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I. INTRODUCTION

This paper has three parts. The first part is a simpli-
fied presentation of the basic ideas of the renormalization
group and the c. expansion applied to critical phenomena,
following roughly a summary exposition given in 1972
(Wilson, 1974a). The second part is an account of the his-
tory (as I remember it) of work leading up to the papers in
1971—1972 on the renormalization group. Finally, some
of the developments since 1971 will be summarized, and
an assessment for the future given.

II. MANY LENGTH SCALES AND THE
RENORMALIZATION GROUP

There are a number of problems in science which have,
as a common characteristic, that complex microscopic
behavior underlies macroscopic effects.

In simple cases the microscopic fluctuations average
out when larger scales are considered, and the averaged
quantities satisfy classical continuum equations. Hydro-
dynamics is a standard example of this, where atomic
fluctuations average out and the classical hydrodynamic
equations emerge. Unfortunately, there is a inuch more
difficult class of problems where fluctuations persist out
to macroscopic wavelengths, and fluctuations on all inter-
mediate length scales are important too.

In this last category are the problems of fully developed
turbulent fluid flow, critical phenomena, and elementary-
particle physics. The problem of magnetic impurities in
nonmagnetic metals (the Kondo problem) turns out also
to be in this category.

In fully developed turbulence in the atmosphere, global
air circulation becomes unstable, leading to eddies on a
scale of thousands of miles. These eddies break down into
smaller eddies, which in turn break down, until chaotic
motions on all length scales down to millimeters have
been excited. On the scale of millimeters, viscosity damps
the turbulent fluctuations, and no smaller scales are im-
portant until atomic scales are reached (see, for example,
Rose and Sulem, 1978).

In quantum field theory, "elementary" particles like
electrons, photons, protons, and neutrons turn out to have
composite internal structure on all size scales down to 0.
At least this is the prediction of quantum field theory. It
is hard to make observations of this small distance struc-
ture directly; instead the particle scattering cross sections
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that experimentalists measure must be interpreted using
quantum field theory. Without the internal structure that
appears in the theory, the predictions of quantum field
theory would disagree with the experimental findings (see,
for example, Criegee and Knies, 1982).

A critical point is a special example of a phase transi-
tion. Consider, for example, the water-steam transition.
Suppose the water and steam are placed under pressure,
always at the boiling temperature. At the critical
point —a pressure of 218 atm and temperature of 374'C
(Weast, 1981)—the distinction between water and steam
disappears, and the whole boiling phenomenon vanishes.
The principal distinction between water and steam is that
they have different densities. As the pressure and tem-
perature approach their critical values, the difference in
density between water and steam goes to zero. At the
critical point one finds bubbles of steam and drops of wa-
ter intermixed at all size scales from macroscopic, visible
sizes down to atomic scales. Away from the critical
point, surface tension makes small drops or bubbles un-
stable; but as water and steam become indistinguishable at
the critical point, the surface tension between the two
phases vanishes. In particular, drops and bubbles near
micron sizes cause strong light scattering, called "critical
opalescence, "and the water and steam become milky.

In the Kondo effect, electrons of all wavelengths, from
atomic wavelengths up to very much larger scales, all in
the conduction band of a metal, interact with the magnet-
ic moment of each impurity in the metal (see, for exam-
ple, Anderson, 1970).

Theorists have difficulties with these problems because
they involve very many coupled degrees of freedom. It
takes many variables to characterize a turbulent flow or
the state of a fiuid near the critical point. Analytic
methods are most effective when functions of only one
variable (one degree of freedom) are involved. Some ex-
tremely clever transformations have enabled special cases
of the problems mentioned above to be rewritten in terms
of independent degrees of freedom which could be solved
analytically. These special examples include Onsager's
solution of the two-dimensional Ising model of a critical
point (Onsager, 1944), the solution of Andrei and Wieg-
mann of the Kondo problem (Andrei, 1980, 1982; Andrei
and Lowenstein, 1981; Wiegmann, 1980, 1981, Filyov
et al. , 1981), the solution of the Thirring model of a
quantum field theory (Johnson, 1961), and the simple
solutions of noninteracting quantum fields. These are,
however, only special cases; the entire problem of fully
developed turbulence, many problems in critical phenom-
ena, and virtually all examples of strongly coupled quan-
tum fields have defeated analytic techniques up till now.

Computers can extend the capabilities of theorists, but
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even numerical computer methods are limited in the num-
ber of degrees of freedom that are practical. Normal
methods of numerical integration fai1 beyond only 5—10
integration variables; partial differential equations like-
wise become extremely difficult beyond three or so in-
dependent variables. Monte Carlo and statistical averag-
ing methods can treat some cases of thousands or even
millions of variables, but the slow convergence of these
methods versus computing time used is a perpetual hassle.
An atmospheric flow simulation covering all length scales
of turbulence would require a grid with millimeter spac-
ing covering thousands of miles horizontally and tens of
miles vertically: the total number of grid points would be
of order 10, far beyond the capabilities of any present or
conceivable computer.

The "renormalization-group" approach is a strategy for
dealing with problems involving many length scales. The
strategy is to tackle the problem in steps, one step for
each length scale. In the case of critical phenomena, the
problem, technically, is to carry out statistical averages
over. thermal fluctuations on all size scales. The
renormalization-group approach is to integrate out the
fluctuations in sequence, starting with fluctuations on an
atomic scale and then moving to successively larger scales
until fluctuations on all scales have been averaged out.

To illustrate the renormalization-group ideas, the case
of critical phenomena will be discussed in more detail.
First the mean-field theory of Landau will be described
and important questions defined. The renormalization
group will be presented as an improvement to I.andau's
theory.

The Curie point of a ferromagnet will be used as a
specific example of a critical point. Below the Curie tem-
perature, an ideal ferromagnet exhibits spontaneous mag-
netization in the absence of an external magnetic field; the
direction of the magnetization depends on the history of
the magnet. Above the Curie temperature Tc, there is no
spontaneous magnetization. Figure jl shows a typical plot
of the spontaneous magnetization versus temperature.
Just below the Curie temperature the magnetization is ob-
served to behave as (Tc—T)~, where P is an exponent,
somewhere near —, (in three dimensions). '

Magnetism is caused at the atomic level by unpaired

electrons with magnetic moments, and in a ferromagnet, a
pair of nearby electrons with moments aligned has a
lower energy than if the moments are antialigned. ' At
high temperatures, thermal fluctuations prevent magnetic
order. As the temperature is reduced towards the Curie
temperature, alignment of one moment causes preferential
alignment out to a considerable distance called the corre-
lation length g. At the Curie temperature, the correlation
length g becomes infinite, marking the onset of preferen-
tial alignment of the entire system. Just above T~ the
correlation length is found to behave as (T—Tc)
where v is about —, (in three dimensions).

A simple statistical mechanical model of a ferroinagnet
involves a Hamiltonian which is a sum over nearest-
neighbor moment pairs with different energies for the
aligned and antialigned case. In the simplest case, the
moments are allowed only to be positive or negative along
a fixed spatial axis; the resulting model is called the Ising
model. 4

The formal prescription for determining the properties
of this model is to compute the partition function Z,
which is the sum of the Boltzmann factor exp( HlkT)—
over all configurations of the magnetic moments, where k
is Boltzmann's constant. The free energy F is proportion-
al to the negative logarithm of Z.

The Boltzmann factor exp( HlkT) is —an analytic
function of T near Tc, in fact for all T except T =0. A
sum of analytic functions is also analytic. Thus it is puz-
zling that magnets (including the Ising model) show com-
plex nonanalytic behavior at T =T&. The true nonana-
lytic behavior occurs only in the thermodynamic liinit of
a ferromagnet of infinite size; in this limit there are an in-
finite number of configurations and there are no universal
analyticity theorems for the infinite sums appearing in
this limit. However, it is difficult to understand how even
an infinite sum can give highly nonanalytic behavior. A
major challenge has been to show how the nonanalyticity
develops.

Landau's proposal (1937) was that if only configura-
tions with a given magnetization density M are considered
then the free energy is analytic in M. For small M, the
form of the free energy (to fourth order in M) is (from the
analyticity assumption)

F= V(RM'+ UM'),

where V is the volume of the magnet and R and U are

C

FIG. 1. Schematic plot of spontaneous magnetization M vs

temperature T for a ferromagnet with critical temperature T, .

~For experimental reviews, see Belier (1967) and Kadanoff
et al. (1967).

The experimental measurements on fluids (e.g., SF6, He, and
various organic fluids) give p =0.32+0.02, while current
theoretical computations give p=0.325+0.005; see Greer and
Moldover (1981)for data and caveats.
For the alloy transition in P brass see A1s-Nielsen (1978), p.

87; earlier reviews of other systems are Belier (1967) and Ka-
danoff et al. (1967).
4For a history of the Lenz-Ising model see Brush (1967).
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temperature-dependent constants. (A constant term in-

dependent of M has been omitted. ) In the absence of an
external magnetic field, the free energy cannot depend on
the sign of M, hence only even powers of M occur. The
true free energy is the minimum of F over all possible
values of M. In Landau's theory, R is 0 at the critical
temperature, and U must be positive so that the minimum
of F occurs at M =0 when at the critical temperature.
The minimum of F continues to be at M =0 if R is posi-
tive: this corresponds to temperatures above critical. If 8
is negative the minimum occurs for nonzero M, namely,
the M value satisfying

0= — —=(2RM+4UM )V
BF 3

BM

or

M = &' —R /( 2 U) .

This corresponds to temperatures below critical.
Along with the analyticity of the free energy in M,

Landau assumed analyticity in T, namely that R and U
are analytic functions of T. NeaI' Tc this means that, to a
first approximation, U is a constant and 8 (which van-
ishes at T„-) is proportional to T —Tc. (It is assumed
that dR /dT does not vanish at Tc. ) Then, below T&-, the
magnetization behaves as

i.e., the exponent P is —, , which disagrees with the evi-

dence, experimental and theoretical, that P is about —,- (see
footnote 1).

Landau's theory allows for a slowly varying space-
dependent magnetization. The free energy for this case
takes the Landau-Ginzburg form (Ginzburg and Landau,
1950; see also Schrieffer, 1964, p. 19)

F =- f d'xI[7M(x)] +RM (x)+ UM (x)

—.8(x)M(x) I,
where B(x) is the external magnetic field. The gradient
term is the leading term in an expansion involving arbi-
trarily many gradients as well as arbitrarily high powers
of M. For slowly varying fields M(x) higher powers of
gradients are small and are neglected. [Normally the
VM (x) term has a constant coefficient —in this paper
this coefficient is arbitrarily set to l.j One use of this
generalized free energy is to compute the correlatiorl
length g above Tc. For this purpose let B(x) be a very
small 6 function localized at x =O. The U term in F can
be neglected, and the magnetization which minimizes the
free energy satisfies

—V' M(x)+RM(x) =—.85'(x) .

The solution M(x) is

M(x)o:Be " //x/

and the correlation length can be read off to be

g ~ I/&8

Hence near I'c, g is predicted to behave as!T —Tc)
which again disagrees with experimental and theoretical
evidence (see footnote 3).

The Landau theory implicitly assulncs that analyticity
is maintained as all space-dependent fluctuations are aver-

aged out. The joss of analyticity arises only when averag-
ing over the values of the overall average magnetization
M. It is this overall averaging, over e ~", which leads
to the rule that F must bc minimized over M, and the sub-

sequent nonanalytic formula (4) for M. To be precise, if
the volume of the magnet is finite„e must be in-

tegrated over M, yielding analytic results. It is only in the
thermodynamic limit l'--~ ~ that the average of e is
constructed by mlniIIIizing F with respect to M, and the
nonanalyticity of Eq. (4) occurs.

The Landau theory has the same physical motivation as
hydrodynamics. Landau assumes that only fluctuations
on an atomic scale matter. Once these have been aver-

aged out, the magnetization M(x) becomes a continuum,
continuous function which fluctuates only in response to
external space-dependent stimuli. M (x) (or, if it is a con-
stant, M) is then determined by a simple classical equa-
tion. Near the critical poiIlt the correlation function is it-
self the solution of the classical equation (6).

In a wQIld with greater than fouI' dImcnslons, thc Lan-
dau picture is correct. Four dimerlsions is the dividing
liIle—below four dimensions, fluctuations on all scales up
to the correlation length are important, and Landau
theory breaks down (Wilson and Fisher, 1972), as will be
shown below. An earlier criterion by Ginzburg (1960)
also would predict that four dimensions is the dividing
line.

The role of long-wavelength fluctuations is very much
easier to work out near four dimensions wheI'e their ef-
fects are small. This is the only case that will be dis-
cussed here. Only the effects of wavelengths long com-
pared to atonlic scales will be discussed, and it will be as-
sumed that only rrlodest corrections to the Landau theory
are required. For a more careful discussion see Wilson
and Kogut (1974).

Once the atomic-scale fluctuations have been averaged
out, the magnetization is a function M(x) on a continu-
um, as in Landau theory. However, Iong-wavelength
fluctuatiorrs are still present in M(x)—they have riot been
averaged out —and the aljowed foils of M(x) must be
stated with care. To be precise, suppose Auctuations with
wavelengths ~2mI. have been averaged out, where L. is a
length somewhat larger tllan atomic dimensions. Then
M(x) can contain only Fourier modes with wavelengths
Q 27K'I. . This 1cquiI'cment, wI itten out, ITlcans

M(x)=- I e'" "Mk,

where the integral over k means (2rr) "J d"k, d is the
number of space dimensions, and the limit on wave-
lengths means that thc integration over k is restricted to
values of k with

~

k
~

~ L
Averaging over long-wavelength fluctuations now

reduces to integrating over the variables M I„ for all

~

k
~

&L . There are many such variables; normally this
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would lead to many coupled integrals to carry out, a
hopeless task. Considerable simplifications will be made
below in order to carry out these integrations.

We need an integrand for these integrations. The in-
tegrand is a constrained sum of the Boltzmann factor
over all atomic configurations. The constraints are that
all Mi, for

~

k
i
(L ' are held fixed. This is a generali-

zation of the constrained sum in the Landau theory; the
difference is that in the Landau theory only the average
magnetization is held fixed. The result of the constrained
sum will be written e, similarly to Landau theory, ex-
cept for convenience the exponent is written F rather than
F/kT (i.e., the factor 1/kT is absorbed into an unconven-
tional definition of F). The exponent F depends on the
magnetization function M,'x) of Eq. (9). We shall assume
Landau s analysis is still valid for the form of F, that is, F
is given by Eq. (5). However, the importance of long-
wavelength fluctuations means that the parameters R and
U depend on I.. Thus I' should be denoted I'& .

FL ——f d"x[(VM) (x)+RLM'(x)+ULM (x)] (10)

in the absence of any external field [in the simplified
analysis presented here, the coefficient of V'M (x) is un-

changed at 1]. These assumptions will be reviewed later.
The L dependence of RL and UL will be determined

shortly. However, the breakdown of analyticity at the
critical point is a simple consequence of this L depen-
dence. The L, dependence persists only out to the correla-
tion length g: fluctuations with wavelengths ~ g will be
seen to be always negligible. Once all wavelengths of
fluctuations out to L -g have been integrated out, one
can use the Landau theory; this means (roughly speaking)
substituting R~ and U& in Eqs. (4) and (8) for the spon-
taneous magnetization and the correlation length. Since g
is itself nonanalytic in T at T = Tc the dependence of R»
and U~ on g introduces new complexities at the critical
point. Details will be discussed shortly.

In order to study the effects of fluctuations, only a sin-

gle wavelength scale will be considered; this is the basic
step in the renormalization-group method. To be precise,
consider only fluctuations with wavelengths lying in Bn

infinitesimal interval L to L +5I. To average over these
wavelengths of fluctuations one starts with the
Boltzmann factor e where the wavelengths between L
and L+5L are still present in M(x), and then averages
over fluctuations in M(x) with wavelengths between L
and L, +5L,. The result of these fluctuation averages is a
free energy FL+sL for a magnetization function [which
will be denoted MH(x)] with wavelengths y L +5L only.
The Fourier components of MH(x) are the same Mi, that
appear in M(x) except that

~

k
~

is now restricted to be
less than 1/(L 45L).

The next step is to count the number of. integration
variables Mi, with

~

k
~

lying between 1/L and
1/(L +5L). To make this count it is necessary to consid-
er a finite system in a volume V. Then the number of de-
grees of freedom with wavelengths between 2n.L and
2'(L+5L) is given by the corresponding phase-space
volume, namely the product of k-space and position-space

volumes. This product is (apart from constant factors
hke m., etc.) L ' + "V5L.

It is convenient to choose the integration variables not
to be the Af~ themselves, but linear combinations which
conespond to localized wave packets instead of plane
waves. That is, the difference MH (x)—M (x) should be
expanded in a set of wave-packet functions g„(x), each of
which has momenta only in the range 1/L to 1/(L +5L),
but which is localized in x space as much as possible.
Since each function g„(x) must (by the uncertainty prin-
ciple) fill unit volume in phase space, the position-space
volume for each P„(x) is

and there are V/5 V wave functions p„(x). We c» wri«

where F~+~L and Fq involve integration only over the
volume occupied by g~(x). In expanding out
Fl [MH+m|It ] the following simplifications will be made.
First, all terms linear in P(x ) are presumed to integrate to
0 in the x integration defining FL . Terms of third order
and higher in g are also neglected. The function P(x) is
presumed to be normalized so that

f d"x P'(x)=—1

and due to the limited range of wavelenths in P(x), there
results

J [Vgi(x)] d"x=1/L (16)

The result of these simplifications is that the integral be-
comes

—F [M ] —F [M ]
e '+" "=—e ' " dmexp R + m

1

OQ L-

+6' MHm

M (x) =MB (x)+ g m„g~„(x), (12)

and the integrations to be performed are integrations over
the coefficients I„.

Because of the local nature of the Landau-Ginsberg
free energy, it will be assumed that the overlap of the dif-
ferent wave functions ij'j„can be neglected. Then each m„
integration can be treated separately, and only a single
such integration will be discussed here. For this single in-

tegration, the form of M(x) can be written

M(x) =MH(x)+mg(x),
since only one term from the sum over n contributes
withiii the spatial volume occupied by the wave function
P(x).

The other simplification that will be made is to treat
MH(x) as if it were a constant over the volume occupied
by t((x). In other words, the very long wavelengths in

Mz(x) are emphasized relative to wavelengths close to L.
The calculation to be performed is to compute

—FL+sr. [Ma] —F~ [MH +mg]
8 ' = QP7 e
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ol

1 2
Fz +sz [MH ]=Fz [MH ]+ —, ln

2 +Rz +6UL M~
L 2

The logarithm must be rewritten as an integral over the
volume occupied by g(x); this integral can then be ex-
tended to an integral over the entire volume V when the
contributions from all other m„ integrations are included.

Also the logarithm must be expanded in powers of MH',

only the MH and MH terms will be kept. Further, it will
be assumed that RL changes slowly with L. When L is at
the correlation length g, 1/L and Rz are equal (as al-
ready argued), so that for values of L intermediate be-
tween atomic sizes and the correlation length, RL is small
compared to 1/L . Expanding the logarithm in powers
of Rz +6Uz MH, to second order (to obtain an MH term)
gives [cf. Eq. (11)]

1—ln2

1 2

L 2 +RL+6ULMH ——terms independent of M&

+(5V)(5L)L '(3UzMHL 9Uz—MIIL 3Rz U—zMHL ) . (19)

One can rewrite 5V as an integral over the volume 5V.
There result the equations

Let

R —1/2
( T T )

—1/2g(4 —d)/6

Rz ~sz Rz+(3Uz——L' "—3Rz UzL )5L, (20) E=4—d; (29)

UL, +gg ——UL —9UI.L 5L,
or the differential equations

dRL =3L ~U —3R U L

L = —9ULdUL

dL

(22)

(23)

then the correlation length exponent is

1 1

1 —E/6 ' (30)

which gives v=0.6 in three dimensions. Similarly, the
spontaneous magnetization below Tc behaves as
(R~ /U~ ) '/, giving

dRz (4 d) (4 d)
dL +

3L
'

3
L —3

whose solution is

R, =cL'" "'" '' -' — L -'
3 2—(4—d) /3

(25)

(26)

where c is related to the value of RL at some initial value
of L. For large enough L, the L term can be neglected.

The parameter c should be analytic in temperature, in
fact proportional to T —Tc. Hence, for large L,

Rz ~L' ' (T —Tc), (27)

which is analytic in T for fixed L. However the equation
for g is

These equations are valid only for L & g; for L & g there
is very little further change in Rz or Uz, due to the
switchover in the logarithm caused by the dominance of
RL rather than 1/L . If d is greater than 4, it can be seen
that Rz and Uz are constant for large L, as expected in
the Landau theory. For example, if one assumes RI and
Uz are constant for large L, it is easily seen that integra-
tion of Eqs. (22) and (23) only gives negative powers of L.
For d ~4 the solutions are not constant. Instead, UL

behaves for sufficiently large L as

(4—d) LgUL
9

[which is easily seen to be a solution of Eq. (23)], and Rz
satisfies the equation

1 s 1

2 3 1 —E/6
(31)

These computations give an indication of how nontrivi-
al values can be obtained for P and v. The formulae de-
rived here are not exact, due to the severe simplifications
made, but at least they show that P and v do not have to
be —, and in fact can have a complicated dependence on
the dimension d.

A correct treatment is much more complex. Once
MH(x) is not treated as a constant, one could imagine ex-
panding MH(x) in a Taylor's series about its value at
some central location xo relative to the location of the
wave function lt (x), thus bringing in gradients of MH. In
addition, higher-order terins in the expansion of the loga-
rithm give higher powers of MH. All this leads to a more
complex form for the free energy functional Fz with
more gradient terms and more powers of MH. The whole
idea of the expansion in powers of MH and powers of gra-
dients can in fact be called into question. The flucuta-
tions have an intrinsic size [i.e., m has a size -L as a
consequence of the form of the integrand in Eq. (17)], and
it is not obvious that, in the presence of these Auctua-
tions, M is small. Since arbitrary wavelengths of fluctua-
tions are important, the function M is not sufficiently
slowly varying to justify an expansion in gradients either.
This means that Fz [M] could be an arbitrarily complicat-
ed functional of M, an expression it is hard to write down,
with thousands of parameters, instead of the simple
Landau-Cxinzburg form with only two parameters R~ and
UI.
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x =Ly,
M(x)=L ' m (y),

RE ——1/L rL,

UL ——L" "uL,

FL = f d y[(Vm) +rLm (y)+u mL(y)] .

(34)

(35)

(36)

The asymptotic solution for the dimensionless parameters
I"I Bnd /4L 1S

1
l'I =CL 2 —c/3

3 2 —E/3
(37)

C
l4 (38)

9
Apart from the c term in rl, these dimensionless parame-
ters are independent of L, denoting a free-energy form
which is also independent of L. The c term designates an
instability of the fixed point, namely a departure from the
fixed point which grows as L increases. The fixed point
is reached only if the thermodynamic system. is at the
critical temperature for which c vanishes; any departure
from the critical temperature triggers ihe instability.

Fortunately the problem simplifies near four dimen-
sions, due to the small magnitude of UL, which is propor-
tional to E =4—d. All the complications neglected above
arise only to second order or higher in an expansion in

UL, which means second order or higher in c. The com-
putations described here are exact to order c (Wilson and
Kogut, 1974).

The renormalization-grcup approach that was defined
in 1971 embraces both practical approximations leading
to actual computations Bnd a formalism (Wilson and Ko-
gut, 1974). The full formalism cannot be diiscussed here,
but the central idea oII' "fixed points" can be i11ustrated.

As the fluctuations on each length scale are integrated
out, a new free-energy functiona1 FL +~L is generated
from the previous functional FL . This process is repeated
many times. If FL Bnd FL +gL BIe expressed 1n d 1 men

sionless form, then one finds that the transformation lead-

ing from FL to FL +~L is repeated in identical form many
times. (The transformation group thus generated is called
the "renormalization group. ") As L becomes large, the
free energy FL approaches a fixed point of the transfor-
mation, and thereby becomes independent of details of the

system at the atomic level. This leads to an explanation
of the universality of critical behavior (see, for example,
Guggenheim, 1945; Griffiths, 1970; Griffiths and
Wheeler, 1970; Kadanoff, 1978) for different kinds of sys-
tems at the atomic level. Liquid-gas transitions, magnetic
transitions, alloy transitions, etc. , all show the same criti-
cal exponents experimentally; theoretically this can be un-

derstood from the hypothesis that the same "fixed-point"
interaction describes all these systems.

To demonstrate the fixed-point form of the free-energy
functional, it must be put into dimensionless form.
Lengths need to be expressed in units of L, and M, AL,
and UL rewritten in dimensionlesss form. These changes
are easily determined: write

For further analysis of the renormalizaiion-group for-
xnalism and its relation to general ideas about critical
behavior, see Wilson and Kogut (1974).

III. SOME HISTQRY PRIQR TQ 1971

The first description of a critical point was the descrip-
tion of the liquid-vapor critical point developed by van
der Waals, developed over a century Bgo following exper-
iments of Andrews. ' Then Weiss (1907) provided a
description of the Curie point in a magnet. Both the van
der Waals and Weiss theories are special cases of
Landau's mean-field theory (Landau, 1937). Even before
1900, experiments indicated discrepancies with mean-field
theory; in particular the experiments indicated that P was
closer io —, than —, . ' In 1944, Onsager published his
famous solution to the two-dimensional Ising model,
which explicitly violated the mean-fie1d predictions. On-
sager obtained v= 1 instead of the mean-field prediction

1v= —, , for example, In the 1950s, Domb, Sykes, Fisher
and others (see Domb, 1949, and for a review, Fisher,
1967} studied simple models of critical phenomena in
three dimensions with the help of high-temperature series
expansions carried to very high order, extracting critical-
point exponents by various extrapolation methods. They
obtained exponents in disagreement with mean-field
theory but in reasonable agreement with experiment.
Throughout the sixties a major experimental effort pinned
down critical exponents and more generally provided a
solid experimental basis for theoretical studies going
beyond mean-field theory. Experimentalists such as
Voronel; Fairbanks, Buckingham, Bnd Keller; Heller and
Benedek; Ho and Litster, Kouvel, Rodbell, and Comly;
Sengers; Lorentzen; Als-Nielsen and Dietrich; Birgeneau
and Shirane; Rice; Chu; Teaney; Moldover; Wolf and
Ahlers all contributed to this development, with M.
Green, Fisher, Widom, and Kadanoff providing major
coordination efforts (see Ahlers, 1980, and references in
footnote 2, for experimental reviews). Theoretically, Wi-
dom (1965) proposed a scaling law for the equation of
state near the critical pcint that accommodated non-
mean-field exponents and predicted relations among
them. The full set of scaling hypotheses were developed
by Essam and Fisher (1963), Fisher (1964), Domb and
Hunter (1965}, Kadanoff (1966), and Patashinskii and
Pokrovskii (1966). See also the inequalities of Rush-
brooke (1963) and Griffiths (1965).

My own work began in quantum field theory, not sta-
tistical mechanics. A convenient starting point is the
development of renorrnalization theory by Bethe,
Schwinger, Tornonaga, Feynman, Dyson, and others in
the late 1940s. The first discussion of the "renormaliza-
iion" group appeared in a paper by Stueckelberg and
Petermann, published in 1953 (see also Petermann, 1979).

5For a history of these developments, see Deaoer (1974); Klein
(1974); and Levelt-Sengers ( l 974).
6See the reprint collection edited by J, Schwinger (1958).
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In 1954 Murray Gell-Mann and Francis Low published
a paper entitled "Quantum Electrodynamics at Small Dis-
tances, " which was the principal inspiration for my own
work prior to Kadanoff's formulation (1966) of the scal-
ing hypothesis for critical phenomena in 1966.

Following the definition of quantum electrodynamics
(QED) in the 1930s by Dirac, Fermi, Heisenberg, Pauli,
Jordan, Wigner, et al. , the solution of QED was worked
out as perturbation series in eo, the "bare charge" of
QED. The QED Lagrangian (or Hamiltonian) contains
two parameters: eo and mo, the latter being the "bare"
mass of the electron. As stated in the Introduction, in

QED the physical electron and photon have composite
structure. In consequence of this structure the measured
electric charge e and electron mass m are not identical to
eo and mo, but rather are given by perturbation expan-
sions in powers of eo. Only in lowest order does one find
e =eo and m =mo. Unfortunately, it was found in the
thirties that higher-order corrections in the series for e
and m are all infinite, due to integrations over momentum
that diverge in the large-momentum (or small-distance)
limit.

In the late 1940s renormalization theory was developed,
which showed that the divergences of quantum electro-
dynamics could all be eliminated if a change of parame-
trization were made from the Lagrangian parameters eo
and mo to the measurable quantities e and m, and if at
the same time the electron and electromagnetic fields ap-
pearing in the Lagrangian were rescaled to insure that ob-
servable matrix elements (especially of the electromagnet-
ic field) were finite.

There are many reparametrizations of quantum electro-
dynamics that eliminate the divergences but use different
finite quantities than e and m to replace eo and mo.
Stueckelberg and Petermann observed that transformation
groups could be defined which relate different
reparametrizations. They called these groups "groupes de
normalization, " which is translated "renormalization
groups. " The Gell-Mann and Low paper (1954), one year
later but independently, presented a much deeper study of
the significance of the ambiguity in the choice of
reparametrization and the renormalization group connect-
ing the difference choices of reparametrization. Gell-
Mann and Low emphasized that e, measured in classical
experiments, is a property of the very-long-distance
behavior of QED (for example, it can be measured using
pith balls separated by centimeters, whereas the natural
scale of QED is the Compton wavelength of the electron,
—10 '' cm). Gell-Mann and Low showed that a family
of alternative parameters e~ could be introduced, any one
of which could be used in place of e to replace eo. The
parameter e~ is related to the behavior of QED at an arbi-
trary momentum scale A, instead of at very low momenta
for which e is appropriate.

The family of parameters e~ introduced by Gell-Mann
and Low interpolates between the physical charge e and
the bare charge eo, that is, e is obtained as the low-
momentum (A.~O) limit of e~, and eo is obtained as the
high-momentum (A.~ oo ) limit of ex.

Gell-Mann and Low found that e~ obeys a differential
equation of the form

1, d(e~)/d(A, )=it(eq, m /A, "),
where the f function has a simple power-series expansion
with nondivergent coefficients independently of the value
of A. , in fact as A,~ oo, it becomes a function of e~ alone.
This equation is the forerunner of my own
renormalization-group equations such as (22) and (23).

The main observation of Gell-Mann and Low was that
despite the ordinary nature of the differential equation,
Eq. (38), the solution was not ordinary, and in fact
predicts that the physical charge e has divergences when
expanded in powers of eo, or vice versa. More generally,
if e~ is expanded in powers of e~, the higher-order coeffi-
cients contain powers of ln(A. /A.

'
), and these coefficients

diverge if either X or k go to infinity, and are very large
if A, /I, ' is either very large or very small.

Furthermore, Gell-Mann and Low argued that, as a
consequence of Eq. (38), eo must have a fixed value in-
dependently of the value of e; the fixed value of eo could
be either finite or infinite.

When I entered graduate school at California Institute
of Technology in 1956, the default for the most promising
students was to enter elementary-particle theory, the field
in which Murray Gell-Mann, Richard Feynman, and Jon
Mathews were all engaged. I rebelled briefly against this
default, spending a summer at the General Atomic Corp.
working for Marshall Rosenbluth on plasma physics and
talking with S. Chandresekhar, who was also at General
Atomic for the summer. After about a month of work I
was ordered to write up my results, as a result of which I
swore to myself that I would choose a subject for research
where it would take at least five years before I had any-
thing worth writing about. Elementary-particle theory
seemed to offer the best prospects of meeting this cri-
terion, and I asked Murray for a problem to work on. He
first suggested a topic in weak interactions of strongly in-
teracting particles (K mesons, etc.). After a few months I
got disgusted with trying to circumvent totally unknown
consequences of strong interactions, and asked Murray to
find me a problem dealing with strong interactions direct-
ly, since they seemed to be the bottleneck. Murray sug-
gested I study K-meson —nucleon scattering using the
Low equation in the one-meson approximation. I wasn' t
very impressed with the methods then in use to solve the
Low equation, so I wound up fiddling with various
methods to solve the simpler case of pion-nucleon scatter-
ing. Despite the fact that the one-meson approximation
was valid, if at all, only for low energies, I studied the
high-energy limit, and found that I could perform a
"leading logarithms" sum very reminiscent of a most
mysterious chapter in Bogoliubov and Shirkov's (1959)
field theory text; the chapter was on the renormalization
gl oup.

In 1960 I turned in a thesis to Caltech containing a
mishmash of curious calculations. I was already a Junior
Fellow at Harvard. In 1962 I went to CERN for a year.
During this period (1960—1963) I partly followed the
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fashions of the time. Fixed-source meson theory (the
basis for the Low equation) died, to be replaced by S-
matrix theory. I reinvented the "strip approximation"
[Ter-Martirosyan (1960) had invented it first] and studied
the Amati-Fubini-Stanghellini theory of multiple produc-
tion (see Wilson, 1963—64, and references cited therein).
I was attentive at seminars (the only period of my life
when I was willing to stay fully awake in them), and I
also pursued backwaters such as the strong coupling ap-
proximation to fixed-source meson theory (Wenzel, 1940,
1941; see also Henley and Thirring, 1962).

By 1963 it was clear that the only subject I wanted to
pursue was quantum field theory applied to strong in-

teractions. I rejected S-matrix theory because the equa-
tions of S-matrix theory, even if one could write them
down, were too complicated and inelegant to be a theory;
in contrast, the existence of a strong coupling approxima-
tion as well as a weak coupling approximation to fixed-
source meson theory helped me believe that quantum field
theory might make sense. As far as strong interactions
were concerned, all that one could say was that the
theories one could write down, such as pseudoscalar
meson theory, were obviously wrong. No one had any
idea of a theory that could be correct. One could make
these statements even though no one had the foggiest no-
tion how to solve these theories in the strong coupling
domain.

My very strong desire to work in quantum field theory
did not seem likely to lead to quick publications, but I
had already found out that I seemed to be able to get jobs
even if I didn't publish anything, so I did not worry about
"publish or perish" questions.

There was very little I could do in quantum field
theory —there were very few people working in the sub-

ject, very few problems open for study. In the period
1963—1966 I had to clutch at straws. I thought about the
"g-limiting" process of Lee and Yang (1962). I spent a
major effort disproving Ken Johnson's claims (Johnson
et al. , 1963) that he could define quantum electrodynam-
ics for arbitrarily small eo, in total contradiction to the re-
sult of Gell-Mann and Low (for a subsequent view, see
Baker and Johnson, 1969, 1971). I listened to K. Hepp
(1963—64) and others describe their results in axiomatic
field theory; I didn't understand what they said in detail
but I got the message that I should think in position space
rather than momentum space. I translated some of the
work I had done on Feynman diagrams with some very
large momenta (to disprove Ken Johnson's ideas) into po-
sition space and arrived at a short-distance expansion for
products of quantum field operators. I described a set of
rules for this expansion in a preprint in 1964. I submitted
the paper for publication; the referee suggested that the
solution of the Thirring model might illustrate this expan-
sion. Unfortunately, when I checked out the Thirring
model, I found that while indeed there was a short-
distance expansion for the Thirring model (see, for exam-
ple Lowenstein, 1970; Wilson, 1970b), my rules for how
the coefficient functions behaved were all wrong in the
strong coupling domain. I put the preprint aside, await-

ing resolution of the problem.
Having learned the fixed-source meson theory as a

graduate student, I continued to think about it. I applied
my analysis of Feynman diagrams for some large mo-
menta to the fixed-source model. I realized that the
results I was getting became much clearer if I made a
simplification of the fixed-source model itself, in which
the momentum-space continuum was replaced by momen-
tum slices (Wilson, 1965). That is, I rubbed out all mo-
menta except well separated slices, e.g. , 1 &

~

k
~

(2A", etc. , with A a large number.
This model could be solved by a perturbation theory

very different from the methods previously used in field
theory. The energy scales for each slice were very dif-
ferent, namely of order A" for the nth slice. Hence the
natural procedure was to treat the Hamiltonian for the
largest momentum slice as the unperturbed Hamiltonian,
and the terms for all lesser slices as the perturbation. In
each slice the Hamiltonian contained both a free-meson
energy term and an interaction term, so this new pertur-
bation method was neither a weak coupling nor a strong
coupling perturbation.

I showed that the effect of this perturbation approach
was that if one started with n momentum slices, and
selected the ground state of the unperturbed Hamiltonian
for the nth slice, one would up with an effective Hamil-
tonian for the remaining n —1 slices. This new Hamil-
tonian was identical to the original Hamiltonian with only
n —1 slices kept, except that the meson-nucleon coupling
constant g was renormalized (i.e., modifed): the modifica-
tion was a factor involving a nontrivial matrix element of
the ground state of the nth-slice Hamiltonian (Wilson,
1965).

This work was a real breakthrough for me. For the
first time I had found a natural basis for
renormalization-group analysis: namely, the solution and
elimination of one momentum scale from the problem.
There was still much to be done, but I was no longer
grasping at straws. My 1deas about renormalization were
now reminiscent of Dyson's (1951) analysis of quantum
electrodynamics. Dyson argued that renormalization in
quantum electrodynamics should be carried out by solv-

ing and eliminating high energies before solving low ener-
gies. I studied Dyson's papers carefully, but was unable
to make much use of his work. See also Mitter and
Valent (1977).

Following this development, I thought very hard about
the question "what is a field theory, " using the P interac-
tion of a scalar field [identical with the Landau-Ginzburg
model of a critical point (Ginzburg and Landau, 1950; see

also Schrieffer, 1964) discussed in my 1971 papers] as an

example. Throughout the sixties I taught quantum
mechanics frequently, and I was very impressed by one' s

ability to understand simple quantum-mechanica1 sys-
tems. The first step is a qualitative analysis minimizing
the energy (defined by the Hamiltonian) using the uncer-

tainty principle; the second step might be a variational
calculation with wave functions constructed using the
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qualitative information from the first step; the final stage
(for high accuracy) would be a numerical computation
with a computer helping to achieve high precision. I felt
that one ought to be able to understand a field theory the
same way.

I realized that I had to think about the degrees of free-
dorn that make up a field theory. The problem of solving
the P theory was that the kinetic term in the Hamiltoni-
an [involving (V'P) ] was diagonal only in terms of the
Fourier components Pk of the field, whereas the P term
was diagonal only in terms of the field P(x} itself. There-
fore, I looked for a compromise representation in which
both the kinetic term and the interaction term would be at
least roughly diagonal. I needed to expand the field P(x)
in terms of wave functions that would have minimum ex-
tent in both position space and momentum space, in other
words, wave functions occupying the minimum amount
of volume in phase space. The uncertainty principle de-
fines the lower bound for this volume, namely 1, in suit-
able units. I thought of phase space being divided up into
blocks of unit volume. The momentum slice analysis in-
dicated that momentum space should be marked off on a

logarithmic scale, i.e., each momentum-space volume
should correspond to a shell like the slices defined earlier,
except that I couldn't leave out any momentum range, so
the shells had to be, say, 1 &

~

k
I

&2, 2&
I

k
I

&4, etc.
By translational invariance the position-space blocks
would all be the same size for a given momentum shell,
and would define a simple lattice of blocks. The
position-space blocks would have different sizes for dif-
ferent momentum shells.

When I tried to study this Hamiltonian I didn't get
very far. It was clear that the low-momentum terms
should be a perturbation relative to the high-momentum
terms, but the details of the perturbative treatment be-
came too complicated. Also my analysis was too crude to
identify the physics of highly relativistic particles which
should be contained in the Hamiltonian of the field theory
(see, for example, Kogut and Susskind, 1973, and refer-
ences cited therein).

However, I learned from this picture of the Hamiltoni-
an that the Harniltonian would have to be cut off at some
large but finite value of momentum k in order to make
any sense out of it, and that once it was cut off, I basical-
ly had a lattice theory to deal with, the lattice correspond-
ing roughly to the position-space blocks for the largest
momentum scale. More precisely, the sensible procedure
for defining the lattice theory was to define phase-space
cells covering all of the cut off momentuin space, in
which case there would be a single set of position-space
blocks, which in turn defined a position-space lattice on
which the field P would be defined. I saw from this that
to understand quantum field theories I would have to
understand quantum field theories on a lattice.

In thinking and trying out ideas about "what is a field
theory, " I found it very helpful to demand that a correct-
ly formulated field theory be soluble by computer, the
same way an ordinary differential equation can be solved
on a computer, namely with arbitrary accuracy in return

for sufficient computing power. It was clear, in the six-
ties, that no such computing power was available in prac-
tice; all that I was able to actually carry out were some
simple exercises involving free fields on a finite lattice.

In the summer of 1966 I spent a long time at Aspen.
While there I carried out a promise I had made to myself
while a graduate student, namely I worked through
Onsager's solution of the two-dimensional Ising model. I
read it in translation, studying the field-theoretic form
given in Schultz, Mattis, and Lieb (1964).

When I entered graduate school, I had carried out the
instructions given to me by my father and had knocked
on both Murray Gell-Mann's and Feynman's doors, and
asked them what they were currently doing. Murray
wrote down the partition function for the three-
dimensional Ising model and said it would be nice if I
could solve it (at least that is how I remember the conver-
sation}. Feynman's answer was "nothing. " Later, Jon
Mathews explained some of Feynman's tricks for repro-
ducing the solution for the two-dimensional Ising model.
I didn't follow what Jon was saying, but that was when I
made my promise. Sometime before going to Aspen, I
was present when Ben Widorn presented his scaling eq ua-
tion of state (Widom, 1965), in a seminar at Cornell. I
was puzzled'". by the absence of any theoretical basis for the
form Widorn wrote down; I was at that time completely
ignorant of the background in critical phenomena that
made Widom's work an important development.

As I worked through the paper of Mattis, Lieb, and
Schultz, I realized there should be applications of my
renorrnalization-group ideas to critical phenomena, and
discussed this with some of the solid-state physicists also
at Aspen. I was informed that I had been scooped by Leo
Kadanoff and should look at his preprint (Kadanoff„
1966).

Kadanoff's idea was that near the critical point oiie
could think of blocks of magnetic moments, for example
containing 2 & 2 &(2 atoms per block, which would act like
a single effective moment, and these effective moments
would have a simple nearest-neighbor interaction like
simple models of the original system. The only change
would be that the system would have an effective tem-
perature and external magnetic field that might be dis-
tinct from the original. More generally, effective mo-
rnents would exist on a lattice of arbitrary spacing L
times the original atomic spacing; Kadanoff's idea was
that there would be L-dependent temperature and field
»riables TL»d ~L and that T2z and h2L would be ana-
lytic functions of TL and hL. At the critical point, TL
and hL would have fixed values independent of L. From
this hypothesis Kadanoff was able to derive the scaling
laws of Widom (1965), Fisher, etc. (Essam and Fisher,
1963; Domb and Hunter, 196S; Patashinskii and
Pokrovskii, 1966).

I now amalgamated my thinking about field theories on
a lattice and critical phenomena. I learned about Euclide-
an (imaginary time) quantum field theory and the
"transfer matrix" method for statistical-mechanical
models and found there was a close analogy between the
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two (see Wilson and K.ogut, 1974). I learned that for a
field theory to be relativistic, the corresponding
statistical"IIlcchBI11cal theo~ hBd to hRvc 8 lalgc coII'clB-
tion length, i.e., be near a critical point. I studied Schiff's
(1953) strong coupling approximation to the P theory,
and found that he had ignored renormalization effects;
when thcsc wcI'c takcxl 1nto RccoUIlt thc strong coupling
expansion was Do longer so easy Rs hc claimed. I thought
about the implications of the scaling theory of Kadanoff,
Widorn er al. applied to quantum field theory, along with
thc scale invariancc Qf thc solut1on of thc Th1rring Model
(Johnson, 1961) and the discussion of Kastrup and Mack
of scale invariance in quantum field theory (see Mack,
1968, and references cited therein). These ideas suggested
that scale lnvariancc would apply» Rt least at sho1 t d1s"
tanccs, bUt that flcld Qpcx'ators woUld have nontx'1v181

scale dlmcns1ons CQI I'cspoIlding to the Ilontriv1al ex-
ponents in critical phenomena. I redid my theory of
short-distance cxpans1QIls based Qn these scR11Ilg 1dcas Rnd
published the result (Wilson, 1969). My theory did not
seem to fit the main experimental ideas about short-
distance behavior [coming from Bjorken's (1969) and
Feynman's (1969) analysis of deep-inelastic electron
scattering; for a review see Yan (1976) and Feynman
(1972)], but I only felt confused about this problem and
did not worry about i.t.

I returned to the fixed-source theory ancl the momen-
tum slice Rpproximat1QD. I Made further slMpllf1CBtlons
on the model. Then I did the pc&urbative analysis mare
carefully. Since in real life the momentum slice separa-
tion factor A would be 2 instead of very large, the ratio
I/A of successive energy scales would be —, rather than
very small, Rnd an all-orders perturbative tx'eatment was
I'cqUlrcd 1n 1/A. When thc lowci cncI'gy scales wcI'c
tI'catcd to 811 ordcls 1elativc to thc hlghcst encl"gy scBlc, RA

infinitely complicated effective Hamilionian was generat-
ed, with an infinite set of coupling constants. Each time
RIl cIlcx'gy scale was c11M1natcd through 8 pcrturbativc
treatment, 8 new infinitely complicated Hamiltonian was
generated. Nevertheless, I found that for sufficiently
large A I could mathematically control rigorously the ef-
fecitve Hamiltonians that were generated„'despite the in-
finite number of couplings, I was able to prove that the
higher orders of perturbation theory had only a small and
boundable impact on the effective Hamiltonians, even
after arbitrarily many iterations (Wilson, 1970a).

Th1s wox'k showed Mc that 8 rcnormalization-gmup
transformation, whose pUrposc was to eliminate an cnclgy
scale QI' 8 length scale oi whatcvcI' from 8 ploblcM, could
produce an effective interaction with arbitrarily Many
coUpl1ng constants» without bcxng 8 d1sRstcl. Yhc
rcno~811zat1QD-group f0~RA sID based on fixed po1Ilts
could st111 bc correct» Rnd furthermore QDc could hope
that only 8 small finite DMYlbcr of these coupllngs wQUld
be important for the qualitative behavior of the transfor-
Matlons» with thc rcMRIDIng coupllngs being 1mportant
only fox' quantitatlvc computations. In QthcI' words» thc
cQUpllngs should have an GIdcx' of 1MpQNancc» Rnd fo1"

any desired but given degree of accuracy only a finite sub-

set of the couplings would be needed. In my model the
QrcIcI' of iMportance was dctcrM1Ilcd by orders 1Il thc ex-
pansion in powers of 1/A. I I'ealized, however, that in the
framework of an interaction on a lattice, especially for
Ising-type Models, locality wQUld pI'Qvldc 8 natural order
of 1Mportancc —1n Rny flnltc lattlcc volume there arc Only
a finite number of Ising spin interactions that can be de-
fined. I decided that Kadanoff's (1966) emphasis on the
Dearest-neighbor coupling Qf thc Ising Model should bc
rcstat&: thc Dearest-neighbor CQUpllng woUld bc thc IIlost,
important coUp11Ilg bccaUsc 1t 1s thc Most localized cQU-

pling one can define, but other couplings would be present
also in Kadanoff's effective "block spin" Hamiltonians.
A reasonable truncation procedure on these couplings
wQUld lac to consldcI' 8 fln1tc Icglon, say 3 GI 4 lattice
sites in size, and consider only Multispin couplings that
could fit into these regions (plus translations and rotations
of these couplings).

Previously all the renormalization-group transforma-
tions I was familiar with involved a fixed number of cou-
plings: in the Gell-Mann —Low case just the electric
charge eg, 1D Kadanoff s case BIl cffcct1vc temperature
RIld external field. I had tried Many ways to dcr1vc
transformations just for these fixed number of couplings,
without success. Liberated from this restriction, it turned
Qut. to bc easy to define rcnormallzat1QD-group transfor-
mations; the hard problem was to find approximations to
thcsc tI'RnsfoI Matlons wh1ch would bc CQIIlputablc 1D

practice. IIIeed a number of renormalization-group
transformations now exist (see Sec. IV and its references).

In the fall of 1970 Ben Widom asked me to address his
stRt1stlcal Mech an1cs scM1nar Qn thc rcnormalization
gxoup. He was particularly interested because Di Castro
and Jona-Lasinio (1969) had proposed applying the field-
theoretic renonnalization-group formalism to critical phe-
nomena, but Do one in Widom's group could understand
Di Castro and Jona-Lasinio's paper. In the course of lec-
turing on the general ideas of fixed points and the like, I
1c811zcd I would have to pI'ov1dc 8 CQIIlputablc example»
even if it was not accurate or reliable. I applied the
phase-space cell analysis to the I.andau-GInzburg Model
of the critical point and tried to simplify it to the point of
a calculable equation, Making no demands for accuracy
but simply trying to preserve the essence of the phase-
space ceil picture. The result was a recursion formula in
the form of a nonlinear integral transformation on a func-
tion of one variable, which I was able to solve by iterating
the transformation on a computer (Wilson, 1971a). I was
able to compute numbers for exponents from the recur-
sion formula at the same time that I could show (at least
in part) that it had a fixed point and that the scaling
theory of critical phenomena Qf VAdoM 8t QI. followed
from the fixed-point formalism. Two papers of 1971 on
thc xenormalization group prese~ted this woxk &VAlson,
1971a).

SGMc Months IRtcx' I was showing Michael Fisher soIIlc
numerical results from the recursion formula, when we
Icalizcd» together» that thc IlQDtrlv181 fixed poIIlt I was
studying became trivial at four dimensions and ought to
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be easy to study in the vicinity of four dimensions. The
dimension d appeared in a simple way as a parameter in
the recursion formula, and working out the details was
straightforward; Michael and I published a Letter (Wilson
and Fisher, 1972) with the results. It was almost immedi-
ately evident that the same analysis could be applied to
the full Landau-Ginzburg model without the approxima-
tions that went into the recursion formula. Since the sim-
plifying principle was the presence of a small coefficient
of the P term, a Feynman diagram expansion was in or-
der. I used my field-theoretic training to crank out the
diagrams and my understanding of the renormalization-
group fixed-point formalism to determine how to make
use of the diagrams I computed. The results were pub-
lished in a second Letter in early 1972 (Wilson, 1972).
The consequent explosion of research is discussed in Sec.
IV.

There were independent efforts in the same area taking
place while I completed my work. The connection be-
tween critical phenomena and quantum field theory was
recognized by Gribov and Migdal (1968; Migdal, 1970,
1971) and Polyakov (1968, 1969, 1970a) and by axiomatic
field theorists such as Symanzik (1966). T. T. Wu (1966.;
McCoy and Wu, 1973; McCoy et a/. , 1977) worked on
both field theory and the Ising model. Larkin and
Khmelnitskii (1969) applied the field-theoretic renormali-
zation group of Gell-Mann and Low to critical phenome-
na in four dimensions and to the special case of uniaxial
ferromagnets in three dimensions, in both cases deriving
logarithmic corrections to Landau's theory. Dyson (1969)
formulated a somewhat artificial "hierarchical" model of
a phase transition which was exactly solved by a one-
dimensional integral recursion formula (see also Baker,
1972). This formula was almost identical to the one I
wrote down later, in the 1971 paper. Anderson (1970)
worked out a simple but approximate procedure for elim-
inating momentum scales in the Kondo problem, antici-
pating my own work in the Kondo problem (see Sec. IV).
Many solid-state theorists were trying to app1y diagram-
matic expansions to critical phenomena, and Abe (1972,
1973; Abe and Hikami, 1973; Hikami, 1973) and Scalapi-
no and Ferrell (Ferrell and Scalapino, 1972a, 1972b) laid
the basis for a diagrammatic treatment of models with a
large number of internal degrees of freedom, for any di-
mension. [The limit of an infinite number of degrees of
freedom had already been solved by Stanley (1968).] Ka-
danoff (1969a, 1969b) was making extensive studies of the
Ising model, and discovered a short-distance expansion
for it similar to my own expansion for field theories.
Fractional dimensions had been thought about before in
critical phenomena (see, for example, Fisher and Gaunt,
1964; Widom, 1973). Continuation of Feynman diagrams
to noninteger dimensions was introduced into quantum
field theory in order to provide a gauge-invariant regulari-
zation procedure for non-Abelian gauge theories ('t Hooft
and Veltman, 1972; Bollini and Giarnbiagi, 1972; Ash-
more, 1972); this was done about simultaneously with its
use to develop the c. expansion.

In the late sixties, Migdal and Polyakov (Patashinskii

and Pokrovskii, 1964; Polyakov, 1970b; Migdal, 1971;
Mack and Symanzik, 1972, and references cited therein)
developed a "bootstrap" formulation of critical phenome-
na based on a skeleton Feynman graph expansion, in
which all parameters including the expansion parameter
itself would be determined self-consistently. They were
unable to solve the bootstrap equations because of their
complexity, although after the E expansion about four di-
mensions was discovered, Mack (1973) showed that the
bootstrap could be solved to lowest order in c. If the 1971
renormalization-group ideas had not been developed,
the Migdal-Polyakov bootstrap might have been the most
promising framework of its time for trying to further
understand critical phenomena. However, the
renormalization-group methods have proved both easier
to use and more versatile, and the bootstrap receives very
lit tie attention today.

In retrospect, the bootstrap solved a problem I tried
and failed to solve, namely, how to derive the Gell-
Mann —Low and Kadanoff dream of a fixed point involv-
ing only one or two couplings —there was only one cou-
pling constant to be determined in the Migdal-Polyakov
bootstrap. However, I found the bootstrap approach
unacceptable because prior to the discovery of the c ex-
pansion no forrnal argument was available to justify trun-
cating the skeleton expansion to a finite number of terms.
Also the skeleton diagrams were too complicated to test
the truncation in practice by means of brute force compu-
tation of a large number of diagrams. Even today, as I re-
view the problems that remain unsolved either by c ex-
pansion or renorrnalization-group methods, the problem
of convergence of the skeleton expansion leaves me
unenthusiastic about pursuing the bootstrap approach, al-
though its convergence has never actua11y been tested. In
the meantime, the Monte Carlo renorrr~alization group
(Swendsen, 1979a, 1979b, 1982; Wilson, 1980; Shenker
and Tobochnik, 1980) has recently provided a framework
for using small numbers of couplings in a reasonably ef-
fective and nonperturbative way (see Sec. IV).

I am not aware of any other independent work trying to
understand the renorma1ization group from first princi-
ples as a means to solve field theory or critical phenome-
na one length scale at a time, or suggesting that the renor-
malization group should be formulated to a11ow arbitrari-
ly many couplings to appear at intermediate stages of the
analysis.

IV. RESULTS AFTER 1971

There was an explosion of activity after 1972 in both
renormalization-group and E expansion studies. To re-
view everything that has taken place since 1972 would be
hopeless. I have listed a number of review papers and
books which provide more detailed information at the end
of this paper. Some principal results and some thoughts
for the future will be outlined here. The "c expansion"
about four dimensions gave reasonable qualitative results
for three-dimensional systems. It permitted a much
greater variety of details of critical behavior to be studied
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than was previously possible beyond the mean-field level.
The principal critical point is characterized by two
parameters: the dimension d and the number of internal
components n. Great efforts were made to map out criti-
cal behavior as a function of d and n T. he E expansion
and related small coupling expansions were carried to
very high orders by Brezin, Le Guillou, Zinn-Justin (see
the review of Zinn-Justin, 1981), and Nickel (1981 and
unpublished) which led to precise results for d =3. Parisi
(1980) and Vladimirov et al. (1979) also contributed.
The large-n limit and 1/n expansion were pursued further
(see, for example, Ma, 1976b, and references cited
therein). A new expansion in 2+ E dimensions was
developed for n ~2 by Polyakov (1975; Migdal, 1975b;
Brezin et al. , 1976; Bhattacharjee et al. , 1982). For n =1
there is an expansion in 1+E dimensions (Wallace and
Zia, 1979; Widom, 1973). The full equation of state in
the critical region was worked out in the c. expansion
(Brezin et al. , 1972, 1973; Avdeeva and Migdal, 1972;
Avdeeva, 1973) and II@ expansion (Brezin and Wallace,
1973; for a review see Ma, 1976). The special case n =0
was shown by de Gennes to describe the excluded volume
problem in polymer configuration problems and random
walks (de Gennes, 1972; des Cloiseaux, 1975). Correc-
tions to scaling were first considered by Wegner (1972a).
A recent reference is Aharony and Ahlers (1980).

Besides the careful study of the principal critical point,
other types of critical points and critical behavior were
pursued. Tricritical phenomena were investigated by
Riedel and Wegner (1972, 1973), where Landau theory
was found to break down starting in three dimensions in-
stead of four. See also Stephen et al. (1975). More gen-
eral multicritica1 points have been analyzed (see, for ex-
ample, Fisher, 1974). Effects of dipolar forces (Fisher
and Aharony, 1973; Aharony and Fisher, 1973; Aharony,
1973a, 1973b), other long-range forces (Suzuki, 1972,
1973a; Fisher et a/. , 1972; Baker and Golner, 1973;
Suzuki et al. , 1972; Sak, 1973), cubic perturbations, and
anisotropies (Pfeuty and Fisher, 1972; Wegner, 1972b;
Wallace, 1973; Ketley and Wallace, 1973; Aharony,
1973c, 1973d; Suzuki, 1973b; Liu, 1973; Grover, 1973;
Chang and Stanley, 1973„a recent reference is
Blankschtein and Makamel, 1982) were pursued. The
problems of dynamics of critical behavior were extensive-

ly studied. Liquid-crystal transitions were studied by
Halperin, Lubensky, and Ma (1974).

Great progress has been made in understanding special
features of two-dimensional critical points, even though
two dimensions is too far from four for the c. expansion to
be practical. The Mermin-Wagner theorem (Mermin and
Wagner„1966; Mermin, 1967; Hohenberg, 1967) foresha-

7Early work includes that of Halperin et al. (1972); Suzuki and
Igarishi (1973); Suzuki (1973c, 1973d). For a review see
Hohenberg and Halperin (1977). For a recent Monte Carlo
renormalization-group method see Tobochnik et al. (1981).
Other recent references are Ahlers et al. (1982) and Heilig
et al. (1982)~

dowed the complex character of two-dimensional order in
the presence of continuous symmetries. The number of
exactly soluble models generalizing the Ising model
steadily increases (see Baxter, 1982). Kosterlitz and
Thouless (1973; Kosterlitz, 1974; for a review see Koster-
litz and Thouless, 1978) blazed the way for
renormalization-group applications in two-dimensional
systems, following earlier work by Berezinskii (1970,
1971). They analyzed the transition to topological order
in the two-dimensional XF model, with its peculiar criti-
cal point adjoining a critical line at lower temperatures.
For further work see Jose et al. (1977) and Frohlich and
Spencer (1981a, 1981b). Kadanoff and Brown (1979) have
given an overview of how a number of the two-
dimensional models interrelate. A subject of burning re-
cent interest is the two-dimensional melting transition
(Nelson and Halperin, 1979; Young, 1979). Among gen-
eralizations of the Ising model, the three- and four-state
Potts models have received special attention. The three-
state Potts model has only a first-order transition in
mean-field theory and an expansion in 6—c, dimensions,
but has a second™order transition in two dimensions
[Baxter (1973) gives a rigorous 2D solution; see also Bana-
var et al. (1982) and references cited therein (d & 2)]. The
four-state Potts model has exceptional behavior in two di-
mensions (due to a "marginal variable" ), which provides a
severe challenge to approximate renormalization methods.
Notable progress on this model has been made recently
(Nienhuis et al. , 1979; Swendsen et al. , 1982, and refer-
ences cited therein).

A whole vast area of study concerns critical behavior or
ordering in random systems, such as dilute magnets,
spin-glasses, and systems with random external fields.
Random systems have qualitative characteristics of a nor-
mal system in two higher dimensions, as was discovered
by Lacour-Gayet and Toulouse (1974), Imry and Ma
(1975), Grinstein (1976), Aharony, Imry, and Ma (1976)
and Young (1977) (a recent reference is Mukamel and
Grinstein, 1982), and confirmed by Parisi and Sourlas
(1979) in a remarkable paper applying supersymmetry"
ideas from quantum field theory. See also Parisi and
Sourlas (1981). The "replica method" heavily used in the
study of random systems (Edwards and Anderson, 1975)
involves an n —-0 limit, where n is the number of replicas,
similar to the de Gennes n~0 limit defining random
walks (de Gennes, 1972; des Cloiseaux, 1975). There are
serious unanswered questions surrounding this limiting
process. Another curious discovery is the existence of an
E' expansion found by Khmelnitskii (1975) and Grin-
stein and Luther (1976).

Further major areas for renormalization-group applica-
tions have been in percolation (see, for example, the re-
view of Essam, 1980; a recent reference is Lobb and
Karasek, 1982), electron localization or conduction in
random media (see, for example, Nagaoka and Fukuya-
ma, 1982, and references cited therein), the problems of
structural transitions and "Lifshitz" critical points (see,
for example, the review of Bruce, 1980; a recent paper is
Grinstein and Jayaprakash, 1982), and the problem of in-
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terfaces between two phases (see Wallace and Zia, 1979,
and references cited therein).

Much of the work on the c expansion involved purely
Feynman-graph techniques; the high-order computations
involved the Callan-Symanzik formulation (Callan, 1970;
Symanzik, 1970, 1971) of Gell-Mann —Low theory. The
computations also depended on the special diagram com-
putation techniques of Nickel (unpublished) and approxi-
mate formulae for very large orders of perturbation
theory first discussed by Lipatov (1977; also Brezin et al. ,
1977). In lowest order other diagrammatic techniques
also worked, for example the Migdal-Polyakov bootstrap
was solved to order e by Mack (1973).

The modern renormalization group has also developed
considerably. Wegner (1972a, 1974, 1976) strengthened
the renormalization-group formalism considerably. A
number of studies, practical and formal (e.g. , Golner,
1973; Langer and Bar-on, 1973; Bleher and Sinai, 1975)
were based on the approximate recursion formula intro-
duced in 1971. Migdal and Kadanoff (Migdal, 1975b; for
a review and more references, see Kadanoff, 1977)
developed an alternative approximate recursion formula
(based on "bond-moving" techniques). Real-space
renormalization-group methods were initiated by
Niemeijer and Van Leeuwen (1976) and have been exten-
sively developed since (see, e.g., Riedel, 1981, Burkhardt
and Van Leeuwen, 1982). The simplest real-space
transformation is Kadanoffs "spin decimation" transfor-
mation (see Kadanoff and Houghton, 1975 and Wilson,
1975a, especially Sec. IV), where (roughly speaking) some
spins are held fixed while other spins are summed over,
producing an effective interaction on the fixed spins.

The decimation method was very successful in two di-
mensions, where the spins on alternative diagonals of a
square lattice were held fixed (Wilson, 1975a). Other
real-space formulations (Niemeijer and Van Leeuwen,
1976; Riedel, 1981) involved kernels defining block spin
variables related to sums of spins in a block (the block
could be a triangle, a square, a cube, a lattice site plus all
its nearest neighbors, or whatever).

Many of the early applications of real-space
renormalization-group methods gave haphazard
results —sometimes spectacularly good, sometimes useless.
One could not apply these methods to a totally new prob-
lem with any confidence of success. The trouble was the
severe truncations usually applied to set up a practical
calculation; interactions which in principle contained
thousands of parameters were truncated to a handful of
parameters. In addition, where hundreds of degrees of
freedom should be summed over (or integrated over) to
execute the real-space transformation, a very much sim-
plified computation would be substituted. A notable ex-
ception is the exactly soluble differential renorm-
alization-group transformation of Hilhorst, Shick, and
Van Leeuwen (1981; also 1978), which unfortunately can
be derived only for a few two-dimensional models.

Two general methods have emerged which do not in-
volve severe truncations and the related unreliability.
First of all, I carried out a brute force calculation for the

two-dimensional Ising model using the Kadanoff decima-
tion approach (Wilson, 1975a) as generalized by Kadan-
off. Many interaction parameters (418) were kept, and
the spin sums were carried out over a very large finite lat-
tice. The results were very accurate and completely con-
firmed my hypothesis that the local couplings of shortest
range were the most important. More importantly, the
results could be improved by an optimization principle.
The fixed point of Kadanoff's decimation transformation
depends on a single arbitrary parameter; it was possible to
determine a best value for this parameter from internal
consistency considerations. Complex calculations with
potentially serious errors are always most effective when
an optimization principle is available and parameters exist
to optimize on. This research has never been followed
up, as is often the case when large-scale computing is in-
volved. More recently, the Monte Carlo
renormalization-group method, developed by Swendsen
(1979a, 1979b, 1982), myself (Wilson, 1980), and Shenker
and Tobochnik (1980}has proved very accurate and may
shortly overtake both the high-temperature expansions
and the e expansion as the most accurate source of data
on the three-dimensional Ising model. The Monte Carlo
renormalization group is currently most successful on
two-dimensional problems where computing requirements
are less severe: it has been applied successfully to tricriti-
cal models and the four-state Potts model (see, for exam-
ple, Swendsen et al. , 1982; Landau and Swendsen, 1981).
In contrast, the c expansion is all but useless for two-
dimensional problems. Unfortunately, none of the real-

space methods as yet provides the detailed information
about correlation functions and the like that are easily de-
rived in the c, expansion.

A serious problem with the renormalization-group
transformations (real-space or otherwise} is that there is
no guarantee that they will exhibit fixed points. Bell and
myself (1974) and Wegner in a more general and elegant
way (1976) have shown that for some renormalization-
group transformations, iteration of a critical point does
not lead to a fixed point, presumably yielding instead in-
teractions with increasingly long-range forces. There is
no known principle for avoiding this possibility, and as
Kadanoff has showed using his decimation procedure (see
Wilson, 1975a), a simple approximation to a transforma-
tion can misleadingly give a fixed point even when the
full transformation cannot. The treatment that I gave of
the two-dimensional Ising model has self-consistency
checks that signal immediately when long-range forces
outside the 418 interactions kept are becoming important.
Nothing is known yet about how the absence of a fixed
point would be manifested in the Monte Carlo
renormalization-group computations. Cautions about
real-space renormalization-group methods have also been
advanced by Griffiths (1981) and others.

There is a murky connection between scaling ideas in
critical phenomena and Mandelbrot's (1982) "fractals"

I thank Yves Parlange for reminding me of this.
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theory —a description of scaling of irregular geometrical
structures (such as coastlines).

Renormalization-group methods have been applied to
areas other than critical phenomena. The Kondo problem
is one example. Early renorrnalization-group work was

by Anderson (1970) and Fowler and Zawadowski (1971).
I then carried out a very careful renormalization-group
analysis of the Kondo Hami jtonian (Wilson, 1975a;
Krishna-Murthy et al. , 1975, 1980), producing effective
Hamiltonians with many couplings for progressi vely
smaller energy scales, following almost exactly the
prescription I learned for fixed-source meson theory. The
result was the zero-temperature susceptibility to about
1 k accuracy, which was subsequently confirmed by An-
drei (1980, 1982; Andrei and Lowenstein, 1981) and
Wiegmann's (1980, 1981; Filyov et al. , 1981) exact solu-
tion. Renormalization-group methods have been applied
to other Hamiltonian problems, mostly one dimensional
(e.g. , Drell et al. , 1977; Jullien et al. , 1977; recent refer-
ences are Hanke and Hirsch, 1982; Penson et al. , 1982,
and references cited therein). In multidimensional sys-
tems and in many one-dimensional systems, the effective
Hamiltonians presently involve too many states to be
manageable.

The renormalization group has played a key role in the
development of quantum chromodynamics —the current
theory of quarks and nuclear forces. The original Gell-
Mann —Low theory (Gell-Mann and Low, 1954) and the
variant due to Callan and Symanzik (Callon, 1970;
Symanzik, 1970, 1971) was used by Politzer (1973) and
Gross and Wilczek (1973) to show that non-Abelian gauge
theories are asymptotically free. This means that the
short-distance couplings are weak but increase as the
length scale increases; it is now clear that this is the only
sensible framework which can explain, qualitatively, the
weak coupling that is evident in the analysis of deep-
inelastic electron scattering results (off protons and neu-

trons) and the strong coupling which is evident in the
banding of quarks to form protons, neutrons, mesons, etc.
(see Altarelli, 1982). I should have anticipated the idea of
asymptotic freedom (Wilson, 1971b) but did not do so.
Unfortunately, it has been hard to study quantum chro-
modynamics in detail because of the effects of the strong
binding of quarks at nuclear distances, which cannot be
treated by diagrammatic methods. The development of
the lattice gauge theory by Polyakov and myself (Po-
lyakov, unpublished; Wilson, 1974b) following pioneeaing
work of Wegner (1971) has made possible the use of a
variety of lattice methods on the problems of quantum
chromodynamics (see the review of Bander, 1981), includ-

ing strong coupling expansions, Monte Carlo simulations,
and the Monte Carlo renormalization-group methods
(Swendsen, 1979a, 1979b; Wilson, 1980; Shenker and To-
bochnik, 1980}. As computers become more powerful I
expect there will be more emphasis on various modern
renormalization-group methods in these lattice studies, in
order to take accurately into account the crossover from
weak coupling at short distances to strong coupling at nu-

clear distances.

The study of unified theories of strong, weak, and elec-
tromagnetic interactions makes heavy use of the
renormalization-group viewpoint. At laboratory energies
the coupling strengths of the strong and electromagnetic
interactions are too disparate to be unified easily. Instead,
a unification energy scale is postulated at roughly 10'
GeV; in between renormalization-group equations cause
the strong and electroweak couplings to approach each
other, making unification possible. Many grand unified
theories posit important energy scales in the region be-
tween 1 and 10" GeV. It is essential to think about these
theories one energy scale at a time to help sort out the
wide range of phenomena that are predicted in these
theories. See Langacker (1981) for a review. The study of
grand unification has made it clear that Lagrangians
describing laboratory energies are phenomenological rath-
er than fundamental, and this continues to be the case
through the grand unification scale, until scales are
reached where quantum gravity is important. It has been
evident for a long time that there should be applications
of the renormalization group to turbulence, but not much
success has been achieved yet. Feigenbaum (1978)
developed a renormalization-group-like treatment of the
conversion from order to chaos in some simple dynamical
systems (see Eckmann, 1981; Ott, 1981},and this work
may have applications to the onset of turbulence.
Feigenbaum's method is probably too specialized to be of
broader use, but dynamical systems may be a good start-
ing point for developing more broadly based
renorrnalization-group methods applicable to classical
partial differential equations (see, for example, Cop-
persmith and Fisher, 1983).

In my view the extensive research that has already been
carried out using the renormalization group and the c ex-
pansion is only the beginning of the study of a much

larger range of applications that will be discovered over
the next twenty years (or perhaps the next century will be
required). The quick successes of the E expansion are now

past, and I believe progress now will depend rather on the
more difficult, more painful exercises such as my own
computations on the two-dimensional Ising model and the
Kondo problem (Wilson, 1975a), or the Monte Carlo re-
normalization group (Swendsen, 1979a, 1979b; Wilson,
1980; Shenker and Tobochnik, 1980) computations.
Often these highly quantitative, demanding computations
will have to precede simpler qualitative analysis in order
to be certain the many traps potentially awaiting any
renormalization-group analysis have been avoided.

Important potential areas of application include the
theory of the chemical bond, where an effective interac-
tion describing molecules at the bond level is desperately
needed to replace current ab initio computations starting
at the individual electron level (see Mulliken, 1978;
Lowdin, 1980; Hirst, 1982; Bartlett, 1981; Case, 1982). A
method for understanding high-energy or large-
momentum-transfer quantum chromodynamics (QCD)
cross sections (including nonperturbative effects} is need-
ed which will enable large QCD backgrounds to be com-
puted accurately and subtracted away from experimental
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results intended to reveal smaller non-QCD effects. Prac-
tical areas like percolation, frost heaving, crack propaga-
tion in metals, and the m=tallurgical quench all involve
very complex microscopic physics underlying macroscop-
ic effects, and most likely yield a mixture of some prob-
lems exhibiting fluctuations on all length scales and other
problems which become simpler classical problems
without fluctuations in larger scales.

I conclude with some general references. Two semi-
popular articles on the renormalization group are Wilson
(1979) and Wilson (1975). Books include Domb and
Green (1976), Pfeuty and Toulouse (1977), Ma (1976),
Amit (1978), Patashinksii and Pokrovskii (1979), and
Stanley (1971). Review articles and conference proceed-
ings include Widom (1975), Wilson and Kogut (1974),
Wilson (1975), Fisher (1974), Wallace and Zia (1978),
Greer and Moldover (1981),and Levy et al. (1980).

I thank the National Science Foundation for providing
funding to me, first as a graduate student, then
throughout most of my research career. The generous
and long term commitment of the United States to basic
research was essential to my own success. I thank my
many colleagues at Cornell, especially Michael Fisher and
Ben Widom, for encouragement and support. I am grate-
ful for the opportunity to be a member of the internation-
al science community during two decades of extraordi-
nary discoveries.
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