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This review presents in a comprehensive and tutorial form the basic principles of the Monte Carlo method,
as applied to the solution of transport problems in semiconductors. Sufficient details of a typical Monte
Carlo simulation have been given to allow the interested reader to create his own Monte Carlo program,
and the method has been briefly compared with alternative theoretical techniques. Applications have been
limited to the case of covalent semiconductors. Particular attention has been paid to the evaluation of the
integrated scattering probabilities, for which final expressions are given in a form suitable for their direct
use. A collection of results obtained with Monte Carlo simulations is presented, with the aim of showing
the power of the method in obtaining physical insights into the processes under investigation. Special
technical aspects of the method and updated microscopic models have been treated in some appendixes.
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I. lNTRODUCTION

The study of charge transport in semiconductors is of
fundamental importance both from the point of view of
basic physics and for its application to electronic devices.
On the one hand, the analysis of transport phenomena
throws light on electronic interactions in crystals, on band
structure, lifetimes, impact ionization, etc. On the other
hand, the applied aspect of the problem is even more im-
portant, since modern microelectronics, whose influence
in all human activities seems to be ceaselessly growing,
depends heavily on a sophisticated knowledge of many as-
pects of charge transport in semiconductors.

Starting in the early 1950s, soon after the invention of
transistors, it was recognized that electric field strengths
so high as to be outside of the linear-response region
where Ohm's law holds were encountered in semiconduct™
or samples (Shockley, 1951). The field of nonlinear trans-
port (the hot-electron problem), which had been initiated
long before by a few pioneer papers (Landau and Kom-
panejez, 1934; Davydov, 1936, 1937), then entered a
period of rapid development, and increasing numbers of
researchers devoted their efforts to improving the scientif-
ic knowledge of this subject. Furthermore, in the process
of studying these high-field problems, new phenomena
were discovered [for example, the Gunn effect (1963)]
and, based on these discoveries, new devices were designed
(such as transit-time devices) which, in turn, required new
and closer investigation. Thus one of the most interesting
cases of positive feedback between science and technology
in this century emerged. The subsequent tendency to
miniaturization of devices, which has led to modern
very-large-scale integration (VLSI) technology, has fur-
ther enhanced the importance of high-field transport,
since reducing the dimensions of devices had led to high-
field strengths well outside the Ohmic response region for
any reasonable voltage signal.

Charge transport is in general a tough problem, from
both the mathematical and the physical points of view.
In fact, the integro-differential equation (the Boltzmann
equation) that describes the problem does not offer simple
(or even complicated) analytical solutions except for very
few cases, and these cases usually are not applicable to
real systems. Furthermore, since transport quantities are
derived from the averages over many physical processes
whose relative importance is not known a priori, the for-
mulation of reliable microscopic models for the physical
system under investigation is difficult. When one moves
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from linear to nonlinear response conditions, the difficul-
ties become even greater: the analytical solution of the
Boltzrnann transport equation without linearization with
respect to the external force is a formidable mathematical
problem, which has resisted many attacks in the last few
decades. In order to get any result, it is necessary to per-
forrn such drastic approximations that it is no longer
clear whether the features of interest in the results are due
to the microscopic model or to mathematical approxima-
tions. [Paige (1964) and Conwell (1967) give a full ac-
count of the first stage of the investigations carried out in

this area. ]
From the foregoing it is understandable that, when two

new numerical approaches to this prob1em, i.e., the Monte
Carlo technique (Kurosawa, 1966) and the iterative tech-
nique (Budd, 1966), were presented at the Kyoto Semicon-
ductor Conference in 1966, hot-electron physicists re-

ceived the new proposals with great enthusiasm. It was in

fact clear that, with the aid of modern large and fast com-
puters, it would become possible to obtain exact numeri-
cal solutions of the Boltzmann equation for microscopic
physical models of considerable complexity. These two
techniques were soon developed to a high degree of refine-
ment by Price (1968), Rees (1969), and Fawcett et al.
(1970), and since then they have been widely used to ob-
tain results for various situations in practically all materi-
als of interest. The Monte Carlo method is by far the
more popular of the two techniques mentioned above, be-
cause it is easier to use and more directly interpretable
from the physical point of view. Among the most signifi-
cant developments of the Monte Carlo technique let us

cite the fundamental work of the Malvern group with the
introduction of the self-scattering scheme (Rees, 1968,
1969); nonparabolicity effects (Fawcett et al. , 1969); dis-
tribution anisotropy (Fawcett and Rees, 1969); and dif-
fusion (Fawcett, 1973). Other important areas of develop-
ment include many-particle simulation (Lebwohl and
Price, 1971};the calculation of transients in time and their
space equivalent (Ruch, 1972; Baccarani et al. , 1977);
harmonic time variation (Price, 1973};the treatment of al-

loy semiconductors (Hauser et aI. , 1976); and quantum
effects of strong electric fields (Barker and Ferry, 1979).

Monte Carlo is a statistical numerical method used for
solving mathematical problems; as such, it was born well

before its application to transport problems (see, for ex-

ample, Buslenko et al. , 1966), and has been applied to a
number of scientific fields (Meyer, 1956; Marchuk et QI. ,

1980). In the case of charge transport, however, the sta-
tistical numerical approach to the solution of the
Boltzmann equation proves to be a direct simulation of
the dynamics of charge carriers inside the crystal, so that,
while the solution of the equations is being built up, any
physical information required can be easily extracted. In
this respect it should be noted that, once a numerical solu-
tion of a given problem is obtained, its subsequent physi-
cal interpretation is still very important, in gaining an

understanding of the phenomenon under investigation.
The Monte Carlo method shows itself to be a very useful
tool toward this end, since it permits simulation of partic-
ular physical situations unattainable in experiments, or
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even investigation of nonexistent materials in order to em-
phasize special features of the phenomenon under study.
This use of the Monte Carlo makes it similar to an experi-
mental technique; the simulated experiment can in fact be
compared with analytically formulated theory.

The purpose of this review is to present the Monte Car-
lo method as applied to semiconductor transport in a
comprehensive form that will be of value to various kinds
of readers. For those who want to enter this field of
research the authors have presented in tutorial form the
main ideas and the technical methods for setting up one' s
own Monte Carlo program. Scholars already working in
this field may find it helpful to have collected and dis-
cussed in a single paper material that is now scattered
among many specialized papers.

For the sake of clarity, the method has been discussed
both in itself and in its application to specific materials,
namely, covalent semiconductors of group-four diamond,
silicon, and germanium. The scope of the review was not
extended to all semiconductors, in an effort to keep it to a
reasonable size. In particular, polar materials such as
III-V and II-VI compounds have not been considered.
For the same reason we limited ourselves to investigation
of the physical properties of bulk materials. The applica-
tion of the method to special structures was left aside, and
device simulation was only briefly mentioned at the end
of the paper, since this subject, very interesting in itself,
would have led us to the huge field of solid-state electron-
ics, welll beyond the limits of' the present review. Finally,
our intention was not to provide an exhaustive list of
references on this subject. Papers have been quoted when
their contents were relevant to the development of the
theme of the review. Some previous reviews of semicon-
ductor transport and Monte Carlo applications have been
particularly useful in the preparation of the present paper
(e.g. , Alberigi-Quaranta et aI. , 1971; Fawcett, 1973).
Among them, we should like to mention in particular
Price's (1979) remarkable review.

The paper is organized simply in three main parts.
Section II presents the Monte Carlo method as applied to
transport calculations in semiconductors. After a brief
survey of the band-structure properties relevant to trans-
port, in Sec. I!I the carrier scattering mechanisms are dis-
cussed with specia1 attention to the formulation of theory
necessary for application in a Monte Carlo program. Sec-
tion IV presents, as examples of application, a collection
of results in covalent semiconductors, and is followed by a
brief conclusion with some consideration of future per-
spectives of this subject ~ Special technical aspects have
been treated in appendixes, in order not to interrupt the
presentation in the body of the paper.

II. THE MONTE CARLO METHOD

A. Fundamentals

The Monte Carlo method, as applied to charge trans-
port in semiconductors, consists of a simulation of the
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motion of one or more electrons' inside the crystal, sub-
ject to the action of external forces due to applied electric
and magnetic fields and of given scattering mechanisms.
The duration of the carrier free flight (i.e., the time be-
tween two successive collisions) and the scattering events
involved in the simulation are selected stochastically in
accordance with some given probabilities describing the
microscopic processes. As a consequence, any Monte
Carlo method relies on the generation of a sequence of
random numbers with given distribution probabilities.
Such a technique takes advantage of the fact that nowa-
days any computer generates sequences of random num-
bers evenly distributed between 0 and 1 at a sufficiently
fast rate. The problem of generation of random numbers
is treated in Appendix A.

When the purpose of the analysis is the investigation of
a steady-state, homogeneous phenomenon, it is sufficient
in general to simulate the motion of one single electron;
from ergodicity we may assume that a sufficiently long
path of this sample electron will give information on the
behavior of the entire electron gas. When, on the con-
trary, the transport process under investigation is not
homogeneous or is not stationary, then it is necessary to
simulate a large number of electrons and follow them in

their dynamic histories in order to obtain the desired in-

formation on the process of interest.

B. A typical Monte Carlo program

Let us summarize here the structure of a typical Monte
Carlo program suited to the simulation of a stationary,
homogeneous, transport process. The details of each step
of the procedure will be given in the following sections.
For the sake of simplicity we shall refer to the case of
electrons in a simple semiconductor subject to an external
electric field E. The simulation starts with one electron
in given initial conditions with wave vector ko', then the
duration of the first free flight is chosen with a probabili-

ty distribution determined by the scattering probabilities.
During the free flight the external forces are made to act
according to the relation

more and more precise as the simulation goes on, and the
simulation ends when the quantities of interest are known
with the desired precision.

A simple way to determine the precision, that is, the
statistical uncertainty, of transport quantities consists of
dividing the entire history into a number of successive
subhistories of equal time duration, and making a deter-
mination of a quantity of interest for each of them. We
then determine the average value of each quantity and
take its standard deviation as an estimate of its statistical
uncertainty (see Sec. II.B.6.c).

Figure 1 shows a flowchart of a simple Monte Carlo
program suited for the simulation of a stationary, homo-
geneous transport process.

Figure 2 illustrates the principles of the method by
showing the simulation in k space and real space and the
effect of collecting statistics in the determination of the
drift velocity.

Definition of the physical system

The starting point of the program is the definition of
the physical system of interest, including the parameters
of the material and the values of physical quantities, such
as lattice temperature To and electric field. It is worth
noting that, among the parameters that characterize the
material, the least known, usually taken as adjustable pa-
rameters, are the coupling strengths describing the in-
teractions of the electron with the lattice and/or extrinsic
defects inside the crystal.

At this level we also define the parameters that control
the simulation, such as the duration of each subhistory,
the desired precision of the results, and so on.

The next step in the program is a preliminary calcula-
tion of each scattering rate as a function of electron ener-

gy. This step will provide information on the maximum
value of these functions, which will be useful for optimiz-
ing the efficiency of the simulation (see Sec. II.B.3). Fi-
nally, all cumulative quantities must be put at zero in this
preliminary part of the program.

Ak=eE, (2. 1) 2. Initial conditions of motion

where k is the carrier wave vector, e its charge with its
sign (e &0 for electrons and e&0 for holes), and fi the
Planck constant divided by 2m. . In this part of the simula-
tion all quantities of interest, velocity, energy, etc. , are
recorded. Then a scattering mechanism is chosen as re-

sponsible for the end of the free flight, according to the
relative probabilities of all possible scattering mechan-
isms. From the differential cross section of this mechan-
ism a new k state after scattering is randomly chosen as
initial state of the new free flight, and the entire process is
iteratively repeated. The results of the calculation become

~In the present review, for brevity we shall often write "elec-
trons" meaning in fact "charge carriers, " that is, electrons or
holes indi fferently.

In the case under consideration, in which a steady-state
situation is simulated, the time of simulation must be long
enough that the initial conditions of the electron motion
do not influence the final results. The choice of a "good"
time of simulation is a compromise between the need for
ergodicity (t ~ oo ) and the request to save computer time.
When a highly improbable initial value for the electron
wave vector k is chosen, the first part of the simulation
can be strongly influenced by this inappropriate choice.

In the particular case of a very high electric field, if an
energy of the order of KYOTO {Kz being the Boltzmann
constant) is initially given to the electron, this energy wiH

be much lower than the average energy in steady-state
conditions, and during the transient it will increase to-
wards its steady-state value. As a consequence, the elec-
tron response to the field, in terms of mobility, may be in-
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FIG. 1. Flowchart of a typical Monte Carlo program.

itially much higher than that of stationary conditions (see
Secs. II.C. 1 and IV.B.13). This is reflected in real space
by initial free flights which are much longer than in sta-
tionary conditions because of an abnormally large
momentum relaxation time initially (see Fig. 3).

The longer the simulation time, the less influence the
initial conditions will have on the average results; howev-
er, in order to avoid the undesirable effects of an inap-
propriate initial choice and to obtain a better convergence,
the elimination of the first part of the simulation from
the statistics may be advantageous. When the simulation
is divided into many subhistories, better convergence to
steady state can be a=hieved by taking the initial state of
each new subhistory as equal to the final state of the pre-
vious one. In this way, only the initial condition of the
first subhistory will influence the final results in a biased
way.

On the other hand, when a simulation is made to study
a transient phenomenon and/or a transport process in a
nonhomogeneous system (for example, when the electron
transport in a small device is analyzed), then it is neces-
sary to simulate many electrons separately; in this case
the distribution of the initial electron states for the partic-
ular physical situation under investigation must be taken

into account (see Sec. II.C.1), and the initial transient be-
comes an essential part of the results aimed at.

3. Flight duration —self-scattering

The electron wave vector k changes continuously dur-
ing a free Aight because of the applied field according to
Eq. (2.1). Thus if P[ (kt)]dr is the probability that an
electron in the state k suffers a collision during the time
dt, the probability that an electron which suffered a col-
lision at time t=o has not yet suffered another collision
after a time t is

exp —f P [k(t')]dt'

which, generally, gives the probability that the interval
(O, t) does not contain a scattering. Consequently, the
probability H(t) that the electron will suffer its next col-
lision during dt around t is given by

(t)d& =P[k(r)]exp —f P[k(t')]dt' dt . (2.2)

Because of the complexity of the integral at the ex-
ponent, it is impractical to generate stochastic free flights

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



C. Jacoboni and L. Reggiani: Monte Carlo method in transport 651

momentum
space

(a} 80

60

20 K

E = 2OOO v/cm

40

20

—20
40 80 120 16' 200

real
space

y n z (ip cm}

FIG. 3. Projection in the xz plane of real space of the trajectory
of a carrier starting with thermal equilibrium mean energy,
under the influence of a high electric field. The well-oriented
initial free trajectories reflect values of the momentum relaxa-
tion times longer than under steady-state conditions as a conse-
quence of the lower energy.

&V &'

05-

unperturbed as if no scattering at all had occurred. Cxen-

erally it is sufficient that I be not less than the maximum
value of P(k); furthermore, as we shall see below, I can
be a convenient function of energy.

Now, with a constant P(k) =rp, Eq. (2.2) reduces to

1H(t) = exp( t lrp), —
70

(2.3)

-05-

FIG. 2. The principles of the Monte Carlo method. For simpli-

city a two-dimensional model is considered here. (a) The simu-

lation of the sampling particle, in the wave-vector space, subject
to an accelerating force (field) oriented along the positive x
direction. The heavy segments are due to the effect of the field
during free flights; curves represent discontinuous variations of
k due to scattering processes. (b) The path of the particle in real

space. It is composed of eight fragments of parabolas corre-
sponding to the eight free flights in part (a) of the figure. (c)
The average velocity of the particle obtained as a function of
simulation time. The left section of the curve (t ~12) is ob-
tained by the simulation illustrated in the parts (a) and (b) of the
figure. The horizontal dot-dashed curve represents the "exact"
drift velocity obtained with a very long simulation time. Special
symbols indicate corresponding points in the three parts of the
figure ( ~ is the starting point). All units are arbitrary.

with the distribution of Eq. (2.2), starting from evenly
distributed random numbers r and applying the tech-
niques discussed in Appendix A: with this approach an
integral equation would need to be solved for each scatter-
ing event (Kurosawa, 1966). Rees (1968, 1969) has de-
vised a very simple method to overcome this difficulty. IfI:—I lrp is the maximum value of P(k) in the region of k
space of interest, a new fictitious "self-scattering" is in-
troduced such that the total scattering probability, includ-
ing this self-scattering, is constant and equal to I". If the
carrier undergoes such a self-scattering, its state k' after
the collision is taken to be equal to its state k before the
collision, so that in practice the electron path continues

and random numbers r can be used very simply to gen-
erate stochastic free flights t, with the direct technique
described in Appendix A Sec. 2.a. They wi11 be given by

t, = —rpln(1 —r) . (2.4)

However, since r is evenly distributed between 0 and 1, so
also is (1 r), and —in practice in place of Eq. (2.4) we gen-
erally use

t, = —rpln(r) . (2.5)

The computer time "wasted" in taking care of self-
scattering events is more than compensated for by the
simplification of the calculation of the free-flight dura-
tion.

As regards the choice of the constant I", we note that in
general P(k) is simply a function of the electron energy
P(e ); a suitable choice for I is then the maximum value
of P(E) in the region of energies which are expected to be
sampled during the simulation. When P(E) is not a
monotonic function of e, its maximum value must be es-
timated in some way, for example, with a tabulation at
the beginning of the computer program. When P(e) is an
increasing function of e, as is often the case, one can take
I =P(eM), where eM is a maximum electron energy with
negligible probability of being achieved by the carrier dur-
ing the simulation. It must be observed, however, that the
range of energy "visited" by the electron during the sirnu-
lation is not known at the beginning, when I" is to be
chosen. Therefore, an estimate must be made for E'M,

keeping in mind that eM cannot be taken as too large, if
one is to prevent an unnecessarily large value of I that
would result in a waste of computer time for self-
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I (e)= (2.6)

where e
1

is a suitable threshold energy, and I"
1

and I"2 are
the maximum values of P(e) in the two corresponding
energy ranges.

In using I"(e ) as given by Eq. (2.6), we should

(3

CC

I—

O
CO

scattering events. One must also decide what action to
take when, during the simulation, the electron energy e
happens to exceed the maximum value eM set up at the
beginning of the computer run. Some authors in such cir-
cumstances arbitrarily reduce the electron energy e to a
value lower than e~ and simply check at the end of the
computer run that such a situation occurred a limited
number of times. This procedure may be dangerous, since
it may obscure the occurrence of an indefinite increase of
electron energy (electron runaway) when this happens at
energies above a critical value close to e,». A safer
method is to increase the value of eM and correspondingly
of I, if required, for the simulation to continue, without
intervening in the electron energy. Since I" must be in-
dependent of the simulated flight, it is always necessary to
check that I has not been changed too many times. This
is guaranteed when eM has been underestimated at the set-

up of the program run, because it will quickly increase to
a value above which the electron energy will rarely go.

For a semiconductor model that contains several val-

leys, a different value of EM may be appropriately taken
in each type of valley.

Sometimes the total scattering probability P(e) has a
large variation around some threshold value due to a
strong scattering mechanism with a given activation ener-

gy (a typical case is intervalley scattering from central to
upper valleys in polar semiconductors). In this case, a
single value of I may result in a very large number of
self-scattering events at low electron energies (see Fig. 4).
It is then possible to introduce a step-shaped scattering
rate I (e) given by

remember that, during a free flight, the electron energy
may exceed the va1ue el. The following two cases may
occur according to the initial state of the free flight ~

(i) An electron begins a free flight with an energy below
el ~ A random number r is then used to generate with I

1

a free flight with duration t, given by

I.,= —~1ln(r) . (2.7)

If at the end of this free flight the electron energy is still
fess than e1, t„ is retained, and the simulation proceeds as
usual. If, on the contrary, at the end of this free flight the
electron energy is above el, t, as given by Eq. (2.7) cannot
be retained. The same random number r is then used to
generate a new duration of the free flight as follows.
From Eq. (2.6) we have, instead of Eq. (2.3),

l
exp( —tlri), t &t

7]
(~)=

1
expI —[tlri+(t —l)lr2]l, t) t

72

(2.&)

where t is the time necessary for the electron to reach the
energy e1 and can be easily evaluated from the electron
dynamics. By application of the direct technique (see Ap-
pendix A Sec. 2.a) t, is then given by

t, = —r2ln(r)+t(1 —r2iri) . (2.9)

4. Choice of the scattering mechanism

(ii) An electron begins a free flight with an energy
above el. The duration of this free flight can always be
determined by Eq. (2.6) with r=r2. In fact, even if the
final enery is below e1, one is justified in considering the
upper value I 2 of I (c ) extended to lower energies, as long
as this is done independently of the particular value of r.
Of course, I"2 must then be consistently considered in the
determination of the scattering mechanism (in particular
for self-scattering) which caused the end of the free flight
(see next section).

The only situation not accounted for in the above dis-
cussion is when, during a single free flight, the electron
energy starting from values below e1 first increases to
above e1 and then decreases to below e1', but this situation
cannot occur with static fields and normal band struc-
tures.

The above idea can be extended to piecewise functions
I (e) with more than one step. However, such a pro-
cedure must be compared, from the point of view of sav-
ing computer time, with the so called fast self-scattering
technique (see next section).

ENERGY (arb. units)

FIG. 4. Sketch of a two-level step-shaped total scattering rate,
including self-scattering I (e ), appropriate for reducing the
number of self-scattering events with respect to a single-level
choice (the I 2). 1 1 is used for energies between 0 and e~, as ex-
plained in the text. The shaded region illustrates the increased
efficiency resulting from the two-level choice.

During free flight, electron dynamics is governed by
Eq. (2.1) so that at its end the electron wave vector and
energy are known, and all scattering probabilities P;(e)
can be evaluated, where i indicates the ith scattering
mechanism. The probability of self-scattering will be the
complement to K' of the sum of the P s. A mechanism
must then be chosen among all those possible: given a
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random number r, the product rI is compared with the
successive sums of the P s, and a mechanism is selected
as described in Appendix A Sec. 2.d.

Since each scattering probability P;(e) must be evaluat-
ed unti1 a mechanism is chosen by the random number, in
the computer program it is convenient to rank the P s in
order of probability before beginning. It must be noted,
however, that the occurrence of the various scatterings de-
pends also on temperature and field strength, so that it
may sometimes be difficult to predict their relative fre-
quency.

If all scatterings have been tried and none of them has
been selected, it means that r I & P(e ), and a self-
scattering occurs. Ascertaining by this procedure that a
self-scattering occurs is therefore most time consuming,
since all P s must be explicitly calculated. However, the
process may be shortened by use of an expedient that
might be called fast self-scattering. It consists of setting
up a mesh of the energy range under consideration at the
beginning of the simulation and then recording in a vector
the maximum total scattering probability P' ' in each en-

ergy interval b,e' ' (energy intervals equally distributed on
a logarithmic scale may be useful). At the end of the
flight if the electron energy faIls in the nth interval, be-
fore trying all P s separately, one compares rt with P'"'.
At this stage if rI &P "' then a self-scattering certainly
occurs; otherwise all P s will be successively evaluated.
Thus only when P(e) ~ rI &P'"' does a self-scattering oc-
cur which requires the evaluation of all P s.

As regards the scat tering probabilities of various
mechanisms and their use in the Monte Carlo program,
we shall consider in Sec. III the cases useful for covalent
semiconductors. For other cases we refer the reader to
the original literature.

5. Choice of the state after scattering

Once the scattering mechanism that caused the end of
the electron free flight has been determined, the new state
after scattering of the electron, k, must be chosen as the
final state of the scattering event. If the free flight ended
with a self-scattering, k, must be taken as equal to k~, the
state before scattering. When, in contrast, a true scatter-
ing occurred, then k, must be generated, stochastically,
according to the differential cross section of that particu-
lar mechanism. The techniques used to select the state
after each particular type of scattering are discussed in
Sec. III.D.

gy, etc.) during a single history of duration T as
T(~)T =—I W[k(t)]dr

E.

M[k(t' }]dr',
T (2.10)

b. Synchronous ensemble

Another method of obtaining an average quantity (W)
from the simulation of a steady-state phenomenon has
been introduced by Price (1968, 1970); this is the
synchronous-ensemble method. Let us consider Fig. 5, in
which a time axis is specified for each of the N electrons
of the physical system. Circles in these axes indicate
scat tering events. In principle, each of the axes can
represent a simulated electron, and self-scattering can be
included if wanted. In general the averge value of a quan-

90—O--CM

3

where the integral over the whole simulation time T has
been separated into the sum of integrals over all free
flights of duration t;. When a steady state is investigated,
T should be taken as sufficiently long that (M)T in Eq.
(2.10) represents an unbiased estimator of the average of
the quantity .V over the electron gas.

In a similar way we may obtain the electron distribu-
tion function: a mesh of k space (or of energy) is set up at
the beginning of the computer run; during the simulation
the time spent by the sample electron in each cell of the
mesh is recorded and, for large T, this time conveniently
normalized will represent the electron distribution func-
tion, that is, the solution of the Boltzmann equation
(Fawcett er al. , 1970). This evaluation of the distribution
function can be considered a special case of Eq. (2.10} in
which we choose for M the functions nj(k) with value 1

if k lies inside the jth cell of the mesh and zero otherwise.
This method is the one most generally used to obtain

transport quantities from Monte Carlo simulations. We
shall see specific applications of it in Sec. IV.

6. Collection of results for steady-state phenomena

The data collected at each free flight will form the base
for the determination of the quantity of interest.

oc

TlME (arb. units )

a. Time averages

Generally speaking, we may obtain the average value of
a quantity .M[k(t)] (e.g. , the drift velocity, the mean ener-

FIG. S. Sketch illustrating the synchronous-ensemble method.
Subscripts (1,2,3. . . , N) label the time axis of the ith particle;
open circles indicate scattering events; t is the generic time of a
steady-state condition.
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tity M is defined as the ensemble average at time t over
the N electrons of the system, n(k)= 1

nb(k)r(k)
70

(2.13)

(M) = —g M;(t; =t) .1

N
(2.11)

In particular, the steady-state distribution function is pro-
portional to the number of electrons n (k}b,k that at time t
are found to be in a cell of fixed volume Ak around k.
Then Eq. (2.11) can also be evaluated as

where ~0 is an appropriate normalization constant. If, by
including self-scattering, we use a constant r(k), then the
steady-state distribution function becomes proportional to
the before-scattering distribution

n(k) ~nb(k)

(.ur ) = K g n (k)M(k), (2.12)
and Eq. (2.12) can be used in a Monte Carlo simulation in
the following form:

where ' is an appropriate normalization constant, and
n (k) can be considered as proportional to the probability
of finding any given electron in state k.

Now, in the spirit of Chambers's path-integral method
(Chambers, 1952), an electron will be found in k at time t
if it has been scattered in the suitable k' an appropriate
time interval t' before t and has not been scattered again
between (t —t') and t (see Fig. 6).

Let n, (k) be the so-called after-scattering distribution
function, proportional to the probability that an electron
is found in k immediately after a scattering event. Then
n (k) is proportional to

(2.14)

where the sum covers all N electron free flights, and Ms;
indicates the value of the quantity W evaluated at the end
of the free flight immediately before the ith scattering
event.

If self-scattering with a step-shaped total scattering
probability, as described in Sec. II.B.3, is used, then the
various terms in the sum of Eq. (2.14) must be weighted
with a factor I '(k); but in this case particular care must
be taken when, during a flight, k(t) crosses the border
from one value of I; to another value, since r(k) must be
a unique, well-defined function of k.

where H(k', t') is the probability that an electron in k' at
a given time will not be scattered before an interval of
time t'.

If we now consider the before-scattering distribution
function nb(k}, proportional to the probability that an
electron is found in k immediately before a scattering
event, we shall find by an argument similar to that given
above that

nb(k) cc f n, [k'(t')]H[k'(t'), t']dt'
r(k)

where r '(k) is the scattering rate for an electron in k.
Thus the steady-state distribution function is given by

c. Statistical uncertainty

In order to estimate the statistical uncertainty of a
time-average result (M) r due to the finite value of the
simulation time T, as mentioned in Sec. II.B, we can
divide' the whole history in N subhistories of duration
T/N; for each of them a value (M)t is obtained. We
may then take as the most probable value of (M) the
average of the (.Gt')t's (which will be equal to (M) r)
and its standard deviation as the statistical uncertainty on
(.ot')r. The subhistories must be sufficiently long to be
considered as independent of each other, but sufficiently
short to allow us to perform a large number N of them.

FIG. 6. Trajectory of an electron in k space. An electron that
contributes to the distribution function f(k, t) must have scat-
tered onto the trajectory at some previous time t' at the corre-
sponding k' and have followed it without scattering until it ar-
rived at point k at time t (Cohen et al. , 1960).

It may seem strange that with a constant r(k) the before-
scattering distribution nq(k) is equal to the steady-state distribu-
tion, since the states just before the scattering events seem to be
influenced "at the maximum" by the applied fields. However,
one should consider that, while nq(k) weights equally all free
flights (short and long ones) with average duration v., when an
instantaneous picture of the electron gas is taken at any time t,
longer free flights are more likely to be caught. In other words,
in the latter case the vertical line in Fig. 5 crosses free flights
whose mean duration is longer than the average over all free
flights; in fact, the distribution of the hemi-flights on the right
and on the left of the line t reproduces the distribution of flight
durations, so that the average length of the flights crossed by t

is 27.
This division requires the interruption of a free flight at the

end of each subhistory simulation. The remaining part of the
flight is thus used as the initial part of the successive subhistory
sim ulation.
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In this case the uncertainty decreases as I/~N. Further-
more, it is possible to carry out, on the series of partial re-
sults (.cl)1, those tests (Hammersley and Handscomb,
1964) which verify the statistical nature of their fluctua-
tions.

C. Time- and space-dependent phenomena

For time- and/or space-dependent problems the analyt-
ical solution of the Boltzmann equation is even more dif-
ficult than for homogeneous and stationary problems,
while for Monte Carlo programs little work need be added
to attack such problems. This confirms again the useful-
ness of the Monte Carlo method, in particular, for the
analysis of small devices, where it is often necessary to
consider both the transient dynamic response to the volt-
age changes and electronic behavior at different points of
the device with different field or material properties (Bac-
carani et al. , 1977; Zimmermann and Constant, 1980).

As mentioned ir~ Sec. II.A, for such problems we can-
not rely on the ergodicity of the system; an ensemble of
particles must be explicitly simulated (Lebwohl and Price,
1971a, 1971b).

One exception of this rule that will be discussed in Sec.
II.C.3 is that of phenomena which are periodic in space
and/or time. In this case the different situations experi-
enced by the electron in equivalent positions or times will
take into account the many possibilities of various parti-
cles, and again the simulation of a single electron may
yield the necessary information about the entire electron
gas.

1. Transients

We shall consider here the case of a homogeneous elec-
tron gas with time-dependent behavior. In particular, it is
of interest to study the transient dynamic response to a
sudden change in the value of an applied field. In this sit-
uation many particles must be independently simulated
with appropriate distributions of initial conditions. Pro-
vided the number of simulated particles is sufficiently
large, the average value of a quantity of interest, obtained
on this sample ensemble as a function of time, will be
representative of the average for the entire gas.

It must be stressed that the estimators given by Eqs.
(2.10) and (2.14) are based on the hypothesis of steady-
state conditions and cannot be used when a time-
dependent phenomena is analyzed: the ensemble average
of a quantity M must actually be estimated according to
its definition, given by Eq. (2.11):

(2.15)

where i runs over all N simulated particles.
The duration of the transient response is not known a

priori and will be of the order of the largest of the charac-
teristic times of the electron system. This time may be
called the "transient-transport time" and in general de-

pends upon the values of the applied field and tempera-
ture; in our case of high-field transport in semiconduct-
ors, it may roughly correspond to the energy relaxation
time or to the time for repopulation of different valleys.

To determine the precision of the results obtained, one
separates the entire ensemble into a certain number of
subensembles and estimates for each of them the quantity
of interest .V. Then their average value and standard de-
viation can be taken, respectively, as the most probable
value and the statistical uncertainty of .N.

The transient dynamic response obtained by means of
the simulation will, of course, depend upon the initial
conditions of the carriers, and these must be assumed ac-
cording to the situation to be explored. Initial velocity
distributions which may be of interest are, for example, a
Maxwellian distribution at the lattice temperature and no
drift, or a Maxwellian distribution with an electron tem-
perature higher than that of the lattice, with or without
drift.

2. Space-dependent phenomena

The simulation of a steady-. -.tate phenomenon in a
physical system where electron transport depends upon
the position in space is of particular interest for the
analysis and modeling of devices. For this case, too, an
ensemble of independent particles must be used, and aver-
ages must be taken over particles at given positions. The
statistical uncertainties of the results can be obtained with
subensembles, as indicated in the preceding section.

In a steady-state situation, particles enter the region of
interest continuously, and in the simulation some initial
wave vector must be assumed when a new particle is con-
sidered, according to the momentum distribution of the
particles in the physical system under investigation. For
example, a cold hemi-Maxwellian distribution, that is, one
with only positive velocity components along a given
direction, may be convenient in simulating the metallic
contact of a device. If the simulated electron entering the
device goes back to the contact, a new electron must be
generated, but the "lost" electron must be accounted for
in the final results in a way that depends on the particular
analysis being carried out.

Space- and time-dependent phenomena may present
similar characteristics, and they have sometimes been
confused in simulation problems. For instance, if a field
is suddenly switched on from zero to a large value, during
the initial transient the drift velocity reaches values larger
than those in steady-state conditions (overshoot effect),
and this effect is sornetirnes useful in discussing the
behavior of an electron stream, coming from a low-field
region and entering a region with a high applied field.

If this mode of reasoning is correct from a qualitative
point of view, in rigorous calculations the kind of average
that must be taken is different depending on whether
time- or space-dependent phenomena are considered. In a
steady-state phenomenon with space-dependent applied
fields it is, in general, necessary to consider the electron
properties at given positions (Baccarani et al. , 1977; Zim-
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mermann and Constant, 1980), so that the simulation
must record average values for given points over time;
when the object of the investigation is the evolution in
time of a homogeneous sytem, average quantities must be
evaluated at given times independent of the particle posi-
tions.

Eo+E

3. Periodic fields

Monte Carlo simulation can be extended to permit cal-
culation of the response of charge carriers to periodic
external fields of any strength (Lebwohl, 1973; Zimmer-
man et al. , 1978). If a field

E=Ep+ E) sin(cot ) (2.16)

is applied, and the ac term is small enough to be in the
linear-response regime, the average electron velocity will
be of the form

Eo —E)
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Then we average the values of v obtained at times
lhr, (l+X)ht, (i+2K)ht, . . . . The result is an estimator
of the average electron velocity (v), which is a periodic
function of t with the same period 2n. /co, at the times
given above.

The synchronous-ensemble method described in Sec.
II.B.6.b for static fields has been extended by Lebwohl
(1973) to include the case of periodic fields. The result is
a simple parametric dependence of Eq. (2.13) upon time:

n(k, t) = nb(k, t)r(k)1

7 0
(2.19)

and in the applications it is possible to operate as for stat-
ic fields with the additional care of assigning each

The coefficients vl and v2 of the fundamental response
in Eq. (2.17) can be obtained as sine and cosine Fourier
transforms, respectively, of the velocity of the simulated
electron over its history. Since the equation of motion of
the particle subject to a field given by Eq. (2.16) is known
in explicit terms, the Fourier coefficients vl and v2 can
easily be obtained by the simulation (Lebwohl, 1973).

For large periodic fields, the periodic part of the
current will contain higher harmonics, besides the funda-
mental frequency. These components can also be ob-
tained by Fourier analysis of the simulated velocity, but
in this case statistical-noise problems become severe.

It is also possible to obtain the total response of the
electron gas without Fourier analysis, by sampling the
electron velocity at fixed times, corresponding to definite
phases in the period of the external force. To be more ex-
plicit, as illustrated in Fig. 7, let us suppose that we
"read" from the simulation the electron velocity at times
given by O, b, t, 2ht, . . . , Ibt, . . . , where ht [with typical
values within (0.5—1)X10 ' sec] is a fraction 1/%of the
period 2m /m of the ac field:

(srb. units)

FIG. 7. Simulation of transport with periodic fields. A random
variable (for example instantaneous velocity at time t; ) is
recorded in response to the periodic input signal E(t). Period T
is divided into N intervals of equal duration At, and the average
response is obtained by averaging the values at
t;, t;+ T, t;+2T, . . . (Zimmermann et al. , 1978).

analyzed event to the proper phase (or time within the
period).

D. Diffosion

Diffusion may be considered a special, important case
of a space-dependent phenomenon which is in general also
time dependent, and a great deal of work has recently
been done in this field with the Monte Carlo technique.

In the linear-response regime, diffusion D and mobility
p are related by the Einstein re1ation

D =(1/e)pK~Tp (2.20)

Thus an independent determination of the diffusion coef-
ficient does not add any particular information about the
transport properties of a material that one could not ob-
tain by determining the Qhmic mobility.

At high fields, however, the Einstein relation fails and
the study of hot-electron diffusion becomes useful for two
reasons: (i) from a basic point of view it provides an in-

dependent check, in addition to the drift velocity, of
theoretical models of the material under investigation; (ii)
from a more applied point of view, it provides useful in-
formation for the analysis of most solid-state devices.

It must be added that deviations of the diffusion coeffi-
cient from its equilibrium value can also occur at fields
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lower than those at which hot-electron phenomena are
usually present, because of the possibility of intervalley
diffusion, which occurs in many-valley semiconductors
(see Sec.IV.B.3).

the mth moment of n (z), defined by

M =—fz n(z)dz
1 (2.25)

Fick diffusion

Diffusion is described at a phenomenological level by
the first Fick's equation,

(X being the total number of particles), then from Eq.
(2.24) we have, after successive integrations by parts
(Jacoboni et al. , 1978; Price, 1979),

dMl

dt
=V

(2.21)
dM2

dt
2vdll +2D

(2.26)
where j is the current density, D;J is the diffusion tensor,
x is the particle position in space, and n(x) is the particle
density; the sum over repeated indices is implied.

If an electric field is also present which would produce,
in the absence of diffusion, a drift velocity ud, and if dif-
fusion and drift do not influence each other, then for Eq.
(2.21) we substitute

j, =e n(x}v„(E)—DJ
Bn(x)

Bxj
(2.22)

By combining this equation with the continuity equation,

Bn
e = — j;Bt Bx;

(2.23)

we obtain the diffusion equation, sometimes called the
second Fick's equation:

Bn Bn 92n- =- —vd (E) +DJat ax, " ax, ax,-
(2.24)

4This is not a trivial point ~ For example, let us consider an
open-circuit situation with a high applied electric field. Here
diffusion and drift cancel each other out to produce a vanishing
net current. They influence each other in that the electron ener-

gy distribution function is not the usual hot-electron distribution
obtained for a homogeneous system, because power does not
flow through the particle gas, and yet electrons experience a
high field between successive collisions. A similar situation is

realized within the space-charge region of a p-n junction in

open-circuit conditions.

where vd and D have been supposed to be space indepen-
dent.

Under linear-response conditions, vd depends linearly
on field, and D is field independent, as can be obtained
from the solution of the Boltzmann equation. The gen-
eralization at high fields of Eq. (2.24) is usually per-
formed by assuming D =D(E). As a matter of fact, a
rigorous derivation from the Boltzmann equation of Eq.
(2.24) with D =D(E) can be performed only by assuming
small concentration gradients and times longer than both
the transient-transport time, defined in Sec. II.C. I, and
the time necessary for setting up the correct space-
velocity correlations (see Gantsevich et al. , 1974, 1979).

If, for simplicity, n is assumed to be a function of only
one coordinate z parallel to the direction of vd, and M is

dM

dt
=mvdM ~+m (I —1)DIM~

where DI is the diagonal component of D along vd.
In particular, for the second central moment we have

D[= ——&(z —&z)) )
1 d
2 dt

(2.27}

This expression can be used to determine the diffusion
coefficient by means of a Monte Carlo simulation: a
number of particles is independently simulated and their
positions are recorded at fixed times. For large enough
simulation times, the second central moment shows the
linearity predicted by Eq. (2.27), and from its slope D& is
obtained. For short simulation times Eq. (2.27) does not
hold, for the reason discussed above.

Often, instead of Eq. (2.27), the following alternative
equation is used (Fawcett, 1973; Fauquembergue et al. ,

1980; Ferry, 1980):

&(z —&z) )')
I 2t

(2.28)

Equation (2.28) may in fact be deduced from the solution
of the diffusion equation (2.24) with n (z, t =0)=%5(z) as
initial condition:

n(z, t)= exp[ —(z vdt) i (4D—It)] . (2.29)
X 2'

/4~D&t

From Eq. (2.27) we may instead deduce

&(z —&z))-') =2D, t+ W . (2.30)

DI, as determined from Eq. ( .28), will coincide with the
correct DI obtained from Eq. (2.27) only for t~ &n.

Much longer simulation times are necessary for a good es-
timate of D~ by this method than by using Eq. (2.27),
which yields the correct answer as soon as the diffusion
equation holds. The whole point, clarified in Fig. 8, is
that Eq. (2.29), which is the starting point for Eq. (2.28)
for DI, is never correct, since it is based on the validity of
the diffusion equation (2.24) for all t & 0, while for short t
it does not hold. The effect on the second central mo-
ment of the dynamics during this first initial transient is
the term W in Eq. (2.30).

The above discussion also shows that during the tran-
sient, not described by Fick s law, diffusion will involve
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is divided into a number N of intervals, of duration
b, T =T/N, in order to determine C(t) at times O, b, T,
25T, . . . , NET = T. During the simulation, the velocity
of the sample particle is recorded at the time values ihT,
i =0, 1,2, . . . . When i becomes greater than or equal to
N, the products,

u(ib, T)v [(i j)—b.T], j=0, 1,2, . . . , N

are evaluated for each i. Products corresponding to the
same value of i are averaged over the simulation, thus ob-
taining

u(t)u(t +j b, T) =C(j b, T)+u~ (2.34}

since in a steady-state situation the ensemble average is
included in the time average.

0 t p
3. Diffusion at small distances and short times;
q- and ~-dependent diffusion

TIME (arb. units)

FIG. 8. Evaluation of the diffusion coefficient from the second
central moment as a function of time (solid curve). At time to a
correct determination of D can be obtained, according to Eq.
(2.27), by taking the time derivative (dot-dashed curve) of the
second central moment, while the incorrect Eq. (2.28) discussed
in the text still gives a wrong answer (dashed curve) ~

distances of the order of M' (Alberigi-Quaranta et al. ,
1973).

Other components of D can be obtained in a similar
way, since in general we have, with analogous calcula-
tions,

(2.3 1)

Furthermore, the consistency of the simulation can be
cheeked Oy an analysis of the time derivatives of the third
and higher central moments.

2. Velocity autocorrelation function

C; (t)= &5u;(t')5vj(t'+t) & (2.32)

The diffusion coefficient D can also be determined
from a Monte Carlo simulation through the evaluation of
the autocorrelation function of velocity fluctuation
(Gherardi et al. , 1975; Fauquembergue et al. , 1980; Fer-
ry and Barker, 1981),

no+ I 1+exp[i (qx tot )] )
——

7d
(2.35)

where no is the average density of particles.
Here D is still a constant and Eq. (2.35) cannot describe

diffusion outside the limits described above. However,
taking advantage of its linearity, we may Fourier analyze
Eq. (2.35); the Fourier transform of Eq. (2.35) is thus
readily obtained as

In Sec. II.D. 1 we have seen that at small distances and
short times transient diffusion is not correctly described
by the classical Fick's law. It must be noted, however,
that some conditions are required for the validity of
Fick's law, independently of transient transport: the dis-
tances at which the gradient varies appreciably must be
small compared with the electron mean free path, and the
time during which the gradient varies appreciably must be
long compared with any electron relaxation time. In re-
cent years theoretical attempts to construct a generalized
diffusion theory without these limits (Schlup 1971;
Gantsevich et al. , 1974; Jacoboni, 1974; Jacoboni et aI. ,
1981b) have been made.

One way to do this, is to use Fourier analysis, and to
assume the presence of a sinusoidal source of particles ac-
companied by a trapping mechanism with constant rate
7d

' which preserves their total number. For such a sys-
tem the diffusion equation (in one dimension, for the sake
of simplicity) becomes

Bn 9 n Bn

Bt Qx2 9x
—Ud

where the bar indicates a time average. In fact the fol-
lowing relation holds (see the textbook of Reif, 1965):

1
nq —ico+q D+iqUd+

7d

no
exp( —i y)

7d
(2.36)

D= C(t}dt (2.33)

The calculation of C(t) may be of interest in itself and
can be performed as follows. Let T be the time interval in
which the autocorrelation function is to be sampled. In
general T must be taken as much longer than the auto-
correlation time, i.e., such that C(t)=0 for t ~ T. Then T

where nq and y are the a][nplitude and phase shift of the
harmonic disturbance, respectively.

Now D in Eq. (2.36}can be assumed to be a function of
q, co, and 7d. Thus Eq. (2.36) can be used to describe dif-
fusion with fast variation of the gradient in space and/or
1n time.
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By using Chamber's methods, we can write a formal
solution of Eq. (2.36) (Jacoboni et al. , 1981b), that yields
an expression for D(q, co, rd) which can be used in Monte
Carlo calculations:

1
D(q, cv, rd }= [1 —R +irdR(cv —qvd)]

q v.dR

(2.37)

T 2

S„(co)= lim — f 5v(t)exp(icot}dt
T ~ T

(2.40)

Now the Wiener-Khintchine theorem connects the auto-
correlation function C(t) and S„(cv ) through

S„(cv)=2f C(t)exp(icvt)dt

By taking into account Eq. (2.39), we obtain

with S„(cv ) =2D (cv ) (2.41b)

oo dg aoR= dx 'exp i ( qx—'
cv t ')——

0 gd —oo id

(2.38)

D(co)= f C(t) exp(icvt)dt (2.39)

In order to obtain D(q, cv, r~) from a Monte Carlo
simulation, it is sufficient to include among the scatter-
ings a trapping mechanism with a constant inverse rate

If the particle is trapped after it has covered a dis-
tance x' in a time t' the quantity exp[ i (qx' —cot')] is-
recorded. Then R (q, co, rd ) is obtained as the mean value
of this quantity, since the simulation automatically ac-
counts for the weighting factor.

After a trapping process the particle starts again with a
velocity chosen according to the desired initial conditions.
If the particle starts with the velocity it had when de-
cayed, the initial conditions are taken according to the
steady-state distribution of velocities. In any case, for ~d
sufficiently long, the results will be independent of the in-
itial conditions assuined. For short rd, results for the dif-
fusivity are obtained for the transient transport regime ac-
cording to the initial conditions assumed. Finally, we ob-
serve that Eq. (2.39) can be used to determine D(cv ) in a
Monte Carlo procedure, by determining the autocorrela-
tion function C(t},as described in the preceding section.

4. Noise and diffusion

Recently much interest has been shown (Hill et al. ,
1979; Fauquembergue et al. , 1980} in the use of Monte
Carlo techniques to determine the noise spectrum of velo-
city fluctuations in connection with diffusion.

If we consider, again for simplicity, a one-dimensional
situation, the power spectrum of the velocity fluctuations
is defined as

where H( x', t') is the probability density that, in the ab-
sence of trapping, a particle covers a distance x' in a time
t'. D(q, co } can be obtained as a special case of the above
result in the limit td~ ao.

For co =0, an expression of D(q) is easily obtained for
use on steady-state phenomena with strong spatial varia-
tion.

For vanishing q it is possible to obtain an extension of
Eq. (2.33}valid for an arbitrary frequency,

This result shows that a determination of the noise
spectrum of the velocity fluctuations is equivalent to the
determination of the frequency-dependent diffusivity.
Thus the noise spectrum can be obtained as the Fourier
transform of C(t), as indicated for D( cv) in Sec. II.D.3.
On the other hand, Eq. (2.40) can be used directly, not
only for the determination of S„(cv}, but also for the
determination of D(cv) in a Monte Carlo simulation. An
average, over a particle ensemble, of the absolute squared
Fourier transform of the electron velocity must be taken.

E. Ohmic mobility

When the Monte Carlo method is used to obtain the
drift velocity of charge carriers at low applied fields, the
statistical uncertainty originating from thermal motion
may become particularly large. Qf course, in principle,
apart from the round-off errors of the computer, any
desired precision can be obtained, but the computer time
necessary for a high degree of precision often makes such
a run impractical and expensive.

The uncertainty due to thermal motion is particularly
bothersome when the Ohmic mobility is sought. For this
case, however, it is possible to evaluate the diffusion coef-
ficient at zero field with one of the methods discussed in
Sec. II.D and then to obtain the Ohmic mobility by means
of the Einstein relation [see Eq. (2.20}]. It is worth noting
that when no external field is applied, the energy —and
therefore the scattering probability of the particle —is
constant during a free flight, so that no self-scattering
need be introduced.

At low fields, another difficulty may arise when we
deal with many-valley semiconductors. Intervalley
scattering is due to phonons with a minimum equivalent
temperature of the order of at least 100 K. If the lattice
temperature is well below such a value, intervalley pho-
non absorption is almost absent because very few phonons
are present in the crystal with that energy and, at low
fields, the electron energy very rarely reaches values such
as to make intervalley phonon emission possible. As a
consequence, the Monte Carlo simulation may proceed
for very long times without any valley change of the sam-
pling electron. In this situation it is very difficult to ob-
tain a correct estimate of the valley populations.

When Ohmic conditions are analyzed and no interval-
ley transition is present at all, this difficulty may be over-
corne by simulating one electron in each valley, since we
know a priori that the populations of all valleys must be
the same. Gn the other hand, when we enter the field re-
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gion in which a repopulation occurs and intervalley tran-
sitions are very rare, the Monte Carlo method becomes
inefficient. We shall return to this point in Sec. II.H
when we consider several variance-reducing techniques.

F. Impact ionization

The impact ionization rate col can be obtained from the
Monte Carlo method by introducing the probability of
impact ionization as an independent scattering mechan-
ism which is added to phonon and impurity scatterings
(Lebwohl and Price, 1971a; Curby and Ferry, 1973; Shi-
chijo et al. , 1981;Skichijo and Hess, 1981).

When an ensemble Monte Carlo method is used, the
impact ionization process can be examined as follows
(Lebwohl and Price, 1971a). The energy of the minority
carrier (of the electron-hole pair created) relative to the
band edge is neglected and the carrier itself is disregarded.
Therefore the sum of the two majority-carrier final ener-
gies (ef &+ef2) equals (e —eg) where e is the initial energy
and eg the energy gap. After each ionization process, one
of the resulting (%+ I) particles, chosen at random, is
eliminated to maintain a fixed sample size. The pair gen-
eration rate per particle per unit time, gl, is obtained by
counting ionization events; it is converted to impact ioni-
zation rate by

(2.42)

In other papers (Curby and Ferry, 1973; Shichijo et al. ,
1981; Shichijo and Hess, 1981) a single-particle Monte
Carlo simulation is used, and when impact ionization oc-
curs the created electron-hole pair is disregarded. The
impact ionization rate has been obtained by averaging the
distance to impact ionization over a sufficient number of
ionizations, as in Eq. (2.42)

perpendicular to B, as shown in Fig. 9. A Monte Carlo
simulation performed with such a geometry of fields for
an infinite homogeneous sytem yields the drift velocity
vd, and in particular the two components v~ and U, paral-
lel and perpendicular to E, and the angle 0 formed by vd
and E.

At this point we may interpret the results of the simu-
lation in two different physical ways (Boardman et al. ,
1971), according to the particular system under considera-
tion.

One interpretation corresponds to the case of a long
sample. The electric field E is decomposed into two com-
ponents E„parallel to vd, which must be considered as
the applied field, and EH, perpendicular to both 8 and vd,
which must be considered as the Hall field [see parts (a)
and (b) of Fig. 9]. In this case the drift mobility pd is
determined by

Vd Ud
Pd= E, E cosO

(2.45)

while the Hall mobility is

EH
PH= BE (2.46)

Therefore, from the Monte Carlo simulation it is possible
to obtain a direct determination of the Hall scattering fac-
tor rH given by

PH
PH=

Pd BUd
(2.47)

This number is of particular interest, since it depends
upon the particular type of scattering mechanism that
controls the transport process.

The second interpretation corresponds to the case of

G. Magnetic fields

The scope of the Monte Carlo method can be extended
to include the case where both magnetic and electric fields
are present. In this case the equation of motion of a car-
rier during a free flight will be

Ea

vRc=e E+—)& 8
C

(2.43)
i) Vd

where 8 is the magnetic field, c the light velocity in vacu-
um, and v the group velocity of the particle,

(2.44)
B

Apart from this change in electron dynamics, the whole
Monte Carlo simulation proceeds as usual (Boardman
et a/. , 1971; Chattopadhyay, 1974), but the drift velocity
wiH not, in general, be parallel to the applied electric field.
Loss of cylindrical symmetry requires in this case a full
three-dimensional simulation, even with very simple
models. With a spherical band and a magnetic field 8
orthogonal to E, the drift velocity vd is also in the plane FIG. 9. Geometry for 8, E, and vq {see text).
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very short flat samples in which the electrons can move
from one contact to the other at the Hall angle 0 with
respect to the applied field, thus producing a transverse
current and no Hall field [see part (c) of Fig. 9]. The
longitudinal mobility in this case is obtained as

UI vd
pp = = cosO =pd cos 0

F. E (2.48)

For complicated systems, such as nonspherical bands,
multivalley bands, and bipolar conduction, the usual
modifications of the Hall-effect analysis (Boardman
et al. , 1971} must be applied to the interpretation of
Monte Carlo results.

H. Electron-electron interaction

Electron-electron collisions

(Q

M

10

m 5
X

cn

Z 1

z
O 0.5

D
U
D

0. 1 i I 1 l I I

0 0.01 0.02 0.03 0.04 0.05 0.06

ENERGY (e V )

FIG. 10. Distribution function of electrons in a simple semi-
conductor modeled on Si obtained with Monte Carlo calcula-
tions at T=45 K and E=300 V/cm. The dashed curve (Ph)
has been obtained by considering only phonon scattering; the
solid curve (e-e) includes electron-electron interaction with a
concentration of 10'' cm ' electrons; the dot-dashed curve (Eq)
indicates the equilibrium distribution (Jacoboni, 1976).

Interparticle collisions do not usually affect transport
properties to a large extent in semiconductors. In fact, in

such an interaction the total momentum and the total en-

ergy of the two colliding particles is conserved, and no
dissipation occurs. Momentum and energy are, however,
redistributed among the particles so that the shape of the
electron distribution function f(k) is influenced by an e-e
interaction (a typical result is shown in Fig. 10}. This fact
has been used (Frohlich and Paranjape, 1956; Conwell,
1967) as the basis for stating that, for high electron densi-
ties, f(k) assumes a Maxwellian shape far from equilibri-
um, characterized by a mean drift velocity different from

zero and an electron temperature T, different from the
crystal temperature To.

From the above considerations it is reasonable to expect
that e-e interaction may affect to some extent the micro-
scopic transport quantities which are more sensitive to the
particular shape of the distribution function. It has been
found both theoretically and in experimental measure-
ments (Asche et al. , 1971; Nash and Holm-Kennedy,
1974; Jacoboni, 1976) that this is the case for energy re-
laxation time and valley repopulation (see Sec. IV.B).

The traditional Monte Carlo simulation does not in-
clude e-e collisions, since, on the basis of ergodicity, it
substitutes time averages calculated over the simulation of
a single particle history for ensemble averages.

Several attempts (Bacchelli and Jacoboni, 1972; Matu-
lionis et aI. , 1975; Jacoboni, 1976) have been made to in-
clude e-e interaction in Monte Carlo calculations. A fun-
damental difficulty must, however, be faced due to the
nonlinear nature of such interaction. In fact, the scatter-
ing probability itself depends on the distribution function,
both through the screening factor of the scattering poten-
tial and through the probability of the sampling electron's
colliding with another electron of given wave vector k.
Some sort of self-consistent calculation must therefore be
performed in which an assumed f(k) is used to evaluate
scattering probabilities and the same f(k) results as solu-
tion.

Bacchelli and Jacoboni (1971) took an iterative ap-
proach consisting of the following procedure: in the first
iteration, f, (k) is obtained from a Monte Carlo simula-
tion without e-e interaction. Then in the successive itera-
tions the Monte Carlo simulation is repeated, introducing
e-e interaction with a constant scattering probability in
which the final state of the collision is chosen randomly
according to a drifted Maxwellian distribution, with the
drift velocity and the mean energy obtained in the previ-
ous iterative step. The procedure ends when convergence
to a stable result ensures self-consistency of the solution.

A somewhat different approach was proposed by Matu-
lionis et al. (1975a, 1976), in which two electrons are
simulated, each representing the whole system. For each
of them, a record is kept of the most recent distribution
function obtained from the simulation over a specified
period. In the simulation of one electron, among the
scattering mechanisms, an e-e interaction with a screened
Coulomb potential is introduced, and evaluated by means
of the memory of the other electron. At each collision,
the memory of the simulated particle is updated by the
new state, while the memory of the other electron is not
changed. When the other electron is considered as a
Monte Carlo electron, the memory of the former particle
now represents the ambient electron gas. The procedure
is recurrent, so that a sufficiently long simulation pro-
vides convergence of the final results.

A simultaneous simulation of many interacting parti-
cles has been tried (Jacoboni, 1976), but difficulties arose
from the long-range nature of the Coulomb interaction.

From this brief review it appears that the introduction
of an e-e interaction in Monte Carlo calculation is still an
open problem.
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2. Degenerate statistics

The Pauli exclusion principle, too, is a sort of electron-
electron interaction which brings about nonlinear terms in
the Boltzmann equation, and it requires some self-
consistent procedure if it is to be included in a Monte
Carlo calculation.

Bosi and Jacoboni (1976) suggested that the distribution
function f(k, t), as obtained from the simulation itself up
to the simulation time t in which the scattering is at-
tempted, be used to correct a11 the scattering probabilities
by a factor (1 f). A—gain, the simulation must continue
until convergence off (k) is attained.

In order to include the factor (1 f) in t—he scattering
probabilities, the rejection technique is employed after the
final state k, has been selected: if a random number ~ in
the interval (0, 1) is greater than f (k„), the scattering pro-
cess is accepted, otherwise a self-scattering is assumed. In
this way, under degenerate conditions, a very large num-
ber of self-scatterings is produced. However, with this
procedure computer time is saved, as it is not necessary to
use the whole distribution function to evaluate the scatter-
ing probabilities. Of course, in the evaluation of f (k) the
total density of carriers must be taken into account for
normalization purposes.

Figure 11 shows an example of application to GaAs of
the method described above.

prove appreciably the quality of the results becomes
quickly very long. It is thus of particular interest to find
variance-reducing techniques, which can be defined in
general as procedures which "change or at least distort
the original problem in such a way that uncertainty in the
answer is reduced" (Hammersley and Handscomb, 1964).
It can easily be understood that the reduction of variance
is of greatest importance in all Monte Carlo calculations,
and in fact it has been widely studied. A dense and ex-
haustive review of variance-reducing techniques can be
found in the textbook of Hainmersley and Handscomb
(1964). Among these techniques, some are specifically
oriented to electron-transport problems, so we think it
useful to review them here briefly.

1. Variance due to thermal fluctuations

In Monte Carlo simulation the drift velocity vd of the
sample electron is obtained as an average of its velocity
during the simulation. If vd is a small fraction of the
thermal velocity v, h, an estimate of vd is, in general,
heavily influenced by the variance due to v, h fluctuations.
In many cases this contribution to the uncertainty on vd

can be strongly reduced by a modification of the Monte
Carlo procedure (Hammar, 1971; Price, 1979), as
described below.

When the transition probability per unit time is velocity
randomizing, i.e., is such that

I. Variance-reducing techniques
P(k, k') =P(k, —k') (2.49)

The Monte Carlo method is a statistical procedure for
the solution of mathematical problems. Therefore, the re-
sults obtained by means of such a method are always af-
fected by some statistical uncertainty. In Sec. II.B.6.c we
discussed the standard algorithm used to evaluate this un-

certainty for the solution of transport problems.
As a general rule, the statistical precision of the results

increases as the square root of the number of trials and,
therefore, the amount of computer time necessary to im-

Ga As elect rons
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FIG. 11. Electron occupation number as a function of energy in
GaAs at 77 K, obtained with the Monte Carlo simulation (dots)
for a degenerate concentration. The solid curve indicates the
equilibrium Fermi distribution for comparison.

vd =eE(V~I) (2.50)

where V~1 is the gradient in momentum space of the mean
free path I, i.e., a tensor whose ij component is Bl;/Bpj. .
A relatively small variance is associated with such an esti-
mator; however, in practice it is useful only for simple

then a value k' for the state after scattering is as probable
as its opposite —k'. The random number used to gen-
erate k„by selecting one of them, introduces a variance
that, in turn, builds up the thermal fluctuation of the elec-
tron velocity.

It is possible to eliminate this fluctuation by splitting
the simulation into two different histories, corresponding
to the two equally probable initial conditions k~ and —k,
for the new free flight. If a constant I is used and the
same random number is taken to generate the two flights,
these latter have equal weights in the simulation. Thus
both can be considered by taking into account the aver-
ages of the quantities evaluated in the two flights, thereby
reducing the variance by eliminating the thermal contri-
bution. One of the flights is finally chosen at random to
continue the simulation.

This procedure can be extended to more than two states
after scattering (Hammar, 1971; Price, 1979) and, with
appropriate weights, to the case of non-velocity-
randomizing processes.

For the carrier drift velocity, an estimator quite dif-
ferent from those generally used has been given by Price
(1979).
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cases, when an analytical expression can be given for the
quantity to be averaged in Eq. (2.50).

can be approached with the variance-reducing technique
described next ~

2. Variance due to valley repopulation 3. Variance related to improbable electron states

As is well known (Conwell, 1967), in a many-valley
semiconductor when the valleys are differently oriented
with respect to the applied field, they contribute with dif-
ferent valley drift velocities vd„ to the total average elec-
tron drift velcoity vd.

Vd = nUVd„ (2.51)

where n„ is the relative concentration of carriers in the Uth

valley.
Under hot-electron conditions, this situation corre-

sponds to different carrier heating, and a redistribution of
the electron among the different valleys occurs, called
"va11ey repopulation. "

At low fields and temperatures, intervalley transitions
are very rare, and the variance of the concentration n„
and, in turn, of the drift velocity vd may be very large.
The situation may be improved (Hammar, 1971; Canali
et al. , 1975) by using the distribution function, as ob-
tained in each type of valley with the Monte Carlo calcu-
lation, and the transition probabilities from the valleys of
different types, to evaluate the valley repopulation, as fol-
lows.

In a situation where two types of valleys, "hot" and
"cold," exist, steady-state conditions require that the
number of electrons passing per unit time from hot to
cold valleys be equal to the number of electrons which
perform the opposite transition. The above condition
yields

ni, f fq(e)Pq, (e)de=n, J f, (e )P,q(e)de, (2.52)

where nl, and n, are the relative fractions of hot and cold
carriers to be evaluated; fl, and f, are the energy distribu-
tion function, which includes the density of states, nor-
malized to one, in hot and cold valleys; P~, and P,~ are
the transition rates from hot to cold valleys and from cold
to hot valleys, respectively. f~ and f, are obtained from
the Monte Carlo simulation, while P~, and P,~ are known
from the theory of scattering mechanisms (see Sec.
III.D. l.c).

By dividing the energy axis into equal intervals, one ob-
tains the repopulation ratio n, /n~ from a numerical
evaluation of Eq. (2.52). Such an estimate of n, /nq ex-
ploits all the information obtained during the simulation
(i.e., information acquired when the electron "visits" the
region of energy where intervalley scattering is possible),
not only the information obtained from transitions that
have actually happened. In this way the variance associ-
ated with the repopulation ratio is reduced. However, it
must be noted that, in order to get correct results with the
above procedure, one must know the tails of the distribu-
tion functions in hot and cold valleys with sufficient ac-
curacy at energies above threshold for intervalley phonon
emission. This again can become a severe problem, which

When a physical phenomenon of interest is due to the
occurrence of improbable electron states, the standard
Monte Carlo simulation may lead to a large variance of
the desired quantity. Situations of this kind are usually
related to the tails of the energy distribution function, as,
for example, in the case of valley repopulation seen above,
impact ionization, or escapes of electrons into the gate in-

sulator in a field-effect transistor (FET).
In such cases the variance can be reduced by the fol-

lowing procedure (Phillips and Price, 1977). Within a
simulation, when an electron enters a fixed "rare region"
of energy, its entering state is recorded and used for gen-
erating a fixed number N of different "parallel" simula-
tions; each of these uses different random numbers and
ends when the electron exits from the rare region. Then,
starting from one of the N exit states chosen at random,
the simulation proceeds in the usual way until the rare re-

gion is reached again. In the averaging procedures a
weight 1/N must be given to each parallel simulation.

The variance-reducing techniques above may be very
useful in some cases. It must be noted, however, that they
are realized somehow by means of a distortion of the orig-
inal problem, which causes the program to deviate from
the strict simulation of possible electron histories.

A strict simulation, in general, has the advantage of
yielding a simple and straightforward means of physical
interpretation of the phenomenon under investigation.
Consequently, as a general rule, a correct balance between
computing time, transparency of the simulative pro-
cedure, and complexity of the computed program must be
found in connection with the particular needs of each sin-
gle case.

J. Survey of other techniques

The introduction of the Monte Carlo method in high-
field transport studies has amply extended the range of
problems that can be successfully approached. Other
techniques exist, however, and are sometimes still used,
which deserve consideration since they may be particular-
ly useful under special conditions. In what follows, we
shall review briefly these alternative techniques and com-
pare them with the Monte Carlo method.

1. Analytical techniques

Analytical techniques for the solution of the nonlinear-
ized Boltzmann equation were developed mainly during
the two decades from the beginning of the study of the
hot-electron problem [which can be dated from the works
of Froehlich (1947) and Shockley (1951)] to the introduc-
tion of the numerical techniques, which were suggested at
the Kyoto Conference in 1966 (Kurosawa, 1966; Budd,
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1966). These techniques soon developed to a high degree
of refinement (Rees, 1969; Fawcett et al. , 1970; Ruch and
Fawcett, 1970; Price, 1973). A standard reference for the
research performed in that period is Co»well's book
(1967), and we refer the reader interested in details to this
corn prehensi ve review.

Even though analytical techniques require severe ap-
proximations in the calculations and can be applied only
to extremely simple semiconductor models, they have the
merit of having provided a first physical insight into the
problem of nonlinear transport. Some important con-
cepts, for example, the electron temperature, the energy
and momentum relaxation times, are still valuable heuris-
tic methods, although it is now known that a rigorous ap-
plication of these concepts is possible only in a very limit-
ed number of actual cases.

Among the analytical techniques developed for the
analysis of high-field transport, two mai» procedures can
be recognized (for a review on the determination of the
hot-electron distribution function see Bauer, 1974). In the
first one an a priori analytical form of the distribution
function is assumed, with some parameters to be deter-
mined by using the Boltzmann equation or, less frequent-
ly, through a variational principle (Adawi, 1959, 1960;
Tauber, 1959). A heated and drifted Maxwellian distribu-
tion has been widely used:

the method becomes very questionable (Yamashita and
Watanabe, 1954; Stratton, 1958a, 1958b; Yamashita and
Inoue, 1959; Reik and Risken, 1962).

2. Other numerical techniques —the iterative
technique

Other numerical techniques (Budd, 1966; Price, 1968;
Rees, 1969; Hammar, 1972, 1973; Nougier and Rolland,
1973; Vinter, 1973) for the solution of the Boltzmann
equation were developed more or less at the same time as
the Monte Carlo method. The most important of them is
closely related to the Monte Carlo technique and yields a
solution of the Boltzmann equation by means of an itera-
tive procedure. Since this method is still often used, and
a comparison with the Monte Carlo method may be in-
structive, we shall outline it briefly in the following.

Let us consider the integro-differential Boltzmann
equation for a spatially uniform system:

Bf(k, t) eE Bf(k, t)
(2.55)

f(k, t )A(k)—

The collision term for the case of nondegenerate statistics
can be written as

f(k) =~ exp[ fi (k —kd—) l(2mKp T„)] (2.53)

where N is a normalization constant, m the carrier effec-
tive mass, Akd the average momentum of the distribution,
and T, the electron temperature, which, under hot-
electron conditions, is in general higher than the lattice
temperature. The two parameters kd and T, are usually
determined by satisfying the first two moments of the
Boltzmann equation (Conwell, 1967); this procedure is
equivalent to the requirements of momentum and energy
conservation. A distribution function of the type given by
Eq. (2.53) should be a good approximation when the elec-
tron concentration is sufficiently high (Conwell, 1967).
Although it is applicable in a limited number of simple
cases, it contains most of the essential features of hot-
electron physics.

A second technique makes use of an expansion of the
distribution function in spherical harmonics. For prob-
lems with cylindrical symmetry around the direction of
the field, the expansion can be made in Legendre polyno-
mials P„(cos8):

f(k) =f0(e)+f, (e)P, (cos8)+

+ „Jdk'f(k', t)P(k, k')
(2m. )" (2.56)

where P(k, k') is the transition probability per unit time
from k to k' due to all scattering mechanisms, and

A.(k)=, JP(k, k')dk'
(27r )-'

By introducing the path variables

(2.57)

(2.58)

df — eE —— eE — — eE ——k+ t, t +A. k+ t f k+ t, t
fi

which represent the collisionless trajectory in k space of
the electrons, we obtain from Eqs. (2.55) and (2.56)

where 0 is the angle between the field direction and k.
When the expansion is substituted into the Boltzmann
equation, by using the orthogonality property of Legendre
polynomials one obtains a system of infinite coupled
equations for fo,f&, . . . . However, the scattering
mechanisms that involve a finite amount of energy ~o
mix the values of those functions calculated at e and at
e+Acoo, so that the equations prove to be both differential
and finite-difference equations. Further approximations
are then required at this stage, and the overall accuracy of

, Jdk'f(k', E)P k+ t, k' . (2.59)
(2m. )'

Multiplying through by the factor

exp fk k+ 0 d8
o

and integrating between t l and t2, we obtain
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T r

r, E E—f k+ r2 r2 exp f k k+ 8 d8 =f k+ t~ t~ exp f A. k+ 8 d8o

3 f dt exp f k k+ 8 d8 fdk'f(k', t)P k+, k'
(2n. ) 0

(2.60)

Coming back to the variables (k, t) by putting

eE—k=k+ t2,
fi

t =t2,
and writing r instead of r &, for simplicity, we have from Eq. (2.60)

(2.61)

T
T

r

f(k, r)=f k — (r r'), r' e—xp —f Ak —. (r —8) d8
r

f,dt exp —f Ak —, (t —8) d8 fdk'f(k', r)P k — (r —r), k'
(2' )

(2.62)

Equation (2.62), which is an integral form of the Boltzmann equation, can be interpreted in simple physical terms as fol-
lows. Two different contributions combine to determine the carrier distribution function f(k, t):

(a) the contribution of the electrons that were in the state k —eE(t —t')/A' at the time t', and have drifted to the state k
in the interval (t —t ) under the influence of the field E, without being scattered [first term on the right-hand side of Eq.
(2.62)];

(b) the contribution of the electrons that were scattered from any state k' to the new state k eE/fi(t t) at—any time —r
between t and t, and that arrive at the state k at the time t without being scattered again [second term on the right-hand
side of Eq. (2.62)].

Since, provided that t' & t, the time r' is arbitrary, we can consider the limiting form of the Eq. (2.62) when t'~ —oo

f(k,t)=, f dt"exp —f A, k — t"' dt"' f—dk'f(k', t t")P k — —t",k'
(2m )' (2.63)

where we have used the slight rearrangement of variables

t =t —E,
(2.64)

The iterative technique for the solution of Eq. (2.63)
consists in substituting an arbitrary function fo(k, t) on
the right-hand side of Eq. (2.63), and calculating f(k, t) as
the right-hand side of Eq. (2.63) itself. This function is
then resubstituted on the right-hand side, and the pro-
cedure is repeated until convergence is achieved.

Numerical iterative solutions of Eq. (2.63) have been
discussed for stationary conditions, in which the depen-
dence off upon t vanishes (Budd, 1966; Rees, 1969; Price,
1970). The stability of the iterative procedure and refine-
rnents for quicker computations have been discussed by
Rees (1969) and Vassel (1970). In particular, it has been
shown that the introduction of a self-scattering such as
that introduced for the Monte Carlo method, which yields
a constant scattering rate V, greatly simplifies the evalua-

tion of the integral in Eq. (2.63).
Another important result can be obtained when I" is

made large with respect to the scattering rate A, . Under
this condition it has been shown (Fawcett, 1973) that the
following relation holds:

Bf„(k;t)
f„+)(k)=f„(k)+-

fjt
(2.65)

where f„+~(k) and f„(k) are the distribution functions
obtained from the (n + 1)th and the nth iteration, respec-
tively.

Each step in the iterative process corresponds, then, to
a time increment of 1/I for the evaluation of the physi-
cal system. This result enables us to use the iterative
method to study the evolution of the distribution function
during the transient from a given initial condition fo(k)
to the stationary state. The accuracy of the analysis can
be improved by increasing I and therefore by performing
a larger number of iterations.
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3. A critical comparison of the different
techniques

The techniques discussed in the previous sections are
compared in Table I, in terms of their generality, com-
plexity, difficulty of implementation, and reliability of re-
sults.

When compared with the Monte Carlo method or other
exact techniques, the two analytical procedures sketched
in Sec. II.J.1 differ markedly in their degree of usefulness.
The drifted-Maxwellian technique aims at giving a simple
physical insight into a hot-electron problem, and, as such,
is still a very valuable method when we are not looking
for particular details. The Legendre-polynomial expan-
sion, on the other hand, was intended to be the most re-
fined analytical method for as exact as possible a solution
of the Boltzrnann equation, and, as such, it has been su-
perseded by the more recent numerical techniques.

Consequently, approximate analytical solutions of the
Boltzmann equation to include time- and space-dependent
phenomena as well as details of the microscopic model
(both for band structure and for scattering mechanisms)
have been scarce, and the reliability of the results obtained

with analytical techniques is limited to simple physical
situations, to simple microscopic models, and to narrow
ranges of temperature and fields.

If we now move to a comparison between iterative and
Monte Carlo techniques, we may first comment that both
of them give the exact numerical solution for a honio-
geneous, steady-state, hot-electron phenomenon with
noninteracting particles. Both of them can include details
of the microscopic model without difficulties and can be
extended to time-dependent phenomena.

The iterative technique processes the whole distribution
function at each step of the procedure, while with the
Monte Carlo method the distribution function is sampled
at each electron flight, so that it is available only at the
end of the simulation. For this reason the iterative tech-
nique can be more convenient when we deal with physical
phenomena that depend on details of the distribution
function, as for example in the case of valley repopulation
at low temperatures (see Sec. IV.B.6). Knowing the distri-
bution function at each step of iteration can also be useful
for the inclusion of particle-particle interactions.

Qn the other hand, some difficulties may arise in the
evaluation of the integral in Eq. (2.63), and the effect on

TABLE I. Comparison of different techniques for the solution of the Boltzmann equation.

Analytical technique

From simple parametrized dis-
tribution function to complex
series expansion.

Iterative technique

Numerical procedure at medi-
um level of difficulty.

Monte Carlo technique

Stochastic calculation at
minimum level of difficulty.

To fully exploit the potentiality of the technique, very fast
computers are necessary.

Approximate solutions of the
Boltzmann equation are ob-
tained.

An exact solution of the Boltzmann equation is obtained.

Extension to time- and space-
dependent phenomena is not
easily available.

Extension to time-dependent
phenomena can be easily
achieved. Extension to space-
dependent phenomena is not
easy.

Extension to time- and space-
dependent phenomena can be
easily achieved.

The microscopic interpretation of phenomena in terms of
band structure and scattering processes is somewhat hidden.

The microscopic interpretation
of phenomena is quite tran-
sparent.

High level of difficulty in in-
cluding realistic band structure
and scattering models.

Realistic band structure and scattering models can be easily
i ncluded.

No direct evaluation of fluctuation phenomena can be ob-
tained.

The analysis can be immedi-
ately extended to fluctuation
phenomena.

Electron-electron interaction is
diff&cult to include, since it
makes the Boltzrnann equation
nonlinear. It can suggest par-
ticular forms for the distribu-
tion function.

Electron-electron interaction
can be easily included in the
method.

Electron-electron interaction
can be included with difficulty
through an extension of the
technique using self-consistent
calculations.
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final results of any numerical approximation may not be
easy to control.

The major advantage of the Monte Carlo technique (be-
sides its easy implementation} arises from its being a
direct dynamical simulative procedure, so that any com-
plicated phenomenon can be analyzed in terms of its ele-
mentary processes in a quite simple way. Furthermore,
fluctuations can be studied with a very straightforward
analysis. However, interparticle collisions can be intro-
duced in the calculations only with difficulty. Finally,
through an ensemble simulation, space- and time-
dependent phenomena (as for devices) can be easily stud-
1ed.

These arguments are at the basis of the popularity of
the Monte Carlo method, which is at present much more
widely used in hot-electron studies than any other tech-
nique.

Z
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III ~ APPLICATION TO COVALENT SEMICONDUCTORS-
MICROSCOP IC MODEL FIG. 12. Band structure of the cubic-model semiconductor.

A. Band structure

The energy region of the band structure of a semicon-
ductor which is of interest in transport problems is cen-
tered on the energy gap and extends some es (the width of
the energy gap) above the minimum of the conduction
band and below the maximum of the valence band.

Since only covalent semiconductors of group four will
be considered in this paper, we shall present a general
model for the band structure which enables us to interpret
the macroscopic properties of these materials. It should
be noted that such a model will more generally provide a
correct description of the band structure for the whole
class of cubic semiconductors belonging to both diamond
and zinc-blende structures.

The model consists of one conduction band, with three
sets of minima, and three valence bands. The minima of
the conduction band are located at the I point (k =0), at
the L points [k=(n/ao, m /ao, n/.ao), ao bein.g the lattice
parameter], and along the 6 lines (k=k,0,0). The tops of
the valence bands are located at I . Two of these bands
are degenerate at this point, while the third one is split off
by spin-orbit interaction.

The main features of the band structure in cubic semi-
conductors are summarized in Fig. 12.

1. Relationship of energy to wave vector

The particular form of the energy-wave-vector relation-
ship @ =e(k) of charge carriers determines their dynami-
cal properties under the influence of an external force. In
the following we shall explicitly refer to electrons or holes
when we consider k states belonging to the conduction or
valence band, respectively.

In the region around the minima of the conduction
band, usually called valleys, or around the maximum of
the valence band, the function e(k) is given by a quadrat-

ic function of k (parabolic bands), which may assume one
of the following forms:

Ake(k)=
2m

g2 k2 k2
e(k) =

2 Pl i m

e(k)=ak [1+g(Q,g}] .

(3.1)

(3.2)

(3.3)

5In this model it is assumed that electrons cannot move from
one valley to another with continuous variation of their k
values, because of the existence of intermediate regions of k
space with too high energies.

When Eqs. (3.1) and (3.2) are used for electrons, k is mea-
sured from the centers of the valleys.

Equation (3.1) (spherical case) represents a band with
spherical equienergetic surfaces with a single scalar effec-
tive mass m, and it is appropriate for the minimum of the
conduction band located at F' and for the maximum of
the split-off valence band. This case is the simplest one,
and it is generally adopted as a simple model for any ma-
terial when rough estimates of transport properties are
sought.

Equation (3.2) (ellipsoidal case) represents a band with
ellipsoidal equienergetic surfaces, with a tensor effective
mass (1/mi and 1/m, are the longitudinal and transverse
components, respectively, of the inverse effective-mass
tensor). The ellipsoids have rotational symmetry around
the crystallographic directions which contain the center
of the valleys. This case is appropriate for the minima of
the conduction band located at L and along 5; for sym-
metry reasons several equivalent valleys are present
(many-valley model).

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983



668 C. Jacoboni and L. Reggiani: Monte Carlo method in transport

+sin icos'&)]' -' (3.4)

with

a=— c=
2mo

Equation (3.3) (warped case) represents a band with
warped equienergetic surfaces, and it is appropriate for
the two degenerate maxima of the valence band (here +
refer to heavy and light holes, respectively). 8 and t(~ are
the polar and azimuthal angles of k with respect to crys-
tallographic axes so that g(8, $ ) contains the angular
dependence of the effective mass, which is given by (Otta-
viani et al. , 1975) as

g(9, $)=[b +c (sin icos /sin'g

Ake(1+a@)=)'(k) =-
2m

(3.5)

or

e(k)=
—1+&1+4a~~

2'

P1 p1—1~(r)= (3.6)
mp

where the right-hand side of Eq. (3.5) can be replaced by
one of the right-hand sides of Eqs. (3.1) and (3.2); a is a
nonparabolicity parameter, which can be related to other
band quantities. In particular, the following approximate
expressions have been given for minima at I (Fawcett
et al. , 1970), L (Paige, 1964), and b, (see Appendix B):

'2

where A, B, and C are the inverse valence-band parajr~e-
ters (Dresselhaus et al. , 1955) and mp the free-electron
mass.

The different shapes of the surfaces of constant energy
for the three cases considered above are shown in Fig. 13 ~

o. (L)= —EL
L3u

1a(D)= 2(e, —ez )
lc

P1 I1—
mp

2

(3.7)

(3.8)

2. Nonparabolicity

For values of k far from the minima of the conduction
band and/or from the maxima of the valence band, the
energy deviates from the simple quadratic expressions
seen above, and nonparabolicity occurs.

For the conduction band, a simple analytical way of in-
troducing nonparabolicity is to consider an energy-wave-
vector relation of the type (Conwell and Vassel, 1968)

where M~ is the value of the effective mass at the bottom
of I valley, e& is the direct energy gap at I", L3„and L &,

are the states of the valence and conduction bands with
the given symmetry, and Az, and Al, are states of the
conduction band with the given symmetry for minima
along A.

For the valence band, nonparabolicity cannot be
parameterized in a form like that of Eq. (3.5). In this case
nonparabolicity has two main features (Kane, 1956): (i) it

SUR FACES OF CONSTANT E NERGY

kz

ky

2 2 2 2

2 ~ FTl „ fYly mz

2 2

2m

(8) SPHERICAL (b) E L L IPSG IDA L (c ) WARPE D

FIG. 13. Different shapes of surfaces of constant energy for electrons and holes in cubic semiconductors.
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1 Be Akv(k)=-
A Bk m(1+2am)

so that the conductivity effective mass m, defined by

(3.9)

(3.10)

is more pronounced along (110) and (111) directions
for heavy and light holes, respectively; (ii) if e„ is the
split-off energy of the lowest valence band, nonparabolici-
ty is mostly effective at energies near —, e„; in the limits
of e/e„~~ 1 and e/e„~~1 the bands are parabolic.

For a nonparabolic band of the type in Eq. (3.5), the
velocity associated with a state k proves to be

parabolicity effects lead to an unlimited increase of the ef-
fective mass for the case of electrons, while for the case of
all three types of holes the increase (or decrease for the
split-off band) of the effective mass is confined within a
well-defined region of energy.

3. Herring and Vogt transformation

When considering the ellipsoidal case of Eq. (3.2), in
order to simplify analytical calculations, it is useful to in-
troduce the Herring-Vogt (1956) transformation, which
reduces the ellipsoidal equienergetic surfaces to spheres
and is defined by

is given by

m, =m(1=2am) . (3.1 1)

The effect of nonparabolicity on the density-of-states
effective mass md can be calculated following Gagliani
and Reggiani (1975) as

md, (m, m——I)' (2Plvr)' exp(P)K2(P),

md; ——m Jexp[e;"(x)l(K&Tp)]dx, i =h, l, so

(3.12)

(3.13)

E lect rons

where subscripts e and i refer to conduction and valence
bands, respectively; P =(2aK& Tp) '; K2 is the modified
Bessel function of order 2; x=6k j(2mpKgTp); e tak-
en with its sign is the energy-wave-vector relationship of
the heavy (i =h), light (i =I), and spin-orbit (i=so)
valence bands, respectively [to a good approximation e;"
can be evaluated, according to Kane (1956), from k p cal-
culations: see also Humphreys (1981)]. The integration is
carried out over the whole k space.

The temperature dependence of the density-of-states ef-
fective mass is sketched in Fig. 14 for the case of elec-
trons and holes. From this figure it can be seen how non-

(3.14)

where k ' ' is the transformed wave vector. For an elec-
tron in the mth valley the transformation matrix TJ takes
the form

mp

m,

0

0

I /2

0

mp

m

0

' l/2

0

0

mp
' l/2

(3.15)

in the valley frame of reference, i.e., in the frame centered
at the center of the valley, with the z axis along its sym-
metry axis. Consequently, the energy-wave-vector rela-
tionship in the starred space becomes of spherical type:

g2 Q 2pO2
e ( k ) = Tiq Ta kj kI =

2U7p 2mp
(3.16)

and the volume element d k is modified to
dk*=(mp/md)' dk, where md ——(mrm, )' ' is the
density-of-states effective mass.

To preserve vector equations, the transformation in Eq.
(3.14) must be applied to other vector quantities, such as
driving forces and phonon wave vectors. Thus the equa-
tion of motion for an electron under the influence of an
external force W becomes

UJ)
O
UJ

U
UJ Holes

cavy

—(Ak*) =W* .
dt

(3. 1 7)

The electron velocity as a function of k* is given by

V)
UJ
I—

CO
I

O
I

I-
(h
Z.'
UJ
O

lig ht

—orbit

TEMPERATURE (arb. units )

mp
(3.18)

B. Actual bands of covalent semiconductors

which is again generalized to the nonparabolic case by
simply replacing mp with the expression mp(1+2aE).

FIG. 14. Schematic representation of the dependence upon
temperature of the carrier density-of-states effective mass: (a)
electrons, (b) holes.

In this section the main features of the band structure
of the three covalent semiconductors of group four, sil-
icon, germanium, and diamond, will be briefly described
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with regard to their use in charge transport calculations.
The values of the parameters that describe conduction
and valence bands for these materials are reported in Ap-
pendix C, together with other parameters of interest.

k p calculation of Kane (1956) well approximates (the
larger the direct energy gap, the better the approximation)
the energy-wave-vector relationship of the three bands
around the center of the Brillouin zone, in terms of four
band parameters characteristic of each material:

1. Conduction band e; =e;(kA, B, C, e,, ) . (3.19)

a. Silicon

The band structure of silicon is such that the electrons
which contribute to charge transport, even at high electric
fields, are those in the six equivalent ellipsoidal valleys
along the ( 100) directions at about 0.85 (Ivey and
Mieher, 1972) from the center of the Brillouin zone. In
fact, owing to their small density-of-states effective mass
and distance in energy, the other secondary minima can
be neglected.

The effect of band nonparabolicity is particularly im-
portant at high electric fields, when the electrons can
reach energies far from the bottom of the conduction
band (Jacoboni et al. , 1975) (see Sec. IV.B.4).

b. Germanium

The absolute minima of the conduction band in ger-
manium lie along the (111) directions at the I points.
There are, therefore, four equivalent ellipsoidal valleys.
Owing to their proximity in energy, the spherical upper
valley at the center of the Brillouin zone and the six ellip-
soidal upper valleys along the (100) directions can be
populated by electrons at high electric fields, so that it is
necessary to include them in high-field transport calcula-
tions.

As for the case of Si, nonparabolicity may influence the
dynamical behavior of the electrons that populate the
lowest bands, while for the bands associated with the
upper minima this effect is expected to be much lower,
due to the lower kinetic energies of the electrons that pop-
ulate them. For this reason upper valleys are usually as-
sumed to be parabolic in electron transport calculations.

c. Oiamond

Experimental information on the band structure of dia-
mond is still scarce. This fact reflects the near impossi-
bility, to date, of growing crystals with controlled proper-
ties. Nonetheless, from theoretical considerations it is
well established that the conduction band of diamond is
Si-like (Herman, 1952; Zunger and Freeman, 1977; Nava
et al. , 1980), with six lower minima along the (100)
directions, located at about 0.76 (Dean et al. , 1965) from
the center of the Brillouin zone. By analogy with the case
of Si, the upper minima can be neglected.

2. Valence band

The valence bands of all covalent semiconductors of
group four are very similar to each other, and a pioneer

Here the subscript i stands for heavy, light, and spin-orbit
bands. Equations (3.3) and (3.4) are approximate versions
of Kane's expression which well describe heavy and light
bands under the condition e; &&e„.

The difficulties one encounters in dealing with three
bands that include the full details of Eq. (3.19) are usually
overcome by neglecting the third band, because of its
separation in energy and small density of states, and by
introducing further simplifications in treating the remain-
ing two bands (heavy and light holes). Among these sim-
plified models we mention the following:

(i) A single parabolic band (heavy holes) for rough cal-
culations.

(ii) A single warped, parabolic band.
(iii) Two spherical and parabolic bands, with effective

masses related to some plausible average in k space of Eq.
(3.19) (Costato et al. , 1974; Bosi et al. , 1979).

Nonparabolicity can be approximately accounted for by
means of an iterative procedure which verifies that the
values of the effective mass and of the mean energy, mea-
sured in equivalent temperature, fit a curve of heavy mass
versus temperature like that reported in Fig. 14, calculat-
ed for the material of interest (Reggiani et al. , 1977; Reg-
giani, 1980).

C. Scattering mechanisms in covalent semiconductors

We now turn our attention to analyzing the scattering
mechanisms that act on charge carriers in the host crys-
tal ~ As usual, the dynamics of the electronic interactions
is assumed to be independent of the applied field, and the
collisions are assumed to occur instantaneously (for in-
teresting exceptions, see Barker and Ferry, 1979).

All scattering calculations presented here will be car-
ried out with a first-order perturbative approach; conse-
quently only two-body interactions will be analyzed.

Classification

The transitions of interest for electron transport in
semiconductors can be classified as intravalley, if both in-
itial and final states of the electron lie in the same valley,
or intervalley, if the final state lies in a valley different
from that of the initial state. For the case of holes, the
same classification holds in terms of intraband and inter-
band transitions.

The carrier transitions are induced by different scatter-
ing sources present in the crystal of which the most im-
portant are phonons, impurities, and other electrons.

The carrier-phonon interaction is due to the deforma-
tion, associated with phonons, of the otherwise perfect
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crystal, and in covalent semiconductors it is described in
the framework of the deformation-potential method (for a
review of this method see the textbook of Bir and Pikus,
1974) for both acoustic and optical phonons.

As regards impurities, they can be ionized or neutral.
In the former case the interaction is of the long-range
Coulomb type; in the latter, the interaction is of much
shorter range, and the overall effect of neutral impurities
is, in general, much weaker. At normal concentrations
neutral impurities can influence electron transport in
semiconductors only very little and only at very low tern-
peratures (Jacoboni and Reggiani, 1979}. The concomi-
tance of other mechanisms, such as ionized impurities
and acoustic phonons, makes the analysis of this type of
scattering from experimental data very difficult. So far,
to the best of the authors' knowledge, neutral impurities
have not been included in Monte Carlo calculations, and
they will not be treated in the present review.

The effect of the electron-electron collisions is in gen-
eral very limited. As discussed in Sec. II.G, this interac-
tion is very difficult to include in transport theory.

Since the Coulomb cross section decreases rapidly with
increasing momentum transfer, scattering from ionized
impurities must in general be considered only for intraval-
ley or intraband transitions, owing to the large Ak in-
volved in intervalley and, to a minor extent (Costato and
Reggiani, 1973), interband transitions. Intervalley transi-
tions can be induced by impurities with a mechanism that
has been studied by Price and Hartman (1964) and Asche
and Sarbei (1969}. This effect may be competitive with
intervalley phonon scattering at low temperatures and
fields but, to the best of the authors' knowledge, it has
never been included in Monte Carlo calculations.

In the following, after a brief review of the fundamen-
tals of scattering theory, the most important carrier in-
teractions will be studied (see Table II below), and for
each scat tering mechanism differential and integrated
scattering probabilities will be calculated from a
knowledge of the matrix element of the perturbation be-
tween two Bloch states. In particular, the simple spheri-
cal and parabolic model, together with the more refined
ellipsoidal, nonparabolic, and warped models, will be con-
sidered in the calculations. Results for intermediate

models will be obtained as particular cases.
Special attention will be devoted to the application of

the results to the determination of the final state of the in-
teracting particle in the Monte Carlo procedure.

2. FUndamentals of scattering

a. General theory

In order to study the transitions of an electron between
different Bloch states in a crystal, one starts with the as-
sumption that the system can be separated into the elec-
tron of interest and the rest of the crystal. The vector
state for such a combined system can be written as the
direct product

(3.20)

where
~

k) and
~

c ) represent the unperturbed states of
the electron and of the crystal, respectively.

The expression for the transition probability per unit
time from a state

~
k,c) to a state

~

k',c') induced by a
perturbation Hamiltonian H' is given to first order by the
golden rule:

P(k, c;k', c') =
i
(k', c'

i

H'
i
k, c)

i

'

x5[E(k', c') —e(k, c)] . (3.21)

H'(r, y, r')= gA '(q, y, r')exp(iq r),
V

(3.22)

which gives to the matrix element in Eq. (3.21) the fol-
lowing form:

H' acts, in general, on the coordinate r of the electron and
on the variables which describe the state

~
c ) of the crys-

tal, e.g., on the ion displacement y with respect to their
equilibrium position and on the coordinates r' of the other
electrons.

It is now convenient to expand H' in a Fourier series,

(k', c'
~

H'
~

k, c ) = g(c'
~

A '(q, y, r')
~

c ) J drfk(r)exp(iq r)Pk(r),
V

(3.23)

gq(r) =N '~ uq(r)exp(ik r) (3.24)

is the standard form for a Bloch state; % is the number of unit cells in the crystal, and the factor X ' is introduced in
order to have gq normalized to one in the crystal with uq(r) normalized to one in the unit cell.

Let us now focus attention on the integral I on the right-hand side of Eq. (3.23). It can be calculated as a sum over
the cells labeled by the vectors R of the direct lattice, and if we put

According to the periodic boundary conditions, H' also has the periodicity of the crystal, no matter whether it comes from phonons
or impurities, so that its Fourier series contains only the q vectors of reciprocal space.
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(3.25)

I=+exp[i(k —k'+q) R]—J dr "uq (r")uk(r")exp[i(k —k'+q). r "] .
cell

(3.26)

By taking into account that k=k'+q is a vector of the
reciprocal space and R a vector of the direct lattice, we
have (see, for example, the textbook of Ziman, 1972)

[ (k kI ) R] X if k k +q:CJ
0 otherwise

(3.27)

where Cx is a vector of the reciprocal lattice. The terms of
the sum in Eq. (3.23} which correspond to Ca=0 are
called "Normal" {or "X") terms, while when Cs is dif-
ferent from zero we speak of "umklapp" (or "U ") terms.

In dealing with perturbations due to phonons, the sum
contains only q-vectors in the Brillouin zone, so that k
and k' in Eq. (3.23) determine whether the transition is
ccPf 9~ or c6 U

In the case of impurities, the sum in Eq. (3.23) may in

principle contain infinite "U" terms, although the "X"
term will be dominant.

By collecting the above results, we have

P(k, c;k', c')=
)
g(c'

~

8'(q, y) c } )

AV

of cubic semiconductors), an overlap factor less than uni-

ty is obtained, which depends mainly upon the angle 0 be-
tween initial and final states k and k', measured from the
center of the Brillouin zone.

In the case of a minimum located at I, + is strictly re-
lated to nonparabolicity, since both of them come from
the presence of p terms in the electron wave functions.
Fawcett et al. (1970) gave for Ã the expression

S(k,k') = [( I+as)' (1+ae')' '+a(ee')' cosg]'
(1+2ae )(1+2ae')

(3.30}

In the many-valley model, for intervalley transitions
the process can be of "U" type, because of the large
values associated with k and k'. For both intravalley and
intervalley transitions, the angle 0 between initial and fi-
nal states depends mostly on the valleys involved in the
transition, and Ã is thus almost constant within each
type of intravalley or intervalley scattering process (Reg-
giani and Calandra, 1973). The values for P in these
cases may be included in the coupling constants.

For transitions of holes within heavy or light bands,
Wiley (1971) found the simple expression

)& $5[@(k',c') —e(k, c )]

where 3' is the overlap integral

dr u f, (r)uq(r)exp(~'G r)
cell

(3.28)

(3.29)

S(k,k')= —,(1+3cos 8),
while for interband transitions he used

(k, k') = —;sin 0 .

(3.3 1)

(3.32)

To proceed further, we must give explicit forms to 9 ',

which depend on the particular scattering mechanism
considered.

D. Scattering probabilities

1. Phonon scattering

Overlap factor

Expressions for the overlap factor 8 in Eq. (3.29) as a
function of k and k' have been given in the literature for
various cases. For electrons, an intravalley transition pro-
cess is, in general, of "A" type, because the distance be-

tween k and k' is small compared to the dimensions of the
Brillouin zone. For "N" processes, 9' is equal to unity

for exact plane waves or for wave functions formed with

pure s states. When lower symmetries are involved in the
Bloch wave functions (as, for example, p states in the case

The general theory reviewed above for electron scatter-
ing in crystals will now be applied to the case of interac-
tion with phonons. 'The subject will be confined to the
case of deformation-potential interaction, which is the one
of interest in covalent semiconductors. In this case the
interaction Hamiltonian for a single band at I is written
as (ICittel, 1963)

(3.33)

7In fact, the scattering cross section for ionized impurities de-
creases sharply with increasing momentum transfer, and in any
case the overlap factor (see next section) will be smaller for
G~O).
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where By/dr is the deformation of the crystal due to the
phonons, and 8' is a tensor that describes the shift of the
electron band per unit deformation. In the approximation
of a continuous medium, the ion displacement field y can
be written in terms of phonon creation aq and annihila-
tion aq operators as (Kittel, 1963)
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y=
2p Vcoq

1/2

(aq+a q)exp(iq r)g (3.34)

0'=
2p Vco~

where p is the density of the crystal, coq the phonon angu-
lar frequency, and g its polarization. By using Eq. (3.34)
we obtain for Eq. (3.33) the expression

' 1/2

(aq+a q)exp(iq r)i8'i~. qigj.

1974. For a microscopic theory see Lawaetz, 1969; Vogl,
1976; Potz and Yogi, 1981.)

In what follows, the phonon number Xq will be as-
sumed to be equal to its equilibrium value at the tempera-
ture of the crystal. This assumption is not always correct,
and the problem has received some attention (for a review

see Kocevar, 1980), but at present no Monte Carlo appli-
cation has been developed for it ~

q=k' —k+Cx

for absorption, or

(3.36)

(3.35)

where the sum is implied for the coordinate subscripts I
and j. Equation (3.35) is an explicit form of the Fourier
transform indicated in Eq. (3.32}; a~ and a ~ appear in

Eq. (3.35) in such a way that only two terms in the sum
over q give a contribution to the matrix element; they cor-
respond to states

I

c'
& with the occupation number of one

mode q changed by one unit with respect to
I
c &. More

precisely, they correspond to the emission and the absorp-
tion of a phonon with wave vector

a. Electron intravalley scattering —acoustic
phonons

For a nondegenerate band at the center of the Brillouin
zone of a cubic semiconductor, the deformation potential
8' of Eq. (3.40} is a second-rank tensor with cubic sym-

metry, which, as a rule, has a diagonal form with equal
diagonal elements and therefore can be treated as a scalar
quantity Sl. The squared factor that appears in Eq.
(3.40) reduces to 8'~q for longitudinal phonons, while it
vanishes for transverse modes.

In this simple case, energy and momentum conserva-
tion imply

(3.37)
N2up

q =+2 k cost9— (3.41)

for emission. This fact states the conservation law of
crystal momentum from the point of view of the crystal
subsystem, as Eq. (3.27) states the same law from the
point of view of the electrons.

For the two cases above we have

where ui is the longitudinal sound velocity; m the electron
effective mass, t9 the angle between k and q, and upper
and lower signs refer to absorption and emission, respec-
tively. The maximum value of q is obtained for absorp-
tion with backward scattering, and is given by

and

I
&c' Iuq I

c & I
(3.38) 2~uIq,„=2k+ (3.42)

(3.39)

P(k, k') = 77 &
I &r, e, k I

P Vcoq q

for absorption and emission, respectively, where Nq is the
phonon number.

By collecting the foregoing results we obtain the fol-
lowing expression for the transition probability per unit
time of an electron from state k to state k':

fiq, „ui = 2fikui = 2mvui, (3.43)

If the scattering mechanism were elastic, a backward
collision would involve q, „=2k; thus the second term in

Eq. (3.42) is the correction due to the energy of the pho-
non involved in the transition. The relative contribution
of this term can be seen in Eq. (3.42) to be given by uilv,
where v is velocity of the electron which, in general, is
much larger than uI. The maximum q involved in these
transitions is therefore very close to 2k; the corresponding
maximum energy transfer is

&& 5[8(k') —E(k)+iraq�], (3.40)

where the upper and lower symbols refer to absorption
and emission, respectively.

This equation will be used in the following sections for
the analysis of the various carrier transitions due to pho-
nons. In particular it will also be applied, in a slightly
modified form (Harrison, 1956; Bir and Pikus, 1961), to
the case of optical modes, for which the above theory is
not directly applicable. In Secs. III.D.1.b and III.D. 1.e,
we shall briefly consider this problem, but for a more de-
tailed discussion we refer the reader to the original litera-
ture. (For a review see Ziman, 1960, and Bir and Pikus,

which, again, is in general much smaller than the electron
kinetic energy mv /2. For these reasons acoustic scatter-
ing is very often considered an elastic process.

However, we have to make some important observa-
tions in this connection which may become essential when
the transport problem is solved with a Monte Carlo simu-
lative technique.

When Ohmic transport is investigated by analytic
means, the energy distribution function is assumed to be
the equilibrium Maxwellian distribution (for nondegen-
erate statistics), and no energy exchange of the electrons
with the heat bath is explicitly required. On the other
ha»d, when a simulation analysis is undertaken at low
fields and temperatures, in order to obtain a correct
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steady-state condition, we need a mechanism which can
exchange an arbitrarily small amount of energy between
electrons and the heat bath (the crystal): physically this
role is played by the interaction with acoustic phonons.
To consider this mechanism elastic is therefore, in gen-
eral, illegitimate, because in itself acoustic-phonon in-
teraction will never produce a steady-state condition; the
Joule heating due to the field will increase the carrier
mean energy indefinitely.

When, in contrast, high fields and/or high tempera-
tures are considered, acoustic scattering can be treated as
an elastic process, since the average electron energy is of
the order of the optical-phonon energy, and optical pho-
nons can assume the task of exchanging energy between
the electrons and the crystal. In this case the presence of
the external field is essential for smearing out, through
the acceleration process, the energy of each single elec-
tron; in fact, in the absence of external fields, the electron
energy would take only its initial value plus or minus a
whole number of optical-phonon energy quanta.

In the paragraphs below acoustic scattering will be
treated in an elastic approximation, then analogous calcu-
lations will be developed with correct energy exchange.

(1) Elastic, energy equipartt ti-on app'roximation
spherieaI, parabolic bands. When we deal with acoustic
scattering in an elastic approximation, the phonon popu-
lation X& is usually represented by the equipartition ex-
pression

Kg Tp

2
(3.44)

where upper and lower spins refer to absorption and emis-
sion, and the overlap factor, W has been taken as equal to
one, in accord with the comments in Sec. III.C.2.b. Since
in the elastic approximation no distinction is made be-
tween final states attained by means of absorption or
emission processes, we can consider the sum of the transi-
tion probabilities per unit time to be given by

2nKg Tp
P(k, k') =

2
8'~5[E(k') —E(k)] .

AVuI p
(3.46)

This approximation is closely related to the elastic ap-
proximation discussed above. In fact, Eq. (3.44) is valid
when flyout ((Kg To 1.e., when the thermal energy is
much larger than the energy of the phonon involved in
the transition. At very low temperatures and/or at very
high fields, this condition may break down (Costato and
Reggiani, 1970). Furthermore, when a precise energy bal-
ance is to be obtained„exchange of electron energy with
the heat bath via acoustic phonons must be taken into ac-
count. The exact expression for X& or a good approxima-
tion of it must be used (see Appendix D).

The expression for the scattering probabilities per unit
time from a state k to a state k' given by Eq. (3.40), in
elastic and energy-equipartition approximations, becomes

2
trq 8 ) Ks To

P(k, k') = + —5[e(k') —e(k)],
Vutp fiqut 2

(3.45)

From this equation we conclude that, in the above ap-
proximations, acoustic scattering becomes isotropic.

In a frame of reference with the polar axis along the
direction of k, integration of Eq. (3.46) over all possible
final states k' yields the integrated scattering probability
per unit time which accounts for both absorption and
emission processes:

(3.47)

This expression, for acoustic phonons in elastic and
energy-equipartition approximation, can be used in a
Monte Carlo simulation. Its energy dependence, a simple
proportionality e'~, is shown in Fig. 15.

As regards the choice of the electron state after scatter-
ing, owing to the isotropic character of the scattering, any
state k' belonging to the energy-conserving sphere has the
same probability of occurrence, independently of the an-
gle formed with the initial state k. The probability that
the polar angles of k' with respect to any convenient
directions will be contained in the intervals dO and dy is
proportional to sinO dOdy. By application of the direct
technique (see Appendix A Sec.2.a) 8 and p can be chosen
with two random numbers r ] and r2 as

cosO = 1 —2f i

+=2771 2

(3.48)

(3.49)

When this simple model is used, the polar axis is usually
taken along the direction of the applied field.

(2) Elastic, energy equiparti -tion approximation
ellipso( dal, nonparabolic bands. If we move from the sim-
ple spherical and parabolic case to more realistic band
structures, many complications arise.

For an ellipsoidal, nonparabolic model, the energy-

O

LLI 1013

I & I
l

I &II] 1 I [ I

Ill(
l &I&i&[ I I i ri&rt

(3

I—
I—

C3
U)

10

10(3

(8

0
10

0.1 10
I I I I

10

E NERGY (me@)
FIG. 15. Integrated acoustic-scat tering probability per unit
time as a function of energy at the temperatures reported. The
model used refers to electrons in Si with a parabolic band struc-
ture: (ab) absorption; (em) emission; (tot el) total in elastic ap-
proximation; (tot) total when acoustic energy dissipation and ex-
act phonon population are accounted for.
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wave-vector relationship is

y(k) =e( 1+ac )

1
k;k

2 m
lJ

(3.50) & e ' {1+2am )( 1+ae )
' i-' . {3.54)

and it is usually treated by means of the Herring-Vogt
transformation (see Sec. III.A.3).

In a model with valleys centered along ( 100) or (111)
directions, for symmetry reasons we have two indepen-
dent components =d and:-„of the deformation-potential
tensor (Herring and Vogt, 1956) and electron-acoustic-
phonon interaction is allowed with transverse as well as
longitudinal modes. In this case Eq. (3.46) becomes

2mKp To
Pt(k, k')=

2
(:-d+=„cos 8)

A VQI p

From Eq. (3.54) it is also possible to determine the ex-
pressions of P, „(e) for "intermediate" models, i.e.,

spherical nonparabolic [md ——m and u =ut in Eq. (3.54)]
or ellipsoidal parabolic [a =0 in Eq. (3.54)].

Concerning the choice of the electron state after
scattering, Eqs. (3.48) and (3.49) of the preceding section
can be used, because of the isotropy of the scattering.

(3) Inelastic acoustic scattering sph—erical, parabolic
bands. In order to treat correctly energy dissipation via
acoustic phonons we must take into account, the energy
of the phonon involved in the energy balance of the col-
lision:

x5[e(k') —e(k)] (3.51) e(k') =e(k)+fiqu( . (3,55)

for longitudinal modes, and

2m.Kg Tp
P, (k, k') =

~
(:-„sin8 cos9) 5[e(k') —e(k)]

AVu, p

Here again and in what follows, upper and lower signs
refer to absorption and emission, respectively.

In a simple spherical and parabolic band, only longitu-
dinal modes contribute to the scattering, and energy and
momentum conservation imply [see Eq. (3.41)]

(3.52) q mul
cosO =+ + (3 ~ 56)

27rKg Tp
P(k, k') =

z
8', 5[e(k*' ) —e(k')] .

AVQ P
(3.53)

for transverse modes. Here u, is the transverse sound
velocity and 0 is the angle between q and the longitudinal
axis of the valley considered.

The effect of anisotropy is not large (Conwell, 1967), so
that it is in general neglected by replacing ui, u, with an
average value u = —,(2u, +ut ) and the expressions in

brackets with mean values S'; over the angle 0. Thus a
simple expression for the scattering probability per unit
time is again used, of the type of Eq. (3.46):

The condition —1(cos(1 determines the range of pho-
non wave vectors that may be involved in a collision with
an electron in state k.

The results are reported in Table II where, instead of q,
use has been made of the more convenient dimensionless
variable x =(fiqut )I(Ktt Tp), and where e„=mut /2 is the
kinetic energy of an electron with velocity equal to the
longitudinal sound velocity.

In order to be consistent with the correct treatment of
energy exchange in acoustic-phonon scattering, the exact
expression of the phonon number Xq must be included in

Band effects are carried on by the energy forms in the ar-
gument of the 5 function. The last expression is again in-
dependent of the direction of k* and k*', so that the
scattering is still isotropic.

Integration over all possible final states k' yields the
integrated scattering probability per unit time which ac-
counts for both absorption and emission processes:

electrons optical

Phonons

intervalley

acoustic

TABLE II. Scattering mechanisms in covalent semiconductors.

acoustic
intravalley ~

This approximation can be removed by replacing the angular
quantities in the brackets of Eq. (3.51) and (3.52) with their
maximum value [F,„[ and, then, by using the rejection tech-
nique when the angle 0 for the transition has been chosen: if a
random number r is such that

r [F,„[) [F(8)[,
the event is to be considered a self-scattering, and the electron
path continues unperturbed.

holes

electrons (intravalley)
Ionized impurity h l (

~

b d)

Carrier-carrier

in traband

interband

optical
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the calculations. Thus the transition probability of Eq.
(3.40) for the case of interest becomes

~q S-',
P(k, k') =

&

6[e(k') —e(k)+A'qut] .
VpuI &q+1

(3.57)

tained by momentum conservation. The angle g of rota-
tion around the direction of k is chosen at random ac-
cording to Eq. (3.49).

If the components of k' are to be determined with
respect to fixed directions x, y", and z, as is necessary when
full three-dimensional simulation is performed, the fol-
lowing formulas can be used (see Fig. 16):

To perform the integration over all possible final states,
it is convenient to consider integration over q, and to use
polar coordinates with the polar axis along k. The 5
function of energy conservation can be used to integrate
over the polar angle 0 between q and k, which leads to

k„' =k'(cospcosy+sinpcosq siny),

k» = k'(cosP cosy' —sinP cosy cosy cost/

—sing sing sin ti ),

(3.62)

(3.63)

m r-',
P(k, q)dq = & 1

q-dq .
4wpulA k

(3.58)

k,
'

= k'(cosP cosy" —sinP cosy sing cosy

+ stnp sing cos7/ ), (3.64)

This expression will be useful later for the determination
of the state k after scattering.

Final integration over q leads to the integrated scatter-
ing probab1lity per unit time as a function of energy:

~1/2(~ T )3@2 F](X7, ) —F1(X1,)
B 0 1

2c/„~P4~4p (G
1 (~7 ~) Q] (~1 ~)

(3.59)

where

F, (x)= f Xq(x')x'-dx' .,

G, (x)= I [X (x')+1]x' «'
(3.60)

(3.61)

relate to absorption and emission processes, respectively,

, a~ +2, a~ +1,e~ and 7, e ale those g1ven 1n Table III.
The numerical evaluation of the functions F1(x ) and
G&(x) is reported in Appendix D.

In Fig. 15, the integrated acoustic scattering probabili-
ties, given by Eq. (3.59), are shown and compared with
the results of the elastic approximation.

For determination of the fInal states afteI scattering,
the following procedure can be used: first the value of q
involved in the transition is chosen with the aid of the re-

jection technique (see Appendix A Sec.2.d), applied to the
probability in Eq. (3.58). Then the magnitude of the elec-
tron wave vector k' after scattering is obtained by energy
conservation, while the angle P between k' and k is ob-

ml I
q =q* cos 0*+—sin-0*

mp foal 0

1/7

(3.65)

where 0* is the angle between k* and the principal axis of
the valley. This last approximation is rather poor when

the valley is strongly anisotropic, as for the case of Ge,
and better approximations should be sought for exact nu-

merical solutions of the Boltzmann equation.

where ~»=kz., y'=ky, y"=kx, g is the angle between y
arid the component of k in the x-y plane; the origin of the
angle g is taken aIong the plane formed by k and z.

(4) Inelastic acoustic scattering /lipsoidal, nonpara
bolic bands. When all details of ellipsoidal many-valley
electron bands and acoustic energy relaxation are con-
sidered, the transition probability P(kk') has the form
given in Eqs. (3.51) aIid (3.52), where, in addition, the ar-
gument of the 6 function contains the energy of the pho-
non, as in Eq. (3.55), and nonparabolicity is accounted for
by assuming, for the energy-wave-vector relationship, the
expression in Eq. (3.50).

We shall again keep the isotropic approximation for the
deformation-potential coupling and, in applying the
Herring-Vogt transformation for k and q-vectors, approx-
imate the magnitude of q as

TABLE III. Limits of the values of q for inelastic acoustic scattering determined through the con-
dition —1 ( cosO ( 1. See text for discussion.

Absorption
1/7fu 1/2 1/2

Ka To

Emission

absent fu

1/ I

Kg To

x, .=O

1/2

Kg Tp

I g

8 0
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cos8=+ (1—4am„")+2k' (1+ 2am ),
(3.66)

where 0 is the angle between q* and k*, and e„' =mdu /2.

The requirement that the argument of the 5 vanish
yields

1/2

As in the standard procedure the condition —1 (cos8 ( 1

yields the limits of variability of q'. These limits are con-
veniently expressed in terms of the dimensionless variable
x = (Rg u /Kii Tp )(md

Imp�)

' and are given in Table III,
under the condition, verified in our cases, that 4ae„' & 1.
By using polar coordinates as for the previous case, we
obtain by integration over the angle variables

P(E,x)dx = y
' (e ) N I ( I+2ae+2uK& Tpx)x dx . (3.67)

Final integration over x leads to the integrated scattering probability per unit time as a function of energy,

T )3N 2 (I+2am)[F (ix2) —F (ix&, )]+2aK iTi[pF (2', ) F2(x—i )]
2»2~g4„4 ( I+2ae)[G, (x2, ) —Gi(x, , )] 2aEBTp—[Gz(x2, ) —G2(x, , )] (3.68)

where
X

F2(x) =I Nq(x')x' dx',

G2(x) I [Nq(x )+1]x dx

(3.69)

(3.70)

The nonspherical parabolic result is recovered by putting
a=0 in Eq. (3.68). In Fig. 17 the integrated acoustic
probabilities given by Eq. (3.68) are shown and compared
with the results of the parabolic case.

The numerical evaluation of the functions Fi(x) and
G2(x) is reported in Appendix D.

For the determination of the electron state after scatter-
ing, a procedure similar to that described in the preceding
section can be followed.

The intermediate case of spherical nonparabolic bands
can be dealt with by substituting m for md in Eq. (3.68).

b. Electron intravalley scattering optical phonons

For optical modes the perturbation Hamiltonian to the
lowest value of approximation is assumed to be propor-
tional to the atomic displacement (Harrison, 1956; Bir
and Pikus, 1961; Lawaetz, 1969) and not to its derivative,
as in the case of acoustic vibrations. The continuous-
medium approximation adopted for long-wavelength
acoustic modes would be inconsistent for optical phonons.
Nevertheless, the final result of the correct theory is the
same for the simplest case, which is obtained by assuming
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FIG. 16. Geometry for the determination of the state after
scattering when full three-dimensional simulation is performed
(see text).

ENERGY (meV)
FIG. 17. The total integrated acoustic-scattering probability per
unit time when acoustic dissipation and exact phonon popula-
tion are accounted for: dashed curve, parabolic case; solid
curve, nonparabolic case.
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X5[e(k') —~(k)+fico,p] . (3.71)

No angular dependence upon the direction of k' is
present, and the scattering is therefore isotropic.

(1) Spherical, parabolic bands For sp.herical and para-
bolic bands, integration of Eq. (3.71) over k yields, with
standard calculations, the integrated scattering probability
per unit time

(D K) ]/2
in 3 Q +1 (' —+~op) '

2 mA pm& op

(3.72)
The probability of emission is obviously zero when
e & Ace,„,since the carrier does not have enough energy to
emit the phonon.

Figure 18 shows the optical-phonon scattering proba-
bility per unit time as a function of energy, given in Eq.

a wavelength equal to the lattice constant, to represent the
fact that atoms belonging to the same unit cell vibrate in
opposite directions. The scattering probability can then
be written, starting from Eq. (3.40), by replacing 8'iq
with a squared optical coupling constant (D,K) which
can also include the S factor, as indicated in Sec.
III.C.2.b. The energy associated with optical phonons in
intravalley transitions can be assumed constant, given by
Acu p

——K&0 p, where 0 p is the equivalent temperature of
the phonon, since the dispersion curve of such a phonon
is quite flat for the q values involved in electronic intra-
valley transitions. For the same reason Xq becomes q in-
dependent (X& li( p)——. The resulting scattering probabili-
ty per unit time is

vr(D, K) +op
P(k, k') =

p VQp&& +op+ 1

(D K)2 3/2

P, ,p(e)=--
2' ~2' A3pco, „

N~p

N,p+ 1

X y' (@+fico, )[pl+ 2a( +efm, )p] (3.73)

where y is defined in Eq. (3.5}.
As regards the final state, it is still random, with con-

I

stant probability over the energy-conserving sphere of k* .
In Fig. 18 the integrated optical intravalley scattering
probabilities for the parabolic and nonparabolic cases are
shown as a function of energy.

(3.72). A simple proportionality to e', as for acoustic
modes, is attained when the carrier energy is much larger
than the phonon energy, so that the scattering becomes
approximately elastic. As regards the choice of the final
state, due to the isotropic character of the scattering, the
same method as given by Eqs. (3.48) and (3.49) can be ap-
plied.

(2) Ellipsoidal, nonparabolic bands In. dealing with el-
lipsoidal bands it is convenient to apply the Herring-Vogt
transformation, as for acoustic phonons. The transition
probability can be derived from the general expression in
Eq. (3.40}, as indicated above for simple bands. Since the
transition probability is independent of q, approximation
in Eq. (3.6S) is not necessary. The resulting transition
probability is the same as in Eq. (3.71), with k* and k* in
place of k and k'; and so the integrated scattering proba-
bility per unit time is the same as in Eq. (3.72), with I re-
placed by md.

When nonparabolicity is included, integration over k*

yields an extra factor [1+2a(a+fico,p)], so that the in-
tegrated scattering probability per unit time for optical
phonons is given by

c. Electron intervaffey scatterjng

13
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lX
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10
& &&I
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1 tiigI g r & 1 issil
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ENERGY (meV)

10

FICx. 18. Integrated optica1-scattering probability per unit time
as a function of energy. The model used refers to electrons in
Ge with parabolic (dashed curves) and nonparabolic (solid
curves) band structure: (ab) absorption; (em) emission; (tot) to-
tal.

Electron transitions between states in two different
equivalent valleys can be induced by both acoustic- and
optical-mode phonon scattering.

The phonon wave vector q involved in a transition
remains very close to the distance between the minima of
the initia1 and final valleys, even for high-energy elec-
trons. Consequently, given these two valleys, hk is al-
most constant, and, for a given branch of phonons, the
energy %co; involved in the transition is also about con-
stant, as in the case of optical intravalley scattering. Thus
intervalley scattering is usually treated, formally, in the
same way as intravalley scattering by optical phonons
with a deformation-potential interaction (Harrison, 1956;
Conwell, 1967).

The squared coupling constant (D,K); depends upon
the kinds of valleys (initial and final) and the branch of
phonons involved in the transition, and it may include, as
indicated in Sec. III.C.2.b, an overlap factor.

When the electron energy is sufficiently high, electrons
can scatter into valleys higher in energy than the lowest-
energy valleys. In this case the appropriate hk in the
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Brillouin zone must of course be considered together with
the variation of the electron kinetic energy due to the en-

ergy difference between minima of the initial and final
valleys.

The integrated scattering probability per unit time for
intervalley transitions due to phonons, in spherical and
parabolic valleys, is therefore given by

(D,K); Zf
P, ;(e)=

2 7TpA CO
(e+ fico; —b ef; )

1/2
l

(3.74)

where Zf is the number of possible final equivalent val-
leys for the type of intervalley scattering under considera-
tion, X; is the number of phonons involved in the transi-
tion, and ref; is the difference between the energies of the
bottoms of the final and initial valleys.

When ellipsoidal and/or nonparabolic valleys are con-
sidered, the same corrections must be introduced relative
to md and to the extra factor [1+2a(e+fico; b,ef;)]—as
in the case of optical intravalley phonon scattering.

Figure 19 shows the integrated scattering probabilities
per unit time for intervalley transitions to nonequivalent
valleys. For equivalent valleys, when Aef' —0 the
behavior of P, ;(e) is the same as that of P, ,~(e) (see Fig.
18).

When the final state has to be chosen in the simulation,
all states in the energy-conserving sphere are equally
probable. However, when several equivalent valleys are
possible as final valleys of the transition, one of them
must be selected at random. Sometimes it may be con-
venient not to distinguish between final valleys which are
totally equivalent in the simulation, i.e., equivalent from
the crystallographic point of view, and equally oriented

with respect to the applied field. In this case appropriate
weights must be given to the possible "representative" fi-
nal valleys for each type of intervalley scattering.

d. Hole intraband scattering —acoustic phonons

X 5 [e(k') —e(k)+ftqu ], (3.75)

where 0, the angle between k and k', is expressed in terms
of initial 8,p and final 5', 1t

' angles as

cos8 =cos8 cos8'+ sin@ sin@'cos( 1t —g') . (3.76)

To perform integration in Eq. (3.75), we can replace q
to a good approximation with 2'~ k(1 —cos8)'~, and by
integrating over k' we find

Owing to the complexity of the valence-band structure,
with its peculiarities of degeneracy and warping, the
description of acoustic-phonon interaction requires three
deformation-potential parameters (Bir and Pikus, 1961;
Tiersten, 1961, 1964). Furthermore, the characteristic p-
like symmetry of hole wave functions introduces an over-
lap factor which, in a good approximation, assumes the
form given in Eqs. (3.31) and (3.32).

To overcome analytical difficulties, at the same time
keeping the physics, a single coupling constant, which for
convenience of notation will be called I'i, is used in place
of the original three parameters, and a single warped par-
abolic band, the heavy one, will be considered in the fol-
lowing, with the notation given by Eqs. (3.3) and (3 4).

%'hen a warped, parabolic band is considered, the hole
intraband scattering with acoustic phonons closely fol-
lows the electron —acoustic-phonon case reported in Sec.
III.C.l.a. The transition probability of Eq. (3.40) for the
case of interest becomes

~qe Q'

P(k, k')= ~ 1
—,(1+3cos 8)

Vpu &@+1

14
10

I
/ 11llf I I I

l
I I II

Q2

in2 7T pu 0+&
(1+3cos 8)k

I (1—cos8)[e(k)+e~h] j
'

X (3.77)
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FICi. 19. Integrated scattering probability per unit, time for in-
tervalley transitions to nonequivalent valleys as a function of
energy. The model used refers to electrons in Cxe with parabolic
upper bands. For symbol notation see Fig. 18.

where e~h ——ftqu is the energy of the phonon. This expres-
sion will be useful later on for the determination of the
state IIr.

' after scattering.
In order to obtain the integrated scattering probabili-

ties, we carry out the integration over the solid angle 0'
in the "nearly elastic approximation" (i.e.,
( +e&eg ) e [1 + e~q /(2e )] ) and in the "small warp-
ing approximation" (i.e., a [1—g(8', p')]=A /(2mi, )) by
taking k as polar axis for the angular integration (Reggi-
ani et a/. , 1977). The former approximation is sufficient-
ly accurate down to teinperatures of the order of 10 K;
the latter approximation is quite reasonable, since it sub-
stitutes the density-of-states effective mass for a
warping-dependent effective mass (Reggiani et al. , 1977).
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By introducing for convenience the dimensionless vari-
able x =(2mr,' ue' )/(KiiTp), we obtain the integrated
scattering probability per unit time for acoustic absorp-
tion and emission processes

8', m„' (K T)
Pp, „(~)=

2 /cpu A

By integrating Eq. (3.83) over k' we find

3d0 N, p

X +12 m Pcooao

)
1/2

X 3/2Ia [1—g(&', 0')]]'" (3.84)

F3(x)+ (K& Tp/e )F4(x)—1/2
63(x)—(Kri Tp/e)64(x)

(3.78)

This expression will be useful later on for determination
of the state k' after scattering.

Integration of Eq. (3.84) over the solid angle 0' yields
the integration scattering probability per unit time

T

with

F3(x)=

63(x)=

~» z [1+3(1—z /x ) ] dz
0 exp(z) —1

v» z [1+3(1—z /x ) ] ck
0 exp(z) —1

fv» z [1+3(l—z /x ) ] dz
0 1 —exp( —z)

v» z [1+3(1—z /x ) ] dz .
0 1 —exp( —z)

(3.79)

(3.80)

(3.81)

(3.82)

with

Pi...p(&) =
3d poly &p

2 3/2

(@+fico, )'
2 mA m +o +~'/7 PQ) OP &P

(3.85)

3/2
m0

)& f dg' f sin5'[1 —g(8', g')] 3~~d5' .

The numerical evaluation of the functions F3(x), F4(x),
63(x), and 64(x) is reported in Appendix D.

The energy dependence of Pr, „(e) is analogous to that
of Eq. (3.59) for electrons reported in Fig. 15.

For determination of the final state after scattering, the
following procedure can be used. First the values of the
final angles 8' and g' are generated according to Eqs.
(3.48) and (3.49) and the phonon wave vector q is taken as
2' k(1 —cos8)'~, k being the absolute value of the wave
vector before scattering. Then the above final angles are
accepted with the aid of the rejection technique (Appen-
dix A Sec. 2.b) applied to the probability in Eq. (3.77) and
so the absolute value of the wave vector k' after scattering
is obtained by energy conservation.

e. Hole intraband scattering —optical phonons

P(k, k') = 3~d 0 N, p

2p VcoopQ 0 op+

X 5[@(k')—e(k)+irido, ~], (3.83)

where d0 is the optical deformation potential. Again the
probability of emission is obviously zero when e & %co,p.

Optical scattering for the case of holes is described in
terms of one deformation-potential parameter and has
been found to be isotropic even when the symmetry of the
hole wave function is taken into account (Bir and Pikus,
1961; I.awaetz, 1967). In analogy with the preceding sec-
tion, a single warped band like that described by Eqs. (3.3)
and (3.4) will be considered.

The transition probability of Eq. (3.40) for the case of
interest becomes

(3.86)

The angular integral in Eq. (3.86) can be performed nu-
merically.

The energy dependence of Pi, ,~(e) is analogous to that
of Eq. (3.72) reported in Fig. 18.

For the determination of the final state after scattering,
final angles, generated according to Eqs. (3.48) and (3.49),
are accepted with the aid of the rejection technique ap-
plied to the probability in Eq. (3.84).

f. Hole interband scattering

When a two-band model, with heavy and light holes, is
considered, interband scattering should be accounted for.
For the case of two spherical and parabolic bands, the
scattering probabilities for different microscopic mechan-
isms have been calculated by Costato and Reggiani (1973).
For the case of acoustic-phonon scattering, inclusion of
energy dissipation and exact phonon population has been
considered by Bosi et al. (1979). Owing to the complexity
of the calculations involved and to their rather limited in-
terest in practical cases, we shall not treat this subject fur-
ther, but refer the reader to the appropriate literature.

g. Selection rules

Intravalley optical and intervalley phonons are subject
to selection rules when initial and final k states are along
high-symmetry directions (see, for example, the textbook
of Bir and Pikus, 1974). In dealing with cubic semicon-
ductors, intravalley optical-phonon interaction is forbid-
den to zero order in the phonon wave vector for electrons
at the I point and along (100) directions (e.g., in Si and
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diamond), while it is allowed along (111)directions (e.g.,
in Ge) (Harrison, 1956; Paige, 1964). Similarly, zero-
order transitions are allowed for the valence band at I
(Harrison, 1956; Bir and Pikus, 1961).

Concerning intervalley scattering, group-theoretical
analysis including time-reversal symmetry (Streitwolf,
1970; Lax and Birman, 1972) shows that, in the case of Si
and diamond, processes are allowed to zero order with
phonons whose wave functions transform according to
the representation 62 and S~ (for a review, see Asche and
Sarbei, 1981). Accordingly, longitudinal-optical modes
assist g scattering (between parallel valleys) and
longitudinal-acoustic as well as transverse-optical modes
assist f scattering (between perpendicular valleys). In the
case of Cxe, analogous arguments show that only phonons
of symmtery X'~ can contribute (Paige, 1964). According-
ly, longitudinal-acoustic and longitudinal-optical modes
assist intervalley scattering.

It is worth noting that, in practice, initial and final
states do not exactly coincide with high-symmetry points,
and consequently the selection rules need not be strictly
fulfilled, as is confirmed in magnetophonon experiments
(Eaves et al. , 1975). However, from continuity, it is
reasonable to expect that the forbidden transitions will
remain weak when compared with allowed processes.

Ferry (1976) has calculated the matrix element for opti-
cal and/or intervalley scattering to first order in the pho-
non wave vector; this may become significant when the
zero-order transition is forbidden by symmetry.

2. ionized impurity scattering

This type of collision is elastic in nature and, therefore,
it cannot alone control the transport process in the pres-
ence of an external field; it must be accompanied by some
dissipative scattering mechanism if the proper energy dis-
tribution of electrons is to be derived from theory.

For an ionized impurity, the scattering source is simply
a screened Coulomb potential. The problem has been ini-
tially treated with two different formulations: the
Conwell and Weisskopf (1950) approach (CW), and the
Brooks and Herring (1951) approach (BH). Since then
several authors have presented refinements of the theory
of ionized irnpuity scattering. A review paper has recent-
ly appeared in this journal (Chattopadhyay and Queisser,
1981), and the interested reader is referrred to that work
for details.

The BH and CW approaches differ in the model used
to screen the potential of the ion, and both of them use
the Born approximation, consistent with the scattering
theory outlined in Sec. III.C.2.a.

In the BM approach, a simple exponential screening
factor is introduced, so that the potential scattering is
given by

the impurity. In the Debye formulation, for nondegen-
erate statistics,

4me no
2

]cKg To

' 1/2

(3.88)

where no is the free-carrier density.
In the CW approach, a bare potential is assumed, cut

off at the mean distance b between impurities:
1 /3

3b=
4mn

(3.89)

DISTANCE (arb. units)
b

where nr is the impurity concentration.
In this brief review we shall unify the calculations by

using the potential given in Eq. (3.87) also for the CW ap-
proach, taking for this case P, =0 and a maximum im-
pact parameter b, or a minimum scattering angle 8

When a high degree of compensation is present, very
few free carriers are available to screen the ionized impur-
ities, which, however, effectively screen each other, so
that the CW approach seems to be more convenient for
this condition. When, in the opposite case, each ionized
impurity contributes one free carrier, nl can be used in-
stead of n in Eq. (3.88). Figure 20 shows, for this case,
the space dependence of the scattering potential in the
two approaches. We should also note that the screening
length given in Eq. (3.88) is evaluated with the assump-
tion that the electrons have equilibrium energy distribu-
tion. When at high fields the energy distribution deviates
from equilibrium Eq. (3.88) fails, and the screened poten-
tial depends on the carrier distribution, so that the screen-
ing problem makes the transport equation nonlinear in the
distribution function.

As a general trend, when the average electron energy
increases, the screening effect decreases, as can be seen
from Eq. (3.88) in an electron temperature approximation,

P (r) = exp( —P,&),Ze (3.87)

where P, is the screening length, v the dielectric con-
stant of the material, and Z the number of charge units of

FIG. 20. Spatial dependence of the ionized impurity potential
in the Brooks-Herring (BH) and Conwell-Weisskopf (CW) ap-
proaches.
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or by simple physical considerations.
According to the general definition given by Eq. (3.22),

the Fourier transform of a screened Coulomb potential is
given by

A '(q)= 1 dr P (r)exp( —iq r)

2 Ze 1

p,'+q' ' (3.90)

This expression inserted in Eq. (3.28) and multiplied by
the ~umber of ionized impurities in the crystal yields the
scattering probability per unit time:

25 3Z2 4

P(k, k')=, &», 5[E(k') —E(k)] .
%Vie (P, +q )

(3.91)

8. Electrons

(1) Spherical, parabolic bands. The integrated scatter-
ing probability is obtained from Eq. (3.91) by taking
S=1, multiplying by the density of states V/(2m. ), and
integrating over the possible states k'. Polar coordinates
are assumed with k as polar axis. In this simple band
model we thus obtain

2 mZ nie mk
P(k) =

[P, +2k (1—g)]2

(3.92)

Final integration over g =cos8 gives the integrated
scattering probability per unit time

23/2 Z 2 4 1/2nie m
P (E)= —Ee,I

P, + 2 (1—cos8 )

1

Sm
(3.93)

Expression (3.93) can be written in more physical terms
by introducing the maximum impact parameter b and by
using the following notation:

2 mvlZ e
PBH( ) ~'E'm '~' ( 1+4«&p)

(3.100)

Ill P,

2

2KI
'

2
Eb

ab =
E +Ey

(3.94)

(3.95)

(3.96)

Figure 21 shows the dependence upon energy of the in-
tegrated scattering probability per unit time for ionized
impurities in the two different approaches.

For the determination of the state after scattering, the
angle 0 between k and k' can be determined by applica-
tion of the direct technique (described in Appendix A) to
the probability that the scattering angle is 0, which is the
integrand in Eq. (3.92):

Then if we remember the following classical relation be-
tween b and 0

0
tg

2

Eq. (3.93) becomes

P, I(E)=n, ov, Z2

(3.97)

Uz
tX:

O
CO

13
10

I I
i

I

Illa'
45 K

17 -3
n =10 cmI

I I I l
I Ill[

where o.=~b is the geometric cross section.
In the CW approach p, =0, thus E& ——0, and Eq. (3.98)

reduces to

Pe I ( E )=nl o'vZ

12
10

10 10

ENERGY (meV)

2
10

zn'b'(2i )'"m'"E. (3.99)

In the BH approach b '=0, and we have, from Eq.
(3.98),

FIG. 21. Integrated scattering probability per unit time for ion-
ized impurity scattering as a function of energy. The model
used refers to electrons in Si with a parabolic band.
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2 mZ nre mk 1

g3K2p, 1(e) ' 's [p2+2k2(1 —g)]2

(3 101} and

Such an equation can be solved with straightforward cal-
culations, and yields

(1+4e/ep)sin (8 /2)+r cos (8~ /2)
cos8, =1—2

1+4 [1 rco—s (8~/2)]
Cp

fi P,
2md

2

'2
y(e) r+ 1

eb (1+2ae )

y(e)
eb (1+2ae )

cos0,cw

(3.107)

(3.108)

Equation (3.102) in the CW approach becomes

(e jeb) r —1
cos8,

(e/eb) r+1
and in the BH approach

(3.102)

(3.103)

2(1 —r)
cosOq = 1—

1+4 y(;)
6'p

5. Holes

(3.109)

cos8, = 1—2(1 —r)

1+4 r
E'p

(3.104}

In both theories the azimuthal angle y of k' around k is
chosen at random. In evaluating the importance of im-
purity scattering, Eqs. (3.99) and (3.100) must be set
against the fact that, at high energies, Coulomb scattering
is strongly peaked along the forward direction, so that a
large number of scattering events may result in a small ef-
fect on the electron path. In this respect the BH formula
of Eq. (3.100) seems to be more appropriate, since the in-
tegrated scattering probability itself decreases at suffi-
ciently high energies.

(2) E/lipsoidal, nonparabolic bands. As for the other
scattering mechanisms, when ellipsoidal and/or nonpara-
bolic valleys are taken into account, the Herring-Vogt
transformation is applied, and nonparabolicity must be
considered in the integration over the magnitude of k',
which is performed by means of the 5 function. The cal-
culations are straightforward, and the results can be given
in a form which shows the generalization of Eqs. (3.99),
(3.100), (3.103), and (3.104):

y3/2(e )

2s/2 n Z2 4

E'p

for the CW and BH approaches, respectively, where

(1) Sphencal, paraboiic bands. The scattering probabil-
ity given in Eq. (3.91) can be applied also to the case of
holes for a single spherical and parabolic band by ac-
counting for the overlap factor as given in Eq. (3.31)
(Costato and Reggiani, 1973). By using the BH approach,
we obtain the ionized-impurity-scattering probability per
unit time for holes

2 7T Z nie ~ (1+3 cos 8 }
P(k, k') =

RVK (P, +q )

X5[e(k') —e(k)], (3.110)

Integration of Eq. (3.111) over the solid angle yields the
integrated scattering probability per unit time

with

2sg 2~Z2ns e (1+4'/ep)'(3.112)

with e(k) given by Eq. (3.1) and 8 being the angle between
k and k'.

By assuming the k state before scattering to be the po-
lar axis and integrating Eq. (3.110) over k', we find

21/2Z 2n 4
3/2 1 1+3cos 82

K m '/ 4 [2( 1 —cos8 )+ep/e]

(3.111)

1
ov 4

3(1+4e/ep)(1+ 2ejep)
4(e/ep )

In[1/( 1+4e /ep )]-+ 2+
( 1+4&/&p) (I+2ejep)2 2(1+2e/ep)ejep

(3.113)

For the determination of the final state after scattering, k, the following combined procedure is used (see Appendix A
Sec. 2.c). The k state before scattering is assumed to be the polar axis, and the polar angle 8 is generated according to
Eq. (3.104). Then, this angle is accepted with the aid of the rejection technique applied to the overlap factor
4 (1+3 cos 8 }. The azimuthal angle q& is finally chosen at random.

Note that the inclusion of the overlap has the net effect of decreasing the efficiency of the impurity scattering
mechanism.
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(2) Warped band .Band warping can be included (Reggiani, 1978) by using in the Eq. (3.91) e(k) as given by Eqs.
(3.3) and (3.4). By integration over k' we obtain

2Z'n, e4
p(k y~ y~)

I
~ (1 )~1/2& —3/2 4 (1+-3cos 0)(1—g)

(1— ')3/2 1+ —2- cos9+P, a(1 —g)/e1 —g (1—g)'/' 2
I
)
1/2

2 (3.114)

where g and g' refer to initial (4.,P) and final (5', g') an-
gles taken with respect to crystallographic axes. Integra-
tion of Eq. (3.114) over the solid angle 0' yields the in-
tegrated scattering probability. As follows from Eq.
(3.114), warping introduces a dependence of the integrated
scattering probability on the initial orientation of k. Pro-
vided the warping is not very pronounced, this effect can
be neglected in Monte Carlo calculations when choosing
the scattering mechanism, and Eq. (3.112) can still be
used with an appropriate average value for the effective
mass mI, [see Eq. (3.86)]; this is accomplished by setting
g=g' and a(1—g)=1ri /(2m&) in Eq. (3.114). For the
determination of the final state, warping can be easily ac-
counted for by applying the combined technique (see Ap-
pendix A Sec. 2.c) to the angular probability given by Eq.
(3.114), starting from a polar angle 8' generated accord-
ing to Eq. (3.104), and taking the azimuthal angle f' at
random with uniform probability.

3. Carrier-carrier interaction

1/2 4 I /2

p (k k )
2 7rne ~p

~ cpm 1+& ~&
(3.11S)

where

Rk
6» 9

2m

k, =k) —k .

(3.116)

(3.117)

We have seen in Sec. II.G.1 that several attempts have
been made to include carrier-carrier interaction in Monte
Carlo simulations, and that one approach consists of tak-
ing e-e co)lisions as one of the possible scattering mecha-
nisms. In any case, the difficulty arises from the lack of
knowledge of the distribution function f(k) that enters
into the formulation of the scattering itself.

When e-e interaction is taken as one of the scattering
mechanisms, a knowledge of f(k) is necessary in order to
evaluate (i) the expression to be given to the screening fac-
tor of the interaction potential and (ii) the probability that
the simulated electron collides with another electron of
given wave vector k&.

If the screening factor is taken as equal to its equilibri-
um value and k1 is somehow known (cf. Sec. II.G.1), then
the scattering problem between two identical charged par-
ticles can be solved in the center-of-mass frame of refer-
ence, in the same way as for the case of ionized impuri-
ties. The resulting total scattering probability per unit
time is (Matulionis et a/. , 197S)

The final state is determined in a way which is similar
to that of the ionized impurity case. If k»'=k& —k', then
the magnitude of k,' is equal to that of k„ the angle g be-
tween k, and k,' chosen by Ineans of a random number r
is such that

2(1 —r)
cosg» = 1—

1+rF, /ef3
(3.118)

The azimuthal angle of k,' in the plane normal to k, is a
random number between 0 and 2~. The final state of the
simulated electron is then

k'= —,(k+k1 —k„') . (3.119)

4. Relative importance of the different
scattering mechanisms

In practical problems, it is often useful to have some a
priori knowledge of the type of mechanisms which may be
important in given conditions of temperature and field, in
order to set up the correct simulation model for the spe-
cial phenomenon under investigation. Without entering
into details, a general picture can be obtained from the
following considerations.

(i) Phonon scattering is more effective at higher tem-
peratures and higher carrier energies; when the carrier en-
ergy is above its mean equilibrium value, emission pre-
vails over absorption. While acoustic phonons can ex-
change arbitrary small quantities of energy, optical and
interv alley phonons have a characteristic energy
equivalent to a few hundred Kelvin.

(ii) Ionized impurity scattering becomes less effective as
the carrier energy increases; it dissipates momentum but
not energy.

(iii) Carrier-carrier scattering does not dissipate energy
nor momentum, but it inAuences the shape of the distri-
bution function, tending to make it Maxwellian.

Therefore, at low temperatures ((100 K) and low
fields the following generalizations can be made. Impuri-
ties are most probably important, unless the material is
particularly pure. Acoustic phonons are certainly impor-
tant, and their energy dissipation must be accurately tak-
en into account. Qptical phonons are generally not essen-
tial. Intervalley phonons must be considered if repopula-
tion problems are to be investigated. This last point may
be rather critical since, due to the characteristic energy of
the intervalley phonons, intervalley transitions may be
very rare. They wiH depend strongly upon the tail of the
energy distribution function of the carriers, so that
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carrier-carrier interaction may also become relevant to an-
isotropy problems.

At low temperatures and high fields, due to the higher
electron energies, all kinds of phonon spontaneous emis-
sion become predominant (zero-point limit, Nq « 1);
acoustic scattering may to some extent be approximated
by an elastic process, and the relative importance of im-
purities becomes negligible.

At high temperatures the situation is similar to that of
low temperatures and high fields, except for the fact that
phonon absorption and stimulated emission also play sig-
nificant roles.

In a later section (Sec. IV.B.8) we shall see how it is
possible to obtain from the Monte Carlo simulation infor-
mation about the role of each scattering mechanism in
dissipating the momentum and energy imparted to the
carrier gas by the field under steady-state conditions.

IV. APPLICATIONS TO COVALENT
SEMI CONDUCTORS —RESULTS

1
Vg= g(Ef —E;),eET

(4.2)

10
I)
E Simple model

310
9

EK
LLJ 210
LU

(a)

where the sum is evaluated over all carrier free flights
[this estimator, owing to its simple form, independent of
the special shape of the band and of the assumed form of
self-scattering, may be preferred to that given in Eq.
(2.14)].

The longitudinal diffusion coefficient is calculated
from the second central moment [see Eq. (2.27)], as re-
ported in Sec. II.D.1.

The results are reported as a function of field strength
for the two temperatures of 8 and 300 K in Fig. 22. As

Taking advantage of the fact that Monte Carlo simula-
tion enables us to obtain an exact solution of the
Boltzmann equation, we can investigate any microscopic
model in full detail as regards the effect of the particular
band structure and scattering mechanisms on transport
properties. Accordingly, we shall devote the first part of
this section to an analysis of the three main transport
quantities, i.e., mean energy, drift velocity, and longitudi-
nal diffusion coefficient, as a function of field strength,
for a simple-model semiconductor. The aim of such a
model is to provide general background knowledge from
which the correlation between the simple model and mac-
roscopic transport parameters can be clearly understood.
In this way, we shall also see how the failure of a simple
theory to interpret experiments can be overcome by ap-
propriate modifications of the model.

A. The simple model

z
10

'o
10

E
O

2
O
z 10
0)

10

10

10

E
10

io' I

qe

10 10 10 10 10

(e) =—g cb;,
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(4.1)

eb; being the carrier energy just before scattering and X
the number of all free flights. By applying Eq. (2.10) of
Sec. II.B.6.a, we obtain the drift velocity from

The simple covalent-semiconductor model consists of a
single spherical and parabolic band with effective mass m,
and accounts for acoustic and nonpolar optical scattering
as described in the deformation-potential approach by sin-
gle scattering coupling constants 8'& and do, respectively.
Values characteristic of heavy holes in Ge (see Table IV
in Appendix C) are assumed. This choice is motivated by
the fact that transport properties of this material have
been investigated widely from an experimental point of
view and, in first approach, the simple model used here is
well suited to a realistic microscopic interpretation.

For the quantities of interest, the mean energy is calcu-
lated, using Eq. (2.14) of Sec. II.B.6.b,

ELECTRiC F IELD ( Vcm )

100
C
+

O

c

C

10 1 10 10 10 10 10

ELECTRIC FIELD {Ycm )

FIG. 22. (a) Mean energy, drift velocity, and longitudinal dif-
fusion coefficient as functions of electric field strength for the
simple-model semiconductor at the given temperatures. The
values of different quantities under the streaming motion (sm)
and the quasielastic approximations (qe) are indicated for the
sake of comparison. e~ is the value of the energy gap. (b) Ratio
between acoustic-scattering events n „and total scattering
events (n„+n,p) as a function of electric field strength for the
simple-model semiconductor at the given temperatures.
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usual, for discussion purposes the electric field range can
be divided into three regions, namely, the linear-response
region (i.e., E~O), an intermediate region where heating
effects of carriers become evident, and the highest-field
region (i.e., E +a—o,' the comparison between carrier mean
energy and the value of the energy gap of the material sets
a physically plausible upper limit on E). To better
analyze the behavior of different quantities in terms of
single microscopic processes, we shall first discuss the
low-temperature (8-K) case.

In the linear-response region E( & 0.2 V/cm in the fig-
ure) the following relations hold:

(4.3)

thermore, the drift velocity achieves a new saturation lev-
el higher than the previous one, and the diffusion coeffi-
cient increases again towards a limiting linear depen-
dence. These features are predicted by an analytical solu-
tion of the Boltzmann equation with the small anisotropy
and quasielastic approximations (Levinson, 196S; Price,
1970). This solution, which well applies to the highest-
field region (E) 10 V/cm in the figure), considers only
optical-phonon enussion processes and leads to the fol-
lowing relations:

(4.9)

(4.4) Vd = 2 Kg8,
377m

(4.10)

pKg TpD=
e

(4.S) E
DI ——vd lop (4.1 1)

The above equations, which are usually referred to as
equipartition of energy, Ohm s law, and the Einstein dif-
fusion relation, respectively, are well reproduced by
Monte Carlo results at the lowest field strengths [see Fig.
22(a)].

The intermediate region starts at about 1 V/cm, and up
to about 10 V/cm the acoustic scattering mechanism is
the only active one [see Fig. 22(b)]. Owing to the quasie-
lastic nature of this mechansim the mean energy is found
to increase and the diffusion coefficient to increase slight-
ly above its thermal equilibrium value. Furthermore,
since the scattering efficiency of acoustic modes increases
with electron energy (see Sec. III.D.l.d), the drift velocity
is found to behave in a sublinear way.

In the region of field strengths between 10 and 10
V/cm, the optical scattering mechanism builds up until it
predominates over acoustic scattering [see Fig. 22(a)].
The strong optical emission process prevents further
strong heating, so that the mean energy attains an approx-
imately constant value, the drift velocity tends to saturate,
and the diffusion coefficient decreases. These features
follow what is predicted by the streaming motion approx-
imation, which at this temperature well applies to the
field range and for which simple theoretical considera-
tions lead to the relations

Here E, is a critical field given by

3 m

2meka p
(4.12)

which, under E/E, & 1, well justifies the above asymptot-
ic solution; I,p is the mean free path due to optical-
phonon scattering given by

(4.13)

B. Real-model applications

The asymptotic prediction of Eqs. (4.9)—(4.11), which
within statistical uncertainty are found to agree with
Monte Carlo calculations, are reported in Fig. 22(a).

In the high-temperature case (To ——300 K), owing to
the increased efficiency of the scattering mechanisms in
dissipating to the lattice the energy gained by the field,
the region of field strengths for which the linear-response
region holds is extended (E &10 V/cm in the figure).
Owing to the increased importance of acoustic-phonon
scattering and the optical absorption process, the
streaming-motion region disappears, and at the highest-
field region (E& 10 V/cm) the results are no longer in
close agreement with those of Eqs. (4.9)—(4.11).

1/2
EgO, p

2m
(4.7)

DI ——0. (4.8)

The limiting values given by Eqs. (4.6) and (4.7) are re-
ported with Monte Carlo results in Fig. 22(a) for the sake
of comparison.

In the region of field strengths above 10 V/cm, the op-
tical scattering mechanism keeps its predominant role, but
is no longer able to fully dissipate the energy gained by
the carriers from the field. As a consequence the carrier
mean energy is found to increase more and more steeply
with field toward a limiting quadratic dependence; fur-

The simple model represents too crude a simplification
to offer any deep microscopic physical insights or to per-
mit a quantitative comparison between theory and experi-
ments. Consequently, in the following we present a sur-
vey of the more significant results which, in our opinion,
have been obtained for elemental semiconductors of group
four when full details of the band structure and scattering
mechanisms are taken into account.

1. Drift velocity

Methods for calculating the drift velocity have been re-
ported in See. II.B.6. Usually this quantity is investigated
for the material of interest at given temperatures as a
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FIG. 23. Drift velocity as a function of electric field strength
for holes in Si at the given temperatures. Points refer to experi-
ments and curves to theoretical Monte Carlo calculations (Reg-
giani, 1980).

function of electric field strength applied along different
crystallographic directions.

Figure 23 shows a set of results for the case of holes in
Si (Ottaviani et al. , 1975; Reggiani, 1980). Here the an-
isotropy of the drift velocity with field orientation, which
occurs at high field strength, reflects the warped shape of
the equienergetic surfaces of heavy holes. Furthermore,
at 6 K a peculiar effect of a near-saturation region at in-
termediate fields (50&E &200 V/cm) is interpreted as a
nonparabolic effect of the band (Canali et al. , 1973).

Figure 24 shows a set of results for the case of electrons
in Ge (Jacoboni et a/. , 198la). In this case the drift velo-
city exhibits anisotropic effects due to the many-valley
structure of the conduction band. Furthermore, the pres-
ence of higher minima, lying a few hundred meV above
the conduction-band minimum, makes possible scattering
to higher minima. Thus, in order to be realistic, the mi-
croscopic model should include four equivalent absolute
minima located at 1. points, one upper minimum located
at the I point, and six further minima higher than the j.
one, located along b. The presence of these upper mini-
ma, together with nonparabolicity, is found to be the
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(Jacoboni et a/. , 1981a).
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FIG. 26. Mobility of electrons in Si as a function of tempera-
ture. Different points refer to experiments: solid curve,
theoretical results when lattice scattering only is considered;
dot-dashed curve, theoretical results with lattice scattering plus
ionized impurity scattering with nI ——10" cm ' (Canali et al.,
1975).

tocorrelation function in the absence of a field (Gherardi
et al. , 1975). This quantity is related to the electron mo-
bility by

source of a negative differential mobility region which oc-
curs at the highest field strengths for the case of low tem-
perature (To & 77 K). It is worth noting that experiments
give evidence of a dependence of the drift velocity along
the (111) direction upon electron concentration, that is,
upon electron-electron scattering, which has not yet been
fully interpreted (Jacoboni, 1976).

2. Ohmic mobility

In order to find the Ohmic mobility at a given tempera-
ture by Monte Carlo simulation, one can calculate the ra-
tio vd/E for a set of field values low enough to verify the
independence of this ratio from field strength (the con-
comitant tendency to the equilibrium value of the mean
energy provides a good check). Figure 25 shows the re-
sults of such a calculation for the case of holes in Ge
(Reggiani et al. , 1977). It must be noted that inclusion of
nonparabolicity effects in the theoretical model slightly
lowers the mobility values at higher temperatures with
respect to the parabolic case (dashed curve in Fig. 25).

However, as indicated in Sec. II.E, a more appropriate
procedure consists of evaluating the diffusion coefficient
at zero field; then the mobility is obtained from the Ein-
stein relation [see Eq. (4.5)]. Figure 26 shows results ob-
tained for the case of electrons in Si (Canali et al. , 1975).
Here the dashed-dotted curve refers to the case for which
impurity scattering with a concentration of 10 cm is
included.

The diffusion coefficient method can be applied by
means of a direct simulation of the integrated velocity au-

p= f C(r)dr .
Kg Tp

(4.14)

Figures 27 and 28 show the results of such a calculation
for the case of electrons in Si when only acoustic scatter-
ing is carried out in an exact approach. Figure 27 shows
the mobility obtained at different temperatures as a func-
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FIG. 27. Mobility of electrons in Si as a function of correlated
flights at the indicated temperatures (Gherardi et al., 1975).
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tion of the number of correlated flights. It can be seen
that the assumption of totally randomizing scattering,
which corresponds to a flat curve in Fig. 27, is justified
for temperatures around and above 45 K. Furthermore,
as a result of avoiding the usual elastic and energy
equipartition approximations, below about 45 K the mo-
bility is found to increase more rapidly over the well-
known result p cc To (see Fig. 28).
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10

3. Diffusion

The method for calculating the diffusion coefficient
has been discussed in Sec. II.D. It is worth noting that
the Monte Carlo technique first provided an exact calcu-
lation of diffusion. As in the case of drift velocity, at
given temperatures this quantity is investigated as a func-
tion of electric field strength for different crystallographic
directions.

Figure 29 shows a set of results for the case of holes in
Si (Navi et al. , 1979; Reggiani, 1980). Here the anisotro-

py of the longitudinal diffusion coefficient again reflects
the warped shape of the equienergetic surfaces of heavy
holes. Furthermore, the tendency to saturate at the
highest field strengths is ascribed to nonparabolicity ef-
fects of the heavy-hole band.

Figure 30 shows a set of results for the case of electrons
in Si (Brunetti et al., 1981). Here the anisotropy of the
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FIG. 29. Longitudinal diffusion coefficient of holes in Si as a
function of electric field strength at the given temperatures.
Points refer to experiments and curves to theoretical Monte
Carlo calculations (Reggiani, 1980).

longitudinal diffusion coefficient with respect to the
orientation of the field in the crystal is related to an addi-
tional intervalley diffusion which arises owing to the fact
that, when the field is oriented along a (100) direction,
electrons exhibit different mean velocities in different val-
leys. In addition, the microscopic simulation enables us
to compare the magnitudes of the transverse and longitu-
dinal diffusion coefficients [DI/Dt) 1 in this case, con-
trary to results obtained by analytical calculations (Persky
and Bartelink, 1970), which is to be explained in terms of
the energy dependence of the scattering probability]. In
Fig. 31 the electron mean energy (continuous line) and the
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FIG. 28. Mobility of electrons in Si as a function of tempera-
ture, obtained with the simulated velocity autocorrelation func-
tion (solid curve), compared with the traditional result p ~ To
(dashed curve) (Gherardi et aI., 1975).

FIG. 30. Longitudinal diffusion coefficient of electrons in Si as
a function of electric field strength at the given temperatures.
Points refer to experiments and curves to theoretical Monte
Carlo calculations (Brunetti et al., 1981).
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independent of position. In contrast, along the direction
of the field, electrons in the front of the cloud have
gained more energy from the field and thus have a mean
energy higher than electrons in the rear. Since the
scattering probability increases with energy, it will be
higher for the front electrons (and the mobility lower)
than for rear electrons, and consequently the cloud will
expand less than in the homogeneous transverse case.

4. Mean energy

1500

1000
CL'

500

0
-50

I

I
I

L

I
I

I

I

I

L

I
L

I

II

0

POSITION (io cm)
50

150

M

Q

100

0
50

IXI

number of electrons (dashed line) are shown as a function
of electron position in the cloud along [see Fig. 31(a)] and
perpendicular to [see Fig. 31(b)] the field, oriented along a
(111) direction. Along a direction orthogonal to the
field the mean energy is, apart from random fluctuations,

FIG. 31. Mean energy {solid curve and left scale) and number
of electrons {dashed curve and right scale) as a function of posi-
tion for the case of electrons in Si: (a) longitudinal direction; (b)
transverse direction. The simulation time is 2.2&(10 ' sec for
an initial spatial distribution of the Dirac type {Brunetti et al. ,
1981).

A method of calculating the mean energy is given by
Eq. (4.1) or by the adaptation of Eq. (2.10) to the case of
energy. Figure 32 shows the results for the case of elec-
trons in Ge (Jacoboni et al. , 1981a). At 8 K the mean en-

ergy exhibits an initial rise due to the dominant contribu-
tion of the acoustic scattering mechanism, then a nearly
constant region shows up at intermediate field strengths
owing to the buildup of intervalley phonon emission, as
expected from the simple model. At the highest field
strengths the mean energy does not exhibit the E asymp-
totic tendency, as found in the simple model, as an effect
of nonparabolicity of the band and because the scattering
to upper valleys gives rise to additional dissipation
mechanisms which combine to moderate the heating of
the electron gas (Fawcett and Paige, 1971). It is worth
noting that at field strengths as high as 10 V/cm the
mean energy keeps values lower than the energy gap (0.66
eV at 300 K).

From these curves, by analyzing the departure from
thermal equilibrium, one can evaluate the region of field
strengths at which hot-electron effects are expected to be-
gin at a given temperature; as a general trend, it is found
that this region starts at higher fields for higher tempera-
tures. The knowledge of the mean energy as a function of
field can be of special value when a rough estimate of
breakdown fields of bulk devices is desired.
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5. Distribution function

6. Repopulation

When the band model includes more bands and/or
more minima, from the record of the time spent by the
simulated carrier in each band and/or minimum, Monte
Carlo calculations can deduce their populations.

Figure 35 shows the results for the field dependence of
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The method for calculating the distribution function
has been reported in Sec. II.B.6.b.

Figure 33 shows the results for the case of holes in Ge
(Reggiani et al., 1977). Here the anisotropy with field
direction of the energy distribution function reflects the
warped shape of the equienergetic surfaces of heavy holes.
Furthermore, the strong optical-phonon emission gives
rise to a depopulation of the high-energy region in favor
of the low-energy region.

Figure 34 shows the distribution in the lower valleys (L
minima) of electrons in Ge (Jacoboni et al., 1981a). At in-
termediate fields the distribution exhibits kinks at the en-

ergy of intervalley and optical phonons and at the energy
of the bottom of the upper valleys, while at the highest
field strengths only the latter remains.

In compound semiconductors, owing to their charac-
teristic band structures and scattering mechanisms, the
energy distribution function was found to assume a pecu-
liar form with strong inversion (Fawcett and Rees, 1969;
Borsari and Jacoboni, 1972). The anisotropy of the distri-
bution function in k space has also been studied in detail.
In particular, a significant contribution of the third term
was found in a spherical harmonic expansion of the distri-
bution (Fawcett and Rees, 1967). These particular shapes
of the distribution function showed, at the beginning of
the Monte Carlo development, the usefulness of exact nu-
merical techniques, since no analytical approximation had
ever suggested such "irregular" distributions.
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the ratio between light- and heavy-hole concentration nor-
malized to its equilibrium value for the case of holes in
diamond (Reggiani et al., 1981b). The decrease from uni-
ty, at increasing field strengths (depopulation effect) is
due to the fact that heating of light holes is more efficient
than that of heavy holes. Thus scattering by optical-
phonon emission from light to heavy bands becomes more
active than the reverse process. At the highest fields,
when the mean energy of both types of carriers is well
above the optical-phonon energy, the increased efficiency
of interband scattering tends to equalize the mean ener-
gies, so that the population depends only on the relative
density of states as at equilibrium.

Figure 36 shows the fraction of electrons in the dif-
ferent valleys in Ge as a function of the electric field ap-
plied along a (111) direction at different temperatures
(Jacoboni et al. , 1981a). It can be seen that the popula-
tion of the hot valleys (111) exhibits a wavy behavior,
with a first minimum (which is about zero at 8 K) fol-
lowed by a maximum (which is about its equilibrium
value 0.75) and then a final decreasing tendency related to
upper-valley (100) populations. The opposite behavior is
exhibited by the populations of cold valleys (111). This
is another example of the fact that intervalley scattering is
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FIG. 34. Energy distribution function of electrons in the lower
valleys of Ge for different values of the electric field strength
(Jacoboni et al., 1981a).
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FIG. 33. Energy distribution function of holes in Ge. Points
refer to experiment and curves to theoretical Monte Carlo calcu-
lations (Reggiani et al., 1977).

FIG. 35. Ratio of population between light and heavy bands
normalized to its equilibrium value n~ /nq for the case of holes
in diamond as a function of electric field strength (Reggiani et
al., 1981).
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from the Monte Carlo simulation, we obtain a theoretical
evaluation of ~, .

Monte Carlo results for electrons in Si (Jacoboni, 1976)
are shown in Fig. 37, which reports the results of ~, as a
function of electric field strength, and in Fig. 38, which
reports the results of ~, as a function of temperature.
The decrease of ~, with an increase in either E or To has
the same physical origin: when electron energies are in-
creased, intervalley phonons become more effective in dis-
sipating energy.
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EL ECTR IC F IE LD (V cm ) 8. Efficiency of scattering mechanisms
FICx. 36. Population of the different valleys as a function of
electric field strength for the case of electrons in Ge at the given
temperatures. Points indicate experimental results, curves
theoretical Monte Carlo calculations (Jacoboni et al., 1981a).

The efficiency of a scattering inechanism is measured

by its energy and momentum dissipation rate. By collect-

O
&i)
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CU

0inore probable for electrons in hot valleys, thus bringing
about repopulation. The total effect is reduced as the
temperature increases, since in this case the difference in
energy between hot and cold valleys is reduced.
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7. Energy relaxation time

10
The energy relaxation time, which should describe in a

phenomenological way the tendency of the isotropic part
of the distribution function to decay toward its equilibri-
um value, is defined by (see the textbook of Seeger, 1973)

Si electrons

&~ &
—&~0&

UdeE

50 100 150
(4.15)

T E IVI P E R A T U R E ( K)

where (eo) is the thermal-equilibriuin mean energy of the
carriers, and (e ) is the mean energy in the presence of a
field. By substituting for (e) and Ud the values obtained

FICx. 38. Low-field energy relaxation time of electrons in Si as
a function of temperature. Points refer to experiments, the
curve to theoretical Monte Carlo calculations (Jacoboni, 1976).
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ing for each type of scattering the amount of energy and
momentum dissipated at the scattering events, one can
evaluate these efficiencies in the Monte Carlo simulation.

Figure 39 shows the energy (a) and momentum (b) dis-
sipation rates for all scattering mechanisms considered in
the lower valleys for electrons in Ge (Jacoboni et al.,
1981a). At the temperature considered, acoustic scatter-
ing is dominant at low fields for momentum dissipation,
but negligible for energy dissipation, which is ensured by
optical and equivalent interv alley scattering. At the
highest fields, nonequivalent intervalley scattering is the
most important means for dissipating both energy and
momentum. Let us note that the results reported here al-
ready include a reduction in efficiency due to valley de-

population at high fields, since the dissipation rates have
been evaluated by dividing the dissipated quantity of in-
terest by the total simulation time.

9. White noise

Monte Carlo calculations of the noise spectrum of the
velocity fluctuations S„as obtained by Fourier
transforming the velocity autocorrelation function [see
Eq. (2.41)], are shown in Fig. 40 for the case of electrons
in Si (Brunetti, 1982). At low frequency the well-known
white spectrum is exhibited; the transverse component is
found to be larger than the longitudinal one, in accord
with a D, &Dl [see Eq. (2.42)]. At the highest frequen-
cies, structures appear in the longitudinal case which can
be correlated with the characteristic intervalley scattering
time, while the transverse case exhibits only simple
Lorentzian decay.

An interesting comparison of Monte Carlo results with
noise experiments can be carried out under the following
conditions. When a two-terminal device exhibits a posi-
tive value of the real small-signal impedance Re(W), and
carrier-carrier scattering is neglected, the equivalent noise
temperature associated with velocity fluctuations (white-
noise temperature) T„ is given by (Shockley, 1966; Van
Vliet et al. , 1975; Nougier et a/. , 1981)

108
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(4.16)

where r&t', N(r, E) is the impedance field and the integra-
tion is performed over the volume of ihe device V.

Provided the geometry and doping of the device are
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FICz. 39. Energy (a) and momentum (b) dissipation rates for the
case of electrons in Ge due to the various scattering mechanisms
in the lower valleys as functions of electric field strength: AC,
acoustic; OP, optical; IE, intervalley between equivalent mini-
ma; I, intervalley between nonequivalent minima (Jacoboni et
al., 1981a).

(sec ")
FIG. 40. Noise spectrum of the velocity fluctuations as a func-
tion of angular frequency for the case of electrons in Si: solid
curve, longitudinal component; dot-dashed curve, transverse

component; dashed curves at lowest frequencies are extrapola-
tions to the zero-frequency values of S,. The Lorentzian decay
as co is shown for the sake of comparison.
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known, the Monte Carlo calculation of Ud(E) and D(E),
together with the use of the Poisson equation, makes pos-
sible a microscopic calculation of T„(Zijlstra, 1978). It is
worthwhile noting that under homogeneous field condi-
tions Eq. (4.16) reduces to (Price, 1965)

Si h

5 — E II

eD
Tn gK~p'

(4.17)
0

~ 10
0 1 4

21
30

where p is the differential mobility. Equation (4.17) can
be interpreted as a generalized Einstein relation.

Figure 4jL shows the comparison between theory and
available experiments on the noise temperature of elec-
trons in Si for homogeneous conditions (Reggiani et al.,
1981d). It is apparent that theory agrees better with ex-
periments obtained at high frequency and with high-
resistivity samples, thus providing useful information on
the relative importance of other sources of noise, such as
generation-recombination. Figure 42 shows the compar-
ison between theory and experiment for the case of holes
in Si for nonhomogeneous conditions (Reggiani, 1980).

As a common feature, these results show a monotonic
increase above thermal-equilibrium values of the noise
temperature, a fact that agrees with the so-called "noise
temperature conjecture" (Schlup, 1976) stating that, in a
nonequilibrium transport state of a semiconductor with a
uniform electric field, the noise temperature is higher
than its equilibrium value. Let us note that this monoton-
ic increase can be qualitatively interpreted in terms of Eq.
(4.17) as a dominant effect of impedance over diffusion in
the behavior of the noise temperature versus field; in fact,
on increasing field strengths, one finds that a possible de-
crease in diffusion proves to be more than compensated
for by the increase in impedance.

10. Velocity autocorrelation function
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I
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10
f

1

v, (vj
10

FIG. 42. Normalized longitudinal noise temperature of holes in

Si as a function of apphed voltage in devices under nonhomo-

geneous field conditions. Points refer to expeiments, curves re-

port theoretical calculations (Reggiani, 1980).

study of this quantity for different electric field strengths
and different directions makes possible a microscopic
description of diffusion and white-noise quantities.
Under linear-response conditions, in the relaxation-time
approximation, C(t) decreases to zero in an exponential
way characterized by a constant decay time ~~. However,
when the nonlinear response condition is considered and
the microscopic model becomes more complicated, this is,
in general, no longer the case. Figure 43 shows the nor-
malized autocorrelation function of velocity fluctuations
N(t) for the case of electrons in Si (Brunetti, 1982). It is
apparent that, because of the increased efficiency of

One of the most recent and interesting achievements of
the Monte Carlo method has been the calculation of the
autocorrelation function of carrier velocity fluctuations
C(t), which is obtained as described in Sec. II.D.2. The
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FIG. 41. Longitudinal noise temperature of electrons in Si:
and O, experiments performed at 10 GHz on 30 Q cm samples;
4, 5, and V, experiments performed at 0.95 GHz on 15 0, cm
samples. Curves refer to Monte Carlo calculations (Reggiani et
al., 198ld).

-12
CORRELATION T IME, t(10 sec)

FIG. 43. Normalized autocorrelation function of velocity Auc-
tuations as a function of time for the case of electrons in Si:
solid curve, longitudinal component; dashed curve, transverse
component.
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scattering, for the high-field case 4(t) decreases to zero
faster, the transverse component being larger than the
longitudinal one, in agreement with a D, & DI.

Figure 44 shows a set of curves for the longitudinal
@(t) when the field is along the &100) and (111) direc-
tions. The peculiar negative behavior exhibited by @(t) in
this figure is correlated with long flights in k space,
characterized by initial negative velocity fluctuations
which carriers can undergo after an intervalley scattering.

11. Alternating electric fields

The application of the Monte Carlo technique to the
case of periodic fields has been reported in Sec. II.C.3.

Figure 45 shows the real and imaginary parts of the
differential inobility as a function of frequency for the
case of electrons in Si, when the static electric field is 10
and 50 kVlcm, respectively (Zimmermann et al., 1978).
The real part of the mobility at the lower frequency coin-
cides with the differential mobility at the bias point; then,
with increasing frequency, it peaks and finally tends to
zero. This is a general feature of the frequency depen-
dence of all transport phenomena when a strong scatter-
ing process with a threshold energy determines an oscilla-
tory behavior of charge carriers. Recalling that the opti-
cal absorption coefficient of free charge carriers is pro-
portional to the small signal conductivity, this peak
represents a resonant absorption at the corresponding fre-
quency. The imaginary part of the mobility, which is
known to give the free-carrier contribution to the dielec-
tric constant, has the frequency dependence predicted by
Kramers-Kronig relations (Zimmermann et al., 1978).

12. Magnetic fields

The method of introducing a magnetic field in Monte
Carlo calculations has been reported in Sec. II.F. Quite
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interesting results have been obtained under streaming-
motion conditions (Maeda and Kurosawa, 1972; Andro-
nov et al., 1980; Kurosawa, 1980). For a simple-model
semiconductor, the simultaneous presence of a streaming
motion and of a circular inotion with a frequency
co, =eB/(mc) gives rise to an accumulation region in k
space, which assumes a spindle shape (see Fig. 46). This
effect is easily understood by considering the different
behavior of a carrier depending on its initial conditions of
motion immediately after optical-phonon einission. If the
carrier is outside the accumulation region, it is short
lived, since it will be accelerated up to energies larger than
fico,~ within a short time (of the order of co, '). If the
carrier is inside the accumulation region it is long lived,
since the circular motion continues for a long time. As a
consequence, the energy distribution function shows a
population inversion reflecting the strong accumulation in

FREQUENCY (G Hz)

FIG. 45. Real (a) and imaginary (b) part of the differential mo-
bility of electrons in Si as a function of frequency at the field
strengths reported (Zirnmermann, 1978).
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FIG. 44. Normalized autocorrelation function of longitudinal
velocity fluctuations as a- function of time for the case of elec-
trons in Si: solid curves, electric field along the (111) axis;
dashed curves, electric field along the ( 100) axis.

FIG. 46. Carrier motion in k space under an electric field E
and a magnetic field 8 perpendicular to E. Spindle region is la-
beled S; the dashed line represents the axis of the spindle region
and crosses the center point at C [0, mcE/( AB),0]. f—m,„ is
the energy of the optical phonon (Maeda and Kurosama, 1972).
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( Fig. 47). These predictions have
been experimentally confirmed for the case of holes in Cie

by Komiyama and Spies (1981).

I

Sl elect ron s
300 K

E ll (100&

13. Transients

The method of calculating time-dependent phenomena
(under transient conditions) has been described in Sec.
II.C.1. Figure 48 shows Monte Carlo calculations for t e
case of electrons in Si with given initial conditions of
motion (Reggiani et al., 1981a). The main features of the
results are the tendency of the drift velocity and diffu-

xceed their value at long times for a brief period
of time (overshoot effects).

Figure 49 shows results for the case of holes in Si (Reg-
1 1981b). Here the transient behavior of thegiani et a.,

drift velocity and mean energy is investigated at i eren
Fi . 49(a) theinitial energies. As can be seen in Fig. &a, e

overshoot is maximum for the coldest initial distribution,
while it disappears for the hottest case. This phenomenon
reflects the energy dependence of the momentum relaxa-
tion time, as discussed m Sec. II.B.2 (see 'g.Fi . 2). In other
words, when carriers start with a low energy, they begin
to accelerate before dissipating energy, and, provided the
field strength is high enough, they have the possibility on
average of reaching velocity values higher than the sta-
tionary ones. If the carriers start with high energies, they
simultaneously start accelerating and dissipating energy
through phonon emission; this fact leads to a smooth in-
crease with time of the drift velocity, so that overshoot ef-
fects are not present.

As regards the transient energy [see Fig. 49(b)] no
overshoot is observed.

C. Devices

Th M nte Carlo method is finding fruitful apphca-
leh rea of modeling real devices (see for examp e

Constant and Boittiaux, 1981). As explained in the Intro-
duction, t is opic is nh t is not within the scope of this review;
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however, owing o i st 'ts practical importance, in this section
we shall briefly outline the main objectives of such a use
and summarize some interesting applications that have
appeared in the literature.

When the dimensions of devices become very small
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(b) as functions of time for the case of electrons in Si. The ini-
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FIG. 47. Energy distribution function of holes in Cie for the
geometry of fields in Fig. 46: (a) electric field strength of 2.5
kV/cm; (b) electric field strength of 3 kV/cm; (c) electric field
strength of 3.25 kV/cm. Energies eI. and e~ correspond to

I and C in Fig. 46, and Ace p is the optical-phonon ener-
gy (Maeda and Kurosawa, 1972).
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FIG. 49. Drift velocity (a) and mean energy (b) as functions of
time for the case of holes in Si. Different curves refer to the re-
ported different values of the initial mean energy with velocity
randomly distributed (Reggiani et aL, 198I).
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(submicron devices) and the frequencies of the applied
fields very high (over 10 GHz), classical phenomenologi-
cal transport equations are no longer adequate to describe
charge current, and a direct solution of the kinetic equa-
tion has to be undertaken (Rees, 1973). Under the above
conditions, the Monte Carlo method becomes a powerful
tool for modeling devices. The major remaining problem
is to describe in a self-consistent way the spatial depen-
dence of the field inside the crystal.

Interesting applications of Monte Carlo to device
modeling have already appeared in the literature.
Domain formation in Gunn devices has been analyzed by
Lebwohl and Price (1971b). The Gunn effect in fer-
romagnetic semiconductors has been studied by Aers
et al. (1976). The transport of carriers across the base of
a Si, narrow-base, bipolar transistor has been investigated
by Baccarani et al. (1977). The high-field drift velocity
of carriers in the p- and n-channel inversion layers of Si
has been reported by Basu (1977) and Zimmerinann et al.
(1980). Unipolar components for both diffusion noise
properties and static characteristics have been investigated
by Zimmermann and Constant (1980). The simulation of
real-space electron transfer in GaAs-AIGaAs heterostruc-
tures has been carried out by Glisson et al. (1980).

V. CONCLUSIONS

In the last decade Monte Carlo, by making possible the
use of sophisticated microscopic models for both band
structure and scattering mechanisms of any material, has
proved to be an extremely powerful method for the study
of transport phenomena in semiconductors.

In particular, this method has provided a detailed phys-
ical interpretation of the response of a semiconductor to
arbitrary fields. Mobility and diffusivity have been the
main objects of investigation, but many other particular
features of the transport process have been elucidated in
Monte Carlo simulations, such as, for example, space,
velocity, and energy distributions, valley repopulations,
efficiencies of scattering mechanisms, fluctuations, and so
on. In this respect the method has become a sort of simu-
lated experimental technique with very strong insight po-
tentiality, through which experimentalists belonging to
different areas have found a unifying theoretical method
for understanding the physics that underlies their results.
Some features of the Monte Carlo technique have been
taken to a high level of refinement, such as, for example,
the use of the entire conduction band instead of the
effective-mass approximation (Shichijo and Hess, 1981).
On the other hand, one problem that still requires a defin-
itive clarification is the best way for the generalization of
the model to include electron-electron interaction.

The feasibility of the Monte Carlo method is such that
almost all the areas where it could be applied have been
investigated in a relatively short time, so that it is now
reasonable to think of its extension to new areas which are
becoming ripe for deeper investigation. The transport
properties of new physical systems —for example, quasi-

one-dimensional structures, intercalation compounds, aLd
amorphous materials —will be profitably studied by
means of the Monte Carlo technique as soon as their basic
physical properties are well enough understood for the
construction of realistic and reliable models to be used in
the simulation. A similar consideration holds for device
design where, however, a further difficulty arises from the
need to know the field distribution inside the device itself.
In this case a self-consistent calculation must be per-
formed. When submicron structures are involved, direct
simulation seems to be the only feasible approach to de-
vice analysis.

A major field that, presumably, will benefit significant-
ly by application of the Monte Carlo technique is quan-
tum transport (Barker and Ferry, 1979). It is not yet clear
how close we are to proceeding to this important step; it
is, however, exciting to consider the possibility that nu-
merical simulation of the quantum transport equation
may reveal further hidden analogies between quantum
and classical transport which may justify the success of
the Boltzmann equation in such wide areas of application,
even when rigorous calculations seem to call for a more
correct quantum approach.

To conclude, we should like to suggest that the great
popularity and wide use of Monte Carlo simulation for
the solution of transport problems in semiconductors in-
dicates that the time has come for the construction of
some sort of official library of programs or, at least, for
the definition of standards on its features.
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APPENDIX A: GENERATION OF RANDOM NUMBERS

All simulative techniques for stochastic processes make
use of random numbers in order to simulate events which
occur with given probability distributions. Here we shall
describe how random numbers are generated in general.
%'e shall see that random numbers with any probability
distribution can be obtained starting from a sequence of
random numbers evenly distributed between 0 and 1.
These numbers are designated in the present paper by the
letter r.

Generation of evenly distributed random
numbers

The history of the methods devised by Monte Carlo
workers to generate sequences of random numbers r may
be of interest in itself. However, for reasons of space, we
refer the interested reader to the specific literature (Ham-
mersley and Handscomb, 1964; Buslenko et al., 1966).
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Here we only mention that library functions which gen-
erate appropriate sequences of numbers r are available to-
day in large electronic computers. The method of genera-
tion most commonly used is the multiplicative congruen-
tial method: the ith element r; of the sequence is given by
the previous element r; & by a relation such as

r; =pr; &(modq) (Al)

where p and q are appropriate constants. The first ele-
ment of the sequence (seed) must be given by the user.
The numbers r; of the sequence in Eq. (Al) are obtained
with a precise mathematical algorithm, and therefore they
are not at all random; in fact, given the seed of the se-
quence, all its numbers are perfectly predictable. Howev-
er, for "good" choices of the constants p and q, the se-
quences of r; behave as random in the sense that they
passed a large number of statistical tests of randomness.
Numbers r of such a type are called pseudorandom nurn-
bers. They have the advantage over truly random nurn-
bers of being generated in a fast way without having to
resort to special physical devices and of being reproduci-
ble, when desired, especially for program debugging.

X

FIG. 50. Geometrical representation of the generation of a sto-
chastic variable x with given probability function
f(x)=dF(x)/dx by means of random numbers r between 0
and 1.

cannot be used because it is not possible either to evaluate
analytically the integral in Eq. (A2) or to solve with
respect to x„ the equation which results from Eq. (A2).
In these cases one of the following techniques can be used.

b. Rejection technique

2. Generation of random numbers vw'th given
distributions

Let C be a positive number such that

C)f(x) (A6)

Random numbers x with given probability distribution
f(x) in an interval (a, b) can be obtained starting from
numbers r evenly distributed in the interval (0, 1) with dif-
ferent techniques (Hammersley and Handscomb, 1964;
Buslenko et al., 1966). We shall describe here the three
simplest techniques, which are usually used in Monte
Carlo transport calculations.

xi ——a+(b a)rt and —fi riC—— (A7)

are two random numbers obtained with flat distributions
in (a, b) and (O, C), respectively. If

in the whole interval (a, b), and let r i and r'& be two ran-
dom numbers obtained with a flat distribution in (0,1).
Then

a. Direct technique fi &f«i) (A8)

If the function f (x) is normalized to one in the interval
of definition (a,b), let us call F(x) the integral function of
f. Then, given a number r, we correspondingly choose x„
such that

X

r =F(x„)=I f(x)dx .

The probability I'(x)dx that x„obtained in this way lies
within an interval dx around x is equal to the correspond-
ing dF, since r has a flat distribution. Thus (see Fig. 50)

then x
&

is retained as choice of x, otherwise x
&

is rejected,
and a new pair r2, rz is generated; the process is repeated
until Eq. (AS) is satisfied. Since for each pair r;,r a
point with coordinates (x;,fI) is obtained from the uni-
form distribution in the rectangle abCC of Fig. 51, the
probability that x; within an interval dx around x will be

f (x&}

r&C
I'(x)dx =dF =f(x)dx, (A3)

as desired. Iff(x) is not normalized, then Eq. (A2) must
be replaced by

X b
r =I f(x)dx I f(x)dx (A4)

with a constant f (x), this technique provides the obvious
formula for the generation of a random number evenly
distributed between a and b:

y CX ]

0

x2

x„=a+(b a)r . —
Often, in real cases, the above simple direct technique

FIG. S1. Geometrical representation of the rejection technique
(see text). The comparison between the area under f(x) and the
shaded region gives evidence of the efficiency of the technique.
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accepted is proportional to the probability that x; lies
within this interval, proportional to dx, times the proba-
bility of accepting x;, proportional to f(x;), as desired.

The above technique is always applicable, with any
bounded f(x) in a finite interval (a,b). However, when

f(x) is strongly peaked, many pairs of numbers might be
generated before a successful trial, with a resulting large
expense for computer time. The technique described
below may overcome this difficulty by combining the two
previous techniques.

c. Combined technique

Let x~ be a random number generated with the direct
technique according to a distribution g(x). If, further-
more, K is a constant such that

d. Discrete case

When an event inust be chosen from among a given
number of different possibilities or, in other words, when
the variable x must be chosen from a discrete set, the
direct technique can be used with f(x) given by the sum
of 5 functions. Figure 53 illustrates this case: if P; is the
probability of occurrence of the ith event x;, then a ran-
dom number

y =rP, (A 1 1)

cial cases. As an example we may mention the use of the
sum of a certain number of random numbers r to generate
x according to a normal distribution (Eadie et al., 1971).
For such a distribution the combined technique can also
be used (Price, 1979).

Kg(x) &f(x) (A9) where

in the whole range (a,b) of interest, a new random num-
ber r i is generated in (0,1), and x i is accepted as the value
of the random variable x if is generated and compared successively with

(A12)

riKg(xi)(f(xi) . (A 10) P),
In fact, in this way the probability of having an accepted
xi within an interval dx around x is proportional to the
probability that x& lies within this interval, proportional
to g(x)dx, times the probability of accepting xi, propor-
tional to the ratio f(x)/Kg(x). The final probability is
therefore proportional to f(x)dx, as desired. A geometri-
cal interpretation of the combined technique is shown in

Fig. 52: the selection of xi is equivalent to the generation
of a point with flat distribution below the curve Kg(x),
while the condition of acceptance requires that the point
lie in the area below the curve f(x). If the curve Kg (x) is

not too far from f(x), few attempts will be necessary per
successful trial.

The rejection technique described in the previous sec-
tion is a particular case of the combined technique, for

g =const. The combined technique, however, can also be
applied to unbounded functions or to functions defined in

unbounded intervals.
As we said above, other techniques can be used for spe-

Pl +P2,
P)+P2+P3

The jth event is chosen if j is such that the first of the
above partial sums which is larger than y is
P&+P2+ . . +PJ. Figure 53 shows immediately that
the probability of choosing the jth event is proportional to
Pz, as desired.

APPENDIX B: NONPARABOLICITY PARAMETER

FOR Sl-LIKE CONDUCTION BAND

Following Hensel and Hasegawa (1964), we can write
the energy-wave-vector relationship for the Si conduction

f (x2)

r& Kg (x2)

r Kg(x&)

f(x )

X) x2

P3

P2

P)

P)+ P2+ P3

P)

0

y=r P

FIG. 52. Geometrical representation of the combined technique
(see text). The comparison between the area under f(x) and the
shaded region gives evidence of the efficiency of the technique.

FIG. 53. Stochastic determination of an event in the discrete
case. P; with i =1,2, 3, . . . gives the probability of occurrence
of the ith event (see text).
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TABLE IV. Bulk constants.

ap

P
QI

Qg

x
O,p

e (T=300 K)

Diamond'

3.57
3.51

18.21 & 10
12.30 && 10'

5.7
1938
5.49

Silicon

5.43'
2.33

9.0&& 10'b
5.3&& 105b

11.7b

735
1 107'

germanium

5.66'
5.32"

5.4&& 10"
3.2X 10'"

430
0.67'

Units

A
g/cm'
cm/sec
cm/sec

K
eV

'Reggiani et al. , 1981c.
Jacoboni and Reggiani, 1979.

'Agrain and Balkanski, 1961.

g2
~l

2mi
(81)

band near k=(kp 0 0) kp being measured from the X&
band-edge point, in terms of a longitudinal and a trans-
verse component, as

2

haik

2-, ' 2-, (86)

with

which, making use of Eqs. (83) and (84), can be written
as

Xkk
k, —

m, neo

with k, =k„+k„
2 mo

mo m,
(83)

1
A' =

26ep mp

'2

(87)

Equation (86) under ae, « 1 conditions can be well ap-
proximated with the usual expression

Ak =e, (1+a@,) .
2m~

2A k
=(Ea, —ea ) .

mi
(84)

The quartic term in Eq. (82) becomes negligible at the
minimum of the conduction band, where a parabolic
energy-wave-vector relationship is recovered, but intro-
duces significant nonparabolic effects in the transverse
direction as the electron wave vector moves from the
minimum. In the following we shall present a simple cal-
culation which enables us to estimate the nonparabolic
parameter from the above relations.

By averaging e, of Eq. (82) over the plane k~ =0 we ob-
tain

Equation (88), as reported in Sec. III.A.2, is the usual
way of introducing nonparabolicity in practical calcula-
tions so that a, as given in Eq. (87), can be taken as a
plausible definition of the nonparabolic parameter for a
Si-like conduction band. By substituting the values for Si
in Eqs. (84) and (87) we find a =0.7 eV ' in reasonable
agreement with the experimental value of O.S eV '. (See
Table V of Appendix C, where nonparabolicity is taken as
the same in all directions. )

APPENDIX C: PARAMETERS FOR DIAMOND,

SILICON, AND GERMANIUM

X m,k2 $ I 2
E'g (85) In this appendix we report the bulk constants (see Table

IV) together with the most recent values of the band pa-

TABLE V. Band parameters of holes (Reggiani, 1980).

iA
i

I
c

I

&so

mq(e/e„~& 1)
mq(e/e »1)
mi(e/e
mI(e/e~ && 1)

gp

dp

Diamond

3.61
0.18
3.76
0.006
0.53
1.08
0.19
0.36
5.5

61.2

Silicon

4.22
0.78
4.80
0.044
0.53
1.26
0.155
0.36
5.0

26.6

Germanium

13.38
8.48

13.14
0.295
0.346
0.73
0.042
0.25
4.6

40.3

Units

eV
mp

mp
mp
mp
eV
eV
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TABLE VI. Band parameters of electrons (Reggiani, 1980; Brunetti et al. , 1981).

E'r

m

m, ~
mg
m~
mr
'ir
+1L

(DrK

Diamond

7.22
6.22
1.4
0.36

Silicon

0.74
2.95
0.98
0.19

Germanium

0.18

0.14
1.35
0.29
1.59
0.08
0.04
5.0
11.0
9.0
5.5

Units

eV
eV
eV
mo
mo
mo
mo
mo
eV
eV
eV

10 eV/cm

Inter~~
Og)

(D,K)g j

Og2

(DgK)g2
Og..

(D,K)g3
Of)

(D,K)f f

Of2
(D,K)f2

Of3
(D,K)f3

1900 (LQ)
8.0

1560 (LA)
8.0

1720 (To)
8.0

140 (TA)
0.5

21S {LA)
0.8

720 (LO)
11.0

220 {TA)
0.3

550 (LA)
2.0

685 (TO)
2.0

100 (LA)
0.79

430 (LO)
9.5

K
10 eV/cm

K
10' eV/cm

K
10 eV/crn

K
10 eV/crn

K
10 eV/cm

K
10 eV/cm

InterLL,

OLL 1

(DgK )LL &

OLL 2

(DtK )LL 2

320 (LA, LO)
3.0

120 (TA)
0.2

K
10 eV/cm

K
10 eV/cm

InterL&
OL di

(D,K),~
320 (LA)

4.1

K
10 eV/cm

InterJ r
OL.r

(D,K)
320 {LA)

2.0
K

10' eV/crn

Interior

O~r
(D~K)~r

320 (LA}
10.0

K
10 eV/cm

0.5
0.3

eV
V —j

rameters which describe realistic microscopic models of
diamond, silicon, and germanium (see Tables V and VI).

terms of the dimensionless variable x.
To a good approximation Xq can be taken as

APPENDIX D: NUMERICAL EVALUATION
OF INTEGRALS OF INTEREST

In this appendix we present an analytical approxima-
tion of the integrals that involve the Bose-Einstein distri-
bution function K~(x)=[exp(x) —I] ' (see Sec. III) in

Rev. Mod. Phys. , Vol. 55, No. 3, July 1983
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where B2 are the Bernoulli numbers, and x ~ 2m. in order
to ensure the validity of the series expansion (Cxradshteyn
and Ryzhik, 1966). The best value of x slightly depends
upon the number of terms considered in the power series,

and can be taken as about 3.5.
For the case of electrons (see Sec. IH.D.l.a), by consid-

ering in Eq. (Dl) terms up to the ninth power, for the in-
tegrals in Eq. (3.59) we obtain

Fi(x) =

X' X' X4

2 6 48
—2 —3 —4Xa Xa Xa
2 6 48

X' X'
4320 241 920

—6 —8Xa Xa
4320 241 920

X 10 X 12

12 096 000 622 702 080 '

—10 —12Xa Xa
12096 000 622 702 080

+exp( —x, )(x, +2x, +2)—exp( —x)(x 2+2x +2),

(D2)

X X X

2 6 4320
—2 —3 —4

G, (x) =

X' X 10 12

241 920 12096 000 622 702 080
—6 —8 —10 —12
X X~ Xe

4320 241 920 12 096 000 622 702 080
—3

+exp( —x, )(x, +2x, +2)—

(D3)

X—exp( —x)(x +2x+2)+, x &X,

where Fi(x) refers to absorption (x, =3.5), and Gi (x) refers to emission (x, =4), respectively.
As regards the integrals entering Eq. (3.68), we find by analogous calculations

F2(x) =

X

3

X a

X4 X'
8 60
—4 —5Xa Xa
8 60

X' X'
5040 272 160

—7 —9Xa Xa
5040 272 160

X 11 13

X Qxa
143 305 600 622 702080 '

—11 —13
Xa X a

143 305 600 622 702 080
(D4)

+exp( —x, )(x, +3x, +6x, +6)—exp( —x)(x +3x +6x +6), x & x,

G2(x)= .

X' X4 X'
3 8 60
—3 —4 —5
X~ X~ X~

3 8 60

X' X'
5040 272 160

X,' X,'
5040 272 160

(D5)

X4—exp( —x)(x'+3x'+6x+6)+, x &x, .

11 13

X(x,
143 305 600 622 702 080 '

—11 —13
X~ Xe

143 305 600 622 702 080
X4

+exp( —x, )(x, +3x, +6x, +6)—

For the case of holes (see Sec. III.D.l.d), by considering only the first terms of the series in Eq. (Dl), we can give, for

the integrals in Eqs. (3.79)—(3.82), the expressions (Reggiani et al., 1977):

2x 1 —. v2x+34
105 12

E3(x)= + 68—1017 2358 41 931
exp( —3)—8exp( —v 2x) x +4v 2x+28+ 72v 2 252

280 X' X' X
(D6)

27Ov 2 27O 3+ + 4, x&
X X 2
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T

r', ~ 136~i 44v 2x'
X —X+

105 315
3x& ~

F4(x)= +exp( —3) 312—801 13 248 300078
140 X X4

—exp(v 2x) 8V 2x +72x +288& 2x (D7)

4320M2 14400 15 120v 2 15 120+ 2 + 3 +
X X X X

3x )
2

63(x)= '

34v 2 x' 32x 1+ x+, x &
105 12

'
2

5913 136~2 3 162 729 3
(D8)

13 6' 44~2 2 3

6371 729+2x —81+ 19683 3
8x4 ' ~2'

(D9)
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