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Some turbulent solutions of the unaveraged Navier-Stokes equations (equations of fluid motion) are re-
viewed. Those equations are solved numerically in order to study the nonlinear physics of incompressible
turbulent flow. Initial three-dimensional cosine velocity fluctuations and periodic boundary conditions are
used in most of the work considered. The three components of the mean-square velocity fluctuations are
initially equal for the conditions chosen. The resulting solutions show characteristics of turbulence, such as
the linear and nonlinear excitation of small-scale fluctuations. For the stronger fluctuations, the initially
nonrandom flow develops into an apparently random turbulence. Thus randomness or turbulence can arise
as a consequence of the structure of the Navier-Stokes equations. The cases considered include turbulence
which is statistically homogeneous or inhomogeneous and isotropic or anisotropic. A mean shear is present
in some cases. A statistically steady-state turbulence is obtained by using a spatially periodic body force.
Various turbulence processes, including the transfer of energy between eddy sizes and between directional

components, and the production, dissipation, and spatial diffusion of turbulence, are considered. It is con-
cluded that the physical processes occurring in turbulence can be profitably studied numerically.
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I. INTRODUCTION

Nearly all of the flows occurring in nature, as well as
those that are man-made, are turbulent. For instance, the
boundary between a column of rising smoke and the sur-
rounding atmosphere is generally irregular and contains a
range of scales of motion, thus indicating the presence of
turbulence. The atmosphere itself is usually turbulent, as
shown by the irregular appearance of many of the clouds
present in it. Jets, wakes, astrophysical flows, and flows
over surfaces are commonly turbulent, as is the region
downstream of a grid in a wind tunnel or downstream of
a waterfall. In general, turbulent flows are the rule and
laminar flows the exception.

Because of the importance and challenge of the tur-
bulence problem, a great deal of research has been done
over the past century. Basic ideas have been set forth, for
instance, in papers by Reynolds (1883, 1895), Taylor
(1921, 1935), von Karman (1937a, 1937b), and Heisenberg
(1948). That work, together with more recent research, is
discussed in books by Batchelor (1953), Hinze (1975),
Frost and Moulden (1977), and others.
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224 R. G. Deissler: Equations of fluid motion

In spite of considerable research activity, there is no
general deductive theory of high-Reynolds-number
(strong) turbulence. (Reynolds number is defined as the
product of a velocity and a length divided by the kinemat-
ic viscosity of the fluid. It is a measure of the ratio of
inertial to viscous effects. ) Most of the analytical theories
depend on a closure assumption for a hierarchy of aver-
aged equations. ' This immediately calls into question the
appropriateness of referring to the analytical theories as
deductive, except for short tiines, low Reynolds numbers
and/or for large mean gradients, where nonlinear effects
are small (Batchelor, 1953; Deissler, 1977).

One way in which a closure assumption can be avoided
is closure by specification of sufficient random initial
conditions (Deissler, 1979). That method can successfully
predict turbulence decay, and in the sense that the evolu-
tion of all initially specified quantitites can be calculated,
gives a complete solution. In order to use it, however, the
initial conditions must be fully turbulent, and a large
amount of initial data is required to satisfactorily specify
the initial turbulence. The method does not seem capable
of extension to some cases of turbulence maintained by
mean gradients, where the effect of initial conditions may
eventually become negligible, e.g., in fully developed tur-
bulent pipe flow.

In view of the foregoing comments it seems desirable to
consider numerical solutions of the unaveraged Navier-
Stokes equations which display features of turbulence.
Numerical methods and computers can be considered as
tools for the solution of equations, just as can Fourier
transforms and series expansions. It might be pointed out
that it is more appropriate to refer to a numerical solution
of the unaveraged equations as deductive than it is to so
refer to most of the analytical theories, which are based
on averaged equations and require closure assumptions.
Moreover, most of the analytical theories are so compli-
cated that a large amount of numerical work is required
to obtain results from them. Attempts to obtain analyti-
cal solutions of the unaveraged equations have not been
successful, mostly because of the nonlinearity of those
equations. It is mentioned in Herring (1973) that the sim-
plest turbulence theory is just the Navier-Stokes equa-
tions; since most turbulence calculations are numerical
anyway, no insight is lost by considering direct integra-
tion of the Navier-Stokes equations forward in time, start-
ing from some suitable initial data.

Numerical solution (or numerical simulation) has some-
times been called experiment. It seems, at least to this
writer, that there is an important difference between nu-
merical solution and experiment as generally practiced.
The former uses directly, and attempts to solve, a given
set of constitutive equations, in this case the Navier-

The hierarchy of correlation (averaged) equations obtained
from the unaveraged Navier-Stokes equations is unclosed be-
cause of the nonlinearity of the latter. That is, there are more
unknowns than equations, so that a closure assumption is re-
quired to obtain a solution.

Stokes equations. The latter ordinarily does not, although
both methods may arrive at the same result if the consti-
tutive equations are congruous with the portion of nature
to which they are applied. In general, it appears that ex-
periment works directly with nature, whereas numerical
solution works with a set of constitutive equations which
hopefully represents at least a portion of nature.

Several numerical solutions of the unaveraged equa-
tions have appeared which use a spectrum of random ini-
tial fluctuations (e.g., Orszag and Patterson, 1972; Clark
e t al. , 1979; Rogallo, 1981; Feiereisen e t al. , 1982).
These studies appear to demonstrate the feasibility of car-
rying out turbulent solutions with present-day computing
equipment and represent major advances.

Because of the difficulty of specifying realistic tur-
bulent initial conditions (experimentally or analytically), it
may be more appropriate to specify initially a simple reg-
ular fluctuation with a single length scale (as actually
occurs downstream of a grid in a wind tunnel). This
should be better for studying the development of small-
scale fluctuations (and of turbulence in general) than
would a spectrum of initial fluctuations, since for the
latter, small-scale fluctuations are already present in the
initial flow. Moreover, much-higher-Reynolds-number
flows can be calculated with a given numerical grid when
a single length scale is initially present, at least for early
and moderate times. Taylor and Green (1937) and others
(e.g., Deissler, 1970a; Van Dyke, 1975; Corrsin and Koll-
man, 1977; Deissler and Rosenbaum, 1973) have used a
perturbation series to calculate the nonlinear development
of higher harmonics from lower ones, but the calculations
could not be carried very far in time. In these analyses
the directional components of the initial fluctuation inten-

sity were not equal. Orszag and Fateman (see Orszag,
1977a) have recently used Taylor and Green's initial con-
ditions and obtained a numerical solution for higher Rey-
nolds numbers and larger times. The inviscid (infinite-
Reynolds-number) case was investigated in some detail by
Betchov and Szewczyk (1978).

In the present review we consider the nonlinear physics
of turbulence numerically. Although the initial condi-
tions used herein are nonrandom, the flow at higher Rey-
nolds numbers breaks up into an apparently random tur-
bulence. Unlike the problem of Taylor and Green, all
three of the directional components of the mean-square
velocity fluctuations are equal at the initial time. In the
absence of mean shear they are also equal at later times.
Taylor and Green's directional components, on the other
hand, do not approach equality, even at large times
(Orszag, 1977a).

To study the processes in turbulence we first give some
background on the basic fluid flow and turbulence equa-
tions in Sec. II, and on numerical methods and solutions
in Sec. III. We then consider four cases of turbulence,
starting in Sec. IV with the simplest one, in which mean
gradients are absent (Deissler, 1981a). In this case no en-
ergy sources are present, and the turbulence decays freely.
(By contrast, the presence of mean gradients would imply
energy sources in the flow. ) Here (in Sec. IV), one can
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R. G. Deissler: Equations of fluid motion 225

study viscous dissipation and the nonlinear transfer of en-

ergy between wave numbers or eddy sizes, as well as the
randomization of the flow. Next, in Sec. V, a uniform
mean shear is applied to study turbulence production and
maintenance, and the linear and nonlinear transfer of en-

ergy between wave numbers and between directional com-
ponents. The transfer of energy between wave numbers
(both linear and nonlinear) is manifested by the creation
of small-scale structure in the turbulence. Then, in Sec.
VI, the spatial diffusion of the inhomogeneous turbulence
in a developing shear layer is considered. Finally, in Sec.
VII, by using a spatially periodic body force, we study a
turbulence which is statistically steady state at large
times. The first three of these cases have also been stud-
ied, but with a spectrum of random initial fluctuations
and in some cases with an assumption for the small ed-
dies, in Orszag and Patterson (1972), Clark et al. (1979),
Rogallo (1981), Shaanan et al. (1975), and Cain et al.
(1981). Here we shall confine ourselves to the develop-
ment of turbulence from nonrandom initial conditions
with a single length scale.

One of the problems in the numerical study of tur-
bulence is that of accuracy, because of the small scale of
some of the turbulent eddies. As the Reynolds number
(strength) of the turbulence andjor the time increases,
smaller eddies are generated. No matter how small the
numerical mesh size, one can always pick a Reynolds
number and/or time large enough that the results will be
quantitatively inaccurate. One way of improving the ac-
curacy is by extrapolation to zero mesh size, as will be
done here. The effectiveness of that procedure depends to
some extent on the accuracy of the unextrapolated solu-
tion. If the solution has to be extrapolated too far, the re-
sults may not be accurate. Another popular method (not
used here) is to model eddies smaller than the grid spacing
(subgrid modeling) (e.g., Smagorinsky, 1963; Deardorff,
1970; Clark et aI., 1979; Ferziger, 1977). This method re-
quires an empirical input, although not as great a one as
that for full modeling of the averaged equations. One
might think of subgrid modeling as a useful crutch which
can be phased out as numerical resolution improves.
However, when it is used it is sometimes difficult to tell
which effects come from the equations of motion and
which result from the subgrid modeling. Of course, if the

II. BASIC EQUATIONS AND CONCEPTS

A. The unaveraged equations

Turbulent flows of a great many liquids and gases obey
the Xavier-Stokes equations. Those equations assume
that the fluid is Newtonian (stress proportional to strain
rate) and that it can be considered a continuum. The
latter is usually a good assumption because in most cases
intermolecular lengths are much smaller than the smallest
significant turbulent eddies.

Equations in terms of instantaneous quantities

The Navier-Stokes and continuity equations for con-
stant fluid properties (including incompressibility) ' can
be written as (see, for example, Batchelor, 1967 or
Deissler, 1976)

at
a(QQk) 1 ap a Q;

+V
ax„ p ax, ax„ax,

aQk =0.
axk

(2)

small-scale representation were a solution of the Navier-
Stokes equations, an ideal resolution of the problem might
be obtained. Siggia (1981) has recently considered the
converse problem; he made a numerical study of the
small-scale eddies in which the larger eddies were
modeled.

Here we are mainly concerned with physical processes
and trends, rather than with highly accurate numerical re-
sults (possibly unattainable at very high Reynolds num-
bers). Of course some degree of accuracy is necessary;
otherwise we shall not even be able to calculate trends.
As the numerical mesh size decreases, quantitative differ-
ences in the results might be obtained. Hopefully, howev-
er, the results will not be qualitatively different. Results
to data indicate that to be the case.

Other relevant review articles are those by Orszag
(1977b), Schumann et al. (1980), Eckmann (1981), and
Ott (1981).

The attainment of accurate quantitative results appears to be a question of improvement of computers and of numerical methods.
lf state-of-the-art numerical methods and computers are used, good quantitative as well as qualitative results can already be obtained,
at least for low and moderate Reynolds numbers. Orszag aud Patera (1981) [as well as Moiu and Kim (1982), using subgrid model-
ing] made significant numerical calculations of the velocity profile in the wall region of fully developed turbulent channel flow. Re-
sults obtained agreed reasonably well with experiment, showing a wall transition region and a fully turbulent region in which the
velocity varies as the logarithm of distance from the wall. The advent of high-speed computers and efficient numerical algorithms
may be making possible for the first time the use of the Navier-Stokes equations in the solution of a wide range of realistic (turbulent)
fluid flow problems.

The continuity equation is sometimes included in the Navier-Stokes equations.

Most turbulence studies have been carried out for constant properties for simplicity. The flow is realistic if the turbulence veloci-
ties are reasonably small compared with the velocity of sound, and if temperature gradients are not large.
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R. G. l3eissler: Equations of fluid motion

The subscripts can take on the values 1, 2, and 3, and a
repeated subscript in a term indicates a summation, with
the subscript successively taking on the values 1, 2, and 3.
The quantity u; is an instantaneous velocity component,
x; is a space coordinate, I; is the time, p is the density, v is
the kinematic viscosity, and p is the instantaneous pres-
sure. Equations (1) and (2) are, respectively, statements of
the conservation of momentum and of mass. In order to
obtain an explicit equation for the pressure, we take the
divergence of Eq. (1) and apply the continuity equation (2)
to get

where

and

U;=u;,

u;=@=0,

$2@ 8 (QIQk )

P BXIBXI BXIBxk
(3)

The overbars designate averaged values. Equation (2) be-
comes, on using Eqs. (4), (6), and (7),

2. Equations in terms of mean
and fluctuating components

Following Reynolds (1895) one can break the instan-
taneous velocities and pressure in Eqs. (1)—(3) into mean
and fluctuatin (01 turbulent) coIIlpolleIlts; tllat. 1s, se't

ug —U, +u, (4)

In the remainder of the paper it will usually be convenient
to use Eqs. (1) and (3), rather than (1) and (2). Equation
(1) (i =1,2, 3) and Eq. (3) constitute a set of four equa-
tions in the four unknowns u; and p. Since they are for
instantaneous velocities and pressures, they should apply
to turbulent as well as to laminar flows, subject to the re-
strictions mentioned at the beginning of Sec. II. The
Navier-Stokes equations have been known for more than
a century, but their use in turbulent flows, other than in a
schematic sense, has been restricted by a lack of ability to
obtain solutions. Now, with advances in computers and
numerical methods, the situation appears somewhat
brighter.

The fundamental turbulence problem is an initial-value
problem. That is, given initial values for the u; as func-
tions of positio~, a value for v, and suitable boundary
conditions, Eqs. (1) and (3) should be sufficient for calcu-
lating the u; and p jp as functions of time and position.
The initial and boundary conditions used herein will be
specified in Sec. III.

In order to interpret the terms in Eq. (1), it is con-
venient to multiply it through by p and by the stationary
volume element dx&dx2dx3. Then the term on the left
side of the equation is the time rate of change of momen-
tum in the element pu;dxIdx2dx3. This rate of change is
contributed to by the terIns on the right side of the equa-
tion. The first term on the right side, a nonlinear inertia
term, is the net rate of flow of momentum into the ele-
ment through its faces. The next term, also nonlinear, is
a pressure-force term and gives the net force acting on the
element by virtue of the pressure gradient in the x; direc-
tion. It is nonlinear because of the nonlinear source term
on the right side of the Poisson equation for the pressure
[Eq. (3)]. Finally the last term in Eq. (1), a linear
viscous-force term, gives the net force acting on the ele-
ment in the x; direction by virtue of the viscosity.

au, aU, =0,
Bxk Bxk

(9)

which shows that both the fluctuating and mean velocity
components obey continuity. On using Eqs. (4)—(9), tak-
ing averages, and subtracting the averaged equations from
the unaveraged ones, Eqs. (1) and (3) become

Bu; g l ()p 0 u; BU;
(u;uk) —— +v —u„

Bt 0 ' PB; 8 Bk
Bu. (j—Uk + u uk,
xk xk

$2@ 8 (QkgI ) Bflk 8 UI 8 QkQI—2 +
P Bx Bx~ 8 k()xI Bx Bx Bx Bx

(10)

Equations (10) and (11) will be used to study the processes
in turbulence, but not for computational purposes (except
in linearized cases). The first four terms in Eq. (10) and
the first two of Eq. (11) look like the terms in Eqs. (1) and
(3), although their meanings are exactly the same only if
U; =P =0 [see Eqs. (4) and (5)]. The first three terms on
the right side of Eq. (10), which give contributions to
Bu;/Bt, can still be interpreted as an inertia-force (or tur-
bulence self-interaction) term, a pressure-force term, and
a viscous-force term. The remaining terms are, respec-
tively, a turbulence-production term, a mean-flow convec-
tion term, and a mean-turbulent stress term which may

5For the most general flows the average is usually an ensemble
average over a large number of macroscopically identical flows
(i.e., mean quantities, but not fluctuating quantities, are the
same in all the flows). In most cases, however, statistical uni-
forrnity or stationarity with respect to one or more coordinates,
and/or with respect to time, obtains. Then the average is taken
with respect to the one or more coordinates and/or with respect
to time. According to the ergodic theorem those averages are
the same as the ensemble average if the flow is turbulent. In
Sec. V (uniform mean shear) three-dimensional spatial averages
will be used, even when the periodic boundary conditions used
introduce some local inhomogeneity into the fluctuations.
Those averages still have meaning, since their values are in-

dependent of the position of the boundaries of the cycle over
which the averages are taken.
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appear when the turbulence is statistically inhomogeneous
(when mean-turbulence quantities such as u;uk are func-
tions of position). [The reasons for referring to the pro-
duction and convection terms as such will perhaps be-
come clearer when the equivalent terms in the averaged
equations (14) and (15) are discussed. ] It will be seen that
when the mean-velocity gradient is not zero, the term
—UkBu;/Bxk generates a small-scale structure in the tur-
bulence by vortex stretching. The nonlinear self-
interaction term —B(u;uk)/Bxk also produces a small-
scale structure, and in addition produces randomization
of the fiow. These effects will be considered in Secs.
IV—VI. The Poisson equation for the pressure fluctua-
tion [Eq. (11)] has three source terms —a nonlinear term,
a mean-gradient term, and a mean-turbulent-stress term
which appears when the turbulence is inhomogeneous.

We have defined an inhomogeneous turbulence as one
in which averaged turbulence quantities are functions of
position. Thus a homogeneous turbulence is one in which
averaged turbulence quantities are not functions of posi-
tion. For instance, in homogeneous turbulence

tlat Q~ +Qg QJ (x)),
8;uJQk+8('&JQk(xI ) p

ancl

pBu; /Bxj&pBu; /Bxj(xs) .

Similar statements apply to other averaged turbulence
quantities in a homogeneous turbulence.

B. Averaged equations

Although the averaged equations will not be solved nu-
merically because they do not form a closed set, they are
very useful for studying the processes in turbulence.

B'p B= —p
BX~Bx~ Bx~ Bxk

~ QEuk
p

BXECIXk
(13)

2. One-point correlation equations

a. Construction of equations

These equations look hke Eqs. (1) and (3) with instantane-
ous values replaced by average values, but with the impor-
tant difference that an extra term involving the quantity
u;uJ now appears in each of the equations. These terms
arise from the nonlinear velocity terms in Eqs. (1) and (3)
and are a manifestation of the closure problem of tur-
bulence. (See footnote 1). If those terms were absent,
Eqs. (12) and (13) could be solved, and turbulent flows
would be no more difficult to calculate than laminar ones.
Note that terms in Eqs. (12) and (13) which contain
lowercase roman letters (other than x's) are turbulent
terms.

The form of Eq. (12) suggests that the quantity
pQ—;tlk augments the viscous stress pvBU;/Bxk. Since it

involves the fluctuating or turbulent velocity components
u; and uk, we interpret it as a turbulent or Reynolds
stress. For instance, —pu~u2 will, in the presence of a
mean-velocity gradient BU~ /Bxz, act like a shear stress on
an x&-x3 plane. In the presence of BU, /Bxq, u~ will
more likely be negative than positive when u2 is positive,
so that Q~Q2 will have a nonzero negative value. The
quantity —pu]u2 may be compared with a viscous shear
stress obtained in the kinetic theory of gases, where u

&

and u2 are now molecular, rather than macroscopic, velo-
city components. Similarly pu~ will act like a normal
stress on an x2-x3 plane (as in a normal stress or pressure
obtained in kinetic theory, where u ~ is again taken to be a
molecular velocity component).

1. Equations for mean flow

First consider the equations obtained by averaging each
term in Eqs. (1) and (3) and using Eqs. (4)—(9). (See foot-
note 5.) This gives

We can construct equations for the undetermined quan-
tities u;uj in Eqs. (12) and (13) from the evolution equa-
tion for u; [Eq. (10)] and a similar equation for the com-
ponent uJ.

gp 0 uJ BUJ.
(ujtlk ) — +V —gkBt 8 k P BX 8

ancl

aU, aU,
p = —pUkBt Bxk

aI' + PV —Pug Qk

BQJ—Uk + uJuk .
Bxk Bxk

Multiply Eq. (10) by uj and the above equation for uj by
u;, add the two equations, and average (See foo. tnote 5.)
This gives, using continuity [Eq. (9)],

9U; 8UJ
QI. QJ QJQk +QEQk

Bt BXk Oxk

a 8 1
Uk upQj upQjQk puJ + pQI

Bxk
' J axk

' J p ax; J axj

a ujuj $ auj Bu j Bu j Buj
+& + p +p (14)
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228 R. G. l3eissler: Equations of fluid motion

Setting i =j and using continuity, we get, for the rate of
change of the kinetic energy per unit mass,

+)+~

BI; 2

i)U;—u;uk -- -- —Uk
Bxk Bxk

u;ug

+)~i 1
Qk — PQk

2 P Bxk

8 (u;u;/2) Bu; Bu;
+v —v (15)

As in Eqs. (12) ar'd (13), quantities in Eqs. (14) and (15)
which contain lowercase roman letters (other than x's) are
turbulent quantities.

The one-point correlation equation (14) gives an expres-
sion for the rate of change of u;u~ which might be used in
conjunction with Eqs. (12) and (13). But the situation
with respect to closure is now worse than it was before.
Whereas without Eq. (14) we had only to determine u;u~,
with it we have to determine quantities like u;uJuk, puj,
pBuJIBx;, and (Bu;/Bx~)(Buj/Bxl). We might use Eq.
(11) to obtain the pressure correlations, but that would
only introduce more unknowns. However, Eqs. (14) and
(15) are very useful for studying the processes in tur-
bulence, in that most of the terms have clear physical
meanings. Moreover, we shall be able to calculate terms
in those equations from our numerical solutions.

b. Physical interpretation of terms

As in the case of Eq. (1) it is helpful, for purposes of
interpretation, to multiply the terms in Eqs. (14) and (15)
through by p and by a volume element dx~dx2dx3. Then
the term on the left side of Eq. (14) or (15) gives the time
rate of change of pu;uJ, or of the kinetic energy pu;u;/2,
within the element. This rate of change is contributed to
by the terms on the right sides of the equations. The first
of those terms is equal to the net work done on the ele-
ment by turbulent stresses acting in conjunction with
mean-velocity gradients. It is therefore called a tur-
bulence production term; it equals the rate of production
of pu;u~ or of pu;u;/2 within the volume element by
work done on the element. A somewhat abbreviated in-
terpretation suggested by the form of the term, which is
often given, is that it represents work done on the tur-
bulent stress pu;uj by the mean-velocity gradient.

The next term in each of the equations describes the
convection or net flow of turbulence or turbulent energy

I

into a volume element by the mean velocity Uk. It moves
the turbulence bodily, rather than doing work on it by de-
forming it, as in the case of the production term. It van-
ishes when either Uk is zero (no mean flow) or when the
turbulence is homogeneous [u;u J&u; uj (xk )]. In the
latter case there is no accumulation of turbulence within a
volume element, even with a mean flow.

The next three terms in Eq. (14) and in Eq. (15) also
vanish for homogeneous turbulence. Since they do not
contain the mean velocity they do not convect or move
the turbulence bodily. Therefore, we interpret them as
diffusion terms which diffuse net turbulence from one
part of the turbulent field to another by virtue of its inho-
mogeneity. The pressure-veLocity-gradient terms in Eq.
(14) drop out of the contracted Eq. (15) because of con-
tinuity [Eq. (9)]. Therefore, they give zero contribution to
the rate of change of the total energy u;u;/2, but they can
distribute the energy among the three directional com-
ponents u~;~/2 (no sum on i) Th.e last term in Eqs. (14)
and (15) is the viscous dissipation term which dissipates
turbulence by the presence of Auctuating velocity gra-
dients.

3. Two-point correlation and spectral equations

a. Construction of equations

BQj ()—Uk + —uJ' uk
BXk Bxk

(16)

8 (ukui ) Oui OUI 8 ukui—2 + . (17)
p Bxi Bxi BxkBxi Bxi 8xk BxkBxi

Multiplying Eq. (10) by u~' and Eq. (16) by u;, adding,
taking averages (see footnote 5), and using Eq. (16) and
the fact that quantities at one point are independent of the
position of the other point result in

To consider the transfer of turbulence between eddy
sizes or wave numbers (spectral transfer), we must obtain
two-point correlation equations. Terms related to that
process do not appear in the single-point equations (14)
and (15). To obtain two-point equations, we use in addi-
tion to Eqs. (10) and (11), written at the point P, the fol-
lowing equations written at point I":
BQJ Q $ ()p' 8 Qj 8 UJ

(QJ Qk ) — +V —Qk
Bxk P BXJ BxkBxk Bxk

a U,- aU,
'

ujuj ukuJ' ujuk
Bt Bxk

+j+J Uk ~j+j ~g ~k~J
xk ~xk xk

I c) -, g ~ +ruj u
~s j &k —— P&g+ &;P +& +

P Bx; Qx ~xk ~xk Bxk Bxk

To simplify the equations, the turbulence will be considered homogeneous (correlations independent of x;). [See Hinze
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(1975) or Deissler (1961) for inhomogeneous equations. ] Then the two-point correlations (e.g., u;u~ ) will be functions
only of r;—=x —x;, so that 8/Bx;= d—/dr; and 8/Bx =d/Br;. In addition, homogeneity requires that BU;/Bxj be
constant, so that BU /Bxj' =BU~/Bxj and Uk —Uk=r~BU, /Bxj. [If aU, /axJ were a function of x; we could not re-
move all x; dependency from Eq. (18).] Equation (18) becomes

, BU;, BUj
Q& Qj QkQ j QI'Qk Qpp' — puJBt '' j()xk '

Bxk p Brj
' ar;

8 QIuj
+2v

9Uk Bu;u '
r~

Bx~ 8rk
I I

(9;QJ Qk —0;Bkflj )
~rk

(19)

The equations for the pressure-velocity correlations ob-

tained from Eqs. (11) and (17) are, for homogeneous tur-

bulence,

) 'QP' = —2
p

8 pQJ BQIQJ- BUk=2
P BrIBrI Brk BxI

8 Q&ug QI

8 QI Qk QJ

a,a.,
'

(20)

(21)

Interpretation of terms

00

u;uj'(r) = q&,J(a)e'"'da,

u;p'+ puj' = f II;J(a)e'"'dx,
Br.J ()r 00

(22)

(23)

The terms on the right side of the Poisson equations
(20) and (21) are source terms associated with the mean
velocity and with triple correlations arising from the non-
linear velocity terms in Eqs. (11) and (17). The right side
of the two-point equation (19) contains, as in the case of
the single-point equation (14), turbulence-production,
directional distribution (pressure-velocity), and viscous
terms. There are no diffusion terms in Eq. (19) since the
turbulence is homogeneous. The last two terms in that
equation are new terms which do not have counterparts in
the one-point equations. In order to interpret them, we
convert Eq. (19) to spectral form by taking its Fourier
transform. Thus we define the following three-
dimensional Fourier transforms:

q; = —yk —y;k '+ —ll; (~)
Bt Bxk Bxk P

—2vK PIJ. + Tg~ + Tg~ (26)

If we let r=O in Eq. (22), we have

1C; flJ = f (p,~dK, (27)

so that we can interpret y,J as a spectral component of
u;uj. As in Eq. (19), terms on the right side of Eq. (26)
can be interpreted as production, directional distribution,
and viscous dissipation terms. They contribute to the rate
of change of a spectral component p;J of u;uj.

To interpret the term Tz in Eq. (26), we let r=O in Eq.
(24). This gives

0= f" T,,'d~. (28)

Thus TJ gives zero total contribution to the rate of
change of u;uJ. But it can contribute, or transfer between
wave numbers or eddy sizes, spectral contributions y,z to
u;uJ. So TJ, which is proportional to BUk/Bx~, is inter-
preted as a mean-gradient spectral transfer term (Deissler,
1961). The term r~(Bu;u—j'/drk)dUk/dx~ in Eq. (19) is
therefore the Fourier transform of a mean-gradient spec-
tral transfer term.

To interpret the last term in Eq. (26), we use Eq. (25),
where we note that a/ar„=a/ax, = —a/Bxk, that quan-
tities at one point are independent of the position of the
other point, and that continuity [Eq. (9)] holds. Equation
(25) becomes

and

8 Uk Bu& QJ
r&

——f T'J (a )e'"' da,
Bx~ Bpk

(Q;QJ Qk —Q(QkQJ )= f Tij(K)e dK,1 J l J lJ

(24)

(25)

~

~

l K'I' ai
&

8 cEK— QQ Qk Q&ukuJ g J gx J
k k

Bu. Bu.u= —u)Qk —Qj
()xk Bxk

If we let r=0, Eq. (29) becomes

f 00 (Ij
T]JdK= — ugujuk =0

~

Bxk

(29)

where y,J., II,J., T,J, and T,J are, respectively, Fourier
transforms of the quantities on the left sides of the defin-

ing equations (22)—(25), a is a wave-number vector and

dK=dK~d~2dK3. Physical interpretations of the Fourier
transforms defined by Eqs. (22)—(25) will follow. Equa-
tion (19) becomes, on taking its Fourier transform,

since we have assumed homogeneity of the turbulence.
Thus, as in the case of T'j Tpj gives zero total contribu-
tion to the rate of change of u;uJ. It can, however,
transfer spectral components of u;uJ from one part of
wave-number space to another. So we interpret TJ as a
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4. Vorticity and dissipation

For homogeneous turbulence one can obtain a relation
between the viscous dissipation term in Eq. (15) or (19)
(i =j) and the vorticity or swirl in the turbulence. The
dimensionless vorticity co is defined as the curl of u:

co(x) =V X u(x) (31)

BQk
~s =&sgk

()Xj
where c,jk is the alternating tensor. Then

(32)

spectral transfer term associated with turbulence self-
interaction (as opposed to interaction between turbulence
and mean gradients). The term —(8/Brk)(u;u~' uk
—u;ukuj' ) in Eq. (19) is therefore the Fourier transform
of a self-interaction spectral transfer term. Although the
turbulence has been assumed homogeneous for intepretat-
ing TJ and T~ as transfer terms, it has been shown that
simlar interpretations apply when the turbulence is inho-
mogeneous (Deissler, 1981b).

The transfer of turbulence from one part of wave-

number space to another, or from one eddy size to anoth-

er, produces a wide range of scales of motion in most tur-
bulent flows, as will be illustrated by the numerical solu-
tions in Secs. IV and V [see, for example, Figs. 2(c), 8 and
24]. The state of affairs is neatly summarized in a non-
mathematical way by a poem written long before Eqs.
(26), (28), or (30) were known (Richardson, 1922):

Big whirls have little whirls,
Which feed on their velocity;
And little whirls have lesser whirls,
And so on to viscosity.

BQ. Buj 3 Q Q =0
aXj aX, aX, aXj

(35)

for homogeneous turbulence. Equation (33) then becomes

2—BQ.
COkCOk =—CO

BXj

Qi

BXj V
(36)

5. Remarks

%'e shall not discuss here the many schemes that have
been proposed for closing the averaged equations con-
sidered in this section. Instead, we shall avoid the closure
problem by obtaining numerical solutions of the unaver-
aged equations (1) and (3). The importance of the aver-
aged equations is enhanced by these numerical solutions;
using the solutions of the unaveraged equations, we can
calculate terms in the averaged equations which represent
various physical processes in the turbulence. Thus the
averaged equations appear to be necessary, or at the least
very convenient, for the physical interpretation of the nu-
merical results.

Thus, for homogeneous turbulence, the mean-square vor-
ticity is just the rate of viscous dissipation E of turbulent
energy divided by the kinematic viscosity [Eq. (15)j. So
the more intense the swirl in the turbulence, the faster it
dissipates.

From a closure standpoint we are somewhat better off
with the two-point equations (19)—(21) than we were with
the one-point equation (14), since we no longer have to
model terms like pBu. /Bx; and (Bu;/Bxq)(Bu /BxI ).
However, we still have to evaluate triple-correlation
terms, unless the turbulence is very weak, or unless the in-
teraction between the turbulence and the mean flow is
large compared with the turbulence self-interaction.

But, because

BQ; BQ;

~Xj BXj
BQ Buj

BXj BX~

~k~k ~ijk~lmk ~
OXj QXm

au; Bul
=(5g5J. —5; 5~y)

BXj BXm

(33)

III. NUMERICAL SOLUTIONS AND METHODS

A. Initial conditions

3

u;= g a;"cosq".x .
n=1

(37)

For most of the numerical solutions considered here,
the initial velocity fluctuation is assumed to be given by

a =0,
BXj

Then, from Eq. (4),
3

u;= g a;"cosq" x+ U~ .
n=1

(38)

The fact that terms related to TJ or TJ do not appear in the
one-point equation {14)for inhomogeneous turbulence indicates
that TJ. and TJ do not contribute to Bu;u~/Bt. Thus, even for
inhomogeneous turbulence, they can only transfer turbulence
from one part of wave-number space to another.

c;~k ——0 when i, j, and k are not all different. When the sub-
scripts are all different, c;Jk

——+1 when they are in cyclic order
and —1 when they are in acyclic order.

The quantity a;" is an initial velocity amplitude or Fourier
coefficient of the velocity fluctuation, q" is an initial
wave-number vector, and U; is an initial mean-velocity
component. In order to satisfy the continuity conditions,
Eqs. (2) and (9), we set

(39)

For the present work let
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a; =k(2, +1,1), a; =k(1,+2, 1), a; =k(1,+1,2),

q =(—1, +1,1)/xo, q; =(1,+1,1)/xo, q; =(1,+1,—1)/xo,

where k has the dimensions of a velocity and determines
the intensity of the initial velocity fluctuation. The quan-
tity xo is the length scale of the initial velocity fluctua-
tion. The quantities k and xo, together with the kinemat-
ic viscosity v and Eq. (40), then determine the initial Rey-
nolds number (uo)' xo/v, since the square of Eq. (37),
averaged over a period, gives uo. In addition to satisfying
the continuity equation (39), Eqs. (37) and (40) give

P =P+bQ )fc bg
J J J J

and Eq. (45) becomes

~x*. =2~+b*. ~x*. =b*. '
J J J J

(46)

(47)

These equations are used to calculate numerical deriva-
tives at the boundaries of the computational grid.

2 2 2 2
Q ] =Q2=Q3=QP (41) C. Numerical solutions

B. Numerical grid and boundarY conditions

In order to carry out numerical solutions subject to the
initial condition given by Eqs. (37) or (38) and (40), we use
a stationary cubical grid with a maximum of 32 points
and with faces at x;*=x;/xo ——0 and 2n For b.oundary
conditions we assume periodicity for the fiuctuating
quantities. That is, let

and

(;)„, b =(;)„*
J J

(42)

P Q 2 +bQ P g b
J J J J

(43)

where bj bj. Ixo, xj*————xj Ixo, and bj is a variable length.
Using Eqs. (4) and (5) these become

(~g )„~ 2 b~ (~; )„~ b~+——( U; )„~

and

—(U;)„e
J J

(44)

~x*=2m+b*- ~x*. =b* ' x*=2m.+b*. x =b*+P —P
J J J J J J J J

In the present work we assume also that P, given by Eq.
(13), is periodic, so that

at the initial time. Thus Eqs. (37) or (38) and (40) give a
particularly simple initial condition, in that we need
specify only one component of the mean-square velocity
fluctuation. Moreover, for no mean shear, they give an
isotropic turbulence at later times, as will be seen. Note
that it is necessary to have at least three terms in the sum-
mation in Eq. (37) or (38) to satisfy Eq. (41). We do not
specify an initial condition for the pressure because it is
determined by Eq. (3) and the initial velocities.

In carrying out the numerical solutions, we have a
choice of solving a set of equations containing u;, p, U;,
and P [Eqs. (10)—(13)] or one containing u; and p [Eqs.
(1) and (3)]. The latter set, which is much simpler, is gen-
erally used here. That is, we solve Eqs. (1) and (3) sub-
ject to initial condition (38) and boundary conditions (44)
and (47).

The spatial- and tine-differencing schemes (which nu-
merically conserve momentum and energy) are essentially
those used by Clark et al. (1979). For the spatial deriva-
tives in Eqs. (1) and (3) we use centered fourth-order
difference expressions (see, for example, McCormick and
Salvadore, 1964). For instance, the fourth-order differ-
ence expression used for Bu;/Bxk is

BQ. }
[ (ug )„2—8(u; )„)+8(ug )„+g

xk yg xk

—(u;)„+~],

where lbck is the grid-point spacing, and the subscripts n.,
n+1, etc. , refer to grid points in the xk direction.
Fourth-order difference expressions are often considered
more efficient than the usual second-order ones (Orszag
and Israeli, 1974). (Spectral methods devised by Orszag
and associates are still more efficient, but may be some-
what trickier to use. ) Centered expressions (same number
of points on both sides of n, see above expression) can be
used both at interior grid points and at the boundaries of
the grid; when n refers to a point on a boundary, values
for u; outside of the grid, which are required for calculat-
ing the numerical derivatives at the boundary, are ob-
tained from the boundary condition [Eq. (44)].

For time-differencing we use a predictor-corrector
method with a second-order (leapfrog) predictor and a
third-order (Adams-Moulton) corrector (see Ceschino and
Kuntzmann, 1966). If m represents a, time step, and

The first three terms of Eq. (41) apply at all times when there
are no mean gradients in the flow.

Dividing the velocities and pressures into mean and fluctuat-
ing components is evidently not advantageous from a computa-
tional standpoint except, possibly, in linearized cases.
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(R;) the right side of Eq. (1), then at each grid point in

space, the second-order leapfrog predictor for u; at time
step I +1 is

(u; )"'+
&
——(u;) i+26 t (R; )

and the third-order Adams-Moulton corrector is

Bu; B(u;u ) 1 gp Bu;
+Vat

=
ax, p ax, ax„x,

1 B~p 8 (zllak)

p axlax
=

axx.

(48)

(49)

(u;) +(=(u;) + [5(R;) +(+8(R;) —(R;) )],12

where b, t is the time increment. The quantity (R;)~"+~ in
the above corrector is calculated by using (u;)' '+

&
in the

right side of Eq. (1), where (u; )"'+
&

is calculated from the
leapfrog predictor. Note that the leapfrog method (so-
called because it leaps over the time step I ), although un-

stable for all b, t when used by itself for Navier-Stokes-

type equations, is stable when used as a predictor.
The Poisson equation for the pressure [Eq. (3)] is solved

directly by a fast Fourier-transform method. This
method of solution was found to preserve continuity quite
well (V' u=0) except near the ends of some of the runs
for no mean gradients, where the solutions began to
deteriorate. [Another indication of incipient solution
deterioration near the ends of some of the runs for no
mean gradients was that Eq. (41) was no longer accurately
satisfied. (See footnote 8.)]

Two known types of numerical instabilities can occur
in the present solutions: a viscous instability connected
with the first and last terms in Eq. (1), which occurs if
vhtl(Mk) is too large; and a convective instability con-
nected with the first and second terms [or the first and
third terms through Eq. (3)), which occurs if u; At lhxk is
too large. In these criteria ht, b,xk, and u; are, respective-
ly, a time step, distance step, and velocity. Thus a partic-
ular solution should be numerically stable if, for a given
Lbck, the time step is sufficiently small. Numerical stabil-
ity is typically obtained when the solution varies smoothly
from time step to time step, with no significant breaks in
the slope from one step to the next. This is the case for
all of the results given here.

For the present solution very good temporal resolution
is obtained automatically when bt is sufficiently small to
give numerical stability. That temporal resolution is
much better than the three-dimensional spatial resolution,
which is more severely limited by the storage and power
of the computer. However, as will be seen (Fig. 19), suffi-
cient spatial resolution is obtained to give reasonably ac-
curate averaged results for times not excessively large.
Some of the averaged results are extrapolated to zero spa-
tial mesh size in an effort to obtain greater accuracy. The
fourth-order method of extrapolation (consistent with the
fourth-order differencing used here) is given in Deissler
(1981a, 1981c).

IV. HOMOGENEOUS FLUCTUATIONS AND
TURBULENCE, NO MEAN FLOW

For this case (U~ ——Bu;uklBxk =0), Eqs. (10) and (11)
reduce to (1) and (3) without the tildes over instantaneous
quantities. We thus solve numerically,

subject to initial conditions (37) and (40) and boundary
conditions (42) and (43). In Eq. (40) for the coefficients in
the initial conditions, we choose the first set of signs.

A. Dimensionless form of equations

For carrying out the numerical solutions and presenting
the results in as general and compact a form as possible,
we nondimensionalize Eqs. (48) and (49) as

ui

Bt*
a(u,*u„*)

Bxk

0 u;
~+ (48')

where

aP* a (~I ~k)
axI' axI'axk

(49')

3

u,'= g a;" cosq" x*,
n=1

(37')

a; =k'(2, + 1, 1), a; =k*(l, +2, 1), a; =k*(1,+ 1,2),

(40')

q; =(—1,+1,1), q =(1,+1,1), q; =(1,+1,—1),

(42')

and

)fc

P g 2 +bg P g bg
J J J J

(43')

where, in addition to the dimensionless quantities defined
above,

Xp g Xp
Qi Qi ~ qi Xpqi~ k k ~

V V

Xp g V
ug — ui

v Xp

2
Xi Xp

l & p p
xo pv

and xo is the initial fluctuation length, which first ap-
peared in Eq. (40). Note that all of the quantities have
been nondimensionalized by xp and the kinematic viscosi-
ty v.

The initial and boundary conditions in Eqs. (37), (40),
(42), and (43) become in dimensionless form
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Betchov and Szewczyk (1978) obtained reasonable tur-
bulencelike numerical results, even for infinite Reynolds
number, for times not excessively large (see also
Schumann et al. , 1980).

1.0—

Randomness as sensitivity to initial conditions

The dashed curves of tt~/(uo)'~ are for initial condi-
tions perturbed approximately 0.1%. [The coefficients a;"
and q;" given by Eq. (40) are changed by 0.1% of their
values. ] The perturbed curves follow the unperturbed
ones for a short time and then depart sharply. Thus a
very small perturbation of initial conditions causes a large
change in the values of u; (except near t =0). On the
other hand, the root-mean-square values of the velocities
(spatially averaged) decrease smoothly and are unaffected
by the perturbation of the initial conditions. All of the
these features are characteristic of turbulence. [The ob-
served sensitivity of the instantaneous Aow to small
changes in initial conditions may have unfavorable impli-
cations for detailed long-term weather predictions
(Lorenz, 1963).]

We note that the spatially averaged values in Fig. I
follow approximately the decay law u —t ", where
n -2.5. This lies between the value for n of 3.3 observed
for turbulence downstream of a waterfall (Ling and Saad,
1977) and the value 1.2 generally observed for turbulence
generated by flow through a grid in a wind tunnel
(Uberoi, 1963). The decay law is evidently very much
dependent on the initial condition for the turbulence.

-G. 2 l

0.002 0.004
L

0.006 0.008
t

Q. 010

FIG. 4. Calculated correlation coefficient for two velocity com-
ponents plotted against dimensionless time. No mean shear.
(u o )' xo /v=2217, 32 grid points.

2. Effect of numerical mesh size on randomness

C. Further evidence for randomness and indications
of isotropic turbulence

In order to get an idea of the effect of mesh size in the
numerical grid on the apparent randomness of the veloci-

ty fluctuations, values of u&/(uo)'~ at the center of the
grid are plotted against t* in Fig. 2 for three different
mesh sizes. All three of the curves have a random ap-
pearance. However, as the number of mesh points in-
creases (as the mesh becomes finer), smaller-scale fluctua-
tions are resolved and the randomness appears to be in-
creased. This trend indicates that the observed random-
ness is not due to the use of too coarse a grid.

1.0

0.8

0.6

0.4

-0. 2
I ~~~ 1.0

Q. S

~
O. e

p 4

P. 2

-0.2
0 0.002 0. 004

I

Q. 006
t'- 4

0.008 0. 010

For turbulence, the correlation between velocities at
two different times u&(t)u&(to) should to to zero as the
separation of the times t and to increases. Figure 3 shows
that this occurs for the present high-Reynolds-number
calculations. For true turbulence the correlation should
probably decrease smoothly with time. Figure 3(b) shows
that this is nearly the case for the larger to. [to is the
time in the correlation coefficient in Fig. 3 that remains
fixed as the other (variable) time t increases. ] At early
times there is probably some nonrandom structure in the
turbulence caused by the nonrandom initial conditions
[Fig. 3(a)].

As a further indication that the high-Reynolds-number
flow breaks up into turbulence, we calculate the evolution
of the cross correlation u&u2. Although u& ——uz ——u3 at
all times (see footnote 8), the initial u~u2 given by Eqs.
(37) and (40) is not zero. However, Fig. 4 shows that be-
cause of the apparent randomization of the flow u~u2

goes to zero as time incI'cases. The fluctuations 1Il the
curve at early times [as also in the curve of Fig. 3(a)], are
probably caused by nonrandoIn structure in the flow at
early times. '

FIG. 3. Calculated correlation coefficient for velocities at di-
mensionless times t* and to plotted against t*—to. No mean
shear. (u o )' xo/v= 2217, 32 grid points. (a) to ——0. (b)
to =0.008 13

IOAll averaged values would be expected to vary smoothly only
for highly random fluctuations.
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Figures 1—4, together with the fact that the three com-
ponents u ~;~ are equal, show that at later times we appear
to get a reasonable approximation to isotropic turbulence,
although the initial conditions are nonrandom. One of
the consequences of isotropy is that the cross correlations,
say u &u2, are zero, as in Fig. 4, at later times. These cal-
culations differ from others, where turbulence was ob-
tained using random initial conditions.

Because the initial conditions for the present calcula-
tions are nonrandom, the turbulence must arise as a result
of the structure of the Navier-Stokes equations. In partic-
ular, the nonlinear terms play a crucial role. It is easy to
verify that if nonlinear terms are neglected for the present
case, Eqs. (48), (49), (37), and (40) give

-0.5—

-O 4—

-0.3—

-0.2—

-0.1—

0

1.75—

1.50—

0.02 0.04 0.06
I

0.08

u, =(u, )oe-" (50)
1.25—

So if the equations are linear, the flow given by the non-
random initial condition (37) remains nonrandom. The
nonlinear terms must be present in Eqs. (48) and (49) if
the development of turbulence is to take place.

Our calculations at lower Reynolds numbers give re-
sults that are less turbulencelike. Thus the fluctuations
develop apparent randomness only at the higher Reynolds
numbers.

Calculated values of velocity-derivative skewness factor
for a high Reynolds number [Fig. 5(a)] also appear to be
of reasonable magnitude when compared with experimen-
tal values for isotropic turbulence. Values of that quanti-
ty on the order of 0.4 have been obtained experimentally
and have long been considered an indication of true

moderately strong or strong isotropic turbulence. The
falloff near the end of the curve may be due to a more
laminar flow there, where fluctuation levels are lower. A
longer period of agreement with experimental values is
obtained by Clark et al. (1979), apparently because they
used turbulent initial conditions, so that the turbulence
was already partially developed at t =0.

D. Origin of the randomness (strange behavior)

1.00—
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0 50—
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-0.25—

-0 50—

-0 75

I I I

-l. 50 -l.25-1.00-0.75 . 50 -0.25 0 0.25 050 0,.75 l. 00

FIG. 5. (a) Calculated evolution of velocity-derivative skewness

factor. No mean shear. (up) xp/v=2217. 32 grid points.
(b) Calculated trajectory of phase point projected on u&-u&

plane for x ~
——x 2 ——9m/8, x 3 ——3m/8, and 0.002 36 ~ t*

&0.0108. Arrows indicate direction of time. No mean shear.
32 grid points.

A question remains as to how the nonlinear terms in
Eqs. (48) and (49) produce the randomness observed in
Figs. 1—4. Until recently, it was generally assumed that
randomness in a turbulent flow is due to randomness in
the initial conditions, to random external Auctuations,
and/or to the presence of so many eddies or harmonic
components (or of so many degrees of freedom) that the
identity of the individual eddies is lost (Monin, 1978; Ra-
binovich, 1978). In the present results the first of these
conditions is absent. Concerning the second, roundoff er-
rors might be considered a form of external fluctuations.
However, when the calculations were repeated using dou-
ble precision, so that roundoff errors were reduced by a
factor of about 10, the mean-square velocities were prac-
tically unchanged. The instantaneous velocities were dif-
ferent, although still as random as before. Thus the effect
of a large decrease in roundoff errors is similar to the
effect of a small perturbation of the initial conditions

(Fig. 1). Since roundoff errors do not affect the tur-
bulence level or the randomness, they cannot be con-
sidered a major sustaining cause of the turbulence or ran-
domness observed here, although they may in some cases
affect the initial transition. In the present case the transi-
tion is so rapid that the effect appears to be small.

This leaves only the proliferation of eddies or harmonic
components as a source of apparent randomness. That
might well produce the observed randomness in Fig. 1,
since the nonlinear production of harmonics tends to be
explosive, particularly at high Reynolds numbers (each
harmonic component interacts with every other one)
(Deissler, 1970a). However, the randomness may be pro-
duced at least partially, by strange attractors or, more
properly, by analogous strange behavior (Eckmann, 1981;
Ott, 1981). (We talk about analogous strange behavior
here, rather than strange attractors, since, strictly speak-
ing, strange attractors exist only for steady-state tur-
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bulence. See Sec. VII. Here, strange behavior refers
mainly to apparent randomness in flows where a large
number of degrees of freedom or harmonic components is
not a necessary ingredient, and randomness occurs by a
loss of hydrodynamic stability. ) Lorenz (1963) and others
(Monin, 1978; Rabinovich, 1978; Ruelle, 1976; Lanford,
1982) have shown that a system of nonlinear ordinary dif-
ferential equations similar to the spatially differenced
form of the Navier-Stokes equations used here, or to the
spectral form of those equations (Orszag, 1977b), can
develop an apparently random behavior in time as a result
of the loss of stability of the solutions. " In conjunction
with this, regions appear in the phase space of the system
to which solutions are attracted. Randomness arises in
those regions, which are known as strange attractors,
from a haphazard movement of the phase point among
the neighborhoods of various critical points in the phase
space (steady-state points of unstable equilibrium where
Bu;/Bt =0). [The presence of critical (or fixed) points is
not always considered a necessary ingredient of strange
attractors, but randomness or sensitivity to initial condi-
tions is essential. However, the spatially differenced and
spectral forms of the Navier-Stokes equations do appear
to have critical points, as do the Lorenz equations. ] Un-
like randomization by proliferation of harmonic com-
ponents, randomization by strange behavior can occur ei-
ther with a few or with many degrees of freedom. In the
present case both processes may be important. At any
rate, as mentioned earlier, the results show that the struc-
ture of the Navier-Stokes equations is such that apparent-
ly random or turbulent solutions can arise from nonran-
dom initial conditions. With the results from the low-
order models in which apparent randomness appears with
as few as three degrees of freedom (e.g., in the Lorenz
equations), the turbulence observed to be manufactured by
the Navier-Stokes equations should perhaps not come as a
surprise.

The presence of strange behavior may be fortunate
from a numerical standpoint, in that it should enable tur-
bulent solutions that are qualitatively correct (at least in-
sofar as they appear random in time) to be obtained with
a relatively coarse grid. The use of a fine three-
dimensional grid, of course, requires the use of a large
amount of computer time.

Figure 5(b) shows a dimensionless velocity component
ui plotted against component uz (forming a plane in
phase space) for one point in physical space. Although
the behavior here is much more complicated than that ob-
served for the low-order models which are usually used to
observe strange attractors or strange behavior (here there

~ ~Results from the differenced or spectral forms of the
Wavier-Stokes equations become arbitrarily close to those from
the original equations as the number of grid points or of Fourier
components increases (assuming convergence of the numerical
method). Theoretically, the Navier-Stokes equations correspond
to an infinite number of ordinary differential equations, or to an
infinite number of degrees of freedom.

are not well-defined orbits around fixed critical points,
possibly because there may be an almost infinite number
of critical points), there are similarities. Both the present
turbulent results and those for the low-order models show
trajectories consisting of loops and cusps, with frequent
changes in the sign of the curvature of the trajectory (e.g. ,
Franceschini, 1983). (Note that the present turbulent re-
sults ultimately decay, whereas the low-order models usu-
ally do not, since they contain forcing terms. ) Although
there are large changes in the direction of the trajectory,
particularly in the regions of the cusps, the density of cal-
culated points in those regions is very high, so that the
numerical results should be reasonably accurate. Curves
for u; vs t (the numerical integrations are with respect to
t) are, in fact, smooth. Note that ui and u2 start out
equal (on a 45' line), but that their equality is quickly des-
troyed when randomness sets in.

Randomization by strange behavior or by a loss of hy-
drodynamic stability almost certainly occurs in the
present high-order turbulent results (high-order here
meaning many numerical grid points, and thus many
equations and degrees of freedom). This follows, first,
from the fact that such randomness has been demonstrat-
ed to occur in low-order models (few equations and few
degrees of freedom), such as that of Lorenz (1963) or of
Franceschini (1983), and, second, from the fact that with
the many more degrees of freedom present here than in
the low-order models, many more critical points exist,
and thus many more opportunities for randomization or
loss of stability occur. Of course, because of the many de-
grees of freedom here, there will also be randoinization by
proliferation of harmonic components (so many harmonic
components or eddies present that the identity of the indi-
vidual eddies is lost and the flow appears random). The
present large number of degrees of freedom encourages
both types of randomness, and both very likely occur.

E. Evolution af mean quantities

In the results given so far, no correction for discretiza-
tion error due to the finite numerical mesh size has been

applied. The primary purpose of the present work, of
course, is to study the physics of turbulence rather than to
obtain highly accurate results (possibly unattainable at
very high Reynolds numbers). For low Reynolds number

Fig. 6 shows that surprisingly good results for the decay
can be obtained even with coarse grids. At higher Rey-
nolds numbers the results, although less accurate, should
still be qualitatively correct. Their accuracy can be im-

proved by applying fourth-order extrapolations to zero
numerical grid spacing [in consistency with the fourth-
order numerical differencing used in the calculation
(Deissler, 1981a)]. This is done in lieu of subgrid model-

ing (making an assumption for the eddies smaller than the
numerical grid spacing, e.g., Clark et al. , 1979). The
method is related to subgrid modeling in that it assumes
that the subgrid eddies are closely related to the calculat-
ed eddies, but does not require the introduction of a
subgrid eddy viscosity (which is, in effect, a kind of clo-
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should not contribute to the rate of change of total ener-

gy. In order to consider inter-wave-number energy
transfer, we must use two-point equations. Thus Eq. (30)
shows that the self-interaction transfer term T~J(~) in the
two-point spectral equation (26) has the property that

J Tij(a)da =0,

20

14--

u2 F02 -60

as a spectral transfer term should. The quantity a is the
wave-number vector. It is the spectral transfer term

TJ(a), or its Fourier transform —B(u;u~' uk
—u;ukuj' )/Brk in Eq. (19), that is responsible for the gen-
eration of the small-scale structure in Fig. 8. Those terms
come from the nonlinear term —B(u; uk )/Bxk in the
unaveraged Eq. (48). As mentioned earlier, the term
—B(u;uk)/Bxk produces randomization, as well as spec-
tral energy transfer.

Although Eq. (30) shows that TJ can transfer energy
between wave numbers without contributing to the rate of
change of total energy Bu;uj/Bt, it says nothing about the
direction of the transfer or how important it is. For that
we need calculations such as those in Fig. 8, which show
that significant energy is transferred to smaller eddies. '

The energy transfer can be thought of as due to a breakup
of big eddies into smaller ones, or as a stretching of vor-
tex filaments to smaller diameters. In spite of this
transfer to smaller eddies, experimental results generally
show a growth of scale (Batchelor, 1953, Fig. 7.2). This is
because those results are usually for the later period
shown in Fig. 8 where, although energy is transferred to
smaller eddies, the annihilation of small eddies by viscous
action eventually wins out. The early period shown in
Fig. 8, and in Fig. 2 of Taylor and Careen (1937), is of par-
ticular interest, in that the nonlinear transfer effects are
truly dominant there; a sharp decrease in scale actually
occurs as energy is transferred to smaller eddies.

3. Dissipation, vorticity generation, and pressure
fluctuations

The energy dissipation term, the only term contributing
to the rate of change of kinetic energy for homogeneous
turbulence without mean gradients [Eq. (53)] is plotted in
Fig. 9. That is also the mean-square vorticity [see Eq.
(36)], but the two are distinct physical entities. Although
the curve for zero Reynolds number, where nonlinear ef-
fects are absent, decreases monotonically to zero, the
curves for higher Reynolds numbers increase sharply for
a while and then decrease. Thus the nonlinear terms in
the Navier-Stokes equations are very effective vorticity

—21/2
ip Uo Xo /V

10--
2217

/

C4

0. 04 0.08 0. 12 0. 16 0.20 Q. 24 0.28

FIG. 9. Calculated development of mean-square vorticity fluc-
tuations co or dissipation c (normalized by initial value) for
various initial Reynolds numbers. No mean shear. Extrapolat-
ed to zero mesh size.

generators and greatly enhance the dissipation at small
and moderate times. For large times they appear to have
the opposite effect, evidently because the turbulence itself
decays rapidly to zero. Nonlinear effects, although they
do not appear explicitly in the evolution equation for u;u;
[Eq. (53)], thus alter greatly the evolution by altering the
dissipation term.

Figure 10 shows mean-square pressure fluctuations
plotted against dimensionless time. The enhancement of
the pressure fluctuations, ahtough not as great as that of
the vorticity or dissipation, again is due to nonlinear ef-
fects: In this case the nonlinear terms on the right side of
the Poisson equation for the pressure cause the effect.

10—
2 t2

(UD xo/ v

tt 138.6

leva

4

A direct numerical calculation of T;; by Clark et ah. (1979)
for random initial conditions, and corresponding to the region
of increasing A, in Fig. 8, shows the same thing. Calculated
values of T;; are negative at small wave numbers (large eddies)
and positive at large wave numbers (small eddies), so that ener-

gy is transferred from big eddies to smaller ones.

I I
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FICx. 10. Calculated evolution of mean-square pressure fluctua-
tion (normalized by initial value) for various initial Reynolds
numbers. No mean shear. Extrapolated tozero mesh size.
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4. Further discussion and summary of the processes
in isotropic turbulence

Nonlinear velocity and pressure terms do not appear in
the evolution equation for u;u; [Eq. (53)]. But we can
calculate root-mean-square values of the nonlinear terms
in the instantaneous evolution equation (48), as well as of
the linear term. Three measures of the relative impor-
tance of inertial (nonlinear) and viscous effects are shown
for a moderate Reynolds number in Fig. 11. The ratio of
the nonlinear velocity term to the viscous term and the ra-
tio of the pressure to the viscous term in Eq. (48), togeth-
er with the microscale Reynolds number, are plotted
against dimensionless time. The terms are space-averaged
root-mean-square values. All of those measures show a
variation from a rather inertial to a weak fluctuating
flow. For instance, Rq varies from about 90 to 0.7. This
is a much greater variation than has been obtained experi-
mentally for a single run. The curves for the term ratios
lie somewhat below that for R~. They indicate that ex-
cept at early times the nonlinear inertial effects associated
with velocity and with pressure do not differ greatly.

The importance of both nonlinear velocity and pressure
effects in Fig. 11 is somewhat paradoxical in view of Eq.
(53), which says that neither contributes directly to
Bu;u;/Bt. The nonlinear velocity effects were already dis-
cussed in this section; it was pointed out that such effects
should not appear in Eq. (53), since they only distribute
energy in wave-number space and so do not directly alter
the total energy. Although there is no nonlinear velocity
term in Eq. (53), such a term appears in the two-point
equation for Bu;u /Bt. That equation, for the present
case, is obtained from Eq. (19) as

8 Q;Q;
u;ui =2v

dr 8Pk Bl'k

(54)

20

6
4—

1=
0.8:
0.6-
0 4—
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where r is again the vector extending from the unprimed
to the primed point, and the pressure terms drop out be-
cause of continuity. The last term, where the parenthesis
indicates no sum on i, is a consequence of the isotropy of
the turbulence. The equation for the rate of change of
each component of u;u is contributed to by the non-
linear velocity term —(8/Brk)(u;u uk —u;uku ), but
there is no contribution from the pressure. The strong ef-
fect of pressure shown in Fig. 11 must be contained in
higher-order equations in the hierarchy of averaged equa-
tions (moment equations) (Deissler, 1958, 1960). Thus,
while two-point averaged equations contain a nonlinear
effect of velocity, we must consider higher-order mul-
tipoint equations to obtain an effect of pressure. Terms in
the unaveraged equations shown in Fig. 11 (averaged over
space after the solution has been obtained) include effects
of all orders. (Effects contained in the numerical results
may, however, be limited by the fineness of the numerical
grid. )

Although there is a strong effect of pressure in Fig. 11,
the physical significance of that effect is somewhat
elusive, in contrast to the effects of viscous dissipation
and spectral energy transfer. If the turbulence is anisotro-
pic, a clear effect of pressure fluctuations is that they
transfer net energy among directional components [see
Eqs. (14) and (15) and the discussion following those
equations]. That will be discussed in the next section. If,
in addition, the turbulence is inhomogeneous, pressure
can produce a net spatial diffusion of energy [Eq. (15)].
Those are evidently the only physical effects of pressure
fluctuations (at least that we know about). Thus, if the
turbulence is homogeneous and isotropic, as it is here, it
seems reasonable to attribute the observed pressure effects
in the unaveraged equations to those processes. Even
though there is no net interdirectional transfer or spatial
diffusion of turbulence when the turbulence is isotropic,
those processes can still be instantaneously or locally
operative. They could, for instance, cause a diffusion of
tagged particles. According to Fig. 11, they have signifi-
cant indirect effect on the evolution of the turbulence.

From the findings of the present section we conclude
that the following processes occur in isotropic turbulence:
nonlinear randomization by proliferation of harmonic
components and/or by strange behavior, nonlinear spec-
tral transfer of turbulence among wave numbers or eddy
sizes (mainly to smaller eddies), spatial diffusion and
transfer of turbulence among directional components by
pressure forces, with zero net diffusion and transfer into
each component, generation of vorticity or swirl, and dis-
sipation of turbulence into heat by viscous action. ' From
this description, the life of isotropic turbulence appears
interesting and many-faceted.
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FICx. 11. Three measures of relative importance of inertial and
viscous effects vs dimensionless time. No mean shear.

(u&)' xo/v=69. 3. i=1, 2, or 3. Extrapolated to zero mesh
size.

According to Eq. (36), the vorticity and the dissipation are
numerically the same, (except for a factor v), but they are physi-

cally distinct.
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V. UNIFORMLY SHEARED FLUCTUATIONS
AND TURBULENCE

dU]
(U;)„g 2 +b+ —(U;)„, b, 6——; )5J.22m. (56)

In the preceding section the evolution of nonrandom in-
itial fluctuations into isotropic turbulence was examined
numerically. The nonlinear transfer of energy to sma11er
scales of motion, the zero net (but not zero) spatial dif-
fusion and transfer of energy among directional com-
ponents, the generation of vorticity or swirl, and viscous
dissipation were studied.

Another important process is the production of tur-
bulence by a mean shear. Most turbulent flows, both
those occuring in nature and those which are man-made,
are in fact shear flows, where the turbulence is produced
and maintained by the shear. Because of the added com-
plexity, the nonlinear problem of turbulent shear flow is
even more difficult than that of isotropic turbulence, so it
is not surprising that little progress has been made in ob-
taining an analytical solution from first principles. An
attempt to obtain a numerical solution would seem to be
in order.

Conceptually, the simplest turbulent shear flow [al-
though certainly not the simplest to produce experimen-
tally (Champagne et al. , 1970)] is one in which the tur-
bulence is uniformly sheared; At least two significant nu-
merical studies of that type of turbulence have recently
been made (Rogallo, 1981; Shaanan et al. , 1975). In both
of those studies random initial conditions with a range of
eddy sizes were used.

In the spirit of the preceding section, the present nu-
merical study of uniformly sheared turbulence starts with
simple determinate initial conditions which possess a sin-
gle length scale. As in the preceding section, we can in
this way study how the turbulence develops from nontur-
bulent initial conditions. Again, much-higher-Reynolds-
number flows- can be calculated with a given numerical
grid when a single length scale is initially present, at least
for early and moderate times.

As will be seen, several interesting results which could
not be obtained in the previous work on turbulent shear
flow are obtained here. One of the significant findings is
that the structure of the turbulence produced in the pres-
ence of a strong shear is much finer than that produced in
its absence.

A. Initial and boundary conditions

In carrying out numerical solutions for uniformly
sheared turbulence, the instantaneous equations (1) and
(3), subject to initial condition (38) and boundary condi-
tions (44) and (47), are used. Since we are considering a
uniform shear, we let

dUi
U~

——5;( xg
EjX2

in the initial condition (38) and

in the boundary condition (44). For the coefficients in
Eq. (38) we use Eq. (40), where we choose the first set of
signs. Equations (1) and (3) are written in terms of the to-
tal velocity u;, but we can calculate the fluctuating com-
ponent u; from Eq. (4). It should be emphasized that we
do not consider here a sawtooth type of mean velocity
profile, but a continuous profile in which the mean-
velocity gradient is uniform at all points. Even with a
uniform mean-velocity gradient, some local inhomogenei-
ty is introduced into the fluctuations by the periodic
boundary conditions. We shall not concern ourselves with
that inhomogeneity, however, since we can still calculate
products of velocities and pressures averaged over a
three-dimensional period. Those values are independent
of the position of the boundaries of the cycle. Note that
for a constant, uniform mean-velocity gradient and mean
pressure, the last terms in Eqs. (10) and (11) are zero, even
though some fluctuations may be inhomogeneous [see
Eqs. (12) and (13)].

The u2 component of the velocity fluctuation (in the
direction of the mean-velocity gradient) is crucial in
maintaining the turbulence against the dissipation
(Deissler, 1970b, 1972). Therefore, when, for brevity,
only one component of the velocity fluctuation is dis-
cussed, that component is chosen as u2. More will be
said about the maintenance of the turbulence later.

B. Development of random fluctuations

Figure 12 shows the evolution of u2/(uo)' at a fixed
point in space for a high Reynolds number, as calculated
from the full nonlinear equations. As in Sec. IV, asterisks
on quantities indicate that they have been nondimension-
alized by using the initial length scale xo and the
kinematic viscosity v. Thus t =(v/xo)t, x =x;/xo, and
(dU, /dx2)'=(xo/v)dU&/dx2. Again, the velocity fluc-
tuations have the appearance of those for a random tur-
bulence, in spite of the nonrandom initial condition [Eq.
(37)]. The dashed curves for uz/(uo)' are again for ini-
tial conditions perturbed approximately 0.1%. The per-
turbed curves at first follow the unperturbed ones but
eventually depart sharply. Although the appearance of
the curves in Figs. 12(a) and 12(b) differs considerably,
the perturbed curves in the two figures take about the
same length of time to break away from the unperturbed
ones. A very small perturbation of initial conditions
causes a large change in the values of u2 except at small
times. On the other hand, the root-mean-square values of
the velocities change smoothly with time and are unaf-
fected by the perturbation of the initial conditions. These
features are characteristic of turbulence. [Although the
root-mean-square curve in Fig. 12(a) appears almost hor-
izontal, it eventually goes smoothly to zero when extend-
ed.]
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FIG. 12. Effect of uniform shear on calculated evolution of nonlinear turbulent velocity fluctuations (normalized by initial value) for
a high Reynolds number (u o )

' xo/v= 1108. Root-mean-square fluctuations are spatially averaged. 32 grid points.
x ~ =x2 ——9~/8, x3 ——3~/8 for unaveraged fluctuations. (a) (d U~/dxz)*=0. (b) (d U~/dx2)*=4434. , Initial conditions use
Eq. (40) with first set of signs. ———,Initial conditions perturbed 0.1%.

Rev. Mod. Phys. , Vol. 56, No. 2, Part I, April 1984



R. G. Deissler: Equations of fIuid motion

C. Shear-related small-scale structure

Bu; dU& dU& Bu;= —6g ) u2 — X2
Bt dX2 dX2 BX ]

Qp 8 ug
+V

p BX. BXkBXk

8
(u;uk)

BXk

(57)

A striking feature of the curves for uz/(uo)'~ in Fig.
12 is the small-scale structure exhibited for sheared tur-
bulence [Fig. 12(b)] when compared with the structure for
no shear [Fig. 12(a)]. This shear-related small-scale struc-
ture is produced by the term —UkBu;/Bxk in Eq. (10)
which, for uniform shear, is —(dUi/dxz)x28u;/Bxi.
Equation (10) becomes, for a constant uniform mean-
velocity gradient and a uniform mean pressure,

and (periodic) boundary conditions given by Eqs. (37),
(40), (42), and (43), then proceeds as in the nonlinear case.

%'e can obtain an analytical solution for unbounded
linearized fluctuations by using unbounded three-
dimensional Fourier transforms (Deissler, 1961). This
particular solution does not satisfy constant periodic
boundary conditions. Instead of working with the aver-
aged equations (Deissler, 1961), it is instructive to work
with the unaveraged ones, and use the initial condition
given by Eq. (37). In this case the Fourier transforms
must be generalized functions (a series of 6 functions), but
the method of solution is the same as that in the earlier
work. Equation (57) for u2 and Eq. (59), when linearized,
are independent of u~ and u3. The solution obtained by
using the initial condition (37) is

where Eq. (12) is used. From the term —(dU& /
dx2)x2Bu;/Bx& in Eq. (57), we get the term

3

tt2 = g U2cos(q 'x —aqitx2), (60)

Q Uk ()uI-uj d U) Bug uj.
P I = — I"2

BX BP'k dX
(58)

3

p = g P"sin(q".x —aq&tx2),
n=1

in the two-point correlation equation (19). For periodic
boundary conditions, x; dependency is not present in Eqs.
(19) and (58) because averages are taken over a three-
dimensional period with r; held constant. This is so even

though the periodic boundary conditions may introduce
some local inhomogeneities. If we take the Fourier
transform of that term, we obtain the mean-gradient
transfer term TJ in the spectral equation (26). Its effect
in transferring energy to small-scale components is simi-
lar to that of the nonlinear transfer term TJ in Eq. (26)
[the Fourier transform of the triple-correlation term in
Eq. (19)]. The production of small-scale structure by the
shear might be thought of as due to a stretching of the
random vortex lines in the turbulence by the mean gra-
dient, or of mean vortex lines by the turbulence.

Although we first discussed a mean-gradient transfer
term more than two decades ago (Deissler, 1961), the
present results give the first graphic demonstration of the
effectiveness of that term in producing a small-scale
structure in turbulence. Since that is a linear effect (when
the mean gradient is given), we can study it either by the
full nonlinear solutions already considered in Fig. 12
(which contain linear as well as nonlinear effects), or by
linearized solutions.

D. Some linearized solutions and comparison
with nonlinear solutions

U2 ——
a 2q"

n n 2 n 2q" —2aq ~qzt +a q &
t

Xexp[ —vt(q" —aq", q 2t + —,
' a q &

t )], (62)

pn
—2paa 2q )q

2 n n 2 n222(q" —2aq&qzt+a q, t )

Xexp[ —vt(q" aq&qzt+ , a qi —t )], —(63)

3

pu, = g —,'r"U," . (64)

It is clear from the form of Eqs. (60) and (61) that the
solution does not satisfy constant periodic boundary con-
ditions. By omitting the term —{dU&/dx2)xzBtt;/Bxi as
well as the nonlinear terms in Eqs. (57) and (59), we can,
however, obtain a simple analytical pseudo solution which
satisfies those conditions:

a =dU, /dx2, q" =qi +q2 +q3, and the a;" and q;" are
given in the initial conditions [Eqs. (37) and (40)] (with
the first set of signs). Mean values are obtained by in-
tegrating over all space. For instance,

Equation (11) becomes, for uniform shear and uniform
mean pressure,

3

u, = g a2exp vt
L

n=1

n n
qlq2

2Q
n

cosq"-x,

$2p 8 (ttkQt) Bttz 8Ui—2
IB g 8 pBX 8 BX

(59)
2paq ia2p=

n=1

qiqz
exp vt 2a —q" sinq". x .

where Eq. (13) is used. Equations (57) and (59) are linear-
ized by neglecting the terms —i)( u; uk ) /Bxk and—8 (ukut)/BxkBxt. The numerical solution, with initial

{66)

This solution is useful for checking the numerical calcula-
tions and for studying the effect of the term

Rev. Mod. Phys. , Vol. 56, No. 2, Part l, April 1984



R. G. Deissler: Equations of fluid motion 243

2QQ t K2+2

+K2+V3
(67)

where

7r 00q2(~)=, f dx, f f u2(x)e '"'*dx&dx3

(68a)

8,—

4'

0

(du, fdx&&'

0

0.00l0
I

~
I

O. 00' 0.0030 O. 0040

FKJ. 13. Calculated evolution of linearized velocity fluctua-

tions (normalized by initial value). (u 0)' xo/v= 1108.
x ~

——x2 ——9n-/8, x3 ——3m/8. 32' grid points. , Constant
periodic boundary conditions. ———,Unbounded [Eqs. (60)
and (62)].

(dU& /dx2)x2Bu3/Bx ~ on the fluctuations.
Velocity fluctuations obtained from linearized solutions

(numerical and analytical) are plotted in Fig. 13. The
presence of small-scale structure in the curves for
( d U ~ /dx q

)' =4434, and its absence in those for
(dU~/dx3)*=0 are apparent. (The curve for no shear
[Eq. (50)] decays monotonically to zero when extended. )
This is in contrast to the nonlinear case in Fig. 12(a) for
no shear, where at least larger fluctuations are present.
The linearized curves for (d U~/dxz)'=4434 in Fig. 13
follow closely the nonlinear ones in Fig. 12(b) for small
times. Likewise the linearized curves in Fig. 13 for
periodic boundary conditions follow closely those for un-
bounded conditions for small times. For larger times the
fluctuations for unbounded conditions continue to decay,
whereas those for constant periodic boundary conditions
grow. The development of small-scale structure in the
curves for unbounded conditions is produced by the term
a q &

tx 2 in the argument of the cosine in Eq. (60)
( a =d U& /dx2). This term arises from the term
—ax2Buz/Bx& in Eq. (57), as is evident from its absence
in Eq. (65), where the term —axzBuz/Bx~ has been
neglected.

For discussing the linearized case for constant periodic
boundary conditions, it is convenient to convert Eqs. (57)
and (59) to a spectral form by taking their three-
dimensional Fourier transforms. This gives, for uz, on
neglecting nonlinear terms,

n
2 „1=Qg ( g IP2(K) K2 —K2 K3) —V(g ) +K2+g3 )g2

K2
K2

u2(x) = g f f yz(a)e' *de&da3,
K~= —oo

3 3

u2 g +2i 'P2 g f2 &

(68b)

(69)
Pl = —3 lf = —3

sc is the wave-number vector, and y2 is the Fourier
transform of u2. Note that a finite transform is used in
the x2 direction in order to satisfy periodic boundary con-
ditions at x2/xo ———m, m..

Strictly speaking, Eq. (67) is for a sawtooth mean-
velocity profile, whereas the numerical results are for a
uniform mean-velocity gradient. Equation (67) should
still apply, however, at least for the present discussion
purposes to points inside but not outside the numerical
gIld.

For constant periodic boundary conditions for u;,
small-scale structure in the fluctuations or the transfer of
energy between wave numbers is produced by the term
containing the summation over a.

z in Eq. (67). That term
is the Fourier transform of —ax2Bu~/Bx~ [Eq. (57)].
From its form we see that it can produce a complicated
inter-wave-number interaction. The quantity y2 at each
a2 interacts with y2 at every other allowable a2. A differ-
ence between the solutions for unbounded conditions and
those for constant periodic conditions is that only fluctua-
tions at integral k2 are possible when periodic conditions
are imposed, whereas for unbounded conditions, fluctua-
tions are possible at all values of K2.

Although the linear term —axzt)u2/Bx &
is effective in

producing oscillations, even in the absence of nonlinear
effects (Fig. 13), the curves lack the random appearance
of those in Fig. 12(b). Evidently, as in the case of no
mean gradients [Eq. (50)], the only way we can have a
linear turbulent solution is to put the turbulence in the in-
itial conditions (Deissler, 1961). Both —ax2Buq/Bx~ and
the nonlinear terms in Eq. (57) are necessary to produce
the small-scale turbulence in Fig. 12(b) from nonrandom
initial conditions. The former acts like a chopper which
chops the flow into small-scale components. While the
latter terms also do that, their most visible effect here is
to produce randomization. As in Sec. IV, the randomiza-
tion might occur as a result of the presence of strange at-
tractors (or, more properly, analogous strange behavior) in
the flow, by proliferation of eddies or harmonic com-
ponents (with the loss of identity of the individual eddies),
or by both (see Sec. IV for a discussion of these possibili-
ties.

According to the linearized analytical solution given by
Eq. (60), the manufacture of small-scale fluctuations takes
place only in the x2 direction. Figure 14 shows how this
has taken place at a moderate time. A similar plot for the
nonlinear case is shown in Fig. 15. The randomizing ef-
fect of the nonlinear terms is evident.

Figure 16 shows uq/(uo)'~ for the nonlinear case,
plotted against x&, rather than against x2 as in Fig. 15.
The curves show some development of small-scale struc-
ture in the x ~ direction due to the interaction of the direc-
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FIG. 14. Linearized analytical solution for u2/(up)' vs x2
for unbounded fluctuations [Eq. (60)]. x~ 9~/8, x——3 ——3~/8.
(d Ui/dx2) =4434 {up) ~ xp/v=1108.

tional components in the nonlinear case. For the linear-
ized fiows development of small-scale structure occurs
only in the x2 direction.

E. Evolution of mean quantities with shear

1. Cross-correlation coefficients

Cross-correlation coefficients u;uj /(u; )' (uj )'
(i&j) are plotted against dimensionless time for the non-

linear case in Fig. 17. Although u~ ——u2 ——u3 at t*=O,
the initial cross correlations are not zero but are all posi-
tive and equal. However, because of the apparent ran-
domization of the flow u z u 3 and u

&
u 3 approach zero as

time increases. On the other hand, the values of the tur-
bulent shear stress u~u2 change from positive to negative

FIG. 16. Nonlinear solution for u2/(up) vs x~, x2 ——9m/8,

x3 3~/8 ( d U1/ dx2) 4434 (up ) xp/v= 1 108. 32 grid
points.

and remain negative because of the dynamics of the im-
posed mean shear. The presence of the mean-velocity
gradient dU&/dx2 causes u& to be likely negative when
u2 is positive, so that u&u2, the correlation between the
two, is negative. The waviness in the curves in Fig. 1?, as
well as that in some of the curves in later figures (e.g. ,
Fig. 20), is probably caused by nonrandom structure in
the flow, possibly that produced by the linear term
—(dU&/dx2)x2Bu;/Bx& in Eq. (57) (Fig. 13). (See foot-
note 10.)

2. Growth and anisotropy of the velocity fluctuations

The evolution of the mean-square components of the
velocity fluctuations is plotted in Fig. 18, where

(u~;~)*=(xo/v) u~;~. After an initial adjustment period
all of the components increase with time, in agreement
with experiment [Harris et al. (1977) and the numerical
results in Rogallo (1981)]. The numerical results in
Shaanan et al. (1975), on the other hand, show u2 and u3

1.2—

-1 m /
r

Q. 4 O. S l. 2

x2 ~ x2/x0

0.8
lee ~

0

I ~
0

-0 4—
-0.6
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!
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I 1, j*3
i 1, j.2
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FIG. 1S. Nonlinear solution for u2/(up)' vs x2. x~ ——9m/8,
x 3 —3m/8. {d U~ /dx2 )*=4434. (u p )' xp /v= 1 108. 32 grid
points.

FIG. 17. Calculated cross correlation coefficients ( i&j) plotted
against dimensionless time. (d U&/dx2) =4434. (u p ) xp/v
=1108. 32 grid points.
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extrapolation to zero grid-point spacing (an infinite num-
ber of grid points) (Deissler, 1981a, 1981c). The differ-
ences between the results for 32 points and the fourth-
order extrapolation are small, but increase somewhat at
large times. These results appear to indicate that the nu-
merical results given here for averaged values are reason-
ably accurate. On the other hand, the three-dimensional
spatial resolution is probably not great enough (except at
early times) to give accurate spatial variations of unauer
aged quantities, other than that they have a random ap-
pearance. However, since the solutions are hydrodynami-
cally unstable and extremely sensitive to initial conditions,
the actual values of the unaveraged quantities are prob-
ably not of great significance.

4. Maintenance of the turbulence

FIG. 18. Calculated evolution of mean-square velocity com-

ponents. ( d U~ /dx2)* =4434. (u 0 )'~ xo/v= 1108. 32 grid
points.

decreasing at all times, a difference that remains unex-

plained. Our u i component is the largest of the three, ui
is the smallest, and u3 lies slightly above u~, in agree-
ment with experiment (Harris et al. , 1977) and previous
numerical results.

3. Accuracy of mean and instantaneous quantities

The effect of discretization error on the numerical re-
sults for u2 is shown in Fig. 19. Curves are plotted for
16, 24, and 32 grid points, together with a fourth-order

NUMBER OF

GRID POINTS

For the case considered in this section (uniform veloci-

ty gradient d Ui /dxq), the one-point correlation equation
(14) becomes

dUi dUi
Bt'' 'dx, ' dx,u;u ——g) u up —~) u;u2

a
p +p —2v, (70)

p 8+&' dxj 8+I Bx

where derivatives of averaged values with respect to x; do
not appear because averages are taken over a three-
dimensional period. This is so even though local inhomo-
geneities may occur when periodic boundary conditions
are used, as discussed earlier. (See footnote S.)

Figure 20 shows the evolution of pressure-velocity-
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FICx. 19. Effect of numerical mesh size on evolution of u2 .
(d U~/dx2) =4434 (uo) xp/v=1108.

FIG. 20. Calculated evolution of pressure-velocity-gradient
correlations. ( d U~ /dx2) =4434. (u 0)' xo/v= 1108. 32 grid
points.
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FIG. 21. Evolution of u q for various linear and nonlinear solu-

tions. (d U, /dx, )'=4434. (u, )'"x,/&=1108.

gradient correlations. (Parts of some of the curves are
omitted to avoid confusion. ) The pressure-velocity-
gradient terms in the one-point correlation equation (70),
together with the production terms, are responsible for
maintaining the turbulence against the dissipation [given
by the last term in Eq. (70)]. There are no production
terms in the equations for Bu z /Bt and Bu 3/Bt
(5 iujuzBU~/Bxz and 5J~u;uzBU~/Bxz are zero) T. hus

uz and u 3 generally receive energy only from the u f com-
ponent, whose equation has a nonzero production term.
Equation (70) shows that in order to do that, pBuj/Bx;
+ @au;/Bxz must be positive for i =j=2,3 and negative

for i =j=1. Figure 20 shows that is actually the case for
constant periodic boundary conditions except for an ini-
tial adjustment period, so that the turbulence is main-
tained (Fig. 18). The maintenance of the uz or uz com-
ponent is particularly critical because if u2 goes to zero,
the Reynolds shear stress u &uz in the production term of
the u ~ equation [see Eq. (70)] will go to zero and there
will be nothing to keep the turbulence going. All the
components will then eventually decay. That is what
happens in the linearized analysis for unbounded tur-
bulence in Fig. 20 (see also Deissler, 1961).

A comparison between the nonlinear results f'or u z and
various linearized solutions is given in Fig. 21. The same
initial conditions are used for all the cases [Eqs. (37) or
(38), (40), and (55)]. For all of the results, except those
for the unbounded linearized case (obtained by using un-

bounded Fourier transforms [Eq. (60)]), the crucial uz
component eventually increases so that the turbulence or
fluctuations are maintained. In the unbounded linearized
case u2 decreases at a11 times. That was expected, since
the uz results for that case in Deissler (1961, 1970b) (for
different initial conditions) decreased at all times. Some-
what unexpected are the linearized results for constant

periodic boundary conditions, which show that the fluc-
tuations are maintained for those cases. Whereas Fig. 20
shows that in the unbounded case the pressure-velocity-
gradient correlations remove energy from the uz com-
ponent and cause the fluctuations to decay as in Deissler
(1961), the imposition of constant periodic boundary con-
ditions changes the sign of those correlations and brings
energy into uz, so that the fluctuations are maintained.
Thus the boundary condition can have an important ef-
fect on the fate of sheared turbulence. More work is
needed to clarify how this occurs. Equation (65), which
satisfies periodic boundary conditions, shows that, at least
when the term —(dU~/dxz)xzBu;/BxI in Eq. (57) is

4
neglected, u z increases at large times if 2aq Iqz & q" for
ai least one n.

5. Spectral transfer terms as stabilizing

Comparison of the linearized case for periodic boun-
dary conditions in Fig. 21 with the corresponding non-
linear case shows that the nonlinear terms have a stabiliz-

ing inAuence. That is, the values of u2 increase more
slowly for the nonlinear case. Moreover, comparison of
the curve for the linearized case with periodic boundary
conditions and with the term —(d U~/dxz)xzBuz/Bx& in
Eq. (57) missing [Eq. (65)] with the corresponding curve
for that term included shows that the presence of that
term also has a stabilizing influence. Since neglect of that
term is equivalent to neglecting the mean-gradient
transfer term Tzz in the spectral equation for uz [Eq.
(26)], we can consider the latter term as stabilizing. Thus
both the nonlinear spectral transfer term associated with
triple correlations T22 and the linear mean-gradient
transfer term Tzz in the spectral equation (26) for u z are
stabilizing. The reason is that both terms transfer energy
to small eddies, where it is dissipated more easily.

It is of interest that the one-point correlation equation
f«&u;uj/Bt [Eq. (70)] contains neither a term associated
with velocity-gradient transfer nor one associated with
nonlinear transfer. That is, both of those processes give
zero direct contribution to the rate of change of u;uj,' they
only change the distribution of energy among the various
spectral components or eddy sizes. This spectral transfer,
of course, still affects the way in which u;uj evolves (see
Fig. 21). Even though Eq. (70) contains no transfer
terms, the transfer of energy among the various spectral
components of the velocity alters the terms that do appear
in Eq. (70), so that Bu;uj /Bt is affected indirectly. That is
not a small effect!

The modified linear pseudo solution given by Eqs. (65)
and (66) (dash-dot-dot curve in Fig. 21) is the simplest
solution in which the fluctuations can be maintained
against the dissipation. In obtaining it the only mean-
gradient term retained in the equations for uz [Eqs. (57)
and (59), i=2] is —2(d U~/dxz)Buz/BxI, a source term
in the Poisson equation for the pressure. If that term is
also neglected, uz decays and, as discussed earlier, all of
the components of the fluctuations decay. Moreover, as
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shown in Fig. 21 and already discussed, the term
—(d U~/dx2)x28u;/Bx, in Eq. (57) is stabilizing, so it is
of no help in maintaining the fluctuations. Thus, at least
in the linearized case, the presence of the source term
—2(dU~/dxz)Bu2/Bx& in the Poisson equation for the
pressure is necessary for maintaining the fluctuations.
That term should play a similar important role in the
maintenance of nonlinear turbulence, although in that
case it is hard to separate the linear effects from the non-
linear ones. In particular, the role of the nonlinear source
term in the Poission equation for the pressure remains un-
clear, although it may have an effect similar to that of the
linear source-term.
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FIG. 23. Calculated evolution of cross correlation coefficients
upon sudden removal of uniform shear. (uo)' xo/v=1108.
32' grid points.

F. Return to isotropy

Figures 22 and 23 show the approach to isotropy of
nonlinear uniformly sheared turbulence when the shear is
suddenly removed. Although the shear produces consid-
erable anisotropy, the components u; of the mean-square
fluctuation approach equality upon removal of the shear
and remain accurately equal. The pressure-velocity-
gradient correlations in Eq. (70) are thus successful in
transferring energy among the various directional com-
ponents in such a way that equality of the u; is produced.
We note that uz continues to increase for a short time
after the shear is removed, probably because it receives
energy from both u ~ and u3.

In addition to equality of the u;, zero cross correlations
u;uj (i+j) are required for isotropy. Figure 23 shows
that u~u2, which is nonzero when the turbulence is
sheared, approaches zero when the shear is removed, and
along with the other cross correlations, remains close to
zero. The destruction of uju2, apparently by nonlinear
randomization effects, occurs over a finite time period
rather than instantaneously on removal of the shear.

Another expected effect of removal of the mean shear
is that the small-scale structure produced by the mean-

gradient chopping term —(dU~/dxz)x2Bu;/Bx~ in Eq.
(57) should die out. According to Fig. 24, that occurs al-
most immediately when d U~/dxq goes to zero, evidently
because of the large fluctuating shear stresses between. the
small-scale eddies Fi.gure 24 shows, in a particularly
graphic manner, the effectiveness of the mean-gradient
chopping term in Eq. (57) in producing small-scale tur-
bulent structure.

VI. INHOMOGENEOUS FLUCTUATIONS
AND TURBULENCE, DEVELOplNG
SHEAR LAYER

U; =n.5;,V[sgn(xz —~)+1], (71)

Here, the work is extended to an inherently inhomo-
geneous developing shear layer so that net diffusion, as
well as other turbulence processes, can be considered.
This case is general enough to include all of the dynami-
cal processes which ordinarily occur in incompressible
turbulence.

For the initial conditions we use a three-dimensional
cosine velocity fluctuation, as before, and a mean-velocity
profile with a step. Thus in Eq. (38) we set

where V is a constant with the dimensions of a velocity.
Equation (71) is plotted against xz/x0 in the curve for
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FIG. 22. Calculated approach to isotropy of uniformly sheared
turbulence upon sudden removal of the shear.

(u&~ ~iso/v=1108. 32 grid points.
FIG. 24. Effect of removal of uniform shear on structure of
turbulence. (up)' xo/v=1108. 323 grid points.
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FIG. 25. Calculated development of shear layer mean-velocity

profile with dimensionless time. (up)' xo/v=554, V =2216
in Eq. (71). 32 grid points.

t=0 in Fig. 25, where V" = Vxo/v, and xo is again the
initial length scale of the disturbance. For the coefficients
given by Eq. (40) we choose the second set of signs. With
this choice of signs u

& u2 does not have to change sign as
a result of the dynamics of the flow, as it did in the
preceding section, and the initial adjustment period is
eliminated or greatly shortened. If the longer adjustment
period remained, much of the development of the shear
layer would be distorted.

In carrying out the numerical solution of Eqs. (1) and
(3) we use boundary conditions (44) and (47), where we let

Equations (1) and (3) are written in terms of the total
velocity u;, but we can calculate the fluctuating part from
Eq. (4) which, for the present case, is u;=u; —5;&U&,
where U; is obtained by averaging u; over x& and x3 for
fixed values of xz. The fluctuations are inhomogeneous
in the x2 direction, except at t=O.

The calculated evolution of the dimensionless mean
velocity U& ——(xo/v)U~ ( U2 and U3 are zero) is plotted
against x2/xo ——x2 for a particular value of V"= Vxo/v
in Fig. 25. The results in this section may not be as accu-
rate as those in the previous sections because of the pres-
ence of the discontinuity in the initial velocity profile, but
they should be qualitatively correct. The shear layer
grows (from essentially zero initial thickness) because of
the presence of the turbulent and viscous shear stresses.
The ratio of turbulent to viscous shear stress (averaged
over x& and x3 at the central plane x2 =7r) is plotted
against dimensionless time in Fig. 26. Except at very ear-
ly times the growth of the shear layer is almost complete-
ly dominated by the turbulent shear stress.

Figure 27 shows the evolution of the instantaneous
velocity component u2 and of the root-mean-square value
of u2 (averaged over the central plane x2 ——m). Although
the initial conditions are nonrandom, the evolution of u2

0.0001 0.0002 0. 0003 0.0004 0.0005

FIG. 26. Calculated time variation of ratio of turbulent to
viscous shear stress for developing shear layer at x 2

——m..
(u o )'~ xo/v= 554, V" =2216 in Eq. (71). 32 grid points.

has a random appearance, as in the preceding sections.
On the other hand, (u 2 )

'~ evolves smoothly. These
characteristics are again representative of a turbulent
flow. The quantity (u z)' increases monotonically at
small times in contrast to the corresponding curve in Sec.
V, where an initial adjustment period was present. As
mentioned earlier, the initial adjustment period has been
eliminated here by using the second set of signs in Eq.
(40), so that u t u2 does not have to change sign as a result
of the dynamics of the turbulence. The decrease in
(u2)' near the end of the curve is caused by a decrease
in mean velocity gradient, and thus of turbulence produc-
tion, at large times (Fig. 25).

As in the case in the preceding section, small-scale fluc-
tuations are generated in the inhomogeneous turbulence in
Fig. 27 by the interaction of the mean velocity with the
turbulence. This can be seen by comparison of Fig. 27
with Figs. 1 and 12(a), where mean-velocity gradients are
absent. One might expect this, since it has been shown
(Deissler, 1981b) that even for a general inhomogeneous
turbulence, a term in the two-point spectral equation for
the turbulence can transfer energy between scales of
motion as a result of the presence of mean gradients.

A. Inhomogeneous growth of turbulent energy

A dimensionless plot of turbulent kinetic energy as a
function of x2 and time is given in Fig. 28, where
(ukuk)*=(xo/v) ukuk As for all of. the averaged values
in this section, ukuk/2 is averaged over x& and x3 for
fixed values of x2 ~ As time increases, an intense concen-
tration of turbulent energy develops near the plane
x2/xo ——m, where the mean-velocity gradient is initially
infinite. The turbulence is highly inhomogeneous. Inho-
mogeneity, in fact, seems to be the dominant characteris-
tic of the turbulence generated in the shear layer. The in-
dicated increase of turbulence with time is similar to that
obtained experimentally (Brinich et al. , 1975).
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B. Turbulence processes in shear layer

Terms in the one-point correlation equation for the ra«
of change of the turbulent kinetic energy [Eq. (15)],
which, for the present case, becomes

ukuk

Bt 2
dUi 1 ()= —Q ) Q2 — pQ2
GX2 p BX2

0 Qkuk

2 Q 2 2
u, +v

Buk 8QI
(73)

are plotted for t'=0.000293 in Fig. 29. As usual, an
asterisk on a quantity indicates that it has been non-
dimensionalized by using x 0 and v. For instance,
(u~uqdUt/dx2)*=(xo/v )u~uqdU~/dxq. The terms
that contribute most to the rate of change of ukuk/2 are
the production term —u~u2dU~/dxq, the pressure dif-
fusion term ( —Bpu2/Bxz)/p, and the kinetic energy dif-
fusion term —( —,

'
)t}ukuku2/t}xq. The viscous diffusion

term vt} (ukuk/2)/t}x' , and the dissipation term
—v(t}uk/Bxt)(Buk/t}x~) are small in Fig. 29. At early
times, however, when the mean-velocity gradient is large,
the dissipation term is appreciable.

The production term, whose form shows that turbulent
energy is produced by work done on the Reynolds shear
stress by the mean-velocity gradient, is largest near the

-17.5
0 2 4 6 8

t (xM)4)

FIG. 27. Calculated evolution of turbulent velocity fluctuations
(normalized by initial value) for developing shear layer.
Unaveraged fluctuations are calculated at center of numerical
grId (x; =m). Root-mean-square fluctuations are averaged over
x & and x3 at central plane xz ——m. (uo)' xp/v=554,
V*=2216 in Eq. (71). 32 grid points.

FIG. 28. Development of dimensionless kinetic energy profile
with dimensionless time for developing shear layer.
(uo)' xo/v=554, V =2216 in Eq. (71). 323 grid points.

plane x2 ——~, where the velocity gradient is initially infin-
ite. The plots of the pressure and kinetic energy diffusion
terms show that those terms are negative near xz ——m and
positive away from that plane. Thus they remove tur-
bulent energy from the maximum energy region and
deposit it where the energy is smaller. Both diffusion
terms, therefore, tend to make the turbulence more homo-
geneous.

A comparison of the turbulence diffusion processes
with the spectral transfer processes and the directional
transfer processes arising from the pressure-velocity
correlations (see Sec. IV and V) is instructive. The spec-
tral transfer processes remove energy from wave-number

(or eddy-size} regions where the energy is large and depo-
sit it in regions of smaller energy. The directional
transfer processes remove energy from large-energy direc-
tional components and deposit it in a directional com-
ponent (or components) where the energy is smaller. The
turbulence diffusion processes, as shown here, remove en-

ergy from regions of space where the energy is large and

deposit it in regions of smaller energy. The spectral
transfer, directional transfer, and turbulence diffusion
processes tend, respectively, to make the turbulence more
uniform in wave-number space and more isotropic and
homogeneous in physical space.

Although one might suppose that turbulence diffusion
terms would always tend to make the turbulence more
homogeneous, that supposition is not supported by all ex-
perimenta1 data. For instance, measurements of wall-
bounded turbulence (I.aufer, 1954) indicate that the pres-
sure diffusion and the kinetic energy diffusion terms
transfer energy in opposite directions, although the total
diffusion is from regions of high to regions of lower ener-

gy. On the other hand, measurements of turbulence in a
free jet (Wygnanski and Fiedler, 1969} and in a wake
(Townsend, 1949), which are closer to the case considered
here, seem to support the present findings.
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80—
d2)

FIG. 29. Plot of terms in one-point correlation equation
V" =2216 in Eq. (71), 1*=0.000293. 32 grid points.

Pu2J'P —..
1 ( d ukuku 2l~
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for kinetic energy [Eq. (73)] for developing shear layer. (u~o)' xo/v= 554,

VII. A STEADY-STATE HOMOGENEOUS TURBULENCE
WITH A SPATIALLY PERIODIC BODY FORCE
(STRANGE BEHAVIOR REVISITED)

B(u;uk)

C)Xk

I Bp +V
P ~&; ~xk~XI, 0

where the subscript 0 signifies initial values, the u; being
given by Eqs. (38) and (40) with U~ ——0, and p by Eq. (3),
and where c is a constant. The first set of signs is used in
Eq. (40). Equation (74), which is time independent, is
used for I'; at all times. For e= 1, the quantities u; and
p, as calculated from Eq. (1) (with F; added to the right
side) and Eq. (3), do not change from their initial values.
In order to introduce some initial time dependence we set

In all of the cases considered so far the turbulence ei-
ther ultimately died out or increased in intensity with
time. However, there are many important cases in which
the turbulence, after some time, reaches a statistically
steady state (e.g., flow in a pipe far from the entrance).
Moreover, a discussion of strange attractors (see, for ex-
ample, Eckmann, 1981, and Ott, 1981) should, strictly
speaking, be based on a steady-state turbulence; a strange
attractor is, roughly, the region of phase space inhabited
by the phase point of a system after the initial transients
have died out, where the phase point moves in an ap-
parently chaotic fashion. For the decaying turbulence of
Sec. IV, the attractor would then be only a point in phase
space. Qf course, we could still talk about analogous
strange behavior, even in an unsteady-state case, as we did
in Sec. IV.D.

One way of obtaining a statistically steady-state tur-
bulence is by adding a spatially periodic body-force term
(forcing term) F; to the right side of Eq. (1). A con-
venient term for that purpose is

—21/2
Uy U0

—21/2 —2I/2
(0,') )Uo)

LANll NAR FLOW—

5 p
I

0. 03 0. 06 0. 09 0. 12 0. rs
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3 I Zy/2
—

2g/2

~TRANSITION L ul fu02)
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STEADY-STATE TURBULENCE3— —&12 —2 /2,~-p j,'
~ JIJI~

II '-u, (u')"'

-5
0. 30 Q. 36 0. 39 0. 42

FICx. 30. Calculated evolution of turbulent velocity fluctuations
(normalized by initial condition) with a spatially periodic body
force. (up) xp/v=138. 6. x j =x2 =977/8 x3=3m./8 for
unaveraged fluctuations. Root-mean-square fluctuations are
spatially averaged. 32 grid points.

e= 1.05. The boundary conditions are taken to be period-
ic, as in Sec. IV.

Calculated results for this case are plotted in Figs. 30
and 31, where t* is again equal to (v/xo)t and xo is the
initial length scale. Figure 30 shows the time evolution of
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fee~ o

Figure 31 shows the projection on the uz-u3 plane (at
the center of the numerical grid) of the trajectory of the
phase point as it moves on the strange attractor. As in
Fig. 5(b) the trajectory consists of loops and cusps with
frequent changes in the sign of the curvature, but unlike
Fig. 5(b) the trajectory does not, of course, tend toward a
point. The cusps might be considered as loops with very
small or zero radii. Also, as in Fig. 5(b), randomization is
very likely associated with the large number of harmonics
(eddy sizes) present, as well as with the strange attractor
or strange behavior.

-3

2

VI II. CONCLUSIONS

U,]U'f

FIG. 31. Calculated trajectory of phase point projected on
u2-u3 plane at numerical grid center. Spatially periodic body
force. 0.26 & t & 0.32. Arrows indicate direction of time. 32
grid points. (u 0)' xo/v= 138.6

u~ and (u ~)' at a point away from the center of
the numerical grid, where, as before, overbars indicate
space averages. The values are normalized by dividing

them by (uo)', the initial value of (u &)'~

=(u z)' =(u 3)' . Since we are interested in steady-
state solutions at large times, it is necessary, in order to
obtain reasonably accurate results, to use a lower Rey-
nolds number than in the preceding cases, where shorter-
time transient flows were considered.

For 0 & r* &0.17, Fig. 30 shows that the flow is essen-
tially laminar with small fluctuations of u&. Then for
0.17& t*&0.18 there is a rather sharp transition from
laminar to turbulent flow, as (u &)'~ increases. For t'
greater than 0.18 the turbulence is statistically steady
state, as indicated by the nearly constant value of (u &)'~ .
Curves for u2 and u3 are similar to those for u &, includ-
ing the same location of the transition region and nearly

the same values for (u 2)'~ and (u 3)' as for (u f)'
After the transition region (t &0.18) the flow appears

to lie on a strange attractor, since it has the following
characteristics. ' First, a volume in the phase space of
our system decreases with time, since the Navier-Stokes
equations describe a dissipative system, and phase-volume
shrinkage can be shown to occur for the Navier-Stokes
equations. This implies that an attractor exists for our
system. Second, the chaotic appearance of the velocity
components (Figs. 30 and 31) indicates that the attractor
is strange. Finally, the fact that transients have died out
for t* &0.18, leaving a statistically steady state (Fig. 30),
indicates that beyond the transition region the phase point
is on the strange attractor.

~~These characteristics, as well as the possibility of obtaining a
steady-state turbulence with periodic boundary conditions by
slightly modifying the existing program, were pointed out to the
author by R. J. Deissler.

From the present review it is concluded that the non-
linear and linear processes in turbulence can be profitably
studied numerically. The results show that, at least at
higher Reynolds numbers, an apparently random tur-
bulence can develop from nonrandom initial conditions.
The numerically calculated turbulence is not numerical
hash, since a large number of time steps corresponds to
each fluctuation. For both sheared and unsheared fluc-
tuations the structure of the Navier-Stokes equations is
such that turbulence can develop even when the initial
flow is nonturbulent. This is indicated by the appearance
of the instantaneous velocity fluctuations and by the sen-
sitivity of those fluctuations (and the insensitivity of aver-
age values) to small perturbations in the instantaneous ini-
tial conditions. The randomness appears to increase as
the numerical mesh size decreases. Moreover, the two-
time velocity correlation becomes small as the time be-
tween the occurrence of the two velocities increases. In
addition, for no mean shear, the correlation between any
two components of the velocity becomes small as the time
increases, as a result of the randomization. This correla-
tion is not small initially, even though the three com-
ponents of the mean-square velocity fluctuation are equal
at early as well as at late times for the initial conditions
chosen. Also, calculated velocity-derivative skewness fac-
tors for no mean shear appear to be of reasonable magni-
tude when compared with those for isotropic turbulence.
Thus, except in the initial period, the results for no mean
shear evidently give a reasonably good approximation to
isotropic turbulence.

The source of the observed randomness may lie in the
presence of strange attractors or, more properly, of analo-
gous strange behavior (Monin, 1978) in the phase space of
the system, as well as in the occurrence of a very large
number of eddies or harmonic components (large number
of degrees of freedom). It appears that no conclusions
can be drawn as to the relative importance of the two pro-
cesses, but both very likely occur. (A strange attractor is
a regio~ in the phase space of the system to which solu-
tions are attracted and in which the phase point moves in
an apparently chaotic fashion. It can occur even with a
small number of degrees of freedom. ) Roundoff errors
appear not to be a sustaining cause of the randomness; a
large decrease in roundoff errors did not appreciably af-
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feet the turbulence level or the randomness of the fluctua-
tions, although the instantaneous values were different.
Thus the effect of a large decrease in roundoff errors is
similar to that of a small perturbation of the initial condi-
tions. Roundoff errors may in some cases affect the tran-
sition to turbulence. The present turbulent solutions bear
some similarity to those for low-order models, in that
both have trajectories in phase space which consist of
loops and cusps, with frequent changes in the sign of the
curvature of the trajectory [Fig. 5(b)]. Moreover, with the
results from the low-order models in which apparent ran-
domness appears with as few as three degrees of freedom
(e.g., in the Lorenz equations), the turbulence observed to
be manufactured by the Navier-Stokes equations should

perhaps not come as a surprise.
At early times the calculated nonlinear transfer of ener-

gy from big eddies to small ones is almost completely
dominant and causes a sharp decrease in the size of the
microscale. This has not been generally observed experi-
mentally or analytically because the period usually stud-
-ied is for later times, where the annihilation of small ed-

dies by viscous action causes the scale to grow, even

though energy is being transferred to smaller eddies. This
later period of scale growth is also observed in the present
results.

The nonlinear terms in the equations of motion, besides
transferring energy among eddy sizes and producing ran-
domization, are very effective vorticity generators and in-

crease the dissipation and the rate of decay. The in-

creased rate of decay is a result of the nonlinear transfer
of energy to smaller eddies; the small eddies decay faster
than the big ones because of the higher shear stresses be-

tween the small eddies. Calculation of (averaged) terms
from unaveraged equations of motion shows, as might be
expected, that the flow is dominated by nonlinear inertial
effects at early times and by viscous effects at later times
(Fig. 11). The nonlinear effects are associated with both
velocity and pressure terms in the unaveraged equations
of motion, even for isotropic turbulence. Since the one-
and two-point averaged or correlation equations for iso-
tropic turbulence do not contain pressure terms, the ef-
fects of pressure observed for the unaveraged equations
must be contained in higher-order averaged equations.
The infinite hierarchy of averaged equations should con-
tain all effects, as do the unaveraged equations. The only
physical processes associated with pressure (that we know
about) are interdirectional transfer and spatial diffusion
of turbulence [Eq. (14)]. It thus seems reasonable to attri-
bute the observed pressure effects in the unaveraged equa-
tions to those processes. Even though there is no net in-
terdircctional transfer or spatial diffusion in isotropic tur-
bulence, those processes can stil1 be locally operative.

The processes occurring in isotropic turbulence thus in-
clude the following: nonlinear randomization, nonlinear
spectral transfer (mainly to smaller scales of motion), zero
net (but not zero) spatial diffusion and transfer of tur-
bulence among directional components, generation of vor-
ticity or swirl, and viscous dissipation.

If a uniform shear is present in the flow we have, in ad-

dition to these processes, production of turbulence by the
mean-velocity gradient, net transfer of turbulence among
directional components by pressure forces, and linear
spectral transfer among scales of motion by the mean gra-
dient. The last of these processes results in the produc-
tion of small-scale fluctuations in the flow. This can be
attributed to a incan-gradient transfer term in the spectral
equation for the velocity fluctuations [see Eq. (26)]. Al-
though we first discussed that term over two decades ago,
the recent numerical results considered here give the first
graphic demonstration of the effectiveness of that term in
generating a small-scale structure in the turbulence.
However, the small-scale fluctuations produced by that
term alone (linear solution) are essentially nonrandom.
Evidently the only way we can have a turbulent linear
solution, either with or without mean gradients, is to put
the turbulence in the initial conditions. In order to pro-
duce the small-scale turbulence from nonrandom initial
conditions as observed here for shear flow, the presence of
both the linear mean-gradient transfer term and the non-
linear terms in the equations is necessary. The former
term, or its equivalent in the unaveraged equation (57),
acts like a chopper which chops the flow into small-scale
components, and the latter terms, while they also produce
small-scale components, act most visibly here as random-
izers.

In all of the uniform-shear cases calculated with con-
stant periodic boundary conditions, including both linear
and nonlinear flows, the pressure-velocity-gradient corre-
lations are successfu1 in distributing energy among the
directional components, so that the turbulence or the fluc-
tuations are maintained. This is in spite of the presence
of a production term in the equation for only one of the
components. Both the linear mean-gradient transfer term
and the nonlinear terms mentioned in the preceding para-
graph have a stabilizing effect. That is, they cause the
fluctuations to increase at a slower rate. The reason is
that both terms transfer energy to small eddies where it is
dissipated more easily. It is shown that, at least for the
linearized solution with constant periodic boundary con-
ditions, a mean-gradient source term in the Poisson equa-
tion for the pressure is necessary for maintaining the fluc-
tuations against the dissipation. That term should play a
similar important role in the maintenance of nonlinear
turbulence, although in that case it is hard to separate the
linear effects from the nonlinear ones. For the linearized
unbounded solution (obtained by using unbounded
Fourier transforms) the fluctuations decay, as expected
from earlier results. Thus the boundary condition can
have an important effect on the fate of sheared tur-
bulence.

%'hen the mean-velocity gradient is suddenly removed,
the turbulent shear stress goes to zero in a finite time
period, and the velocity pressure-gradient correlations
cause the turbulence to attain the isotropic state. The in-
tensities of the directional components become and
remain equal. In addition, the small-scale structure pro-
duced by the mean-gradient transfer term quickly van-
ishes (Fig. 24). Figure 24 shows, in a particularly graphic
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manner, the effectiveness of the mean-gradient chopping
term in Eq. (57) in producing small-scale turbulent struc-
ture.

For a developing shear layer, the turbulence is inhomo-
geneous and, in addition to the processes considered so
far, a net spatial diffusion of turbulence occurs. The
thickness of the shear layer, which is initially zero, in-
creases with time because of the presence of turbulent and
viscous shear stresses. Except at very early times the
growth of the shear layer is almost completely dominated
by the turbulent shear stress. As time increases, an in-
tense concentration of turbulent energy develops near the
plane where the mean-velocity gradient is initially
infinite. The turbulence is highly inhomogeneous. The
calculated turbulence production is always positive, and is
largest near the plane where the velocity gradient is ini-
tially infinite. The pressure and the kinetic energy dif-
fusion are negative near that plane and positive away
from it. Thus they remove turbulent energy from the
high-energy region and deposit it where the energy is
smaller. Both diffusion processes therefore tend to make
the turbulence more homogeneous.

A comparison of the various transfer and diffusion pro-
cesses occurring in turbulence is of interest. The spectral
transfer processes remove energy from wave-number (or
eddy-size) regions where the energy is large and deposit it
in regions of smaller energy. The directional transfer pro-
cesses remove energy from large-energy directional com-
ponents and deposit it in a directional component (or
components) where the energy is stnaller. The turbulence
diffusion processes remove energy from regions of space
where the energy is large and deposit it in regions of
smaller energy. The spectral transfer, directional transfer,
and turbulence diffusion processes tend, respectively, to
make the turbulence more uniform in wave-number space
and more isotropic and homogeneous in physical space.

By adding a spatially periodic body-force term to the
Navier-Stokes equations, one obtains a solution in which
the flow first passes through laminar and transition-to-
turbulence stages. The turbulence then quickly settles
down to a statistically steady state. In this last stage the
flow appears to have characteristics corresponding to
those of a strange attractor.
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