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For plasma with a large number of degrees of freedom, particle simulation using high-speed computers can
offer insights and information that supplement those gained by traditional experimental and theoretical ap-

proaches. The techmque follows the motion of a large assembly of charged particles in their se1f-consistent

electric and magnetic fields. %'ith proper diagnostics, these numerical experiments reveal such details as
distribution functions, linear and nonlinear behavior, stochastic and transport phenomena, and approach to
steady state. Such information can both guide and verify theoretical modeling of the physical processes

underlying complex phenomena. It can also be used in the interpretation of experiments.
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I. INTRODUCTION

Traditionally the investigation of the behavior of com-
plex physical systems has been carried out through the
application of two well-tested techniques, namely, the ex-
perimental techniques in which one disturbs the system in
some controlled manner and observes its behavior, and
the theoretical approach in which one uses analytical
mathematical techniques to determine the behavior con-
sistent with well-estab!ished physical!aws. In the case of
large-scale physical phenomena, one must often substitute
observations of naturally occurring behavior for well-
controlled experiments. The great advances in physics
have come through the combined application of these two
approaches. One asks questions of nature through experi-
rnents whose results test and extend our theoretical
knowledge. Notwithstanding the great power and
successes of this approach, there are a large number of
physical problems for which experiments are difficult or
impossible, and the simultaneous interaction of a large
number of degrees of freedom makes analytic theoretical
treatments impractical. Often, however, we believe we
understand what the fundamental laws that govern the
system are, but we are simply unable to work out their
consequences. Most of the rich variety of natural phe-
nomena that occur all around us are of this type. At the
other extreme, we may not be sure of the physical laws.
However, we may have proposed ones which we are un'-

able to test because of the complexity of the theory (de-
tailed evolution of cosmology, for example). Recently, a
powerful new method for both types of investigation has
become possible through the advent of modern high-speed
computers. This is the method of computer simulation or
computer modeling.

For computer simulation one constructs a numerical
model of the system or theory which one wishes to inves-
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404 Dawson: Particle simulation of plasmas

tigate. One then carries out a numerical experiment on a
high-speed computer, allowing the system to evolve from
some initial situation of interest in accordance with the
laws used. The computer can give one as much informa-
tion about the details of the evolution as one desires. One
can compare the results of each simulation with theoreti-
cal predictions based on simplified analytic models, with
experimenta1 observations or with observation of natural
phenomena, or one can use the results to predict the
behavior of unperformed (and often unperformable) ex-
periments.

Most computer simulations are performed to obtain re-
sults of immediate practical interest, the performance of a
fusion device, the performance of an accelerator, the per-
formance of an electronic device for generating radiation,
prediction of the performance of a ship, prediction of the
weather, prediction of the impact of various human ac-
tivities on world climates, or prediction of the details of
chemical reactions, to name just a few. However, such
studies also can be used to gain insight and understanding
of a fundamental nature, as well. Collective mechanisms
of energy and plasma transport across a magnetic field,
collective mechanisms of transport in a fluid, the nature
of hydrodynamic turbulence, the interaction of the solar
wind with planetary magnetospheres, the generation of ra-
diation by energetic plasma, the collapse of a gas cloud to
form a star, the evolution of a galaxy, and the steps by
which a complex chemical reaction takes place are just a
few examples.

Obviously no article can address itself to such a wide
range of subjects nor do I have the knowledge to attempt
to do so. This article will confine itself to computer
simulation of plasmas. However, the philosophy, the ap-
proach, and many of the techniques are applicable to oth-
er areas of science and indeed many examples of such ap-
plication now exist.

This article will be divided into a number of sections:
Sec. II wi11 discuss a number of particle models usefu1 for
plasma simulation, Sec. III will discuss some methods for
diagnosing the results of such computations and extract-
ing useful information from them, Sec. IV will discuss
methods of noise suppression, Sec. V will give a few ex-
amples of problems which have been investigated, and, fi-
nally, Sec. VI will give a brief discussion of the future of
particle simulations of plasmas as I see it.

Even though the subject of computer simulations of
plasmas is only a little more than twenty years old, it has
become a very large and extensive subject, employing a
wide range of techniques and attacking a vast array of
physical problems. As is the case with any new field,
there are varying opinions about the usefulness and value
of various techniques and what they have revealed in
terms of new physics (it is getting at the physics of plas-
mas which this article deals with). I, of course, have my
own opinions, some of which are justified, and some of
which would be found wanting under a critical examina-
tion. Rather than to try to give a comprehensive coverage
of all the work that has been done which is virtually im-
possible and would involve confusing and fruitless discus-

sions of the merits and shortcomings of numerous numer-
ical methods (there are no God-given correct methods of
simulation, there are only approximations with varying
advantages and disadvantages) I shall largely deal with
the work of the Princeton and UCLA groups with which
I am most familiar. The emphasis will be on applying the
techniques to obtain new physical insights. Similar and
parallel developments have taken place at many universi-
ties and laboratories throughout the world; the interested
reader will find good discussions of much of this work in
Methods in Computarional Physics, Vols. 9 and 16 (1976),
Hockney and Eastwood (1981), Potter (1973), and Birdsall
and Langdon (in press).

II. PARTICLE MODELS FOR A PLASMA

Among the most successful models for computer simu-
lation of plasmas are particle models. In these models
one emulates nature by following the motion of a large
number of charged particles in their self-consistent elec-
tric and magnetic fields. Although this method sounds
simple and straightforward, practical computational limi-
tations require the use of sophisticated techniques. This
need primarily arises from the limited number of particles
whose motion can be followed. Even the most advanced
computers cannot follow the motion of more than a few
million particles for any appreciable length of time. This
can be compared to the huge number of particles encoun-
tered in laboratory and natural plasmas (typically 10'
cm for laboratory plasmas and 10' km for space
plasmas; the range of densities can vary from 10 cm
for laser pellet fusion plasmas to 1 cm for interstellar
plasmas). For this reason one may view each particle in a
simulation as representing many particles of a real plasma
(a superparticle). Alternatively, one may view the simula-
tion as modeling a very small but typical region of a plas-
ma.

Particle models for plasmas come in a large number of
varieties. There are one-, two-, and three-dimensional
models. ; there are electrostatic, magnetostatic, and elec-
tromagnetic models. We shall start by considering elec-
trostatic models (Dawson, 1962a, 1964; Buneman 1959;
Hockney, 1966, 1969; Birdsall and Fuss, 1969; Kruer
et al. 1973; Morse 1970; Morse and Nielson, 1969a,
1969b). These illustrate many of the problems and the
techniques used in these models. We shall then look at
other types of models C,'Langdon, 1969; Auer et al. , 1961,
1962; Morse and Nielson, 1971; Busnardo-Neto et al. ,
1977; Nielson and Lindman, 1973; Lin et aI., 1974; Lind-
man, 1975; Buneman, 1976; Kwan et al. , 1977).

A. Electrostatic particle models

We shall begin by considering electrostatic particl~
models in one, two, and three dimensions. For a poin
particle at position rz we obtain the potential, P, and elec
tric, E, fields from Poisson's equation
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V P = —4nq5(~ —~J ),
E= —VP .

Here 7' and V are given by

2Bx

where n is the number of dimensions and e and x are
unit vectors in the o. direction and the o. coordinate. The
electric fields found from (1) are given by

2mq (x —x~ )E(x}=
/x —x~ /

2q(~ —~j )
E(~)= —Jl'

(3a)

(3b)

(3c)

and its equation of motion [using Eqs. (3a)—(3c)] is

(5)

where n is the number of dimensions. The proportional
sign is used in Eq. (5) because there is a numerical coeffi-
cient which depends on the number of dimensions. We
have not included magnetic forces here. It is straightfor-
ward to include a fixed magnetic field by simply adding
the term q~i-;xB/M;c in the equation of motion. ~e
shall look at this in detail later. For the present discus-
sion of the basic model we restrict ourselves to Eq. (5).

If one attempts to proceed in a straightforward manner
to solve Eq. (5) for a large number of particles by directly

computing the force on every particle, he soon realizes the
total impracticality of such an approach.

The following elementary estimate shows the magni-
tude of the problem. First, it would be required that we
evaluate the sum on the right-hand side of Eq. (5} for
each particle or N times for N particles. The sum itself
contains N terms; each term requires a number of arith-
rnetic operations —for the sake of estimating, let us say,
ten (it is eight for two dimensions}. The total number of
arithmetic operations required to evaluate the force will
be of the order of

g =10N

For a calculation involving 3&10 particles (a typical
number used in present calculations) the total number of
operations would be about 10' . Even assuming that we

for one, two, and three dimensions, respectively.
The force on a particle i due to all other particles is

given by

(4)

can do an operation in 10 sec, simply evaluating the
forces would require 10 sec or about 15 min. A typical
calculation requires several thousand time steps so that
500—1000 h would be required. Calculations of this mag-
nitude are totally impractical for using such models to ex-
plore the physics of plasma. For many problems we are
interested in systems containing more than 3X10 parti-
cles; systems involving many millions of particles would
be valuable for many purposes. With an N scaling for
the run time, runs would be hopeless. Even great im-
provements in the speeds of computers —by, say, 1000
would only make such calculations marginal. We must
use a better way. One will be presented shortly, following
a look at collisional effects in such models, which deter-
mine how many particles me must use.

1. Collisions

A second important consideration for particle models is
that of particle collisions (Okuda and Birdsall, 1970;
Langdon and Birdsall, 1970). Just as in real plasmas,
there are encounters between particles, and these give rise
to collisional effects which influence the physics of the
model. Many of the phenomena we wish to model occur
in high-temperature plasmas where collisional effects are
very weak; these are the so-called collisionless plasmas.
Since our computer models are limited to between a few
thousand and a few million particles, whereas a typical
laboratory plasma has 10' particles/cm, each particle in
the model can be thought of as representing many plasma
electrons or ions. Thus the forces between model particles
are much larger than in a real plasma and the associated
collisional effects are much greater. We must reduce
these effects; to some extent we are aided both by the fact
that the model represents on1y a small portion of a real
plasma and by the fact that we can work in a reduced
number of dimensions (one or two). The critical factor is
the rate of collisions compared with such natural frequen-
cies as the plasma frequency (co~, =4mne Im); in typical
laboratory plasmas co~, /v (v is the electron collision fre-
quency} varies from 10 —10. Fortunately there is a
method which both speeds up the force calculation and at
the same time allows us substantially to reduce the col-
lision rate; this is the so-called finite-size particle (FSP)
method.

2. Finite-size particles

The force between two point particles has the shapes
shown in Fig. 1 for two and three dimensions. The force
is large when two particles are close to each other. Two
particles passing close to each other will feel large and
rapidly varying forces as they go by one another. It is the
impulses associated with such encounters which give rise
to collisional effects. On the other hand, the slow falloff
of the force with distance means that many particles can
interact simultaneously. This part of the force then gives
rise to the collective behavior of a plasma which we wish
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F=- Q

FKx. l. Coulomb force law between particles in two and three
dimensions.

in the upper right portion of Fig. 2. When the charges
are far apart, the force is just Coulombic; but when they
start to overlap, it starts to drop off—and it will go to
zero when they lie exactly on top of each other.

With the use of finite-sized particles the large, rapidly
varying force associated with close encounters, i.e., col-
lisions, is greatly reduced (Okuda and Birdsall, 1970;
Langdon and Birdsall, 1970; Dawson et al. , 1969). How-
ever, the long-range Coulombic force which gives rise to
collective motions is retained, and so these effects are ac-
curately modeled.

Now if the particles are of finite size, their charge is
smeared out over a finite region of space, and density
variations over regions smaller than the size of a particle
cannot be resolved. This implies that in making calcula-
tions we may divide the space into cells which are about
the size of a particle. We do this by means of a grid
which has a grid spacing about equal to the size of the
particle —see Fig. 3. (Of course we are free to adjust the
relative size of the particle and the grid spacing but we
generally choose them to be close to the same. ) We do
this for computational convenience in calculating the
forces on the particles. Rather than computing the force
directly using Eq. (4), we can calculate it in terms of the
electric field. For a point particle we would have

to simulate. If we could replace the Coulombic force be-
tween particles by one which is Coulombic at large dis-
tances but which goes to zero for short distances, then we
would retain the collective behavior while reducing the
collision rate. We should thus like to replace the forces
shown in Fig. 1 by one similar to that shown in Fig. 2.

This is just the type of force which will exist between
two circular (spherical) charge clouds which are free to
pass through each other. Such charge clouds are shown

F;=q;F(~;),
where the electric field is obtained from the potential

and the potential P is obtained from Poisson's equation

7 P(~)= 4n.p(1 ), —
where p(~) is the charge density.

(7)

(8)

(9)

200

city

7 8 9 ~/QD

FIG. 2. Force law between finite-size particles in two dimen-
sions for various sized particles. A Gaussian-shaped charge-
density profile was used.

FIR. 3. Finite-sized particles and discrete grid used for calcu-
lating the force.
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For finite-size particles Eq. (7) for the force must be
modified; we must add up the forces on all charge ele-
ments which make up a particle. Thus Eq. (7) becomes

Fg ——q; IS(~—~;)E(~)d"~, (10)

p(~)=gqJS(~ ~J) —. (12)

Now to solve Poisson's equation we do not use the ex-
act charge density, but we instead employ an approximate
one obtained by a multipole expansion of the charge den-
sities about the grid points (Kruer et al. , 1973). For
finite-sized particles such an expansion converges quite
rapidly (Chen and Okuda, 1975), and it is rarely necessary
to carry it beyond the dipole order —in practice, in fact,
this is almost never done.

Having charges distributed on a regular grid allows ra-
pid numerical solutions of Poisson's equation by means of
rapid Poisson solvers (Buneman, 1969; Hockney, 1970) or
by means of fast Fourier transforms (Cooley and Tukey,
1965). Here we will use the fast Fourier transform
method.

In order to make the multipole expansion about the
grid points we write the charge density as follows:

p(~ )=g qj. [S(~—~J )]

g qJS(~ ~g 1 )+b,~j"V—gS(~ ~g J)+—
,
S(r)

S(r) = I

Vq o"

(13)

where q; is the total charge, S(~) is a shape factor giving
the way a particle charge is distributed about its center,
and n is the number of dimensions. We normalize S(~)
so that

f S(~)d"~=1 .

We are free to choose whatever charge density or shape
factor we desire. Some commonly chosen ones are shown
in Fig. 4.

The charge density p(~) is given by

(14)

where

Q(~g) = g qj,

and

D(~g)= g qjb, l ~ .
i&g

(16)

Q(~g) is the sum of the charges of those particles whose
nearest grid point is ~g, and D(~s) is the total dipole mo-
ment of these particles with respect to ~g. By using this
approximation we obtain a charge density and dipole den-
sity distributed on a uniformly spaced grid. We may use
Fourier analysis to solve for the potential P. Because of
the uniform spacing of the grid points we may use the
powerful numerical method of fast Fourier transforms
(FFT) to obtain this (Cooley and Tukey, 1965). Such a
transform assumes the system is periodic (doubly periodic
in two dimensions, triply periodic in three dimensions),
and there are an equal number of Fourier modes to grid
points. In Fourier space Poisson's equation becomes

Here ~g J is the grid point nearest to particle j, and this is
simply a Taylor expansion, or multipole expansion of a
particle's charge about its nearest grid point. If only the
first term or monopole term is kept, this is called the
nearest grid point approximation, while keeping first
derivative terms gives a dipole expansion approximation.
One can keep higher-order multipole terms if desired.
This is rarely done because of the added computation
time required, although some forms of charge sharing
give some quadrupole correcting at little extra cost; a
modified finite difference approximation to the multipole
expansion called SUDS (subtracted dipole scheme) (Kruer
et al. , 1973) can relatively easily be extended to higher or-
der, especially in one dimension, and this had been used to
advantage (Decyk, 1980).

Once the particles have been replaced by a set of finite-
size charges and dipoles on the grid points, we can replace
the sum over particles by a sum over grid points:

p(~)=g [Q(~g)S(~—~g)+D(~g) VgS(~ —~g)],

$(g) =0, h& a

V is the volume of on n

dimensional sphere of
radius l.

a r

t r~&
exp'L g f

n/& n
0

k P(k)=4np(k),

P(k) =4m p(k)/k

E(k) =
z p(k),

p(k)=S(k)g [Q ( ) —~k.D( )]e

p(k)=S(k)
~
[FFT[Q(~s)I ik FFT[D—(~g).I ] ~

(17)

(18)

(19)

(20)

FIG. 4. Square and Gaussian charge shapes —two shapes often
used for finite-sized particIes.

The FFT s give fields for point particles, and the finite-
size effect is taken into account through the transform of
the form factor.

Including the dipole term in Eqs. (19) and (20) substan-
tially increases the computation time for the FFT (by a
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factor of 2 in one dimension, by a factor of 3 in two di-
mensions, and by a factor of 4 in three dimensions). This
time can be reduced by replacing the dipole approxima-
tion with a charge sharing approximation. In this pro-
cedure rather than approximate a charge by a charge and
a dipole at the nearest grid point, a weighted charge dis-
tribution at the four nearest grid points (for the two-
dimensional case) is used, the weighting being such that
the total charge and dipole moment with respect to the
center of the cell are the same.

One method for assigning charges for the two-
dirnensional case is the area-weighting scheme (Morse,
1970; Morse and Nielson, 1969a, 1969b) illustrated in Fig.
S.

The heavy lines in Fig. 5 show the main computational
grid, grid spacing d; the dashed lines show a grid whose
grid points lie at the centers of the squares of the main
grid. Consider a particle whose center is at point C. Take
this to be the center point of a square with size d, i.e.,
equal to the grid spacing. The intersection of this square
with the dashed grid divides this square into four areas,
A f A 2 A 3 and A 4, as shown in the figure. Assign to
grid point I (see figure) a charge qA&/d and to grid
points 2, 3, and 4, charges qA2/d, qA3/d, and qA&/d,
respectively. One can readily verify that this distribution
of charge has the same dipole moment with respect to the
nearest dashed grid point g as the original particle has.
This simple interpolation scheme can readily be extended
to three dimensions.

Sometimes the charge distribution of a particle (Hock-
ney, 1966, 1969) is considered to be uniform on a square
and the above interpolation scheme is simply a method of
distributing its charge on the grid. This is one way to
view the model. We, however, shall view it simply as an
interpolation method and consider our particles to be of
finite size with the size and shape being arbitrary and left
as parameters to be chosen by the practitioner.

One obtains the electric field at the grid points of the
mesh by performing an inverse FFT of Eq. (18). Using

I l I

I l I
I I

I
I I

I
I

2 3 i

i

'.Ag& A~

4
ih~ilLW/i

I

l

l l I

either the nearest grid point approximation or the
charge-sharing approach, one has

E(~g)=FFT ' S(k)FFT — Q(~g)
k

(21)

Two factors must be taken into account in obtaining
the force on a particle from this E field. First, we must
take account of the fact that the particle is not located at
a grid point. We do this by an appropriate interpolation.
For example, if we used the area-weighting method shown
in Fig. S to distribute the charge, then we can use the
equivalent interpolation method to find the force. We
would take the force to be

F=(E)A )+E2A2+E3A3+E4A4)
d

(22)

The second factor we must include is the finite size of
the particle. The force on a finite particle j is the weight-
ed average electric field,

FJ(~~)=fE(~)S(r ~J. )d"r

One can Fourier analyze F(~J)

(23)

F(k) =S(—k)E(k) .

F(k) =
i
S(k)

i Ep„„,(k) . (27)

Rather than work with E in the computation we use F
and compute it on the grid points; we find the force on
the particles using the interpolation scheme described
above.

One can derive a Vlasov equation for the finite-sized
particles. This Vlasov equation is given by

af @" F af+v' +
Bt B~ m Bv

(28)

where f(~,v) is the distribution of particle centers and
their velocities in r, v space and F is the force on a parti-
cle and is given by

F(~, )=q I S(~ ~J.)E(~)d"~— (29)

The electric field is given by

V.E=4mq J f(~', v')s(~ —~')d"~'d"U',

Now E is the field of a group of finite-sized particles. its
Fourier transform can be written in terms of the field
produced by a set of point particles and S(k); the result is

E(k)=S(k)Ep„„((k)

FIG. 5. Area-weighting method for charge sharing.

Fourier analyzing and carrying out a standard Landau
type analysis gives the following dielectric associated with
the FSP:
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ro~ i
S(k)

i
k Bfo/BU

E(k, co )=1+ zk co —k v+lv

(32)

Here iv is a small damping term added to make the velo-
city integral well defined, and expression (32) should be
considered in the limit as iv ~0.

The dispersion relation is obtained by setting e(k, co)

equal to zero. It is identical to that obtained from point
particles except that roz is replaced by i S(k)

i
roz. Thus

we can obtain the dispersion relation for FSP from that
for point particles simply by replacing ro~ by i

S(k)
i

re~.
For Gaussian-shaped particles

i
S(k)

i
is given by

—k~a 2

iS(k) i'= (33)
(2m ) '

where a is the scale length of the Gaussian charge densi-
ty.

We can see directly from this how the finite-sized parti-
cles reduce collision; the

i
S(k)

i
factor in Eq. (32)

(equivalently in the force equation) cuts off the contribu-
tions from large k's. The large-k terms represent the con-
tributions of short wavelengths and these go with close
encounters and produce scattering.

3. Estimate of collisional effects

We can estimate the magnitude of collisional effects
and the improvement accompanying the use of finite-
sized particles by the following crude calculation which
however, gives the essential factors. The calculation is il-
lustrated in Fig. 6.

Let points 1 and 2 represent the centers of a test parti-
cle (1) and a fixed scattering center. Let us assume that to
sufficient accuracy the force on 1 can be calculated from
a straight un(feflected orbit. Let p be the impact parame-
ter. %'e assume that we can compute the change in
momentum of 1 from the force at the instant of closest
approach times the time it takes the particle to go 2p, or

FIG. 6. Approximate method for coupling momentum transfer
for encounters between two particles in two and three dimen-
sions.

For two dimensions (2D) the mean-square momentum
imparted to 1 per unit distance, S, of travel in the plasma
2s

& 4P )zD &max F (p)4p n dp—2
&min U

(36)

where n is the density of scattering centers. For three di-
mensions (3D) the corresponding expression is

&AP ),„F (
n 2mpdp .

~min U

(37)

If one uses the force law for point particles, then we have
for the two-dimensional case

2q

P
(aP'),

AS
32q4n

(pmax pmin) ~2

and for the three-dimensional one,

F= 2

p'
(aP'),

bS
87jq n pmax4

ln
2

pmin

(39)

If in place of point particles we use finite-size particles
and assume that for distances of closest approach is less
than 2a, the force is linear in p, while for distances of
closest approach greater than 2a it is the same as for
point particles; the expressions corresponding to (38} and
(39) are

b,P =F(p}2p

The means square change in momentum is

bP =F (p)
V

(34) «P'), g, 4. p'..
AS 3U2 g2

if p „(2a,and

& ~P'&2D 32qn 4

z
U

if p,„&2a; p;„ is taken to be equal to 0.
For the three-dimensional case

(40)

(41)

~For finite periodic system where Fourier series are used rather
than Fourier integrals

i
S(k}

i
is replaced by its Fourier in-

tegral value divided by L, where L is the periodicity length,
and we assume L &&a. Equation (32) applies to systems which
are continuous in space and time. The use of discrete grids and
time steps introduces a phenomenon known as aliasing. This ef-
fect is discussed briefly in Sec. II.E. An extensive discussion of
it and the modifications that are introduced into Eq. (32) can be
found in BirdsaH and Langdon (in press).

)3D 77 q n pmax

AS 8 U2 g4

&f pmax &2&~ and

(42)

(aP'),
AS

8m.q n pmax 1ln-
U2 2g

(43}

if p,„~2a; here also p;„ is taken to be equal to zero.
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with tanO, J(ht/2) =co,~At/2. Solving for vj" +' gives

Fn +1/2

vj
+ v——j" 9F[g,)(b,t)]+

mj.
ht 9F[B„(b,r/2)j .

n+1/2 n —1/2, n g t (51)

Graphically the procedure is shown in Fig. 8. Initially
the velocities are known at (n —1)bt, and the positions
and forces are known at (n —

2 )b, t This in. formation is
enough to jump the v's forward to nest. From this we
have the information required to jump the positions and
the associated forces forward to time (n + —, )b, t. We then

repeat the procedure.

B. Electromagnetic particle models
and fractional dimensional models

1. General description

This says that the new velocity is obtained from the old
by rotating it through an angle B,J(b, t) about the magnetic
field and adding to it the change in velocity due to the
electric field rotated through an angle H,J(b,t/2) (the aver-
age rotation of the velocity change).

Equation (47) is readily solved for ~i at the new half-
integer time step (n + —,) in terms of its known value at
n ——, and the known value of vj, that is,

p(~, t)=gq;S(~ —~;) . (57)

As in the case of electrostatic models it is convenient to
solve Eqs. (52)—(55) in Fourier space, again making use of
fast Fourier transforms. To facilitate this we split E and

j into transverse and longitudinal components; of course
8 has only transverse components. At this point it is con-
venient to introduce the concepts of one-and-one-half —,
one-and-two-halves —,and two-and-one-half —dimensional
models. The transverse components of j, E, or 8 is per-
pendicular to the wave number k. Thus if we wish to
model electromagnetic waves propagating in one
dimension —say, the x direction —we must allow for
currents and components of E and B in the y and z direc-
tions even though there is no spatial variation in these
directions. A one-dimensional model which allows the
charge slabs to have a y velocity is called a one-and-one-
half —dimensional model; the particle motions are speci-
fied by giving x, U„, and U~. Here x is considered a full
dimension and y a one-half dimension. Similarly, a one-
dimensional model which allows v~ and v, requires that
we give x,u„,u~, u, to specify the motion of a particle and
would be called a one-and-two-halves —model. A similar
extension to two dimensions gives a two-and-one-
half —dimensional model; such a model would require
x,v„,y, v~, v, to specify the motion of a particle. With
such models fully electromagnetic models in reduced
numbers of dimensions can be handled.

The longitudinal and transverse components of E and j
are defined by

Up until now we have confined ourselves to electrostat-
ic particle models. However, many problems in plasma
physics involve self-consistent magnetic fields and/or
electromagnetic radiation. To handle such problems we
need a more complete model. The most fundamental
model uses the full set of Maxwell equations for E and 8,

(52)

k ET(k, t)=0, kxEL(k, r)=0,

kj T(k, t)=0, kxj~(k, t)=0,

, t =—~ (k )
kk j(k'r)

k

jT(k, r) =j(k, r) —j~(k, t),

(58)

(60)

1 BE 4mj(~, t)
c Bt c

V.E=4~p(~, t),
V 8=0.

(53)

(54)

(55)

j (~, t) =g q. i s(~—~ ) (56)

Here j and p are the currents and charges associated with
the particles

1 BBT
ik x ET(k, t) = —— (k, t),

c Bt
(61)

where the subscripts T and L refer to the transverse and
longitudinal components, respectively. The longitudinal
component of E is obtained as before from Poisson's
equation, Eq. (54). The same procedure as was employed
for electrostatic models can be used to find it.

The transverse E and B fields are obtained by solving
the equation

V

(n-0) h,t nh, t (n+1)5t (n+ 2) b,t

(n-)/2)kt {n+)/2)ht, (n+&/2)h, t
I

F F

FIG. 8. Leapfrog scheme for advancing v, ~, and F in time.

1 BET 4' T(k, t)
ikx BT(k,t) =— (k, t)+

C Bt C
(62)

Here again we convert these to a finite difference equation
in time and employ a leapfrog scheme to solve for BT and
ET. The scheme is illustrated in Fig. 9. It is instructive
to find the solution given by this method when there is no
plasma present, i.e., when jT is zero. We compare these
with known vacuum solutions. Equations (61) and (62)
for ET and BT become
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ik&&Er[k, (n+ , )b—t]= jBT[k,(n ~1)ht]
cAt

—BT(k,nb, t) j, (63)

ikx BT(k,

nest)

= IET[k, (n + —,)b t]
1

cht

E—T[k, (n ——, )b t] I .

E(k t) E (k)eim(n+1/2)dt

8(l t) 8 (1 )e lcollkf

(65)

Substitution of (65) and (66) into (63) and (64) leads to the
following dispersion relation:

4 . 2Q)ktk c = sin
At

From this equation we see that for

kent
1

(67)

(68)

we get solutions for m and that the frequency error,
co —k c, is always positive. If k c ht /4~ 1, there are
only complex roots for t0 and the algorithm is unstable.
From this we see that the size of the time step is dictated
by the largest k mode or highest-frequency electrornagnet-
ic mode that enters into the problem. This is the
Courant-Friedrichs condition (Courant et a1., 1928).

%'e are also interested in the magnitude of the frequen-

cy error. For small kcht, m is approximately given by

2c 2+t 2

M =+kc 1+ + 0 ~ ~

24
(69)

A value of kcht equal to 0.2 gives a value of
( [co (

—
(
kc [)/[ kc

(
equal to 1.7X10 which is gen-

erally an acceptable error.
The fact that the phase velocity is greater than c for all

k (
~

co/k
~

=vz ~c) is also an important attribute of this
algorithm. If one is simulating a relativistic plasma and
this is not the case, relativistic particles can exceed the
phase velocity of light waves. As a consequence they emit

Following the standard procedure we look for solutions of
the form

2. Advancing the particles

a. Nonrelati vlstic case

If we adopt a nonrelativistic model for the particles and
use the leapfrog scheme described earlier, then we need to
know the average value of v t& 8/c during the time
step —that is, we need to know its value at the half-integer
time steps. We will use the approximation

vXB 1 v(n)+v(n + 1)

n +1/2

spurious Cherenkov radiations (Lin et al. , 1974; Godfrey
and Langdon, 1976). Such radiation can easily swamp the
phenomenon we are interested in.

Here as in the case of electrostatic models we are main-
ly interested in collective phenomena which have a scale
length larger than our grid spacing. Furthermore, high-
frequency short-wavelength waves generally interact only
weakly with the plasma, and sq it is safe to exclude them.
To this end we truncate the number of k modes we keep
when computing the electromagnetic field and conse-
quently we are able to take longer time steps.

The above method is time centered as far as E and B
are concerned. However, Eq. (62) involves j, which de-
pends on both the particle positions and velocities. The
leapfrog scheme requires j at integer time steps. If we
have velocities at integer time steps and positions at half-
integer time steps, then we must find approximate posi-
tions at the integer time steps. For most applications
these can be obtained to sufficient accuracy simply by
using the velocity at the latest integer time step to ad-
vance approximately the particle from time (n ——, )b, t to
nest This is.so because (1) the velocity is far more impor-
tant to the current than the position, and (2) the elec-
tromagnetic waves generally have velocities large com-
pared to the particles and certainly compared to the
change in velocity during one time step so that the phase
error in computing j from this approximate is slight.

In the above we have emphasized the Fourier method
for solving Maxwell's equations. However, there are
many different schemes in use and the interested reader is
referred to Hockney and Eastwood (1981), Birdsall and
Langdon (in press), and Godfrey and Langdon (1976).

j (k)

B (k)

j (k)

B (k)

j (k)

B (k)

I

(n+1) b,t (n+2)b,t

B(n)+8 (n +1)
X

2
(70)

In solving for v(n + 1) we use the implicit scheme given
by Eqs. (48)—(50). To find 8(n+1) we use Eqs. (51),
(61), and (63) and the value of V 0&K at n +—,.

(n-1/2)ht {n+1/2)bt {n+ 3/2)b, t
k

E (k) E (k) E (k)

FIR. 9. Leapfrog scheme for advancing the transverse com-
ponents of the electromagnetic field.

b. Relativistic case

In treating a plasma using the full electroinagnetic
equations we should use the relativistic equations of
motion for the particles —that is, we should replace Eqs.
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(44) and (45) by

dPJ vj XB
dt ' c=qJ E+ (71)

PJ =Qmjvj. , l =(1—
UJ /c )

P p2
v. = ' —,y= 1+

m. (1+P /m c )' m cj J

1/2

(72)

de8'j ——yjmJ c
dt

At
gjEJ vj

mjC

de
dt m)c =gj EJ vJ

(75)

A second and more accurate method is to assume that
the change in P during a time step is small and to linear-
ize Eq. (71) about its value at the start of a time step. If
we write

P(n + 1)=P(n)+ hP,
the finite difference form of (71) becomes

(76)

hP =q-E+
At mc

P(n) XB
1/2 +

P(n)+ m2c2
J

AP&&B

P(n)
2 1+

CJ

PP(n) P(n) XB
2m. c P(n)J 1

n

mJC

(77)

where 8 is the average value of B during the time step.
Equation (77) is a linear equation in b,P and can be solved

by standard methods However, this will be time consum-
ing and much too slow unless ~,At ~~1, in which case
sufficiently accurate approximations can be obtained by
treating terms in EPht as small. The computation of y
or (1+p /m c )'~ for every particle will also be quite
time consuming if done every time step; however, again if
the particle energy does not change too drastically over a
time step (which it must not for accuracy in any case),
then these quantities need not be updated every time step
or y can be roughly updated from conservation of energy
(E b,~); this approach amounts to the use of the longitu-
dinal (parallel to u) and transverse (perpendicular to u) in-
ertia for the particle.

In principle, one can find y by integrating E-dI; howev-

dJ J
dt vj j

where mJ is the rest mass of particle j.
One now uses P and ~ rather than v and ~. However,

in advancing P we need to know the average value of v
(and hence P and y) during a time step. One quick
method of estimating the average value of y during a time
step is to use the equation for conservation of energy

er, numerical errors will accumulate if this is done so that
y can drift away from its value as given by P in Eq. (73),
and the equation of motion then becomes inconsistent,

The forces on the particles in Eq. (71) should be modi-
fied to include the finite-size particle effects just as was
done in Eq. (10) for the electrostatic case. This can be
carried through in terms of E(k), B(k), and the form fac-
tor S(k) in the same manner as was done in Eqs.
(23)—(25).

To be truly relativistic the finite-size particles should
undergo Lorentz contraction. This would make the form
factor a function of velocity. This complicates the calcu-
lations but can be done if the particles are not strongly
relativistic. If they are strongly relativistic, the Lorentz
contraction can become so large that the particle size in
the direction of motion becomes much smaller than the
grid spacing. However, the charge sharing scheme au-
tomatically expands the particle to a grid size, so true
contraction beyond this is not possible. To my
knowledge, such corrections have never been included in
any calculations; however, even for strongly relativistic
situations the codes appear to give reasonably accurate re-
sults agreeing with theory where checks can be made.

One of the features of relativity is that space and time
are treated on the same footing. However, all existing
codes treat space and time quite differently. The fields
and particle positions are given on a fixed space grid and
advanced in time by a finite difference scheme. Filtering
of short-wavelength modes can be effected through
finite-size particles and the use of Fourier analysis.
Equivalent techniques do not exist for the time dimen-
sion. These are fundamental problems of modeling which
need considerably more attention.

It should, perhaps, be commented here that there have
recently arisen a number of schemes for eliminating
high-frequency motions so that the codes can use longer
time steps. These amount to a rough kind of time filter-
ing. However, space and time are still treated quite dif-
ferently; one would have to treat the time dependence in co

space to achieve something equivalent to k filtering in ~
space and at present no method exists for this. However,
these time-averaging codes are very interesting and prom-
ise to allow treatments of long time scale phenomena.
This is an area of active research, and the interested
reader is referred to Brackbill and Forslund (1980), for ex-
ample.

C. Magnetostatic (Darwin) models

When we use the full electromagnetic equations we are
forced to advance the system with a time step set by the
highest-frequency electromagnetic mode kept in the
model. This is generally many times the plasma frequen-
cy (typically the time light takes to cross a grid spacing).
However, there are many plasma problems involving
low-frequency self-consistent magnetic fields (Alfven
waves, pinches, ion cyclotron waves) for which we would
prefer not to be constrained to such short time steps. For
such problems a Darwin model in which the displacement
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current is dropped from Maxwell's equations is appropri-
ate (Hockney, and Eastwood, 1981; Busnardo-Neto et al. ,
1977; Nielson and Lindman, 1973). Maxwell's equations
in Fourier space become

tain the following equation for the transverse electric
field:

k~+ E (k)=
ik.EL (k) =4m p(k),

1 B8T(k)
ikXET(k) =-

c Bt

(78)

(79)

where co&, is the average plasma frequency, 4mne /rn.
Equation (85) is similar to the equation for electrostatic
shielding

4mjz. (k)—ik && 8r(k) =
c

(80) (k—+a)~, /uT, )P(k)=4 ipr, . (86)

where I. and T refer to the longitudinal and transverse
components. The charge and current densities are those
given by Eqs. (56) and (57). If one is interested in prob-
lerns where the electrostatic field is unimportant, then Eq.
(78) can be dropped; keeping this term gives rise to plas-
ma oscillations and forces one to compute on a plasma
frequency time scale; dropping it allows much longer time
steps to be used.

Equations (78)—(80) do not have a dynamic equation
for Er (no BE&/Bt term). Thus the leapfrog scheme used
for the full electromagnetic case fails. If one attempts to
proceed in a straightforward manner by using a finite
difference equation for Eq. (79), one finds the system nu-
merically unstable. The instability is due to mutual in-
ductance between currents in different parts of the sys-
tem; changing currents in one part of the system produces
E fields which cause currents in other regions of the plas-
ma; these in turn generate E fields which modify the orig-
inal currents. This effect is readily analyzed by supple-
menting Eqs. (79) and (80) with a fluid equation for the
current,

(81)

and dropping the electrostatic fields, Eq. (78). The
demonstration is left as an exercise for the reader.

One way around this difficulty is to eliminate 8 from
Eq. (80) using Eq. (79) and obtain the equation for ET..

In (85) BjT, /Bt plays the role of the source charge's p„ in

Eq. (86); the Debye length uT, /co&, in (86) is replaced by
c/co~ in Eq. (85). Thus Eq. (85) will give shielding of the
transverse electric fields produced by BjT, /Bt.

The term BjT,/Bt in Eq. (85) is complicated; it involves
among other terms

e 2

[n (~)—n]ET(~)I k
(87)

To solve (85) an iteration procedure is used in which a
value of ET is assumed (it can be the last value of ET) and
used to evaluate expression (87) (actually all terms in

BjT, /Bt). This is substituted into Eq. (85) and a new value
of ET is found. This new value is again used in (87) and
the whole calculation repeated. This process is continued
until the new value of ET differs from the previous one by
less than some acceptable error. In practice it has been
found that the procedure converges very rapidly, requir-
ing only two or three iterations except in the case of ex-
tremely nonuniform electron density with n going above
4n at some point. If n goes above 4n, the procedure is un-
stable but can be made to work by using in place of n a
value which is greater than the maximum n divided by 4.
Even under these conditions, the method converges rapid-
ly. More details of this code can be found in Busnardo-
Neto et aI (1977). .An alternative method for solving a
system using the Darwin model has been given by Nielson
and Lewis and can be found in Hockney and Eastwood
(1981).

4m ~3T—k ET(k)=
c

We then write for Bj T /Bt

(82)
Modeling bounded plasrnas

BjT(k)
i3t

e n ET B)T~

m Bt
+ (83)

(where T, are corrective terms). Here n is the average
electron density, and the correction terms Bjz;/Bt are ob-
tained from the time derivative of Eq. (56) minus
e nET/m. Equation (83) without the correction terms,

BjT(k)
Bt

2—
ET(k),

m

contains the major effects of the mutual induction fields;
this term alone gives current shie1ding —i.e., if a current is
generated in the plasma a return current forms around it
shielding out the 8 field and associated transverse E field
beyond c/co~, . Substituting Eq. (83) into Eq. (82), we ob-

Up to this point we have discussed modeling of period-
ic systems in one dimension, doubly periodic systems in
two dimensions, and triply periodic systems in three di-
mensions. Basically, our fast Fourier transform method
expands the fields within the system in a Fourier series
which implies these periodic properties. However, all lab-
oratory and natural p1asmas are bounded with some ap-
propriate boundary conditions (vacuum outside the plas-
ma, constant potential boundaries, etc.). To model such
situations we need a rapid way to find the fields given
whatever boundary conditions apply. Hockney (1966) has
mode1ed bounded system using his fast Poisson field
solver. Here a method of adapting the FFT method to
these situations will be described (Decyk and Dawson,
1979). I shall restrict the discussion to two-dimensional
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V @= —4mp, inside the slab

V 4 =0, outside the slab .

(88)

(89)

models although its extension to three-dimensional ones is
straightforward.

To begin with, we consider a two-dimensional bounded
slab like that shown in Fig. 10(a). We consider the plas-
ma to be periodic in the x direction and bounded in the y
direction. As a first case, let us assume there is a vacuum
outside the plasma slab.

%"e wish to solve Poisson's equation for this system:

V +=0, (94)

(95)

For the three regions 1, 2, and 3, with the boundary con-
ditions that P vanishes at y =+ oo, we have

so that P, 4 (region 1), and 4 (region 3) are vacuum solu-
tions to Poisson's equation, and these three functions are
chosen so as to match the boundary conditions (N con-
tinuous and B@/By continuous) at the surface of the slab.
Vacuum solutions of Poisson's equations are of the form

@=g [P+(k„)e " +P (k„)e " ]e
k„

V N= —4mp (91)

We may do this by breaking + into two parts,

@=4FFT+4

where pFFT is the potential which would be obtained by
fast Fourier transforming the charge density within the
slab and P is a correction due to the presence of the boun-
daries. Now

N) ——g P)+(k„)e
k„

p2 ——g[p2+(k„)e " +$2 (k„)e " ]e
k„

+3= +03-«x)e
k„

(96)

(97)

inside the plasma slab. However,

V PFFFT
—— 4~P—

inside the plasma slab. Therefore,

inside the plasma slab. Outside the plasma slab

(92)

(93)

At the slab boundaries y =+I, 4 and BN/By must be
continuous; the latter condition comes about because these
models must have a finite charge everywhere. Thus at
y =d the following two equations must be satisfied:

" = g 0F~«. ky)e '
k„ k„,k„

+ g [$p~(k„)e "

(a)
Region 3

Region 2

Region 1

I
I

I

I

x=-Ll
f

I

I

I

I

I

Y

"d=y I

I

I

I

,
x=1

I

I

I

I

Periodicity
length LL

I

I

I

x=3LI
XI

I

I

+$2 (k„)e " ]e

g —k„p3 (k„)e
k„

= g ik, PFFFT(k„,k, )e'' +'"
k„,k

+ g k„[$2+(k„) "e—Qp(k„)e " ]e
k„

(99)

(100)

Now since these equations must be satisfied for every x,
we can equate the coefficients for each value of k„
separately. These equations thus become

(k„)e * = QQFFT(kx, ky)e +p~+(k„)e "
k

Circular boundary
on which field
boundary condi-
tions ore imposed

+$2 (k )e (101)

k/3 (k»)e " =—gikyQFFT(k, ky)e
k

+k„[Pq+(k„)e "

FIG. 10. (a) Model for two-dimensional bounded slab model.
(b) Method for treating a bounded two-dimensional system.

—Pz (k )e "].
Likewise, the boundary conditions at y = —d give

(102)
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—k„d —ik d
P )+ (k„)e " = g P ppr(k„, ky )e

k

+$2+ (k» )e " +$2 (k„)e "

—k„d —ik„dk P, +(k )e = haik PppT(k k )e
k

1 k„d —k„d
{t'3—(k» ) 2 {t'ppT(~ k )e yppT( '4k» )e

Ey„(d,k»)e "

+k [$2+(k„)e " —p2 (k„)e " ] .
—Ey„(—d, k„) (110)

We may note that we can replace the quantities

ik dg P ppT(k k& )e
k„

and
—ik dg PppT(k„, ky)e

k

(105)

If instead of having vacuum boundary conditions on
the boundary of the plasma we specified the plasma po-
tentials along y =+d, then we would have two unknown
functions to find $2+(k„) and P2 (k„), and these would
be obtained by requiring the potential to be matched
along the boundaries y =+4. In this case we should ob-
tain

by PppT(y =d, k») and PppT ——(y = —d, k„)—that is, the
Fourier transforms of PppT on the boundaries y =+d.
Likewise, the quantities

ik d
gikygppr(k„, ky )e
k

P(y =d, k„)=gppT(y =d, k„)+$2+(k„)e "

(k„)e

0(y = 4k )=—dppT(y = —4k )+&2+(k )

(k )e" (112)

and
—ik„dg ikygppT(k„, ky )e

k„

can be replaced by

Ey (y =—d, k„)
2k„d —2k„d

X e "—e (113)

Solving for P2+(k„) and P2 (k„) gives

42+ «» ) = I [4(y =4k ) NppT(y =—4k )]e
—k„d—[0(y= ~,k. ) 4p~(y=——~ k )]e "

j

and (106)

1 k d —k d
4 i+(k„)=—, yppT( —d, k»)e "

PppT(d, k»)e—

k~ k„

$2+(k„)= —,e PppT(d, k„)+ —Ey„„(d,k„)

(108)

—4'ppT( —a' k )

(109)

E~„(y= ——d, k),

respectively. These four functions of k are known from
the FFT of p. We thus see that equations (101), (102),
(103), and (104) constitute four linear equations in the
four unknowns P &+ (k„), P2+ (k» ), P2 (k„), and P3 (k„),
respectively, and can be solved by standard techniques;
the solutions are

—k„d—N'(y= ~k ) NppT(y'=— 4k )]e "—j

(11

The case of specifying charges on the boundary (Neu-
man boundary conditions) can be handled similarly; de-
tails can be found in Decyk's paper (Decyk and Dawson,
1979). It is also possible to treat mixed boundary condi-
tions. Both potentials and charges on the boundary can
be specified as functions of time. It is thus possible to
treat problems in which the plasma is driven by external
antennae (Decyk and Dawson, 1979; Decyk et al. , 1979).

Qur above discussion has been restricted to a bounded
slab model. For a two-dimensional model it would obvi-
ously be desirable to treat a system bounded in all direc-
tions. It is possible to do this using the fast Poisson field
solver of Hockney (1966) or by a FFT method similar to
the one used for a slab. The technique is illustrated in
Fig. 10(b). One considers a bounded plasma of arbitrary
shape contained within one period of our grid. If one uses
FFT's to solve for the fields, then one also obtains the
fields due to an infinite set of plasma images. The poten-
tial solution we want is again the sum of the FFT solu-
tions plus a vacuum solution to Poisson's equation. W' e
can obtain the latter by fitting boundary conditions on the
arch shown. %'e know that the vacuum solutions are
given in terms of Bessel functions, and we can determine
the coefficients of these Bessel functions just as we did
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the sinh and cosh functions for the slab by matching the
total solution to the given values on the boundaries. The
detailed algebra for this will not be given, but we simply
comment that such a technique has been used to model a
bounded non-neutral plasma (Decyk, 1980).

E. Numerical stability

Up until now, we have considered some methods for
numerically solving a number of simulation models; we
have considered the numerical stability of the methods
only for the cases of light waves in electromagnetic
models and for the method of solving for the transverse
electric field for Darwin-type models. In general, numeri-
cal models are subject both to physical instabilities due to
the dynamics of the system under study (effects we are
generally interested in studying) and numerical instabili-
ties due to the computational methods employed (effects
which must be eliminated if the results are to be meaning-
ful}. Particle simulations of the type we have been dis-
cussing are subject to two types of' numerical instabilities,
those due to the use of a discrete spatial grid and those
due to finite-size time steps, Both have their origin in a
kind of stroboscopic effect. For the case of a discrete spa-
tial grid, the values of the charge and the fields on the
grid points are exactly given by a finite Fourier series
(field series). How.=ver, since the particle positions are
given exactly, or at least up to the round-off accuracy of
the machine which is 4—8 orders of magnitude finer than
the spatial grid, their density contains Fourier modes of
vavelengths much shorter than those used to compute the

fields. For those density wavelengths which differ from
one of a field Fourier mode by 6/2~n, where n is an in-
teger and 5 is the grid spacing, the density waves will al-
ways come back into phase with the E field mode at the
grid values, and the computation will treat the density
waves as if they had the same wavelength as the E field.
This phenomena is called aliasing. In general, particles
(density variations) interact with electric fields which
have their same phase velocities and these can either feed
energy into the field (instability} or remove energy from it
(damping). The aliasing phenomena can cause short-
wavelength slow-density disturbances to resonate with
longer-wavelength higher phase velocity E field waves.
The density waves are carried by the thermal motions of
the particles and have characteristic frequencies m-kV&
(where k is the wave number of the density variation and
VT is the thermal velocity of the particles; of course, there
is a continuum of m's, since there is a continuous spread
of u's). The aliasing phenomenon effectively reduces the
k of the density fluctuations by 2vrn/5, and the phase
velocity increases correspondingly. If an n exists such
that near-resonance occurs with one of the natural modes
of the plasma, a strong interaction occurs and the system
can become numerically unstable (even a thermal
Max wellian distribution can be unstable). This
phenomenon has been studied extensively by Langdon
(Birdsall and Langdon, in press). One method of avoiding
these instabilities is through the use of finite-size parti-

cles. Such particles greatly suppress the short-wavelength
density variations, as is shown by Eq. (33), and thus, in ef-
fect, eliminate the aliasing phenomenon. It has been
found that the use of a particle size of 0.7 grid spacings
effectively eliminates numerical instabilities of this type.
The readers who wish to dig deeper are referred to Bird-
sall and Langdon (in press).

The use of a finite-size time step can also lead to a stro-
boscopic effect through time aliasing which can convert
high-frequency high phase velocity waves into low-
frequency low phase velocity waves by sampling the sys-
tem at times which differ only slightly from the period of
oscillation. The way out of this problem is to choose time
steps which are short compared to the minimum period of
oscillation supported by the system. Again, the interested
reader is referred to Birdsall and Langdon (in press) for a
more complete discussion of this problem.

Here I have given only a brief physical description of
numerical instabilities and how to avoid them. The im-
portant thing is to realize their existence and understand
in general what steps will overcome them; these physical
arguments generally suffice.

II I. DIAGNOSTICS

The computer models that we have been discussing can
give us a great deal of information about the behavior of
plasmas. In principle, we can obtain as much detail about
the dynamics of the model as we desire. We can follow
the motion of any given collection of particles in as much
detail as we desire; we can record the time behavior of the
various spatial Fourier modes; we can look at spatial and
time correlations and many other quantities. The prob-
lem is not that of calculating such quantities but rather
one of deciding what calculations will extract meaningful
information from the vast amount of available data. A
vast mass of computer output is generally useless unless
we can condense the results by some meaningful simpli-
fied theory or physical picture. The problem is one that is
at the heart of statistical mechanics. Examples of diag-
nostics can be found in all papers dealing with plasma
simulation; Dawson (1962a), Naitou et al (1979), and.

Dawson et al. (1969) might be found particularly useful.
The ideas associated with noise and stochastic processes
are also particularly useful here (Wax, 1954).

In many cases, measurements similar to those which
are used to diagnose laboratory experiments are found to
be useful in diagnosing computer simulations. However,
for compnter simulations we have the advantage that we
can make measurements with essentially perfect accuracy.
Also, the act of measurement does not disturb the system.
Furthermore, one is not bothered by side effects which are
often difficult to eliminate or control in laboratory experi-
ments; examples are the presence of impurities, eddy
currents in the walls, poorly understood boundary condi-
tions. The computer simulator also has the advantage
that we can turn on and off various aspects of the physi-
cal model and in this way, determine their importance to
the physical processes being observed. Examples here are
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the turning on or off of the longitudinal or the transverse
components of the electromagnetic field, and the reduc-
tion in the number of dimensions under consideration. If
one suspects that certain regions of the wave spectrum are
responsible for a phenomenon of interest, one can check
this by simply omitting the fields of these waves when
making the force calculation. Alternatively, one can keep
only the fields of the waves which are thought to be im-
portant and see if the phenomenon persists. Finally, com-
puter simulations often allow us to measure quantities
which enter directly into the theory of plasmas, some-
thing which is not always possible with laboratory experi-
rnents.

Simulations, of course, have their limitations. We can
handle only a limited number of particles. The systems
we can handle are limited in size. We can follow the
motion for only a limited length of time. In general, we
must treat simplified physical systems (one- and two-
dimensional systems, for example).

Since there are an unlimited variety of measurements
one can make, we can only touch on some of the more
important ones here.

A. Measurements related to particle motion

Distribution function

into sampling cells which are generally much larger than
the grid cells). This latter diagnostic device shows us
phase space for a one-dimensional system. Such a phase
space grid is shown in Fig. 12(a). The extreme of such a
phase-space plot is to plot the position and velocity of a
set of test particles (or even every particle). An example
of such a plot is shown in Fig. 12(b). This figure shows
phase-space plots from a one-dimensional model for a
two-stream instability of two equal density but oppositely
directed electron streams; each point represents the posi-
tion and velocity of a particle. The plot shows the situa-
tion in the system at early time (co~t =5) and at later
time (co&, t =31) after the instability has gone nonlinear
and has become rather turbulent, as is indicated by the
phase-space eddies. At time co&, t =31, the motion of all
the particles was reversed (u~ —u, x ~x) to see if the sys-
tern would return to its initial state as a check on the re-
versibility of the system. As can be seen, the system does
disentangle itself from its turbulent motion and returns to
the initial two-stream situation; the only difference is that
the two streams have been interchanged due to the inter-
change of velocities, as can be detected by closely examin-
ing the details of the positions of the points in the two
streams.

We cannot, of course, make plots of two- or three-
dimensional models' phase spaces, which are four and six

For the particles, the basic data are those of their posi-
tions and velocities at a series of times, ~(t), v(t). The
first thing which we are interested in is the velocity distri-
bution function. For a one-dimensional system, we divide
the velocity axis between the extreme values of interest
into uniform-sized cells as illustrated in Fig. 11.

We simply count the number of particles which have
their velocity in each of the cells at any particular time.
This can also be done at various spatial positions in the
plasma, giving a combined spatial velocity distribution
function (for this we must, of course, divide the x space

(a)

0,0

measUre the number of
particles with

velocities lying in
each cell

vx

Cat t -5

1 I I I ( ( I I I ( I 1 I I I

&00

t =31

40

0
"min -0.6 -0.4 - 0.2 0.2 0.4 0 6 0.8 &mp)(

&elocity

FIG. 11. Uniformly spaced velocity intervals and the number
of particles found lying in each velocity interval (taken from
Dawson, 1962a).

FICx. 12. (a) Discrete grid division of phase space for a one-
dimensional plasma. (b) Phase-space diagrams for two-stream
instability showing reversibility.
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dimensional. For such systems we must content ourselves
with plotting different slices through phase space. For
example, x, v„plots, x, v~ plots, x,y plots, y, v~ plots. For
one and two-halves dimensions the phase space is three
dimensional, and projections and models of it can be
made.

The accuracy with which distribution functions can be
determined is in general determined by statistics. The er-
ror in n (U) is essentially the square root of the number of
particles found in that cell. For example, for a one-
dimensional simulation employing 10 particles in which
the velocity region between —v,„and v,„ is divided
into 20 cells, the typical error in determining n (v) would
be 3—5%; the percentage error will be larger in those re-
gions of velocity where there are fewer particles and
smaller where there are more (Dawson, 1962a, 1964). If
we had also divided the position space into 20 cells, then
typically the error in n(u, x) would be 10—12%. These
statistical errors can generally be reduced by taking short
time averages. The greater the time over which one aver-
ages, the smaller one can make the statistical errors.
However, since there generally will be a time evolution to
the system, averaging over too long a time will introduce
errors due this variation. Statistical errors can be reduced
by using more particles or by taking ensemble averages,
i.e., by repetitions of the numerical experiment with dif-
ferent microscopic initial conditions but with the same
macroscopic conditions.

The reduction of the percentage of error is by N, '

where N, is the number of independent samples included
in the average. Two measurements made too close in time
will not be statistically independent. The decorrelation
time r, (time required for two measurements to be con-
sidered independent) depends on the nature of the mea-
surement and of the physical processes destroying correla-
tions. This time can often be estimated on the basis of
physical knowledge; on the other hand, measurements of
these correlations can give us physical information about
the behavior of the system.

Often one is not interested in the full distribution func-
tion, but rather in grosser macroscopic properties, such as
total electric field energy, temperature, and flow velocity.
Such averages can be determined to greater accuracy than
the full distribution function.

2. Drag on a particle

The drag experienced by a particle traveling through a
plasma is often of considerable practical and theoretical
importance (Dawson 1962a, 1964). To find this quantity
we take a set of particles with velocities lying in a small
velocity interval about the velocity of interest at some
time t =tp. We follow this group of particles in time and
compute the average value of their velocity (averaged over
the group) at subsequent times, (v(to+r)). For such cal-
culations we obtain plots like those shown in Fig. 13.

From the rate of decay of the velocity we can deter-
rnine the average drag experienced by particles with dif-
ferent velocities, a quantity which is of considerable in-

V/V

0.78

0.08 electron
~ ~ ~

~ ~ ~ ~

FICs. 13. Autocorrelation function for a number of electron
velocity groups and one ion group. The data are from a one-
dimensional model, and the velocity decay illustrates the drag
on a particle.

terest in the kinetic theory of plasma. For a thermal plas-
ma or a plasma in a steady state, it does not matter when
we choose our set of particles. Thus for such cases we
can improve our statistics by choosing different sets of
particles at different initial times to [but with all v(to) ly-
ing in the desired velocity interval]. Here we would mea-
sure the velocity decay as a function of t —tp.

3. Diffusion in velocity

In addition to the drag on a particle we are interested in
how particles diffuse in velocity (Dawson, 1962a, 1964).
Such velocity diffusion can be caused either by collisions
between particles or by plasma turbulence. For a thermal

plasma the drag and velocity diffusion coefficents are re-
lated by the Einstein relation. Velocity diffusion pro-
duced by turbulence tells us something about the tur-
bulence process.

To compute velocity diffusion we compute the mean-
square spread in the velocity as a function of time of a
group of test particles which started out with their veloci-
ties lying in a small region of velocity space—that is, we
compute

(KU ) =((v(to+7 ) —(v(to+r))) ) (115)

where the angular brackets denote averages over the set of
test particles. The set of test particles can be chosen in
any manner desired —for example, they could be chosen
to lie within a small region surrounding some initial value
Uo. In general (hv ) has a time dependence like that
shown in Fig. 14. In general, (b,v ) increases as r for
small values of v. This behavior is well known from the
theory of irreversible statistical mechanics (Wax, 1954).
The early dependence comes from the fact that initially
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FIG. 14. The time development of the mean-square spread in
velocity of a group of particles.

200

the particles are accelerated by whatever force they feel,
velocity increasing along with t. Different members of
the group feel different forces. However, after a certain
length of time —known as the decorrelation time —the
force each particle feels has changed to ones uncorrelated
with the initial force and from then on the mean-square
velocity increases linearly with time as it would if the par-
ticle received a series of independent random impulses.
Of course any systematic force on the particles such as
produced by a magnetic field can introduce oscillations

into (hv) and also (hv').

100

0
0 1000 2000

FIG. J5. The mean-squared spread in the displacements of the
guiding centers of a group of particles.

4. Diffusion across a magnetic field

One of the important and fundamental problems of
plasma physics is the determination of the rate of plasma
diffusion across a magnetic field. Such diffusion can be
measured for a set of test particles using the following
procedure. The position of the guiding center of a
charged particle in a magnetic field is given by

CO~ Xm
~g~=~

cue

where

(116)

(a,', ) =([ „(t)—„(o)]'), (117)

This quantity has the general time dependence shown in
Fig. 15.

B. Measurements related to waves

Plasmas can support a wide variety of waves. Much of
plasma behavior is associated with such wave motion.
Associated with the waves are electric and magnetic
fields. To begin with we can measure these fields at vari-
ous spatial points and at various times, i.e., E(~,t) and
B(~,t).

qB
mc

The guiding centers of the particles do not show the rapid
oscillatory motion that the particle positions exhibit.
They are therefore suitable for computation of diffusion
across the magnetic field. To compute the diffusion rate
we compute the mean-square displacement of the guiding
centers of a set of test particles —that is, we compute

1. Field fluctuations

If the plasma is spatially uniform, the waves are
sinusoidal and we Fourier analyze the electric and mag-
netic fields into their various k components. We would
thus compute such things as E(k, t), B(k,t),
E'(k, t),B'(k, t), (E(k))„, (B(k))„,(E'(k))„, (B'(k))„.

First, if we consider a thermal plasma, then (E (k))„
and (B (k))„(ta implies time average) are predicted
from equilibrium statistical mechanics: For electrostatic
and magnetostatic models they take on the values given
below.

a. Point particles

KT
(118}

8m' ~a 2L "(1+k A.D)

(
BT(k) KT

A, E~t ——c /tv', . (119)
ta 2L (1+k REM}

kk, D (( 1
8m 2

(,'BT(k))„L"/8n = kAEM«1 .
KT
2

(120)

(121)

The average for BT is per allowed transverse polarization
(typically two transverse polarizations are allowed, but on
occasion the model might be restricted to only one).

In the above n is the number of dimensions, and we
have assumed that the plasma is confined to a cube of di-
mensions L on a side. For long wavelengths these formu-
las predict that the average field energy in a k mode is
one-half KT:
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b. Finite-size particles

For plasma composed of finite-sized particles of Csauss-
ian shape with

p(~ —~;)=
q exp

P —J 2

2Q

(2~ )n /2~ n
(122)

expressions (118) and (119) are modified and take the
forms

(
EL'«) kT

8n (, 2Ln(1+k2g2 e~'n
)

BT(k) kT
877 ta 2L, n( I+A 2g2 &k a

(123)

(124)

The above are time-average energy densities for the
fields for a particular k. As a consequence they say noth-
ing about the time dependence of the fields or how this
energy is distributed over frequencies. The time depen-
dence and frequency dependence of the fields give a large
amount of information about the dynamics of the plasma.
Therefore, it is of interest to compute the time Fourier
transforms of the fields. As an example we might com-
pute the power spectrum in the longitudinal electric field,

(EL(k,co) )
=GL(k, co) . (125)

Svr

For a thermal plasma with no imposed 8 field this has
the form (Rosotoker, 1961; Thompson and Hubbard,
1960) shown in Fig. 16.

Here ( ) indicates an average taken either over a large
number of repetitions of the simulation (usually not done)
or over a small band of m's. If such averages are not tak-

en, one obtains very irregular spiky power spectra with
the spikes separated by b,co=1/T, where T is the length
of the run; to be meaningful T ' should be smaller than
any of the spectral features of interest and thus the irregu-
lar spikes will be sharper than the meaningful spectral
features.

For the case co& ~&kVT there are two features, one a
continuous spectrum centered at zero frequency and the
other a sharp spectral line at roughly the plasma frequen-
cy. The sharp spectral line is associated with plasma os-
cillations; the low-frequency continuum arises from the
random motions of particles and their accompanying De-
bye clouds. As cuz becomes larger relative to kV&, the
size of the low-frequency continuum becomes smaller and
the plasma spike becomes higher and narrower; on the
other hand, as kVT becomes larger relative to cuz, the
plasma spike decreases in amplitude and increases in
width and is absorbed into the continuum (Rosotoker,
1961;Thompson and Hubbard, 1960; Bekefi, 1966).

If the plasma contains a uniform imposed magnetic
field the spectra for the longitudinal field have the form
shown (Kamimura et al. , 1978) in Fig. 17.

The spectrum has a large number of peaks spaced at
roughly the electron cyclotron frequency (Bernstein,
1958). There is a large peak at the upper hybrid frequen-
cy. Figure 17 is a plot for a system with mobile electrons
and fixed ions; if the ions are allowed to move, there are
additional peaks associated with the ion cyclotron motion
and with lower hybrid oscillations. The cyclotron har-
monic or Bernstein peaks have relatively small amplitudes
after one passes the upper hybrid frequency. In addition
to the Bernstein peaks there is a peak at zero frequency;
this peak is associated with convective cells (Dawson
et a!., 1971; Okuda and Dawson, 1973a) or eddies associ-
ated with charged Aux tubes. If one integrates
(E (k, co)) over all co, one obtains the results given for
the time-averaged E fields.
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FIG. 16. Spectra of electric field fluctuations taken from a
two-dimensional plasma simu! ation.

FIG. 17. Spectra of electric field fluctuations for a magnetized
plasma.
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2. Time correlations

Closely related to the spectral density of the electric
field is its correlation function:

T
C(k, r)= lim —I [E(k,t)E(k, t+r)]dt .

T ~ T (126)

Of course for computer simulations this integral must be
replaced by a sum over sampling times and the infinite
upper limit must be replaced by the maximum allowed by
the data. C(k, r) and G(k, co) are related by the Wiener-
Khintchine relation (Kittel, 1958)

G(k, co)=4 I C(k, r)coscor dr .

A typical form for C(k, m ) is shown in Fig. 18.

(127)

3. Normal modes of a nonuniform plasma

For nonuniform plasmas the normal modes are not sine
waves but have more complex wave forms. One of the
important problems in plasma physics is to determine the
normal modes of such plasmas. Even though one can
write down linear equations for the modes, it is often dif-
ficult or impossible to solve these equations for situations
encountered in experiments. The equations are integral
differential equations involving the plasma nonuniformi-
ties and the complex unperturbed particle orbits if a full
kinetic description of the plasma is used. In general these
equations can be solved only approximately analytically,
and one is often not quite sure if the approximations and
assumptions which go into such analysis are valid. On
the other hand, it is often not possible to experimentally
measure what is going on in the plasma. Computer simu-

lation can aid us here.
In order to find the normal modes we measure one or

more quantities associated with the wave at a set of posi-
tions throughout the plasma (we are assuming we have a
thermal plasma with thermally excited waves). For exam-
ple, we might measure

p(~, t),E(~,t), B(~,t) . (128)

+c ocso, t sinO~(~)]+/(~, t), (129)

where P(~, t) is that part of P which does not have fre-
quency co~. We now correlate P(~, t) with sincu&t and
cosm] t to pick out the co

&
oscillations; that is, we compute

T
I

P(~, t)si cd, t dt = —P&(~)cosO&(~)=C, (~)
7 o 2

and
(130)

T
I

P (~, t)cosco, t dt = —P ~ (~)sing
&
(~)=C2 (~) .] 2 1

If the plasma is uniform in the x direction and nonuni-
form in the y direction, as in the case of our slab model,
we Fourier analyze in the x direction and record such
things as P(k„,y, t). We then spectral analyze this quanti-
ty P(k„,y, m). Figure 19 shows a typical plot obtained
from such analysis (Decyk, 1980). Typically there will be
regions of a continuous spectrum as well as discrete spec-
tral lines. Let us first consider the discrete lines. These
correspond to normal modes of the plasma. We wish to
find the shape of the wave function associated with these.
To do this for, say, the peak at co &, we write

P(~, t) =P )(~)sin[co )t +O, (~)]+/(~, t)

= (()(~)[sin~, t cosO&(~)

(131)
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FIG. 18. Correlation function for the electric field in a field-
free plasma, taken from a two-dimensional plasma simulation.

FICx. 19. Electric field spectrum for a bounded plasma showing
discrete and continuous spectra.
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From these relations we find

and

p, (~)=4[C, (~)+C2(~)]

C2(~)
)

C2(~)
tan8)(~)=, 8, (~)=tan

C((~ C)(~)

(132)

(133)

We thus obtain the desired wave r'unction

((}
&
(~)sin8, (~} (134)

for the normal mode with frequency co l.
When we compute the integrals in Eqs. (130) and (131)

the time span T should be less than the damping time of
the normal mode or else the initial oscillations will die out
during the integration time and oscillations at some ran-
dom phase will be excited by the random motions of this
system; these will give different values of 8~(~), and dif-
ferent time regions of the integral will interfere with each
other. Long runs can be used to get better statistics by
making a series of such measurements, each less than a
damping time, and then properly averaging them.

For the region of the continuous spectrum we can
proceed in a similar manner, choosing co to lie in one of
these regions. In this case we generally find that the wave
function P &(~) is peaked in some small region of the plas-
ma (Decyk, 1980}. Thus these modes correspond to oscil-
lations which are localized to that region of the plasma.
They might, for example, correspond to local plasma os-
cillations in a plasma of nonuniform density and hence
plasma frequency. It is, of course, possible for the contin-
uum to be associated with the random motions of the par-
ticles, just as was the case in the spectrum of a uniform
plasma. In such a case we would need to calculate, say,
5v(v, ~,co }, where 5U represents a perturbation in velocity
of a particle whose undisturbed velocity is v and the mode
has structure in ~v space.

this is not sufficient to reduce the noise to an acceptable
level. This is particularly true if one is looking for a weak
subtle effect. It would be advantageous if there were
some better ways to initialize the simulation so as to
reduce the noise. Fortunately, this is the case through the
use of so-called quiet starts (Denavit, 1972; Denavit and
Walsh, 1981). Before going into this, let us look at what
limits random starts put on a number of measurements.

Let us first look at an unstable situation. Let us restrict
ourselves to a one-dimensional model containing a total of
N particles. The situation might be that of a two-stream
instability, for example (Dawson, 1962b). In general, the
percentage density fluctuations associated with any given
k mode are of the order of 1/N' . These fluctuations
can be distributed among the various frequency modes al-
lowed for that k (as previously discussed). However, gen-
erally there are only a few of these, and so we will take
5n (k)ln =N '~ . Now the unstable mode can generally
grow until [5n (k) in ]'~ =E becomes a few percent. The
exact value depends on how strongly unstable the situa-
tion is. For a strong two-stream instability with equal
density beams [5n (k)ln ]' might become as large as
25%%uo, while for a weak beam with a thousandth the densi-
ty of the plasma it might be a fraction of a percent. Since
the unstable mode grows exponentially as e+, we have the
maximum total growth, e~', given by

(135)

Even for N =10 and v=10 ' this limits yt to 5. Thus
we could not determine the growth rate y to better than
about 20%%uo. In many other cases, where N and c are
smaller, the accuracy of determining y is worse; and for
weak instabilities it may be impossible to pull the unstable
growth out of the natural noise, as illustrated in Fig. 20.

A perhaps more serious problem arises from the fact
that distributing the particles in space by means of a ran-

IV. QUIET STARTS

For many applications regular initial arrangements of
the particles (quiet starts) are advantageous. Our discus-
sion up to now has been directed to what might be termed
thermal or noisy starts, where one starts a simulation by
choosing the particle velocities from a random number
generator which gives the desired initial velocity distribu-
tion function; a similar procedure can be used for the spa-
tial distribution, although ignoring the strong tendency
for charge neutrality in a plasma can lead to trouble if
ions and electrons are spatially loaded from independent
random numbers. In general, such a method of initializ-
ing the system produces a large amount of noise. The
percentage fluctuation in the number of particles found in
a small region of phase space being in general proportion-
al to N, where N is the average number of particles

—1/2

found in that region of phase space. One can always de-
crease the degree of fluctuations by increasing the number
of particles used in the model. However, there is a practi-
cal limit to how many particles can be used, and often

E (k)

Strong In

0
E (k)

Weak Instability
QJpt

QJpg

FICx. 20. Time development of a strongly unstable mode and a
weakly unstable one.
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n(~)= g5(r —~;) . (136)

Fourier analyzing gives

n(k)= ge
L

(137)

where L is the size of the cube in which the plasma is
contained. From this we compute

/n(k)
/

= ge
l, l

(
~

(k)'~! = n

L 3

(138)

(139)

Now the longitudinal electric field is gIven by

V EI ———4me(n no)—,

ik E, = 4men(k)—,

(140)

(141)

dom number generator (particularly ions and electrons in-

dependently) can lead to strong overexcitation of long-
wavelength modes and to a large amount of noise associ-
ated with them. This is simply seen for the case of a uni-
form spatial electron distribution. We imagine that the
ions constitute a fixed uniform neutralizing background.
In this case the electron density is given by

f P(u)du =N (146)

with the small k modes to be KT/2. If the particles have
been placed so as to give charge neutrality in each cell,
then there is initially no electric field energy in these
modes. They thus end up with a total energy of KT/2,
whereas since these modes behave like harmonic oscilla-
tors they should have an energy of KT; they are thus ex-
cited to half their thermal level. This generally does not
cause any serious problem.

For the general case we can use a similar procedure to
suppress noise. We are not limited to distributing the par-
ticles throughout phase space in a random manner. We
can divide the phase space into cells and place precisely
the number of particles we want in each cell ~ In this way
the fluctuations can be almost totally suppressed. Thus
we could divide the plasma into a number of cells and
into each cell we would put n particles with velocity u&,

n2 particles with velocity u2, etc., where the numbers and
velocities are chosen so as to approximate the desired dis-
tribution function.

As an example let us suppose that we wanted to place
N particles in each cell so as to approximate a Maxwellian
distribution. Figure 21 is a plot of a Maxwellian distribu-
tion divided into a number of equal areas. We would nor-
malize P(u) so that

4mien (k)
L

4nEen (k)k.
L

( i
EL(k)

i
)L'

8m.

kT
2(1+k A. gD)

m VT
2

I 'v,'
+ 2'

CO~

(
~

EL(k)
~
! co~, m

8m 2k L

But from equilibrium statistical mechanics we know

(142)

(143)

(144)

(X is the number of particles per cell). We then compute
2Ulf P(u)du =1 (147)

and insert one particle in the cell at velocity vl. We
would then compute

2(v& —u !
P u du=1 (148)

and insert one paicicle in the cell at velocity v2. We
would continue an this way until we had covered the
whole distribution function (for both positive and nega-
tive velocities) and had thus placed the proper number of
particles in the cell. The procedure must be altered some-
what for the highest velocity particle, since we cannot in-

(145)
We see from this that the two expressions agree for large
k, but the purely random placing of the electrons strongly
overexcites the long-wavelength or small-k modes. The
random placing of the electrons would give modes with
ki, D ——0.1 100 times their average thermal energy. This
comes about because the random placing of the electrons
does not take into account the Debye shielding of an elec-
tron by the rest or the tendency of the plasma to stay
charge neutral. For a real plasma if there are an excess of
electrons in a given region the tendency of an additional
electron to enter this region is greatly reduced. .

In this case the effect is easily overcome by simply di-
viding the box into cells of about a Debye length in size
and putting into each cell the proper number of electrons
to give charge neutrality. If one chooses the particle ve-
locities from random numbers with a Maxwellian velocity
distribution, then one finds the kinetic energy associated

P(Y)

FIG. 21. Division of a Maxwellian into a number of equal
areas.
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tegrate to infinite velocity. This can be avoided by simply
deciding on a maximum allowed velocity.

A. Aside generation of a set
of random numbers with an arbitrary
distribution function

Suppose we want to choose a set of random numbers
which have some given distribution function. Let P(v) be
the desired distribution. Let us assume that we have a
random number generator which gives random numbers
uniformly distributed between 0 and 1. Let y be a random
number between 0 and 1 and P(y)=1. Choose v to be a
function of y,

space where there are few particles. For example, it can-
not represent what is happening in the tail of a Maxwelli-
an distribution. More importantly, there may be regions
of phase space where the density of particles is very low
but which play a critical role in the phenomenon going
on—as, for example, an instability caused by a low-
density highly energetic beam passing through a plasma.
Properly to model such situations, whether by using a
random start or a quiet start, we need another method.
One method is to use electrons of different charges and
masses but with all particles having the same charge to
mass ratio (Denavit, 1972; Denavit and Kruer, 1971;
Kainer et a/. , 1972). That is, we choose groups of parti-
cles with charges

U =v(y), (149}
6'~ = —are (151)

such that when U is computed from this relation from a
random set of y's the v's will be distributed according to
the desired distribution function. We have

P(v)dv =P(y)dy,

Pl. v(y) l dy =P(y)dy =dy,dv

and masses

m;=a;n
but with

teal )

(152)

(153)

=P(v),
dv

(150) For a plasma made of such groups of particles we have a
Vlasov equation for each group,

y(v)= f P(v)dv,

v =y '(U) .
Bf; Bf; Bf;

m Bv

Geometrically the situation is shown in Fig. 22. One
computes a random number y and from this graph (or by
interpolation from a table in the computer} computes the
corresponding v. The v's have the desired distribution
function.

P' E= —4~e ga, ff,d'v —no (155}

where no is the neutralizing background ion density. Let
us now define a composite distribution function I;

B. Electrons of many sizes, charges, and masses

Our above method of generating a quiet start obviously
cannot give a representation of those regions of phase

F(~,v)=pa;f;(~, v) .

Multiplying Eq. (54}by a; and summing over i give

(156}

ga, +v.
B)r B~

e df;
m Bv

BF BF e BF+v. - ——E =0, (157)
Bt B~ m Bv

V E= 4vre f—F(~,v)d v —no (158)

~l I
I

1 I

FIG. 22. Method for generating a set of random numbers with

a given probability from a set of random numbers uniformly
distributed between 0 and 1.

We thus see that F satisifes the usual Vlasov equation.
It is thus possible to put a large number of particles

with small charge and mass (small a) in the regions of
phase space where we want a large amount of detail and
to use a small number of particles with large charge and
mass (large a) in those regions of phase space where high
resolution is not required. This can be done whether we
use a random start or a quiet start.

One problem does arise from the use of particles of dif-
ferent a' s. Collisions between particles tend to transfer
energy from the heavy particles to the light particles. Sta-
tistical mechanics tells us that for thermal equilibrium all
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UT

U
(159)

where n is the particle density that goes with the dom-
inant species (that containing the major part of the mass
and charge), A, D is the l3ebye length which goes with the
dominant species, vT is the thermal velocity of the dom-
inant species, U is the velocity that is characteristic of the
lighter species (species of interest which is assumed to
have the higher velocity), and 8 is the collisional reduc-
tion factor due to the finite size of the particles.

particles have the same thermal energy so that the lighter
particles will end up with much higher velocities than the
heavy particles and so the energy per unit mass will in-
crease for the light particles. Gf course collisional effects
are not included in the Vlasov equation, and so this is a
higher-order effect. Not only is there energy transfer due
to encounters between light and heavy particles, but the
light particles are also scattered by the heavy ones, and
this is the more critical process. The scattering cross sec-
tion for light particles by heavy particles depends essen-
tially on the charge of the heavy particle and the velocity
of the light particles relative to the heavy particles
(Spitzer, 1956); the ratio of the charge to mass for the
light particles also enters. Using analysis similar to that
described earlier, we find the scattering time for a two-
dimensional model to be given by

'3

Here n and v are the perturbations in the number densi-
ty and velocity of the oth beam, while N and V are the
corresponding unperturbed quantities. We look for solu-
tions of the form

A(x, t)=He" ' (163)

where 3 is any one of the quantities n, U, or E. Substi-
tuting this form into the equations of motion gives

i(cu —kV )u
eE

(164)

(co —kV )n —kN u =0, (165)

and

ikE =4vregn (166)

Eliminating E and V yields

(co —kV ) n
4m.e N

n
m

(167)

gn =1 (168)

[this quantity cannot be zero for that would imply
E(k)=0]. With this normalization we find for n, u

and E

Since the amplitude of the wave is arbitrary, the n may
be normalized, so that

C. Instabilities in quiet starts 4me 1

km (co —kV )
(169)

BU BU eE
(160)

and

Bn BU Bn
+N — + V =0,

Bt Bx Bx

BE 4negn- .
Bx

(161)

(162)

Whenever we start the system out with a quiet start we
are imposing on it an order (greatly reduced entropy). All
physical systems left to themselves come to thermal
equilibrium given sufficient length of time. Thus if the
system starts with a quiet start, this property will
deteriorate with time and the system will become noisy.
This property is in fact manifest through instabilities of
the initial well-ordered (quiet start) system. This property
is illustrated by a simple model (Dawson, 1960): a one-
dimensional model of a plasma made up of a large num-
ber of discrete electron beams propagating through a
fixed uniform neutralizing ion background. Here we shall
want to investigate the small-amplitude longitudinal oscil-
lations of this system. We assume the beams are infinite
in extent and have well-defined velocities (no thermal
motion within an individual beam). We take the streams
to propagate in the x direction and the waves also to pro-
pagate in this direction. The linearized equations of
motion for this system are

4~e2
m (~ —kV )2

(170)

4nei
k

(171)

Substituting n into the normalization conditions gives
the dispersion relation

4m.e 2
CT =1.

(cu —kV )
(172)

If the left- and right-hand sides of this equation are
plotted as functions of co for fixed k we get a diagram like
that shown in Fig. 23. The sum becomes infinite every
time one of the denominators goes to zero. Each of the
points where the sum equals 1 is a root. These are all real
roots of the dispersion relation. There are in general also
complex roots of the dispersion relation. There are in fact
twice as many roots as there are beams, as can be quickly
seen by writing the dispersion relation as a polynomial of
order 2M, where M is the number of beams. Each root
gives a normal mode of the systems. There are twice as

many modes as beams. This is just the number of modes
required if the motion is to be expanded in terms of them,
because it gives us 2M independent amplitudes to specify,
and there are 2M independent constants, n (k) and u (k).
There are M degrees of freedom for each k, and two con-
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FIG. 23. Dispersion relation for a set of discrete beams.

stants are required per degree of freedom to specify the
state of the system; the 2M amplitudes supply just this
number. There is an orthogonality relation which can be
used to find the amplitudes of the modes in terms of the
n and v; this can be found in Dawson (1960).

If we use a large number of beams to approximate a
continuous distribution function, then, in general, the vast
majority of the modes are unstable. This can be seen by
dividing the distribution into a large number of beams of
uniform spacing 5v. In this case X is given by

N =f(o5v)5v,

and the dispersion relation becomes

4ne ~" f(o5v )5v

(a) —ko5v)

(173)

(174)

For a root between real co =kcr5v and k(o+1)5v there is
one term in the sum that is at least as large as

f(co /k )5v f(co /k )

k 5v k 5v

This term becomes large as 5v becomes small, and so the
contribution of this term itself makes the sum greater
than 1, and thus the roots in the vicinity of this co must be
complex. It can in fact be shown (Dawson, 1960) that the
imaginary part of co is given by

is sufficient for many practical problems.
The well-ordered beams show recursion phenomena

(Denavit and Kruer, 1980; Canoso et al. , 1972) (re-
currence of the initial state). This can largely be avoided
by destroying the perfectly regular velocity spacing
(Denavit and Kruer, 1971)—i.e., by using nonuniformly
velocity spaced beams. This also reduces the growth rate
of the instabilities, and even more can be accomplished by
using different velocity points in different spatial cells-
but ultimately the tendency of the system to thermalize
takes over. However, there are cases where we would like
to follow the evolution for longer times or to use quiet
starts for two-dimensional problems, in which case the
situation can be worse. Denavit (1972) has developed a
method of periodically damping the fine-scale beam insta-
bilities while retaining any large-scale instabilities the sys-
tem shows.

The quiet start technique appears to be a powerful
method for application to spatially uniform systems.
However, it is much more difficult to apply to nonuni-
form systems, and no general prescription exists for its
application here. There are some general methods which
greatly reduce noise, such as requiring that there is no net
current in regions of a certain size. However, it is clear
that this is an area of model development which deserves
a great deal more attention.

V. SOME EXAMPLES GF PLASMA SIMULATION

We will now look at a number of examples of plasma
simulations. They represent only a minute sample of
what can be found in the literature. However, I hope they
will be representative of the sorts of things that can be
done with computer simulation. I shouM perhaps make
the point that both computers and the models used to
simulate plasmas are continually increasing in power, and
so more complex problems are continually becoming pos-
sible.

A. Tests of the statistical theory of plasrnas

k5v k 5vm
ln

2m' 4rre f(co/k)
(176)

r =(5—10)X
k5v

1

k Vg5v
ln

COp

For wavelengths kA,D —1 and 5v =vr/M we get

r =(5—10)X M2m 1

co& ln.M
(178)

For I& 10, ~'s of several hundred mz
' are possible. This

Thus as 5v goes to zero, the growth rate also goes to zero
but slower than 5v.

The above instability implies that small perturbations
of the well-ordered beam system will grow and ultimately
destory the order. At most, the quiet situation can be
maintained for S—10 growth times or for times

Owing to the long-range nature of the electrical forces
between charged particles, the statistical mechanics of
plasmas is a subtle physical theory, particularly when its
nonequilibrium aspects are considered. Experimentally,
many of the aspects of the theory are difficult or impossi-
ble to test. Computer simulation provides an ideal means
for testing many of the details of this theory. A number
of the calculations that will be reported in this section
were carried out on the sheet model of a plasma (Dawson,
1962a, 1964). For one-dimensional electrostatic models it
is possible to solve numerically for the motion of point
particles without the use of a grid because of the simplici-
ty of the force law between particles; it is independent of
the distance of separation and simply jumps by +4mo. &a.2

as the sheets cross each other, as Eq. (3a) says. Because of
this, the exact dynamics of such systems can be followed
to within machine accuracy. One such code, written by
C. Smith and J. Dawson (1970), conserved energy to one
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part in 10' over long periods of time. Because of compu-
tational speed such models are not in much use at the
present time, but they do provide a benchmark, of the
most accurate particle models which exist, against which
other codes can be tested. Details about such models can
be found in Dawson (1962a, 1964), and many of the diag-
nostic techniques are standard.

E(x) ='-' 4

x

est sheet-&

FIG. 24. Wake of plasma oscillations following a fast sheet.

1. Kinetics of a one-dimensional plasma

As we have discussed earlier, collisional phenomena
play an important role in computer models. Detailed
studies have been made of collisional phenomena for one-,
two-, and three-dimensional models. (Dawson, 1962a,
1964; Okuda and Birdsall, 1970; Langdon and Birdsall,
1970). Here we will examine collisional phenomenon in a
one-species one-dimensional plasma. Such a plasma con-
sists of charge sheets (say, with negative charge) moving
through a fixed neutralizing background. The charged
sheets are constrained to be perpendicular to, say, the x
axis and allowed to pass freely through each other.

2. Drag on a fast particle

A fast particle (sheet) moving through the plasma with,
say, U & UT (UT is the thermal velocity) excites a plasma os-
cillation (Cherenkov emission of plasma oscillations,
kV=co~) and, by this process, is slowed down. It is also
accelerated by the random electric fields produced by all
the other particles. By averaging over a large number of
fast particles the random accelerations average to zero,
but the systematic effects due to the excitation of the
wave remain and can be measured. The experimental
points are obtained as follows. Particles are selected with
velocities lying close to the desired velocity. Their veloci-
ties are then recorded at a series of later times
H. ,2r,3r, . . .) later, and the average velocity for the group
is found.

Let us consider the drag on a very fast supersonic sheet
in more detail; for the sake of argument we shall take the
velocity of the sheet to be positive. The plasma ahead of
the sheet can have no knowledge of its approach; thus
there can be no disturbance and hence no electric field
ahead of the sheet. However, in going from the negative
to the positive side of the sheet the electric field must fall
by 4mo ( —o. is the charge per unit area) by Gauss's law,
as is shown in Fig. 24.

The average electric field E felt by the sheet is
E= +2m. o., and its deceleration is given by

2

(179)dt m 2n

where n is the density of charge sheets. The drag is thus
independent of the velocity and is due to the excitation of
the plasma oscillation by the sheet.

Figure 25(a) shows a plot of the average absolute velo-
city as a function of time for two groups of fast particles
for a thermal plasma. The average initial velocities of the

two groups were 2.35UT (circles) and —2.35UT (triangles).
The groups were chosen so that their members had initial
velocities within a small velocity intervals about +2.35UT.
These particles were then followed in time, and the aver-
age velocities of the two groups (as functions of time)
were found. The results are for a 1000-sheet system with
10 sheets per Debye length. The straight line is the curve
predicted by Eq. (179).

If the system (and hence the code) is time reversible, the
drag in the negative time direction should be the same as
in the forward time direction, i e., for times
—~,—2~, —3v, . . ., the average velocities should be the
same as for times v.,2~, 3~,. . .. This was found to be the
case and is illustrated in Fig. 25(b).

This figure is a similar plot to that of Fig. 25(a) except
that in this figure a group of particles with average veloc-
ities of 4UT were traced both forward and backward in
time. Similar averages to those computed for Fig. 25(a)
were computed here. The data are from a 200-sheet sys-
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FIG. 25 (a) The slowing down of fast particles in a one.
dimensional plasma. (b) The slowing down of particles both
forward and backwards in time for a thermal plasma.
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tern with 4.5 sheets per Debye length. The straight line is
the theoretical prediction from Eq. (179).

3. Drag on a slow sheet

dv ~sr ~p"
dr 6v 2 iiA, D

(180)

Figure 26 shows a comparison of theory and simulations;
a group of test particles with velocities initially centered
about 0.56UT were followed in time in the same manner as
was done for the fast particles. The system was a thermal
one containing 1000 sheets with 10 particles per Debye
length. The straight line is the theoretical prediction
given by Eq. (180). By comparing expressions (179) and
(180) we see that they would give the same acceleration
for a particle at 2.4UT or just about where we expect a
particle to be supersonic.

4. DiffUsion in velocity space

For a slow sheet, the drag is not due to the excitation of
a wave, but is due to the reflection of particles of nearly
the same velocity by the repulsive electric field surround-
ing the test particle. If the particle is moving through the
plasma, it overtakes more particles than overtake it, and,
as a result, it is slowed down. It is also randomly ac-
celerated by the random fields associated with the other
particles. These random effects again are removed by
averaging over many particles, and the drag can be Inea-
sured just as was done with a fast particle.

For low velocities the drag on a sheet should be propor-
tional to its velocity. The kinetic theory of plasmas
(which will not be presented here) predicts that the aver-
age slowing down of a slow test particle is given by (Feix
and Eldridge, 1962)

collisions are weak the drag and velocity diffusion togeth-
er determine how the velocity distribution function
evolves through the Fokker-Planck equation,

Bf 8 1 8
A(v)f(v) —— B(v)f(v) =0 .

Bt BU 2 BU

Here A(v) and B(v) are the rate of slowing down and the
rate of spreading in velocity space for particles with velo-
city U. They are given by

A(v)= lim fdv'(v' —v)P(v
~

v', ht),

orat

B(v)= lim Jdv'(v' —v)~P(v
~

v', ht),

orat

(182)

(183)

where P(v
~

v', b, t) is the probability that a particle which
has velocity U at t =0 will have velocity U at t =At. For
a thermal plasma df /dt must be zero, and A (v) and B(v)
are related through the Einstein relation

A(v) —— + 2 B(v)=0,1 BB(v) v

2 Bv
(184)

5. Thermalization of test particles

The results we have just obtained give the behavior of
test particles in a one-dimensional plasma. From these re-
sults we can find a characteristic time for their thermali-
zation with a background thermal plasma. We see from
the drag on a slow sheet that its mean velocity decays ex-
ponentially with a time constant ~:

which for B independent of v (low velocities) reduces to
B (v) = (2vT/v)A (v). For the case shown in Fig. 26,
—vB/A for small velocities was found to have the value
(2.2+0.2)v T.

cozr ——6(2/m )'~ ni, D 4.8n A,D . —— (185)

0,60

V

Vt

l

& =1000
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~= y&Q

v, =)

0.5

A quantity which is closely related to the drag on a
sheet is its diffusion in velocity space. For plasmas where

This is also the time required for the particles to spread in
velocity by the thermal velocity due to velocity diffusion
so we can consider this to be a thermalization. Of course,
fast particles require a time

U
COp 'T =271 A,D

UT
(186)

to be stopped. This is reminiscent of but less extreme
than the stopping time of fast electrons in laboratory plas-
mas (proportional to v ). According to Eq. (185) the ther-
malization time or collision time is proportional to the
number of particles in a Debye cloud; this is as we found
to be the case in our earlier estimate of collision frequen-
cies in two- and three-dimensional plasmas.

05
6. Thermalization of a one-dimensional plasma
to a Maxwellian

FIR. 26. Average slowing down of a group of slow sheets.

We have just seen how a test particle (or group of test
particles) behave in a one-dimensional plasma. One may
ask whether test particles mirror the behavior of the
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whole plasma. It turns out that they do not, due to a sub-
tle cancellation. The observation of this behavior is a
sensitive test of the model as well as the kinetic theory of
plasmas.

One may apply the kinetic theory of plasmas to these
one-dimensional models (Feix and Eldridge, 1963). The
theory, an expansion in (nA, D) ', to first order predicts
that for all stable plasmas, the diffusion in velocities ex-
actly balances the drag, and so the Fokker-Planck equa-
tion for a one-dimensional plasma predicts that all stable
distributions are static and there is no evolution towards a
Maxwellian [for a Maxwellian this cancellation always ex-
ists and is the basis for the Einstein relation, Eq. (184)).
One may give a simple physical argument why this
should be so. Two particles colliding in one dimension
will have velocities v~ and vq before the encounter and v&

and v2 after the encounter. Two quantities are conserved
for an isolated encounter, the energy [(m/2)(v i+U2)] and
the momentum [I( v i +U2 )]. This leaves only two
choices for v& and v2, either v&

——v~ and v2 ——v2 or v&
——v2

and v2 ——v&. In either case, the number of particles with a
given velocity is not changed. One might expect that in a
plasma this simple two-isolated-particle-collision argu-
ment might not apply, since many particles are interact-
ing with each other all at the same time due to the long
range of the forces. The explanation is that the theory as-
sumes that all interactions are weak, which means that
even though there are many simultaneous collisions, they
do not interfere with each other so that their effects are
simply additive; thus the theory predicts no change in the
distribution function. Another aspect of the theory is
that it includes the emission and absorption of waves
which can take place at quite different locations. Here
the cancellation comes about because the wave simply
acts as an intermediary for the exchange of energy and
mornenturn between two particles; one emits the wave,
while the other absorbs it.

At this point we might make a slight degression. If we
had been considering one-and-one-half —or one-and-two-
halves —dimensional models (motion parallel to the sheets
as well as perpendicular), then through encounters parti-
cles can exchange the normal components of their veloci-
ties, while the components parallel to the sheets are left
intact. If now some mechanism exists for exchange of en-
ergy between perpendicular and parallel motions (such as
gyration about a magnetic field parallel to the sheets),
then mixing of these motions occurs and real thermaliza-
tion takes place on roughly the time scale estimated by
Eq. (185).

We might comment that the conventional kinetic
theory of collisional relaxation involves only two particle
encounters. However, in the computer simulation three,
four, and more particles are simultaneously interacting
and the interactions do in fact interfere with each other.
Such interactions will enter kinetic calculations as
higher-order terms in (nAD) '. Because s, uch encounters
require many more than two parameters to specify the
state of motion of the particles involved, conservation of
energy and momentum do not require that they produce

no change in the distribution function, and in general they
will result in a change. Vfe shall see shortly that the re-
laxation rate of a one-dimensional plasma is proportional
to (nAD,), i.e., due to three particle encounters. The
change has been checked on the sheet model and the actu-
al rate of relaxation to a Maxwellian has been determined
(Dawson 1964). The problem that was. investigated was
that of the time development of a velocity distribution
which initially had a square profile as shown in Fig. 27.

Systems containing 1000 sheets were used; a range of
values of vo were used so as to determine the dependence
of the time evolution on the number of particles per De-
bye length (Ao —(u )'~/co~, (U ) =Uo/3). During the
first plasma period, Debye-shielding clouds develop
around each of the particles; the formulation of these
clouds requires some energy and as a result there is a
short time (of the order of co& ') of rapid adjustment
which rounds off the corners of the distribution. The
magnitude of this adjustment is proportional to (nA, D)
after this initial adjustment f (U) evolves very slowly.

The distribution function is obtained as a function of
time by the method described earlier; short time averages
of the distribution can be compared. Figure 28 shows

f (U) for n AD ——2.5, 5, 10, and 20 at times cozt =6, 21, 41,
and 81, respectively, after the initiation of the experi-
ments. Except for the first of these, the times correspond
roughly to the time required for a group of test particles
in a thermal plasma to relax to a Maxwellian as computed
in the preceding section. As can be seen, f (U) tends to re-
tain its initial shape as nA, D increases, even with the sam-
pling times chosen proportional to n A,D. Hence the relax-
ation to a Maxwellian is slower than (nAD) ', in fact,
most of the changes shown in these figures occurred in
the initial transient.

By following the evolution of the system for much
larger times one can observe the actual relaxation to a
Maxwellian, as shown in Fig. 29.

The rate of relaxation was obtained by computing f(0)
and plotting it as a function of time; it gradually drifts up
to its Maxwellian value. Figure 30 shows a plot of f(0)
versus time for nAD ——7.5 (ea, ch point being a short time
average). The straight line through the points is obtained
from a least-squares fit of the data. The time at which

f (O, t) intersects f (0) for its ultimate Maxwellian is taken
to be the relaxation time. A plot of such relaxation time
is shown in Fig. 31.

FIG. 27. Initial velocity distribution used to check thermaliza-
tion in one dimension.
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from a very subtle balance, and thus the calculation pro-
vides an important test of the kinetic theory of plasmas.
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FIG. 28. Distribution functions found for various numbers of
particles per Debye length after initial transients have died out.

The relaxation time as determined from Fig. 31 fits
nicely to

&=10(nA,D) (187)
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f {V)

40

III&t = 9 t =100

This indicates that the simultaneous interaction of three
particles gives rise to the relaxation, since that due to two
particle interactions would be proportional to n A,D.

One interesting point which was found was that the
distribution function undergoes rapid random fluctua-
tions about the mean distribution which gradually drift
towards a Maxwellian. The fluctuations in the number of
particles in a small velocity interval had a Gaussian prob-
ability profile with magnitude V'f(U)b, v. The rapid fluc-
tuations result from the constant exchange of energy be-
tween the electric field and the particle kinetic energy.
Although this exchange is constantly going on, it is such
that it produces very little systematic change. It shows
that the virtual cancellation of collisional effect results

7. Longitudinal bremsstrahlung in a one-dimensional
plasma

When an electron encounters an ion, it is accelerated
and the accelerated electron emits electromagnetic radia-
tion. %'hen an electron encounters another electron, the
two electrons suffer equal and opposite acceleration and
the radiation fields approximately cancel each other.
However, the cancellation is not complete but is simply
reduced by the factor U /c (the electrons emit quadruple
radiation. )

When two particles encounter each other in a plasma,
they can emit not only electromagnetic waves, but also
longitudinal plasma waves. Only the longitudinal wave
emission is already contained in electrostatic particle
models; it can in fact be seen in the one-dimensional sheet
model we have been explaining, and it provides one of the
mechanisms for relaxation to a Maxwellian there (two
particles and a wave being involved means that the out-
come of the interaction is not frozen by conservation of
energy and momentum). A theory for the emission has
been developed (Birmingham et a/. , 1966), the theory has
been applied to the sheet model, and the results were
checked by numerical simulation (Dawson et al. , 1969).
Figure 32 shows a plot of the emission versus wave num-
ber. The curve is that predicted by theory. The points
were obtained from a numerical experiment on a 1000-
particle one-species sheet system with nA, D

——7.5. The
emission is obtained from the spreading of the amplitude
and phase of the waves for a large number of trials (simi-
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FICx. 31. Thermal relaxation times for a one-dimensional plas-
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lar to velocity diffusion for a particle). The agreement is
quite good, the emission varying over 4 orders of magni-
tude.

Closely related to the emission of waves due to particle
encounters is the absorption of waves by such encounters;
they are in fact related by the Einstein relation. Figure 33
shows a plot of the damping tirade for waves versus wave
number (number of waves which fit in the system). The
system was the same as that used for the emission studies,
and the damping time was determined by computing time
correlation functions for the waves. The solid curve is the
theoretical one and is the sum of the two dashed curves
marking collisional damping and Landau damping. The
collisional damping curve is obtained from collisional
theory (Dawson et al. , 1969); the curve labeled "Landau
damping" has its origin in the absorption of energy by
particles moving at the phase velocity of the wave rather
than in collision.
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FIG. 32. Emission vs wave number for a one-dimensional plas-
ma.

One of the fundamental problems of plasma physics is
that of the diffusion of a plasma across a magnetic field.
Experimentally one rarely finds diffusion in accordance
with that predicted by the theory of binary encounters be-
tween charged particles, although on occasion the theory
does predict the correct result. In general, there is no
satisfactory theory which can be applied to general experi-
ments; this appears to be a consequence of transport asso-
ciated with collective motions in the plasma. As such col-
lective motions can be associated with turbulence generat-
ed by instabilities or the means of plasma production; it is
not surprising that plasma transport across the magnetic
fields has proved such a difficult and elusive topic for
both experimental and theoretical plasma physics. It
turns out that collective motions can dominate plasma
transport for even thermal plasmas, and this phenomenon
can be studied by computer simulation. The phenomenon
responsible is convective or vortex diffusion. The
phenomenon shows up particularly clearly on two-
dimensional models (Okuda and Dawson, 1972; Okuda
et al. , 1972). I shall confine my remarks here to these re-
sults, although extensive discussion of three-dimensional
results can be found in the literature. There is also con-
vective transport of electrons caused by low-frequency
ionic motion such as lower hybrid waves. Some of this
work can be found in Okuda and Dawson (1972, 1973b,
1973(c), Okuda et al. (1974), Chu et al. , (1975), and
Kamimura and Dawson (1976); Dawson et al. (1976)
summarized a considerable fraction of this work. The re-
sults of these simulations can be understood in terms of a
relatively simple approximate theory which I shall present
first.

a. Theory of diffusionin two dimensions

We consider a two-dimensional plasma of charged rods
parallel to 8, which we take to be the z direction; and we
allow the rods to move only in the x,y direction (2D
models). The more general form of the model (two and
one-half dimensional), where 8 need not be aligned with
the z axis (although the rods are) and a velocity in the z
direction is allowed is shown in Fig. 34(a). We include
only electrostatic forces between the charged rods, we
consider the plasma to be doubly periodic of size L, and
the plasma is assumed to be a thermal one—i.e., there are
only thermal fIuctuations in it. As we shall see, the col-
lective transport is due to convective motion illustrated in
Fig. 34(b).

We can Fourier analyze this motion and write

0,02— Collasionol
+ Theory

v(~)=gvT(k)e' '",
k

(188)

0 I I

0 2 4 6 8 l0 l l l l 20Modenumber
4.25 570SS2304274 VJV7

kX[kX(v)(~)]e
VT

I- k 2
P' (189)

FICx. 33. Damping rate vs wave number for a one-dimensional
plasma.

Associated with this flow is an electric field (due to space
charge)
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& E'(k) ) /S~ =T!2L'[1+(4~pc'/B')] .

The mean-square velocity is thus

&Ur(k)) =4~Tc /L B [1+(4rrpc /B )] . (196)

We now estimate the diffusion caused by this flow as fol-
lows. The flow causes the particles to execute a random
walk in space. As time progresses, the flow will change in
a random manner as the eddies grow and decay by ther-
mal fluctuations and viscous damping. There will be
some correlation time or coherence time for each k; call
this time r(k). During a coherence time the particle is
displaced a distance vz (k)r(k}, and its mean-square dis-
placement is &vz(k)r (k))=&vT(k))r (k). The coher-
ence time used here of course should be that seen by the
particle.

+
coP +

))

O

+
)l

+ +
Cl++ 1'

Decomposition of
flow into

vortices

&~ '(k)) =-&v', (k))r(k)r . (197)

Summing over all modes gives the mean-square displace-
ment as

&~ '&=g&v'(k))r(k)r .
k

(198)

During a time r the particle will make t!r(k) such ran-
dom steps, and thus its mean-square displacement will be

FIG. 34. (a) Two-and-one-half —dimensional plasma model. (b)
Shear flow in a plasma and its decomposition into vortices.

[E(k)X&]c/B'= vT(k) .

There is an energy associated with the flow given by

W, (k) = —,
'

p& v', (k) M, ',

(190)

(191)
p ~i~i

where p is the total density of all species of particles.
There is also an energy stored in the electric field

W~(k) = &E'(k) )L'/8~ . (192)

(193)

Now according to equilibrium statistical mechanics, each
Fourier mode should have energy T/2 (T is the tempera-
ture measured in energy units). Then we have

Here & ) implies an ensemble average; adding these two
contributions, we get for the total energy of the distur-
bance

8'=[p&vr(k))/2+&E (k))/Sm. ]L

=[&E'(k})/Sm')(1+4mpc /B )L'.

Substituting in & vr(k)) from Eq. (196) gives

4m' t
L B [1+(4mpc /B2)]. (199)

Converting from a sum to an integral and using the fact
that the density of modes is L k dk/2m give

r

277p(B /4''pc + 1 ) min

(200)

where k;„ is the minimum value of k for which we can
apply the theory —i.e., k;„=2m /L and k,„ is the max-
imum value of k (k,„=minIA, D ', p, 'I), where A,D is the
Debye length and p, is the ion cyclotron radius.

To complete the treatment we need a method of finding
r(k). Now the convection motion which causes the dif-
fusion is also destroying the existing convective flow; the
shearing motion in one mode is tearing up that due to
another mode. This is the classical picture of turbulence
in which eddies destroy one another. We therefore try the
assumption that the hfetime is determined by the dif-
fusion, or

or

[&E (k))/Sm][1+(4npc /B )]L =T/2

A more rigorous treatment predicts

(194) r(k) =(k'D }-' .
Making this substitution gives

D =
I T/2~p[1+(B /4npc )]Iln(k, „/k, „) .

(201)

(202)

(E ( k }) /8n. == T 1 1

2I. 1+(4m)oc /8 ) 1+k A,
2 2 2

which makes important corrections for k A, D ~ 1.

A more complete treatment can be found in Qkuda et al.
(1972) and Dawson et al. (1976).

While the above theory applies only to two-dimensional
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plasma models, similar effects can take place in the
three-dimensional plasmas. Indeed, simulations of three-
dimensional plasmas have shown similar effects although
the results there depend on the magnetic field line
topology (whether the field lines are closed or open). A
discussion of this can be found in Dawson et al. {1976).
A number of experiments have found evidence of convec-
tive diffusion (Drake et a/. , 1977; Navratil and Post,
1977; Tamano et al. , 1974). Here it is not my purpose to
discuss this fascinating problem but rather to give some
examples of what can be learned from computer simula-
tion; I shall therefore restrict myself to the two-
dimensional case and refer the interested reader to the
references given.

While the discussion here is applied to plasmas, it is
clear that similar convective transport in neutral fluids
should also take place; indeed for liquids estimates indi-
cate that eddy transport is comparable to molecular trans-
port.
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The simulation of plasma diffusion
across a magnetic field (two dimensional)

We consider the case of a two-dimensional electrostatic
plasma model with a fixed B field parallel to the charge
rods; the model has been described earlier. The plasma is
taken to be thermal and doubly periodic. We investigate
diffusion of the guiding centers (centers of gyrations) for
a set of test particles (roughly 10% of the particles). By
plotting the mean-square displacement versus t and taking
the slope at large times, we obtain the diffusion coeffi-
cient, D=lim, (b,~ )lt. An example of such a mea-
surement is shown in Fig. 35. Some results from the
simulations are shown in Figs. 36 and 37. These results
are for ion-to-electron mass ratios of 1.25 and 4. In simu-
lations, small ion-to-electron mass ratios are often used,
so that the computer does not spend a lot of time moving
electrons, while the ions essentially do not move. In gen-
eral, the physics of plasmas with reduced mass ratios is
similar to that of real laboratory plasmas, and if one
understands the physics of the processes, one can extend
the results with confidence to plasmas with more realistic
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FIG. 36. Diffusion rate vs ~,, ' for three different plasma con-
ditions.

mass ratios. The philosophy is quite similar to extending
the results of small-scale laboratory experiments to much
larger systems.

Figures 36 and 37 show plots of the diffusion coeffi-
cient versus co, for two different size systems, for dif-
ferent numbers of particles per Debye square, and for two
ion-to-electron mass ratios. From these figures it is clear
that there are three regions of diffusion. At low values of
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the magnetic field, the diffusion follows the classical dif-
fusions predicted from binary collision theory; it is pro-
portional to 8 . As the field is increased, the diffusion
rate deviates from that predicted by this theory and be-
comes almost independent of B. At still higher magnetic
fields the diffusion rate appears to be pmportional to
g —1

Since it is the electric rield fluctuations which cause the

diffusion, a quantity of considerable theoretical interest is

the correlation time for the electric field given by

T
C(r ) = lim —I E(k, t+ ~)E(k, t )dt .

T ~ T
(203)

Of course for the simulations the integral must be re-

placed by a summation and the upper limit, ap, must be

replaced by the maximum allowed by the calculation.
Qf particular interest is the correlation time ~„or

characteristic damping time for C(r). A plot of r vs k is

shown in Fig. 38. As can be seen, the correlation time fits

very well with the law ~~k . In Fig. 38 there is also a

plot of r = (k D) ' (the solid curves): This is the value of
~ which would be predicted by the simple theory present-

ed. As can be seen, this time is shorter than that actually

found for the case nA, D
——16. Since in the theory we as-

sumed that the correlation time was (k D ) ', one may

ask how it is possible for the theory to explain the dif-

fusion and not predict the proper lifetimes for the fluid

fluctuations. The answer is that the quantity which

enters the theory is the correlation time as seen by the

diffusing particles, and not the intrinsic correlation time

for the mode. We see that the correlation time as seen by
the particles, (k D) ', can be much shorter than this in-

trinsic time. This means that for this case the electric
field fluctuations exist for a long time, while the particles
diffuse through them. An analogous effect occurs in the

case of collisional diffusion damping of the field fluctua-

tions. Here collisional viscosity damps the shear flow as-

sociated with the motions. Particle collisions give rise to
a diffusion of momentum with a characteristic flow

damping time of ~ '=k p~v, where pI is the ion Larmor

radius and v is the ion collision frequency. Now paj. ticle
collisions dissipate only the momentum stored in the par-
ticles, but there is also momentum stored in the elec-
tromagnetic field, (EXB)4m.c, which is not directly dissi-

pated; the field momentum is transfered to the particles
and helps sustain the motion. Collisional theory (Okuda
and Dawson, 1972) predicts a damping or correlation
time of

'=k ptv/(1+B /4mpc ) . (204)

Here also the flow can be maintained for long times com-
pared to the time required for the particles (particle
momentum) to diffuse through the eddies. If we assume
that the predicted correlation time [r=(k D) '] should
be corrected by the factor (1+B /4m. pc ), then the ob-

served correlation time and diffusion rates are consistent
with those shown in Fig. 38.

c. Oependence of diffusion rate on particles' energy

From our above picture of test particle diffusion in a.

two-dimensional plasma model it is clear that there
should be a dependence of diffusion rate on particle ener-

gy. This is because the diffusion is associated with EXB
velocities associated with random E field fluctuations; en-

ergetic particles have large orbits and hence in the course
of their motion average the electric fields over regions of
the size of their orbits, while low-energy particles more or
less feel the local electric fields. This averaging effect is

illustrated in Fig. 39. Simulations have been carried out
which demonstrate this effect, and a rough theory has

been developed which explains the observations (Naitou
et al. , 1979).

Some results of energy-dependent test particle diffusion
from simulations on a two-dimensional electrostatic parti-

cle model will be presented here. The system was doubly

periodic, L„&L~=64&(64; the number of electrons was
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FIG. 38. Plots of ~,(k) vs kA, D for two different plasma condi-
tions.

FICi. 39. Illustration of how the different size particle orbits af-
fect the average electric field seen by a particle.
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1 1 1

65, 536, A,D ——2; particle size a=1, ~, /m& ——1, —,, —,, —,.
Figure 40 shows the mean-square displacement of the

test particle guiding centers versus time for a number of
different velocities. Clearly the diffusion rate decrease
rapidly with increasing velocity. Figure 41 shows a series
of plots of observed test particle diffusion rates versus
velocity for a number of different magnetic fie1d
strengths. In Fig. 41 the circles show the initial velocities
for the test particles, and the point of the arrow shows
the change in their mean velocity during the measure-
ments. The squares show diffusion rates when B is tilted
with respect to z, so that there is a component of k paral-
lel to B and hence shorting of the electrostatic fields asso-
ciated with the convective motions; the square points
agree quite well with binary collisional theory. The
curves are those predicted by the theory given in Naitou
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FIG. 40. The mean-square displacement of guiding centers for
three groups of particles with different velocities.
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et al. (1979). The strong dependence on velocity is clearly
shown; the agreement with theory is good at low magnetic
fields and becomes worse for high ones.

This tendency of energetic particles to average out tur-
bulent fluctuating fields and hence be better confined has
been observed in many experiments; in such experiments
the turbulence is of course not thermal, but the averaging
effect is almost certainly similar.

The above calculation raises the intriguing possiblity of
plasma diffusion's exceeding heat diffusion (hot particles
left behind); such a situation is of course very advanta-
geous for controlled fusion, where energy confinement is
more important than plasma confinement.

B. Waves and instabilities in a magnetic piasma
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Waves and instabilities in magnetized plasmas play a
central role in much of plasma physics and are particular-
ly important to studies of fusion and space plasmas. We
will present here two examples of simulations done using
a two-and-one-half —dimensional electrostatic particle
model with fixed magnetic field. The model is doubly
periodic and is the model described earlier. The two
problems we shall discuss are the simulations of Bernstein
modes and the simulation of instabilities in a plasma con-
sisting of a cold component plus an energetic componet;
the energetic component has a velocity distribution which
is isotropic about 8, with a mean velocity perpendicular
to B and a thermal spread about this mean which is the
same parallel and perpendicular to 8 (it is a ring in veloci-
ty space).

Bernstein modes

The structure of plasma waves in a magnetic field exhi-
bits a large amount of detail; in particular, it contains
modes at roughly multiples of the electron cyclotron fre-
quency (the Bernstein modes —Bernstein, 1958). These
modes are associated with the electrons being bunched in
phase angle about the magnetic field; m bunches gives the
mth cyclotron harmonic. Because of the space-charge
electric field associated with these bunches, their frequen-
cy is slightly modified from the exact cyclotron harmon-
ics. We will not give the detailed theory here; it can be
found in Bernstein (1958). One particular aspect of the
theory should be mentioned. Consider a disturbance
which initially has the form E=Eosink. ~, where k is
perpendicular to B. Initially this disturbance dies away
due to the phase mixing of the different frequency Bern-
stein modes of which it is composed. However, because
the particles all gyrate at the cyclotron frequency, they re-
turn to their initial positions after one cyclotron period,
and the initial disturbance is essentially recreated. This
also follows from the fact that the Bernstein modes are at
nearly multiples of the cyclotron frequency. The re-
currence is not exact, because space charge alters the fre-
quencies slightly, but detailed calculations indicate it
should be good. Individual Bernstein modes with k 8=0
are predicted to show no damping.

FIG. 42. Comparison of observed frequencies for Bernstein
mode with theoretical predictions (curves).

A comparison between the theoretically predicted fre-
quencies of Bernstein modes and those obtained from
two-dimensional simulations is shown in Fig. 42. The
case shown has the ratio of the plasma frequency to the
cyclotron frequency equal to five', p~ is the electron cyclo-
tron radius; the solid curves are the predictions from
theory, and the discrete points are frequencies obtained
from time spectral analysis of E(kt),

Figures 43(a) and 43(b) show the autocorrelation func-
tion and the power spectrum for a mode for which
co~/co, =5 and kpI ——3.1. The system used for this simu-
lation contained 192' 192 particles on a 64/ 64 grid with
the Debye length equal to one grid spacing. The auto-
correlation function clearly shows the predicted re-
currences at multiples of the cyclotron period
(co~, t =31.4, 62.8,. . .). However, the amplitude of the re-
currences shows a strong damping not predicted by
theory; the calculations indicate this is due to convective
cell damping, as will be noted in the next paragraph. The
power spectrum shows a rich set of peaks at the Bernstein
mode frequencies. There is also a peak at zero frequency;
this is the convective cell mode discussed in the preceding
section which caused plasma diffusion across a magnetic
field. This power spectrum also shows splitting of many
of the lines and subpeaks at co=(n+ —,)co, . None of this
is predicted by theory nor is it understood. There is clear-
ly room for an improved theory here.

The initial rapid decay of the autocorrelation function
followed by the recurrences is predicted by theory. If the
magnetic field is very weak, this decay should agree with
that predicted by Landau damping (Baldwin and Row-
lands, 1966; Landau, 1946; Dawson, 1961) of waves in an
unmagnetized plasma. A comparison between the ob-
served damping and Landau damping is shown in Fig. 44.
The circles in Fig. 44 show the initial damping rate of the
autocorrelation functions; the triangles show the damping
rates of the recurrence peaks. The bars are estimated
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FIG. 44. Early rapid decay rate and long-term decay rate vs k.

2. Instabilities of ring distribution
in velocity space (Ashour-Abdalla et a/. , 1980;
Dawson, 1981)

FIG. 43. Autocorrelation function and power spectrum for
kp, =3.1 and cop/~, =5.

measurement uncertainties.
For large k, short wavelength, the agreement is quite

good; at longer wavelength the damping is stronger than
predicted for the unmagnetized case. Also shown in this
figure is the damping rate of the amplitude of the re-
currence peaks as a function of k. This damping parallels
a damping rate predicted from the diffusion theory
(v =k D) and is about half this value, the difference be-
tween the straight line and the triangles. The convective
motion destroys the coherence of different regions of the
wave. The factor of one-half can again be explained be-
cause the diffusion dissipates the particle momentum but
not the EX8 momentum, just as was observed in the case
of convective cell damping.

Instabilities of nonthermal magnetized plasmas occur
under many circumstances, as, for example, instabilities
due to 'loss cone" velocity distributions in mirror fusion
devices and in the magnetosphere. Simulations of insta-
bilities due to an ion ring in velocity space and with k per-
pendicular to B were carried out some time ago (Lee and
Birdsall, 1979); these are the so-called Dory-Guest-Harris
instabilities (Dory et al. , l965). Here we will look at
some investigations of instabilities associated with an en-
ergetic electron ring in velocity space embedded in a uni-
form cold thermal plasma with the possibility of the
waves propagating at an oblique angle to the magnetic
field. Some critical questions which arise for any instabil-
ity are what limits the amplitude, what the fate of the un-
stable wave is after saturation, and what the instability
does to the plasma. All these questions involve nonlinear
behavior and cannot be answered by linear stability
theory. Often there are nonlinear theoretical treatments,
but these generally involve assumptions and approxima-
tions which it is difficult to prove or disprove. However,
such problems are readily attacked by means of numerical
simulation, and the assumptions and approximations can
be tested. It often turns out that existing theories are
found to fail, but with the insight gained from the simula-
tion we can construct a theory which properly describes
the plasma behavior. It is when used in this manner that
simulation is most powerful. As an example of this, I
summarize briefly some studies of an instability produced
by an electron velocity distribution consisting of a cold
component and an energetic velocity ring, as illustrated in
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Fig. 45. The ring contains 25% of the electrons and is
10 times hotter than the cold electrons; its mean velocity
was varied between three and five times its thermal velo-
city. This situation roughly corresponds to what is be-
lieved to be the situation in the magnetosphere during
periods of the diffuse Aurora. Satellite observations of
electric field fluctuations in the magnetosphere show in-

3 5
tense oscillations at frequencies of —,wk, —,co„etc. at
the time of the diffuse aurora (CJurnett et al. , 1978).

The model used to simulate this situation was a two-
and-one-half —dimensional electrostatic model with a
fixed magnetic field in the x direction —see Fig. 34(a).
The system was doubly periodic, the system size was
64)&64 Debye lengths, the number of particles varied
from 3 & 10 to 5& 10, and the cyclotron frequency was
0.3 of the plasma frequency.

The time development of the total electrostatic field en-

ergy and the kinetic energy of the energetic electrons and
the cold electrons are shown in Fig. 46 for the case in
which the initial ring velocity is five times its thermal
velocity. Figure 47 shows the electrostatic energy versus
time for two modes, one with one wavelength in the x
direction (parallel to B) and two in the y direction (per-
pendicular to B), the other with one wavelength in the x
direction and three in the y direction. These were the two
dominant modes for this case. Figure 48 shows the fre-
quency spectrum for these two modes.

The asymmetry is due to small fluctuations associated
with the initial distribution; waves propagating in one
direction were initially stronger than those propagating in
the other. There are clear peaks at frequencies

3
co =+0.45ro~, =+—,ro, (ro, =0.3roz, ). For other choices
of the ratio of plasma frequency to cyclotron frequency,

5 - 7
we have also seen —,~, and —,co, .

In Fig. 46 we see that the electrostatic field energy
ceases to grow at about ~~, t =50. If one looks at the
velocity distribution function at that time, one finds that
linear theory predicts that the system should be unstable.
Qne also sees from this figure that the cold electrons are
being rapidly heated at this time. The electrons in the en-

Contours of

f(v~, v„)

FICx. 45. Contours of f(Uj, u ~~) for a ring distribution.
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FIG. 46. Time development of the total electrostatic field ener-

gy and the kinetic energy of the energetic electrons and the cold
electrons.

ergetic velocity ring are losing energy at this time, as the
system conserves energy.

There are two important questions which we should
like answers to: (1) What is the saturation mechanism?
and (2) By what mechanism are the cold electrons heated?
A number of saturation mechanisms have been previously
proposed, but none of them fits the facts observed in the
simulations. Among the mechanisms proposed have been
the following: (1) collisional damping of the waves is large
enough to stabilize the wave when the growth rate be-
comes small enough, (2) electrostatic trapping of electrons
upsets the driving mechanism, (3) quasilinear diffusion
stabilizes the distribution, (4) convective cells or vortex
motion scrambles the phases of the particle motions, de-
stroying the coherent wave motion and giving rise to an
effective damping rate equal to the linear growth rate,
and (5) mode coupling scatters energy out of the unstable
modes into stable or damped modes, producing a damp-
ing equal to the linear growth rate. As far as these
mechanisms go, we can list the following objections. For
mechanism (1) the collision rate for the case shown in
Figs. 46—48 was mz, ~, ~j ~ 1500, as compared to a satura-
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tion time of co&, t =50. We have even run situations
where ~z, ~„&& was as large as 20000 with no observed
change in behavior. As far as the electrostatic trapping of
particles in the waves is concerned, the phase velocity of
the waves along the field is 4.5 times the thermal velocity
of the hot particles, and no particles are observed at this
high velocity. With regard to mechanism (3) quasilinear
theory would still predict growth of the waves as linear
theory does; a small amount of spreading of the ring in
velocity space at the time of saturation is observed but not
enough to give stability. For mechanism (4) to be effec-
tive, convective motion must exist and it must be such as
to scramble the coherent wave motion. Convective cells
have zero frequency. From Fig. 48 for the spectrum we
see no strong zero-frequency component for these two
wave numbers. This is true for other wave numbers as

well. There is another point to be made here. The con-
vective motion is associated with the E&& 8 drifts. 8 is in
the x direction and E has only x and y components; E&8
is in the z direction or '.he ignorable direction. Such
motion does not destroy coherence in the x-y plane. We
shall see shortly that the instability does give rise to
enhanced diffusion (displacement of a point on the rods)
in the z direction due to another interesting mechanism,
but this diffusion does not produce any damping. This is
an example of how an effect can be turned off in the
model so that its effect on the process can be evaluated.
It is possible to modify the model so that this mechanism
does play a role; this is done simply by tilting the magnet-
ic field in the x-z direction, so that the EX8 drift has x
and y components. Simulations with such a tilt indicate
that enhanced x-y diffusion may play some role, although
results to date do not indicate that it has a major influ-
ence. With regard to mechanism (5) the scattered waves
should have frequencies co =~&+co2, that is, frequencies
of zero of 3~„and wave numbers with k =kl k2, where 1

and 2 refer to two of the strong waves observed. We have
not observed any effects which can be identified as mode
coupling; for example, if scatttering to undamped waves
were involved, the electric field energy should have con-
tinued to increase linearly with time. If the coupling in-
volves two heavily damped modes, it might not be ob-
served or it might be possible to detect it only with so-
phisticated correlation measurements which have not been
carried out. If this were the case, however, it would have
primarily to dump energy in the cold electrons rather
than diffuse the hot electrons in velocity, as is the ob-
served behavior.

3. The saturation and heating mechanism

The simulations give clear evidence that a type of non-
linear cyclotron resonance process for the cold particles is
responsible for the saturation observed in these calcula-
tions. It is also responsible for the cold electron heating
and it is observed that at saturation the rate of heating of
the cold electrons essentially balances the rate at which
energy is fed into unstable waves.

The mechanism is illustrated in Fig. 49. In this exam-
ple, the unstable waves propagate at shallow angles to the
magnetic field, between 16' and 30. We make a transfor-
mation to a frame of reference moving with ihe phase
velocity of one of the waves along the magnetic field as
shown in Fig. 49. In this frame the wave is static, or
more precisely it is growing but at a relatively slow rate,
and it has no real frequency. The cold particles are
streaming over this wave and see a frequency of —,co, .
The wave sets the electrons to oscillating the y direction
and imparts a y velocity to them which is roughly

- 3,0 - 0.45 0.45 & 0

—eEy k~ U~

m(k„u„' —co, )

~~~pe

FIG. 48. The frequency spectrum for the modes shown in Fig.
47.

where U„' is the velocity in the wave frame. Now energy
must be conserved in this frame of reference, since co is
zero and so the y motion can be produced only through a
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Here we have assumed that the velocity of the cold elec-
trons in the wave frame is —co /k„. As the electrons slow
down in the wave frame, the Doppler-shifted frequency
moves closer to cyclotron resonance. When the wave am-
plitude becomes large enough, the cold electrons can be
slowed to such an extent that they are brought into reso-
nance with the wave, at which point they are strongly ac-
celerated and damp the wave. Their x velocity also
changes strongly at this time. To become resonant with
the wave requires that co =co, +k„v„,which means that in
the laboratory frame of reference the electrons must be
accelerated to 1.5v,h (v,h is the thermal velocity of the hot
electrons). To test this mechanism, the number of cold
electrons with x velocities equal to or greater than 1.Sv,h

were counted. The temperature of the cold component of
this sample was also measured; a small region was sam-
pled to avoid the appearance of random motion due to the
averaging over different parts of the wave which have dif-
ferent phases. The results of this measurement are shown
in Fig. 50.

Figure 51 shows the mean velocity of the cold electrons
parallel to 8 at the top and the electric field energy at the
bottom; both are plotted versus co&, t. This simulation
used 5&&10 particles but otherwise was the same as that
shown in the earlier figures. We see that v~~ rises rapidly
at the time the waves are strong and then levels out after
the waves die out. If one plots the mean velocity of the
hot ring electrons, it is the negative of that for the cold
electrons as is required by conservation of momentum.
The explanation of this effect is as follows. We see from
the spectrum shown in Fig. 46 that positive and negative
frequencies are not equally excited. This is a statistical

FIG. SO. Number of resonant electrons and the perpendicular
temperature for the cold electrons plotted vs time.

effect resulting from the choice of initial conditions; one
wave is initially more strongly excited. Opposite frequen-
cy waves propagate in opposite directions. Now the
waves carry momentum as well as energy. When the
waves are excited, they absorb energy and momentum
from the hot particles. When the waves are absorbed,
their energy and momentum are taken up by the absorb-
ing particles, in this case the initially cold electrons.

0, 15

500

FIG. Sl. Mean parallel velocity and total electric field energy
vs time.
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The results indicate the potential for instabilities to
generate currents. Here, of course, no current is generat-
ed, because the hot and cold electrons have equal and op-
posite drifts. However, the hot electrons would tend to be
expelled from an unstable region in one direction and the
cold electrons in the other direction. Also, if we were
dealing with an instability involving ions, then such an ef-
fect would produce a current directly.

Figure 52 shows plots of the temperature of the cold
electrons perpendicular and parallel to the magnetic field
at the top, and a plot of the electric field energy at the
bottom. We see that both the perpendicular and parallel
temperatures rise rapidly at the time of major wave activi-
ty and then rise much more slowly after the waves die
down. The ratios T~~ to T& can be predicted from Eqs.
(205) and (206), and these results are in good agreement
with those predictions.

Another interesting effect observed is enhanced dif-
fusion of guiding centers in the z direction. While none
of the quantities E, J, n, etc., depends on z and while the
particles are rods parallel to z, we can keep track of the z
displacement of a point on a rod by integrating U, with
respect to time:

M= f U, (t')dt'. (207)

This would correspond to the actual displacement of a
particle perpendicular to the plane of 8 and k. Figure 53
shows a plot of the mean square M for a set of test parti-
cles. There are two curves, one for the hot energetic ring
and the other for the cold background electrons. We see
that rapid diffusion sets in when the instability gets going.
It can be shown that the guiding center diffusion is pro-
duced by (E,b~(co=0)), where sbp stands for "seen by
the particles" —i.e., the zero-frequency componet of the E
field which the particle sees gives the diffusion through
an E&(B drift. However, examination of frequency spec-
tra like that shown in Fig. 48 shows that there is virtually
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FIG. S3. Mean-square guiding center displacement vs time.

no noise at co =0. The particles, however, can see a zero-
frequency component due to a combination of Doppler
shift and finite orbit effects (kept =1); the particle sees a
frequency component with frequency to —k~~u~~+nco, (in
this case n = 1). It is interesting to note from Fig. 53 that
the energetic particles initially have the larger diffusion
but end up with less diffusion than the cold particles.

The cold particles initially both have small Larmor ra-
dii and @

I I
U~

~

and cannot beat with the wave to produce a
zero-frequency component; however, the particles in the
hot ring can. Qnce the cold particles are brought into res-
onance by the saturation mechanism, they can and do dif-
fuse rapidly. At late times the cold particles diffuse more
rapidly than the hot particles, because for them kzpr =1,
while for the hot particles k&pI ~ I; the large orbits of the
hot particles result in their averaging out the turbulent
fields to a certain extent, and thus they are not as effec-
tively diffused by them as we have seen earlier.

This type of diffusion could play a role in the plasmas
heated by electron cyclotron waves as well as in such cy-
clotron instabilities; similar processes might be important
for ion cyclotron heated plasmas.

C. The free-electron laser

u)
pe

FIG. 52. Perpendicular and parallel temperatures of the cold
electrons and the total electric field energy vs time.

In all the previous examples the codes used were for
electrostatic models, sometimes with a fixed magnetic
field. Here we have an example, simulation of the free-
electron laser, which employs a relativistic electromagnet-
ic model. Many other examples exist in the literature, a
few of which can be found in Lin and Dawson (1977), Ta-
jima and Dawson (1979), Estabrook and Kruer (1978), Es-
tabrook et al. (1974, 1975, 1980), Biskamp and Welter
(1975), Langdon and Lasinski (1975), Langdon et al.
(1979), Nelson et al. (1979), and Kwan (1978, 1980). As
the purpose of this paper is to describe computer simula-
tions and how important results can be obtained from
them and not to give the detailed theory or experimental
results pertaining to them, I shall give only a simple phys-
ical description of the phenomenon under consideration
and shall refer the reader to the above references for more
details on these aspects.
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1. The physics of the free-electron laser

kpump kEM +kp

~pump=~zM+~p(kp) ~

(209)

(210)

where EM refers to the electromagnetic wave and p to the
plasma wave on the beam. These relations must hold in

In the free-electron laser a relativistic electron beam is
passed through a static helical magnetic field, and elec-
tromagnetic radiation is generated. The static field can be
produced either by permanent magnets or by helical
current windings. The physical situation is shown
schematically in Fig. 54, where Xo is the wavelength of
the helical magnetic field.

Consider a single electron. As it passes over the ripples
in the magnetic field, it is accelerated and radiates. For
every wavelength of the ripple it passes over there will be
one wavelength in the emitted wave (strictly speaking,
harmonic wavelengths can also be emitted, but these are
higher order in the ratio of the electron excursions to the
wavelength). The radiation in the forward direction
slightly outruns the electron; when the electron has
traversed a distance L through the ripple field the first
light emitted will have traversed a distance Lc/u. The ra-
diation field will be compressed into the region between
the electron and the front of the light pulse, i.e., in a
length L (c/u —1). The wavelength of the emitted radia-
tion is likewise compressed, the wavelength of the ripple,
A,p, times (c/u —1) or

A =Ao(c/u —1)=ho/2y

y=(].—u~/c2)

Now if an electromagnetic wave of this frequency pro-
pagates through the device along with the electron, it can
stimulate the electron to emit radiation. If the density of
the electron beam is high enough, the system is super-
radiant and with proper feedback can exhibit laser action
(light amplification by stimulated emission of radiation).

One can view the operation of a free-electron laser as a
parametric instability. If one rides on the electron beam,
the rippled magnetic field looks like an intense elec-
tromagnetic wave. The wave can undergo stimulated Ra-
man scattering (parametric decay of the pump wave into
a plasma wave and a backscattered electromagnetic wave).
Such parametric decay must satisfy frequency and wave-
length matching, i.e.,

ko—I'b+~p0/y' '
kEM c —Vb

k—p Vb +co~ /y
~EM

1 y

(211)

(212)

k —ko kEM (213)

For vanishing co~, i.e., low density beams, kEM reduces to
the previously obtained values of -2y kp. The simula-
tion of this process is aimed at the verification of the
linear theory of the device and the determination of the
physical processes which determine the nonlinear satura-
tion and efficiency of the device.

2. Results of the simulation

Simulations of the operation of the free-electron laser
have been carried out on a one-and-two-
halves —dimensional fully relativistic electromagnetic par-
ticle code (Kwan, 1978). Some of the results of these
simulations are shown in Figs. 55 and 56.

All these figures apply to a system with a beam y of
two, the magnitude of the ripple 8 field is given by
e8/mpc =0.7cop, and the system contains 256 grid spac-
ings and 2560 electrons. Figure 55 shows the correspond-
ing electromagnetic (transverse fields) and electrostatic k
(mode number) spectra at cop, t =4. By this time the in-
stability has already started, and the unstable spectrum
has grown to considerable amplitude. The wave number

Static Magnetic~ Field

(dg = 0.7 Gape

y=P. .O

~p, t =40

Electromagnetic
Spectrum

all frames of reference and therefore in the lab frame also.
In the lab frame cop„p=0, k»=kp, cop(kp)

kp Vb +Q)p0 /y, where mp0 is the plasma frequency of
the beam using the rest mass, Vb is its velocity, and y is
the associated relativistic y. The growing wave occurs for
the —cop, /y ~ branch (negative energy beam wave), from
which we find

Electron Beam
CL

Vo

Electrostatic
Spectrum (xl0)

FICi. 54. Kinematics of the free-electron laser.

k/k,

FIG. 55. Power spectrum for the electromagnetic and electro-
static fields in a free-electron laser.
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0.3 1.0 [co —( k +ko ) Vb ] =y o co~ [1+3A,~ ( k +k o ) ] .
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FIG. 56. The time development of the field energies and the de-
cline in the beam energy for a free-electron laser.

The unstable spectrum is quite localized in Fourier
space. Furthermore, all these modes have roughly the
same velocity, Vb,' therefore they maintain a coherent
waveform on the beam. Thus we can approximate the
spectrum as a single wave. As the wave grows and the
beam loses energy during the instability, the wave will
eventually reach such an amplitude that it can trap a
large fraction of the beam electrons. After the trapping
process sets in, the instability saturates due to the breakup
of the coherent motion of the electrons. Upon being
trapped, the beam on the average slows down to the phase
velocity of the plasma wave. The average change in ener-

gy of beam electrons is given by

b W=moc (yo —yah), (215)

matching condition kp„p=kEM+kz, is clearly satisfied
between the unstable electromagnetic and electrostatic
modes. The time evolution of the electromagnetic and
electrostatic energy, as well as the longitudinal current,
are plotted in Fig. 56. At the time of saturation, the
current had decreased by 36%, while roughly 30Wo of the
beam energy had been converted into radiation.

In the computer experiment, we find that as the initial
unstable spectrum grows to high amplitude, longer wave-
length modes become unstable. These modes correspond
to electromagnetic waves that would be emitted in the
backward direction rather than in the forward direction in
Fig. 54. They have a wavelength approximately equal to
2A, O and are dangerous to the operation of a free-electron
laser, because they can be absolutely unstable (Kwan and
Cary, 1981); there is an automatic feedback loop with the
EM waves carrying the disturbance backwards on the
beam; the EM wave couples to the beam through the rip-
ple field, and the beam carries the disturbance forward,
where it again generates the backward EM wave. If the
device is long enough or if efforts are not made to
suppress this mode, it can destroy the beam quality and
the generation of the desired short-wavelength mode.
(Kwan and Cary, 1981;Liewer et al , 1981). .

Phase space diagrams for the particles clearly show the
slowing of the beam, the branching associated with the
plasma wave of the mode number 5; at late time trapping
of particles in this wave (curling around of the orbits into
vortexes in phase space) takes place.

Linear theory predicts the growth rates of the unstable
modes; a comparison of theory and observed maximum
growth rates versus beam y is in good agreement with
theory.

Of considerable importance is the saturation level, since
this determines the potential efficiency of radiation pro-
duction. The simulations indicate that saturation is due
to electron trapping in the electrostatic wave generated.

The instability arises from the coupling between the
electromagnetic and electrostatic plasma wave through
the rippled magnetic field. The electrostatic wave in-
volved in the instability satisfies the dispersion relation

For large y, this predicts g goes like

re=co~(2kocy ~
) (217)

Figure 57 gives a comparison of the predictions of this
simple theory with simulation results. The agreement is
quite reasonable considering the rough nature of the
theory.

Most experimental devices require more sophisticated
treatment including trapping in the ponderomotive poten-
tial [potential well produced by (jEMXBz+j„XBEM)]
and multidimensional effects. A large literature on this
has developed on the free-electron laser; the interested
reader is referred to Kwan (1980), Cary and Kwan (1981),
Kwan and Cary (1981), Liewer et al. (1981),Motz (1960),
Deacon et aI. (1977), McDermott et al. (1978), Elias
(1979), Lin and Dawson (1979), Colson (1976), Sprangle
et al. (1979), and Kroll et al. (1980).
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FIG. 57. The efficiency g vs y.

where yo applies to the initial beam velocity, while yph is
the y corresponding to the phase velority of the wave. If
we assume all the energy loss from the beam is converted
into electromagnetic radiation, the efficiency, g, is then

rI = 1~+'
1
i(yo —1)moc'=(yo —yah)i(yo —1) .

(216)
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VI. MY VIEW OF THE FUTURE OF PARTICLE
SIMULATION

In this article I have attempted to give the reader a
brief summary of some techniques used in particle simu-
lation of plasma (largely confined to topics on which I
have worked) and examples of how these techniques can
be used to gain understanding of the physical behavior of
plasmas and to discover new physical effects. The power
of this approach to understanding plasmas is bound to in-
crease in coming years with the increase in the power of
computers. This increase has been dramatic over the last
twenty years, and limits to improvements are not yet in
sight. Furthermore, the cost of computers had dropped
dramatically, so that today many individuals own corn-
puters much more powerful than those which were avail-
able at the largest laboratory twenty years ago. There are
still many aspects of plasmas which can be investigated
on these modest computers. In addition to increases in
machine power, the techniques of solving problems on
them are continually evolving and increasing in power, so
that more complex problems can be attacked. As an ex-
ample of this, present efforts to suppress high-frequency
phenomena, so that large time steps can be handled, can
have a major impact on the capabilities of simulation. A
similar effort must be made on eliminating short-
wavelength phenomena, so that large-scale phenomena
can be handled. These problems are difficult and highly
challenging. Often the microscopic behavior affects the
macroscopic properties of the plasma (resistivity, thermal
conductivity, viscosity, etc.). Proper treatment of systems
where both the microscopic and macroscopic behavior are
important will undoubtedly challenge simulation physi-
cists for many years to come.

Present particle simulations of plasma have revealed a
rich variety of phenomena associated with the collective
and kinetic behavior of plasmas. Many of these phenom-
ena are difficult or impossible to treat either analytically
or experimentally. Simulation thus provides us with a
powerful new tool to probe the fascinating and complex
physics of plasmas. As the machines and models improve
such simulation has the potential to approach the richness
of the phenomena that exist in nature. Here the models
help the physicist develop his intuition of plasma
behavior. With the development of intuition, the physi-
cist is free to let his imagination guide him in discovering
new phenomena and new laws (of a macroscopic or sta-
tistical type). His insight can be quickly tested on model
calculations and either confirmed or discarded if found
wanting. Here, however, the physicist most be careful
that he does not build into his model the result he is look-
ing for; the model should include many more effects than
those he is looking for. This is a particular danger when
one is developing large time step or large space scale
models where the physicist must decide ahead of time
that some physical effects are unimportant and can be ap-
proximated away. Tests should always be made between
such models and ones at a more fundamental level.

With increases in power of simulations, the computer
will provide the physicists with larger and larger amounts

of data. To make sense of these data, he must reduce
them to meaningful results which can be understood fair-
ly simply. To extract meaningful results from two- and
three-dimensional models requires improved diagnostics.
The development of diagnostics and rapid methods for
displaying different types of information, so that those as-
pects which provide insight can be quickly found, may
present an even greater challenge than the constructing of
models. The goal of simulation is the essence of the phys-
ics and not the detail.

Computer modeling does not eliminate thinking about
the problems under consideration. On the contrary, it re-
quires the physicist to think more deeply and fundamen-
tally about the problems at hand. To simulate the prob-
lem in the first place requires that he understand the situ-
ation sufficiently to construct a well-defined computa-
tional model (often a very enlightening experience). When
the results come out of the computer, they often do not
conform to what was expected, and the physicist must
alter his concepts to meet the hard reality of the computa-
tion just as in the case of explaining experimental results.
This process, when pursued with an open mind, and con-
tinuous testing of one's concepts often lead to insight into
the important physical processes from which a physical
picture or theory of the plasma behavior can be achieved.
In my view, this process liberates the physicist s imagina-
tion and allows him quickly to develop an insight into

plasma behavior while showing him those paths which
are dead ends or which lead to misleading and erroneous
concepts. One often hears discussion of the expense of
computer simulation, but what is the value of a correct
answer or the cost of a misleading idea?

The wealth and complexity of plasma phenomena are
so large and the limitations of our present tools so great
that I believe that this field will continue to develop vi-
gorously for the foreseeable future. I believe that the
same statement can be made for many other branches of
physics which involve many degrees of freedom.
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