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The author reviews in a pedagogical fashion some of the recent developments in lattice quantum chromo-
dynamics. This review emphasizes explicit examples and illustrations rather than general proofs and analy-
ses. It begins with a discussion of the heavy-quark potential in continuum quantum chromodynamics.
Asymptotic freedom and renormalization-group improved perturbation theory are discussed. A simple
dielectric model of confinement is considered as an intuitive guide to the vacuum of non-Abelian gauge
theories. Next, the Euclidean form of lattice gauge theory is introduced, and an assortment of calculational
methods are reviewed. These include high-temperature expansions, duality, Monte Carlo computer simula-
tions, and weak coupling expansions. A A-parameter calculation for asymptotically free-spin models is
presented. The Hamiltonian formulation of lattice gauge theory is presented and is illustrated in the con-
text of flux tube dynamics. Roughening transitions, Casimir forces, and the restoration of rotational sym-
metry are discussed. Mechanisms of confinement in lattice theories are illustrated in the two-dimensional
electrodynamics of the planar model and the U(1) gauge theory in four dimensions. Generalized actions for
SU(2) gauge theories and the relevance of monopoles and strings to crossover phenomena are considered. A
brief discussion of the continuity of fields and topological charge in asymptotically free lattice models is
presented. The fmal major topic of this review concerns lattice fermions. The species doubling problem
and its relation to chiral symmetry are illustrated. Staggered Euclidean fermion methods are discussed in
detail, with an emphasis on species counting, remnants of chiral symmetry, Block spin variables, and the
axial anomaly. Numerical methods for including fermions in computer simulations are considered. Jacobi
and Gauss-Siedel inversion methods to obtain the fermion propagator in a background gauge field are re-
viewed. Langevin, pseudofermion Monte Carlo methods, and random walk methods are discussed, as are
proposals for including the fermion determinant in computer simulations. Finally, spontaneous chiral sym-
metry breaking in lattice models is discussed. The review ends with brief remarks about present research
directions.
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I. INTRODUCTION AND OVERVIEW

The last two years have seen considerable progress in
lattice gauge theory (Wilson, 1974; Polyakov, 1975;
Wegner, 1971). The special features of this formulation
of gauge theory have been better understood technically
and it has been used as a calculational device to under-
stand some nonperturbative phenomena of quantum chro-
modynamics. We now have numerical evidence for con-
finement in SU(2) and SU(3) gauge theories (Creutz,
1980), chiral symmetry breaking in quantum chromo-
dynarnics (Hamber and Parisi, 1981; Marinari et al. ,
1981; Kogut et al. , 1982) and some rough, but encourag-
ing, meson and baryon mass calculations (Hamber and
Parisi, 1981;Marinari et a/. , 1981;Weingarten and Petch-

Reviews of Modern Physics, Yol. 55, No. 3, July 1983 Copyright 1983 The American Physical Society



776 Kogut: Lattice gauge theory approach to quantum chromodynamics

er, 1981; Weingarten, 1982). There are good reasons to
hope that in the near future precise calculations of the
properties of quantum chrom odynamics and related
gauge theories will be accomplished, and that the strong
interactions will be "understood. "

The lectures on which this article is based were intend-
ed as a pedagogical review of the developments leading to
these grandiose expectations. Not all the important topics
or contributions will be covered —there are simply too
inany. Rather, a few will be singled out and will be
presented in a rather detailed form intended for those
readers relatively new to the subject. It is hoped that one
can learn from this review. However, in order that we
may concentrate on recent, interesting developments in
quantum chromodynamics, I have omitted background
material on lattices and statistical mechanics. There are
reviews in the literature which might be consulted as in-
troductory material to the present lecture series (Kogut,
1979; Kadanoff, 1977). An acquaintance with elementary
facts, such as the correspondence between four-
dimensional statistical mechanics language and field
theory, the relevance of second-order phase transitions to
the existence and properties of the continuum limits of
lattice models, will be assumed here.

This review has the following structure: We begin with
a review of the asymptotic freedom of continuum gauge
theory. Asymptotic freedom is the special feature of
gauge theories which underlies most of the modern ad-
vances in field theory and the relation of field theory to
nature. The heavy-quark potential is calculated and the
Callan-Symanzik function derived. The idea of
"renormalization-group improved perturbation theory" is
introduced in this context. A simple dielectric model of
confinement is presented and special features of flux tube
dynamics are discussed. Next, lattice gauge theory is in-
troduced and its weak and strong coupling properties are
reviewed. These include the emergence of ordinary
Yang-Mills theory at weak coupling and confinement at
strong coupling. Then we turn to a more detailed look at
lattice theories and their calculated methods. Strong cou-
pling character expansions are introduced and illustrated
for the heavy-quark potential. Duality is illustrated for
the three-dimensional Ising Inodel, and the relation be-
tween interfaces and string models is discussed. Comput-
er simulation methods and Monte Carlo algorithms for
pure gauge (no fermions) theories are reviewed. The
Metropolis and heat bath algorithms are introduced and
discussed, and some critical remarks (and warnings!)
about finite lattice calculations are made. Finally, the A
parameters of asymptotically free models are introduced
and the mass scale determination in lattice gauge theory
calculations is discussed. Weak coupling expansions in
lattice models are illustrated in the SU(N)&(SU(N) spin
models in two dimensions. Next we take a more detailed
look at lattice string and flux tube dynamics. The
transfer matrix is introduced and the Hamiltonian form
of lattice gauge theory obtained. Flux tubes are discussed
in this context, and the notions of roughening and the
universal 1/R potential of the fluctuating string are ob-

tained in the continuum and on the lattice. The restora-
tion of rotational symmetry is illustrated in Hamiltonian
lattice gauge theory as the weak coupling, continuum lim-
it is approached. The next major topic concerns the role
of topological excitations on confinement. A two-
dimensional model with vortices is discussed, and the
compact version of lattice electrodynamics is analyzed in
terms of its topological excitations. Then SU(2) and relat-
ed non-Abelian lattice models are analyzed from this
point of view. The significance of monopole loops and
strings in crossover and confinement mechanisms is dis-
cussed and illustrated in analysis and computer simula-
tions. Topological charge is discussed in the context of
asymptotically free spin models in order to see when the
continuum idea of continuity is a good guide to lattice
physics and vice versa. The last third of this set of lec-
tures deals with lattice fermions. Free fields in 1+ 1 di-
mensions are discussed first, the species doubling problem
is illustrated, and its connection to continuous chiral sym-
metries is drawn. Different lattice fermion techniques are
introduced and their species doubling problems and chiral
symmetries discussed. The Euclidean "staggered" fer-
mion technique is developed in detail, with its remnants
of continuous and discrete chiral symmetries exposed ex-
plicitly. The idea of "block" fermion variables and ac-
tions is reviewed and the explicit lattice breaking of the
axial flavor-singlet symmetries is noted. Numerical
methods for studying lattice fermions and gauge fields are
reviewed. The emphasis is on the calculation of the fer-
mion propagator in a background gauge field configura-
tion. Exact Jacobi, Gauss-Siedel, and conjugate-gradient
iterative methods are reviewed. Then Monte Carlo,
Langevin, and random walk methods of calculating the
propagator approximately are given. Finally, some
current ideas on including dynamical fermion loops (fer-
mion polarization effects) in computer simulations, the
calculation of the ferinion determinant, are reviewed. The
final topic concerns chiral symmetry breaking in quantum
chromodynamics and related theories. Strong coupling
calculations and Monte Carlo computer experiments are
discussed. Some calculations of chiral symmetry breaking
in a wider context —in quantum chromodynamics at finite
temperature, in pure electrodynamics —are discussed as
examples where lattice methods can be applied to a wide
range of rich, nonperturbative phenomena. The review
ends with a brief look at present research directions.

Although it is impossible to predict the new topics that
lattice methods will grapple with in the near future, many
workers in the field share the opinion that both conceptu-
al and calculational improvements are needed to deal with
fermions. As discussed in the text, all of the lattice fer-
mion methods involve some compromise in basic princi-
ples. Left-right asymmetric theories cannot be treated by
present techniques, so symmetry breaking in weak in-
teraction theories cannot be studied by nonperturbative
lattice Inethods. This is a pity, since symmetry breaking
is so mysterious in these theories and is handled in such a
contrived, artificial fashion in most models of grand uni-
fied gauge theories. In addition, even in cases where the
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lattice fermion formulations are adequate, the computa-
tional methods are not very good. Computer simulations
with fermions present new problems which have been met
before in statistical mechanics and nuclear physics, but
have never really been mastered. If the present
enthusiasm for lattice quantum chromodynamics yields
new computational methods, there will be considerable
impact on other fields.

There is growing interest in using lattice methods to
study supersymmetric theories, gravity, etc. These topics
will not be studied explicitly in the text, because only pre-
liminary impressions are at hand. Although there are
many obstacles to such investigations —the lattice itself
breaks the dearest symmetries in these models —there is so
little known about these theories that any exploratory
method should be applied to them.

Perhaps it is safe to say that lattice methods have
taught us a great deal about the dynamics of pure gauge
fields and that there is good reason to hope that they will

yield an approximate solution of quantum chromodynam-
ics. In the long run, however, one hopes that lattice
methods will develop into a reliable tool for exploratory
field theory investigations and will shed light on the next
generation of problems in grand unification, cosmology,
etc. This hope underlies my interest in the subject.

II. NGN-ABELIAN DYNAMICS IN CONTINUUM
QUANTUM CHROMGDYNAMICS

FIG 1. Closed world line of a heavy quark.

asymptotically free (Politzer, 1973; Gross and Wilczek,
1973; 't Hooft, 1972) in a particularly transparent fashion.

To obtain the heavy-quark potential consider a thought
experiment. First, adiabatically separate a QQ pair to a
relative distance R. Then hold this configuration for a
time T~ ao. Finally, bring the quarks back together and
let them annihilate. The world line of the quarks is
shown in Fig. 1. The Euclidean ainplitude for the process
is the matrix element of the evolution operator
exp( HT) between t—he initial and final states,

A. Asymptotic freedom and the heavy-quark
potential

(i Ie HTIf)— (2.1)

To begin we consider the heavy-quark potential in per-
turbation theory (Susskind, 1976; Fischler, 1977). This
potential has played a singularly important role in lattice
gauge theory. Here we shall find that SU3 gauge theory is

l

Here Ii) and
I f ) represent a QQ pair a distance 8 apart

and H is the Hamiltonian of the SU3 gauge theory. The
evolution operator damps out in time and does not oscil-
late, because we are formulating the problem in Euclidean
space. Equation (2.1) can be expressed as a path integral,

(i Ie HTI f)=f [DA„'][Dc,][Dc,*]exp —S+ig f&„'J'„d"x DA @ Dc~ Dc e (2.2)

where S is the action of the SU3 gauge theory, J„(a= 1,2, . . . , 8) is an external current describing the world lines of the
heavy quarks, and the functional integrals run over the gauge field A& and Fadeev-Popov ghost fields c, . For the path
shown in Fig. 1, Eq. (2.2) simplifies to

(i
I
e If ) = f[»'„-](Dc.][Dc.*]exp S+ig(I) Az —,A, 'dxz Dc, Dc,* e (2.3)

where the contour C traces out the closed path of the fig-
ure. Since we shall meet such expressions repeatedly, we

give the numerator and denominator of Eq. (2.3) separate
names,

(2.4)

All this formalism will prove convenient when we

evaluate the amplitude for the thought experiment in per-
turbation theory. Since

I

i ) and
I f ) are identical and

since the process is static, the left-hand side of Eq. (2.4) is

simply

—v(R&T( ~

I f ) (2.5)

(2.6)

where P ("path ordered" ) reminds us that the order of the
operators is important and the (trl) accounts for the

and V(R) is the heavy-quark potentialt So, taking the
logarithm of Eq. (2.4) we have

T

V(R) = —lim —ln trP exp ig f3„' ,A;dx„—
T~cc T
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normalization of the initial and final states in Eq. (2.5)—
there are three colors and factors of 1/V 3 are needed to
normalize the initial and final states.

The quantity Z (J), or
g
—X. . 8{x)8
p jj -g —X"8{@8I

P IJ Po

trP exp ig fA& , A—;dx&
L

(2.7)

is the "gauge-invaria, nt loop correlation function" —the
Wilson correlation function (Wilson, 1974; Polyakov,
1975; Wegner, 1971)—which serves as an order parameter
for lattice gauge theories.

Now we turn to the perturbative calculation of Eq.
(2.6). We will use the Feynman gauge in these calcula-
tions. The perturbation theory rules are familiar, with,
perhaps, a few exceptions concerning the static quark
lines (Susskind, 1976; Fischler, 1977). Free sources are
described by the rules in Fig. 2. There i and j label the
color indices of the quarks. The interaction between the
static quarks and gluons are represented by the graphs in
Fig. 3.

New let's enumerate the graphs which contribute to
Eq. (2.6). To second order we have the single-gluon ex-
change term (Fig. 4). The fourth-order graphs are shown
in Fig. 5. Because of the noncommutativity of the ver-
tices, we must keep the first and second contributions,
Figs. 5(a) and 5(b), separate.

The second-order graph is

FIG. 3. Interaction vertices for a static quark (antiquark) and a

gluon in SU(3) gauge theory.

—,g'(Ib+Ie) . (2.11)

The integrals Ib+I, differ only in the 6 functions. But
obviously the 6 functions which organize the path order-
ing sum to unity, as illustrated in Fig. 6. So in the Abeli-
an model,

where each term corresponds to a graph in Figs.
5(a)—5(e). The 1/2! are counting factors —when one was

integrating over the sources the identical bosons would be
overcounted.

First let's do an Abelian model calculation of such
graphs, neglecting internal quark loops. The result will il-
lustrate the connection between the loop correlation func-
tion and the heavy-quark potential. Now the only
fourth-order effects are Figs. 5(a) and 5(b). There are no
noncommuting T 's, so these two graphs add trivially,

1—g trT T fdx„dy&D(x —y) (2.8) Z 1 +g2I + g4Ia (2.12)

where D(x —y) is a massless propagator and T =A, /2.
The 1/2! takes care of the overcounting when we integrate
over the entire source loop. Then we can call the integral
in Eq. (2.8) I, and write the result as

g tIT T Ia (2.9)

g4trT Tl'T&f i'&I

g'trT T I,
g4trT T If,

(2.10)

Similarly, the expressions for the other graphs in Fig. 5

are conveniently written by pulling out the group-theory
factors and coupling constant and leaving an integral over
the propagators behind,

1 g4t T T TPTPI
2l

and one can argue without difficulty that to all orders

g JfZ=e (2.13)

I,=T 1

4+A

Therefore, the heavy quark potential is

—lirn —lnZ =—1 g /4m

T T iR[

(2.14)

(2.15)

as expected.
Consider the vacuum polarization correction to the

Abelian inodel shown in Fig. 5(e). This graph is a correc-
tion to the photon propagator. The momentum space
propagators are shown in Fig. 7. The one-loop integral is

Below we shall compute the integral over single photon
exchange,

FICx. 2. Perturbation theory rules for a static quark and anti-
quark.

FIG. 4. Single-gluon exchange contribution to the heavy-quark
world line.
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q

jl
D ~{q~) = g „D(q )

(a) (b) (c) (d) (e)
FIG. 5. Fourth-order contributions to the heavy-quark ampli-
tude.

p-q

D(q ) I~„(q) D(q )

(Bjorken and Drell, 1964)

I„,(q) = ( —1)e J

FIG. 7. Amplitudes for single-gluon exchange and vacuum po-
larization.

Xtr y"(p+ m )y "(p q+ m )—
(p'+ m')[[p —q)2+m'] (2 16) to this order in perturbation theory. Note that

R -a(R)= — a (R)2
(2.21)Set m =0. The loop does two things —it renormalizes the

charge and it changes Coulomb's law,

1+—ln(q /M ), a=

(2.17)

Fourier transforming to configuration space, we get
—R a(R) =P[a(R)]

to this order. The minus sign in Eq. (2.21) ineans that as
R increases the effective coupling decreases. The physical
reason for the sign is screening —the effective charges of
the static heavy quarks are decreased by vacuum polariza-
tion (Fig. 8).

One writes with greater generality,

1 — ln(R /a) (2.18)

a
1

2a
1 (R/ )

a(R)
R 3m R

(2.19)

where M =1/a is the ultraviolet cutoff parameter. To
make sense of this result —the dependence of the coupling
on a cutoff—we inust appeal to the renormalizability of
quantum electrodynamics and recall that order by order
in perturbation theory the cutoff dependence in the poten-
tial can be absorbed into a redefinition of the coupling
constant. The coupling constant then becomes an uncal-
culable parameter which in principle must be fitted to ex-
periment. To do this we make a renormalization
prescription: at R =a, V(R) =a/R should have a speci-
fied value. One still measures the potential relative to
Coulomb's law,

28(a) — a+
3m

(2.22)

(2.23)

as depicted in Fig. 9, where the arrow indicates the move-
ment of a(R) as R increases. So, with a set on one-length
scale, the theory has smaller effective couplings on larger
scales —in this sense the theory is "infrared stable. "
Quantum fluctuations are relatively unimportant at larger
length scales and classical physics works well. Of course,
the same cannot be said of the ultraviolet!

Now let us return to the non-Abelian calculation. Con-
sider the non-Abelian character of graphs in Figs. 5(a)
and 5(b). We use the notation tr~tr/trl to accommodate
the denominator in the expression for the loop correlation
function. Since

a(R) =a(a) — a (a)ln(R/a)3' (2.20)

and the effective, or "running, " coupling constant de-
pends on the physical length scale R,

for SU(3), graph a can be written

g trT T T~T—~Ib —— (g trT T ) Ib—
21 2!

(2.24)

This cannot be done for the graph in Fig. 5(b)—the non-
Abelian character plays a role here. But the sum is as fol-

I 2
0

FIG. 6. Two-gluon exchange graphs.
+

FIG. 8. Screening of charged impurities in ordinary matter.
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lnZ=g'trT T [I,+ ,g—'I,+ , g—'Id+g'(I,+If)]
(2.31)

Now we will do the integrals. We need do them well
enough to extract the term linear in T. Terms which do
not grow this rapidly with T nd effects—will be dis-
carded immediately.

Consider the integral in Fig. 4. The Euclidean integral
is easy to estimate:

FIG. 9. The Callan-Symanzik function for electrodynamics.

I~ =
2 fdx p dip D (x —Jp )

1 T/2 dt
~ dt2

4~2 —T~2 t —t '+R' (2.32)

lows:

(a)+(b)—:—g tr(T T T~T~)(Ib+I, )
1 4

2I

(2.25)

If we use the fact that Ib+I, =I„we can isolate the
"Abelian-like" part of the calculation,

(a)+(b)= —(g trT T~) (I, )2

where the —, was absorbed by the two terms shown in Fig.
10. The last two sketches in that figure give integrals
which have no R dependence and are dropped. The
remaining integral is simply

I~ —T 1

4~ fR/
(2.33)

(2)= fdt~dt2dt3dt„
(4~ )

Next we need I, . There are three distinct types of
graphs shown in Fig. 11, labeled (1), (2), and (3). Note
that (1) has no R dependence so we can ignore it, and

But

+ g'trr [T~—, T ]Tf'I, .1

2f

trT. [T~,T.]TI'= ,
' «[Tf', T ][-T~,T ]

fA Yf&YtrTFTl"''

(2.26)

(2.27)

6(t2 —r3)6(r, r,)—
X

[«3—t. ) +R ]2 2 2

Integrate first over t4,

Tn dt4

(tg —r ) +R

(2.34)

(2.35)

Since f~rf ~r =35rr we have

+ —,g trT TI+ —,g trT TId

+g trT T (I, +If) (2.29)

(a)+(b)= (g'trT T )'I—,'+ ,g'trT T I, —
2l

(2.28)

Collecting everything, we have

Z =1+g trT T I, + (g trT T I, )—1
a

Now change variables, ~ = t2 —t3, o.= t I
—t3, and

t ]
—f2 =0 —v. TheI'efore,

2=-'-— dt3l& dO.
(4' ) & r —o~

4 T fd d 6(r)6( —o)
4~ 4vrR

where f dt3 ——T. This integral has a logarithmic diver-

gence when r —o
~

~0. Cut it off by requiring

~

r —o.
~

& a, a temporal lattice spacing. It also has an in-
frared divergence when

~

r —o
~

~ oo, which is cut off by
T, the total time of the process. To leading logarithmic
accuI'acy,

where we have simplified the graph of Fig. 5(c) with the
algebra

1 T
(2)=—— —ln( T/a)~2 4~A

(2.37)

,'g'tr[T, Tf']T&f ~rI, —

'g'f I'~f »trT~T&I-„

e

+ +

To obtain the potential to 0 (g ) we need lnZ,

(2.30)
FIT&. 10. Contributions to single-gluon exchange in a loop
corI elation function.

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983
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FIG. 11. Contributions to double-gluon exchange.

This looks like'a catastrophe! We expected V(R)T, not
T lnT. The next graph, however, cures the problem:

(3)= — dt, dt2dt3dt4
4m.

e(t3 t / )e(t2 —t4)—
[(t,—t, )'+R'][(t, —t )4'+R']

(2.38)

where the relative minus of (2) and (3) occurs because
there is one coupling between the source and antisource in
(2) and two such couplings in (3). The calculation is simi-
lar to (2), but there are no ultraviolet divergences —R
plays the role of the cutoff, as is clear from the expression
above. lnT occurs, however, for the same reason as in (2).
So

FIG. 12. The triple-gluon vertex.

g 10 3trT T
2 3 4~R

(2.41)

The most important feature of this result is that it has the
"wrong" sign -wpposite to QED!

Collecting everything, we get

propagator. Calculating the graph shown in Fig. 13, one
finds (Hughes, 1979)

(3)=—1 T -ln(T/R)
~2 4m.R

and the sum is

(2)+(3)= In(R/a)1 T
~2 4mR

(2.39)

(2.40)

V(R)= —— g +— ln(R/a)trT T 22g
4m'R 16m

And we identify a running coupling constant,

g (R)=g (a)+ g (a)ln(R/a)22 4

16m.
(2.43)

The lnT's have cancelled and the answer has the correct
structure. The ultraviolet divergence signals coupling
constant renormalization, as we shall see.

The cancellation between (2) and (3) can be understood
physically —the real source of radiation in Fig. 11 is a
color singlet dipoIe, while each graph (2) and (3) records
the radiation from an unscreened source or antisource. If
the color source were not a singlet, the lnT would persist
and mean that the system could radiate long-wavelength
gluons copiously.

The infrared finiteness of the heavy-quark potential il-
lustrates a more general result. Detailed analyses of spin
models which have a global continuous symmetry group
have shown that correlation functions which are group
singlets are infrared finite to all orders in perturbation
theory (David, 1980). The local gauge invariance of the
loop correlation function is believed to render it infrared
finite in a similar way.

Next consider Id. Recall the triple-gluon vertex in the
Feynman gauge. The sources are purely timelike
(@=a=v=0), which imples that the vertex vanishes
identically. This graph, shown in Fig. 12, does not con-
tribute to the heavy-quark potential!

Finally, consider I, . This is very special to the non-
Abelian theory. It is another modification of the gluon

and a Callan-Symanzik function (Callan, 1970; Symanzik,
1970),

P(g) = —R g (R)= —— g (R)+11
16m'

(2.44)

FIG. 13. Gluon polarization contribution to the quark loop am-
plitude.

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983
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The minus sign in Eq. (2.44), depicted in Fig. 14, implies
that ihe theory becomes more strongly coupled at larger
distances than classical estimates would have suggested.
This suggests that confinement is a possibility in such
theories.

Why, physically, is Yang-Mills asymptotically free?
The special graph was gluon vacuum polarization (and its
Fadeev-Popov ghost partner) (Fischler, 1977). It has the
opposite sign to fermion (or spin-0 boson) vacuum polari-
zation. Only spin-1 gluons have this property (Coleman
and Gross, 1973). The only renormalizable, asymptotic
freedom field theories in four dimensions are non-Abelian
gauge theories. They probably play a very special role i~
nature.

B. A dielectric model of confinement

We have understood the sign of fermion vacuum polar-
ization as screening. So, the sign of gluon vacuum polari-
zation is due to "antiscreening. " It is amusing and in-
structive to make an antiscreening model of confinement
(Kogut and Susskind, 1974; Lee, 1981, Chap. 17).

Recall static electricity and magnetism in a polarizable
material (Landau and Lifschitz, 1975). There is a dielec-
tric constant c and in ordinary electricity and magnetism,
there is a strict inequality e) 1 (a= 1 for the vacuum).
Static electric and magnetic effects are described by 0,
the displacement vector, E, the electric field, and P, the
polarization vector Put .static impurities of charge q into
the systein. They are the sources of D, V.D=4~q5(x).
The medium responds to the impurity and screens it in
part. Dipoles form in the material; their density is —P.
The net E field is E=D—4n. P. The response of the
medium may be linear, so P ~ E, and E is less than it oth-
erwise would be. This is written E=D/e, e) 1, and s is
the "dielectric constant" characterizing the material.

To model quantum chromodynamics we might imagine
e(1 and perhaps almost zero, say. If we place a small
test charge 5q )0 into this medium, antiscreening charges
come in as shown in Fig. 15. But the antiscreening
charges repel one another, so a hole of vacuum (e= 1) ap-
pears around the 5q (Lee, 1981)! The size of the hole will
depend on 5q and the detailed properties of the vacuum.

Note that this is completely different from quantum

FIG. 15. Antiscreening in a dielectric model of confinement.

electrodynamics with c, & jk. Then the screening charges
can move onto the positive impurity and the net canceBa-
tion of charge allows the hole to shrink to zero (Fig. 16).
Thus in the electrodynamics of materials,

5q ~ dE 5q/e~
4m.r 4mr

(2.45)

and there is no hole —just a Coulomb field of attenuated
field strength.

Let's make the e & 1 case more quantitative (Lee, 1981).
Let us choose to consider 5q ~0 again and suppose a
spherical region of "vacuum" occurs around it, as shown
in Fig. 17. Then, in the two regions,

11181de

4mr

outside

5q 5q/e
4mr 4~r

d T
W, i

———,[(5q) /e —(5q) ) f z 4(4ir) r

(2.46)

where 8 is the radius of the "hole." There is also the en-

ergy change of the material —the appearance of a hole

Recall that the energy density in the material is —,D.E.
Inside the "vacuum" region the energy density reduces to
the vacuum answer; outside it is scaled down by 1/e. The
electrical energy of the configuration relative to the vacu-
uHl Is

FIG. 14. The Callan-Symanzik functions for QCD (ultraviolet
stable, infrared unstable) and QED. FKx. 16. Screening in an ordinary material.

Rev. Mod. Phys. , Vol. 55, No. 3, Jufy 1983



Kogut: Lattice gauge theory approach to quantum chromodynamics 783

Vacuum Medium

FICx. 17. An idealized model of antisereening.
FIG. 19. A heavy meson in a confined quark model.

costs a constitutive energy proportional to the voluine of
the hole. The surface of the hole can also cost additional
energy,

4m R' p+(4mR')~+
3

(2.47)

if e is very small, and the surface tension o vanishes.
So, in this model the energy of the isolated quark ap-

proaches 00 as a~0. The c dependence here is trivial to
understand. W, ~

—1/sR and W„„,—R, so I /eR, q-R~, where the two curves cross. Therefore,
R~ -( I/e)'~ . Since Wq, ~, -R and W,&

—I/eR, we
have W(R~ )-( I /e) ~ .

As a~0, the physical sector of the theory will consist
of only zero-charge states. Consider a QQ pair. Since D
lines flow from source to sink, we can make a finite ener-

gy field plus vacuum configuration by confining the flux
in a tube (Fig. 19). Since the system is neutral, there is no
divergent energy from fD Ed r. In the lowest energy

where p, 0., etc., are positive constants. The equilibrium
configuration of electric and material energies is deter-
mined by minimizing the total energy 8'e&+ 8'q, ~,

——S'.
Look at 8' graphically in Fig. 18. It is easy to minimize
W and find

' 3/4

W(R, ) =— (4mp) ~4 5q 1/4

3 2c

configuration a hole forms again. As the QQ are separat-
ed, the flux must flow between them. Because of the
one-dimensional geometry of the tube (Fig. 20), the QQ
feel a linear confining potential.

Note that in the bound state the Q and Q experience
finite forces of a conventional strength —they move quasi-
freely, but they are confined. This is called "soft
confinement" —the concept is compatible with the ideas
of the naive quark model, the successes of the parton
model, etc. When we turn to theories of quarks, we pass
from Abelian charges to SU3 color. The idea of "neutral"
goes over to group "color" singlet. For SU3 we can have
color singlet states of finite energy, while color nonsing-
lets are confined. Q'Q' is a singlet, 3X3=1+8, and
e,s,Q'QbQ' is a singlet, 3X3X3=1+8z+Ss+10.
These operators can generate meson and baryon states,
respectively, in a naive quark model (Fig. 21).

C. Renormalization-group improved perturbation
theory and the heavy-quark potential

Now let's return to our perturbation theory calculation
of the heavy-quark potential and improve it with the re-
normalization group (Gell-Mann and Low, 1954). The
analysis that follows illustrates a very general methodolo-
gy (Wilson and Kogut, 1974).

The heavy-quark potential as we calculated it has the
functional dependence

V(R, a,g) (2.48)

hole

e
FIT&. 18. Total energy for a static impurity in the dielectric
model of confinement. FICx. 20. A flux tube.
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Q=

FIG. 21. A meson and baryon in an SU(3) string model.

But we can imagine fixing V at a certain physical length
scale. Then, if we change the cutoff a, V must remain
fixed, since it is, after all, a real, physical energy. This
means that g must depend on a in a precise way. We re-
quire that

a —P(g) V(r, a,g) =08
Ba Bg

(2.51)

log(a /ao) in each order of perturbation theory would gen-
erate a geometric series. The renormalization-group argu-
ment shows how such a tedious calculation must organize
itself in a sensible, renormalizable theory.

g (a) is the relevant measure of interactions at length-
time scales of approximately a (measured in units of ao).
Let s illustrate this point by using the renormalization-
group idea to calculate V(R,a,g) to leading logarithmic
accuracy in R. We had the renormalization-group equa-
tion,

a V(R, a,g) =0d

Writing out the total derivative gives us

(2.49)
But, by dimensional analysis, RV(R) depends on a only
through R/a, so

a (RV)= —R (RV)
a a

Ba M
a +a V(R, a,g) =08 Bg 8

Ba Ba Bg
(2.50) R 2

BR
(2.57)

a —P(g) V(R, a,g) =0a a
Ba Bg

(2.51)

Also,

trT T 22g4' (2.52)

But recall that —a Bg/Ba =p(g) (Callan, 1970; Syman-
zik, 1970), so we have

r

Substituting into Eq. (2.51) gives

—R V —R V—P(g) R V=O
aR ag

(2.58)

This is the result we wanted —it states that changing R
and changing g are related (for given a).

It is convenient to use dimensionless parameters —scale
R with a parameter A, and consider V(AR, g, a). Equation
(2.58) then becomes (Fischler, 1977)

So substituting this perturbative result into the renormali-
zation group equation (2.51), we get

+p(g) V(AR, a,g) = —V(AR, a,g)
Bg

(2.59)

22g —P(g)2g —0+
16~

(2.53)
The solution for Vis nicely expressed in terms of the run-
ning coupling constant. let

where the ellipsis in Eqs. (2.53)—(2.55) represents terms of
higher order. Therefore,

g (A, ) = —p[g (A, )]
a

(2.60)

p(g)= —,g +11
16m.

(2.54)

8 11 g3+ o e ~

8 lna 16~

This equation can be integrated:

(2.55)

1 1 1

go

11
ln(a /ao)

16m

which determines the rate of change of g with the cutoff
a,

V(AR, g,a)= —V[R,g(A, ),a], g(A, )
~ & i

—g
1

(2.61)

solves Eq. (2.59), as is easily checked. This equation
shows how a change in the physical length scale can be
absorbed in a change in the coupling constant.

An explicit one-loop expression for g (A, ) is

8 11
g = g ~g2(A, ) =

16m' 22
g ink,

16m

g (a)=
2

go
22 21 — go ln(a /ao)

16m

(2.56)
(2.62)

Now we can obtain the renormalization-group improved
V(R,g,a). If we take our renormalization condition to be

We recognize the Taylor-series expansion of the numera-
tor as our explicit perturbation theory calculation im-
proved to arbitrary orders in go. The renormalization-
group argument has summed up the "leading logs"—if
we calculated to higher order, the highest powers of

V(a,g, a) =— g
1

4m.a
(2.63)

and if we choose A, =R/a and replace R by a in the
renormalization-group equation (2.61), we have
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V(R,g, a) = V[a,g (R /a), a]1

R a 1, 1g2(R/a) = g (R/a)
R/a 4ira 4nR

1

4irR
1

22 zl (R/ )2g

U (n) = exp iB (n);

FIG. 22. The gauge degree of freedom on a lattice link.

So, the running coupling constant enters the potential as
the strength of Coulomb's law to all orders in perturba-
tion theory. We have also recorded the one-loop result in
the last line of Eq. (2.64).

We now see
(1) The physical significance of the running coupling

constant.
(2) Asymptotic freedom as a physical effect, i.e., as

R/a~O,
1 16ir /22

4m.R ln(R/a)

vanishing slightly faster than Coulomb's law.

III. LATTICE GAUGE THEORY BASICS

Now we will review SU(2) lattice gauge theory. I as-
suine that everyone has some familiarity with this subject.
Past reviews (Kogut, 1979; Kadanoff, 1977) contain intro-
ductory material.

The discussion will stress several basic properties of the
theory. SU(N) lattice gauge theory's basic building
blocks are SU(N) group elements which are assigned to
the links of a hypercubic lattice —a discrete form of
space-time. In the path integral formulation of the model
these variables are freely integrated over. Since the group
volumes are finite, such integrals are well defined and
have simple invariance properties. This feature of the
theory is crucial to its conceptual simplicity. For exarn-

ple, it allows gauge invariance to be stated precisely in the
full fluctuating theory. In this sense it is simpler and
conceptually clearer than the weak coupling perturbative
formulation based on the Lie algebra of SU(N). The
theory's formulation in terms of group elements underlies
its well-defined strong coupling, confining features, as
well.

The idea of local gauge in variance can be stated
elegantly on the lattice. It serves several purposes. It dic-
tates the form of the interactions in the theory much as

I

local gauge invariance does in the classical continuum
theory. Using local gauge invariance and requiring locali-
ty of the interactions, one can invent lattice actions whose
classical continuum limits reproduce the Yang-Mills
theory (Yang and Mills, 1954) and whose strong coupling
limits confine quarks. The demonstration of these two
points constitutes the core of this section.

Let us consider a four-dimensional hypercubic Euclide-
an lattice with spacing a. On each link we place an SU(2)
matrix, as shown in Fig. 22,

U„(n) =exp[iB„(n)] (3.1)

U ~(n +p)—:Up '(n) (3.2)

The [U&(n)],J are SU(2) rotation matrices. One can
imagine a color frame of reference at each site. Follow-
ing Yang and Mills (Yang and Mills, 1954), we will re-
quire that the orientation of the frames in color SU(2)
space be locally arbitrary. A rotation in color space can
be done at each site with an SU(2) matrix,

G [X(n)]=exp[ i , r X(n)—]—. (3.3)

The theory will have a local gauge invariance, and under
a gauge transformation,

U„(n)~G(n)U~(n)G '(n +p) (3.4)

which we recognize as the simplest local generalization of
a global SU(2) invariance —a rotation is applied to the
SU(2) axes, and SU(2) matrices undergo a similarity
transformation. Note the n and n +p in Eq. (3.4) and the
local character of the invariance group. Writing out the
transformation law with indices, we get

where B&(n)= , age—;A&(n)= , age. A&(—n). Each link car-
ries a direction, (n, p) with @= 1, 2, 3, or 4. If we denote
a link in the backward direction, we associate with it

U~ (n),

[Up(n)]~f ~yIexp[ —i, & X(n)]Igk jexp[&, &'X(n +p)] j //[Up(n)]ki
kl

(3.5)

Now we need an action which incorporates this local
symmetry. A little thought indicates that the action
should be built out of the products of U matrices taken
around closed paths. These quantities are locally gauge
invariant because the SU(2) color indices are then all con-
tracted into local group singlets. We know that pla-
quettes, elementary squares, are the most local closed con-

I

tours, so a candidate lattice action is (Wilson, 1974; Po-
lyakov, 1975; Wegner, 1971)

S=— g trU„(n)U„(n +p)1

2g npv
XU „(n+p+v)U „(n+v)+H.c.

(3.6)
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What is the physics of this model? Let's check that where trF„„=O,because tr(generator) =0. Finally,

(1) Its classical continuum limit (a~O) is ordinary
Yang-Mills theory.

(2) Its strong coupling limit confines quarks.

trF& ——tr[ —,~;(B&A„'—B„A&—gek&A& A„)]

X [ , rg —(d~A„'—B„A~ —gek pi A~ A„] (3.16}

With these results we will have a cutoff, finite, gauge-
invariant formulation of gauge fields which can be used
to study the theory for all a and all g.

To take the classical limit, we Taylor expand the slowly
varying fields Bz(n) appropriate to a long-wavelength ap-
proximation,

t rF~ „=—(~~A„—~„A~ —g (3.17)

which is the square of the gauge-covariant field strength
tensor. Now the action becomes

where we used [w;,vz]=2ie, jkrr, Next, we recall that
trr;~~ =25.;~, so Eq. (3.16) becomes

8„(n +p) -=8„(n)+aB„B„(n)+0(a )

8 „(n +@+v) = B„(—n +v)
—= —[8&(n)+aB„B&(n)]+O(a )

8 „(n+v)= —8„(n)

Then
iB i (B„+aBB„) —i (B +aB„B ) iB

(3.7)

(3.8)

d4X

2g Q

+O(a )

where we replaced

x-f,. x
n, pv

(3.18)

(3.19)

Now we use the operator identity,

e "e~=exp(x +y+ —,[x,y]+ . ) (3.9)

and where a 2 has appeared from the Hermitian conju-
gate. Collecting everything, we find

So,

UUUU =exp( i (8& +8„+a d„B„) , [B&,B„—])—
X exp( i (8„+8—„+aB„B&) —, [B&,B,])—

S= ~ J d x(Fq„)

where

Fpv =QpAv avdp gc Ap Av

(3.20)

(3.21)

—:exp(ia (B&8„B„B&—) —[B&,B„]) (3.10)

So,

Bp(n) = , agr;Aq(—n):agAp(n)—

Ap(n):——,r A(n)
(3.11)

ia 2gF
UUUU—=e (3.13)

with corrections in the exponent higher order in a .
These corrections will not contribute in the classical con-
tinuum limit. For smooth, classical fields we look at exci-
tations having long wavelengths compared to a, so

ia(dqB„B,Bp) —[Bp,B ]=ia—g [BpA„—B„Ap

+ig [A&,A„]j . (3.12)

We identify the conventional Yang-Mills field strength
F&„here. So

trP exp ig fA& 2
A;dxI' (3.22)

which is the usual Euclidean action of classical Yang-
Mills. This result evokes several remarks:

(1) The final result is Euclidean O(4) invariant! Where
has the difference between the cubic invariance of the
original action and the O(4) invariance of the classical
continuum limit gone? Into the higher-order a terms!
Those operations are classified as "irrelevant" —they do
not affect the continuum limit (Wilson and Kogut, 1974}.
This underscores the fact that we have much arbitrariness
in the construction of lattice actions one must simply
engineer them so that the correct continuum limit occurs.

(2) The final result involves F&„, the standard gauge-
covariant field strength tensor of Yang-Mills. The local
invariance built into the lattice action guarantees this.

Now let us consider the opposite extreme of the
theory —the strong coupling limit. Is it characterized by
quark confinement? As we reviewed in the first section,
the loop correlation function

a gFp «1
and we can simplify the trUUUU further,

(3.14)
is directly related to the heavy-quark potential. On the
lattice this operator becomes

tr UUUU —= tre
ia2gF „

ff U„(n), (3.23)
=tr(1+ia gF„„,a g Fz„+ —. )—

4 2=tr1 ——a g trF& J.. .
2 (3.15)

where c denotes a closed contour of links. We should cal-
culate

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



Kogut: Lattice gauge theory approach to quantum chromodynamics 787

(3.24)

where we are denoting the integral over the SU(2) group
on each link generically. In fact, it is the invariant Haar
measure which has the properties (Wilson, 1974; Po-
lyakov, 1975; Wegner, 1971),

l

in Sec. II, we find

V(R)=cr
~

R
~

and identify the string tension at strong coupling

(3.29)

f [dU]=1,
U U = dU UOU

(3.25)

where Uo is an arbitrary element of the group and f is an
arbitrary but sensible function.

To evaluate ( Q, U&(n) ) at strong coupling,
P=g && I, we can write

cr = lng + . (3.30)

In a later section on calculational methods I will indi-
cate how this calculation can be improved and pushed to
higher orders.

In Sec. II we obtained Coulomb's law modified by loga-
rithms in perturbation theory. In the language of this sec-
tion that result reads

—S ~ —P trUUUU (3.26)
(~)l 4 TT4 If Ia!—

C

(3.31)

where Q denotes a product over plaquettes and we can
expand the exponential. This leads us to integrals of
products of U matrices. To obtain the leading strong cou-
pling behavior of ( g, U&(n)) we need only two in-

teg rais,

[dU]U;i ——0

(3.27)

f [dU]UJ Ukt =
2 4&,k .

The first integral is zero, since the integrand has no
group-invariant piece—U J transforms as 2 &(2. The
second integral is also easy to understand. The product of
Kronecker symbols is determined by group invariance,
and the normalization factor —, follows from the unitary
character of each U matrix.

Now the leading behavior of ( Q U&(n)) is easy to
find. We must expand the factor gee ~" on each

plaquette until the minimal area enclosed in the contour C
is "tiled" once! Consider a 2X2 contour, Fig. 23, for il-
lustration. The inner plaquettes in the figure indicate the
factors p tr UUUU obtained from the expansion of
Q e ~" . Consider link 1. We have the integral

P

f UgqUp [dU]= , 5g~5jp . —

Calculating it, we are left with integrals over the remain-
ing links, as shown in Fig. 24. Continuing to the other in-
tegrals, we find, finally,

where a =g /4m. . Another possible behavior for the loop
integral correlation function is the "perimeter law, "

(3.32)

Then

(3.33)

for large R. Clearly the underlying physics of this possi-
bility is short-range finite forces between the quarks. The
quarks can propagate freely in this case.

The loop correlation function is the order parameter for
pure gauge theories. The "area" law labels a disordered
phase "learly the U matrices are strongly disordered in
the strong coupling calculation illustrated above. By
comparison, the "perimeter" law labels an ordered phase.
The loop correlation function will reappear regularly
throughout this review.

What about other matrix elements? For example, it is
natural to ask whether ( U&(n) ) is an interesting quantity.
However, if ( U&(n) )&0, the theory would be spontane-
ously breaking gauge invariance. Is this possible? Can lo-
cal symmetries break down spontaneously? Only global
symmetries which act on an infinite number of degrees of
freedom in a thermodynamic limit can break down spon-
taneously in systems with local coupling among ordinary
degrees of freedom. In fact, there is a theorem by S. El-
itzur which states this result quite rigorously (Elitzur,
1975). Thus gauge-Uariant operators like U&(n) or

= exp( —lng &&Area),

(3.28)

where N, is the number of plaquettes —its "area" mea-
sured in dimensionless units —in the minimal surface
determined by the contour c. If we take a rectangular
contour of width R and length T and use the relation be-
tween the potential and the correlation function discussed

. j)) (X
I

FICx. 23. Strong coupling graph for a 2 &2 heavy-quark loop.
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plications of the strong coupling calculations will be con-
sidered from time to time in the remainder of this article.

We consider a generic lattice gauge theory

S= +Pd X(U, )= QS, , (4.1)

FIG. 24. Same as Fig. 23 after one-link variable integration.

where g is the real part of the character of U& in a faith-
ful representation of the gauge group 6, dz ——X(1) is the
dimension of that representation. Since e is an invariant
function of U~, we can write it in a character (generalized
Fourier) expansion (Balian et ol., 1975),

U„(n)U, (n) have vanishing matrix elements and are not
interesting. We will not consider them further.

IV. CALCULATIONAL METHODS FOR THE LATTICE
GAUGE THEORY

S
e

e '= exp[Pdz 'X(U~)]= gc, (P)X (Up),
(4.2)

A. Euclidean high-temperature (strong coupling)
expansions

The simplest high-temperature (P small) expansion for
SU(2) gauge theory illustrated in the preceding section
can be generalized and made into a systematic, useful tool
for gauge theories. I will develop these expansions here
and illustrate them for the planar loop correlation func-
tion of Ising lattice gauge theory in three dimensions.

The method begins by exploiting the group invariance
of a theory s partition function to reorganize its tradition-
al high-temperature series using character expansions.
The ideas of connected and disconnected graphs can be
stated precisely, and diagrammatic rules for connected
matrix elements can be given. These results resemble the
cluster expansions of classical statistical mechanics and
Feynman diagram expansions of field theory (Wortis,
1974). However, since the products of U matrices do not
satisfy a simple generalization of Wicks theorem —i.e.,
the expectation value of the product of several U matrices
is not just the sum of products of expectations values of
products of U matrices taken two at a time —the proofs of
the general properties of these expansions are rather ela-
borate. For example, the proof of the extensive character
of the expansion for the free energy requires more tech-
nology than the equivalent proof in weak coupling contin-
uum perturbation theory. For that reason, we will not
venture into proofs, but will illustrate their ingredients by
example.

One should be aware of the vast literature on this sub-
ject. Rigorous proofs giving lower bounds on the radii of
convergence of the high-temperature expansions of vari-
ous matrix elements in various models exist (Osterwalder
and Seiler, 1978). Such proofs usually rely on two crucial
properties of the lattice theories: (1) upper bounds on the
rate of growth of the number of graphs with the order of
perturbation theory, and (2) the boundedness of the ma-
trix elements of products of U matrices. Once domains of
analyticity have been determined, the expansions can be
used in practical calculations which search for phase tran-
sitions, crossover phenomena, etc. These less rigorous ap-

where the sum v extends over the set of nonequivalent ir-
reducible unitary representations of the compact group G.
Using the orthogonality relations of group characters, we
discover the expansion coefficients to be

c„(P)= J [dU]X, (U ')e ' (4.3)

U=uo+iu rr,
l

u.o I
+ lul =1 (4.5)

U= cos(P/2)+i sin(P/2)n o . (4.6)

So,

S~ =P cos(P/2) .

The character in the jth representation, UJ ——e'

~+I; p sin(2j+ l)p/2
sing /2

(4.7)

(4.8)

and the group measure depends on P/2, as

[dU]=dg( sin —,P) /n. , 0(P (2m. .

So, the coefficients of the character expansion are

1 y2~d (
. i ~)2 sin(2j+1)P/2

J 0 2
sing /2

P cog/2

(4 9)

=2(»+1)P-'I»+, (P), (4.10)

where we have identified the integral representation of a

This formalism is useful, because the simple properties of
the characters X„(U~ ) help us when computing matrix
elements.

Some simple character expansions are
(1) Zz. S~ =po(p). Since cr(p) =+1, the character ex-

pansion is obvious,

exp(S~ ) = coshP+ sinhPo. (p) . (4.4)

(2) SU(2). Now S&
———,p trU&. We can work out every-

thing explicitly without using sophisticated group theory
analysis. In the fundamental representation a link vari-
able U can be parametrized as
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modified Bessel function.
Since we usually want only ratios of Z's to compute

matrix elements, it is convenient to write for Z2
S

e ~~1+ tanhpo (p)

occurs when the plane is "tiled." It contributes

( tanhP )

In general, we expect

(4.13)

and for SU(2) (4.11)
(4.14)

e '~1+ g (&j+1) XJ[U(p)] .S I21+i(p)

j+0 1

Notice that for small p, tanhp —p and

Iq&+ i (p ) /I & (p ) —p, so these expressions give high-
temperature expansions. The expansion coefficients are
tanhp and I2&+i(p), respectively. Further, expanding
tanhp and I2J+ &(p)/I&(p) in powers of p gives the old-
fashioned high-temperature expansions. Sometimes using
tanhp or I2J+i(p) as an expansion parameter gives a
more useful, better behaved series (Samuel, 1980-
character expansions are studied systematically here).

Let's look at the string tension in Z2 gauge theory in
three dimensions as an illustration (Miinster, 1981). Con-
sider the loop correlation function g, o in Fig. 25. We

compute several terms in its small-p expansion from the
expression

(4.1S)

Next we meet graphs in Eq. (4.12) which involve more
than the minimal number of plaquettes. The simplest
such graph is shown in Fig. 26. It involves four more
plaquettes than the minimal surface. The "house" in the
figure can occur on either side of the sheet (factor of 2)
and it can occur in RT positions on the sheet. So this
class of graphs contributes

2RT tanh P(tanhP)

Vhth two houses on the sheet,

(4.16)

where a is the string tension and where o.' is the excess
free energy per area due to the presence of the quarks.
So, to leading order,

o- = e~' ~ e~
C C

—(2RT)(2RT —6)tanh P(tanhP)
21

(4.17)

= g + [1+tanhpo(p)] g cr(l)

X g + [1+tanhpcr(p)] ' . (4.12)

The leading term in the small-p expansion of Eq. (4.12)
I

where the —6 counts the "excluded volume" —given one
"house" on the sheet, the second "house" is excluded
from six positions. Summing the leading terms of this
class of graphs of n nonoverlapping "houses" on the
sheet, we get

(tanhp)&T 1+2RT tanh'ip+ —(2RT tanh4p)2+ =e&nta~&&Te2~an& &&T1 4

2l
(4.18)

FICx. 25. A rectangular heavy-quark loop.
FIG. 26. Fourth-order contribution to the heavy-quark loop.
The "house" lies on the sheet.
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So, through this order,

a = —lntanhP —2 tanh P . (4.19)

We shall have to account for the excluded volumes [the
factor —6 in Eq. (4.17)] in this set of graphs when we
compute higher orders! In connected graph expansions
these excluded volume effects are incorporated directly
into the calculational rules (Miinster, 1981).

Now consider tanh P graphs. We cannot neglect the
denominator, which behaves as

1+V tanh'P (4.20)

from the graphs shown in Fig. 27. Vis the volume of the
four-dimensional lattice. In the numerator,

(tanh P)( V—2AT)(tanhP) (4.21)

where —2RT is an excluded volume effect—the free cube
avoids the minimal surface. But there are also rectangu-
lar houses on the sheet (Fig. 28) which contribute to the
same order:

FIG. 28. Sixth-order connected graph.

2[2KT tanh P(tanhP ) ] .

So, in the numerator,

(tanh P)( V+2RT)(tanhP)

(4.22)

(4.23)

a = —ln tanhP —2 tanh P —2 tanh P . (4.25)

Now for eight order. The graphs are shown schemati-
cally in Fig. 29. The first graph is the excluded volume
effect which we ignored when we exponentiated Eq.
(4.17)! The graphs of Fig. 29 contribute

But expanding up the denominator cancels the V depen-
dence, and we are left with

2R T tanh6P ( tanhP )

This exponentiates as before, giving
I
I

——+ ——
I
I

FIG. 27. Sixth-order disconnected graph.
FIG. 29. Eighth-order graphs and counting factors. The first
contribution is an excluded volume effect.
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10RTtanh p(tanhp) ". So,

a = —lntanhp —2tanh p —2tanh p
—10tanh P— (4.26)

We begin with the partition function for the gauge theory,

Z=XIIe 'ps

Is() p

where
(4.27)

Q =C)y2 ~ 0 =C)

in the notation of Eq. (4.10).

(4.28)

B. Euclidean lattice duality

A standard but powerful approach to model field
theories consists in developing mappings between strongly
coupled and weakly coupled systems. A great deal of pro-
gress has been made in two-dimensional physics in this
way. The mapping between the sine-Gordon and the
massive Thirring model is a particularly interesting case
(Coleman, 1975). Qne constructs fermion fields from bo-
sons through a nonlocal map and finds that the two local
field theories, one at weak coupling and the other at
strong coupling, are copies of one another.

Similar constructions can be made in Abelian lattice
systems in a11 dimensions and they are sometimes quite
useful (Savit, 1980 a thorough review of lattice duality).
The construction depends on the detailed geometry of the
lattice, the number of space-time dimensions and the lat-
tice action. The most famous example of such mappings
is the self-duality of the two-dimensional Ising model —a
mapping between its high- and low-temperature phases
which allows one to locate the inodel's critical point (as-
suming its uniqueness) (Kramers and Wannier, 1941).

Here we shall review the fact, first discovered by
Wegner (Wegner, 1971), that Ising lattice gauge theory in
three dimensions is dual to the ordinary three-dimensional
Ising model. This is a useful result, because much is
known about the Ising model. We shall see that the 1oop
correlation function maps into the interface of the Ising
model. This result will give us additional insight into the
string tension of the Ising gauge model and string dynam-
ics in general.

Given a three-dimensional cubic lattice, the duality
map will generate a "dual lattice" with the associations

site ~ dual cube

Note that the fluctuations decrease the string tension.
The physics behind this calculation will be discussed more
thoroughly in later sections.

%'e compare the answer with SU& gauge theory in three
dimensions,

a = —1nu —2u +4u —6u "u —10u

= g Q coshp(1+5 tanhp)

Q coshp g (Sztanhp)
IsI I p K =+1

(4.30)

y / '52 y +p / (tanhP)
I p letup p'

(4.31)

Make the dual association Kp
——K~» shown in Fig. 30.

The constraint reads,

—, QEi. ——0(mod2) .
l~

(4.32)

So the "curl" of Kii should be zero mod2. This con-
straint is solved by introducing Ising spins on the dual
sites:

So,

E(o ——S'oS 0 ~ 0 ~t l +p (4.33)

Z= Q tanhP

Z = g exp ——, ln tanhP g s;sj
Is,

'

I

(4.34)

which is the Ising model with p = ——, lntanhp. Here
(ij ) labels bonds on a cubic lattice.

This is a duality map between the high-T phase of one
model and the low-T phase of the other. It could easily

where Sp ——oo.o.o and where we introduced an Ising pla-
quette variable Xp in the last linc. Now we calculate the
g(, )

sum. A given term in the Kz sum contributes only

if Sz is raised to an even power. So, the sum of the , ECz-
for the four plaquettes containing the link I must sum to
zero mod2:

link ~ dual plaquette

plaquette ~ dual link

cube ~ dual site .

(4.29)

FIG. 30. Dual-link construction for the three-dimensional Ising
model. The link /~ pierces the plaquette p of the original lattice.
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have been discovered in their expansions (Kogut, 1979).
In a low-T expansion of the Ising model one writes Z in
an expansion in the number of flipped spins. A typical
graph defines a surface of broken bonds as shown in Fig.
31. But this figure can be associated with a strong cou-
pling graph of the Ising gauge model which is a closed
surface of plaquettes, as indicated in the figure.

%'e can also see how matrix elements are mapped one
to another under duality. Consider the Wilson loop (Wil-
son, 1974; Polyakov, 1975; Wegner, 1971),

))'(/) Z(/)/Z(0) =
(+a),

which we can write as

)) (/)=( ii;l,

(4.35)

(4.36a)

FIG. 32. A low-temperature planar interface in an Ising model.

where s& ——o.o.o.o. and S is a surface bounded by the con-
tour c. The logic and structure of the duality map are as
before, leading to

))'(/)=
(

exp ' 2/3 g s;s(—
5

(4.36b)

which is the dual Ising model with a surface S of antifer
romagnetic bonds. The sites i and j in Eq. (4.36b) are
nearest neighbors which label bonds piercing the surface
S. So, the matrix element describes an interface, and

Wg)=e~, (4.37)

where ~ is the excess free energy due to the interface
(Balian et al., 1975). The string tension of lattice gauge
theory is then the surface tension of the interface. At low
T the dominant spin configuration is shown in Fig 32. .
As T increases, the boundary between the antiparallel
spins wanders and thickens due to fluctuations. We wi11

examine the physics of interfaces and sheets in more de-
tail later.

Understanding LF is the key to understanding the
phase transition in the three-dimensional Ising model. At
low T the dominant spin configuration in the partition
function sum has most spins up, say, and small, improb-
able blocks of spins down. The finite surface tension a
suppresses these regions. As T~T„ the regions of false
vacuum grow; and, finally, at T„a vanishes, the magnet-
ization vanishes, and the system becomes disordered. In
fact, as T approaches T, from below, a is believed to van-

ish in a simple way. Recall the bulk correlation length g
which controls the spin-spin correlations in the system,

(s;sj ) —(s; ) [1—3 exp( —
~

i —j ~
/g)] . (4.38)

For T (T„correlation length scaling (Kogut, 1979)
maintains that the only relevant length in the system is g
itself. Then dimensional analysis suggests that a vanishes
as g' . But g diverges with a critical index v in the scal-
ing region, g —

~

T T,
~

', —so a should vanish as
a —

j
T —T,

~

". The four-dimensional, non-Abelian ana-
log of this scaling law plays a central role in lattice quan-
tum chromodynamics and wi11 receive considerable atten-
tion in this review.

C. Monte Carlo techniques for pure gauge
theories. The string tension

(8 ) = J [n dU]e 6 I [m. d U]e

which involves a very high dimensional integral, by an
average over gauge configurations I U];,

Computer simulations and Monte Carlo evaluation of
expectation values have been used in statistical mechanics
and many-body problems since the availability of large
computers (Binder, 1979). The idea of the method is to
replace the computation of the expectation value of a
quantity 8,

(8)= g e(I UI, ) (4.40)

J(t
JLf, t

FIG. 31. A two-dimensional slice of a block of flipped spins in
the three-dimensional Ising model and its corresponding graph
in the Ising gauge model.

where the configurations I U]; are distributed by the
Boltzmann law e . Note that each configuration IUj;
Ineans a set of U matrices on al/ the links of the lattice.
The replacement of Eq. (4.39) by Eq. (4.40) is an example
of' the technique of importance sampling" —if one at-
tacked the integral [m. d U] directly, much effort would be
wasted on configurations with large action which do not
contribute significantly to the average (0 ), The difficult
aspect of the problein is now shifted to the generation of

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



Kogut: Lattice gauge theory approach to quantum chromodynamics

an ensemble of configurations {U j; which are distributed
according to the Boltzmann weight. Several computer al-
gorithms exist for doing this. We will look at two of
them: (1) Metropolis algorithm and (2) heat bath algo-
rithm.

In both algorithms one begins with a configuration

{Uj. Then a single-link variable is varied and a new con-
figuration {U'j is generated. The new configuration re-
places the old one if the rules of the algorithm are satis-
fied. After all the link variables have been sampled, one
has "swept through" the lattice once. The aim of both
procedures is to generate, after many sweeps, a gauge con-
figuration {U j, at thermal equilibrium —it is a member of
a Boltzmann distribution. e({Uj 1) can be calculated for
this configuration and a contribution to Eq. (4.40) record-
ed. Next the algorithm can be applied many more times
to {Uj 1 until a new, statistically independent member of
a Boltzmann distribution, {Uj2, is generated. 8({Uj2) is
computed and recorded. Finally, this procedure is repeat-
ed many times, and an estimate of (6) is obtained.

Now let us consider each procedure in detail.
I

Metropolis algorithm

Cxiven a configuration {Uj, we make a new one {Uj'.
For example, in an Ising system one would flip a spin at a
given site. The procedure is then the following:

Compute the change LS' in the action S. If it is less
than zero, the new configuration is accepted. If it is
larger than zero, the new configuration is accepted with
the conditional probability exp( —b,S). [In practice, one
picks a random number x, 0&x & l. If exp( —bS)~x,
the change is accepted, otherwise not. ]

All this occurs at a given site. Then another site, or
link, is chosen, and the procedure is repeated.

Let's review the argument that this procedure eventual-
ly brings the system into thermal equilibrium (Binder,
1979), i.e., the probability to find a configuration {Uj
after i' sweeps, is

P„(U) e-" '. (4.41)
N —moo

To do this, consider the relationship between the Nth and
the (%+1)th sweeps,

PN+1(U)= g W(U' +U)PN(U')+— 1 —g W(U~U') PN(U)
IUI

=PN(U)+ g [PN(U') W(U'~U) PN(U) —W(U —+U')],
IU I

(4.42)

PN ( U) W( U~U') =PN ( U') W( U'~ U ),
which implies that

PN+1(U) =PN[(U)] .

(4.43)

(4.44)

Note that a stationary distribution is also stable —i.e., if

PN ( U, ) W( Ub ~U, )

PN ( Ub ) W( U, ~Ub )
(4.45)

then PN+1( U ) & PN( U ) aild PN+ 1( Ub ) )PN( Ub ).
Therefore, successive applications of the method bring us
closer to satisfying detailed balance Eq. (4.43). Now
Metropolis chooses

So then

1, if S(U) & S( U')
e-(""-"") if S(U) &S(U') . (4.46)

where W(U~U ) is the probability for the transition
U~U'. A stationary probability distribution will then
satisfy

l

a continuous group, we clearly must invent a procedure
which can cover the group space uniformly. In this way
the Haar measure in the partition function will be respect-
ed. There are many ways to accomplish this (Wilson,
1980). For example, in the case of SU(3) gauge theory
one might begin by generating a table of random SU(3)
matrices and their Hermitian adjoints. (Or the table
might be biased toward the identity —this is convenient if
one is simulating the theory at large P. ) Then, repeated
applications of matrices chosen from this table to any ar-
bitrary SU(3) matrix come arbitrarily close to any other
member of the group (Wilson, 1980). Using this ap-
proach, we find the Metropolis step easy to execute —we

specify a link, change its link variable by multiplication
by a randomly chosen matrix from the table, and execute
the standard algorithm, as discussed above. In practice,
one also updates the table of random matrices regularly to
avoid any unforeseen correlations or unlikely coin-
cidences.

There are, however, many practical problems in apply-
ing this algorithm.

W(Ub~U, ) (s1U. 1 s1U, 1)=e
W(U, ~Ub)

(4.47) a. Correlations between successi ve configurations

So, from Eq. (4.43),

P„'(U) =P"(U)=ce (4.48)

as desiredI[
The final ingredient in the Metropolis scheme is the

specification of the transition U—+O'. In the case of
models like gauge theories with variables which belong to

It may take many sweeps before a statistically indepen-
dent configuration is made. One can repeat the Metropo-
lis algorithm at each site many times before moving on to
the next site to proceed more efficiently. This problem,
however, is particularly difficult near a second-order
phase transition where g, the correlation length, is large.
This is called "critical slowing down" (Binder, 1979). (It
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is also an experimental problem!} The natural spatial and
temporal correlation lengths diverge at T„so one needs
large lattices, of course, and more troubling, many sweeps
before a new member of a statistical ensemble is generat-
ed. Data analysis, connected correlation functions plotted
against Monte Carlo sweep number, is necessary to moni-
tor potential difficulties (Binder, 1979). Similar problems
with the method occur in models with metasta hie
states the—procedure may find a metastable rather than
the equilibrium state and remain there for many sweeps if
the tunneling probability between states is small.

eventually distribute U' according to the Boltzmann
weight, Eq. (4.49}. The heat bath is harder to implement,
however, because one needs the group measure explicitly.
It has fewer problems with temporal correlations, because
the new U matrix is not related to the old U matrix, as it
was in the Metropolis method.

Let me illustrate the procedure for the Ising model.
Consider site i and its interactions with its neighbors,

S(i)=o(i)[cr(i+1 )+cr(i —1 )+cr(i+2 )

+o(i —2)] .

The nearest neighbors are fixed. The probability for o(i)

The procedure gives (e} with statistical errors. The
uncertainty in the mean values behaves as c/VX by the
central limit theorem N. is the number of statistically in-
dependent samples in the average, and c is a number
which is essentially the standard deviation in the set of
measurements, i.e., the susceptibility X of the quantity e.
This causes at least two problems:

(i) We need many statistically independent configura-
tions, since 1/v X is a slowly falling function of X. The
method may not be practical.

(ii) Near the continuum limit critical point, susceptibili-
ties such as 7 grow and eventuaHy diverge.

c. Finite-size effects

This is not related specifically to the Monte Carlo pro-
cedure but affects all the numerical work on finite sys-
tems. Near T„g'~ oo and the size of the system begins
to play a role—thermodynamic functions are no longer
characteristic of the bulk system. Typically, in the most
straightforward Monte Carlo simulations, one works with
parameters chosen so that a «g«L. The inequality

g «L can frequently be relaxed by using finite-size scal-
ing theory (Hamer and Barber, 1980; Nightingale, 1976).
Then it is necessary to know how to parametrize the
finite-size effects, and extrapolations to L~ oo are needed
to get physical results. The inequality a «g can also be
relaxed by inodifying the lattice action to fit the continu-
um action more precisely (Symanzik, 1982).

e
—PS(i 3

dP[o(i)] =
e —PS(s 3

cr(i) =+ 1

(4.51)

V(I) = ——1n( W(I,J)} .1

J (4.52)

In principle this may not be a practical calculation, be-

Cxiven a configuration, we easily compute this and tabu-
late dP(+1) and dP( —1). Now pick a random number
between zero and unity. Call it x. If x &dP(+1), assign
spin + 1 to the site. Otherwise, assign spin —1. This
procedure, by construction, gives a Boltzmann distribu-
tion for cr(i) in the heat bath provided by its nearest
neighbors.

SU(2) (Creutz, 1980) and SU(3) (Pietarinen, 1981) heat
baths exist. The SU(2) procedure takes advantage of the
simplicity of Pauli algebra and is quite slick. An SU(3)
algorithm, which uses SU(2) subgroups of SU(3) (Cabbibo
and Marinari, 1982), is far superior to the SU(3) Metropo-
lis program (Wilson, 1980).

Now consider Monte Carlo estimates of the string ten-
sion. First, the procedure: Measure Wilson loops
W(I,J)=( g, U„(n) } for a rectangular, planar contour
C, as shown in Fig. 33. In the liinit J~ oo, I fixed but
large, the heavy quark potential is obtained:

2. Heat bath algorithm

Let us consider a given configuration I UI and one link
l in particular. All of the hnks which interact with l have
fixed U matrices and provide a background. Qn l we
choose U' from the gauge group G with a probability den-
sity proportional to the Boltzmann factor,

dP(U')=e ~ ' 'dU' . (4.49)

Clearly, this algorithm satisfies detailed balance and so
leads to thermal equilibrium. It is more effective than the
Metropolis procedure, because if the Metropolis pro-
cedure were repeated many times on a given link, it would

FICr. 33. A heavy-quark loop with rectangular dimensions
IXJ.
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cause W(I,J, ) has a factor e ' +I' due to the self-
energy of the heavy quark so W is infinitesimal for large
loops! We are interested in a possible area term e
Assume that W(I,J) is dominated by just these terms for
relatively small loops and consider the ratio of measure-
ments (Creutz, 1980)

W(I,J)W(I —1,J—1)
W(I,J—1)W(I —1,J)

Then if

W(I J) e aIJ —m(1+—J)2

the ratio is

(4.53)

(4.54)
a 0

I.O

P —a

So, consider (Creutz, 1980)

W(I,J)W(I —1,J—1)
W(I,J—1)W(I —1,J)

(4.55)

(4.56)

O. I

Then, assuming Eq. (4.55),

y(I,J)=a . (4.57)

If W(I,J) has more complicated behavior, such as e
expected from the fiuctuations of the surface, then

X(I,J)=a+ H, (4.58)

a =CAL, (4.59)

in the weak coupling scaling region of the theory. AL is a
physical mass scale of the theory. As will be discussed in
the next section, the renorinalizability of the theory deter-
mines its dependence on the lattice spacing a and cou-
pling constant g for g near zero,

where H stands for power-law corrections. In practice,
X(I,J) has been measured for I,J= 1,2, 3 on lattices 6 for
SU(3) (Pietarinen, 1981) and 10 —16 for SU(2) (Stack,
1983}. a has been extracted for a range of g. Since
a —[mass], it should behave as

I I I0.0 I

I 2
P =4/go2

FIG. 34. SU(2) string tension Monte Carlo data vs coupling,
P =4/g'

A ' /AI ——57.5,
A ' /A, =83.5,

(4.63)

for SU(2) and SU(3), respectively. These large numbers of
proportionality are artifacts of lattice regularization.
Comparing these to momentum space regularization of
the continuum inodel, one can calculate (Hasenfratz and
Hasenfratz, 1980; Dashen and Gross, 1981), as will be il-
lustrated in the next section,

1 2 pi/2po 1/2pog
Ac = Poga

where

(4.60) for SU(2) and SU(3), respectively. So, the calculation
predicts the ratio of two nonperturbative mass scales of
the continuum model,

11
13o=

3
N 34

16m

N
16m.

'2

(4.61)

in SU(N) gauge theory.
So, Monte Carlo measurements of a should satisfy this

scaling law. Equation (4.60) of the continuum limit and
the constants C of Eq. (4.59) can be obtained for SU(2)
and SU(3). There is a narrow window in g where g is
small enough that the weak coupling scaling law holds
and where the correlations in the system are small enough
that the computer measurements are not obscured by
finite-size effects. Soine Monte Carlo data [34] are shown
in Fig. 34. Fits of the measurements give (Creutz, 1980)

3 }Amom

(4.64)

D. A parameters and asymptotic freedom

V a =(2.5+1.0)A
also for SU(2) and SU(3), respectively. A ' is measured
(roughly!) in fits to deep inelastic scaling through a mea-
surement of corrections to free field behavior at short dis-
tance. va can be identified with the coefficient of the
linear potential needed to explain heavy-quark spectros-
copy. If V a =450 MeV, then Eq. (4.64} gives
A ' =180 MeV. These are not unreasonable numbers,
even though the lattice calculation has ignored dynamical
quarks.

V a =(79+12)AI,
~a =(220+66)A&,

(4.62) The lattice provides a gauge-invariant regularization
scheine for field theories. In asymptotically free theories
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m=0,
da

(4.65)

where a might be a lattice or continuum cutoff. By di-

mensional analysis,

m = f(g)—1
(4.66)

in a theory without an intrinsic scale. Substituting into
Eq. (4.65), we find

f'(g) = f(g) /P(g—), (4.67)

the continuum limit of the lattice model is found in the
g~O limit (Kogut, 1979; Kadanoff, 1977). g*=O is the
infrared unstable fixed point of the theory. The neighbor-
hood of g*=O can be studied using perturbation theory,
suitably improved by the renormalization group if neces-
sary, and the approach of the lattice theory to its continu-
um version can be understood in great detail. The vicini-
ty of g~=O where perturbative analysis is adequate is
called the "scaling region" of the theory. Asymptotically
free scaling laws were discussed in Sec. II. The simplest
such result predicts how the mass gap of the theory de-
pends upon the cutoff and the bare coupling constant.
The analysis can be done for any regularization scheme.
%'e require that the mass m be a renormalization group
invariant,

ordinary perturbation theory!
Note that the mass gap's dependence on g is

nonanalytic —mass generation in the theory is a nonper-
turbative effect. It was necessary to use the renormaliza-
tion group to obtain this result. The Callan-Symanzik
function itself is expandable in powers of g.

One of the aims of lattice gauge theory is the calcula-
tion of the mass spectrum of quantum chromodynamics.
Equation (4.72) predicts how those masses must depend
on g such that finite masses result in the continuum limit.
The importance of verifying the scaling laws in nonper-
turbative lattice calculations is clear.

It is also necessary to relate the lattice regularization
procedures, couplings, and cutoffs, to those of continuum
methods. Then mass scales can be compared and physical
predictions made. The A-parameter calculations done
here are an important part of that program. I shall illus-
trate such calculations for asymptotically free spin models
in two dimensions. These models are simple enough that
all the calculations can be done analytically both on the
lattice and in the continuum.

Consider Pauli-Villars regulation of a continuum model
and lattice regularization of the same model. Both should
give the same physics. We require that the renormalized
couplings g~ be identical, for the Pauli-Villars and lattice
cases, respectively,

where p(g) in the Callan-Symanzik function,

p(g) = —a Bg (4.68)

gii =Zi g, Zi ——1+B(M)g +
gR 1L gL ZIL 1+BL(a)gL, +2 —1 2 2

(4.74)

In the vicinity of the fixed point g*=0, p(g) can be com-
puted perturbatively,

for the two models. The functions B(M) and BL, (a) can
be computed in perturbation theory. They depend loga-
rithmically on the cutoff,

with

=pog'+ pig'+3

Ba
(4.69) B(M) = —Po lnM+ C,

BL (a ) = —po ln( 1/a ) +CL,
(4.75)

11po=
3

X 34
16'

2

(4.70)

in SU(N) gauge theory. If we use Eq. (4.69), the formal
integral for f(g) following from Eq. (4.67),

where po&0 in an asymptotically free theory. Thus
B(M) expresses the asymptotic freedom of the model—
keeping gz constant and increasing M requires that g be
made smaller. In the language of Callan and Symanzik,
we hold gz fixed,

f(g)= exp —I g

can be evaluated:

P /2P2
f(g) ~(pog') ' 'exp( ——,pog') .

(4.71)

(4.72)

So,

0= — M g —Po~M—g = —P g
1 2 4

g~ BM BM

(4.76)

M gii ——O=M (Zg ) =M fg +B(M)] .

Therefore the mass gap's dependence on the bare coupling
is determined —this is a scaling law. It is analogous to the
relationship for the correlation length in a statistical
mechanics setting,

gaiT T, i
", T=T, . — (4.73)

The critical index v is not computable accurately in per-
turbation theory if the scale-invariant theory at the criti-
cal point T, is interacting. It is a wonderful feature of
gauge theories that the scaling laws can be obtained using

(4.77)

which is the one-loop Callan-Symanzik equation. It can
be integrated to obtain the renormalization-group trajec-
tory,

g (M)—= , ln(M/A) »11

oln M/A
(4.78)

gL, (a)=,in(1/aAL ) »11
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1 ZI zil.
(4.79)

in each case. The A parameters set the scale in each loga-
rithm. They are simply related, because

I shall take this opportunity to illustrate weak coupling
lattice calculations (Kogut and Shigemitsu, 1981). Con-
sider the SU(N) &C SU(N) spin inodel in two dimensions,

ol
2 g «I [U(x)U (x+p) —1]+H.c.J,

x,p,

gdU e
(4.82)

or

I

M 1
pain +8 (M) =pain

A aAI
+St.(a),

A =aM exp [B(M)—BL (a)]1

Al Po

(4.80)

U(x) =8'«'"'U"(x), (4.83)

where [dU] is the group-invariant integration measure
The SU(N) matrices U(x), which reside on the lattice
sites, fluctuate on all length scales from a to ao. We wish
to integrate out the high-frequency modes and obtain the
effective action for the low-frequency modes. To inake
this division we use the background field method (DeWitt,
1967). Write

1=exp (C —CL, ) (4.81)

using the notation of Eq. (4.75). So, if we calculate the
divergent and the finite parts of one-loop coupling con-
stant renormalization, we can relate the A parameters of
the two cutoff procedures.

Since A parameters set the scale of scale breaking in
deep inelastic scattering, this calculation is worthwhile for
quantum chromodynamics, as discussed in the preceding
section.

P(x)=A, P (x), a=1,2, . . . , N' 1—(4.84)

[A, , A,~]=if t'i'A,

trick p ———,5~p .

Substituting into the action, we get

(4.85)

where U" solves the classical equations of motion and
P(x) parametrizes the quantum fluctuations of U(x).
Define

S = — g tr f [U"(x)U" (x +p) —1]+H.c. j
x,p

~ t [(
—'«'"+i' '«'"' —1)U"(x)U" (x+p)+H. c.] .

2 ~
x,p

(4.86)

Since we are going to do perturbation theory in g, S and [dU] should be expanded in powers of g,

e "~'"+"'g"~'"'=expI tg~„P(x)+ ,—g'[P(x+p), P—(x)]+O(g')I

=1 tg~„P(x)+ , g—'[P(x +p),P—(x)]——,g'[V„p(x)]'+O(g'),
N —I

dU= Q d4 [1+O(g'0')].
a=1

(4.86a)

(4.86b)

Equation (4.86b) states that the curvature of the group
manifold does not contribute to lowest order.

A convenient parametrization of U" is

U"(x)U"(x+@)=exp[iF„(x)], F&(x)=A, Fz(x),
(4.87)

s"=——,
' g(F„)',

So ——g —,(V'~p )
x,p

S,„,=+[——,'tr(X Xt') rX')V y V yt'F&Fs
Z,P

(4.89)

S= 2S"+So+S;„,+O(g, F ), (4.88)

where F„(x) is Hermitian. It will prove sufficient to ex-
pand this result in powers of Fz(x). Collecting every-
thing, we find

+ ,f »y (x+i )yt'(x—)Fr].

Thus we have a classical free field piece, a quantum free
field piece, and interactions. It is convenient to modify
So,

where
So~+[ , (V„p ) + , m p ]—, — (4.90)
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798 Kogut: Lattice gauge theory approach to quantum chromodynamics

to avoid spurious infrared problems in the midst of a cal-
culation. The limit m~0 will be smooth for the gauge-
invariant quantities we calculate.

So far our manipulations hold for the continuum inodel
or a lattice model. Consider a Pauli-Villars regulated
continuum calculation first. The V„becomes an ordinary
differential aB„and the S;„, simplifies. Its first term
behaves as a, since F& —a, V&P —a t)&P,

—f d x/a, and it vanishes in the continuum liinit.
l

The second term survives. We define

F~r (x)~F„"(x) /a (4.91)

and find

Scont fapy f g yap pFrd2x

Now we calculate the continuum Z through one-loop,

Z= f n dP exp — S"—So —S;„, [1+0(g,F )]
g

=exp — S" f ir dP'e '(1—S;„,+ —,S;«+ )

=exp —,S" (1+&S,„,&+-,'&S,'„,&+ (4.92)

But (S;„,) =0, because it transforms as a gradient. The second-order term is

—(S,'„, ) = —f d'y d'y'f »f ~ rF~r(y)Fr (y')(t)„P (y)P (y)8„$ (y')P (y'))

, N f d y—dy'Fr(y)F„(y')[G(y —y')B„t)' G(y —y') —t)„G(y —y'9„'G(y —y')], (4.93)

where we used f ~rf » =N5~, and we recall

d'k e'@
G(y) =

(2ir)' k'+m'
The background field can be chosen slowly varying,

a„r„«r„,

(4.94)

(4.95)

l Z)
Zi ——1 —, g NG(0) .—

gR g' (4.99)

But this is still a formal expression, since G(0) is ultra-
violet divergent. We choose the Pauli-Villars (PV) regula-
tor scheme —introducing a negative metric p field with
mass M coupled to Fjust as P is. The calculation above
goes through with the obvious final replacement.

—,
' (S;„t)= , N f d yd y'F~r(y—)F„"(y') Zi ——1 ——,g NG (0), (4.100)

&&G(y —y')( —t)„t)„)G(y—y') . (4.96) where

Since we are letting I vary much more slowly than 6,
F„"(y') can be replaced inside the integral by Fr(y) and
the d y' integral can be done explicitly. Then the replace-
ment —B&t)„~——,5&„ is valid, B&t)„G(y —y')
= —5(y —y') and we have

—,(S;„,) = , NG(0) —, f F~r(y—)F~r(y)d y

, NG (0)S" . — (4.97)

d k
G (0)= — . (4.101)

(277 ) k2+m2

So,

Z, =1— ln(M/m) .Qg 2

8m
(4.102)

From this we learn that the theory is asymptotically free,

Then the partition function is g~= g =g + ln(M/m),
Z) 8~

(4.103)

Z =exp — S" [1+, NG (0)S"], —
g

2

(4.98)

Z =exp ——,NG(0) —, f d y F„"Gr

to this order. We recognize coupling constant
renormalization —the low-energy modes fluctuate with a
renormalized coupling constant,

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983

M gg ——O=M g + Ng
am 8~

~M g= — g
8

BM 8m
(4.104)

with the crucial + sign traced to the positive curvature
of the compact group manifold (Polyakov, 1975). And
the Callan-Symanzik function is identified,
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Now we repeat this calculation using the lattice regula-
tor. We face again , (F-r)'(, (V y )')

Z =exp — S" (I+(S;„,)+—, (S;„,)+ . ) .
g

The first term is

(4.105)

(S,„,) = g ,'tr—(X—Xt'ares)FrFs (,V„y V„yt')

+ ,f ~rF—r(p ( +p)p~( )) . (4.106)

Its second piece is zero, because the average of a vector
quantity vanishes identically. The first piece does not
vanish. Only the terms with a =P and y =5 contribute.
For these indices we have the replacement

, (F—r)'4(N' 1)—[6(0)—6 (1)],
X

(4.108)

G(x) = (P '(x)P '(0) )
dzk ~ ikx

—~ (2n. ) 4—2 cosk i
—2 cosk2+ m a

(4.109)
is the free scalar propagator on the lattice. From this ex-
pression or the discrete form of the differential equation
(B„B„+ma )6 (x) = —5(x), one easily checks that

6(1)—6(0)=——, +O(m a ) . (4.110)
So

t gcxgpgyg5 gapgy5+. . .
8 N

(4.107)
2— N —1(s,„,)="—' y-'(F„)'= N 's".
8N

(4.111)

So

(4.112)

And finally we have the second-order term,

—'(S,'„, ) = ,f t'rf ~—r g Fr(y)Fr(y')(, i''(y+p)p (y)p (y'+v)p (y'))+O(F')
3'3' P&

, N g F~r—(y)F„"(y')[G(y—y'+p —v)6(y —y') —6(y —y' +p) 6( y—y' —v)],
N' P&

where we used f t~f ~r =N5~. Now we must simplify this collection of propagators. Let 6=4—2coski
—2 coskq+ m a . In momentum space the propagators in Eq. (4.112) become

d k d k' e "(e "—e ")(e'"'" «'e'"'" «')
(2ir) (2n ) b, (k)4(k')

The background field is slowly varying, so we replace Fr(y') ~F~r(y), and the y' integral is trivial,

ik ik„ —ik„
—,(S;„,) = , N gF„"(y)Fr(y)—f

(4.113)

(4.114)

The momentum integral vanishes unless p =v, so

—,(S;„,) = —,NS "6( 1),
where

I

Since (Kogut and Shigemitsu, 1981)
r

GL, (0)= ln +O(m a ),1 32 2 2

4~ m2a' (4.119)

6(1) f dik e' '(e ' ' —e' ')
(2ir) b, (k)

(4.116)

can be shown (Kogut and Shigemitsu, 1981). Collecting
all this, we have the partition function with the high fre-
quencies integrated out,

we have,

Z1L ——1 —g N ln
1

16'
32 N2 —1

m2a2 + N
16

(4.120)

1L clZ =exp — S'
g 2 (4.117)

Comparing this with the Pauli-Villars calculation, we
have the same one-loop, Callan-Symanzik equation, as ex-
pected. The finite pieces of the renormalization are dif-
ferent. In the language of our earlier definitions,

N —1Z„=l—g' -'NG, (1)+ N ='
4 8N

N —1=1—g —NGI (0)+4 8N 16
(4.118)

So

Cpv O

Ci = — ln32 — (N —2)
16~ 16N'

(4.121)
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800 Kogut: Lattice gauge theory approach to quantum chrornodynamics

A /Al ——exp 8m. ln32+ (K —2)
1 1

16+'

=exp in& 32+ (N —2)
2%

~gee n(N '2) l2—N (4.122)

And there is a huge change in scale between the methods,
A ~&A . Since

range of validity to the one-loop calculation.
The huge change in scales between the lattice model

and the continuum model is a common phenomenon. It
depends on the detailed lattice action used. The SU(2)
and SU(3) gauge theory results were quoted in Sec. IV.C
and were useful in setting the scale in the string tension
Monte Carlo calculations.

V. HAMILTONIAN LATTICE GAUGE THEORY,
FLUX TUBE DYNAMICS, AND CONTINUUM
STRING MODELS

poln(M/A )
(4.123)

A. The transfer matrix and the Hamiltonian limit

Poln( 1/aAL )

the bare lattice coupling is much less than the bare Pauli-
Villars coupling for the same renormalized physics. The
region in the complex coupling constant plane where
weak coupling and semiclassical physics apply is much
smaller in the lattice theory than in a continuum theory.
The onset of nonperturbative effects begins at a much
smaller coupling in the lattice approach than in the usual
continuum parametrizations of the same theory.

A final word about the absolute scale chosen in the A-
parameter definition. With the choice

In addition to the partition function approaches to field
theory discussed to this point, one might also investigate
the space of states and the spectrum of lattice gauge
theory. To do this systematically we should consider the
transfer matrix and the Hamiltonian, time continuum
limit, of the theory (Kogut, 1979).

The partition function approach of lattice gauge
theories gave a lattice regularization of

L= ——, fFqF„,dx. (5.1a)

The formal replacement was

1 2, -P]&zPO -i&2Pos
AL, = pog )

a
(4.124)

a
I. = ——, fF„F„„~ trP exp igcf A„dx"

4g2a4 c

one can check that

gL(a) =2 1

poln(1/aAL ) +pi /poln(in 1 /aAI )

(4.125)

So, with the choice of scale in AL s definition, the two-
loop correction does not rescale the length scale conven-
tions chosen in the one-loop calculations —i.e., there are
no corrections of the form p»&const in the denominator
of gL, (a). Therefore, this convention gives the widest

trUUUU .1

4g'a4
(5.1b)

We chose simple plaquettes for the contours C in Eq.
(5.1b).

To make a Hamiltonian theory, we distinguish between
plaquettes with a t link and those without. Those without
are spatial plaquettes and are left alone in this argument.
The temporal links are special —we want to organize
things so that the partition function can be written in the
form

Z= f &IU~I I Tl le-il & +dU~ —i &IUx-ij I Tl IUiv-2I& . . &IUiI
I

T'I IU I & (5.2)

where T is the theory's transfer matrix. This equation is
visualized in Fig. 35. Clearly, T evolves the system one
link in the "time" direction. T will be simple if we choose
temporal links to be trivial, e '=1. Therefore, we work
in the temporal gauge Ao ——0. We recall from continuum
quantization that in this case gauge invariance is imposed
as a constraint on the Hilbert space of states —i e.,
Gauss's law is implemented

Ug

(UN ~)

(U)
G (n)

I phys) =0, (5.3)

where G~(n) is the generator of local rotations in color
space at the site n=(x,y, z). An explicit construction of
6 will be obtained below.

For temporal plaquettes Eq. (5.1b) simplifies,

FIG. 35. A transfer matrix decomposition of the partition
function. t UI indicates a three-dimensional gauge field config-
uration at a given v..
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trUt(t;+, )U(t;)+H. c.= —tr[U (t;+i) —U (t;)]

&& [U(t, +, ) —U(t;)]+const

mations E (n, i). So

[E (n, i), U(m, j)]=—,~ U(m, j)5j5 (5.9)

(5.4)

1 tr
4g a

U (t;+i)—U (t;)
a,

U(t;+, ) U(t;—)
a,

(5.5)

and we can construct the "velocity" term of the Lagrang-
ian. The temporal loops shown in Fig. 36 contribute to
the Lagrangian density,

in a slightly abbreviated notation. Since the E 's generate
SU(2) rotations,

[E (n, i),E~(m,j)]=is ~~E"(n,i}6;"o . (5.10)

Now we want to eliminate U and U in favor of the E
variables. Since E generates the local gauge rotation
which is a symmetry of L,

Ea BL

8 Uij
where a, is the temporal lattice spacing. Taking a, ~O,
we obtain a conventional quantum-mechanical picture of
the lattice gauge theory,

=i
2

(trU —,r U —H. c. ) .
4g 2 (5.11)

L=g trU U
links 4g

tr UUUU +H. c. ,
1

pl.q 4ag'
(5.6)

Next consider E E . To compute this, the quadratic
Casimir operator, we need two identities,

U U=l, U U+U U=O, (5.12a)

where the replacement I d x~pa has been made.
Now we can form the Hamiltonian, passing from "veloci-
ty" to "momentum" variables by canonical procedures.

()L BI.H= g Uij . t +U~j
aUj

'

aU„

'rij +kl =2~il~jk l~ij~kl

and we compute

aEE = trUU.
2g

(5.12b)

(5.13)

2trU U
links 4g

1
(tr UUUU+ H. c.),

plaq 4ag
(5.7)

2
H= g E E 2+ (trUU—UU+H c ). . .

links 4ag plaq

(5.14)

The basic commutation relations

Collecting everything (Kogut and Susskind, 1975), we
have

which describes a system of coupled "tops." To quantize
this system we must identify independent degrees of free-
dom carefully. One might use Euler angles, but this is
awkward. Instead we shall eliminate U in favor of the
generators of local gauge rotations (Coleman, 1976;
Creutz, 1977). If an infinitesimal gauge rotation is made
at site I,

[E (n, i), U(m, j)]= , r U(mj)5—,&5„

[E (n, i),Et'(m, j)]=i s ~rE"(n,i)5&5,
(5.15)

3

E (n,j) i phys) =0 . (5.16)

specify the model with the definition of physical states

~EX

U(n, i)~ 1+ie U(n, i),
2

(5.8) Note that in the partition function language time-
independent gauge transformations are

where i labels the direction of the link emanating from
site n. We call the quantum generators of these transfor-

G(no, n) .
no ———oo

(5.17)

Since U =1 on temporal links and

ei (~/2)x(n) Ue
—i (~/2)X(n) (5.18)

the axial gauge is preserved appropriately for arbitrary
time-independent gauge functions X(n). Clearly also

[E~(n,i),H] =0 (5.19)

x,y, z

FIG. 36. A temporal plaquette in the gauge Ao ——0.

and the H is gauge invariant.
Now we are ready for applications. We want to under-

stand the distribution of electric fiux responsible for the
linear confining potential. Consider a QQ state. I.et the
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802 Kogut: Lattice gauge theory approach to quantum chromodynarnics

Q and Q be heavy and let them be created by the opera-
tors f (n) and P(n)—they are sources and sinks of color
fiux of one unit. The generator of a color rotation is now
generalized to

gE (n,i)~QE (n, i)+ft(n) —,r g(n) (5.20)

at the site n. We need a gauge-invariant operator to
describe the heavy QQ state. The operator

f (n) g U P(n+R), (5.21)
path

where the "path" extends from n to n+R but is otherwise
arbitrary, satisfies this requirement. The local contrac-
tion of color indices guarantees the local gauge invariance
of this operator. Now consider the theory at strong cou-
pling g ~& 1. Then the leading term in H is

Note that requiring u to be independent of a implies that
g-a —stronger coupling on a coarser lattice. This is the
same qualitative behavior as found at weak coupling,
where asymptotic freedom implied stronger coupling on
coarser lattices. This strong coupling calculation of a can
be carried to high orders in the natural expansion parame-
ter, 1/g, of the Hamiltonian theory (Kogut et al. , 1979,
1980). These results complement the Monte Carlo simu-
lations and also suggest that the continuum limit of the
pure gauge theory confines quarks with a finite, fixed,
physical string tension. But what about the spatial distri-
bution of the flux responsible for confinement? At strong
coupling the flux exists in a thin tube between the two
on-axis quarks. Is this a possible state of flux in the con-
tinuum limit? To gain some intuition into this question
we turn to a simple string model.

.Ho —— +Et .
I

The vacuum has each link in a color singlet state,

Et iO)=0.

(5.22)

(5.23)

B. Relativistic thin strings, delocalization,
and Casimir forces

E Uio)= —,v —,r Uio)= —,Uio),
as follows from the commutation rule for SU(2),

[E,U]= , r U . —

Thus the energy of the QQ state is

V(R) = ——=aR,g 3 R
2a4a

(5.24)

(5.25)

(5.26)

which gives us the strong coupling limit of' the string ten-
s1on 1n this theory,

3 g
CX

8 a'

So the QQ state of minimal energy will have g „h over
the fewest number of links, since each link with a U ma-
trix costs energy,

Consider a structureless thin string with its ends pinned
1 1

down at x= ——,R and x= —,R. It can be described by a
1 1two-component vector field g(t, z), ——,R & z & —,R,

g'(t, —, &)=—g(t,—,&')=0, as in Fig. 37. We want an ef-
fective action describing the low-frequency modes of this
string. Let's make the following assumptions about it
(I.uscher, 1981):

(1) S,tt must be local, S,tt= f dzdt L, where L de-
pends on g and its derivatives.

(2) L should be invariant to the following space-time
symmetries:

(a) Poincare transformations in the (t,z) plane.
(b) O(2) rotations and translations of g.
Now let's write the possible terms in L Property .(2b)

precludes mass terms -g' for the string. So L must be
made up of derivatives a&g', a&a„g', . . . (p, v=o. 1). Then

s.„=f d. dtI a g.a~g+ba a~g a„a~g+c(a g a~g )'+—8/2&z &8/2 P p v P (5.28)

The only relevant or marginal operator is azg. a"g'—the
other operators are irrelevant (Wilson and Kogut, 1974),
i.e., the parameters b and c carry dimensions of the under-
lying spatial cutoff to various powers. Order by order in
perturbation theory these irrelevant operators do not con-
tribute to the long-wavelength physics of the string. One
can check that when these operators are inserted into
Feynman diagrams the infrared behavior of the graph im-
proves. So, for studying wavelengths A, ~~a, the intrinsic

FIG. 37. A thin string labeled with a vector field g'{t,z).

width of the string, it suffices to take only

s„,= f dzdtag a~g . . (5.29)

Now we can ask whether the state with {,g(z, t)) =0 is
stable to quantum fluctuations. We calculate the variance

1 1
in g'(z, t) for any z between —-;R and —,R,

d k
(g~(z, t)) —f -in(R/a) .

k
(5.30)

So ($2(z, t))~Dc as R —«Oc and the string is delocalized
by fluctuations as show~ in Fig. 38t This explicit calcula-
tion is an example of the more general Mermin-Wagner
theorem (Mermin and Wagner, 1966): spontaneous break-
down of a continuous global symmetry in a theory with
local couplings in two dimensions is not possible.
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(d —2)ir/24
R

(5.36)

I

2

Note that the n =0 term in Eq. (5.34) simply renormal-
izes the string tension additively.

C. Roughening and the restoration of spatial
symmetries in lattice gauge theory

FIG. 38. A thin string with a divergent mean width -lnR.

A second physical effect of these massless modes is the
existence of a universal 1/R potential in the string chan-
nel of the theory (Liischer, 1981),

V(R) =a
)
R

~

—'
R

(5.31)

hV(R) = —, g s„, s„=en/R, n =0, 1,2, . . . (5.33)

when we have counted the massless normal modes for a
field with fixed boundary conditions g'(O, t) =g(R, t) =0.
The suin over normal modes diverges —the fluctuations
shift the ground-state energy density. To separate off this
term we first do the sum with a convergence factor e
and let A,~O at the end. (Actually, for a string of thick-
ness a the largest physically sensible value for n is -R /a,
so that s&m/a. Therefore the minimal value for A, is
A,m;„-a/R. ) Now

b V(A R)= one "=— ge2R „ 2R dA,

The 1/R correction term is a one-dimensional Casimir ef-
fect which is easily calculated. For thin, structureless
strings it is truly universal —it depends only on the
space-time dimension d in which the string livesI We be-
gin with a free, massless field in a two-dimensional box of
length R,

S—, z t (5.32)

Think of it as a box of massless bosons, one flavor for
each transverse direction. Each transverse mode contri-
butes —,%co to the ground-state energy,

How do these features —the delocalization of the string
and the universal 1/R potential occur in the lattice-
regulated theory? There is only cubic symmetry on the
spatial lattice, so straight strings are possible at strong
coupling. As g~O, however, the magnetic effects in the
Hamiltonian become important; and at some critical cou-
pling, the roughening point g~ the string will delocalize
(Hasenfratz et al. , 1981; Itzykson et al. , 1980; Luscher
et al. , 1981). For the relativistic string the lowest-energy
transverse excitation costs zero energy in the R —+ oo lim-
it. On the lattice the lowest-energy transverse excitation
is shown in Fig. 39, and it has an energy (g /2a) , (N +—1)

in the strong coupling limit. This is an energy of ~ g /2a
above that of a straight string of N links. Call the state a
"kink" and mk=(g /2a)( —,+ . ) where the +
means that the mass can be calculated in perturbation
theory (Kogut et al. , 1981). The kink should be thought
of as a particle —its energy is localized and it can carry
momentum. The transverse distribution of electric flux is
bounded, because the transverse wandering of the string is
inhibited by a finite energy barrier, mk. As g decreases
from strong coupling, however, mk decreases and eventu-

ally vanishes at g =gz. Then there is no energy barrier
inhibiting the transverse wandering of the string. For all

g &g~ the lattice string is delocalized and resembles more
closely the continuum string. Roughening can therefore
also be seen in a calculation of the mean transverse width
of the string,

(r E~~)
(5.37)

&Eii&

where E~~ is the electric flux squared on a link parallel to
the straight string but displaced in the transverse direc-
tion by rj links. One can develop strong coupling series
or

m' 1

2R dA, ex —1
(r', )a, (5.38)

(n —1 Q,"
(5.34)

where B„are Bernoulli numbers. The n =2 term gives
the only finite, nonzero term which survives in the A, ~O
limit,

which measures the transverse width of the string in units
of the physical length 1/v a.

It is useful to gain a broader perspective on roughening
transitions before continuing with the discussion of non-
Abelian gauge theories. Since roughening concerns the
long-wavelength vibrations of strings, the internal compo-

m 2 n /24B
2R 2 R

(5.35)

for each transverse degree of freedom. For (d —2) trans-
verse directions we have the advertised result, FIG. 39. Lowest-energy transverse string excitation on a lattice.
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4Z= g exp ——g in; ~ nj'i-
( (»J'» )

(5.39)

Clearly, this is the natural lattice version of the thin
string discussed in the preceding subsectionl

How well does Eq. (5.39) approximate the real interface
of the three-dimensional Ising model? Monte Carlo stud-
ies indicate that for T=TIi, the most likely values of
n;i nj ~ are 0, +—1, or —1 for nearest neighbors. There-
fore, the neglect of overhangs appears justified. In addi-
tion, since Tz is much less than T, (Tz ——,T, ), bulk fluc-

sition of the string should be irrelevant to this
phenomenon and simple models should expose all the
essential physics. With this in mind, let us consider the
three-dimensional Ising model. Calculations indicate that
the roughening temperature Tz is considerably less than
the bulk critical temperature T, (Weeks et al. , 1973). If
we use the duality relations developed in the fourth sec-
tion, this means that the string roughens deep inside the
confining region of the three-dimensional Ising gauge
theory, Fig. 40. (Recall that the strong coupling g »1 re-

gion of the gauge model maps onto the low-temperature
region of the spin model. ) Since the string tension a(g)
maps onto the excess free energy in the interface sector of
the Ising spin model, any structural phase transitions in
the interface, such as roughening, should appear as
nonanalyticities in a(g) for g well inside the confining
phase where a(g) itself is large! These nonanalyticities
are easy to understand —for T & Tz there are no massless
modes in the theory, but for Tz & T & T„massless, trans-
verse excitations occur.

The physics of the roughening transition is made par-
ticularly transparent in the "solid-on-solid" approxima-
tion (Gilmer and Bennema, 1972; van Beijeren, 1975).
Consider the interface at finite T and the fluctuations
which contribute to the partition function. Now, neglect
all bulk fluctuations which are not connected to the inter-
face (the boundary between up and down spins). In addi-
tion, neglect fluctuations of the interface with overhangs.
The acceptable fluctuations are shown in Fig. 41 for a
continuum membrane. A cross-sectional slice of the fluc-
tuating interface in the Ising model is shown in Fig. 42.
Since no overhangs are allowed, the height of each
column of "down" spins above or below the position of
the interface at zero temperature T =0 is a single-valued,
well-defined function. Call it n;» where i* labels a "dual
site" of the two-dimensional T =0 interface. Since only
broken bonds in Fig. 42 contribute to the action, the par-
tition function of the interface is simply

FIG. 41. Smooth fluctuations of an interface.

tuations are unlikely, as well. Since n;» —nj» ——0, +1, it is
tempting to make another approximation (Jose et al. ,

1977),

Z= +exp
In;, I

4
Pl]» —7lj»

2

(I»J» )
(5.40)

This is the "discrete Gaussian model. " As we shall see in
a different context in the next section, it is dual to the
famous planar model. The classic work of Kosterlitz and
Thouless (1973) therefore applies and indicates

These clear results strengthen our belief that the physics
behind the roughening transition is quite simple and gen-

eral. Evidence for these results in more straightforward,
but opaque, computer simulations and calculational pro-
grams is growing.

Now let's return to gauge theories and strings. The
nonanalyticity of a(g) poses problems for Monte Carlo
simulations and strong coupling expansions (Hasenfratz
et al. , 1981; Itzykson et al. , 1980; Liischer, 1981). The
Monte Carlo simulations are subject to finite-size effects

(1) There are massless modes on the interface for
T & Tz. They are delocalized for T & Tz.

(2) The excess free energy has an essential singularity,

exp( B/QT —T~—), at the roughening temperature.

0

Confinement
~

Smooth

i

I

I

Confinement
~

Roogh
t

I

TC

Quar ks

Tl sing

FIR. 40. The phases in the string sector of the three-
dimensional Ising model.

+ — + +

FIG. 42. A slice of a fluctuating interface in the three-
dimensional Ising model. The dual-site variable i~ labels the
column, height, of the interface.
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because of the massless modes, and the strong coupling
expansions have a radius of convergence bounded by gii.
Note that these structural phase transitions occur because
of the nonlocal character of the matrix element, the loop
correlation function, and that they occur only in the string
sector of the theory.

One can discuss the roughening transition from the
perspective of symmetry restoration (Luscher, 1981). For
g &g~ continuous translations perpendicular to the string
become good symmetries of the system. This is a corol-
lary to the fact that the transverse excitations of the inter-
face become massless as g passes g~ from below —the
long-wavelength surface vibrations have a relativistic
massless energy-momentum relation for g )gz. This fact
leads us to consider the restoration of full rotational sym-
metry in the string sector of the theory (Kogut et al. ,
1981). For purposes of illustration consider the (2+1)-
dimensional SU3 gauge theory. Let the QQ be off-axis, as
shown in Fig. 43. At strong coupling the flux travels by a
route of minimal distance. The leading order heavy-
quark potential is

FIG. 44. An equipotential at strong coupling.

2

Ho= QEi, H'= g (trUUUU+H c ), . .
2a I (5.42b)

«x»= 2, —,( I

x
I
+ Iy I

) (5.41)

H =Hp —x,H',
where

(5.42a)

which has equipotentials shown in Fig. 44. The equipo-
tentials are not analytic near the axes. It is easy to see
that this is because mk&0 the sharp edges in the equi-
potentials will disappear at gii (Kogut et al. , 1981). But
in general there is bad breaking of rotational symmetry.
But rotational symmetry should be restored as g~O, in
the scaling region of the lattice theory. Let us improve
the large g »1 calculation of V and see this happen in
perturbation theory.

We face a problem in degenerate perturbation theory—
there are many, (

I

x
I
+ Iy I

)!/Ix I!Iy I!, paths of equal
length which contribute to the leading order calculation
of V. To calculate the first-order correction to V we must
diagonalize the perturbation in this subspace,

What is the effect of H' on paths of flux with corners as
shown in Fig. 45. On the two links in Fig. 45 where two
U matrices act, one must decompose the product into ir-
reducible representations. Since 3&3=1+8, there is a
singlet piece and the flux path shown in Fig. 45 results
with a weight of —, . These are the processes of
importance —they mix different members of the degen-
erate subs pace. We recognize all this as a familiar
problem —particles (fermions) hopping along a chain. To
make this observation quantitative, label a path as shown
in Fig. 46 and make the definitions

y link with flux~fermion at site i,
x link with flux~absence of fermion at site i .

Thus we imagine a box of length L = Ix I
+ Iy I

con-
taining Iy I

fermions. It is clear from the perturbation
theory exercises done above that the perturbation allows a
"fermion" to hop one site to a nearest neighbor if that site
is initially unoccupied. Therefore, the restriction of H' to
the degenerate subspace is

H'= —, ga;a;+i+H. c. , Iy I

= ga;a; . (5.43)

This standard one-dimension hopping Harniltonian is di-
agonalized by passing to momentum space,

i= an n ~ ~ n

1 . mni

2(L +1) L +1
n =1,2, . . . , L . (5.44)

Then

H'= —, g cosp 2 &n
n na„an . (5.45)

FICx. 43. A path of a flux tube between off-axis heavy quarks
on a lattice.

For our application, the first Iy I
fermion levels are

filled, so the heavy quark potential is
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g2
V(x, u)= —(

I
x

I + Iy I
) —x, —, cos

2Q 3 L+1

—(Ix I+ Iy I)—
2Q 3 3g

(I .y I + 1) . n(l .x
I + 1)

2(
I

x
I
+ ly I

+1) 2( Ix I
+ ly I

+1)

2( lx I+ ly I+1)

(5.46)

It is interesting to plot the equipotentials of V. This is
shown in Fig. 47. The restoration of rotational symmetry
is clear. It occurs at a coupling close to the values where
the string tension begins to scale according to asymptotic
freedom. This is as expected and is very satisfactory.
Higher-order corrections allow one to discuss smaller
values of g than can sensibly be handled by our first-order
formula (Kogut et al. , 1981). Computer simulations also
show restoration of rotational symmetry (Stack, 1982).

A few final comments: One can expand the formula
Eq. (5.46) for V in powers of 1/L and find power-law
corrections. The strength of the 1/L term is close to that
predicted by the thin string, continuum model discussed
in the preceding section. And the off-axis matrix ele-
ment, therefore, has all the qualitative properties of the
continuum string! For all g&ao, it is rough. Therefore,
the tension of the off-axis string should be an analytic
function of g, 0&g & oo. This point can be proved in
models of fluctuating thin strings (Kogut and Sinclair,
1981). This makes it a more desirable matrix element-
but more difficult to work with —than the on-axis string.

Vl. TOPOLOGICAL EXCITATIONS AND CONFINEMENT
IN LATTICE THEORIES

The purpose of this and the next several sections of this
review is to identify the mechanisms in lattice gauge
theories which lead to quark confinement. Topological
excitations —vortices and monopoles —will play an impor-
tant role here. These objects all have spin model analogs
and are helpful in labeling and understanding phase dia-
grams in a host of systems. We will discuss systems of
increasing complexity —the electrodynamics of the planar
model in two dimensions, U(1) gauge theory in four di-
mensions, and finally SU(2) and SU(3) gauge theories in
four dimensions. Gur final topic in this line of thinking
will be a discussion of the role of the topological charge in
lattice systems which are asymptotically free.

L = 1(Bp igq—Ap)P I 4Fp— (6.1)

where P =we' and q is the charge of the Higgs field. For
fixed Ic,

L, =~'(a„e gqA„)' —,F„'„.—— (6.2)

When we make a gauge transformation, D„=A„
+ (1/qg)B&e, the Lagrangian becomes

1 2 2 2 2 2L = —4'„+g q z Dp, (6.3)

which describes a free massive vector meson. If we cou-
ple external test charges into such a model, there will be
just short-range, screened forces—obviously no confine-
ment.

Now let us make a lattice action visualized in Fig. 48
based on Eq. (6.1) with periodicity in both e and
B&——agA& (Jones et al. , 1979),

S = 2v g cos[b&e(r)+qB&(r)]
r,p

g cos(E„B„h„B„). —1
(6.4)

2g Q

The important properties of S are

(1) local gauge invariance, B&~B&+1/qb&A (r),
e~e —A(r), and

I

will also provide an example in which confinement occurs
in the continuum limit only for a definite range of the
bare parameters of the cutoff theory.

Consider the Abelian Higgs model in 1+1 dimension
and freeze the length of the Higgs field. The continuum
Lagrangian is

A. Vortices and confinement in the electrodynamics
of the planar model

Let us look at a very simple example in which topologi-
cal excitations lead to confinement in a lattice theory. It

FICx. 45. The action of the perturbation H' on a kink in the
string. The net result is the movement of the kink by one link.
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FrG. 47. The equipotentials at (a) g = 00, (b) g =&.&9, and (c) g =& 00

(2) periodicity.

Because of property (2), we shall see that the theory has
vortices which tend to disorder the theory leading to con-
finement for a&0. However, in the continuum limit we
shall also see that the effects of the vortices are felt only
for a & a, . For a & a, the vortices are suppressed in the
continuum limit and the classical analysis sketched above
is qualitatively reliable.

Our detailed analysis of this lattice model will use
tricks borrowed from the two-dimensional planar model
of statistical mechanics (Kosterlitz and Thouless, 1973).
Before we begin a technical discussion, let's summarize
the simple topological ideas behind it and the physics in
the results. To test for confinement we place static
charges of magnitudes p and —p a distance r apart. For
p =1,2, . . . , q —1 we shall find a long-range confining
potential, V(r)- ~r ~, between the charges. For p =q,
however, the coefficient of the

~

r
~

potential will vanish.

The reason for this is screening —when the charge of the
static external probe equals that of the dynamical charged
fields of the theory, a dynamical charge binds to the static
charge, making a chargeless state and the flux tube disap-
pears. The fact that vortices can lead to this kind of

rnatter f ields on sites

gauge fields on links

FIG. 48. The lattice degrees of freedom of the two-dimensional
electrodynamics of the planar model. The variables e(r) reside
on sites, and the gauge fields are on links.
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if the closed contour C surrounds the singularity. In-
specting Eq. (6.4) we see that this field configuration will
have finite action if

qg f A„dx"=2m. . (6.6)

Now, consider the effect of such a vortex on the static im-
purities of charges p and —p. We must calculate the Wil-
son loop,

physics is easy to understand. A vortex is a singularity in
the field 6 with the property (Kosterlitz and Thouless,
1973)

(6.5)

exp ipg A&dxI' (6.7)

Equation (6.6) implies that if there is a vortex inside C the
loop acquires a phase exp(27rip/q) If there is an antivor-
tex inside C, the phase will be exp( 2—nip/q) T. he proba-
bility of finding a vortex or antivortex inside C will be
proportional to the area enclosed by C. If a vortex lies
outside C, it does not affect the Wilson loop. We shall see
in our quantitative calculation below that this area factor
will produce an area law (and confinement) when many
uncorrelated vortices and antivortices are accounted for.
Clearly, if p=q, the vortices do not affect the Wilson
loop and there is no long-range potential.

Now let's proceed with the calculation.
To discuss confinement we study the Wilson loop,

exp ipg fA„dx" =—f Q d6(r) +dA„(r) e
r r, p

(6.8)

Let the contour C be a rectangle of width R and length T.
Then the heavy-quark potential is exp ipg f A&dx" =Z(J)/Z(0) . (6.12b)

V(R) = —lim —In(e " )
1 ipg tiAIdx &

T~oo T (6.9)

for an impurity of charge p =0, 1,2, . . . , q.
It is convenient to label the contour C with a vector

field J„(r):

Now we want to do the functional integrals. We re-
place them with periodic Gaussian functions, rendering
the integrals tractable and preserving the periodicity and
local gauge invariance:

—2n [1—cos(h 6 qB )] —in 15 6 qB ) n /4—n-
e P 8 ~ e P 8 P e P

+1 if link r~r+p is on C
J&(r)= ~ —1 if link r +p~r is on C

0 otherwise .

Then we can write

pg fAqdx"~p gBpJ„.

(6.10)

(6.11)

—1/2g~a~[1 —cos(h B —6, 8 )]P V V P

(6.13)

il (48„—58 )PV i V

—g~a2l2 /4Xe

We define

Z(J)= f +d6(r) +dA&(r) e

Then, as in previous sections, we can write

(6.12a)

This is just a Fourier series analysis of the periodic func-
tions on the left-hand side and the replacement of the
Fourier coefficients with Gaussians in the conjugate vari-
ables. This nice trick is due to J. Villain (1975).

Now the integrals f ~d6, m dA& are simpl~they
generate constraints among the conjugate variables,

Z(J) = + g +5[6&l&„(r')+pJ&(r')+qn&(r')] Q g ff 5[bFn„(r"')]exp[ n&(r")/4—a ga l&„(r—)/4] .
rspv l (r) r'IJ, ' r" n (r") r'"

(6.14)

np ——cpvdvn ~ Jp =&pvdv~ . (6.15)

One can solve the Kronecker constraints. d"n&
=bi'J& ——0 implies that n&,J& are curls of integer-valued
scalar fields,

t

lq„m "(m 6) ——'(pJ".+qn") m "(m l)—) '(pJ&+q. n"),
(6.16)

where (m b. ) is a line integral in the m" direction. If
m"=(0, 1), then

A particular solution of the constraint
+pJp+Qnp =0 is

(m. b, ) 'f(r1, r2)= g f(r),m') .
m =—00

(6.17)
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Z(J) = g exp
n(r)= —oo

g [b.„n (r)]
4~

The choice of m will not affect the physics. The Gauss-
ian factors in Eq. (6.13) are nicely written in terms of n
and J:

2n„n„(&„n) 6.18)
I„„I„„=2(pJ+qn)

So, finally,

This is a discrete Gaussian model. For g =0, it reduces to
the lilterface 1oughenlng model whlcll ls dual to the
planar model, as mentioned in the preceding section (Jose
et al. , 1977).

If g a »1, the interface roughening model, Eq. (6.19),
is a good expression of the physics of the model, because
the sum over n(r) can be truncated. For g a —+0, the
continuum limit, this representation is not convenient.
We do another Fourier transformation using the Poisson
summation formula,

2 2 2

n (r)+ +J(r)
r

(I) y f dy h (y )e21rimy

I = —ce m = —Ot)

(6.19) Applying this, we obtain

(6.20)

Z(J)= f QdP(r)
m(r) = —oo

exp
1

2 g(AqP) — g P+ J +2' pm(r)P(r) (6.21)

and this forin of the partition function will prove most useful. Set J=0 here, and we notice that it describes a free mas-
siue scalar field coupled to an integer-valued field. We recognize the mass q g a as due to the Higgs mechanism as in
the continuuin analysis. The m (r) will be identified with vortices which tend to disorder the system. They destroy the
Higgs mechanism and replace it with confinement.

Let us evaluate Z (J=0). P appears only in a quadratic form, so the integral is easy,

Z(J =0)=
m (r) = —oo

exp 4m. ~ g—m (r)G (r —r', m, a)m (r') (6.22)

where m„=2q g ~ and

dk~ ~ de &kr

G(r;m„a) = —~ (2m) —~ (2m. ) (4—2cosk„—2cosk~+m, a )
(6.23)

1
G(0,m„a) = —— ln(m, a)+const2' (6.24)

which is the lattice version of the massive propagator,
(V2+m„a2) '. So the vortices interact through a short
range, screened potential. This will lead to an important
simplification. For a range of parameters the vortex con-
centrations will be small. Then they will not often lie
within a distance 1/m„a of one another. In those cases, Z
is well approximated by just keeping the r =r' term in the
double sum. The self-energy of a vortex is

(m„a) " (m, a) =(m, a) (6.26)

If this is a small number, a dilute gas approximation is
trustworthy. Note that as a ~0, this condition is violated
for ~ & 1/ir So, we. could naively guess that for

& 1/m. , the continuum limit would be free of the effects
of vortices, and for i~ &1/vr it would not.

Now let's verify that vortices disorder the system. We
return to the expression Z(J). Let P —+P+(p/q)J. Re-
calling that J is a step function, changing variables and
dropping terms which could not contribute -RT to the
exponent, we have

Z(J =0)= g exp 2m' ln(m, a) gm(r)
m(r) r

(6.25)

Z(J)= g exp 2i~ m. ln(m„a) gm2(r)
m {r)

This equation means that there is an activation energy
2irii ln(m„a) for a vortex and a probability of finding one

277Kat a specified site of (m„a) " . Two vortices interact only
if they lie within 1/m„a of one another. Given one at site
1, the probability that a second one lies close enough to
interact with it is

inside

2mi g—m(r)
r

(6.27)

If a is small, the vortex activation energy is large and the
sum over rn (r) can be truncated at 0, +1. This is why the
Poisson summation is useful. Now,
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g exp 2ira ln(m„a)m (r) —2mi+m(r) =1+2e " cos 2n.+
m(r) g

2mx2ln(m a)=exp 2e ' cos 2m-
/

(6.28)

So,

Z(J)
Z(0)

=exp —2(m„a) ""
1 —cos2m

Z (J) &
inside

Z(0)
— =exp 2(m„a) " g cos 2~

(6.29)

(6.30)

B. U(1) gauge theory in four dimensions

This theory, a lattice version of quantum electrodynam-
ics, confines for strong coupling as can be checked using
the methods of Sec. IV. For weak coupling we expect it
to reduce to ordinary electrodynamics, which does not
confine. So, it should be a two-phase system with a criti-
cal coupling g, . We can ask

and the heavy-quark potential is

V(R) =2m„(m„a) " 1 —cos2n. —R, (6.31)

where we have restored physical units.
So, we have confinement.
(1) Ifp = 1,2, . . . , q —1, the sources experience a linear

confining potential.
(2) If p =q, the string tension vanishes —a dynamical

charged particle binds to the impurity and there are no
long-range effects.

Note that if sc ~ II/m. , the tension vanishes in the con-
tinuum limit. This is the same condition exposed
before —the vortices become infinitely dilute and
disappear —the periodicity in the lattice variables become
irrelevant, and the naive classical continuum ideas are
qualitatively reliable.

For ~ &1/ir, this analysis fails —the vortices interact
and must be treated dynamically. Numerically, work on
the model indicates that the vortices form a plasma for
a ~ 1/m. and that the string tension saturates rather than
diverges in the a~0 limit (Jones et al. , 1979). Then con-
finement is a property of the continuum limit. A self-
consistent screening theory i la Kosterlitz-Thouless or a
K.osterlitz renormalization group must be made.

(1) What is g, '? Is the phase transition second order? Is
there a continuum confining theory ther'

(2) What is the nature of the confining mechanism'?
How does it drive the transition at g, 7

Using the tricks developed in the preceding section, we
can answer these questions. Consider Abelian U(1) lattice
gauge theory in four dimensions (Banks et al. , 1977),

S=P g [1—cos8„,(r)], (6.32)

exp ie A&dx" (6.33)

and the heavy-quark potential

V(R)= —lim —lx exp ie f Axdx"
)

.
1

T~QQ T c (6.34)

We need Z(J) as usual. As in the (1+ 1)-dimension
problem, we write

where 8&(r) is an angular variable on the link r~r +p
and 8&„(r)=b&8&(r) 5„8&(r),a—s shown in Fig. 49. We
want to compute the excess free energy when a pair of
quarks is placed in the system, so we consider the loop
correlation function,

2'
Z(J)= f g d8&(r) exp —p g [1—cos &8„(r)] i++ 8&(r)J&(r) (6.35)

rs /Le

and make the Villain replacement,

r,p, v r,p

—P(1—cose )
e 1M,V

l = —ooPV

il ve —l2„/2P
(6.36)

We calculate the f d8&(r) integrals generating Kronecker symbol constraints,

Z(J) = ff 5[6„l„p(r)+J~(r)] exp —g l„„(r)/2p
l v(r)= —oo r,p rspsv

(6.37)

and solve the constraint,

l~ n~(n. b, )
——'J„n(n.h) 'J„+—E~„i„Ail„, (6.38)

where n& is an arbitrary unit vector which will disappear from the formalism soon. We substitute into Z(J). There is a
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sum over the integral-valued field l„. We use the Poisson formula and change variables from I„ to P„and an integer-
valued vector field m„. The [dP„] integral is Gaussian, so we do it in the usual way. Finally (Banks et al. , 1977),

+5[bzmz(r)] exp —2n P g m&(r)u (r —r')m&(r')
m (r)= —ao r r, r'

+2mi g m&(r)e&„i„n„u(r r')A—i(n. h) 'J„(r') (6.39)

where u(r) is the four-dimensional massless propagator.
We can interpret the conserved vector field m&(r) as
closed loops as in Fig. 50 because h&m&

——0. These are
the world lines of magnetic monopoles (Banks et al. ,
1977). Note that the electric loops in Eq. (6.39) interact
with strength g@——1/2P and that the magnetic loops in-
teract with strength g~ =2m P. Therefore, gE g~ =n, the.
familiar reciprocal relation of Dirac. Also, m„ interacts
with h, iF„i, the divergence of the dual of the field
strength tensor. So, m& is a source of AiF&i which we
recognize as magnetic current (biF&i is electric current).

We see a natural disordering mechanism here. At large
P, weak coupling, the loops are suppressed by a large ac-
tivation energy. Presumably, they are then irrelevant for
the large scale behavior of the theory which reduces to
free, nonperiodic QED, without confinement. However,
for small P, large coupling, the inagnetic loops are not
suppressed. They are macroscopic in length, and there is
a finite probability of finding a monopole at any three-
cube. These monopoles disorder the system, suppressing
Z (J) leading to the area law and confinement —like in the
(1+ 1)-dimension model, presumably. They provide an
electric Meissner effect (Mandelstam, 1976; 't Hooft,
1975).

One can estimate the critical coupling in the U(1) gauge
theory following Kosterlitz and Thouless (1973). We con-
sider a loop of L steps. Its activation energy is
2m. Pu(0)L. The number of loops of length L through a
given point behaves as 7, roughly. The free energy of

I

such a loop is

F= ST +E—=2n v (0)L —T ln7

=L [2m u(0) —Tln7],

which becomes negative at

2~ v(0)
ln7

(6.40)

(6.41)

C. Monopoles, crossover, and confinement
in non-Abelian models in four dimensions

What are the essential ingredients in the pure SU(2)
gauge theory that lead to confinement?

Some insight into this question can be gained by con-
sidering variant actions on the lattice. For SU(2),

Since F becomes negative for T)T„ the system becomes
a monopole loop condensate for these couplings. Since
u(0) =0.155, T, =g, =1.57.

In this picture we have a monopole condensate and
confinement for g & 1.57. This crude arguinent has
neglected 1/R potentials in Eq. (6.39) and has overcount-
ed loops, etc. These approximations appear to be sub-
dominant effects, however, if the transition occurs where
the loops are sufficiently dilute (Banks et al. , 1977).

This physical picture has good support from Monte
Carlo simulations (DeGrand and Toussaint, 1980). Even
the estimate of T, is quite acceptable.

8+(r + v) = —8 (r +p. +v )

8„(r) 8„(r+p. )

FIG. 49. Gauge field degrees of freedom in compact QED. FIG. 50. A closed monopole loop.
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S= gtrFUq,
p

(6.42)

where trz is the trace (or character) in the fundamental
representation of the group. Of course, in continuum
theories only the Lie group is significant, not the repre-
sentation. However, strong cutoff theories are sensitive to
the global structure of the group, so they depend on the
precise forin of the action. For example, choose

S = gtr~Uq,
p

(6.43)

where trz is the trace (or character) in the adjoint repre-
sentation. The smooth field, continuum limits of both
theories Eqs. (6.42) and (6.43) are identical. The first is
SU(2) lattice gauge theory, the second is an
SU(2)/Z(2) =SO(3) theory. Locally these groups are the
same, but they have different global characters. The
SO(3) theory has monopoles with finite action, while the
SU(2) theory does not. A particularly convenient SO(3)
action is (Halliday and Schwimmer, 1981)

Z = g f [dU] exp P g trU&cr(p), (6.44)
o(p) =+1 p

where the tr is in the fundamental and we have added a
Z2 variable on plaquettes. Now the sign of TrUp is ir-
relevant, so the local gauge group is SO(3) as claimed.

Let us compare configurations and energetics between
SU(2) and SO(3) (Brower et aL, 1981). We let
g(p)=sgntrU& and consider a set of plaquettes having
ri(p)= —1 in a configuration with all other plaquettes
having g (p) =+ 1. In an Abelian model

Q U=exp ie f A dx =exp ie f dS 8

Note that g (Bc)= —1 is not possible in a purely Abelian
model —links occur twice in the product Eq. (6.45) and

g (Bc)= + 1 for all configurations —so these monopoles
occur because of the non-aphelian character of the lattice
action.

We have exposed two topologically significant objects:

We could also make thick Uortices and monopoles. They
are expected to be relevant at weak coupling, as will be
discussed briefly below.

Let's do all this more formally (Halliday and Schwim-
er, 1981). For the SO(3) model,

Z= g f m. dUexp PgtrU&cr(p)
o(p) =+ &

We write

(6.47)

o(p) =e (6.48)

where n&„——0 or +1, n& ———n & for the plaquette shown
in Fig. 52. We can write the field n&„as the sum of two
pieces —a curl and a monopole current density,

with

a~M~
n pv ~pmv ~em p +Epvpu a 5 (6.49)

(1) Vortices ™losedstrings. They cost an action which
grows as the string length in SU(2), but they are invisible
(do not occur) in SO(3) gauge theories.

(2) Monopoles The—y occur singly in SO(3), but only in
bound pairs with an action which grows as the length be-
tween them in SU(2).

M =c ~&"5 np p~' (6.50)
so it is natural to identify one unit of Z2 Aux going along
along a "string" piercing the il(p) = —1 plaquettes in Fig.
51. The string ends, and around either end we can con-
struct a three-cube and consider the quantity hpM~=O, (6.51)

and a~ is an arbitrary vector on the dual lattice along the
string. Mi' is divergenceless,

g(&&)= + il(P) .
p E8c

(6.45) and m& is perpendicular to the string, a&m"=0. This
implies that

Since all plaquettes other than those shown in Fig. 51
have g(p)=+1, g(Bc)= —1 only on turbo cubes at the
ends of the string. It is natural to make the identification so

Slav cl ~my (6.52)

g(Bc)=e' (6.46) m =a"n„„/a 6
where @ is the magnetic flux, so the ends of the strings
can be thought of as sources of magnetic flux—we have a
monopole pair with a string between them in Fig. 51.

which insures the integrability and single valuedness of
mv.

Now we substitute cr(p)=exp(inn„) into Z. , absorb

FIG. 51. A thin Dirac string and frustrated plaquettes.

plaquette p
FKx. 52. A plaquette p with orientation vectors p and v.
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h&m„—b,„m& into trU&, and find

Z = g I [dU] exp P g tr U~ exp(mie. „„~i'M /a b, )

M~ P

q(ac)= ff a(p).
pEBc

(6.55)

At low I/P, trU& and az will have identical signs, so this
monopole counter definition is natural for this action.
Choosing the cube to be at equal time, we let a" point in
the z direction. It is then trivial to compute

(6.54)

We can identify Mi' as a conserved (mod2) monopole
current. We return to the monopole counter for this
model,

is a result of the competition between the chemical poten-
tial of the loops and their entropy.

(2) P~co. The theory becomes frozen (pure gauge
transformation) and is trivial.

(3) p, =O. Pure SO(3) again.
(4) p~ao. Then a(Bc)~1, monopoles are suppressed

(M ~0, n&„~b,„m„b,„—mz), and the SU(2) theory re-

sults.

The expected phase diagram is shown in Fig. 54. This
phase structure was confirmed by crude Monte Carlo
studies (Halliday and Schwimmer, 1981). The transition
is first order for the pure SO(3) axis and also along the
transition line for small p.

For the p=O model one can calculate the density of
monopole current,

q(Bc) =exp(~iM~) . (6.56) M—:1 —(a(Bc)) . (6.58)

S =P g trU(c)p)a(p)+p g o(Bc) .
P P

(6.57)

So, wherever M4 ——+ 1, there is a non-Abelian monopole~
The SO(3) model therefore has monopole loops which

are coupled to gauge fields, as shown in Fig. 53.
So it is plausible, based on our experience with compact

QED, that this model will have a phase transition which
the SU(2) model will not experience!

By suppressing the monopoles we can make a model
which interpolates between SU(2) and SO(3). Consider
(Halliday and Schwimmer, 1981)

For small P,

M =1—4 +O(P") .
I2(P)
Ii

(6.59)

For large P, a(Bc) is + 1 on the dominant saddle point
and M =0, to all orders in P '. These large- and small-P
results again suggest the condensation mechanism and a
phase transition.

How important are monopoles in the pure SU(2)
model? We define another density of monopole current,

The added term is a "monopole activation energy. " We
can examine this theory's phase diagram in the (P,p )

plane.

M=—1 — gp
p &Bc

i)(p) =sgn[trU(Bp)],
(6.60)

(1) P=0. It reduces to a hypergauge theory which is
dual to the four-dimension Ising model (Wegner, 1971;
Balian et a/. , 1975b). It has a second-order phase transi-
tion. In the language of this section, the phase transition

as discussed earlier, and take the mixed model at p=1.
Monte Carlo data suggest that its monopole content is al-

most identical to the usual SU(2) model (Halliday and
Schwimmer, 1981). M changes dramatically in the cross-
over region, as shown in Fig. 55. It can be fit with an ex-

ponential for P & 2.0, e
One can also make a vortex counter. A thin vortex

frustrates, sgntrUP & 1, plaquettes on a closed path. The
smallest closed path of this variety circulates through six

plaquettes in four dimensions. We can look for a vortex

SO(3) su(z)

FICx. 53. A closed monopole current loop coupled to a gauge
field. FIG. 54. The phase diagram of the generalized SO(3) model.
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0.8— X

~ su(z)

4—

FIG. 55. The monopole density in the generalized model at
p = l and in the pure SU(2) model.

at this length scale with the operator

Ez ——sgn trU(p) . (6.61)

trU(P, )&trU(P, q „,~ ) trU(P, q „,2), (6.62)

the presence of a thick vortex is independent Iif the thin
ones. This is a specifically non-Abelian effect!

It appears that small monopoles disappear from the
pure SU(2) theory at p=2.0 and then asymptotic freedom
sets in and growing topological objects dominate. This is
an intriguing conjecture deserving more sudy.

Another two-parameter model which addresses the
same issues is

The density of these small, thin vortices is large at strong
coupling and falls rapidly in the crossover region of the
pure SU(2) model (Halliday and Schwimmer, 1981).

All this still leaves us with the questions of how the
SU(2) theory avoids a phase transition and why the SU(2)
model confines at weak coupling' The idea which

emerges from these studies is that as P increases there are
vortices of greater size and thickness (Mack and Petkova,
1980). They are condensed and disorder the loop correla-
tion function on all length scales. To see these larger to-
pological objects on the lattice we consider the rectangles
shown in Fig. 56. If trU(P„, ) has sgntrU(P„, ) &0,
there is a "thick" string passing through it. Since in the
notation of Fig. 56

D. Topology and continuity in asymptotically free
lattice theories

I.et us recall the O(3) sigma model in 1 + 1 dimensions.
The classical action is

S~~= z f 6! xB&s B&s, ~s(x)~ =1, (6.64)

where s(x) is a unit vector in three-space. Clearly, s(x)
would be a free field were it not for the constraint

~

s(x)
~

=1. This theory has several surprising proper-

where tr„U(p)=
~
trFU(p)

~

—1. Consider the p —pz
phase plane. The limit p~ ~ 00 reduces the finite energy
fluctuations in the model to those having tr+U(p)=+1.
The theory reduces to Z2 gauge theory. The phase dia-
grarn is shown in Fig. 57. The transition lines are first or-
der in nature. The Z2 transition occurs at
p = —, ln(1+ ~2)=0.44. . . by a familiar duality argu-
ment (Wegner, 1971; Balian et a/. , 1975b).

Crossover from weak to strong coupling in the pure
SU(2) model occurs for p=2.2. There is a smooth but
large specific-heat peak in that region (Nauenberg and
I.autrup, 1980). We see from Fig. 57 that this behavior is
a remnant of the end of the line of first-order transitions
in the mixed model, Eq. (6.63) (Bhanot and Creutz, 1981)!

Increasing pz suppresses the monopoles —they are not
condensed in the high-p~ region of Fig. 57. Increasing p
suppresses the vortices. Across the first-order line both
density operators experience a discontinuous drop (Bhanot
and Creutz, 1981).

The specific heat peak of the pure SU(2) model, Eq.
(6.42), is associated with the sharp drop of the monopole
and vortex concentrations. These small topological ob-
jects decouple abruptly at P=2.0, causing the spmific-
heat peak. It is believed that once they have disappeared
only larger topological excitations remain, whose struc-
ture is less distorted by the lattice. Their population is
thought to coexist with asymptotic freedom.

S=pg [1——, tr U(p)]+p„g [1——, tr U(p)],
P P

(6.63)

FIG. 56. A six-link rectangular loop as a probe for "thick"
strings.

'o
su(2 )

FICz. 57. Phase diagram of a mixed SO(3)-SU(2) model.
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ties. It is asymptotically free, and it has a nontrivial topo-
logical charge Q, which is our main concern here (Po-
lyakov, 1975). It is given by the expression

Q = J d x s (B,sXBzs)
4m

(6.65)

—X
s& ——1 —2e

s2 ——-x& f(x ), (6.66)

and can assume only integer values, Q =0, +1,+2, . . . ,
which label distinct sectors of the theory. The different
topological sectors cannot be connected by continuous de-
formations of the field s(x). This result can be under-
stood by exposing the geometric meaning of Q. We take a
boundary condition on s so that s~(1,0,0) when x~~
in any direction. The base space of the model is then
essentially a two-sphere, S2. The field s becomes a map™
ping of the base space S2 to the sphere of

~

s
~

=1. Such
mappings can cover the unit sphere an integral number of
times, and we recognize Q as computing this number.

A field configuration with Q = + 1 can be drawn easily,
as in Fig. 58. It is given by (Susskind, 1977)

5= g(1—s; sj), ~s~ =1.
&ij &

(6.70)

In a theory with the Boltzmann weight e ~, one can
compute the internal energy at weak coupling in powers
of g = I/P,

(1—s;.s, ) = -+01 1
1 2 p2

(6.71)

This equation implies that as g ~0 the "most likely"
fields become arbitrarily smooth and ordinary continuum
notions of continuity are useful!

To make the topological properties of the lattice model
precise we need a lattice construction of the topological
charge QL in which (Berg and Liischer, 1981; Luscher,
1982)

However, if we specialize to asymptotically free models
where the critical point is at zero coupling, some rem-
nants of the ideas do survive. In the vicinity of the
critical-point matrix elements of the fields are very
smooth in many cases. In particular, let us consider the
lattice action

(6.67)

and for the generalized CP" ' models (Eichenherr, 1978;
d'Adda et al. , 1978),

S;„„=2~n . (6.68)

Finally, we recall the asymptotic freedom scaling law
for the O(3) model. We consider a Pauli-Villars cutoff M
and a coupling g (M). Then the correlation length g, the
reciprocal of the mass gap m, depends on M and g (M),
as (Polyakov, 1975)

s3 x2f(x ), ——f(x )=, e "(1—e ").
X

Note that s(0)=( —1,0,0) and that as x covers the base
space, s covers S2 just once.

Field configurations having Q =+1 which are local
minima of the action are instantons (Polyakov, 1975).
Their classical action is for the O(3) model

(1) QL has only integer values and is composed of a
sum of local charge densities.

(2) Ql has the correct continuum limit.
(3) The lattice definition of QL should be unambiguous

except, perhaps, on a set of spin configurations of mea-
sure zero, and these "exceptional" spin configurations
should have an action which is bounded from below by a
finite constant.

q (x *)=cd /4m . (6.72)

For O(3) the construction is particularly transparent. Let
us first consider a triangular lattice. The naive construc-
tion which approximates the continuum charge density is
the following: At the center of each triangle we associate
the spherical area enclosed by the three nearest spins as
shown in Fig. 59. Then we define A =cx&+u2+u3 7T.

The sign of the area should be o =-sgn[s&. (s2)&s3)], and
the local charge density is

g e
a

m M
(6.69) Then

Now let us consider the lattice model. Do any of these
topological ideas survive? Since continuity concepts are
not so clear on a lattice, one naively would think not.

QL ——g q (x*) (6.73)

is a good lattice definition of the topological charge.

FIG. 58. A spin configuration approximating an instanton in
the two-dimensional 0(3) model.

(b)

FIG. 59. (a) A spin configuration in the O(3) model on a tri-
angular lattice, and (b) the construction of the local topological
charge density.
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Qnly if si, s2, and s3 lie in a given plane does the defini-
tion become ambiguous if (Berg and Liischer, 1981;
Liischer, 1982)

+Sl S2+S2 S3+Si S3 (0 (6.74)

Such an exceptional configuration has at least one bond
which is very unfavorable —i.e., the configuration has a
large action and is very unlikely at weak coupling.

For a square lattice, one makes triangles and copies this
construction. The triangles can be chosen in two distinct
ways, so we can construct two local topological charge
densities,

1
q)(x ) = [O'A ($)$2$4)+CD ($2$3$4)],

4m

1q2(x~)= [oA($& $2$3)+oA($&$3$4)] .
4m

(6.75)

Similar constructions have been made for CI'"
models in two dimensions (Berg and Liischer, 1981;
Liischer, 1982) and SU(X) gauge theories in four dimen-
sions (Luscher, 1982). In each case the exceptional con-
figurations have at least one very high energy bond for
which a lower bound can be computed.

Now the question of interest is whether in the continu-
um limit only smooth lattice fie!d configurations survive
which have classical partners. The following difficulty
can arise. There may be lattice spin configurations hav-
ing Q&0 which have topological charge densities isolated
to the neighborhood of only one site, and these configura-
tions may survive in the continuum limit. This in fact
happens in the O(3) model! The configuration shown in
Fig. 60 has Q = 1 and action Sd =6.69. . . . Its probabili-—psg
ty of occurrence behaves as -e . In physical units its

4~p —~~~d —4"]
probability per area —e "/e ~- e [recall
from Eq. (6.69) that g —e ~]. Since Sd & 4m., these
"dislocations" do not become unlikely in the continuum
limit, and the continuum limit of the topological charge is
unphy$ical (Berg and Luscher, 1981; Liischer, 1982).
Note that this is a violation of universality in the sense
that the short distance lattice artifacts are surviving the
continuum limit. This is a serious problem, because they
still destroy the asymptotic freedom scaling laws for ma-
trix elements involving the topological charge.

For CI'" ' models with n &4, Sd ~4m, and the naive
continuum limit is obtained. Similarly, for gauge theories
in four dimensions these "dislocations" do not contribute
in the continuum limit.

Although the dislocations remain in the 0(3) model,
they do not contribute significantly to the ordinary mag-
netic properties, such as the magnetic susceptibility.
These quantities scale as expected from asymptotic free-
dom (Shenker and Tobochnik, 1980). Why is there such a
dramatic difference between ordinary magnetic properties
of the model and the model's topological features~ Note
that the magnetic susceptibility gets contributions from
smooth spin configurations when p —+ac. However, the
topological susceptibility, X,=(Q )/volume, does not-
it gets contributions from only an exponentially small

FIG. 60. An "exceptional" spin configuration.

fraction 0[exp( 4vrp)], o—f the slowly varying fields.
Therefore, field configurations which vary rapidly on the
scale of the lattice spacing can contribute significantly to
X„while the magnetic susceptibility is, to good approxi-
mation, unaffected.

Vll. LATTICE FERMIONS

Placing the Dirac equation on a space-time lattice
presents some surprisingly difficult problems. In this and
the next few sections these issues will be addressed pri-
marily through examples. The reason for an explicit, il-
lustrative presentation reflects the tricky elements in this
topic—generic or formal discussions of lattice ferrnions
are notoriously untrustworthy! We will first consider free
boson and fermion fields on a spatial lattice (continuum
time) in 1+ 1 dimensions to see the "species doubling"
problem in its simplest setting. The doubling problem is
characteristic of a more general pattern of phenomena
which have been studied extensively by H. B. Nielsen and
N. Ninomiya (1981). Then we shall work through the
Euclidean form of the "naive" or "staggered" fermion
technique in two dimensions. The emphasis here is on the
remnants, both continuous and discrete, of flavor chiral
symmetry and the role of the anomaly in the fermion
technique. Then numerical methods for lattice fermions
will be reviewed. This review will include brief discus-
sions of sparse matrix inversion methods, the Langevin
equation, and pseudofermion Monte Carlo and Von
Neumann —Ulam random walk methods. Finally, the fer-
mion determinant that appears in the path integral for-
mulation of lattice gauge theory will be discussed, and nu-
merical methods for including it in computer simulations
will be reviewed.
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Some of these topics are under active research at this
time. The "best" fermion method and the "best" numeri-
cal approach for dealing with fermion loops are certainly
not settled at this time. The discussion here is meant to
bring together some of the main ideas and problems in a
rapidly developing subject.

Igm~+ 4/a~

A. Free fields on a spatial lattice.
Species doubling FIG. 62. The energy-momentum relation for free bosons.

P=VP —m P, (7.1)

To begin, consider 1 + 1 dimensions and a free boson
field P(x, t) Th. e Klein-Gordon equation is Now let us consider the Dirac equation (mo ——0) with

the conventions

which implies the energy-momentum relation

E2 p2+~2 (7.2)

0 1
ys=

1 0

for plane waves. To place Eq. (7.1) on a spatial lattice
(time continuum), we make the replacement, In the continuum

(7.10)

a V P~P(n+1)+P(n —1)—2$(n)

=(d4+d —2)P(n), (7.3)

ig = iaB,Q =— iy&B—,Q .

It is convenient to consider the chiral eigenstates

(7.11)

a P=(d++d —2)P —a m P .

We consider a plane-wave solution to Eq. (7.4),

(7.4)

where d —are shift operators, d +P(n) =—P(n+1). The lat-
tice Klein-Gordon equation is now

f57+ = +X+

For plane waves we choose,
—ikz +iEt~+ ——e A, +

so

(7.12)

(7.13)

~ ikna +iEt (7.5) E=+k, —oo (k (ao (7.14)

—m. (ka (m . (7.6)

Substituting Eq. (7.5) into Eq. (7.4) gives

on the lattice shown in Fig. 61, and we construct the Bril-
louin zone symmetrically about k =0: as shown in Fig. 63. We have left- and right-moving fer-

mions and antifermions.
Next we consider the simplest lattice form of the Dirac

equation. We place

+
a

(7.7)
2

Therefore, the lattice model has an energy-momentum re-
lation

on each site of a spatial lattice and replace 8, by a discrete
difference,

E =m —2(coska —1)/a

For small ka ((1,
E =m +k +0(k a )

(7.8)

(7.9)

ig(n)= yz[g(n+1) —g(n —1)] .
2Q

(7.15)

and the proper energy-momentum relation results in the
continuum limit. For finite a, the energy-momentum re-
lation leads to the curve in Fig. 62 and its negative. It is
clear from the figure that as a~0, only the vicinity of
ka =0 is relevant and that the ordinary energy-
rnomenturn relation is obtained and relativity restored.
A11 is well.

FIG. 61. A space discrete-time continuum lattice in 1+ 1 di-

mensions.
FIG. 63. The spectrum of the free, continuum Dirac equation
in 1+ 1 dimensions.
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Again let

it+= ' ' +E"x+, ysx+ ——+x+,
so Eq. (7.15) implies

(7.16)

ka

which gives

(
ika —ika

)
2Q

(7.17)
FIG. 6&. &he spectrum of the field g+ on the lattice.

E =+sin(ka)/a .

For small ka « 1, Eq. (7.18) becomes

E=+k+O(k'a') . (7.19)

However, for ka =m. —k'a, k'a &~1, we also have low-

energy excitations,

E=+k'+O(k' a ) . (7.20)

(7.21)

Put this theory on a lattice with

(1) Exact conservation of the chiral charges associated
with a compact, continuous group [chiral SUi )& SU3,
chiral U(1) of quantum chromodynamics (QCD), for ex-

The full energy-momentum dispersion relation is shown
in Fig. 64. We can identify 2 two-component Dirac parti-
cles in the continuum limit( Note that the total chiral
charge of the fermions is zero.

This catastrophe is best seen by considering the field

P+ on the lattice. It describes the excitations shown in
Fig. 65. There are a right-mover (k=0) and a left-mover
(k=m). But since ordinary chirality (helicity for parti-
cles) is just velocity in 1 + 1 dimensions, the finite energy
content of the lattice field X+ is a pair of fermions with
net chirality zero ("species doubling" )!

It is important to ask whether the unexpected proper-
ties of the lattice Dirac equation are general in character
or particular to the detailed construction of this example.
Experience with lattice methods convinced workers in the
field long ago that the problem is generic and that it is
closely relai;ed to continuous chiral symmetry. These im-
pressions were made precise by H. B. Nielsen and M. Ni-
nomiya (1981), who have presented a number of "no go"
results. An interesting example is the following.

Attetnpt to couple a left-handed fermion fL to the
gauge field A„,

5= d4x —i L L+ ~a —~ —A. x

ample].
(2) Locality in the interactions and hopping terms.

IP(n), P(m) j =0, [Pt(n), P(m) j =5„
and describe its dynamics with the Hamiltonian,

(7.22)

H = — g [P (n)P (n + 1) P t(n + 1—)P(n)] .
2Q

(7.23)

This Hamiltonian gives the equation of motion,
i (a/at)y = [H,y],

Then it follows, using the continuity of the energy
momentum relation in the Brillouin zone, that there is an
equal number of left- and right-handed Weyl fermions in
this lattice theory. The proof generalizes those features
observed in the (1 + 1)-dimension example presented
above. Note that the locality assumption is important
here. As in the (1 + 1)-dimension example, it means that
the energy-momentum relation is smooth and that the
species counting is simple. Changing the precise forin of
Eq. (7.15), for example, using a slightly different lattice
kinetic energy, changes the shape of the energy-
momentum relation in Fig. 64 but does not change those
global, general features which lead to species doubhng.
This simple observation underlies the exacting arguments
in the literature. One can "evade" the Nielsen-Ninomiya
result by using a nonlocal lattice derivative (Drell et al. ,
1976). But such theories have not been studied extensive-
ly by statistical mechanics methods and may have prob-
lems with relativity in the continuum limit. They will not
be discussed here.

Consider two approaches to beat the species doubling
problem:

(1) Thinning the degrees of freedom,
(2) Lifting the energy at the edges of the Brillouin zone

from zero.
Approach 1: "Staggered Fermions. "
Place a single-component Fermi field P(n) on each site

(Banks et al. , 1976),

P(n)= — [P(n+1)—P(n —1)] .
2a

(7.24)

y5 =+ I To identify a single two-component Dirac field decom-
pose the lattice into an even sublattice (n is an even in-
teger) and an odd sublattice (n is an odd integer),

FIG. 64. The spectrum of the native lattice Dirac equation.

Pi(n)=P(n), n even

$2(n)=P(n), n odd

where

(7.25)
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Now the equation of motion becomes

01

0 1
&= —»'&= —

1 O '&

a,—y, and q2= —a,q, .

(7.27)

1
el(n) = — [e2«+1)—02(n —1}]

2a (7.26}

1
$2(n) =— [11,(n +1)—1( &(n —1)],

2a

which should be compared to the continuum equation,

The correspondence between Eqs. (7.26) and (7.27) is
clear.

The staggered fermion method avoids the species dou-
bling problem by doubling the size of the unit cube in real
space and effectively halving the size of the Brillouin
zone.

Let's write fermion bilinears in the new language of
P(n) and identify the symmetries of the lattice theory:

f gpdz = f (g(g) $2/2)—dz~ g( —1)"(t (n)p(n),

f 4ys@dz= f (fi42 424i)dz— g( —1)"[4'(n)0(n+1)—0' —(n+1)4(n)],
(7.28)

yz z=
~ 2+ z 2 z~ n n+1 + n+1 n

Now we consider the symmetries of

H = — g [Pt(n)P(n +1) Pt(n+—1)$(n)] .
2a

So, just as the lattice leaves over only discrete transla-

tions as symmetries, it admits only discrete chiral rota-

tions. A mass term,

1. Translation of the spatial lattice by an euen number

of sites This s.ymmetry should be related to ordinary
translations. The generator of ordinary translations in the
continuum theory is

p, = —i f q'a, ydz= t f (y', a, y—, +y,'a, y, )dz,

(7.29)

which does not mix g& and $2. So its lattice version
should not mix the two sublattices, and

p, ~ gP (n+2)((}(n)+P (n)P(n+2) (7.30)

is the corresponding lattice generator. Translations by
two lattice spacings correspond to ordinary continuum
translations.

2. Translation by an odd number of sites Again.
H~H by inspection. Note from Eq. (7.28} that the gen-
erator of translations by one site is f @tysg dz. So this

lattice fermion method has discrete ys symmetry. Note
that

mop( —1)"P (n)P(n), (7.31)

H = — g g t(n}a [g(n + 1) P(n —1)—]2a

+ g g(n)[2$(n) —1'(n +1) p(n —1)]-
2a

is invariant to shifts by an even number of lattice spacings
(translations) but not by an odd number of spacings
(discrete chiral transformations). Note that the theory
with mo ——0 has discrete y5 symmetry, so a bare mass
term cannot be generated by interactions, if they also pos-
sess the y5 symmetry.

Note that we have "solved" the species doubling prob-
lem at the expense of continuous chiral symmetry. This
is consistent with the general Nielsen-Ninomiya con-
straints.

Approach 2: "Brute Force."
Now we will leave two-component fermions on the spa-

tial lattice but will add terms to H so that E vs k does not
have secondary minima at ka =+m (Wilson, 1977). Let

'Ys
42

g g P(n)f(n) . (7.32)

interchanges g, and @2. These are chiral rotations
through m/2 radians, exp(lyse /2) =iys

Note that the second term is a "boson" kinetic energy
term multiplied by a. In a classical continuum limit
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—g g(n)[2$(n) —g(n +1)—g(n —1)]~—I a/a V itj
a a an

=a f gV' gdz

~0 as a~0 . (7.33)

If we omit the last term in H for the moment, the equa-
tion of motion for P is (7.41)

ig(n) = — yz[f(n +1)—g(n —1)]
2a

yo[2$(n) —itj(n —1)—P(n +1)] .8
2Q

For a plane wave

(7.34)

where dz is a shift operator by one lattice spacing in the
direction p.

Let b,„=a h(n). Then the Klein-Gordon equation for
the propagator becomes

a m 6„=g(b.„+„+h„p—2b,„)/a
P

i ( —kna +Ft)yip =e

the equation of motion becomes

EX= —— y5(e ' —e' )X
2Q

(7.35) =~„0/a',

or, in dimensionless form,

(8+m a )b.„—g(b.„+„+b.„p)=5„0.

(7.42)

(7.43)

So

+ yo(2 —e —e )X,
B ika —ika

2Q

sinka
2&

sin (ka /2)
X= —ys X+2ayoa Q

(7.36)
&(p) = 1 K=, (744)

1

K y (e'~~'+e 'i'~') 8+m a

Passing to momentum space in the usual way, we find

sin ka 2 sin (ka/2)+48a2 a2 (7.37)

Letting ka ~0, we have E =k +8 k a + -, which is
acceptable. Near the edge of the Brillouin zone, ka =+~,

E =48 /a (7.38)

and the boson kinetic energy has opened a gap in the
spectrum. In this case, the species doubling problem has
been solved with an irrelevant operator (Wilson and Ko-
gut, 1974). What has the cost been' ?

(1) M explicitly breaks continuous and discrete y& in-
variancef There is no remnant of one of the most impor-
tant symmetries of hadron physics.

(2) Enteractions will induce a bare mass for the
fermions —hence the third term is added in Eq. (7.32),
and a fine tuning must be made so that the continuum
limit has finite mass particles in it!

or

4(p) = 1

1 —2K g cosp&a
(7.45)

The Brillouin zone covers the range —m/a &p&a &m. /a
for each p=1, 2, 3, or 4. If we continue back to Min-
kowski space po —+IE, we can identify the particle spec-
trum with the poles of 5(E,p),

&(E,p) = 1

1 —2K coshEa —2K g cosp;a
(7.46)

1

1 SK —K(Ea —pa )—

which has a pole at

(7.47)

The only poles of Eq. (7.46) in the Brillouin zone occur
near the origin, Ea, and p;a «1. In this vicinity we have

B. Fermions and bosons on Euclidean lattices
E =p +(1—SK)/Ka (7.48)

a„a„g,(x —x') =5'(x —x')

%'e label sites on a four-dimensional lattice,

(7.39)

Consider the boson propagator in four-dimensional Eu-
clidean space,

This is the relativistic E —p relation if m =(1
—SK)/Ka . So a proper nontrivial continuum limit is

1
obtained by letting K~ —, from below, 1 —SK ~0, and
taking a —+0 so that

(7.49)

xp =Pl~Q~ lip =0, + 1~+2, . . . , p = 1,2~3~4

and replace derivatives with finite differences,

(7.40) 1
is held fixed. Note that for small E« —,, fixed a, the lat-
tice theory is essentially static. Expansions in E about
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(y"8„' —m)G(x' —x)=5 (x' —x),
ay@ y I

—2$P

The continuum action is

(7.50)

g= f I.d4x= —, f yy"a„qd x+ f qmqd4x

= f g(y"8„—m)gd x . (7.51)

A "naive" lattice action is

%=0 can be done.
Now let us consider free fermion propagation. The

continuum's propagator equation reads,

G(p) = 1

2 g y&sinpz 2r—g cosp&+ 8r
P

(7.59)

Now the additional zeros are removed but the action Eq.
(7.55) has neither continuous or discrete y5 symmetry.

Note that the choice r= 1 is quite special. Then

zone: there are particles at the edges of the Brillouin
zones, as well as at the origin. In two dimensions the
low-energy species occur at the edges of the Brillouin
zone shown in Fig. 66. A similar figure exposes 2"
species when d dimensions are made discrete.

Second, m =0, r&0 T.hen

[P(n)y&f(n +a& ) —g(n +a„)y&P(n)]a
2Q

[(1—y„)d„+(1+y„)d„—8]G (n) =&„0, (7.60)

—m n na (7.52) (7.61)

and 1+yz and 1 —yz are projection operators. We let

Pq ———,(I+yp) .

Since we can anticipate a species doubling problem, add a
second-order hopping term,

Then

g [g(n)g(n +a&)+P(n +a„)g(n) —2$(n)g(n)]a4 .
n, p

(7.53)

Now A becomes

[g(n)(r —yp)g(n +aq)
1

Pl,P

With r= 1, K~ —, gives the correct relativistic propaga-

tor,

(7.63)

C. Staggered Euclidean ferrnions

+g(n +a„)(r+y„)f(n)]a'

+ g m — tj(n)P(n)a
n Q

(7.54)

We introduce dimensionless fields g(n)~a ~ P(n),

A = g 1t (n)(r —y„)P(n +p)+g(n +p)(r +y„)P(n)
n, p

+(ma —8r)g(n)g(n) . (7.55)

The propagator equation is then

[(r —y&)d& +(r+y&)d& +(ma —8r)]G(n)=5„O .

(7.56)

Let E—:—I/(ma —8r). The propagator in momentum
space is

Now I shall devote considerable space to the Euclidean
version of "staggered" fermions. The discussion will be
made in two dimensions for free fields but the features of
the methods we concentrate on extend to four dimensions
in the theory with gauge fields. I am most interested in
counting species and exposing the remnants of chiral
symmetry in the method. Unlike the Hamiltonian version
of the method, there is a continuous remnant of chiral
symmetry, in addition to discrete y5 operations. This is
important, since it allows lattice studies of the Goldstone
mechanism to make sense!

We choose a y matrix representation in two dimensions,

G(p) = E
1 —K g [(r+y&)e "+(r—y&)e "]

(7.57)

Let us consider the propagator for some special choices of
parameters. First, m =0, r =0. Then

G(p) = 1

g y„sinp„

g y„sinp&

g sin'p„
(7.58)

It is clear that G (p) has periodic structure in the Brillouin
FIG. 66. The Brillouin zone of a two-dimensional Euclidean
square lattice.
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0 1 0 —i
VO —

] 0
—~1 71 —

&. 0 —2

1 0
(7.64) 2l II

I 2 I 2

2! II

I 2

The naive action is

S= gg(i)r„[P(i+p) f(i——p)], i =(no, n, ) .

InpI In( I4=ro ri (7.66)

(7.65)

To thin the degrees of freedoin, we "spin diagonalize"
this expression (Kawamoto and Smit, 1981). We define
X(np, ni):

Il i
I

I

I I

I 2 )

2l Il
I I

I

I 2
, r

2i II

I 2

( 2l
I

'

I

I I

i, I 2 J

2l I
I

I 2

r E

( 2l
I I

I I

I 2 )

and independently,

In] I Inp I0=Xri ro (7.67)

FIG. 67. Sites, blocks, and degrees of freedom for staggered
Euclidean fermions.

So,

S = Q X(i)( 1)~"—"'[X(i+iJ ) X(i ——p)],
l, jul

(7.68)

where

y(l O) I nl I I np I I np+1 I In( I

( —1)~""=ri '
ro

' roro ri =+1
(. 1) I ny I Inp I Inp I I ]+ I Inp I

( —1)~""=ri ' ro ' riro
(7.69)

Since S is "spin-diagonal, " one can thin the degrees of

freedom, and one need keep only a singie complex field
X(i) at each site! This trick of spin diagonalization shows
the intimate relation between the two fermion methods.

We label the lattice as two interleaving lattices one
primed and one unprimed, as in Fig. 67, as an aid to iden-
tifying the multiple species hiding in Eq. (7.68). The dot-
ted block in the figure repeats itself throughout the lattice
by translation. We consider the four sites of the block
and label them with y matrices, as suggested by Eq.
(7.66),

site

origin
1

1(j) =X(1) (), P =(1,0)X(1)

Qp

1 0
1(j2 X(2)ro 0 =X(2) p2 =(0,1)x(2)

1 0
f2 =X(2')r& 0 ——iX(2') g z ——(0, 1)[—iX(2') ]

&paar

Q t = (1,0)[—iX(1')],

where the labels a and b will help us identify physical degrees of freedom.
The action can be simplified:

(7.70)

(7.71)

S=X(1)[VoX(2)+ViX(2 )]+X(2)[VoX(1) ViX(1 )]+X(1 )[VoX(2 ) ViX(2)]+X(2 )[VpX(1 ) V&X(1)]+3k

= 1( i (Vgk2 —l Vi1( 2 )+f (V2/i o+l Vi1(' i )+g &(Vp1i'2 —EV&fp )+1( (V2pp i + l Vi2p i )+3k

where A represents other blocks and where X(1)VpX(2)
means X(1)(d& —d& )X(1) with p=O, etc. The site label-
ing in Eq. (7.71) follows Fig. 67 closely. We can diago-
nalize the action. Let

So

u;=(fg'+iA )lv2, d;=(g p; )/v 2. —

u;+d;=v2it, u, —d;=vast

(7.72)

(7.73)
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where

=uau +dDd, (7.74)

Substituting into Eq. (7.71), we have, after some algebra,

S = iT1(Vpu2 —/ Viuz ) +uz(Vou 1 +i Viu 1 )

+di(Vpdz+iVidz)+dz(Vodi i Vidz) Vf (2)= —,[f(3)—f(1)],
V'f (2)=f(3)+f (1)—2f (2) .

Then

(7.80)

Let's begin to simplify this expression by examining the
discrete differences here in greater detail. %'e consider
three sites —„', „,and „—and definitions of a derivative,

3 0~0+ Y1~1~ D 70~0 71~1 (7.75)

0
d=~r5X1d=~~3~2d =~1"—

1 0 "- (7.76)

dDd =do1Dod'=d'(poVo ') 07'—1Viyo)d =dDd

(7.77)

Finally, we can make a linear transformation on d to ob-
tain a standard Dirac operator,

f (3)—f (2)=-, [f(3)—f(1)]

+ —,[f(3)+f(1)—2f (2)]

=V'f + , V'f, —

f (2)—f (1)= —,[f(3)—f(1)]
——,[f(3)+f(1)—2f (2)]

=Vf —, V f . —

(7.81)

(7.82)

Now

(7.78)

which suggests that two fermions, an isodoublet, emerge
in the continuum limit.

D. Block derivatives and axial symmetlies

The degrees of freedom relevant to the continuum limit
occupy a single square, as shown in Fig. 67. If we intro-
duce a "block derivative, " the continuum limit physics
can be made even clearer than in Eq. (7.78) (Duncan
et al. , 1982). The final result of this exercise will give a
flavor-diagonal expression from which we will read off
the continuum species and symmetries. We recall

41(VOf2 iV142)+42(V PO1+iV101)

+Pi(Vofz &V102)+Sr—(V041+&'V iit i )

(7.79)

=V/2 ——,V it's, (7.83)

where "hats" indicate intrablock derivatives.
If we use block derivatives, the variables g, g; (i = 1,2)

can be thought to live at the centers of each block. The
variables are now naturally organized to account for the
multiple flavors which appear in the continuum limit.
This formalism also lends itsdf most naturally to real-

space renormalization-group methods.
Introducing the block derivatives into S, we get

Now we introduce a block derivative. In the action,
pi Vpg 2 occurs. It consists of two terms one coupling
degrees of freedom entirely inside a block and another
connecting blocks. We consider the horizontal axis
shown in Fig. 68. The difference $2(xz) —$2(x 1 ) occurs
in Eq. (7.79). But using the algebra above, we arrive at

42«2) Pz«1) = —,[42(x3) ii'2(x»]

[02(x3)+02(x1) 202(xz)]

So

S =$1[(Vpfz —
2 V 0/2) —1(Vi/2 —

2 V 142)]+02[(V04 i + —,Vo(i' »+& (Vitt'1 ——,V 14 1 )]

+g [(Voit'z+ Volz) —1(Vifz+ —,V iitz)]1+0 '[(Vyl ——,Vofi)+i(V@1+—V if')1. (7.84)

S =uDu+dDd+$1 ——,Vpgz+ —V if' +f2 2 V pal V 141

T

+pi ,'V ofz 2V 142 —+0z ———,Vofi+
2

Vifi

The first two terms in Eq. (7.85) can be written as
uDu+dDd using Eqs. (7.76) and (7.77). The terms in
large parentheses in Eq. (7.85) can also be simplified by
transforming them to u 's and d 's. It is convenient to use
flavor isospin notation,

(7.86)

I

and flavor matrices,

0 —1
T0= ) 0 p T1

0 —i
—i 0 (7.87)

Then some algebra yields the final result,

S =fDf+fy, T„,'V'„'f . — (7.88)

This form of the action has the virtues advertised
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E. Staggered fermions and remnants
of chiral symmetry

FKJ. 68. Labels and coupling of degrees of freedom along one

axis for staggered fermions.

To expose the vector and axial symmetries of the stag-
gered fermions we reconsider the action written in its
most primitive form, Eq. (7.68).

%'e consider even and odd states separately and a
U(1) XU(1) global invariance group, where the first U(1)
acts on even sites, the second U(1) on odd sites,

above. The first term is free of fiavor mixing effects and
displays the two species in the clearest possible way. The
second term is an irrelevant boson kinetic energy term
with an important twist —the matrices @5T& occur! The
matrix character of the second term has several important
consequences. It insures the existence of a continuous
remnant of chiral symmetry, and it breaks explicitly the
axial flavor-neutral symmetries. These points will be
made explicit below in greater detail.

U, g(n), n even

iUpX(n), n odd

X(n) Up, n even

X(n)U,+, n odd.

This is obviously a symmetry of

(7.90)

S=&(1)[VpX(2)+ViX(2') j+X(2)[VpX(1)—V)X(1')]+X(1')[Vpy(2') —Vg(2)]
+X(2')[VpX(1')+V(X(1)]+A', (7.91)

since only even (odd) sites are coupled to odd (even) sites.
We write this symmetry in terms of conventional, contin-
uum fields,

We let

I 0
T3= 0 1

0i ~Uofi Pz~Ueg»
0i+0i Uo ui

U uu2

Similarly,

u&
= —,(Up+ U, ) „+—,(Up —U, )

(7.92)

and use the isospin notation f= (d ). Then

f'= U+f + U rsT3f ~-
In summary, the action,

S =fDf +frs T„,V„'f-
has the continuous symmetry

f'= U+f + U rs Tsf .

(7.97)

(7.98)

(7.99)

~—,(Up+ U, )
2

+ —,(Uo —&e)rs d 2

—0 j = U+0.) yS0
2

where U+ = ( Up+ U, )/2. So

=0 ) U+0 )d +0 ) U +5cT&d

But 0 jf50)= —p5, so

d'= U+d —U yzd,

u =U+u+U —ysu

But d =a&d, and y5 ——0.
3 in this basis, so

(7.93)

(7.94)

(7.95)

(7.96)

So, the original U, )&UO symmetry contains a vector
piece 1D X 1F, fermion number conservation, and an axial
piece rs X Ts, one component of axial isospin. The
second piece forbids a mass term in S. When it breaks
spontaneously in more than two dimensions, a pion will
appear in the usual Goldstone fashion!

%'e note that the irrelevant operator exposed in the
Block derivative expression breaks the full axial isospin
symmetries to a smaller set of continuous symmetries. It
breaks the axial flavor-neutral symmetries explicitly.

In addition to the continuous Uo X U, symmetries there
are discrete symmetries of interest in S. If we translate
the system by an odd number of sites in either direction
and transform phases appropriately, the action will not
change. Therefore these symmetries are square roots of
translations and will be identified with A,5, T;, and their
products. These discrete symmetries forbid fermion mass
terms, isospin breaking mass terms, etc.

We consider a translation along a body diagonal
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X(r,z)~i ( 1—)'X(t+ l,z+1),
X(t,z)~i ( —1)'X(t + l,z + 1) .

(7.100)
[g(U)+m]G =5 (x —y) . (8.1)

X(1)~iX(1'), X(2)~ i—X(2'),

X(1')~ iX—(1 ), X(2')~iX(2) .
(7.101)

So

One can check explicitly that S, Eq. (7.91) is unchanged
by this transformation. In the notation of Fig. 67 the
symmetry operation is

So we face a generic problem: Find the vector x which
satisfies Mx =b. Here x represents a fermion field which
lives on sites. It can be thought of as a complex vector of
dimension equal to the number of sites of the lattice.

This problem can be solved with relaxation methods.
A most elementary method is due to Jacobi. %"e let t
equal the number of sweeps through the lattice and con-
sider the differential equation

(7.102)

—= —[Mx(t) —b] .dx
dt

(8.2)

or

So

or

Q(

Q2

d) d]
d ~'dQ2 2 2

Q&

(7.104)

ui —+ui, u2~ —u2, d2~ —d2, died, . (7.103)

If we invent an iterative procedure which approaches
x=0, then we will have x =M 'b, as desired.

The matrix M can be written in the form M =1—K'.

This is natural in our problem —the 1 labels the "no hop-
ping" term in the kinetic energy. K is near diagonal and
includes the hopping pieces of the lattice action. The pre-
cise form of all this depends on the lattice fermion
method used.

For the computer dt = c, and Eq. (8.2) becomes

(7.105) = —[(1—K)x„b] . — (8.3)
This translation is therefore a flavor singlet y5 transfor-
mation.

This is the only remnant of the continuous U~ symme-
try in the lattice action.

This lattice fermion method has the species we want,
an isodoublet degenerate in mass, and has the correct
symmetries in the continuum limit. On the lattice, how-
ever, it has only remnants of the full chiral symmetries.
There is one continuous axial flavor symmetry, and if the
gauge field dynamics drives spontaneous symmetry break-
ing, a Goldstone pion should occur even in the cutoff
model. In the continuum limit, full chiral symmetry
should appear and should be spontaneously broken, as
well. Then additional Goldstone pions should evolve as
a ~0. The lattice fermion method has enough symmetry
to guarantee this naturally.

So

x„+, Eb+(1 E—+sK)x„—.

Iterating this equation generates successive terms in the
Neumann series,

1 cb—: b,1

1 —(1 E+EK)— 1 —K
(8.5)

as desired. So the method will work if
i
~(1 —a+sK)

~ ~
& 1,

where
~ ~ ~

denotes the maximum eigenvalue of the en-
closed operator.

Typically,
i ~K~~ =2d/2m, where d is the dimension of

space-time and m is the bare fermion mass. The operator
E is imaginary, so its eigenvalues lie in the region shown
in Fig. 69. If we choose E small enough, the eigenvalues

Vill. NUMERICAL METHODS FOR LATTICE FERMIONS

Now we are ready to put interactions back into the fer-
mion action. Our aim is to calculate composite propaga-
tors describing the mesons and baryons of quantum chro-
modynamics. We shall see that a basic ingredient in such
a calculation is the fermion Green s function 6 in a given
background gauge field configuration. So first we will

discuss methods to calculate G numerically and finally re-

view methods to incorporate fermion dynamics into
Monte Carlo calculations.

A. Jacobi and reIated methods of calculating
the fermion propagator

In an abbreviated notation (but one I hope to be clear),
the fermion propagator G in a background U field satis-

FICx. 69. Region of convergence for the Jacobi matrix inversion
method.
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of 1 —E+sK will lie within the unit circle, and the
method will converge (Stone, 1982). This approach has
several problems, however.

(1) As m ~0 (real physics), E must be taken small, and
many iterations are necessary for convergence.

(2) Convergence, even when it occurs, is not monotonic.
(3) There is an art to choosing the "best" s, the "over-

relaxation" parameter. Optimization procedures exist
(Hageman and Young, 1979).

An improvement over the Jacobi method is the Gauss-
Siedel iteration procedure (Hamber and Parisi, 1981;Mar-
inari et al. , 1981; Weingarten, 1982). Here the variables
x„(i) are ordered. For example, one labels the lattice sites
sequentially with sensible boundary conditions. In the
Gauss-Siedel procedure when x„(i+1) is updated the
most recently calculated x„(1),x„(2), . . . , x„(i) are used
on the right-hand side of Eq. (8A). This frequently
speeds up convergence considerably, since more informa-
tion is used in each step as compared to the Jacobi
method, in which the values x„(i) are updated only after
each sweep through the lattice. The following terminolo-

gy is used and should be clear, Gauss-Siedel is the cyclic
relaxation and Jacobi is the simultaneous relaxation.

There are other relaxation methods which are more so-
phisticated than these. Experience has shown that
conjugate-gradient methods (Kogut et al. , 1982)

(1) Converge more regularly in a wider class of prob-
lems than either Jacobi or Gauss-Siedel.

(2) Proceed much faster, especially in the weak cou-
pling region for Euclidean staggered fermions.

The conjugate-gradient method is a generalization of the
method of steepest descents. One must dig deeply into
the literature to find useful, explicit discussions of the
method (Hestenes and Stiefel, 1952).

B. The Langevin equation and pseudofermion
Monte Carlo

We recall Langevin's classic work on Brownian motion
and the approach to equilibrium of classical statistical en-

sembles (Langevin, 1908). In the simplest application one
considers a set of particles q; which has an equilibrium
distribution exp[ H—(q;)lo]. A stochastic equation, the
Langevin equation, which gives this distribution as t~ po

is (Langevin, 1908)

+il;(t),BH
~9'i

P i
——(@+m)P i+g,

P, =( g+m)P—, +i)
(same ii) where

((71(x,t)ii*(x', t') )) =25(t —t')5(x —x') .

(8.7)

(8.8)

We will show that an average over the noise produces the
fermion Green's function,

lim ((Pi(x, t)$2(y, t))) =G(x,y; U) .
E —+ oo

(8.9)

This method of calculation has some advantages over
iterative procedures. G(x,y; U) is obtained for all x and y
at the same time. The relaxation methods give 6 only for
a source point fixed. It also has disadvantages. In partic-
ular, more statistical errors occur here because of its in-
herent noise.

Let's prove the claim Eq. (8.9) (Stone, 1982). Solve
both equations in Eq. (8.7) formally,

((7);(t)ii,(t') )) =2o 5;,5 (t t'), —

where the white noise g brings in the fluctuations leading
to a probability distribution for q; with the desired width
o. In Eq. (8.6) (( )) indicates an average over Gaussian
stochastic white noise.

We can use this formalism if we invent an equivalent
boson problem whose correlation function gives the fer-
mion propagator in the background U-fiel configuration
(Fucito et al. , 1981).

Consider a two-component P;(x, t), where x labels sites
on a four-dimensional Euclidean lattice and t is the num-
ber of sweeps through the lattice,

Pi(x, t)= f dx'dt'+Pi„(x)Pz(x')e ' '
' 6(t —t')ii(x', t'),

42(y t)= f dy'«" yes, (y)ei. (y')e ' '
' 6(t t")n(y't")—

(8.10)

We observed here that the spectrum of (g+m) is [A, ,p& I and of ( —g+m) is [g*,p&I.
Now

((Pi(x t)P& (y t) )) —f dx dy dt dt g P&(x)P&(x ) g P*(y)P (y )e
p

&C (( i) (x', t')ii*(y', t") ))6(t —t')6(t t")—
= f dx'«'gP~(x)P~(x')P*(y)P (x')26(t t')e-

Ap

(8.1 1)

But
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f dx'Pl, (x')itic(x') =5k (8.12)

so

((pi(x, ~)$2(y, &)})= g J d~'e ' ' 26(~ —~')pk(x)pz(y)

(8.13)

~fermion P 4i (++m )ij 4j (8.14)

Suppose that g+ m is positive. Then

G(x,y; U) =(iI)'(x)i))*(y)}

=
Z J [dd][dklk(x)4'(y}

X exp —$P;(8+m);, P,

which is the desired result. So the differential equations,
Eq. (8.7), ean be solved numerically, an average over noise
taken, and G(x,y; U) obtained.

An ordinary Monte Carlo method with bosons can also
be used to obtain the fermion propagator. The fermion
piece of the action reads generically

which is less than unity. Then

D-'=(1 —H)-'= g H"
k=0

is a meaningful Neumann series. In indices,

(D ') i =1+H~j+HkHki+HikHklHlj+ .

(8.16)

(8.17)

Let's devise a stochastic inethod to calculate Eq. (8.17)
(Forsythe and Liebler, 1950; Wasow, 1951; Kuti, 1982—
this reference advocates the von Neumann —Ulam method
for fermion problems). We visualize Hkl as a particle
hopping from site l to site k. Typically, Hkl wiH be
nonzero only if k and l are nearest neighbors or next-
nearest neighbors. Then each term in Eq. (8.17) can be
visualized as in Fig. 70. Next we consider Hkl and factor
it,

(8.15)
~kl Jkl~kl ~ (8.18)

If P+ m is not positive, we should consider
( —8+m)(8+m)= —8 +m . Then the "pseudofer-
mion" calculation, Eq. (8.15), gives ( —g +m ) ', and
we can apply ( —8+m) to the result to obtain (N+m)
The problem with the method can be computer time —a
Monte Carlo program for —g +m involves seeond-
nearest-neighbor coupling and is somewhat complicated.

with no summation, where pkl )0 and is the probability
of the moving particle to hop from k to l. Let there also
be a finite probability that the particle stop at site l,

Pi =1—g Pik .
k=1

Now let us consider a walk i ~k ~I~p ~
~m ~j. We lay down the rule that it contributes

C. The fermion propagator and random walks
Aik Akl ' Amjpj (8.19)

The connection between random walks, path integrals,
and propagators is a profitable one in many field-theory,
statistical mechanics settings.

Here we want to invert [g ( U}+m],i and obtain
G ( U),z. Write D =[g( U}+m], D = 1 H. Suppose that—
maximum eigenvalue of H, A, ,„(H), has magnitude

I

PikPkl p~j pj

so the total contribution to (D '); is for n terms

(8.20)

to (D '),z. Then the average over all walks reproduces
(D '),z, because the probability of the route i~k~l

. —+m~j is

(pikpkl '
pmjpj )(~ik~kl ~mj pj ) g (pik jiik )(pki jikl } (pmj limj }

n kl, . . . , m

= g HikHki Hmj ——g (H"),
q (8.21)

which reproduces the Neumann series!
The variance in calculation of (D '),j can also be cal-

culated. We let

2
Rij pij jiij— (8.22)

with no sum and assume max;
~

A,;(k)
~

&1. We define
FICi. 70. A pictorial representation of the matrix inversion
method of Von Neumann and Ulam.
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T =(1—R ) '. Then (Forsythe and Liebler, 1950;
Wasow, 1951)

(8.23)

If max;
~

A,;(k)
~

& 1, then o;J = oo.
The advantage of this random walk method is that the

required number of walks to produce a result with a given
statistical accuracy does not depend strongly on the size
of the matrix. The method appears to be well suited to
Euclidean fermion methods discussed in Sec. VII.B, but
not to the staggered fermion method.

0 0
0

~ ~ ~ 0
0

0 52 0 (8.28)

0 ~ ~ ~

0 0 0

Here 6 is the N &&N matrix, the full lattice fermion prop-
agator in the gauge field U. The size of the matrix 5 de-
pends on the procedure; but for local fermion derivatives
it is small, because I Uj and I Uj differ on only one link
(Scalapino and Sugar, 1981). Generically,

0 0 0

D. Calculating the fermion determinant
In this idealized case we would have

det(1+ G5 ) = 1+trG52+ det652 (8.29)
The original problem, quantum chromodynamics, had

an action of the generic form

S = gg;[g(U)+m]tjg~+Sp(U) . (8.24)

It is not practical to use computer simulation techniques
on S directly. The anticommuting properties of the Eu-
clidean fermion fields I tPJ, f; j =0 would require the
storage of phases between fermions at all the sites of the
lattice. This is hopeless even for small lattices. However,
since f; appears quadratically in Eq. (8.24) it can be in-
tegrated out,

I +[df][dgle- =e '"
=det[g ( U) +m]e

exactly. Therefore, we need only 6;~(U) for i =j or
nearest-neighbor sites to carry out a simulationt

Unfortunately, the procedure is still slow compared to
pure gauge theory simulations, because each time a link is
updated 6;;(U) and 6;;+„(U) are needed. It is hoped
that the random walk methods are fast enough to be prac-
tical here, but certainly the more straightforward iterative
procedures are hopelessly too slow. In addition, 62 is not
such a small matrix in practice. If a second-order formal-
ism must be used in place of Eq. (8.26) to guarantee con-
vergence, then next-to-nearest coupling s occur in
8 ( U)+ m and increase the number of nonzero elements
in 52 considerably in four dimensions.

Luckily, a nice simplification can be made here if only
small gauge field changes I U j ~ t U j are made (Fucito et
al., 1981). We return to the expression

=exp —ISp —tr in[@(U)+ m] j, S ff —Sp( U) —tr in[@(U)+m] (8.30)

(8.25)

and we are left with just a U-field problem. Unfortunate-
ly, the effective action in Eq. (8.25) is nonlocal and is
therefore very difficult to deal with. Direct evaluation of
the determinant is not practical, since the matrix
[S(U)+m] is N XN, and N is the number of links in the
lattice. In addition, the determinant consists of -N
terms with intricate cancellations between terms. Because
of these problems, approaches dealing with Eq. (8.25) are
approximate in character and must exploit the sparse na-
ture of the matrix 8( U)+ m.

We consider a local Metropolis algorithm for Eq. (8.25)
(Scalapino and Sugar, 1981). Change the configuration
IUj to t Uj so that they differ at only one link. We must
compare S,tt[U] and S,ff[U],

+0[(U—U)'] . (8.31)

This result suggests a modified Metropolis algorithm
(Fucito et al., 1981). We consider a gauge field configura-
tion I Uj and calculate G,J(U) by the pseudofermion
method. In other words, we update the pseudofermion
field P; with the action,

(8.32)

If [ U j and [ U j are almost identical, then we can expand
Eq. (8.26),

S,ff(U) —S tt(U)=Sp(U) —Sp(U)

5B(U)~J—g G;, (U) ' (U —U)
/, J

—s, ( U}—s, ( v) det[g( U)+ m]
det[g(U)+m]

(8.26) n times and collect P PJ in the configuration [Uj. Next
we update the gauge field with the action,

to update link variables. Let us look at the ratio of deter-
minants. Let us call g(U)+m =6 '(U) and
D(U)+m =6 '—:6 '(U)+5. Then

S ( U) =Sp( U) —g pg'QJ [g( U)+ m]tJ, (8.33)

det[g(U)+m] det(6 '+5)
det[g(U)+m] detG

(8.27)

and obtain a new field configuration [ U j. We repeat the
procedure many times. Neglecting errors O[(U —U) ],
we obtain the correct results when n —+ oo.

In practice one finds that relatively small values
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of n give good estimates for PPP~. This is not sur-
prising, since P,*PJ. is a local matrix element which is ul-
traviolet divergent. However, as m~O, the convergence
deteriorates rapidly'f

Methods of including the dynamical effects of light fer-
mions in computer simulations are actively being pursued
by several research groups. There may be many surprises
in these investigations. The role of topological excitations
in the fermion determinant will certainly be investigated
in the near future.

To date, most results on the spectrum of quantum
chromodynamics neglect internal fermion loops. Note
that the fermion determinant actually occurs in the effec-
tive action raised to a power equal to the number of fer-
mion flavors N~. So, in the theoretical limit Nf~0, the
fermion determinant is unity and calculations can be done
efficiently. One should recognize this as a fancy way of
suppressing internal fermion loops ach loop has a coef-
ficient proportional to Xf, a counting factor. There are
good phenomenological reasons to expect the Nf ~0 limit
to be a good approximation for quantum chromo-
dynamics dynamical fermion loops appear to be uniin-
portant to hadron spectroscopy (for example, the naive
quark model is successful, and widths of hadronic masses
are typically small compared to the masses themselves).
The Ny~O limit does, however, suffer from an excess of
symmetry —the axial anomaly is lost in this limit, and the
g' should be degenerate with the pion. Anyway, in the

Xf~0 limit the hadron mass spectrum does not involve
any calculation more difficult than G ( U), since meson
and baryon propagators are just products of quark propa-
gators. The class of graphs contributing to a meson prop-
agator is illustrated in Fig. 71. Preliminary results on
such calculations are very encouraging (Hamber and Par-
isi, 1981;Marinari et al. , 1981;Weingarten, 1982).

(1) What is the interplay of chiral symmetry breaking and
confinement? (2) Does the chiral symmetry breaking
"most attactive channel" hypothesis work? (3) Does
chiral symmetry breaking occur in quantum electro-
dynamics at strong coupling? Because of the Nielsen-
Ninomiya theorem (Nielsen and Ninomiya, 1981) we will
not be able to face left-right asymmetric models. This is
a shame. However, we can still pose questions relevant to
the hierarchy problem and patterns of chiral symmetry
breaking and discuss the essential physics of the
phenomenon in a few cases.

First let's review some of the ideas concerning the
physics of chiral symmetry breaking. There is an argu-
inent due to A. Casher (1979) which is abstracted from
(1+ 1)-dimension models (Casher et al., 1974), which
claims that confinement implies chiral syinmetry break-
ing. To begin, we consider a bound qq pair in an s wave.
The quarks have zero bare mass and the theory's La-
grangian is chirally symmetric. Suppose that the confin-
ing force is spin independent, as in lattice gauge theory,
and that bound qq pairs in s waves exist. Suppose that we
can think about this bound state semiclassically as in a
quark model. Then the claim is that this scenario has
spontaneously broken chiral symmetry. Let us consider a
turning point in the world line of the bound quark (Fig.
72). The quark turns around, but its spin does not-
therefore its chirality (chirality is identically equal to heli-

city for quarks) changes sign. So chirality is not a good
quantum number, and we must have a vacuum with
chiral symmetry breaking!

What is the physical mechanism behind this result? It

IX. CHIRAL SYMMETRY BREAKING ON THE LATTICE

Now we will apply the lattice fermion methods of the
last section to problems of chiral symmetry breaking in
quantum chromodynamics and related field theories. We
shall begin by reviewing arguments for chiral symmetry
breaking in continuum gauge theories. Then we consider
the strong coupling large-N (color) limit of quantum
chromodynamics on the lattice and see that chiral sym-
metry is spontaneously broken. Naive lattice fermions are
used in this discussion. Then finally we consider Monte
Carlo data which address problems such as the following:

X

FIG. 71. A meson propagator in the Nf ~0 approximation.
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must be that the vacuum is a qq condensate with indefi-
nite chirality and that when the quark in the s-wave
bound state turns around it has actually absorbed chirality
from the vacuum (Casher, 1979).

This intuitive picture strongly suggests but does not
prove that confinement implies chiral symmetry breaking.
More formal arguments which arrive at similar con-
clusions in more restricted cases (e.g., N~ oo ) have also
been given (Coleman and Witten, 1980).

Other authors have presented models, physical pictures,
and approximate calculations of a different sort in which
chiral symmetry breaking occurs due to short-range in-
teractions. The original Nambu —Jona-Lasinio four-
Fermi coupling models were of this type (Nambu and
Jona-Lasinio, 1961). The interaction is attractive and has
zero range. It was argued that if the strength of the in-
teraction is above a critical value, g &g„a condensate of
a chiral symmetry-breaking operator forms, the fermions
develop a dynamical mass nonperturbatively, and a triplet
of massless pions results as the Goldstone bosons (spin
waves} of the spontaneously broken symmetry operators.
All of this has been studied more formally recently
(Cornwell et al., 1974). These recent references consider
self-consistent equations for the dynamical generation of
a fermion mass. They compare the vacuum energies for
massive fermions to that with massless ones in perturba-
tion theory in the gauge coupling. The general analysis is
hopelessly complicated to handle analytically, so they are
forced to truncate the perturbation theory series to the
lowest-order effect, O(g ). They find that if g is large
enough, then chiral symmetry breaking occurs. Unfor-
tunately, g, /4n. -0 (1), so their analysis is not consistent.
Anyway, their philosophy is that short-distance attraction
is sufficient for chiral symmetry breaking —they sum only
one-gluon exchange graphs explicitly.

This mechanism has been suggested as an ingredient in
understanding the hierarchy problem of unified gauge
theories (Raby et a/. , 1980). We consider single-gluon ex-
change between quarks (Fig. 73) in a higher representation
with quadratic Casimir Cf. Perhaps these quarks con-
dense when Cfg, /4m —1. In an asymptotically free
theory this means that quarks with "slightly" different
color charges can condense and decouple from the
remaining light degrees of freedom at very different
length scales. This is easily seen. Let the momentum

C g~/4 sr

FIG. 73. Single-gluon exchange between quarks in a color rep-
resentation with quadratic Casimir Cf.

transfer of the gluon be q & 0. Then

Cfg (q )/4ir-Cf 1

4m-Po ln( —q'/A')

where

(9.1)

11Po=
3

N
16m.

(9.2}

in a pure SU(N) gauge theory. So the quarks con-
dense with characteristic relative momentum

12m Cf /11N—q =A e . The exponential dependence on Cf
is the important point here—the relevant length scale of
the condensate is exponentially sensitive to the color
charges of the quarks. So in a given gauge theory with
quarks in several representations we can in principle gen-
erate a hierarchy of length scales in a natural fashion.

However, it is not clear that these estimates are reliable.
Is g small enough that one-gluon exchange is reliable and
asymptotic freedom can be used? The exponent in the
formula above that gave the hierarchal formula relied on
these facts very sensitively. If Cf is large, do screening
and internal quark loops in general change these esti-
mates? Certainly if Cf is too large they dc =ven asymp-
totic freedoin is spoiled by too many quarks of large color
charges!

Luckily, the dynamical, nonperturbative effects of in-
terest here are estimable in lattice gauge theory. Let's be-
gin by considering strong coupling in the Euclidean four
dimensions formulation. In particular, let us consider
SU(N) gauge theory in d space-time dimensions. We can
make a simple calculation when both N and d are large.
Although this limit is far from real physics, it will show
us that chiral symmetry breaking is possible and that dis-
order, and not confinement, is the essential ingredient
(Blairon et al., 1980).

The action for "naive" fermions is

S=—, g P(r)yzn&U(r, nz)g(r+nz)

r, n

+m g g(r)g(r)+ g trUUUU+H. c. ,
plq

(9.3)
where the sum over the unit vector nz includes all the
sites r+n& neighboring r. Suppose that g »1, so that
the trUUUU term can be dropped. We have added a
small fermion mass term as a symmetry-breaking effect
in Eq. (9.3) to help search for spontaneous symmetry
breaking in the usual fashion. At the end of the calcula-
tion we let m~0 and see if the limit is smooth and if
dynamical mass generation has occurred. We will do per-
turbation theory with

S =So+S;„t, (9.4)
where

So ——m g P(r)P(r),
(9.5)
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and treat the hopping term, S;„„to all orders. Readers
will recognize the calculation as a graphical approach to a
self-consistent fermion mean-field theory.

The ingredients in perturbation theory are

(pp(»)g'(»))= & p&'
m

(9.6)

where a and P are color indices running from 1 to N, and
a and b are Dirac indices running from 1 to 2" . The ex-
pectation value in Eq. (9.6) is taken with respect to So.
When S;„, is treated as a perturbation —i.e., when

exp(SO+S;„, ) is expanded in powers of S;„,—it is clear
that local gauge invariance implies that only closed fer-
mion loops contribute. Each link in such a loop contri-
butes a factor,

(a)
(b)

FIG. 74. {a) Dominant graphs contributing to ( Pg ) for
N ~ oo, d —+ 00, and (b) a subdominant graph.

1——,n~rp U(», np ), (9.7) So, with this improvement the graphs are decorated to
(Blairon et al. , 1980)

to the amplitude. In addition, the integrals over the gauge
fields project the product of U matrices on each link onto
the identity matrix. To obtain the leading N dependence
in this calculation the only U-matrix integral we need is

f [dU)UJ. Uki= &a—&jk .
lV

(9.8)

In these graphical rules the only consequence of Fermi
statistics is the association of —1 to each closed fermion
loop.

Now we can begin doing graphs. The zeroth-order con-
tribution for (P(0)g(0) ) is

A —NC
0

NC d (fQ)
m 2m XC

NC d (Pg)
tl

Summing all these graphs for (gt!'j ) gives

(9.12)

m
(9.9)

2NC(

(9.13)

where C is the number of space-time components of g,
2"~ . To second order in S;„, the fermion can hop to a
nearest-neighbor site and back, so it contributes

XC 2d (9.10)
m 4m 2

%C
m 2m

(9.11)

We could select just this set of graphs, let n —+ Do, and
compute (gg). However, it is better to make a self-
consistent calculation. Then the end of each petal of each
graph must be treated as the source for an additional
flower! This more ambitious calculation gives a fermion
mean-field theory.

The factor 2d counts the number of nearest neighbors.
Note that the fermion path encloses zero area and that the
integral

f ld U'jUrj Uki =
N &a&jk

has been done.
A.t higher orders complicated graphs occur. However,

for large N we shall see that graphs with many zero-area
"petals, " as shown in Fig. 74(a), dominate. A graph with
n petals contributes

r n

which has a smooth m ~0 limit, yielding
(gg)= iCNY2ld —Mapping . g back to Minkowski
space P~, we obtain

(g P ) = i (Pf) = —CN&2ld, — (9.14)

Another illuminating calculation one can do in the fer-
inion mean-field approximation gives the pion propaga-
tor,

D(» »') =&(&sf)—.(fr54), & . (9.15)

The graphs which dominate are shown in Fig. 75 and
they can be summed by methods similar to those for

which gives spontaneous syinmetry breaking of the usual
sort.

A few coinments about this calculation are in order.
Note the mean-field character of the calculation: (gf)
at one site is determined in terms of (ff) at nearest-
neighbor sites self-consistently. Note that the "petals" in
A„do not overlap and that our counting factor is good
only for large dimensions. This calculation is the first
nontri vial term in a 1 ld expansion. Vacuum
fluctuations disconnected graphs did not appear in
this calculation. One can check that such graphs enclos-
ing zero area cancel between the numerator and the
denominator in the formal expression for (fg ) at large
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FIG. 75. Strong coupling graphs contributing to the pion prop-
agator.

(pl(r ), yielding (Blairon et a/. , 1980)

AC
k'+ m (qy)

(9.16)

as k ~0. So, letting the explicit symmetry breaking van-
ish, m —+0, we have a Goldstone pion. For m&0 we have
a strong coupling version of the current algebra relation

f m =m(P~f )

in the form

(9.17)

(9.18)

Our last detail is to check that these graphs which in-
clude zero area give the dominant contribution at X~ ao.
The argument for this is similar to the analogous result in
the continuum X—+Do limit. For example, compare Fig.
74(a) with Fig. 74(b), which has a hole. The dominant
graph, Fig. 74(a), behaves as N, which simply counts the
number of quark colors circulating in the closed, infinite-
ly narrow fermion loop. The graph with the hole behaves
as O(1). This can be seen explicitly, using the U matrix
integral formula provided above. Alternatively, we can
note that both branches of the internal loop must be local
color singlets separately, so there is an additional con-
straint which eliminates one power of W. A systematic
argument can be made which generalizes this observation
(Blairon et al., 1980).

Another perspective on the mean-field graphs is the
following: We consider the %~~0 limit discussed in the
preceding section. It is clear that the "flower" graphs of
the mean-field approximation can be written as the con-
tinuous world line of a single quark. It is also clear that
graphs such as Fig. 74(b) are subdominant in the Nf ~0
limit. So this strong coupling calculation suggests that
the Xf~0 limit is adequate for studying chiral symmetry
breaking, at least qualitatively. This observation will be-
come more important when we discuss numerical work
below.

These are all amusing and instructive results. However,
they apply only for g »1 and depend, therefore, on the
nonuniversal features of this lattice action. To proceed

The data and expected scaling law are shown in Fig. 76.
As for the string tension, the data strongly suggest that
chiral symmetry breaking occurs in the continuum limit.
Furthermore, the magnitude of the matrix element is in
fairly good agreement with phenomenology (Hamber and
Parisi, 1981;Marinari et al., 1981;Weingarten, 1982).

Next we can ask whether confinement is necessary for
chiral symmetry breaking, and we can identify the energy
scale responsible for chiral symmetry breaking (Kogut et
al., 1982). A nice way to do this is to find the ternpera-

I.O-
O.B- ' '

0.2-

O. I

0.8
I

0.9
I

I.O
I /go~

FICx. 76. (QQ)' vs 1/go Monte Carlo data in the Xf~0 ap-
proximation for SU3 gauge theory.

we turn to computer simulations which can reach the
scaling limit g ~0. We consider also the 2Vf —+0 limit of
the theory, so internal fermion loops are neglected. The
Xf—+0 limit is also implicitly taken in most past work on
the subject of chiral symmetry breaking "ertainly the
single-gluon exchange calculations. Of course the Xf—+0
limit has some serious limitations. For example, it ig-
nores color dynamical fermions (screening) and probably
overestimates the tendency for condensates to form.

In the 1Vf—+0 limit the Monte Carlo calculation of
(gf ) is relatively simple (Hamber and Parisi, 1981;Mar-
inari et a/. , 1981; Weingarten, 1982; Kogut et al., to ap-
pear). For each field configuration IU} one computes
G(x,O; f UI ). Averaging over many gauge field configu-
ration then gives the propagator at a chosen value of g .
(Pg ) is proportional to G(0,0; I U} ), where the bar indi-
cates the average over a statistical ensemble of gauge field
configurations computed by ordinary Monte Carlo
methods at g .

First we consider the evidence for chiral symmetry
breaking in QCD-SU3 gauge fields with quarks in the
fundamental representation of the gauge group (Hamber
and Parisi, 1981;Marinari et al., 1981;Weingarten, 1982).
(gf) is calculated for various g, and we expect it to
satisfy the weak coupling scaling laws for g & 1. By di-
mensional analysis, (gf) should scale as Ar, if the
operator was renormalization-group invariant. It is not
(in fact mug is), and the dimensional analysis result is
modified by a logarithm,

(9.19)
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ture T& where chiral symmetry is restored and compare it
to the deconfining temperature TD. Finite temperature
simulations are done on asymmetric lattices with the
number of temporal links N, related to the physical tem-
perature,

N, =(oT) (9.20)

as readers will recall from continuum field theory (Fetter
and Walecka, 1971). By varying g one changes the phys-
ical length scale in the system and effectively changes the
temperature. Alternatively, one can change N, for fixed

g and produce different physical temperatures. The tem-
perature Tz above which (Pg) vanishes can be obtained
from these measurements. The deconfinement transition
is obtained by measuring the excess free energy of an iso-
lated quark in the system. %'ith periodic boundary condi-
tions for the U matrices in the t direction (and antiperiod-
ic for the Fermi field) one calculates the expectation value

N
of the Wilson line, (tr Q„' i Uo(no, n) ) (Yaffe and

Svetitsky, 1982). For T & TD the flux tube originating
from the static source of color at n costs a finite amount
of energy per unit length. Therefore, the matrix element
vanishes as the linear dimension of the spatial lattice. If
T & TD the gluons are presumed to form a plasma which
can screen the color of the heavy quark —a flux tube does
not form, and the quark simply has a finite self-mass
dependent on g . It can be argued that the deconfining
phase transition in SU(N) gauge theory is associated with
the spontaneous symmetry breaking of global Z~ symme-
try (Yaffe and Svetitsky, 1982). In Fig. 77 we show ( ting }
and the Wilson line ( W) for SU(2). (ff) for massless
quarks is inferred from calculations of G with m ~0 and
the limit m~0 is taken by standard (essentially linear)
extrapolation procedures. Since ( W) can be positive or j(j+1)g,'=3.5 . (9.22)

negative, the absolute value of W measured in each gauge
field configuration is averaged over the gauge field en-
semble to obtain ( W). (This procedure is analogous to
inferring the magnetization of the Ising model from an
ensemble of spin configurations where the global inagneti-
zation could be either "up*' or "down. ") We see from Fig.
77 that for SU(2) chiral symmetry breaking may persist
slightly beyond the deconfining point 1 & T&/TD & 1.3.
The SU(3) curves shown in Fig. 78 are quite different. It
appears that both transitions are first order and that they
are coincident. The first-order character of the SU(3)
deconfining transition is not unexpected. The relevant
syinmetry for an SU(N) deconfinement is transition in

ZN. Z2, Ising systems in three dimensions have second-
order transitions, while Z3, three-state Potts models have
first-order transitions. Less is known about the chiral
transitions. However, since the SU(3) deconfining transi-
tion is first order, it is not suprising to see it carry the
chiral transition with it.

Additional computer simulations on lattices of dif-
ferent sizes show that the physical temperatures scale
with asymptotic freedom,

Tg ——CgAL, , TD ——CDAL, (9.21)

For SU(2), 1 & Cz/CD, = 1.3; and for SU(3),
1 & Cz/CD & 1.05.

Computer simulations measuring (Pg) for quarks in
higher representations have also been done (Kogut et al.,
1982). For SU(2) the color representations j= 1, —,, and 2
have been studied in addition to j = —,. The higher repre-
sentations all show chiral symmetry breaking~ Zero-
temperature simulations give the couplings gj, where

(gP ) begins to turn on rapidly,

SU2, 2 x8

(&&): ~

SU&, 4 x8~

(k0): ~

l.6 I.8 2.0 2.2 2.4
p = 4/g~

I.8 2.0 2.2 2.4 2.6
p= 4/g~

Fl+. 77. (gp ) and the Wilson line vs @=4/g on a 2X 8 and a 4X 8' lattice for SU(2) gauge theory.
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SU~, 4 x 8
(00): ~

~ D

—0.

4.8 5.0 5.2
l

5.4
p =6/g

5.2 5.4 5.6 5.8 6.0
p = 6/g

FIG. 78. The same as Fig. 77 except for SU(3) and P =6/g .

The right-hand side of this formula is (roughly) indepen-
dent of j. It therefore supports the simple picture of
chiral symmetry breaking discussed earlier in this section.
And exponentially disparate mass scales are expected of

0.5—

0.2—

these condensates of different color representations.
Finally, chiral symmetry breaking has been explored in

pure lattice electrodynamics without vortices, i.e., the Vil-
lain form of the action, as discussed in Sec. VI.B, with the
magnetic monopole loops discarded (Shenker et al., 1983).
This model does not confine —it is a free field and gen-
erates a I/R potential exactly —and it has no topological
excitations. However, as shown in Fig. 79, it breaks
chiral syminetry at co=3.7, and {g1() turns on with a
critical index P =0.64+0. 10, {fP )-(e —en ), which is
close to the canonical dimension 0.5 expected of an order
parameter in a four-dimensional free field. It remains to
compare this result in detail with one-loop continuum
field theory estimates described earlier in this lecture. But
this calculation shows quite forcefully that strong, short-
distance forces are sufficient to break chiral symmetry in
four dimensions.

And perhaps these lattice calculations also suggest that
symmetry-breaking physics beyond QCD can be attacked
numerically.

X. CONCLUDING REMARKS

O. I—

0

FIG. 79. (lip) vs eo ——1/p for electrodynamics formulated on
a four-dimensional lattice.

There is a great deal of activity in lattice gauge theory
at the moment. Several groups are attempting to improve
the rough spectrum calculations of Parisi and collabora-
tors and to include fermion loops into those calculations.
Larger lattices are needed to reduce finite-size effects, and
greater statistical accuracy is required. A first-principles
calculation of the spectrum and static matrix elements of
quantum chromodynamics is not far off. Other groups
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are studying symmetry breaking in quantum chromo-
dynamics and related theories. First-principles nuclear
matter calculations and matter in extreme environments
seein possible. The Bielefeld group (Satz, 1982) is partic-
ularly active in this field.

Analytic work aims at the N~oo properties of the
theory. Recent work by T. Eguchi and K. Kawai (1982)
has stirred considerable activity, and a firmer grasp of the
N ~ oo pure SU(N) gauge theory seems possible.

Alternate approaches through string models are also
beautiful and may yield breakthroughs (Polyakov, 1981).

Certainly there are many things to look forward to in
this field i
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