
fluid thus moves back to its original position twice per re-
volution. This same result is given by Tritton (1977) us-

ing a rather more exact physical picture by consideration
of the Coriolis force.

The second stabilizing force, based on the conservation
of energy, is due to the change of density caused by adia-
batic cooling or heating and is well known in the theory
of the atmosphere. If the same packet of gas moves in-
wards in the main body of the centrifuge, away from the
end walls, there is no way it can exchange heat with its
new surroundings, so its temperature will fall according
to the standard adiabatic equation:

current used by Groth, and the friction drive used by
Steenbeck and Zippe, are set up at the ends and it is as-
sumed in the calculation of the countercurrent efficiency
that the circulatory flow remains of constant shape and
magnitude as it progresses along the rotor. In fact, of
course, the flow patterns decay as they progress along the
rotor, due to viscous drag between the layers. However,
the effect is very slow because there are two powerful sta-
bilizing forces sustaining the countercurrent for a reason-
able distance along the rotor. One force is based on the
conservation of angular momentum, this being more im-
portant at low peripheral speeds, and the other force is
based on the conservation of energy, and this is the more
important at high speeds.

The first stabilizing force is the one used in the early
theory of Dirac (1940). Its magnitude is easily calculated
from the principle of angular momentum. Thus if a
packet of gas of volume Q strays inwards from its correct
radius its angular velocity will increase, giving it an
enhanced centrifugal force pushing it back again:

(a) Angular momentum Ico=(gp)r co,

d(Ico)/dr =(Qp)(2cor+r dco/dr) =0,
dco= (2co/r)dr . —

adiabatic force=grco bp

=Qprco f(y 1—)/y]br/H . (57)

The ratio of the adiabatic to the Dirac force is given by

B=(y—1)Mco r /4yRT . (58)

This number relates all the high- and low-speed approxi-
mations of boundary layer theory, and equals unity for
UF6 at about 700 m/sec, the exact speed depending on the
temperature of operation. Thus above 700 m/sec the adi-
abatic force is larger than the stability force, due to the
conservation of angular momentum, and vice versa.

B. Decay lengths

In Dirac s first investigation of this problem he neglect-
ed the adiabatic force and made the further simplification
of assuining that nearly all of the gas is near the pe-
riphery, which is true only at high speeds. This approxi-
mation is an artifice for treating the problem as one in
planar geometry and writing the equation for the pressure
distribution, Eq. (6), in the simpler form

p (h) =p (a)exp( h/H), — (59)

where H is the height of the homogeneous atmosphere or
the scale height. Making this high-speed approximation
and neglecting, slightly inconsistently, adiabatic effects,
Dirac searched for flow patterns which stayed the same
shape but whose amplitude decayed exponentially with
axial distance along the rotor. These natural or eigenflow
profiles formed a set of flow patterns, illustrated in Fig.
13, from which other more complicated patterns could be
built up.

In his paper Dirac gave the decay length only of the
first natural flow pattern. He showed that this flow pat-
tern decreased in magnitude by a factor of e in a distance

ZD ——pa 8 T /1. 2gV (60)

This is the first equation in centrifuge theory to show a
dependence on the absolute pressure p at the periphery of
the centrifuge and on the diameter, and so give some in-
formation regarding the best values of these parameters.
The same equation was also derived independently by
Steenbeck (1958) during Soviet work on the centrifuge.
Steenbeck quotes his results in the form

b T/T=[(y —1)/y]bp/p

=[(y—1)/y]5r/H =b,p/p .

This is equivalent to the well-known expression for the
"adiabatic lapse rate, "which in the terrestrial atmosphere
is 12 C per km but in a high-speed centrifuge can be as
high as 15 C per mm. The associated change of density
dip caused by the cooling gives the packet of gas a consid-
erable force restoring it to its original position. This re-
storing force is given by the equation

FICx. 13. Approximate flow profile of first three eigenmodes
(from Steenbeck, 1958).
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ZD ——pVa /2qC, (61)

104

D~ 103
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FKx. 14. Variation of Steenbeck decay factor with speed (from
Steenbeck, 1958).

where the parameter C is a constant for each eigensolu-
tion. According to Steenbeck, the constant for the first
natural flow pattern tends at high speeds to the value
4.82M . Rearrangement of the parameters shows that this
is the Dirac solution. Steenbeck has also given the decay
length for lower values of the speed parameter A, summa-
rized in Fig. 14.

Although Steenbeck was unable to calculate the decay
lengths for the higher modes for a compressible fluid, he
did so for the incompressible case, giving values of C of
20.7, 99.6, 300, and 550 for the first four modes. As
shown by these constants, the higher modes decay much
more quickly than the fundamental —for example, quot-
ing from Steenbeck a 10-mm-diam tube filled with water
and spinning at 5 rev/sec has decay lengths of 94, 19, 6,
and 3.5 m for the first four modes. Thus no matter what
the initial flow profile it will rapidly decay to the first
eigensolution, and then this itself decays exponentially.

Both Dirac and Steenbeck recognized that their calcu-
lations underestimated the decay lengths, since they
neglected the stability due to adiabatic effects. This omis-
sion in the theory was rectified by more exact calculations
performed at the University of Virginia, by Ging (1962)
using an analytical solution and by Parker and Mayo
(1963) using numerical solutions. Ging, still using the
high-speed approximations, showed that the Dirac decay
length should be increased by a factor (1+A )'~ where 8
is the ratio of the adiabatic and angular momentum
forces.

The numerical solutions of Parker and Mayo were far
more general than the analytical solutions, in that they re-
quired no serious simplifications, particularly the high-
speed approximation. In general, however, the calcula-
tions confirmed the correctness of the Dirac equation as
modified by Ging, which gives the decay length of the
first characteristic flow pattern. This numerical work
also showed that the higher modes decayed away at ap-
proximately the same relative rate as that given by Steen-
beck for an incompressible fluid —the numerical solutions
give a decay length for the first, second, and fourth modes
in the ratio of 1:5.6:—:34in fair agreement with the

Stennbeck ratio of 1:4.8:14.5:27. (The decay length of the
third mode was not given. )

It is perhaps surprising that the decay length of the
countercurrent decreases rapidly with peripheral speed-
as 1/V —since both of the stabilizing forces increase
with speed. At least part of the explanation is that, as the
speed is increased, the shape of the characteristic flow
pattern changes as it is confined more and more to the
outer periphery. Numerous calculations by Parker show
that the interface between the opposing flows of the coun-
tercurrent is about 1.4 scale heights in from the rotor
wall. Since this distance decreases rapidly with speed —as
1/V —the velocity gradient and dissipative viscous force
increase with peripheral speed.

A simplified understanding of this changing shape of
the characteristic flow pattern can be given as follows.
Consider first a rotor spinning with no axial perturbation.
The pressure distribution will then be the same at all axial
positions, and there is no driving force for the axial flow.
Then partition off each axial section and superpose a
linear perturbation of the term MV /2RT along the rotor
by means of, say, a temperature gradient. The pressure
distribution will then change in each partitioned section
according to the standard equation (6), the gradient being
greater in the colder sections. Differentiation of the pres-
sure equation, at constant hold-up per section, shows that
the pressure in each compartment is unaltered at the radi-
al position in the rotor where the pressure has fallen by e.
Then, if the partitions are removed, gas will flow up and
down with the interface at this position, which is just one
scale height in from the wall, a bit closer to the wall than
calculated by Parker.

C. Prof&le efficiency

The most important result of Parker and Mayo in the
present context is that given for separation efficiency.
They calculated the efficiency, using the Cohen integrals,
for a countercurrent equal in profile to that of the first
characteristic flow pattern but assuming that it had a con-
stant and optimum value along the length of the rotor.
The change of shape of the fIow pattern as it gets pushed
to the outer wall results in a change of efficiency with
speed similar to that of the thermal profile. The results,
given in Fig. 15, are slightly lower than those of the
thermal profile and according to Yon Halle (1980), tend
at high speed to 7.2/A, about 10% less than the corres-
ponding equation for the thermal profile given earlier.

ACKNOWLEDGMENT

The author wishes to thank Mr. A. Johnson, Director
of the Enrichment Division of British Nuclear Fuels Lim-
ited, for permission to publish this article.

APPENDIX A: SEPARATIVE WORK
AND CASCADE THEORY

Separative work

Probably the most important theoretical result in cen-
trifuge technology is that of Dirac (1941), who showed
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However, rearranging the equation immediately gives the
minimum energy required per unit of separation work, as

Tb S /EU=RTN(1 —N)

o.e
=a maximum of RT/4 . (A2)

0.7

0.6

0.5

This amount of energy, which is very small, assumes that
the process is thermodynamically reversible. The actual
energy used in real processes is much greater, as will be
discussed later, after the application of the Peierls equa-
tion to enrichment systems.

0.3

2. Entropy and separative work assuming small
enrichment factor

0.2

I

3 4 5
SPEED FACTGR A

7 8 9

S =—R [NlnN+(1 —N)ln(1 —N)] . (A3)

Consider first a separation process of small enrichment
factor, which converts L moles of feed into L/2 moles of
product of increased concentration 5 and L/2 moles of
waste of decreased concentration b.. The entropy of mix-
ing of one mole of the feed gas is

FIG. 15. Profile efficiencies for various velocity profiles —the
thermal profile using the Martin (1950), Eq. (54), the eigensolu-
tion of Parker and Mayo (1963), and the low-speed approxima-
tion for the thermal profile, Eq. (53). The crosses give the two-
shell efficiency given in Table IV (adapted from Von Halle
et a/. , 1965).

EU=Lb, S /RN(1 N) . — (A 1)

The entropy change is divided by the gas constant R to
make it dimensionless. The units of hU are then the
same as the units of I.. This terminology is to some ex-
tent misleading, since separative work has nothing to do
with the work or energy required to separate the isotopes.

that, irrespective of the mode of operation, a centrifuge
has a maximum possible value of output given by Eq. (3)
in the text. The output of a centrifuge is usually called
"separative work, "and its rate of output is called "separa-
tive power. " These functions are not easy to define, but
clearly the output is proportional to the throughput and is
some function of the change of enrichment achieved.

At first sight the obvious function to use to define the
usefulness of the separating process is the decrease in en-

tropy that has been achieved. This, after all, is the main
object of the process, to achieve the order of separated
isotopes from the disorder of the mixture of isotopes.
Unfortunately the decrease of the entropy of mixing can-
not be used as a measure of the separative effort because a
separating unit costs as much and uses as much energy
whether it is fed with a gas containing a mixture of iso-
topes or with a gas containing only one isotope. The cen-
trifuge can only separate isotopes in proportion to the
probability of its being able to find and pair unlike mole-
cules, and this is N(1 N). It is then po—ssible, following
Fuchs and Peierls (1941), to modify the entropy change
and define separative work for L moles of gas as

Therefore, the change in entropy achieved during the
separation is given by

5 S =L S (N) —,' L S (N +—6)—,' L S (N b.)——
= —,LR dPd S /dN

,'LRh /N(—1—N) .

This result is obtained by the Taylor expansion

S (N +b, ) = S (N)+ h d S /dN + (b, /2! )d S /dN

The Peierls equation (Al) then gives

b, U= , Lh /N (1——N)

(A4)

(A5)

Simple algebraic manipulation shows that the increase in
product concentration and the decrease in waste concen-
tration are related to the separation factor by the equation

h=(a —1)N(l —N)=sN(1 N) . — (A6)

This finally gives

b, U= , L(a —1) = —,Le— (A7)

3. Entropy and separative work assuming large
enrichment factor

These equations are valid only for small changes of
concentration, when the concentration N in Eq. (Al) is ef-
fectively constant. In the process of achieving a larger
separation, the concentrations N and (1 N) are gradually—
changing, so to get the total effect it is necessary to divide
the differential change of entropy at each stage by
N(1 —N) and then reintegrate to get the total separative
effort. However, just as Eq. (A4) was derived from the
second derivative of the entropy function, it is permissible
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to consider Eq. (A5) as the second derivative of a new
function, to be called the "value function. " Thus in-
tegrating the function 1/N (1 N—) twice with respect to
N gives

molecular expansion of the gas across the minute oriflces
of the separating barrier. The energy consumed per ele-
ment is given by the standard equation, similar to Eq.
(A13), as

P (N) =(2N —1)ln[N/(1 —N)] . (AS) Tb, S =LRTlnf, (A14)

Provided one is interested only in changes of this func-
tion, the arbitrary constants of integration are unimpor-
tant. The separative work in a process can now be de-
fined in a more general way as

b, U =PF (P)+ WW( W) LF—(L) . (A9)

This equation can be used as it stands, but a useful simpli-
fication can be derived for the symmetrical system shown
in Fig. 1. Simple algebraic manipulation shows that in
this case the product flow, waste flow, and separative
work are given by

where f is the pressure ratio across the orifice. This gives
the power usage. Consider now the separation. Forward
effusion will give separation according to the law of
equipartition of energy, i.e., Graham's law, and backward
effusion will tend to diminish the separation. Thus

s =Eo(1 f)—
where

ep ———,(M /iMi)'i =b,llf/4M .

Thus, from Eq. (A7), the separative work is

P = [L/(1+ a) ][1+(a —1)N],

W = [aL/( I+a)][1+(I/a —1)N],

5U =L [(a—I)/(a+1)]lna .

(A10)

(Al 1)

(A12)

b, U= ,'L(1—f—)eo .

Dividing out and optimizing for the pressure ratio, at
f=0.285, gives the minimum power for effusion as

If (a —1) is small Eq. (A12) tends to the value given by
Eq. (A7).

4. Energy usage in separation

The main advantage of the centrifuge plant over the
diffusion process is its much lower energy usage. This
advantage is so great that the diffusion plant in the UK
has now been closed down, even though its capital has
been written off. It is important, therefore, to understand
the main physical principles involved in the energy usage
of these two processes.

First, consider the entropy of mixing, Eq. (A3). This
can be derived in a variety of ways, but the proof given by
Roberts (1928) is important in the present context. He
shows, using an experiment of principle which employs
idealized semipermeable membranes, that the energy re-
quired to separate isotopes completely is zero if the
separated components end up at their original partial
pressures. The entropy change given by Eq. (A3) is that
required to recompress each gas back to the original total
pressure. This energy, for the complete separation of L
moles of gas mixture, has a maximum value at N =0.5 of

Th S/EU =2.5RT/eo . (A15)

This simple equation is about double the correct value
for a properly optimized diffusion plant —for example,
see London (1961)—but the difference is unimportant
compared with the fact that the value for a diffusion
plant is 1.1&10 times larger than the minimum value
given by Eq. (A2) for a reversible process.

6. Centrifuge process

The separation of isotopes by a centrifuge is often as-
sumed to be a reversible process, but in practice the power
consumption is many orders of magnitude greater than
the minimum value. In a production centrifuge the gas
has to be accelerated to full speed, the countercurrent
must be maintained, and the gas must be extracted from
the rotor. All of these processes involve energy losses of
the order RT per mole. Interestingly, the energy involved
in setting up the pressure gradient in the atmosphere
(equal to the potential energy of all the molecules) is also
RT per mole of gas.

The energy needed to accelerate one mole of gas to full
angular speed is easily calculated as

TA S =LRTln2 . (A13)
TA S =(A —1)RT . (A16)

In the real cases of the diffusion plant and the centrifuge
the energy used per separating element is similar to this
value, but the separation of each element is very small, so
the energy used per unit of separative work is much
greater than the theoretical minimum.

5. Diffusion plant

The diffusion process —more strictly, an effusion
process —is intrinsically irreversible because of the free

This energy of rotation could, in principle, be recovered,
but this is not true regarding the countercurrent flow,
which dissipates energy in the viscous boundary layers.
The magnitude of the flow, given in the text for the ideal,
two-shell, and thermal countercurrents, is generally
greater than the feed flow, but the change in energy is
rather less because, as the gas in the countercurrent
proceeds from its outer radius to the inner radius, it does
not lose all its kinetic energy (about 50%, 75%, and 67%,
respectively, for the ideal, two-shell, and thermal profiles).
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It is thus reasonable to accept the value given by Eq.
(A16) as a guide to the power usage. Dividing out gives

Tb, S /b, U=2A RT/e (A17)

Even at low speeds such as 300 m/sec, when c would be
only about 0.1, this equation gives a power usage over 100
times better than the diffusion plant, but still 10 times
higher than the theoretical minimum. In practice the
power usage in the centrifuge can be another order of
magnitude higher because the above analysis neglects the
power dissipated in the bearings.

7. Cascade

feed flow=K mole/yr, abundance J (A18)

product flow=K/(1+a ) mole/yr, abundance a J

The main use of the separative work function is that it
gives, by simple calculation, the total number of machines
required for a plant. However, it gives no indication of
how to connect them together in cascade to give the
correct output. The mathematical details of the design of
cascades have been given by Cohen (1951), so only the
physical principles will be given here. The algebra is par-
ticularly easy if both the cascade and the centrifuge are
symmetrical, as illustrated in Figs. 1 and 16. Thus, for
the symmetrical machine, the product flow, waste flow,
and separative power are given by Eqs. (A10)—(A12). By
analogy with these equations, and substituting a for a,
one gets the various flows and the separative power of the
1:2:3:2:1cascade of Fig. 16 as

tope by a factor of a, stage B by another factor a, and the
product stage by another factor, giving a product enriched
by u relative to the feed. Similarly stages C, D, and E
each deplete the feed by a, giving a total factor a . No-
tice that the feed stage is part of the enriching section
(rectifier) and also part of the depleting section (stripper).

The flows in Fig. 16 are easily derived, starting from
the product stage, with the mass balance rule that the
flows in the product, feed, and waste of each stage must
be in the ratio 1:(1+a):a. Using this rule ensures that
the centrifuge operates symmetrically, so there is no mix-
ing of flows of different isotopic mixtures. For example,
the feed for stage B is the waste of stage A mixed with the
product of stage C, and these clearly are of equal isotopic
abundance if each stage enriches by a and depletes by a.
Inspection of Fig. 16 also shows that the net flow moving
to the left across any imaginary line between the stages
equals the product flow (unity), and the net flow moving
to the right is equal to the waste flow a . At the common
feed stage at the junction of the rectifier and stripper, an
external feed must be provided equal to the product and
waste. Note that the flows are given for a product rate of
unity; therefore all the flows must be multiplied by
K/L (1+a ) to be correct for the present example.

The summation of all the feed flows in the cascade
clearly confirms that the total number of machines re-
quired in the cascade just equals the total calculated from
the separative power calculation, Eq. (A22), given earlier.
Simple extrapolation of the numbers given in Fig. 15 and
listed in Table V shows that for a symmetrical cascade of
(2n —1) stages, the summation of flows gives the required
number of machines as

waste flow=a K(1+a ) mole/yr, abundance J/a
(a+ 1)(a"—1) K
(a —1)(a"+ 1) L

(A23)

(A20)

a+1m —1K
No. of machines=3 a —1 (y3+1 L

(A22)

The correctness of Eq. (A22) in giving the total number of
machines can be confirmed by direct cascade calculation.
The sums are very easy if (a —1 )N is small, so that the
cut equals 1/(1+a)—see Eq. (A10). The method is indi-
cated in Fig. 16. The feed stage C enriches the light iso-

]+Ot, + Q(2 Q(+Q(+ Q(

,
C

Q(3
W

E

Q(+Q( )& Q(+Q(
F

(]+cd�)
FIG. 16. Simple symmetrical cascade.

separative power =K [(a —1)/(a + 1)]lna . (A21)

Dividing the separative power of the cascade by that of
the machine gives the number of machines required:

Actually Cohen and Dirac followed the logic given in this
appendix in reverse. They first calculated the equations
for an ideal cascade, then summed up for the total flow,
and from this derived the appropriate equation for separa-
tive work, making sure that the definition of separative
work was independent of the concentration of the feed
flow. Full details are given by Cohen (1951).

APPENDIX 8: PROOF OF ISOTHERMAL CONDITIONS
IN A CENTRIFUGE

Most modern expositions of the law of the
atmosphere =.g., that of Jeans (1916)—start with the
Maxwell-Boltzmann distribution law. This law states
that the number of molecules at a given height (or radius
in a centrifuge) is proportional to exp( EilkT), where-
the potential energy E& is m ~gh or —,

' m &r for a given

molecular species in the atmosphere and centrifuge,
respectively. This immediately confirms Eq. (5) for the
pressure distribution in the atmosphere and Eq. (6) for the
pressure distribution in the centrifuge. Moreover, this
distribution applies to each molecular species separately,

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984



Stanley Whitley: The gas centrifuge. Part I

TABLE V. Size of stages in symmetrical cascades.

No. of

stages

Summation

Stage

P

P

Abundance

ratio

1

1/a

a2

1+a
a
2(1+a)

Stage flow
(1+a)

Sum of stage flow

2 (a+ 1)(a —1)
(a —1)(a2+ 1)

(a+ 1)(a —1)
(a—1)(a +1)

Summation
1/a

1+a
1+a+a
a+a
a2

3(1+a+a )

2n —1

Summation
1/a"

1+a
1+a+a +a + . +a"
a+a +a + . +a"
an

n ( j. +a+a~+a3+ +a~)

(a+ 1)(a"—1)
(a —1)(a"+ 1)

so confirming Dalton's law and the separation equation
(7).

To confirm the isothermal hypothesis it is necessary to
apply the Maxwell-Boltzmann law in a more general way.
In kinetic theory temperature is a statistical concept with
a one-to-one relationship between temperature and the en-

ergy of the molecules. Equilibrium conditions occur
more rapidly at increased density because of increased
collision frequency (Kennard, 1938), but otherwise density
is not involved in defining temperature. When the equili-
brium state is set up between the translatory and other
forms of vibrational and rotational molecular energy, the
temperature of the gas is a function only of its transla-
tional energy. Thus, considering the translatory and po-
tential energy together, the energy of a molecule can be
written as

2E2 = Tm )c +m )gA

tential energy, they might be expected to lose speed and
have a lower kinetic energy and hence a lower tempera-
ture than those at low altitude. In fact, individual mole-
cules do lose speed on moving upwards (or gain speed if
moving downwards), but detailed calculations show that
the arrivals at the new height conform to an overall
Maxwellian distribution law of uniform temperature, in-

dependent of height, but at a reduced density. This is be-
cause the slower molecules at low altitude never reach the
high altitude at all. They follow parabolic paths and turn
back. Only the fast molecules penetrate to the high re-
gions, and in doing so they are slowed down sufficiently
so that their original high velocities are reduced to the
correct velocity for isothermal conditions to hold. Thus
the average velocity at the high altitudes just equals that
at the lower altitudes. For this to be exactly true requires
a close interrelationship between the Maxwellian distribu-
tion of velocities and the barometric equation, and indeed
either can be deduced from the other (Herzfeld, 1929).

2 i 2 2E2 ———,m&c ——,m ~co r

in the atmosphere and in the centrifuge, respectively.
If these energy equations are substituted into the

Maxwell-Boltzmann distribution law, the two terms
separate, showing that at each position in the force field
the molecular velocities are unaltered; only the number,
and hence density and pressure, falls with height or ra-
dius. Thus at each position in the force field the Maxwell
distribution law of velocity still holds, and so conditions
are by definition isothermal.

There is an apparent paradox in this reasoning, which
is discussed by several authors (e.g., Slater, 1939). This is
that, as molecules move upwards to points of higher po-

APPENDIX C: THE COHEN INTEGRAL

The Cohen equation (34) gives the efficiency for any
given flow pattern in a countercurrent centrifuge and Eq.
(35) gives the optimum value of the circulatory flow for
that flow pattern. Several flow patterns are discussed in
the review and in three cases the Cohen integrals can be
given analytically. The first two cases, the optimum and
two-shell profile, are mathematical specifications and the
integrals for these two profiles are listed in Table VI. The
third case is the low-speed approximation of the thermal
profile. The integrals for this profile are listed in Table
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TABLE VI. Mathematical profiles.

Integrals

2

S/Sp

Ideal profile

kr

ka
ka /4
ka/4
1

1

Two-shell profile

r =0 to b, t/i=0
r=b to a, g=S
S
S(a —b )/2
S 1n(a/b)
(1—Q /a ) /n(a/b)
1/2[in(a /b }]'

VII. Negative exponential terms are neglected in the final
two expressions for efficiency and flow.

APPENDIX D: PRINCIPLES OF BOUNDARY LAYER
THEORY APPLIED TO THE CENTRIFUGE

Low-speed approximation

TABLE VII. Thermal profile (low-speed approximation).

Integrals Thermal profile

r A rk exp
a 2a

Ak exp
2

' ka2 A2
exp

A 2
2 2+ exp

A A2 2

S/Sp

1 exp( —A 2)

2A2 A2

8 (1—2/A )

A 1 —1/A
A

1/2(A 2 ] )1/2

The complete solution of the hydrodynamic equations
in a centrifuge was not obtained in the early work on the
centrifuge, but the theories of Martin, Whipple, Exing, and
Parker and Mayo clearly showed the importance of boun-
dary layer formation on the various surfaces. The forma-
tion of the boundary layer and the resulting axial counter-
current are particularly easy to understand for the two
important exact solutions of the Navier-Stokes equations
for a rotating disc in stationary fluid and the converse
case of rotating fluid hitting a stationary surface. This
second case, which is almost a direct analogy with the
friction drive mechanism in a centrifuge, is demonstrated
by a well-known atmospheric phenomenon, the upward
axial draught in a whirlwind being caused by rotating gas
being slowed down by a stationary surface, spiralling in-
wards, and then fiowing axially upwards.

The mathematical solutions are described in several
textbooks, e.g. , that of Schlichting (1951), which includes
the Boedewadt (1940) solution for a rotating gas and the
Cochran (1934) solution for the rotating disc. The simpli-
fied solutions giveri here are not rigorous and are intended

only to describe the physical principles.
For example, consider the case of the rotating disc.

The layer of fluid near the disc is carried by it into a cir-
cular motion through the effects of viscous drag and is
then thrown outwards by centrifugal force. The fluid is
ejected at an angle of about 40 to the circumferential
direction, and its average outward velocity U

&
in the boun-

dary layer is therefore much the same as the average cir-
cumferential velocity of ,'cur —Th.e radial flow is replen-
ished by fluid that flows in the axial direction towards the
disc, to be, in turn, carried by the disc and ejected out-
wards, thus setting up an axial countercurrent. The
thickness 6& of the layer of fluid which can be carried by
the disc clearly increases with the viscosity of the fiuid;
this can be seen by balancing the viscous force trying to
keep the fluid in a circular orbit with the required cen-
tripetal force. Thus between r and r +dr one gets

g2mr dr d'or/61, -2mr dr 5(pre@

5 ( 'g /pco
(Dl)

As described above, the mean velocity U with which fluid
is ejected outwards in this boundary layer is ——,car. This
gives total ejected mass flow up to radius r (the stream
function) as

y, =2~ra, u, p

=m.r (pcs)'/ (D2)

5i n(glpco)'/——

U
&

——1.38cor /2m. ,

gi =1.38m r (pcs)'/

(D3)

(D4)

(D5)

The Cochran solution is a little more difficult, in that
the velocity peaks at the distance given by Eq. (Dl) and
decays slowly to zero after four or five boundary layer
distances. However, the total integrated flow is not much
different and is

The exact equations given by Cochran for the spinning
disc and Boedewadt for the spinning gas are not much
different. For example, in the Boedewadt analysis the gas
is stationary on the end cap (or ground), rising to a max-
imum at distance —,'6~ and then falling to zero again at
distance 5~. Beyond this distance are small decaying os-
cillations of radial flow as shown in Fig. 11. The con-
stants in the various equations are
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P)=0 8.86mr (Yicop) / and high-speed solutions, has been given by Whipple
(1962) and can be written

Taking the mean of Eqs. (D5) and (D6)—this by chance is
approximately equal to Eq. (D2)—and assuming the
stream function to be linear with the function
(AT/T —2bco/co) gives the equation for the stream func-
tion for low speeds given in the text.

2. High-speed approximation

1 1 12+ 2
U U1 U2

1 1 1

y4/3 y4/3 q4/3

(Dl 1)

(D12)

(D13)

The solutions above are applicable to a compressible
fluid in a centrifuge only at low speeds. At higher speeds,
the change of density as the gas rises or falls in the strong
centrifugal field gives rise to heating and cooling effects
of the gas and to strong buoyancy forces. These effects,
as well as the usual viscous forces, limit the flow in the
boundary layers —this is because it is necessary to ex-
change heat between the end cap and the gas. The gas
must be warmed and caused to rise (move inwards) at one
end cap and be cooled and caused to fall (move outwards)
at the other. Thus as gas comes along from the periphery
and moves radially inwards at, say, the hot end, the neces-
sary heat transfer can only extend over a small distance,
thereby limiting the thickness of the radial flow, and the
flow itself. The first solution of this problem was given
by Martin (1950) during the early centrifuge project in
Germany and has been discussed by Olander (1972).
Martin gave the equation for the flow, which can be writ-
ten in the form

53 m(2/rp)'/ (qtcT——)' . /to,

u2 ——(tcT/ri)' (b, T/T —2bto/co)/2', (D8)

glvlng

Q3= 27rr5+V2

which gives the equation for the stream function in the
main text.

3. General solution

The low-speed and high-speed solutions above are relat-
ed to each other by the nondimensional group B defined
in the text. Thus, denoting the low-speed and high-speed
solutions with subscripts, we have

'4 ' 2
~

'4/3

B=
52 V2

(D10)

The generalized solution, which includes both the low-

inward radial velocity=2~V2exp( —mz/52)sin(mz/5q) .

This is a typical boundary layer equation; the velocity is
zero at the end wall, at z =0, rises to a maximum value,
falls to zero again at a distance equal to the boundary
layer distance 53, and then rapidly decays away. (It actu-
ally peaks at about 4 52, at about double the mean velocity
u2. ) Martin gives the equations for the boundary layer
thickness and the mean velocity is

or
1

1+8

4/3

(D14)

As described in the text, the velocity of the radial flow

on the end walls must be zero on the surface and zero
again some distance away. Nearly all the radial flow
occurs in the boundary layer of thickness 5. The same
phenomenon also occurs near the perimeter of the rotor
because the velocity of the axial countercurrent is zero on

the rotor wall. The thickness of the boundary layer on
the side walls is a maximum at the rotor midplane and is
given by Whipple, for the antisymmetric conditions de-

fined by Eq. (52), as

5~ ——(Zg/2mpco)'/ (1+8)'
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