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INTRODUCTION 2. THE ROLE OF RADIATION PRESSURE

When we think of atoms, we have a clear picture in our
minds: a central nucleus and a swarm of electrons sur-
rounding it. We conceive them as small objects of sizes
measured in angstroms ( —10 cm); and we know that
some hundred different species of them exist. This pic-
ture is, of course, quantified and made precise in modern
quantum theory. And the success of the entire theory
may be traced to two basic facts: first, the Bohr radius of
the ground state of the hydrogen atom, namely,

-0.5 ~ 10 cm,
4m me

hc
2

—137,
2me

(2)

where h is Planck's constant, m is the mass of the elec-
tron and e is its charge, provides a correct measure of
atomic dimensions; and second, the reciprocal of
Sommerfeld's fine-structure constant,

dI' GM (r)
dI p'

(4)

where P denotes the total pressure, p the density, and
M(r) is the mass interior to a sphere of radius r Th.ere
are two contributions to the total pressure P: that due to
the material and that due to the radiation. On the as-
sumption that the matter is in the state of a perfect gas in
the classical Maxwellian sense, the material or the gas
pressure is given by

k
pgas= ~pT ~

pH
where T is the absolute temperature, k is the Boltzmann
constant, and p is the mean molecular weight (which
under normal stellar conditions is —1.0). The pressure
due to radiation is given by

A central fact concerning normal stars is the role which
radiation pressure plays as a factor in their hydrostatic
equilibrium. Precisely the equation governing the hydro-
static equilibrium of a star is

1 4
prsd =

3 aT (6)

3/2
hc 1

2
—29.2G~2 (3)

where 6 is the constant of gravitation and H is the mass
of the hydrogen atom. In the first half of the lecture, I
shall essentially be concerned with the question: how
does this come about' ?

gives the maximum positive charge of the central nucleus

that mill allow a stable electron-orbit around it. This
maximum charge for the central nucleus arises from the
effects of special relativity on the motions of the orbiting
electrons.

'We now ask: can we understand the basic facts con-
cerning stars as simply as we understand atoms in terms
of the two combinations of natural constants (1) and (2).
In this lecture, I shall attempt to show that in a limited
sense we can.

The most important fact concerning a star is its mass.
It is measured in units of the mass of the sun, O, which is
2X 10 g: stars with masses very much less than, or very
much more than, the mass of the sun are relatively infre-

quent. The current theories of stellar structure and stellar
evolution derive their successes largely from the fact that
the following combination of the dimensions of a mass
provides a correct measure of ste11ar masses:

where a denotes Stefan's radiation-constant. Consequent-
ly, if radiation contributes a fraction (1—p) to the total
pressure, we may write

1 1 4 1 kI'= —aT = — pT .
1 —P3 PpH

To bring out explicitly the role of the radiation pressure
in the equilibrium of a star, we may eliminate the tem-
perature, T, from the foregoing equations and express I'
in terms of p and p instead of in terms of p and T. We
f)nd.

' 1/3
k 3 1 —P

@Ha P

1/3
k 3 1 —P 4n=C(p) 4

pH a p4

(say).
The importance of this ratio, (1—p), for the theory of

stellar structure was first emphasized by Eddington.
Indeed, he related it, in a famous passage in his book on
The Internal Constitution of the Stars, to the "happening
of the stars" (Eddington, 1926, p. 16). A more rational
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138 Chandrasekhar: On stars, their evolution and their stability

where p denotes the mean density of the star and p, its
density at the centre. The content of the theorem is no
more than the assertion that the actual pressure at the
centre of a star must be intermediate between those at the
centres of the two configurations of uniform density, one
at a density equal to the mean density of the star, and the
other at a density equal to the density p, at the centre (see
Fig. 1). If the inequality (10) should be violated then
there must, in general, be some regions in which adverse
density gradients must prevail; and this implies instabili-
ty. In other words, we may consider conformity with the
inequality (10) as equivalent to the condition for the stable
existence of stars.

The right-hand side of the inequality (10) together with
P given by Eq. (9), yields, for the stable existence of stars,
the condition,

4
1 P

1/3

p4

1/3

GM'/',

or, equivalently,

version of Eddington's argument which, at the same time,
isolates the combination (3) of the natural constants is the
following:

There is a general theorem (Chandrasekhar, 1936)
which states that the pressure, P„at the centre of a star
of a mass M in hydrostatic equilibrium in which the den-
sity, p(r), at a point at a radial distance, r, from the centre
does not exceed the mean density, p(r), interior to the
same point r, must satisfy the inequality,

—G( m)' —p M (P (—6( m)' —p M2 3~ p c —T 3~ pc 7

(10)

4

pM
' 1/2 3/2

(135) ~ Qc

z~3 6 H'
3/2

=0.1873
hc
G Il' (14)

We observe that the inequality (14) has isolated the
combination (3) of natural constants of the dimensions of
a mass; by inserting its numerical value given in Eq. (3),
we obtain the inequality,

4 1/2
c

(15))5.480 .

This inequality provides an upper limit to (1—P, ) for a
star of a given mass. Thus,

1 —P, &1—P, , (16)

where (1—P, ) is uniquely determined by the mass M of
the star and the mean molecular weight, p, by the quartic
equation,

p M=5.48 (17)

In Table I, we list the values of 1 —P, for several values
of p M. From this table it follows in particular, that for
a star of solar mass with a mean molecular weight equal
to 1, the radiation pressure at the centre cannot exceed
3% of the total pressure.

What do we conclude from the foregoing calculation?
We conclude that to the extent Eq. (17) is at the base of
the equilibrium of actual stars, to that extent the com-
bination of natural constants (3), providing a mass of
proper magnitude for the measurement of stellar masses,
is at the base of a physical theory of stellar structure.

' 1/2
6M&
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4 1/231
pM a p4 63~2 3. DG STARS HAVE ENOUGH ENERGY TO COOL' ?
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Inserting this value a in the equality (12) we obtain

(13)

where in the foregoing inequalities, p, is a value of p at
the centre of the star. Now Stefan's constant, a, by virtue
of Planck's law, has the value

The same combination of natural constants (3) emerged
soon afterward in a much more fundamental context of
resolving a paradox Eddington had formulated in the
form of an aphorism: "a star will need energy to cool."
The paradox arose while considering the ultimate fate of a
gaseous star in the light of the then new knowledge that
white-dwarf stars, such as the companion of Sirius, exist,
which have mean densities in the range 10 —10 g cm
As Eddington stated

TABLE I. The maximum radiation pressure, (1—p, ), at t&e

centre of a star of a given mass, M.

(a) (c)

FICs. 1. A comparison of an inhomogeneous distribution of
density in a star (b) with the two homogeneous configurations
with the constant density equal to the mean density (a) and
equal to the density at the centre (c).

0.01
0.03
0.10
0.20
0.30
0.40

Mp /0

0.56
1.01
2.14
3.83
6.12
9.62

0.50
0.60
0.70
0.80
0.85
0.90

Mp /0

15.49
26.52
50.92

122.5
224.4
519.6
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Chandrasekhar: On stars, their evolution and their stability 139

I do not see how a star which has once got into this
compressed state is ever going to get out of it. . . . It
would seem that the star will be in an awkward predica-
ment when its supply of subatomic energy fails (Ed-
dington, 1926, p. 172).

The paradox posed by Eddington was reformulated in
clearer physical terms by R. H. Fowler (1926). His for-
mulation was the following:

The stellar material, in the white-dwarf state, will have
radiated so much energy that it has less energy than the
same matter in normal atoms expanded at the absolute
zero of temperature. If part of it were removed from the
star and the pressure taken off, what could it do?

Quantitatively, Fowler s question arises in this way.
An estimate of the electrostatic energy, Ez, per unit

volume of an assembly of atoms, of atomic number Z,
ionized down to bare nuclei, is given by

(p) = p (p &po»
8m

h3

=o (p &po) . (22)

Pp Svr
n = n(p)dp= po,0 3A

(23)

where n denotes the total number of electrons per unit
volume.

For the distribution given by (22), the pressure p and
the kinetic energy Ek;„of the electrons (per unit volume),
are given by

(24)

The value of the threshold momentum, p0, is determined
by the normalization condition

]01 1Z 2p4/3 (18)

3 k 1.24' 10'
k1Q 2 ~P (19)

Now if such matter were released of the pressure to which
it is subject, it can resume a state of ordinary normal
atoms only if

Ekin + Ev ~ (20)

while the kinetic energy of thermal motions, Ek;„, per unit
volume of free particles in the form of a perfect gas of
density, p, and temperature, T, is given by

(25)

v~ =p/m and Tz ——p /2m, (26)

appropriate for non-relativistic mechanics, in Eqs. (24)
and (25), we find

where Uz and T~ are the velocity and the kinetic energy of
an electron having a momentum p.

If we set

or, according to Eqs. (18) and (19), only if
3

2/3
2

I'= P0 —— — n
877 5 1 3

15h 'm 2o m m
(27)

p ( 0.94& 10
pZ

This inequality will be clearly violated if the density is
sufficiently high. This is the essence of Eddington s para-
dox as formulated by Fowler. And Fowler resolved this
paradox in 1926 in a paper entitled "Dense Matter" one
of the great landmark papers in the realm of stellar struc-
ture: in it the notions of Fermi statistics and of electron
degeneracy are introduced for the first time.

and
' 2/3

2
87T 5 3 3 ~ 5/3

10h m 4o
(28)

Fowler's resolution of Eddington's paradox consists in
this: at the temperatures and densities that may be ex-
pected to prevail in the interiors of the white-dwarf stars,
the electrons will be highly degenerate and Ek;„must be
evaluated in accordance with Eq. (28) and not in accor-
dance with Eq. (19); and Eq. (28) gives,

Ek;„——1.39&&10' (p/p) i (29)
4. FOWLER'S RESOLUTION OF EDDINGTON'S
PARADOX; THE DEGENERACY OF THE
ELECTRONS IN WHITE-DWARF STARS

In a completely degenerate electron gas all the available
parts of the phase space, with momenta less than a certain
"threshold" value p0—the Fermi threshold —are occupied
consistently with the Pauli exclusion-principle, i.e., with
two electrons per "cell" of volume h of the six-
dimensional phase space. Therefore, if n(p)dp denotes
the number of electrons, per unit volume, between p and

p+ dp, then the assumption of complete degeneracy is
equivalent to the assertion,

Comparing now the two estimates (18) and (29), we see
that, for matter of the density occurring in the white
dwarfs, namely p-10 gem, the total kinetic energy is
about two to four times the negative potential-energy; and
Eddington's paradox does not arise. Fowler concluded his
paper with the following highly perceptive statement:

The black-dwarf material is best likened to a single
gigantic molecule in its lowest quantum state. Qn the
Fermi-Dirac statistics, its high density can be achieved in
one and only one way, in virtue of a correspondingly
great energy content. But this energy can no more be ex-
pended in radiation than the energy of a normal atom or
molecule. The only difference between black-dwarf
matter and a normal molecule is that the molecule can
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140 Chandrasekhar: On stars, their evolution and their stability

exist in a free state while the black-dwarf matter can
only so exist under very high external pressure.

5. THE THEORY OF THE WHITE-DWARF STARS;
THE LIMITING MASS

and

V
p

m(1+p /m c )in

T~=mc [(1+p /m c )' —1],
(34)

The internal energy (=3P/2) of a degenerate electron
gas that is associated with a pressure P is zero-point ener-

gy; and the essential content of Fowler's paper is that this
zero-point energy is so great that we may expect a star to
eventually settle down to a state in which all of its energy
is of this kind. Fowler's argument can be more explicitly
formulated in the following manner (Chandrasekhar,
193la).

According to the expression for the pressure given by
Eq. (27), we have the relation,

P=Af(x) and p=Bx

where

(35)

and

~m4c& 8am c p,HB=
3h3 3h3

(36)

in place of the non-relativistic relations (26). We find that
the resulting equation of state can be expressed, parame-
trically, in the form

P =Kp'+'/" (31)

2/3

+=X,p where K, = — —,(30)5/3 1 3

m (p, H)

where p, is the mean molecular weight per electron. An
equilibrium configuration in which the pressure, I', and
the density, p, are related in the manner,

f (x)=x (x + 1)'~ (2x —3)+3 sinh 'x .

And similarly

Ek;„——Ag (x),
where

g(x) =8x [(x +1)' —1]—f(x) .

(37)

(38)

(39)

is an Emden polytrope of index n. The degenerate config-
urations built on the equation of state (30) are therefore
polytropes of index 3/2; and the theory of polytropes im-
mediately provides the relation,

According to Eqs. (35) and (36), the pressure approxi-
mates the relation (30) for low enough electron concentra-
tions (x ~&1); but for increasing electron concentrations
(x » 1), the pressure tends to (Chandrasekhar, 1931b)

Z, =0.4242(Gm'"R)

or, numerically, for Ki given by Eq. (30),

(32)
1/3

1 3P ——
8

L

acn4/3 (40)

logio(R/Ro) = 3~ logio(M/C)) ——logiope 1 397

(33)

This limiting form of relation can be obtained very simply
by setting v~ =c in Eq. (24); then

For a mass equal to the solar mass and p, =2, the relation
(33) predicts R = l.26 X 10 R ~ and a mean density of
7.0X 10 g cm . These values are precisely of the order of
the radii and mean densities encountered in white-dwarf
stars. Moreover, according to Eqs. (32) and (33), the ra-

dius of the white-dwarf configuration is inversely propor-
tional to the cube-root of the mass. On this account, fin-

ite equilibrium configurations are predicted for all
masses. And it came to be accepted that the white dwarfs
represent the last stages in the evolution of all stars.

But it soon became clear that the foregoing simple
theory based on Fowler's premises required modifications.
For, the electrons at their threshold energies, at the cen-
tres of the degenerate stars, begin to have velocities com-
parable to that of light as the mass increases. Thus, al-

ready for a degenerate star of solar mass (with p, =2) the
central density (which is about six times the mean density)
is 4.19)&10 gcm; and this density corresponds to a
threshold momentum po ——1.29mc and a velocity which is
0.63c. Consequently, the equation of state must be modi-
fied to take into account the effects of special
relativity. And this is easily done by inserting in Eqs. (24)
and (25) the relations,

8mc 0 3 2mc 4P=
3h o 3h

pdp= poi (41)

and the elimination of po with the aid of Eq. (23) directly
leads to Eq. (40).

While the modification of the equation of state re-
quired by the special theory of relativity appears harmless
enough, it has, as we shall presently show, a dramatic ef-
fect on the predicted mass-radius relation for degenerate
configurations.

The relation between P and p corresponding to the lim-
iting form (41) is

1/3

P=K2p where E2 ———4/3 =1 3
8 m (p,FI) i (42)

In this limit, the configuration is an Emden polytrope of
index 3. And it is well known that when the polytropic
index is 3, the mass of the resulting equilibrium configu-
ration is uniquely determined by the constant of propor-
tionality, K2, in the pressure-density relation. We have
accordingly,
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3/2
K2

M)jmjt 4'
m.G

(2.018) 5.5—

5.0-

=0.197 "'
6

3/2

=5.76@~ 0
(p,M)

(43) 4.5-

[In Eq. (43), 2.018 is a numerical constant derived from
the explicit solution of the Lane-Emden equation for
n= 3.]

It is clear from general considerations (Chandrasekhar,
1931c) that the exact mass rad-ius relation for the degen
crate configurations must prouide an upper limit to the
mass of such configurations giuen by Eq. (43); and further,
that the mean density of the configuration must tend to in
ginity, while the radius tends to zero, and M~M&;;, .
These conditions, straightforward as they are, can be es-
tablished directly by considering the equilibrium of con-
figurations built on the exact equation of state given by
Eqs. (35)—(37). It is found that the equation governing
the equilibrium of such configurations can be reduced to
the form (Chandrasekhar, 1934b, 1935)

3/2
1 d 2dp p 1

g d'rl d Y/ ye
'9 (44)

where

2 23'o=xo+& ~ (45)

2A
mG

1
=~iso

&so
(46)

(say).
By integrating Eq. (44), with suitable boundary condi-

tions and for various initially prescribed values of yc, we
can derive the exact mass-radius relation, as well as the
other equilibrium properties, of the degenerate configura-
tions. The principal results of such calculations are illus-
trated in Figs. 2 and 3.

The important conclusions which follow from the fore-
going considerations are: first, there is an upper limit,
Mi;m;„ to the mass of stars which can become degenerate
configurations, as the last stage in their evolution; and
second, that stars with M &M~;;, must have end states
which cannot be predicted from the considerations we
have presented so far. And finally, we observe that the
combination of the natural constant (3) now emerges in
the fundamental context of M~;;, given by Eq. (43): its
significance for the theory of stellar structure and stellar
evolution can no longer be doubted.

and mcxc denotes the threshold momentum of the elec-
trons at the centre of the configuration and il measures
the radial distance in the unit

' 1/2

4.0—

3.5

3.0-

2.5—

1.5—

1.0—

0.5—

0 ——
0

I A0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 O.g 1 0
Al/AX)-

FIG. 2. The full-line curve represents the exact (mass-radius)-
relation [1& is defined in Eq. (46) and M3 denotes the limiting
mass]. This curve tends asymptotically to the ———curve ap-
propriate to the low-mass degenerate configurations, approxi-
mated by polytropes of index 3/2. The regions of the configura-
tions which may be considered as relativistic [p & (X~ /Ki) ] are
shown shaded. [From Chandrasekhar (1935).]

1.0

that required to be resolved was how to relate its existence
to the evolution of stars from their gaseous state. If a star
has a mass less than M~;;„ the assumption that it will
eventually evolve towards the completely degenerate state
appears reasonable. But what if its mass is greater than
M~;;, '7 Clues as to what might ensue were sought in
terms of the equations and inequalities of Secs. 2 and 3
(Chandrasekhar, 1932, 1934a).

The first question that had to be resolved concerns the
circumstances under which a star, initially gaseous, will

6. UNDER WHAT CONDITIONS CAN NORMAL STARS
DEVELOP DEGENERATE CORES?

Once the upper limit to the mass of completely degen-
erate configurations had been established, the question

FIG. 3. The full-line curve represents the exact {mass-density)-
relation for the highly collapsed configurations. This curve
tends asymptotically to the dotted curve as M~0. [From
Chandrasekhar (1935).]
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142 Chandrasekhar: On stars, their evolution and their stability

p, = pT= —aTk Pe 1 4

p, H 1 —P, 3
(47)

where p, now denotes the electron pressure. Then, analo-
gous to Eq. (9), we can write

4 I /331—P, 4~, (48)
p~H 0 Pe

Comparing this with Eq. (42), we conclude that if
I'

k 31—P, 1 3&E
p, ,H a P, 8

hc
H)4/3

develop degenerate cores. From the physical side, the
question, when departures from the perfect-gas equation
of state (5) will set in and the effects of electron degenera-
cy will be manifested, can be readily answered.

Suppose, for example, that we continually and steadily
increase the density, at constant temperature, of an assem-
bly of free electrons and atomic nuclei, in a highly ionized
state and initially in the form of a perfect gas governed by
the equation of state (5). At first the electron pressure
will increase linearly with p,' but soon departures will set
in and eventually the density will increase in accordance
with the equation of state that describes the fully degen-
erate electron-gas (see Fig. 4). The remarkable fact is that
this limiting form of the equation of state is independent
of temperature.

However, to examine the circumstances when, during
the course of evolution, a star will develop degenerate
cores, it is more convenient to express the electron pres-
sure (as given by the classical perfect-gas equation of
state) in terms of p and p, defined in the manner [cf. Eq.
(7)),

the pressure p, given by the classical perfect-gas equation
of state will be greater than that given by the equation if
degeneracy were to prevail, not only for the prescribed p
and T, but for all p and T having the same P, .

Inserting for a its value given in Eq. (13), we find that
the inequality (49) reduces to

960 1 Pe—) 1 (50)

or, equivalently

1 —P, )0.0921=1—P„ (51)

(say). (See Fig. 5.)
For our present purposes, the principal content of the

inequality (51) is the criterion that for a star to develop
degeneracy, it is necessary that the radiation pressure be
less than 9.2' of (p, +p„d). This last inference is so cen-
tral to all current schemes of stellar evolution that the
directness and the simplicity of the early arguments are
worth repeating.

The two principal elements of the early arguments were
these: first, that radiation pressure becomes increasingly
dominant as the mass of the star increases; and second,
that the degeneracy of electrons is possible only so long as
the radiation pressure is not a significant fraction of the
total pressure —indeed, as we have seen, it must not
exceed 9.2%%uo of (p, +p„d). The second of these elements
in the arguments is a direct and an elementary conse-
quence of the physics of degeneracy; but the first requires
some arnplification.

That radiation pressure must play an increasingly dom-
inant role as the mass of the star increases is one of the
earliest results in the study of stellar structure that was es-

(49)
1 027

027

1 025

1 025

10" =

1 021

0.5
1-P
0.06
0.05
0.01
I I ~ t I IIII I I I I IIIII I I I 1%IIII s s yssill s

1 021
10 10

iii»l & i &»&i&l

10' 10' 10'

10 '10 10 10

p (gem, ~)

p(gem ~)

FIG. 4. Illustrating how by increasing the density at constant
temperature degeneracy always sets in.

FIG. 5. Illustrating the onset of degeneracy for increasing den-
sity at constant p. Notice that there are no intersections for
1 —p~0.09212. In the figure, 1 —p is converted into the mass
of a star built on the standard model.
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M=4
mG

(2.018) (52)

where C(P) is defined in Eq. (9). Equation (52) provides
a quartic equation for P analogous to Eq. (17) for P, .
Equation (52} for P=P„gives

' 3/2

M =0.197P„
G

(53)
1 -2=6.65p 0=%

(pH)

tablished by Eddington. A quantitative expression for
this fact is given by Eddington's standard model which
lay at the base of his early studies summarized in his The
Internal Constitution of the Stars.

On the standard model, the fraction P ( =gas
pressure/total pressure) is a constant through a star. On
this assumption, the star is a polytrope of index 3 as is ap-
parent from Eq. (9); and, in consequence, we have the re-
lation [cf. Eq. (43)]

3/2

or, equivalently

3 hc
16. G

3/2

=1.74p, 0 .
(p,H)' (55)

7. SOME BRIEF REMARKS ON RECENT PROGRESS
IN THE EVOLUTION OF MASSIVE STARS
AND THE ONSET OF GRAVITATIONAL COLLAPSE

We conclude that there can be no surprises in the evolu-
tion of stars of mass less than 0.43$ (if p, =2). The end
stage in the evolution of such stars can only be that of the
white dwarfs. [Parenthetically, we may note here that the
inequality (55) implies that the so-called "mini" black-
holes of mass —10' g cannot naturally be formed in the
present astronomical universe. ]

Given an enclosure containing electrons and atomic
nuclei (total charge zero) what happens if we go on
compressing the material indefinitely? (Chandrasekhar,
1932)

The life history of a star of small mass must be essential-

ly different from the life history of a star of large mass.
For a star of small mass the natural white-dwarf stage is
an initial step towards complete extinction. A star of
large mass cannot pass into the white-dwarf stage and
one is left speculating on other possibilities. (Chan-
drasekhar, 1934b)

And these statements have retained their validity.
While the evolution of the massive stars was thos left

uncertain, there was no such uncertainty regarding the fi-
nal states of stars of sufficiently low mass (Chan-
drasekhar, 1934a). The reason is that by virtue, again, of
the inequality (10), the maximum central pressure attain-
able in a star must be less than that provided by the de-
generate equation of state, so long as

1/3

—,G(-, ~) 'M ' ~re, =4 $ 3 2 3 1 3 hc
8 m (pH}~ (54)

(say). On the standard model, then, stars with masses
exceeding 9R will have radiation pressures which exceed
9.2% of the total pressure. Consequently stars with
M &K cannot, at any stage during the course of their
evolution, develop degeneracy in their interiors. There-
fore, for such stars an eventual white-dwarf state is not
possible unless they are able to eject a substantial fraction
of their mass.

The standard model is, of course, only a model.
Nevertheless, except under special circumstances, briefly
noted below, experience has confirmed the essential quali-
tative correctness of the conclusions drawn from the stan-
dard model, namely that the evolution of stars of masses
exceeding 7—80 must proceed along lines very different
from those of less massive stars. These conclusions,
which were arrived at some fifty years ago, appeared then
so convincing that assertions such as these were made
with confidence:

It became clear, already from the early considerations,
that the inability of the massive stars to become white
dwarfs must result in the development of much more ex-
treme conditions in their interiors and, eventually, in the
onset of gravitational collapse attended by the super-nova
phenomenon. But the precise manner in which all this
will happen has been difficult to ascertain in spite of great
effort by several competent groups of investigators. The
facts which must be taken into account appear to be the
following. '

In the first instance, the density and the temperature
will steadily increase without the inhibiting effect of de-
generacy since for the massive stars considered
1 —P, & 1 —P„. On this account, "nuclear ignition" of
carbon, say, will take place which will be attended by the
emission of neutrinos. This emission of neutrinos will ef-
fect a cooling and a lowering of (1—P, ); but it will still
be in excess of 1 —P . The important point here is that
the emission of neutrinos acts selectively in the central re-
gions and is the cause of the lowering of (1—P, ) in these
regions. The density and the temperature will continue to
increase till the next ignition of neon takes place followed
by further emission of neutrinos and a further lowering of
(1—P, ). This succession of nuclear ignitions and lower-
ing of (1—P, ) will continue till 1 —P, & 1 —P„and a rela-
tivistically degenerate core with a mass approximately
that of the limiting mass (=1.4$ for p, =2) forms at the
centre. By this stage, or soon afterwards, instability of
some sort is expected to set in (see following section, 8)
followed by gravitational collapse and the phenomenon of
the super-nova (of type II). In some instances, what was
originally the highly relativistic degenerate core of ap-
proximately 1.4O, will be left behind as a neutron star.
That this happens sometimes is confirmed by the fact

~I am grateful to Professor D. Arnett for guiding me through
the recent literature and giving me advice in the writing of this
section.
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that in those cases for which reliable estimates of the
masses of pulsars exist, they are consistently close to 1.40.
However in other instances —perhaps, in the majority of
the instances —what is left behind, after all "the dust has
settled, " will have masses in excess of that allowed for
stable neutron stars; and in these instances black holes
will form.

In the case of less massive stars (M-6—8$) the degen-
erate cores, which are initially formed, are not highly
relativistic. But the mass of the core increases with the
further burning of the nuclear fuel at the interface of the
core and the mantle; and when the core reaches the limit-
ing mass, an explosion occurs following instability; and it
is believed that this is the cause underlying super-nova
phenomenon of type I.

From the foregoing brief description of what may hap-
pen during the late stages in the evolution of massive
stars, it is clear that the problems one encounters are of
exceptional complexity, in which a great variety of physi-
cal factors compete. This is clearly not the occasion for
me to enter into a detailed discussion of these various
questions.

8. INSTABILITIES OF RELATIYISTIC ORIGIN:

(1}THE VIBRATIONAL INSTABILITY
OF SPHERICAL STARS

I now turn to the consideration of certain types of stel-
lar instabilities which are derived from the effects of gen-
eral relativity and which have no counterparts in the
Newtonian framework. It will appear that these new
types of instabilities of relativistic origin may have essen-
tial roles to play in discussions pertaining to gravitational
collapse and the late stages in the evolution of massive
stars.

We shall consider first the stability of spherical stars
for purely radial perturbations. The criterion for such
stability follows directly from the linearized equations
governing the spherically symmetric radial oscillations of
stars. In the framework of the Newtonian theory of grav-
itation, the stability for radial perturbations depends only
on an average value of the adiabatic exponent, I &, which
is the ratio of the fractional Lagrangian changes in the
pressure and in the density experienced by a fluid element
following the motion; thus,

(56)

And the Newtonian criterion for stability is
M M

I
&

——I I &(r)P(r)dM(r) —: f P(r)dM(r) & —,

(57)

If I ~ &4/3, dynamical instability of a global character
will ensue with an e-folding time measured by the time
taken by a sound wave to travel from the centre to the
surface.

When one examines the same problem in the frame-
work of the general theory of relativity, one finds (Chan-
drasekhar, 1964a; see also Chandrasekhar, 1964b, 1964c)

that, again, the stability depends on an average value of
I &, but contrary to the Newtonian result, the stability
now depends on the radius of the star as well. Thus, one
finds that no matter how high I

& may be, instability will
set in provided the radius is less than a certain deter-
minate multiple of the Sehmarzschild radius,

Rs ——2GM/c (58)

E 2GM
r, —4/3 (59)

where K is a constant which depends on the entire march
of density and pressure in the equilibrium configuration
in the Newtonian framework. Thus, for a polytrope of
index n, the value of the constant is given by

5 —n

18
2(11 n) 1—.&~ d 8 z

(n+1)g, ~8', ~3 "o dg

(60}

where 0 is the Lane-Emden function in its standard nor-
malization (8=1 at /=0), g is the dimensionless radial
coordinate, g~ defines the boundary of the polytrope
(where 8=0) and 8~ is the derivative of 8 at g~.

It is for this reason that we describe the instability as global.

Thus, if for the sake of simplicity, we assume that I
&

is a
constant through the star and equal to 5/3, then the star
will become dynamically unstable for radial perturbations,
if R

& & 2.4Rs. And further, if I ~~ oo, instability will set
in for all R &(9/8)Rs. The radius (9/8)Rs defines, in
fact, the minimum radius which any gravitating mass, in
hydrostatic equilibrium, can have in the framework ofgen
eral relatiuity. This important result is implicit in a fun-
damental paper by Karl Schwarzschild published in 1916.
[Schwarzschild actually proved that for a star in which
the energy density is a uniform R & (9/8) Rs.]

In one sense, the most important consequence of this
instability of relativistic origin is that if I ~ (again as-
sumed to be a constant for the sake of simplicity) differs
from and is greater than 4/3 only by a small positive con-
stant, then the instability will set in for a radius R which
is a large multiple of Rs, and, therefore, under cir-
cumstances when the effects of general relativity, on the
structure of the equilibrium configuration itself, are hard-
ly relevant. Indeed, it follows (Chandrasekhar, 1965)
from the equations governing radial oscillations of a star,
in a first post-Newtonian approximation to the general
theory of relativity, that instability for radial perturba-
tions will set in for all
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TABLE II. Values of the constant K in the inequality (59) for
various polytropic indices, n.

0
1.0
1.5
2.0
2.5
3.0

0.452 381
0.565 382
0.645 063
0.751 296
0.900 302
1.12447

3.25
3.5
4.0
4.5
4.9
4.95

1.285 03
1.499 53
2.253 38
4.530 3

22.906
45.94

In Table II, we list the values of X for different po-
lytropic indices. It should be particularly noted that K
increases without limit for n~5 and the configuration
becomes increasingly centrally condensed. Thus, already
for n=4.95 (for which polytropic index p, =8.09&& 10 p),
IC-46. In other words, for the highly centrally con-
densed massive stars (for which I

& may differ from 4/3
by as little as 0.01), the instability of relativistic origin
will set in, already, when its radius falls below 5X 10 Rs.
Clearly this relativistic instability must be considered in
the contexts of these problems.

A further application of the result described in the
preceding paragraph is to degenerate configurations near
the limiting mass (Chandrasekhar and Tooper, 1964).
Since the electrons in these highly relativistic configura-
tions have velocities close to the velocity of light, the ef-
fective value of I

&
will be very close to 4/3 and the post-

Newtonian relativistic instability will set in for a mass
slightly less than that of the limiting mass. On account
of the instability for radial oscillations setting in for a
mass less than M~;;„ the period of oscillation, along the
sequence of the degenerate configurations, must have a
minimum. This minimum can be estimated to be about
two seconds (see Fig. 6). Since pulsars, when they were
discovered, were known to have periods much less than
this minimum value, the possibility of their being degen-
erate configurations near the limiting mass was ruled out;
and this was one of the deciding factors in favour of the
pulsars being neutron stars. (But by a strange irony, for
reasons we have briefly explained in Sec. 7, pulsars which

R (0.2264
. P

1/3
26M 1

(p, /p&10 ) .c' I ) —4/3

48y reason of the dominance of the radiation pressure in these
massive stars and of P being very close to zero.

Since this was written, it has been possible to show (Chan-
drasekhar and Lebovitz, 1984} that for n~5, the asymptotic
behavior of EC is given by

E—+2.3056/(5 —n);

and, further, that along the polytropic sequence, the criterion
for instability (59) can be expressed alternatively in the form

lPIQ

I

Ip (pl4

have resulted from super-nova explosions have masses
close to 1.4Q!)

Finally, we may note that the radial instability of rela-
tivistic origin is the underlying cause for the existence of a
maximum mass for stability: it is a direct consequence of
the equations governing hydrostatic equilibrium in gen-

eral relativity. [For a complete investigation on the
periods of radial oscillation of neutron stars for various
admissible equations of state, see Detweiler and Lindblom
(1983).]

9. INSTABILITIES QF RELATIVISTIC ORIGIN:
(2) THE SECULAR INSTABILITY OF ROTATING STARS
DERIVED FROM THE EMISSION OF GRAVITATIONAL
RADIATION BY NON-AXISYMMETRIC MODES
OF OSCILLATION

I now turn to a different type of instability which the

general theory of relativity predicts for rotating configu-

rations. This new type of instability (Chandrasekhar,

1970a; see also Chandrasekhar, 1970b, 1970c) has its ori-

gin in the fact that the general theory of relativity builds

into rotating masses a dissipative mechanism derived

from the possibility of the emission of gravitational radia-

tion by nonaxisymmetric modes of oscillation. It appears
that this instability limits the periods of rotation of pul-

sars. But first, I shall explain the nature and the origin of
this type of instability.

It is well known that a possible sequence of equilibrium

figures of rotating homogeneous masses is the Maclaurin

sequence of oblate spheroids [for an account of these

matters pertaining to the classical ellipsoids see Chan-

drasekhar (1968)]. When one examines the second har-
monic oscillations of the Maclaurin spheroid, in a frame
of reference rotating with its angular velocity, one finds

pc {kg m'j

FIG. 6. The variation of the period of radial oscillation along
the completely degenerate configurations. Notice that the
period tends to infinity for a mass close to the limiting mass.
There is consequently a minimum period of oscillation along
these configurations; and the minimum period is approximately
two seconds. [From Skilling (1968), p. 59.]
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that for two of these modes, whose dependence on the az-
imuthal angle is given by e '+, the characteristic frequen-
cies of oscillation, o., depend on the eccentricity e in the
manner illustrated in Fig. 7. It will be observed that one
of these modes becomes neutral (i.e., o =0) when e =0.813
and that the two modes coalesce when e=0.953 and be-
come complex conjugates of one another beyond this
point. Accordingly, the Maclaurin spheriod becomes
dynamically unstable at the latter point (first isolated by
Riemann). On the other hand, the origin of the neutral
mode at e=0.813 is that at this point a new equilibrium
sequence of triaxial ellipsoids —the ellipsoids of Jacobi-
bifurcate. On this latter account, Lord Kelvin conjec-
tured in 1883 that

if there be any viscosity, however slight. . . the equi-

librium beyond e=0.81 cannot be secularly stable.

Kelvin's reasoning was this: viscosity dissipates energy
but not angular momentum. And since for equal angular
momenta, the Jacobi ellipsoid has a lower energy content
than the Maclaurin spheroid, one may expect that the ac-
tion of viscosity will be to dissipate the excess energy of
the Maclaurin spheroid and transform it into the Jacobi
ellipsoid with the lower energy. A detailed calculation
(Chandrasekhar, 1968) of the effect of viscous dissipation
on the two modes of oscillation, illustrated in Fig. 7, does
confirm Lord Kelvin's conjecture. It is found that
viscous dissipation makes the mode, which becomes neu-
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tral at e=0.813, unstable beyond this point with an e-
folding time which depends inversely on the magnitude of
the kinematic viscosity and which further decreases
monotonically to zero at the point, e=0.953 where the
dynamical instability sets in.

Since the emission of gravitational radiation dissipates
both energy and angular momentum, it does not induce
instability in the Jacobi mode; instead it induces instabili-
ty in the alternative mode at the same eccentricity. In the
first instance this may appear surprising; but the situation
we encounter here clarifies some important issues.

If instead of analyzing the normal modes in the rotat-
ing frame, we had analyzed them in the inertial frame, we
should have found that the mode which becomes unstable
by radiation reaction at e=0.813, is in fact neutral at this
point. And the neutrality of this mode in the inertial
frame corresponds to the fact that the neutral deforma-
tion at this point is associated with the bifurcation (at this
point) of a new triaxial sequence —the sequence of the
Dedekind ellipsoids. These Dedekind ellipsoids, while
they are congruent to the Jacobi ellipsoids, they differ
from them in that they are at rest in the inertial frame
and owe their triaxial figures to internal vortical motions.
An important conclusion that would appear to follow
from these facts is that in the framework of general rela-
tivity we can expect secular instability, derived from
radiation-reaction to arise from a Dedekind mode of de-
formation (which is quasi-stationary in the inertial frame)
rather than the Jacobi mode (which is quasi-stationary in
the rotating frame).

A further fact concerning the secular instability in-
duced by radiation-reaction, discovered subsequently by
Friedman [(1978); see also Friedman and Schutz (1977)]
and by Comins (1979a,1979b), is that the modes belonging
to higher values of m (=3,4, . . . ) become unstable at
smaller eccentricities though the e-folding times for the
instability become rapidly longer. Nevertheless it appears
from some preliminary calculations of Friedman (1983)
that it is the secular instability derived from modes be-
longing to m=3 (or 4) that limit the periods of rotation
of the pulsars.

It is clear from the foregoing discussions that the two
types of instabilities of relativistic origin we have con-
sidered are destined to play significant roles in the con-
texts we have considered.

0.2 0 4 0.6
e

0.8 1.0

FIG. 7. The characteristic frequencies [in the unit (m.Gp)'~~] of
the two even modes of second-harmonic oscillation of the
Maclaurin spheroid. The Jacobi sequence bifurcates from the
Maclaurin sequence by the mode that is neutral (o.=0) at
e=0.813; and the Dedekind sequence bifurcates by the alterna-
tive mode at D. At 02 (e=0.9529) the Maclaurin spheroid be-
comes dynamically unstable. The real and the imaginary parts
of the frequency, beyond 02, are shown by the full line and the
dashed curves, respectively. Viscous dissipation induces insta-
bility in the branch of the Jacobi mode; and radiation-reaction
induces instability in the branch DO2 of the Dedekind mode.

10. THE MATHEMATICAL THEORY OF BLACK HOLES

So far, I have considered only the restrictions on the
last stages of stellar evolution that follow from the ex-
istence of an upper limit to the mass of completely degen-
erate configurations and from the instabilities of relativis-
tic origin. From these and related considerations, the
conclusion is inescapable that black holes will form as one
of the natural end products of stellar evolution of massive
stars; and further that they must exist in large numbers in
the present astronomical universe. In this last section I
want to consider very briefly what the general theory of
relativity has to say about them. But first, I must define

Rev. Mod. Phys. , Vol. 56, No. 2, Part l, April 1984




