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The authors review the theory and the empirical evidence of damping of simple nuclear excitations. The
excitations considered are the particle states and vibrational states. The particle damping phenomena in-

clude the fragmentation of single-particle levels, the systematics of neutron strength functions, and the opti-
cal absorption of elastic scattering. Information on the known collective vibrational states is summarized
and compared with theory. A theoretical model that has found considerable success is based on a damping
mechanism in which the simple excitations mix with the surface vibrations. This implies that the surface
damping dominates for excitation energies below about 15 MeV. There is a close relation between the
single-particle damping and the damping of collective vibrations. However, the vibrational damping is
strongly suppressed by the coherence between the particle and the hole. While the model reproduces many
of the observed features of the data rather well, it tends to underpredict the spreading width by as much as
a factor of 2. Thus other degrees of freedom, not well understood at present, may play a role in the damp-
ing.
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INTRODUCTION

Nuclear structure physics aims at an understanding of
the damping of simple nuclear excitations such as that
found in single-particle states and collective vibrations.
The subject is an old one, beginning with Bohr s picture
of the nucleus as a highly overdamped system, the com-
pound nucleus (Bohr, 1936). Later, elastic neutron
scattering experiments showed that single-particle motion
could persist across the diameter of the nucleus; this led
to the first quantitative description of damping, the opti-
cal model. By now we have a thorough knowledge of the
single-particle motion, not only from elastic scattering but
also from spectroscopic studies with transfer reactions,
and to some extent from inelastic scattering reactions.
The study of nuclear vibrations also had an early begin-
ning, dating from the discovery of the giant dipole reso-
nance in the photoabsorption cross section. In recent
years inelastic scattering experiments have unveiled a rich
variety of vibrations of different types. All these vibra-
tional modes are characterized by the quantum numbers
of orbital angular momentum, spin angular momentum,
and isospin. The vibrations are observed as peaks in the
energy distribution of inelastic scattering, peaks from
which the mean energy, the strength, and the damping
width are extracted.

The properties of. a nuclear excitation can be most con-
veniently discussed in terms of its strength function, de-
fined as

S(E)= g (i
~

6'
~

o )'5(E E; ) . —

Here (i
~

W ~o) is the matrix element of the operator
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288 Bertsch, Bortignon, and Broglia: Damping of nuclear excitations

creating the mode. The operator is evaluated between the
initial state o and the eigenstates i of the nucleus. The
function S (E) contains far more than is needed to
describe the damping of the mode; for example, it con-
tains the individua1 eigenenergies of the states. Averaging
S over an energy interval preserves the gross features of
the strength function while discarding the fine details. If
the averaged S is a peaked function having a width sub-
stantially larger than the energy averaging interval, one
can speak of the (mean) energy of the mode and its width
I . The experimental strength functions are generally al-
ready averaged to the extent that only the gross features
are visible. For the theoretical strength function, the
averaging is an essential forrnal device to introduce damp-
Ing.

The theory of the strength function in the absence of
coupling to more complex degrees of freedom is now well
understood in terms of mean-field theory. The single-
particle motion is described by a static Hartree-Fock
Hamiltonian. With just a few parameters to characterize
the Hamiltonian, the varied shell structure of nuclei
across the Periodic Table can be explained. Treating the
single-particle potential as a dynamic quantity, we can
calculate the vibrations of the nucleus around the ground
state with surprising accuracy. This is the random-phase
approximation (RPA) theory of the vibrations. It pro-
vides a good description both of the mean energies of the
various modes and of the detailed structure of the low-
lying vibrational states.

At all but the lowest excitation energies, the simple
modes are embedded in a complex spectrum and mix with
the nearby states. The purpose of this review is to assess
our present understanding of this mixing, which requires
a level of theory beyond the mean-field approximation.
One approach, of course, is to try to calculate the entire
spectrum using the shell model as a basis. This is imprac-
tical in most cases. It is also unnecessary for determining
the gross features of the strength function. We only need
to compute the mixing of the simple modes with excita-
tions at the next level of complexity. These states, called
doorways, may in turn mix with still more complicated
states, but this mixing should not affect the averaged
properties of the strength function for the simple modes.
The width of a state due to mixing with more complex
configurations we denote by I"', to be distinguished from
the escape width I ', which is associated with the decay
by particle emission.

Our review begins with a summary of the experimental
information on single-particle and vibrational damping.
We then discuss the theory, treating the damping of parti-
cle excitations and of vibrations in turn. Our theoretical
review will emphasize the appropriate description of the
doorway states, using the knowledge gained from the
mean-field theory of the simple modes. At low excitation
energies, the only important degrees of freedom are the
surface vibrations, and the simple modes will decay by ex-
citing them. At higher energies, the nucleons in the inte-
rior of the nucleus absorb energy more effectively from
the simple modes. Obviously, there are close connections

between the damping of different kinds of modes. Vibra-
tions can be viewed as particle-hole states, so the same
mechanisms that damp the particle excitations will
operate for vibrations. However, the quantitative rela-
tionship is somewhat subtle, because the coherence which
gives the particle-hole state its vibrational character also
affects the damping. As we shall see, the coherence
reduces the coupling to other degrees of freedom, and
thereby decreases the damping. It is for this reason that
vibrational excitations can be seen as peaks in the strength
functions at much higher energy than single-particle
states can be identified.

On a numerical level, the calculated widths are general-
ly within a factor of 2 of the empirical values. However,
there is a systematic tendency for the empirical damping
to be underestimated by theory, showing that our under-
standing is not yet complete. The theoretical strength
function often has much more structure than that ob-
served experimentally. The doorways themselves must be
strongly mixed with states of even higher complexity. A
complete description of damping would require an under-
standing of the mixing at each level of complexity, but
this remains for the future.

I I. EMP IR ICAL SINGLE-PARTICLE DAMP ING

There are several ways to get information on the
single-particle properties of nuclei. States near the Fermi
surface can be studied by transfer reactions, such as
( He, d) for measuring the particle strength function, or
( He, u) for measuring the hole strength function. Well
above the Fermi surface the particle states are unbound
and then can be studied by the direct scattering of nu-
cleons. Since the nucleon-nucleus interaction is well
described by the optical model, the information about the
propagation of the nucleon in the nucleus can be summa-
rized in the optical-model parameters. Information about
the deeply bound hole states is more difficult to obtain,
with the most reliable data coming from the (e,e'p)
knockout reaction. We shall now examine in detail the
information obtained about damping by these different
methods.

A. Spectroscopic study
of single-particle fragmentation

When the single-particle strength is studied by transfer
reactions, the orbital angular momentum of the
transferred particle can be determined from the angular
distribution of the reaction. The experimental angular
distribution is compared with predictions for different I
transfers based on the distorted-wave Born approximation
(DWBA). Comparison of the absolute magnitude of the
cross section with the theoretical value allows one to infer
the matrix element of the particle creation or annihilation
operator between the initial and final nuclear states. The
square of this matrix element is known as the spectro-
scopic strength. The normahzation is such that the max-
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imum spectroscopic strength for a shell of angular
momentum j is equal to the number of possible particles
in the shell, 2j +1. There are two points of caution to be
kept in mind in using the DWBA analysis. First, without
polarization data it is only possible to measure the orbital
angular momentum of the transferred particle. The j
must be inferred from other considerations. Second, the
DWBA is an uncontrolled approximation, and there is an
uncertainty in the overall normalization of the spectro-
scopic strengths. Because of the correlations between nu-
cleons, part of the single-particle strength is shifted to
very high energies, and one should not expect to see all of
the theoretical strength in these spectroscopic experi-
ments.

A classic example illustrating the spectroscopic appli-
cation of transfer reactions is the Ca( He, d) Sc reac-
tion, which populates proton states in the double magic

Ca target. The orbits populated will be those just above
the Fermi surface, which are f7/2 p3/2 and p»2. In Fig.
1 are shown the strengths for the different angular
momentum transfers seen in this reaction (Erskine, Mari-
nov, and Schiffer, 1966). The f7/2 ground state has a
spectroscopic factor close to 8, the maximum for this or-
bital, and is thus essentially a pure configuration. The p-
wave strength lies at an excitation of about 5 MeV, and it
mixes with other states. The p3/2 is split into at least two
major parts. The p~/2 lies higher in energy and is divided
over several states. In the case of the next-higher orbital,
the f5/2 orbital, no single state has more than 25%%uo of the
total strength.

At higher excitation energies the level density becomes
too large, and individual states cannot be resolved in the
transfer reactions. It is still possible to study the single-
particle excitations by the envelope of the strength distri-
bution, which appears as a broad bump in a low-
resolution experiment. Again, the angular distribution of
this bump is used to assign the 1 transfer. This analysis

has been mainly used to study orbits deeply bound below
the Fermi surface (Gales, 1981). An example in the study
of proton orbits is the reaction Zr(d, He) Y, measured
by Stuirbrink et al. (1980). The energy spectrum of the
He at a scattering angle of 11' is shown in Fig. 2. We see

a prominent bump, shown shaded in the figure, which is
identified as f7/2 from the angular distribution and polar-
ization data. Unfortunately, there is a substantial back-
ground under the bump, which must be subtracted out be-
fore the analysis can be made. There is as yet no good
theory for the background, causing some additional er-
rors. The inferred mean energy of the f7/2 strength is 6.8
MeV, and the width is 4 MeV. The extracted spectro-
scopic strength for the whole bump is 10. Since 8 is the
theoretical maximum, this gives some indication of the
uncertainties in the theoretical analysis of the data.

An example of a neutron transfer process is provided
by the reaction "Sn(d, t)" Sn, used to study the high-l
orbits in " Sn (Siemssen et al. , 1981). A spectrum is
shown in Fig. 3. The broad bump in the spectrum has an
angular distribution characteristic of high angular
momentum. The areas marked I—IV are assigned to g9/2,
p, /2, and p3/p and the area V is assigned to f5/2, pi/2,
and p3/2 orbits. The total spectroscopic strength of the
g9/2 is found to be 1 1 .3 +2, close to the expected value 9
for a filled j= —, shell. The quantity of main interest to
us is the width, which is about 3—4 MeV. It is difficult
to make this more precise because there is an intermediate
structure of peaks within the main bump. The f5/2
strength is much smoother, lying at higher excitation en-

ergy, and the width is determined to be 8 MeV. A similar
reaction was used to study the h ~~/2 hole strength in Pb
(Gales et al. , 1978). As is found for the g9/2 in Sn, the
experimental spectrum shows a broad bump with super-
imposed sharper peaks. The width was determined to be
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FIG. 1. Spectroscopy of Sc from the Ca( He, d ) Sc reaction,
measured by Erskine, Marinov, and Schiffer (1966). The
ground state has practically all of the f7/2 strength, while for
higher orbits the strength is spread over several states.

E„(MeV)

FIG. 2. The energy spectrum of He in the proton pickup reac-
tion, Zr(d, He) Y, from Stuirbrink et al. (1980). The shaded
bump shows an angular dependence and analyzing power
characteristic of the f7/p hole orbit.
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nuclei (cf. Mahaux and Ngo, 1981). In Eq. (4), the con-
stant Eo is 500 MeV . For particles near the Fermi ener-

gy (E ( 10 MeV) this is equivalent to Eq. (2) with

1
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FIG. 3. The energy spectrum of triton particles from the reac-
tion " Sn(d, t)" Sn (Siemssen et al. , 1981).

3.8 MeV. However, only half the total strength was
found within the bump. Since the missing strength is
probably part of the higher-energy background, the as-
signed width should be considered a lower limit.

In Table I we compile the information on particle
widths obtained from transfer reactions. To summarize
the data, widths are of the order of 4 MeV for excitation
energies between 5 and 10 MeV, and are considerably
larger at higher excitation energies. As we shall see later,
the theory of infinite Fermi systems predicts that the
width should increase as the square of the energy for low
excitation energies,

I'=aE
Here E is the excitation energy of the nucleon measured
from the Fermi energy. From the transfer reaction data
in Table I, we infer a value for the proportionality con-
stant

At the higher excitation energies, the particle-transfer
reaction is not as suitable as other methods to single-
particle widths. Our primary information about the very
deeply bound hole states is from the (e,e'p) reaction, re-
viewed some time ago (Jacob and Maris, 1973). The most
deeply bound orbit, the 1s»2, can be seen in nuclei up to

Ca. From the Ca(e, e'p) 9K reaction, the excitation en-

ergy of the Os&&2 hole is found to be about 50 MeV, and
its width is about 30 MeV (Nakamura et aI. , 1974;
Mougey et al. , 1976).

B. Single-particle states in the continuum

1. The neutron strength function

The strength of low-I orbits near the neutron threshold
can be studied by the properties of the resonances in the
neutron scattering reaction n+A~(2+1)*. The level
density of the (A +1)*nucleus is generally high, but the
low energy of the scattering neutron, going down to ther-
mal energies, makes it possible to resolve individual levels.
The average width of the levels, ( I;!D), is proportional
to the single-particle strength. The constant of propor-
tionality depends on the velocity of the scattering neutron;
this dependence is factored out in the usual definition of
the strength function,

1

15 MeV
1

20 MeV
(3)

The parametrization

E2
I '=(24 MeV) 2Eo2+E

(4)

was used by Brown and Rho (1981) to fit the energy
dependence of the single-particle width in medium light

Here D is the average distance between resonances, and E;
is the neutron incident energy. The strength functions for
s and p waves show a well-known resonance behavior
when plotted as a function of mass A. This may be seen
in the plots of So and S~ in Figs. 4 and 5, from
Mughabghab and Garber (1973). The s-wave strength

TABLE E. Single-particle widths.

Orbital

1h9/2 (m )

1g 9/2 (V)

2f~n
ii~3/2 (m)
1h ))/2 (v)
lf gy2 (v)
s ]/2 (v)
4s, /, (v)

1s )g2 (w)

Excitation
energy (MeV)

5.9
5.5
6.6
7.5
6.8
7.6
8.3

10.6
—8

—15
&25

50

Width
(MeV)

1.2
3.7
3—4
4.9
3—4

3.7
8

3—4
—15

30

Source

Particle transfer (Gales et al. , 1982b)
Particle transfer (Gales et al. , 1982a)
Particle transfer (Siemssen et al. , 1981)
Particle transfer (Gales et al. , 1982a)
Particle transfer (Stuirbrink et al. , 1980)
Particle transfer (Gales et al. , 1982b)
Particle transfer (Gales et al. , 1978)
Particle transfer (Siemssen et al. , 1981)
Neutron strength function (Mughabghab and Garber, 1973)
Neutron scattering (Rapaport, Kulkarni, and Finlay, 1979)
Nucleon scattering [see text, Eq. (12)j
Knockout reaction (Nakamura et al. , 1974)
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FIG. 4. The s-wave neutron strength function (Mughabghab and Garber, 1973). The strength function So is plotted in the standard
units, Eq. (5). Solid and dashed lines show the optical-model fit, Eq. (7).
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FIG. 5. The p-wave neutron strength function S~, as in Fig. 4.
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peaks near masses A =50 and 150, indicating that an s or-
bit is near zero binding for these nuclei, and that the
damping is insufficient to obliterate the shell structure.
The p-wave strength peaks at masses between the s-wave
maxima, as expected for the zero-binding states of a parti-
cle in a potential well.

The optical model provides a theoretical framework for
describing the strength function (Feshbach, Porter, and
Weisskopf, 1954). The scattering states of a particle are
computed for a potential well that has an imaginary part.
The asymptotic form of the optical wave function has the
form

U ( ) ikr+ ikr—

IOO—

80-

40—
2Q-Z

I

IO 12 14 16 l8 20

where the reflection coefficient g is a real number be-
tween zero and one. The connection between the strength
function and the optical wave function is

The curves in Figs. 4 and 5 are obtained from Eq. (6) with
the following optical potential,

U(r) = —Vof (x)+i 4WD
df (x)

dX

where

f(x)= I 1+exp[(r roA '—/ )lao] I

ro ——1.35 fm, ao ——0.65 fm, Vo ——41.5—43.5 MeV, and
O'D ——5.4 MeV. The effect of the imaginary potential is
to smear out the single-particle strength function,
broadening the peaks and filling in the minima. From the
figures, the width in A of the strength function peak is
about —, of the spacing between peaks. Correspondingly,
the optical potential should give an energy width of about

1 of the spacing between energy levels of the s-wave

single-particle states, i.e., about 4 MeV. More quantita-
tively, we may evaluate the expectation of the imaginary
optical potential, Eq. (7), for a weakly bound s-wave orbi-
tal, using Eq. (28). This yields a width of about 4 MeV,
which is included in the compilation of Table I.

2. The optical model in elastic scattering

At higher energies, information about the single-
particle propagation is obtained from the angular distri-
butions in elastic scattering. In principle the elastic
scattering can be analyzed, partial wave by partial wave,
to study each angular momentum state separately, but in
practice one uses the optical model to fit the entire angu-
lar distribution. An example of the partial-wave behavior
is found in a study of the elastic scattering reaction

O(p,p)' 0 (Skwiersky, Baglin, and Parker, 1974). The
extracted phase shift and reflection coefficient of the f7/2
partial wave is shown in Fig. 6. These smttering parame-
ters were determined from optical-model fits to the data
at each energy. As the energy of the proton increases, the
phase shift rises through 90'. At the same time the ab-

(b)

I.O-
W

0.6—

02-
10

&7/Z

a I s I I I

14 16 18 20
E {MeV}

FIG. 6. Phase-shift analysis of elastic proton scattering on ' 0
from Skwiersky, Baglin, and Parker (1974). In (a) is shown the
phase shift in degrees. In {b) is shown the reflection coefficient
q for the l =3 partial wave.

with ro ——1.295 fm, a =0.59 fm,

8 D
——4.28+0.4E —— 12.8 MeV

X—Z

Wp ——0 E (15 MeV

8 D
——14.0—0.39E —10.4 MeV

E —Z

Wy ———4.3+0.38E
~'

E) 15 MeV,

sorption in the f wave increases, with the reflection coef-
ficient dropping from 0.8 to 0.2 over the interval studied.
The increasing absorption of the f7/2 partial wave over
the energy region is mainly due to the increased penetra-
tion of the wave at higher energy; the strength of the ima-
ginary potential shows only a modest increase over the en-

ergy interval.
The systematic behavior of the optiml potential can

best be seen by a global fit of the optical parameters to a
large body of data. An example of this kind of analysis is
the global potential for neutron scattering below 30 MeV,
made by Rapaport, Kulkarni, and Finlay (1979). Their
absorptive potential is surface peaked below 15-MeV neu-
tron scattering energy. The absorption increases with en-
ergy in this region, and these authors assume a linear
form for the energy dependence. Above 15-MeV neutron
energy, the absorption changes smoothly to a volume
form. The specific parametrization of their potential is

i W(r) =4i WD i Wvf (x), —d
dX
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where E is the neutron scattering energy. The sudden on-
set of the volume potential at 15 MeV is obviously an ar-
tifact of the parametrization; clearly there is some ambi-
guity in determining the radial dependence of the absorp-
tion.

The volume integral of the optical potential provides a
measure of its strength that is insensitive to the radial
parametrization of the potential (Agrawal and Sood,
1975; Rapaport, 1982). For the higher scattering energies,
between 20 and 200 MeV, the volume integral of the ab-
sorptive potential is roughly independent of energy. Also,
it is roughly proportional to the atomic mass of the nu-
cleus and has a magnitude

Jii ———I d r W(r)=100+10 MeVfm (9)

III. EMPIRICAL DAMPING OF VIBRATIONS

Many kinds of nuclear vibration have now been identi-
fied. For recent reviews, see Bertrand (1981) and Speth
and van der Woude (1981). In this section we shall mere-

ly summarize the experimental situation, referring the

For lower energies, the volume integral is more dependent
on the nuclear mass. For example, the volume integral of
the neutron resonance potential, Eq. (7), varies from
J~——80 MeVfm In at mass 60 to Jz ——50 MeV fm /n at
mass 208.

It is instructive to relate the spreading widths of
single-particle states to the absorptive volume integral,
Eq. (9). The spreading width from Eq. (28) is given by

I =2 Jp;Wd r-2p; I Wd r, (10)

where p; is an average density of the single-particle orbi-
tals in the vicinity of the absorptive region. As a rough
estimate, we can take the average density for a particle in
the absorptive potential region to be half nuclear matter
density,

P;-0.08 fm A

Using the volume integral of Eq. (9), this yields a spread-
ing width

008 fmI'-3(1002 MeVfm )
' —16 MeV .

A

(12)

This is quite a large spreading, of the order of the shell
spacing, showing that no shell structure should be expect-
ed at higher excitation energies. The spreading width of
the Os hole state in Table I is quite a bit larger than the es-
timate (12) from the optical potential for particles. This
is by no means a contradiction; the damping depends on
the momentum of the orbital as well as its excitation ener-

gy. A deeply bound orbital has low momentum, and is
therefore expected to interact more strongly with other
bound nucleons. However, further study is called for in
the interpretation of the (e,e'p) experiment, particularly
the role of the final-state proton in spectral widths.

reader to these reviews for a more complete picture with
the primary references to the experimental data. Typical-
ly, the response to an external field shows a resonant peak
in some region of excitation energy. The character of the
external field determines the kind of vibration excited.
The field can have a dependence on the spin and isospin
of the nucleons, as well as a spatial dependence that
resolves into multipoles. The peaks of the giant vibra-
tions are embedded in a spectrum of very high-level densi-

ty, and the spreading of the response can be directly mea-
sured by the width of the experimental strength distribu-
tions.

An important theoretical tool for interpreting strength
distributions is the energy-weighted sum rule. A sum rule
may be defined for each multipolarity, following I.evinger
and Bethe (1950) and Satchler (1972). A peak in the
strength function may be considered a giant vibration if
its strength exhausts most of the sum rule.

A. The giant dipole vibration

l.50

1.25- He
(b)

~ 1.00
E

o 075
Cl~ 0.50
N

~ 0.25
e'

4

(x,n)
+t

ty

tt ttttt&ttttt&ttt&
""'JI I

t'

I I I I I I l

22 24 26 28 30 52
Phot~ E~y (MeV)

FICJ. 7. The photoneutron cross section for "He, from Berman
and Fultz (1975).

20

The earliest and best known example of a nuclear vibra-
tion is the giant dipole resonance. This is a vibration of
neutrons against protons, and is excited by the long-
wavelength isovector dipole field, V(r)-r, r It exha. usts
about 100%%uo of the sum rule calculated without exchange
corrections. The systematic behavior of the dipole vibra-
tion was last reviewed by Berman and Fultz (1975). It is
visible in nuclei as light as He, as may be seen from the
photoneutron cross section in Fig. 7. Here the peak is
quite broad, due to the escape of particles into the contin-
uum. In heavy nuclei, the escape width is relatively
small, and the damping is mainly due to mixing with
more complicated states. The empirical evidence for this
is based on the decay properties of the excitation. The di-
pole state in heavy nuclei decays primarily by emitting
low-energy neutrons, just like the more complex states in
the same region of excitation. If the escape width were
important, a large portion of the decays would emit ener-

getic particles, populating the simple configurations of
the daughter nucleus. Experimentally, only about 15%%uo of
the decays are of this type, showing that the escape width
is of the order of 15% of the total width (Kuchnir et al
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2Sp E I
(E2 E 2 )2+E2+2 (13)

1967). Figure 8 shows a typical dipole response in a
heavy spherical nucleus Pb. The shape is well fit by
the I.orentzian function,

8
I

+Q 6-
5-

~ 4

I )

WIDTH

with resonance energy Ep ——13.5 MeV and width I =4
MeV. In Eq. (13), So is the integrated strength, and
Eo Eo——+(I /2), where Eo is the energy of the dipole
mode in the absence of the couplings responsible for the
width I.

The systematics of the dipole width as a function of
mass is shown in Fig. 9. Note that the width is particu-
larly small near magic nuclei. This shows the importance
to the damping of the low-energy degrees of freedom,
which fluctuate in strength from nucleus to nucleus, and
are particularly weak in magic nuclei. Deformed nuclei
show a double-peaked structure in the dipole response
(Fig. 10). The frequency of the dipole vibration depends
on the size of the nucleus along the dipole axis, and it fol-
lows that there are two different frequencies in an axially
deformed nucleus. This coupling of the dipole to the
quadrupole shape degree of freedom suggests a damping
mechanism. We shall see later how this is exploited in the
adiabatic model of damping.

B. Density vibrations: quadrupole, monopole,
and octupole

We now turn to the isoscalar vibrations, in which the
neutrons and protons move in phase. The most thorough-
ly studied giant vibration of this kind is the giant quadru-
pole. This vibration is excited by inelastic scattering of
electrons and various nuclear projectiles. Alpha particles
have been particularly useful, since to a good approxima-
tion they only excite the isoscalar modes for energies
(200 MeV (see, for example, Buenerd and I.ebrun, 1981).
The giant quadrupole vibration is seen in all nuclei from
' G to U. Most of the quadrupole strength can be
resolved into individual states in the alpha scattering reac-
tion on light nuclei such as Mg (Bertrand et al. , 1978).
The experimental integrated strength distribution of

Mg(a, a') Mg is shown in Fig. 11, compared to the

I I I I I I I I

60 80 100 120 140 160 180 200 220
NUCLEAR MASS

FIG. 9. Systematics of the width of the giant dipole state, from
Berman and Fultz (1975). Only spherical nuclei have been used
in the compilation.

Breit-Wigner distribution, assuming a width I =8 MeV.
The total observed strength in the heavier nuclei is

found to be nearly 100% of the sum rule when the usual
procedure is followed on normalizing the projectile-target
interaction to fit the elastic scattering. A typical spec-
trum showing the giant quadrupole bump in heavy nuclei
is shown in Fig. 12 for the reaction Zr(a, a') Zr at 152-
MeV bombarding energy. There is a clear peak standing
on a uniform background. However, there will be some
uncertainty about the extracted strength associated with
the assumptions about the background and the peak
shape. The systematics of the quadrupole widths as a
function of nuclear mass is plotted in Fig. 13. In light
nuclei the state is rather broad, of the order of 8 MeV
wide. For ' 0, there is an important direct decay com-
ponent by a-particle emission (Knopfle et ol. , 1978).
Thus the large width in light nuclei may be partly due to
I ', the escape width (Wagner, 1982). In heavy nuclei the
escape width becomes small, as in the case of the dipole
vibration. Nevertheless it has been possible to observe a
direct decay branch in a heavy system, " Sn (Okada
et al. , 1982).

One topic of recent interest in the damping of the giant
quadrupole vibration is fission decay in very heavy nuclei
(Stroher et al. , 1981; Harakeh, 1982). Naively, if the
damping into complex configurations were very weak, one
might expect an enhanced fission branch because the
quadrupole motion carries the nucleus toward a fissioning
shape. Experimentally, the fission decay is not enhanced
over background; there is some controversy about whether
it is suppressed, with a recent experiment by Dowell et al.
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FIG. 8. The photoneutron cross section for Pb, from Herman
and Fultz (1975).

FIG. 10. The photoneutron cross section for ' Gd, from Her-
man and Fultz (1975).
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FIG. 13. Systematics of the width of the giant quadrupole vi-

bration, from Bertrand (1981).
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FIG. 11. Quadrupole strength function in Mg, inferred from
inelastic a-particle scattering (Bertrand et al. , 1978). The in-

tegrated strength function for the observed discrete states is
plotted as the staircase solid line. The dashed curve shows the
integrated strength of a Breit-Wigner distribution, assuming a
width of 8 MeV.
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FIG. 12. The giant quandrupole vibration in Zr excited by
152-MeV a-particle scattering (Bertrand et al. , 1980).

(1982) showing no suppression. Theoretically, it would be
astonishing if the giant quadrupole vibration had a fission
decay any different from the background states. We see
that the state decays very quickly into more complex nu-
clear excitations, being spread over several MeV. It re-
quires a much longer time for the nucleus to fission or fi-
nally decay by neutron emission. All memory of the en-
trance channel should have been lost by this time.

There is one itnportant difference between results of
electron scattering and alpha-particle scattering that is
not understood. According to the analysis of alpha
scattering reactions, about 70% of the quadrupole sum
rule is contained in the giant vibration. A similar result
was also found from inelastic proton scattering at 200
MeV (Djalali et al. , 1982). However, the electron scatter-
ing data indicate a lower value, 50% or less (Kiihner
et al. , 1981). Obviously, this needs to be resolved before
the theory can be assessed on a truly quantitative level.

Giant vibrations have also been observed in the isoscal-
ar response for L =0 and 3 multipoles. The L =0 mode,

the giant monopole vibration, is best excited by small-
angle scattering of strongly absorbed projectiles. It is lo-
cated in energy just above the quadrupole vibration, and
appears in most spectra as a shoulder on the quadrupole
peak. Figure 14 shows an example of the angular distri-
bution of alpha particles, exhibiting the forward peak
characteristic of L =0 transfer (Youngblood et al. , 1977).
The vibration is only visible in nuclei larger than Ca,
and has a width of about 3 MeV in the heavier nuclei.
Recently the giant octupole vibration has been identified
in heavy spherical nuclei. It is considerably higher in en-

ergy than the other vibrations discussed, having a mean
energy in the range of 18—20 MeV for Pb. The inelas-
tic background scattering at these excitation energies
makes it difficult to determine accurately the energy
width of the vibration as well as its total strength. How-
ever, different experiments agree on a width of the order
of 5 MeV in Pb (Carey et al. , 1980; Morsch et al. ,
1980; Yamagata et al. , 1981). In lighter nuclei, the width
is somewhat larger, ranging up to 10 MeV in Ca.
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FIG. 14. The extracted angular distribution of the giant vibra-
tional peak in a scattering from ' Sm, separated into two com-
ponents (Youngblood et al. , 1977). The upper component is
enhanced at the smallest scattering angles, showing its mono-

pole character.

C. Spin vibrations

There has been great progress recently in the study of
spin vibrations, due to the availability of a reaction which
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FIG. 15. The energy spectrum in the (p, n) reaction at 200
MeV and 0 scattering angle (Gaarde et a/. , 1981). The
Gamow-Teller giant vibration is prominent in all closed-shell
nuclei having a neutron excess.

is quite specific for this mode. In the previously
described modes, the nucleon spins were not affected by
the excitation process, and consequently the excitations
carried spin 5 =0. In principle, there are two kinds of
spin excitation possible, isoscalar and isovector, depend-
ing on whether the coupling to protons and neutrons is
the same or not. The (p, n) reaction at 100—200-MeV
bombarding energy, which of course has isovector charac-
ter, has been found to be quite specific to excite spin vi-
brations. The simplest such excitation is created by the
operator o.~ with no spatial dependence. This is just the
Gamow-Teller beta-decay operator. Since there is no
momentum transfer, the angular distribution in the in-
elastic scattering will be forward peaked. Some typical
spectra at 0' are shown in Fig. 15 from Gaarde et al. ,
(1981). The Gamow-Teller peak is a rather prominent
feature of the spectrum for nuclei having a neutron ex-
cess. Nuclei with X =Z do not have the Gamow-Teller
state because the spins are almost all paired in the
ground-state wave function. The width of the Gamow-
Teller state is about 4 MeV, and its excitation energy in
the residual nucleus varies from about 10 MeV in lighter
nuclei to 15 MeV in Pb.

The (p, n) reactions at nonzero scattering angles excite
modes with orbital angular momentum as well as spin.
The (FLa)zr response with i. =1 is found to have a
peak somewhat higher in energy than the Gamow-Teller
state, but with a much larger width, about 10 MeV in

Pb (Horen et al. , 1980). This is much broader than the
widths we have so far encountered for states of moderate
excitation energy. However, not all of the width is due to
spreading into more complex configurations or particle
decay. The orbital and spin angular momentum can cou-
ple three different total angular momenta J, and the
strength functions are expected to peak at different ener-
gies (Bertsch, Cha, and Toki, 1981). Unfortunately, to
distinguish the different total angular momenta in the
strength function would require difficult spin polarization
measurements.

Another spin excitation operator, which is close to the
electromagnetic M1 transition operator, is o.~z. In prin-

ciple the M 1 strength can be excited by electron scatter-
ing or by the (p,p') reaction. However, this vibration has
been elusive in the heavier nuclei. It is seen as a single
state in Ca (Steffen et al. , 1980), and as a broader bump
in Zr(p, p') (Anantaraman et al. , 1981). However, the
total strength found is small compared to the shell-model
expectations. The excitation energy of the state is not
much different from the Gamow- Teller state, but the
widths found are much narrower. One reason for this is
that the residua1 nuclei are quite different in the two
cases. In one case it is an even-even nucleus with a low-
level density, to be contrasted with the high-level density
odd-odd nucleus in the other case.

The data on the damping of vibrio es is summarized
in Table II.

IV. THEORETICAL CONSIDERATIONS

A. The calculation of widths

A simple theory for the width of excitation can be
based on powers of the Hamiltonian. Given an operator
6, the first two Hamiltonian moments are defined

(caw)
(~~)
(e (H —E)'w)

(~~)

(14)

(15)

The variance o. provides a measure of the width of the
strength function for the operator W. The technique of
moment expansion has been applied to shel1-model studies
in other contexts, and is described by French, Mello, and
Pandey (1978). On the question of damping of single-
particle motion, the variance o. was first estimated by
Lane, Thomas, and Wigner (1955). They considered a nu-
cleon in an infinite Fermi sea, interacting with the other
particles by a Yukawa force of realistic strength and
range. A very large value was found for the variance,

o.-22.5 MeV .

As we saw in previous sections, empirical widths are
much smaller. Indeed, if the cr of Eq. (15) is interpreted
as a width, there would be little trace of shell structure in
the strength functions. The resolution of this contradic-
tion is seen upon recalling that the empirical widths are
the widths of the observed peaks at the half-maximum
points. Any small contributions to the strength function
at high energy are irrelevant to the width. Unfortunately,
the variance is very sensitive to the distant wings of the
strength distribution. Thus o. is not useful in large Ham-
iltonian spaces.

We really want to calculate the spreading of the
strength to nearby states, which of course may be done by
diagonalizing the Hamiltonian. Providing the only off-
diagonal parts of the Hamiltonian are the matrix elements
between the simple excitation and the background states,
the exact strength function can be calculated algebraical-
ly, as outlined in Appendix A. One can further obtain
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TABLE LI. Widths of giant vibrations.

Vibration (crvL )

Width
Heavy nuclei Light nuclei Source

Giant dipole (011)
Quadrupole (002)
Monopole (000)
Giant octupole (003)

Gamow- Teller (110)

Magnetic dipole (110)

4
2.5
3
5

1.5

10

Herman and Fultz (1975)
Bertrand (1981)
Youngblood et al. (1981)
Carey et al. (1980)
Morsch et al. (1980)
Yamagata et al. (1981)
Horen et al. (1980)
Bainum et al. (1980)
Amantaraman et al. (1981)

simple analytic formulas for the strength distribution by
averaging the strength over some interval. In the simplest
approximation, one assumes constant Hamiltonian matrix
elements and equally spaced background states. The
averaging then gives the familiar Breit-Wigner distribu-
tion,

In Eq. (18), V is the interaction between the simple state
and a background state, and dnf/dE is the density of
background states.

It can be shown that

j ~(E) —EtdE —'1/21 ~t +0~

~o
(19)

is the time-dependent amplitude of the excitation. The
corresponding probability then displays an exponential
decay in time at a rate I ',

i
A (r)

i
'=P(t) =e-" '. (20)

Exponential decay, being time irreversible, may seem to
be in contradiction to the underlying physics based on a
time-reversible Hamiltonian. The resolution of the para-
dox is that we have computed an average quantity, and
the averaging (coarse graining in statistical mechanics)
destroys the reversibility of the equations.

The generalization of the Breit-Wigner distribution to
nonuniform conditions, given in Appendix A, is just what
would be expected intuitively. In Eq. (17), I' becomes an
energy-dependent width I"(E). It is evaluated by an equa-
tion similar to Eq. (18), with state-dependent matrix ele-
ments and averaged level densities replacing the con-
stants. There is also an energy shift in the (E —Eo) term
in Eq. (17). We shall not discuss this shift, except to men-
tion that it is implicitly contained in calculations based on
diagonalizing the Hamiltonian, and that it can have a sig-
nificant influence on the location of the peak of the
strength function. Traditionally, experimentalists fit their

Sp I l
$(E)=

2~ (E —Eo)'+(I' n)'
Here Sp is the integrated strength, and the width I' is
given by Fermi's "golden rule, "

dnfI'=2mV

distributions to Gaussian functions, ' although there is no
theoretical justification for such a form. The suppression
of the strength function wings in a gaussian fit means
that there will be a tendency to underestimate the total
strength associated with the peak. It is important to use
the best possible functional forms when attempting to ex-
tract a total strength of a peak that is partly obscured by
a poorly understood background.

We saw in Sec. III the Lorentzian distribution, Eq. (13),
applied to the strength function. The Lorentzian function
is asymmetric about the peak, with the low-energy wing
suppressed, and this behavior is often found in empirical
strength distributions. The asymmetric energy depen-
dence of the Lorentzian has two sources. First, a classical
oscillator damped by a linear frictional force has a dipole
strength function of the form of Eq. (17) with I ' propor-
tional to E at low energies. As we shall see later, the
width in many-body theory is strongly energy dependent.
There is, however, no real justification for assuming a
linear energy dependence for I (E), although it does give a
fit to more microscopic calculations over a limited energy
regime. Second, the photon coupling to a state of given
matrix element has a strength proportional to the photon
energy. This source of energy dependence in the
Lorentzian is peculiar to radiative damping, and should
not be present in other kinds of damping. Like the Breit-
Wigner distribution, the Lorentzian has an infinite cr.

B. The nuclear response in RPA

The mean-field RPA theory of nuclear motion has been
remarkably successful for describing vibrational proper-
ties (see, for example, Bertsch and Tsai, 1975; Broglia,
Paar, and Bes, 1971; Ring and Speth, 1974; Liu and
Brown, 1976; Blaizot and Gogny, 1977). We wish to

'The variance of the Gaussian o. , which is often quoted, is re-
lated to the width (full width at half maximum) by

&F~HM = ( 8 ln2)

For a Breit-Wigner distribution o is of course infinite, because
in deriving the distribution one has assumed an infinite number
of states coupling to the initial state with a fixed strength.
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summarize the results of RPA here for two reasons.
First, vibrational motion can be damped already in the
mean-field theory, and we need to see how important this
actually is for the vibrations under consideration. Second,
the coupling of nucleons to the internal degrees of free-
dom of the nucleus, a central problem of damping theory,
is closely related to the coupling of external fields to the
nucleus, which the RPA treats.

Early RPA calculations were based on quite schematic
interactions and small configuration spaces for the
particle-hole wave functions. Consequently the models
did not have great predictive power, although qualitative
features of the strength functions were readily repro-
duced. The recent progress is due to two improvements
in the model. First, the use of large configuration spaces
makes it possible to calculate absolute transition
strengths, if the interaction is known or is adjusted to fit
vibrational frequencies (Broglia, Paar, and Bes, 1971;
Ring and Speth, 1974). The energy-weighted sum rules
are only satisfied in large-space calculations. The second
advance in RPA is the use of self-consistent interactions
derived from Hartree-Fock models. The requirement that
the Hartree-Fock theory reproduce ground-state proper-
ties strongly constrains the interaction and the derived
theoretical response. In the self-consistent theory, the
energy-weighted sum rules are automatically satisfied.
This is a constraint on the strength function mainly at
high energies. The predicted low-frequency collective
states generally also show agreement with experiment.
Thus the theory provides a useful description of the entire
response function.

The importance of the interaction to the response may
be seen qualitatively from the static polarizability. This is
defined as

where W is the external field. The first estimate of this
would be from the independent-particle model, in which
the states i would be particle-hole states, with excitation
energy given by the Hartree-Fock single-particle energies.
A classic argument by Mottelson (1960) shows that the
isoscalar quadrupole polarizability is enhanced by a factor
of 2 over the independent-particle value, if self-
consistency is imposed on the interaction. The difference
in strength functions for RPA and the independent-
particle model may be seen in Figs. 16 and 17. The low-
frequency strength is minute in the independent-particle
model, but the interaction induces a strong vibration at
low frequency. In the case of the octupole response, the
strength below 5-MeV excitation is increased by a factor
of 10 by the interaction. It is clear that the damping of
low-energy excitations will be very much influenced by
the low collective vibrations.

Because of the basic characteristics of the nuclear in-
teraction, short range and attractive, only the isoscalar
density response is enhanced at low energies by the in-
teraction. In all other channels, the interaction is repul-
sive, and the response is suppressed at low energies. We

0.5

0.2—

L=2
single particle

0
0 IO

L

20 50 40

0.8

0.6- L=2
RPA

0.4—

0
0 IO

I

20 50

FIG. 16. The theoretical quadrupole strength function in ' Pb,
from Broglia and Winther (1981). The upper histogram shows
the response in the independent-particle model, and the lower
histogram shows the RPA response. Note that a low state
emerges with considerable strength, and the strength at higher
excitation becomes more concentrated.

illustrate this with the isovector dipole response calculat-
ed in Pb, Fig. 18. This calculation treats the particle
continuom exactly, so the widths of the individual peaks
are theoretical escape widths I'. We see that the widths
of the individual peaks are small, in agreement with the
experimental finding that escape widths are unimportant
in heavy nuclei. We also see that the dipole strength is

E

co 3-
IA
O

2-

.Js~ 4 I Ia ala I l a. I 1

lo 20 E(MeV) 30
FIG. 17. The RPA octupole response in Pb, calculated by
Ring and Speth (1974). The states below 5-MeV excitation have
negligible strength in the independent-particle model, but in
RPA the lowest state acquires a major fraction of the total
strength.
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FIG. 18. The dipole response function in Pb, calculated by
Shlomo and Bertsch (1975). The widths of individual peaks are
actual escape widths in the RPA theory. The escape width is
seen to be small compared to the total width.

spread over many particle-hole components. The spread-
ing within the space of particle-hole configurations is
known as Landau damping in infinite media. However,
this damping behaves quite differently in finite systems
than in infinite systems. Infinite systems exhibit Landau
damping mainly for channels with an attractive interac-
tion, but the nucleus has no spreading to nearby particle-
hole states for the giant vibrations in the attractive iso-
scalar channel (see Fig. 16). Conversely, the isovector
channel would have an undamped mode in the infinite
system, while the nu"lear isovector dipole is predicted to
spread as in Fig. 18. However, there are probably defects
in the isovector interaction in the calculation of Fig. 18.
The experimental strength is concentrated at a somewhat
higher energy and probably is not Landau damped.

So far we have said little about the details of the RPA
theory. The RPA response can be calculated treating the
full complexity of the nucleon-nucleon interaction, but
the results just confirm the validity of more simplified
treatments. The structure of the collective states turns
out to be very simple, as far as the coupling to external
fields is concerned. To an excellent approximation, the
transition density for isoscalar collective states of angular
momentum L &0 is given by the macroscopic model,

In many-body theory, it is conventional to formulate
the damping problem in terms of the self-energy of an ex-
citation. We first define the Green s function for an exci-
tation. This may be expressed

G(E)= 1

E —eHF X(E)+iri— (25)

where eHF is the energy of the particle in the Hartree-
Fock Hamiltonian and X is the self-energy, to be calculat-
ed by a perturbation expansion. The damping width of
the state is given by

I'=2 ImX, (26)

where X is evaluated at a complex energy =E+i6, and
6 is a suitable averaging interval. In an optical-model
description of a particle state, ImX is equal to the expec-
tation of the imaginary optica1 potentia1

Gf course this is an approximation, derivable only from
zero-range interactions. A finite range would preserve the
same radial dependence, but would give an additional L,

dependence to the transition potential, cutting it off for
high L.

In Brueckner theory, the extracted Hartree-Fock field
is nonlocal, i.e., strongly momentum dependent. In prin-
ciple, this momentum dependence will have an effect on
the transition potential, Eq. (23), but it should not play a
very important role for low-energy vibrations. When the
momentum dependence is omitted from the transition po-
tential in the RPA calculations, the field must be renor-
malized by about 20% to achieve self-consistency. It is a
remarkable feature of the collective vibrations that their
properties are rather independent of the details of the in-
teraction used in the RPA theory (cf. Bertsch and Tsai,
1975). The simple form for the collective-state coupling,
Eqs. (22) and (23), was anticipated in the early work of
Bohr (1952), who assumed that the transition fields would
take this form and normalized the deformation parameter
PR to the known experimental data.

V. THEORY OF SINGLE-PARTICLE DAMPING

1m'=( W), (27)
dpp

5p(r) =—(0
I p I

i )=,, YL~(r"), (22)
(2L+1)'~' dr

where po is the ground-state density and PR characterizes
the strength of the coupling. Notice that the vibration is
peaked on the surface, because of the derivative in Eq.
(21). The coupling of the collective state to particles can
be described with a transition potential,

r'=2(W) . (28)

Equation (26) may be evaluated in lowest-order perturba-
tion theory as

I ~=2 VIm V (29a)

giving a simple formula to relate the optical-model ab-
sorption to the damping width,

5U(r):—(o
I

U (r —r')
I
i ) . (23)

A simple treatn1ent of this potential which has the neces-
sary self-consistency assumes that the transition potential
is related to the static potential Up in the same way as the
transition density is related to the static density,

=2+ (a
I

V
I
a)'

(E —E )'+b, '
dnf

=2m. (a
I

V
I
a)'

(29b)

(29c)
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—=I'=2( W) .
'T

(30)

The mean-free path can be defined as the decay length for
a wave function that is stationary in time. Representing
the wave function as exp(ikzr —klr), the mean-free path
1s

(31)

We find ki by demanding that the expectation of the
Hamiltonian have a vanishing imaginary part. With the
kinetic part of the Hamiltonian given by k /2m, where m

is the effective mass associated with the nonlocality of the
Hartree-Fock potential, we find

kzkr =8'.
m

(32)

The last step follows if the interval 4 is large compared to
the spacing of levels a. Thus we recover exactly the
simple-minded golden rule expression, Eq. (18). In per-
turbation theory, a specific form is assumed for the back-
ground states n, namely, these are the 2-particle —1-hole
states which interact with the single-particle excitation.

One elementary point that may cause confusion is the
relation between the imaginary optical potential and the
mean-free path A, (Negele and Yazaki, 1981; Fantoni, Fri-
man, and Pandharipande, 1981). From Eq. (29) we see
that the imaginary optical potential is directly related to
the width or its reciprocal, the mean life of the state,

of the single-particle states, and the wave-function nor-
malization is one particle per unit volume. In the second
line, m is the effective mass of the particles in the
Hartree-Fock Hamiltonian, and c.F is the Fermi energy.
Then the width of a single-particle state is given by

I '= (m) (E eF) V
(2m )

(35)

Here V is an average matrix element of the interaction be-
tween plane-wave states, having dimensions of a volume
integral. An important feature of Eq. (35), arising from
the density of states, is the quadratic dependence on exci-
tation energy (Brueckner, Eden, and Francis, 1955). For
the approximation in Eq. (34) to be valid, the excitation
energy should be much smaller than the Fermi energy (37
MeV). The quadratic dependence at low energies was
used in the phenomenological parametrizations of the
single-particle width in Eq. (7). Orland and Schaeffer
(1978) have also suggested a parametrization to extend
beyond the region of quadratic energy dependence.

Second-order perturbation theory is not an adequate ap-
proximation for nuclear systems. The interaction is quite
strong, and the induced correlations must be explicitly in-
cluded in the calculation of matrix elements. A simple
soluble example is given by the Fermi gas with hard-core
repulsive interactions. The particle self-energy is infinite
in second-order perturbation theory. With correlations
included, the damping of a particle near the Fermi sur-
face is finite and in the dilute limit is (Galitskii, 1958)

Thus the relation between mean-free path and decay time
1S

kF 2 2 kF k
I '= —(kpa)

2m m kF
(36)

m

This is nothing more than the group velocity of the parti-
cle, as we expect from classical arguments. The appear-
ance of the effective mass in Eq. (33) means that one has
to be careful about relating damping data based on energy
widths to data based on spatial attenuation, since the rela-
tion involves an assumption about the effective mass.

A. Infinite nuclear matter

Equation (29) is easily evaluated for particles near the
Fermi surface in an infinite Fermi gas. The density of 2-
particle —1-hole states having a given total momentum k
near kz may be expressed (Jeukenne, Lejeune, and
Mahaux, 1976)

= I dkzdkzdkI, 9
(1 nz)(l —nz—)(2')

(2m )

&&5 (kp+kp —kp, —k)5(E+Eh —s~ —sq)

1
(m )(E —sF)2

(2~)

In the first equation, the n's are the occupation numbers

Here a is the hard-core radius. The correlation effects
with realistic interactions may be treated by a number of
techniques. The Brueckner theory has been used in
several studies of single-particle damping (Jeukenne, Le-
jeune, and Mahaux, 1976; Brieva and Rook, 1977). Jeuk-
enne and collaborators calculated the nucleon self-energy
of Brueckner theory using the Reid hard-core potential.
The imaginary part of their self-energy is shown in Fig.
19 as a function of excitation energy. The calculation was
done for two values of the Fermi momentum, correspond-
ing to nuclear matter density and roughly half nuclear
matter density. From their numerical results the follow-
ing conclusions may be drawn:

(1) The quadratic formula, Eq. (32), is valid only for
quite small excitation energies. In the low-density calcu-
lation, the imaginary self-energy is almost constant above
20 MeV of excitation.

(2) Below 60 MeV of excitation, the imaginary self-
energy is larger in low-density nuclear matter than at sa-
turation density. This suggests that the absorption is
enhanced on the surface. As we saw above, this is just
how the empirical optical potential behaves.

(3) The main contribution to the imaginary self-energy
for the low-density case is from nucleon-nucleon scatter-
ing in the S1- D1 partial waves. The 'So has only about
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one-third the contribution, and other partial waves are
negligible. In fact it is the large S& phase shift and not
the mixing between S& and Di that is responsible for the
S~- D~ contribution. Thus, to a good approximation,

only the central interaction is responsible for the damp-
ing. At saturation density, the I' waves become signifi-
cant, and the spin couplings are important.

FIG. 19. The imaginary optical-potential depth in MeV. The
thin lines are the infinite nuclear matter calculations of
Jeukenne, Lejeune, and Mahaux (1976). The lower and upper

1
curves are for nuclear matter density and ——nuclear matter

density, respectively. We have extrapolated the published
curves to zero energy using the parametrization of Eq. (33).
The heavy solid lines are the empirical potential depths for the
surface and volume parts of the absorptive potential from Ra-
paport, Kulkarni, and Finlay (1979), quoted in Eq. (5).

2-particle —1-hole shell-model states of a single-particle
Hamiltonian. An early study along these lines was a cal-
culation of the neutron strength function in Sn and Pb
isotopes by Shakin (1963). He determined the single-
particle levels from a phenomenological Hamiltonian, and
found the 2-particle —1-hole states that should be near the
neutron threshold. The mixing of these states with the
continuum s-wave neutron was then calculated with a
simplified interaction. The predicted strength function
does not agree in detail with the empirical, but the order
of magnitude is correct. The limited agreement is
perhaps surprising; as was pointed out by G. E. Brown
(1972) and others, the correlations and energy shifts asso-
ciated with the particle-hole interaction should modify
the damping substantially. Subsequent calculations in
finite nuclei include these correlation effects, treating the
low-lying vibrations explicitly.

The damping by vibrational excitation may be calculat-
ed from Eq. (29), using Eq. (24) for the coupling between
the particle and the vibration (see Fig. 20). The basic ma-
trix element is

X&&M(~)g (r) .

(37)

In this equation, hatt are the single-particle wave functions.
The coupling strength P is to be determined either from a
microscopic RPA calculation or by the empirical data.
The matrix elements exciting the different M states of the
vibration can be combined into a single matrix element
for the state with angular momenta j~ and L coupled to
total j~. The j-coupled matrix element is given by

(y/ V
/
(L~)~ ) =

[(2L + 1)(2jr+ I )7' '

Figure 19 shows a direct comparison of the theoretical ab-
sorptive potential of Jeukenne, Lejeune, and Mahaux, and
the empirical potential of Rapaport, Kulkarni, and Finlay
(1979). Between threshold and 15-MeV neutron energy,
the empirical potential is surface peaked, and its max-
imum depth agrees closely with the Jeukenne et al. (1976)
potential at half density. Above 15-MeV neutron energy,
the empirical potential has an increasing volume contribu-
tion, in agreement with the theory.

dUp
X jy +

d J~ Jy +I. Ja

(3&)

8. Finite nuclei

The agreement between the empirical optical potential
and the theory based on infinite nuclear matter should not
be taken too seriously, because there is no justification for
treating the surface as low-density nuclear matter. Espe-
cially for low excitation energies, one needs a better
description of the doorway states than the infinite nuclear
matter theory provides. The simplest hypothesis is that
the doorway states for single-particle excitations are the

(a) (b)

FICs. 20. Perturbation graphs for the imaginary self-energy of
particles.
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We have separated out the radial integral of the transition
potential

dUp dUp
jr R j~ = f r drpr(r)R p (r)

dr dr
(39)

and the reduced matrix element of a spherical harmonic,
defined in Eq. (B3). Cxiven the vibrational properties of
the nucleus and the single-particle Hamiltonian, it is now
straightforward to calculate the damping. Before we dis-
cuss the results of the calculations, one difficulty of prin-
ciple should be mentioned. The exchange interaction is
implicit in the potential field and thus in the vibrational
coupling potential. As is well known in many-body
theory, this leads to an overcounting of the perturbation
graphs in second order. The remedy is to subtract the
perturbation graph of Fig. 20(b) from the self-energy as-
sociated with the particle-vibration coupling, Fig. 20(a).
The contribution of Fig. 20(b) can be easily estimated by
replacing the RPA response in Fig. 20(a) by the nonin-
teracting particle response. It is found that for low-
energy excitations, the damping described by graphs 20(b)
is negligible compared to that described by 20(a) (Bertsch
et al., 1979), as is expected from the discussion of Sec.
IV.B.

1. The optical potential

There have been a number of calculations of the optical
potential in finite nuclei based on the particle-vibration
doorway hypothesis. Since the transition densities of the
collective states peak on the surface, the derived ima-
ginary optical potential will also have this property. %'e
saw from the empirical potentials and the Brueckner cal-
culations that above about 20-MeV excitation the volume
absorption becomes dominant. Thus we expect the vibra-
tional treatment to become inadequate for higher energies.
This is indeed found to be the case in the reported calcu-
lations. For example: Rao, Reeves, and Satchler (1973)
calculated the optical potential for 30-MeV proton
scattering from Ca and Pb in the particle-vibration

3
doorway model and found that only 4 of the absorptive
cross section could be accounted for. The inadequacy of
the particle-vibration doorways at these energies has been
confirmed by Bernard and Van Giai (1979), by Osterfeld,
Wambach, and Madsen (1981), and by Bouyssy, Ngo, and
Vinh Mau (1981),who describe the vibrations microscopi-
cally and treat the coupling with the Skyrme Hamiltoni-
an. Bernard and Van Giai obtained a theoretical volume
integral of the absorption in Pb which was only —, of
the empirical; Bouyssy et aI. obtained half the empirical
volume integral in Ca. Coulter and Satchler (1977) in-
cluded additional doorways in the absorption with the
(p, d) pickup reaction channels. However, this did not
remedy the situation; the calculated surface absorption
was still only half the empirical.

Several calculations have been reported for the optical
potential at low excitation energies (O Dwyer, Kawai, and
Brown, 1972; Lev, Heres, and Divadeenam, 1973). A seri-

ous problem that arises in any theory here is that the den-
sity of doorway states is very low. Consequently a large
averaging interval must be used in Eq. (29b) to produce a
smooth potential. In such situations, it is better to com-
pare the actual strength functions than to smooth out a
structure which is predicted to survive. Indeed, the em-
pirical neutron strength function shows large fluctuations
from nucleus to nucleus (Fig. 4).

2. Neutron strength function

The neutron strength function has been studied in the
particle-vibration doorway model by a number of authors.
As mentioned above, in many cases the density of door-
way states is too low to make a definitive comparison
with experiment. With a low density of states, the results
are sensitive to the averaging interval in the calculated
damping. Thus the problem of understanding the damp-
ing is shifted to the spreading of the doorway states them-
selves. Nevertheless, qualitative conclusions may be
drawn from existing calculations. One recent calculation
which compared theory and experiment was that of Dam-
basuren et al. (1976). These authors calculated the s- and
p-wave strength function in the mass region A —120. The
single-particle Hamiltonian was based on an empirical
Woods-Saxon potential. The vibrations included are
mainly the 2+ and 3 collective states, with the interac-
tion strength chosen to reproduce the excitation energy of
the states in RPA. The authors find very little spreading
of the strength away from the single-particle energy. In
the case of the s wave, the single-particle energy is bound
by about 4 MeV, and the strength in the neutron reso-
nance region is underpredicted. This is despite the fact
that the empirical strength function already has a deep
minimum in this mass region (see Fig. 4). Conversely, the
p-wave orbit is near zero binding, and its strength is over-
predicted in the calculation. It might be thought that the
lack of agreement could be attributed to the restriction of
the doorway vibrations to low multipolarities. However,
more extensive calculations discussed below give similar
results.

3. Deeply bound hole states

Following the measurements of the g9/2 hole strength
in the Sn isotopes, Koeling and Iachello (1978) applied the
particle-vibration doorway model to these data. They
used single-particle energies from a %'oods-Saxon poten-
tial, and vibrational couplings fixed by the energies of the
low collective states. Qnly L =2 and 3 multipoles were
considered for the vibrational states. The calculation
predicted far too little damping, with the g9/2 strength
split into only two large components. Both components
were predicted to be in a region of the spectrum where
only one-quarter of the possible strength was found.

A later calculation by Soloviev, Stoyanov, and Vdovin
(1980) included the full spectrum of vibrations, finding
that the widths were significantly increased. These au-
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thors reported their theoretical spreading widths in a way
that was directly comparable to experiment. They com-
puted the dispersion in the strength contained within
some fixed energy interval, and reported the amount of
strength in the interval as well as the dispersion. In many
cases they found agreement with experiment. However,
problems still remain with the strength in the heavier Sn
isotopes, with greater concentration of strength predicted
at low excitation than is observed.

This difficulty has been partly overcome in a recent
calculation by Bortignon and Broglia (1981b), who use a
Hartree-Fock single-particle Hamiltonian rather than the
Woods-Saxon. The result is a higher center of gravity for
the g9&2 strength. The vibrational coupling is self-
consistent, and so should be equivalent to previous treat-
ments. The amount of g9~z strength at low energy then
comes out to 25%, in agreement with experiment (Gerlic
et a/. , 1980; Siemssen et a/. , 1981). The calculation also
predicts a relatively narrow high-energy component,
which does not seem to be consistent with the experimen-
tal findings (Siemssen et a/. , 1981).

A similar situation is found for the spreading of the
A ~&~z hole in Pb. Experimentally, the energy region be-
tween 7 and 10 MeV contains 40—70% of the total h»&2
strength. Bortignon and Broglia agree with the dispersion
of the strength in this region, but predict that it contains
only 25% of the total. A large portion of the strength is
predicted in a peak of about 10 MeV. If the predicted
strength distribution is correct, it is difficult to see why
the upper peak was not observed. The presence of the
high-energy components is connected with the small ef-
fective mass (m/m =0.76) in the Hartree-Fock Hamil-
tonian and provides an important test of the Hamiltonian.

4. An adiabatic model

Before concluding the discussion of single-particle
damping, we wish to point out a limit in which the damp-
ing can be easily estimated. One makes the adiabatic as-
sumption that the vibrational energy is small compared to
other energies. Then the single-particle strength is strong-
ly mixed with the vibrations, and the variance becomes a
useful measure. The variance is evaluated from the
summed squares of the interaction matrix elements, Eq.
(38),

Typical values of P are 0.1, leading to a damping width

I'=2.4o =3 MeV . (42)

This is certainly the right order of magnitude to explain
the damping of the low-energy particle excitations and the
fluctuations from nucleus to nucleus associated with the
low-lying vibrations.

As a general conclusion we see that the particle-
vibration coupling gives the right order of magnitude for
the damping width of excitations near the Fermi surface.
However, there is an overall tendency for the theoretical
calculations to underpredict the empirical spreading. A
full understanding must await better experiments that can
locate the missing strength of the more highly excited
single-particle states (see, for examples, Siemssen et a/. ,
1981).

5. Energy dependence of damping

It is instructive to examine the energy dependence of
the damping width in the particle-vibration doorway
model, Eq. (A10), for several reasons. We should like to
know the accuracy of the infinite Fermi-gas result, Eq.
(35), that I"(E)-E . Also the energy dependence of the
real part of the self-energy, interesting in its own right, is
intimately connected to I (E) via a dispersion relation.
An example of I (E) is shown in Fig. 21, for the s ~&2 orbit
in Pb (Bertsch et a/. , 1979). We see that there is a rath-
er sudden onset of damping at E=5 MeV. This is due to
the opening of the doorways involving low-lying vibra-
tions. There is a plateau up to about 10 MeV, where
another set of doorways associated with giant vibrations
begins to open up. Similar results are found for other or-
bitals, and in other calculations based on the particle-
vibration doorway model (Wambach, Mishra, and Li,
1982). It is apparent that the shell structure and the col-
lective behavior of vibrations completely destroy the sim-
ple functional form of the energy dependence from Eq.
(35). The predicted energy dependence looks more hke a
series of steps, and this accords much better with the em-
pirical widths of Table I.

) 4—
C)

o =P (12 MeV) (41)

The average value of the radial matrix element is of the
order of 50 MeV. The Clebsch-Gordan coefficient

1

asymptotically has the value PL, (1/2j)= ——, for L =2.
Estimating the average number of states y in the major
shell that can couple to the initial state u to be 3, we find
for the low-energy quadrupole vibrations a dispersion

5 lO
E (MeV)

FKjr. 21. The single-particle damping width I (E) as a function
of energy, for the s~~2 state in Pb (Bertsch et aI., 1979). The
solid lines is the theory equation (A10) with b, =0.5 MeV. Dots
and squares are empirical values based on Eq. (28) and various
optical potentials.
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The fact that the width is small for low energies means
that the doorway treatment wi11 fail for calculating
widths of the more complicated configurations, since
these do not have much energy available to create addi-
tional vibrations. Thus the problem of understanding the
widths of the doorways themselves is completely un-
resolved at this time.

Vl. THEORY OF VIBRATIONAL DAMPING

The starting point for the calculation of vibrational
damping is to expand the vibrational wave function in
particle-hole components. It is then natural to treat the
damping via doorway states of 2-particle —2-hole struc-
ture (Danos and Greiner, 1965). This approach has two
drawbacks. First, one needs a priori knowledge of the in-
teraction to extract a meaningful width. Second, the col-
lectivity of the vibrational doorways should not be
neglected, as was seen in the single-particle damping.
These problems are sidestepped if one takes a less ambi-
tious approach. Rather than calculate the damping of the
vibrations explicitly, one can simply use theory to relate it
to the damping of the particle and hole of which it is
composed.

A. Independent particle-hole model

A naive model of the damping is based on the assump-
tion that the particle and hole decay independently. For a
single-component wave function, the damping would be

(43)

This formula needs some further definition because of the
energy dependence of the damping, and because the vibra-
tional states are made up of many particle-hole configura-
tions. The damping is roughly independent of configura-
tion, but can depend strongly on the energy available to
the particle or hole orbital. The energy available is the to-
tal vibrational energy, less the excitation energy of the
spectator orbital with respect to the Fermi surface.

For the important configurations of the giant dipole,
this energy is typically more than half of the dipole vibra-
tional energy, ranging from —12 MeV in medium nuclei
to -8 MeV in Pb. Taking the single-particle width
from Eq. (4), we find that the predicted dipole width then
varies from —10 MeV in medium nuclei to -5 MeV in

Pb. The independent-decay model was applied in a de-
tailed calculation by Dover, Lemmer, and Hahne (1972)
on the damping of the Pb dipole state. The single-
particle damping was deduced from various optical poten-
tials of n + Pb. The single-particle widths were found
to be in the range 1—3 MeV, giving a dipole damping of
2—6 MeV, which brackets the empirical value of 4 MeV.
However, the transfer reaction data in Table I suggest
that the single-particle widths should be larger, in which
case the dipole spreading would be predicted to be too
large.

B. Coherence of particle-hole excitations

The coherence between particle and hole in a collective
state can drastically modify and reduce the damping as
calculated in Eq. (43). An example from another field of
physics is the plasmon excitation of a metal. This collec-
tive electron particle-hole state can have a width of 0.2 eV
at an excitation energy of 10 eV. Single-particle excita-
tions at the same excitation energy would have widths of
several eV. The reduction of the damping arises very na-
turally in a theory which includes all the second-order
damping processes coherently (Dubois, 1959).

It can be shown on quite general grounds that there is a
strong suppression of the coupling to 2-particle —2-hole
states in infinite Fermi systems, when the momentum of
the collective state goes to zero (Pines and Nozieres,
1966). The same reduction is built into the quantum col-
lision integral in the Landau theory of collective vibra-
tions. This is shown in Appendix C.

A theory of damping that respects the coherence of
particle and hole is indicated with the perturbation graphs
of Fig. 22. The first two graphs on the right-hand side
represent the contribution to I,',~~ arising from the
separate widths of the particle and hole, evaluated at the
collective-state energy, as in Eq. (43). The other two
graphs may be viewed as vertex corrections to the self-
energy of the collective state. They typically interfere
destructively and reduce the total width. The physical
origin of the cance11ation is clear from the amplitude sum
on the left-hand side of Fig. 22. The particle and hole
usually couple to other degrees of freedom with opposite
signs, so the total coupling is reduced. For example, the
quadrupole moment of a collective state is small, and so
the coupling to quadrupole vibrations would be weak.

FIG. 22. Perturbation graphs for the damping of a vibration.
On the top is shown the coherent sum of amplitudes for door-
way coupling via the particle and the hole. They give rise to the
four contributions to the imaginary part of the self-energy of
the vibration. The two graphs on the left arise from the in-
dependent damping of the particle and the hole, and the two
remaining graphs give an interference.

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



Bertsch, Bortignon, and Broglia: Damping of nuclear excitations 305

However, for coupling to degrees of freedom involving
spin and isospin, the interference can have a positive sign.
A spin-flip collective state would have the spin of the par-
ticle added to that of the hole, and so it would couple
more strongly to the other spin degrees of freedom in the
nucleus. The general formula relating the vertex correc-
tion diagrams to the single-particle self-energy diagrams
is given in Appendix B. The dependence of the interfer-
ence on the spin and isopspin quantum numbers is given
by the factor

1 1 S
C(S', T')( —1) +

S'
2 2

1 1

2 2

1 1

2 2

(44)

where we have designated the vibrational quantum num-
bers by S,T, and the quantum numbers of the excitation
in the doorway by S', T'. The factor C relates the
particle-particle to the hole-hole matrix elements. The
sign of this expression is given in Table III for the various
possible spin-isospin combinations. We see, in agreement
with the qualitative arguments above, that the sign is al-
ways negative if the intermediate vibration has
S'=T'=0. Also, if the collective state is scalar in spin
and isospin, the cancellation is maintained for any kind of
doorway vibration.

The complete formula for the vertex correction, Eqs.
(B9) and (816), also requires a recoupling of the orbital
angular momentum with the factor

lk I; A,lk+I +k
I; lk A,

' (45)

providing I; —I; =5k —lk. Thus the sign of the interfer-
ence depends entirely on the spin-isospin structure of the
graph. The collectivity of the giant modes ensures that
the different particle-hole amplitudes in Eqs. (BS) and

In the classical limits, this 6-j symbol is given by (Ed-
monds, 1960)

Ik I;Ik+I, +k, .
l; I

(89) are of the same order of magnitude.
The first model calculations incorporating the coher-

ence were quite schematic. Bertsch (1971) assumed door-
ways of 2-particle —2-hole structure with S'=T'=0 for
the excited particle-hole pair, and found that the width of
the giant dipole would be reduced below the single-
particle width. A model of the isoscalar quadrupole vi-
bration based on a schematic interaction was studied by
Ui (1975). He found a complete destructive interference
with his interaction, indicating the need for a more de-
tailed theory. Before describing the more detailed calcu-
lations, we discuss how the adiabatic model fits into this
framework.

C. The adiabatic model

An alternative description of damping treats the vibra-
tional coupling in the adiabatic approximation. We saw
before how the single-particle motion is damped by the
quadrupole vibrations in this approximation, Eqs.
(40)—(42). The same model can be applied to particle-
hole excitations. One determines an effective coupling be-
tween the collective state and the vibrations by studying
how the energy of the collective state depends on defor-
mation. The following result is obtained for the giant di-
pole state (Bohr and Mottelson, 1975):

2

cr =0.2P (fuoD) =P (47)

where coD is the dipole frequency and p is the quadrupole
transition moment. This is considerably smaller than the
single-particle width given by the same model, and can be
understood in particle-hole language as a cancellation ef-
fect between the particle and hole amplitudes. In the os-
cillator model, the ratio of the orbit coupling to the orbi-
tal energy is of the order of unity. The cancellation be-
tween particle and hole leads to a coupling of order 1/X,
N being the oscillator principal quantum number. The
square of the matrix element for a collective state would
thus behave asymptotically as 1/X -A, in accor-
dance with Eq. (47).

D. Microscopic calculations

n
O &a0

00
10
01
11

10 01

TABLE III. Particle-hole interference in the vibration self-
energy. The sign of the quantity Eq. I'44) is shown for all possi-
ble values of the quantum numbers associated with the initial
vibration and with the intermediate doorway vibration. Note
that if either vibration is purely scalar, the interference is des-
tructive.

1. Light nuclei

In light nuclei, it is possible to calculate the damping of
vibrations by explicitly constructing and diagonalizing the
Hamiltonian matrix in 1-particle —1-hole plus 2-
particle —2-hole configuration space (Hoshino and Arima,
1976; Knupfer and Huber, 1976; Adachi and Yoshida,
1978). Hoshino and Arima calculated the damping of the
giant quadrupole vibration in ' Q and Ca, and compared
the exact Hamiltonian diagonalization with the perturba-
tive approximations of Fig. 22. Their Hamiltonian was
based on empirical single-particle energies and finite-
range residual interaction. In 0 they found that the
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strength is distributed over 8 MeV. This is consistent
with the experimental data, which show a rather broad
and flat strength distribution. Dehesa et al. (1977) also
calculated the quadrupole damping in ' 0, using RPA vi-
brations as doorways. They note that the 3 vibration
plays an important role in splitting the quadrupole
strength. These authors only considered the coupling of
the particle to the vibration, which in general is a dubious
approximation. However, in analyzing the contributions
to the spreading, Hoshino and Arima found almost no
cancellation between particle and hole amplitudes. This
happens because in the case of ' Q the coupling of the
hole states is much more restricted by angular momentum
than the coupling to the particle states.

In Ca the hole orbits carry more angular momentum,
and Hoshino and Arima found a strong cancellation be-
tween particle and hole amplitudes. The net coupling
strength to the 2-particle —2-hole doorways comes out to a
quarter of the strength from the self-energy graphs alone.
The much narrower predicted strength distribution ap-
pears to agree well with experiment, which shows a width
of 2.5 MeV for the quadrupole state. However, the agree-

3
ment may be deceptive: More than 4 of the total
strength is predicted to be in regions of the spectrum
where only 45—60% is found experimentally. Hoshino
and Arima note that their model predicts too little
strength at very low excitation energy, where other de-
grees of freedom besides the 2-particle —2-ho'e doorways
are important. Also, the shell space was probably inade-
quate to allow the full collectivity for the octupole door-
way vibration.

2. Heavy nuclei

Microscopic calculations of heavier nuclei have been
done by Dehesa et al. (1977), by Soloviev, Stoyanov, and
Vdovin (1977), and by Bortignon and Broglia (1981b).
Soloviev et al. use a formalism in which the particle-hole
states are treated as boson excitations, i.e., phonons. The
doorway states are the two-phonon excitations. The
structure of the phonons is first computed in RPA. Then
the coupling of a phonon to two phonons is evaluated by
the perturbation expression corresponding to Fig. 23. It is
found that the main contribution to the damping comes
from doorways in which one of the phonons is a collective
state and the other is noncollective. The noncollective
states are essentially pure particle-hole configurations, so

the model should be equivalent to other treatments that
utilize particle-hole + vibration for the doorways. The
model was applied to the dipole and quadrupole strengths
(Soloviev, Stoyanov, and Vdovin, 1977), and to magnetic
quadrupole strength (Ponomarev et al., 1979). The model
Hamiltonian consists of a Woods-Saxon single-particle
Hamiltonian, together with a separable residual interac-
tion. The theoretical strength functions are displayed
graphically, from which it is possible to extract a width.
An example is the dipole state in ' Sn, shown in Fig. 24.
The theoretical strength function, averaged over an inter-
val 1 MeV, has a FWHM of 2.5 MeV. The experimental
width of the dipole state in ' Sn is 4.9 MeV. Thus the
theory gives the right order of magnitude, but tends to
underpredict the value. This also happens for other nu-
clei with double closed shells. The calculation for the
nonmagic nucleus ' Te gave a much larger width, which
is in better agreement with experiment.

Recently, Bortignon and Broglia (1981b) have made a
systematic study of the damping of the known giant vi-
brations for a range of closed-shell nuclei, from Ca to

Pb. They assume the doorways have the structure of
particle-hole + vibration, and use a single-particle Ham-
iltonian from the Skyrme III Hartree-Pock model and a
residual interaction of the self-consistent surface coupling
form, Eqs. (37)—(39). The theoretical strength functions
have a great deal of structure, making it difficult to ex-
tract a single width. The low-lying collective states dom-
inate the damping, as was found in other calculations.
Roughly 60% of the widths are due to these doorways.
They find that the cancellation between particle and hole

amplitudes becomes more important in heavy nuclei. Fig-
ure 25 shows an example of the distribution of coupling
matrix elements for the giant quadrupole state in Pb,
with and without the interference. We see roughly a fac-
tor of 2 cancellation, with a particularly large effect for
the lower-energy doorways. These components contain
the collective 3 vibration.

Bortignon and Broglia compare their strength functions
with experiment by finding the variance of the strength
within an energy interval. This procedure gives a width

0.5

B(E1.4)

O. l .

FIG. 23. The perturbation graph for the coupling between a vi-
brational state and double vibration, used in the vibrational
damping model of Soloviev, Stoyanov, and Vdovin (1977).

20.0I I.O l5.0
(Mev)

FIG. 24. Giant dipole strength function in ' Sn, calculated by
Soloviev, Stoyanov, and Vdovin (1977), including damping into
two-phonon doorways. An averaging interval of 0.1 MeV was
used in plotting the results.
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FIG. 25. Histogram of the square of the sum of the particle
and hole contributions to the matrix elements coupling the p-
a +U states to the giant quadrupole vibration in Pb. Dashed
histogram shows the independent contributions of particle and
hole matrix elements, and the solid histogram is the coherent
sum.

of 2.7 MeV, to be compared with the empirical 3-MeV
width of the giant quadrupole in Pb. Similar agree-
ment is found for most of the other closed-shell nuclei.
However, the agreement may be illusory if the electron
scattering experiments turn out to be correct in the mea-
surement of the total strength in the peaks (Kuhner et al.,
1981). According to theory, three-quarters of the total
strength is in the giant vibration. This agrees with
alpha-particle scattering results, but as we noted earlier,
the electron scattering indicates that less than half of the
strength is in the giant vibration region. The only calcu-
lations which find large spreadings are those of Knupfer
(1982), who uses a momentum-space delta-function in-
teraction, and the calculations of Speth et al. (1978), who
omit the coherence between particles and holes.

In the case of the monopole vibration, the theory defin-
itely underpredicts the width. Bortignon and Broglia find
that the monopole state is strongly collective in RPA cal-
culations based on Hartree-Fock single-particle Hamil-
tonians. This strong collectivity, together with the fact
that the L =0 recoupling in Eq. (45) produces an interfer-
ence for all configurations, implies that the cancellation
in Fig. 22 will be very strong. The theoretical width of
the monopole comes out to be about 1 MeV, much small-
er than the empirical width of 3 MeV. Strong cancella-
tion giving much too small a monopole width, was also
found in the recent calculation of %'ambach, Mishra, and
I.i (1982). These authors do not limit the doorway space
to spin and isospin scalar vibrations, but include a corn-
plete set of RPA modes. They find that less than 30% of
the spreading arises from the additional doorways, giving
confirmation to the surface coupling model. They also
found that the monopole state was predicted to be too
narrow.

One possible explanation for the large monopole width
is that the escape widths might be much larger for a
m.onopole vibration. The monopole transition density em-
phasizes the low-I orbits, which have larger escape widths

because of a reduced centrifugal barrier. A recent calcu-
lation by Van Giai and Sagawa (1981) predicts a 2-MeV
escape width in Pb. It would be interesting to measure
the decay properties of the state, to confirm whether the
width is in fact mostly escape.

The giant octupole mode is more strongly damped than
the previous modes. It has a higher angular momentum,
so the interference between particle and hole damping is
reduced. It also lies at a higher energy, and so more door-
ways are available for decay. Bortignon and Broglia
(1981a) calculate a width of about 8 MeV, which is con-
sistent with the experimental analyses.

The recent elucidation of the Gamow-Teller strength
function permits damping theory to be tested in the spin-
isospin channel. Gaarde et al. (1980) have explicitly di-
agonalized a Hamiltonian matrix for 1-particle —1-hole
and 2-particle —2-hole states in Sc. Not only is the
overall width reproduced, but a correspondence can be
seen between individual states of the theoretical calcula-
tion and concentrations of strength in the experimental
distribution. The particle-hole —vibration model gives
good agreement with the 4-MeV experimental spreading
found in heavier nuclei such as Zr and Pb (Bortignon,
Broglia, and Zardi, 1982; Feibig and Wambach, 1982).
However, the observed peaks appear to contain only part
of the total strength associated with the o.w operator. In
some experimental analyses, only one-third of the predict-
ed strength is seen in the Gamow-Teller peak. Part of the
missing strength has been ascribed to 6-particle nucleon-
hole configurations, which mix with the ordinary
particle-hole configurations to deplete the strength at low
excitation energy. A significant amount of the missing
strength may perhaps be found in the continuum back-
ground, as discussed in recent calculations by Osterfeld
(1982) and by Bertsch and Hamamoto (1982).

E. Macroscopic treatments of vibrational damping

Attempts to systematize the trends in damping widths
using classical notions of viscosity have been made by
Auerbach and Yeverechyahu (1975) and by Nix and Sierk
(1980). Classical viscous damping depends quadratically
on the velocity field, which implies a quadratic depen-
dence on the vibrational frequency. To derive the quan-
tum behavior, one must study the collision integral in the
Landau equation, as discussed in Appendix C. It is found
that this integral depends quadratically on the energy
available in the vibration, just as the single-particle damp-
ing rate in infinite systems depends quadratically on the
available energy. The experimental data show some ten-
dency for a quadratic energy dependence, but the fluctua-
tions from nucleus to nucleus are so strong that a macro-
scopic treatment must miss much of the physics. In our
view, a model based on viscosity assumes that damping is
a bulk effect, arising in the nuclear interior, while the mi-
croscopic calculations show that surface deformations
play the dominant role in damping.

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



308 Bertsch, Bortignon, and Broglia: Damping of nuclear excitations

VII. CONCLUSION

The general characteristics of particle damping are
clear from the optical-model descriptions of elastic
scattering and the neutron strength function. There is a
division between low-energy excitations —say, below 15
MeV—where the surface absorption dominates, and exci-
tations at energies above 25 MeV, where volume absorp-
tion starts to play an important role. Such behavior ac-
cords very well with theoretical expectations. The nuclear
response at low excitation is dominated by surface degrees
of freedom, and these couple strongly to the single-
particle motion. In a pictorial language, one can say that
the particles easily lose energy by bouncing inelastically
from the nuclear surface. A consequence of this mechan-
ism is the dramatic shell effect found in the damping sys-
tematics. Closed-shell nuclei are stiffer, i.e., have smaller
transition strengths to low-lying collective states, which
causes damping to be suppressed. The largest widths are
found in nuclei with strong collective states near the
ground states.

For higher-energy particle states, the theoretical studies
confirm the importance of volume absorption. The calcu-
lations based on the Brueckner theory give enough
volume absorption, for particles up to 100 MeV in energy.
However, there appear to be problems in describing the
absorption in the surface region. Calculations of surface
absorption based on the RPA theory of the surface de-

grees of freedom give somewhat too small results.
Perhaps the particle-transfer degree of freedom, in which
the particle forming a bound cluster with a nucleon from
the target, will remove the discrepancy. This effect is im-

p1icit in the Brueckner calculation, which in principle
treats the particle-particle correlations. The cluster
mechanism should also be investigated at low energy,
where the surface degrees of freedom are often insuffi-
cient to explain the damping.

The surface coupling model often predicts a great deal
of structure in the strength function. The vibrations
which are most collective may split a substantial part of
the strength away from the main peak. It would be in-

teresting to study the decay of the giant vibrations to ob-
tain more information concerning this point. The experi-
mental strength function is typically quite smooth, and in
order to reproduce this smoothness in the theory it is
sometimes necessary to assume an unreasonably large
damping of the doorway states themselves. There are
other aspects of the data which suggest that the calculated
damping may be too small. In exciting the giant vibra-
tions and single-particle states, one sees backgrounds that
are not well understood. If the strength in the peak of the
giant vibrations is less than 50%%uo, as suggested by some
experiments, a much larger theoretical damping will be
needed to reproduce the data.

The energy dependence of the damping has an analytic
expression in the Fermi gas model with a quadratic ener-

gy dependence. However, because of the importance of
the low-lying vibrations with energies of the order of 4
MeV, the actual damping sets in rather suddenly at these

energies and does not increase much above 10 MeV. The
volume part of the absorption seems to be quite constant
above a certain energy. In fact, all but the lowest-energy
damping can be characterized by an imaginary volume in-
tegral of about 100 MeV nucleon

We have seen that there is a strong connection between
single-particle damping and the damping of vibrational
states, because the vibrations can be constructed from
particle-hole configurations. With the main damping due
to surface deformations, the theory predicts a destructive
interference between particle and hole contributions to the
damping widths. This effect is also contained in the sim-
plified model of damping based on the adiabatic approxi-
mation. The interference between particles and holes
helps explain why single-particle states are seen as distinct
peaks only up to about 8-MeV excitation, while collective
vibrations are seen much higher. In the case of the mono-
pole vibration, the cancellation appears to be much
stronger than that allowed by the experimental data. This
question is not understood at present.

The surface coupling model has a number of successes
to its credit, but is not quantitatively correct in several sit-
uations. Qverall, the model describes the damping to
better than a factor of 2 accuracy. If one would look for
a systematic deviation of the model from the data, it is
clear that the model does not give quite enough damping.
Other degrees of freedom, not yet well understood, prob-
ably play a role.
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The strength function we wish to evaluate is defined by
Eq. (1). It is useful to express this formally in terms of
the resolvent of the Hamiltonian,

S(E)= Irn(o
~

—d'(H —Z i') 'P—
~
o) .1

(Al)

We next define the state
~

a ) that is produced from the
ground state by the operator

8'io)
((o

~

WP ~o))'~

and separate the Hamiltonian into parts that act on a and

APPENDIX A: EVALUATION OF STRENGTH FUNCTIONS
IN DOORWAY APPROXIMATIONS
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the rest,

H=E, la)(a I+ +[V, ( Ia)(a I+ I
o. )(a

I
)

+E
I
a)(a

I
]+H'. (A3)

The states
I
a) with V,~+0 are the doorways. If H' is

neglected, the resolvent can be evaluated algebraically as

S(E)=(o
I

6'W
I
o) —Im

1
2

VaaE, E —g — ig—

(A4)

1 I
p(E E') ——

~ (E—E')'+I' (A5)

As noted by Brown, de Dominicis, and Langer (1959),
averaging with this weight is equivalent to evaluating S at
an energy E+iI,

$(E)= f S(E')p(E E')dE'=S(E—+iI) (A6)

(o
I

8'6'
I
o )

We next average this strength function over energy with a
weight function,

over a number of states, if Landau damping is present. It
is then necessary to generalize Eq. (A7) by replacing the
single vector a by the subspace of RPA states. Equation
(A7) is still correct as a matrix equation,

S(E&=—Im(a 0 EI E iI——1
P

—1

Vp V~p 6 0E —E—iI

(A 1 1)

Here Hp is the Hamiltonian matrix in the RPA space,
and Vp~V~p is a dyadic in this space. Soloviev, Stoyanov,
and Vdovin (1977) carry out the matrix inversion of Eq.
(A9) by Crarner's rule,

(o
I
&la)M '(a'I @lo)

S(E)=—Im

Det H~ E iI——
E —E—iI

(A12)

where a,a' are states in the particle-hole space and M„ is
the minor of the determinant in the denominator of Eq.
(A 12).

APPENDIX B: DOORWAY COUPLING
FOR PARTICLE-HOLE VIBRATIONS

1
Q Im

E, E iI g—V,—/(—E~ E iI)— —

(A7)

where

V~, (E E)—
ReX(E) = g (E~ E) +I— (A9)

%'e can then express the averaged strength function in a
form that resembles the Breit-Wigner distribution, except
that the width is energy dependent:

SE=—' r (E)/2+I
~ [E, E—ReX(E)]—+ [I (E)/2+I ]

(AS)

We present here the formulas for vibrational self-
energies associated with doorways made from particle-
hole + vibration states. The particle and hole states are
labeled by k=(jkt) and i =(j;t), respectively, where j is
the angular momentum and t = —, is the isospin. The vi-

brations are labeled by the quantum numbers a=(nA, r),
where r( =0 or 1) specifies the isospin of the mode, and A,

is the angular momentum. Because more than one mode
of a given A,~ may exist, an index n is added to completely
specify the state. The important. quantities in the
particle-vibration description are the coupling-matrix ele-
ments M(j,j';a) giving the reduced matrix elements of
the residual interaction between particles and vibrations.
The M(j,j',a) are calculated via a single-particle field F~,
as

I (E)=2
(E E)'+I'— (A10) (Bl)

Equation (AS) is exact for the truncated Hamiltonian, but
is useful only if X varies slowly with energy. It remains
to be seen for each case whether this occurs for averaging
intervals I that are not too large.

In calculating the strength function for vibrations, we
first evaluate the RPA response. This may be distributed

where A~ is a normalization constant to be specified
below. We saw in Eq. (24) that a suitable field for cou-
pling to collective (r=0) states is the derivative of the
central potential. In this surface coupling model
FL, 0 =R d Uo /dr YL, , and M(jj ', a) is given by

dUp

This was first exploited by Feshbach (1958) for scattering
problems.

The derivation may also be found in Bohr and Mottelson
(1969), p. 306.

pL (a) dUO

q
„, & ~ d„&')&JIIIl~iIIIJ &«II&IIII&&'

(B2)
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The reduced matrix element of the spherical harmonic FL
is given by

(j,ill'c llj &

1/2
(2L + 1)(2j + 1)=(—) 4~

~ /

&((j~ , LO—Ijr —, ) if I~ lr+—L is even,

0 1f l& ly+i 1s odd

and the reduced matrix element of the unit operator in
isospin is

The matrix element M(jj ';a) has the following symmetry
under interchange of j and j':

M(jj ', ct) = —e(Fq, )( —)'+' +' 'M(j j';et), (8&)

where c (Fx, ) =+ 1 relates the particle matrix element of
F~ to the corresponding hole matrix element.

The RPA amplitudes for a particle-hole configuration
in a vibration can be calculated in terms of the single-
particle energies cj, the vibrational energy E, and the re-
duced coupling matrix elements M(ki;a), as

interchanging particle and hole labels in Eqs. (BS) and
(89). The quantities R are the recoupling coefficients for
the angular momentum and isospin. They are given by

J +J.+A Jk Ji
)

k i

Ji' Jk'
(810)

FICr. 26. Self-energy graphs for vibrational damping with
particle-hole-vibration doorways.

X(ki, a)
Y(ki, a)

1 M(ki, a)
[2(2k +1)]'" (sI, —e;+E )

(86)
1

2

z, =(—)'+'
2

1

2

1

2

(811)

Here X is the usual amplitude for creating the vibration
with the (ki) particle-hole operators, and Y' is the ampli-
tude for creating the vibration by annihilating the (ki)
configuration. The normalization constant A in Eq. (81)
is such that the X, Y amplitudes have the normalization

g [X (ki, a) F(ki—,a)]= 1 . (87)

ki, k'

2(k. )
M (k'k;a') 1

E—(et, —e;+E )2(2jt,~ +1)

(8&)

and

~ X(k. ) (k, ,
)
M(k'k;a')M(ii ';ct')
E—(Et, —e;+E ~ )

ki;k'i'

X [c(F )Rq R, ] .

We now write the contributions to the self-energy of a
vibration u, associated with the perturbation graphs (a)
and (b) in Fig. 26,

While Eqs. (88)—(811) are quite straightforward, the
numerous summations makes these formulas somewhat
tedious to evaluate. There are two tricks which can sim-
plify the work. In the RPA theory based on the surface
coupling, the expression

M(kk', a')M(k "k"',a')
(812)

is proportional to the RPA response function for the
operator F~,. The RPA response function can be evaluat-
ed in terms of the independent-particle response, without
the need to construct the RPA eigenstates o.' explicitly
(Bertsch et al. , 1979).

Another simplification eliminates the need for the dou-
ble summation of (ki) and (k'i') in Eq. (89). This is ac-
complished by adding the particle amplitude to the hole
amplitude before squaring, as depicted in the top line of
Fig. 22. Using the angular momentum coupling scheme
[(I,'jt, )J j;]z for the doorway state, we obtain the matrix

element for the combined amplitude,

The remaining two graphs in Fig. 22 may be obtained by

X(ki, a)M(k'k;a')
[2(2j.+1)]'"

4For the density operator c = —1; for other cases, see Bohr and
Mottelson (1969},p. 313 and Appendix 38.

+ X(k'i', a)M(ii';a')
[2(2,,-, +i)]»2 ""'

(813)
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The recoupling coefficient S in Eq. (813) is given by

Jk Jr
Sx =(—)

" ' [(2jk+1)(2j;+1)]'
Js' Jk'

and similarly for the w recoupling. The self-energy is then
evaluated as

(815)

The strength functions and widths may be evaluated from
the self-energy (815) as in Eqs. (AS)—(A10).

All time orderings of the intermediate vertices in the
graphs of Fig. 22 need to be included in a consistent
second-order calculation of the self-energy. With the (ki)
and (k'i') sums restricted to particle-hole states, Eqs. (BS)
and (89) have only the time orderings of Fig. 26(a) and
26(b), lacking amplitudes such as Fig. 26(c). Fortunately,
the damping calculation requires only the residue of the
poles in X at E=c.k —c.; —E, and these residues are
given correctly by Eqs. (BS) and (89) if the sum over in-
dices k,i' ranges independently over particles and holes.

We also give the formulas for the self-energy in I.S
coupling, as the coherence properties are more evident in
this coupling scheme. The particle states are then labeled
by orbital angular momentum I, the fields have an addi-
tional o. dependence I" =I'~ „and a o.-reduced matrix ele-
ment will be present in M(jj', a). The bracketed expres-
sions in Eqs. (BS) and (89) are then changed to the fol-
lowing:

5n(8p)= f (vib
~ ap+zap ~

0)
(2n. )

pFq cosO&
2

(2m )

7T

p+q~p' p +

—Yp, p+q

(C 1)

We first verify that the solution of the collisionless
Boltzmann equation for 5n(8p) is equivalent to Eq. (86)
for X, Y. The Boltzmann equation is

with

Bn p+ .V,n —V„U.V&n =I,
Bt m~ (C2)

U (r, t)= f f(p, p')np (r, t) d p
P t I P I

(2 )3

and I the collision integral. Landau's solution is obtained
by dropping the collision integral and linearizing in the
time-varying parts of n and U. The 5np is peaked on the
Fermi surface and, in the limit of q &&pF, the dependence
of 5n p on

~ p ~

can be neglected. Then the amplitude de-
pends only on the angle 8&, and the equation for excita-
tions of freqeuncy co is

RPA, this is either the amplitude Xp+q p or Yp p+qp de-
pending on whether p+q is the particle state and p the
hole state, or vice versa.

The distribution function 6n of Landau theory is relat-
ed to these amplitudes by summing over configurations
with a given angle 8p between p and q (see, for example,
Brown, 1972):

1 1

2(2j„+1) 4(2I„+1)

[c(F ~ )R~R,]~ [c(F~ )Ri„R R,] .

(816)

(817)

5n(8p }— q cosOp

—co+ cosom*

5U(8p )f 5n(8p )d cos8p,
5n 8p

The new Rx is the same as Eq. (810) with j labels
changed to 1 labels. The R~ is the same as (811) for R,
with the ~ label changed to o.. where

5n(8& }=pFq cos8&5np(r, t),
~ p ~

=pF .

(C3)

APPENDIX C: DAMPING IN FERMI-LIQUID THEORY

We examine here the damping of collective vibrations
in Fermi-liquid theory, with a view toward macroscopic
treatments of the damping using notions such as viscosi-
ty. In the Landau theory, there are two types of damping:
the Landau damping associated with single-particle
motion, discussed in Sec. IV.B, and collisional damping.
For fixed temperature, the collisional damping gives rise
to viscosity in the low-frequency limit. At zero tempera-
ture, the collisional damping may be directly compared
with the perturbation treatment of damping in Appendix
B. First, however, the relation between Landau's distribu-
tion function rip(r, t) and the quantum amplitudes must
be explained. We consider an infinite medium with
particle-hole excitations carrying Inomentum q. We can
define the amplitude for a particle-hole state in the vibra-
tion, (vib

~ ap+qap ~

0). In the conventional notation of

1 1

pq cas8 E+ ( eparticle echoic )

m )fc

(C4)

The change in sign of the numerator when 8p ~ m./2, to-
gether with the relabeling of particle and hole states when
L9& & m/2, gives rise to the sign change in E on the Y am-
plitude in Eq. (86). Finally, the integral over the poten-
tial 5U/5n is just the matrix element of the potential field
exciting a particle-hole configuration equivalent to M in

To compare this with Eq. (C 1), note that the number of
particle-hole pairs in Eq. (Cl) far q —+ 0 is propartianal to

f (1—np+q)npdp=q cas85(p —pz) .

The denominator in Eq. (C3) is just the q —+ 0 limit of the
energy denominator of (86),
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Eq. (86).
We can now analyze the collision integral in the linear

approximation and show that it is equivalent to the per-
turbation result [Eqs. (BS)—(810)]. Assuming that the
distribution function has an additional time dependence
e ~'~, Eq. (C2) with the collision integral gives

5I(8p )—5n (8~ ) = J d cos8~ 5n (8~ ),2 P (C5)

where we have formally evaluated the collision integral in
the linear approximation. Landau (1957) writes the col-
lision integral for the damping of a collective state as

d P2d P3d P4 ~
l
U(p+p2~~P3+P4)

l
'5(E, +E, +~—E, —E, )

(2n. )
P3 P4 P2 P

X5 (p3+p4 —p2 —p)[n~n~, (1—p3)(1 —n~, ) —(1 n~—)(1 n&,—)n~, nz, ] (C6)

This differs from the Uehling-Uhlenbeck form of the collision integral by the presence of the vibrational frequency co in
the energy-conserving 5 function. In a model with doorways based on particle-hole —vibration states rather than 2-
particle —2-hole states, the collision integral would be

d3 '
I(p)= ~g l

U(p~~p~+p')
l 5(ez +co+E~ —ez)5 (p'+p~ p)—[nz(l n& ) ——{1 n~)n—

& ] .
(2m. )

~a (C7)

We shall analyze Eq. (C7) rather than (C6) for simplicity
and to make a parallel with the treatment in Appendix B.
The distribution function n appears in four places in I, so
there will be four terms in 5I/5n. Each of these terms
may be associated with the imaginary part of one of the
perturbation graphs of Fig. 22. To make the correspon-
dence, draw a particle line k for a factor of (1 nk ) a—nd a
hole line k for a factor n (k), where k =p or p'. The in-
coming vibration 5n(k) connects to fermion lines k+q, k.
The outgoing fermion lines are p+q, p, since the graph is
a contribution to 5n{p) The r. equirement that the inter-
mediate state have the vibration produced together with
the fermion p of p+q determines how the outer fermion
lines are connected to the intermediate vibration. The
lines not part of the doorway state can be either particles
or holes, depending on

l
k

l

—p~, and we shall draw these
as horizontal lines. The four graphs from the four terms
in Eq. (C7) are shown in Fig. 27.

The only tricky point in making the identification is
the fact that Eqs. (BS) and (89) are based on only X-type
amplitudes, while 5n identifies with both X and F ampli-
tudes. The 5n(p') identifies with a F amplitude when p'
is in backward hemisphere 8~ &m/2. However, we have
generalized the definition of the X amplitudes to include
time orderings such as Fig. 26(c), which involve orbitals
in the backward hemisphere. In fact, the contribution
from 8& & n. /2 in Eq. (C5) is algebraically identical to the
perturbative contribution from Fig. 26(c), in the q~0
limit. Thus the linearized collision integral is completely
equivalent to the perturbation treatment.

%'e now compare the collisional damping with macro-

5The equivalence has also been demonstrated by K. Ando, A.
Ikeda, and G. Holzwarth (1982).

6See Uehling and Uhlenbeck (1933). Derivations of the col-
lision integral may be found in Abrikosov, Gorkov, and Dzy-
aloshinski (1963), Kadanoff and Baym (1962), and %'olfle
(1970).

scopic theories of damping based on fluid equations.
Auerback and Yeverechyahu (1975) assume that the vi-
brations can be described by equations in which the velo-
city field of particles is subject to dissipative forces given
by

BU~ 1=+v(V v, + —,VV v, ) —y(v, —v, ) .
dissipative

(CS)

ps

p+q

p+q

p (

p+q
~ a

p

f p/

FIG. 27. Perturbation theory graphs associated with the col-
lision integral (C7). The graphs represent contributions to
5n(p), coming from different terms in the expansion of Eq. (C7)
to first order in 5n(p), 5n(p').

Here the ~ label distinguishes neutrons and protons. The
v and y are intended to be constants, independent of nu-
clear size or type of vibration. In the microscopic ap-
proach, we expand 5n(p) in multipoles of cos8~, with
L, =O associated with particle density, and L=1 with
current The L. =0 moment is unaffected by the collision
integral, due to conservation of particle number. The
L, =1 moment of density vibrations, proportional to the
nucleon current, is unaffected by the collision integral due
to current conservation. The collision integral can damp
the I =1 moment of isovector vibrations, as assumed in
the last term in Eq. (CS). However, evaluation of the col-
lision integral will give a damping rate proportional to co

for Eq. (C6), and also for (C7) if the density of doorway
vibrations increases linearly with E . Thus a constant y
in Eq. (CS) is unjustified. The next multipole is L =2, the
distortion of the Fermi surface, which is always subject to
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q cos8
&

pq cos8+
CO CONT

'2

cos8 + . . -

Pl CO

We see that the relative amount of L =2 is of order
-(pq/corri~) . Thus the damping rate can also be seen to
scale with q as

2 Pq 2

tom

This q dependence then justifies the first term in Eq.
(CS), which has a constant multiplying the second space
derivative of a macroscopic field. However, it should be
apparent from the derivation that the macroscopic treat-
ment has no more than a qualitative validity for the nu-
clear vibrations.
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