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The use of variational principles as a calculational tool is reviewed, with special emphasis on methods for
constructing such principles. In particular, it is shown that for a very wide class of problems it is possible
to construct a variational principle (VP) for just about any given quantity Q of interest, by routine pro-
cedures which do not require the exercise of ingenuity; the resultant VP wiH yield an estimate of Q correct
to second order whenever the quantities appearing in the VP are known to first order. The only significant
requirement for application of the routine procedures is that the entities which enter into the definition of Q
be uniquely specified-by a given set of equations; the equations may involve difference or differential or in-

tegral operators, they may be homogeneous or inhomogeneous, linear or nonlinear, self-adjoint or not, and
they may or may not represent time-reversible systems. No numerical calculations are presented, but pro-
cedures for the construction of VP s are illustrated for numerous quantities Q of physical interest, particu-
larly those Q arising in quantum-mechanical scattering and transition probability calculations. For
pedagogical purposes VP's are also derived for several problems in classical and (simple) mathematical
physics which the authors hope will prove instructive and perhaps even amusing. The quantum-
mechanical quantities Q whose VP's are examined include various matrix elements and the quantum-
mechanical eigenfunctions themselves. Topics examined include some points which have not always been
appreciated in the literature, such as the necessity for properly specifying the phase when complex eigen-
functions are involved, and the importance of avoiding, wherever possible, formulations requiring the inver-
sion of singular operators. The basic element of the technique is the recognition that the defining equations
of a system can be incorporated into the VP as constraints through the use of (generalized) Lagrange multi-

pliers; these can be constants, scalar, vector, or tensor functions of one or more variables, operators, etc. In
the typical problem, these Lagrange multipliers W serve as a new set of adjoint functions or entities, and
the construction of the VP simultaneously provides well-defined equations for the W. Moreover, these W
often have ready physical significance themselves; for example, they often may be regarded as generalized
Green's functions. The construction of the VP also readily yields so-called variational identities for the
quantity Q of interest; these identities give explicit (if formal) expressions for the error in the variational es-
timate of Q. In some cases this error can be shown to have a definite sign, so that the VP actually is an ex-
tremum principle, that is, that it yields an upper or lower variational bound for Q; however, our routine
procedures for constructing VP's do not routinely yield extremum principles.
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I. INTRODUCTION

A. Background

In terms of the high accuracy of the results obtainable
and the enormous range of applicability, variational prin-
ciples are easily one of the most effective approximation
methods in all of mathematical physics. Nevertheless,
there has been little emphasis —and that relatively
recent —placed on the development of a method which
will enable one, in systematic fashion, to construct a vari-
ational principle (VP) for the quantity of interest. Varia-
tional principles in different areas are normally developed
differently, using a wide range of tricks and approaches.
A systematic approach has only recently been developed.
Furthermore, recent progress in methods for using VP's
makes it appear reasonably likely that these principles
will prove more effective in a wider domain in the near
future than they have in the past. For these reasons, a re-
view of the formulation of VP's seems particularly ap-
propriate at this time.

If the researcher starts with approximate solutions or
trial guesses of the quantities of interest and possibly of
related quantities, these VP's yield expressions that au-
tomatically lead to estimates good to second order, even
though the trial guesses are, by definition, good only to
first order. (Since the output is then generally much supe-
rior to the input, a VP can be thought of as an "intelli-
gence amplifier. ") Thereby such VP's provide a powerful
iterative procedure for obtaining successively better esti-
mates of the quantity of interest starting from some

reasonably good trial approximation. An alternative way
of using such principles is to have "open" variational
parameters in the trial choice which are finally varied to
seek a stationary value for the estimate.

The literature on VP's is vast, but many physicists seem
to be under the impression that special simplifying cir-
cumstances (linearity, self-adjointedness, involvement of
the Hamiltonian operator itself as opposed to an arbitrary
operator, time reversibility, etc.) must apply if one is to be
able to obtain a VP, and even then only if one exercises
ingenuity. over the last fifteen years or so, the work of
several groups, proceeding largely independently in dif-
ferent branches of physics, has gone a considerable way
towards dispelling this pessimistic view. It now seems
possible to construct systematically a VP for just about
any given quantity Q of interest, provided that the entities
which enter into the definition of Q are uniquely defined
by a set of equations; the equations may involve differ-
ence or differential or integral operators, they may be
homogeneous or inhomogeneous, linear or nonlinear,
self-adjoint or not, and they may or may not represent
time-reversible systems. This possibility has not gained
the wide recognition it warrants. In particular, in the area
of quantum mechanics, where the work of the authors
and their coworkers has mostly been concentrated, no uni-
fied review of the formalism has been presented. The
present paper is designed to fulfill this need. Particularly
in the areas of atomic and nuclear physics, what is often
of interest is the matrix element of some operator between
two eigenfunctions of a Hamiltonian. The standard pro-
cedure in bound-state problems in these areas is to obtain
approximations to the eigenfunctions separately through
the Rayleigh-Ritz energy principle and then to sandwich
the operator in between, a procedure which is not varia-
tional; recall that the energy principle gives a variationally
accurate energy value but that the eigenfunction thereby
obtained is not itself variationally good. Apart from the
Rayleigh-Ritz principle, only in the area of scattering
theory are a few VP's for matrix elements widely used.
We survey at some length how our general procedure can
be applied to write VP's directly for any matrix element
of interest or for the eigenfunctions themselves.

Basic to the technique is the recognition that a varia-
tional principle is provided by the incorporation of the de-
fining equations of a system as constraints through the
use of (generalized) Lagrange multipliers —which can be
constants, scalar, vector, or tensor functions of one or
more variables, operators, etc. In a general problem, these
Lagrange multipliers serve as a new set of adjoint func-
tions or entities and the construction itself provides well-
defined equations for them. These adjoint functions often

~For an illustration of a VP for a nonlinear system, see Appen-
dix C; for the construction of a VP for the energy eigenvalue
when the Hamiltonian is non-Hermitian and when the boundary
conditions explicitly involve the eigenvalue, see Appendix D.
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F(Q)=$ WP, (1.2)

where P is a normalized bound-state eigenfunction of a
Hermitian Hamiltonian H, that is, where

8) (P )= (H E)P =0, — (1.3a)

have ready physical significance themselves, and provide
insight into the nature of the system. They typically may
be regarded as generalized Careen's functions. A by-
product of our technique is the prescription for construct-
ing them for integra1 and nonlinear operators where they
are less well known. The exact meanings of the terms
"adjoint" and "generalized" Green's functions will be-
come clear as we proceed. Approximate solutions of the
original defining set and this adjoint set serve as inputs to
the desired variational estimate of the quantity of interest.
In the course of the construction, we also get, equally sim-

ply, so-called "variational identities" for the quantity of
interest; these give explicit if formal expressions for the
error in the variational estimate. These errors can some-
times be bounded so that the VP is actually an extremum
principle. We give careful attention to some points which
have not always been appreciated in the literature, includ-
ing the proper specification of the phase when complex
functions are involved, and the importance of avoiding
wherever possible formulations which require the inver-
sion of singular operators.

The basic construction can be understood by a reading
of Sec. I.B alone, where several illustrative examples of
old and new VP's are looked at from the unified point of
view, the examp1es being drawn from a wide variety of
problems while at the same time being relatively free of
some of the formal difficulties that can arise. These for-
mal questions are taken up in Secs. II and III. The
remaining sections deal with VP's for other quantum-
mechanical problems. In Sec. IV, VP's are constructed
for eigenfunctions and matrix elements of arbitrary opera-
tors. In Sec. V we consider at some length VP's in
scattering theory because of their central role in atomic,
molecular, and nuclear physics. A particularly subtle and
complicated scattering theory VP, usable when the target
ground-state wave function is only imprecisely known, is
treated separately in Sec. VI. Time-dependent problems
are considered in Sec. VII. A survey of the literature is
given in Sec. VIII. Four appendixes further elaborate on
certain aspects of the unified view of VP's.

Our main purpose is to estimate some functional F of
P, where P designates a set of one or more real quantities
which are only approximately known, but which are pre-
cisely defined by relations of the form

8;(P)=0, i =1,2, . . . .

As one example, the desired functional might be the diag-
onal element of a given Hermitian operator W,

B. Some illustrative examples

Section II contains a formal approach to the construc-
tion of VP's. Many readers will prefer to begin with a
number of illustrative examples, sufficiently complicated
to illuminate some interesting points but sufficiently sim-
ple and/or well known to avoid any notational or concep-
tual obscurity.

Power dissipation in a passive resistive network

For a two-terminal passive resistive network, with the
various resistances R; and the input current I given, we
consider the problem of estimating the power loss I' of the
system. A well-known theorem states that if we approxi-
mate the branch currents I; by trial branch currents I;,
such that current conservation is satisfied at each junc-
tion, the expression X;I;,R; will represent a VP for P; in
fact, the expression represents an extremum (minimum)
principle for P (Smythe, 1968, p. 252).

If one did not know that theorem, the question of how
to go about estimating P would naturally arise. The gen-
eration of a VP for P turns out to be a particularly simple
and illuminating example of our general approach.

To make the problem as absolutely simple as possible,
we consider the case of two resistors, R

&
and R2, I paral-

lel, with a known input current I. We then have

P=I)R)+I2R2, (1.5)

where I
~

and I2, which here play the role of the P's, are to
be determined from the constraints

joint. (The transpose would do here, but we will later be
dealing with complex entities. ) Matrix notation, includ-
ing summation over a11 discrete dummy indices and in-
tegration over all continuous dummy variables, is as-
sumed. For example, with spinless particles 1,2, . . . , n,
using the coordinate representation, we have (remember-
ing that P is real)

P WP =fdr/(r)WP(r),

where r stands for the collection r j, . . .r„, and dr
represents dr&dr2. . . dr„. As Eq. (1.3b) illustrates, the
defining relations in Eq. (1.1) need not be linear opera-
tions on P.

Usually it is difficult to find the exact P described by
Eq (1..1); certainly H of Eq. (1.3a) usually is so complicat-
ed that neither P nor its corresponding eigenvalue E is
known exactly. Under these circumstances, it often is ad-
vantageous to estimate F(P) from a VP, as has long been
recognized. We now begin consideration of the construc-
tion of VP's.

82(p)=—p p —1=0. (1.3b)

8i(Ii,Ip) =Ii+I2 I=0, —

82(I),I2) =I)R ) —I2Rg ——0 .

(1.6)

In Eqs. (1.2) and (1.3), we use the dagger to denote the ad-
Choosing trial approximations I;, which differ from I, by
first-order quantities M; =I;, I;, introducing a La—grange
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multiplier to account for each constraint —that is, for Eq.
(1.6) and Eq. (1.7)—and including an approximation to P
[defined by Eq. (1.5)], we come to the starting expression
for our VP for P,

Pu =—&P(Iit I2~ ~i~ ~xi) &-.
=I iiR i+I2tR2+ ~u(I i~+I2t I—)2 2

the extremum principle quoted in the first paragraph of
this subsection will be discussed later in Appendix B.]

The above result can readily be recast in matrix form;
once the constraints analogous to Eqs. (1.6) and (1.7) have
been given, the extension of the result in Eq. (1.12) to an
arbitrary two-terminal passive resistive network is trivial.

2. Newton's method for the location of roots
+Ay, (I[gR$ Ip/R—2) . (1.8)

The A,;, may be functions of the I;„the only restriction on
the I;, is that they be good approximations —by definition
"to first order" —to the I; .

The expression for P, in Eq. (1.8) is a natural starting
point, reducing as it does to the exact result for the power
I' when the I;, coincide with the exact I;, independent of
the values of A,;, . Furthermore, when the I;, have first-
order errors, we can arrange to have the error in I', of
second order by choosing the A,;, to differ in first order
from the A,;, where the X; are defined by the requirement
that M'=0 with respect to independent variations of I«
and I2,. The requirement that 5I' =0 gives

2I)R )+k)+A2R I
——0

2I2R 2+ k) —A,2R 2
——0, (1.10)

A) ———I]R )
—I2R2, A2 ——0 .

The k; are indeed functions of I;. Here is an example of a
problem where the equations for the exact k's can be ex-
plicitly solved for. (The solution is, as often happens,
only formal, since it involves the unknown I;.) It then is
natural, though not necessary, to choose for the trial solu-
tions A,;, the values A,; (I;, ), so that

respectively. This pair of equations constitutes a pair of
adjoint equations to Eqs. (1.6) and (1.7), and the A, ; are
therefore referred to as adjoint functions. It will be no-
ticed that the coefficients of the first-order quantities 6X]
and 5A, 2 on variation of P„are automatically zero. [On
varying P„we retain only first-order terms. The coeffi-
cients of 5A ) and 5A2 are thus I ] +I2 —I and
I~R ~

—I2R2, respectively, which vanish by Eqs. (1.6) and
(1.7).] This behavior, the vanishing of the coefficient of
the first-order quantities 5W, is characteristic. Equa-
tions (1.9) and (1.10) have as their solution

Newton's method for the location of the roots of an
equation is another trivial but illustrative example (sug-
gested to us by Professor L. Rosenberg) of our procedure
for constructing VP's. The problem is that of finding a
VP for the root xp (in some neighborhood —a (xo (a) of
the equation

f(xo) =0, (1.13)

in the single one-dimensional real variable x, —a (x (a,
where f(x) is a known function. This illustration is so
simple that casting it in the formalism of our general pro-
cedure may appear artificial and forced. Nevertheless, we
note that in the present case xo represents the unknown
quantity P, which is now merely a single number, the
desired functional F(P ) is xp itself, and the relation (1.13)
defining xp is the sole constraint. Therefore, our starting
point is

&xo&var=xo~+~tf(xoi) . (1.14a)

In Eq. (1.14a), xp, is a trial estimate of xp, the quantities
&xp &„„,xp„and f (xo, ) all are numbers, and A., is a num-

ber, a trial approximation to a numerical Lagrange multi-
plier.

%'ith xo, ——xo+6xo and A, , =A, +5k, , the first variation
of Eq. (1.14a) takes the form

5F„=&x, &„„—x,
=5xQ+Af'(xo)5xo+(5A, )f(xQ) .

The last term on the right-hand side of the above equation
vanishes by Eq. (1.13); alternatively, we may say that re-
quiring Eq. (1.14a) to be stationary with respect to arbi-
trary variations of X, about its exact value retrieves the
constraint Eq. (1.13), as we expect. Putting the coeffi-
cient of 5xp equal to zero in our expression for 5F„yields

1+kf'(xo) =0,

A, ]g = —I (gal $
—I2tR2 A, 2g =0 .

The insertion of these trial values into Eq. (1.8) gives

P„=I(I),R $+I2$R2) I,tI2f(R, +R2),— (1.12)

which specifies k. Once again, as in all cases when the
multiplier is a number, it can be solved for exactly by a
simple algebraic operation. Also, as in the previous prob-
lem, it is given in terms of the unknown P (here xp). A
reasonable trial estimate of A, = —I/f'(xo) is therefore

which is indeed a VP. [Thus writing I;,=I;+5I;, one
finds that P, =P 5I~5I2(R ~+R2—), that is, that P,
differs from P by a second-order term. ] Note that if we
choose I], and I2, such that I~, +I2,——I, then the value of
A, ~, to be inserted into Eq. (1.8) is irrelevant —indeed, with
such I]„I2, the term proportional to I«+I2, —I in Eq.
(1.8) was not needed from the very start —and P„reduces
to I),R ) +I2,R2. [The connect)on between Eq. (1.12) and

A, , = —1/f'( p,x),

and a reasonable estimate is all that is needed. (One need
only know the Lagrange multipliers to first order to ob-
tain a VP; our approach would be useless if one were re-
quired to determine these multipliers exactly. ) The inser-
tion of the above expression for A, , in Eq. (1.14a) yields
Newton's method (Courant, 1937),

Rev. Mod. Phys. , Vol. 55, No. 3, July 3983
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(xo) =xoi f(xone}lf (xot} (1.14b)

3. The inverse of an operator

As a third simple example, consider the variational
determination of the inverse A ' of a known operator A.
We will assume that both the left and right inverses of 3
exist, are unique, and are identical. Thus the exact 3 is
defined by

AA ' —1=0,
or, equivalently, by

'4 —1=0 .

(1.15a)

(1.15b)

We shall also assume throughout that the associative law
holds.

Because Eqs. (1.15) are equivalent under our present as-
sumptions, they really do not provide independent con-
straints on the quantity A ' regarded as an operator

for estimating the root xp of Eq. (1.13).
That the (xo)„„just derived is indeed a variational es-

timate of the root xp defined by f (xp)=0 follows by con-
struction. If we wish directly to confirm the variational
property of (xo)„„,we neglect second-order terms, use

f(xo) =0 to write f (xp, ) =f'(xp, )5xp, write xo,
=xo+ 5x 0, and find

(xo ) vga =xp +5xp —5xp =xo

In the future, we will not bother to confirm the variation-
al character of entities constructed to be variational. As
this example and the power dissipation example above in-

dicate, it is usually rather simple and direct to verify that
the estimate constructed by our general procedure is in

fact variational.
Evidently the above derivation of the variational esti-

mate (1.14b) for xp could have been made much shorter.
However, we wanted to make unmistakably clear our gen-
eral procedure of incorporating the defining equations as
constraints through Lagrange multipliers and determining
the exact Lagrange multipliers by equating to zero all
first-order variations; we shall not give so many details in

succeeding examples.
If a VP for the root ro ——(xo,yp) satisfying

f, (xo,yo ) =f2 (xo,yp ) =0 is sought, the corresponding
Lagrange multipliers A. l and k2 (associated with f i and

f2, respectively) involve the inverse of the Jacobian of f i

and f2. Similar results hold for the roots of sets of equa-
tions in higher dimensions. A more general treatment of
Newton's rule is included in a paper by Aranoff and
Percus (1968). For completeness, we add that Newton's
method can be generalized (Rosenberg and Tolchin, 1973)
to the solution of much more complicated equations than
Eq. (1.13) [or than sets of equations like

f i (xp,yo) =f2(xp, yp) =0], even to nonlinear integral
equations; moreover, under appropriate circumstances the
absolute value of the error made by using Newton's
method can be bounded (Kantorovich and Akilov, 1964).

function of the known operator A. Therefore (as is fur-
ther discussed in Sec. III}, it should not be necessary in
deriving a VP for A ' to include both the constraints
(1.15}. Consequently, we shall take the starting point for
our VP tobe

(1.16)

that is, we employ Eq. (1.15a), but not Eq. (1.15b).
Of course, as can readily be verified, our analysis would

be only trivially modified if we had employed Eq. (1.15b}
in place of Eq. (1.15a). In Eq. (1.16), the quantity A,
denotes the trial estimate of A ', not the reciprocal of an
estimate A, of A. For the sake of economy of notation,
we are not using what would otherwise be a more explicit
representation, namely, (A '), . The single Lagrange mul-
tiplier or adjoint function being estimated by A, is denot-
ed by A because it obviously must be of the same func-
tional character as A, ', that is, it must be an operator;
this notation (see Appendix A) distinguishes the present
Lagrange multiplier A from the simpler types k and I,
where k, encountered previously, represents a constant
and I. will represent a function.

The requirement that Eq. (1.16) be stationary yields

where 5A ' is defined by

(1.17a)

Since notation plays a significant role in our considerations,
note that for any entity Q we always use 6Q to denote the
difference between Q evaluated with trial quantities and Q
evaluated with the corresponding exact quantities. This does
not imply that 5Q always contains nonvanishing first-order
quantities. In fact, it will be our purpose to construct F„so that
6F„will contain only quantities which are of second order. In
this connection note that the set of equations 8;(P ) =0 which
prescribe the set of quantities P cannot always be derived from a
Lagrangian —that is, the set cannot always be deri~ed from a
variational principle analogous to Hamilton's principle in classi-
cal mechanics. The inability to construct such a variational for-
mulation of 8;(P )=0 can be completely consistent with the
ability to construct, via our routine procedure, a variational
principle (F(P ) ),.„for any given desired F(P ) depending on the
very same P prescribed by 8;{P) =0. In other words, not all au-
thors define the term "variational principle" as we do; failure to
recognize this point could be a source of confusion in reading
the literature. For example, Finlayson (1972) opens his Chap. 9
with the statement "Variational principles do not exist for many
heat and mass transfer problems of interest. " The material fol-
lowing this assertion of Finlayson's clearly indicates that he is
concerned solely with the possibility of regarding the set
8;(P )=0 arising in heat and mass transfer problems as a set of
Euler equations, as this term is defined in the calculus of varia-
tions (Morse and Feshbach, 1953, Sec. 3.1); one should not infer
that variational principles (as we use the term) cannot be con-
structed for the many heat and mass transfer problems which
cannot be formulated via Euler equations. Appendix C illus-
trates these remarks.

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983
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(1.17b)

[Since A is given, there is no such entity as 5A and, in the
present problem, one should not try to relate 5A ' to 6A

via (5A)A '+A5A '=0 which would hold when A and
A ' both were permitted to vary, subject to the constraint
(1.15a).] In Eq. (1.17a), the coefficient of 5A vanishes by
virtue of Eq. (1.15a), and we deduce that

AA +1=0,
implying that the exact adjoint function A is

(1.18a)

(1.18b)

so that Eq. (1.16) becomes

(A ')„„=A, ' —A, (AA, ' —1) . (1.19a)

Equation (1.19a) provides the desired variational esti-
mate of 2 ' in terms of a trial A, ', where 3, ' is
presumably accurate to first order; we need not know the
reciprocal of A, '. lf the reciprocal of A,

' is known, the
VP in Eq. (1.19a) can be rewritten in a perhaps more usu-
al and more easily grasped notation by setting 3, ' =8
where both 8 and 8 ' are known, and, of course,
88 ' =8 '8 =1. Thus Eq. (1.19a) becomes

1 1 1 1
(1.19b}

The VP in Eq. (1.19b) also can be obtained from the
well-known identity

1 1 1 1—=—+ —(8 —A) —,8 8 (1.20)

where 8 is now any operator whose (left or right) inverse
8 exists. This identity is obvious by inspection. When
8 is a first-order approximation to 3, replacing 1/A in the
last term on the right of Eq. (1.20) by 1/8 causes an error
of second order, since the factor (8 —A) in that term al-
ready is of first order. Therefore, the right side of Eq.
(1.19b) is an estimate of I/A accurate to second order
when 8 is a first-order estimate of A. This essentially
one-step derivation of the VP (1.19b), starting from the
identity Eq. (1.20), is of the sort we characterized earlier
as involving ingenuity, in contrast to our somewhat longer
but routine derivation starting from Eq. (1.16).

We add that the identity in Eq. (1.20) is no more than
Eq. (1.17a) itself; this can be seen by inserting Eqs.
(1.15a), (1.17b), and (1.18b) and manipulating a bit. This
fact—that quite generally the equation that defines the
adjoint function, namely, the one where all first-order
terms are set equal to zero, is an identity —is an illustra-
tion of the identities related to VP's discussed by Cierjuoy
et al. (1972) and Gerjuoy, Rau et al. (1975).

The variational expression for A derived in Eq.
(1.19a) can be used in a variety of ways. If we set

Once again, the exact Lagrange multiplier is explicitly ob-
tained but involves the unknown functions which we are
seeking (here A '). The natural choice is

—1 (1.18c)

A =H —F., where H is the Hamiltonian and E the energy
(with an infinitesimal imaginary part ie if its real part is
positive}, A ' is a Cjrreen's function. Equation (1.19a)
could then be used to obtain a variational estimate of the
Careen's function. For A an n Xn matrix, Eq. (1.19a) can
be used to obtain a variational estimate of the inverse ma-
trix. One would use a computer to obtain an estimate

' of 3 '. The estimate might be insufficiently accu-
rate for the purposes at hand. A better (variational) esti-
mate of A ' could then be obtained from Eq. (1.19a} us-
ing the same computer, since round-off error in the multi-
plication of matrices will normally be much less than
round-off error in the inversion of a matrix.

Finally, it is amusing to apply Eq. (1.19b) to something
seemingly trivial, such as a variational estimation of —„.
(This example was suggested to us by L. Rosenberg. )

With —,o as a guessed trial estimate, we have A =11 and
8 = 10 in Eq. (1.19b) so that the estimate we get for —„ is
0.09. The initial fractional error of —„- in the trial esti-
mate has been reduced to a fractional error of,~ in the
variational result. Further, we can recognize that in this
admittedly trivial case our Vp is actually a bound by writ-
ing an alternative fotm for the identity in Eq. (1.20),
namely,

1 1 1 1—=—+ —(8 —A) —.8 A 8 (1.21)

4. Frequency eigenvalues

As another example, consider the determination of the
eigenfrequeocies of vibration ~o„on a stretched string of'

length s and var iable densi ty p(x }, held fixed at its
end points, x =0 and x =s. The tension T is assumed
constant, and gravitational forces are neglected. Then for
small displacements the differential equation for the wave
amplitude P„(x) in the nth mode is (Rayleigh, 1877)

(1.22a}

When we substitute this into Eq. (1.20}, the error beyond
the variational expression in Eq. (1.19b), that is,
1/A —( I/A )„„,is of second order in 8 —A and takes the
explicit form

1 1 1—(8 —A) —(8 —A) —.8 3 8
In the special case that 3 is a real 1X 1 matrix, i.e., a real
number, this is of a well-defined sign, indeed is always
& 0 when 3 ~ 0; thus (1.19b) yields a lower bound to 1/3
in the present case that A is a positive number, as the
variational estimate 0.09 for —„ illustrates. More general-

ly, suppose 3 is a positive definite real symmetric matrix,
so that 1/3 also is a positive definite real symmetric ma-
trix. Then if A, also is a real symmetric matrix, but not
necessarily positive definite, the quantity X (A '),,,Q—
with .X an arbitrary vector and (A ')„,„given by Eq.
(1.19a) provid—es a variational lower bound, not merely a
variational principle, for X A 'X.
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subject to the boundary conditions

$„(0)=P„(s)=0 . (1.22b)

d2
(to„')„„=— f dxP„, f dx pP„, /T

We will assume P„(x}to be real, in view of its physical
interpretation. However, even for real P„, Eqs. (1.22) do
not suffice to specify the solution completely since the
overall normalization of P„still has been left arbitrary.
Our starting point for a variational estimate of co„, with
the question of normalization temporarily ignored, will be

( ot„)„,„=ot„, +f dx L„,(x) z +
dx

(1.23)

s
1+— dxL„x p x „x =O (1.24)

and also

d Ln Mnp L„=O,
dx

together with the boundary conditions

L„(0)=L„(s)=0 .

(1.25a)

(1.25b)

Equation (1.24) is obtained by equating to zero the coeffi-
cient of 5to„ in the variation of Eq. (1.23); Eq. (1.25a)
guarantees, after integration by parts, that terms propor-
tional to 5$„(x) vanish in the variation of Eq. (1.23);
end-point contributions are eliminated by Eqs. (1.22b) and
(1.25b). Equations (1.22) and (1.25) imply

L„(x)=c„P„(x), (1.26a)

where c„ is some constant. Inserting Eq. (1.26a) into Eq.
(1.24) yields

c„=— f dxpP„'/T (1.26b)

An obvious first-order estimate L„, of the exa«L, (x) is
an expression obtained from Eqs. (1.26) with p„replaced
by p„,. As a result, we have the VP

We use L„,(x) for our trial Lagrange multiplier, since it is

now a function (rather than a constant or an operator),
and we refer to L„,(x) as the trial adjoint function; ro„, is
the trial to„, and p„,(x) is a trial estimate of a solution
p„(x). The trial p„„ like p„ itself, is required to satisfy
Eq. (1.22b); the possibility of relaxing this requirement
will be discussed in Sec. III.C.2. [A remark about co„, is
in order. We are treating it here as a direct estimate of ~„
which is good to first order and independent of P„,. An
alternative would be to regard it as a functional of P„„
since multiplication of Eq. (1.22a) by P„and integration
affords an expression for to„ in terms of P„. A similar
case will arise in a quantum-mechanical context; we defer
a detailed discussion to Secs. I.B.5 and III.A.2.]

It then can be seen that Eq. (1.23} will be stationary for
arbitrary variations of to„, and P„,(x) about corresponding
exact to„and P„(x) if

(1.27)

a result due to Rayleigh, though obtained of course quite
differently. Historically the result in Eq (.1.27) probably
represents the first truly useful variational principle from
the computational point of view.

There can be no objection to the fact that we ignored
normalization in deriving the VP for co„given by Eq.
(1.27); that Eq. (1.27) does indeed represent a VP is clear
from its construction. Physically, the point is the some-
what surprising but very well-known fact that the fre-
quency is independent of the amplitude. Had we speci-
fied the normalization, we of course again would have ob-
tained a VP; see the following subsections.

5. Energy eigenvalues

Another instructive example, closely related to the one
just given, is the determination of bound-state energy
eigenvalues in quantum mechanics. The eigenfunction P
associated with the eigenvalue E obeys the Schrodinger
equation (1.3a), where H is Hermitian. In general, H as
well as P may be multicomponented and complex; for in-
stance, H may be the Dirac Hamiltonian. In the present
section, however, we shaH assume H and P to be purely
real; the extension to problems involving complex
and/or H is given in Sec. III.B. On the other hand, in
this section we do permit both H and/or P to be mul-
ticomponented, provided that all these components are
purely real.

From the results of Sec. I.B.4 we can infer that for the
purpose of constructing a VP for E it is not necessary to
specify the normalization of P; the correctness of this
inference can be verified (see below). Nevertheless, now
we will include the normalization condition (1.3b) in the
specification of P, to illustrate the role of the Lagrange
multiplier associated with the normalization constraint.
We further remark that for notational convenience in this
subsection we have dropped the subscript n (carried in
Sec. I.B.4) identifying the eigenvalue. Since H may have
many discrete eigenvalues, in employing the VP to esti-
mate the energy it is, of course, necessary that the trial
function P, employed correspond to an appropriate P; for
example, the choice of P, (r) should be made with the
quantum numbers of the exact P associated with the
desired E in mind. To construct the desired VP, however,
restrictions on P and P, delimiting E to a specific unique
value are irrelevant; the resultant VP has the same form
for every bound state E.

With the foregoing considerations in mind, we start
from

(E)„,„=E,=E, +L, [(H E, )P, ]+A,, (Q, P, ——1)

(1.28)
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Integration over r is implied in the scalar product P, P, ;
and, when P is multicomponented, summation over the
discrete indices of the components of P also is implied.
The term involving L, in Eq. (1.28) is similarly interpret-
ed; in particular, when P(r) is multicomponented and re-
garded as a column vector, L, also is a column ~ector
whose elements are ordinary functions of r. Whether or
not P is multicomponented, A. must be merely an ordinary
(real) number in Eq. (1.28), because F is merely a number.

Varying Eq. (1.28) and using Eqs. (1.3), we obtain the
requirement

5E„=5E+L [(H E)5$]——5F(L P )

+A[/ 5P+(6P) P]=0, (1.29)

where 6E=E,—E. To obtain the condition for the coef-
ficient of 5P to vanish in Eq. (1.29}, the operation (H F)—
on 5P must be transferred to L. In other words, we must
assume that it is legitimate to write

L [(H E)6$]=—[(H F.}L]5P— (1.30}

(H E)L +2AP =—0

1 L$=0— (1.32a)

(1.32b}

after equating to zero the coefficients of 5P and 6F,
respectively. Multiplying Eq. (1.32a) on the left by P, we
find, using Eq. (1.3a), that

X=O (1.33a)

With A, =O we see from Eq. (1.32a) that L is a solution of
the Schrodinger equation corresponding to the same
bound-state energy E as P itself; moreover, it will be made
apparent below that to avoid difficulties with the boun-
dary conditions L should be quadratically integrable. In
other words, L should be restricted to the quadratically
integrable eigenfunctions of the Schrodinger equation at
energy E. If E is nondegenerate, we therefore infer that

Equation (1.30) represents a boundary condition.
It is conceivable that there are problems for which one

cannot obtain generalized Lagrange multi pliers which
satisfy the differentiaj equations and relations such as
(1.30), which arise in the course of the development of a
VP. If so, our procedure for obtaining a VP will be use-
less. We ourselves have not encountered a problem for
which the generalized Lagrange multipliers do not exist.

In Eq. (1.29) it also is true that

(64A =4' 64'

in view of the definition of the scalar product implied by
the notation. Thus, using Eqs. (1.30) and (1.31), the con-
ditions for the vanishing of 6E, given by Eq. (1.29) be-
come

by virtue of Eq. (1.32b) and the normalization condition
(1.3b). If F is degenerate, Eq. (1.33b) continues to be a
valid solution of Eq. (1.32a) with A, =O, but is no longer
the most general solution. For degenerate E, projections
on the other eigenfunctions belonging to E can be added
to the right-hand side of Eq. (1.33b); however, these addi-
tional projections merely complicate the VP without alter-
ing it in any essential way (see below).

The solutions (1.33) for the exact L and A. in the nonde-
generate case suggest the trial estimates

0 (1.34a)

(1.34b)

Substituting Eqs. (1.34) into Eq. (1.28) yields

(Z &,,,„=Z,(1 y,"y, )—+y,tHy, , (1.35)

Pili —1=(P+5$) (P+6P) —1

=4'64+(54 )'4 (1.36)

In other words, Eq. (1.3b) implies that P, P, should differ
from unity by a quantity of first order. Using Eq. (1.36),
one can easily verify that Eq. (1.35) indeed is a variational
estimate of E, that is, that it differs from the exact E by
quantities of second order when E, and an unnormalized
P, in Eq. (1.35) are accurate to first order. Often, when P
is constrained by Eq. (1.3b), one also requires that

(1.37a)

in which event, according to Eq. (1.36), we have

P 6P+(5$) /=0 . (1.37b)

Substituting Eq. (1.37a) into Eq. (1.35) gives the usual
well-known form of the VP for E, namely,

(Z &,,„=y,'Hy, , (1.38)

with P, constrained by Eq. (1.37a). [When Eq. (1.37a) is
satisfied, a more consistent procedure might be to start
with Eq. (1.28), but with the A, , term omitted. One again
arrives at Eq. (1.38).]

which is the desired VP. We mention that the results in
Eqs. (1.33) are not typical; as we shall see, in VP's for oth-
er F(P) than the eigenvalues of H, the exact Lagrange
multiplier associated with the normalization constraint
generally does not vanish, nor does one normally have
L =P.

So far we have not specified the normalization of P, .
The constraint (1.3b) on the exact P does not require P, to
be normalized, but does imply that if P, differs from P by
first order, then, to that order,

L =cP (1.33b)

6. Generalizations of variational principles
for energy

where c is a constant whose value must be

c=1 (1.33c)

The above derivation of Eq. (1.38) obviously is much
more complicated than usual or necessary, but it does il-
lustrate our assertion that our routine procedure will lead
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to the desired VP, though it sometimes may do so rather
clumsily. The derivation also indicates various possible
generalizations of Eqs. (1.35) and (1.38}. For instance, if
Eq. (1.37a} is not required, and A, , differs from zero by
first order, then by virtue of Eq. (1.36} the last term in
Eq. (1.28) makes a contribution of second order. This is
consistent with the requirement that Eq. (1.28) remain a
VP for any trial estimates L, and A, , of the auxiliary func-
tions differing by first order from their exact values in
Eqs. (1.33). Similarly, it can be seen that when E is de-
generate the use of more general quadratically integrable
solutions to Eqs. (1.32) than Eqs. (1.33b) and (1.33c) for L
maintains Eq. (1.28} as a VP, provided only that the cor-
responding L, differs by first order from the more general
L. Suppose, for instance, Eqs. (1.33b) and (1.33c) are re-
placed by

L =P+bg (1.39a)

where b is any constant and g is a normalized eigenfunc-
tion of the same energy E orthogonal to P; evidently Eq.
(1.39a), taken together with Eq. (1.33a), continues to satis-
fy Eqs. (1.32). With Eq. (1.39a), the obvious generaliza-
tion of Eq. (1.34b) would be

Li =4r+brfi (1.39b)

(1.40)

But the b, term in (1.40) can be seen to make a contribu-
tion of second order if we remember that the exact g sat-
isfies the Schrodinger equation (1.3a) and that g is
orthogonal to the exact P. In other words, the more gen-
eral solution (1.39a) of Eqs. (1.32) yields essentially the
same VP (1.35) as did the solutions (1.33) employed ear-
lier. Actually, the above argument starting from Eq.
(1.39a) is merely a specific illustration of the readily veri-
fiable fact that Eqs. (1.30) and (1.32) really are sufficient
to guarantee that Eq. (1.28) is a VP, in which event it
must be the case that (E),,,„ is a second-order estimate of
E when L, and A., differ by first order from any corre-
sponding L and X satisfying Eqs. (1.32).

Returning to the nondegenerate case, we already have
mentioned that omit ting the normalization condition
(1.3b) on P does lead to a VP for F.. In particular, with
this omission, and after dropping the A, , term in Eq. (1.28)
and finding that Eq. (1.33c) is replaced by c =(P P)
we are led to the well-known generalization of Eq. (1.38)
for unnormalized P„namely,

( )
H

(1.41)

Note that Eq. (1.41) is not identical in form with Eq.
(1.35), if only because in Eq. (1.35) some first-order esti-
mate E, of F is required. More importantly, because the
numerator and denominator of (1.41) happen to contain

where f, is a trial estimate of 1(, and b, is a trial constant.
Substituting Eq. (1.39b) into Eq. (1.28) and retaining Eq.
(1.34a) lead to

(E)„,„=E,(1 P, P, )+P,—HP, +b, Q, (H E, )Q, —

the same number of p, factors, Eq. (1.41) holds for a p, of
unrestricted normalization, that is, for P, close to P in
form but not necessarily close to (() in normalization. In
Eq. (1.35), as in most forms of VP's, it is assumed that P,
differs by first order from a normalized P, so that Eq.
(1.36) holds. For P, consistent with Eq. (1.36), the VP
(1.41) reduces to

&& &...=(( H4 +(4 H4' )(1 4' (—t' »
after we write

(1.42)

the denominator of Eq. (1.41), and then expand in
powers of (1 —p, p, ). Equation (1.42) also is not identical
in form with Eq. (1.35}. Nevertheless, both Eqs. (1.35}
and (1.42), being VP's, must yield estimates of E accurate
to second order, that is, Eqs. (1.35) and (1.42) differ by at
most second-order terms. Finally, had we, in writing Eq.
(1.28), considered E, not to be an independent first-order
estimate of E but as the value given by P, Hg„ the subse-
quent analysis would have led to Eq. (1.42), as can be
readily verified.

The energy eigenvalue VP's of this section and of Sec.
I.B.5 can be further generalized to non-Hermitian Hamil-
tonians and to more complicated boundary conditions, as
Appendix D illustrates.

7. Electric field

( VP(ro) ),.,„=V/, (ro)+ fdr A, (ro, r)V P, (r) (1.43a)

where (consistent with the notation described in Appendix
A) we now denote the adjoint function by A, because A
obviously is a function of two variables, namely, ro and r.
The quantity A and its estimate A, are written as vectors
because Eq. (1.43a} clearly requires that A, (and therefore
also A) be an ordinary three-dimensional vector, like VP,
and VP; in other words, A actually denotes a collection of
three adjoint functions, the components of A. To avoid
notational confusion, it is convenient to concentrate on
one component of VP, (ro)—the z component, say —where
the z direction wi11 be quite arbitrary.

In Eq. (1.43a) it is further convenient to write

VP, (ro)= fdr5(r —ro)V&, (r)

= —fdr[V5(r —ro)]P, (r) (1.43b)

Our final illustration in this section will be concerned
with a case in which the basic equations for the adjoint
function are rather more difficult to solve than hereto-
fore. Suppose that we seek a VP for the electric field at
some given point ro between the two conductors of a con-
denser with the plates held at some known potentials. In
other words, we shall consider the problem of variational-
ly estimating VP(ro), with P(r), the potential, defined by
V P(r) =0 together with given values of P at the boun-
daries. Then our starting point for a variational estimate
of Vp(ro), assuming p, (r) satisfies the boundary condi-
tions on P(r), is
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so that both terms on the right-hand side of Eq. (1.43a}
are represented as integrals over r with integrands con-
taining P, (r).

Skipping details of the many manipulations involved,
we find that the adjoint function is defined by

V A, (ro, r) = 5(r —ro)2 =a
az

(1.44a}

in the volume, together with

A, (ro, r) =0 (1.44b)

1 d qdP
r2 dr dr

(1.45)

where the origin is at the condenser center. In the case of
a spherical condenser, therfore, we would expect that
there exists a less complicated derivation (than the above)
of a VP for the electric field. Such a derivation, based on
Eq. (1.45), has been carried out explicitly in Gerjuoy, Rau,
and Spruch (1972).

II. GENERAL CONSTRUCTION OF VAR IATIONAL

PRINCIPLES FOR REAL QUANTITIES

A. Introduction

In this section, we restrict ourselves to real quantities,
and give a somewhat formal statement of the general con-

for r on the conductor surfaces (and at infinity); of
course, the derivatives in Eq. (1.44a) are with respect to r,
not ro. We note that this is an example where the exact
Lagrange multipliers do not depend on the functions P.
That A, in this problem is a Green s function is evident
from Eqs. (1.44).

Therefore, the desired VP for the z component of
VP(ro) is given by the z component of Eq. (1.43a) with

A~(ro, r) a first approximation to the unique A, (ro, r)
satisfying Eqs. (1.44). Naturally, we are not likely to
know A, exactly; usually we are no more able to solve
Eqs. (1.44) for the exact A, than we are able to solve for
the exact P. However, it is possible to deduce some fur-
ther information about the exact A, from Eqs. (1.44),
thereby somewhat easing the problem of finding a reason-
able trial estimate A„of A„but we will not go into this.

Had we been interested in a VP for the potential P(ro)
at the point ro, rather than for the electric field at ro, we
would have started from

(P(ro))„,„=P,(ro)+ fA, (ro, r)V P, (r)dr

with A, now a single function rather than a collection of
three functions. We will not complete the derivation of
this VP, but note that Sec. IV.A treats the very similar
problem of finding a VP for the Schrodinger wave func-
tion P(ro) at the point ro. Further, in a spherical con-
denser, where P(r) is known to have spherical symmetry
and the electric field is known to be radial, V' P =0 can be
replaced by the one-dimensional equation

struction of VP's. Even for solely real quantities, the
functional character of the quantities and equations of in-
terest can be so diverse and so complicated that it would
be extremely difficult, and perhaps impossible, to write
down compactly a set of equations valid for all cases. We
discuss the construction of VP's under circumstances
much more general than any considered above. The dis-
cussion may appeal to the more formally minded reader; a
rereading of some of the illustrative examples of Sec. I.B
should help bring out the basic features of the general
procedure. Other readers could very well glance over this
material cursorily, since it is not required for an under-
standing of the material in later sections. To an extent,
the same applies to some of the formal material in Sec.
III.

B. Basic equations

Let the set of quantities P, be a trial estimate of the ex-
act but unknown set P satisfying Eq. (1.1). In the most
familiar variational principles, such as the Rayleigh-Ritz
principle for finding the eigenvalues E of Eq. (1.3a), the

P, are often the only trial quantities. However, there is no
reason why the variational estimate of an arbitrary F(P)
should not involve trial quantities other than the P, . In
particular, we shall let the set W, of "auxiliary func-
tions" denote trial estimates of a set W which is still to be
specified, possibly (but not necessarily) independent of P
and of one another. We will consistently refer to these
auxiliary functions as adjoint functions, a terminology
also adopted by Finlayson (1972), Atherton and Homsy
(1975), and others. The notation W anticipates the
Lagrange undetermined multiplier aspect of each mem-
ber of the set. Then the functional F„
=F,(Q„W, )=(F(P))„,„ is a VP for the desired F(P) if
the following two conditions hold:

(i) F„(P„W,) coincides with F(P) whenever the trial P,
coincide with the exact P, whether or not the trial W,
coincide with the exact W.

(ii) in the error

5F„=F„(P(,W, ) F(Q)— (2.1a)

the total first-order error, composed of terms proportional
to 5$ and 5W, vanishes.

Here, we are defining

(2.1b)

We come now to the basic problem, the construction of
F, . For simplicity, not necessity, we begin with a restrict-
ed but nonetheless instructive and easily generalized case,
which will be followed by a more general and formal con-
sideration. Specifically, we assume (a} that P(r) is a sin-

gle function, (b) that the F under consideration is a single
numerical quantity independent of r, as, for example, F of
Eq. (1.2), and (c) that there are precisely two constraints,
of particular kinds which we now describe. The first type
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of constraint provides a single restriction on hatt, that is,
8 (P ) is in the space of (real) numbers; this constraint is
written in the form

B)(ttt ) =0 (2.2a)

82($)=0 (2.2b)

really represents a continuous set of r-dependent restric-
tions on t}It, one restriction for each value of r. An exam-
ple is Eq. (1.3a), the Schrodinger equation; at each point r,
Eq. (1.3a) provides a purely real restriction on hatt(r) which
is essentially independent of the restrictions provided at
other points r'&r. Note that although Eq. (1.3a) happens
to be linear in P, we do not assume that 8& must be ex-
pressible in the form 8$, where 8 is a linear operator.

Now consider the expression

F(et }+~tB I (4't )+Lt 82(~l ) (2.3)

An example of this sort of constraint is the normalization
condition Eq. (1.3b); another example is the requirement
that tt (r}=0 at the point r=-0. The second type of con-
straint, with 8(t})) in the space of functions, provides one
restriction on P for each value of r in some allowed range
of r, but the restrictions for different values of r are essen-
tially independent; in other words, such a constraint,
which we write in the form

functional dependence of L on r. Thus in Eq. (2.3} the
contribution made by the constraint Eq. (2.2b) is a sum,
or rather an integral, over constraints multiplied by their
associated Lagrange multipliers. The integral is over the
range of allowed variables r—that is,

Lt 82(kt ) =f~«t (r }I [Bz(4 t }].I
The notation for our generalized Lagrange multipliers W
is further discussed in Appendix A.

Because of Eqs. (2.2), the formula (2.3) for (F)„„evi-
dently obeys condition (i) quoted at the beginning of this
section. Therefore, Eq. (2.3) will be a VP for F(P) if the
Lagrange multipliers A. and L can be chosen so that con-
dition (ii} above is satisfied. Generally, it is not possible
to find k and L exactly, but it is possible to ascertain the
relations specifying the exact A. and L. Note that because
F„ in Eq. (2.3) is linear in the W by construction, the
second-order difference between F„and F(P ) will contain
terms of order (5t}) ) and (5P)(5W), but not (5W); this
assertion is valid in more complicated problems as well,
because we always insert the Lagrange multipliers linearly
into the analog of Eq. (2.3).

To determine the needed relations specifying k and L
of Eq. (2.3}, it first is necessary to obtain and manipulate
appropriately the first variation of Eq. (2.3). We have by
definition (see footnote 2 above):

where A,, and .E., are approximations to exact quantities A,

and L whose defining equations still must be ascertained,
and where the last term of Eq. (2.3) utilizes the matrix no-
tation introduced in Sec. I. It is clear from the construc-
tion of Eq. (2.3) that A. and L are analogs of the Lagrange
multipliers customarily employed when treating problems
involving constraints —for example, in extremum prob-
lems in elementary calculus and in the calculus of varia-
tions (Courant and Hilbert, 1937, pp. 164 and 165 and
216—222) or in applications of Hamilton s principle to
problems in mechanics (Goldstein, 1980, p. 47). We con-
struct F„of Eq. (2.3) by first adding all constraints—
multiplied by their respective Lagrange multipliers —to
the original F(ttt), after which we replace all unknown
quantities by their trial estimates. As will be seen in a
moment, the matrix notation in Eq. (2.3) expresses pre-
cisely the sum we require.

Because F(tttt ) has been assumed to be a single numeri-
cal quantity irtdependent of r, while Eq (2.2a) pro. vides a
single restriction on P, the Lagrange multiplier in Eq.
(2.3) associated with the constraint Eq. (2.2a) must itself
be a single numerical quantity independent of r. For this
reason, instead of employing the generic Lagrange multi-
plier symbol W introduced earlier, we denote the
Lagrange multiplier associated with Eq. (2.2a) by t(., to
emphasize its close analogy with the numerical Lagrange
undetermined multipliers used in elementary calculus. On
the other hand, since Eq. (2.2b) provides a continuous set
of r-dependent restrictions on P, it must be associated in
Eq. (2.3) with a t.orrespondingly continuous set of
Lagrange multipliers, that is, a function, which we denote
by L(r) (again instead of the generic W) to emphasize the

5[81(4»)]=Bt(4t)—8~(4) . (2.4a)

5F„=5F+i(5[8)(P )]+L~5[8'(P )]

where, of course,

(2.4b)

5F =F (tttt ) F(P)— (2.4c)

Note that Eq. (2.4b) also follows from a direct first-order
variation of Eq. (2.3).

Each of the terms on the right-hand side of Eq. (2.4b)
can be expressed in terms of 5P, the only quantity we can
arbitrarily vary in F and the B's. If we are to succeed in
obtaining a VP (F(P))„,„, it must be possible to combine
these first variations so that Eq. (2.4b} takes the form

5F„=K 5ttt—:J drK(r)5ttt(r) (2.5a)

where K(r) must be a function and the operation involved
in Eq. (2.5a} be only one of multiplication of 5tl) by K; it
must not, for example, be a derivative. Only if Eq. (2.4b)
has been reduced to the form Eq. (2.5a), with K(r) a func-
tion, is it possible to infer a condition, namely,

In the variation 5F„defined by Eq. (2.1a} we have, there-
fore,

tB)(tttt)=.(k+5K)IB, (t}))+5[8)(ttt)] I

=t(.5[8)(P)]+(5A)5[B)(P)]

In the last step we used Eq. (2.2a). Note that 5A. appears
only in a second-order term. Similar relations hold for
the variations of the term in Eq. (2.3) involving the con-
straint Eq. (2.2b). Therefore, neglecting terms of second
order, we obtain
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K(r)=0

L. '5 [ey ]=L '[e5y ]

to 6F„, Then, assuming there are no manipulatio~ prob-
Jems with 6F, it will be possible to put Eq. (2.4b) into the
form Eq. (2.5a)—with K(r) a function, not an operator-
if and only if

L'[054]=[~L] 54 (2.6a)

that is, in less condensed notation, if and only if

Idr L (r)[85$(r)]=Id r[OL (r)]5/ (r) (2.6b)

sufficient to guarantee that 6F„vanishes for all a11owed
54{r), that is, sufficient to guarantee that Eq. (2.3) really
is a VP. Moreover, although the allowed trial functions

P, are not wholly unrestricted [for example, it may have
been presumed a priori that P, (r} are continuous and con-
tinuously differentiable], and although expressing Eq.
(2.4b) in the form (2.5a) typically implies that 5$(r) must
satisfy some boundary conditions (see immediately below),
nevertheless, in general the allowed P, (r} remain suffi-
ciently unrestricted that 5$(r) can be regarded as essen-
tially arbitrary at every r (see Secs. III.B and III.C for
more details). Therefore, for the purpose of guaranteeing
that 5F„vanishes for all allowed 5{t (r), Eq. (2.5b) gene~al-

ly is necessary, not merely sufficient; that is, only if Eq.
(2.5b) can be satisfied will it generally be true that Eq.
(2.3) is a VP.

There ren&ains the problem of putting Eq. (2.4b) into
the form Eq. (2.5a). To do so, it normally is necessary to
perform manipulations which are valid only when 5P and
the Lagrange multipliers in Eq.(2.4b) satisfy certain
"boundary conditions"; simultaneously, these manipula-
tions normally will cause K(r) to involve operations on A,

and L, so that Eq. (2.5b) will be, for example, a differen-
tial equation for L(r) involving A. as a parameter. To il-
lustrate these assertions, consider for instance that Eq.
(2.2a) is the normalization condition (1.3b), while

Bz(P) =0/, where 0 is a linear operator [such as {H —E}]
independent of P. In this event, the term in Eq. (2.4b) in-

volving the variation of 8] immediately makes a contri-
bution of the required form (2.5a) to 5F„, but the term in-

volving 82 makes the contribution

satisfy all the constraints (1.1) as well as the boundary
conditions on P, often not explicitly included in Eq. (1.1).
Usually, but not always, the trial 6, are required to satisfy
the boundary conditions on P and some of the more readi-
ly attainable constraints (1.1). For instance, when the ex-
act P in Eq. (1.2) is required to satisfy Eqs. (1.3a) and
(1.3b), the trial P, normally would be required to satisfy
the normalization condition (1.3b); if the wave function P
describes zero angular momentum scattering by a central
potential, the trial rP, might be required to behave like r
at the origin, because the exact rP is known to behave so
at the origin. At any rate, once the class of allowable trial
functions P, is specified for any given problem, the set of
equations comprising Eqs. (2.6) plays the role of boundary
conditions, in that this set delimits (and may make
unique) the set of adjoint functions W that are the solu-
tions of Eq. (2.5b). ~e shall elaborate on the remarks of
this paragraph in Sec. III.C.

It now should be quite apparent how we proceed to
derive a VP for F(P) when (still assuming all quantities
are real) the assumptions (a),(b),(c) quoted in the para-
graph immediately following Eq. (2.1b) fail to hold, as,
for example, when F is not restricted to be a single numer-
ical quantity independent of r, or when there are a large
number of constraints 8;(P)=0 not necessarily of the
forms of Eqs. (2.2). We first construct the analog of Eq.
(2.3) by adding to F(P, ) a sum gm';, 8;(P, ) over all con-
straints 8;, where the functional character (constant,
function of one variable, function of two variables, collec-
tion of functions, etc. ) of the Lagrange multiplier W; will
follow immediately from' the functional character of
F(b) and 8;(P); correspondingly, for any given 8; the
term W;t8; (P, ) will represent an integral over all allowed
ranges of the free variables in 8;. Next, using only for the
present paragraph the notation (2.XX)' to indicate the
analog of one of the equations (2.XX), we compute Eq.
(2.4b), from which the variations 5M; again will disap-
pear, because of Eq. (1.1). Finally, we recast Eq. (24b)'
into Eq. (2.5a)', wherein 1( 5P will now denote summation
and/or integration as appropriate. In this way, we will
deri~e Eq. (2.5b)', which again will be a necessary and suf-
ficient condition for the desired VP, but which now may
represent a collection of equations. The solutions to this
Eq. (2.5b)' will determine the set of exact Lagrange mul-
tipliers whose estimates M, appear in Eq. (2.3)', and

where 8 denotes some other operator, the real adjoint of 0.
Having replaced the left-hand side of Eq. (2.6a) by its
right-hand side, we see that the term involving 82 contri-
butes a term OL to K(r) in Eq. (2.5b). We term Eqs.
(2.6a) or (2.6b) "boundary conditions" because, as will be
seen, in many common circumstances (when 9 is H —F,
for instance) the restrictions Eqs. (2.6) impose on 5$(r)
and/or L (r) are boundary conditions of the usual type (at
the origin and at infinity, for instance). More specifically,
in typical cases the analogs of Eqs. (2.6) amount to the as-
sertion that orders of integration can be inverted, or that
boundary terms resulting from integration by parts can be
ignored. Presumably the trial functions P,~b cannot

3The ~; map the space of entities 8;($ ) onto the space of en-

titles F(P }; M;:B;(P)~F(P). Thus, in the example considered
above, when F(P )'s are real and B~(g )'s are also real, the corre-
sponding Ivagrange multiplier, A. , is also in the space of reals,
but when F{P)'s are real and 82{/ }'s are functions of one vari-
able. the Lagrange multiplier L(r) is also in the space of func-
tions of one variable.

'Note that implicit in our use of trial estimates .X'I is the as-
sumption that the space of M s defined by W;:B;($}~F(P}

admits a topology so that there is the concept of a neighborhood
of entities W;, around the W;.
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these solutions will be subject to a set of boundary condi-
tions (2.6)' on W and 6$, which arise during the course of
the manipulations yielding Eq. (2.5a}' from Eq. (2.4b)'.

In the above discussion it was assumed that one can ob-
tain approximations L,, 's to the I.'s, good to first order,
once the defining equations for the L's have been ob-
tained. In special cases it may not be simple to do so. A
familiar example for which the determination of the L, 's

becomes particularly crucial is the one of VP's for calcu-
lating matrix elements of operators between solutions of
the Schrodinger equation; only relatively recently has the
resolution of all the complications that arise, particularly
in dealing with complex functions, been achieved (Ger-
juoy et al. , 1974). We note that the above remarks relat-
ing to the construction of VP's make no restrictions on
the nature of P, F(P), and 8(P), and that they therefore
are applicable when complex quantities, nonlinear func-
tionals, or integral operators are involved (Rau et al. ,
1978). It is also of interest that in the case of nonlinear
problems, the method makes contact (Rau, 1976) with
methods of functional analysis and invariant imbedding
(II alaba, 1959; Bellman and Kalaba, 1959; Bellman and
Wing, 1975).

With the preceding remarks, we have completed the
formal presentation of our general procedure; the remain-
ing sections of this paper illustrate how easily it can be
applied to a variety of problems. As these illustrations
and those in Sec I.B show, in practice it is not difficult to
translate Eqs. (2.5) and (2.6) into actual differential or in-

tegral equations for M together with appropriate boun-
dary conditions on M. In fact, in many of the illustrative
examples considered, it further turns out that the equa-
tions for M can be solved exactly. In later sections (espe-
cially IV.C) we will consider cases where this is not true
and point out prescriptions for how approximate solu-
tions, W„are to be obtained.

Our illustrative derivations of VP s in Sec. I and in

later sections proceed so routinely that it should be mani-
fest that the above forrnal presentation suffices for suc-
cessful application of our general procedure. Neverthe-
less, our presentation up to this juncture has glossed over
a number of questions bearing on the precise implications
of the boundary conditions imposed on the auxiliary func-
tions, M, the necessity versus the sufficiency of Eqs.
(2.5b) and (2.6) or their analogs, and the need for com-
plete specification of the wave function, especially the
phase of the wave function. These and related topics will
be examined in Sec. III.

lit. COMPLEX QUANTfTlES AND FORMAL

EXTENSIONS

In Sec. III.A we generalize the discussion in Sec. II.B
so that it can be applied to problems involving complex
quantities. The succeeding subsections III.B—III.D then
examine a number of questions concerning our formal
presentation which were glossed over in Sec. II, especially
concerning the specification of the wave function. In par-
ticular, Sec. III.B examines the relationship between the

usual specifications of the exact wave function P and the
constraint Eqs. (1.1) which are incorporated into the start-
ing expression (2.3) (or its analogs) for the VP, Sec. III.C
discusses the permissible restrictions on the trial wave
function P„and Sec. III.D is concerned with methods of
specifying the phase of the wave function, a subject which
did not arise in Secs. I and II, where we dealt with purely
rea1 functions. To our knowledge, many of these and oth-
er matters considered in Secs. III.B—III.D were not fully
discussed in the VP literature until rather recently (Ger-
juoy, Rosenberg, and Spruch, 1975; Gerjuoy et al. , 1973,
1974; Gerjuoy, Rau et al. , 1975},but they are crucial for
establishing the VP. Sections III.B—III.D also reexamine
a few of the comparatively simple examples treated in
Sec. I, after they have been slightly generalized (as, for ex-
ample, by relaxing end-point restrictions on P) so as to il-
lustrate some of the points of present interest; the con-
siderations of Sec. III.D on specifying the phase are illus-
trated in Secs. IV.A and IV.B.

A. Constructing the variational principle

When one is generalizing the formalism of Sec. II to
problems involving complex quantities, appropriate modi-
fication of our previous notation is the most immediately
evident need. In particular, with complex P in constraints
such as the normalization condition (1.3b),

(3.1)

the dagger denotes the adjoint (complex conjugate trans-
pose), and as before matrix notation is presumed; (r is a
column vector with components PJ(r), while P (r) is a
row vector whose components are Pj*(r). Corresponding-
ly, the diagonal element of a Hermitian operator 8' now
is denoted not by F(P ) but by

F($,P)=P WP, (3.2)

8(P",P)=0 (3.4)

8 (P,P)=0. (3.5)

It is also more convenient to regard (each component of)
P and P, and 5P and 5P, as independent, rather than the

where, for particles with spin, Eq. (1.4) is replaced by

WP = g J dr/i', (r)W&~PJ(r) (3.3)
j,k

summed over all wave-function components (indexed by k
in P and j in P ). In order not to complicate the notation
further, we allow P to represent other unknowns in addi-
tion to the conventional wave functions.

When a 8;(P) is complex, its real and imaginary parts
generally impose independent conditions on P. Generally,
therefore, to a real constraint of the form 8(P ) =0 for P
real, there will correspond for P complex two independent
real restrictions, which, as usual, are more conveniently
expressed as
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to ensure the reality of the contribution of the terms in

(3.6) to F„(P, ,P, ). Similarly, if there is a constraint

82(P,P) =0 with 82(P",P) a function, the starting point
of the VP will contain the terms

L„B2(p, , p, )+82(p, , p, )Lg, ,

and we expect that

L, (r) =L&(r) .

(3.8)

However, there is no need to presume the relationships
(3.7) and (3.9) at this juncture; if these relationships hold,
we should be able to deduce them from the requirement
that F„be stationary. More generally, it will often be pos-
sible to anticipate such relations between "paired" left-
occurring and right-occurring Lagrange multipliers (Ap-
pendix A) from the nature of the problem.

Making the starting expression stationary

In an analysis of 6F„ it is important to note that from
the fundamental definitions of M and 58, we have

5(8') =8'(P'+5/, P—+5/) 8(P,P)—
=-[8($ +5/, Q+5$) 8($,$)] =—(58)

whereas, in general, one has

[8(((}'4»}]'==8'(4'.4 ) , 8(4»') . --

As a concrete example, consider 8($,$)=P AP, where

If one is to obtain a VP, it Tnust be possible, after one
has expressed 5F„ in terms of 5P and 5P, to recombine
the terms so that 6F„ takes the form

5F, =K,5/+5/ Kg (3.10a)

=—g J dr [K,*J.(r)5$,.(r)+5/~*(r)K&J(r)],

(3.10b)

where the components K,J(r) of K, and Kb;(r) of Eb
must be functions, and must not, for example, contain
differential operations on the quantities they are adjacent
to in Eqs. (3.10). Equations (3.10) are the present general-
ization of Eq. (2.5a). Equation (3.10b) implies, for every

j, that the conditions

real and imaginary parts of P, and of 5P.
When F(P,P ) is real, as, for example, when F is given

by Eq. (3.2) with W Hermitian, we anticipate that the
exact Lagrange multipliers associated with the VP will
obey some simple relationships. Thus, if there is a con-
straint 8&(g,g)=0 with 8~(P,P } a number, there will

be terms in the starting point of the VP of the form

~.iBi(0~ 4i)+~bi@(4r 4'r» (3.6)

and we expect that

(3.7)

K.*,(r)=0, Kb, (1)=0 (3.11a)

will guarantee that 5F„ in Eq. (3.10} vanishes for all al-
lowed 5'(r) and 5P~ (r}; Eqs. (3.11a! are the generaliza-
tion of Eq. (2.5b). In a condensed notation, Eq. (3.11a) is

K, =o, Kb ——O. (3.11b)

However, putting 5F„ in the form Eq. (3.10} will require
manipulations which are valid only when 5$,5$ and the
Lagrange multipliers in the starting expression for F,
satisfy certain boundary conditions. Frequently these
boundary conditions can be stated in pairs, because terms
in 8; as well as in 8; now occur in the startin~ expression
for F„, and because terms in both 5P and 5$ now must
be cast into the correct form. In typical cases, relations
such as Eq. (2.6a) and those that arise in the present con-
text of complex P amount to the assertion that orders of
integration can be inverted, or that boundary terms result-
ing from integration by parts can be ignored. In other
words, they are typically boundary condit!ons of the usual
type.

2. Starting expression without explicit functionals

At this point it may be useful to elaborate slightly on a
remark made at the end of Secs. I.B.4 and I,B.5 regarding
alternative treatments of ~u„, and E,—whether to regard
them as direct guesses or as functionals of P, . In making
a variational estimate of some entity Q, it often is un-
necessary to write down explicitly the functional F such
that

4»}=Q .

This remark is important because there are many prob-
lems for which the explicit form of the functional
F(P,$) is unknown or extremely complicated. The use
of F(P,P) =Q can then be avoided by replacing the trial
estimate F(hatt, g„) in the starting point for F„by Q„
where Q, is a direct guess at Q, not necessarily involving

P, ; the starting point for F, is then Q, plus the usual
Lagrange terms incorporating the various constraints.
The derivation of the VP then proceeds in essentially the
same way as when F„contained the term F(P, , P, ). These
assertions are illustrated by the VP's in Secs. I.B.4 and
I.B.5; other illustrations will be encountered below in
Secs. III.B and V.B.l.

With these remarks, the procedure for deriving a VP
for an arbitrary complex F with arbitrary complex con-
".traints 8;(((},P) should be quite apparent, even though
we have not given explicit equations valid for all F and
8;. Illustrative combinations of dummy and free vari-
ables (and/or indices) which can occur are described in
Appendix A; this appendix also describes types of W;
which can occur, and summarizes the notation for
Lagrange multipliers employed in this work.
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B. Energy eigenvalues with nonreal wave functions L, [(H —E)5$ ]= [(H E—)L, ]"5r)rr, (3.15a)

1. Basic variational principle for the energy [(H E—)5$] Lr, ——5Q [(H E)L—r, ] . (3.15b)

To illustrate the procedure presented in Sec. III.A, we
return to the energy eigenvalues problem of Sec. I.B.5
where, however, the P and/or H no longer need be purely
real. The Hamiltonian H remains Hermitian, and the
eigenfunction P associated with the eigenvalue E contin-
ues to obey the Schrodinger equation (1.3a). Because one
of our major objectives in this section is to contrast our
procedures for complex quantities with our previous pro-
cedures for real quantities in Sec. I.B.5, we will continue
to specify P via a normalization condition [namely Eq.
(3.1}],but for the moment will not attempt explicit speci-
fication of the wave-function phase. In Sec. III.C. 1 we
explain that it should not be necessary to specify explicit-
ly the wave-function phase when constructing VP's for
phase-independent quantities such as energy eigenvalues
(more generally, any diagonal matrix element); it is of
course clear that the phase was implicitly specified in Sec.
I.B.5 by the assumption that P(r) was purely real. The
complications induced in the VP for the energy eigen-
value by insisting on explicitly specifying the phase are
discussed in Gerj uoy, Rau et al. (1975).

With the foregoing considerations in mind, the analog
of Eq. (2.3) in the present case obviously is

(E )„.„=E,+L., [(H —E, )P, ]

+ [(H Er )rtr r ] Lbr + i((—P r rtr r,
—1 ) (3.12)

because the normalization constraint equals its own ad-
joint, so that the A,„(rI)rpr —1) and A&r(rtrr pr —1) terms
can be combined (that is, A.r replaces A.„+iLbr ). Equation
(3.12) is to be compared with Eq. (1.28). Since the eigen-
value E is real —and since any reasonable variational esti-
mate of E will be real —it seems obvious that setting

L~, =Lb) (3.13)

in Eq. (3.12) right from the start still should permit
derivation of a VP—that is, it seems obvious that right
from the start we can assume that the exact adjoint func-
tions satisfy L, =Lr, consistent with Eq. (3.9). However,
to verify that it is not necessary (though it is convenient)
to impose the simplifying relation (3.9) at the very outset,
we will proceed here as if L, and Lb are unrelated and let
the result that they are equal follow from the derivation.
Similarly, we expect to infer that A, , is real. We will, how-
ever, assume that 5E is real.

Varying Eq. (3.12) we obtain

5E„=5E +La [(H E)5rtr ]+ [(H E}5$] Lr, —(5E)L—,Q-
—(5E}r)) Lr, +A, [rtr 5P+(5rI) )P]=0, (3.14)

which is our present counterpart of Eq. (1.29). In Eq.
(3.14), to obtain the conditions for the coefficients of 5rtr

and 5r)Ir
t to vanish, we must transfer the operation

(H —E) on 5$ in two terms. Thus we will assume that it
is legitimate to write

As in the case of Eq. (1.30), the validity of Eqs. (3.15) will
have to be determined after the fact. We continue to
proceed in very much the same way as in the case of the
real wave function of Sec. II.B. When we use Eqs. (3.15),
the conditions for the vanishing of 5E, given by Eq.
(3.14) become

(H E)L—r, +AP =0,

[(H E)L.]—+A/=0, .

1 LQ —Q—Lb ——0,

(3.16a)

(3.16b)

(3.16c)

after equating to zero the coefficients of 5rtr", 5rI), and 5E,
respectively. The adjoint of Eq. (3.16b) is

[(H E)L.]+—A'P =0. (3.16d)

Multiplying Eq. (3.16a) on the left by P, and assuming
that the operation (H E) on L—r, can be transferred to rtr

(again to be verified after the fact}, we find, using Eq.
(1.3a), that

(3.17a)

L, =car)), Lr, =cr, r)), (3.17b)

where c, and cb are constants. If E is degenerate, Eq.
(3.17b) continues to be a valid solution of Eqs. (3.16) but
is no longer the most general solution. For degenerate E,
multiples of the other eigenfunctions belonging to E can
be added to the right-hand side of Eq. (3.17b); however,
these additiona1 projections merely complicate the VP
without altering it in any essential way (see below in Sec.
III.B.2). Substituting Eqs. (3.17) in Eq. (3.16c} and using
the normalization constraint (3.1) yield the added condi-
tion

c~ +cb =1 (3.17c)

The solutions (3.17}for the exact L„Lb, and A. suggest
the trial estimates

with

Lar carer ~
L—br cbr4'r r—(3.18a)

c„+cb,——1 .

Substituting Eqs. (3.18) into Eq. (3.12) yields

(E)„„=E,(1 P, rtr, )+rtr, HP, . —

(3.18b)

(3.19)

Because e„and cbr do not appear explicitly in Eq. (3.19),
obviously we could just as well have chosen originally

1c, =cb = —,, which would make Eqs. (3.17) consistent with
Eq. (3.9) and would correspond to making relations (3.18)

Therefore we see from Eqs. (3.16a) and (3.16d) that L,
and Lb are both eigenfunctions of H corresponding to the
same eigenenergy E as P itself. If E is nondegenerate, we
therefore infer
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consistent with Eq .(3.13), all in accordance with our orig-
ina) 0 priori expectations. Simi larly, Eqs. (3.17a) and
(3.18a) do not disagree with our a priori expectation that
A, , should turn out to be real. As remarked following Eq.
(1.35), the result in Eq. (3.17a) that A is not merely real,
but actually vanishes, is not typical; the exact Lagrange
multiplier associated with the norma1ization constraint
generally does not vanish and would not vanish, had we

been considering here the diagonal matrix element of
some operator other than the Hamiltonian.

So far we have not specified the normalization of P, . If
P, differs from P by first order, then to that order, using

Eq. (3.1), we have

P, P, —1=($+5$ ) ((t +6/ ) —I

(3.20)

Using Eq. (3.20), we can easily verify that Eq. (3.19) is a
variational estimate of F.. When P, is strictly constrained
by Eq. (3.1)—that is, when

(3.21)

Eq. (3.20) implies

(3.22)

and Eq. (3.19) gives the usual well-known form of the VP
for E, namely,

(3.23)

2. Generalizations to degenerate E or unnormalized P

1'he generalization of the above VP for energy eigen-
values of complex wave functions when there is degenera-

cy, or when the trial P, are unnormalized, goes through
exactly as in Sec. I.B.6, where we considered real wave
functions. There is little point in pursuing this further; in

fact, the assertion that the extension to problems involv-

ing complex quantities often consists of no more than a
reinterpretation of the dagger symbol is no exaggeration.
In particular, it can be easi1y verified that

(3.24)

is the correct generalization of Eq. (3.23) for unnormal-
ized P, and that

(3.25)

is valid for P, consistent with Eq. (3.20)—in other words
for P, a first approximation (not normalized) to an exact-
ly normalized P.

C. Constraints on the exact P versus its specifications

wise, the problem may not be well defined. On the other
hand, it is reasonable to expect that unique specification
of P may not be necessary when the value of F(P,P) is
not affected by this lack of uniqueness in P. Thus, be-
cause the eigenfrequencies cv„on a stretched string do not
depend on the normalization of the eigenfunctions P„(x),
we are not surprised that in Sec. I.B.4 we were able to
construct a VP for co„without specifying the normaliza-
tion of P„(x). Similarly, we anticipate that specification
of the phase of P is unnecessary in the variational evalua-
tion of diagonal matrix elements P II P, but expect that at
least the relative phase of 4, and g2 must be specified in
the variational evaluation of off-diagonal matrix elements
P ~

IV/ ~ (see Sec. IV.B).
The complete specification of P is provided by a totali-

ty of v hat may be termed "partial specifications, " as, for
example, each of the constraints

8;(P,g)=0, (3.26)

and the continuity conditions on P. Let us suppose now
that we are concerned with an F(p, p ) which is not itself
completely specified unless p is completely specified; in
other words, we are supposing that the VP being con-
structecl for F is expected to require unique specification
of P. The question arises whether in this circumstance we
expect to have to require that each of the partial specifi-
cations be incorporated into the starting expression for F,
via constraints of the form (3.26). The answer is clearly
no, if only because one can have constraints which are not
quantitative equations in P of the form (3.26). As an ex-
ample, it is often implicit that the functions P are every-
where continuous and continuously differentiable. Such
partial specifications helping to determine P uniquely can-
not be incorporated into the analogs of the starting ex-
pressions (2.3) or its analog for complex P, although they
usually must be kept in mind when the VP ultimately is
employed for actual numerical estimation of F. Other
partial specifications Ifor example, boundary conditions
on surfaces or end points such as Eq. (1.22b)] are quanti-
tative, but involve P(r) at a set of points of measure zero
compared to the measure of the entire range of r under
consideration. Such partial specifications can be omitted
from the starting expression without significantly modify-
ing the possibility of obtaining a VP, because this possi-
bility depends on one's being able to make first-order
terms in 5F, vanish at essentially all r in its range, and be-
cause omission of constraints at a few specific values of r
is usually not serious; in the event of such omission, these
partia1 specifications —like the nonquantitative ones dis-
cussed above —usually will have to be kept in mind when
actually employing the VP for computation. On the other
hand, such partial specifications also can be included in
the starting expression if we choose, as we shall illustrate
in Sec. III.C.2 below.

1. THe different types of constraints which can arise 2. Frequency eigenvalues with end-point constraints

When constructing a VP for a given F(P",@) it is
reasonable to expect the P to be specified uniquely; other-

In this section we illustrate the above remarks concern-
ing the possibility of including in the starting expression
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for the VP partial specifications which are not expressible
in terms of quantitative expressions of the form (3.26).
More particularly, we shall reexamine the frequency
eigenvalues problem of Sec. I.B.4, starting now from

2 2
roi p

(co )„„=ro,+ dx L, (x) dx' T

+Api4 i(0)+A.id'i(&) (3.27)

instead of Eq. (1.23); as before, we drop the subscript n.
Equation (3.27) regards the boundary conditions (1.22b) as
constraints of the form (1.1), to be incorporated into the
starting point of the VP; the numerical Lagrange multi-
pliers A,p and A,, are associated with the constraints
P(0)=0 and if)(s)=0, respectively. Of course, we now no
longer are requiring the trial P, to satisfy Eq. (1.22b), as
we did in Sec. I.B.4; if the P, satisfy Eq. (1.22b), replacing
Eqs. (1.23) by Eq. (3.27) obviously is pointless.

The requirement that Eq. (3.27) be a VP is

S d co 2'p2ro5io+ f dx L 5P+ 5it + $5co
dx

Ap+L'(0) =0, A. ,, L'(s) =0,— (3.29a)

where it now is convenient to use the prime to denote the
derivative with respect to x. In Eq. (3.27), therefore, we
can employ the trial estimates

Api = —Li' (0) =Pi' (0) f dx pitii /T
S

' —I

A,„=L,'(s) = —P,'(s) f dx pP, /T
(3.29b)

using Eq. (1.26), which remains valid.
Inserting Eqs. (1.26) (with the various exact quantities

replaced by trial estimates) and Eqs. (3.29) into Eq. (3.27),
we get a new version of the VP for co, replacing Eq.
(1.27), namely

(ro')„,„= f dxpP, '/T
T

X —f dx(P, P )+P,(0)P,'(0) —4 (~)4

(3.30)

+ Ap5$(0)+A. ,5$(s) =0 . (3.28)

(As always, we need not include terms which involve vari-
ations of the Lagrange multipliers —in this case I, A,p, and
A.,—since the coefficients of the 5W—in this case 5L,
5 A.p, and 5 A.,—always automatically vanish. ) Collecting
the coefficients of 5ro again yields Eq. (1.24). Integrating
by parts the term in Eq. (3.28) involving d 5P/dx again
leads to Eq. (1.25a), together with the boundary condi-
tions (1.25b) on L. However, because 5iti no longer is be-

ing assumed equal to zero at the end points, this integra-
tion by parts leaves residual nonvanishing terms (propor-
tional to 5P at the end points) which did not remain after
integrating by parts the first variation of Eq. (1.23).
These new terms combine with the last two terms in Eq.
(3.28), also new, to yield

The new result (3.30) differs from Eq. (1.27) by the terms
in P, (0) and P, (s); these terms are of first order, since it is
assuined P, (0) and if', (s) are chosen so that they differ by
quantities of first order from $(0)=if'(s)=0, whereas
P'(0) and P'(s) are not equal to 0, implying that P,'(0)
and P,

' (s) are of zeroth order [if P'(0} or iI)'(s) were equal
to 0 along with P(0)=$(s)=0, the solution P(x) to Eq.
(1.22a) would be identically zero]. However, although the
algebra is a bit tedious, one can verify that Eq. (3.30)
indeed is stationary for trial P, (x) differing by first order
from the exact P, but not necessarily satisfying Eq.
(1.22b). Therefore the VP in Eq. (3.30) derived starting
from the form Eq. (3.27)—is a nontrivial generalization of
the VP (1.27), and is valid under less severe restrictions on
the trial functions than is Eq. (1.27), all in accordance
with assertions made in Sec. III.C.1 above.

3. Restrictions on the trial functions P&

If the unknown exact P is uniquely specified by the to-
tality of partial specifications discussed in Sec. III.C.1—
namely, the constraints (3.26) together with those require-
inents not being expressed in the form (3.26)—then (as
remarked in Sec. III.C.1} the trial functions P, &P surely
cannot satisfy all these partial specifications. Do the trial
functions have to satisfy any of these partial specifica-
tions'? To answer this question we note that for the pur-
poses of insertion into a VP of the form (2.3) or its ana-
logs, the only explicit requirement on i', is that it must
satisfy all conditions [for example, the conditions implied
by Eq. (2.6a)] needed to guarantee that 5F„will be station-
ary for all allowed 5P; if such conditions coincide with
any of the partial specifications uniquely determining P,
then of course P, must satisfy them. For instance, in Sec.
I.B.5 we saw that P, (r), like P(r) itself, had to be continu-
ous and continuously differentiable. In Sec. III.B.2, how-
ever, the trial functions P, employed in the VP (3.19) did
not have to be normalized, although the normalization
condition (3.1) is required for complete specification of P.

On the other hand, there is always the implicit require-
ment on i)), that it differ from the exact P by at most first
order. As a result, even those partial specifications on P
which iti, does not have to satisfy cannot be wholly ig-
nored; in Sec. III.B.2, P, P, had to differ from unity by at
most first order, as Eq. (3.20) showed. In practice, it
often is not obvious whether those partial specifications
on P which P, does not have to satisfy are failing by at
most first order; correspondingly, it often is not obvious
whether the P, (r) selected is so close to P(r) that P, (r)
justifiably can be termed a "first-order" approximation to
P(r). In practice, therefore, the P, often are chosen to
satisfy partial constraints on i' not needed to guarantee
that 5F, will be stationary, on the assumption that confin-
ing attention to such additionally restricted classes of P,
improves the likelihood of selecting a particular P, [for
insertion into F„(g, ,iti„W, )] which actually is a first-
order approximation to P. Such additional restrictions on

P, also may be desirable to ensure that a sequence of suc-
cessively improved P„ for example, via the introduction
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of a successively increased number of arbitrary parame-
ters, actually is converging to the desired P; for example,
P, should have the same symmetry and number of nodes
as dictated by the known quantum numbers of the desired

This brings us back to the role of the constraint terms
in (F)„,. For simplicity, we will suppose for the mo-
ment that P, F, and all constraints 8; are real and that the
distinction between left- and right-occurring W; can be
ignored. Suppose first that there are two constraints and
that they are incorporated into the starting expression as
follows:

&F )...=F.(4'i ~i~ ~a~)

F(el ) + ~ 1 f81(4't ) +~2182(4 t ) (3.31)

In some cases the presence of the term in W2 is absolutely
necessary for the above equation to be consistent. A
specific example is the case for which F =P WP,
B~ ——(H —E)tt, and 82 PP —1, —s—o that Eq. (3.32) takes
the form

2'+(H E)L ) +2k.—2$ =0 . (3.33)

As is immediately observed on multiplying from the left
by P, this equation would be meaningless unless
a, = —( w).

Now suppose we do not incorporate 82(P ) =0 as a con-
straint in the starting expression but merely write

(F )„,„=F(y,)+~/, 8/ (y, ) (3.34)

and choose to work only with P, 's of the class that satisfy
82(P, )=0. For such a class the two expressions (3.31)
and (3.34) are obviously equivalent and we would expect
Eq. (3.34) to be an acceptable stationary expression. But
at first sight the equation for W] that would follow from
the starting point (3.34) would seem to be Eq. (3.32)
without the term in W2, and this clearly would not define

properly. This seeming paradox is, however,
resolved, because an equation such as Eq. (3.32) follows
from the fact that in making (F)„,„stationary one sets
the inner product of the left-hand side of Eq. (3.32) with
5P equal to zero, and, for arbitrary variations, Eq. (3.32)
then follows. Now, however, if the P, 's are not arbitrary
but belong to the restricted class that satisfy 82(P, ) =0,
the variations are also no longer arbitrary and the only re-
quirement is that the terms multiplying 5P be orthogonal
to such 5P's. As a result, the Lagrange multiplier W~
makes its appearance at this stage, leading to the same
Eq. (3.32) as before, even though the term in W2 is not
introduced into the starting expression. Thus, when we
are working with normalized real P„ the requirement on

and that we make this (F),,„stationary by canceling the
5P terms. To isolate 5$, we bring the operators acting on
it to the left, thereby obtaining the defining equation

5B& 6B2

5tf) 5$ 5$
+ + =0.

(3.32)

the term multiplying 5P is that it be proportional to P [re-
call Eqs. (1.31) and (1.37)], so that we again have Eq.
(3.33). Another example of this situation is considered in
Sec. III.C.5. In practice, the convenience of being able to
estimate F variationally from Eq. (3.34) rather than from
the more complicated Eq. (3.31) is tempered by the incon-
venience of having to find P, obeying 82(P, ) =0.

4. Identities satisfied by Pt

The preceding remarks lead naturally to some questions
concerning the implications of finding identities satisfied
by P, that is, relations satisfied by P which are not neces-
sary for its unique specification. To be specific, suppose,
as before, that 8, (P)=0, 82(P)=0 (together with other
partial specifications of the type discussed in Sec. III.C.1)
suffice to specify P uniquely, but that in addition there
exists a known identity,

83($ ) =0, (3.35)

derivable from B&(P)= 08 2(P)= 0. Then, what are the
consequences of treating Eq. (3.35) as an independent
constraint —that is, what are the consequences of attempt-
ing to derive a VP starting from

&F)...=F(4, )+~t,Bi(4, )+~2,82(4»

+&3,8q(p, ) (3.36)

instead of the previous starting expression (3.31)? Corre-
spondingly, what are the consequences of imposing the re-
quirement 83($, ) =0 on the trial P„either when estimat-
ing F from Eq. (3.31) or when employing the starting ex-
pression (3.36)'? Of course, Eq. (3.36) will be the starting
expression if Eq. (3.35) is being regarded as a truly in-
dependent third constraint, because the possibility of
deriving Eq. (3.35) from other constraints has not been
recognized.

The questions raised above are not difficult to answer.
If Eq. (3.31) is a satisfactory starting point, then Eq.
(3.36) obviously is at least equally satisfactory, because
Eq. (3.36) reduces to Eq. (3.31) with the perfectly possible
choice W3, ——W3=0; in other words, if Eq. (3.32) in-
ferred from (3.31) has solutions W~, W2, then the equa-
tion [corresponding to Eq. (3.32)] inferred from Eq. (3.36)
surely has at least one set of solutions, namely W3 ——0 and

&, W2, as in Eq. (3.32). In essence, therefore, Eq. (3.36)
merely offers a somewhat wider choice of possible varia-
tional expressions than does Eq. (3.31). Whether advan-
tage can be taken of this wider choice—that is, whether
enough information about the classes of exact
W~, W2, W, associated with Eq. (3.36) can be garnered to
yield VP s (3.36) significantly different from Eq. (3.31)—
is another matter, of course.

The considerations of the present section are readily ex-
tended to problems involving complex F, P, 8;, etc. , as
will be seen; such considerations are relevant to the prob-
lern of diagonal and off-diagonal matrix elements dis-
cussed in Sec. IV.B. To some extent, the energy eigen-
value problems in Secs. I.B.5 and III.B.1 also illustrate the

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



Gerjuoy, Rau, and Spruch: Variational principles 743

considerations of the present section; in fact, for the pure-
ly real case of Sec. I.B.5, the Schrodinger equation (1.3a)
and the normalization constraint (1.3b) play, in Eq. (1.28),
precisely the roles played by B~ and 82, respectively, in
Eq. (3.31). This energy eigenvalue illustration is flawed,
however, by the fact that according to Eq. (3.17a) the ex-
act value of 7i, [corresponding to W, in Eq. (3.31)] turns
out to be zero, so that Eq. (3.31) reduces automaticallly to
Eq. (3.34); in other words, the energy eigenvalue problem
is so simple that it is almost irrelevant whether or how
one employs the normalization condition corresponding
to 82 in Eq. (3.31). In the literature, nontrivia1 illustra-
tions of the considerations of this section mainly have in-
volved the application of extra restrictions on the trial P,
to quantum-mechanical calculations of atomic and molec-
ular quantities. For iinstance, Rasiel and Wl~itman (1965)
urge the use (in the conventional Rayleigh-Ritz VP for
the ground-state energy) of an approximate wave function
constrained to yield the known experimental value of, say,
the molecular dipole moment. A related procedure, in
so-called variation-perturbation calculations, has been
proposed by Kirtman (1971),and applied to computations
of atomic polarizability by Kirtman and Mowery (1971),
and by Scott and Kirtman (1972). Note that these situa-
tions differ slightly from those discussed above and those
to be noted immediately below, in that we are concerned
not with sorr. e theoretical relations derivable from the
basic defining relations, but with experimentally deter-
mined numbers. For quantum-mechanical bound-state
problems, several authors (Epstein and Hirschfelder,
1961; Hirschfelder and Coulson, 1962; Hirschfelder et aI. ,
1964) have emphasized the possibility of "optimizing" the
trial wave function by requiring it to satisfy various so-
called hypervirial theorems. Correspondingly, Heaton
and Moiseiwitsch (1971) and McWhirter and
Moiseiwitsch (1972) have employed identities of the virial
theorem type to optimize the trial P, in calculations of
atomic scattering cross sections. Another example would
be the variational calculation of oscillator strengths where
constraints may be imposed so that alternative formula-
tions ["length, " "velocity, " "acceleration"; see, for exam-
ple, Bethe and Salpeter (1957},Sec. 59P] yield the same
result.

5. An example of restrictions on P, : power dissipation

As a concrete example of the possibility of accounting
for a constraint by introducing an appropriate term into
the VP or by choosing the P, to satisfy the constraint (as
discussed formally in Sec. III.C.3), we return to the treat-
ment of power losses given in Sec. I.B.1; our discussion
will be confined to the very simple case, involving only
two currents, worked out explicitly in that section. There,
we took I«and I2, to be arbitrary, and introduced two
Lagrange multipliers, A, &, and A,2„ to account for the con-
straints (1.6) and (1.7}, respectively. Alternatively, we can
choose I« to be arbitrary but choose

I2r ——I —I

Equation (1.6) is then automatically satisfied by the trial
currents as well as the exact I],I2 and we can now write

=Ii,Ri+(I —Ii, ) R2+A2, [Ii,R) —(I Ii—, )R2] .

(3.37a)

Setting 6P„=O leads to A, 2
——0; the choice A, 27 0 then

gives

Pv=I «R ] +(I—I«) R2 ~ (3.37b)

P„of Eq. (3.37b) is a second VP, different from the P,
of Eq. (1.12). It will be useful to rederive the new result
along lines closer to those used in Sec. III.C.3. Thus, hav-
ing decided to choose the trial I«and I2, so that they
satisfy Eq. (1.6), we need not actually eliminate I2, . Intro-
ducing k2, to distinguish it from the k2, that appears in
Eq. (3.37a), we rewrite Eq. (3.37a) as

2 7=I i,R, +I2,R2+A2, (Ii,R i I2,R..)—. (3.37c}

The variation of' this P, is given by

5P, = ( 2I i R i +7 2R i )5I, + ( 2I2R 2
—A ~R q )5I2 .

(3.38a)

Now however, the desired result 6P„=O does not imply
that the individual coefficients of 5I] and 5I2 must van-
ish, since 6I& and 6I2 are not independent. Rather, by
virtue of the relationship I2, ——I —I«, they satisfy
5I2 ———6Ii. The use of this relation in the above expres-
sion for 6P„gives

5P, = [2(IiR i IqR2)+Aq(R, +—R2)]5Ii . (3.38b)

Since I]R]——I2R2, we must have A, 2
——0, and we are led

back from Eq. (3.37c) to Eq. (3.37b). Alternatively, writ-
ing 5I, +5I2 ——0, we can demand that 5P„ in Eq. (3.38a)
be a multiple of 5I&+6I2 ~ Taking the multiple to be
—A, ], we arrive at

2I]R]+A.2R i+A, i
——0,

2I2R2 —A.2R2+A, ]
——0 .

These equations are identical in form to Eqs. (1.8) arid
(1.9); those, however, arose from the requirement that
6P, =O with I«and I2, each arbitrary. Thus we have a
concrete example of the case discussed in Sec. III.C.3; the
explicit satisfaction of a constraint eliminates one term,
with a Lagrange multiplier, from the variational expres-
sion F„but the Lagrange multiplier reappears in the
definition of other Lagrange multipliers in the act of
making F, stationary.

The two forms of the VP for P which we have derived,
in this section and in Sec. I.B.1, are sufficiently different
tha&; one of them leads to a bound for the power dissipa-
tion P, while the other does not. It is instructive to pur-
sue this question a bit further, and we do so in Appendix
8, though it is a digression from the main focus of this

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



744 Gerjuoy, Rau, and Spruch: Variational principles

work. Appendix 8 also discusses the connection between
our VP's for I' and the extremum principle quoted at the
beginning of Sec. I.B.1. To conclude, it may be instruc-
tive to examine a numerical illustration of the alternative
VP's in Eqs. (1.12) and (3.37b}. Consider a network with
8 ]

——3A, R 2 ——50, and I = 8A. The exact solution has
I~ ——5, I& ——3, and P=120 W. Consider the choice i l,.——4,
I2, ——3.5A. This choice does not satisfy the constraint that
the current is conserved, and we have to use Eq. {1.12).
Thereby we get our variational estimate P„=124 W.

l

Note that the fractional error is —,0, whereas the currents
are in error by about —,-. Consider instead the choice
I„=4.5, I2, ——3.5A, which does satisfy current conserva-
tion. We can now use Eq. (3.37b) and get P„=122 W.
This time the fractional error is —„,whereas the error in

the currents is approximately —,.

D. Specifying the phase

As noted earlier, when constructing variational princi-
ples for certain quantum-mechanical quantities (as, for
example, off-diagonal matrix elements P ~ lVQ2), it is to be

expected that some specification of the phase of the wave
function must be imposed; otherwise, various ambiguities
and contradictions can occur. Ways of specifying the
phase will be discussed in the present section. The need
for phase specification stems from the fact that if P(r)
satisfies the Schrodinger equation (1.3a), the normaliza-
tion condition (3.1) and, for example, continuity and dif-
ferentiability, then e' P(r) also satisfies continuity and
differentiability as well as Eqs. (1.3a) and (3.1), where a is

any real constant. (A comparable but much simpler ques-
tion arises in problems studied earlier where tt is real —the
overall sign of P has to be specified. }

This presence of the arbitrary phase factor e' makes
the need for unique phase specification particularly obvi-
ous when a VP for P itself is sought —that is, when the
desired functional F is P. By definition, a variational esti-
mate is in error by terms of second order and not of first
order. Therefore, if a VP for F=P were possible without
having to specify the phase, the corresponding variational
estimate (F)„,„would have to differ from all members of
the set e' P by terms of second order. But for small a the
set e' P differs from P by terms of first order, implying
that a VP for a P with unspecified phase is not possible;
explicitly or implicitly, such a VP somehow must be sin-
gling out a particular phase. Similar remarks pertain to
the off-diagonal matrix element F==/ ~8/2. If we speci-
fy P ~

and Pz only to within phase factors, we can replace

P, by e 'P, and P2 by e 'P2, so that F is changed by the
factor expi(az —a

~ ); it is not then possible to obtain a VP
for F.

There are various ways of specifying the phase of P; the
choice is a matter of convenience, which unfortunately
often reduces to a matter of least inconvenience. When

the wave function P(r) can be supposed purely real [as,
for example, when P(r) represents a spinless single-
particle s state in a purely real spherically symmetric po-
tential V(r)], then the phase is specified by the implicit or
explicit decision that P(r) indeed will be purely real, that
is, by the decision to choose P(r) such that

P(r) —P*(r)=0 . (3.39)

As a matter of fact, the phase was determined by Eq.
(3.39) in the energy eigenvalue problem of Sec. I.B.5, al-

though seemingly the question of phase specification was
wholly ignored in that section. Similarly, the phase was
being determined in other problems examined earlier, as,
for example, in Sec. I.B.4, although of course in classical
nonquantal problems the decision that the eigenfunction
has to be purely real can be based on the physical inter-
pretation of the eigenfunction. We remark that because
e '=1, it usually is quite difficult as well as pointless to
specify the phase of the function more uniquely than to
modulo 2~. But even apart from modulo 2~, the phase of
P is not uniquely specified by Eq. (3.39); if P satisfies Eq.
(3.39), then so does e' P. As is further explained a little
later in this section, this lack of uniqueness in the phase
specified by Eq. {3.39) ordinarily does not cause ambigui-
ties or contradictions in VP s; moreover the ambiguity
factor e'" can be avoided by imposing in addition to Eq.
(3.39) the requirement that P(ro) ~ 0 at some given point
r = ro where P ( ro) &0.

However, even with real potentials and spinless parti-
cles, Eq. {3.39) cannot be postulated for most single-
particle wave functions —for example, for a spinless parti-
cle in a bound l =1 state with a definite magnetic quan-
turn number, + 1 or —1, or for a scattering state corre-
sponding to the plane wave e' . In such circumstances,
Eq. (3.39) is unsatisfactory, but one can require that P(r)
be real at some given point ro. This requirement, howev-
er, fails to fix the phase when P(ro) happens to vanish, so
that some further thought concerning the choice of ro is
necessary.

The above discussion suggests that there may not be
any one criterion that can be useful in fixing the phase for
all cases. Many systems of interest, however, will be in-
variant under time reversal and rotation. Wigner (1932)
showed that this important case permits a powerful single
prescription for fixing the phase. Writing the wave func-
tion as a sum of products of radial functions and standard
angular and spin functions, it is always permissible to
take the radial functions as purely real. This convention,
along with standard phase conventions for the angular
and spin parts, serves to fix the phase of P (see Sec. IV.A
and Gerjuoy, Rau et a/ , 1975, for m. ore details}.

On the other hand, when the system is not invariant
under time reversal and rotation, the simplest and most
useful procedure seems to be to fix the phase of P relative
to some arbitrary known function 7 through a restriction
of the sort that P P' is either purely real or purely ima-
ginary. Such a prescription is illustrated in Sec. IV.A for
a VP for P, along with a similar prescription for off-
diagonal matrix elements P, WP2.
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IV. VARIATIONAL PRINCIPLES FOR WAVE

FUNCTIONS AND MATRIX ELEMENTS
[H (r') E—]A, (r, r')+ 2/(r')L„(r) = —5(r —r'),

(4.3a)

A. Variational principles for wave functions

1. Bound states

When P is a real bound-state wave function defined by
(H E)/ =0 a—nd P P =—1, the construction of P„, the
variational estimate, is straightforward. We write

P„(r)=P, (r)+A„(r, r')
I [H(r') E, ]P,{r')I—

+L„,(r}(P,P, —1) . (4.1)

In the second term on the right, the product involves an

integration over r'. The subscript n on L„, helps to keep
in mind that it arose from the normalization condition,
whereas the subscript a on A„ is to facilitate comparison
with a more general case that will follow. Their struc-
tures, that L„ is a function of one variable, while A, is a
function of two, is obvious on inspection and is evident
from the general considerations of Sec. II.B and Appen-
dix A. To derive the equations satisfied by these func-
tions, as usual we have to set equal to zero the first-order
terms in Eq. (4.1). Most of these terms are proportional
to the real 5$ =P, —P (we assume that P„ like P, is real),
but there also is a term —{A,P)5E. For the terms in 5P,
boundary conditions on A, which will guarantee

In this section, we derive VP's—by our direct
approach —for bound-state and continuum wave func-
tions and matrix elements of arbitrary operators between
such wave functions. Since these derivations are treated
fairly extensively in the literature (Crerjuoy et al. , 1972
and 1973, and Gerjuoy, Rau et al. , 1975},only a sketch of
them will be given here. [Many of these results for ma-
trix elements were derived earlier by other approaches
(Schwartz, 1959a; Delves, 1963a; Dalgarno et al. , 1956).]
In Sec. IV.A, we deal with VP's for wave functions and in

Sec. IV.B with matrix elements, including a discussion of
two alternative VP's. Formal questions concerned with a
proper definition of the functions, particularly for sys-

tems which may not be invariant under time reversal and
rotation, are also considered. Section IV.C sketches the
resolution of a principal difficulty associated with these
VP's, namely, the development of a systematic procedure
for obtaining trial solutions to the Lagrange multipliers
that are involved.

and, as follows on multiplying the above from the left by

P (r'),

L„(r)=—2$(r) .

With Eq. (4.3b) in Eq. (4.3a), we have

(H E)A—,= —Q,

(4.3b)

(4.3c}

$(r)=X~R (r)A~ (r), (4.4a)

suggests that we pick trial functions of similar form, that
ls,

where Q—:1 P, a—nd P =pp is the projection operator
for the function of interest. A, is therefore a Green's
function in the generalized sense (Courant and Hilbert,
1937, pp. 354—358}and is perfectly well-defined by (4.3c),
even though E is an eigenvalue of H, because P Q =0.
However, we still have not taken care of the remaining
term —(A, P)5E in the variation of (4.1). If 5E is of first
order, this term requires that A, / =0, i.e., that the solu-
tion of (4.3c} have no projection on p; this boundary con-
dition on A~ can be satisfied, again because P Q =0. If
5E is of second order —as, for instance, would be the case
if E, were estimated from the variationa1 principle in Sec.
I.B.5—the boundary condition A, P =0 can be dropped
without destroying the VP for P. With these considera-
tions, the VP for P is complete.

When we consider a bound-state P which is no longer
real, 5P and 5$ would have to be considered linearly in-

dependent as discussed in Sec. III.A. A crucial difficu1ty
then would be in the handling of the 5P terms resulting
from Eq. (4.1) during the analysis of first-order terms,
since a relation such as Eq. (4.2} now would no longer be
immediate. However, so 1ong as the system is invariant
under time reversal and rotation, the powerful theorem
due to Wigner (1932) mentioned earlier permits such a re-
lation according to the following scheme. The theorem
states that P(r) can be expanded in a specified orthonor-
mal basis 0 (r} of complex functions containing all the
angular and spin dependence, with expansion coefficients
R (r) which contain the radial coordinates and which can
be chosen to be real. (Here, J and M specify the angular
momentum and n the remaining quantum numbers of the
system. } This particular choice or convention of fixing the
phase of the complex P, which permits one to write

A, I (H E)5$ I
=

I (H E—)A, I 5{{}, — P, (r) =X~R, (r)Q (r}, (4.4b)

are necessary; also, since we are dealing now with real
functions, we have

(4.2)

With these manipulations, we obtain, after writing

5$(r)= I dr'5$(r')5{r —r')

and putting the coefficient of 5$(r') equal to zero,

where the R, are real; it follows immediately that Eq.
(4.2) remains valid, and Eqs. (4.3) again follow.

Proceeding now to the most general situation of a com-
plex P of a system that may not be invariant under time
reversal and/or rotation, it is c1ear at the outset that to
define P properly we must fix its phase in some fashion.
Various alternatives have been discussed in Sec. III.D
and, as stated there, a convenient one is to fix the phase of
P relative to some arbitrary known function —X, say —by
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PtX+X /=0. (4.5)

demanding that P X be either purely real or purely ima-
ginary

To construct P„now requires a more general expression
than Eq. (4.1), one which incorporates all the defining
equations. We write

p„(r)=p, (r)+ A„(r, r') I [H (r') —E, ]p, (r') ] + [ [H (r') —E, )p, (r')
I Ab, (r, r')+L„,(r)(p, p, —I)+L,(r)((( ~X+X p, ) .

(4.6)

The subscript p on Lz, helps us to keep in mind that it
arose from the phase condition. The term in A&, is now
necessary, because P and P and, likewise, 5P and 5P, are
completely independent and totally decoupled [no relation
such as Eq. (4.2) now obtains] so that the Schrodinger
equations for both P and P have to be incorporated as
constraints. So long as Eq. (4.2) was valid, inclusion of
this term was unnecessary, as can be easily verified, be-
cause it would have led to (H E)Ab ——0,—making this
term in Eq. (4.6) explicitly of second order and therefore
unnecessary in a variational expression.

Examination of first-order terms in 5$ and 5P" arising
from the variation of Eq. (4.6) leads to the defining equa-
tions for the Lagrange multipliers [boundary ccnditions
involving the projections of these I agrange multipliers on

P can be avoided by estimating ', variatiuna11y, as dis-
cussed above in connection with the VP (4.1)]. We omit
the details and record the final result:

Ab(r, r')=—, p(r)Lb(r ) A—=Ai+A 2

(H E)P—=0,
P ( r)-exp(ik r) +f(8 ) exp(ikr) /r,

(4.8a)

(4.8b)

where f(8) is the scattering amplitude, the VP takes the
form

P, =P„+A, [(H E)P, ]—, (4.9)

(4.10)

where the asymptotic form of P, is given by Eq. (4.8b)
with f(0) replaced by f, (8). The analysis of 5P terms in
Eq. (4.9) again involves a switching over of the (H E)—
operator onto A. The surf'ace terms that are now generat-
ed no longer vanish almost automatically, as they do in
the bound-state case; for the surface terms to vanish, A*
must be purely outgoing [5P is purely outgoing, so that
if A ~ is also, the surface term involving
(5P gradA* —A*grad5$) will vanish]. Thus A is defined
by

L~= —,P/(P X),
where

(4.7a) with A ~(r, r') outgoing.
more complete discussion of VP's for scat tering

problems is contained in Sec. V.

(H E)Lb ——P —[X/(P—X)],
(H —E)A. , = —1+yP'= —g, —

(H —E)A, g
———, PQ + —,XP /—(/~X) .

(4.7b)

(4.7c)

(4.7d)

2. Continuum states

While there are technical differences, 1argely associated
with boundary conditions, between the development of
VP's in continuum and bound-state problems, there are no
differences in principle; and, at least in retrospect, it is as-
tonishing that it took such a long time to develop VP's
for continuum problems once they were known for
bound-state problems. Indeed, continuum problems can
even be simpler, as we shall see, because there is usually
no complication of an ambiguous phase (the asymptotic
behavior which is specified serving to fix the phase), and
because there is no normalization condition. For these
reasons, P never enters into the equations serving to de-
fine p, and therefore no term in Ab as in the previous
paragraph is necessary. VP's for continuum P can be de-
rived both in a partial wave decomposition and for the
full P(r); for simplicity, we restrict ourselves to potential
scattering. We briefly record here the latter VP. For P
defined by

B. Variational principles for matrix elements

+[(H —E, )P, ] L, + A. , (P, P, —1) . (4.»)
In Eq. (4.11), we have recognized that P "8'P will be a real

quantity, and therefore the left-occurring and rigI;t-

Once a variationally accurate P„has been derived by
the methods of Sec. IV.A, it is, of course, obvious that
any matrix element evaluated with it, such as P„WP„, will
automatically be a variational estimate of the exact

WP. However, an alternative path that we could follow
would be to build directly by our general procedure a Vp
for the desired matrix element without first getting a vari-
ationally good P„; often the direct approach will be
simpler, since obtaining a P, can be tedious.

The VP derived by the direct approach coincides with
the results of Schwartz (1959a, 1959b), Delves (1963a),
and Dalgarno et al. (1956). That the two approaches can
only lead to expressions which can at most differ in
second order is again c1ear from the start, and an actua1
demonstration of this is given in Gerjuoy, Rau et al.
(1975). We give below a direct construction of a VP for
P

~ W'P, with 8' a Hermitian operator and P a bound-state
wave function. We write
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occurring Lagrange multipliers in the second and third
terms were taken to be merely adjoints of one another;
correspondingly, we assume A, , is real (as well as the exact
A, ). We also expect P to be real, but have not used this
fact. We have also anticipated that even for a general P
the specification of the phase should be irrelevant in deal-
ing with a diagonal matrix element, and we have therefore
not incorporated the phase specification as a constraint.
It would be easy to verify that inclusion of such a term
would be redundant, since the term would be explicitly of
second order.

Examining 5$ and 5$ terms in Eq. (4.11), we find that
each gives

(H E)L =——8$ —AQ . (4.12)

Premultiplication by P gives A, = —P WP. L is arbitrary
to within a multiple of P; L is made unique by arbitrarily
assigning a value to P L. The VP is now complete. VP's
for off-diagonal matrix elements P, WP2 can be derived in
exactly the same manner. The complication is merely one
of bookkeeping, with several Lagrange multipliers associ-
ated with the Schrodinger equations for P &, P &, P2, and

P2, the two normalization conditions and the two condi-
tions specifying the phases of P ~

and P2. Such a VP
(though with a slightly different choice for specifying the
phase) is given in Gerjuoy et al. (1972). Similarly, VP's
for matrix elements involving one or more continuum
wave functions can be constructed. The analysis of the
surface terms will set ingoing or outgoing boundary con-
ditions on the L's involved. We do not record here expli-
citly any of these VP's. Sections V and VI treat in detail
VP's in scattering theory where the functions involved are
continuum wave functions and the operator 8 coincides
with the Harniltonian.

C. Procedure for choosing trial Lagrange multipliers

The entire emphasis of the present paper lies in the for-
mal construction of VP's, with questions of utility for the
most part studiously avoided. However, as noted in the
Introduction, some progress of considerable potential
value has recently been made with regard to rnechanisrns
for choosing the various L, 's and A, 's that must be ob-
tained if the VP's are to be given meaning, and we would
like at least to touch upon this development.

The most important question for the considerations of
this section is the practical one of using the result, which
reduces to the question of choosing trial approximations
to the L's and A' s, since the equations obeyed by them,
such as Eqs. (4.3a), (4.7), and (4.12), are complicated and
do not admit simple solutions in closed form. This ques-
tion of obtaining trial Lagrange multipliers is central to
this entire review paper since, otherwise, the results are of
no practical significance. We have seen in Sec. I and it
will turn out again in Secs. V and VI and in many exam-
ples of nonlinear equations [see, for example, Rau (1976)]
that the equations for L quite often admit immediate
solutions, sometimes in terms of the exact P, so that the

choice for L, is quite clear. However, this is not the case
for the problems considered in this section and, in fact, in
our entire experience the problem of getting trial
Lagrange multipliers seems to be most involved in the
case of VP's for wave functions and matrix elements. A
procedure for resolving this problem has recently been
developed (Gerjuoy et al. , 1974; Gerjuoy, Rosenberg, and
Spruch, 1975); we sketch below a summary of these re-
sults.

Equations (4.3c), (4.7), and (4.12) for the exact L's and
A' s, or more generally the W 's, have the structure

(H E)~—=q (P ), P q (P ) =0, (4.13a)

where q(P ) is a formally known functional; for example,
in the case of VP's for diagonal matrix elements,

~(e}= ~~+(~'~~)~ (4.13b)

The exact W 's are therefore obtained through the inver-
sion of the operator (H E). Si—nce P is the homogeneous
solution of this operator, the solution of the inhomogene-
ous equation (4.13a) for M involves an arbitrary additive
amount proportional to P. To make W unique we can
therefore supplement Eq. (4.13a) by a condition such as

/=0, (4.14)

thereby explicitly removing from W any amount propor-
tional to P. There is thus no ambiguity or singularity dif-
ficulty in inverting (H E). The —problem arises, howev-
er, because neither the exact P nor E is known, nor do we
know the exact W whose approximation we seek for use
in the VP (4.11). What we need is a trial W, and the
question is how to obtain it. The naive assumption that
W, can be obtained by replacing P, E, and W in Eqs.
(4.13a} and (4.13b) by the trial quantities proves to be in-
correct and leads to a loss of the VP. Thus, for example,
in (4.11) the boundary conditions on L (and on P) imply
that the second and the third terms on the right can
be rewritten as I and I, respectively, whereI—:p, [(H E, )L, ]. With the—replacements just indicat-
ed, we have (H E, }L,=q(P, )—, so that I =/, q(g, )=0,
according to the second of (4.13a), with P, replacing P.
As a result, for P, normalized, our VP (4.11) would col-
lapse to the ridiculous result (P WP)„=P, WP, ! The loss
of the VP was recognized, though not investigated further
along the lines of present interest, by Krieger and Sahni
(1972}. The source of the difficulty is that the equation so
obtained from Eqs. (4.13) with the replacement of exact
quantities by trial leads to a unique solution for W„since
there is, in general, no homogeneous solution of (H E,);-
in particular, (H E, )P,&0. Dema—nding an analog of
Eq. (4.14), namely, that W, be orthogonal to P„ is of no
help and W, develops a near-singularity as a consequence
of inverting (H E, ). The problem—is serious and, in
fact, gets worse as P, is improved, since the near-
singularity involves (E E, ) '. This bein—g an inverse
second-order quantity, basic statements, such as the
demand that W —W, be in some sense of first order of
smallness become meaningless, and, in consequence, the
VP is lost.
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The above discussion suggests the direction in which
one might seek the resolution of the difficulty. In modi-
fying Eqs. (4.13) by replacing P, E, and W by the corre-
sponding trial quantities, we must also modify the Hamil-
tonian such that Pt is a homogeneous solution of the
operator to be inverted. In that case, near-singularities in

Wt can be eliminated by enforcing the requirement

(4.15)

The procedure followed in the earlier literature (Dalgarno
and Stewart, 1960; Dalgarno et al. , 1956; Krieger and
Sahni, 1972) for modifying H is the very limited one of
choosing Pt simple enough that one can find an H, which
obeys Htgt=Etgt. This usually entails an uncorrelated
Hartree-type product wave function for a many-electron
atom, in which case H, is a sum of independent hydro-
genic Hamiltonians for each electron. This stringent limi-
tation to extremely simple Pt restricts the usefulness of
the VP and perhaps explains why VP's for matrix ele-
ments have not been used regularly. An alternative ap-
proach (Schwartz, 1959b) does allow a relatively unre-
stricted P„but the number of situations to which it can
be applied is very limited. What is really needed to make
the procedure competitive with, or superior to, other
machine calculations in modern atomic physics is a pro-
cedure that can work with more sophisticated Pt. Cxiven

any arbitrary Pt which may have arisen from some self-
consistent Rayleigh-Ritz calculation, the question is how
the Hamiltonian H is to be modified; needless to say, it
will no longer be possible to find an H, of which Pt is an
eigenfunction by any straightforward procedure of inspec-
tion. The above question of obtaining a trial modified-
Hamiltonian H ~ t for use in a sequence of trial equa-
tions

as desired. At the same time, no singularity
differences arise in handling Eqs. (4.16), and we conse-
quently have a procedure for obtaining Wt starting from
any arbitrary given Pt. In fact, the above prescription has
further merit, because it turns out that, for sufficiently
accurate pt [see Gerjuoy et al. (1974) for details], H",'d,
has its lowest eigenvalue above Et. Thus, returning now
to the VP (4.11), the functional

M(itt)=Ltt(H .d, t Et)—Ltt Ltt—q(et) q(—et)Ltt(I)

(4.18)

will be a minimum at L« ——L, A very practical pro-
cedure is then available for obtaining a good L, without
inverting any operators, because a form of L«with open
variational parameters can be inserted into Eq. (4.18) and
the functional minimized with respect to these parame-
ters, thereby yielding the best possible trial I.agrange mul-
tiplier of that form to go with the given Pt into the varia-
tional expression [similar remarks pertain to the A, ap-
pearing in the VP (4.6)]. Such a subsidiary extremum
principle for obtaining the trial Lag range multiplier
makes the results of Secs. IV.A and IV.B of practical sig-
nificance. One must of course evaluate matrix elements
of H to obtain M(1.«) as defined by Eq (4.1.8), but it is
important to note that because of the presence of the pro-
jection operator P, in Eq. (4.17) one need not evaluate the
very much more difficult matrix elements of H, even
though H~,'d, t contains H twice. Preliminary applica-
tions have been made by Shakeshaft et al. (1976) to diag-
onal matrix elements (the diamagnetic susceptibility and
form factor of helium) and by Wadehra et al. (1978) to an
off-diagonal matrix element, an electric dipole transition
matrix element in helium.

(H Od, t Et)~t =ql(—4't) V. THE KOHN VARIATIONAL PRINCIPLE

(4.16b)

now has been answered and various choices for H ~ t

given; typically, although not necessarily, the most useful
choice for qt(Pt) will be q(Pt). One suitable choice for
H ~t in (4.16a) is

(&) H~tH

(4.17)

Earlier, this operator had been considered in a somewhat
different but not unrelated context (see Monaghan and
Rosenberg, 1972) and had been shown to have a number
of very interesting properties. Thus note that
/tH"~t=0. Note also that H"~t~H EP as Pt~P. —
Projecting Eq. (4.16a) onto pt and using (4.16b), we see
that (4.16) also is consistent with the requirement of Eq.
(4.15) that Wt be orthogonal to Pt. Because Pt Wt =0,
the quantity (H"~ t E, )Wt in (4.16a) appr—oaches
(H E, )Wt as Pt ~P. Therefo—re, since the equations
and boundary conditions that define Wt approach those
that define W as t)tt~P, it follows that Wt~W as

In this section we will derive or sketch the derivation of
the well-known Kohn VP (Kohn, 1948) in various of its
forms by our routine procedure. The Kohn principle,
along with variants thereon (see Sec. V.A) has been very
widely used to estimate various sorts of quantum-
mechanical scattering parameters, as, for example, phase
shifts, elastic and inelastic scattering amplitudes, elements
of the reaction operator, etc. Initially (Secs. V.A and V.B)
we confine our attention to the simplest type of
quantum-mechanical collision, namely, the potential
scattering of spinless particles. More complicated col-
lisions are considered in Sec. V.C; various generalizations

5The essential point is that if AX=f, where A is Hermitian
and positive definite and f is known, then if we introduce

J(X, ) =J(X+5X ) = X,f ftXt +X,AX t, — —

we see that J(X)= ftX. However, we also see—that J(Xt)
ftX+5XtAoX, which is ) f—X=J(X). —

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



Gerjuoy, Rau, and Spruch: Variational principles

of the Kohn principle are examined in Sec. V.D. Because
of the close formal analogy between quantum-mechanical
potential scattering and the scattering of classical acoustic
or electromagnetic waves propagating in inhomogeneous
media [see, for instance, Kalikstein and Spruch (1964) for
casting Maxwell s equations in Schrodinger form], many
of the results in Secs. V.A and V.B can be adapted essen-
tially without change to the estimation of acoustic or elec™
tromagnetic scattering parameters (see also Kalikstein,
1981). The VP derived in Sec. V.E is of interest in reactor
physics (Stacey, 1972).

1 1

P&(r) -sin(kr —
2 lm )+tangi cos(kr —

2 lm )

1

=secgI sin(kr ——,lm. +gI ) =Pi (r), (5.1c)

where gI is the Ith phase shift.
The quantity Pl(r) is real, so that an obvious starting

point for a variational estimate of tangI is

A unique solution to Eq. (5.la) is specified by the require-
ments that (i) Pl(r) be everywhere continuous and con-
tinuously differentiable; (ii) PI(r) be regular (-r +') at
the origin; and (iii) PI(r) have the asymptotic form as
r —oo

A. Phase shifts in potential scattering F„=(tangl ~var

tanglt +Lit[(H! E)4'It ] (5.2)
1. Tangent of the phase shift

(Hi E)gi(r)—=0, (5.1a)

where E =iri k /(2m) is real, where p&(r) is the lth partial
wave (multiplied by r), where the volume element is dr so
that a tb represents J a"(r)b (r)dr, and where

H, (r)=
2m

d l(l +1)V(
d7' 7"

In the scattering of spinless particles by a well-behaved
spherically symmetric short-range real potential V(r), the
solutions Pi associated with the lth partial wave obey

where the real trial solution Pl, (r) is continuous and con-
tinuously differentiable, is regular at the origin, and has
the asymptotic form (5.1c), but with gI, in place of gI.
We need not here distinguish between left-occurring and
right-occurring adjoint functions. Of course, the last
term in Eq. (5.2) is a single integral over r, from 0 to oo.
No trial E, is required in Eq. (5.2), since we are dealing
with a continuum solution, for which the energy E can be
regarded as an assigned parameter. The important and
nontrivial complications involved in assigning E when the
colliding systems are composite, arising from uncertain-
ties concerning bound-state eigenfunctions and eigenener-
gies, are examined in Sec. V.C.

Varying Eq. (5.2) gives

5F„=5(tangI )+LI [(Hi E)5/i] =0—. (5.3)

—= Ti+ V(r) . (5 lb) When we integrate by parts, Eq. (5.3) yields

5(tangi)+[(Hi E)LI] 5/1 —— LI(r) 5/I(r) — Ll(r) 5%i(r)
d d

2m d7 dr 0

=0. (5.4)

To ensure that Eq. (5.4) holds for essentially arbitrary
5/I(r), we must require

f2 d
5(tangl ) — Bi Pi(r) 5/i(r)

2m dr

(Hi E)Li(r) =0 . — (5.5a)

In addition, the end-point contribution to Eq. (5.4) [the
bracketed terms on the left-hand side of Eq. (5.4)] must
vanish at r =0, because there are no other r =-0 contribu-
tions to Eq. (5.4). Thus, since Pi, (r) has been so chosen
that PI, (0)=0 and therefore 5$&(0)=0, we infer

Li(0) =0 . (5.5b)

Equations (5.5) imply that LI is a multiple of Pi, that is,

LI (r) =Big( (r), (5.5c)

where the factor 8~ may depend on g~ but is independent
of r. To satisfy Eq. (5.4), we therefore also must require
that.

—tiki(r) Pi(r)
d
dr

Since, for r —ao, we have from Eq. (5.1c),

5/i(r) -5(tang() cos(kr —, ln. ), —

we deduce that (kiri /2m)Bi = —1; we therefore have

Li(r) = —(2m/A k)Pi(r) .

Equation (5.6a) suggests the choice

Li, (r) = —(2m /&'k)pig(r) .

The use of Eq. (5.6b) in Eq. (5.2) yields

(tang()„„=tang(, —(2m lfi k)P(, [(Hi —E)P ],i

=0.

(5.6a)

(5.6b)

(5.7)

Rev. IVlod. Phys. , Vol. 55, No. 3, July 1983



750 Gerjuoy, Rau, and Spruch: Variational principles

the Kohn VP.
Note that we could have made the choice

L«(r) = —(2m /A' k)P(„(r),

rather than Eq. (5.6b), with P~«an approximation to Pi
different from P«. Equation (5.7) would then contain two
trial functions. A possible advantage might accrue by
choosing P« to be rather simpler in form than P«„with
the evaluation of (Hi E)P«—thereby being simplified for
a calculation involving a given total effort. The possibili-
ty of using two trial functions has been noted by many
others and arises in many contexts, including, for exam-
ple, the Rayleigh-Ritz principle. (The variational bound
property would, however, be lost for the Rayleigh-Ritz
case. )

In the foregoing derivation of Eq. (5.7), the dependence
of tani)i on PI(r) was implicit, in terms of the asymptotic
form of Pi as r —co. However, it is also known and is
simple to prove [see, for instance, Schiff (1968), Sec. 37]
that

combination of r and a constant, the above definition of
Po(r) simply serves to fix the normalization of our zero-
energy solution. In terms of $0(r), Eq. (5.7) reduces to

(3 )„„=A,+(2 m/vari)QO, H0$0, . (5.8d)

2. The phase shift itself

Had we desired a variational estimate of g~ rather than
of tani)i, we could have started from

F.= & i)i &-.=n«+LI~ [(% E)4«—] (5.9)

instead of Eq. (5.2). In Eq. (5.9), il« is, as in the first
derivation of the Kohn principle, defined by the asymp-
totic form of P«, and the caret is used to distinguish the
present adjoint function L« from the adjoint function L«
in Eq. (5.2). Proceeding as before, we find that

L&(r) =LE(r)/sec gI

tani)i ———(2m/fi )[rjI(kr) V(r)] Pi(r), (5.8a)
= —(2m/A' k sec ili)PI(r) .

We thereby find

tango ——kA, k-O, (5.8b)

where the scattering length A determines the cross section
at zero incident energy. We then can introduce a new
wave function Po, defined by

o(r)
Po(r) = lim

k o k

where, by Eq. (5.1c)

Po(r)-r —A (5.8c)

as k~O at fixed large r. Since any solution of the zero-
energy Schrodinger equation is asymptotically a linear

which explicitly expresses tani)i as a function of or,
more precisely, an integral over Pi(r). This expression
can serve as an alternative starting point for the deriva-
tion of a VP for tani)1. The derivation is straightforward
and again leads to Eq. (5.7).

If the interaction contains a Coulomb potential in addi-
tion to the short-range V(r), we need merely replace Eq.
(5.1c) by an expression containing the asymptotic forms
of appropriately normalized regular and irregular
Coulomb functions. With gI now representing the phase
shift relative to the Coulomb phase, the derivation of the
Kohn principle proceeds along almost identical lines.

Returning, for simplicity only, to non-Coulombic po-
tentials, a particular case of considerable interest is that
for which E =0. (We are then at the bottom of the con-
tinuous spectrum, so that, not surprisingly, one can rather
easily obtain a variational bound rather than simply a VP.
We will not consider the variational bound here but will
comment briefiy on it later. ) From the Wigner theorem
(Wigner, 1948) for short-range potentials, we know that
gI behaves, modulo m, as k +' as k-0. Restricting our-
selves, again for simplicity only, to the l =0 case, we can
therefore write

~ 9I ~var 9«(2m /~ k sec 'g«)4'lt[(Hl )4'«1 .

(5.10)

Equation (5.10) is a perfectly satisfactory VP for ili', to
make direct contact with the form derived by Hulthen
(1944, 1948), we need merely absorb the sec i1« factor by
introducing

P&(r) =P, (r)/seci1&,

P«(r) =P«(r)/seep«,
~ 1

where PI(r)-sin(kr —, lm. +gI) and—P«(r)has a similar
asymptotic form.

(5.11)

3. Other Kohn-type variational principles for phase shifts

In deriving the VP's for tangI and gI, we fixed the nor-
malization of the exact wave function by the boundary
condition at infinity. Thus we presumed Pi of Eq. (5.11)
to be a sine function of unit amplitude at infinity, whereas
for $1 we presumed the coefficient of the sine term in its
asymptotic form (5.1c) in effect to be secili. Correspond-
ingly, we have employed trial wave functions having the
same normalizations. However, the requirements on the
amplitude at infinity of P&(r) and P&(r) are specifications
of limited quantitative type, of the sort discussed in Sec.
III.C. It follows that these boundary conditions at infini-
ty, on Pi(r) and Pi(r), can be regarded as constraints, in
which event they can be included, along with appropriate
Lagrange multipliers, in the starting expressions for
(tani)i )„,„and (i)i )„,„, respectively. Were we to do this,
we would find the same VP's as before even though trial
functions not normalized precisely as in Eq. (5.1c) have
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been used. The reason is that tang& can be defined in-
dependently of the normalization of $1, so that the
Lagrange multiplier associated with the normalization
constraint vanishes, just as W associated with the (ir-
relevant) phase constraint would vanish in a VP for
p w.

If the normalization condition at infinity is incorporat-
ed into P«, there is no reason whatever for the integral in
the VP (5.7) to vanish. If, on the other hand, the normali-
zation is regarded as an arbitrary parameter, that is, if P«
contains an arbitrary multiplicative constant C, then mak-
ing Eq. (5.7) stationary with respect to variations of C re-
quires the integral to vanish. This result is the basis for a
method of employing Eq. (5.7) originally proposed by
Hulthen (1948), namely, that the adjustable parameters
(including tang«) in P«be so chosen that the integral is
zero, in which event tangI„SO chosen, represents a varia-
tional estimate of tangI.

Moiseiwitsch (1951) extended Hulthen's method to in-
elastic amplitudes, still for problems wherein the wave
function is expanded in partial waves. The extension is
not trivial, however, because for such inelastic problems
permitting the normalization of P~ to vary introduces
correction terms which do not appear in potential scatter-
ing, so that merely setting the integral corresponding to
that in Eq. (5.7) equal to zero need not yield a stationary
estimate of the desired inelastic amplitude. Returning to
elastic amplitudes, the relation between the estimates uf
tangI obtained via the Hulthen and Kohn methods—
estimates in which the variational parameters are chosen
slightly differently, but estimates which differ at most by
second order, of course —and some of the difficulties in
using these methods, both in composite collisions and in
potential scattering, have been discussed by Demkov
(1963), Harris and Michels (1971), Nesbet (1969), and
Bardsley et al. (1972). This subject has been extensivdy
reviewed in Callaway (1978) and Nesbet (1980).

As a rnatter of fact, the literature contains a variety of
VP's for rII, tangI, and other functions F(g~), where by
Kohn-type we mean that the VP contains P« in the
characteristic combination P~, (H E)P«. We ha—ve found
the alternative VP's we have examined to be derivable
from our routine procedure, and we see no reason to
doubt that any such VP is so derivable. Huang (1949a,
1949b, 1949c), Kato (1950, 1951), Feshbach and Rubinow
(1952), and Rubinow (1954, 1955) are among the authors
who have examined Kohn-type VP's not discussed in this
section. Tamm (1948, 1949) derived a VP formalism very
similar to that of Hulthen. Kohn (1951) reformulated his
VP for tang~ in momentum space. The authors listed in
the preceding paragraphs also have examined some of the
Kohn-type alternatives mentioned in this paragraph, espe-
cially the procedure advocated by Rubinow (1955); other
relevant numerical results are quoted in Makinson and
Turner (1953), Turner and Makinson (1953), Shimamura
(1971a, 1971b) and Nesbet and Oberoi (1972). Bibliogra-
phies to the Kohn-type VP literature appear in Demkov
(1963), Moiseiwitsch (1966), Callaway (1978), and Nesbet
(1980).

B. Transition amplitudes in potential scattering

1. Derivation without explicit formula for the amplitude

We continue to consider only the potential scattering of
spinless particles. The wave function P; satisfying the
Schrodinger equation (1.3a) when a plane wave of
momentum Ak; is incident on the scattering center can be
written in the form

P;(r) =e ' +y;(r), (5.12)

where the scattered part g; is outgoing as r approaches in-
finity parallel to any final momentum A'kf, that is,

X;(r)-A (n;~nf )e' "/r, (5.13)

as r- oo parallel to kf. In (5.13), the quantities n; and nf
are unit vectors, with k; =kn; and kf ——knf. The ampli-
tude for scattering from the incident direction n; to the fi-
nal direction nf, namely, A (n; —

+nf ), often is reexpressed
in the literature as

A(n;~nf)= —(2m/4m. A' )Tf;, (5.14)

where Tf; is the transition amplitude, or matrix element
of the transition operator T between the final and initial
plane wave states. When V(r) is spherically symmetric,
stationary estimates of A (n;~nf) can, of course, be ob-
tained by expanding in partial waves and employing the
VP derived in Sec. VA. Suppose, however, that
V(r)&V(r), or that V(r) = V(r), but that we are interest-
ed in estimating A (n;~nf ) variationally without expand-
ing in partial waves. Our starting point, analogous to Eq.
(5.2), is then

F„—:(A(n;~nf))„„
=A, (n; ~nf ) +L, [(H —E)Q«],

where

(5.15)

P«(r) =e ' +X;,(r),
X«(r)-A, (n;~nf )e' '/r,

(5.16a)

(5.16b)

5A(n;~nf)+L [(H —E)&P;]=0 . (5.17a)

for r-ao parallel to nf. We have not included in Eq.
(5.15) a term involving [(H F)P;, ] . The r—eason for this
omission is that we are trying to estimate a quantity
A (n; —nf ) depending only on P;, and not at all on P;, as
Eqs. (5.12) and (5.13) show. (The situation is thereby dif-
ferent from that encountered in Secs. III and IV. There
we had bound states, and one of the defining equations,
the normalization condition, specifically involved P . )
The correctness of this assertion will be explicitly demon-
strated by our ability to derive a VP starting from Eq.
(5.15); the reader can easily verify that the addition of a
term involving [(H F)P;, ] complicat—es the derivation
somewhat but leads to precisely the same VP we give
below.

Varying Eq. (5.15), we have
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Analysis of this equation is somewhat tedious, involving
the transfer of (H E—) to act on the left. We rewrite Eq.
(5.17a) as

0=5A(n;~nf)+[(H —E)L] 6$;

f [L*V6$;—(VL)*5$;].nr dA, (5.17b)
2m

where dQ is the differential solid angle, n is the unit vec-
tor along r, and the surface integral is at infinity.

We therefore demand that (H E)L—=0, or, if we like,

(H E)L~—=O . (5.18a)

e Jkr

Qp' p
rdQ.

We therefore require that at infinite r

ikr
(A' /2m)r L~

Br r
QL )fc e ikr

Br r
=5(n —nf) .

(5.18b)

At infinite r, the function I. —which is a solution of Eq.
(5.18a)—must be a linear combination of outgoing spheri-
cal waves (proportional to e' "/r) and incoming spherical
waves (proportional to e '""/r) Howev. er, the outgoing
part obviously makes no contribution to the left-hand side
of Eq. (5.18b). From the Dirac identity (Dirac, 1958,
p. 191) asserting

Inserting 6P; =5A (n;~n)e' "/r into (5.17b), we then re-
quire

r

fi ikr
5A(n; —+nf) = f 5A(n;~n) L*

2ppl Bp p'

scattered part) as our incident wave, but incident along
the direction —nf rather than n;.

In view of Eqs. (5.20), the obvious choice of trial L, in
Eq. (5.15) is

L,(r):L, (r—;nf)= —(m/2~6 )P" f,(r), (5.2 la)

where P f,(r) is a trial estimate of the exact P f(r), and
has the form

ft(r) =e +X f, (r) (5.21b)

with g fg ( r ) everywhere outgoing at infinity. Note that
the "scattered parts" X' f and X* f„of P* f and P* f„
respectively, are everywhere incoming at infinity; that is,
L (r) is proportional to a "time-reversed" scattering solu-
tion P*f(r)=Pf' '(r) of the Schrodinger equation, time
reversed because it can be interpreted as composed of a
purely incoming spherical wave part g*,f which reforms
as a plane-wave exp(iknf r) going out to infinity along
the direction nf. Using Eqs. (5.21) in Eq. (5.15) yields
precisely the Kohn VP for the scattering amplitude
A (n;~nf ).

We add that time-reversal invariance requires that the
asymptotic forms of the exact P;(r) and P f(r) be con-
sistent with

A(n;~nf)=A ( —nf —+ —n;) .

If the asymptotic forms of the trial functions P;,(r) and
f~(r) are similarly chosen, i.e., if

A, (n;~nf ) =A, ( —nf ~—n;),
then it can be proved that the variational estimates of
A(n; —~nf) and A( —nf~ —n;), computed from their
corresponding Kohn VP's, will be identical.

—lknf I ikr
r e

(y —iknf rikr —e ——4m.5 (nf —n),
I" Bp'

2. Derivation using explicit formula for the amplitude

= —(m/2m. R )[e I +X(r)], (5.19b)

where X(r) is everywhere outgoing at infinity. But we
also known that L*(r) is a solution of the Schrodinger
equation (5.18a), whose solutions are uniquely specified by
their plane-wave parts. Thus we have, recalling Eq.
(S.12),

L~(r) = —(I /2m. fi )P f(r), (5.20a)

(5.19a)

as r- ao along a, we therefore conclude that the incoming
spherical part of I.* at infinity coincides with the incom-
ing spherical part of ( —m/2~% )exp( iknf 1). —

In other words, at infinity we have

L*(r)—=L*(r;nf )

The above demonstration that the Kohn VP for
A (n;~nf ) (or, equivalently, for Tf; ) really is stationary
differs from the usual demonstration in the literature in
that our approach is based on our general prescription for
the construction of VP's and deduces the result straight-
forwardly. In particular, we deduce the information that
the adjoint function I,* is proportional to the time-
reversed scattering solution defined by Eqs. (5.20). Our
approach suggests that it is not likely to be possible to
find a simple nontrivial alternative to Eq. (5.15) with L,
given by Eq. (5.21a).

This last remark is illustrated by the following com-
ment on an alternative derivation of the Kohn VP for Tf;,
still in the context of potential scattering. It is well
known that Tf; can be expressed as

Tf; ff VQ;, —— (5.22a)

where the free plane wave ff is given by

f(r)=[Pf' '(r)]*=e ' f +X f(r) (5.20b) (5.22b)

represents a scattering solution of the same type (outgoing Equation (S.22a) is an analog of Eq. (5.8a). Starting from
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Eq. (5.22a) as our defining equation for Tf;, we are led
relentlessly by the systematic approach to the VP given by
Eqs. (5.15) and (5.21).

3. Remarks concerning Kohn-type variational principles

We remark that the adjoint functions we have intro-
duced in the VP of Sec. V.A related to partial wave analy-
ses, and in the Kohn VP for Tf; just discussed, always
turned out to be closely related to a scattering solution of
the Schrodinger equation. As a result, the final VP is
quadratic or bilinear in the (unknown) scattering solu-
tions. This point sometimes obscures the linearity of the
starting point of the Kohn VP. This linearity makes the
derivation of the Kohn VP much simpler in a formal
sense than would otherwise have been the case. This
point has not always been appreciated in the literature.

The reason the adjoint functions in VP's for scattering
parameters turn out to be intimately related to continuum
solutions of the Schrodinger equation under consideration
must be associated with the fact that the Hamiltonian H
is the only consequential operator involved in scattering
problems. As noted in Sec. IV.B, adjoint functions would
be more complicated, depending also on 8' if we were to
seek VP's for continuum matrix elements of some arbi-
trary operator 8'. The situation is analogous to that
which obtains for bound-state matrix elements. There,
the adjoint function is proportional to the bound-state
wave function when considering a VP for the energy of
the bound state, the matrix element of H, but not for a
VP for any other matrix element.

We also note that in our derivations of the Kohn VP's
we could have taken advantage of the known time-
reversed properties of these quantities to express
A (n; ~nf ) in terms of the asymptotic behavior of

'*(r)—=P f given by Eq. (5.20b). The starting expres-
sions would then have involved (H E)P f, rathe—r than
(H —E)P;„and the associated I. would have turned out to
be proportional to P; rather than to P f. The final VP
would have been identical to that derived above.

Further, we observe that the result in Eq. (5.7) can be
regarded as a VP for an element of the reaction operator,
namely tanqI, after decomposition into partial waves. We
could also derive a Kohn VP for the matrix elements of
the entire reaction operator, before decomposition into
partial waves, just as we were able to derive a Kohn VP
for matrix elements Tf; of the transition operator. The
reader is reminded that the reaction operator matrix ele-
ments are the quantities characteristically involved in
standing-wave descriptions of scattering processes, just as
the transition operator matrix elements characteristically
are involved in descriptions invoking incident waves plus
outgoing scattered waves. In the case of potential scatter-
ing, the diagonal elements of the reaction operator in a
partial wave representation are tanqI, ' the corresponding
diagonal elements of the transition operator are
exp( ig~ )sing I.

We would now like to comment on a practical problem

associated with the use of the Kohn VP for an incident
kinetic energy greater than zero, namely, the inversion of
the singular operator H —E. More precisely, having
chosen a trial function containing N linear variational
parameters c„, we choose c„so as to make ( tang ), sta-
tionary. This requires the inversion of H —E in an %-
by-X space. Since E is in the continuous spectrum of H,
one or more of the eigenvalues of H in the %-by-X space
might be very close to E. For X small this wiH not nor-
mally pose a problem, but as we increase X in an attempt
to increase the accuracy of the calculation, an eigenvalue
may well be very close to E, and the estimate of (tang ),
can be far off. The usual procedure under these cir-
cumstances, indicated by numerical instability of the re-
sults, is then to consider (cotg )„for one will not have
numerical problems for this case too. More generally,
Kato (1950), as a purely formal device, introduced an ar-
bitrary parameter 0 in the asymptotic form of the wave
function. Thus, for I=O potential scattering, Kato wrote
in place of Eq. (5.1c)

$0(r)-sin(kr +8)+tan(g —8)cos(kr +8)
=sin(kr +g )/cos(g —8) .

One thereby generates a VP for tan(g —8), which encom-
passes the results for ( tang ), and ( cotg )„ for the choice
of 8=0 and vr/2, respectively, but allows a continuous
choice of 8. The first use of the freedom thereby allowed
to avoid a spurious infinity seems to have been made by
Kleinman et al. (1965). A more recent work on this is
Takatsuka and Fueno (1979). Brownstein and McKinley
(1968) studied the nature of the singularities which arise
on the inversion of H —E in the X-by-N space, and a
more thorough analysis was given by Nesbet, to whom
references can be found in Nesbet (1980). An alternative
prescription was given by Wladawsky (1973). A numeri-
cal procedure which in a sense avoids the singularity in
(H E) ' —was recently obtained by Winick and
Reinhardt (1978).

The situation is much simpler at zero-incident kinetic
energy. Again restricting ourselves to l=0 potential
scattering for simplicity, we have (A )„„given by Eq.
(5.8d). The evaluation of the linear parameters c„now re-
quires the inversion of H, and H '= 6 is nor; a singular
operator. Thus, if for pedagogic purposes we make the
further simplification to the free Green s function, Go, at
an energy A k /2m, we have

I sink'r sink'r' k,2dk,
k' —k

and, for all k but k=0, we must take a principal value to
avoid the singularity in the integrand at k'=k. At k=0,
the k' in the denominator is cancelled by the k' in the
volume element, and one can say that there is no singular-
ity at k =0 because the density of states at zero momen-
tum vanishes. The H ' is not only nonsingular but non-
negative (apart, normally, from a finite number of nega-
tive eigenvalues, which can be accounted for even when
the eigenvalues are only imprecisely known), and this en-
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ables one to obtain quite simply not only a VP for A but
an upper variational bound on A (Spruch and Rosenberg,
1959; Rosenberg et al. , 1960). The same is true for
scattering by a compound system if the target eigenfunc-
tions and eigenvalues are known exactly; we consider this
in Sec. V.C. The problems which arise in the analysis of
the scattering length when the target eigenfunctions and
eigenvalues are only imprecisely known will be discussed
in Sec. VI.C. (The scattering wave function need not, of
course, be known. )

AB+ (gk AB
)2/2 (5.26a)

(5.26b)

where pzz is the reduced mass of A,8. It is convenient to
index the various pairs of bound states of A,8 by the sub-
script y, that is, these bound-state wave functions are
uz, @=1,2, . . . , with corresponding energies cz . Then,
if the pair A,8 propagate to infinity in the bound state
ur, the corresponding magnitude fikr of their relative
momentum will be determined by

AB+ (gkAB)2/2

C. Collisions involving composite sYstems

In this section, we wish to derive the Kohn Vp for col-
lisions between composite systems; to treat such collisions
our potential scattering treatment must be generalized.
Some of the difficulties in the more general case are sim-
ply notational. To spare ourselves from as many of these
notational problems as possible, we shall assume that the
colliding systems are composed of distinguishable spinless
particles; for our purposes, this particular simplification
retains the essential features which distinguish the many-
particle collisions from the potential scattering case.
Furthermore, we consider only collisions in which just
two systems are incident, and we restrict our considera-
tions to collision systems and energies for which all al-
lowed reactions have just two emergent systems,

P; =1i;+X;, (5.24)

where the scattered part 7; is everywhere outgoing, and
where the incident wave,

f; =u,". exp(ik; n;.r ),
represents A and 8 approaching each other with relative
momentum Ak,

" n;, with initial bound-state wave func-
tions u; and u;, whose product u; u; is denoted by u;
we do not restrict ourselves to scattering by the targets in
their ground state. In Eq. (5.25), r is the displacement
of the center of mass of A relative to that of 8; the sum of
the initial bound-state energies of A and 8 is z;, and the
total energy in the center-of-mass frame is

(S.23)

where A, 8, C, and D are aggregates (groupings) of the
particles involved in the collisions. In other words, only
elastic scattering, inelastic excitation or deexcitation, and
rearrangement are permitted to occur; breakup is not.
Without this restriction to reactions of type (5.23),
Green's theorem in the many-particle configuration space
becomes much more awkward. The possibility of breakup
will be touched upon later. For simplicity only, we also
shall assume that the incoming and outgoing pairs do not
both have a net charge, for we wish to avoid the complex-
ities associated with Coulomb functions.

With these assumptions we can say that the center of
mass wave function describing the collision resulting in
the reaction (5.23) has the form

Similarly, for any energetically allowed pair of aggregates
I', Q not necessarily identical with the initial pair A,B or
the final pair C,D we will have bound-state pair wave
functions u ~, corresponding energies E ~, and corre-l
sponding momenta Rk& .

With these introductory remarks —all primarily con-
cerned with specifying the notation —out of the way, we
now can assert that the everywhere outgoing scattered
part P; in Eq. (5.24) has the asymptotic behavior for any
possible outgoing pair I', Q

g; —Q A&~(n; ~n)ur ~(1/r ~)exp(ikr ~r ~), (5.2'7)
r

as r 2:—oo parallel to n, where the sum is over all y asso-
ciated with energetically allowed outgoing pairs. Qur ob-
jective is to estimate variationally the amplitude
A p(n; ~nf ), which determines the differential cross sec-
tion for the reaction (5.23), with the initial state defined
by Eq. (5.25) and with C,D in the particular eigenstate
u~ moving outward with relative velocity along nf in
the center-of-mass system. For the present, let us assume
there are no uncertainties concerning the eigenstates u&,
u&, and u&~ or their energies; we will return to this as-
sumption later. Then, as in Eq. (5.15), our starting ex-
pression is

F, —:(A p(n; nf ) )„„
=~ pt(n nf)+Lt )(0—&)0 ~f

where E is known. In Eq. (5.28),

It=A+&i

(5.28)

(5.29)

1.*(r)= (pcD/2m A2)P f—(r),
f(r) = (u p) *exp( —ik pnf r ) +g f(r)

—:pf*+X f=pf' '*(r),

(5.30a)

where X f is everywhere outgoing. From Eqs. (S.30) and
(5.28) we infer that the desired VP is

(A p(n; ~nf ) )„„=Ap(n; —+nf )

, 0f'i ' l(H —&)4'~j

where the asymptotic form of g;, differs from that of g;
in Eq. (5.27) only in the presence of a subscript r on the
scattering amplitude.

The derivation of the VP now proceeds in quite close
analogy with Eqs. (5.17)—(5.21), and finally we have
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(5.31b)

A+B C+D+E, (5.32)

in which no two of the bodies simultaneously going out to
I

with p f, (r) everywhere incoming at infinity.
The foregoing analysis, culminating in Eqs. (5.31), pro-

vides the desired Kohn VP for the amplitude
Ar (n;~nf) describing the reaction (5.23), when the
various assumptions stated at the beginning of this section
hold, and when the bound-state wave functions u&~ and
associated energies c,&~ all are exactly known. The as-
sumption that breakup processes do not occur can be
relaxed —that is, one can variationally estimate the ampli-
tude for three-body breakup

infinity are charged; as an example, n +d —+n +n +p is a
possible process we can study but not the counterpart
atomic problem e +A ~e +e +A . It also is permissible
to treat reactions (5.23) or (5.32) when three other outgo-
ing bodies P, Q,R&C,D,E of (5.32) are energetically able
to reach infinity. In such cases, with proper definitions of
the scattering amplitudes or associated matrix elements
Tf; of the transition operator, Eq. (5.15) continues to give
the desired VP, though Careen's theorem now is much
more complicated in form and though there are some sub-
tle mathematical questions connected with the proper de-
finition of the time-reversed solution pf'

' for the reac-
tion (5.32) (Cxerjuoy, 1971). A generalization of the Dirac
identity (5.19a) is useful. For the 3b-dimensional vector
r=(r(, r2, . . . , rb), where b is the number of bodies reach-
ing infinity, the required generalization is (Rosenberg,
1964; Lieber et al. , 1972a)

n —( ' "f'~
(

+ikrf d) (
+ikrf d) 'k"f'~ 2d+1 dk i —d +in(d+i)/2g(n+n

'dr dr
(5.33)

where n =3b, d =(n —1)/2, and nf denotes a unit vector
in the same 3b-dimensional space. Equation (5.33) is us-
able as it stands when r; denotes the position of the ith
particle in the laboratory system. Equation (5.33) also is
usable in the center-of-mass system, provided b is re-
placed by b —1 and the now (3b —3)-dimensional vector r
is suitably defined. For two particles in the center-of-
mass system, r is the interparticle distance in ordinary
space and Eq. (5.33) quite obviously reduces to Eq.
(5.19a).

Detailed "ingenious" derivations [not always taking ad-
vantage of Eq. (5.33)] of the VP to which Eq. (5.15) leads
in collisions permitting breakup have been given. Nuttall
(1967) developed a Kohn-type expression for the elastic
scattering amplitude (which was not, however, stationary)
when one particle is incident on a bound pair at energies
above the breakup threshold. Pieper, Schlessinger, and
Wright (1970), Pieper, Wright, and Schlessinger (1970),
and Lieber et al. (1972a) gave convincing but not rigorous
arguments for the validity of the VP resulting from Eq.
(5.15) for breakup scattering, and Lieber et al (1972b).
made these arguments rigorous through the use of Fad-
deev equations.

D. Variational identities and generalizations
of the Kohn principle

The Kohn VP can be derived via an approach which
makes it transparent that the adjoint function L always is
itself a scattering function, as we discovered in the vari-
ous derivations successfully carried through in Secs.
V.A—V.C above. This alternative approach involves
some ingenuity, as will be seen, and therefore, strictly
speaking, falls outside our declared objective of illustrat-
ing our routine procedure for deriving VP without ex-
ercising ingenuity. Nevertheless, we will discuss this al-

I

ternative approach because it is simple, has been widely
employed in the literature, and has some ramifications
which are of general interest and worth noting.

We start with consideration of the expression

( —)~' [(H E)i' ]—[—(H E. )Pf' ']tP—
where pf'

' has been defined in Eq. (5.30b). On the one
hand, we can use (H E)itif' ' 0—. On the——other hand, we
can use Green's theorem in our multidimensional space to
reduce the expression to a surface term; this is quite sim-
ple if we restrict ourselves to two-body reactions (5.23).
[Three-body breakup reactions can also be handled by this
approach, as Lieber et al. (1972a) have shown. ] For the
two-body case, the surface term, which involves the
asymptotic forms of p;, and pf' ', introduces the ampli-
tudes Tfii and Tf;, in fact, the surface term is seen to be
Tf; —Tf;„and we arrive at the variational identity

(5.34)

However, because P; satisfies the Schrodinger equation,
the last term in Eq. (5.34) is already of first order, so that
replacing Pf' ' by Pf', ' makes only a second-order error.
Consequently, we have, as a variational estimate of Tf;,

( Tf ) —Tf +ff ' [(H'E)P;,]'—(5.35)

We see that we have given an alternative derivation of
the Kohn VP in its form (5.15); simultaneously we have
made it clear that in our routine starting expression (5.15)
the choice L, proportional to pf', ' [consistent with Eqs.
(5.30) and (5.31)] is correct, that is, will yield a variational
estimate of Tf;.

The variational identity in Eq. (5.34) was first given
(Kato, 1951) for potential scattering of a given partial
wave. The literature contains the details for potential
scattering without a partial-wave decomposition (Spruch,
1962) and for the elastic and inelastic scattering of sys-
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terns that can contain identical particles (Rosenberg and
Spruch, 1960). Gerjuoy et al. (1972) and Gerjuoy, Rau
et al. , (1975) have pointed out that this type of identity,
associated with Kohn-type VP's, can be generalized to all
VP's; if we start with our standard formulation, e.g., Eq.
(5.15), the step of equating to zero the sum of all first-
order terms gives the identity quite generally. Corre-
spondingly, the Kohn VP (as first pointed out in Sec.
V.B.3) itself can be considered as a special case of a wider
class of VP s, wherein the objective is to estimate varia-
tionally quantities F(P) which are linear in the unknown
(t, of the form

(5.36)

E. Variational principle for the ratio
of linear functionals

We will conclude our discussion of Kohn-type VP's
and their generalizations by deriving, via our routine pro-
cedure, a VP for

F(0)={gik)~(g24), (5.38)

where y again satisfies Eq. {5.37) and g[ and g2 are
known functions. In so doing, we will provide another il-
lustration of the applicability of our procedures to VP's
derived less systematically in the literature. Our deriva-
tion for Eq. (5.38) is very similar to that given in Gerjuoy
et al. (1972). We have

where g is a known function, and where P is an unknown
function, defined by

MP —co =0,
where ttt is a known function, M is a known linear opera-
tor, and both ttt and M are P independent. Evidently, the
Schrodinger equation (1.3a) is of the form (5.37), while
appropriate choices of g in Eq. (5.36) generate functionals
F which reproduce tang~ of Eq. (5.8a), Tf; of Eq. (5.22a),
and P itself. A VP for F will, therefore, produce VP's for
tangt, Tf;, and t{'t. We note too, restricting ourselves to
potential scattering, that the Schrodinger equation in in-
tegral form —the Lippmann-Schwinger (1950) equation—

(1+Gr„,V)P —Pr„,=0,

{gt4't )~(g24't )+L [Mttt ~ ]

We must then have

&F.={g~&4')~(g20)—{g14')(g280)~(g20)'

+L MB/=0.
L must therefore satisfy

[M L]t+(g, ) l(g 2p ) —

[(gled

)l(g ~ttt )']g ~
——0,

subject to the boundary condition

L [M6ttt]=[M L]t5$ .

When we introduce I.- via

L = —[{g~4)'~(gt4)']L,

(5.39)

(5.40)

where Gf„,=(Hf„, E) ' and —Pr„, are the free Green's
function and the incident free wave function, respectively,
is also of the form (5.37). The use of the integral equation
as the defining equation for P leads in straightforward
fashion to a new set of VP's for tangl and Tf;, the
Schwinger VP's, or for P itself, but we will not spell out
the details.

It is trivial to obtain a VP for the I' defined by Eqs.
(5.36) and (5.37). We find, proceeding as usual, that

F, = (g P )„„=gPt +L, (Mgt —co ),
where L, is an approximation to L, defined by

Eq. (5.39) becomes

F.= [{glet)~(g24t)] [1—Lt [Met —~ ] I {54»)
with I,, a first-order estimate of the exact I., which satis-
fies

[M'L 1'={gi ) ~(g i4») —(g»~(g24» (5.41b)

a result due to Stacey (1972). [We could of course have
obtained a VP for F {P ) defined by Eq. (5.38) by using the
results of the preceding subsection to construct separate
VP's for the numerator and denominator, but the present
procedure is simpler. ]

M~I. +g =0, Vl. SCATTERING VARIATIQNAL PRINCIPLES,
FOR TARGET WAVE FUNCTIONS IMPRECISELY KNOWN

and where we have assumed the validity of the boundary
condition

L (M5$) —(M L) 5/=0.

We would also like to note that the replacement of L, by
L in the VP for g tP is the identity

gtt)It =gtt)tt, +L t(Mp, —co),

which can be regarded as a generalization of the Kato-
type identity (5.34).

A. Some background

It first became possible to make reasonably accurate es-
timates of scattering parameters for scattering by com-
pound systems about 1960, because the advent of high-
speed computers made it feasible to begin to use the full
power of VP's. Indeed, as of 1960, the best estimate of
the scattering length A for positron-hydrogen atom (e+-
H) scattering —a relatively simple system by present
standards, though the distortion of the H atom by the in-
cident e+ is considerable —gave the wrong sign for A, the
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sign associated with an effectively repulsive potential. At
that time, the variational estimates, based on trial func-
tions which contained only two or three variational
parameters, varied widely, and there were no objective cri-
teria for judging among VP calculations with roughly the
same number of parameters —nor are there such criteria
now for VP's. The problem was also analyzed through a
variational bound approach by Spruch and Rosenberg
(1960). For variational upper bounds, whether for scatter-
ing lengths or energies or whatever, the rules of the game
are objective and trivial —the winning estimate is the
lowest estimate, independent of the number of parame-
ters. As the number of parameters one could reasonably
use increased to being of the order of 30, variational esti-
mates became much more reliable, and variational bounds
were no longer so necessary, at least for simple, well-
understood systems.

In the 1960s an enormous effort went into the study of
low-energy e -H scattering, with essentially all calcula-
tions based on VP's, apart from a few based on the more
powerful variational bounds. (Some calculational tech-
niques which proved fruitful were not originally known to
be variational in character, and were only later shown to
be so.) One calculated elastic and inelastic total and dif-
ferential cross sections, the positions and widths of the
lower of the infinite number of resonances, etc. There are
still problems with the analysis of e -H scattering at in-

termediate energies from perhaps 13 up to 100 eV or so,
but the main emphasis in e -atom scattering during the
1970s and now is on the scattering by atoms other than
H. For that case, and indeed for almost any but compara-
tively simple collisions, such as e+ or e or H atom
scattering by H atoms, one is faced with a new difficulty:
not knowing the target bound-state eigenfunctions (nor
the energy eigenvaluesj. Thus not only does one not know
the scattering wave function P—the usual case for a
scattering problem —but, even apart from a lack of
knowledge of the scattering parameters involved, one does
not know P in the asymptotic region, since P asymptoti-
cally approaches a sum. of products, with each product
containing an open-channel target bound-state wave func-
tion which is unknown. This can introduce a host of for-
mal and practical difficulties; integrals can diverge, and
contributions to scattering parameters can be difficult to
classify as zeroth, first, or second order. These difficul-
ties have not always been fully appreciated, and there are
a number of incorrect statements in the literature in this
area.

is still known exactly, having been chosen by the experi-
mentalist, but all other k&~ are not known. Finally, as
noted above, we will be unable to choose trial scattering
functions which satisfy the appropriate asymptotic boun-
dary conditions, since the latter require a knowledge of all
bound-state wave functions associated with open chan-
nels. The VP (5.3la), if we are concerned with a scatter-
ing amplitude, or the extension of Eq. (5.7) to scattering
by a compound target, if we have made a partial wave
analysis, is now a formal one, and the question naturally
arises as to whether one can develop a Kohn-type VP
when some of the relevant target properties are only im-
precisely known.

In order to avoid being buried in a morass of sub-
scripts, superscripts, and simple, but lengthy algebra, we
begin not with the general case but rather with a relatively
simple case which nevertheless contains the essence of the
problem.

A prototype problem for the simple case is the scatter-
ing of e+ by a helium atom, in its ground state, at ener-
gies below the excitation and pickup thresholds. More
generally, we assume that each of the aggregates A and B
is incident in its ground state —the subscript i can then be
replaced by the subscript 1—and we further assume that
the nature of A and B, and the incident kinetic energy

iri (ki ) /2pgg=E' (6.1)

E =8+(Rk) /2p=e+E'. (6.2)

We perform a partial-wave analysis, with the wave func-
tion Pi (which again is the 1th partial wave multiplied by
r) satisfying

(H E)pi =(Hg+H—ii+ V+ Tgii —E —E')pi ——0, (6.3)

where P& u8i a-s r —op, with Oi 6& (r) of the same——
form as the Pi defined by Eq. (S.lc); at infinite r the rel-
ative kinetic energy operator T&Ii in (6.3) reduces to Ti of
Eq. (S.lb). If we introduce a trial function Pi, in the usual

way, and assume for the moment that u is known, the
Kohn VP is

are such that elastic scattering (without exchange) is the
only possible process. It is no longer necessary to retain
our subscripts and superscripts; we can replace the rela-
tive momentum kA1B by k, the product of ground-state
wave functions u i ——u

&
u j by u, the sum of ground-state

energies E
&

——E
& + s

& by E, the relative coordinate r" by
r, the reduced mass pAB by p, and the interaction VAB by
V. The total energy in the center-of-mass frame is given

by Eq. (5.26a), which can now be written as

B. The Demkov variational principle ( tang ),= tang, —(2p/fi k)I, , (6.4)

In discussing scattering by compound systems, we re-
vert to our earlier assumption that breakup cannot take
place, that is, that only two-body reactions like (5.23) can
occur, but we suppose now that the bound-state eigen-
functions u&~ and their energies c&~ are only imprecisely
known. The energy E of Eq. (5.26a) can thus no longer be
regarded as known. The initial relative momentum Ak;

where

I, —:pit(H —c,—E')pi, . (6.5)

For u only imprecisely known, a natural procedure re-
taining the VP property would be to replace u by a varia-
tional estimate u„(differing from u by quantities of
second order) and simultaneously to replace s by
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ing to simple excitation without rearrangement. As a-re-
sult, for any actual choice of 5P;, the surface integral gen-
erally will contain terms which are oscillatory as r~ao,
i.e., which are not well defined and whose vanishing can-
not strictly be presumed.

Correspondingly, for any actual choice of
5$;, each of the integrals L [(H E)5$—; ] and [(H—E)L] 5P; generally will diverge for any given total en-
ergy E, whether this energy E is the exact energy of the
system defined by Eq. (6.2), or is taken to be some other
trial value E, . Even when we ignore the relation
(H E)P;—=0, there is no problem with the convergence
of L [(H E)P;—], of course, because this integral involves
only exact (and therefore asymptotically properly
behaved) quantities; also, as the remarks beneath Eq. (6.5)
have illustrated, one can choose an E, so that the integral
L, [(H E, )P;,—] converges for reasonable L, and P;„even
in the present case that the target bound-state wave func-
tions and energies are not precisely known. Thus the
difference between the pair of now individually conver-
gent integrals L, [(H E, )P;, ] an—d L f(H E)P;] can b—e
made to converge. However, if we write the difference
between them as

s„—:u, [H&+Hz]u„. (If one were to replace u by u, but
not change c., the new I, thereby generated would
diverge. ) While such a procedure would be a perfectly
valid one, the evaluation of matrix elements containing u,
would be relatively difficult. It would be far simpler,
indeed a blessing, if we could replace u in I, by a first-
order estimate u„and could correspondingly replace c. in
I, by e, —=u, [H„+Hz ]u, (implying u, is normalized),
thereby replacing I, by

I« =A«(—H —E~ &')0—I« (6.6)

where PI« —u,,O~„, as r —co, and the double r subscripts
on $1«and on I«denote the fact that the full scattering
wave function and the target bound-state wave functions
are represented by trial functions. It would seem that the
replacement of I, by I«, Eq. (6.6), would introduce a
first-order error and would thereby violate the VP, but
Demkov (1963) has shown that

L t[(H —E)5$;]+5L [(H —E)5$;]

5E(L+5—L)t(P;+5/;), (6.8)

the individual terms, which include pieces that are for-
mally of first, second, and higher order, need not con-
verge. If one term diverges in (6.8), then at least one oth-
er term diverges. Labeling terms as being of given order
is no longer very meaningful; one cannot throw away a
divergent term simply because it is formally of second or-
der.

If such convergence difficulties are ignored, our routine
procedures can yield VP's of the Demkov type; in other
words, when expressions appearing in our routine pro-
cedure are formally divergent, our methods nonetheless
may have heuristic value, producing formally stationary
and convergent VP's by manipulations requiring little or
no ingenuity, but still needing accessory rigorous demon-
strations of convergence and stationarity. An illustration
of this remark is the following "derivation" of the Dem-
kov VP Eq. (6.7) via the variational identity approach
described in Sec. V.D.

Let P~ and PI«have the asymptotic forms introduced in
Eqs. (6.3) and (6.6), namely,

1 1P~(r)-[sin(kr —
2 l~)+tang cos(kr —, hr )]u, —

I 1

P~«(r) —[sin(kr —, hr ) + tang—,cos(kr ——,lm ) ]u, ,
(6.9)

when r —Oo and where the trial u, is normalized. Then it
is readily verified, using Green s theorem, that

—Ak
u u, (tang —tang, ) =P( [(H E)P(«]-

2p

[(H E)A] 6« . — —(6.10)

The last term on the right-hand side of Eq. (6.10) van-

( tang ), == tang, —(2p, /A k)I«, (6.7)

with I«defined by Eq. (6.6), is indeed variational.
Demkov's proof will not be repeated here, for although

the result is of great importance, the proof is straightfor-
ward (though care must be exercised in the treatment of
surface terms), tedious, and unilluminating. At this point
we should present a derivation of the Demkov VP follow-
ing our routine procedure. We believe a presentation
somewhat along those lines may well be possible, and we
intend to look into that possibility. At this moment, how-
ever, we must state that the Demkov VP, for scattering
when target wave functions associated with open channels
are not precisely known, may not follow from our routine
procedure. Indeed, this is the only problem we have ex-
amined for which our procedure does not almost au-
tomatically lead to a VP. The difficulties arise because, in
attempting a derivation of the VP following our routine
procedure, divergent integrals are encountered. The pos-
sibility that our routine procedure will lead to formally
divergent expressions was not taken into account in our
description of our procedure; when such divergences oc-
cur, they may have to be dealt with —if at all—by exer-
cises of ingenuity. Fortunately problems involving such
divergences have been encountered only rarely —in our ex-
perience, at least; otherwise, the whole point of the ap-
proach we have developed and have presented in this re-
view would be largely negated.

To illustrate the preceding remarks, let us return to Eq.
(5.28), the starting point for the Kohn VP pertinent to
collisions involving composite systems. In deriving the
VP, it is necessary as we have many times explained, to
express L [(H E)5$; ] in terms of [(H—E)L] 5P;. The-
difference between these two expressions involves a sur-
face integral at infinity which, with proper boundary con-
ditions at infinity, will vanish when the target wave func-
tions and corresponding bound-state energies are precisely
known. When these energies are not precisely known,
however, assigning the incident kinetic energy E of Eq.
(6.1) does not specify the outgoing energy in any channel
other than the incident, not even in channels correspond-
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+[(H E—)01«] PI .

(6.11)

%'e are here seeking a suggestive guide to a VP rather
than a rigorous derivation. Since Pt« ——Pt+5$t differs
from P~ by first order, and since PI satisfies the
Schrodinger equation, replacing P~ by P~« in Eq. (6.11)
makes an error of second order, just as explained in going
from Eq. (5.34) to Eq. (5.35). Replacing E defined by Eq.
(6.2) with E, defined by

E, =E, + c,
' =u, (Hz +Hz )u, + e'

also makes an error of only second order on the right-
hand side of (6.11). Moreover,

u u, +u, u=u (u+5u)+(u+5u) u

=2+u 6u+5u~u,

which, if we recall Eq. (1.37b), differs from 2 by terms of
second order. %'e conclude therefore that to terms of
second order

I ki«[(H —Ei )4!—« l
2p 1

A'k 2

+ [(H Er )bt«A— «r I .

(6.12a)

Each of the integrals on the right-hand side of Eq. (6.12a)
is convergent, so that —granting the validity of our ma-
nipulations thus far—we have demonstrated that the
right-hand side of Eq. (6.12a) is a variational estimate
(tanrj )„of the exact tang. Furthermore, application of
Green's theorem also gives

4 i«[(H Er )4«—] [(H —«)du~] P—l«

Using Eq. (6.12b) in (6.12a) immediately yields the Dem-
kov VP Eq. (6.7).

C. Zero-incident kinetic energy

The use of the Demkov principle requires the inversion
of H E, a problem di—scussed towards the end of Sec.
V.B in connection with the Kohn principle. However,
whereas the Kohn principle does not require the inversion
of a singular operator at i'=0, the Demkov principle
does. Thus, restricting ourselves henceforth to l=0 and
to s'=0, and assuming there is then only one open chan-
nel for /=0, we have [as in Eqs. (5.8c) and (5.8d)]

(A )„„=A,~ (2m /A )$0,(H —e)go, ,

$0,-(r —A, )u, r —~ (6.13b)

(6.13a)

ishes, because Pt is an exact solution of the Schrodinger
equation. Dropping that term and then adding the resul-
tant Eq. (6.10) to its adjoint yields

—Ak
(u u, +u, u)(tang —tang, ) =P& [(H E—)P~«]

2p

for the Kohn principle, with u and c known; we also have

(A )„„=A,+(2m/fi )Po«(H E, )—po«, (6.14a)

$0« (-r —A, )u„r—oo, (6.14b)

for the Demkov principle with u and E only imprecise-
ly known, and with E,:—u, Hou, & e. In line with our pre-
vious conventions [see Eq. (5.8c)], the bar in Po, and $0«
denotes a zero-incident kinetic energy function, the sub-
script zero on P denotes zero angular momentum, the sub-
script t on P indicates that the scattering wave function is
not known, and the subscript tt on P indicates that both
the bound-state wave function and the scattering wave
function are not known.

In practice, the $0«used in the VP (6.14a) is obtained
by making a linear expansion in a suitably selected subset
of some complete set of functions (the dependence on r
being adjusted to guarantee the correct asymptotic
behavior at infinity, of course); the undetermined coeffi-
cients in this expansion are chosen so as to make the right
side of (6.14a) stationary for variations of these coeffi-
cients about their chosen values. In this procedure, the
equations determining the chosen "best" values of the un-
determined coefficients are linear, and their solution in-
volves inversion of the matrix (H —e, ) in the representa-
tion defined by the aforementioned subset. However,
while (H —e) is not singular, since F. is at the (bottom)
edge of the spectrum of H—see the end of Sec. V.B-
(H c, ) is—si, ngular, since c,, (which is greater than e) is
embedded in the continuum of H.

Though singular operators in the Kohn VP at nonzero
kinetic energies are used regularly, their use can be very
troublesome. In particular, in a model-problem analysis
of e+-H scattering, with the ground-state wave function
of H assumed to be only imprecisely known, some though
not all of the numerical estimates of 2 based on the Dem-
kov principle and on variants thereof (Peterkop and Ra-
bik, 1971; Houston, 1973; Page, 1975 and 1976) when
plotted resembled the schematic figures which appear in
texts on the ergodic theorem! Clearly, the inversion of
H —c., should be avoided if possible. In order to explain
how to do so, we first make a distinction between station-
ary principles and variational principles, a distinction
which often is wholly inconsequential and with which we
therefore have not previously been concerned in this arti-
cle. The Demkov principle for A given by Eq. (6.14) is
stationary, that is, the use of {to«——$0+5$O leads to an
error A„—A =O(5go) . On the other hand, it is not al-
ways obvious that our choice $0«will differ from Po by
an amount 5PO which can be considered "small"; unless
5$O is small, the error A„—A of order (5/0) will be large,
and there will be no particular advantage to using the
variational principle to estimate A. The procedure of
varying the undetermined expansion coefficients in the
"variational" principle, described in the preceding para-
graph, is one way of choosing a $0« for which 5PO will be
small. If another way of choosing a Po« for which 5$o is
small can be found, however, a way not involving invert-
ing (H —e, ), use of this Po« in the Demkov principle
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Pp (r-—A )u,
k —+ 0 at fixed large r. If we write

Pp ru G(E——) Vru—,

where

(6.15b)

(6.16)

G(e) =(H —E)

and where there is no need to replace E in (6.17) by E+iri
with g ~ 0 and g ~ 0, because we are at the edge of the
spectrum, Eq. (6.15a) becomes

A =(2m/A') (ru) [V—VG(E)V]ru . (6.18)

We now introduce an approximation 2 to A, defined by

2 =(2m/h' )(ru, ) [V—VG(c)V]ru, , (6.19)

where c. is a very good lower bound on c which is indepen-
dent of the choice of u„and where

G(s) —= (H —E)

(e will normally be put in by hand, using experimental in-

formation on the possible range of values of c, though for
simple systems one might calculate a variational lower
bound on c,). Since e does not lie in the spectrum of H,
G(E) is not singular, and one can obtain a variational esti-
mate G„(e) of G(e) by using the Vp for the inverse of an
operator discussed in Sec. I.B.3. It is in fact trivial to
show that the diagonal elements of G„(E) yield a varia-
tional lower bound on the diagonal elements of G(e) if
there are no composite bound states; this follows from the
result at the end of Sec. I.B.3, remembering H is Hermi-
tian, and recognizing that the inequality c & c. then
guarantees that G(E) is positive definite. Note that
whereas the scattered part of the wave function,
X=G(e)Vru, is proportional asymptotically to (r —A)u,
X, =G(E)Vru, is an exponentially decaying function of r;
however, the decay constant will be very small, since it is
proportional to (c,—E)'~, and the incorrect asymptotic
form imposes no restriction on the accuracy which can be
achieved in the calculation. One thereby obtains a varia-
tional estimate A„ofA,

=(2m/fi )(ru, ) [V—VG, (e)V]ru, . (6.20)

In fact A„yields an upper bound to A, for reasons ex-

(6.14) without varying any parameters still will give a
good estimate of A [error of order (5gp) ] because of the
stationarity property possessed by the VP.

One possibility of avoiding the (H —E, ) inversion prob-
lem has been suggested by Blau et al. (1977), and studied
numerically by Aronson et al. (1979). Setting l=O and
k=0 in Eq. (5.8a) and using Eqs. (5.8b) and (5.8c), and
accounting for the fact that we are here concerned with
scattering by a compound system, we find

A =(2m/R )(ru) Vgp,

where

plained at the end of Sec. V.B.3. For u„e and G„(e),
reasonably accurate approximations to u, c., and G(E),
respectively, 3, should represent a reasonably accurate es-
timate not only of 3 but also of A. Thus far, we have nei-
ther needed nor used the Demkov principle, but on the
other hand, our estimate A„although it yields 3 to
second order, differs in first order from A. (We replaced
u by u, and c. by c in going from A and 3, and it would
have taken still another miracle for A —3 to be of second
order. ) However, in the course of computing (A )„„we
have obtained a good first-order estimate of Pp, namely,

ru, G—, (E) Vru, ,

and this estimate can be further improved by dropping
the exponentially decaying factor in G, (e) Vru, Th. e
resultant wave function now can be used as the trial func-
tion P,« in the Demkov stationary principle (6.14a).
Since the linear parameters contained in this trial function
would not be varied —i.e., since whatever arbitrary param-
eters originally appearing in u, and G„(E) already have
been determined in the course of computing the variation-
al estimate G„(E)—we thereby obtain an estimate of 3
which is stationary without any need to vary parameters,
i.e., without any need to invert the operator H —c, .

In other words, even without the Demkov principle we
can obtain a variational bound A„on 3 which simultane-
ously should give a reasonable estimate of 2, not merely
of 2; this calculation of A„will involve no numerical in-
stabilities, but for a highly accurate estimate of 2 without
the aid of a VP we will need a very good approximate u„
since A —A (and therefore 2„—A) is of order 5u. Such a
u, may be available for, say e +—-He scattering, but not for
more complicated collisions; and even for e—+-He scatter-
ing use of such u, significantly complicates the calcula-
tions. Alternatively, we can use a relatively simple but
reasonable approximation u, and obtain a variational
bound A, on A, in the course of which we will obtain an

approximate scattering wave function. This approximate
function can be readily modified- -one need merely drop a
factor which generated exponential decay —and used as a
trial function in the Demkov principle, the resulting esti-
mate of A being in error by an order of (5u ) . We have
here an approach which combines a nonvariational bound
with no numerical instabilities and a stationary principle
to give a variational estimate of A.

Vll. VARIATIONAL PRINCIPLES FOR TIME-DEPENDENT
TRANSITION AMPLITUDES, THE TIME-TRANSLATION
OPERATOR, AND THE DENSITY MATRIX

We consider a system described by a Hermitian Hamil-
tonian Ho, with energy eigenvalues E„and orthonormal
eigenfunctions P„:

(Hp —E„)$„=0, P„P =5„

The system is subject to an external time-dependent Her-
mitian interaction V(r ), and the problem is to determine
the normalized wave function P(r ), defined by
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H —iA' P(~) =0,
O'T

H=H(v )=Hp+ V(r),
(7.1)

$(r)=U(r, ~o)P(rp) . (7.2)

It follows from its definition that U is unitary, that
U(r, v ') U(r', ~) = 1, and therefore that

U(~, r')=U '(~', ~)=U (r', r) . (7.3a)

We clearly have

U(ro ro)=1

and, from Eq. (7.1),
T

H(~) —iA U(r, rp) =0 .
87

(7.3b)

(7.4)

U(r, ro) is uniquely defined by the first-order differential

given the normalized wave function at the initial time ~o.
We do not display the spatial dependence of P„, P(rp),
tt)(v), Hp, H, and V(r). Equivalently, we want to know
the amplitude a„(r ) for finding the system in its nth state
at the time ~, given all the initial amplitudes a (rp).

Equivalent to a knowledge of the a„(~) is a knowledge
of the time translation operator U(~, rp ), defined by

equation (7.4) and the boundary conditions of Eqs. (7.3).
VP s for U in the interaction picture, UI (Lippmann

and Schwinger, 1950; Lippmann, 1956), and for the asso-
ciated amplitudes C„(r) have long been known. We will
derive in this section VP s for U(~, ~o) and a„(v ) using
our more general approach. [We note that bounds on
transition ampjiitudes for simple two-state systems have
been obtained by Aspinall and Percival (1967), using the
properties of the Pauli spin matrices. Using an entirely
different approach, these results were generalized by
Spruch (1969) to transition amplitudes of almost arbitrary
systems and were extended to Uariational bounds; the pos-
sibility of obtaining variational bounds rests on a property
of U that makes it simpler in many respects than the
singular Green's function that occurs in the time-
dependent scattering formalism, namely, the isometric
property that U U&1. The variational bound was used
by Shakeshaft and Spruch (1974) to show for certain
classes of potentials that the second Born approximation
dominates over the first for the transfer of a light particle
in processes analogous to charge transfer. ]

The fact that we are now concerned with a first-order
rather than a second-order differential equation does not
alter the basic approach to the determination of a VP.
The starting point for a VP for U(w, r') follows immedi-
ately from Eqs. (7.3) and (7.4). Writing 8, for 0/Br, and
inserting a factor of —i/A for later convenience, we have

7

( U(7)ro) )„„=U, (r)ro) (i/A—) A, (r)r')[H(~') ibid, ]U (—~')ro)dr' )
7p

where the only restriction placed on the trial time translation operator U, (~,v. )pis

(7.5)

Proceeding as usual to obtain A(r, r') we have

0=5U(r, ro) —I A(r, r')[(i/fi)H(~')5U(r', ro)+58, U(r', ro)]de',
Tp

where the term in 5A vanishes because of Eq. (7.4). Writ-
ing

I

into Eq. (7.1), premultiplying by P, and introducing the
matrix H with elements

58, U(~', r )=d 5U(r', r ), H „(~)=P H(v )P„. (7.9)

integrating by parts, and using 5U(wp, rp) =0, we find

—i%3, A(r, ~') =A(~, r')H(r'),

A(r, r)=1 .

(7.6)

(7.7)
B,a(r ) = —(i/A')H(r )a(~) . (7.10)

Introducing the column vector a(r ) with components
a (r ), we have

A(r, r') can now be identified with U(r, r'); to see this,
we take the adjoint of Eq. (7.4) and use Eq. (7.3a). The
replacement of A, (r, r')by U, (r, r') in Eq. (7.5) gives a VP
for U(r, rp). As in the estimation of energy eigenvalues
and scattering parameters, the only relevant operator in
the defining equations of the present problem is H. As in
those previously examined cases, the adjoint function A in
the present problem is not some new function; rather, it is
a function that appears in the defining equations.

A VP for transition amplitudes instead of one for
U(r, r') could be obtained by inserting

(7.8)

The quantity a(r ) is completely defined by the first-order
equation (7.10) and by its initial value a(ro) (which is

presumed to be known). The VP starting from

7

(a(r ) )„„=-a,(r )+ d~'A, (r,~')
Pp

X [(—i/fi)H(r') —8, ]a,(r')

(7.11)

follows immediately. Proceeding as before, we find that
A(~, r') satisfies the same equations (7.6) and (7.7) and is
therefore again equal to U(r, w'). This close relationship
of the VP (7.11) for a(~) to the principle (7.5) for U(r, ~p)
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is, of course, to be expected. The more familiar VP's for
UI and ar(~), the analogs in the interaction representation
of U and a, can be written down in an exactly similar
way.

If we drop the problem of transition amplitudes, and
restrict ourselves to a time-independent Hamiltonian H,
whose decomposition into Ho+ V need not concern us, we
have

U(r, ro) reducing to a function of the difference of the ar-
guments, since the system is invariant under tiIne transla-
tion. %'e now have

(H —ikey, )U(r)=0, U(0)=1, (7.12)

while the VP (7.5) for U(r) reduces, setting ro ——0 for
convenience —time translation invariance allows this —to

(U(r))„„=Ut(r) f U—,(r r')[(i I—R)H+d ]

X U, (r')dr', (7.13)

where U, (0)= 1 but U, (r') is otherwise unrestricted.
Consider now the density matrix p(p), defined by

p(p ) e PH—
p(p) therefore satisfies (H+Bp)p(p)=0, p(0)=1, which
is equivalent to Eq. (7.12), with r replaced by imp —A.
VP for p(P) follows immediately from Eq. (7.13) and is
given by

(p(p) )„,„=p,(p) —f, p (p p')|H+d —]p (p')dp'

where the only restriction on p, (p) is that p, (0)= 1. For a
time-dependent Hamiltonian, a VP for the density matrix
p(p, p') follows in an exactly similar way from Eq. (7.5)
with the replacement of r in these equations by ikp-

We conclude this section with a comment on the hermi-
ticity of V(r) or, alternatively, H(r). If these operators
are not Hermitian, the mechanics of the construction of
the VP's in this section is not affected and equations like
(7.6) for the Lagrange multiplier still follow. However,
these multipliers are now new functions and can no longer
be identified with the original U(r, ~o) and UI(r, ro).
Correspondingly, if H&H" for H the Hamiltonian in an
eigenvalue or scattering problem, one obtains equations
for L as usual, but L differs from the solution P of the
Schrodinger equation. See also Appendix D.

cations of VP's, and to the literature on the formulation
of the laws of physics as extremum principles; and we
make one or two general comments on VP's.

The classical and quantum-mechanical literature is re-
plete with VP's for all sorts of quantities. In classical
physics, these include, among others, frequencies of vibra-
tion, first considered at least as far back as 1871 (Ray-
leigh, 1871, 1873, and 1877, see especially pp. 177 and
178 in Vol. I of the 1945 reprinted edition), wave-guide
propagation constants (Schwinger and Saxon, 1968; Cairo
and Kahan, 1965; Kalikstein, 1981), and parameters in
neutron transport theory (Marshak, 1947; Kostin and
Brooks, 1964) and in nuclear reactor physics (Usachev,
1964; Gandini, 1967; Pomraning, 1967b and 1968; Stacey,
1972; Conn and Stacey, 1973; Nelson, 1975; Cheng, 1980).
In quantum mechanics, there exist the Rayleigh-Ritz
principle (Rayleigh, 1871 and 1873; Ritz, 1908 and 1909)
for the ground-state energy, the Hylleraas-Undheim
(1930) principle extending the Rayleigh-Ritz principle to
excited states, and a host of principles in scattering
theory (Schwinger and Saxon, 1968; Hulthen, 1944 and
1948; Kohn, 1948; Lippmann and Schwinger, 1950). In
fact, there exist a number of studies devoted almost en-
tirely (Spruch, 1962; Demkov, 1963) or partly (Mott and
Massey, 1965; Newton, 1982; Moiseiwitsch, 1966) to VP's
in scattering theory. Callaway (1978) and Nesbet (1980)
are two recent reviews focusing on the use of VP's in
atomic scattering. Besides the papers referenced in these
reviews, recent work on VP's in atomic scattering includes
Maleki and Macek (1980), Watson et al. (1980), Lucchese
and McKoy (1980), and Maleki (1981); these authors use
the Schwinger VP, discussed in Sec. VI, which contains a
Green's function.

%hat the quantum-mechanical VP's mentioned above
share is that both energies and scattering parameters can
be expressed as matrix elements of H. However, the
quantum-mechanical literature also contains a few more
general VP's for matrix elements of an arbitrary operator
W; These include diagonal matrix elements (Dalgarno
and Lewis, 1956; Dalgarno and Stewart, 1956 and 1960;
Schwartz, 1959a and 1959b; Delves, 1963a) and off-
diagonal matrix elements between two discrete (quadrati-
cally integrable) states (Delves, 1963a), or two continuum
(nonquadratically integrable) states (Delves, 1963b), as
well as between one bound state and one continuum state.
There also are VP's for integrals over functions P satisfy-

Vill. LITERATURE SURVEY AND GENERAL REMARKS

The derivations which have been given were largely
self-contained; when they were not, we cited specific
references to the required reading material. We conclude
with some references to the literature on VP's in particu-
lar areas, intended to serve readers who wish to pursue
those areas in greater depth; we also give some references
to the literature on the construction of VP's and on appli-

It seems to be traditional among physicists to refer to Hyl-
leraas and Undheim (1930) or MacDonald (1933) for extension
of the energy principle to excited states. However, the result
was already contained in the work of Rayleigh and Ritz. It is
also interesting that Rayleigh himself responded (Rayleigh,
1911) to the work of Ritz, expressing surprise that Ritz should
have regarded the method itself as new. For a more extended
account of these historical remarks, see a bibliographical note
on p. 67 of Gould (1957).
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ing not only homogeneous equations, as in Eq. (1.3a), but
also inhomogeneous equations, as well as VP's for the
solution of integral equations (Pomraning, 1968; Strieder
and Prager, 1967; Robinson and Arthurs, 1968). It is
stressed that the above references are merely illustrative
and do not begin to encompass the entire vast literature
on variational methods. Other books on VP's in quantum
mechanics and in classical physics include Gould (1957),
Funk (1962), Michlin (1964), Mercier (1963), Becker
(1964), Lewins (1965), Donnelly et al. (1965), Lanczos
(1966), Petrov (1968), Yourgrau and Mandelstam (1968),
Biot (1970), Finlayson (1972), and Rektorys (1975). There
also is considerable material on VP s and variational esti-
mates in Morse and Feshbach (1953), especially Sec. 9.4.
In addition, the relationship between perturbation expan-
sions and VP's has received considerable study, especially
in quantum mechanics, for time-dependent as well as
time-independent quantities (Hirschfelder et al. , 1964,
Heinrichs, 1968a and 1968b; Langhoff et al. , 1972, espe-
cially Sec. V and footnotes 7 and 8; Lowdin and Mukher-
jee, 1972). Other papers of interest in these and related
areas, in which theoretical relations such as hypervirial
theorems and experimental data are built into the trial
function, commented on briefly in Sec. III.C.4, include
Kirtman (1971), Kirtman and Mowery (1971), Heaton
and Moiseiwitsch (1971), Sims and Rumble (1973), and
McWhirter and Moiseiwitsch (1972).

In general, however, the VP's for F(P) encountered in
the literature have been obtained by manipulations espe-
cially suited to the particular F(P) whose variational esti-
mate is sought. It does not seem to be generally recog-
nized that variational estimates of a very wide class of
functionals F(P ) can be systematically constructed, as ap-
parently was first pointed out by Borowitz and Gerjuoy
(1965). They give a number of applications of the pro-
cedure to problems in different areas, including some in
scattering theory, a relatively difficult case because of the
comparatively difficult boundary conditions. The basic
idea is to incorporate the constraints on P into the VP via
Lagrange undetermined multipliers, in a fashion very like
the method used when obtaining the extremum of a func-
tional subject to constraints on the argument p of the
functional. The same basic idea was arrived at indepen-
dently by Haymaker and Blankenbecler (1968), by Rau
and Spruch, and doubtless by other investigators as well.
With differing aims and emphasis, the idea of using
Lagrange multipliers as adjoint variables seems to have
occurred in several places. In considering the so-called
"inverse problem in the calculus of variations, " ~amely,
to write down a Lagrangian from which will follow as
Euler-Lagrange equations a given set of equations of
motion, Atherton and Homsy (1975) show how this can
be done, building on powerful theorems established by
Vainberg (1964). Complementary VP's leading to bounds
on both sides, the so-called "bivariational bounds, " are
developed in Arthurs (1970), Robinson (1971), Barnsley
and Robinson (1974 and 1977), Noble and Sewell (1972),
and Sewell and Noble (1978). Examples of recent papers
using such complementary principles are Collins (1977)

for the heat equation and Cole (1979) for free molecular
channel flow where integral equations are involved.

Closer in spirit to the question we investigate —namely,
the evaluation of an I'(P ) given defining equations
B(P)=0, is the work in nuclear reactor physics. Starting
from the work of Roussopoulos (1953), Pomraning
(1967a) gave a general formulation, followed by applica-
tions to neutron transport in Pomraning (1967b and
1968). Later work along these lines in reactor physics is
in Stacey (1972), Conn and Stacey (1973), and Nelson
(1975); a recent paper in the field is Cheng (1980). Paral-
lel work, also in connection with neutron transport prob-
lems, with adjoint functions for both linear and nonlinear
problems (called the "importance" function in these pa-
pers), is in Becker (1964) and Lewins (1965).

These works still fall somewhat short of our goal of a
systematic examination of the applicability of the basic
procedure to wide classes of problems with a particular
focus on problems in quantum mechanics. It is here that
one sees most readily that subtleties regarding the proper
definition of the functions involved can be crucial for suc-
cess in formulating a VP. All the work mentioned above
and the material in Finlayson (1972) have significant
overlap with the work of our school which forms the cen-
tral focus of this review. The main differences we see are
in our concentration on quantum mechanics, in our
development, side by side, of so-called variational identi-
ties, and in our emphasis on proper attention to pitfalls
which can derail the formulation of a VP.

In this review, we discussed in some detail the extent to
which the function P must be specified, and examined the
various ways in which the associated constraints can be
incorporated into the VP. The main papers in which our
formulation was developed are Gerjuoy, Rau, and Spruch
(1972,1973), Gerjuoy, Rosenberg, and Spruch (1975), Ger-
juoy (1974), and Gerjuoy, Rau et al. (1975). Applications
of the procedure in quantum mechanics are in Mueller
et al. , (1974), Shakeshaft et al. (1976) and Wadehra et al.
(1978). Rau (1974) considers a problem in astrophysics.
The development of VP's for nonlinear differential equa-
tions is considered in Rau (1976) and Inokuti et al. (1978),
for nonlinear integral equations in Rosenberg and Tolchin
(1973) and Rau and Rajagopal (1975 and 1976), and for
integral difference equations, both linear and nonlinear, in
Rau et al. (1978) and Inokuti et al. (1980).

The utility, or lack of utility, of the VP s we discussed
for actual computation of any desired I'(P ) was not more
than superficially discussed, in Sec. IV.C. In fact, diffi-
culties do arise in actual applications, as is well known,
for example, in applications (Harris and Michels, 1971;
Nesbet and Oberoi, 1972; Bardsley et al. , 1972; Callaway,
1978; Nesbet, 1980) of the Kohn principle (Kohn, 1948)
and variants thereon (Hulthen, 1944 and 1948; Rubinow,
1955). Nor did we discuss the possible uses of these VP's
for the purpose of obtaining upper and/or lower varia-
tional bounds on desired quantities, a subject on which
again there is a considerable literature (Spruch and Rosen-
berg, 1959 and 1960; Spruch, 1969; Delves, 1963c; Wein-
hold, 1972; Blau et al. , 1973, 1974, 1975, and 1977), some
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of which is referenced in recent papers (Gerjuoy et al. ,
1972; Spruch, 1975). In Gerjuoy et al. (1972) and Ger-
juoy, Rau et al. (1975) it is shown that our procedures
routinely yield not merely a VP for F(P), but also a gen-
eralization of the well-known identity (Kato, 1951) for the
tangent of the phase shift. Such a variational identity, in
which one expresses the quantity of interest as the sum of
a closely related VP for that quantity plus a formally
known second-order term, has been one of the important
starting points for determining error bounds on the varia-
tional estimates of scattering parameters (Spruch and
Rosenberg, 1959 and 1960; Rosenberg et al. , 1960; Hahn
et al. , 1962, 1963, and 1964; Sugar and Blankenbecler,
1964), of transition amplitudes (Spruch, 1969), and of
functions such as temperature which characterize the
equalization processes (Kalikstein and Spruch, unpublish-
ed).

Returning to the literature on variational methods, we
remark that for the most part the canonical literature has
not been concerned with the problem of main interest in
the present work, namely, the problem of constructing a
VP (F(P ) )„„for a given desired F(P), thus making it
possible to estimate F(P ) with second-order accuracy us-
ing trial functions P, accurate merely to first order. In-
stead, the literature has largely been concerned with the
construction of stationary principles as an alternative and
very compact formulation of the laws of physics or of a
given set of equations. Such a usage goes back to the very
foundations of physics. Hamilton's principle and the
principle of least action are examples in classical mechan-
ics. Now, in theory, any stationary expression which
offers an alternative formulation of the laws of physics
and thereby of the relations defining P provides a way of
computing P, but this is often of little use in practice.
For instance, the classical mechanics literature does not
record systematic attempts to find the position of a parti-
cle as a function of time variationally from Hamilton's
principle [for some efforts of this sort, see Miller (1957),
Luttinger and Thomas (1960), and Lyness and Blatt (1961
and 1962)], probably because Hamilton's principle in-
volves an integration over time from initial instant to to
final instant t&, where t& is not known until the dynamical
paths carrying the particles from their initial to their final
configurations are known. On the other hand, in heat
transfer problems various stationary functionals apparent-
ly furnish reasonably accurate estimates of the unknown
temperature distribution function P determining the heat
flow (Biot, 1970), and as a second example, employment

7The viewpoint dates back at least as far as Hero of Alexan-
dria some 2000 years ago. He recognized that the path of a ray
of light in traveling between two points via reflection from a
plane mirror is the path of minimum length. The concept that
light knew in advance along which path to proceed was at one
time ascribed teleological significance. See also the wonderful
discussion in Chap. 19 of Feynman et al. (1964).

of the Rayleigh-Ritz VP is one of the most practical ways
to compute the quantum-mechanical ground-state eigen-
functions for complicated atoms, molecules, or nuclei.
Nevertheless, the estimates of P obtained in this way are
accurate only to first order, because they make some par-
ticular functional of P stationary, not normally P itself.
Correspondingly, these estimates of P furnish only a
first-order estimate of any desired functional F(P) other
than the particular functional (such as the energy) which
was made stationary. Presumably the "best" VP for es-
timating P is the one which makes P itself stationary, that
is, which will yield P to second order using trial estimates
P, accurate only to first order; VP's for P itself were con-
structed by the methods detailed above in Sec. IV.A. (See
also Appendix C.) With such VP s, it is possible to esti-
mate any desired F(P) with second-order accuracy by
simply using the estimate of P accurate to second order.
Further, constructing a VP (P )„„for P itself opens the
way to the construction of "supervariational principles"
for F(P ) that are good to higher order than the second
(Blankenbecler, 1966; Gerjuoy, Rau et al. , 1975).

In passing, we note that there is a third use of VP's and
of variational bounds, namely, the determination of the
functional form of an expression, such as the velocity
dependence of a cross section. Applications include effec-
tive range theory (Schwinger, 1947), which defines the
low energy form of a cross section, and the high-velocity
limit of charge exchange and similar cross sections
(Shakeshaft and Spruch, 1974).

We make two additional remarks bearing on the practi-
cal role of this paper's general procedures for constructing
VP's. For particular classes of problems —for example,
for the VP's associated with scattering processes discussed
in Sec. V, systematic approaches other than the very
broadly applicable procedures we describe may exist. An
example was given in Sec. V.D. The second remark is
that, given a VP for a given quantity, the most economi-
cal way of obtaining a second VP for the same quantity or
related quantities often may not be the direct approach,
but rather the choice of a particular form of trial function
in the VP already known. Thus, in the context of Sec. V,
the insertion of a trial function P, into the Schwinger VP,
with P, having a specified dependence on a second func-
tion P«, yields the Kohn VP (see, for example Lieber
et al. , 1972a, 1972b) in terms of the trial function P«,
similarly, the Kohn VP can be made to yield the
Schwinger principle (Kohn, 1948; Carew and Rosenberg,
1973). Another example was given in Sec. V.A.

We also note that it may be possible to derive VP's
from the Rayleigh-Ritz principle. A starting point might
be papers by Risberg (1956), Percival (1957, 1960), and
Rosenberg and Spruch (1960), in which variational
bounds for potential scattering are derived using the
Rayleigh-Ritz method by converting a difficult portion of
the scattering analysis to the analysis of a bound-state
problem. VP's in the A-matrix formalism also belong in
this class (Chatwin and Purcell, 1971; Pano and Lee,
1973; Lee, 1974; Burke and Robb, 1975; Shimamura,
1978).
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APPENDIX A: NOTATION FOR GENERALIZED
LAGRANGE MULTIPLIERS

There are considerable notational difficulties in a gen-
eral formulation of the Lagrange multipliers W, though

these difficulties are rarely troublesome in facing a con-
crete problem. Some comments on notation may
nevertheless be helpful. The illustrative examples we have
considered have shown that the generalized Lagrange
multipliers W occurring in Vp's may be of quite different
types. Even in the comparatively simple problems treated
in Sec. I.B we have seen cases in which the quantities W
were ordinary numerical r-independent multipliers (Secs.
I.B.l and I.B.2), operators (Sec. I.B.3), ordinary functions
(Secs. I.B.4 and I.B.5) and a vector function of two vari-
ables (Sec. I.B.7). Unfortunately, it appears impossible to
devise a simple notation which distinguishes between all
the diverse possibilities for W. The notation we have em-
ployed exposes the spatial dependence of the particular
W under consideration, while simultaneously continuing
to emphasize the identification of the adjoint functions
W with generalized Lagrange multipliers. Keeping the
spatial dependence of the various W clearly in mind usu-
ally facilitates the derivations of the relations determining
the exact W.

Specifically, when an W is r independent, it is denoted
by the greek lower case X. When an W is an ordinary
function of r, it is denoted by L(r). When an W depends
on two coordinates, it is denoted by A(r, r'); the Lagrange
multiplier A introduced in Sec. I.B.3 presumably would
be so indexed in a coordinate representation. For in-
stance, [recalling Eq. (1.18b)] the operator A would be the
Green's function

A = —— = G(E)—1

H —E
or, in coordinate representation,

A(r, r'):——G(r, r', E),
when 2 of Sec. I.B.3 is the operator (H E), with FI th—e
quantum-mechanical Hamiltonian.

The symbols A, , I, and A suffice to describe the depen-
dences on r of all W encountered in this work; more com-
plicated dependerices of W on r can occur, of course, and
can be dealt with by the methods we describe. [A formal
statement is that W is a mapping of B(P ) onto F(P ) and
has the characteristic structure of this mapping. ] We will
now illustrate circumstances under which these various
types of adjoint functions can occur; a few arbitrarily
chosen illustrative examples are detailed in Table I below,
reference to which may help the reader to follow the dis-
cussion in the next two paragraphs.

The adjoint function W will be an r-independent A,

when F(P,P) is an r-independent number (for example,
the matrix element P WP) and when the corresponding
constraint 8(P,P)=0 imposes an r-independent condi-
tion [as in the normalization condition (3.1)]. When the
constraint is over a range of values of r—an example be-
ing the Schrodinger equation (1.3a)—but F still is an r-
independent number, the corresponding adjoint function
W will be an ordinary function of r, that is, 1.(r); also in
this case WtB or 8 W will always involve an integral
over r. When the constraint is r independent but I' is a
function of r, the associated W again will be a function
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Integration
variable
in W~B

Index
summed
in W~B

F

F(r)
F(r)

F„

Fj(r)

B„
B(r)
B„
B(r')
Bj
Bj (r)
Bk

Bk(r '
)

L(r)
L(r)
A(r, r')
AfJ
L (r)
~jk

Ajk(r, r' )

J
J
k

TABLE I. Notation for Lagrange multipliers. F„and B„
denote single numbers. F(r) and B(r) are functions. Fj and Bj
denote multicomponented collections of numbers, and Fj(r) and

Bj(r) denote multicomponented collections of functions.

expression) or b (right occurring in the starting expres-
sion); we have generally followed this practice. The main
value of the a,b subscript notation is that the W„,Wb;
associated, respectively, with the original and adjointed
versions of the ith constraint frequently turn out to be
simply related to each other, as, for example, in Eqs. (3.7)
and (3.9). Of course, maintaining the distinction between
the terms involving W, and Wb is superfluous in some
instances, as, for example, with the normalization con-.
straint (3.1); in Eqs. (3.12) and (4.1) we required only one
Lagrange multiplier A, associated with such a normaliza-
tion constraint. Similarly, the distinction between W«
and Wb; is an unnecessary complication when it is obvi-
ous a priori that W«and Wb; should be identical [recall
the discussion connected with Eqs. (3.7) and (3.9)]. For
this reason, in the variational starting expressions of Sec.
IV.B and later sections we have employed W; for
W„=Wb; whenever possible, once it had become clear
(via the simple illustrative problems in Secs. III.B.1 and
IV.A) that the equations would indeed imply W„=Wb;.

of r—that is, in this case again M=I. (r); now, however,
neither W B nor B W will involve an integral over r.
An example occurs in Eq. (4.1). Usually it will be obvious
whether or not the symbolic products W B and B W in-
volve integration. The case W —=A(r, r') occurs when F is
a function of r [the first variable in A ( r, r') ] and the con-
straint is over a range of values; now both A~B and B A
will be functions of r and will involve integration over r'.
See Eq. (4.1). Note that in this last case, where there is
integration over r' but not r, the notation implies that the
adjoint operation on A~B does not involve interchange of
r and r' in A, that is, if sums over components are un-
necessary (as in quantum-mechanical problems with spin-
less particles)

A fB= dr'A* r, r' B r'

(A B) =BtA= f dr'B*(r')A(r, r') .
(Al)

The point is that for the purposes of multiplication by B
the r in A(r, r') is to be thought of as a parameter rather
than a variable. In many circumstances, an adjoint func-
tion of the type A(r, r') will be identifiable as a Green's
function relevant to the problem under consideration, or
will be closely related to such a Green's function.

In general, all the Lagrange multiplier types A, , L and A
may be multicomponented, that is, may need to be in-
dexed by discrete subscripts, as, for example, for
quantum-mechanical problems involving particles pos-
sessing spin. The necessary discrete indexings of the W
are inferred just as the necessary r dependences were in-
ferred, from the given discrete indexings attached to
F(P,P) and the particular B(P,P) of interest.

generally, each of the k, L, and A may appear in the
fundamental starting point of the VP (2.3) and its analogs
as a formal multiplier to the left or to the right of its as-
sociated (possibly adjointed) constraint. In this event, it
often is convenient to subscript these generalized
Lagrange multipliers by g (left occurring in the starting

APPENDIX B: VARIATIONAL BOUNDS ON POWER
DISSIPATION

This appendix, which supplements Secs. I.B.1 and
III.C.5, is a digression from the focus of the paper, for we
will be concerned with the relative merits of different
VP's, any two of which necessarily differ only to second
order. More precisely, we will be concerned with the pos-
sibility of obtaining not simply VP's but variational
bounds. (The distinction between principles and bounds is
our only interest here; the problem of two resistors in
parallel is a totally trivial one, and we make no effort to
recast our results in a form which is applicable to many
resistors. ) In Secs. I.B.1 and III.C.5 we saw that depend-
ing on whether we do or do not require the two trial
currents to satisfy the current conserving constraint (1.6),
we are led to different VP's for P„namely, Eqs. (1.12)
and (3.37b), respectively. We study the second-order er-
rors associated with the two results. The introduction of
I~, I~ +5I~ ——and Iq, +5I2 into Eq (1.12)., obtained
without the current conservation constraint, gives

P, =P (R )+R2)5I)5I—2 . (Bl)

P, =P+(5I() (R)+Rq) . (B2)

Therefore, Eq. (3.37b) is both a VP and a variational
upper bound for P. As stated at the beginning of Sec.
I.B.l this is precisely the weH-known extremum principle
for resistor networks (Smythe, 1968, p. 252).

It is hardly surprising that the second approach, in
which we chose Iz, ——I—I&„ led to a variational bound.

This result verifies that Eq. (1.12) indeed is a VP for P,
but that it is not a variational bound, since 5I&5I2 can be
of either sign; 5I& and 5I2 are regarded as independent in
Eqs. (1.12) and (Bl). On the other hand, if we insert
I„=I,+5I, into Eq. (3.37b) obtained with the current
conservation constraint, we find
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R1I', =2R1II1,—R1 1+ I1, ,
R2

(B3a)

which is yet a third VP for P. Moreover, Eq. (B3a) can be
rewritten as

P, =P R i 1+ — (5Ii )
R1 2

R2
(&3b)

so that we now have a lower variational bound.
At the end of Sec. III.C.5, we gave a numerical exam-

ple. The choice I~, ——4.5, I2, 3.5A was se——en to give from
Eq. (3.37b) an upper bound of 122 W on the power (exact
value 120 W). The same choice in Eq. (B3a) gives 118.8
W, a lower bound.

APPENDIX C: SYSTEM GOVERNED BY NONLINEAR
EQUATION NOT DERIVABLE FROM LAGRANGIAN

This appendix illustrates the remarks made in footnote
2. We shall construct a VP for the displacement of a par-
ticle whose equation of motion is not derivable from a La-
grangian. To illustrate the utility of our procedures fur-
ther, we deliberately have chosen to examine a nonlinear
equation of motion.

Consider the one-dimensional problem of a particle
moving in the x direction, from ~=0 to ~=1, where we
denote the time by ~ to avoid confusion with t denoting
"trial." The equation of motion is postulated to be

2
d X 3 dX+a x =0, (C 1)

d7.

where a is a positive real constant.
It is readily seen that (Cl) is not derivable from a

Lagrangian —i.e., that it cannot be deduced from an ana-
log of Hamilton's principle

1

5 J dr N(x, .x,r) =0, (C2)

where the "Lagrangian" of this system is denoted by X to
avoid confusion with our standard notation for general-
ized Lagrange multipliers (Appendix A). The Lagrange
equation is

d ax aw
« QX Bx

or

Since we had eliminated one of the trial currents, namely,
I2„ the second-order error term had to be of the form of a
constX(5I~ ), and we had to obtain a variational bound.
This suggests that if we eliminate I2, by choosing the trial
I~„I2, so that they satisfy Eq. (1.7) rather than Eq. (1.6)
(that is, if we choose I2, I&,

——R ~ /R2), we will again obtain
a variational bound. Indeed, starting from

P, =I),R ) +(I),R ) /R2) R2

+A, ', [I),+(I),R ) /Rp) I],—
we find

d BN

l& ()X

d ax aw

«ax (C4)

The d /dr operation in Eq. (C4) yields a term
(8 X/Bx )(d x/dr"), and this is the only term in Eq.
(C4) involving d x/dr . It follows that Eq. (C4) cannot
represent Eq. (Cl) unless

a'w

X

or

E(x,x,x,r)=x f(x,x,~)+g(x,x,~), (C5)

where f and g are arbitrary. With the form (C5) for N,
Eq. (C4) again contains no terms quadratic in x, and
therefore again cannot represent Eq. (Cl).

Nevertheless, deriving a Vp for an essentially arbitrary
quantity depending on x(~)'s obeying Eq. (Cl) is no prob-
lem. For example, suppose we seek a VP for

1E= d~ w(x, ~), (C6a)
0

where w is a specified function, with x(r) obeying Eq.
(Cl) and obeying the boundary conditions

x(0)=a,
x(0)=P,

(C6b)

with a and P given real constants. Our starting point if
we proceed as usual is

1

E„=f d~w(x„r)
2

d Xg 3 dxg
2

+Lg +a Xg
l&

(C7)

where x, (r) is a trial solution of Eq. (Cl) obeying the
boundary conditions (C6b), and where the notation in the
last term of Eq. (C7) signifies there is an integral over r
from ~ =0 to ~ = I. The usual manipulations now lead to

SWe remark that even when the equations of motion
B;(r,r, t)=0 are not derivable from a Lagrangian, it may be
possible to find a set of equations B;(r,r, t ) =0 which are deriv-
able from a Lagrangian and whose solutions r(t) simultaneously
guarantee B;(r,r, t)=0, although the set B; is not identical to
the original set B; (Okubo, 1981). However, this possibility in
no way diminishes the point of this appendix.

+ x+ x — =0.
a~ax axon' ax '

Only the third term in Eq. (C3) involves x, and this term
is linear in x. Therefore, Eq. (C3) cannot possibly
represent Eq. (Cl), which is quadratic in x. Moreover,
the deficiency of Eq. (C3) cannot be remedied by letting N
depend explicitly on x, that is, by generalizing Eq. (C2) to

1

5 dr X(x,x,x,r ) =0 .
0

In this event Lagrange's equation becomes
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].

BM 1

5F„=I dr- 5x+ I d~ 2 z(xL) a—xL 5x+ a xL5x+2xL5x —2 ' (xL) 5x
0 Qx 0

(CS)

In addition, because we have decided to choose x, so that
5x and 6x vanish at ~=0 but need not vanish at &=1,
guaranteeing there is no contribution from the boundary
terms in Eq. (C8) requires that the desired solution to Eq.
(C9) satisfy the boundary conditions

L(1)=L(1)=0 .

Correspondingly, for x, a first-order estimate of the exact
x, Eq. (C7) should yield a variational estimate of F de-
fined by Eq. (C6a) whenever the trial L, in Eq. (C7) is a
first-order estimate of the exact L satisfying Eqs. (C9)
and (C10). One way, but by no means necessarily the only
or even the best way of choosing L, (recall the discussion
in Sec. IV.C) is to choose the trial L, as the solution of

2 (x,L, ) —a x,L, + =0, (Cl 1)

subject to the boundary conditions L,(1)=L,(1)=0. The
fact that Eq. (C9) [and therefore its final version (Cl 1)] is
linear, even though our starting equation (Cl) for x was
nonlinear, is characteristic and noteworthy.

In the special case that
1F= drx(r)5(~ c)=x(c), 0—&c&1

0

for the first variation of F, . To make the right-hand side
of (CS) vanish for arbitrary 5x, it will be necessary to re-
quire

2 (xL)—a xL+ =0.BM

Bx

a xL —2—(xL) (C13a)

L(c —) =0 . (C13b)

Equation (C13a) is gratifyingly identical with Eq. (C12b),
given that L (c + ) =L(c+ ) =0. Equation (C13b), which
guarantees there will be no terms proportional to 5x(c) on
the right of Eq. (CS), shows that L(r), like conventional
Green's functions, is continuous at ~ =c. Incidentally, the
fact that L(~)=0 for c (r ( 1 means that the variational
estimate of x (c) from the VP (C7) will not involve the tri-
al estimate x, (~) for r ~c, as one should expect. When,
as in the present problem, the solution x(c) is specified by
the initial values x(0) and x(0), the actual x(c) can be
thought to result from a step-by-step evolution of x(r ) via
the differential equation (Cl), from &=0 to r =c but not
[when x (c) is sought] through times beyond r =c.
Indeed, the very same VP would be reached more simply
if, instead of (C7), the starting point [in the present prob-
lem, where F:x(c)] were t—aken to be

I

Because Eq. (C12a) is homogeneous in the domain
c + & r & 1, the boundary conditions (C10) imply L (r ) is
identically zero in that domain. Because 5X and 5x need
not vanish at ~=c, the coefficients of these quantities
each must vanish on the right-hand side of Eq. (C8). Re-
calling that (C12c) now is included in (CS), and that
Btc/Bx in (CS) now is 5(r —c), one sees that we now must
require

C—

Eq. (C7) provides a variational principle for x(r) at any
point ~ =c in the interval w =0 to w = 1. It is necessary to
replace the generic term Bto/Bx in Eq. (C9) by 5(r —c).
Equivalently, one now replaces Eq. (C9) by

C

x, (c)=x,(c)+ dr L, (7 )
0

2 2dx, ~ dx,
+a -'x, (r )

d7

d
2 ( xL ) axL =0,—

d72

0&~ &c—and c+ (r &1, (C12a)

subject to
C+

2 (xL) axL—
d7.

where c+ and c —denote, respectively, points immedi-
ately to the right and to the left of ~=c. Corresponding-
ly, the term

C+

a xL5x+2xL5x —2 ( xL ) 5x3 (C12c)

now must be added to the right-hand side of Eq. (CS), be-
cause the integral involving L, in Eq. (C7) now must run
from ~ =0 to z =c —and then from z =-c + to w = 1.

Equation (C12b) means that L now is a Careen's func-
tion for the second-order differential equation (C12a).

(C13c)

The above considerations have shown that a VP for the
solution to Eq. (Cl) can be constructed, even though Eq.
(Cl) is not derivable from a Lagrangian. Of course this
VP of ours for x(~) does not have the form (C2) of
Hamilton's principle, nor would our VP have that form if
the boundary conditions (C6b) were replaced by the cus-
tomary (Hamilton's principle) boundary conditions that
x,(r)=x(~) at the end points, i.e., by the requirement
5X=O at ~=0 and ~=1. These boundary conditions
would require I.=0 at &=0 and. ~=1, as is readily seen
from Eq. (CS), and would produce corresponding modifi-
cations of the boundary conditions (C13) at r =c, but
would not alter the differential equation (C9) for the exact
L,.

The solution of Eq. (Cl) can be reduced to quadratures
via the substitution

x(r)= exp I d'rg(r),

but the functional form of x(r) obtained in this way is
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very complicated for arbitrary x(0),x(0), so that Eq. (Cl)
probably is best solved numerically for arbitrary u and P
in Eq. (C6b). In the special case that a =1 and P = —a,
however, it is obvious that the solution to Eq. {Cl) sub-
ject to the boundary conditions (C6b) is

APPENDIX D: ENERGY EIGENVALUE
FOR A NON-HERMITIAN HAMILTONIAN

WITH BOUNDARY CONDITIONS EXPLICITLY
INVOLVING THE EIGENVALUE

x(~) =e (C14)
%'e seek the eigenvalues E of

This result permits a simple test of the power of the VP
(C7). Suppose for the case a= 1,P= —a we wish to esti-
mate x(c) in the interval 0 & c & 1, not realizing that there
is the exact solution (C14). We will make the simplest
possible choices for the trial functions x, (r) and L,(r)
subject to the requirement that the trial quantities obey
the same boundary conditions (C6b), (C10), and (C13) as
do the exact functions. Therefore we will choose

x, (r) =1 a~+b—r (C1Sa)

with b a variational parameter; this x,(r) satisfies Eq.
(C6b) for a = I,P = —a; the quadratic term in (C15a) is
needed (as will be seen immediately below) to determine
L, (c —), which is not specified by the trial version of Eqs.
(C13) when x,(c)=0. Using Eq. (C15a) in the trial ver-
sion of Eqs. {C13),we see that the boundary conditions on
L, can be satisfied by a linear approximation to L,(r),
namely,

1
L,(r)= (~ —c), 0&r &c-

4b

L,(r)=0, c+ &r&1.
(C15b)

a c(x(c))„„=1—ac+
2

a'C' a4C4
(C16)

18

Thus, even with the very simple trial functions (C15), the
VP (C7) [in the case a = 1,P = —a in (C6b)j yields an esti-
mate of x(c) which is exact through terms of order a c,
and whose a c term is in error by only a c /72.

Substituting these simple approximate forms (C15) into
Eq. (C7) or (equivalently) Eq. (C13c), making the resul-
tant expression stationary with respect to 6, and using the
value of b thereby obtained immediately yields the desired
variational estimate x, (c). For comparison with the exact
x(r) given by (C14) it is convenient to expand the exact
and variationally estimated x(r) in powers of ac. We find

(H E)$—=0, —oo &x &0—,0+ &x & oo,

d d0= —2x
dX dX

(D 1a)

(D lb)

subject to the boundary conditions that p and dp ldx are
everywhere continuous except at x =0, where dg/dx (but
not P ) is discontinuous, with the discontinuity

dP dP
dX

O
dX

= —aEQ (0), (D2)

a being a positive real constant; as in Eqs. (C12), the sym-
bols 0+ and 0—denote points immediately to the right
and left, respectively, of x =O.

Although H of (Dlb) is not self-adjoint (see below), its
eigenvalues E are real when a=0 in Eq. (D2); indeed,
when a=0 the eigenfunctions are Hermite polynomials
(Morse and Feshbach 19S3, p. 786). The reality of the
eigenvalues in the a =0 case can be understood by noting
that the function u =P exp( ——,x ) satisfies the equation

d —x +l u=Eu .
dX

(D3)

When u and du /dx can be supposed everywhere continu-
ous, as is the case when a =0 in Eq. (D2), the operator
within the parentheses on the left-hand side of Eq. (D3) is
obviously self-adjoint. Moreover, the eigenvalues remain
real even when a &0 in Eq. (D2), as can be seen by multi-
plying Eq. (D3) [which is valid for a&0 as well as for
a =0] by u*, integrating over all space and then integrat-
ing by parts, noting that u satisfies the same boundary
condition (D2) as does P.

The foregoing considerations correctly suggest that
finding a VP for the present model problem would
be simplified by introducing u =P exp( ——,x ), i.e., by

Actually, the VP in this problem is stationary at two values of b, b =+(a /2)(1 —ac/3}' (1—a c /20) ' . The result (C16) is
obtained using the plus sign in this formula; using the negative sign yields an estimate of x(c) which is incorrect as early as the a c
term. Finding multiple roots for the values of the variational parameters making a VP stationary is commonplace; deciding a priori
which root will give the best variational estimate demands some physical or mathematical insight into the problem and can be diffi-
cult. For the VP for x{c)examined in this appendix, the fact that the positive value of b gives a better variational estimate may be
understandable on the basis that the original differential equation (C1) requires that x and x have opposite signs, which in turn im-
plies that the particle velocity must increase from negative values to zero as the particle moves toward x =0 from points x & 0 to the
right of the origin. In other words, the actual solution to the differential equation (C1) subject to the boundary conditions
x(0)= l,x(0)= —a is expected to have a positive acceleration x(~), at least for small ~ when x(~) and x(~) surely remain greater
than 0 and less than 0, respectively. The acceleration in the trial estimate x,(~) of (C15a) is 2b; therefore for ~ small, b & 0 in (C15a)
corresponds to a much more physically reasonable choice of x,(~) than does b &0, and should yield a correspondingly better varia-
tional estimate of x(c) at small ac.
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(H u) w =u (Hw), (D4)

where (in the present problem) the notation of Eq. (D4)
implies integration over x from x = —~ to oo, but does
not require taking the complex conjugate of' any quanti-
ties. It is implicit that U and/or w vanish sufficiently rap-
idly at + ao to ensure convergence of the integrals in Eq.
(D4).

Integrating u (Hw ) by parts, we find that

working with the Hermitian operator of Eq. (D3) rather
than with H of Eq. (Dlb). Nevertheless, for the purposes
of this appendix we shall continue to work with H, so as
to illustrate the construction of the VP for the eigenvalue
when the differential equation for the eigenfunction in-
volves an operator which is not immediately self-adjoint,
with the additional complication that the boundary condi-
tions on the eigenfunction involve a discontinuity in
derivative proportional to the eigenvalue itself. Ho~ever,
in the derivation which follows we shall recognize that
the eigenvalues E are real, because this permits us to deal
solely with real functions, thereby very much simplifying
the analysis without losing the essential features. The
derivation of the Vp when E is complex is sketched at the
end of this appendix.

For real functions U and w, the adjoint H of H is de-
fined by the relation

= —aE,Q, (0),
dx 0+ dx 0—

and similarly for f, . Then, according to our standard
procedure, a starting point for a variational estimate of E
should be

E„={E)„„=E,+I..', [(H E, )y, ]-
+[(H —E, )g, ] Lb, .

The first-order variation of Eq. (D9) gives

5E, =5E+L.[(H E)5$ —$5E—]

+ [(H E)5$ $—5E]tLb—.

But, as in Eq. (DSa), we have

(D9)

(D10a)

the eigenvalues E specified by Eqs. (Dl) and (D2); this re-
sult is the immediate consequence of multiplying Eq.
(Dla) by P and using Eq. (D4). Now let E represent any
one of these eigenvalues, e.g., the lowest, and let P and 6
denote their corresponding eigenfunctions satisfying Eqs.
(Dl) and (D7), respectively. Further, let E„P„f,denote
first-order trial quantities to the exact E,P, P, where we
shall require that P„P, satisfy the same sort of boundary
conditions as p, lt, i.e., that p, is continuous at x =0 but
that dP, /dx has the discontinuity

ut(Hw)= I dx u(Hw)

= I dx(H u)w

+ 2XUW — U
dx

dU—w
dx

J 0—
(DSa)

L, [(H E)5$ ]= [—(H E)L, ] 5P—
dL~

dx dx

0+

0—

(Dlob)

H =— +2 +2.d
dx

(DSb)

[(H —E )5$ ] Lb =5/ [(H E)Lb]—
dLb

dx dx

0+

0—

dU dU

dx 0 dx
= —aEu(0),

i.e., in the present problem the functions U for which Eq.
(D4) holds happen to satisfy the same boundary condi-
tions as do the functions w, when the functions w are sup-
posed to obey Eq. (D2).

The eigenvalues E of

The manipulations involved in Eq. (DSa) are much as in

Eqs. (C12). Equation (DSb) shows H &H, i.e., H is not
self-adjoint. In addition, in order that H satisfy the
equality (D4), it is necessary to impose boundary condi-
tions on v and w which will guarantee that there is no
contribution to (DSa) from the discontinuity at x =0. If
we assume that w satisfies Eq. (D2), satisfactory boundary
conditions on U are seen to be: U continuous at x=O, but
dv /dx discontinuous, with

Also, Eqs. (D2) and (D8) imply

0—
= —a [E5$ (0)+P (0)5E], (D10c)

(H E)Lb ——0, —

(H E)L, =0, —

1 L,p p tLb +aL—, (0)p (—0) +aLb (0)$ (0)=0,

(D 1 la)

(Dl lb)

(Dl lc)

and I-„I-b each are continuous at x =0 but have a first
derivative discontinuity satisfying Eqs. (D2) or (D6).

Equation (Dl la) and these boundary conditions on Lb
show that Lb is a multiple of p, i.e.,

and similarly for 51( at x=0. Using Eqs. (D10b) and
(D10c) in Eq. (D10a), we find that 5E, will vanish to first
order if

(Ht E)Q =0, —

subject to the boundary conditions that P is everywhere
continuous but de /dx satisfies Eq. (D6), coincide with

Lb=cbp .

Similarly,

L, =c,f .

(D12a)

(D12b)
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The magnitudes of the multiplicative factors c„cb remain
to be determined. With the simplest choice c, =cb ——c,
Eq. (Dl lc) yields

1 1

2 P P ag—(0)P(0)
(D13a)

Therefore, first-order estimates of I.b and L, should be
Lb, =c,p, and L« ——c,g„with

1 1

2 A A —aA(0)4't(0)
(D13b)

+[(Ht —E)g, ] Pt, ] .

Equation (D14), like Eq. (1.41)—to which Eq. (D14)
reduces when a =0 and H =H—is independent of the
normalization of the trial functions p, and 1lj, . That the
first variation of (D14) is zero, i.e., that (D14) really is a
VP under the stated boundary conditions, can be readily
verified directly from (D14).

When the eigenvalue E is not real, the problem of find-
ing a VP is more complicated in several respects. Sup-
pose we had not recognized that the eigenvalues E of Eq.
(D3) remain real even when a+0 in Eq. (D2). Then U and

I

Substituting these Lb, and L„ into Eq. (D9) yields the
desired VP

1 ' H —Et 0t]—

m will have to be treated as complex functions in Eq.
(D4), and it will be necessary to replace Eq. (D6) by

dU dU

dx 0 dx (D15a)

in order that Eq. (D4) shall continue to hold; Eq. (D5b)
remains unchanged however. Correspondingly, Eq. (D7)
is replaced by

(Ht E*—)$=0, (D15b)

that is, the eigenvalues of H are the quantities E~ when
the eigenfunctions 1l are required to obey Eq. (D15a)

The result (D15b) suggests that with a single simple
modification —namely, replacing E, by E,* in the last
term of Eq. (D9)—the right-hand side of Eq. (D9) will be
a suitable starting point for a variational estimate of E
when E is complex. However, this starting point has the
deficiency that it contains but a single term involving E,*,
which will cause difficulties when attempting to set the
coefficient of 5E* equal to zero (when E is complex, the
first-order variations 5E and 5E* should be regarded as
independent, just as the variations 5$ and 5P t were taken
to be independent in Sec. III.A and later sections). Also,
because in practice the values of the parameters (intro-
duced via the trial quantities) making the real part of the
VP stationary need not coincide with the values making
the imaginary part stationary, it is desirable to construct
separate VP's for the real and imaginary parts of E.

In light of the above considerations, a suitable starting
point for a VP for the real part of E should be

( Re(E) )„„=, (E,+E, )+ , I L—.,[(H E, )P,—]+(L., [(H——E, )P, ])*
I

+ —, I [(H E,*)P,] Lbt+—([(H E,*)g,] Lb, )—*I .

Proceeding as usual, we again deduce Eqs. (D12), and eventually arrive at the VP

(D16)

( Re(E))„„=—,(E,+E,')+ Ip, [(H —E, )p, ]+(1( [(H —E )p ])*I
2G

+ I [(H' E,')g, ]tP, +([(H—' E,')g, ]tg, )*I,— (D17a)

where

c =f,P, +P, P, a[@,*(0—)P, (0)+P,(0)P,*(0)] . (D17b)

Equations (D17) obviously reduce to Eq. (D14) when
all the trial quantities in (D17) are purely real.
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