Pairs of two-level systems

U. Fano

Department of Physics, University of Chicago, Chicago, Illinois 60637

Correlations between the orientations of two particles with spin —;— are formulated in terms of a complete

set of operators appropriate to display the spectrum of oscillations under the influence of the spin interac-
tions. The operators are classified for this purpose according to space and permutation symmetries. The
treatment is intended as a model for any pair of two-level systems. Its extension to multilevel systems and
the eventual emergence of dissipative behavior are outlined. The correlation of two-photon polarizations in

the Einstein-Rosen-Podolsky paradox is described as an illustration.
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I. INTRODUCTION

The remark by Feynman et al. (1957) that the orienta-
tion of a particle with spin 5 affords a model for the
quantum mechanics of all two-level systems has proved
extremely influential. Many of the concepts and much of
the language of quantum optics, for example, stem from
that remark, even though their origin has now receded in
the background. The complementary development of the
two-level treatment in density matrix language (Fano,
1957) has also been influential by providing simple illus-
trations of the interface of quantum mechanics with both
classical and statistical mechanics.

This article extends the same approach to systems con-
sisting of two (or more) particles—even of molecular or
macroscopic aggregates—whose physics depends critically
on correlated particle motions. For example, the rich
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field of magnetic resonance studies depends on correla-
tions between the spin orientations of neighbor particles.
“Correlation” is a general term which refers in statistics
to the mean (or ‘“expectation”) value of the product of
two different variables. More specifically, one calls corre-
lation the departure of the mean product of two variables,
e.g., of two coordinates x and y, from the product of their
separate mean values

(xp)—(x){y).

The evaluation of such mean values for any specific case
is in principle a familiar task of quantum mechanics.
However, performing this task correctly and transparently
requires some skill as well as care in formulating each
problem. The same holds when applying probability
theory in classical physics.

As a prototype I consider here correlations between the
orientations of two particles with spin +. More specifi-
cally, I shall describe the statistical distribution of the
spin orientations of particles brought together initially in
a fixed orientation, e.g., one with “spin up” and one with
“spin down.” Interactions change these orientations in
the course of time, thus inducing correlations. Fourier
analysis of the time dependence of these correlations
displays the eigenfrequency spectrum of the pair. As for
a single particle, our treatment of a pair of spins will be
equally applicable to any pair of two-level systems, typi-
cally to pairs of light polarizations. The adaptation of the
treatment to the orientation (or alignment) of higher spins
will also be indicated. Note that the treatment of spin
orientations is viewed as the prototype for all of quantum
physics in Vol. III of Feynman’s Lectures on Physics
(1965) and in Chaps. 8—10 of Fano and Fano (1972). We
shall thus be dealing with schematic problems of simple
systems with an eye to their relevance to more general
phenomena.

Striking and famous examples of correlations occur
when two particles or photons emerge from the fragmen-
tation of a system isotropic in space. The decay of spin-
less parapositronium thus yields a photon pair such that
the separate polarization of each photon is necessarily
random—corresponding to (x)=0 and (y)=0 in
(1.1)—but is nevertheless tightly correlated to those of the
other photon, whereby <{xy)s£0. This quantum
phenomenon has been discussed widely as the Einstein-
Rosen-Podolsky paradox and will be described in Sec. IV.

It may seem strange that the study of a simple pair of

(1.1)
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spins should provide guidance for the treatment of very
complicated systems. In fact, however, physics problems
deal normally with a modest number of independent ob-
servables. In the extreme case of thermal equilibrium the
state of a system is identified by a single parameter, the
temperature. Additional parameters of interest will be the
mean values of the operators coupled to the fields of a
specific experiment. This article will show how parame-
ters of a complex system independent of those under
study would actually be set to zero by symmetry argu-
ments in a fully detailed statement of the problem, though
this circumstance is seldom stated explicitly.

Let us consider also that the parameters of actual in-
terest in a complex system are generally mean values of
operators characterized as “collective variables.” For ex-
ample, a long-wave oscillating electric field couples to the
electric polarization of a material, that is, to the displace-
ment of the center of mass of all electrons from the center
of charge of all nuclei. This displacement is the collective
variable of interest. The treatment of simple examples in
this article is intended to guide the selection of variables
that are independent of the parameters of interest and
whose mean values are properly set to zero.

To be a little more specific, we can recall that the mean
value of an operator (or product of operators in the case
of correlations) depends of course on the state of any
given system. Conversely, the state itself is identified by
the mean values of a sufficient set of the system’s vari-
ables. The task of calculating mean values is thus largely
equivalent to the task of characterizing any state by a suit-
able set of parameters. While the number of parameters
required to identify the state of a system will be seen to
increase exponentially with the number of its particles,
most of them may be so chosen as to vanish identically, as
noted above. In our simple spin systems this vanishing
merely reflects trivial considerations of symmetry. The
study of a spin pair will be conducted so as to guide the
reader in extending symmetry elements to the analysis of
more complex systems.

Fifteen parameters are required to identify the orienta-
tion state of the simple pair of spin 5, as we shall see; this
number increases dramatically for larger systems.
Achieving an overview of such large sets requires a suit-
able classification scheme. The description of a classifica-
tion based on space and permutation symmetries forms
the core of this article. The classification will also facili-
tate the analysis of the time dependence of the parameters
of interest. Further, it will be made applicable to systems
with lower symmetries by the artifice of mapping their
eigenstates and operators onto those of more symmetric
systems.

The physical concepts and analytical techniques to be
employed originate from the density matrix treatment of
a single spin (Fano, 1957). That treatment is reviewed in
Sec. II to make this article self-contained. Section III
forms the core of the article, dealing explicitly with a pair
of two-level systems. Section IV describes the correla-
tions of two spins or photon polarizations originating
from the decay of an isotropic source. Section V intro-
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duces extensions to larger systems, whose treatment might
utilize the concepts and techniques developed for simple
examples.

Il. DEVELOPMENT OF FORMALISM:
THE ORIENTATION OF PARTICLES WITH SPIN %

The spin orientation of particles in a beam may be ob-
served by filtration through a Stern-Gerlach device,
which resolves the beam into two components with “spin
up” and “down,” respectively. The main output of this
analysis consists of the ratio

P= L= , 2.1

I, 4+171_

where I, (/_) indicates the intensity of the spin-up
(-down) component of the beam. The observed value of P
depends, of course, on the direction of the magnetic field
within the Stern-Gerlach device; by varying the orienta-
tion of this device one determines the field direction for
which P is largest. This maximum value of P is defined
as the beam polarization and is represented as a vector P
parallel to the field orientation that maximizes P.
Equivalent procedures serve to determine P for sets of
particles that are, for example, dispersed in a medium in-
stead of being assembled in a beam. Note that P, as de-
fined by (2.1), ranges from —1 to 1, while the resulting
magnitude of the polarization vector, P= |P|, ranges
from O to 1.

A. Pure states
Analytically a pure state of a spin-% particle is
represented by a two-component spinor
m
Um(0,4)= 7
—5 exp(+itd)sin+o

exp(—i5d)cos50 . (2.2)

A measurement of the polarization P, as defined above,
amounts to an experimental determination of the expecta-
tion value (o) of the Pauli spin operator

UE{ax»ay’az} ’ (2.3)

whose components have the eigenvalues +1. Theoretical
calculation of

(o)=P (2.4)

for the state represented by the spinor (2.2), using the
standard matrix representation,

01
10

0 —i
i 0

1 O

0 —1}> (2.5)

o'x= , o'y= ’ o‘z=

yields a vector P of unit magnitude and of direction (6,4).
This result means that states represented by (2.2) are
characterized by unit polarization and interprets the pa-
rameters 6 and ¢ as coordinates of the polarization vec-
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tor. The spinor representation (2.2) is thus restricted to
the set of orientation states with unit polarization.

With a view to extending the quantum-mechanical rep-
resentation to states with |P| <1, let us consider the
structure of the mean value expression of the ith com-
ponent of o:

(o:)=(¢|o;|¥)
=2m,m‘=i1/2¢:n’(a'i dm'm ¥m -

This expression can be condensed into the trace of the
product of two matrices by combining the spinors ¢¥* and
¥ into a “density matrix”

Pmm'=¢'m1/’:n‘ > 2.7
which yields

(2.6)

(0;)=Tr(0;0) == O D' mPrmm" - (2.8)

This formula implies that the polarization P= | (o) |
reaches unity if, and only if, the matrix p,,,, is factorable
in accordance with (2.7), that is, if the density operator p
is a projection operator with eigenvalues 1 and 0. The
operational meaning of these eigenvalues is that a Stern-
Gerlach device with its field parallel to P deflects the en-
tire beam into the + channel, leaving the other com-
ponent with null intensity. Note that this conceptual pro-
cedure for characterizing pure states extends to any quan-
tum system.

B. Representation of partial polarization'

For a state of partial polarization with P <1, we may
retain Eq. (2.8) to express the mean value of a physical
quantity in terms of the matrix (o;),,—o0r, more gen-
erally, A4,,,, —that represents the quantity. The set of ele-
ments P, of the density matrix in this formula is under-
stood to represent whatever information about the state is
necessary and sufficient to predict the mean value of any
observable quantity. Conversely, knowledge of a suffi-
cient set of mean values determines a set {p,,n,'} and will
thus identify the state. Clearly, the matrix p,,,,  will no
longer be factorable, as in Eq. (2.7), for a state of partial
polarization, because (2.7) would lead to P =1.

General and specific properties of the mean values of a
state suffice, in fact, to determine its density matrix by re-
quiring it:

(a) to be Hermitian—otherwise the mean values of
some physical quantities would be complex,

(b) to have unit trace—otherwise the mean value of the
unit operator would be 1,

(c) to have non-negative eigenvalues—otherwise a non-
negative operator could have a negative mean value,

IRecall that the description of states of partial polarization has
presented great difficulties in classical physics, being essentially
alien to it. The procedure outlined in this section is instead
applicable to all quantum systems.
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(d) to yield (o) =P.

It will be convenient to represent such a density matrix,
as well as any other 2 X2 Hermitian matrix, as a linear
combination of the set of four Hermitian matrices

{1,0%,05,0;} . (2.9)

This set forms an orthonormal base, meaning that the
trace of the product of any two different set elements van-
ishes, while the trace of the square of each element equals
2. The specifications (a)—(d) of the density matrix imply
then that p is represented by

p=1(14P,o,+P,0,+P,0,)=+(1+P-c), (2.10)

being thus identified by the single vector parameter P.
Each term of this representation consists of one operator
of the set (2.9) multiplied by its mean value; the coeffi-
cient 5 is the reciprocal of the number of mutually
orthogonal spin orientations.

An arbitrary Hermitian operator 4 with a 2 X2 matrix
is represented by a superposition of the base set (2.9) with
coefficients that parametrize the operator,

A=al+A 0. (2.11)

The mean value of the quantity it represents then takes
the form

(4)=Tr(4p)=a+A'P, (2.12)

which attains its largest value for states with orientation
P parallel to A. In this notation @ = 3 Tr4 is the mean of
the two eigenvalues of 4, | A | is the difference of these
eigenvalues, and the vector A is parallel to the spin orien-
tation of the eigenvectors of 4. Since a itself is an invari-
ant aspect of A4, the value of (4 ) depends essentially on
|A], |P|, and A-P. We can note particularly the ex-
pression

(p)=Tr(p")=5(1+|P|?), (2.13)
a monotonic function of | P |, which ranges from + to 1.
(Analogous expressions for multiparticle systems will in-
troduce the concept of a generalized polarization.)

Finally, we observe that the general density operator
(2.10) has the eigenvalues +(1+ | P |), which represent the
fractional intensities of the two component beams that
would be separated by a Stern-Gerlach device with field
parallel to P. The state is thus often described as the in-
coherent superposition of a base pair of mutually orthogo-
nal pure states with polarization vectors +P and weights
5(14 | P|); this description is unique except in the ex-
treme case of vanishing polarization, when the direction P
remains unspecified.

C. Time dependence

The action of a magnetic field causes the orientation of
a spin to precess about the field direction. To represent
this phenomenon we obtain the Schrodinger equation for
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a density matrix by combining the equations for the spi-
nors |¥) and (¥ | of pure states,

i#d|¢)/0t=H |¢),

(2.14)
i#3(yp| /At=— (Y| H ,
to yield
iﬁ%ww=H|¢><¢|—|¢><¢|H. (2.15)

Since any density matrix p can be represented as a linear
combination of two matrices for pure states, each obeying

(2.15), the equation for p itself reads
i#idp/dt=Hp—pH =[H,p] . (2.16)

In a representation where H is diagonal, with eigenvalues
E,,, Eq. (2.16) takes the form

i#0p mm' /0t =(E,; —E ' )pmm 2.17)
with the solution
Pmm () =Ppmm(0)exp[ —i(E,, —E,,.)t /#] . (2.18)

In the operator notation of Eq. (2.16) the analog of the
time dependence (2.18) is

p(t)=exp(—iHt /#)p(0)exp(iHt /) . (2.19)
Note how only the observable frequency,
w=(E1/2—E_1/2)/ﬁ, (220)

occurs in Egs. (2.17) and (2.18), without any reference to
the separate energy eigenvalues E.;,, which are them-
selves defined only to within an arbitrary additive con-
stant. Note also how the formal structure of the expres-
sion for the time dependence of an operator’s mean value,
which combines (2.12) and (2.19),

(A4),=Tr{A exp(—iHt /fi)p exp(iHt /#)}
=2, mAmmexp( —iE,, t /A)Pmm eXpliE,, t /H) ,
(2.21)

can be read in two alternative but manifestly equivalent
manners. Grouping the exponentials with p implies that
p is time dependent according to Eq. (2.19) (Schrédinger
representation), while grouping them with 4 implies that
A is time dependent and p constant (Heisenberg represen-
tation).

In the familiar example of a particle in a magnetic field
B we have

H=—3y#B0o, (2.22)

where y is the particle’s gyromagnetic ratio. In fact,
however, any Hamiltonian can be expanded in the form
(2.11), which differs from the magnetic example only by
the addition of an irrelevant term a1 and by writing A in
place of — 5 y#B. The magnetic example, with B parallel
to the z axis, leads to w=yB in Eq. (2.20). Substituting,
then, H = — +#wo, in Eq. (2.19), with p(0) in the form
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(2.10), and the result in Eq. (2.4), one obtains the preces-
sion of P(#) represented by

P()=Trfe' /7 L[14+P(0)0le "0},
(2.23)
that is,
P, (t)={0% ); =P (0)coswt + P, (0)sinwt ,
P,(1)=(0, ), =P,(0)coswt — P, (0)sinwt , (2.23)

P,(t)=(0,),=P,(0) .

A more direct formulation of the precession equation
emerges by entering the density matrix expression (2.10)
and the Hamiltonian (2.22) in the Schrodinger equation
(2.16), working out the commutators of the Pauli ma-
trices. The equation then reduces to the classical preces-
sion equation for the polarization P,

dP/3t=—yBXP, (2.24)

illustrated by the diagram in Fig. 1. Equation (2.24) may
alternatively be introduced at the outset of a treatment of
spin precession, as a statement of experimental evidence
from which the spinor representation and the Schrodinger
equation (2.16) for a pure state are then derived [see
Chap. 8 of Fano and Fano (1972)].

D. State of thermal equilibrium

According to statistical mechanics, particles with two
energy eigenvalues E,,, m z_%, in equilibrium with a
thermostat at temperature T, are found in either of the
corresponding eigenstates v, with probability

exp( —Ep, /kT) /3 nexp(—E,, /kT) . (2.25)

This amounts to saying that the state of thermal equilibri-

um is represented by the density operator
p(T)=exp(—H /kT)/Tr{exp(—H /kT)] . (2.26)

When the Hamiltonian has the magnetic form (2.22)
with B parallel to the z axis (H is always equivalent to

)
/”_——-;—‘\\
< B X

~—=|-——"7/1BxP

|

>/ |

P/

I

§ |

I

|

~_J

¢

FIG. 1. Diagram of precession equation.



Fano: Pairs of two-level systems 859

this form, as we know) the density operator depends only
on the two operators 1 and o, of the set (2.10), since it
has axial symmetry about 2z. One then finds
(0, )=tanh(yB#/2kT). Accordingly, p is orthogonal to
the remaining operators of that set, o, and o,, meaning
that

(0,)=(0,)=0. 2.27)

This result is trivially simple but serves as a prototype for
a property of all states of thermal equilibrium, namely,
that any operator O orthogonal to all powers of H, and
hence to p—in the sense that Tr(H"O)=0—has mean
value zero. A more general phenomenon was anticipated
in Sec. I, namely, that all but a few of the parameters re-
quired to identify the state of a complex system usually
vanish, for reasons analogous to those underlying Eq.
(2.22). We shall return to this subject.

E. Two-level systems

The whole treatment in this section rests on a single
point of departure, namely, the existence of an initial pair
of orthogonal pure states of spin orientation, |1;,,) and
|¥_1,,), whose superpositions—coherent or incoher-
ent—represent all other states. Accordingly, the treat-
ment applies equally to states of any system that are simi-
larly constructed from an initial pair of orthogonal pure
states set in one-to-one correspondence to those of spin
orientation. Systems from which one abstracts such a
base pair of orthogonal states are called “two-level sys-
tems.” The relations among their different states and dif-
ferent operators are isomorphic to those of spin-5 orienta-
tion, as described, for example, in Chap. 11 of Feynman
et al. (1965) and in Chap. 9 of Fano and Fano (1972).

We shall concern ourselves particularly with the states
of light polarization, for which one usually takes as a base
pair either two linear polarizations in orthogonal direc-
tions or the pair of right- and left-circular polarizations.

lll. ELECTRON-PROTON SPIN CORRELATIONS

Consider an electron-proton pair, whether bound to
form a H atom or unbound in a scattering state. For sim-
plicity we assume orbital motion with / =0 only. An ini-
tially uncorrelated spin state of a H atom may be
prepared by filtration through a Stern-Gerlach device
with a field sufficiently strong to overwhelm the hyper-
fine interaction. Each beam component selected at the
exit of that device then consists of atoms with their elec-
tron and proton in specified orientations (up or down)
with respect to the field. The spin orientations o° and o”
are uncorrelated in this state, according to definition (1.1),
since (o30%) =(0%)(0?). After the exit into free space,
the hyperfine interaction controls the orientations of the
electron and the proton, forcing them to precess, and thus
establishes a correlation between them. I aim here at
describing this correlation and the analogous correlation
that results from a collision of an electron and a proton
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with initially specified orientations.

The orientation of each separate particle is represented,
as in Sec. II, by the respective polarization vectors
P¢=(0°) and P’=(0”). The correlations of their orien-
tations are then represented through the mean values of
products of components of o0° and o, such as
(0%0%),(0%0%), etc. Analysis of the time dependence of
these correlations will then direct our attention to the
eigenstates of the hyperfine structure, i.e., to the eigenvec-
tors of the squared total spin |0°1”
+1%?|2=F(F 4+1)1°1° and of one of its components,
%(aﬁl"—{- 1°0%), which are linear combinations of opera-
tor products. Consideration of relevant symmetries will
help us in mapping out the manifold relevant relation-
ships.

When two particles separate after a collision—or after
dissociation of a bound state—often only one of the two
remains under observation. Predictions on the results of
such observations utilize only a part of the data on the
state of the whole pair, leaving out, in particular, any in-
formation on the correlations of the two particles. This
process of data elimination will be seen to lie at the root
of irreversibility.

The vector and tensor operator approach to be utilized
here dates from the 1950s. This approach has been ap-
plied extensively to the particular, if important, classes of
correlations generated by spin-spin, spin-orbit, and spin-
external-field scalar coupling in atomic systems. Effects
of these correlations have been prominent in the study of
nuclear spectroscopy (Siegbahm, 1965), of optical pump-
ing (Happer, 1972; Omont, 1977), and of the inferences
drawn from optical emission (Fano and Macek, 1973).
This section will face the broader task of considering the
whole class of correlations that may occur between the
orientations of two particles with spin .

A. Base set of operator products

As the density matrix of a single spin is represented by
a superposition of the set of four Pauli operators in Eq.
(2.10), so can we represent the matrix p® for the combina-
tion of electron and proton spin as a superposition of the
set of 16 direct products of electron and proton operators

{lelp’]leagaleagyleo‘gyai ]lp" . "Ufcafc ’
0%05,...,0;0%}, (3.1)

which may be indicated by the array

1€17 1¢?
o¢1? oo |

(3.1
The set of 16 operators (3.1) is orthonormal and complete
in the same sense as the set (2.9) is for a single spin;

(a) the trace of the square of each operator equals 4;

(b) the trace of the product of any two different ele-
ments vanishes;

(c) any operator acting on the orientations of the spin
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pair can be represented as a linear superposition of the set
(3.1).

The mean value of a product of operators acting on the
electron and proton, respectively, is then represented by

the analog of Eq. (2.8),
(A°B?) =Tr(A°B"p%) . (3.2)

Lack of correlation between the two spin orientations is
defined, according to (1.1), as

(A°BP) ypoore=(A17)(1°B?) , (3.3)
from which follows
PP o =~(1°+P°0°) 5 (1P +PP-0P) . (3.4)

In the example of H atoms filtered through a strong-
field Stern-Gerlach device, i.e., under Paschen-Back con-
ditions, the component with electron spin-up and proton
spin-down is characterized by P°=2 and P?= —7Z, that is,
by

PP o= (18+05) (1P —a?) . (3.4

For a general state, with correlated orientations, the
same considerations that led us to Eq. (2.10) lead now to
the density matrix representation

pP=+[(1°+P°0°)(1°+PP-0?)+ 0% € ¥-a”] , (3.5)

where the parameter €% indicates a tensor whose com-
ponents

ep ep ep
Cxx ny sz
ep ep ep
C,W‘ ny C}’Z

Cct CcF CcF

represent the correlations, CZ={(o%0%)—(o%)(o%),
CE=(o505)—(0o%){0}), etc. The parameters of the
matrix (3.5) may be blocked out as an array analogous to
(3.1'),

1 p?

Pe PP L | - (3.6)
The structure of the density matrix (3.5) parallels that of
the single-particle equation (2.10): Each term in the curly
brackets is the product of one operator of the set (3.1')
and of its mean value, which is represented by one param-
eter of the set (3.6); the coefficient + is the reciprocal of
the dimension of the matrices 070%, i.e., of the number of
mutually orthogonal states of the particle pair.

The value of the parameters P°, P, and €% are re-
stricted by the physical considerations of Sec. IL.B. In
particular, we have

(pPY=Trl(p?P1=%(1+ | P°| >+ | PP | *+- Tr[ (PP + € P)*]}

=5 {(1+ | P | D1+ | PP| 1)+ 234 P{Cy PR+ 24 Ci} < 1,

or, equivalently,
|P|2+ |PP| 24 | P°| 2| PP |24 2P CP PP+ | €% |7 <3 .
(3.7")

The expression on the left of (3.7') may be viewed as the
squared magnitude of a generalized polarization vector
whose 15 components are the 15 nontrivial parameters of
the array (3.6). The ceiling value 3 on the right derives
from the number of mutually orthogonal states of two
spins, namely, 4, which appears in the denominator of
(3.7), reduced by unity to eliminate the trivial contribution
of the unit operator 1°1” to p2. The inequality (3.7), or
(3.7'), requires, for example, €% to vanish when
|P¢| = |PP| =1, much as P, and P, vanish in (2.10)
when P, =1.

As the vector P represents the state of orientation of a
single spin in Sec. II, so does the 15-component aggregate
{P%, PP, P°PP+ € P} represent the joint state of a pair of
spins. This aggregate may in fact be viewed as the set of
components of a vector p® in a 15-dimensional model
space spanned by the operators {o°1?,1°0”,0°7"} serving
as unit vectors. This representation of the state of a
quantum system, to be utilized throughout this article, is
called the Liouville representation in statistical mechan-
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(3.7

[

ics, with reference to its classical analog with phase-space
coordinates {g;,p;}.

Two distinct types of transformation of the representa-
tion (3.5) of p®, viewed as a vector, will be utilized in the
following:

(a) Simultaneous reciprocal unitary transformations of
both sets {P°P?°,P°PP+€%} and {o0°l?,1%7*,0%7"},
which leave p? invariant and amount only to a change of
coordinate frame in the Liouville space. These transfor-
mations will be utilized in Sec. III.B.

(b) Actual transformations of p® which take place in
the course of time or as a result of a collision or other ac-
tion. These consist of a unitary transformation of the set
{P,P?,P°P”+ €} alone in the Schrddinger representa-
tion, or alternatively of the reciprocal transformation of
{o°17,1°7,0°0"} in the Heisenberg representation. This
second type amounts to a precession of p% analogous to
the precession of P according to Eq. (2.24) and will be in-
troduced in Sec. III.C. Thus one views the density opera-
tor as precessing in Liouville space just as a state vector ¢
precesses in the usual Hilbert space. The diagram of Fig.
1 might serve to visualize this precession in a model
space, even though the Liouville model space coincides
with physical space only in the simple case of a single
spin.
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Unitary transformations in the Liouville model space
have been used for a long time, being described, for in-
stance, in Secs. 6 and 7 of Fano (1957), where their infini-
tesimal elements are indicated by Q. These operations
have been called by different names in different contexts;
the term “superoperators” is familiar, for example, in the
literature of magnetic resonance. Their conceptual role
underlies much of the present article without requiring
any explicit formulation.

B. Symmetrized operators and state parameters

The complete set of 15 nontrivial operators (3.1) is so
numerous—even in this example with only two
particles—that one wants to structure it into subsets. The
blocking in Eq. (3.1’) already sorts out two vectors and
the dyadic tensor o®of. Analysis by rotation and reflec-
tion symmetries is appropriate, say, in hyperfine structure
experiments with magnetic field B2, in which case the
operator y,0:1°+1°,0%, involving the particle
gyromagnetic ratios, is a constant of the motion. In
scattering experiments with initial and final momenta p;
and py (in the center of mass system), the z axis is usually
laid along the vector p; X py and the spin angular momen-
tum in this direction is particularly relevant.

Much of the success of mapping two-level systems onto
a spin orientation derives from the intuitive ease of fol-
lowing the motion of the vector P, which represents the
spin’s orientation. Symmetry analysis of the parameters
(3.6) aims at the same goal of developing a convenient
geometrical mapping for the parameters of multiparticle
and/or multilevel systems. Familiarity with tensorial pa-
rameters and with their symmetries is not achieved as
easily as for vectors, but it serves the same purposes. Pro-
gress toward this familiarity has proven very rewarding
over the years, to this author at least. Effective utiliza-
tion of symmetries for the classification and manipulation
of multiparticle state parameters is an open-ended en-
deavor, toward which I present here introductory materi-
al.

The nine-component dyadic tensor o°o” can be sorted
out further into irreducible parts that transform like
spherical harmonics under coordinate rotations. Thus one
singles out

(a) the scalar

oo’ , (3.8a)

which measures how parallel the two spin orientations are
and whose eigenvalues, —3 and 1, correspond to the total
angular quantum numbers F =0 and 1, respectively,

(b) the vector
o’Xa? , (3.8b)

which measures the amount of transverseness to one
another of the two spins ¢° and ¢”, and

2However, the mean values {o°Xa”), (o°), and (o?) may be
collinear, even though (o°) X (0?), {(0°), and {o?) may not.
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(c) the five components
U =v1/6(3020f —0%0?) ,
U =F+(002 +0208) i (080l +aiod)]
=FV1/2(0%08+0%0%) ,
U =1[(0502 —0508)+i(a%08 +050%)]

—otot,

(3.8¢)

whose mean values identify the quadrupole moment of
the two-particle system. Tensor components with these
symmetries represent the interaction of dipole and quad-
rupole moments of a system with appropriate field config-
urations.’

Besides the operator symmetry under coordinate rota--
tions we consider their symmetry under the electron-
proton permutation operator . The operators (3.8) are
already eigenvectors of this operator, the scalar and quad-
rupole being even and the vector odd. The vectors o°1”
and 1°” of the set (3.1') are instead asymmetric; sym-
metrization replaces them by the pair of eigenvectors of
PP,

vV'1/2(c¢17+1%7) , (3.9a)
V'1/2(0%1?—1%7) , (3.9b)

the first of which represents the total spin angular
momentum of the particles.

The entire expansion (3.5) of the density matrix p? in
terms of operator products can be transformed into an ex-
pansion in the 15 symmetrized operators (3.8) and (3.9),
whose coefficients are combinations of the 15 parameters
P¢, PP, and €% contragredient to the operator combina-
tions. A prototype transformation of this type is
described on pp. 14 and 15 of Fano and Racah (1959).

The symmetry of the operators under £ serves to
classify their action on stationary states of the e-p system
in zero field, because these states are themselves eigen-
states of Z%, odd for F =0 and even for F=1. It fol-
lows that the nine even parity operators, (3.8a), (3.8¢), and
(3.9a), are diagonal in F, while the six odd operators, com-
ponents of the vectors (3.8b) and (3.9b), are off diagonal.
This result will prove essential as we move on to discuss
the time dependence of the two-particle state.

A further consideration completes the symmetry
analysis of our 15 operators. Whenever the symmetry
group of the states of a system has a subgroup of two
operators, {1,Z} in our case, half of the matrices of

3Each pure state of a particle or other localized system can be
identified as its state of lowest energy when subjected to a speci-
fied field configuration. In the example of the degenerate mani-
fold of p states of an electron in a central field, the energy of
any one pure state reaches its lowest eigenvalue when the system
is placed in the center of the disposition of a coil and condenser,
as shown in Fig. 2. The three Euler angles identifying the
orientation of this disposition combine with the ratio (coil
current)/(condenser charge) to yield the four parameters that
identify the particular state within its manifold.
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FIG. 2. Magnetizing coil and quadrupole condenser providing
a field configuration with Hamiltonian aJ, +b(U}+U 2,
[from Fano (1968)].

Hermitian parity-changing operators are symmetric and
half antisymmetric. Non-Hermitian raising and lowering
operators can then be constructed which change the pari-
ty only from odd to even or even to odd, respectively. In
our case the F-raising and F-lowering operators are

M*=1[(0°1P—1%")+iV2(0° X 0?)]

F=0->F=1

= |F=1F=0" (3.10)
as one can verify by constructing their matrices. Opera-
tors that raise or lower the magnetic quantum number are
similarly constructed by the usual combination of x and y
components of the vector operators.* Application of the
same approach to symmetry under coordinate reflection

through the (x,y) plane follows in a later section.
The symmetry analysis of the operator set (3.1')
remains to be complemented by a corresponding analysis

of the parameter set (3.6). Specifically, the expressions
|
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(3.8) are complemented by corresponding expressions de-
rived from the tensor parameters PPP+ €% of (3.6).
These expressions consist of

(a) the scalar
(PPP+EP) O=PPPH CL+CI+CL,  (3.11a)

(b) a vector consisting of P¢XP? and of a corresponding
part of € % with components

(PPP+ € ) =PPP—PPPP+CF—C?,  (3.11b)

etc., and
(c) a five-component tensor with components analogous
to (3.8¢)

(P°PP+ € )P =V 1/6(3P:PP —P*PP+-2CP

—cz ¢, (3.11c)

etc.

The expressions (3.11a) and (3.11¢) are even under the
permutation Z%, while (3.11b) is odd. The odd vector
(3.11b) then combines with the analog of (3.9b),
V'1/2(P°—P?), to yield the parameters contragredient to
(3.10), namely,

T[(PE—PP)FiV2(PPP+ € P)V] . (3.12)

Figure 3 shows a diagram of P¢, P?, -(P°¥P?), and

P®XP? vectors. The antisymmetric part of €% is simi-
larly represented by a vector; its symmetric components
would be jointly represented by an ellipsoid in the same
space.

The entire density matrix (3.5) now takes the form of a
sum of products of symmetrized parameters and sym-
metrized matrices

pP= 5 {117+ 7 (P*+PP)(0°17+ 1°0) + 5 (P PP+ € ) V0% 0P 1 (PPP+ € )" U

+ 7 [P —PP)—iV2APPP + EP) V- M* + S [(PC—PP)+iV2(PPP+ ) V]-M~} .

The asterisk in (3.13) indicates complex conjugation and -
indicates a scalar product, that is, summing over com-
ponent products with equal indices.

C. Time dependence and scattering

A pair of spins that are neither parallel nor antiparallel
precesses about their total angular momentum in classical

4In the two-level example of {spin-up, spin-down] states the
subgroup of operations {1,0,} is an analog of {1, Z%}, since
spin-up (-down) is even (odd) with respect to o,. The two opera-
tors {oy,0,} interchange spin up with spin down, thereby inter-
changing their parities with respect to o,; of these, o, is sym-
metric, 0, antisymmetric. Their combinations o, +io, are pro-
totype spin-raising (-lowering) operators, which change the pari-
ty with respect to o, from odd to even, or from even to odd,
respectively.
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(3.13)

T

or quantum mechanics and in the absence of an external
field. We shall see now how this precession emerges in
our formalism. However, it will emerge only indirectly
through spin correlations in our example of a quantum
state whose mean angular momentum vanishes while its
mean square does not. The symmetry analysis of Sec.
II1.B will prove very helpful.

The time-dependent Eq. (2.16) for a density matrix
holds for all systems, as is apparent from its derivation,
and so does its formal solution, Eq. (2.19). This solution
simplifies for our example, much as it did for the single-
particle Hamiltonian (2.22), because the electron-proton
spin Hamiltonian,

H®=po*0of , (3.14)
is a scalar symmetric under 2%, H yields only two lev-
els of opposite parity, whereby it commutes with all even
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parity terms of p®. Only the odd terms of p®, proportion-
al to %(ae]l” —1%”*) and to o°X o?, oscillate with the sin-
gle frequency of the spectrum of H,

w=(EF=1—EF=0)/ﬁ=4b/h . (3.15)

Construction of an explicit representation of these os-
cillations, analogous to Eq. (2.23) for a single spin, re-
quires us to sort out the terms of p® proportional to coswt
and sinwt, respectively. To this end, one notices first that
in the time-dependent expansion of p%(z), Eq. (2.19), all
the terms of p% diagonal in F commute with H? and
remain constant. The F-raising and F-lowering terms, on
the other hand, have an exponential time dependence,
since

exp( —iH Pt /#)M*exp(iH Pt /#) :Miexp( Fiot) .
(3.10"

Accordingly, the density matrix expression (3.13) is made
time dependent simply by adding factors e ~*** and ',
respectively, to its last two lines. Separating the coswt
and sinwt terms of these exponentials, we obtain

FIG. 3. Polarization vectors for a pair of spins and their com-
binations. The whole set of vectors will precess about P¢+ P?
under the influence of o¢ o” interaction.

pep(t)=%{]e]lp+ %(Pe-f—Pp)‘(O'e]lP—f— ]_eo.p)+%(PePp+ %ep)(O)o.e,o.p_*_(PePp_*_ cgep)&)t.U(Z)
+ 3 [(P*—PO)coswt — (P°PP+ € ) Vsinwt](0°1P — oP1°)

+ %[(Pe—Pp)sina)t +(PPP 4 ‘ge")(”coswt]'o"XaP} .

The parameters P¢, PP, and € * in Eq. (3.16) are under-
stood to be time independent. In a Schrédinger represen-
tation, on the other hand, one regards the coefficient of
0°17—1°? in Eq. (3.16) as representing 5 (P°*—P?) at the
time . Indicating this time dependence by an index ¢, we
obtain from Eq. (3.16) the representation of time depen-
dence

(P¢—PP), = (P¢—PP) coswt — (PEPP + € ) Vsinwt ,
(3.17a)
(PPP+ € )\ = (P¢— PP)gsinwt
+(PPP+ € P) coswt . (3.17b)

Considering that the (P¢X P?), portion of (PP?+ € %)\
is orthogonal to both (P°+PP),, we can see that Eq.
(3.17a) represents the precession of (P°—PP), about the
constant angular momentum +(P°+PP);,, which is
described in an elementary treatment of hyperfine cou-
pling (Fig. 3). The time-dependent polarization vectors P§
and P? are thus completely determined by Eq. (3.17a) and
by the constant vector (P¢-P?),,.

The time dependence of the correlation tensor (€ %), is
obtained in a second step, utilizing

(a) the constant parameters
(PePp_i_(gep)(Z)’

(b) the time-dependent parameter (PP?+ €)' given
by Egq. (3.17b), and

(c) the previously determined P; and P?. This pro-

(PPP+¢)®  and
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(3.16)

I
cedure reflects the fact that the correlation tensor € is

defined, according to (1.1), as the difference of the
separately measurable tensors (P°P?+ % %), and P{P?.

As an illustration we obtain here the explicit values of
the nonzero components of P;P? and €' { for our example
of H atoms. The atoms are prefiltered through a Stern-
Gerlach device with a very strong field, such that they
exit in free space at t =0 with their electron and proton
spins fully polarized in opposite directions,’

Pi=2%, P§=—2, C¥=0. (3.18)

Their state is accordingly represented by the uncorrelated

matrix (3.4')
PE=pihcon= 711+ 0517 —1%0E —0%08) . (3.19)

Entering the parameters (3.18) in Egs. (3.17), and remark-
ing that Pg X P§=0, gives

(P*—P?), =2%coswt ,

(€)\V =25 sinwt

(3.20)

SThis specification of the initial state implies “sudden” exit
from the Stern-Gerlach magnet, in contrast to the usual
quasiadiabatic exit through a fringing field. A sudden variation
of a magnetic field along a beam is assumed here for purposes
of schematization but has actually been achieved by special de-
vices (Frisch and Segre, 1933).
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or equivalently, since P¢+P?=0,

Pf =coswt , P5=—coswt ,

# # (3.21)
Ch=—Cl=sinwt .

The last of these results shows that (o050} —oy0% ), does
not vanish, even though (0% ), (o} ), (0% ), and (o} )do.

One further component of € is nonzero. Substitution
of the initial data (3.18) into the constant parameters
(3.11a) and (3.11c) shows them to be equal to —1 and
—2V'1/6, respectively, in accordance with the value —1
of the coefficient of o%o? in (3.19). However, the product
(P;PF), does not remain equal to — 1 in the course of time
but equals —cos’wt. Constancy of (3.11a) and (3.11c)
then requires that

C¥= —sin’wt . (3.22)

In this example the initial-state parameters (3.18) have
axial symmetry about the % axis. This symmetry is
preserved in the course of time, as seen in (3.20) and
(3.22), because the Hamiltonian (3.14) is scalar and hence
also axisymmetric. The “precession” induced by the spin
coupling degenerates in this case into axial oscillations of
the parameters. An ordinary precession would instead be
induced by the same Hamiltonian, according to (3.17), if
the state vectors P°—P? and/or (P°PP+% )" had
nonzero x or y components at the initial time ¢z =0.

Finally, we complement the discussion of the time-
dependent p*(¢) by showing how it adapts readily to the
matrix p;p that represents the final state of spin orienta-
tion of an electron and proton following their collision.
Prior to the collision, the density matrix p{’ represents a
state of independent orientations of the pair and has ac-
cordingly the uncorrelated form (3.4). The collision effect
is represented by a scattering matrix S, which plays here
the same role as the general time evolution operator
exp(—iHt /%) does in Eq. (2.19), yielding

pF=Sp¥s~!. (3.23)
The scattering matrix has the general familiar form
(pgmys | S | p;m;), where p indicates the collision momen-
tum and m the magnetic quantum numbers of electron
and proton. Considering initially only the /=0 partial
wave, we notice that the dependence of S on the orienta-
tion quantum numbers becomes diagonal in the represen-
tation of stationary states (F,M), where it reduces to

(F'M' I S ! FM)=CXp(2i8F)8FF'8MM' . (3.24)

The expression of p? is thus obtained from that of
p?(t) by simply replacing wt with the double phase-shift
difference 2(8,—8y). The Coulomb interaction adds to
(3.23) a further factor exp(2i8¢(), where 8¢ is the ordi-
nary Coulomb phase shift for the / =0 channel at the
relevant energy. For /540 the Coulomb phase shift has
different values 8, but the spin factor (3.24) reduces ap-
proximately to unity, because the electron and proton do
not come into contact.

Rev. Mod. Phys., Vol. 55, No. 4, October 1983

D. Conservation law

In the earlier discussion of a single spin we saw how the
polarization vector P merely rotates in the course of time
according to Eq. (2.24), keeping its magnitude constant.
Similarly, the oscillations of the two-particle set of pa-
rameters listed in Eq. (3.6) amount to an orthogonal
transformation which leaves the sum of their squares in-
variant on the left of Eq. (3.7'). Indeed, according to Sec.
III.A, one may regard the parameters of the set (3.6)—
excluding unity—as the components of a 15-dimensional
vector V which represents a generalized polarization of
the particle pair and merely rotates in the course of time
or as a result of collisions. This fundamental conserva-
tion law is implicit in the solution (2.19) of the
Schrodinger equation, that is, in the Hamiltonian charac-
ter of quantum mechanics. The density matrix merely ex-
periences an equivalence transformation which leaves in-
variant its eigenvalues and hence the Tr(p") for all values
of n. In particular, the left-hand side (lhs) of Eq. (3.7)
remains invariant.

The sum of squared parameters on the left of (3.7')
thus serves as an index of the overall polarization of the
particle pair, that is, of the departure of its state from the
amorphous condition in which all nonunity parameters of
the set (3.6) vanish and with them the lhs of Eq. (3.7').
This sum has also been called the “quantity of informa-
tion” about the pair, but the concept and noun “informa-
tion” have been used in inequivalent manners. Recall
here that the density matrix (3.5) provides, in fact, a fully
specified description of the state of the system by predict-
ing the mean values of any operator. Let it be stressed
that the vanishing of any, or all, of the coefficients of
operators in the expansion (3.5) or (3.13) of p? constitutes
a definite prediction concerning experimental measure-
ments and should not be construed as a statement of ig-
norance about a significant variable. The concept of “in-
formation” is accordingly inappropriate here.

The representation of the state of a spin pair by a vec-
tor V in the 15-dimensional model space of parameters
P, P?,PePO+ G P provides a model for further develop-
ments. The parameter oscillations described by Egs.
(3.21)—(3.22), or their analogs, are viewed in this picture
as variations of the projection of V onto particular coordi-
nate axes, reflecting the vector’s rotation in the course of
time. Recalling how the sum of squared parameters on
the left of Eq. (3.7') represents the squared magnitude
| V | %, we see the state’s evolution as merely redistributing
their constant sum among its various terms. Such a redis-
tribution becomes, however, very significant when it ef-
fectively subtracts from components under observation,
transferring polarization to components that are practi-
cally inaccessible to observation; polarization would be ef-
fectively dissipated in this event.

E. Reversibility and its practical limits

The evolution of a quantum system governed by the
time-dependent Schrodinger equation is, in principle, ex-
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actly reversible in time, just as its classical Hamiltonian
analog is. By this is meant that sudden sign reversal of
all velocities of a system at a time ¢>0 will bring the
state at time 2t back to where it was at t =0. The phe-
nomena of spin echo (Hahn, 1950) and photon echo (Kur-
nit et al., 1964) demonstrate this reversibility, to within
imperfections of the sudden reversal of the precession of a
spin assembly.

A more relevant question concerns the extent to which
the predictive power embodied in the initial knowledge of
the polarization vector V can be retrieved at later times or
is instead dissipated irretrievably. This question is
touched upon here first with reference to our two-spin
prototype and then to anticipated behavior of more com-
plex systems. We shall return to this question in Sec.
V.D.

Let us first consider the example of an electron-proton
collision outlined at the end of Sec. III.C. The initial
state of the spin pair is “pure,” with |P°|=|P?| =1,
which makes the left-hand side of the squared polariza-
tion, Eq. (3.7'), equal to 3. The collision transformation,
(3.23), will generally transfer part of the polarization to
components of the correlation tensor € %. These com-
ponents of the state of the electron-proton pair remain
indeed observable through coincidence experiments on the
two particles after collision, but will no longer contribute
to further evolution of the spin pair. In particular, €
will no longer return to its initial value zero, thus prevent-
ing |P?| and |P?| from ever returning to unity. This
argument applies to any interaction of finite duration.

Within the scope of a bound state of the spin pair,
which evolves steadily in time, the evolution of the polari-
zation vector V described in Sec. IIL.C follows a singly
periodic track which brings |P¢| and |P?| back to unity
again and again at intervals 27 /w. Generally, however, a
two-spin system has four energy eigenvalues and six
eigenfrequencies, as detailed in Sec. III.G. Regardless of
details, its polarization vector V will never again return to
its initial orientation, with |P°| = |P?| =1 and € %=0,
unless all six frequencies are commensurable.

Both of the circumstances indicated above may be ex-
pected to operate dramatically in large aggregates of par-
ticles. The frequency spectrum of such systems is ex-
tremely dense, forming practically a continuum of incom-
mensurable elements. The number of nonzero com-
ponents of their polarization vectors V, initially small,
will generally increase irreversibly, spreading through the
uncountable number of dimensions that are accessible to
V in the absence of special conservation laws.

F. Vanishing of polarization components
through symmetry

We have seen in Sec. II how spin polarization com-
ponents orthogonal to a magnetic field vanish because of
axial symmetry in a state of thermal equilibrium. In the
two-spin problem studied in this section, the initial state
itself, Eq. (3.4'), is defined as having axial symmetry
about %, a symmetry preserved in its subsequent evolution
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governed by the scalar Hamiltonian (3.14). The ten com-
ponents of the polarization vector V that lack this axial
symmetry must accordingly vanish. [The five com-
ponents with axial symmetry are P;, P?, the scalar (3.11a),
the z component of the vector (3.11b), and the O com-
ponent of the tensor (3.11c).] The same would hold, of
course, for a pair of spins in thermal equilibrium in a
magnetic field BZ.

If the initial spin orientations P° and P? had not been
parallel, i.e., if these vectors were oriented as in the dia-
gram of Fig. 3, the polarization would no longer be axial
but would retain symmetry under reflection through the
plane (P%,P?), and all components of V odd under this re-
flection would vanish. The reflection symmetry would
persist in the course of time as the symmetry plane
precesses about P+ P?.

These examples indicate that most components of gen-
eralized polarization vectors are likely to vanish for sym-
metry reasons, as anticipated in Sec. I. This property
emerges, however, only if the components are identified
by appropriate symmetrization, as was done in Sec. IIL.B.
Consider, for instance, a large aggregate of matter which
is macroscopically homogeneous, i.e., invariant under
translations much larger than atomic or other structural
inhomogeneities. This homogeneity is exploited by
Fourier expansion of the state parameters analogous to
(3.6). Homogeneity implies that all Fourier components
with sufficiently large wavelength should vanish, in the
absence of external fields with nonzero Fourier com-
ponents of the same wavelength. Mean-square values of
such components however, need not vanish because of
thermal noise; their magnitude is implicit in the thermal
factor of the density operator, analogous to (2.26), i.e.,
exp(—H /kT)/Tr[exp(—H /kT)]. Considerations of this
type generally underlie the formulation of most treat-
ments of large aggregates but are implied by the descrip-
tion of ad hoc models rather than stated explicitly.

G. Time dependence with a nondegenerate spectrum

The Hamiltonian (3.14) utilized in Sec. III.C has three
degenerate eigenstates with F =1 and M =1,0,—1. The
evolution of a bound state of the spin pair emerges in its
full generality when this degeneracy is lifted by additional
terms in the Hamiltonian. This effect is achieved typical-
ly by introducing a magnetic field BZ, which changes
(3.14) into

H=bo*0?— ;#(y,0i1°+y,1°%%)B , (3.25)

where v, and y, indicate the gyromagnetic ratios of the
particles.

Since this Hamiltonian is no longer invariant under the
particle permutation %, we consider first its weak-field

(Zeeman) limit
Hy;=bo*0?—+yz #0217+ 1%%)B , (3.25)

where Yz is Lande’s effective gyromagnetic ratio of the
pair in its triplet states (F =1). Substitution of this Ham-
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iltonian on the left of Eq. (3.10’) replaces the frequency w
on the right of (3.10°) and in the following equations by
o+yzB, when applied to x or y components of M* or
other vectors. (The operators o and ¢ commute with
M and hence don’t affect its time dependence.) The sin-
gle frequency w is thus replaced by a Zeeman triplet of
frequencies. The second and fourth terms of the density
matrix (3.13), which remained constant in Eq. (3.16), also
become time dependent under the influence of the mag-
netic field, precessing with frequency y B, because they
do not commute with the (o5 +0%) term of (3.25'). The
Fourier spectrum of p®(¢) thus consists of the four fre-
quencies w, w+yzB, and yzB. One of these frequencies,
vzB, is still degenerate, because it corresponds to transi-
tions between My =0 and either M =1or M =—1.

Returning now to the Hamiltonian (3.25), we note that
M remains a good quantum number, because (3.25) re-
tains axial symmetry about 2. The quantum number F,
instead, remains good only for M = +1 but has to be re-
placed by a new label, which we call F=(0,1), and which
reduces to F in the weak-field limit or for M = +1. The
four well-known eigenvalues of (3.25) are (Feynman et al.
1965, Vol. III, Sec. 12.4)

(F,M) E(F,M)

(1,£1) b— sy, —7p)8,

(1,0) —b+{4b +[5#(y. —v,)B1*}'7?,
(1,—1) b+5#(y,—v,)B,

(0,0) —b— {4b2+[%ﬁm—n>312}’”.

(3.26)

The six distinct differences between pairs of these eigen-
values will appear as frequencies in the Fourier spectrum
of the density matrix p®(¢). In Sec. IIL.C, p®(t) was ob-
tained by simply inserting a factor exp(tiw?) into the
terms of p(0) with F-shifting operators M*. That pro-
cedure is no longer immediately applicable here, because
the operators M* had been selected on the basis of a clas-
sification of permutation symmetry, 2%, which does not
apply to the Hamiltonian (3.25) or to its eigenvectors.

Extended application of the earlier procedure is
achieved nevertheless by an artifice of broad significance,
namely, by mapping the eigenvectors and eigenvalues of
the lower symmetry Hamiltonian (3.25) onto those of a
model Hamiltonian of maximal symmetry, Hg, with the
same eigenvalues (3.26) but with different eigenvectors
| F,M). The time-dependent matrix p@(z) will then be
constructed for the model system providing its Fourier
expansion directly. That is, each term of p®(¢) will have a
single time-dependent factor,

exp{ —i[E(F',M')—E (F,M)]t /#} , 3.27)

analogous to that of p(¢) in Eq. (2.18). The time evolution
of the actual spin pair may finally be obtained by the
equivalence transformation

pP(t)=(F'|F')p¥(t){F |F) , (3.28)
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where (F|F) is the unitary transformation that maps
| FM) onto |FM). A more general framework for this
procedure will emerge in Sec. V.

The construction of the model Hamiltonian Hg rests on
the fact that the symmetrized set of Sec. IIL.B includes
four commuting operators, which may be derived by
linear combination from the basis of four eigenvectors,
| FM ){FM |. The four commuting operators have axial
symmetry about %, as the |FM){FM | also have, and
serve to represent Hg in the form

Hg=al1°+bo* 0P +&+5 (02174 1%7%)
+d+ (300t —0%0P) . (3.29)

The four coefficients (7,b,z,d) are then determined by
equating the eigenvalues E (F,M) of Hg,

(F,M)= (1,1), (1,0), (,—-1), 00,
E = a+b+c+d, a+b—2d, a+b—c+d, a—3b,
(3.30)

to the E(F,M) of Eq. (3.26).

Our main task now is to identify the terms of the ex-
pression (3.13) of p® that will acquire the respective
time-dependent factors (3.27) with the alternative sets of
quantum numbers; allowing for permutations of primed
and unprimed indices, there are 12 such distinct factors.
Among the 16 terms of p%, four remain invariant in time,
because their operators belong to the commuting set in
the Hamiltonian (3.29). Most of the other terms have to
be reassembled so that each of them changes just one pair
(F,M) into a single (F',M’). The six components of M*
are sorted out according to the M-raising (-lowering)
properties of their components by setting

M*t={MT=—V12MS +iM,;"),

M =V172M;} —iM;" )M} . (3.31)

M~ is sorted out accordingly. The (x,y) components of
Vv'1/2(0°17+1°%"), Eq. (3.9a), are similarly sorted out
into * components and also combined with U‘izi, Eq.
(3.8¢), to yield

Ni'— _1[0% (1P+0%)+(1°%0?)0?, ] (3.32)

and the analogous N*'. Note how the NI F! components
contain projection operators (14 ¢,) that exclude transi-
tions to or from M = —1. The expression of p% in terms
of these M-raising and -lowering operators includes, of
course, similarly transformed combinations of the param-
eters P, P?, and P°PP+ € ®. The time-dependent factors
(3.27) are now allotted to the terms of p? according to
their respective operators as indicated in the array

(F,M)  (1,1) (1,0) (1,—1) (0,0
(F',M’)
(1,1 , Nt UR MT
(1,0) N*! N;‘ M,
(1,—1) v NI Mt
(0,0) M- M M7
(3.33)
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The procedure thus concluded may serve as prototype for
the more extended applications to be envisaged in Sec. V.

H. Summary

Items developed in this section are listed here which ap-
pear to be relevant to larger systems. They are according-
ly formulated with reference to a pair of spins and alter-
natively in more general terms.

(a) A complete set of operators for a pair of spins (or
for a system consisting of two subsystems) is constructed
according to (3.1) as direct product of complete sets for
the separate spins (for the separate subsystems).

(b) The mean values of all the operators of the product
set form a set of 4* (N?) parameters, Eq. (3.6), which
characterizes the state of the system. The elements of this
set, excluding unity, may be viewed as the components of
a generalized polarization vector V of a “Liouville” model
space.

(c) The magnitude | V |2 of this vector—i.e., the sum of
squared moduli of its components—is restricted by Eq.
(3.7) to <15 (N?—1, where N is the number of mutually
orthogonal pure states of the whole system). States of
maximum |V |2 are pure; “pure” and “mixed” states
form together a “convex” set [Weyl, 1928, pp. 68—69 (pp.
78—79 in Eng. tr.)].

(d) Classification of the base operators and of the com-
ponents of V according to relevant symmetries is achieved
by appropriate unitary transformations. Components of
V that vanish identically in states of interest because of
symmetry conditions are thus identified, restricting the
number of relevant nonzero parameters (Sec. IIL.F).

(e) In the Fourier representation of the time dependence
of a density matrix,

p()=3,p,e ", (3.34)
the coefficients p, are components of the polarization
vector V. When the Hamiltonian has sufficient symme-
try, the set of p, may be constructed by symmetry
analysis. Otherwise, an equivalent result is achieved by
mapping the eigenstates of the system’s Hamiltonian H
onto those of a symmetric Hamiltonian Hg with the same
eigenvalues as H (Sec. III.G).

(f) The squared magnitude of the polarization vector V
is conserved in the course of time. However, an increas-
ing fraction of this magnitude may be transferred to com-
ponents of V that are not directly relevant to the
phenomenon under study and may not even be accessible
to realistic observation. The polarization would thus be
effectively dissipated.

IV. CORRELATIONS IN STATES WITH ZERO
NET SPIN

Correlation phenomena are particularly striking, as an-
ticipated in Sec. I, when the spins (or other variables) of
two subsystems average out to zero separately but their
product is nevertheless nonzero. I illustrate such phe-
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nomena in this section through examples in which the pa-
rameters (P°,P?) of Eq. (3.5) vanish but the correlation
tensor ¢ % does not.

The correlations are sampled by evaluating—
theoretically or experimentally—the average product of
the response of two detectors Q¢ and Q7 sensitive to the
respective spin orientations of the two particles. Each of
these detectors may be represented as gql1-+Q-o with
q> | Q]|, according to Eq. (2.11), but we standardize here
on eigenvalues of Q that do not exceed unity and average
+, setting

Qe=%(1e+Qe'0’e),
(1Qf, [Q<t.

Setting now P*=P?=0 in Eq. (3.5), we find that the mean
value of Q°Q?, Eq. (3.2), yields

(Q°QP)=7(1+Q*C Q).

Sampling the value of {Q°QP) for various orientations of
Q° and Q” maps out the correlation tensor € of a given
state.

P=1(174Q0?) wn

(4.2)

A. Stationary state with spin quantum
number F =0

This state is represented by the antisymmetric spinor
function V'1/2(a*B’—pB°a?), where a and B stand for
“spin-up” and ‘“‘spin-down,” respectively. Evaluating the
mean values of the nine operators o°o” with this wave
function yields

(ofof)=—8; . 4.3)
Thus we have
pE_o=1(11P—0%0% —0y0f —o50?)
=311 —0%0?) (4.4)
and hence
(Q°QP)r_o=7(1-Q“Q") . 4.5)

[Notice how the density matrix (4.4) clearly represents a
projection operator, since the eigenvalues —3 and 1 of
o°-oF yield 1 and O for the eigenvalues of p¥_ ]

Peak response of the detector pair is achieved for
Q°=—Q?, | Q?| =1, regardless of the orientation of the
vector pair, as expected from the isotropy of our state.
This peak response equals 5, namely, the chance of ob-
serving the pair with any one orientation of Q¢= —QP?; an
equal—complementary—response would be obtained for
the same system by interchanging the orientations of Q¢
and QP. A more characteristic property of this correlated
state is that {Q°QP) vanishes when Q° and Q” are parallel
and of unit magnitude. That is, even though the orienta-
tion of each separate spin is random, simultaneous obser-
vations of the two spins by “perfect” selectors
|Q%| = | Q”| =1, with parallel orientation is strictly ex-
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cluded. This exclusion amounts to stating that our ¥ =0
state is orthogonal to any state with F =1.

B. Stationary state with F =1 and M =0

A triplet state with these quantum numbers is
represented by the symmetric spinor function
V'1/2(a®BP+ B°a®), with reference to the electron-proton
pair of Sec. III. This type of state is, of course, anisotro-
pic, but it arises in the decay of isotropic (spinless) sys-
tems of odd parity such as pions, kaons, and paraposi-
tronium. The relative momentum p of two particles or
photons emitted in the decay provides the axis of refer-
ence for the magnetic quantum number M of the pair
with F=1. The zero value of M then means that the
pseudoscalar product F-p vanishes.

In the following analysis of correlations we shall refer
to the two spins as o° and o®, without implying that we
are dealing with an electron-proton pair. Use of the per-
mutation &% will not imply identity of the particles or of
their respective Hamiltonians; it merely reflects the iso-
tropy of the source, which permits neither particle to be
associated with any one direction of space. To see that
P°=(0°) and P?’=(of) vanish, consider first that

=1(0¢1P+ 1702 ) = 5 (P{+PF) =0, whence P{=P?
=0, because of symmetry under . The components of
P? and P? orthogonal to z also vanish because of axial
symmetry about 2.

Correlation properties of our state also follow from its
quantum numbers and symmetries. According to Sec.
III.B, F =1 implies eigenvalue unity of the scalar (3.8a),
o of=1. Symmetry under Z% implies that the mean
value (0°X0oP) vanishes. Furthermore, M*=+(021?
+1%?%)>=0 implies that o¢0f=—1. From this eigen-
value and from o¢-0P=1 follows the eigenvalue of one
quadrupole component of (3.8¢), UY =v1/6(30%02
—0°%0?)=V'1/6 (2). The mean values of the other quad-
rupole components, { U?} ) and (U'3) ), vanish, owing to
axial symmetry about 2.

The density matrix is then

PE_ y—o=7(1°1P+050% +o50b—0500),  (4.6)

meaning that (o%0%)=(0}0))=—(0o%0;)=1 and that
(0{0%) vanishes for all is~j. The response of our coin-
cidence detector is accordingly

(Q°QP)poi,m—0=5(1+QQ*—20;0F) .

The anisotropy of this state thus manifests itself in its
spin correlations. Parallel spin orientation, Q°=QP, is
again excluded, as in the F =0 case, but only for Q¢ and
Q? parallel to the z axis. Opposite orientation, Q°= —Q?,
is instead excluded when these vectors are orthogonal to
the z axis. Anisotropy was, of course, to be anticipated
for any pure state with F =1, or anyhow with nonzero
squared angular momentum.®

4.7)

A classification of all possible anisotropies of pure states with
unit spin has been given in Fano (1968).
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An isotropic mixed state with F =1 can be constructed
by incoherent superposition of three states with F =1 and
with the specification of M =0 referred to three mutually
orthogonal axes. Its density matrix is

PPt ison= (117 + 5 0%0?) . 4.8)
The detector response is then
<Qer>F=1,isotr=%(1+%QE'QP) 5 (4.9)

which peaks for Q°=Q¥ regardless of their direction.
Peak response of this detector is only +, and its minimum
+, showing that isotropy implies a weaker correlation.

C. Correlation of photon pairs

Direct observation of correlations is more readily
achieved and transparent for the polarization of photon
pairs than for the spin orientation of pairs of particles, be-
cause radiation propagates readily and without disruption
over laboratory distances. Coincidence experiments with
photons are particularly striking when their source and
each of its constituents are manifestly isotropic. The
response of a pair of detectors facing the source from op-
posite directions, as in Fig. 4, is then manifestly indepen-
dent of the detectors’ joint rotation about the source
center or about their common axis.

Conservation of angular momentum about the common
axis of propagation of a photon pair has immediate
relevance to the correlation of circular polarizations.
Equal helicity of circularly polarized photons propagating
in opposite directions is then required for their angular
momenta to cancel. Thus one may anticipate finding a
photon pair in states represented, with reference to
“right” or “left” circular polarizations by |R;R,) or
|LiL,), or by their superpositions, whereas |R;L,) or
|L{R,) would imply a total momentum about the axis
of 124, inconsistent with the assumed isotropy of the
emission.

A second consideration concerns parity under inversion
at the center of the source. This operation reverses the

) —= f—
| $ s
| S 2
[ m=+1 <R Lz>m=-1
POSITRONIUM s §;
| =0 5., POINT oF 2,
1 ]
Qm=0 \;’ INVERSION &
e*le‘ S ?,
| m=-1<>R Le>m=+1
! S <3
I 7 9
% —
defecfors/

FIG. 4. Positronium annihilation and two-photon coincident
detection, showing the polarization reversal under inversion at a
center. (The two polarization diagrams are shifted off-center
for clarity.)
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photon helicities as shown in Fig. 4, thus interchanging
the states |R;R,) and |L,L,). A process of two-
photon emission by transition between atomic eigenstates
of parity must then result in an eigenstate of two-photon
parity,

VI72{ |R\Ry)+ |L{Ly)} , (4.10)

where the sign reflects the parity of the source transition.
Two sources with opposite parity have been studied exper-
imentally, one of them optical from calcium (Ca) vapor,

4p?'Se — 4s4p'P° — 4s%lS°, (4.11a)
5513 A 42274

and the other in the y-ray range from the annihilation of

positronium (Ps) in its ground-state singlet,

g0, lge, (4.11b)

2X511 keV

(It is essential here that the initial Ps state and the vacu-
um after annihilation have opposite parity.) The optical
experiment requires an adequate concentration of excited
Ca atoms in a specific state, which was achieved only by
laser technology (Freedman and Clauser, 1972). The an-
nihilation experiment is facilitated by the low background
of y-ray detectors and was performed much earlier (Wu
and Shaknov, 1950).

To examine the implications of parity for the polariza-
tion analysis of the two processes (4.11) we replace the
symbols R and L by explicit expressions of polarization
vectors referred to right-handed triads (£;=X%,,
P1=—73,21=—2,), with their £ axes pointed from the
source to each of the two detectors. The alternative states
(4.10) are thus represented, respectively, by

V1720 | VT1/2&, +i9)),V1/2E, +i5)) + | VI/2(&, —ip) ),V 1/2(£, —iF5)))

=V1/2(|£1%3) — |$152))=V1/2

and

X1 +91 J?2—5’\2>

X =9 J/‘\z-i'J/f2>
Vv2 ' V2

Ay ,  (4.12a)

V720 | VI72(%, +i91), V1725 +i55)) — | VI72&, —iP1),V1/2(£, —if) N =iVTI/2( | £,52) + | $152)) .

The expressions on the right show that linear polarization
detectors will pick up the photon pair in coincidence
when laid parallel to one another in case @, but when
orthogonal in case b. (Linear polarization of ¥ rays is ob-
served by detecting each proton after an initial Compton
scattering, the scattering plane being preferentially
orthogonal to the linear polarization.)

This important phenomenon is discussed in Feynman’s
Lectures (Feynman et al. 1965, Vol. III, pp. 18.5—18.9)
with particular reference to the Einstein-Podolsky-Rosen

paradox. Einstein et al. (1935) had developed the treat-
ment outlined here to stress how quantum mechanics

leads to the (seemingly) absurd result that the setting of
detector 1 serves to predict the response of the distant
detector 2, a response that would itself be random if
disconnected from 1. The paradox stems from failure to
realize that the polarization correlation is a property of
the photon pair, unrelated to those of single photons. In
fact, an analogous observation can be made on the hands
of one person: Observation of just one hand may show it
to be a right or left hand with equal probability, but once
a hand is identified as the right hand of a person, the oth-
er hand is predictably the left one. The 1950 experiment
on annihilation verified the quantum-mechanical predic-
tion clearly, but discussions and ever more accurate exper-
imental tests of this paradox still linger on (Clauser and
Shimony, 1978; Aspect et al., 1982).

The correspondence between the polarization of pho-
tons and of particle spins may be established by treating
the pairs of coefficients of (£;,5;) and of (£,,§,) in Eq.
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(4.12b)

|
(4.12) as forming a spinor analogous to that of Eq. (2.2),
as detailed, for example, in Fano (1949). Indicating these
pairs of coefficients by (a',8!) and (a?,%) maps the two
states (4.12a), (4.12b) onto the two-spin states
V1/2(a'B*FB'a?), respectively. The corresponding den-
sity matrices are represented by (4.4) and (4.6), with quan-
tum numbers (F =0,M =0) and (F =1,M =0) and with
detector correlations (4.5) and (4.7), respectively.’

V. EXTENSIONS

I outline here how the treatment of a pair of spins may
serve as a model for the treatment of larger, even very
large, systems. In a first step the representation of spin-+
states will be extended to the states of a particle with
higher spin (Sec. V.A). Alternative mappings of single
multilevel systems or of combinations of subsystems will
then be considered (Sec. V.B). An illustration of experi-
mental Fourier analysis of time-dependent correlations of
atomic states follows in Sec. V.C. The final section, V.D,
will indicate how one approaches the representation of
relevant variables in very large systems subject to dissipa-
tion and relaxation effects.

"The brief treatment of this topic in Sec. 4d of Fano (1957) was
incorrect. It amounted to interchanging (4.12b) with (4.12a),
thus mapping it onto the density matrix (4.4) instead of (4.6).
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A. Parameters of spin-j states®

The degenerate ground level of an atom or nucleus with
spin j has multiplicity 2j +1. Removal of this degenera-
cy by application of a weak magnetic field separates out
2j + 1 nondegenerate levels, | jm ), with —j <m <j. Fur-
ther application of fields of higer multipolarity introduces
uneven spacings of the energy levels E,,, but the index m
may nevertheless serve as a label.

The role played in Sec. II by the set of four operators
{1,0} is performed for spin j by a set of (2j +1)? ortho-
normal operators { U:} with 0<k <2j and —k <g <k.
Orthonormalization of this set in analogy to spin 5 is
achieved by the definition

UF=3,3, | jm)(jm' | (=1 =™ (jmj —m’'| jjkq)

X(2j + 11?2, (5.1)

in which the symbol in parentheses is a Wigner coeffi-
cient. The operators (5.1) are non-Hermitian, being analo-
gous to V'1/2(o,*io,); their orthonormality is accord-
ingly represented by the relation

Tr(UFUE ") = (2j + 1848, (5.2)

which is implied by the orthogonality of the matrix
(Gm,jm’ | jjkq). Note that UJ=1 and that
Tr(US) = (2 + 184 840-

The operators Uq" transform under coordinate rotations
like spherical harmonics Y}, (6,¢) with / =k and m =gq.
External fields that remove the degeneracy of |jm),
preserving axial symmetry about Z, are represented by su-
perpositions of the subset {U{;], with ¢ =0. The opera-
tors of this subset commute with one another, being su-
perpositions of | jm ) {(jm |, according to (5.1), just as the
four operators in the model Hamiltonian (3.29) com-
mute.’

The set of mean values {(UY) identifies the state of a
spin-j particle, as the components of (o) do for a particle
of spin 5. The polarization index, Eq. (3.7'), extends into

Pk Uk 12 <2j+ 1?21

=4j(j+1), (5.3)

where the equality holds for pure states and the < sign
for mixed states. The density matrix of the state is
represented as a linear combination of the operator set

{Uy}, with coefficients ( quf). Each operator UF with

8This parametrization dates from the 1950s and has been uti-
lized extensively in the processes indicated in the introduction to
Sec. III.

9The subset {U ’5} represents 2j + 1 linearly independent func-
tions of energy H, if the base set |jm ) represents nondegen-
erate stationary states. In the case of degeneracy, one or more
combinations of the {UL} are nontrivial constants of the
motion.
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g0 acts to raise (lower) the quantum number m by ¢
(—g) units, as the spin-5 operator V'1/2(o,
+iay)E—U§ raises the m value from —+ to 5. Ac-
cordingly, the matrix (m +q | U;‘ |m) has 2j—|q |
nonzero elements with values of m ranging from —j to

Jj—q.
Operators whose matrix has a single nonzero element,
. . 1 .

as is the case for the j =+ operator U} = —o ., raise one

index m by g units to m +q and will be indicated accord-
ingly, by U?™. Each of them is constructed, for j > 3, by
a superposition

(m +q | U™ | m")=2¢_ g |@mi(m’+q | U |m")

:8m',m +q (5.4)

This construction serves to identify Fourier components
of time dependence, as the construction of the array (3.33)
did in Sec. IIL.G, since (5.2) implies that

exp(iHt /A) U exp( —iHt /#)

=expli(E,, +q—E,)t/A1U™ . (5.5)

We have thus introduced a new base set of operators, each
of which has the single effect of changing one specific
stationary state, |jm), into another specific state,
|j,m +¢). Any operator can be represented as a super-
position of elements of this base set. The time depen-
dence of each operator of this set is represented by a sin-
gle exponential factor in the Heisenberg representation of
Eq. (5.5).

B. Mapping of N-level systems
and of correlated subsystems

Even as the states of any two-level system can be set in
one-to-one correspondence to those of a spin-5 particle
(Sec. ILE), so can the states of any N-level system be
mapped onto those of a particle with spin j =—;-(N —1).
More specifically, each energy eigenstate |n) of the N-
level system is set in correspondence with the state | jm )
of a particle subjected to axisymmetric fields such that
the energy of |jm) equals E,. The parametrization
described in Sec. V.A is thus applicable, in effect, to the
states of any quantum system.

This general representation of quantum states rests on
the isomorphism of vector spaces with equal dimensions,
as outlined in Fano (1957). It has not been applied exten-
sively, probably because the multipole parameters (qu )
of a spin-j particle are much less familiar than the vector
(o) of a particle with spin % Current interest in
quantum-optical systems with three or more levels seems,
however, to draw attention in similar directions (Hioe and
Eberly, 1981). Use of the base set of operators (5.5) which
oscillate with a single frequency might prove attractive.'®

10This Fourier-analysis procedure, which starts from diagonal-
ization of the Hamiltonian, seems more transparent than the ex-
tension of the precession Eq. (2.24) developed by Fano (1964).
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Remarkably, a base set of operators equivalent to the
U; of Sec. V.A had been introduced by Cartan long be-
fore the quantum theory of angular momentum. The goal
was to develop standard unitary irreducible representa-
tions of order N for semisimple groups. A key point lay
in the construction of the initial set of N commuting
operators U X whose eigenvalues identify each irreducible
representation and whose joint eigenvectors correspond to
our energy eigenstates |jm) with j=+(N—1) and
—j<m <j. The next step was to complement the U '5 by
constructing the complementary set of 2j(2j+1) m-
raising (or -lowering) operators equivalent to the U;‘ with
g+#0. This subject has been reviewed by Racah (1963) in
the context of quantum-mechanical applications. The
mapping of the four energy eigenstates | FM) in Sec.
IIL.G, onto the four eigenstates | FM ) of the superposi-
tion Hg of four commuting operators, in effect utilized
Cartan’s theorems.

Note, however, that elements of the base sets | FM) or
| FM ) are distinguished by alternative values of both of
their indices in contrast to the set |jm ), where m alone
distinguishes the elements, while j labels the set. Base sets
of eigenstates with different structure may thus be used
profitably in different applications. The structure of sets
of base operators varies accordingly. Indeed, the two-spin
treatment of Sec. III utilized a sequence of base sets of
states and operators: direct product sets of states,
| +m®) | +m”) and of operators, Eq. (3.1'), were used at
the outset. Symmetrization of these products under space
rotations led then to |FM ) and to the operators (3.8).
The operator array (3.33) was finally constructed. Flexi-
bility is thus stressed for adapting the formalism to
specific tasks.

For example, the four orthogonal states | FM ) of Sec.
II1.G could have been mapped onto the set | jm ) of a sin-
gle particle of spin j=+. This mapping would have
homogenized the set at the price of wiping out the classi-
fications by parity under the permutation Z% and ac-
cording to the zero-field energy splitting by the coupling
bo®-0P. The parity classification has been similarly
preserved in the study of the | nlm ) manifold of states of
atomic H with n =2, which is isomorphic to the | FM)
set of Sec. III.G (Gabrielse, 1980).

Another variant in the mapping of states and operators
has emerged from the symmetry analysis of correlations
between the levels of two Zeeman multiplets coupled by
laser optical transitions (Baer, 1978). Energy eigenstates
of the two multiplets are indicated by |j,m,) and
| jsmy ), respectively, the energy splitting between a and b
levels being optical, between m, and m, at radio frequen-
cy. A base array of operators is indicated by

| jama Y smp |

Lismp Y pmy | ]

| Jama ) {jama |

. . (5.6)
| jomy ) {jamy |

Operators of the two blocks along the diagonal of this ar-
ray oscillate at radio frequency in the Heisenberg repre-
sen}‘ation and may be replaced by multipole operators
{Ug,} and {Uq: }, respectively, in accordance with Eq.
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(5.1). Interest centers, however, on the correlations oscil-
lating at optical frequencies which correspond to the
operators in the off-diagonal blocks of (5.6). Analysis ac-

cording to rotational symmetry replaces these operators
with two adjoint sets {Uqa‘:"} and {Uq:} constructed
analogously to (5.1) but restricted by |j,—J, |

< (kab’kba ) Sja +.’b

C. Observation of time-dependent correlations

The combination of optical and radio-frequency oscilla-
tions of the correlations corresponding to the operators in
the array (5.6) can be displayed experimentally. This
could be done by the study of photon echoes contemplat-
ed by Baer (1978). A more direct approach analyzes the
light emission by atoms in flight.

A beam of atoms, molecules or ions excited within a
narrow region of space—e.g., by collision with another
beam—and traveling thereafter at speeds of 107—10°
cm/sec emits light during its further flight. Variations of
light intensity and of its directional and polarization dis-
tributions along this flight are readily measured and
Fourier analyzed (Fig. 5). This analysis provides direct
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FIG. 5. Intensity decay curve of a line of the LiII spectrum and
its Fourier transform (Berry et al., 1973). Note the construction
of hyperfine structure levels.
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evidence on the correlated motion of atomic subunits.

The emission of light results from high-frequency oscil-
lations (~ 10'> Hz) of optical electron currents within an
atomic system; its excitation generally involves similar
currents. Accordingly, the observed radio-frequency vari-
ations of light emission reflect comparatively slow varia-
tions of the directional and/or intensity distribution of
high-frequency orbital currents. Such variations are
indeed expected to accompany the precession of the orbi-
tal angular momentum about the total angular momen-
tum, which alone remains constant. The precession, in-
duced by coupling with electron and nuclear spins, gen-
erates spin-current correlations of the very type described
in Sec. III.

The analysis of the light emitted by beams of excited
atoms has been discussed in some detail by Fano and Ma-
cek (1973), treating separately two steps of the observa-
tion process. Section II of this reference deals with the
connection between the response of a detector, of given
position and polarization setting with respect to the
source, and the relevant parameters of the atomic source.
These parameters concern the source orientation, i.e., its
mean orbital momentum (L), and its alignment, i.e., the
mean value of a quadratic form in L analogous to the ex-
pressions (3.8c). Section III of the same paper, the most
relevant to the present subject, describes variations of the
parameters that result primarily from oscillatory ex-
changes of orientation and alignment between the orbital
motions and the electron and nuclear spins. Such
transfers of polarization among different constituents are
substantially equivalent to the exchanges between the
orientation of different particles treated in Sec. III and
elsewhere (e.g., Fano and Macek, 1973).

D. Correlations in large systems
and their dissipation

The spin-resonance phenomena have served as a proto-
type for the analysis of correlations in large aggregates of
matter. Attention is directed in these phenomena to the
few variables that are observed directly. These variables
are usually components of the mean orientation P of an
assembly of identical particles with spin, e.g., of electrons
or protons, embedded in a material sample and subjected
to a magnetic field. The influence of correlations between
the spin variables and all the variables in the surrounding
matter is then treated collectively.

One thus considers a small set of operators {1° U},
which represents the “system” of variables of interest and
which is complete in the sense that the product of any
two of its elements belongs to the set. A second large and
complete set, {1™,®J'}, represents the variables of the
“medium.” An array analogous to (3.1') combines the
two sets:

150"
5.7

11"
[Ufl"' Uiy

The interaction between system and medium can be
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represented as a superposition of U;®}. The U/ and ®J
may be selected to oscillate with a single frequency in the
Heisenberg representation.

Correlations of “system” and ‘“medium” variables,
represented by mean values (U;®N) —(U;)(®Z) ac-
cording to (1.1), tend to entangle the time dependence of
all the variables. In fact, however, the system’s variables
(U) can be singled out and measured quasi-
independently of the medium in many realistic phenome-
na. This very fact implies that the effect of correlations is
circumscribed in practice and amenable to description by
a few parameters.

Bloembergen (1948) pointed out, in essence, that the
operators @7 in (5.7), when averaged over the state of the
medium, act upon the system as additional external fields.
One field component may have a steady nonzero value,
while additional ones fluctuate as a manifestation of
thermal noise. The fluctuating nature of these com-
ponents limits their net effect. Wangsness and Bloch
(1953) developed a more detailed analysis of the interac-
tion between system and medium. Each variable of the
system was seen to act on the medium by “polarizing” it
in the sense of Sec. III. The key point of this analysis is
that the polarization spreads quickly through the multi-
tude of variables ®} as anticipated in Sec. IILE. Little of
it thus remains in the few elements of the set {®'] that
can effectively react on the system’s { U;}. The net effect
of this reaction can be represented in terms of friction pa-
rameters, which tend to draw the system into thermal
equilibrium with the medium, provided the ‘“memory
time” of the medium polarization is short compared to
the rates of evolution of the system of interest.

Operators U; that oscillate with a single frequency of
the system’s Hamiltonian H® are readily seen to relax to-
ward a zero mean value under the influence of interac-
tions with the medium. Their mean values would average
to zero in the course of time regardless of such interac-
tions. Weak and even slowly fluctuating interactions then
suffice to dephase the oscillations of these U, whereby
destructive interference brings their very amplitude to
zero. Relaxation is instead slower for the mean values of
the small subset of operators U] that are time indepen-
dent, like the {U&} of Sec. V.A, because their mean
values depend on the occupation of different energy lev-
els. Relaxation to equilibrium thus requires discrete ex-
changes of energy between the system and the medium,
corresponding to the eigenvalue spectrum of H®. These
exchanges are mediated by a small subset of operator
products U;®7 and accordingly proceed at a slower rate.
The occurrence of two different relaxation times, called
T, for longitudinal and T, for transverse components of
the average spin orientation in a magnetic field, was
recognized in Bloch’s (1946) original paper on magnetic
resonance and is essential to all analogous phenomena.

Let us return now to the central feature of the correla-
tions between system and medium, namely, that the polar-
ization of the medium spreads rapidly through its many
variables. This phenomenon was visualized in Sec. IILE
as the likely result of the polarization vector V’s evolving
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throughout the whole model space accessible to it with a
broad and dense spectrum of frequencies whose superpo-
sition in effect yields an aperiodic motion. Departures
from this likely behavior are known, however, in which
special circumstances bring the vector V back to the vi-
cinity of an earlier direction. Such behavior has actually
been observed in the evolution of complex systems of
moderate size and is known in statistical mechanics as a
“Poincaré cycle” or “Poincaré recurrence.” The generally
observed smooth relaxation of variables in magnetic reso-
nance and analogous processes implies that such re-
currences do not, in fact, happen in extended media
within the duration of laboratory experiments. That is,
the superposition of a very dense spectrum of frequencies
appears actually to dissipate the polarization impressed
upon the medium by the system of interest.

Even though the very large number of variables of a
medium is probably sufficient to account for the observed
dissipation of correlations, a theoretically more cogent
factor emerges upon considering that this number of vari-
ables is actually infinite. Indeed, a portion of matter
could be regarded as finite only when isolated from any
mechanical, thermal, or radiative interaction with other
matter. Specification of the state of any system with in-
finitely many variables requires additional conditions to
be spelled out, which exclude the effect of additional
sources of perturbation at infinite distance. These condi-
tions introduce in Hamiltonian formalisms imaginary pa-
rameters that would otherwise be alien to it, thus provid-
ing the ultimate analytical basis for the occurrence of ir-
reversibility in statistical mechanics (Zwanzig, 1960). The
contrasting behavior of finite and infinite systems is
readily illustrated by analytical models.

As mentioned above, the dissipation of spin polariza-
tion into the surrounding medium was represented by re-
laxation coefficients in Bloch’s original differential equa-
tions for magnetic resonance. More generally, however,
relaxation effects are represented by the decay of ‘“‘correla-
tion functions” of the form (A4 (#)B) in the course of
time. Here A and B are operators in the Heisenberg repre-
sentation, A (z)=exp(iHt/#)A exp(—iHt/#), and the
correlation bears on values of A determined at a time ¢
later than those of B. (The name “autocorrelation” ap-
plies when A4 and B coincide.) Interactions with the medi-
um included in the Hamiltonian H are responsible for the
“short memory” of the correlation functions. The Bloch
parameters 7; and 7T, were expressed by Bloembergen
(1948) in terms of the autocorrelation of the magnetic
field acting on a spin within the medium, evaluated in the
limit t—o. The point is that only the limit value
matters, regardless of the time dependence of the correla-
tion function, provided that the limit is approached ade-
quately within a time interval much shorter than is re-
quired1 for spin precession due to the externally applied
field.!

Let us note, finally, that correlation functions them-
selves constitute the centerpiece of studies that aim at un-
raveling detailed aspects of single collisions from the ag-
gregate dissipation that results from multiple interactions
with a medium. A typical example is afforded by the
analysis of optical line profiles which are represented
analytically by the Fourier transform of an autocorrela-
tion function, I(w)= [ dte ~**(z(t)z), where z indi-
cates the mean displacement of atomic electrons from
their average position. The “pressure broadened” profile
I(w) depends both on experimental and single-collision
parameters and on the averaging over the thermal param-
eters of the environment. Recent studies [Alford et al.,
(1983), Burnett et al. (1982), Klerber et al. (1983), and
references therein] have made considerable progress in
sorting out the effects of different origin.
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