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The research field "flow acoustics" is defined, and problems of current interest are discussed. The physical
interpretation of fluid-mechanical sound sources for an acoustic medium, both at rest and in motion, is ad-
dressed. In the first case, it has been possible to relate the sound pressure field for low Mach numbers to
sound sources that depend linearly on velocity; progress has been achieved by means of the causality corre-
lation method with the application of laser-Doppler velocity measurements. In the theory of the acoustic
medium in motion, it has been found that vortices downstream from a nozzle discharge can function as
sound sinks; for a unidirectional mean flow, conditions for the sound sources are developed on the basis of
the causality principle and the boundedness of the flow quantities. Experimental and theoretical results for
flowfield oscillations in a high-velocity duct flow with sudden duct enlargement are discussed. Finally,
some points concerning the influence of shear flow on sound propagation are described.
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Source distribution
Entropy per unit mass
Strouhal number
Absolute temperature
Velocity vector
Characteristic mean flow velocity
Velocity vector of the incompressible
approximation of the flowfield
Vorticity vector
Spectral intensity
Impedance
Ratio of specific heats
Characteristic shear-layer thickness
Characteristic wavelength of the generated
sound field
Density
Angular frequency

Subscript o refers to flow quantities in a medium
at rest.
Subscripts i,j (=1,2,3) refer to the components of
the flow velocity.
Superscript ' denotes the fluctuating part of flow
quantities.

LIST OF SYMBOLS

B
C

f
f (x2)
6
Ci

k
M
P

Stagnation enthalpy per unit mass
Speed of sound
Diameter of the nozzle
Frequency
Mode shape function
Green's function
Green's vector
Sound intensity
Axial wave number
Mach number
Pressure

Some of the symbols, and their meanings, that appear
several times in the text are listed below.

I. INTRODUCTION

What is flow acoustics? It differs from other acoustic
disciplines in that flows play an essential role in the
acoustic phenomena. One may distinguish three essential-
ly different processes:

(1) Generation of sound with essential participation of
the flow,

(2) Propagation of sound through flowfields,
(3) Generation of flow by sound.

In all three cases one may be dealing with liquids or gases;
the flow may be a one-phase or a multiple-phase flow;
and thermal or chemical processes, as well as motions of
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arbitrarily deformable surfaces of bodies, may participate
in the processes.

Flows are governed by nonlinear equations, a fact
which is responsible for the complexity of fluid dynamics
research, and thus also of flow acoustics. The nonlineari-
ties of the equations are directly involved with the three
processes mentioned above and their mutual interactions,
often making it difficult to separate them from one
another. With some care and caution, however, charac-
teristic and fundamental processes can be isolated which
allow us to study some aspects of flow acoustics and thus
to gain a deeper physical understanding of the field.

In the following we shall describe basic issues which
have engaged the interests of the flow acoustics communi-
ty during the last few years and which are concerned with
those characteristic and fundamental processes. Further-
more, typical methods for solving low-acoustic problems,
as well as actual solutions and the interpretation of these
solutions, will be presented.

Even though the selection of our topics may be subjec-
tive and influenced by the personal interests of the au-
thors, we nevertheless hope our presentation will shed
some light on typical questions, methods, today's pressing
problems, and the practical importance of flow acoustics.

In what follows we shall be concerned with details of
only the first two processes introduced above, since
Lighthill (1978) has fairly recently presented a survey on
the production of flow by sound.

II. THE GENERATION OF SOUND BY FLOWS

Steady flows do not produce sound. Therefore we need
only consider unsteady flows. Two causes for unsteady
flows may be mentioned:

(1) The motion of solid bodies (for instance, propellers
or pistons).

(2) The instability of flows. Here solid boundaries of
flows may often be at rest, i.e., the unsteady flow is
caused solely by the instability of the flow itself. Exam-
ples are turbulence —for instance, free jet turbulence
behind the nozzle of a tube —or vortex sheet instability
connected with the well-known phenomena of edge tones
or aeolian tones.

Which basic problems related to these two processes are
of special interest at the moment? We shall mention a
few:

(a) Lighthill s theory Thirty years a.go Lighthill (1952)
published his theory of aerodynamic sound production,
which he had developed during the preceding three years
(Lighthill, 1982). He rewrote the basic equations of fluid
dynamics in such a way that a wave equation for the den-
sity fluctuations with a source term q on the right-hand
side appeared. In the simplest case (which, in particular,
iInplies a bounded region of sound production, isentropic
medium, and characteristic Mach number M «1), the
corresponding equation for the pressure fluctuations reads

8 (p, v;vJ)
p =q(x, t)=

Bx.Bxj

Here, as in many other cases of low-Mach-number flow,
it is admissible in the source region to approximate the
actual sound-generating velocity field by an incompressi-
ble one which we denote by v=(v~, v2, v3). The other
symbols have the following meaning: x; (i = 1,2,3), Carte-
sian components of the radius vector x; t, time; p, density;

p, pressure; M = U/c„' U characteristic mean flow veloci-

ty; c, speed of sound; subscript o, values of the ambient
medium; C3= (1/c, )(r) /dt ) 6(—5, Laplacian operator).

This means that the actual medium has been replaced
by an ideal medium, in which the usual linear wave equa-
tion without convective terms is valid everywhere, and in
which sources of sound q are present —sources which also
comprise all convective and refractive effects of the actual
medium. This theory may therefore be termed a theory of
the ideal acoustic medium at rest. In this theory the
source distribution q is of local quadrupole character, as is
apparent from its mathematical representation (second
spatial derivative).

Lighthill's (1952) derivation is generally valid, and may
well be applied to many flow-acoustic problems. The fol-
lowing questions arise, however:

(1) In interpreting q as local quadrupole sources one has
to keep in mind that other source distributions may pro-
duce the same sound field at large distances (see, for ex-
ample, Ffowcs Williams, 1974). In other words, one can
add nonradiating sources to a given source field without
changing the far field. This well-known nonuniqueness in
the source distribution (compare Baltes, 1978) leads to the
question as to which is the physically most plausible rep-
resentation of the sources.

(2) Is it possible to achieve improvements by consider-
ing the mean motion of the medium more explicitly? In
other words, what can be gained by a theory of an ideal
acoustic medium in motion?

(b) Flight effects on sound fields. In the study of jet en-
gine noise, one is interested in flight effects on aircraft
noise. One of the most pressing problems concerns the
predictability of the sound field produced by a jet engine
in flight when only the sound field generated by the same
engine running on a static test stand is known. Here vari-
ous discrepancies between theory and experiment have oc-
curred. Are these discrepancies due to the motion of the
sound sources, due to additional sound sources occurring
under in-flight conditions, due to additional sound-
scattering processes, due to changes in the properties of
the jet turbulence inflight, or are they due to other fac-
tors?

(c) Coherent structures. In turbulent jet flows often so-
called "coherent or orderly structures" are observed.
They are initiated by large-scale vorticity fluctuations like
interacting and pairing vortex rings. Now the question is:
What role do these structures play in flow-acoustic sound
production?

(d) Complex processes. There are many flow-acoustic
processes for which general theories such as I.ighthill's
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are valid, but for which, because of the complexity of the
processes, these theories have given little detailed infor-
mation. This is the case for many problems in which
feedback and/or resonance play a role. The same applies
to relaxation processes, for instance to oscillations in a
flow with evaporation or condensation. Furthermore, one
must differentiate between flows that are purely subsonic
and those which are at least partially supersonic. Here
additional types of instabilities occur—to mention but a
few, the screech noise of supersonic jets, the Hartmann-
Sprenger tube, oscillations in Laval nozzles, the buffeting
phenomenon in flows around airfoils, and certain types of
oscillations occurring in tubes with changes in cross sec-
tion.

All these phenomena have one point in common: the
theories describing them are more or less ad hoc, and
have to be tested experimentally.

The problems listed under (a) to (d) above are—among
others —the subject of intensive current research efforts.
Progress has been considerable, so that all these problems
could be extensively discussed in this paper. This is, how-
ever, impossible because of the prohibitive amount of ma-
terial. We shall therefore concentrate on the problems
mentioned under (a) and (b)—both from the theoretical
and experimental points of view —and shall present a
characteristic example of the problems mentioned under
(d}. With respect to the remaining questions the reader is
referred to the literature [(a): Fuchs, 1978; Ribner, 1978;
Crighton, 1979; Kibens, 1979. (d): Karamcheti et al. ,
1969; Woolley and Karamcheti, 1974 (edge tones);
Rockwell and Naudascher, 1979 (impinging free shear
layers); March, 1964; Brocher et al. , 1970; Sarohia and
Back, 1979 (Hartmann-Sprenger tube); Meier, 1974;
Jungowski, 1978; Seegmiller et al. , 1978; Marvin et al. ,
1980 (instabilities in supersonic and transonic flow);
Meier, 1976 (Laval nozzle)]. A general introduction to
flow acoustics has been given by Cxoldstein (1976), a short
survey on jet noise by Ribner (1981). Further papers of
general interest were published by Crighton (1981) and
Ffowcs Williams (1982).

A. The ideal acoustic medium at rest

Theory

In later sections we shall often use the vorticity vector
w=curlv, so it may be appropriate to say a few words
here about its most important properties. One form of
Helmholtz's vortex equation reads, for incompressible
inviscid flows,

Bw —curlA=0
at

(A=wXv), which states a vortex conservation law with
an antisymmetric vorticity flux tensor. It shows that the
total vorticity in a region of space can change only by a
vorticity flux through its boundary. From the definition
of A one concludes that the vorticity flux vanishes if the

q =p, divA

(local dipoles) (Powell, 1964), and

[0)
2Pa

C0

(2)

(local monopoles), where p' ' means the so-called "pseu-
dosound" pressure in the flow (Ribner, 1962), i.e., the
pressure in the flow incompressible approximation. How
can one proceed from these different representations? A
particularly simple and physically instructive solution to
the problem was recently developed by Mohring (1978a)
and Obermeier (1977), which we shall present here.
Mohring proceeds from Powell's representation (2) and
the well-known solution of an inhomogeneous wave equa-
tion by means of a Green's function G,

p(x, t)= f G(x, y, t t')q(y, t')d y dt'—
= —p, f A.gradGd y dt' . (4)

He replaces the Green's function G (this is the principle
idea) by a Green's vector Cr with the help of the definition

gradG =curlCr

and obtains

p(x, t}=—p, f Cx.curlAd y dt' . (6)

The integrability condition of Eq. (5) (divgrad„G=O) is
often fulfilled, if x is a far-field point. By invoking
Helmholtz's vorticity transport equation one obtains the
general result for the far field,

vorticity vanishes, which implies that the total vorticity in
a region of space can change only if the vorticity on its
boundary is nonzero.

The Helmholtz vortex equation can also be written as

Bw +v.Vw=w. Vv .
at

This is a form which focuses attention on a material par-
ticle. One observes that the vorticity of a particle changes
if the velocity varies in the direction of w. The direction
of w defines a vortex line, and varying velocity implies in
general a stretching of this line. These two versions of the
Helmholtz vortex equation illustrate the way the vorticity
changes at a fixed point in space as well as for a fixed ma-
terial particle. In the important special case of two-
dimensional flow, it is not possible for a particle to
change its vorticity. Only minor modifications are re-
quired for compressible flows with constant entropy. One
finds that w in the preceding equation should be replaced
by 1/p curlu [u=(u ~, u2, u3) is the velocity field which, in
contrast to v, includes compressibility as well], which
shows that a material compression is accompanied by a
vorticity increase.

Let use now return to question (1) of section (a), con-
cerning the physically most plausible source representa-
tion. In addition to Lighthill s distribution q [Eq. (1)],
two further equivalent source distributions q are common-
ly used to determine the radiated sound,
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p(x, t)= 2 3 2 p0U;U~(y, t —X' /C0)d g
4mc, x gt

(8a)

a3
p(x, t)= ',', , f p,y;[y&(w(y, t xlc, )]jd—'y,

12m', x Bt

(8b)
where x =

~

x
~

. The main conclusions are as follows:

(1) In contrast to all previous representations [see, for
example, Eq. (8a)], the sound pressure appears here for
the first time as a quantity that is linear in the vorticity
vector and, therefore, linear in the velocity. The contribu-
tions of the vortices to the sound pressure are additiue.

(2) Only those components of the vorticity vector w
contribute to the radiated sound which are normal to the
observation direction.

(3) By representing the sound sources in terms of vorti-
city the process of aerodynamic sound production is now
based on a fundamental aerodynamic quantity for which
conservation equations exist, viz. , the vorticity theorems.

(4) The calculation of the sound production by flows
which can be modeled by vortex motions becomes simple
and clear.

On the basis of Mohring s general results, explicit formu-
las have been derived for the sound radiation of prototypi-
cal flows (e.g. , Obermeier, 1977, 1979; Mohring, 1978a;
Kambe and Minota, 1981). For instance, Mohring
(1978a) calculated the far-field sound created by two iden-
tical coaxial vortex rings spinning around each other.
This is the first example in which a full explicit deter-
mination of the aerodynamic sound produced by a three-
dimensional flow was achieved. Kambe and Murakami
(1979) have reported on first steps comparing Mohring's
results with measurements of the sound produced by the
head-on collision of two vortex rings. An extension of the
theory to higher Mach numbers is desirable, but not yet
available.

Based on Lighthill's acoustic analogy approach, analyt-
ical descriptions of the influence of solid bodies in the
flow upon aerodynamics sound generation were made by
Curie (1955). Later Ffowcs Williams and Hawkings
(1969) and Mohring et al. (1969) independently general-
ized Curie's equation to include bodies with arbitrarily
moving boundaries. As the integral representations of the
sound field in these theories were based on free-space
Green's functions, they include volume integrals as well
as surface integrals.

An alternative representation of such sound fields can
be obtained if the free-field Green s function is replaced

p(x, t)=p, Cx(x, y, t —t') w(y, t')d y dt' .'ai
Example for application .Consider the far-field sound

pressure of a low-Mach-number flowfield in free space,
i.e., in the absence of solid bodies (for instance, in the far
field of a turbulent flow region). The computations after
Lighthill and Mohring, respectively, yield the following
results:

2. Experiments

On the experimental side of things —particularly from
the aspect of noise reduction one seeks information as to
the distribution of flow-acoustic sources of sound. To
achieve this, various experimental methods have been
developed and applied. In the present survey we confine
the discussion to the "causality correlation method" as
developed by Lee and Ribner (1972) and Siddon (1973).

While it is often useful for both theoretical considera-
tions and practical computations to proceed from vortici-
ty (see, for example, Morfey, 1979), the measurement of
this quantity turns out to be difficult, as it requires the
measurement of velocity gradients. This is more difficult
than measuring the velocities themselves. Therefore,
measurements of the source distributions have up to now
almost exclusively proceeded from Eq. (1) or similar
equations. On decomposing the velocity U; into a time-
independent ( V;) and a time-dependent part (U ), one ob-
tains four source terms:

poUi Uj po i j+po i j +po i j+po i j (9)

The first term is time independent, and therefore does not
contribute to sound generation. The second and third
term define the so-called "shear noise, " and the fourth
term the so-called "self-noise. " This nomenclature was
first used by Lilley (1958), who wrote: "The calculation is
divided into the contribution from 'self-noise' in the tur-
bulence and the interaction between the turbulence and
the mean shear. "

The contributions of both the shear noise terms and the

by Green's functions especially tailored to the geometry of
the bodies in question. In these cases the complete sound
field is expressed in terms of volume integrals only,
whereby the adjusted Green's functions may be evaluated
by means of a reciprocity theorem as proposed by Howe
(1975b). Applying this method, Obermeier (1980) deter-
mined quite generally the corresponding Green's vector
function used in Eq. (7) for low-Mach-number flows.

From that solution, simple and plausible results are ob-
tained, provided the mean flow (not the actual unsteady
flow) is either a two-dimensional potential flow, for in-
stance, a potential flow around "infinite" wings, or a po-
tential fIow around a sphere or through an axisymmetric
duct with varying cross section. In all these cases the
aerodynamically generated sound field radiating into an
arbitrary observation direction x is determined by the rate
at which unsteady vorticity components normal to x cross
the streamlines of a hypothetical steady potential flow
around the body with x direction at infinity.

This outcome can be regarded as a generalization of a
result obtained already by Howe (1975a). He found that
in a two-dimensional Aowfield the sound generated by a
line vortex moving in the vicinity of the trailing edge of a
half-infinitely extended solid plate is determined by the
rate at which the line vortex cuts across streamlines of a
potential flow around the plate.
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self-noise terms to the total sound generation cannot be
determined from acoustic measurements outside of the
flow alone; one has rather to correlate measurements
within the sound-radiating flowfield with measurements
in the far field. The method of "causality correlations"
has turned out to be useful here. This technique proceeds

I

from the autocorrelation p, (x, t)p, (x, t —r) of the far-field
pressure p„ in which p, (x, t) (the "effect") is
represented —by means of Eq. (8a)—by the terms p, u;U~.

within the flow region (the "cause" of p, ). The bar stands
for the time average. Qne obtains by straightforward cal-
culation and using Eq. (9)

82
p, (x, t)p, (x, t —~) =

z f [2V„(y)U„'(y, t)p, (x, t +x/c, r)—+U„' (y, t)p, (x, t +x/c, r)]d—y,
4mc, x B~

where the first term in square brackets is the shear noise
term and the second is the self-noise term and where the
subscript x indicates the component of the velocity vector
in the direction from the flow region to the observer.
Thus the autocorrelation, and therefore the spectrum of
the far-field pressure, are fully determined by the two
correlations in Eq. (10). The integrand vanishes outside
the flow region.

A serious source of error for measurements within the
flow region is the interaction of the measuring probe with
the flow itself. Therefore, a good deal of effort has been
expended on nonobtrusive measuring techniques. Consid-
erable progress was recently made by Schaffar (1979;
Schaffar and Hancy, 1982) and Richarz (1979), who suc-
ceeded in using LDV (laser-Doppler velocimetry) for
determining the causal correlations [right-hand side of
Eq. (10)] for jet noise. A.mong their results are the follow-
ing:

I

tively, and was for the first time used by Strouhal (1878)
to describe the frequency of vortex shedding behind a
cylinder in an airstream. ]

These results leave a number of questions still
unanswered. In the work of Schaffar (1979; Schaffar and
Hancy, 1982) refraction —at least for smaller wave-
lengths --"ould have modified the results, since the Mach
number is rather high; the measurements became less ac-
curate for 8 & 30'. For 8 & 30, however, a physical inter-
pretation of the experimental data is complicated by the
observation (Lush, 1971; Tanna, 1977) that the measured
noise spectra no longer scale with the Strouhal number
fD/U but with the nondimensionalized frequency fD/c, .
Explanations of this finding have been suggested, for in-
stance, by Lilley et al. (1974) and Cxoldstein (1975), who
investigated theoretically the sound field produced by
point multipoles convected downstream in slightly diver-

(1) For M=0.98 (Schaffar, 1979), where M is the mean
Mach number in the nozzle exit, the zone of the jet gen-
erating most of the radiated noise at 0 =20 and 30 to the
jet axis (8 =0 is the flow direction) is located in a cylin-
drical domain about the jet axis within the transition re-
gion 5 &z/D & 10, where D is the diameter of the nozzle
and z the axial coordinate of the jet (z=0 at the nozzle).
This is in good agreement with results obtained earlier by
other authors (e.g., Cxrosche, 1979). For 8 =30' and
M=0.97 (Schaffar and Hancy, 1982), the intensity of the
shear noise generated by the jet in this domain was found
to be 8 dB greater than that of the self-noise.

(2) Comparison with the pressure spectrum obtained by
autocorrelation at the observation point showed good
agreement for 8 =20' and 30' (see Fig. 1). With the then-
used measuring technique a disparity developed for larger
angles 8 (Schaffar, 1979; Schaffar and Hancy, 1982).

(3) For M=0.3 (Richarz, 1979) and an angle 40' the
shear noise and self-noise spectra [right-hand side of Eq.
(10)] determined from the sound which was emitted from
the zone 3 &z/D &7 were similar in shape. They exhibit-
ed a frequency shift somewhat smaller than the expected
one-octave shift, yet having comparable absolute ampli-
tudes.

(4) The mean-square source strength per unit length of
the jet decreased with increasing z/D in the zone
3 &z/D & 7 for all Strouhal numbers (see Fig. 2) (Richarz,
1979). [The Strouhal number is a frequency made nondi-
mensional by a characteristic length and velocity, respec-

6.3

3.55-

1.125—

0.63-

0, 355-
0.04 0.164, 0.658 2.63

0.08 0329 1.315
SIIrou oa & um'ocr

FICx. 1. Pressure spectra in —octave bands, vrith microphone
at 20 and 30 to the jet axis: Q and 0, far-field measurements
(autocorrelation technique at the observation point); $ and e,
causality correlation technique [right-hand side of Eq. (10)].
From Schaffar (1979).
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2
—+ 2

— .V' —6 B =dsvL—1 d 1 du
dt c2 dt q2 dt

8 is the stagnation enthalpy h + —,
~
u

~
per unit mass, s

is the entropy per unit mass, T the absolute temperature,

(12a)

0
0 2
Q&lcl( clls(Qrlc& ff'oftl flozz(& Z/Q I.= —u &curlu —TVs . (12b)

Fio. 2. Mean-square source strength distribution per unit
length: D, nozzle diameter; U, mean Aow velocity at nozzle
exit; f, frequency; fD/U, Strouhal number. Microphone at 40'
to the jet axis. From Richarz (1979).

gent shear flows. [In the case of Richarz (1979) the mea-
surernents do not give the point of maximum source
strength (see Fig. 2); the phase information is neglected. ]
Further, there exist unexplained discrepancies between the
results obtained by the causality correlation method and
those gained earlier from far-field measurements only, for
instance by acoustic mirrors (Crrosche, 1973; Chu et al. ,
1972), acoustic telescopes (Billingsley and Kinns, 1976),
or polar correlation technique (Fisher et al. , 1977).

It is, however, obvious that great progress may be made

by unobtrusive measuring techniques. In, say, ten years,
the accuracy of aerodynamic noise prediction should have

been considerably improved by means of them.

Equation (11) is exact in the absence of dissipative pro-
cesses. Note that the material derivative d/dt involves
the actual (possibly rotational) fluid velocity, and not
merely that of the mean flow. Equation (11) shows that B
obeys a kind of convective wave equation with sources
which are related to I.. As 8 reduces in regions without
flow to (I/p, )ln and can therefore be used to determine
the acoustic pressure, one concludes that aerodynamic
sound generation requires vorticity [compare Eq. (7)] or
entropy gradient fluctuations. At points of the flow exte-
rior to regions of entropy inhornogeneities and vorticity,
the right-hand side of Eq. (11) vanishes identically. In
these regions the left-hand side agrees fully with that of
the equation which describes the propagation of small ir-
rotational disturbances in a steady irrotational flow [c and

u in (11) being replaced by their steady values]. Howe' s

model, therefore, satisfies the above-mentioned condition
of having all linear terms in fluctuation quantities on the
left-hand side in any potential flow region.

B. The ideal acoustic medium in motion

There is no doubt that the ideal acoustic medium at
rest is a correct model for flow-acoustic sound generation
(see, for example, Ribner, 1977). One might, however, ar-

gue that it is not very sensible to model convection effects
in terms of sources. One would prefer very much to
rewrite Eq. (1) in a form in which the linear fluctuating
terms appear on the left-hand side of the equation. This
would reduce the problem of flow-acoustic sound produc-
tion to the problem of sound generation in an ideal acous-
tic medium moving with a time-independent flow. Pursu-

ing this, one finds that it is impossible in general to derive
one single equation for a fluctuating quantity; one has to
accept a complicated system of equations, Simplifica-
tions are, however, possible in two important special cases
where one single equation could be derived. The first spe-
cial case is that of a time-independent potential flow, the
second that of a time-independent unidirectional flow.
We shall consider both cases.

Howe's model

a. Theory

On the basis of the gas dynamic equations, Howe
(1975a) derives

b. Application: Vortfces as sinks of sound
in low-Mach-number flow

Howe's model has been applied to many flow-acoustic
problems, e.g., to the theory of the flute (Howe, 1975a), to
trailing-edge noise (Howe, 1978), and to the transmission
of sound through a perforated screen (Howe, 1979a). We
should here like to discuss one interesting problem in
some detail, namely that of the attenuation of a sound
wave (angular frequency nl) by a low-Mach-number noz-
zle flow (see Fig. 3).

In this problem the sound wave propagates in the noz-
zle and approaches the exit from the left-hand side. At
the edge of the nozzle, vortices are shed by the sound
wave. These vortices occur as sound sources in Eq. (11).
For low frequencies, Howe (1979b, 1979c) solved Eq. (11)
to first order in Mach number using the incompressible
limit of the results of Munt's (1977) calculations of the
motion of the vortices. Essential for the calculations is
the use of a reciprocity relation by which one is able to in-

terchange the roles of source and observer.
This solution enables one to calculate the acoustic ener-

gy WF radiated into the far field, and to compare it with
the "transmitted" energy 8'T (this is the difference be-
tween the energy of the incident wave and the wave re-
flected back into the nozzle). For thin vortex sheets,
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lgcorAln q
flow

inc, ident retlec te )R

flow with
Hach number H

FIG. 3. Symbolic diagram for the attenuation of a sound wave by vortex shedding.

Howe finds

k=
~T 4Mv+(kR)

(13)

if the density and the speed of sound in the jet agree with
their free-space values. kR is proportional to the ratio of
the tube radius to the wavelength of the incident sound
wave. v depends monotonically on the Strouhal number
coR/U (U exit flow velocity) and is equal to 1 for

1

Strouhal numbers approaching 0, and —, for Strouhal
numbers approaching infinity. The ratio of the two ener-

gy fluxes 8'~ and 8'z is unity, if the acoustic energy is
conserved. Equation (13) shows that this is the case only
for no flow (M=O). The ratio would be greater than one
if additional sound were generated by the sources on the
right-hand side of Eq. (11), and smaller than one if the
sources were to act as sinks, thereby attenuating sound.
Equation (13) reveals the latter is true. One can interpret
this phenomenon as a "sucking off" of acoustic energy
and transformation of it into flow energy, a process which
is linear [no amplitude dependence in Eq. (13).] and in
which no dissipative effects are involved.

An earlier experimental investigation by Bechert et al.
(1977) shows (see Fig. 4) attenuations of as much as 20

dB. This work agrees satisfactorily with theory within
the validity range of the theory (M «1 and kR «1).
Recently Bechert (1979) has given a simple derivation of
Howe's result [Eq. (13)] with the (kR) missing from the
denominator and v=1. There is good agreement with the
experimental values for a large range of parameter com-
binations M and kR. Howe (1980) himself reconfirrned
his low-Strouhal-number result by an elegant integral
method. For further discussion see Cargill (1982).

These results are important not only for nozzle flows
but also for other situations where separation of a mean
flow from the edge of a rigid surface occurs (for examples
see Bechert, 1979). Absorption of sound by vorticity
shedding might provide a useful complement to conven-
tional broad-band sound absorption systems, which are
usually inefficient for low frequencies.

c. Generalj'zation: A self-adjoint form
of Eq. (11)

Howe's calculations are restricted to the lowest order in
Mach number. The same is true for many other applica-
tions of Eq. (11). One of the reasons for this restriction is
the lack of a reciprocity relation for Eq. (11) for higher
Mach numbers. Equation (11) admits such a relation only
to first order in Mach number or, what amounts to the
same thing, it is not self-adjoint. Recently Mohring
(1979) found a modification of Eq. (11) that is self-adjoint
for B for arbitrary functions c, u, and p, and therefore ad-
mits a reciprocity relation for all Mach numbers. For an
ideal gas, it reads

T

d 1 d8
dt 2 V pVB =—div. pL+ (y —1) pT d Bs

dt Bt

-20 where y denotes the ratio of specific heats.

(14)

0 50 100 g
2. Unldlrectlonal flow

FIG. 4. The ratio of the energy 8'z radiated into the far field
to transmitted energy 8'T. Experiments from Bechert (1977).
Upper curve, theory for Strouhal number~ao, ' lower curve,
theory for Strouhal number~0 (from Howe, 1979b).
o.=4M/k R .

a. Theory

The potential flow model described in the preceding
section does not seem too well suited for application to
problems with extended regions of rotational flow —such
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as jets, for example. In many cases the unidirectional
flow model might constitute an improvement. If the
mean flow velocity and the mean speed of sound are given

I

by U~(x2) (see Fig. 5) and c(x2) and the velocity fluctua-
tions are assumed to be incompressible, then the perturba-
tion pressure p' obeys the equation

1 Dp'
—2 at 3

bp' — [1n(c )] ~ +2Dt '
dx2 Dt ax2 dx2 Bxlox2

2
Po&o

C
—2

r

8 (U uj' —U UJ') dU&—2 (Uk BUp /CIXk —Uk BU2 /BXk )Dt Bx,.Bx, dx, Bx, (15)

where D/Dt =8/Bt+ U&B/Bx~. Equation (15), given by
Tester and Burrin (1974), is a simplified version of a rela-
tion due to Lilley (1973). Here we want to emphasize two
points: (i) As in Lighthill's theory, the right-hand side of
Eq. (15) usually is regarded as a source distribution, even
though it still depends on unknown flow quantities that
one has to evaluate, and (ii) Eq. (15) is a third-order equa-
tion. The latter point may seem somewhat surprising for
an acoustic problem. The reason, however, is that Eq.
(15) also contains hydrodynamic disturbances, and it
seems in general impossible to separate them from the
acoustic perturbations. There is one exception, that for a
linear profile (see Sec. III). The incompressible limit of
Eq. (15) is none other than the Orr-Sommerfeld equation
for an inviscid flow, sometimes called the Rayleigh equa-
tion, studied intensively in the context of hydrodynamics
stability theory. One therefore expects Eq. (15) to have
unstable solutions (see, for example, Doak, 1974). Such
unstable solutions do exist, in general, if one admits arbi-
trary sources on the right-hand side and requires the solu-
tions to be "causal, " i.e., requires that p' arises from the
excitations on the right-hand side.

Alternatively, one may argue that one never finds ex-
ponentially growing solutions in reality, and therefore one.
has to look for bounded solutions of Eq. (15). They exist,
but they are no longer causal: p' shows precursors to the
excitation of the right-hand side.

The only way out of this dilemma is to require the
right-hand side to be constituted in such a way that ex-
ponentially growing solutions are not excited (Mohring
and Rahman, 1979). This leads to conditions for the in-
compressible velocity fluctuations U, and hence gives in-
formation about the sound-generating flow, e.g., turbulent
jet flow. Physically this r~eans that the flow adjusts itself

FIG. 5. Unidirectional flow.

y"(r) —k y(r)=y (r)+f(r)=—Q(r) . (16)

f is a given function, triggering the process y(t), vanish-
ing for t&0, and nonzero only for a short time; k&0.
The term y on the right-hand side stands for the non-
linearity of the equation. If one requires causality (no
precursors), the equat:on

y(r)= f Q(r)dr f—Q(~)dv

(16a)

is valid, as one can derive by using the method of varia-
tion of parameters. This fulfills the causality condition,
because only Q values with v &r contribute to the solu-
tion. If one additionally requires the solution to be
bounded, then the condition

f (y +f)e "'dv =0 (16b)

follows. If one requires only y (t) to be bounded, then one
obtains

~k(t —r)
y(t) = t ~

—k(t —r)
Q (~)dr —f Q(r)d~

(16c)

in place of Eq. (16a). One sees from the first term that
there are precursors. If one additionally requires causali-
ty, one again obtains condition (16b). Whatever the de-
tails of the solution may be, if the conditions both of
causality and of boundedness are required, then Eq. (16b)
must hold. Applications to turbulence are given in Dowl-
ing et al. (1978), Mohring (1979), Ffowcs Williams and
Purshouse (1981). It is interesting to note that although
this consideration has an acoustic origin, it throws light
on the problematics of turbulent fiow ven for the in-
compressible case.

For practical flow-acoustic calculations it is often diffi-
cult to fulfill the conditions analogous to Eq. (16b). This
means that one has to decide whether one prefers the

I

in such a way that no exponentially growing disturbances
are produced. The same conditions for velocity fluctua-
tions are obtained if one requires the bounded solutions of
Eq. (15) not to show precursors.

To elucidate these problems, which are directly related
to the fact that the source term in Eq. (15) depends on un-
known flow quantities, Miiller (1980) suggested the fol-
lowing equation as an example:
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causal (no precursors) or the noncausal (precursors) for-
mulation. Because small errors and disturbances grow ex-
ponentially in the causal case and remain bounded in the
noncausal case, one might often choose the latter.

b. Applications

2
Po PJ 3 1—R coRUi, S (17)

where R is the radius of the vortex sheet and S is the
Strouhal number. Here the low power of the Mach num-
ber is surprising; in fact, Eq. (17) differs from the usual
scaling law by a factor (MS)

The same model can also be applied to the experiment
of Bechert et al. (1977). In this case it is possible to ig-
nore all the sources on the right-hand side of Eq. (15), and
to regain only the incident sound wave in the nozzle as
source. Munt (1977) discussed this problein using the
causal solution. Satisfactory agreement was found with
the directivity pattern measured by Pinter and Bryce
(1976) for the noise radiated by a hot jet. In a later paper
Munt (1978) achieved a very favorable comparison with
measurements obtained by Bechert et al. (1977), again us-

ing the causal solution. However, Munt had to ignore a
contribution from the unstable wave.

C. In-flight effects

In recent years there has been a growing interest in pre-
diction schemes for aeroacoustic noise generation by air-
craft in flight or—more fundamentally —in-flight effects
upon noise production by a turbulent jet exhausting from
a nozzle into an outer, coflowing stream. Experimental
investigations have shown that simply allowing for
Doppler effects —applied to the known sound field of a
free jet in a medium at rest, in the following often called a
static jet does not yield convincing results. Moreover,

Equation (15) is rarely amenable to analytic treatment,
and in general one has to use approximate or numerical
methods. High- and low-frequency approximations have
been made, for example, by Balsa (1976), Tester and Mor-
fey (1976), and Goldstein (1975, 1982). Exact solutions in
terms of parabolic cylinder functions are known for a
linear velocity profile U~(x2) (Goldstein and Rice, 1973).
They have been applied to sound propagation problems
through a linear shear layer by Scott (1979), and Koutsoy-
annis et al. (1980). An analytic solution is also possible
for a piecewise constant-velocity profile ("vortex sheet").
In the case of a jet, for example, it seems worthwhile to
study a cylindrical vortex sheet model where U&(x2) is
constant inside and vanishes outside of the jet. Such an
acoustic model was developed by Dowling et al. (1978).
One of the many interesting results of this investigation
relates to the sound generated by very light jets of density

pj . Dowling et al. (1978) show that, for pj.

«p M S
~

ln(SM)
~

and (SM) && 1, the spectra level W
of the radiated sound is given by

most alternative methods were not very successful in ex-
plaining measured flight effects satisfactorily; on the con-
trary, existing theories and data in the literature are still
controversial (Crighton et al. , 1976; Ffowcs Williams,
1977; Michalke and Michel, 1979; and Michel, 1981).
Those uncertainties have led to speculations as to what
happens hydrodynamically to a jet in flight compared to a
static jet, i.e., a jet running on a test stand (see Cocking
and Bryce, 1974, 1975; Bushell, 1975; and Plumblee,
1976).

In a recent paper Obermeier (1981) critically reviewed
existing prediction schemes and looked for the roots of
their deviations from experimental data. He then suggest-
ed the following new method, which takes advantages of
scaling laws and similarity arguments.

A quite general representation of the sound intensity
I,„radiated by a static jet can be given in terms of mul-
tipole expansions,

2 2

I,„=N' U' D
po +oCo m =0

2m

(8, T~/T, )

(18a)

or, alternatively,

I;„=N M 2 g M p (g, T~/T, ) .
p0 R, 0

(18b)

Here the characteristic flow velocity U is the jet exit ve-

locity, pj is the density of the medium exhausting from
the nozzle, TJ the corresponding temperature, A, a charac-
teristic wavelength of the generated sound field, R, the
distance between the "source" in the jet and an observer
(A, «R, ), and 8 the observation angle. The functions P~
or P~, respectively, are directivity functions of the sound
field. N is a measure for the "number" of sound sources
in the jet, and m marks the multipole order of the single
terms P or P~; i.e., m=2 corresponds to quadrupolelike
sources (cold mixing flow), m=1 to dipolelike sources
(temperature and density effects, interaction between solid
bodies and the unsteady jet flow), m=0 to monopolelike
sources (mass sources, real gas effects in very hot mixing
flows). Since, for most observation directions, the spec-
trum of the radiated jet noise scales with the Strouhal
number fD/U, one finds that D/A, is proportional to
U/c, =M, which explains the equivalence between Eqs.
(18a) and (18b). The directivity functions P~ and P~ de-
pend on the multipole order and the geometry of the flow.
Furthermore, it is assumed that the jet consists of N
sound sources, which generate sound independently of
each other, and whose sizes are proportional to D. There-
fore, the overall intensity is obtained by adding the inten-
sities of the sound fields of the single sources.

In order to apply Eq. (18) to a jet in a coflowing stream
(velocity Ufl'ght), one first needs to know how the outer
flow affects the characteristic flow quantities U, A, , R„
the number N of the sources, and the characteristic
shear-layer thickness 6 of the jet. Relationships applied
by Obermeier are summarized in Table I. These results
were obtained from dimensional analysis combined with a
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TABLE I. Characteristic flow quantities for calculation of in-
flight effects: U, mean flow velocity; 5, shear-layer thickness of
the jet; A, , wavelength of the generated sound field; N, number
of sources; Rp, distance between source and observer at emission
time, ' Rp, distance between source and observer at receiving
time' tj = Uflight/U. Based on Qbermeier (1981).

~ OA SPL (dB)

Static jet Jet in flight

(1—g)U

1+Mfl ghtcosL9
flight =

+rl
l 2

Nflight =
Q OA 5 PL (dB)

oo

Rp R p = ( 1 —Mflight cosO )R p

substantial use of experimental results. Provided all
quantities in Eq. (18) are known, then the in-flight effects
on jet noise may be expressed by

EOASPL = 10 log
I)et

(aM)

=10log (1+7) ) a I2' p
m=0

where

(19)

FIG. 6. Reduction of sound generation by a GE-J 85 turbojet
engine due to in-flight effects (OASPL, overall sound pressure
level). (a) Solid curve, experimental data (Drevet, 1977; U=505
m/s, TJ =802 K); dot-dashed curve, theory, Eq. (19); )&-dashed
curve, theory, Ffowcs Williams (1963). (b) Solid curve, experi-
mental data (Drevet, 1977; U=625 m/s, TJ=940 K); dot-
dashed curve, theory, Eq. (19); &&-dashed curve, theory, F~owcs
Vhlliams (1963).

1 —g
CX =

1+Mfl'ghtcoso

This result is equivalent to a formula derived by
Michalke and Michel (1979) and Michel (1981). Their
derivations, however, are more complex than Obermeier's.
Furthermore, some of the essential assumptions proposed
in their investigations are at complete variance with those
of Obermeier (1981). This could be a starting point for
further research on the topic.

Comparing the prediction scheme of Eq. (19) with ex-
perirnental data, it turns out that the latter are surprising-
ly well described by the theory. A typical example is
shown in Fig. 6, where measured in-flight effects on the
noise field generated by a CxE-J85 turbojet engine (Bertin
Aerotrain) (Drevet et al. , 1977; Hoch and Berthelot,
1977) are compared with the predicted effects.

D. A typical flow oscillation

We should now like to consider one of the complex
flow-acoustic processes belonging to group (d) in the list
of problems outlined at the beginning of Sec. II, namely,

the generation of flow oscillations behind a sudden en-
largement of cross section in an air duct. Behind the en-
largement a supersonic flow regime is assumed to exist,
bounded downstream by a shock.

There are two reasons why this example should prove
of interest. First, due to the existence of both subsonic
and supersonic flow regimes typical fiow oscillations may
be observed; second, these oscillations are among the few
examples of flow oscillations which have been investigat-
ed both experimentally and theoretically to some extent.
We shall not deal with the sound produced, since we are
here interested only in the oscillation mechanism.

The above-mentioned oscillations in the duct (see Fig.
7) are observed for certain values of the pressure ratio
p, /p, (Albers, 1979). For other values of this ratio the
flow may either be steady, or it may execute other oscilla-
tions, for which as yet there exists no theory.

Figure 7 shows in the center two interferograms of the
plane flowfield. The rniddle figures show the extrema of
a full cycle of the oscillation, which, in a duct of height
3.3 cm and length 24 cm, have a frequency of several
hundred hertz. As may be seen from the sketch at the top
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FIG. 7. Interferograms and surface pressure fluctuations:
h = 10 mm; 0=33.2 mm; L =240 rnm; p, /p, =0.364;
depth=100 mm. See text for discussion.

of the figure, the shape of the supersonic flow regime
changes periodically with the oscillation cycles, such that
a channel of variable width is created, connecting the
downstream part of the flowfield (to the right of the
shock) and the dead air in the corners of the duct In th.is
channel a fluctuating flow exists, constituting a feedback
from the shock to the upstream part of the Aow, i.e., to
the whole supersonic flow region in the enlarged duct.
This channel is thus the feedback path. It is essential that
the supersonic flow does not completely fill the down-
stream cross section of the duct enlargement, because if it
did, with supersonic Aow everywhere in the duct cross
section, no waves, i.e., no information, could propagate
upstream. Because of the important role of the per-
manently existing separation region in the duct corners
immediately downstream of the jump in cross section,
these oscillations are termed "dead-air" or base-pressure
oscillations. The lower part of the figure shows temporal
wall pressure fluctuations, recorded by piezoelectric mi-
crophones at stations A, 8, and E of the duct wall.

The physical model of the oscillation, as obtained from
the interferograms, has been improved by LDV measure-
ments. Figure 8 shows a phase diagram of the down-
stream component of the Auctuating Aow velocity. The
phase distribution of these velocity Auctuations shows the
region S immediately downstream of the normal shock
terminating the supersonic regime to be the source of the
fluctuations, and it shows further that the Auctuations
may be split into a feedback part and a blowdown part.
Anderson and Meier (1982) concluded on the basis of fur-
ther measurements that the whole length of the duct may

FIG. 8. Constant-phase contours of the local velocity fluctua-
tions (x component): f=390 Hz (fundamental oscillation); the
angle increment between adjacent lines is 10; the arrows point
in the direction of decreasing phase; S is source of velocity fluc-
tuations. From Albers (1979).
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FICx. 9. Frequency f of base pressure oscillations for ducts with
rectangular and circular cross sections: h=10 mm; H=33.2
rnrn; d, D, diameters of circular duct cross section before and
behind enlargement; c*, critical (sonic) speed of sound; solid
curve, theory, evaluated from Anderson (1982).

be considered as a resonator coupled to the oscillating sys-
tem, and quantitatively confirmed the feedback mecha-
nism in the channel mentioned above with LDV measure-
ments.

Anderson et al. (1978) formulated a theoretical model
for this oscillating system, which contains two fiows as
the essential elements: first, the supersonic fiow in the
center of the duct, described by the strongly simplified
basic equations for momentum and energy in integral
form; second, the subsonic periodic flow through the
channel of variable cross section, close to the wall, as cal-
culated from Bernoulli's equation on the basis of the pres-
sure difference between the dead-air region and regions
further downstream. The oscillation frequency obtained
by the solution of this coupled system of equations is in
satisfactory agreement with the observed frequencies for
both rectangular and circular cross sections (see Fig. 9).
Consideration of the resonant frequency of the part of the
duct further downstream shows that an optimal interac-
tion between the oscillating system and the coupled reso-
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nator exists only for certain duct lengths. This agrees
with the experimental result that large-amplitude oscilla-
tions are observed only for certain duct lengths.

III. SOUND PROPAGATION IN SHEAR FLOW

Having described the generation of sound by unsteady
flow in the preceding sections, we shall now give a review
of the propagation of sound in a steady shear flow. Re-
sults of analytical character will be given preference to
more numerically or experimentally oriented work; the
main point is to illustrate how the presence of fiow can
affect fundamental acoustic concepts. Other papers sur-
veying this topic are those of Lighthill (1972), Nayfeh
et al. (1975) (especially for flow ducts), Ribner (1975),
and Piercy et al. (1977) (especially for atmospheric sound
propagation).

It is assumed that the unsteady perturbations u', p', . . .
of a steady flowfield with a mean velocity profile are
small enough that a linearized treatment is sufficient.
The governing equation can be obtained from Eq. (15),
which describes sound generation and propagation in an
arbitrary unidirectional flow. The right-hand side of this
equation contains the sources. If this side is replaced by
zero, i.e., if there are no sources in the flow, then Eq. (15)
describes sound propagation. With appropriate boundary
conditions, scattering and diffraction of sound are also
governed by this equation, which replaces the familiar
wave equation in this more general situation. The most
noticeable difference between these two equations is that
they are of different order. Equation (15) is of third or-
der, while the wave equation is of second. A second-order
equation is also valid for sound propagation in a
constant-velocity flow U~ ——const where the pressure
obeys the convective wave equation

1 DP 6, 0
c0 Dt

(20)

It may seem surprising that the order of the governing
equation for sound propagation in unidirectional shear
flow is higher than the order for the constant-velocity
case, implying that many more solutions occur. Addi-
tional light is shed on this fact if one observes that the
velocity u' even for U& ——const obeys, not a second-order
equation, but the third-order equation

vorticity vector has only one component w, and the Bel-
trami equation reads

1—w =0.
dt p

Linearization of Eq. (22} leads to

(22)

wD
p

Dt
+u V——0w

P
(23)

In a sound wave u' does not vanish and propagates with
approximately the speed of sound. Hence the second term
of Eq. (23) requires that some part of (tp/p}' propagate
with that velocity if tp/p is not constant. Sound waves,
therefore, generate vorticity fluctuations. For constant
w/p Eq. (23) shows that (w/p)' is convected with the
mean flow velocity. Perturbations propagating with a dif-
ferent velocity, e.g., sound waves, then necessarily have

w p —wp =0.p' (24)

The most important example with constant w/p is the
linear shear flow with constant density p=pp. In this case
mean flow particles keep their value of (tplp)'. One
would then expect there to be a second-order partial dif-
ferential equation for perturbations obeying Eq. (24), and
one can actually show that the velocity component u

&

obeys
T

} D Q1, ()—Au '& —— pp
cp Dt Bxp p

(25)

u 'i ———wF(x2 c,t), —Q2 =cpF & p =ppF (25')

where F is arbitrary and F' denotes the derivative of F
with respect to its argument. One observes that the fluc-

Perturbations fulfilling Eq. (24) are solutions of the
second-order convective wave equation. This result has
been extended to three-dimensional perturbations and a
potential representation for the perturbations derived by
Mohring (1976). These general relations are illustrated by
an example described in Miiller (1976; see Fig. 10). It is
shown there that a wave propagating in a linear velocity
profile in the x2 direction is given by

1 D u' Du'
c2 Dt3 Dt

=0

This implies that the set of velocity fields is larger than
the set of pressure fields. These additional solutions are
the gust solutions, which happen to show no pressure
fluctuations in a constant-velocity flow. They always
have a nonvanishing vorticity. Thus a decoupling of the
vortical gust solutions and the irrotational sound waves
has been achieved in constant-velocity mean flow.

The more complicated relation between vorticity and
sound waves in shear flow can best be illustrated with the
Beltrami vorticity diffusion equation. Let us assume for
simplicity the two-dimensional isentropic case. Then the

U„{x2j 1

FIG. 10. Phase fronts of the sound wave described by Eq. (25').
The arrows indicate the particle velocities. From Miiller,
(1976).
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A. The modes

The modes

i (kx )
—cot)p'= f(x2)e (27)

form the main tool for solving Eq. (26), where co is angu-
lar frequency, k is axial wave number, and f (xz) is mode
shape function. The assumption (27) is possible for an ar-
bitrary duct cross section (f then becomes a function of
the two variables in the duct cross section), but most work
has been done either on plane ducts and on circular or on
annular ones. We shaH restrict ourselves here to plane

tuating vorticity w'=wF' obeys Eq. (24), and ui obeys
Eq. (25).

Equations (23)—(25) show that the linear shear flow is
exceptional insofar as a separation of sound waves and
gust can be achieved. It may also serve to illustrate the
notoriously difficult question of distinguishing between
sound and turbulence in a flow. One might be inclined to
assume Eq. (24) as a definition of sound in a linear shear
flow, which implies the perhaps surprising fact that
sound waves are in general not irrotational. Definitions
assuming the opposite (Doak, 1972; Yates, 1977) imply
that turbulence in low-Mach-number flow may partly
propagate with the speed of sound —a rather inconvenient
consequence.

The fact that sound and gust are contained in the same
differential equation implies a strong coupling between
them. An example of this coupling has been studied by
Goldstein (1979), who discussed the generation of sound
by gust in a shear layer impinging on a semi-infinite rigid
plate.

Most applications of Eq. (15) refer to sound propaga-
tion in ducts (Fig. 11), with jet engines in mind. For
sound propagation problems the sources on the right-
hand side of Eq. (15) vanish, and one is left with

1 Dp' D~, d {I ( 2)]D Bp'

c 2 Dt3 D~ «2 Dt ~x2

d U) g2p'
+2 =0 . (26)

dx2 Bx (Bx2

ducts. Inserting Eq. (27) into Eq. (26) leads to an ordi-
nary differential equation of second order for f,

d f 2 dI df (~q k2)f ()
dx2 I dx2 dx2

(28)

with

co —kUi(x2)

c(xi )

Zco df
jkp I dx2

(29)

at x2 ——+b.
For a given frequency ~, Eqs. (28) and (29) constitute a

complicated eigenvalue problem, with the axial wave
number k being the eigenvalue. It is not of the classical
Sturm-Liouville type, as k appears several times both in
the equation and in the boundary conditions. Very few
general results from the theory of ordinary differential
equations apply to this type of problem. Exact solutions
of Eq. (28) are known only for a linear velocity profile
(Goldstein and Rice, 1973), where a reduction to parabolic
cylinder functions has been achieved. This is certainly re-
lated to the above-mentioned exceptional character of the
linear profile [compare Eq. (25)]. The influence of small
perturbations 5Ui!x2) and 5c(x2) on the eigenvalue can
be determined analytically. Mohring and Rahman (1976)
have derived the following relation:

b ka5co+P5k+y5Z = f A(xz) —5U, (x2)

+ 5c(x2) dx2,

Equation (28) has to be supplemented by boundary con-
ditions which describe the wall behavior. Often a linear
relation p =ZU between the pressure at the wall p~ and
the normal wall velocity U with an impedance Z is as-
sumed. The effect of liners can often be very well
described by this assumption (Nayfeh et al. , 1975). Z de-
pends on the frequency, but is independent of k for local-
ly reacting liners. Bulk reacting liners require Z to de-
pend also on the axial wave number k. In terms of the
mode shape function f, one then obtains the boundary
condition

FIG. 11. Duct configuration.

X)

(30)

with constants a,p, y, and a function A (x2), all expressible
in terms of the unperturbed mode shape functions. In
Mohring (1973a), a and P have been interpreted as aver-
age energy density and energy flux, such that Eq. (30) de-
scribes a connection between group velocity and energy-
transport velocity. Of course, some of the approximate
methods of applied mathematics can be, and have been,
applied to Eqs. (28) and (29). Thus Pridmore-Brown
(1958) used a high-frequency approximation, and Shankar
(1971) assumed small deviations from a uniform profile.
Unfortunately, neither method is very well suited to the
problem of main interest, which covers comparatively low
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frequencies and velocity profiles significantly different
from zero in the inner duct region and vanishing at the
wall. A thin-shear-layer approximation has been used by
Eversman and Beckemeyer (1972). In addition, many nu-
merical studies have been performed, e.g., Astley and Ev-
ersman (1979). The results of these calculations show a
behavior that, for subsonic flow, is qualitatively similar to
the much better understood no-Aow case. There are a fi-
nite number of eigenvalues k, with a comparatively small
imaginary part (meaning small attenuation), which would
vanish for lossless liners (Z purely imaginary) correspond-
ing to the cut-on modes. The higher modes show a rapid-
ly increasing imaginary part corresponding to strong at-
tenuation. They can often be ignored. Of course, signif-
icant differences can also be found. One has to assume
that co —kU, (xz) is different from zero, otherwise there
would be a singularity in Eq. (8). This excludes a range of
k values from the calculations. Another difference is
found between upstream- and downstream-propagating
modes. In a constant-velocity flow, upstream-
propagating modes have the Aow acting against them.
This reduces their propagation speed and increases their
attenuation; the effect is just the opposite for
downstream-propagating modes. In reality, however, the
large attenuation predicted by calculations based on a
constant-velocity profile is not achieved bemuse the coun-
teracting effect of refraction tends to shift pressure fluc-
tuations towards the duct center for upstream-
propagating modes and towards the walls for
downstream-propagating modes (Ko, 1971). This means
that the mode shape functions f are small at the wall for
upstream propagation and large for downstream propaga-
tion (Fig. 12).

Shankar (1972) observed in his calculations for rigid-
walled ducts that the mode shape functions differ by their
number of zeros. He found one mode for each given
number of zeros, and he used this as a check that all
modes had been found. It seems to be unknown whether
this is generally true.

B. The representation problem

Once the modes have been determined, one may ask
whether every sound field is a superposition of modes. In

the no-flow case, where the modes are the trigonometric
functions known to be complete and orthogonal, the ex-
pansion of an arbitrary, prescribed pressure profile into
modes is straightforward. In an arbitrary shear Aow no
suitable orthogonality relation has been found, and the
completeness and independence of the mode shape func-
tions have not been shown. A very elegant formal
method for obtaining expansion coefficients has been
given by Mani (1980), but the question of whether this
method actually gives an expansion of an arbitrary pres-
sure profile into mode shape functions remains open.
Shankar (1972) has taken a numerical least-squares ap-
proach and observed that the mode shape functions seem
to be capable of representing arbitrary pressure profiles.

In view of these difficulties, it may be worthwhile to re-
turn to the partial differential equation (26) and to try to
solve the initial-value problem. Once again, one is faced
with the difficulty that Eq. (26) is of third order, and it
cannot be expected that a boundary-value problem com-
parable to the no-flow case (in which a second-order equa-
tion is valid) possesses a unique solution. Fourier
transform methods (Swinbanks, 1975) show that an arbi-
trary solution of Eq. (26) is not just a superposition of
modes. One finds additional contributions from all wave
numbers k that lead to a singularity in Eq. (28). A singu-
larity appears if there are values of x 2 with
co —kU&(x2) =0, i.e., if there are critical layers in the flow
(cf. Mani, 1980). The latter contribution is well known in
the hydrodynamic stability problem (Case, 1960), where it
decays for a long time in cases without excitation. How
this contribution behaves in problems with harmonic exci-
tation seems to be unknown. Furthermore, one is faced
with the existence of instabilities which have been shown
to occur for certain velocity profiles (Lees and Lin, 1946)
and for locally reacting walls (Mohring, 1973b). In order
to surmount these difficulties one could use the argument
of Sec. II.B.2 and assume that these instabilities are not
excited.

Looking at the representation problem from this
viewpoint raises the question of whether the concepts in-
volved in the use of the second-order wave equation are
adequate to describe sound propagation in Aows. Perhaps
the presence of Aow requires a fundamental change in ap-
proaching the problems.

FIG. 12. Sketch of fundamental mode shape function of
upstream (left) and downstream (right) propagation.

Problems that fall under this heading deal in most cases
with sound propagation in ducts having an area change or
a finite-length lining. These problems are not well under-
stood, even in the no-flow case. Parker (1966) discovered
acoustic resonances in a series of experiments with flat-
plate cascades in a duct. Such resonances can lead to
violent pressure fluctuations, with resultant structural vi-
brations and noise radiation. It is expected that similar
resonances occur for many geometrical configurations
with and without flow (Koch, 1982).

In variable-area ducts, the assumption of unidirectional
Aow has to be abandoned, and a mean steady flow has to
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be determined in advance (see, for example, Eversman and
Astley, 1981). A one-dimensional treatment can be ap-
plied for low frequencies with only one mode cut-on
(Davies, 1976). Special features arise when the mean flow
approaches the speed of sound. Then a linear treatment is
no longer appropriate, and nonlinear terms have to be re-
tained (Myers, 1981). [Some general methods from
scattering theory can be applied for sound propagation in
rigid-waHed, variable-area ducts with subsonic potential
flow. For example, Mohring (1978b) has derived an
energy-conservation relation and a reciprocity relation
(with reversed flow), which often provide a valuable check
for the numerical calculations. ] Several studies have been
performed on a finite-length liner in a constant-area duct
with uniform velocity (Namba and Fukushige, 1980;
Koch and Mohring 1981; Mohring and Eversman, 1982).
They revealed another nonuniqueness, which can ap-
parently be remedied only by carefully prescribing condi-
tions at the edges of the liner. Koch and Mohring (1981)
discuss four more or less plausible assumptions about the
edge behavior. Carefully controlled experiments are ur-
gently needed in order to clarify which of these assump-
tions applies.

This survey of problems related to sound propagation
in flows shows that ideas from both acoustics and hydro-
dynamics are being used. The merger of these different
disciplines has not as yet been completely achieved, al-
though new light has been shed on both fields. The prac-
tical importance of these questions will certainly lead to
further research in both areas.
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