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This article gives a pedagogical introduction to relaxation methods for the numerical solution of elliptic

partial differential equations, with particular emphasis on treating nonlinear problems with 6-function

source terms and axial symmetry, which arise in the context of effective Lagrangian approximations to the

dynamics of quantized gauge fields. The authors present a detailed theoretical analysis of three models

which are used as numerical examples: the classical Abelian Higgs model (illustrating charge screening),

the semiclassical leading logarithm model (illustrating flux confinement within a free boundary or "bag"),
and the axially symmetric Bogomol'nyi-Prasad-Sommerfield monopoles (illustrating the occurrence of
topological quantum numbers in non-Abelian gauge fields). They then proceed to a self-contained introduc-

tion to the theory of relaxation methods and allied iterative numerical methods and to the practical aspects
of their implementation, with attention to general issues which arise in the three examples. The authors

conclude with a brief discussion of details of the numerical solution of the models, presenting sample nu-

merical results.
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I. INTRODUCTION

Over the last few years, numerical methods have played
an increasingly important role in theoretical physics.
Their prominence is attributable both to improvements in
computers and decreased computational costs, and to the
increased attention of theorists to nonlinear, nonperturba-

tive problems in quantum field theory, for which purely
analytical methods are inadequate. In treating quantum
field theories computationally, two strategies are possible.
The first, which has been intensively pursued recently, is
to set up a discrete lattice analog of the full quantum field
theory, and then to numerically evaluate the Feynman
path integral by Monte Carlo techniques. This method
has the advantage of giving results which can in principle
be made as accurate as desired. Nonetheless, the necessity
of using a four-dimensional computational lattice and of
generating a large ensemble of field configurations makes
simulation very costly, and in practice this has been a
severe limiting factor. A second strategy is to first make
analytic approximations, which replace the field theoretic
problem by a classical variational problem involving an
effective Lagrangian functional, leading to a system of
partial differential equations which are then solved nu-
merically. This approach is necessarily approximate,
since exact knowledge of the effective Lagrangian is not
possible without an exact evaluation of the Feynman path
integral. However, the second strategy has the advantages
that symmetries of the physical problem can be exploited
to reduce the dimensionality of the computational prob-
lein, and that only a single equilibrium field configuration
need be generated, permitting the study of very large com-
putational lattices even on small computers. We believe
that the two strategies are, in a sense, complementary;
eventually, simulations may be used to infer the form of
effective Lagrangians, which can then be used to analyze
large classes of problems of physical interest.

Our aim in this article is to give a pedagogical review
of the numerical analysis methods required by the second
strategy. Assuming that an approximate nonlinear classi-
cal effective Lagrangian has been given, we show how re-
laxation methods can be used to solve the partial differen-
tial equations which govern the equilibrium field configu-
rations. We focus on problems which arise in gauge field
theories of current interest and in Sec. II introduce and
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analytically characterize three nonlinear models which
will be studied as illustrative examples. In Sec. III we give
a self-contained introduction to the theory of relaxation
methods and to practical aspects of their implementation,
with special emphasis on treating nonlinear problems with
singular (5-function) source terms. Readers primarily in-
terested in numerical analysis can proceed directly to Sec.
III, after reading only the brief survey and theoretical dis-
cussion of Secs. II.A and II.B. In Sec. IV we give specific
details of the application of the methods of Sec. III to the
models of Secs. II.C, II.D, and II.E, together with a small
sampling of numerical results. Certain technical details
of the analytical structure of the three models are
described in the Appendixes.

II. THEORETICAL ANALYSIS GF MODELS
TO BE STUDIED

A. Introduction

In this section, we give a self-contained theoretiml
analysis of the models which later on will be studied nu-

merically. All of the models discussed below describe
time-independent three-dimensional problems with a rota-
tional symmetry axis, and hence lead to two-dimensional
computational problems in cylindrical coordinates. Our
primary focus will be on the statics of classical charges in
nonlinear Abelian and non-Abelian gauge field theories,
as formulated by using classical action functional
methods. In Sec. II.B we give the basic formalism for
classical I.agrangian statics and illustrate it by briefly
considering the case of classiml electrostatics. In Sec.
II.C we discuss the statics of classical sources in the
Abelian Higgs model, in which external source charges
are screened. In Sec. II.D we discuss the statics of classi-
cal sources using the leading logarithm semiclassical ef-
fective action functional for an SU(n) non-Abelian gauge
theory, and show analytically that this model describes
flux and charge confinement. As a secondary topic we
consider non-Abelian gauge field configurations with
topological quantum numbers, as exemplified by the
axially-symmetric SU(2) topological monopole solutions,
the theory of which is discussed in Sec. II.E. In the analy-
ses of Secs. II.C—II.E, we place particular emphasis on
identifying special features of the models under study
which must be taken into account when solving them nu-
merically.

B. Classical Lagrangian statics

ta, where H is the Hamiltonian, and where the prime in-
dicates that those coordinates which have identically van-
ishing canonical momenta are omitted from the sum. %'e
will be specifically interested in systems for which the
equations of motion implied by extremizing S have non-
trivial time-independent solutions, and want to find a
variational princip1e for mlculating the energy

v„.„,=H (p, q) (2.2)

= —~= —
&S~atIC (2.3)

Equation (2.3) gives a Uariational formulation of the prob-
lem of calculating V,«„, and is the fundamental equation
of classical Lagrangian statics.

As an illustration of Eq. (2.3), let us consider the fa-
miliar example of classical electrostatics. The Lagrangian
for the Maxwell field coupled to an external static source
density j is

L= fdx[ —,(E —8)—jA ], (2.4)

where the fields E and 8 are related to the scalar potential
A and the vector potential A by

E= —VA0 —A, B=VXA. (2.5)

Specializing to static solutions with A =0, we have

L[AO, A;A=O]= f d x[ —,'[(VAo) —(VXA) ]—j & I,
(2.6)

which is stationary when the potentials satisfy

y.P P2A 0 j0

VXB=Vx(VXA) =0.
(2.7a)

(2.7b)

If the potentials are required to vanish at infinity, the
general solution to Eq. (2.7) is

A (x)= f d'x'
4m.

/
x—x'

/

A(x) =V%'(x),
(2.8)

with II an arbitrary gauge function. Substituting Eqs.
(2.7) and (2.8) back into Eq. (2.6), we get, after an integra-
tion by parts,

associated with such static solutions. For time-
independent solutions, extremizing S is equivalent to ex-
tremizing L (q;q =0), and so evaluating Eq. (2.1b) at q =0
gives

L,„,=extqL(q;q =0)

Consider a classical dynamical system described by the
action

(2.1a)
4m

i
x —x'

f

L = g'p;q; —M(p, q), q =
dt

where q; and p; are the canonical coordinates and momen-
~Boldface will be used throughout to denote spatial vector in-

dices.
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C. The Abelian Higgs model

The first, and simplest nonlinear model which we shall
discuss is the Abelian Higgs model, coupled to an external
source charge density. The fields of this model are an
Abelian gauge potential AI' together with a complex sca-
lar field p of charge e . The Lagrangian is

L, = f d'xW,
(2.10)

W= —(E —B)—jA + i —eA2 Bt

in agreement with the general formula of Eq. (2.3). As a
final remark, we note that this example shows that Eq.
(2.3) is not a minimum principle; although Eq. (2.6) is sta-
tionary at B=V XA=0, this value of B maximizes, rath-
er than minimizes, the Lagrangian I..

W= —,
'

[(VA ) —(V&(A) ]—j A

2(A0)2 2 (V )2 2A2 2 & C( 2 2)2

(2.13)

As our final simplification, we note that since Eq. (2.13)
has no source term coupled to A, it is stationary with
respect to variations of A around A=0 . Hence to calcu-
late V„„;,it suffices to consider the A=O specialization
of Eq. (2.13), giving

L[A, qr]= f d xI ,'(V—A ) j—A +e (A ) qP

(V~ )2 C(~2 ~2)2
l

(2.14)
V„„;,= —ext 0 L[A,p] .

Varying the action of Eq. (2.14), we get the Euler-
Lagrange equations

—
J
(iV+eA)y

J

——,'C(
J y J

—~ ) pe 0 2e2g 0 2 j0

V q&= —e (A ) y+Cy(y —a ) .
(2.15)

with E and 8 constructed from the potentials A and A

as in Eq. (2.5), and with JyJ =py, where y' is the
complex conjugate of q&. When specialized to time-

independent fields by setting A and p to zero, Eq. (2.10)
simplifies to

These equations will be solved numerically in Sec. IV.B
for a source j describing point charges located symmetri-
cally on the z axis,

j =Q5(x )5(y) [5(z—a) —5(z+ a)],
W= —,'[(VA ) —(VXA) ]—j A

+e (A ) Jy J

—
J
(iV+eA)q&

J

—-'C (2.11)

for which A is an even function and y is an odd function
of z. A straightforward analysis shows that the leading
behavior of A and q&, at infinity and in the neighborhood
of the source charges, is given by the following formulas.

Atoo ..
which is invariant under the time-independent gauge
transformation

(oo)
y-a+ exp[ —r(2Ca. )'~ ],r (2.17a)

p ~ qe'&,

A ~ A+e 'Vg.
(2.12)

r

g 0(oc) exp[ —r(2e'a')'~'] .

By a suitable choice of gauge we can make the scalar
field p real, so that Eq. (2.11)becoines

At r.] -0:
.2.

q-q0r, , ~= ——, + —,—(0) g q 1

.2. 4m.

(2.17b)

For neutral charge distributions (with d j =0) the varia-

tional principle 5L[A,A;A=O]=0 is minimax: the fields of
classical electrostatics minimize L with respect to variations in

A, while maximizing L with respect to variations in A. A
functional which (for neutral charge distributions) is minimized

by the fields of classical electrostatics is

L[A,A]= f d3x{—,
' [(VAO)2+(V&&A)~] joAO} . —

Functionals of this form can be useful for mathematical pur-
poses [see, e.g., Adler (1981a, 1981b) and Footnote 13 below],
but unlike L have no direct physical interpretation.
3For a pedagogical discussion of the Abelian Higgs model, see

Bernstein (1974). The analysis described in Sec. II.C was carried
out by Adler and Pearson (1978, and unpublished); see Appen-
dix 8 of Adler (1978a).

AO (+) Q +A 0(0)
4mr ('

.2.

with y' ', A ' ', y' ', A ' 'constants and with

(x 2+y 2+z2)1/2
(2.18)

[ z+ 2+ (z+a )2]1 j2
zJ

At large distances, the Higgs field y approaches the con-

stant z (there is a second solution to the equations with

y ~ —y) and the scalar potential A shows the charac-

teristic exponential decay expected in a Higgs phase,

which arises from the screening of the source j by the
charged Higgs field. Close to the source charges, the
Higgs field becomes infinite as r

J

&. with ——, &A. (0 for
'.2.
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weak source charges Q satisfying the inequality
2

1( 4 (2.19)

and the scalar potential has Coulomb-type singularities.
The removal of the infinite Coulomb self-energies from
the formula for V„„;,will be discussed in detail later on,
in Sec. III.E of the text and in Appendix C.

D. Non-Abelian statics in the leading logarithm model

The second nonlinear model which we shall discuss is
constructed from an SU(n) non-Abelian gauge theory cou-
pled to an external source charge density. The fields of
this model are an SU(n) non-Abelian gauge potential A ",
with b = 1, . . . , n —1 the internal symmetry i.ndex.
Making the conventional rescaling of the gauge potentials
by the coupling constant g, the action and Lagrangian for
this theory are

S= f Ldt, L= f d xW,

«'E —&'&') —i"~"
2g

with the field-potential relations given now by

(2.20)

E'J= —& A' — A'J
i)t (2.21)

~aj jk! ~at+ & fabcgbkgcl
k

In Eq. (2.21), E~" denotes the usual three-index antisym-
metric tensor defined by

jkl lj k klj jkl kj 1
7 (2.22)

f' ' are the SU(n) group structure constants [for SU(2),f' '=s' '], and &z is the covariant derivative defined
(for arbitrary w') by

a a+fabc' bj ~c8=
a~j (2.23)

Static (and nonstatic) extrema of the action of Eq.
(2.20) have been extensively discussed in the literature,
and can be found numerically by the same algorithm
which we use later on to solve the topological monopole
model. Hence instead of basing a numerical example on
Eq. (2.20), we consider instead the much more interesting

4The fact that A, becomes complex for large Q is an indication
that, for large Q, pair production is important and that a field-
theoretic discussion is needed. In a full field-theory treatment
of the Abelian Higgs model, Eq. (2.14) is replaced by

V,~„.,= —ext o Left[&', q],A

with L,ff an effective action functional which includes the ef-
fects of virtual quanta. When radiative corrections are ignored,
L,ff reduces to the Lagrangian of Eq. (2.14).
5For an exhaustive survey, see Actor (1979).

model in which L is replaced by an effective action L,ff,
which (for slowly varying fields) incorporates the effect of
radiative corrections to leading logarithm order, while
keeping j' a classical source. Both explicit one-loop
calculations for the special case of constant field-
strengths, and more general renormalization-group argu-
ments, show that the action L,,~~ is obtained by replacing
the coupling constant g in Eq. (2.20) by a field-strength-
dependent "running" coupling constant g (M ),

Two types of approximation schemes have been discussed in
the literature for reducing SU(n) quantum chromodynamics
with quantized source charges to classical source charge models.
For methods involving a direct replacement of the SU(3) color
charges by quasi-Abelian effective charges which respect the tri-
ality selection rules for color singlet states, see Mandula (1976)
and Adler (1982). For methods involving a study of the alge-
braic properties of the SU(n) color charges, see Khriplovich
(1978); Adler (1978b); Giles and McLerran (1978); Cvitanovic,
Gonsalves, and Neville (1978); Rittenberg and Wyler {1978);Lee
(1979); Adler (1979); Lee (1980); Adler (1980); Bender, Gromes,
and Rothe (1980); Adler (1981a); Milton, Palmer, and Pinsky
{1982);and Milton, Wilcox, Palmer, and Pinsky (1982).

7The one-loop Yang-Mills effective action functional for con-
stant field strengths has been calculated by a number of authors.
See, for an early calculation, Batalin, Matinyan, and Savvidy
(1977), and for recent discussions and references, Schanbacher
(1982) and Anishetty (1982). Methods for constructing gauge-
invariant effective action functionals beyond one-loop order
have been given by 't Hooft (1975a), DeWitt (1981), Boulware
(1981),and Abbott (1981).

Matinyan and Savvidy (1978) and Pagels and Tomboulis
(1978) have shown how the structure of the renormalization-
group improved effective action can be inferred from the con-
formal trace anomaly. Renormalization-group arguments give
an expression for W(a ) of the form

bo' log(~ /ea')

with bo aud b, the usual p-function coefficients defined in one-
and two-loop orders. Adler (1981b) has argued that this expres-
sion may give the leading two terms in the effective action for
weak fields

~

W/ex
~

&& 1 as well as for strong fields

~

W/elc
~

~&1, because the magnitude of the running coup1ing
constant of Eq. (2.24) is small in both regions. This argument
suggests that, very generally, the effective dielectric constant
changes sign between the strong and weak field regions, which
is the essential feature responsible for confinement in the lead-
ing logarithm model.

The corrections of order M are not determined by
renormalization-group arguments and in general are highly non-
local (i.e., they depend on derivatives of the field strengths).
Adler (1983) gives arguments indicating that the nonlocal terms
in L ff become important in the ultraviolet (short-distance) limit,
but are unimportant relative to the local terms in the infrared
(long-distance, or confining) limit. The order-~ terms also can
have imaginary parts; for example, if ~ in Eq. (2.28) is replaced
by —sc, an additional imaginary term appears in W(M ) at the
order-W level. Hence even the sign of ~ at the extremum of
W cannot be determined by a renormahzation-group argument.

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984



Adler and Piran: Relaxation methods for gauge field equilibrium equations

(2.24)
Using the easily verified identity (which holds for arbi-
trary tc'),

with P the field-strength invariant

P =E E'—B'B',

[~ ~ ]~a &kjlyabcg bloc

we find that the left-hand side of Eq. (2.33) is

(2.34)

b = —C [SU(n)] = n—11 11
0 2 3 2 8' (2.26)

while the mass p is the renormalization point and g is
the value of the running coupling constant at P =p .
Combining Eqs. (2.20)—(2.25) and defining the one-loop
renormalization-group-invariant parameter

2 P —4/(bpg )
K = e

e
(2.27)

we get the effective action for the leading logarithm
model,

L,ff= f d xW,rr= f d x[W(p ) —j'oA'c],

W(W)= sbpPlog(P /elt ) .

(2.28a)

(2.28b)

When specialized to time-independent fields, ' Eq.
(2.21) for E'j becomes

which appears in the classical action. The constant bo in
Eq. (2.24) is the asymptotic freedom constant

& kjm kjl pabcgbl ~em
2 (2.35a)

while on substituting Eq. (2.29) the first term on the
right-hand side of Eq. (2.33) becomes

jabc&EbkEck 0 (2.35b)

Hence the second term on the right-hand side of Eq.
(2.33) must also vanish. After substitution of Eq. (2.31a),
this gives the constraint

jab' bojcO (2.36)

j"=Q'5'(x —x, )+Q'5'(x —x,),
the constraint of Eq. (2.36) becoines

(2.37)

which states that to get a static solution, the scalar poten-
tial and the source charge density must locally lie in com-
muting directions in internal symmetry space.

In particular, for a source density j' describing a par-
ticle with effective classical charge Q' at xi and an an-
tiparticle with effective classical charge Q' at x2,

E'1= —&jA' (2.29)

and Eq. (2.3) for Vst„;, yields the variational problem

jab' bc(x )gc 0

jabcg bO(X )Qc
(2.38)

~static ex' ao ~ejI Leff[~ ~~ l l

The Euler-Lagrange equations for Eq. (2.30) are

(2.30) By making a suitable time-independent gauge transforma-
tion, we can align Q' and Q' to lie in antiparallel direc-
tions in internal symmetry space,

(&Eaj) jaO

&kjm~ (etiam) jab' hoick

(2.31a)

(2.31b)

where we have introduced a field-strength-dependent ef-
fective dielectric constant c defined by

O'=PQ Q'= —PQ (2.39)

with q a fixed internal symmetry unit vector. The con-
straints of Eq. (2.38) can then be satisfied by making the
quasi-Abelian ansatz

(2.32)
(2.40)

Applying a covariant derivative &k to Eq. ( 2.31b) gives
the equation

& &kjm[~ ~ ](ega ) mjabc(~ gbO)&Eck

j aha bc~ (eEck) (2.33)

which describes a conserved electric flux of magnitude Q
running between the two point sources, as is appropriate
to a model for the quark-antiquark confinement prob-
lem. " For the potentials of Eq. (2.40), the field-potential
relations of Eq. (2.21) become

~In SU(3) quantum chromodynamics (QCD) with Nj massless
fermion Aavors, Eq. (2.26) for bp becomes

OSince the physically relevant extrema of the effective action
are the mean potentials induced when a source j' is added to
the standard functional integration quantization formalism [see,
for example, Abers and Lee (1973)], they must be time indepen-
dent when the source is time independent.

~'iThe quasi-Abelian ansatz of Eq. (2.40) excludes "charge-
screening" solutions of the type discussed by Sikivie and Weiss
(1978, 1979), Kiskis (1980a), Jackiw and Rossi (1980), and Hilf
and Polley (1981). Such solutions may be relevant as models for
the behavior of an SU(n) gauge field with adjoint representation
sources. Fundamental representation sources, such as quarks
and antiquarks, cannot be screened by the gauge gluon field.

Rev. Mod. Phys. , Vol. 56, No. 1, January 1S84
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E J q—EJ', (/ E,@ ) E—= VA',

B J=q BJ, (B',B,B )=B=VXA .
(2.41)

The internal symmetry structure of the problem can now
be completely factored away. Equations (2.30) and (2.28)
simplify to

V„„;,= —ext„o J I L,ran[A, A ~]I,
L,g= f d x[W(W) —j A ],
W=(VA')' —(V xA)',

j =Q5(x)5(y)[5(z a) ——5(z+a)],

(2.42)

where we have again located the source charges symmetri-
cally on the z axis, and the Euler-Lagrange equations of
Eq. (2.31) become

V (EE)=j

Vx(eB)=0,
(2.43a)

(2.43b)

with the dependence on W of W and e given by Eq.
(2.28b) and Eq. (2.32), respectively. We have thus reduced
our model to a problem in nonlinear Abelian electrostat-
ics.

As in the discussion of classical electrostatics in Sec.
II.B, the extremum over the vector potential in Eq. (2.42)
can be carried out by inspection. From Eq. (2.43b) we get

quires that the solution of Eqs. (2.43) approach a
Coulomb-type solution with E large and B vanishing; to-
gether with continuity, this implies that a finite domain
containing the source charges lies on branch Ia. Special-
izing the analysis, for the time being, to this branch, we
set B=A=O and rewrite Eqs. (2.41) and (2.43a) as

V-D=j, VXE=O,

D=E(E)E,

E(E)=—,'bolog(E /lr ), E=
~

E
~

(2.46)

A graph of the nonlinear dielectric constant E(E), show-
ing its intersection (for B=O ) with the three branches of
Eq. (2.45b), is shown in Fig. 1.

Equations (2.46) are the basic stateinent of the problem
which will be studied numerically in Sec. IV.C. In order
to get a tractable numerical method, it is necessary (for
reasons discussed in Appendix A) to rewrite the equations
in manifestly flux-conserving form. To exploit the axial
symmetry of the problem, let us work henceforth in
cylindrical coordinates p,z, P defined by

p=(x +y )'~, /=tan '(y/x), (2.47)

in which the coordinates of the point sources of Eq. (2.42)
are p =0, z = +a. We then note that D can be
parametrized in terms of a single scalar function @(p,z)
by writing'

0= f d'xA. VX(sB)

= f d'xcB' f. — dS.s(AXB),
surface at 00

(2.44)
D= — V/XVC = — x V@=VX eI

2' 27Tp 2~p

and so if we restrict ourselves to solutions with a vanish-

ing surface integral at infinity, we must have

cB =0,
giving three branches (Ia, Ib, and II, respectively),

8=0, E )~
B=O, E (v
a=0 ~ B =E —z

(2.45a)

(2.45b)

In the strong-field region near the source charges, the
asymptotic freedom of non-Abelian gauge theories re-

(2.48)

The representation of Eq. (2.48) automatically satisfies
V D=O at points off the axis, and at points on the axis
where @ is sufficiently smooth. The physical interpreta-
tion of 4& follows from calculating the total flux through
a surface of revolution S (with element of area dA)
bounded by a circle C of radius p (with element of arc
length dl=dlg), as shown in Fig. 2. We get

flux through S= f dA D= f dA. VXS S 27Tp

=fdl @=C, (2.49)

i2Dielectric models for confinement in QCD have been dis-
cussed in a qualitative way by a number of authors; see, for ex-
ample, Kogut and Susskind (1974), 't Hooft (1975b), Pagels and
Tomboulis (1978), Friedberg and Lee (1978), Callan, Dashen,
and Gross (1979), and Nambu ( 1981).

Pagels and Tomboulis (1978) and Mills (1979) showed that
when a single isolated charge is present, the leading logarithm
model gives a linearly divergent infrared energy. A proof that-
the model of Eq. (2.42) gives a linear static potential for large
source separations was first given by Adler (1981a), using the
related minimum principle in which P is replaced by
(VA ) +(V &(A) . (See the comments in Footnote 2 above. )

showing that N is simply the flux through S. If we draw
the surface S so that it always intersects the z axis on the
segment z &a, as shown in Fig. 2, the flux function @as-

The flux function formulation was introduced in Adler
(1981b). The analysis of the characteristic form of the flux
function equation, and its numerical solution, were given by
Adler and Piran (1982a).
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FIG. 3. Surface S (bounded by an infinitesimal circle C) used to
evaluate N on the axis at

I
z

I & a.

ensures that no additional flux sources or sinks lie at spa-
tial infinity.

The dynamical equation for N is obtained from
T

O VXE=VX D =0. (2.51)

10—

Branch

Branch
Ib

0
I I I I I I I I I

2
I

3
I

4 5

c(E(D))=—c[D], (2.52)

so that Eq. (2.51) becomes a differential equation for D,

Defining D =
I
D I, we can algebraically invert the consti-

tutive equation D =c(E)E to get

FICJ. 1. (a) Plot of c(E) of Eq. (2.46), showing its intersection
(for B=O) with the three branches of Eq. (2.45b). (b) Corre-
sponding plot of W(W=E ) of Eq. (2.28b).

D
[D]

(2.53)

This equation can be rewritten by using the vector identi-
ty

sumes the following boundary values on the axis of rota-
tion and at infinity: with

V.(VI XV2) =V~.(V XVi) —V, (V XV2), (2.54)

e=o, p=o,

e=g, p=o, Iz I
&a,

@ —+Oasp+z ~ oo .

(2.50)

D
V) ——

VXV' ——O=VXV2,
(2.55)

To verify these, we note that @ is an even function of z,
and that on the segment p=o, z & a, the surface S degen-
erates to a point and intercepts no flux. Similarly, on the
segment p =0,

I
z

I
&a, the surface S intercepts all of the

flux in a positive sense, as illustrated in Fig. 3. The re-
quirement that @ should vanish on the sphere at infinity

which when simplified by using P.V@=0gives

V [a(p, I
V4

I
)V@]=0,

o(p, IVc I)=— , D= I
ve I

p2c[D] 2n p

(2.56)

Equation (2.56) is the formulation of the leading loga-
rithm model which will be studied numerically in Sec.
IV.C. As a check, we note that in the case of classical
electrostatics, where c[D]—= 1, Eq. (2.56) and the boundary
conditions of Eq. (2.50) are satisfied by

C =
z Q(COSA' —

COS&I ),
(2.57)

S
@I=tan —'

z —a.
, e,=tan-I P

z+a , 0 & &Iz&n. ,

FICx. 2. Surface of revolution S with circular boundary C used
in Eq. (2.49) to evaluate the flux function N.

which, when substituted into Eq. (2.48), gives the expect-
ed result
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Qr,D=
4m.v )

Qrz

4mr 2

ri ——(x—xi)/ri
.2. .2 . .2 .

r [x 2 +y
2 + (z +a )

2]i /2

.2.

(2.58)

f(w)

(2.59)

with j(w) implicitly defined by the transcendental equa-
tion

In the case where s(E) is given by Eq. (2.46), the coeffi-
cient function o. is given on branch Ia by

( (~@I)
2m' f ]%@I

p I
Ve

I ~boy p I I I I I I I I I I I I i i i I i i

0 2 4 6 8 10

w=flogf, f)1. (2.60)
I I I

I

I I I

I
I I I

I

I I I

I

I I I

(b)

For small w and large w, the behavior of j(w) is given by
20 -—

f=1+w ——,w +0(w ), I
w

~

&&1,

w
1

loglogw loglogw1+ +
logw log w logw

2

(2.61a)

(2.61b)

as shown in Fig. 4(a), giving o the behavior graphed in
Fig. 4(b). The fact that cr becomes infinite as f=E/x. ap-
proaches 1 from above (i.e., as w cc D approaches 0) means
that a solution which is initially on branch Ia can ap-
proach branch II only as a degenerate limit and cannot
cross back and forth between branch Ia and branch lb. In
the vicinity of the source charge at p=O, z=a, Eqs.
(2.50), (2.56), and (2.59)—(2.61) can be integrated to give
the leading behavior"

D=, +0(1),Qr)

4~r )

p I I 1 I I I I I I I I I I I I I I I I

0 2 4 6 8 10

FIG. 4. {a) Plot of the function j(w) defined in Eq. (2.60). (b)
Plot of p cr, defined in Eqs. (2.59)—(2.61), as a function of D/~.

be calculated by substituting V D=j into Eq. (2.42) and
integrating by parts. This gives

Vst„;, = f d xIED —W[E(D) ]+W[E(0) =~ ]I,
E=rjxf +0(1),

2nxbor ]

const
A =a. f dr, 'f

2 +0(r~),
"1 2vrabo(r i ')

4& =Q —,
'

( 1 —cos4 i ) +0(r fsin 8 i ),

(2.62)
(2.63)

where an infinite constant f d xW(Ir ) has been added
to Eq. (2.63) to render the integral convergent at spatial
infinity. A little algebra shows that Eq. (2.63) is
equivalent to the following computationally convenient
formula:

where the structure of the subdominant terms 0( ) has
been indicated up to powers of logri. The corresponding
behavior at p =0, z = —a is obtained by reflecting the for-
mulas of Eq. (2.62) in the z =0 plane.

Once N has been determined by solving the boundary
value problem formulated above, the static potential can

'2

V„„;,= d x —,~ (1+g),
V'@

2'
g=(f 1)/(2fw), —

(2.64)

with cr, f, and w as defined above. A second useful ex-
pression for V„„;,is obtained by using the identity

i5Since Q2 (1—cos8~) exactly satisfies the boundary condi-

tions of Eq. (2.50) around z=a, the leading subdominant term
in @must vanish at 51——0,@1——m. This boundary condition el-
iminates a possible term in N behaving as O[r~(a+bcos@&)],
giving the structure shown in Eq. (2.62).

W[E(D) ]—W[E(0) ]= f dE'

E(D)= f dE'D(E')

=ED f dD'E (D'), —(2.65)
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which when substituted into Eq. (2.63) gives the familiar
formula

I I I
]

I I I

I
i I I

J

I I I

}
I l I

3V„„;,= d xm, (2.66a)

with A the field energy density

A = f dD'E(D') . (2.66b)
0.4

Since we have noted above (and will see in greater detail
below) that the region of support of D is confined to
branch Ia, where E(D) & a., Eq. (2.66) gives the inequality

V„„;,)a f dxD. (2.67)

0.8

0
0 10

a" (x,@,V@)BkB~@+c(x,@,V@)=0, (2.70)

and analyzing the structure of its characteristics. Defin-
ing the inward directed unit normal n and the correspond-
ing normal derivative 8„,

To turn Eq. (2.67) into a useful lower bound on the large
distance behavior of V„„;„wemust exclude the infinite
Coulomb self-energies. This is most easily done by ex-
cluding from the x integration small spheres of radius c,

around the source charges, motivating the definitions

Q =domamI
I
x—x&

I
& c. , I

x—x2
I

& EI,
(2.68)

V,",,'„,= f d'xA (x)&a f d'xD .

When we write d x=dldA, with I the length along and
dA the element of area perpendicular to the flux lines of
D, Eq. (2.67) then yields the lower bound'

V,„„;,(R) &a f dAD f dl &~gl;„=ag(R —2c),
(2.69)R=

I
x) —x2

I
=2a,

showing that V„.„„, increases at least linearly for large
source separations. A more detailed discussion of the re-
moval of the Coulomb self-energies from the formula for
Vst„;, is given in Sec. III.E below.

A great deal of insight into the behavior of Eq. (2.56) is
obtained by putting it into the standard form for a
second-order, quasilinear differential equation,

FIG. 5. Plot of the function a(u) defined in Eq. (2.73).

the function a(w) is graphed in Fig. 5 and [from Eq.
(2.61)] has the following approximate forms for small and
large w:

a=w+O(w ), I
w

I
~&1,

+0 2 ~ w))11 loglogw
logw (logw)2

(2.74)

From Eqs. (2.73) and (2.74) and Fig. 5 we see that a lies
between 0 and 1 for D &0, but vanishes when D=O.
Hence Eq. (2.72) is of degenerating elliptic type, ' and has
a real characteristic at a surface of constant @, where

I
VC&

I
=0. The second normal derivative 8„@is discon-

tinuous across this characteristic, which acts as a free
boundary, dividing space into two causally disconnected
regions. From the boundary condition of Eq. (2.50), we
learn that the exterior of the free boundary is completely
surrounded by surfaces on which @=0.Hence @—:0 out-
side the characteristic, giving the solution the qualitative
form graphed in Fig. 6. In the vicinity of a point 8 on
the free boundary where p=p~ and where the radius of
curvature of the free boundary is Rz, a simple analysis
given in Appendix A shows that N has the leading
behavior

n=
I
ve

I

(2.71)

'2
77b QKp+

n —
2

8 8
+O(n, l ), (2.75)

[(Op+8 —8„)+cxB ]@—exp Op@=0 .

The coefficient a is given by

(2.72)

Blogo
Blog

I
VC&

I

~n+ 2D
m.bo~p bo~

'

d(logf) wf'(w)
d(logw) f (w) w+f(w) '

(2.73)

~6The Aux estimate of Eq. (2.69) is due to 't Hooft (19751).

we can see through a straightforward calculation given in
Appendix A that Eq. (2.56) is equivalent to

with n and I normal and tangential Cartesian coordinates
at 8 (see Fig. 7). Since @ is increasing towards the interi-
or, we must have Rz)0, and so the free boundary is
everywhere convex. As indicated in Fig. 6, the free boun-

~7The theory of equations of this type, and extensive refer-
ences, are given in Olemik and Radkevic (1973). This book
treats only the linear case [see Eq. (A18)], rather than the quasi-
linear case encountered in the leading logarithm model. An im-

portant difference found in the quasilinear case is that the loca-
tion of the characteristic depends on the solution to the equa-
tion, rather than being a priori known. This is why the real
characteristic of Eq. (2.72) behaves as a free, as opposed to a
fixed, boundary.
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10 Adler and Piran: Relaxation methods for gauge field equilibrium equations

dary intersects the axis of rotation at a point p=O, z=zq,.
in Appendix A it is shown that z~ & a, with the possibility
zz ——a excluded. Apart from this statement, we have been
unable to characterize analytically the structure of the
free-boundary —rotation axis intersection. ' Once 4 and 0
have been determined in the interior region, A can be cal-
culated from the formula

o ', z D(p, z')
A (p,z)= — dz' (2.76)

An interesting alternative method, discussed in Appendix
A, is to determine A from the known solution for e by
solving the linear differential equation

V (sVa') = —j' (2.77)
FIG. 6. Qualitative appearance of the solution of Eqs. (2.50},
(2.S6), and (2.59)—(2.61).

within the free boundary.
Since @ and D vanish identically outside the free boun-

dary, continuity requires that e remain zero in the whole
of the exterior region. Thus the exterior scalar and vector
potentials are constrained only by the requirement that
the electric and magnetic fields satisfy the branch II con-
dition

P. —8=+ (2.78)

but are otherwise undetermined. In other words, the
functional L,rr has an infinite equivalence class of C' ex-
trema A, A, corresponding to all possible ways of satisfy-
ing Eq. (2.78) outside the free boundary. All members of
this equivalence class' give the same A, @ inside the free
boundary, and make the same physical predictions.

The solution to the leading logarithm model is clearly
qualitatively similar to the confinement domain found in
the MIT "bag" inodel, but there are important differ-
ences. At the boundary of an MIT "bag" the fields (the
first derivatives of the potentials) are discontinuous, cor-
responding to the presence of a step function in the varia-
tional principle formulation. In the leading logarithm
model, the boundary is a characteristic across which the
fields are continuous, with only the first derivatives of the
fields (the second derivatives of the potentials) having
discontinuities. This behavior corresponds to the fact
that the variational formulation of the leading logarithm
model involves a smooth action functional I.,~~.

~8The numerical results given below suggest that the free boun-

dary intersects the rotation axis at a right angle (rather than at a
cusp), but we have no proof of this.

~9A question which remains to be clarified in the field-

theoretic context is whether the degenerate exterior solutions

should be interpreted as vacuum structure. For articles advo-

cating this view see, for example, Savvidy (1977), Pagels and

Tomboulis (1978), and Nielsen (1981); for possible problems

with this interpretation, see Kiskis (1980b) and Cabo and Sha-

bad {1980).
2 The MIT "bag" model was introduced by Chodos ei al.

(1974)", for a review, see Hasenfratz and Kuti (1978), and for a
reinterpretation within QCD, see Johnson (1978).

E. Axislly symmetric Bogomol'nyi-Prasad-
Sommerfield monopoles

As our final nonlinear example, let us consider a non-
Abelian generalization of the Abelian Higgs model of Eq.
(2.10), in which an SU(2) non-Abelian gauge field is cou-
pled to a real scalar field qp', a =1,2, 3, in the adjoint rep-
resentation. The Lagrangian is

L. = f d'xW,
(2.79)

+ —,
' (~yp')' ——,

' (Wjy')' ——,
' C[(q')' —x']',

with the field strengths and covariant derivatives given by

E'J= —& A' — A'jj (2.80a)

gaj jkl g al+ & abc' bkg cl
k

a +a &abc' b 0+c
Bt (2.80b)

. W'+Ca~AbjWc fOr Wa=Cpa Or Aac
exj
]Wa &kjl&abcgblWc (2.80c)

Free boundary
(radius of curvature RB &

FIG. 7. Geometry near the free boundary used in Eqs. (2.7S)
and (A10)—(A12).

In writing Eqs. (2.79) and (2.80), we have for simplicity
taken the gauge field coupling g to be unity. %'e will
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again be interested in static solutions for which all time
derivatives vanish, but this time (since no external source
charge-density coupling to A' has been included) we will
take A' =0. After making these simplifications we have

r.—=H= f d'x~, (2.81)

&jBaj=0,
&kjm~ ~ a Eabc bBck

(2.88)

Although Eqs. (2.87) are complicated second-order dif-
ferential equations, they are satisfied by any y', 3'J satis-
fying the first-order differential equations

with A the field energy density &—jP'=gB'j, g =+1, (2.89)

A = —,B'B'+ —,(&jy') + —,'C[(p') —a ] . (2.82)

We will be interested in what follows in the finite ener-

gy extrema of Eq. (2.81), which clearly must satisfy

with the cases g= 1 ( —1) termed, respectively, self-dual
(anti-self-dual). To see that Eq. (2.89) suffices, we note
that by Eq. (2.88) we have

hm (y') =~
r~00

(2.83) WjW jy'= g&jB—"=0,
while by using Eq. (2.80c) we get

(2.90a)

Hence the problem of finding finite energy extrema of H
breaks up into discrete topological sectors.

Extrema of H for C&0 are called 't Hooft (1974)—Po-
lyakov (1974) monopoles. A very interesting special case,
introduced by Prasad and Sommerfield (1975) and
Bogomol'nyi (1976) and extensively studied since then, ~'

is obtained by setting C=O but retaining the boundary
conditions of Eqs. (2.83)—(2.85), gi»ng

H= f d'x , (B'jB"+&,—q'&,q'), .
(2.86)

lim y =en',
7'~ 00

winding number of n'=n .

The Euler-Lagrange equations obtained by varying the
functional H of Eq. (2.86) are

Wj&jy'=0,
Ekjm~ Bam &ahab~ +c

(2.87)

while the field-potential relations of Eq.(2.80) imply th«

2IFor recent reviews on monopoles, see Jaffe and Taubes
{1980)and O'Raifeartaigh and Rouhani (1981}.

Defining a unit SU(2) internal symmetry vector n'(r) on
the sphere at spatial infinity by

n'(r)= lim q&'(rr)/a,
(2.84)

r =xlr,
we see that the complete specification of the boundary
condition for qP requires specifying the number of tiines
the two-sphere on which n' lies is covered, when the
two-sphere on which r lies is traversed once. This number
(which must be an integer when n' is a continuous func-
tion of r ) is the winding number or topological quantum
number

n = lim
1

d 2gi&ij k&abc&~+ ~b
8~ sphere at oo axj ax'

(2.85)

&kjm~ Bam g kjm~ ~ aj mg

g&abc bBck g2 abc b~ c (2 90b)

Remarkably, Eq. (2.89) is also a necessary condition for a
minimum of H, as may be seen by the following rear-
rangement of Eq. (2.86),

H =H(+H2,
Hi ——f d x ,'(Baj+—gWjya)i,

H2 ———g f d'xB'j&, y'

= —g f d x&j(B'jy')

g f digjBaj a
sphere at co

Since H2 reduces to a surface term, the functional H can
be extremal only for fields for which Hi vanishes, giving
the condition of Eq. (2.89). The surface term H2 can be
evaluated by noting that in order for the integral of Eq.
(2.86) to converge, &jn' must vanish at large r, giving
the following relation between 3'J and n' on the sphere at
infinity,

(2.91)

gj ~Q~b ~ bj gbg~b=Il nA —E n —. n
()xj (2.92)

Coinbining Eqs. (2.80a) and (2.92), one finds, after some
algebra,

actj~& I jkI~Q w @I' ~ jkj gbg~Q n nk &
g k gx 1

(2.93)

This terminology stems from the fact that —&Jy' can be
formally reinterpreted as a static Euclidean electric field

strength Eg& =——M~jA~g, A~g =y', in terms of which W
= —

z (B'B'+E~z~ E~zI). The self-dual lg= 1) solutions satisfy

E~'f~ ——B'J, while the anti-self-dual ((=—1) solutions satisfy
E&'f~ ———B'j. Clearly, a /= 1 solution can be converted to a
g= —1 solution simply by changing the sign of y'.

This argument is due to Bogomol'nyi (1976) and to Coleman,
Parke, Neveu, and Sommerfield (1977).
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The surface integral of the first term on the right-hand
side of Eq. (2.93) vanishes; and so, referring back to Eq.
(2.85), we get

II2 4——nag. n . (2.94)

Since the positivity of H implies that H2 is positive when

HI vanishes, we conclude that

terms of the potentials h 1 1, . . . , and discuss the residual
Abelian gauge invariance of the six-function ansatz and
the choice of a gauge-fixing term for numerical work.
From the equations given in Appendix 8, a straightfor-
ward calculation shows that the leading behavior of the
potentials at infinity is given by the following formulas
(in which terms of order e ""are omitted}:

II,=4~~
[

n ], g =n /
[
n

[
. (2.95) hl ——hcos8, hl ——hsin@,

(1 lcrco—ther ),
r 2 (2.96)

Hence the minimum of H in each topological sector is
determined solely by the topological quantum number.

The minimum of H in the n =1 topological sector is
given by the simple expression

sin& cos@a)=- , a2 ——-
r r

f, =fcos@, f2 fsin@——,
n ~ al Pl(cos&)

h =Ic——+
1=2

1 even

(2.99)

apl I
1—

r 2

scr

sinhwr

al Pl 1(cos@)f=ncos5+p g Ir +'

hz,f»a 1 even in z,
Il 1,f2, Q2 Odd 111 z,
hl f2=a2 ——0 at z=O,——
al fl ——h2 ——0, fl nat——p=O, n ) 1 . ——

(2.98)

Although analytic forms for the solutions of Eq. (2.89)
within the ansatz of Eqs. (2.97} and (2.98) are now

known, we will treat the problem of finding the axially
symmetric, reflection-symmetric minima of H as a nu-

merical example in Sec. IV.D. In Appendix 8 we give ex-

plicit expressions for the functional H when expressed in

2~For the analytic construction of axially symmetric mul-

timonopole solutions and references, see Prasad and Rossi

{1981).

which satisfies Eqs. (2.89}with g'=1. This solution is the
simplest of a family of solutions of Eq. (2.89), in which
the Higgs field p' and the potentials A'J are axially sym-
metric and reflection symmetric, as described by the fol-
lowing ansatz:

g'=h)z +h2P„,
t

fl —n f2
z + p„—(zjal+pja2)P„',

P P

p=(x'+y')'~', (t =tan '(y/x),

2 =(0,0, 1),
P„=(cosn Q, sinn $,0), p =pl,

P„=( —sinn Q, cosn $,0),

The potentials h 1 z, f1 2, and a, 2 are functions of p and z,
with z~—z reAection symmetry and behavior on the
z =0 and p =0 axes as follows:

I even

r=(p2+z2)'~, @=tan '(p/z) .

The leading behavior at the origin is also calculated in

Appendix 8, where it is shown that even in the higher
topological sectors n &1, the Higgs field y' has only a
first-order zero at r =0.

III. RELAXATION METHODS FOR THE NUMERICAL
SOLUTION OF ELLIPTIC PARTIAL
DIFFERENTIAL EQUATIONS

A. Introduction

In this section we give a detailed introduction to both
the theoretical and practical aspects of the numerical
solution of elliptic partial differential equations of the

type encountered in Sec. II. 'We assume that the reader
has read Sec. II.A and especially Sec. II.B, and has at
least glanced over Secs. II.C—II.E. However, the discus-
sion of numerical methods which follows is essentially
self-contained, and makes only minimal references back
to the formulas in Sec. II. Motivated by the fact that the
numerical solution of the models of Secs. II.C—II.E can
be reduced to a sequence of solutions to linear differential

2~Equations (2.99) and (811) are the expansions calculated in

the gauge B,a ~ +0~2 ——0. For n = 1, this gauge condition does

not uniquely fix the order r terms in a~ 2 near r =0; the general

solution for n = 1 is a &

———bp( ~ +a)+O (r'), a2 ——bz( 2
—)

+0(r ), with o, a free parameter. The n =1 case of Eq. (811)
corresponds to a= 2, while the standard form of the single

monopole solution given in Eq. (2.96) corresponds to a=0. [To
put Eq. (2.96) in the form of Eq. (2.97), one uses

a
r =z cos5+p sin4, c'J'r =(p y —p y )cos8+(y z —y z )

&&sin&.] The expansions of Eqs. (2.99) and (Bll) were derived

by Adler (unpublished), Rebbi and Rossi (1980), and Houston

and O'Raifeartaigh (1981).
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V„„;,= —ext~ f d'x[ —,'s(x)(Vy) —j y],
j =Q5(x)5(y)[5(z —a) —5(z+a)],

(3.1)

where we have positioned the test charges at z=+a on
the z axis. When restricted to axially symmetric scalar
potentials ip=y(p, z), the Euler-Lagrange equation corre-
sponding to the extremuin in Eq. (3.1) takes the form

equation problems combined with Newton iterations, we
base most of our exposition on the simple linear problem
of calculating the static potential V„„;, of external test
charges Q, —Q immersed in a dielectric medium, with an
axially symmetric position-dependent dielectric constant
s(x)=E(p,z) &0. According to the general Lagrangian
statics formalism of Sec. II.B, this problem has the varia-
tional formulation

al lattice. Before proceeding to the three-diinensional,
axially symmetric case, let us consider first the even
siinpler one-dimensional model defined by

V„„;,= e—xt~ dz —,
' s(z) Blp

az
(3.4)

with the Euler-l, agrange equation

c1 BiP .os(z) = —j (z) .
Bz Bz

(3.5)

z; =zo+i LL, i =. . ., —2, —1,0, 1,2, . . . , (3.6a)

To introduce the computational lattice for Eqs. (3.4) and
(3.5), we replace the continuous variable z by a discrete
one

V.(sVy) =— ps +1 a a~ a a~
p Bp Bp Bz Bz

0= —J (3.2)
and let s;,y; denote the values of the continuous functions
s(z), p(z) on the discrete points of Eq. (3.6a),

and has the boundary condition s; =e(z;), y; =~p(z;) . (3.6b)

q&~0 as r=(p +z )' ~ac . (3.3)

B. Oiscretization of the continuum problem
and treatment of the boundary
of the computational mesh

In order to formulate the continuum problem of Eqs.
(3.1)—(3.3) for numerical analysis, we must approximate
it by a similar problem defined on a discrete computation-

Most of the features encountered in the numerical solu-
tion of the nonlinear models of Secs. II.C—II.E already
appear in the numerical solution of the model of Eqs.
(3.1)—(3.3).

In the succeeding sections we describe the steps in-
volved in formulating this model for numerical solution,
digressing briefly where needed to give additional tech-
niques required in the analysis of the models of Sec. II.
In Sec. III.B we discuss the reduction of Eqs. (3.1)—(3.3)
to discrete form and give a simple method for treating the
boundary of the computational mesh. In Sec. III.C we
describe the basic theory of iterative methods for the solu-
tion of the discretized equations. In Sec. III.D we intro-
duce Jacobian "stretching" transformations of the p, z
axes, and in Sec. III.E we discuss the removal of the infin-
ite Coulomb self-energies from V„„;,. In Sec. III.F we
show how nonlinear problems can be reduced to a se-
quence of quasilinear problems, to which the discussion
of Secs. III.B—III.E applies, and in Sec. III.Cx we discuss
some relevant programming considerations. Although
the sections just enumerated are deliberately concise, they
cover all of the major issues which we have encountered
in programming the models of Sec. II. Readers seeking a
more detailed discussion of the numerical solution of el-
liptic partial differential equations should consult the
books of Ames (1977), Bauer, Betancourt, and Garabedian
(1978), Hockney and Eastwood (1981),and Roache (1976).

Working to second-order accuracy in (M)2, we can then
replace differential operators by finite difference
operators —for example,

0'i + 1 Pi —1 f'i + 1/2 f'i —1/2

Bz,. 2M

where y;+ &/2 is defined by
1

%i+i/2=V(A +i+0' )i~

(3.7a)

(3.7b)

and

(3.7c)

is+ i(/Rig+ i f'i ) ei —I/2(iI i 0'i —i )

(~)2 (3.8a)

There is an important difference, however, between the for-
mulation of a field theory as a lattice gauge theory [see Creutz
(1978)] and the discretization of a classical action functional. In
the case of a fu11-Aedged field theory it is essential to have a
discrete analog of the full gauge group to avoid picking up
spurious radiative corrections in one- or higher-loop order. In
the case of a classical action functional, which may be thought
of as a tree-approximation field theory, the discretization need
not have an intrinsic gauge invariance, and it is in fact desirable
to add gauge-fixing terms to the action [as in Eqs. (B5) and
(B6)] to make the extremum unique and the differential equa-
tions elliptic.

Because terms of order (M) are neglected when the
continuum problem is represented in finite difference
form on the computational lattice, the finite differencing
procedure is necessarily ambiguous. Thus the differential
operator (r)/Bz)(sag/Bz) appearing in Eq. (3.5) can be
represented either as
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or as

(f;+1 2—f;+P; 1) (s;+1—a;, )(f;+,—f;,)

(~) 4(~)

where we have used

Bg

i +1/2

f')+1—gg
2

(3.13)

(3.8b)

(si+1 2si+ai 1)—(q'i +1 ipi + iI'i —1)

4(M)
and corresponds to a continuum term

2 2B 8 B lp

az2 az2 '

(3.9)

(3.10)

which vanishes as M —+0 . Although either Eq. (3.8a) or
Eq. (3.8b) can in principle be used as the basis for a finite
difference scheme, the form of Eq. (3.8a) has the advan-
tage, unlike Eq. (3.8b), of satisfying an exact summation
by parts formula

ip

X ( ) '[E.+1/2(q +i —e. )—s -1/2(q. —q»]
l =i)

[Ei2+1/2('Pi2+1 Pi2) ii —1/2(f'ii 0 ii —1)]
—1

(3.11a)

both of which are second-order accurate. The difference
between Eq. (3.8a) and Eq. (3.8b) is in fact

Equating to zero the derivative of L with respect to the
nodal value y; then gives

BL 'P —A'+1 iP —% —i
+1/2 (~)2 1/2 (~)2

si g 1/2(9 i+1 qi ) si —1/2(q i Pi —1) .o
(~)

(3.14)

yielding the desired form of the finite difference equation.
This method is particularly advantageous in dealing with
variational problems, such as those of Sec. II, which have
more than one field variable, since it guarantees that the
members of the resulting set of finite difference equations
for these dependent variables are mutually consistent. In
the special case in which E(z) is a constant and j is a sum
of point sources at the lattice nodes, the procedure of Eqs.
(3.12)—(3.14) can be viewed as an application of the
Rayleigh-Ritz variational method with a trial function
ip(z) which is trapezoidal in form,

(z) = g g, +,/2(z),
which is the counterpart of the continuum integration by
parts formula P;+1/2(z)=0, z &z; or z&z;+1, (3.15)

f dz E(z) =e(z2 ) —e(z i )
8 Bg Bg

z, Bz az a

(3.11b)

The analog of Eq. (3.8a) in higher dimensions guarantees
that Gauss's law (or a similar conservation law) is au-
tomatically satisfied, and so Eq. (3.8a) is called the con-
servation form of (B/Bz)(e By/Bz), and we will always
use it in preference to Eq. (3.8b).

A procedure which in most cases automatically gen-
erates the conservation form of the equations of motion is
first to discretize the Lagrangian functional by the
second-order accurate replacement

y;(z;+1 —z)+q);+1(z —z; )
4+1/2(z) = zi &z &zi+1 ~

1

ei+1/2 2 [E(z;+1)+e(zi)]

or from the alternate formula

Si+I/2 ~( i+1/2) ~

(3.16)

(3.17a)

where z;+1/2 is a point on the half-node lattice defined by

z;+1/2 ——zo+(i + 2 )M, i =. . ., —2, —1,0, 1,2, . . . .

(3.17b)

Returning to the general case in which s(z) is spatially
varying, we find that the half-node value s;+1/2 appearing
in Eq. (3.12) can be computed, to second-order accuracy,
from either the analog of Eq. (3.7b),

1

2 i+1/2
%i+1 0'r'

L= f dz Ts(z) Btp

az
2

—j;y; M, (3.12)

The definition of Eq. (3.17) is superior when (as in the
model of Sec. II.D) s is a function of

~
Vy

~

rather than
being given a priori . To see this, let us consider the one-
dimensional case with e.=F(Bq&/Bz), for which Eq. (3.16)
gives

0'r +2—A'
~i+1/2 2 F

2M
Pi +1 0'i —1

2M

=F[q)'(Zi+1/2)]+(M) I 24 P (Zi+1/2)F [ g7 (Zi+I/2)l+ p [f (Z i+1)/]2F [g (Zi+1/2)] I+ (3.18a)

Rev. Mod. Phys. , Vol. 56, No. 1, January 1984



Adler and Piran: Relaxation methods for gauge field equilibrium equations 15

while Eq. (3.17) instead yields of p on the lattice of Eq. (3.20a} and the values of the pre-
factors s and p on the half-node lattice of Eq. (3.20b),

+If' (. zi +1/2}]+ 24 (~}'P (zi+1/&}+ l P (zi+&/2}]

+ 0 ~ ~ (3.18b)

a form which is both computationally simpler than Eq.
(3.18a) and which gives E[qr'(z;+ ~/z)] with a smaller error
term. A second reason for preferring Eq. (3.17), connected
with the axial symmetry of the models under study, will
be discussed shortly.

We are now ready to turn our attention to the axially
symmetric example of Eqs. (3.1)—(3.3}. The continuum
variational principle for this problem is

dependent variable: qo; J =p(p;, zj), (3.21)
prefactors: e'+ u2, J+ 1/2 =E(P +1/'2 zj+1/2)

Pi+1/2 .

a =n~LL, (3.22)

with n~ a positive integer. If we proceed by direct analo-
gy with Eq. (3.12), the discrete form of L is then

The advantage ofputting explicit factors of p on the half-
node lattice is that the smallest value ofp which appears in
the discrete problem is then p&/2 ———,

' hp&0, giving a pro-
cedure which applies to functionals (such as those associ-
ated with the models of Secs. II.D and II.E) which con-
tain explicit factors p '. We shall assume that the source
charges lie on points of the computational lattice, so that

V„.„.,= —ext~,

L=2~ f pdp f dz —,s(p,z)
'2

(3.19)

Blp Bip

Bp Bz
i =0j=—co

I
2 Pi +1/2~i+1/2, j

1+ Yf i i j+1/2
gr',j+1—gi,j

'2

0 i+1,j PEJ
2

—Qq)(p =O,z =a )+Qy(p =O,z = —a ),

pr. =thp~ t =0~1

zj =jLz, j=. . . , —2, —1,0, 1,2, . . . ,

and the corresponding half-node lattice

(3.20a)

where we have explicitly integrated out the delta func-
tions in the source term. We proceed by first reducing the
Lagrangian functional L to discrete form, and then dif-
ferentiating with respect to the nodal value y; j to get the
discrete form of the equations of motion. We introduce
the computational lattice

—Qmo, .a+QV o, —.a (3.23)

1 g

si+I/2, j = 2 &st+1/2,j —1 2/+ is+I Z,/j 1+2/} &

1 t
Pisi j+1/2=Y&pi —1/2~i —1/2 j 1+2/+Pi 1+2 /is+1/2 j+1/2}~

(3.24)p 1/2 1/2 j+1/2=0 .

Differentiating Eq. (3.23) with respect to qr; j then gives
the discrete form of the field equation,

where the prefactors s;+ ~/z j and p;e; j+,/2 are to be com-
puted as averages of the neighboring half-node values,

p;+)/z (t+, )bP—, t —0, 1,2, . . . ,
(3.20b)

zj+)/2 (j+—,——)bz, j=. . ., —2, —1,0, 1,2, . . . ,

and express the discrete form of L in terms of the values

BL
BQ7g j lpi +1/2Ei +1/2j ('Pi+1,j f'i j }

Pi —1/2 i —I/2, j( Pij 0i —1,j )]

hp+2lr ~ [PiEi j+1/2( Pi j+1 Pi j)

27In principle, one could use variable grid spacings by taking

pg = g bpk, zj = g Mk ~

= —Q5; o5j „+Q5; o5 (3.25)

with hp~ and MI, having a dependence on k. However, the
same effect can be achieved by using a computational lattice
with fixed grid spacings, together with a Jacobian transforma-
tion from the computational to the physical coordinates, as dis-

cussed in Sec. III.D below. When extremely complicated
geometries are encountered, for which it is hard to find suitable
Jacobian transformations, the use of finite clement methods

may be appropriate; see Ames (1977) for a discussion.

To see that this equation is in conservation form, we note
that the first square bracket on the left-hand side is an ex-
act difference with respect to i, while the second square
bracket is an exact difference with respect to j. Hence,
when summed over i and jwith arbitrary limits, Eq. (3.25)
yields a sum of surface terms which are a discrete,
second-order accurate version of the continuum flux con-
servation law
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16 Adler and Piran: Relaxation methods for gauge field equilibrium equations

I dS.EVy= J, d'x( —j ) .

For example, from the sum

(3.26) I+)q j

(3.27a)

where 8' represents Eq. (3.25), we learn that

X P;APsi j +1/2
i=0

Pl,j~+1 f'i,j~

2~ g Pi ~Psi, j —1/2
i=0

0 i Jg Pi Jg —1

1 I
4 &Pi —1/2+Pi +1/2)(si —1/2, j+1/2+ si +1/2 j+1/2) ~ (3.28)

(3.27b)

where ~ is the net charge between the plane
z=M(j~ ——,

'
) and the Plane z=Mj(jj+—,

' ), in agree-
ment with the form taken by Eq. (3.26) when Vis chosen
as the slice of three-space bounded by the planes
z =~(j~ z»z=~(—jjj+ 2 ).

The reduction to discrete form of the example of Eqs.
(3.1)—(3.3) illustrates a number of principles which apply
in general in constructing a second-order accurate discret-
ization of a Lagrangian functional [cf. the excellent dis-
cussion of Bauer, Betancourt, and Garabedian (1978), pp.
23—26].

(i) In general, one should average ouer the largest possi
ble collection of terms, rather than averaging over each in
diuidual factor. For example, the expression in Eq. (3.24)
for P;E; j+1/2 is clearly superior to the longer expression

averages before squaring [Eq. (3.29b)], one gets additional
couplings of the node ij to the nodes i + l,j —1, . . . ,
which are not nearest neighbors on the computational lat-
tice. These non-nearest-neighbor couplings lead to more
complicated computer codes.

(iii) When the discretized Lagrangian L is written in
the form

(3.30)

the simplest kernel K; J. is obtained by using different unit
cell couerings of the computational lattice for different
terms in the continuum action. For example, to discretize
the p-derivative term

2

2' J pdp I dz —,E(p,z)
Bp

(3.31a)

one uses the "p-derivative covering" shown in Fig. 9(a), in
which the unit cell contains two lattice nodes differing in
their i index, and from which one gets

'2

ii i —1, j
FIG. 8. Computational lattice node ij with the nearest neigh-
bors i+1,j;i —1,j;i,j+1;i,j—1, to which it is coupled when
derivative-squared terms in the Lagrangian are discretized by
squaring before averaging.

which also represents p;c; J+1~2 to second-order accuracy.
(ii) In approximating the square offirst deriuatives, one

should always square first and then auerage. For example,
in Eq. (3.23), the p-derivative terins which contain a pre-
fa««pi+1/2si+1/2, j—1/2 a«

~~)',J —2~ 2 Pl +1/2t l'+1/2J
~(p) Pl + 1,J Pi,J

hp

i+ 8 /2, j+$/2

(3.31b)

Lz )
4 Pi +1/2 si + 1/2 j—1/2 [(f'i + 1 j qji j )

Lxp

+(qi+l, j—1 qi j—1) ]2

i +&/2, j —3 /2 (&

(a)

c) i+3/2, j+)/2

i
—3/2, j+g/2

( b)

(3.29a)

with the square bracket arising from the average of
(4)Ip/BP) over the unit cell with center at
(p,z)=(p;+1/2, zj 1/2). An alternative, second-order ac-
curate representation for this average, obtained by averag-
ing before squaring, would be

I~)/2, j —1/2
C~

(c)

1+3/2, j+I /2

i —3/2, 1+5/2 14 j

i+1/2,
0

j+5/2

I, j+'i

1
(%~i+1 j @ij+ql+1J —1

—qi j 1) . (329b)
2b,p

The advantage of squaring before averaging [Eq. (3.29a)]
is that it couples the node ig only to the nearest-neighbor
nodes i+1,j and i,j+1 in which a single index has been
changed, as shown in Fig. 8. If, on the other hand, one

FIG. 9. The unit cells for (a) the "p-derivative covering, " (b)
the "z-derivative covering, " (c) the "nonderivative covering, "
and (d) the " p~ derivative covering. " Darkened circles ()
denote points of the computational lattice; open circles (o)
denote points of the half-node lattice. See the discussion in Sec.
III.B and Table I.
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Similarly, to discretize the z-derivative term
T 2

2~ f pap f Zz —,'s(p, z) (3.32a)

one uses the "z-derivative covering" shown in Fig. 9(b),
in which the unit cell contains two lattice nodes differing
in their j index, and which yields

(&)
l~j 2 Pl I,J+1/2

f'r', g + j —WI, J'
(3.32b)

In discretizing the examples of Sec. II, we will also en-
counter nonderivative terms, for which one uses the "non-
derivative covering" of Fig. 9(c), and an antisymmetrized
mixed p, z derivative term, for which one uses the "p,z
derivative covering*' of Fig. 9(d). The results of using
these four unit-cell choices to discretize the various con-
tinuum Lagrangian terms which appear in this paper are

summarized in Table I, in which the abbreviated notation
h denotes a co11ection of factors which are defined on the
half-node lattice.

Up to this point we have ignored the question of what
happens when a nodal variable ip; j in Eq. (3.30) lies on
the boundary of the computational mesh. In this case ei-
ther one nearest neighbor (for ij on an edge of the mesh)
or two nearest neighbors (for ij at a corner of the mesh)
can lie outside the computational mesh proper, and the
kernels L; J linking these exterior neighbors to y;z are to
be omitted from Eq. (3.30). Rather than separately pro-
gramming these special cases of K;j, it is simpler to ex-
tend the computational mesh by one cell at the edges, giv-
ing the "bordered" mesh shown in Fig. 10, with the h fac-
tors of Table I defined to be zero at the half nodes within
the border. Equation (3.30) can then be used over all of
the original computational mesh (which lies within the
inner edge of the border), irrespective of the values as-

Use of the coverings of Fig. 9 to reduce continuum Lagrangian terms to discrete form. In the following, f,fi,f2 denote
field variables defined on the computational lattice, while h denotes a collection of factors defined on the half-node lattice.

Continuum
Lagrangian term Unit cell Discrete form

dp dzh
Bp

'2

Fig. 9(a) Ig ~p«Y ( jii + i/2, j + I/2+ jii + i/2j —1/2)

x (f; + i,, —fi,, )'l(&p)'

dp dzh Fig. 9(a) 1X g ~p«T(~i+I/2j+I 2/+ iji+I2/j —I/2)
J

2 (f11 + 1 j+fii,,)(f2' + i,, f2l j)/ ii'p—

dp dzh Fig. 9(b) 1g ~p«2 (~i +I/2j + i/2+ hi —1/2j + 1/2)
i J

X(f;,;+i f;,&)' (/«)'—

dp dzh Fig. 9(b) 1g g ~p~ 2 ( jii+ I/2j+ I/2+ jii —1/2j +I/2)
i J

1

2 (fi,/+ i +fil j)(fZi j+ i f2i j)/«—

dp dzh Fig. 9(c)

+ 4 (hi+1/2, j+1/2+hi+1/2, j—1/2

+hi —1/2j —I/2+ ii —1/2j +1/2)fi j

dp dzh

~fi ~f2 ~fi ~f2x
BP BZ BZ BP

Fig. 9(d) g g ~p«~/ +I/2, j+1/2

I
T[(fii+1 j fli j +1 )(f2i+1 j+i f2i j )

—(fi +i i+i —fi,j)(fi +i i —fi;,+i)J/'(~p«)
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Q ~ +3
I

nF

h —factor
zero

which is constructed as follows. Given an estimate w'"'
of a root w' of Eq. (3.33), we Taylor expand f(w) around
M, glv1ng

f(w) =f(w'"') + (w —w'"')f'(w'"')

+ i
(W —W(n))2f «(W(n))+. . . (3.34)

l Va lu e I

j Value ~—$

I

I
I
I

I

I

I

I

n&

I

I

I

I

n]+'t

True
oo m pu tat ior) a I

mesh

uter edge of border

( P values arbitrary )

FIG. 10. Computational mesh extended by one unit cell to form
a border. At the half nodes within the border, the h factors of
Table I are assigned the value zero. The corresponding summa-

tion limits for the four coverings of Fig. 9 are given in Table II.

signed to p at nodes on the outer edge of the border, since
these nodes automatically appear multiplied by an h fac-
tor of zero. When this procedure is used, the summation
limits for the four coverings of Figs. 9(a)—9(d) are as
given in Table II.

C. 1terative methods of soiution

f(w) =0, (3.33)

Let us now suppose that the discretization procedure of
the preceding section has been carried out on a computa-
tional lattice with n;+ 1,nz+ 1 nodes in the p,z directions,
respectively. Equation (3.25) then gives us a set of
N=( n+1)(n +~I) linear equations in the N unknown
variables y; J. Since N is typically a very large number
(up to =4)& 10 in the computations described in Sec. IV),
the direct solution of this set of equations by matrix in-
version is not feasible, and we must resort instead to an
iterative method of solution.

Before describing the specific algorithms used to solve
Eq. (3.25), let us first discuss a simple and familiar itera-
ti.ve method which will also be needed in the applications
of Sec. IV. This is the Newton iteration for finding the
roots of the equation

When substituted into Eq. (3.33), Eq. (3.34) gives an exact
power-series equation for w'. When Eq. (3.34) is approxi-
mated by the first two terms in the series expansion, it
gives a new approximation to w*,

(a+i) (n)
( ))

f&(W(n))
(3.35)

The error of the new approximation can be estimated by
subtracting the two equations

O=f (W(n))+(W(n+i) —W(n))f i(W(n)), (3.36a)
0=f (w'"')+(w' —w'"')f'(w'"')+ —,

' (w' —w'"')'f"(w'"')

+O[(w —w'"') ],

Hence the error after n+ 1 iterations is of order the
square of the error after n iterations, and convergence
proceeds very rapidly to m, provided that the initial
guess w' ' lies close enough to w' Rewrit. ing Eq. (3.36b)
as

(0) n f(w)
(0) 2 W —M

I

w"' —w*
I

f'(w )

+O[(w' ' —w*) ], (3.37a)

we see that a sufficient condition on w' ' to guarantee
that the Newton iteration converges to the root w* is

giving

(n))w(n+i) wn ' (w(n) w)
nf2w +O[( (n) n)3]

W(n))

/It(

weal

)( (w(n) w )2nf +0[( (n) «)3]
f'(W')

(3.36b)

TABLE II. Summation limits for the coverings of Fig. 9, using the "bordered" mesh of Fig. 10.

Unit cell Lower ij limits Upper i limit Upper j limit

"p-derivative covering" Fig. 9(a)

"z-derivative covering" Fig. 9(b) n. —1J

"nonderivative covering" Fig. 9(c) n; nj.

"p~ derivative covering" Fig. 9(d) n; —1
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ftl( 4t)
—,
'

i

w'Ol —w*
i

" (& I .
f'(ul') (3.37b)

(n+1) X ~~e JR V R +~mR(n) (n) (n)

~RR s~R

If Eq. (3.33) has several roots uli, ul2, . . . , there will be
an interval around each root m;* within which the Newton
iteration converges to that root.

Let us now proceed to the simplest case in which we
encounter the iterative method which will be used to solve
Eq. (3.25). We consider the discrete functional

g ~Rsms —JR(n) (n)

~RR

giving as the corresponding change in the action

L(n+1) L(n) l [( ( n+l))2 ( (n))2]g
2

(3.43)

r=1 s=1
(3.38) +(9R fR ) g ~Rsgs JR

s+R

BL N

s=1
(3.39)

with A a real, symmetric matrix with positive eigen-
values. Since the matrix A is invertible, L, attains a
unique minimum when the nodal variables
y„r= 1, . . . , X satisfy the N linear equations

' ~qR'(~qR'+2V R')~RR

+~%'R ( ~RR~V R ~RRf'R

(3.44)
An iterative method for finding this minimum can now
be constructed as follows. Let us repeatedly sweep
through the y„proceeding from y1 to tpN and then start-
ing over again with y1,

f1p o e e p fNpg1p ~ ~ o p lPNp o ~ ~ p

first sweep, second sweep, . . . ,
(3.40)

L'"'= ,' g g A~@—'r"'Fs"' gJ„—
r=1 s=1

(3.41)

Regarding L as a function of the single variable qrR, with
the other variables fixed, we have

at each step replacing the variable yR being considered by
the value which minimizes I. when all other variables
rI2„,r&R are held fixed. Specifically, let y'„"' be the values
of all the nodal variables when the sweep reaches the vari-
able yR, so that at this stage I. has the value

(In the final line we have used the fact that since the ma-
trix A„, has positive eigenvalues, the diagonal matrix ele-
ments ARR are all positive. ) Hence, under the iteration of
Eq. (3.40), the Lagrangian is monotone decreasing. In
problems of physical interest with positive definite A, we
expect the Lagrangian with the source term included to be
bounded from below. Equations (3.44) and (3.43) then
guarantee that in the limit as n becomes infinite, the
L'"'s converge to the minimum value of L, while the
y„'"'s converge to the solution of Eq. (3.39). This method
of solving the system of Eq. (3.39) is known as the
Gauss-Seidel iteration.

As we have just seen, in the Gauss-Seidel iteration each
nodal variable is successively relaxed to the value which,
at that stage of the iteration, minimizes L. An important
variant of the basic method, called the successively over-
relaxed (SOR) Gauss-Seidel iteration, is defined by the
recipe

(n) (n + 1)„SOR (n) g (n)

L =
2 mR~RR+mR

s+R =COUR +( 1 —CO)tPR, CO )1, (3.45)

+ 2 g g ~rsvp'r 9's QJrf'r-
rR s+R r&R

(3.42)

Choosing pR+ ' to minimize Eq. (3.42) with respect to
l(pR, we get

with yR+" and b.yR' given by Eq. (3.43). In other
words, instead of relaxing yR"' to the value which mini-
mizes L, one systematically overshoots beyond this value.
Using the over-relaxed iteration, the change in the La-
grangian 1s

L(n+1),soR L(n) & r( (n+1),soR)2 ( (n))2qg +( (n+ ),s1OR (n)) ~ ~ (n) J2 & 0R 'PR 3 RR gPR
s+R

2 ~~PR (~~@'R +2@'R )~RR +~~9 R ( ~RR~%'R ~RR+R )

(3.46)
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Thus provided that

0&co(2, (3.47)

the Lagrangian remains monotone decreasing, and the
SOR iteration still converges to the solution of Eq. (3.39).

For a general, symmetric matrix A, each individual
iteration step in Eq. (3.43) involves evaluating a sum of X
terms, which would be computationally costly for large

However, in the specific problems to which we will

apply iterative methods, r and s are composite indices

sparse matrix in which Az, is nonvanishing only for a
small number of index values s for each E.. Because we
have followed the prescription of squaring before averag-
ing to ensure that the discretized action contains only
nearest-neighbor couplings, we find in fact that A~, is
nonvanishing only for the five index values s correspond-
ing to the node R and its four nearest neighbors. Hence
each iteration step involves only a short computation
which is independent of the size of the computational lat-
tice. If the sweep is performed in "typewriter ordering"

r= (/, J),
s =(i',j'),

(3.48)
. . ., (O, nj), (l,nj), . . . , (n;, nj), (3.49)

(i,j):(0,0),(1,0), . . . , (n;, 0),(0, 1),(1,1), . . . , (n, , 1),

denoting nodes of the computational lattice, and 2„, is a then the over-relaxed iteration for Eq. (3.25) is

in) (n+l), soR {@+1),(1 )
(1E)

%l j~%lj ' =~Aj + —~ 0'i j ~

T

(lg + I) ' ~ ~P y„g.
'pi,j + (hi+ i/2, j + i/2+ ~~i+ i/2,j —1/2+ hi —i/2, j + i/2+ i —i/2,j —I/2)

Ap

(n) (ll +1)(~i+ i/2 j + i/2+ ~i+ I/2 j —i /2)V'i+ 1j + ~ (~i —i/2 j + I/2+ ~~i —i/2 j —i/2)9 i —i jAp
' ' '

Ap

+ ~ &~le'+1/2 j +1/2+~&i 1/2 j +1/2J'pi j + 1+ ~ ( i+1/2, j 1/2+ i 1/2,j 1/2~ pi,j 1

+ ~', o (~j, ~ ~j, —~
) hi+i/2 j+1/2=p'+1/2E'+1/2 j+1/2 (3.50)

Equation (3.50) applies to all ij in the range
0&i &ni, 0&j &nj, since, by virtue of the "bordering"
procedure discussed above in Sec. III.B, all nodal values
with indices outside this range appear in Eq. (3.50) multi-
plied by vanishing h factors. An initial guess y,' J' must be
supplied as an input to the iterative process. In practice,
to achieve a poor-man's version of the "hierarchical"
iterative schemes (see below), we follow the procedure of
first iterating to convergence on a very coarse mesh start-
ing from a specified y,' J', which is chosen to be reasonably
close (without sacrificing simplicity) to the anticipated
solution of the problem. We then successively double the
mesh and iterate to convergence, taking as the new initial
guess after each doubling a linear interpolation of the
converged y; j values on the preceding coarser mesh.

According to the discussion of Eqs. (3.41)—(3.47), an
iteration with ca=1 produces the largest possible single-
step reduction in the Lagrangian I.. Hence at the begin-
ning of an iterative solution one always makes three to ten
complete passes through the computational lattice with
co=1 (or with an co which is gradually increased starting

from 1) to eliminate the largest deviations between the ini-
tial guess y,'J' and the fully converged solution y,'z '.
After these initial iterations, the optimal strategy is to use
an co value larger than 1. The reason is that a general
analysis of the iterative process shows that in the
asymptotic large-n limit, the difference
behaves as

() ( ) c y()f l~j Pl,J (3.51)

2
CO ()pt (3.52)

with the decay constant y(co) attairung its maximum at an
u value co =cu,&, , 1 & co,p, & 2. Hence one clearly achieves
the maximum rate of convergence by Jetting ~ tend to
co p, from below after the initial iterations. values of co

larger than ~„p, should be avoided, since in general they
produce slower convergence than values of co an
equivalent distance below m,~„and since they can lead to
instabilities in nonlinear problems. The optimum value of
co can be estimated from the formula [Garabedian (1956)]

This terminology has been borrowed from Hockney and Eastwood (1981),who discuss alternative sweeps as well.
9In practice, there is no great gain in convergence to be achieved by using elaborate functional forms in the initial guess.

3 See the books cited at the end of Sec. III.A for details.
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with

h =(ngnj) (3.53)

n; ~2n;, nJ ~2nJ,
h ~h/2,

(3.54)

the corresponding change in co,p, is

4COopt
~opt~ 2+ a)opt

(3.55)

An intuitive (and mathematically correct) way to visu-
alize the over-relaxation algorithm is to think of n as a
time step and of the algorithm as a time-dependent dissi-
pative process, with a steady-state equilibrium at the con-
verged solution yI. J The starting guess yf J in general
deviates from y,' J. by both large localized transients and
by relatively smooth errors. The initial iterations with
co=1 are used to rapidly eliminate the localized tran-
sients. The later iterations with co=co,p, minimize the
relatively long time constant [y(co)] ' with which the
smooth errors damp away. The optimal use of the over-
relaxation method requires attention to eliminating both
localized transients and smooth (or long-range) errors.
One method of doing this in a systematic way is the
"Chebyshev acceleration" method described by Hockney
and Eastwood (1981), in which the lattice is scanned using
an "even-odd checkerboard ordering" (as opposed to
"typewriter ordering") and in which co is incremented
from co = 1 to co =co,pt in a prescribed way at the begin-
ning of each even-semilattice and each odd-semilattice
sweep. A second way of accomplishing this is through
various "hierarchical" schemes ' in which the full compu-
tational lattice is scanned in only a fraction of the sweeps,
with the remaining sweeps used to scan sublattices of the
basic lattice, constructed by using a larger unit cell con-
taining two, four, etc., fundamental unit cells. The Che-
byshev acceleration and hierarchical schemes can be
proved to be optimal ones, according to well-defined cri-
teria, for solving elliptical partial differential equation
problems based on the Laplacian (V ) and similar linear
operators. Since for nonlinear problems it usually is not
possible explicitly to construct an optimal algorithm, we
use instead a simpler method which is effectively

Hierarchical over-relaxation methods have been discussed,
for example, by Brandt (1977) and Press (1978).

a measure of the fineness of the computational lattice,
and with C a constant which depends on the lattice
geometry and the boundary conditions. (For the two-
dimensional Laplace equation in rectangular coordinates
with Dirichlet boundary conditions, C-3.) An empirical
method for estimating the value of co,~, is discussed below
in Sec. III.G; from the general form of Eq. (3.52) we infer
the useful fact that when the computational mesh is dou-
bled, so that

j' =Q5(x)5(y)[5(z —a)+5(z+a)], (3.56)

which is invariant under the reflection z~ —z, then the
corresponding solution y would have even reflection sym-
metry, and B,y would vanish at z=0. Again, although
this symmetry would emerge automatically from the
full-space boundary-value problem, we can halve the com-
putational effort by using the symmetry to reduce the
computation to an equivalent half-space boundary-value
problem.

When we solve the numerical problem on a half space,
we introduce an inner boundary z =0,0 (p & Oo on which
a boundary condition must be specified, together with the
outer boundary condition of Eq. (3.3). On this inner
boundary, the appropriate boundary conditions are,
respectively, the Dirichlet or Neumann conditions,

p=O at z=O, j odd [Eq. (3.1)],
B,q)=0 at z=O, j even [Eq. (3.56)],

(3.57a)

(3.57b)

and we must translate each of these into a corresponding
updating algorithm for the lattice nodes on the line z =0.
(The more general Robin or mixed boundary condition
ag+PB,y=O can also be implemented computationally,
but will not be encountered in any of the models studied
in this paper. ) In addition, in either the full-space or half-
space problems, there is an inner coordinate boundary

equivalent. As discussed above, what we do is to start the
iteration on a very small (typically 7X7) computational
lattice, iterate to convergence, and then use an interpola-
tion of this solution as the initial guess for iteration on a
computational mesh which has been doubled as in Eq.
(3.54), and so forth. After each doubling, co is reset to 1

for several iterations to eliminate transients arising from
the interpolation (these are strongly evident in the unit
cells along the axis of rotation) and then increased to the
co pt appropriate to the new mesh spacing h . This pro-
cedure gives very satisfactory convergence and automati-
cally generates a sequence of fully converged L values on
progressively finer meshes, permitting an examination of
the convergence of the discrete solution as the mesh spac-
ing h approaches zero.

Let us consider next the imposition of boundary condi-
tions in carrying out the iterative solution. From Eqs.
(3.1)—(3.3), we see that the differential equation and
boundary conditions of our dielectric model are invariant,
and the source current j changes sign, under the reflec-
tion operation z —+ —z. This implies that the solution y
also has odd reflection symmetry, and vanishes on the
equatorial plane z=O. Although this symmetry emerges
automatically if the boundary value problem of Eqs.
(3.1)—(3.3) is solved over the full physical space
0&p& Oo, —Do &z& Oo, we can clearly save computer
time if we impose the symmetry at the outset, by solving
instead a boundary value problem on the half space
0&p& 00,0&z& oo. Similarly, if the source current j
were replaced by
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(but not a physical boundary) at p=O, which must also be
dealt with by an appropriate updating algorithm for the
lattice nodes on the line p=0.

To infer the appropriate updating algorithms for the

boundaries, let us examine the variational principle of Eq.
(3.1) when restricted to the coordinate quadrant
0&p& oo,0&z& oo, keeping all surface terms which re-
sult from integrations by parts. We have

0=5L 5 f pdp f "dz[ ,'e—[(By)'+(&,q) ] J—+I

= —f pdp f dz5q& — Ps + s +j + f dz(spdpV'&0')p= + f PdP(s~~'P~'P~~=
0 0 p Qp Qp QZ ()z P P=ao 0

—f pdp(sB q&5y)~ 0—f dz(Epd&y5y)& (3.58)

y;'"„' =y„'"'J.——0, for all n and all i,j . (3.59a)

In the case when j is an odd function of z, the surface
term at z =0 vanishes by virtue of the Dirichlet boundary
condition of Eq. (3.57a), which guarantees that

5y ~, 0 ——0, and which can be implemented by equating
to zero the nodal variables on the line z =0,

Eq. (3.57a)-- =-yI"o' ——0, for all n and all i . (3.59b)

In the case when j is an even function of z, the surface
term at z=O vanishes by virtue of the Neumann boun-

dary condition of Eq. (3.57b). Since B,y ~, 0 appears in

Eq. (3.58) multiplied by 5y ~, o, the Neumann boundary
condition follows from requiring that 5L be stationary
with respect to all variations, including variations in the
boundary value q& ~, 0. Hence the boundary condition
of Eq. (3.57b) can be implemented computationally by
iterating the nodal variables on the line z =0 with the al-

gorithm of Eq. (3.50),

Eq. (3.57b)-- -.p,'"o iterated according to Eq. (3.50) .

(3.59c)

The same result follows from considering the discrete prob-
lem in the full plane, where the condition

0=(B,y);,p
—— (y;, ) —y;, ))

1

leaves the nodal value y; p unconstrained.

and the differential equation of Eq. (3.2) follows when the
surface terms all vanish. The surface terms at infinity
vanish by virtue of the Dirichlet outer-boundary
condition of Eq. (3.3), which guarantees that
5p

~ z
——5y ~, =0. (All statements about a Dirichlet

boundary condition y=O generalize immediately to a Dir-
ichlet condition y =g, with P a specified function. ) As-
suming that the computational mesh effectively extends
to infinity, this condition can be imposed by equating to
zero the nodal variables at the edges of the computational
mesh,

Finally, let us consider the surface term at the coordinate
boundary p=O. In the discretized version of Eq. (3.58),
the factor p is evaluated at the nearest point to the axis on
the half-node lattice. Hence the final term in Eq. (3.58)
behaves as

—f dzE ,' b,p(dpi'&5—y)p 0, (3.59d)

and vanishes either if (i) the physics of the problem speci-
fies a Dirichlet boundary condition qr =g on the rotation-
al axis, or if (ii) the physics of the problem leaves y on the
rotational axis to be determined by the variational princi-
ple, in which case y is freely iterated,

(i) p ", =f, all j and n,

(ii) =-yo"J' iterated according to Eq. (3.50).

(3.59e)

In the case of Robin or mixed boundary conditions, the nodal
values on the boundary would be updated using a different algo-
rithm from that used for the interior points.

The second case in Eq. (3.59e) is the alternative which ap-
plies at P=O in the model of Eqs. (3.1)—(3.3) (and also is
the alternative which always applies at the end points
g=O, m of the bispherical coordinates introduced in Sec.
III.D below). To summarize, the boundary conditions en-
countered in this paper are dealt with by one of two up-
dating algorithms for the nodal values lying on the boun-
daries of the computational mesh: either these nodal
values are constrained by a Dirichlet boundary condition
and are not iterated, or (in the "bordered" mesh scheme
introduced at the end of Sec. III.B) they are updated using
the same algorithm used for the interior nodes.

In the discussion of relaxation methods given above, we
based our convergence proof on the assumption that the
matrix A~ is symmetric and has positive eigenvalues.
While this is a sufficient condition for the convergence of
the over-relaxation algorithm, it is not a necessary condi-
tion, and convergence can be proved under much weaker
conditions on the matrix A~ [see Ames (1977), p. 101].
The practical implementation of the over-relaxation
recipe in these more general cases remains the same as in
Eqs. (3.43) and (3.45) above.
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D. Use of Jacobian transformations with g~, g2 chosen to be an orthogonal coordinate family.
The simplest orthogonal transformation is

In reducing the Lagrangian functional L of Eq. (3.19)
to discrete form, it is not necessary to use the physical
coordinates p, z as the computational coordinates. In situ-
ations in which the Lagrangian density is sharply peaked,
it is often advantageous to concentrate the mesh nodes
where the Lagrangian density is largest, while at the same
time preserving the convenience of working with a uni-
formly spaced computational mesh. This can be accom-
plislied by making a Jacobian transformation from p, z to
new computational variables g~, gq,

(k 4)=(p'»'»

p=F(p'),
z =G(z'),

dpdz =J J,dp'dz', B =J ' B, B,=J, 'B,',
BI BEJp=, ~ Jz=
Bp Bz

(3.61)

p=F(ki k»
z=«ki k»

dpdz = ' dg, dg2»
d(F, G)

1» 2

(3.60) corresponding to an independent stretching (or compres-
sion) of the coordinates in the p,z directions. Assuming
that p=O, z =a is the image of p'=0, z'=a', the Lagrang-
ian functional in the new variables is

2 '2

1.=2~ f pJ~dp' f J,dz' ,'e(p,z)—
p. '

2

Qq&(p'=—O,z'=a')+Qq)(p'=O, z'= —a') .

(3.62)

z=v 'asinhp, p=u 'asinq,

u =cosh@ —cosy, —oo (P ( (x), 0(g (77,

In the reduction of Eq. (3.62) to discrete form it is again
convenient to use both node and half-node meshes, with qr

specified on the nodes and with p, Jz, J„and e specified
on the half nodes. The half-node factors in each term of
the action are then lumped together in the factors h of
Table I, which applies with the obvious substitutions

p~p ~Z~Z .
A second useful coordinate transformation, which will

be applied to the study of the confining model of Sec.
II.D, involves the introduction of bispherical coordinates

p, g [see Morse and Feshbach (1953),p. 1298j,

p )& 1 =-p =2ae "sing+ O(e &),

z=a+2ae "cosrl+O(e &) .
(3.63c)

Also, spheres of constant r =(p +g )'~ around the ori-
gin of bispherical coordinates (p, g) =(0,0) correspond, in
the limit r~O, to spheres of radius r =2alr~ ac in the
physical coordinate space. To reduce Eq. (3.63b) to
discrete form, we cover the p, g plane with node and
half-node meshes, with y specified on the nodes and with
sing and v specified on the half nodes. The half-node fac-
tors in each term of the action are again lumped together
in the factors h of Table I, which applies with the substi-
tutions p —+g,z ~p.

a 3

pdpdz = sinqdgdp,3

(3.63a)

E. Removal of the Coulomb singularity

2 1/2

L =2m. f singdg f dp ——,'e(p, z)
2

—Qq(p= ~)+Qy(p= —00) . (3.63b)

in terms of which the Lagrangian integral becomes
'2

B$7 Bg
Bp B'g

+

In order to extract a finite static potential V«„,, from
the example of Eqs. (3.1)—(3.3), and from the models of
Secs. II.C and II.D, it is necessary to remove the infinite
Coulomb self-energy associated with the point-charge
sources at p=O, z =+a. One way of doing this, which we
illustrate in the case of Eq. (3.1), is by explicit analytic
rearrangement of the Lagrangian functional L,. For sim-

plicity, let us assume that the varying dielectric constant
e(x) takes the same value ec at the two source charges,

As the name of these coordinates suggests, in the limits

p ~+ Oo the coordinate surfaces approach concentric
spheres around the charges at p=O, z =+a, e.g.,

&c=E(p =O,z =+g ),

and let us denote by y~ the Coulomb solution

(3.64a)
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f'c =
4mzc r(1)

which satisfies

2+ ( +g )2]1/2
.2.

(3.64b)

L2 L——2(R)+L2c,
1 1L2(R)= fdx 2 V .V

(4~)'Ec

R =2a,4~«c (3.68)

v. (scvyc) = —j' . (3.64c)

To remove the infinite Coulomb energy from Eq. (3.1), we
introduce a new dependent variable g defined by

Q2
L2c= —f d x

(4~)' 2&c

2
1 + V

1

'p=l'c+0 ~ (3.65)
Since L2c is simply an infinite constant, it can be omitted
from the static potential, giving

so that after eliminating j by substituting Eq. (3.64c) and
integrating by parts, Eq. (3.1) becomes

Q2
V„.„,= —extg, .

4vrR c,c
(3.69)

V„.„,= —ext~, L, , —

L, = f d'xI —,'s(x)(vg)

(3.66a)

+ [E(x)—Ec][ ,' (Vq&c) —+Vyc'Vf]j
(3.66b)

L,= —f d'x —,
' Ec(vyc)

Since the functional L2 is independent of g, the equation
of motion for g is determined by the functional L

~ alone,
yielding

Equations (3.66a) and (3.69) are the basic formulas for the
Coulomb-subtracted static potential when the computa-
tional mesh is infinite.

When a finite computational mesh p (p,„,
~

z
~
(z,„

is used, we must take into account the fact that because of
the boundary condition lt~ —q&c at infinity, the contri-
bution to L ~ from outside the computational mesh should
not be neglected. Approximating l( = —yc when
p&p, „or ~z

~

)z,„, and using reflection symmetry in
the z=0 plane, we have

V.(eve) = —v.[(.—Sc)vq c],
g~ —pc as r~ ao

(3.67)
L 1 L 1 inside +L 1 outside ~

Li "d.= f. . [2«VP)'
inside

Provided that e(x) varies slowly enough near the source
charges, the functional L1 has no Coulomb self-energy
singularities. Consequently, the discretization of L1 by
the methods of the preceding sections gives a numerical
determination of f and of extQ &, which both converge to
well-defined limiting values as the spacing of the compu-
tational mesh approaches zero.

Although the functional L2 has no dependence on p, it
cannot be omitted in calculating V„„;,because it still has
a nontrivial dependence on the distance R =2a between
the source charges. To separate the infinite Coulomb
self-energies correctly from L2, we must split L2 into a
finite but R-dependent part L2(R), and an infinite but R-
independent piece L, 2c. This is readily accomplished by
substituting Eq. (3.64b) into Eq. (3.66b) and separating off
the cross term, giving

+(.—.,)[-,'(V~, )'+v~, vq] j,
t —,

' &(vf)'
outside

+(e—ec)[-,' (vq, )'+ vq, .vy] j

= f . —,Sc(vq c),1 2
outside

f :—4.m .f pdpf dz,

f . —:4' f pdp f '"dz+ f '"pdp f dz

+ f" pdp f" dz

(3.70)

The integral for L, 1,u„;d, either can be evaluated numeri-
cally by using the general formula

1f F(p,z) =4mp a„z,„d&f dU[& F(U pmaxi+zmax)
outside 0 0

+t UF(Upmax~t zmax)+~ U F(U pmax~t zmax)l,
—2 —1 —2 —3 —1 —1 (3.71a)

or lt can be transformed by using Eq. (3.68), into a numerical integral over the inside region and a simpler integral over
the outside which can be evaluated analytically,

In the application of the analytic rearrangement method to the Abelian Higgs model (see Appendix C), the analog of the total po-
tential y=g+yc is the total scalar potential A =B +Ac, which vanishes exponentially at infinity. Hence in the Abelian Higgs
model the analog of the approximation of replacing g by —q&c in Eq. (3.70) is the replacement of B by —Ac in the outside region in
deriving Eq. (C2), and this approximation becomes very accurate for only moderately large values of p „and z,„.
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1
outside (4~ )

2 + Q- —2V V
1 1 1. 1

r(i)

Q2
outside (4~)2s

v' v'
4mRsc inside (4~) sc r(1) r(2)

2 1 Q2 Q2 p2+z2 a2
I(pmax ~+max) + 2 3cc 4~Rs& inside (4~) E (r r )3

(3.7lb)

~max 1
1(pmax~Zmax ) = 2 2 +

z max —a 2pm» pmaxpmax

max max +
tan +tan

Equations (3.69)—(3.71) give formulas which we can use
for evaluating the Coulomb-subtracted static potential, in
the example of Eqs. (3.1)—(3.3), on a finite computational
mesh. The analytic rearrangement procedure which we
have just described is directly applicable to the Abelian
Higgs model, for which the analogous formulas are sum-
marized in Appendix C.

In the case of the leading logarithm model of Sec. II.D,
the extreme nonlinearity of the action functional pre-
cludes an explicit analytic subtraction of the Coulomb
self-energies. Instead, we use either of the following two
numerical procedures to remove the Coulomb singulari-
ties. The first procedure is to calculate V„„;,for two dif-
ferent R values, say R =R& and R =R2, keeping the mesh
structure near the charges the same in both computations.
The Coulomb self-energy contributions then cancel when
we form the difference

6V$„t,,——V„„;,(R 1 ) —V„„;,(R2), (3.72)

and so 4V„„;,approaches a limiting value as the spacing
of the computational mesh approaches zero, even though
Vs«„,(R() and V„„;,(R2) individually diverge in this lim-
it. The second procedure is to use bispherical coordinates
[cf. Eq. (3.63)], for which a cutoff (tt a„on the size of the
computational mesh corresponds to a cutoff

~max
rmin =Re (3.73)

on the distance of approach to the Coulomb singularities
of the solution. Finite answers for V„„;, are then ob-
tained as the mesh spacing approaches zero for a fixed

Pmax. By Varying Pmax With R SO that rmln remainS
constant, and then forming differences as in Eq. (3.72),
one can again get the Coulomb self-energies to drop out in
measurements of 4V„„;,. The boundary condition for
the fiux function which is now needed on the line
p=p, „,O&g&a can be obtained by combining Eqs.
(2.62) and (3.63c), giving

Q(1) "mia r
cc rm;„tx e '", (3.74b)

where E„ is the energy within a sphere of radius r;„~min

around charge and can be made arbitrarily small by tak-
ing p,„ large enough. Both of the methods just
described are used in the computation of Sec. IV.C.

F. Iterative solution of nonlinear problems
by quasilinearization

O=f(w) (3.75)

is replaced by a sequence of linear problems

O f(w( ))+n(w(n+1) w(n))f&(w(n)) n P

(3.76)

the solutions of which limit to a root of Eq. (3.75). When
Eq. (3.76) is solved for w'"+", as in Eq. (3.35), it takes
the form of an iterated map

In describing iterative methods for the numerical solu-
tion of the example of Eqs. (3.1)—(3.3), we have had to
contend with only a linear problem, in which the field
equation is linear and in which the Lagrangian is quadra-
tic in the field variable y. We turn in this section to the
numerical solution of nonlinear models, such as those of
Secs. II.C.—II.E, in which the field equations contain
nonlinear terms in the field variables and in which the La-
grangians are not quadratic forms. The basic method
used to solve nonlinear problems numerically is quasilin-
earization, in which the nonlinear problem is replaced by
a sequence of linear problems, the solutions to which con-
verge in a limiting sense to the desired nonlinear solution.
A classic example of the method of quasilinearization is
provided by the Newton iteration of Eqs. (3.33)—(3.37), in
which the nonlinear problem

@(p=)M,„,g)=Q —,'(1 costi)+O(r', —„) . (3.74a)
(n) W(a+1) M( (a)) (3.77a)

&ithough Eq. (3.74a) gives only an approximate boundary
condition for N near the charge, the effect of the O(r2;„)
error on the Coulomb-subtracted static potential is of or-
del

in which the map

M(w)=w- f(w)
f'(w) (3.77b)
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O=F[q l

is constructed by specifying an iterated map

(3.78)

(n) (n+1) ~r (n) g (3.79)

reduces to the identity map M(w)=IU at roots of Eq.
(3.75). Similarly, we have seen in Eqs. (3.43) and (3.45)
that the over-relaxed Gauss-Seidel iteration is an iterated
IIlap, which 1cdllccs to thc ldcIltlty Inap at thc solutloI1 of
the system of linear equations of Eq. (3.39). Very general-
ly, a quasilinear method for solving the nonlinear field
equation

in which (i) M reduces to the identity map M[qr]=q& at
solutions of Eq. (3.78), and (ii) M is constructed from a
finite sequence of linear operations. From the preceding
discussion, it is clear that both (i) and (ii) are readily satis-
fied if M is constructed as a finite sequence of Newton
iterations [Eq. (3.77)] and of over-relaxed Gauss-Seidel
iterations [Eq. (3.45) or Eq. (3.50)].

Let us now discuss in turn the models of Secs.
II.C—II.E, and describe the quasilinear iterations which
we use for their numerical solution. %'e begin with the
Abelian Higgs model of Sec. II.C, for which the
Coulomb-subtracted Lagrangian functional [cf. Eq. (C2)]
is

I ..„...,.,[&',+]=T+4~ f,
"

pd p f,
"

dz I ,' [(a—po)'+(a,~')']+e'(so+~,')'+' —(a,&)'—(a,+)'——,
' C(p —K )

(3.80)

where T represents terms independent of B,y. Since Eq.
(3.80) is quadratic in 8 and quartic in qr, the derivatives
of the discretized Lagrangian with respect to the nodal
variables B; J and y; J, respectively, take the form

O=S;J-C+D, (3.81a)

with C D independent of 8; z, and

sweep, and so forth; alternatively, we could do both the
B,&and q&;

.
J updates together as parts of the salne sweep

of the mesh.
Let us consider next the leading logarithm model,

which, as shown in Sec. II.D, leads to the following non-
linear differential equation for the flux function @:

O=y; J.E+y; JI'+G, (3.81b)
V (o.V@)=0 (3.84a)

with E,I', G independent of y; J. The quasilinearized itera-
tion for Eq. (3.81) is composed of an aver-relaxed Gauss-
Seidel iteration for the linear equation O=B C+D,

The coefficient cr in Eq. (3.84a) is given as a function of
V4 by

~0(n) g0(n+1), SOR +(1 )~o(n)—D
I. J.

' =CO IqJ (3.82)
2IrK J V4

(

p )
V@

(
IrboKp

(3.84b)

followed by some small number k of Newton iterations
for the nonlinear equation O=Ip E+IpF+G, starting
from p,' 1' as the initial guess,

with f (Io) implicitly defined by the transcendental equa-
tion

(n) (n + 1) (n, k)fl,J fl,J Vl,J w =flogf, f) 1 . (3.84c)
(n, O) (n)

Pl,J 0 l,J

(n, l) (n, l —1)

fPs,J —gs,J

(3.83) To set up a quasilinearized iteration for Eq. (3.84), let us
regard o and @ as dependent variables on an equal fo«-
ing, and introduce the auxiliary Lagrangian

L, [cy]=4Ir f pdp f dz —,'o(V@) (3.85)

f(V»=V'&+mF+G f'(m) =3V'E+F
In the iterations of both Eqs. (3.82) and (3.83), the coeffi-
cients C,D,E,E,G are understood to be computed using the
most recent updates of all node variables on which they
depend. In programing Eqs. (3.82) and (3.83), we choose
the option of doing all the 8;J updates in one sweep of
the mesh, and then doing all the y; J updates in the next

35The same Newton iteration method can be used to solve
7 y=I (y) for a general functional form I'; see, for example,
Hockney and Eastwood (1981).

which yields Eq. (3.84a) as its variational equation when
the dependence of o on V@ is ignored. Equations (3.85)
and (3.84a) have the same structure (apart from the re-
placements qr~@,e~o.) as Eqs. (3.1) and (3.2) of our
dielectric medium example, and thus have a natural
discretization corresponding to that of Sec. III.B above, in
which the + values lie on the node lattice, and the o.
values lie on the half-node lattice. In terms of this
discretization, the quasilinearized iteration consists of al-
ternating a complete sweep of the node lattice with a
complete sweep of the half-node lattice. In the sweep of
the node lattice, @,'"J' is updated by the over-relaxed
Gauss-Seidel iteration
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@(n) @(n+1),soR @(n+1)+(1 )@(n)ij ij j~J

@(n+1)
i,j ~p (n) j (n) h (n) h (n)

)+ (hi+1/2j+1/2+~ii +1 /2j —1/2+ i —1/2j+1/2+ i —1/2j —I/2
hp

(n) g {n) q~(n) ~ I z. (n) I {n) ~c(n+1)
i +1/2 j +(/2 ++i +1/2 j—1/2 )~i+1j + ~ (hi —1/2 j+1/2+ i —1/2 j—1/2 I i —1,j

(n) i (n) g~(n) ~p i z. (n) h (n) )@(n+1)+ (hi+1/2j +1/2+ 4i —I/2, j+1/2 & ~ij +1+ ~ (hi+(/2, j—1/2+ i —1/2,j—1/2 I i j—1 (3.86a)

z. (n) (n)
~~i +1/2, j+1/2 =Pi +1/2o i+1/2, j+1/2 ~

while in the subsequent sweep of the half-node lattice, o';+1/2 j+»2 is updated by the replacement

)
(n+1)

(n) (n+1) 2&K ) i+1/2, j+1/2
i+1/2, j+1/2 i+1/2 j+1/2 —

i ~~ i (n+1) bPi+1/2 )
v~

I i+1/2j+1/2 0 Pi+1/2

~(n+1) ~(n+1) ~(n+1) C (n+1)
(n +1) 1 ~i +1j ~i j ] ~i +1j+1 @ij+1

I
~@

I i+1/2, j+1/2 I + + 2
p p

@(n+1) C (n+1) C (n+1) @(n+1)ij+1 i j i+1,j+1 &+1,j+ 2 ~ 2

(3.86b)

with the formulas just given the ones which apply when
there is no Jacobian transformation, so that the physical
coordinates p,z are also the computational coordinates.
At each point of the half-node lattice, the replaceinent of
Eq. (3.86b) requires an evaluation of the transcendental
function f for the indicated argument w. This is readily
accomplished by the Newton iteration

f(0) W

log(1+ w)
(i —1) (1—1)

f(i) f(i 1)+W f logf—
~(i 1)

(3.87)

hi fi
h2 f2

Q1,Q2,

(3.88)

then an examination of Eqs. (82) and (86) shows that
H+Hsr can be rewritten as a positive definite quadratic
form in the potentials of any one of the three groups, with
coefficients which depend on the potentials of the other
two groups [Adler and Piran (1980)]. The explanation for
this feature is that the three groups in Eq. (3.88) corre-
spond, respectively, to the internal symmetry z,p„, and P„
components of the gauge potential, which appear at most
quadratically in H, because nonlinearities in the classical

which can be shown to give f(w) to 16-place accuracy, for
all w, in four or fewer iterations.

We turn finally to the axially symmetric monopoles of
Sec. II.E and Appendix 8, for which the Hamiltonian H
is given in Eq. (82) and the gauge-fixing term Hsf is given
in Eqs. (85) and (86). If we divide the potentials of the
six-function ansatz into three groups as follows (groups 1,
2, and 3, respectively):

relax h2, f2using Eq. (3.45) with hi fi,a(,a2 fixed

relax a),a2using Eq. (3.45) with h i,fi,h2,f, fixed

relax hi,f1, etc. , (3.89)

and the analysis of Eqs. (3.45)—(3.47) guarantees that at
each update of this iteration, the Hamiltonian H+Hsf is
monotone decreasing. Since in Sec. II.E we saw that H is
bounded from below by 4n.a

I
n

I
in the sector with topo-

logical quantum number n, and since H~f is bounded
from below by 0, the monotonicity of the iteration of Eq.
(3.89) gives a formal proof that the iteration converges in
each topological sector. The fact that one can give a sim-
ple convergence proof for the quasilinearized iteration is
an unusual special feature of the monopole problem (and
more generally, of the problem of minimizing Euclidean
Yang-Mills action functionals, of which the
Bogomol'nyi-Prasad-Sommerfield monopoles are a special
case). The analogous iterations given above for the Abeli-
an Higgs and leading logarithm models do in fact con-

Yang-Mills action arise only from internal-symmetry
outer products. As a result of the multiquadratic struc-
ture of H+Hz~, the discussion of the over-relaxed
Gauss-Seidel iteration given for quadratic forms in Sec.
III.C applies directly to the nonlinear monopole problem,
provided that in any one iteration we relax only the poten-
tial components in a single group. In other words, a suit-
able quasilinearized iteration for the monopole problem is

relax hi,f(using Eq. (3.45) with h2, f2,ai, a2 fixed
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28 Adler and Piran: Relaxation methods for gauge field equilibrium equations

verge, but (as is typically the case in nonlinear problems)
we cannot give an a priori proof of convergence. It is
thus important in solving nonlinear problems numerically
to make a posteriori tests of convergence, both by moni-
toring the convergence of the iterative process at fixed
mesh size h, and by checking that physical quantities
computed on meshes of progressively decreasing size ap-
proach a limit as h ~0.

G. Programming considerations

Writing computer programs is a highly individualized
skill; given the same algorithm, two different program-
mers are likely' to produce very different looking codes.
Nonetheless, there are some general principles and some
specific ideas which we have found useful in writing pro-
grams for the models of Sec. II, and which we discuss
briefly in items (1)—(6) below. A very useful list of fur-
ther recommendations for programming, testing, and in-
formation processing is given in Chap. VII of Roache
(1976). In particular, Roache points out the importance
of doing all program development work on a coarse mesh,
stating that "stability and convergence of the. . .iterations
usually can be tested in a ridiculously coarse mesh. " Our
experience in solving the nonlinear models of Sec. II is
completely consistent with this recommendation; all im-

portant qualitative features of the solutions obtained in
Sec. IV can be seen on a 7&&7 mesh. In further emphasis
of this point, Roache asserts "If all users at a major com-
puting center would adopt the policy of testing in as
coarse a mesh as possible, the reduction in computing
load would probably be comparable to the installation of a
later-generation computer. "

Qur own specific recommendations follow. [Points
(1)—(4), which may seem trivial, are included because we
believe they will be useful for readers without prior pro-
gramming experience who wish to pursue relaxation cal-
culations. ]

(1) Delineation of program segments There a.re five
distinct tasks which must be performed by a program to
solve a partial differential equation system numerically.
It must initia/ize by reading in parameter values and by
setting up the mesh geometry and the initial guess which
begins the iteration. It must then iterate according to one
of the algorithms discussed in detail above. At the end of
the iteration, it must measure various attributes of the
converged (or partially converged) solution. Finally, it
must have provisions for control of the iterative process
and for displaying and/or writing into files selected nu-

merical output. Writing, debugging, and rereading or
modifying a program are facilitated if the program is
clearly divided into segments with the functions described
above.

(2) Use of a control integer. In developing or testing a
program it is desirable to work interactively (using very
coarse meshes), while in production work it is more effi-
cient to run in batch mode. A simple way of structuring
a program so that it is very Aexible, can easily be run in-

teractively, and can be run without modification in batch
mode, is to use the device of a control integer. The pro-
gram is constructed to begin by reading a control integer
I, and to return to the READ I statement after perform-
ing any task. By using the IF THEN, ELSE IF THEN,
ELSE construct, one sets up a correspondence between
different I values and different program actions, e.g.,

I value function

0
99& I&0

—1
—2
—3

—10 to —20

—20 to —40
all others

stop execution
iterate I steps
unformatted dump into file
unformatted retrieval from file
mesh doubling: halve the mesh spac-
ing h at fixed p,„,z,„and interpo-
late the last iterate to get a new
starting guess
mesh extension or reduction: change

p,„,z,„at fixed mesh spacing h and
(for extension) extrapolate the last
iterate to get a new starting guess
miscellaneous parameter reads for ini-
tialization
miscellaneous output options
read new control integer value

(3.90)

For convenience in interactive running, all input reads
should be in the UNFORMATTED mode, with the ER-
ROR = N option producing a return to the READ I
statement, so that the program does not crash when key-
ing errors are made. To run in batch mode, one simply
submits a job consisting of the RUN command for the
program followed by the string of I values which produce
the desired sequence of program operations.

(3) Organization of input and output The most .con-
venient way of reading input parameter values is by use of
the NAMELIST statement, available on IBM and CDC
machines. This statement permits one to change any sub-
set of the parameters specified in the NAMELIST
declaration, leaving all unchanged parameters with their
previous values. On machines for which NAMELIST is
not available (such as the DEC VAX 11/780 used for the
computations of this paper), a convenient alternative
method is to group the parameters in an input file, which
can be edited before program execution to set up the
desired parameter values, and which is then automatically
accessed by the program. In constructing the output op-
tions, the use of histogram-type terminal displays should
play an important role. For a discussion of these with ex-
amples, see Roache (1976), Chap. VII C2, and McCracken
(1972), Sec. 6.14.

(4) Optimization of the innermost DQ loop The run-.
ning time of an iterative program is determined largely by
the time required to execute the innermost DO loop of the
iteration. Thus, within the innermost loop, the number of
operations should be reduced by intelligent grouping of
factors, library function or subroutine calls should be
avoided if possible, and numerical constants should al-
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ways be introduced as parameters which are declared by a
PARAMETER statement at the beginning of the pro-
gram. In virtual memory machines, particular attention
must be paid to the avoidance of page faults (transfers
from virtual disk memory to fast semiconductor
memory). Specifically, the statements

L
O
h

QJ

j
I I I

j
I I l

j
I I I

j
I I I j. I I t

DO 10 I= 1, 100

DO 10 J= 1, 100

A(I,J)=.25*(A(I+ 1,J)+A(I —1,J)+A( I,J+ 1)

+A(I,J—1))

10 CONTINUE (3.91a) j I I I j I I I j I I I j I I I j I I I

1 1.2 1.4 1.6 1.8

will produce many more page faults than the statements

DO 10 J= 1,100

DO 10 I= 1, 100

A(I, J)=.25~(A(1+ 1,J)+A(I —1,J)+A(I,J+1)
+A(I, J—1))

I I I

j
I I I

j
I l I

j I I I

j

10 CONTINUE . (3.91b)

The reason for this is that the array A is stored in
machine memory with the first index changing most
rapidly, A(1, 1),A(2, 1), . . . , A(100, 1),A(1,2),A(2,2), . . . .
Hence the program of Eq. (3.91a), which increments the
second index in the innermost DO loop, steps through
machine memory with a "velocity" roughly 100 times
greater than that characterizing the program of Eq.
(3.91b).

(5) Estimation of the optimum co Arelia. hie way to es-
timate the optimum value of co is to use a coarse (say,
10)& 10) mesh and to plot an indicator of the error after a
fixed number no of iterations versus the co value used. A
good error measure for this purpose is the square root of
the change in the Lagrangian functional in the final
sweep of the mesh, which according to Eq. (3.44) mea-
sures the root-mean-square residual error. Care must be
taken that no is large enough for the iterative process to
have entered the asymptotic regime governed by Eq.
(3.51). Typical plots obtained this way are shown in Fig.
11; in Fig. 11(a), no is not large enough for co,~, to be
determined, while in Figs. 11(b) and 1 1(c), obtained with
larger values of no, one gets essentially the same value of
co,~,. Once co», has been determined for a coarse mesh, it
can be estimated for finer meshes by using Eqs.
(3.52)—(3.55).

(6) Con uergence criteria. The number of iterations
needed for convergence is a function of the physical quan-
tity which one wants to measure. For example, since the
static potential V„„;, is stationary at the solution of the
equations of motion [cf. Eqs. (2.3), (3.19), etc.], the error
in the static potential is quadratic in the errors in the field
variables. Hence far fewer iterations are needed to
achieve a given accuracy in measuring the static potential
than are needed to measure quantities which are not sta-
tionary around the equilibrium solution (such as the field

O
—6

I I I j I I I j I I I j I R I j I

1.2 1.4 1.6 1.8

I I |
j

I I I
j

f t I
j

f f I

j
I f I

O

LL)

O

-1O —j

1

I I I j I I I j I I I j I I I j I I I

1.2 1.4 1.6 1,8

variables, energy densities, or the geometry of the free
boundary in the leading logarithm model). The choice of
indicators of convergence which are monitored during
iteration and the convergence criteria used to terminate

4O

FIG. 11. Plot of the root mean-square residual error after a
fixed number n p of complete mesh sweeps, vs the over-
relaxation parameter co (computed for the topologica1 n=1
monopole example of Secs. II.E and IV.D). (a) np ——10 itera-
tions at co=1 followed by 30 iterations at variable co. The
asymptotic regime has not yet been reached. (b) np ——10 itera-
tions at co=1 followed by 60 iterations at variable co. (c) np ——10
iterations at m=1 followed by 90 iterations at variable co. Plots
(b) and (c) indicate 6) pt 1 54 1 56.
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the iteration will depend strongly on what is being mea-
sured at the end of the iterative process.

IV. NUMERICAL SOLUTION OF THE MODELS
OF SEC. II

A. Introduction

Let us proceed now to apply the numerical methods
described in Sec. III to the nonlinear models formulated
in Sec. II. In Table III we summarize which dependent
variables in the three models are discretized on the node
lattice, and which are discretized on the half-node lattice,
together with the boundary conditions which are imposed
during iteration. In the brief sections which follow we
discuss aspects of the numerical analysis which are specif-
ic to the three models and give sample numerical results.

B. The Abelian Higgs model

Following the analysis of Sec. III.E and Appendix C,
we explicitly subtract off the Coulomb self-energy from L
by making the substitution

=Ac+B (4 1)

with Ac the Coulomb potential of Eq. (Cl) and with 8 a
new dependent variable. Because Ac and y are both
singular at the charges [cf. Eq. (2.17)], the charge coordi-
nate z=a is taken to lie midway between nodes of the
computational 1attice:

a =(ng+ —,
' )M, (4.2)

with ng an integer. We choose the unit of length so that
~=1, giving y —+1 as the boundary condition on y at in-
finity. Since this boundary condition follows from requir-
ing L to be extremal (L is infinite if y~l at infinity), it
can be enforced computationally by simply iterating the
nodal values for y which lie on the outer boundary of the
computational mesh. An alternative procedure would be
to set y=1 on the outer boundary; the two methods give
the same result in the limit as p,„~oo,z „~Oo, but the
iterative boundary condition is preferable for finite
meshes. To get a good approximation to the infinite

In general, for solutions with r " asymptotic behavior at in-

finity, using an iterated boundary condition on the computation-
al outer boundary gives greater accuracy than using a Dirichlet
boundary condition (York and Piran, 1982). For linear prob-
lems, for example, Cantor (1983) has proved that a sequence of
solutions with the iterated boundary condition and with increas-
ing (p,„,z,„) will converge to the true solution with

(p,„,z,„)=(oo, Oo ), and this sequence can even be used to
study the asymptotic behavior of the true solution at r= m.
Such strong statements cannot in general be made when a Dir-
ichlet boundary condition is used on the outer boundary. In the
Abelian Higgs model, where y approaches its asymptotic value
exponenti. ally at infinity, the difference between the two types of
boundary conditions is not expected to be as marked as in the
case of. power-law asymptotic behavior.

volume solution, p,„and z,„must be chosen large com-
pared with the characteristic exponential decay lengths
appearing in Eq. (2.17), requiring (for ~= 1) that

min(p, „,z,„)»max[(2C) '~, (2e )
' ] . (4.3)

Sample results for the Abelian Higgs model, calculated
with

a=C=e=Q /(4m. )=1,

pmax=zmax = 3~ a = 1.625,
(4.4)

are shown in Figs. 12(a)—12(d). These figures give values
of y and A (plotted vertically) on a plane passing
through the axis of rotation (represented by the horizontal
plane in the figures). One can see clearly the peaks in y
and A at the charges, as well as the exponential decay of
qr towards 1 and of A towards 0 at infinity. In Figs.
12(c) and 12(d), in which the vertical scale has been mag-
nified by a factor of 10, one can also see that the structure
of the solution extends to the computational boundary, in
marked contrast to the behavior found below in the solu-
tion of the leading logarithm model.

(4.5)

with n~ an integer, and enforce the step function boun-
dary condition of Eq. (2.50) by requiring

40, =Q 0&j&n&,

(4.6)

@OJ.——0, n& ~J &nj .

[An alternative procedure would be to put the charge
coordinate midway between lattice nodes by taking
a =(n&+ —,

' )M, giving the boundary condition
4o J ——Q, O &j& ng and Co J O, n~+ 1——&j& n .] Because
the solution for 4& is confined within a finite free boun-
dary, the numerical solution is independent of p,„,z,„,
provided that these are large enough for the fully con-
verged free boundary to lie entirely within the computa-
tional mesh. To facilitate picking values of pm, „,z,„
which are large enough to contain the free boundary but
are not excessively so, we have included a control parame-
ter option in the program which permits the adjustment
of the limits of the computational mesh during iteration.

In carrying out the iteration we do not let the dielectric
function e assume the value 0, but rather impose a
minimum value s;„by computing E and o from the for-
mulas

C. The leading logarithm model

In discretizing the leading logarithm model, we put the
charge coordinate z=a on a node of the computational
lattice,
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Outer boundary
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ions for the m dels of Sec.assi nments and boundary conditions or e. Node and half-node assignments an oTABLE III. Node an

Abelian Higgs
Sec. II.C

BO

(cf. Appendix C;
Ac+B

(charge coordinate
z = a midway
between nodes)

B iterated

B =0 B iterated

y iterated y iterated y iterated
(could also use y = 1)

Leading

logarithm
Sec. II.D

(charge coordinate
de)z=aonnoe

Q, z & a
zQ, z=a
0, z & a

@ iterated %=0

withino. determi inedat a a - w11 half-node points w
h b updating fromcompuutational mesh y up

Axially
symmetric
monopole
Sec. II.E

hi
h2

fi
f~
ai
a2

hi iterated
h2 ——0
f) n-—
fl ——0
a) ——0

a2 iterated

hi ——0
h2 iterated
f &

iterated
f2=0

a~ iterated
a2 ——0

h& ——(1—n/r) cos5
h2 ——(1—n /r) sin@

f~
ncos~——8

=n sin& cos@2=
a

&
———(1/r) sin@

a2 ——(1/r) cos5

). The graphs showow (a) y,s in Eq. (4.4 .p . . o
verti-

p
with thesame vf' db f f10he vertical scale magni ie y(b) A, (c) y with the ve i

tal lane throug h the rotation axis.ca11 over a horizon a p
respectively.
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e=max[ —,bolog(E /a' )~dmin] ~

(4.7)

1~=1, Q=( —', )'~, bo ——9/(8H),
(4.8)

pmax =&max = 8~ —,R =a =4,

This procedure avoids floating point underflows and over-
flows, and corresponds to keeping the differential equa-
tion for N just barely elliptic even outside the free boun-
d P ided that e is chosen to be very small (weary. rove e min

have used values ranging from 10 to 10 wit equa-
ly satisfactory results), the results for V,„„;,are essent' yentiall
independent of c;„. Although convergence of the itera-
tion is improved by over-relaxation, we have found that
the nonlinearity of the combined iteration of Eqs. (3.86a
and (3.86b) leads to instabilities in the free boundary
s ape, i onh 'f one attempts to use co values as large as the op-
timum co appropriate to the linear subiteration o q.
(3.86a). These instabilities are avoided by limiting co to at
most cu = 1.7 when iterating on meshes larger than
25)&25. Full convergence within the free boundary re-
quires about 1—2 min of CPU time on a VAX 11/780
coxnputer for a 25X25 mesh, and around 1 h for a
100X 100 mesh. Sample results on a 25 X 25 mesh [Adler
and Piran (1982a)], computed for the parameter values

given in Figs. 13(a)—13(d). These figures show,
respectively, the flux function N, the field energy density
A, A with a vertical scale magnification of 100, and the
logarithm of the dielectric constant c, all plotted vertically
over a o

'
horizontal plane through the rotation axis. In the

4.6) isplot of @ the p=O boundary condition of Eq. ( . is
clearly visible, and in both plots of A one can see the
Coulomb energy peaks. The plot of N and the magni ied
plot of A show that the flux and energy are confine
within an oval curve, approximating the continuum limit
free boundary, which is also clearly visible in the contour
plots of @and A shown in Figs. 14(a) and 14(b). Both be-
cause we have imposed a cuto c.~c;„— ', d b-~ ——10 ' and be-

1cause of finite mesh-spacing effects, the computationa
problem has low-level residual structure extending outside
the continuum free boundary (but lying within a second,
computational, free boundary), as can be seen in the plot
of loge in Fig. 13(d). This residual structure, together
with the fact that the location of the free boundary is not
stationary under small variations around the equilibrium

model calculated for the parameter values in Eq. (4.8). The graphs show (a) thep g g
flux function @, (b) the fie d energy ensi yl ener densit A, (c) A with the vertical scale magnified by a actor o, an

p h h th t tion axis. The values of @, A, and c, at t eCi
'

stant e, aH p otted vertic Hy o'
all over a horizontal plane through the rotation axis.

base of the figures are 0, , an0 d =10 ' respectively, with c falling 14 decades rom t e top o
duced to 10,the residual structure along the axis at the base o ( )

'
se of (d, is eliminate .
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p =H (p', 0.8a ),
z =H(z', a ),

(4.9) p=O

H(z', a) = ~

z (3Q
3Q

$/3 3a (z' (4a
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34 Adler and Piran: Relaxation methods for gauge field equilibrium equations

V„„;,(R) =, [g(R)+0(g )],
o 4+R —,bp

(~g )
g(R) =

logMg

loglogm~ +0
(log wz )

(4.1 1)
(logw~ )

nates, calculated for the distance a =4 at which the free
boundary is clearly resolved. ] The results of the calcula-
tions using "stretched" cylindrical coordinates and using
bispherical coordinates agree to better than 1% at all dis-
tances, and are presented in the form of a parametrized
analytic fit to V„„;,in Adler and Piran (1982b).

In solving a complicated problem numerically, it is im-
portant to check the computer program, wherever possi-
ble, against analytic expressions which are available in
limiting cases. In the case of the leading logarithm
model, systematic analytic approximations can be
developed in the small-R limit (Adler, 1983) and in the
large-R limit (Lehmann and Wu, 1983). At small R a
perturbation analysis in powers of an appropriately de-
fined running coupling g(R) gives

1/2

V„„;,(R) = a.QR+Q ~—
A~et) 3 mbp

log(a'~ R )

+ ~ ~ ~ (4.13)

This formula shows that the large R bound on the linear
potential derived by Adler (1981a) is saturated. The nu-
merical results for V„„;, in the range R —10—100 yield
coefficients of the R and log(x'~ R) terms which agree
with the analytic results of Eq. (4.13) to better than 1%.
According to Eq. (4.12), at large R the limiting behavior
of the free boundary is an ellipsoid of revolution

1/2 - 2z' ) ~h'o px'/'
2 2 2Q a 1/2 (4.14)

with the major axis along the axis of rotation growing as
R, and with the minor axis growing as R ' . A study of
the structure of the free boundary using the numerical
solutions for R -50—10 shows that the outer contours
of N have a shape agreeing well with this formula. Hence
in both limiting cases in which analytic approximations
are available, they are in excellent agreement with the re-
sults of the numerical solution for N.

gp =2.52K
ApR D. Axially symmetric monopoles

When the numerical results for V„„ic in the range
R —10 —10 are fit to the functional form of Eq.

(4.11) with Ap adjustable, we find Ap-2. 49, in excellent
agreement with the analytic result. At large R, a sys-
tematic expansion of the differential equation for @ in
powers of 1/R gives

@=@"'(p/R '" z/R )+—a '"(p/R '" z/R )+1

R

(4.12)

In solving numerically for the axially symmetric mono-
poles, we use the leading terms of the asymptotic formu-
las of Eq. (2.99) as Dirichlet boundary conditions on the
outer boundary, without including the 1=2 or higher
terms in the expansion. Consequently, the potentials ob-
tained computationally will contain errors of order
1/p, „,1/z, „,which can be made small by choosing p,„
and z „large enough. An important check on conver-
gence is to verify that the bound

q)(0) Q 2 2Q

' 1/2 2

apse
/

a —z2 2
1a 2 R 9

a=4~~/n
/

(4.15)

is attained. Since the leading terms which are retained in
Eq. (2.99) make a contribution to the energy density given
by

permitting the determination of the leading two terms in
the large-distance behavior of the static potential,

7g
2

asymptotic (p+z )
(4.16)

7The solution N' ' positions the charges on the free boundary,
reflecting the fact that the distance between the charges and the
free boundary {z&—a in Fig. 6) vanishes relative to R as R —+ oo.
The derivation of the logarithmic coefficient in Eq. (4.13) as-
sumes the stronger statement that (z& —a)/R vanishes faster
than R ' logR as R —+ac. The agreement of Eq. (4.13) with
the numerical results gives a posteriori evidence for the validity
of this assumption; for an analytic investigation of this issue see
Lehmann and %'u (19S3).

we must include an analytic correction for the energy ly-
ing outside the boundary of the computational mesh when
we test Eq. (4.15). Following the notation of Eq. (3.70),
we do this by writing

~=~inside+~outside ~ (4.17a)

with
Z

H;„„q,——4m I pdp I dzA (4.17b)

determined computationally, and with a simple integra-
tion giving
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V [o(p,
~

V@
~

)V@]=0,

with cr defined in Eqs. (2.59) and (2.60) of the text. Using
the chain rule and dividing by o., we see that Eq. (Al) be-
comes

dinates x~ on the free boundary, we have

a—p '8&@=—wp 'c) @-
~

V@
~

~, (A9)

so to first order in
~

V@ ~, Eq. (Ag) can be approximated
by

(A10)

This can be further rewritten by substituting

V'= a,'+ a,'+p-'a, ,

(A3)

with / and n, respectively, tangential and normal Carte-
sian coordinates at the free boundary, as shown in Fig. 7.
When the radius of curvature of the free boundary (and of
the nearby level surfaces of @) is R~, then to the needed
accuracy the behavior of N near the free boundary has the
form

8;NB.N
V(log

~

V4
~

) VN= (c);8 N) j'2
N=F n ——,

'
' Rg

F(0)=0 . (Al 1)

=n;n. B;B.W

=n;c);nJ. BJ4&
~

VN
~

n ;njc3;n~'

with n the unit normal defined by

n = n n=1,

thus giving

Substituting Eq. (All) into Eq. (A10) determines the
function F (z) to be

'Ti 6oKpg
F(z) = —,

'
Z 7

Rg

giving Eq. (2.75) of the text.
Let us consider next the point p=O, z=zz, where the

free boundary intersects the axis of rotation. From Eq.
(2.62) we know that. 4 =+ ao at the source charge Q, and

is arbitrarily large within a sufficiently small neigh-
borhood of the point p =O,z =a. On the other hand, since

can be determined along the free boundary by integrat-
][ng B~A =K out from the plane z =O, where A vanishes,
we have

3 (p=O, z=zg)=ici. , (A13)

+ 1+ —p c)p@=0 . (A5)
Blogo

81ogp

Now from Eq. (2.59) we have

logcr = log(2m') logp l—og
~

VN—
~

+logf (w),

a„c
boKp ~boKp

and so the derivatives of cr appearing in Eq. (A5) can be
expressed in terms off(w),

Blogo Blogf wf '( w)

Rog
i
VC

i
Mog

i
V&

i
f(w)

(A7)
c)logo c)logf wf'(w)
c)logp c)logp f (w)

yielding Eqs. (2.72) and (2.73) of the text,

[(Bp+c),—c)„)+aB„]N—ap 'Bp&b=0,

with l. the (finite) length of the segment of the free boun-
dary lying within the quadrant drawn in Fig. 6. Hence A
is finite at p=-O, z=zz, and so we must have zz & a, with
the possibility zz ——a excluded.

Let us suppose now that we have solved Eq. (2.56) or
(Ag), and hence know E=(p o. )

' as a function of x. As
mentioned in the text, one way (not the simplest way!) to
determine 3 is to solve the linear differential equation

V. (EVA )= —j (A14)

within the free boundary. Since Eq. (A14) is the Euler-
Lagrange equation corresponding to minimization (for
fixed e &0) of the functional

Jdx[ —,E(VA ) —jA ],
solutions will exist. To see that the solution is unique,
even without the imposition of a boundary condition on
the free boundary, let us suppose that Eq. (A14) has two
C' solutions A

&
and 22, so that 5A =A I

—2 2 satisfies
wf'(w) w

f(w) w+f(w) V.(EVE )=0 . (A16)

In the vicinity of a general, off-axis point B with coor- Multiplying by 6A and integrating over the interior of
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the free boundary, we have

0= f dixSA V (eVSA )

= f d xV.(5A sV5A ) —f d xe(VSA )

dS (5APsVSAP) —f d xs(V5A )
free boundary

(A17)

The first term in the final line of Eq. (A17) vanishes, be-
cause s vanishes on the free boundary, and so Eq. (A17)
implies that V5A =0 in the interior. This, together with
the requirement that 5A be an odd function of z, implies
the vanishing of 5A within the free boundary.

The seemingly paradoxical fact that Eq. (A5) requires a
Dirichlet condition @=0on the free boundary, while Eq.
(A14) requires no boundary condition for A on the free
boundary, has an interpretation in terms of the general
boundary-value problem for second-order equations with
non-negative characteristic form, given by Fichera (1956).
The generalized Dirichlet problem takes the form'

L(u)=a J(x)Bkd&u+b"(x)Bku+c(x)u=f(x) in 0,
(A18)

u =g on X2UX3,

with f and g functions defined on 0 and on X2UX3,
respectively. The sets Xz and X3 are subsets of the boun-
dary X of the domain Q, specified as follows. Let nk be
the inward directed normal to the boundary. The set X3
is defined to be the noncharacteristic part of the boun-
dary, where a JnknJ &O. The characteristic part of the
boundary, where a nknJ ——0, is divided into sets
Xp Xi Xi defined by

a' =eS'J, b =dks, c=0
bk g kJ 0 (A22)

so that the free boundary is in Xp. Hence no boundary
condition for A on the free boundary is needed when c
has been determined as a function of x by first solving the
equation for @.

Suppose, on the other hand, that we attempt to solve
the full nonlinear problem for A given by Eqs. (2.41) and
(2.46) directly, with e not known a priori. These equa-
tions, when recast in the standard quasilinear form of Eq.
(2.70), yield

e,;~=5;J ,'bplog—[(VA ) /K ]+ ,'bp—l;lJ . (A23b)

The unit vector I; is defined by

a,a'
i
VAP[

and since

(A24a)

1 V4 ~ D.V4 ~ (P X VC ).V@=0, (A24b)

I is orthogonal to the unit vector n of Eq. (A4). Compar-
ing Eq. (A23) with Eq. (A18), we see that

~ ~

Q =c)J, b =c=0, (A25)

and so Eq. (A23) is elliptic in the interior region and de-
generates on the characteristic, with

(A23a)

with s,z the field-strength dependent dielectric tensor

b=O on Xp,

b~O on X&,

b&Oon X2,

b =nk(b" —
BJa

"1) .

(A19)

b = —8„[—,'bplog(E /v )]—,' bpn;dJ. (l;lz)—

,' b, (E-—'—a„E+n,ail;) . (A26)

At a point B on the free boundary where the radius of
curvature is R~, we see from Fig. 7 that

~n@
b =b"=c=O,

m.b pKPg
(A20)

According to Eq. (A18), a Dirichlet boundary condition is
required on X2 and X3, while no boundary condition is
needed on the subsets Xp and Xi of the boundary.

Let us now analyze Eqs. (AS) and (A14) using this for-
malism. In discussing Eq. (AS) it suffices to use the ap-
proximate form of Eq. (A10), with I and n fixed Cartesian
axes as in Fig. 7, giving

n;BII; =
Rg

(A27a)

while from Eqs. (2.61), (2.75), and (A6) we get the leading
behavior of E in the vicinity of the free boundary,

nE=tc(1+ip) =z 1+ =x 1+
nbpKPg Rg

so that
=- E 'd„E=

Rg
(A27b)

b = — a""=— 8„4=— &0 . (A21)
8 „„1 2

Bn '7Kb pKpg Rg

Thus for Eq. (A8) the free boundary is in X2, and the im-
position of a Dirichlet condition @=0on the free boun-
dary is required. [Note that this condition, together with
the discontinuity of @ at the source charges given by Eq.
(2.50), then implies that @=Q on the interior line seg-
ment p =0,

~

z
~

& a.] In Eq. (A14), we have

giving

bpb= — (0.
Rg

(A28)

Hence according to the Fichera criterion of Eq. (A19), a
Dirichlet boundary condition for A is required at all
points xz on the free boundary. This boundary condition
is implicitly available in the form
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&'(x, )= f '
dna, ~'= f '

(A29)

APPENDIX 8: STRUCTURE AND PROPERTIES
Of THE SIX-FUNCTION ANSATZ

Substituting the six-function ansatz of Eq. (2.97) into
the field-potential relations of Eq. (2.80), we get the fol-

with dl a line integral along the characteristic, but
since A (x~) thus becomes a function of the geometry of
the free boundary (which is not known a priori), this con-
dition is difficult to implement in a numerical calculation.
An important advantage of the flux function reformula-
tion is that it replaces Eq. (A29) by the explicit Dirichlet
boundary condition N(xz ) =0.

lowing expressions for the various field-strength com-
ponents (with a, =a/az, a =a/ap):

(Wig')z zj=a, hi+aih2, B'Jz z~=p '(agi+a2f2),
(&Jp')p„zj=a, h a,—h„B'Jp„z =p '(a+2 —a2fi),
(& p)z p'=ah, +a h, B Jz p= —p '(a,f, +a,f ),

(8 l)

(V y )p„p =agq —a2h„B p„p = —p (a,fz —aifi),
(~Jr')4:0'=p '(hei hif—», B"0'.0'=a~i a.a—2 .

Substituting these expressions into Eq. (2.86) gives a for-
mula for the Hamiltonian H directly in terms of
h)2, . . . ,

H =4~ f "
pd p f"dz~,

A = —,
' [(a,hi+a&hi) +(a,h2 —aihi) +(ap&+azh2) +(a/2 —a2hi) ]

+, [(a.fi+aif2)'+(a. f2 —aifi)'+(agi+a2f2)'+(apf2
2p

+ p(a a2 apai) + 2(hif2 h2fi)1 2

2p

(82)

Equations (81) and (82) and the boundary conditions at
p=0, z =0, and r = Oo given in Eqs. (2.98) and (2.99) have
a residual Abelian gauge invariance of the form

a,a, +a~i $=0 . —

Since the differential equation for 6,

(87)

h i ~h icos5 —h2sin5,

h 2~h2cos6+h I sin6,

f,~f, cos5 —f2sin5,

f2 ~f2cos5+f i sm5,

a) ~a)+8,6,
a2 a2+ 8&6,

with 6 a function of p,z satisfying

6=0 at z=0, p=0, r —+Oo .

(83)

(a,'+a,')5=y —(a,a, +a,a ), 0&z& oo, 0&p& oo,

(88)

with the boundary conditions of Eq. (84), gives a well-
posed Dirichlet problem, the gauge condition of Eq. (87)
is always attainable and completely breaks the gauge de-
generacy.

Adding Eq. (86) to the kinetic term for a i 2 in A gives

Hr 4n f pdp f ——dzA (85)

Hence in order for H to have a unique minimum, it is
necessary to add to it a gauge-fixing term

—,'(a, a2 —a a)) + —,'(a,a(+apa2 —@)

= —,'[(a,a~) +(a&a~) +(a,a2) +(aza2) +g ]

—q(a, a, +a~, )+a,a, a~, —a,a,a,a, . (89)

In the numerical work of Sec. IV.D, we shall use the fol-
lowing choice of gauge-fixing:

pe r= —,
' (a,a i +a~2 —f)', (86)

with g an arbitrary function which vanishes at the boun-
daries. Minimization of H+Hg~ then picks out the
member of the gauge-equivalence class of minima of H
which satisfies

Although the final term in Eq. (89) is a total derivative, it
does not vanish when integrated over a finite domain
0&z&z,„,0&p&p,„, and so should not be dropped in
the numerical work.

As discussed in the text, the minima of H in the sector
with topological quantum number n are self-dual or anti-
self-dual gauge fields. In the self-dual case, where

&~y'=B'~, the use of E—q. (81) gives the differential
equations
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~.ht+ath2= —p '(~gt+a2f2),
t), h2 —a, h, = —p '(t)gz az—f& ),
BP t+azh2 ——p '(t),ft+atfq),
BP2 —ash& ——p '(t),f2 —atft),
p '(h2ft —h)f2)= —(Bpat —t),a2) .

(810)

a2=f2=o,
2n —1 lCtft ——n+ g r'+'[Pt+ t(cos8) —Pt, ( cos4)] .
/=1 +

1 odd

APPENDIX C: COULOMB-SUBTRACTED
FUNCTIONAL FOR THE ABELIAN HIGGS
MODEL

At large r, substituting a spherical harmonic expansion
into Eq. (810) gives Eq. (2.99) as the form of the power-
law terms in the potentials. A similar analysis for small r
shows that the leading behavior at r =0 [omitting terms
O(r "+') in ht, f&/p and O(r" +') in h2, a& 2,f2lp] is
given by

2n —1

ht = g r CtPt(cos&),
1=1

1 odd

(811)

We give here the results of removing Coulomb self-
energies from the Lagrangian functional L[A, tp] of Eq.
(2.14) by the analytic-rearrangement method of Sec. III.E.
DefIning

C
477

A =8+2

r .
t

——[p +(z+a) )'~
.2.

(Cl)

and dropping an infinite constant which is independent of
R =2a, we get

o iQ'L. bt-.t.a[& v]=T ~(p -» -)4~
z

+4m f pdp f dzI —,[(BQ ) +(B,3 ) )+e (8 +Ac)ztpz (t1 t—p)2

Q2 p2+z2 a2

(4n. ) (rtrq)

—(B,(p)' ——,
'

C(q —az)z+ Q I, (C2)

with I(p~,„,zm, „)given by Eq. (3.71b) of the text.
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