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Quantum-mechanical phase-space distributions, introduced by Wigner in 1932, provide an intuitive alterna-
tive to the usual wave-function approach to problems in scattering and reaction theory. The aim of the
present work is to collect and extend previous efforts in a unified way, emphasizing the parallels among
problems in ordinary quantum theory, nuclear physics, chemical physics, and quantum field theory. The
method is especially useful in providing easy reductions to classical physics and kinetic regimes under suit-
able conditions. Section II, dealing in detail with potential scattering of a spinless nonrelativistic particle,
provides the background for more complex problems. Following a brief description of the two-body prob-
lem, the authors address the N-body problem with special attention to hierarchy closures, Boltzmann-
Vlasov equations, and hydrodynamic aspects. The final section sketches past and possibly future applica-
tions to a wide variety of problems.
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I. INTRODUCTION

In recent years one can discern an increasing interest in
the use of quantum-mechanical phase-space distributions
for the formulation and solution of scattering and produc-
tion problems. These distributions, which are quantum
generalizations of Boltzmann s N-particle distribution
f~(p~R~, . . . , p&R+, t), provide an intuitive picture of
complex collision processes.

As is well known (Tolman, 1938), the 6N dimensional
phase space of the position coordinates q; and momenta p;
provides a useful arena for the description of classical
mechanics. Quantum mechanics, which forbids states
having simultaneously definite p; and q;, requires the re-
placement of the phase-space distribution function by the
density "matrix" (von Neumann, 1955). An attractive
version of the density matrix discovered by Szilard and
Wigner (Wigner, 1932) allows the expression of quantum
dynamics in a form directly comparable with the classical
analog. The authors' interest in this approach occurred
when they noticed that the field-theoretic formulation of
inclusive production process involved second-quantized
analogs of the Wigner distribution function (Carruthers
and Zachariasen, 1974, 1976). In this formulation the N
particle covariant distribution functions are directly con-
nected with the inclusive differential cross sections. Be-
cause of the mathematical complexities of the relativistic
field-theory problem, no useful predictions have yet come
out of this formalism. In nuclear physics, Remler and
collaborators initiated and developed a program in which
nuclear reaction theory is formulated in the language of
the Wigner distribution function (Remler, 1975, 1981;
Remler and Sathe, 1975, 1978). Meanwhile, phase-space
methods (sometimes classical) were being developed by
quantum chemists in order to elucidate chemical reaction
problems (Brown and Heller, 1982; Eu, 1971, 1975; Hell-
er, 1976, 1977; Lee and Scully, 1980; Miles and Dahler,
1970). We hope that the present work will encourage
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communication among these disciplines and will lead to
the recognition of the phase-space method as one of
universal utility.

Over the years, several authors noted the possibility of
expressing potential scattering cross sections in terms of
Wigner functions (Irving and Zwanzig, 1951; Ross and
Kirkwood, 1954; Mori, Oppenheim, and Ross, 1962;
Huguenin, 1973; Prugovecki, 1978a). However, the prin-
cipal interest in these years was the derivation of
quantum-kinetic or Boltzmann equations for uniform or
almost uniform extended systems. Some other works con-
cerned with the Boltzmann equation are Uehling and
Uhlenbeck (1933); Mori and Ross (1958); Snider (1960);
Snider and Sanctuary (1971); Prugovecki (1978b). The
generalization of this approach to nonrelativistic field
theory and the modern formulation of the many-body
problem is explained in the book by Kadanoff and Baym
(1962). The most important qualitative consequence of
the modern formulation is the natural manner in which
"self-consistent field" theories appear in the simplest ap-
proximation. According to the nature of the system and
the statistics of the particles, these approximations carry
the names of Vlasov, time-dependent Hartree-Fock
(TDHF), and random-phase approximation. Secondly,
the transport equation can be obtained by suitable trunm-
tion of the coupled equations of motion. These tech-
niques can be carried over to relativistic matter. One of
the earliest such works, using Green's-function tech-
niques, is that of Bezzerides and DuBois (1972). The
reader is referred to the review of Hakim (1978) and the
thesis of de Boer (1979, 1980) for further information and
references on this subject.

The relation of transport equations to classical or quan-
tum dynamics, as expressed through the coupled hierar-
chy of distribution functions, continues to be a problem of
fundamental interest (Cohen, 1968). In this paper we
shall indicate how such equations can (under suitable con-
ditions) describe a portion of a collision process involving
many particles.

Another fundamental line of investigation concerns the
representation of quantum mechanics by phase-space dis-
tributions. Among the works on this topic, we mention
the following: Groenewald (1946); Moyal (1949); Baker
(1958); Barut (1957); Imre, Ozizmir, Rosenbaum, and
Zweifel (1967); Brittin (1971); Wigner (1971); Ali and
Prugovecki (1977a, 1977b); Grossman and Huguenin
(1978); Prugovecki (1978c); Balazs (1980); O' Connell and
Wigner (1981a, 1981b). A review of the formalism of the
Wigner function and its relation to the Weyl transforma-
tion (Weyl, 1927) has been given by de Groot and Suttorp
(1972). A related topic in this area of research is the
analysis of alternative definitions of distribution functions
designed to satisfy special criteria (Baker, 1958; Glauber,
1963; Cohen, 1966; Agarwal and Wolf, 1968; Lax, 1968).
For our purposes we do not need to worry about these
fine points. In the description of inclusive scattering pro-
cesses, the Wigner function arises naturally (especially in
second quantization). Cross sections are directly related
to it, and other issues are of secondary concern.

II. NONRELATIVISTIC POTENTIAL SCATTERING

A. Definitions

We consider in some detail the scattering of a nonrela-
tivistic, spinless, particle from a static potential well V.
Since we are ultimately interested in the detailed space-
time evolution of complicated systems, we use wave pack-
ets throughout. The usual results can be obtained by tak-
ing suitable limits.

As is well known, one has to give up the concept of
particle trajectories in quantum theory. The density of
particles is expressed in terms of the wave function by

n(R, t)=
~
@(R,t) l'.

Writing itt as

d3
g(R, t)= J 3&2 C(p, t)e'~

(2.1)

(2.2)

we see that the momentum distribution implied by P is

n(p, t)=
i
c(p, t)

i
(2.3)

One cannot specify simultaneously the position and

Recently the increased activity in heavy-ion physics has
led to greater interest in phase-space distributions.
Currently popular models (intranuclear cascade model,
"hot spot" model, hydrodynamical models) which em-
phasize collective and transport behavior are especially
suitable for examination in this framework. It was, in
fact, our earlier interest in the Landau hydrodynamical
inodel (Landau, 1953) of particle production which led to
our search for an underlying kinetic formulation of that
theory. We hope that the present work will lay the foun-
dation for a proper description of nucleon-nucleus and
nucleus-nucleus collisions. We also remark that pion-
nucleus scattering fits conveniently into the field-theoretic
version of our formalism, with a proper (non-wave-
function) description of the pion field. References to
these developments are given in Sec. VI.

The aim of the present review is to formulate in phase-
space distribution language the nonrelativistic X-particle
scattering of particles interacting via two-body potentials.
Technical complications introduced by spin, statistics,
and other degrees of freedom (e.g., isospin) will usually be
suppressed. The work should be regarded as a personal
essay. It is partly review and partly original, and is most-
ly taken from our notebooks and lecture notes dating back
several years. Points of contact will be found with many
of the references, however. Our main hope is to explain
the lucid physical meaning of this approach to collision
theory and to carry the development far enough to inspire
realistic mlculations. We always keep in sight the proper-
ties special to this formalism, namely, the description of
collective modes and the transport and hydrodynamic
behavior. Unfortunately, many of the applications will
require extensive numerical work. However, that is the
nature of the problems of principal interest.
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momentum better than indicated by Heisenberg's uncer-
tainty principle:

AxAp & —, (2.4)

n(R, t)= f d p f(p, R, t),
n(p, t)= f d R f(p, R, t),

(2.5)

(2.6)

with the overall normalization taken as unity. Note that
the f suitable to a single classical particle in a pure state,

f(p, R, t) =5(R —R(t))5(p —p(t)) (2.7)

where R (t) defines the classical orbit and p(t) =mR(t), is
in direct conflict with the uncertainty principle.

Wigner (1932) has proposed a construction which both
respects the rules of quantum mechanics and recaptures
most of the desired features of the Boltzmann function.
Notice that the density matrix (for a pure state)

(Planck's constant A' is set equal to unity except when
necessary to clarify physical interpretations. )

The demise of the orbit also casts a pall on the tradi-
tional formulation of statistical mechanics in terms of
distribution functions defined on phase space. The sim-
plest of these, the one-particle function f (p, R, t), immor-
talized by Boltzmann, is defined so that f (p, R, t)d R d p
is the probability of finding a particle of momentum p
and position R in the phase-space volume d R d p. The
coordinate and momentum densities are, correspondingly,

of positive definite asymptotic quantities like (2.13),
which give the differential cross sections.

Since Eq. (2.10) is nothing but a particular representa-
tion of the density matrix, what we have is essentially the
density-matrix formulation of quantum mechanics. Our
approach is also closely connected with the Green's-
function treatment of the many-body problem, as will be-
come clear in Sec. V.E describing the second-quantization
formulation of the problem. (In that section we shall con-
sider more general density matrices. ) Although the
density-matrix description of quantum dynamics has little
to offer in simplicity for easy problems involving only a
few particles, it really comes into its own for complex,
many-particle dynamics. We shall argue that the Wigner
version, suitably generalized, is the most natural way to
formulate and solve such problems.

The simplest example is a free particle,

where ~v =p/m. For a wave packet made up of free par-
ticles, fo depends on R as R vt T—he .example of the
Gaussian momentum packet (peaked at po and Ro) is
especially useful and interesting,

exp[ —(p —po)'/4~1
C(p)=

(2~o )3/4
exp( —ip Ro), (2.15)

C(p, t)=C(p) exp( ip —t/2m),
(2.14)

fo(p, R, t)= f, e ~ C*(p —, q)C(p+——,q),

exp[ —(p —po)'/2~]
(2~o )3/2

exp[ —(R Rov~t) /2L]—
(2vrL )3/2

(2.8)g*(x„t)P(x„t)
fo(p, R, t) =

has six c-number variables besides t. Introducing relative
and center-of-mass coordinates by

(2.16)
r =(x2 —x) ),
R =(x)+x2)/2,

(2.9) where L is defined by I. =1/4o. . We point out some in-
teresting features of Eq. (2.16):

(a) It does not spread with time for fixed p, even though
the underlying wave function does. However, contours of
constant f, described by a generalized ellipse, do spread in
the phase plane.

(b) The momentum and position distributions obey the
uncertainty relation Ap~hR„) —,. Hence an equation like
(2.7) is out of reach, except as a special limit involving
A~O.

(c) As L tends to infinity fo becomes spread uniformly
over space, while the momentum factor is sharp in
momentum.

The Gaussian packet (2.16) is an especially good proto-
type incident-free packet. Since we shall use these results
for large L„ the normalizations appropriate to the contin-
uum counterparts are listed (as L —+ oo ):

we obtain the Wigner function by making a Fourier
transform on the relative coordinate:

3

f(p, R, t)= f ",e " "P*(R , r, t-)-g(R+ ,—r—,t) . —
21T 3

(2.10)

The variable p is not an operator, but is simply a judi-
ciously chosen ordinary vector. It is also useful to write f
in terms of the momentum basis

(2.1 1)

From these definitions we see that

d3
f(p, R, t)= f e'- —C*(p —, q, t)C(p+ , q, t) . ——

(2m )

f d p f(p, R, t)=
~
g(R, t)

i

f d'R f(p,R, t) =
~
C(p, t)

~

',
(2.12)

(2.13)

(L) C(p )~5(p —po ),
(L/2m)~ Pp, (R )~. exp[ipo(R —Ro)], (2.17)

in analogy to Eqs. (2.5) and (2.6).
The function f is real, but not necessarily positive de-

finite. The lack of assured positivity will not concern us
unduly since we are mainly concerned with computation

(L/2~) i fo(p, R, t)~5(p po)/(2')—
The indicated continuum normalization is I/(2m) parti-
cles per unit volume.

Re&. Mod. Phys. , Voi. 55, No. 1, January 1983
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= fdRf(p, R, t
8 p

(2.18)

To calculate the incident flux and consequently the cross
section, we note that the probability current is

J(R, r) = . (/*VS —Vg*g)1

2' l

Other examples of analytically calculable phase-space
distributions will be given in Sec. II.F.

Before taking up the question of computing f(p, R, t),
we explain how to express the result of a scattering exper-
iment in the present formalism. We imagine (Fig. 1) a
nearly uniform wave packet with momentum components

p =po incident on a localized potential V. The extent of
the packet L ' needs to be much larger than the size of
the potential (called a) if we use Eq. (2.16) as our proto-
type packet. (Figure 1 has been drawn for Ro equal to
zero; for L —+ oo, the memory of Ro disappears from the
problem. ) After the incident packet scatters off V, the
outgoing signal is detected in the solid angle dQ (Fig. 2).
As time tends to infinity all particles pass by the detector.
We rewrite Eq. (2.1) in differential form, giving

since our f includes the incident particles, the definition
(2.22) does not agree with the traditional one in the for-
ward direction po. This question will be clarified in Sec.
II.E.

B. Equation of motion: relation
to the classical limit

p2
+ V(R) g(R, t) . (2.23)

The result is more complicated formally, involving essen-
tially the commutator of H with the density matrix. But
this form is directly related to the Poisson bracket form
of classical Inechanics, as shown below.

The kinetic term is most easily computed in momen-
tum basis, giving

C*(p ——,q, t)

The equation of motion for f follows directly from the
Schrodinger equation,

d p~v p, R, t (2.19)
X C(p+ —,q, &) = ——

V~f(p, R, t) . (2.24)
Vl

the latter following an easy calculation. Therefore, the in-
cident integrated flux along the beam direction po is

The full equation of motion is then

~+inc
dr J'0'pofo(p R t) (2.20)

Using Eq. (2.14) for fo and noting that in the limit of
sharp wave packets p =pa, q =0, we can derive

= f d p f d q5(q vo)C*(p —2q)

r
e '--" V R+ —,r —V R ——,r

(2M)'

Xf*(R , r, t)g(R+—, r, t) .——(2.25)

X C (p + —,q) /(2~)' .

The differential cross section is then

f d R f(p, R, oo)

g 3p dN;„, /dA

(2.21)

(2.22)

We have temporarily reinstated the correct factors of A in
order to facilitate our discussion of the classical limit.
Equation (2.25) can be usefully rewritten as

In this form one can take the continuum limit. Note that

FIG. 1. A smooth free-particle Wigner distribution with mo-
menta peaked near po approaching a localized potential V.

FIG. 2. The outgoing particle's density in phase space. This al-
lows the evaluation of the cross section do. in the solid angle
dQ.

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983
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(2.26)

where the function X,

rK(p' —p, R)= e' — --" [ V(R+ —,r)(2M)'

—V(R ——,r)]

Df( R )
1 d rd p j(p' —p)r

Dt i A (2~)3

[V(R + —,r )—V(R ——,r )]f(p', R, t)

—:f d p'K(p' p, R—)f(p', R, t),

on V. The form (2.30) is most easily derived by writing

V(R+1/2r) =exp(+1/2V) V

in Eq. (2.27), which leads to

AVp. Vg

2
V(R)5(p' —p) .2 ~K(p' —p, R) =—sin

(2.31)
In either the quantum case [Eq. (2.26)] or the classical

case [Eq. (2.29)] the motion is ballistic in the absence of a
scattering potential. More precisely, the equation

(2.27)

D
Dt f= +~v.V f=0 (2.32)

occurs in many of our calculations. We shall also use the
Fourier transform

i«p' pe) =—V(e)[ o(p' p+ , —q)—
is solved by any function of R —

~v t. The initial condition
for the scattering problem is of this form.

The differential operator occurring in Eqs. (2.29) and
(2.30) has the form

—~(p' —P ——,e)] (2.28)

The difference of potentials occurring in Eq. (2.27) is
important only for r & a, where a is the range of the po-
tential. Hence the significant momentum differences
p' —p occurring in K are of order

~

p' —p ~

(A'/a. There-
fore, in the equation of motion (2.26), the potential has
the effect of connecting f 's with p' in the range
p'=p+R/a. The finite contributions for r =+2R+a os-
cillate if R »a and do not contribute for short-range po-
tentials.

In the classical limit, (2.26) becomes local in momen-
tum space, too. In the limit A~O, expanding

V(R +1/2r) —V(R —1/2r) -=r VV

and writing r =iV&lfi leads to the classical one-particle
Liouville equation,

——+v Vf (p, R, t) VV(R ).V f—(p, R, t) =0 . (2.29)
a

AVp. Vg—sin
2

=D, +A'D, +A'D4+ ~ ~ ~

D
Dt

—Do fo=o
T

D
Dt

—Do f) =0

D
Dt

—Do f2 =D2fo

D
Dt

—Do f3=D2f)

If we expand f formally in a power series in fi,

f=fo+&f) +&'f2+

we find the sequence of equations

(2.33)

(2.34)

(2.35)

+v V f(p, R, t)
a
Bt

g)n —)

(V~.Vg )"V(R)f (p,R, t)
n odd 2

2 ~=—sin
AVp. Vg

2
V(R)f(p, R, t) . (2.30)

Here and subsequently it is understood that Vz acts only

Hence Eq. (2.26) may be regarded as a quantum Liouville
equation. Information on classical scattering theory in
the phase-space language can be found in Prigogine (1959)
as well as in Miles and Dahler (1970) and Eu (1971, 1973).

Equation (2.29) is equivalent to the constancy of the
phase-space density (df/dt =0), provided the particles
move on classical orbits specified by Newton's laws:
dr/dt =p/m, dp/dt = —V V. The solution is then

f [p(t), r(t)].
If we keep all terms in the expansion of V, we easily

derive

D
Dt

—Do f4=D2f2+D4fo

D
Dt o f~=»f3+D4f)

These equations are solved in sequence by simply integrat-
ing along the classical orbits, keeping in mind the initial
distributions, whose A content will vary with the problem.
For example, having found fp, we calculate fz from the
equation

t
f2 =f2 + f dt'(D2fp)[p(t') r(t')] (2.36)

In this manner the entire quantum distribution is con-
structed in terms of the underlying classical orbits.

When the boundary condition is independent of A, only
even powers of R occur in the formal series (2.34). One of
the first applications of the quantum phase-space distri-
bution (Wigner, 1932) was the calculation of quantum
corrections to the Boltzmann distribution. Although such
results seem to make sense for thermally averaged quanti-
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d(p&= &d dR 'f"'"= Vv-- (2.37)

ties, the formal expansion does not exist (Heller, 1976) in
many important cases. The reason is that essential singu-
larities spoil the expansion of Eqs. (2.34). A very simple
example is the free Gaussian distribution, Eq. (2.16), in
which the fi dependence is of the form h exp( —A/A ).
Hence cvcry Vp brings in factors A' ' and A, canceling
factors of fi in the expansion (2.34). We refer the reader
to the work of Heller (1976) for further information as
well as for the description of a method to explicitly ex-
tract the singularities responsible for the failure of the
naive approach outlined above. The essence of his
method is to remove the essential singularities through a
selective summation of the infinite series in A. The prob-
lem is sufficiently important to deserve further study.

The phase-space distribution method has been used to
illustrate various features of the (tricky) classical limit.
The reader is referred to the following authors for further
information and references: Heller (1977); Berry (1977);
Berry and Balazs (1979); Berry, Balazs, Tabor, and Voros
(1979). Particularly interesting is the semiclassical
(WKB-derived) phase-space distribution derived and stud-
ied by Berry (1977). We expect that further development
of these ideas for scattering theory will lead to important
practical applications.

It is instructive to note that we can easily prove an
"Ehrenfest theorem" using the Wigner distribution

where

f(p, q, t)= f d R e '~ f(p—,R,t),
f(p, q, to)= f—d R dte'"' '~ f(p—,R, t),

(2.40)

with analogous expressions for the transforms of S.
The Green's functions corresponding to Eqs. (2.39)

obey

Bt
+v V G(p, R, t)=5(R)5(t),

i —q. u G(p, q, t) =i5(t), (2.41)

(to —q u)G(p, q, to)=i .

G„,(p, q, co) =
CO+l E, —g 'V

G„„(p,q, t) =8(t)e

G„,(p, R, t) =5(t)5(R ut),—
(2.42)

when 5(t) is the usual step function: unity for t &0 and
zero for t &D.

The integral forms of Eq. (2.36) are evidently

As usual, one has to define the pole suitable to the desired
boundary condition (here retarded). The result is

A similar calculation for (R & leads directly to

d(R & (p&
dt m

(2.38)

f'(p, R, t) = f0(p, R, t)

dt'S P,R —
~v t —t', t'

f(p, q, t)=fo(p, q t) (2.43)

For these simple moments, the classical procedure of
computing expectation values coincides with the usual
quantum-mechanical rules. For discussion of the general-
ity of this, one should consult the references.

C. Integral form of the scattering equations

As is usual in scattering theory, it is useful to formally
integrate the equation of motion to exhibit the incoming
boundary condition explicitly. In anticipation of our later
development, we pose the problem not only for f (p, R, t),
but for the corresponding space and time Fourier
transforms.

Consider the equations

iS (p, q, to)
f(p, q, ~)=fo(p q ~)+

CO+l C —g V

Here fo solves the homogeneous equation suitable to the
three descriptions: as t + —ao, f—~f0. The retardation
factors, which have an obvious physical meaning, find
differing expression in the three forms of Eq. (2.39). Ap-
plying these results to the equation of motion (2.26) leads
to the scattering integral equation

f (p, R, t) = fo(p, R, t)

+ f dt'd'p'K [p' p, R up(t —t')]— —

Bt
+u V f(p, R, t)=S(p,R, t),

&&f [p', R ~u(t t'), t'] . ——(2.44)

8
i —q v f (p, q, t) =iS(p, q, t),

(to q.v )f(p, q, co) =—iS (p, q, to),

(2.39) Physically, it is clear that the values of f at retarded
points build up the whole function. The kinematical-
kinetic content of Eq. (2.44) is exposed by iterating. To
illustrate, the second-order term is

f
dt' dt" f d p' f d p"K[p' p, R up(t t')]K[—p" p—',R up(t t—')—vp(t' —t—")]——

Xf fp",R v~(t t') —
v~ (t' t"),—t"] .— — (2.45)

Rev. Mod. Phys. , VoI. 55, No. 1, January 1983
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Pictorially [Fig. 3(a)] the particle density begins at time i", is deflected from p" to p', propagating with velocity vz until
t', when the potential changes the momentum to p. Then the density propagates between t' and t with velocity vp.

In nth order we have

f ~(d~;d'p;W(p 'p—,R ) . . &(p„—p„„R„)f(p„,R„,t„), (2.46)

where the variables are given by

R i ——R —
vp 5t i, 6t] ——t —t', R2 ——R )

—
Up 5t2p 512 R„=R„ i

—vp„6t„, 5t„+) ——t"—t"+'

The physical interpretation is again suggested by Fig. 3(b).
For many purposes the (q, co) language is convenient. The scattering integral equation is

f(p, q, ~)=fo(p, q, ~)+ . f, V(q')[f(p ——,q', q q', ~) —f(p+ —,—q', q —q' ~)]
co+i E q—~v (2~)3

where the incoming distribution function is

fo(p, q, ro) =2vr6(ro q.~v
)C*—(p ——,q)C(p + —,q) .

(2.47)

(2 48)

It is easy to show that the differential cross section is the residue of a pole in f (p, q, ro) at co=0 for q =0. For popo we
have

f d R f(p, R, t) ~, „=f(p,q=O, t = oo) = f dt (p, q=O, t) = i [rof—(p, q=O, rv)]„=o (2.49)

It is instructive, though tedious, to solve Eq. (2.44) by iteration,

f=fo+fi+f2+ '

where

1f.+i(p q ~)= . , V(q')[f. (p ——,q' q q' ~) f.(p—+ —,q' q——q' ~)] .
ro+iE q .

~v
— .(2~)3

(2.50)

Note that since fo exhausts the normalization we have g(t) =y(t) —i f dt'e ' Vg(t'), (2.54)

f f„(p,R, t)d pd R=0, n)1. (2.51)

f &
does not contribute to the cross section as anticipated

(it is linear in V). Working through the details, one finds
the flux factor (2.21) explicitly, giving in second order

where g~y as t~ —ac and the exponential oscillations
are to be tamed by the adiabatic hypothesis. %'e can ex-

vp(t-t'

=(2')
~

V(p —po)
~

5(E —Eo) .
cg p

(2.52)

Rather than derive this explicitly, we shall show how our
formalism leads to the general formula wherein the Born
cross section (2.52) is replaced by the identical formula
with V replaced by the transition matrix. Our calculation
is somewhat similar to that of Gottfried (1966), who uses
the density matrix.

D. Exact formula for the scattering cross section

f(p, q, t) =C(p+ , q, t)C" (p —,q,t)——
=(p+ ,'q ~f(t))(g(r) ~p -, q) . ——

The wave function P obeys the usual equation

(2.53)

In order to derive the generalization (2.48), we begin by
expressing the Fourier transform of (2.11) in Dirac's
bracket notation, (R„Zt„Z) ('n-i

FICz. 3. Iterative contributions to the scattering integral equa-
tion. (a) The structure of the second-order iterate [Eq. (2.45)].
The retardation terms propagate the phase-space densities freely
between interactions with the potential. {b) The structure of the
nth-order iterate.
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where E~=p /2m. For a sharp X(p)=(2m. ) /5(p —k),
we find the usual result

pk(x)=e' "+ --Vgk(x) .
EI, +tc,—Hp

(2.56)

pand g and y in terms of the stationary wave functions
exp(ik-x) and gk (x), respectively, using the same expan-
sion coefficient X(p):

3

q(x, t)= f —,/, X(p)e'~"- ' p',
(2.SS)

d pg(x, t)= f 3/2X(p)g~ (x)e ' p',

The usual transition matrix for scattering from momen-
turn state k to k' is

Tk', k=&k'I V Ilk & (2.57)

In our calculations it will be useful to use the related am-
plitude

T, (t) = &p
I

v
I
g(t) &

= f X~ (k)e "&pl VI+&. (258)(2~)'" "
Here we have labeled 7 with a momentum pp, about
which we shall eventually make X~ (k) peak. The equa-

tion of motion is

~~,
—U q f(I q t)=&P+ , q v I—P(t)&&@(t)ls' , q& —&—I +-—, q lf(t)&&4(t)

I vis' ——,q&.
L

(2.59)

As it stands, Eq. (2.59) exhibits only one explicit V on the right-hand side. But the desired structure, containing two
V's and two g's, results immediately on substituting the integral equation (2.50), converting the right-hand side of Eq.
(2.59) to:

&P+ —,q I
v l@&&q ls , q& &I +—,—q lq—'&&&—IVIP ,q&——

t
+t &p+ , q I

V
I
4(t) & —f «'exp[tEp —q/2(t —t')]&4(t'

I
V ls' ——,q &

+i f dt'exp[ iE~+q/2(t ——t')]&p +, q I

V
I
—@(t')&&At)

I
V lp —2q& . (2.60)

The first two terms are nonzero only in the forward direc-
tion po for q =0 and will be dropped here. The time in-
tegrals in the third and fourth terms are evaluated using
Eq. (2.55). Further performing the time Fourier
transform gives

dkdk'
2vr f X (k)Xp (k')5(co+Ek Ek)—(2~)'

t[~f(s' 0~)] —=o=2~o(Et, Et )
I

O'
I
v

I fp, &
I

d Pdd Pd QX~(P 1

Q)
(2m)

XX(P+—Q)&(P Q/m) .

(2.63)

X . +
—1 1

Ek E + /2 l c Ek~ —E /2+k E

x 4 + —,q I
v

I fk &&4+
I

v la ——,q& . (2.61) = (2~) '~(E Eo)
I &P—I

V
I @p, &

I

' (2.64)

Recognizing the flux factor from Eq. (2.2l) and using
(2.49) leads directly to

Making the substitutions k =P+Q/2, k'=P —Q/2, we
can express Eq. (2.59) in the form

f X*(P —Q)X(P+ Q)o(co+—P Q/m—)
dPd Q

1 1
X

Ep g/p —Ep q/2+' ~ Ep+ g/2 —E

x&p+ —,'q
I
vl@+ &n&&@+ &„I vip ——,'q&.

(2.62)

We are interested in the limit of this expression for
q =co=0 and for the wave-packet coefficients Xz sharply

peaked around po. This allows us to set Q =0, p =go in
slowly varying functions. Hence for popo we find

where U =pp/m is the incident velocity.
We now clarify the special features of the wave in-

terference behavior in the forward direction and in so do-
ing show how the optical theorem arises in the present
formalism. Our previous definition of the cross section
(2.22) was unorthodox in counting all final particles, in-
cluding the incident beam. This approach is too tied to
the classical approach and obscures the important
phenomenon of diffraction scattering.

To clarify this question, we note that corresponding to
the decomposition

(2.65)

to which (2.54) tends as t~ao, we have for the Wigner
distribution
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f=fo+fint+fsc ~ (2.66)

where fp, f;„„and f„are, respectively, the incident, in-
terference, and scattered components. In the equation of
motion fo drops out. In Eq. (2.60) the first two terms
dropped are exactly the interference terms which arise
from the overlap of the incident and scattered wave.
Therefore, the necessary correction to Eq. (2.22) is the
subtraction not only of the fp contribution (exactly as in
classical mechanics), but also of the interference term.
From Eq. (2.60) we see that this interference term is just
the imaginary part of the T matrix, as one should expect,
in the limit q —+0.

The continuum limit of Eq. (2.60) is easy to take. In
that limit the various states become energy-momentum

+2m.i5(E —Ep)
f
T

f
=0.

Integration over d p gives the usual form,

(2.67)

d pImT«~, —m f—— 35(E —Eo)
f
T « (2.68)

eigenstates and the left-hand side vanishes as q~0. The
vanishing of the right-hand side then produces the optical
theorem as a constraint. From Eq. (2.56) we see that a
suitable normalization for continuum states is
(2m) 5(p' —p). Performing the trivial time integrations
gives

(2~)'&(p —po)[(p f
T fpo& —(p f

T fp ) ]

E. The eikonal approximation

High-energy, small-angle potential scattering is well described by the eikonal approximation (Glauber, 1959). This re-
sult can be easily derived in the present formalism by one simple approximation, i.e., replacing the velocity in the drift
term v. V by the incoming velocity vp =pp/pl.

We write the equation of motion in the form (2.26)

i +vo V f (p, R, t)= f e'««'"[V(R+ —,r) —V(R —, r)]f (p'—,R, t) .
(2n. )'

Noting the convolution structure in momentum, we can rewrite this in terms of
d3f (y, R, t) = f e'««f (p, R, t)

(2m )

(2.69)

(2.70)

i +vo V f(y, R, t)=[V(R+ —,y) —V(R ——,y)]f(y, R, t) . (2.71)

[Note that the exact equation corresponds to replacing vo by —i V» in Eq. (2.71).]
Equation (2.71) is solved by integration,

tf (y,R, t) =fo(y, R, t) exp i dt'I V [R —+ —,y —vp(t —t')] —V[R —2y —vp(t —t')] I00
(2.72)

where fp is as usual the incoming density function, transformed as in Eq. (2.66). Therefore, the desired phase-space den-
sity is

f(p, R, t)= f d y e t'»fo(y, R, t)exp i f dt'I V[—R+ —,y —vp(t —t')] —V[R ——,y vo(t —t')]I—(2.73)

Defining variables parallel and perpendicular to vo in the obvious way and writing z=R~~ —vo(t t ) allow—s us to
rewrite Eq. (2.73) as

R
IIf(p, R, t)= f d ye '&'»fo(y, R, t)exp f dz V z+,R&+

Vp 00 2 2
ll yi—V z —,Ri—

2 '
2

(2.74)

Now all the time dependence has been placed in an espe-
cially simple, controllable function, namely, the free
motion described by fp.

We now use the Gaussian fp of Eq. (2.16) to simplify
(2.74). We find, setting R p ——0,

—(R —vot) /2L

f(y, R, t)= e ' e», (2.75)
(2~)' (2~1.)'"

where eventually we shall want to take the limits o.~0,
L~ ~. To obtain the cross section, we need to integrate
Eq. (2.74) over R and study the behavior as to t~ co. To
accommodate the structure of the potential term, it is use-

I

ful to change variables as follows:

y& ——R + —,y,
1

y, =R ——,y .

Further writing

yI ——zi,yi =b
II

y2II =z2 y2, =—b2

(the b; will be impact parameters), we obtain after a little
arithmetic
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f d R f(p, R, t)= f d b, d b2 exp[ —i(p p—o)~ (b.
&

—bz)]exp
b)+b2

2

Xexp[ c—r(b~ b2—) /2] f dz~dz2 exp[ —i(p —po)~~(z& —z2)] exp
z( +z2

2
—Vpt

X exp[ —o(z& —z2) /2]@(z&, b, )C *(z2,b2)/(2m)'(2mL)3, (2.76)

where the function + is defined by

@(z,b)—:exp — f dz V(z, b)
Up

—co
(2.77)

The complex expression (2.79) simplifies greatly in the
limit t~ oo, since then the only contributions come from

z&+z2~oo, too. Actually, z& and zz tend to + oo togeth-
er for finite o. because of the factor exp[ —o.(z& —z2) /2].
For finite-range potentials C&(z, b) =@(ao,b) as soon as z
exceeds the potential range. Hence the z&,z2 dependence
of the potentia1 functions @ disappears as t~ m. Csoing

over to coordinates z =z~ —z2, Z =(z& +z2)/2, we can do
the two integrations explicitly,

not coincide with the traditional definition of the cross
section in exactly the forward direction. That is, of
course, where the discrepancy lies, in that the —1 term
produces a 5(h) on performing the b integration. Equa-
tion (2.80) involves the full f, while squaring 4 —1 leads

to an immediate identification with the terms in Eq.
(2.66).

F. The bound-state problem

In the preceding sections we have formulated the quan-
turn scattering problem in terms of the time-dependent
solutions to the Liouville equation

—(Z —vot) /2L

dZ
(2m L)'i

—(~/2)~' —'& —&0 &~ ~'dze e

=2m5(p~~ —po) =2~uo5(E —Eo)

(2.81)

where the quantum Liouville operator L is defined by

reinterpreting the a~0 integral as an energy-conserving
delta function.

Letting o —+0, L —+ ao inside the b integrations, we find

f d R f (p, R,oo)=, 2nvo5(E —Eo)3 = 1 1

2~L (2~)'
2

x dbe '—-N ~b

L (p,R)f (p, R, t) = iu&. V—&f (p, R, t)

+i d p'K p' —p, R p', R, t

(2.82)
—iE„t

For energy eigenstates, g„-e "f is time independent,
so that f„„constructed from such wave functions must
satisfy

(2.78) Lf„„=0. (2.83)

where A=p —pp is the momentum transfer.
The coefficient I/(2nL) is nothing but the flux factor

(2.20) evaluated for the Gaussian as L ~ co ..

= exp( Rj /2L)/2~L ——+2 1

2'. (2.79)

Finally, writing

d p=p3 2dP
dE

and integrating over E gives

f d be ' '
exp — ' f V(Zb)dZ

Up

(2.80)

This formula differs from the usual one by the absence of
a —1 accompanying the exponential. The —1 comes
from subtracting the incident wave to define a scattered
amplitude. Our formalism, which involves the full f, in-
cludes everything, and therefore the definition (2.22) does

Xf (p', R —~vr) .

In Fourier transform language this becomes

d3 '

(2m. )
q.v fa(J»q)= , V(q')[ fa(i + —, e', q —e')

(2.84)

fa(J ——,v', q —q')1—
(2.85)

It might be imagined that Eq. (2.84) is a combined
eigenfunction-eigenvalue problem for E„and the associat-
ed phase-space distributions. It turns out that, in contrast
to the scattering problem (for which the boundary condi-
tions are different), the Liouville equation does not deter-
mine the Wigner function in this case.

A first indication of this comes from a closer inspec-
tion of the equation of motion (2.45) in the case when f
has no explicit time dependence. For bound states there
is, in addition, no incident wave packet. Shifting vari-
ables to ~=t' —t gives the bound-state equation

f~(p, R)= f dr f d p'K(p' p,R+u r)—
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in agreement with Eq. (2.47) adapted to bound states. To
illuminate this equation further, we rederive Eq. (2.85)
from the bound-state Schrodinger equation in momentum
space:

2

(2.86)2' X(q) = f V(q')X(q —q'),
(2m )

where the X's are defined (and called C) in Eq. (2.2).
From Eq. (2.11), we find for f (p, q)

f (p, q) =X'(p ——,q)X(p + —,q) .

We now construct f (p, q) in two ways using Eq. (2.86):

(E Ep q)2—)X*(p ——,q)X(p + —,q)

d '"',Vq X p--.'q+q Xp+-'q
(2 88)

(E &~+q q—~ )X '(p , q)X(—p —+—,q)

d=f, V(q')X*(p ——,q)X(p+ —,q —q') .
(2m. )

Identifying the integrands as f (p + —,q', q —q') and

f (p ——,q', q —q') and subtracting gives Eq. (2.85), since

Ep+qpz Er q&2
—p.q/m .——

The cancellation of the energy eigenvalue in going from
Eq. (2.88) to Eq. (2.85) leads to the suspicion that the
latter may not, in general, determine the energies or eigen-
functions of the bound states. This is in contrast to Eq.
(2.86), which poses a standard eigenvalue-eigenfunction
problem.

In order to clarify this situation, we note that the basic
equation of motion (2.81) is a particular realization of the
density-matrix equation of motion

i =[Hp]. (2.89)

(A, real but not necessarily positive) is easily surmised by
inspection of Eq. (2.91). Writing p „=

~
m ) (,n ~, where

~
n ),

~
m ) represent energy eigenstates, we see that

i =(E —E„)p „..~Pmn

t
(2.91)

Recalling the relation between the density matrix and the
Wigner distribution [Eq. (2.10)], we see that the eigen-
functions of L corresponding to Eq. (2.91) are the off-
diagonal generalization off:

As a consequence, the solution to the more general eigen-
value problem

(2.90)

where the phase-space integral of f „vanishes. We now
see that the energy eigenvalues are to be constructed from
the eigenvalue spectrum of L

Since the p „ form a complete set of matrices by which
any operator can be represented, so do the f~„of Eq.
(2.92) form a complete set. In particular, a general f can
be represented as

f(p, R, t)=QC „f „(p,R, t) . (2.93)

It is useful to state here the completeness and ortho-
gonality conditions obeyed by the f~„. (For this purpose,
we remove the time dependence of the energy eigenstates. )
Straightforward calculations using the completeness and
orthogonality of the wave functions lead to

f d pd R f „(p,R)f t(p, R)=5„,5,~/(2m)

g f „(p,R)f*„(p',R') =5(R —R')5(p —p') /( 2m. )

(2.94)

In the particularly interesting case when the system is
subjected to an external potential V,„(R,t), the C „'s be-
come time dependent and induce transitions among the
various "stationary" solutions f~„(cf.Sec. II.H).

The construction (2.92) provides the desired solution to
Eq. (2.90). However, an attempt to solve (2.90) does not
lead uniquely to Eq. (2.92). A symptom of this difficulty
is easily seen from the form of the density-matrix analog
to Eq. (2.90):

[H p~]=~p~. (2.95)

L~X =~~X (2.96)

Clearly we can reconstruct the usual Schrodinger eigen-
value problem from L and L. The (p,R) form for L is
easily obtained by suitably changing signs in Eqs. (2.24)
and (2.25). Noting that f~„also solves Eq. (2.96),

Clearly any solution to this equation can be multiplied by
an arbitrary function of the constants of the motion
without changing the eigenvalues.

The problem evidently is that the single equation (2.90)
is not completely equivalent to the Schrodinger equation.
The proper resolution of this situation has been clearly
laid out in a recent paper by Dahl (1981). In addition to
the commutator structure Lf~[H,p], we need the an-
ticommutator analog Lf~ , [K,p]+, with th—e associated
eigenvalue problem

Tf „(p,R,t)=—f, e '~Q'„(R ——,r, t)
(2m )

XP (R+ , r t), —

Lf „=(E E„)f „, —

f „(t)=e " f „(0),
(2.92)

Lf „=, (E +E„)f„, — (2.97)

we find for the kinetic energy term

1
2

—,[»pl+~ fmn — ~zfmn .
2m Sm

(2.98)

Combining this with the potential energy term, we find

Rev. Mod. Phys. , Vol. 55, No. 5, January 1983



256 Carruthers and Zachariasen: Quantum collision theory with phase-space distributions

—,(& +E )f „=
2m

1 2v, f„ go(x)=, &&&
exp( —x /4xo) .

(2')'~ x' (2.106)

+ f d p'K(p' p,—R)f „(p',R),
From this wave function, we easily compute the Wigner
function

(2.99)

where the kernel E is given by
3

K(p' —p, R)= —, f 3
e'~

(2m. )

X [V(R + —,r)+ V(R ——,r)] .

(2.100)

Note that the time dependence of f „cancels out in Eq.
(2.99).

Equations (2.90) and (2.99) provide the required con-
straints to solve the eigenvalue-eigenfunction (matrix)
problem. Note that f „will have to vanish for r~ oo,
p~ ao if I and n are both bound states. In the continu-
um, of course, the eigenvalue is arbitrary and Eq. (2.91)
suffices to determine the solution to the scattering prob-
lem.

If we expand in r we find

K= V(R)5(p' —p) ——, VJ(R) 5(p' —p)+1

Bp; Bp,

(2.101)

Note that the leading term is just

e' e'
a(x/x, )' a(p/p, ')

(2.108)

Clearly the ground-state result (2.108) satisfies this condi-
tion, but so does any Gaussian exp[ —A (x' +p' )], where
the prime denotes the natural dimensionless variables
x/x, p/po.

Writing the energy in these units,

H(p, x)= —,co(p' +x' ), (2.109)

we can easily confirm from Eq. (2.107) that

Fo ——f dp dx H(p, x)f (p,x)= —,co, (2.110)

but the differential equation (2.108) does not determine

f (p, x), and so the ground-state energy is correspondingly
undetermined.

Next we see that the more general equation (2.83) does
give the energy eigenvalues, even though the f „are not
uniquely determined.

Using Eq. (2.104) for the oscillator kernel, we can write
the Liouville operator in the form

f (p, x) = exp( —x /2xo —p /2po), (2.107)
27TX Op 0

which is (not surprisingly) a joint Gaussian in p, x. Not-
ing that (me@) =po/xo, we write Eq. (2.96) in the form

H,)„,(p,R)f „= +V(R) f „= 2 (E +E„)f „, L=LN X,—P (2.111)

f (p,x) =i f dp'K(p' p,x)f (p', x), —
m Bx

(2.103)

(2.102)

the classical equation of motion, whose energy is the aver-
age of the two quantum energies.

In order to demonstrate this and other points, we exam-
ine the one-dimensional harmonic oscillator. In coordi-
nate space, the stationary Liouville equation is

x =Jcosy,

p =Jsiny,
where J is proportional to H, we find

(2.112)

As in the classical case, the Liouville operator acts as a
rotation in the phase plane. Naturally, H (or the action,
classically) commutes with L. Introducing action angle
variables in the phase plane as in Fig. 4,

where for V = —,men x, the kernel simplifies to

iK(p' p, x)=m—co x 5(p' —p) .
Bp

f therefore must satisfy

~f
( )z df

Bx Bp

(2.104)

(2.105)
X/Xo

For our discussion of the oscillator, it is useful to express
x and p in units of the zero-point motion values xo and
po. xo is (2mco) ', while xopo ———, defines po. These
values correspond to the minixnum uncertainty character
of the ground-state wave function

H = const

FICi. 4. The harmonic oscillator phase plane. The condition
H =const defines a circle in the phase plane, when p and x are
normalized to their zero-point values.
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L =EGO
Bp

(2.113)

Hence the single-valued eigenfunctions and eigenvalues
are

f„=e
A,~ =7l CO, Pl =0, + 1,+2, . . .

(2.114)

These f„ inay, of course, be multiplied by an arbitrary
function of the action J, without changing I,„.

To determine the f „we may supplement the foregoing
with Eq. (2.99). For the oscillator the expansion (2.101)
terminates after the second term, giving

p mco 1+ 2 +I ru ~p fmn2m 2 8m

= —,(E +E„)f„. (2. 115)

Dahl (1981) points out that the equation is identical to the
two-dimensional oscillator Schrodinger problem. The
solutions are in terms of the generalized Laguerre polyno-
mia SL~,

bound states to understand better where negativity will
occur. First of all, the variable R has to be in the poten-
tial well for g to be large; r cannot exceed the range a in
the integration. The more highly excited the state, the
more nodes in the wave function and the greater the prob-
ability of negative values. For r -a, we can expect signi-
ficant negative contributions so long as p &1/a, i.e.,
wavelengths of the order of or larger than the potential
range. For sufficiently large p, the exponential oscillation
restricts r to small values so that the overlap becomes pos-
itive. Hence, for R in the potential, we can expect nega-
tive values offwhenever p & 1/a.

A nice example of these qualitative remarks is given by
the first excited state of the oscillator, gi ~xl(c(x). An
elementary calculation yields

f»(p x)= (x' +p' —l)exp( ——,x' ——,p' ) .
2~Poxo

(2.119)

The circle x' +p' =1 divides phase space into domains
of positivity and negativity. As claimed, we need x in the
well (x' & 1) and sufficiently small p to reach the negative,
nonclassical domain for fii. For general n, Eq. (2.116)
specializes to the simple form

Xexp[i(n; —n~ )ro(t —r)], (2.116) f„,=(—1)"L„(p'+x')fee, (2.120)

where n is the greater of n;, nj and the other variables are
defined by

S = H, i„,——(p—' +x' ),
CO

where L„ is the ordinary Laguerre polynomial and foe is
defined in Eq. (2.107). The doinains of negativity are
clearly annuli (Fig. 5) in the x'p' phase plane, since the I.„

P/Po

~= ——tan- -= ——' tan-p 1 —&p
CO mcox co X

1/2
nj.!

(n;!)'

(2.117)

X /Xo

fin=(»' tp')fco(p' x') ~e "— (2.118)

in agreement with Eq. (2.117).
As mentioned earlier, the Wig ner distribution for

bound states typically becomes negative in some regions
of phase space. Let us examine the definition (2.10) for

with 5,J an arbitrary phase. x',p' are the dimensionless
variables defined following Eq. (2.100). For the usual

i5;. tfgchoice of phases e "=(—1) '. The result (2.116) general-
izes earlier results found by Groenewald (1946), Uhlhorn
(1956), Heller (1976), and Takabayashi (1954). (Dahl has
2 in place of 1/vr in NJ, we have changed to conform to
our convention that 6= 1.)

The ease of obtaining explicit f~„ for the one-
dimensional oscillator allows us to illustrate several fur-
ther points. First of all, from our previous analysis we
know that the functions of f„o computed from the correct
wave functions must be proportional to the eigenfunctions
f„-e '"& of the Liouville operator. For example, expli-
cit calculation gives

(b)
(c)

FIG. 5. Domains of positivity of the %'igner distribution for
the first three excited states of the one-dimensional harmonic
oscillator. For the first excited state, f ~~ is negative within the
unit circle. For the second state, the inner circle is positive, fol-
lowed by an annulus where fbi is negative, and finally a positive
region. For large enough action f„„is always positive. The an-
nulus structure reflects the simple properties of the Laguerre
polynomial of Eq. (2.120).
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X exp[ ——,(p' +x' )tanh ( —,pro)] . (2.122)

The second example concerns the coherent state
I
a)

(Glauber, 1963);Carruthers and Nieto, 1965, 1968)

p=
I
a&&a

I

(x
I
a) =P (x)

o n! (2.123)

have n real zeros. The signs are such that f« is positive
for large values of the argument.

Finally, we note two especially useful Wigner distribu-
tions involving the harmonic oscillator. The first corre-
sponds to the density matrix for thermal equilibrium,

p=exp( PH—)/Tr exp( —PH) .

The phase-space distribution for this has been computed
by Davies and Davies (1975) to be

f (p,x) = —tanh ( —,p~)
1

pair of equations (continuity and an Euler equation for ir-
rotational flow). Writing f=aexp(ip), (a,p real), we
note that the probability current is

j=a Vp/m,

so that we can identify the velocity as

(2.125)

QPl—+V.j=0
at (2.127)

(n =a ), is obtained as the imaginary part of the
Schrodinger equation in the (a,p) variables. The real part
can be identified with the (irrotational) Euler equation.

We now explore the hydrodynamical connection in the
context of the Wigner distribution, beginning with the
equation of motion (2.26).

Integration over d p gives immediately

(2.126)

This suggests that p/m plays the role of a velocity poten
tial y.

The same current, obeying the usual conservation law,

1
exp[ —(x —&x &'/2x, +i &p)x],2 2

(2~x,')'"
Gal +V' (nu)=0,
Bt

(2.128)

where a(t) =ae '"'. The phase-space distribution is

f (p, x, t) = 1

2&xopo
exp[ —[x —x (t)] /2xo

—[p —p(t)] /2po] . (2.124)

It was found very early (Madelung, 1926) that
Schrodinger's equation could be recast as a hydrodynamic

Hence f is distributed in a Cxaussian manner about the
classical motion, in faithful correspondence to the intui-
tive interpretation of the coherent state.

In each of these cases, which involve summation over
the excited oscillator states, f is positive throughout phase
space. The negative-valued regions, which are uninter-
pretable c1msically, correspond to bound-state problems.
The motion of the center of mass, however, is described
by an essentially smooth positive phase-space distribution.

Phase-space plots of f (p,x) for the first four energy
levels of the one-dimensional square-well potential may be
found in the work of Baker, McCarthy, and Porter (1960).
In the case of a linear potential, one gets an Airy func-
tion, as discussed by Heller (1977) and Dahl (1981).

From these examples and the general discussion, it is
clear that bound-state wave functions typically (except for
the ground state) give regions of negativity. This is in
contrast to the scattering problem, where sufficiently
smooth packets give rise to positive joint distributions like
the Cxaussian packet, Eq. (2.16). In any case, the cross
section arises from the positive quantity (2.13). Similarly,
the cross section for the production of a many-body
bound state is given by an expression like Eq. (2.13), with
the internal variables (and negative phase-space regions)
integrated out.

G. Hydrodynamic aspects

where local average velocity u(R, t) is defined by

fd p ~vf (p, R ), t)
u(R, t)= f d p f(p, R, t)

(2.129)

(v~=p/m). The potential term disappears, since f d p
produces a 6(r ) under the d r integral.

The analog of Newton's law follows on taking the first
moment

nu;= f d'pup f(p, R, t) (2.130)

in the equation of motion,

—(nu;)+ d p v~ u~ f (p, R, t)
l J

=f d p d p'X(p' p, R)v~ f(p', R,—t)

(7; V)n,
1

ftl
(2.131)

—(pu;)+ Tik =0,a a
Bt Bxk

~ik =p~~&k+&skp ~

(2.132)

(2.133)

where p is the mass density and p the pressure. We now
see that the stress tensor for the Schrodinger equation is

Tik =P(vivk &+&ij'P

Vp':—nV V,

f d pv~f(p, R, t)
(vivk ) = f d p f(p, R, t)

(2.134)

(2.135)

(2.136)

the latter form following on using the explicit form for K.
We compare this with the usual momentum equation of

continuum hydrodynamics,
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Equation (2.136) involves the correlation (U;uk), in
contrast to the uncorrelated velocities u;uk in Eq. (2.133).
By reexpressing (2.136) in terms of uncorrelated velocities,
we make contact with the usual Euler equation.

Making use of the identity

induce "capture" of the free particle into a bound state.
In principle, these processes are symmetrical, but the usu-
al experimental arrangement leads to a somewhat dif-
ferent treatment.

Corresponding to the choice of potential energy,

(U;Uk ):—((U; —u; )(Vk —uk ) ) + uguk

we rewrite (2.131) as

(2.137) V(R)+ V,„(R,t),
we write the basic equation of motion as

(2.141)

(pu;)+ (pu;uk) = nV V— p—~/,Bt BXk BXk

where the kinetic pressure tensor is given by

d p(U; —u;)(Uk —uk)f(p, R, t)

f d p f(p, R, t)

(2.138)

(2.139)

Bu. V;V
p +u Vu; = —pBt '

m

a
Pij

Xj
(2.140)

when —pV;V/m is the external force density. Similar
considerations have been discussed by Kan and Griffin
(1977).

H. Effect of an external potential

Expanding derivatives on the left-hand side and using
current conservation reduces Eq. (2.138) to Euler's equa-
tion

+0 V' f(p, R, t) —f d p'K(p' p, R)f—(p', R, t)

= f d p'K, „(p' p, R, t)f—(p', R, t) . (2. 142)

For an initial bound state, Eq. (2.44) no longer holds,
since fz does not obey the homogeneous equation, but in-
stead

f~(p', R, t) —f d p'K(p' p, R)fz(p'—,R, t) =0 .
Dt

(2.143)

Of course, the time dependence actually goes away, as dis-
cussed in Sec. II.F. In addition, Eq. (2.143) does not
determine f~.

In order to solve Eq. (2.142), we clearly need the in-
teracting Green's function

i 6(p, R, t) i f d'p'K(p' —p, R)G(p'—,R, t)

Our discussion so far has dealt with pure scattering or
bound-state problems. In the presence of a time-
dependent external potential, we can excite bound states
(either to other bound states or to the continuum) or can

I

=5(p)5(R )5(t) (2. 144)

subject to suitable boundary conditions. For example, the
Wigner function for an initial bound state satisfies

f(p, R, t)=f~+ f dt' f d'p' f d'R'G„, (p' p, R', t')K,„(p—' p, R', t')f(p', R—', t') . (2.145)

If the initial particle is free, we can still use Eq. (2.54)
with %+K,„replacing K. In this case, the final state will
contain both bound-state and continuum components.
Since the wave function can be written as an expansion in
energy eigenfunctions as

P= ga~grr+ f d k C(k)gk (2.146)

only energy-degenerate cross terms survive in the time-
averaged Wigner function. In particular, the contribution
of the final bound state 8 (assuming no accidental degen-
eracy) is ~az

~
fez, as expected.

The explicit calculation of the retarded Green's func-
tion obeying Eq. (2.144) is usually quite complicated. We
content ourselves with expressing 6 in terms of the
"eigenmatrices" f~„of the Liouville operator [of Eq.
(2.93)]. Introducing the Fourier transform 6 (p, R,co)

obeying

I

The orthogonality relation (2.93) is now used to evaluate
Cmn ~ g1v1ng

f*„(0,0)f „(p,R)
G~(p, R,co) =

~mn ~+~e (2.149)

when the i c is added to enforce the right boundary condi-
tion in the continuum.

Many coInmonly occurring problems, e.g., excitation
through interaction with an external system, are con-
veniently modeled by the introduction of an external po-
tential energy V,„(x,t). The total Hamiltonian is then
HT ——T+ V+ V,„, and it is natural to express the evolu-
tion of the phase-space distribution in terms of the f~„
referred to the Hamiltonian T+ V of the system being
perturbed. We therefore write the expansion

(2.150)

(I co)6(p, R, co) =5(p)5(R ),—
and expanding 6 = g G~„f~„gives

g C „(A, „co)f „(p,R)=5(p)5(R) . —

(2.147)

(2.148)

where the C~„depend on time by virtue of V,„. The f~„
form a complete set, though the orthonormality relations
are not very simple.

The expansion coefficients are exactly those of the den-
sity matrix. For a pure state, we have
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gomonpmn= ~Cmnpmn

~g)=pa ~m),
(2.151)

(where V,„ is of order ~,). We then obtain the set of cou-
pled iterative equations

where p „== ~m)(n
~

is the same as occurred in Eq.
(2.56).

Beginning with this result, one can do time-dependent
perturbation theory in the standard manner by writing

(2.152)

For multiply connected domains, such as are encountered
in the Aharonov-Bohm experiment, the phase factor be-
comes crucial.

The distribution (2.157) has an equation of motion
whose classical limit is the one-particle Liouville equation
(2.28) when the force term —V'Vis replaced by the usual
Lorentz force (de Groot and Suttorp, 1972; Bialynicki-
Birula, 1977).

J. Spin variables

We note briefiy the extensions required to describe the
spin variable in the most important case of spin —,. Let-
ting a, b denote the z component of the spin, we define a
2&&2 matrix Wigner function f with elements

k

(2.153)
3

fb(p, R, t)= f e '~+b(R —, r,t)—
(2m)

By normalization the diagonal C's must obey the con-
straint

Xg.(R+ —,r, t) .

The ordinary density is then

(2.158)

f (p, R, t) =Trf
(2.154)C m=&.

These results can be applied to nondegenerate ground-
state excitation in the standard way. For A, =0,
C m'=n5 m5on. oIf t&0, V,„=O and C '(mtn(0)=0. The
C~„' remain constant in time.

3

e — ~ R ——,rt R+ —rt
(2m)

(2.159)

The reality of f for the spinless case is now replaced by
Hermiticity f+ =f, i.e.,

I. Gauge invariance fb= (2.160)

3'=3 +T7, ~X
c Bt

(2.155)

The form of the Schrodinger equation is unchanged when
the wave function transforms as

In the presence of external electromagnetic potentials, it
is necessary to modify the definition (2.10) in order to ob-
tain a gauge-invariant phase-space distribution function.
Under a gauge transformation the potentials transform
like

Such an f can be represented by two independent func-
tions fp and f~ and a real unit vector n as follows:

f=fp+o"nf) . (2.161)

The polarization density can be computed from the expec-
tation value of the spin operator as follows:

o(p, R, t) =Tr(of)
3r

e '~' t R ——r, t cr R+ —r, t

yeiel'I" (2.156)
(2.162)

From this it is clear that the integrand of Eq. (2.10) re-
quires modification by a path-dependent phase factor

3

fp(p, R,t)= f e
(2n)

X P*(R ——,r, t)g(R + , r,t)— f(p R t)=2fp(p R t)

o(p, R, t)=2nf&(p, R, t) .

(2.163)

(2.164)

We can express the ordinary and spin densities in terms of
fp and f~ as follows:

Xexp f A.dl (2.157) III. THE NONRELATIVISTIC TWO-BODY PROBLEM

where the line integral runs along a path P beginning at
1R ——,r and ending at R + —,r.

In a simply connected region, the loop integral of A
will vanish and the particular path P makes no difference.

A. Definitions

The two-body problem exhibits in simplified form some
of the kinematical features of the N body system. Of-
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course, one recovers the one-body problem in the absence
of external potentials when the two-body potential de-
pends on the distance between the particles. Until the fi-
nal parts of this section, we treat the problem of two spin-
less, distinguishable particles of the same mass, with
Hamiltonian

Xl

Rl

Xl
I

Xp

Xp

P1 P2
+U(X] —xz)+ V](x],t)+ V2(X2, t) .

2m 2m

(3.1)

The external potentials V; act on the ith particle. We
have in mind two classes of problems:

(1) scattering of particles 1 and 2,
(2) breakup of a bound state by external potentials.

1x, =—R, ——,r„ Ix1 =R1+ r1

The V; are imagined to have a finite extent in space. An
example of case (2) is the photodisintegration of the deu-
teron, where particle 1 is a proton, particle 2 a deuteron,
while V1 represents an external electric potential and V2
vanishes.

In order to generalize Eq. (2.10), we again take the
Fourier transform on the relative coordinates x1 —x1,
x2 —x2 in the density matrix 'I]*(x],xz)%(x'],xz ). Mak-
ing the definitions

]

FIG. 6. Kinematical space variables suitable for the two-
particle distribution [see Eq. (3.3)]. The x;~ label the split
points of the wave function. R &, R2 turn out to be the effective
locations of particles 1 and 2, while R =—(R & +R & ) and
r=R& —R2 have the usual significance of total and relative
coordinates.

Although f2 itself need not be positive definite, the joint
momentum and coordinate distributions are, as expected,

f d p]d p2f2(p]R], P2P2t)= ~]I](R],R2t)
~

y

(3.5)

As suggested by the notation, (p;,R;) have the signifi-
cance of the position and momentum variables in the
kinematical phase space.

Our analysis will require additional position variables
defined by Fig. 6:

1x2=R2 ——,r2,
I 1

x2 =R2+ r2
(3.2) R = —(R]+R2), r =R, —R2,

we define the two-particle distribution to be

f2(P ],R ],P2, R 2, t)

]
p=L'] rp, R = —,(L]—+L2),

1

x1 —x2 ——r ——,p, x1 —x2 ——r+ —,p .

(3.6)

—p, , —'p, ~
1 1

e ' ' ' '0'*(R] —, r]Rp ——,—r2 t)
(2')

1 1X%'(R ] + —,r „R&+ —,r2, t) . (3.3)

Expanding in momentum basis, we have the alternative
orm

1

P P 1 +P2~ P 2 (P] P2) i

2 2
P1 P2 P +I 1

(]M= —,m, M =2m) .
2m 2m 2p 2M

(3.7)

The two-particle Boltzmann drift term can then be ex-
pressed as

As suggested by the notation, (R, r) are the cm and rela-
tive coordinates. In addition, we shall require total and
relative momenta,

f2(p] R] P2 R2 t)

d'V] q2 0R]+']]2 R2C+(
'] ]

)
(2m )

* P1 ——,q1,P2 ——,q2, t

U1 ~R&+U2 ~R2 V ~R +U ~r

U =(p, —p2) lm, V =P/M .
(3.g)

1 1XC(P]+ 2q] p2+ —,q2, t) .
A similar decomposition can be made for particles of un-
equal mass.

B. Equation of motion

The equation of motion for f2 is derived in direct analogy to the one-particle case. ~e find

+u].V]+v2 V2 f2(p] R]p2R2t)= f d p]d'pzK2(p'] —p,p2 —p2 R]R2)f2(p]R]p2R2t)

d p1K1 p1 —p1,R1,t 2 p1R 1p2R2t

+ f d'P2+l(P2 P2 R2t)f2(P]R]P2R2t), (3.9)
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262 Carruthers and Zachariasen: Quantum collision theory with phase-space distributions

where Ui is Pi/m, Vi is 8/aR, , etc. The kernels K, are defined exactly as in the one-body problem except that the po-
tentials V1 2 can be time dependent. The kernel K2cornes from the interparticle potential

2 d3d 7j i(p. p. ) p.
iKz(p'i —pi,pz p2—,Ri,R2)= f + e -' '[U(R, + , r—i,Rq+ , r2)——v(Ri ——,r, R2 —, r2)—] .

i (2m)

Kz simplifies greatly by virtue of v depending only on the relative coordinate. After a suitable change of variables, we
find

dRdp3 3
1

iK2(pi —pi,pz —p2, R i,R2) = f 6 exp[i(p'i —pi ).(R+ , p)—+i(p2 —p2) (R ——,p)] [v(r + , p—) U—(r ——,p)]

d3
=5(P i +P2 Pi —P—2) exp[i(p' —p) p][U(r + —,p) —U(r ——p)](2n. )

2 2

5(P1 +P2 Pl P2)iKi(P P r) (3.10)

which is independent of R. The kernel conserves overall
momentum (an expression of translation invariance),
while the action of the potential is determined by the rela-
tive variables. In the presence of external potentials, the
overall space-time translation invariance is lost, and ener-

gy and momentum can be exchanged with the two-body
system.

We now demonstrate in detail the separation of the
center-of-mass and relative motion starting from Eq.
(3.9). The assumed wave function is

X1+X2
, t C&(x& x2, t) . — (3.11)

+1++2 I I J2=fo Pi+P2 2, tf,Ri —R2,

(3.12)

7 is a wave packet representing the center-of-mass motion
of the form of Eq. (2.2) with C as in Eq. (2.14), and with
P the total cm rnornenturn peaked around Po. An elemen-
tary calculations leads to the phase-space distribution

f2(PiR i,P2R2t)

d P'd p'f 5(P' P)Ki(p—'
p, r)fo—(P', R, t)f (p', r, t)

(2m )

=fo(P,R, t) f K, (p' —p, r)f(p', r, t) .d p
(2m. )

(3.15)

Hence the relative motion is described by the one-body
equation of motion with K, and calculated from the po-
tential U(r). Note that the factorization occurs indepen-
dently of the shape of the cm wave packet.

C. Technical interlude: free N-particle
retarded Green's functions

In order to cast the equation of motion in integral form
suitable for scattering problems, we need the generaliza-
tion of the retarded Green's function to two and more
particles.

Consider the defining equation for N particles,

DG
Dt (piR, p~R~t)=5(Ri)5(R2) 5(R~)5(t),

(3.16)

where fo is the free-packet function of Eq. (2.14) and f,
given by

D
Dt

N

+ gU. .V;.
Bt i=1

(3.17)

df(p, r, t) = f i e '~ ~@~(r —,p, t)C&(—r+ —,p, t),
217 3

(3.13)

is time independent for the case of an energy eigenstate.
Note that fo is a function of R Vt, as expe—cted. There-
fore, d/dt+ V.Vz gives zero when acting on fo, so that
the left-hand side of Eq. (3.9) becomes

Writing 6 as a Fourier transform,

d'
qiG(pR, p R t)=f +

i (2m)

g
~

&« ''G(p
iqi-

fo(P,R, t) +U.V„ f(p, r, t) .
a
Bt (3.14)

To see that fo also factors out of the right-hand side, we
use Eq. (3.10) to simplify. Noting that the Jacobian is un-
ity on going from (p~,pq) —+(P,p), we find

gives the equation

N—g ~q UJ G(piqi . ptvq~t) =i5(t) . (3.19)
j=1

Finally, transforming in time gives
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G(plql ' 'PNqN~)=
l

to+i' —g. ~q.vj.
(3.20)

D F(R
g
—ult)=0.

Dt
(3.22)

where the iE has been added to enforce a retarded boun-
dary condition.

In R, t variables, we find easily

Gg (P 1R1 PNRNt)

=8(t)5(R1 —u 1 t)5(R2 u—2t) 5(RN ~ut) .

(3.21)

an intuitive result whose correctness can be verified
directly.

In passing, we note another intuitive but important re-
sult,

Finally, we give G(plql pNqNt)

de) iG(Plql PNqNt) e G(Plql PNqNtv)
277

l f d toe
2m e+iE —$q, u,.

=4(t)exp( i—gq J v Jt) . (3.23)

D. Equations of motion in the (p, q) basis

It is often convenient to rewrite the formalism by car-
rying out Fourier transforms on the space and time vari-
ables. The conventions associated with such transforms
are as in Eq. (2.40).

In momentum space, the kernels become

(3.24)
iK, (p' p, q, t) = V—(q, t)[5(p —p' —, q) 5—(p——p'+ —,q)],
K2(P1 Pl P2 P2 'ql q2) v(ql 'q2)[ 5(pl p 1 ql )5(P2 P2 2 'q2) 5(P1 P 1 + ql )5(P2 P2 + q2)] ~

In the usual case where u depends on the relative coordinate, we find

ql —q2
u(ql, q2) =(2% ) 5(ql +q2)v

From now on, we write our equations for this case only.
The equation of motion can be written as

r

~ a
vl 'q2 v2 f2(P1qlp2q2t)

i3t

d
3

U ql 2 P1 ql ql ql P2+ q1 'q2 ql 2 Pl + ql q1 q1 P2 q1 q2+ql

+ V q', , t p, ——,q', ,q, —q', ,p q t — p, + —,q', ,q, —q', ,p q t

3 I
1 1+ 3 (q2 t)[f2(P1'ql P2 'q2 q2 q2 ) f2(P1'ql P2+ q2 q2 q2 )] (3.25)

It is also of occasional interest to know the equation for the reduced distribution function for (say) particle 1, in which
one does not care what particle 2 is doing. The definition is

f (plR lt) = I d p2d R2f2(plR lp2R2t) . (3.26)

Note that the f d R2 integration simply amounts to going to the limit q2~0. The equation of motion for f'" is

—ul. ql f"'(plqlt)= f v(q'1 f d p2[f2(pl ——,q'l, ql —ql,p2, q'lt) —f2(pl+ z ql, ql —ql,p2, ql, t)]

d
+ '3Vql t (1) pl —'ql ql ql t (1) pl+2ql ql ql t (3.27)

A similar equation exists for particle 2. In deriving this
equation, we have shifted variables in the p2 integration
to remove the apparent ql dependence in the third argu-
ment. This leads to cancellation of the external potential
term acting on particle 2. f' "changes by virtue of the in-
fluence of the external potential and through the interpar-

I

ticle potential. The problem of computing f2 is not evad-
ed, however, by writing this equation.

E. Boundary conditions

In order to give the equation of motion in integral
form, we need to specify the boundary condition. The in-
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coming density function for two free particles has to
satisfy the homogeneous equation

D
Bt '" Dt

+uI. V'I+u2. V2 f;„= f;„=0. (3.28)

=fo(RI —ult)fo(R2 u2t) . (3.29)

Recall that each fo contains a reference position and a
length parameter. In (p, q, cu) language, the incoming dis-
tribution is

f2in 2trfo(pltql )fo(p2~q2+(~ ql ui q2 u2) ~

where, in terms of wave-packet coefficients

fo(p, q)=C*(p ——,q)C(p+ —,q) .

In the absence of external potentials, one generally ex-
tracts the cm motion and concentrates on the equivalent
one-body problem. In this case, the change of variables
(xl,x2)~(R, r) converts the homogeneous equation to

a
at

+ V V21+u„.V'„ f;„=0 . (3.31)

Writing f;„ in the special factorized form [Eq. (3.12)]
then gives

This equation is satisfied by any function of R
&

—V
&, t,

R2 —V2t. However, for two noninteracting incoming par-
ticles, we have more specifically as t~ —no,

f2~f2in fo(PIR lt)fo(P2R2t)

fin=fo(R V—t)fo(r u—„t) . (3.32)

Since the cm motion factors out [Eqs. (3.14) and (3.15)],
the relative motion for the scattering problem is described
by Eq. (2.44) with relative coordinates and K computed
from the potential u. In the case of Gaussian packets as
in Eq. (2.16), Eqs. (3.29) and (3.30) are identical. Setting
Ro ——0 and taking the same width parameter L for parti-
cles 1 and 2, we obtain by explicit calculation

(J I Plo)'+(p2 —p2O)'= —,(L —Po)'+2(p —Po)
1

where Po ——P,o+P2O and Po = —,(P,o —P2O).
Similarly for the space-time part,

(R, —u, t) +(R2 —u2t) =2(R Vt) + ——(r —ut)

Hence we can write

fo(p IR I t)fo(p2R 2t)

R)+R2 p( —p2=fo pl+@2 2
t fo RI —R2 t

(3.33)

where the length parameters occurring on the right-hand
side are L —+ —, in the first factor and L~2L in the
second factor. It is a matter of convenience which ap-
proach to use, though the form (3.29) is more general and
will generally be adhered to.

The integral form of the equation of motion following
from Eqs. (3.18) and (3.26) is

f2(PIRZ~PIR2t) f2in(PIR2~PIR2t)+ f «' f d'Pl f d'P2K2(PI PI~12 P2~R1 ~R2 )f2(PIR I P2R2
t

+ f «' f d'P IKi(P'I —Pi R I" t')f2(P IR I" p2Rz"t')
t

+ f dt' f d P2K, (P2 P2, R2",t')f2—(PIRI",PzR2"t') . (3.34)

The retarded variables are defined as in the one-particle
case [Eq. (2.44)]

R I"——Rl —uz (t t'), —
Pj

R2" ——R2 —uz (t —t') .P2

(3.35)

The K2 term can be simplified by using Eq. (3.10).
If the two-particle system exhibits bound states, then

Eq. (3.34) can induce "capture" if the external potentials
can supply the requisite energy and momentum. Such
problems are handled as in Sec. II.H. As tacitly under-
stood in the one-body problem, there is no translation in-
variance, and V,„must be referred to a particular coordi-
nate system.

Note that Eq. (3.34) contains as special cases two dis-
tinct one-body problems. As already seen, this equation
reduces to the one-body problem for relative motion when
the external potentials are zero. We can also arrange the
incident packets so that particle 1 scatters off V] but
misses particle 2 completely. In the general case, when
the two particles scatter off each other in the presence of

external potentials, the problem is much more complex.
Although this is the prototype of the important practical
problem of scattering in a medium, we shall not pursue it
here.

IV. THE N-BODY PROBLEM: HIERARCHlES
AND THE BOLTZMANN-VLASOV EQUATION

A. Definitions and equation of motion

Ã p.
H = g + g u(x; —xJ)+ g V(x;, t) .

i=1 ™i&j i
(4.1)

For simplicity we assume that the particles are formally
distinguishable but have identical properties. From the
N-particle wave function p(xI . xi', t) we form the dis-
tribution function

We extend the previous development to an N-body sys-
tem with Hamiltonian
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fN(plR1gp2R2 ' ' PNRNt)

1Xf (Rl —, rl—, . ..,RN —, rN, t—)

1x;=R;——,r;, x; =R;+ —,r;,
R,

&
——

z (R;+Rz ), rgj ——R; —Rj,
1

pgj =rg —rj, Rgj =
2 (rg +rj ),

P = gp;, R = gR, /N .

(4.3)

1 1

X lt((R1+ —,r 1,. . . ,RN , rN, —t) . (4.2)

As in the two-body problem, it is useful to define an array
of coordinates, mainly dealing with pairs of particles:

fN can also be expressed in terms of the momentum basis
expansion coefficients as in Eq. (3.4). An equation of
motion for fN is derived from the Schrodinger equation
as before (v; is p;/m and V; is 8/BR;):

+ g,. ~ V,. f (p R ~ p R t)= f +d3p K(p', —p, p' —p, R R )f (p'R p'R . p' R t)

N

+ g f d p,'K, (p,' P, ,Rj—, t)f (pl . PjRj t) . (4 4)

In the absence of external potentials, one can factor out the cm motion in analogy to Eq. (3.11). In the following we

drop the external potential terms and concentrate on the two-body potential terms. The kernel K,

=1 u rj i (p' —p )r
KIp —pR I—:— g 3

e ' ' ' g [v(xg' —xj ) —v(x; —xj)],
j 77 l (j

actually changes only two momenta at a time, since U is a pair potential. Explicitly
3 . 3

iKIP p;,R;I = —g f 3 v(q;, qj)e
(2m )

(4.5)

X [ @PI Pl ) ~(pi P +2 A') @Pj'Pj + 2 'vj ) ~(PN PN)

—&(p'1 —pl ) ~(p' —P ——,
' a) &(p; —p, ——,

'
ej) "O(PN PN )] . (4.6)

Since v depends on coordinate differences, we have further

v (q;,q~ ) =(2~) 5(q; +qj )v
q; —qj

2
(4.7)

Again the resultant equation of motion can be written in several forms. In p, q, to variables we have (neglecting external

potentials)

~—gav fN(Pirl. . PNeN~).

d q.
r

3 v(gk )[fN(pltIl pi , a', a a' . —,P—j+2
tj'—,tj, + A

(2m )

1

fN(plql pg+ 2 gag )gag
—9'g g. ~ ~ &Pj

—2% 4g+gIg ' ' ' +)1 g (4.8)

using Eq. (4.7) to eliminate q~ .

B. Coupled hierarchy equations for reduced distribution functions

A.s in statistical mechanics, one can usefully define reduced distribution functions by integrating out various degrees

of freedom. These reduced distributions then obey a coupled hierarchy of equations:
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fN (plRit)—:I Q d Pjd RjfN(plR1 PNRNt) &

i =2

fN"(P 1R 1p'2R2r) = f—+ d'Pjd'RjfN(pl Rl
l =3

(4.9)

fN"'(plR1. . .p„R„t)= f Q d pjd RjfN(p1 Rl . .pNRNt) .
i =n+1

Note that in p, q, ~ language the space integrations amount to setting q =0,
N

fN (Pl'll Pnqn~)= + d PjfN(pill ' 'Pnqnpn+10' ' PN0&~) .(n) 3 .

j=n+1

Applying this rule to the equation of motion to get fN", we find

I

(~ ql Ul—)fN (Piqi~)= g d P2
' d PN U(«)(1) d

(2'�)'

(4.10)

+ [fN(pl &'V 1 &P20»Pi 2 «' &«' « ' Pj + 2 'Vj &6j'+6j»~) ] (4.1 1)

Note that qj is always zero, since j &i & +1. Now consider separately the i =1 and i & 1 terms on the right-hand side.
For i = 1 we find

3 . . . 3J U('0 l ) d P2 d PN[fN(PI 2 'V l ql 9 lp2 Pj+ 2 91 I 1 ' ' PN0+)
j)1 (2n )'

fN(P1+ 2 91&ql ql &P20». . Pj 2 91 9&1 PN0i&1)]

d3 '
3 (2)d p,. , U(q 1 )[fN (pl ——,q 1 qi q»p, + , el—,q 1, ,P—N~)

j) 1 (2m. )

fN (Pl+ 29—1&91—ql &pj
—

2qi &91». . PN~)] & (4.12)

recalling the definition off ' '. This equation has X —1 equal contributions to the sum.
All terms having i & 2 cancel, as shown by the following expression:

q2 3 ~ . . 3g f —, U(q2)d P2' ' d PN[fN(plql P2 , q2, —q2, —.—,p, + , q2, q2 PN—0~)
(2m. )

fN(plql P2+ 2—9z —9z ' 'Pj —29' 9z 'PN0~)] . (4.13)

Now the apparent +qz/2 dependence of the p2 and pj- arguments can be removed by shifting integration variables and
canceling. We are left with

d
ql ZU1)fN11 (P191 )=~0(+ 1) I U(91) I d P2[fN (Pl 61 ql 91 P2+ qlql

277 3

fN (Pl+ 2'Vl 9—1 91 P2 291 91~)]- (4.14)

For N =2 this reduces to the equation formed before [Eq. (3.27)] in the two-body problem. Note that, if desired, we
may remove the q ~ variable accompanying the p2 integration.

For X =2 we encounter a new feature which extends to all higher-order distribution functions. Proceeding as before,
we find

01 Ul q2 U2)fN (Plqip292~)(2)

qi 3 . . . 3 1

(2m )
3U(ql) Id p3. . d PN[fN(plqlp2ij2P30»Pi 7«&«. «'»'' Pj+7«&qj+«». PN

—N(plqlp2q2P30 . . P + —,«e —
& . . »j —

2 «qj+« . . PN»)] .

(4.15)
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First note that if i & 3, we can again shift integration variables so that the apparent f' ' terms cancel, etc. The i =1,2
contributions remain to be studied.

For i =1,j =2, we find

, U(qi)[fx (Pi — qi qi —qi P2+ qi q2+qi ~)—fx (Pi+ qi qi —qi P2 — qi q2+qi ~)] (4.16)

For i =1,j)3, we find

d Pj 3 U(ql )[f3(pl 'q 1 ql ql P2'q2 Pj + ql q1~) f3(pl + ql ql 'ql P2q2pj 2 qi, qi, ~)]
j)3 (2m)

(4.17)

which has X —2 identical terms. For i =2, j & 3, the result is the same except that particle 1 stands by while particles 2
and 3 scatter.

Combining these results gives the second equation of the hierarchy,

(~ U 1
—'U

1
—q2 U2)tv (P 1 ~q»P2q2~)(2)

d= (& —1) f I U(q'i )[fi'v"(pi ——,q i,qi —q i,p2+ 2 q 1 q2+q'1 ~) tv"(pi+——,ql, qi —ql, p2 ——,q'i, q2+q 1 ~)]

+(N —2) I d p I 3 U(qi )[fX (pl 2 ql iql qi ip2q2~p + 2 qi ~tqi ~)

fX"(p»l+——,ql qi —q'i P2q»p' ,'q'i q'i—~)—l

+(&—2) I d'p' J,U(q'2)[f~'(p'iqi P2 , q'»q2 —q—2,P'+ ,—q'»q2~)—

fx (pl'q, lp2+ 'q2 q2 'q2 p 'q2 q2~)] (4.18)

For X =2 the surviving terms are just as found before in Sec. II.
The physical significance of this result is quite clear: f~ ' changes by (a) collisions between the selected particles 1 and

2 or by (b) collisions between 1 and n & 3 or by (c) collisions between 2 and n & 3 (Fig. 7).
The nth-order equation is given by

r

fx (Piqi Pnqn~)
(n)

j=1

= (~ —n +1)I,U (q i )[fz" (pl 2 q 1 iq} q I ip2+ 2 q 1 iq 1 ~P3q3 Pnqn~)
(21r)

fx (pi+ qi qi——qi p2 — qi qip3q3 ' ' ' p q ~)l

+ g (permutations on all pairs)

3 I

+(N n) f d p'—f U(q', )
(2lr)'

(n+1)[fX (Pi 2 q 1 &ql q 1 ~P2q2 Pnqn~P + 2 ql ~qi~)

f~+"(»+ ,'q'i —qi q'i P2q2 —p.q.—,p' , q'i, ql, ~)]——
+ g (permutations of 1 with 2, 3, . . . n) . (4.19)

A simple figure (Fig. 8) illustrates the physical content
of the hierarchy. We select n particles and ask how
f'"'(piR, P„Rnt) changes with time. This change is
due to two-body collisions of particles among the first n,

or collisions between one of the n and one of the X —n.
Collisions among the N —n "other" particles do not
directly affect f'"'.

The development of this and the preceding section is
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I 2 3 I 2 3 2
N-n

FICx. 7. Three kinds of contributions to the equation of motion
for f2 [see Eq. (4.18}). In (a} the two chosen particles scatter,
while in (b) and (c) one of the chosen particles scatters off a par-
ticle in the medium while the other chosen particle is unaffect-
ed.

completely general insofar as it is only a restatement of
the N-body equations of motion in phase-space language.
However, as soon as we postulate boundary conditions or
make an approximation to the hierarchy (typically factor-
ization, leading to truncation), careful attention has to be
given to physical requirements. For example, in a col-
lision of composite systems, the particles in a bound state
are always correlated initially, and one cannot factorize a
distribution function in the variables of the bound state.

In the scattering of composites having N~, X2 particles
(N~ assumed large), there can be a region of space-time in
which the dynamics can be described by kinetic equations
of the traditional type. As a preliminary to the discussion
of scattering of composites, we review in our formalism
some traditional simplifications possible for large (not
necessarily uniform) systems.

FIG. 8. Contributions to the n-particle reduced distribution
function. These comprise a simple generalization of Fig. 7.

C. Truncation schemes
and the Boltzmann-Vlasov equation

Although there is no way to legitimately avoid the N-
body problem, many physical quantities depend on highly
averaged objects like the one- and the two-body distribu-
tion functions. In many cases, physically motivated (but
mathematically dubious) approximations, such as trunca-
tion, neglect of correlations, etc., lead to good results with
highly intuitive content. In traditional subjects these ap-
proximations are associated with the names of Hartree,
Vlasov, and Boltzmann. The validity of these approxima-
tion schemes in complicated scattering and reaction pro-
cesses remains to be studied. As a preliminary, we show
how the Vlasov and Boltzmann equations can be extract-
ed from our formalism.

The equation of motion for the one-particle distribution
functions including a time-dependent external potential is

i —q, .
v& fN (p&q, t}(i)

Bt

= (& —I) I 3v(qt) J d P2lf~ (Pi —~qi qi —6 P2qit} fz (Pi+ ~q—iraqi —qI ~P2~6 t}1
(2m )

3 I

V(q'i, t)[fx '(pt ——,q't, q~ —q't, t} ftJ '(pi+ —,ql, q~ ——q'~, t}) .
(2m)3

Assuming that particles 1 and 2 are uncorrelated, i.e.,

f '(p)R),P2R2t)=f "(p)R)t)f'' (p2R2t),

we obtain a nonlinear equation for f'",

(4.20)

(4.21)

f"'(P q t}= Vert(q, }if'"(Pi——,qi, qi —qi» —f'"(Pi+ —,q'»qi —qi»l .
Bt (2') (4.22)

This is the usual mean-field theory expressed in phase-
space language, where the effective potential energy of a
particle is

V, (qtt', , t)= V(q', , t)

zero sound in uniform systems.
For a system of electrons (neutralized by a constant

positive background) the resultant equation is the Vlasov
equation. We review the case of small oscillations about a
spatially uniform Maxwellian distribution normalized to
one particle per unit volume:

(4.23)
f"'(p, q, t) =fo(p)(2~)'&(q)+ f'(p, q, t), (4.24)

Equation (4.22) is the time-dependent Hartree-Vlasov
equation in which the distribution f'" may be imagined
to be found self-consistently. When linearized, it gives a
random-phase approximation which exhibits under suit-
able circumstances collective modes such as plasmons and

exp( —p /2171k T)
(2mmkT)

(4.25)

If we assume f' to be of order V(q'~ t), linearization gives
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f'(p, q, to) = X(p, q, to)

V(q, to)+(N —1)v(q} f d p'f'(p', q, to)

(4.26)

fo(p ,—q)—f—o(p+ —q}
X(p,q, co) =

CO+l 8—g'V p

The solution is

f()V(q, to)X(p, q,co)(427}
1 (N —1—)v(q) f d PX(p, q, to)

If collective modes exist for frequency to(q), then f' can
be finite for arbitrarily small V(q, c0). The eigenvalue
equation is

, fo(p , q} —fo—(p+——,q}l=(N —1)v(q)P d p
CO —g ~U

(4.28)

where P stands for the principle value. In the Coulomb
gas, we can find the plasmon root for q ~0 by expanding
the integrand,

1=(N —1}v(q)f d p q—V~fo(p)

1 q p/m
CO

1=(N —1) 2 f d p fo(p),
772 CO

4m.&e
cOPI =

Vm

(4.29)

A more detailed discussion is given by Brout and Car-
ruthers (1968). Here we have converted N to a density
N/V to conform to our normalization.

All these results are well known. To proceed, we want
to place the above in a more ambitious context, that of
improving the above approximation to obtain the
Boltzmann collision terins. Suppose we integrate forrnal-
ly the equation for f ' ' to include collisions between 1 and
2, but ignore correlations in f' '. This approximation
leads to the usual Boltzmann equation with the cross sec-
tion evaluated in lowest Born approximation, but with a
particular factorization approximation for f' '.

For our approximate f' ', we make the ansatz

f"'(p~q~p2q2t)= f'"(p~qjt)f'"(p2q2t)

—i(q&v&+q2, u2)(& —t') d q1+f dt'e
3 v(qI }[f (Pi —26 qt qt P2+ 2q& qIt }

(2m. )

f (pi+ ~ q—iqi —q t pz —
2 q iq it }] . (4.30)

f&
is then the solution to Eq. (4.20) with f2~f2. Formally this is the two-body scattering problem in the absence of the

rest of the system, without, however, the cm momentum constraint, i.e., p&+pz is not some fixed constant. To see in
what sense this is an approximate solution, we apply D/Dt to this expression using the equation of motion [Eq. (4.20)]
for f"',

a —q] 'v] —q2'v2 f = v (q 1 }[f (P 1 q 1 'ql q 1 P2+ qldt (2m)

f"'(pi+ —,qi qi —q—'»p2 ql qit)]

3 I

+(N —1) v(q') ) d p2[f (p& ——,q'i, qi q'i P2+ 2 ql q—lt)

f (pi+ , qI qi —q'i p——2

&&f'"( p2qt)+(1~2) (4.31)

Comparing with the exact equation of motion for f~2', we see that the approximation f' I =f corresponds to the fol-
lowing factorization:

f'"(Pi ——,q'»qi —6 P2q2 P + 2ql 'qlt} f (Pl qlql ql P + ql qlt)f (P2 q2 (4.32)

etc., i.e., factorization of the one-particle distribution for the unscattered particle, and secondly % —1=%—2, requiring
X &&1 for validity.
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Clearly, a similar procedure can be adopted in any order: factor the n +1-particle distribution suitably and solve for
f'"' each n in turn. "Suitable" factorization is a subject for further study, and the question of convergence is completely
open.

For the moment, our ambition is only to show how both the Boltzmann and the Vlasov contributions to the one-
particle transport equation follow systematically from our ansatz for f' '. Iterating once by substituting f' ' into the
right-hand side of Eq. (4.20), we find

3 I—qU f"'( p, q, &)—f, V.«(q' &)[f"'(p , q—' q—q'—&) f"—'(p+ , q' q—q'—&)1

d q d=(N —1) f 3 f 3
U(q')v(q")

(2m. ) (2m )
r

1

X f d'p' f dr'exp i {q —q') — +q'(p'+ , q') (r—t')——00 m

x [f' '(p —, q' , q"—,q —q'—q—",p'+——,q'

+ 2q q+q t ) f (p —2q+ —2q q q q—p—

+ —,q' ——,q" q'+q" &')l

1p+ 2q+ dt'exp i (q——q')
00 m

p' ——,q'
+q' (r r')—

Pl

x [f'"(p+ —,
' q' ——,

' q",q —q' —q",p' ——,q'

+ , q",q'+q", r—') f (p+ —,q—'+ —,q q —q' —q ',p

——,q' —, q",q'+—q",t')] ', (4.33)

where V,ff (a functional off ' ") is defined in Eq. (423)
The expression involving V,« is easily identified with the "force" term VV(R, t)'VJ f (—&R,~) appearing in the

usual Boltzmann equation. To see this, expand f ' "(p, + —,q& ) about pi, getting

3 I

f [ q V ff(q', r)] p f~ ~(p, q —q', i)= i f d—R e '[VV,«(R, t).Vpf
-'—"(p,R, t)](2n. )' (4.34)

where in this case V.« is given by the second te~ of Eq. (4.23). Thus in PRt variables the left-hand side has the familiar
orm

+U V„VV,« V—, f'"-(p, ,R)r. (4.35)

d q, d q(N —1)f,f, f d'p'v(q')U(q")(Ii+I2),
(2m. ) (2m. )

1I] ——
1

(p ——,q')
co —(q —q'). (p + —,q')

ln order to manipulate the right-hand side of Eq. (4.33) to recognizable form, we work in co space, where the time ex-
ponentials appear as energy denominators. %'e obtain

x [f'"(P , q' , q" q q' —q"—P'—+—,q'+ ,—q" —q'+q" ~)——
f"'(p , q'+ , q",q q' —q",p'+—,—q' ,—q",q'+—q",~—)], ——— (4.36)
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1

(p+ —,q')
co —(q —q')

(p' ——,q')

x [f"'(p+ , q' —,q—"—,q q'—q"—,p' ,—q'—+ , q"—,q'+q", ~)

f"'(—p+ , q'+—,q",—q q' —q" p—' , q' ——,q"—q—'+q"~)] .

At this state, it is not necessary to factorize f ' '. However, it will be very helpful to first study the spatially homogene-
ous case in which

f'"(p,q, co)=(2n') 5(q)f("(p,co),

f' '(p]q]p2q2co) =(27r) 5(q] )5(q2)f' '(p]p2co) .
(4.37)

The integrand contains the common factor 5(q'+q")5(q). Canceling and simplifying leads to (dropping the Vlasov
term here)

3 I

cof"'(p, co)=(N —1) f ~

u(q')
~ f d p'(I']+I'2),

(2n. )

1

+q p p q +lG, ( — ')
Vl Pl

[f"'(p»p' ~) f'"(p —q—' p+q' ~)] (4.38)

[f"'(p+q' p q' ~) f"'—(p,p', ~)—] .

We now combine terms by setting q'~ —q' in I2. Noting the identity

AE =Ep+Ep —Ep q
—Eq +q

——
q'. (p —p')

Pt2

we find

(4.39)

cd" ](p,u)=(N —1) f 3 t
U(q')

i f d p'
(2n. )3 hE +co+is &E

„[f"'(p»p' ~) f"'(p q', p—'+q', ~—)l.

(4 4O)

The energy difference in [Eq. (4.39)] has a clear pictorial significance in scattering theory. For a given p,p, q, this bE
defines a collision time „r-]]A' b/, .EIf v«]] is much less than tlie characteristic time in which f changes, then for signi-
ficant portions of the integrand co&&EE and the energy denominators produce an energy-conserving delta function

2iri5(AE)—of just the right character to yield the cross section necessary for the Boltzmann equation.
To make this argument more precise, we transform back from co to t, getting

af(, t) = —(N —1) q
~
v(q )

~

2 d3p dt ei(aE](t t ]+e —i(i']EN tt )—, —'

(2~)' 00

x [f"'(p,p', t'} f"'(p q' p'+q' t')]—.— (4.41)

Since b,E-1/r, if f varies slowly on a time scale compared with r, regions of the integrand with t t »~ contribute. —
So we evaluate f' ' at t'=t and do the time integrals directly. In this limit only t'=t matters: the system has lost its
memory and becomes stochastic. The effective time integral is now f e'~'d~, giving

8 (pt) 3, d q'=(N —1) f d p' f ~

U(q')
~

2@5(i]]E)[f"'(p—q', t)f'"(p'+q', t) f ((p, t)f'"(p—', t)] .
Bt (2~)

(4.42)

d3 '
U~ ~ = f ~

U(q')
(
z2m5(EE)

(2m )
(4.43)

which is the usual form of the homogeneous Boltzmann
equation, on identifying

as the transition rate for p+p'~(p —q')+(p' —q'). For
bosons or fermions, obvious corrections need to be made
to (he occupation probabHities,

Intuitively, one expects that for a dilute gas the scatter-
ings occur on-shell, and that in the above one can substi-
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tute v ~t, where t describes the scattering to all orders in
u. This supposition is encouraged by the fact that f'2'
obeys the full two-body scattering equation. For dense
systems, one can expect significant energy shifts, off-shell,
and lifetime effects. This aspect of the problem has been
analyzed by Snider (1960) and others.

The classical collision time for a potentia1 of finite
range a is given by v~, ]-a, where v is the relative veloci-

ty:

1
=11

~ P —P'
~

/m .
+cl

(4.44)

sc=—1/a is the maximum momentum supplied by the
potential. In contrast the quantum collision time deter-
mined by Eq. (4.39) is not given by 11 although since

~

q'
~

& 11 there is a bound

+~(p —p'[
(4.45)

(4.46)

for large N, with V the volume and o. the usual cross sec-
tion. Equation (4.46) is equivalent to the traditional

For that set of collisions having
~ p —p' ~ ~ the upper

bound of Eq. (4.45) coincides with r, ~.

The relaxation time ~ provides a key to the question of
energy conservation. From Eq. (4.42) we can define a re-
laxation time, describing the scattering out of momentum
states p,p':

mean-free-path formula, l =(per) ' with p=N/V the
number density. From Eq. (4.46) we see that

+coll

7
(4 4'7)

confirming the argument given after Eq. (4.40). Compar-
ing Eq. (4.44) with Eq. (4.46) gives

+col] CX Pg
l

(4.48)

For a dilute gas, a// is very small.
Several dimensional parameters play a role when we

consider systems of finite size: for example, in a nucleus
we have the interparticle distance and the surface thick-
ness as well as the potential size as length parameters.

Baym and Kadanoff (1962) have discussed the form of
the Boltzmann equation in the case of a slowly varying
external potential. Under suitable circumstances, the net
result is to consider Eq. (4.42) locally valid, i.e., each

f (p, t) is replaced by f (p, R, t) with a common R F.or ap-
plications to scattering problems as contemplated here,
the inhomogeneities are much greater, so that genuine re-
tardation effects must be retained. We now repeat in
coordinate space a sequence of approximations similar to
that leading to the spatial uniform Boltzmann equation
(4.42). We leave in abeyance the question of the relative
validity of the factorization approximation in the two
cases.

The coordinate-space version of Eq. (4.14) is

—+u1 V~ f(p1,R1,t)= i f d r,—e' ' ''"' g f d p', d pj dRJ[u(R, + ,'r, —RJ) —v(R, ——,'r, R)]-—
J=2

Xf2(p1R &p2RJt) . (4.49)

Our ansatz for f2 corresponding to Eq. (4.30) is

f2(pI R tp2R2t) = f1 (p'1 R1t)f) (p2R2t)

t ~~P1 P1 "1 ~P2 Pi ~ "2 r I n~ ret n~ ret

(2n. )

X [v (R 1"+ —,r1 —R z" ——,r2 ) —u (R 1"——,r'1 —R2" + —,rz )], (4.50)

with Rt'" R; —pt' (t t') /——m-
Substituting this in Eq. (4.49), relabeling, and dropping the Vlasov term for simplicity, we obtain a generalization of

Eq. (4.38),

df1 (p, R, t)
+u Vf, (p, R, t)

Bt

d q&d q2 3 3(N —1) f — d'R'd'p'
(22r)'

, s(q, +q, )(z —~ ) [p —p'+ —,(q1 —q2)](t —t')
X dt'e ' '

v (q~ )u (q2)exp iq2—
p + —,q1(t t') p'+ —,q—2(t t'),t'—

X f2 p+-,'(q, +q, ),R— ,p', R'— I
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p+ —,ql(t t'—)
f—2 p+ —,(ql —q2),R— p'+ —,ql(t t'—),t

~P +9'2—

[P —p' ——,(ql —q»]
Xexp —iq2 (t —t')

1 1

P —2/2X f2 P —
2 (qi+q2) R — (t t'),p'—,R' — (t t')—, t'Pl

1 1

2 9'&, , p ——,q2
f2 P (ql q2) R (t t'),—p' q2,—R' — (t —t'), t'

Pl
(4.51)

This result is only the spatial analog of Eq. (4.36), but
is more amenable to approximations based on space-time
intuition. For example, we can study the conditions
under which Boltzmann's equation applies locally.

First note that when the distribution functions are uni-
form in the space coordinates, the retardation factors in
the arguments of f2 drop out, leaving a time integral
which reproduces the energy denominators of Eq. (4.38).
The reader can confirm by a straightforward calculation
that Eq. (4.51) reduces to Eq. (4.38) in this limit. Note, in
particular, that the R independence of f2 yields
5(q l +q2 ), a necessary ingredient in producing the col-
lision cross-section factor. As before, when f varies slow-

ly on the scale of a collision time, one gets the on-shell
energy-conserving delta function.

Again, for slowly changing f(t), the t' integration is re-
stricted to a range b, t =t —t'=a/ wUhere a is the poten-
tial range [cf. Eq. (4.44)]. In that case, the retardation
terms are negligible, i.e., R+a=R, provided f changes
slowly over the distance a. Now consideration of the ex-
ponential (ql+q2) (R —R') shows that R' cannot differ
by more than a from R, allowing us to write R'=R in f2.
Finally, we obtain again 5(ql+q2) from the R integra-
tion, which gives us the local version of Eq. (4.42) upon
factorization.

At the surface of a nucleus, the retardation distance is
of the same order as the surface thickness, and the local
approximation will be wrong. Within the nucleus, the sit-
uation is better, insofar as a/R =0.7a/A '~ (a in fermis).
For a=1.4f, A =216, we have a/R =0.12, but for
A =27, a/R =0.33, not negligible. Further, when
bound-state effects are included (with oscillating phase-
space densities), it is not clear whether the whole ap-
proach makes sense. Further research will be required to
clarify this situation for realistic problems.

able moments of the equations of motion. It is significant
to note that these formal structures are quite independent
of boundary conditions or assumptions regarding local
thermodynamic equilibrium. The deduction of hydro-
dynamic and transport equations has an extensive history,
which is reviewed by Mori, Oppenheim, and Ross (1962)
and de Cheroot and Suttorp (1972).

From the particle density

p(R) = g 5(R —R.), (4.52)

we construct the averaged density

n(R, t)= + f d'p;d'R;

X g 5(R —R~)fN(P, R, PNRNt) .

(4.53)

This definition, which treats all particles symmetrically,
differs by a normalization factor X from Eq. (4.9).

Imitating the calculations of Sec. II.G leads directly to
the continuity equation [Eq. (128)], with

n (R, t)u(R, t):g f d p;d—R;

Pi
X g f (plR1. pNRNt)

Pl

X5(R —R;) . (4.54)

Multiplying the equation of motion with the average
velocity

O. Hydrodynamic equations 'gR —R, )
m

(4.55)

As in the case of the one-particle potential problem, hy-
drodynamic equations follow immediately on taking suit-

and integrating over phase space gives the momentum
equation analogous to Eq. (2.131):
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i —(nu) + + f d pd R g Vjf g — 5(R —R~)
l Pl

= g f d p;d R;d pj d rie ' ' 'g —5(R —R~) g [u(x —xi') —u(x; —xj)]+g [V(xj,t) V (xj,t)]
E&J CX l (J J

Manipulation of the drift term leads to the analog of Eq. (2.136),

(4.56)

i f +d pkd Rk g u' u" 5(R —R )f(p, R i
. . p~R~t) =i —[n (R, t)( O'U") ] . (4.57)

Qn the right-hand side the potential terms act as forces
particles other than the chosen one at point R.

Explicitly we have for the right-hand side of Eq. (4.56):

one due to the external fields V and the other due to all the

I, aV»(R.—Rp) n(R. , t)g f + d pkd Rk5(R —R~) — (R )+ g — f (p iR |. . p~R~t): i —'— [—V V,„+V V;„,] .
Pal M p~ Mp 711

(4.58)

(4.59)

As before [Eq. (2.137)], one can manipulate Eq. (4.59)
into the form of Euler's equation.

The existence of these formal structures in no way as-
sumes local equilibrium or classical approximations. Na-
turally, the calculation of the quantities appearing in the
equation requires a knowledge of the distribution func-
tions, i.e., a solution of the Ã-body problem.

E. Formulation in second quantization

The correct description of the many-body system re-

quires that close attention be paid to the particle statistics
and the spin and internal symmetry (e.g., isospin) vari-
ables of the problem. The preceding development has ig-
nored these cumbersome technical details in order to ex-
press more clearly the structural aspects of the theory.
Although the structure of the X-body wave function has
been much studied with regard to these questions, it is
often expeditious to use the compact notation made possi-
ble by the formalism of "second quantization. " The
equivalence of this approach to the usual X-body
Schrodinger equation is explained in textbooks by Huang
(1963), Schweber (1961),and Fetter and Walecka (1971).

The dynamical coordinates in the Heisenberg picture
[(g(x,t) and its adjoint g+(x, t)] obey the commutation or
anticommutation rules,

[y.(x,t, q~ (x', t)]+=5.@(x x'), —

[P(x, t), g(x', t)]+——0,
(4.60)

The equation of motion for the momentum density is
then very similar to that for the one-particle result [Eq.
(2.131)]:

(nu;)+ (n(U;UJ))= — (VV,„+VV;„,) .8 fE

for boson or fermion fields. Here a and /3 denote labels
for any discrete internal variables such as spin and
1sospin.

The generalized (matrix) Wigner function is then de-
fined in terms of the density operator p by

f~t3(p, R, t)
3

, e -'~-'Tr p
+ R ——,'~, t p R+ —,'r, t

(2m)'

(4.61)

For a pure state involving the wave function
i f), we

have p= i
4) (4

~

. In particular, for a one-particle state
this is completely equivalent to the definition (2.92) (ex-
cept the order of indices, which is a matter of conven-
tion).

The total number density is now

g fd'p f (p, R, t) =Trpb+(R, t)&/&(R, t)

—= (P+(R, t)g(R, t)) .

If we expand &/ in the momentum basis as in Eq. (2.2),
with C{p,t)~a (p, t) being destruction operators obeying

[a (p, t),a& (p', t)]+——5 g(p —p'),
(4.63)

[a (p, t),ap(p', t)]+ ——0,
we find the alternative form

3

f~t& f e '~ —Tr——[pa+(p+ —,q, t)at&(p ——,q, t)] .
(2~)'

(4.64)

The pair operator a&+&a& is useful in describing density
fluctuations and plays a prominent role in the many-body
problem.

Integrating over phase space gives (dI =d p d R)
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fd 1 g f (p,R, t ) =TrpN, p
(——N ),

where X,~ is

N,~= g fd p a+(p, t)a (p, t) .

(4.65}

(4.66)

For number eigenstates (N) =N; hence the natural nor-
malization here differs from that used before.

In defining higher-order distribution functions, the
question of operator ordering immediately arises. The
best choice seems to be a suitably normal ordered form;
for the two-particle distribution this is

f~prs(P~R ~ppR2, t)—:f 3 d ' ' (p~ (R~ —
2 r~, t)g& (R2 —

z r2, t)gs(R2+ 2 r2 t)tpp(R~ +—r&, t)),
(2n. )

(4.67)

where, as usual, the average bracket (0)—:Trp0. This definition is suitable for both boson and fermion fields.
We note the reality condition obeyed by Eq. (4.67):

f~p rs(P )R )P2R2t ) =fg,
'
sr(p, R tp2R 2t ) .

Integration over the two-particle phase space gives

fdr, dl.,f."~„=(N p(t)N s(t)) 5,p(N—,(t)) .

Tracing out the internal variables gives

fdr, dr, gf.".' =(N') —(N),
a, y

(4.68)

(4.69)

(4.70)

reducing to N(N 1) for n—umber eigenstates.
The suitability of the definition (4.67) becomes clear when we examine the Hamiltonian and the equation of motion.

In second quantization the analog of Eq. (4.1) extended to include internal degrees of freedom (but with a common exter-
nal potential} is

p2
H = fd x g~ (x) 1( (x)+ fd x P~+(x) V p(x, t)fp(x)+ —,fd x d x'g~ (x)gp (x')v~p rs(x x')Ps(x')g—p(x).

(4.71)

Hermiticity requires V~p
——Vp and vp sr ——v prs. Here

we have dropped the time label and adopted the summa-
tion convention.

An elementary calculation now gives the theorem

2

(~)=fdI 5~p+V p(R, t) f~p(P, R, t)
21'

+ —,fdl )dl 2v~prs(R) —R2)f~prs(p)R(P2Rqt) .

(4.72)

This result extends the usual theorems for the ground-
state energy (Fetter and Walecka, 1971). The latter ex-
pressions involve boundary values of Careen's functions re-
ferred to the ground state. These boundary values actual-
ly serve to represent the physical densities given by the
Wigner distributions. Expressions of the N-body dynam-
ics via the Green's-function method has, of course, the
advantage of providing the Feynman graph analysis of
the problem. In many cases, one will want to supplement
the signer method by using these well-developed tech-
niques. The equation of motion involving all the indices
is a straightforward extension of Eq. (4.20), whose deriva-
tion we leave to the reader.

F. Effect of spin and statistics

Except in Sec. IV.E, we have treated the particles as
spinless and distinguishable but otherwise identical.

Often this is referred to as "Maxwell" statistics. In this
case, the labels are attached to definite particles, and, for
example, the one-particle distribution

N

f(p)R)t)= f g dI kf~(p)R) . P~R~t) (4.73)

p= g 5(R —R. )5(p —p;)

(4.74)

we define the one-particle distribution

(4.75)

In the absence of spin effects, fz is symmetrical under
the interchange (p;R;)~(pk, Rk) for bosons or fermions,
and so each particle contributes equally. Then Eq. (4.75)

is specific to particle 1. Since the Hamiltonian is symme-
trical in the N particles, we expect that the f(p;,R;,t) all
have the same functional form except when external
boundary conditions and potentials may intervene to
make the distributions distinct.

For questions not concerning which particle is in-
volved, we may define a generic distribution function
which tells whether any of the N particles is at (p,R ) in
phase space. Introducing the one-particle density in phase
space by
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fj(plR lp2R'2) =fu(p iR '1 )f,, (p2Rz )

+f6(p2R2 )fj'J'(p iR i )

fg(pi R i
—)fp(pzRz)

f~(p'2R2)—fj-(piR i) .

Integration according to the rule (4.75) gives

f(p, R)=f;;(p,R)+f,, (p,R) .

(4.77)

We can, of course, decompose the wave functions accord-
ing to spin 0 and spin 1, i.e., symmetric or antisymmetric
space states,

% 0= [g (x ~ )pg(X2)+gg(X~ )y, (xq)]X
1 S=0
2

[V-«i)m~(x~) —Vb(xi)V. «z)P'M=1 S=1
2

(4.79)

In analogy to the one-particle case (2.125), we write a
Wigner function in the coupled spin basis

(4.80)

Tracing on the spin components gives Ass and indepen-
dent Wigner functions for each spin. Of course, the po-
tential may couple the f~ in such a way as to require the
full matrix set (4.80). The basis (4.80) [more general than
the example wave function of (4.79)] is generally the most
useful in practical problems.

Next consider the one-particle distribution for a Slater
determinant of one-particle functions (Moyal, 1949; de
Groot and Suttorp, 1972):

g ( —1) Pu;(1)uj(2) . . up(X), (4.81)
(~~)1j2

where the subscripts label the occupied single-particle
states (all distinct by the antisymmetrization). Integration

differs only by a normalization factor N from Eq. (4.73),
as in the Maxwell case.

Of course, the true wave function typically contains
spin variables (and perhaps others) in addition to the
space coordinates. Then f must be labeled suitably to
handle the spin coordinates. Ordinarily, the wave func-
tion will be decomposed into irreducible representations
of the permutation group in the form of products of spin
and space functions of possibly rather complicated mi. xed
symmetries. In some cases, the spin complications may
be significant, each problem being treated on its own mer-
its.

The simplest example is a two-particle fermion system
composed of one-particle states,

[u;(1)uj(2)—u;(2)u)(1)],I
v'2

where the labels i and j indicate the one-particle-state
quantum numbers. We take i&j, since otherwise g van-
ishes. For simplicity, let u; be energy eigenstates carrying
spin —,. The two-particle distribution function is

according to Eq. (4.75) immediately leads to

f(p, R, t)= g f;;(p,R, t), (4.82)

where f;; is the one-particle Wigner function for state i
Equation (4.82) corresponds to representing the N-particle
density matrix as the sum of one-particle density ma-
trices.

The one- and two-particle distributions for Maxwell,
Bose, and Fermi product wave functions are given in
Chap. VII of de Groot and Suttorp (1972).

A semiclassical evaluation of the Wigner function for a
one-dimensional Fermi gas in a potential well has been
given by Balazs and Zipfel (1973). Shell-model calcula-
tions involving a "smeared" Wigner function have been
presented by Baker, McCarthy, and Porter (1960). Com-
parison with the Thomas-Fermi model has been made in
both these works.

V. POSSIBLE APPLICATIGNS IN INTERACTIONS
OF COMPOSITE SYSTEMS

A. Composite particle scattering
in the Liouville formalism

qi —+ QC 4&
E~ oo a

(5.1)

There is some model dependence tacit, in that an excited
state with lifetimes greater than the transit time to the
detector will count as a "bound state. "

We should also note the expression of translation in-
variance, which allows one to factor out the overall cm
motion in direct extension of the two-body problem, as in
Eq. (3.11)ff. Introducing total and relative coordinates by

The enormous variety of possible final-state channels,
and the complexity of the time evolution leading to those
final states, require a cumbersome formal apparatus re-
viewed by Goldberger and Watson (1964) and Newton
(1966) for the usual Hamiltonian formalism. The addi-
tional complications caused by particle identity and statis-
tics will be generally ignored in our outline. A cartoon of
the physical situation is given in Fig. 9. We envision the
collision of two bound systems having X&,X2 particles.
Figure (9b), suitable for short-range forces, indicates in-
teraction in the overlapping region. Following an exten-
sive interaction in the collision volume [Fig. 9(c)], the sys-
tem separates into final states comprising all imaginable
bound-state configurations [Fig. 9(d)]. In describing these
final states, it is traditional to speak of "channels" and
"channel Hamiltonians" in which interactions between
constituents in distinct bound states are ignored. A given
channel involves a partition of the total number of
final bound particles X=N+X + - . . +X, with the
individual final particles labeled by o;;. Each of these par-
titions corresponds to an asymptotic wave function 4,
with the total wave function given by
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1X=—(x)+xg+ ' ' ' x~),

X12 =X1—X2

N

gr p; =r P+ —,
' N

~ ~ ~ ~ ~~rj pij

and we have used the identity

(5.6)

X23 =X2 —X3 (5.2)

XN —1N XN —1 XN ~

and factoring out the cm motion as

(5.3)

N

R = g R;/N, r =gr; /N,

leads to the expression for the Wigner function:

fjy (p ~
R

~ p~R~ & )=fp (P,R, t )f~ (p~J. ,RJ, t ), (5.4)

where the variables are

N

In the continuum limit fc reduces to 5(gp; —P„,) [cf.
Eq. (2.17)] and the internal motion is described by the
correct number of variables. Often we shall leave the
overall momentum conservation tacitly understood.

Next consider the asymptotic Wigner function corre-
sponding to the wave function (5.1). Each constituent @
is composed of a wave packet peaked at velocity V and

I

an internal wave function. For large times the (finite)
wave packets are nonoverlapping, so that the off-diagonal
parts of the Wigner function vanish, giving

(5.7)

where g' =
~

C
~

is a function of the P and

(5.8)

Rj =Ri —Rj, rij = rI —rj

p;, =(p; —p, )/&,

(5.5) Each f~ has as a factor its cm packet peaked at P and
l l

a stationary bound-state distribution describing the inter-
nal motion. Here the P are the overall momenta of

I

bound state a;:

i CCI

(5.9)

(a) a,.
characterizing the free final packet fc'(R —V~ t) when

l I

Np R~= gR;.
iCa;

(5.1Q)

(b)

(c)

En order to obtain the exclusive differential cross section
for channel a due to an individual component of Eq.
(5.7), we fix P~ . P and integrate over the cm posi-—k

tions R and internal coordinates I of the final frag-
l

ments, at t~ oo.

d+scatt

dp~ ' dp~

(5.11)

FICJ. 9. Simplified version of the stages of a nucleus-nucleus
collision. In (a) the incident density is f~ ' f~ '. In (b) the nuclei

1 2

overlap, initiating a kinetic phase (c), prior to the separation (d).

By normalization the internal factors integrate to unity,
and the overall motion due to the packets is peaked
around P~ . [For the Gaussian example, each factor gives

1

6(P —P~ )/(2m ) in the continuum limit. ]
The foregoing analysis is, of course, only intended to

expose the kinematical content of the phase-space ap-
proach. No panacea is recommended for the calculation
of the dynamical information contained in g, which is
essentially the square of the 5 matrix for production of
channel a. In principle, the g are found by propagating
the initial density f~ f~ for a long enough time and

picking off the coefficients of an expansion in the chan-
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(5.12)

where K is computed from the potentials v;J acting

among the particles in the fragment a;. The correspond-
ing interacting evolution operator is

(5.13)

where f~ obeys

D~ f =0. (5.14)

nels f
In the formal analysis of the channel dynamics, it is

useful to define various Liouville operators. For a given
subsystem cx;, we have

L,f =i—. g U; V;f
i Ca;

Clearly, each of these topics bears reexamination in the
light of the phase-space dynamical framework developed
in this paper. Further discussion of the standard models,
along with extensive references, may be found in the re-
view of Gyulassy (1980).

A related topic much in need of clarification is the de-
tailed mechanism of bound-state formation in the separa-
tion phase of the collision. For mass-shell particles in
collision, the intervention of one or more other particles is
required to satisfy energy-momentum conservation.
Present models, particularly for deuteron production,
have been assessed by Kapusta (1980). Hopefully the
ad hoc character of these models can be reduced by an
application of the present formalism, which combines
quantum evolution with kinetic behavior in a convenient
way.

In order to place these topics in proper perspective, it is
useful to analyze the length and time scales relevant in a
typical nuclear collision. (Throughout we have in mind
short-range forces only. ) The lengths are:

a;

iDa —=i +I.
Bt

(5.15)

and note the identity

a;

The detailed analysis of the complicated dynamics of
rearrangements, etc. , is left to another occasion. We note,
however, the papers of Remler (1981) and Hoffman,
Kouri, and Top (1979) dealing with similar problems us-

ing the density-matrix formalism.

B. Models of nucleus-nucleus collisions

Contemporary interest in this subject centers on heavy-
ion collisions, which often are conducted in a regime suf-
ficiently relativistic to require extensions of the formalism
thus far developed. In addition, creation of secondary
quanta (usually pions) lies outside the usual Schrodinger
formalism but is conveniently treated using the relativistic
second-quantized version of the phase-space distribution,
discussed briefly in Sec. VI.

The description of these collisions is generally couched
in classical geometry, suitably modified by statistics. The
main approaches are:

(1) intranuclear cascade models,
(2) classical equation of motion,
(3) hydrodynamical models,
(4) statistical phase-space models, and
(5) hot spot models.

[The time dependence of Eq. (5.14) is contained in the cm
motion of the fragment a;.]

Corresponding to the channel a we write in analogy

L—:gL

(a) nuclear radius R;
(b) nuclear surface thickness 5;
(c) potential radius a;
(d) nucleon mean-free path I;
(e) Fermi wavelength A,F =Pi/P .

Corresponding to these lengths, we find characteristic
times by dividing by a typical velocity V,

(a') r„ii—=R / V;
(b') rp, „=5/V;
(c') r„,i —= I/V;
(d') r;„,—:a/V;
(e') rF =Pi/VFPF

Here coll refers to the entire collision time of a nucleon
interacting with the nucleus, ~„,„ is the penetration time
going from vacuum to the nuclear interior, ~ d is the re-
laxation time during which the distribution function
changes appreciably. Note that at low energies, I (and r„,~)

will be greatly enhanced over the interparticle distarice be-
cause of Pauli blocking. Finally ~;„, measures the time of
a typical collision. In Sec. IV.C we already noted how
v.;„«&~„~ was required in order to have nearly on-shell
collisions necessary for a standard Boltzmann collision
term. Further, we found that retardation terms could be
dropped whenever f& changes slowly over a distance a,
leading to a "local" Boltzmann equation. Finally, if the
relaxation rate 1/r„~ of the medium is fast compared with
the collision frequency 1/r„s, we have local equilibrium
and hence hydrodynamics supplemented by an equation
of state. The statistical model can be regarded as an ex-
treme limit of the hydrodynamical model, in which
equilibrium extends over the entire interacting system pri-
or to dissociation.

The Fermi wavelength refers to particles at the top of
the Fermi sea and is relevant to the possibility of classical
description of the motion. The Fermi "frequency"
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1/wz —2—E+/R measures the rate of transfer of informa-
tion inside the nucleus (quantal as opposed to the hydro-
dynamical time R/v„„„d with v„„„d computed from the
equation of state: v =OP/Bp). r~ is typically of the or-
der of 10 sec.

For fairly fast nucleons of several hundred MeV, we
have a mean free path 1 —1/po -2 fm, and for A —10

R =10 fm, 1=2 fm, a=1 fm,

giving the inequalities

+int & arel & +co11

If the "less thans" were replaced by "much-less-thans, '*

we would have confidence in most of the foregoing ap-
proaches, at least for portions of the overall reaction. At
low energies, l increases to the point that relaxation can-
not occur within the interaction region, ruling out local
thermodynamic equilibrium.

As shown in Sec. IV.D, the continuity equation and
Euler's equation hold formally in N-particle systems in-
dependently of the assumption of local thermal equilibri-
um. However, these equations are not dynamically com-
plete unless supplemented by further moment equations,
or the traditional assumption of an equation of state (and
hence equilibrium). It may be important to understand
which hydrodynamic results depend crucially on equili-
brium and which are implied by the structural character
of the two basic hydrodynamic equations (2.128) and
(4.59).

The hydrodynamic model of heavy-ion collisions has
been studied by many authors. A review of this approach
has been given by Nix (1979). Many further references
are given in this work. Nix and Strottinan (1981) have
reassessed these results on the basis of newer data.

The traditional intranuclear cascade model (Metropolis
et al. , 1958) is essentially a billiard-ball model refined by
the use of experimental cross sections and implemented
by Monte Carlo techniques. There are obscurities con-
nected with Fermi motion and the self-consistent binding
potential. Quantum effects of the colliding wave packets
and reflection as particles enter the potential well are usu-
ally neglected. An extensive treatment of the multiple
scattering theory and Monte Carlo cascade theory has
been developed in the Wigner formalism by Remler (1975)
and Remler and Sathe (1978).

As mentioned before, the initial and final states involve
bound systems, and non-negligible correlations exist, in
contrast to fluidlike situations, where one- and two-
particle distribution functions often suffice. However, in
the region of overlap shown in Figs. 9(b) and 9(c), it is
quite plausible to use the Vlasov (TDHF)-Boltzmann ap-
proach of Sec. IV. Various models suggest themselves in
order of increasing complexity.

(1) Quantuin-mechanical evolution of the initial Wigner
distribution

using the best available wave functions for the nuclei.

The overlapping, interacting system can then be evolved
in time up to the point of separation according to

(2a) classical evolution (implemented by the Boltzmann
equation, treated by Monte Carlo methods), or

(2b) quantum Boltzmann evolution (as developed here,
the only differences are the use of the quantum cross sec-
tion unless retardation effects are taken into account), or

(2c) allowing the one-particle motions in the nucleus
(taken from the TDHF equations) to collide by action of
the Boltzmann equation.

At separation time, one then has a product of one-
particle distributions

N

fx(tsep) gf; 9;,R! tsep) . (5.17)

(3) Coalescence into final bound states. As mentioned
earlier, this part of the reaction needs further clarifica-
tion.

(4) Quantum evolution of final-state wave packets for
tsep e

A few remarks on this rough sketch are in order. The
motions of a sharply defined interaction region and
separation time need to be carefully considered. For cen-
tral collisions of equal-size objects, these concepts are
reasonable, whereas for peripheral collisions a more so-
phisticated approach may be required. The separation
time probably has to be defined in terms of the mean in-
terparticle separation in a possibly reaction-dependent
way. For example, if some particles are instantly blown
off, they may have traveled some distance before the rest
of the system dissociates.

Classical evolution of part of (or even the entire) reac-
tion has been used with success in chemical physics (see
references in the following subsection) and in nuclear
physics (Bodmer and Panos, 1977; Wilets, Henley, Kraft,
and MacKellar, 1977; Callaway, Wilets, and Yariv, 1979).
We note that a classical description will be spoiled by
Fermi-Pauli effects if the collision energy is too low.
Since Ef-50 MeV, we might expect to apply classical
methods in the range 100—300 MeV particle ', cutting
off at the higher end where particle production sets in.

The intermediate evolution described in (2c) above is
clearly very ambitious and may exceed present computa-
tional strength. Even within TDHF the evolution is ex-
tremely complicated. Kohler and Flocard (1979) have
studied the one-dimensional TDHF dynamics of colliding
slabs and calculated the phase-space fIow of the VA'gner

function. This example is already rather complicated.
Another instructive one-dimensional example is given by
Richert, Brink, and Weidenmiiller (1979), who compute
the modification of the Wigner distribution caused by the
addition of an ad hoc collision term.

Particle transport in nuclei from the density-matrix and
phase-space point of view has also been studied by Remler
and Sathe (1978) and Thies (1979). Other kinetic ap-
proaches have been studied and reviewed by
Weidenmiiller (1980).

Finally we mention the "hot spot" models recently
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studied by Weiner and collaborators (Weiner, 1978; Stelte
and Weiner, 1981). Local deposition of energy can be ex-
pected to occur, for example, in glancing collisions of nu-
clei. At present, the energy propagation from the excited
hot spot is treated as a diffusive heat conduction process.
In the usual way of thinking, this requires local thermo-
dynamic equilibrium. Even so, the general ideas and
qualitative phenomenology should survive more refined
approximations.

C. Atomic and molecular collisions

Studies of chemical reaction theory and pure quantum
theory have led to analyses of semiclassical, or just classi-
cal, approaches to scattering and bound-state problems.
The classical Liouville appoach to potential scattering is
discussed by Prigogine (1959); the formal structure of this
approach is analyzed in detail by Miles and Dahler (1970)
in close analogy to the quantum treatment of the scatter-
ing problem. For a discussion of the three-body problem,
we refer the reader to Eu (1971).

There exist many more investigations focusing on the
semiclassical limit, for example, the review of Miller
(1974) emphasizing transformation theory and the WKB
method, and the path-integral methods of Laing and
Freed (1975) and others, whereby cm coordinates of R (t)
of molecules become semiclassical orbits, with internal
motion remaining purely quantum mechanical. These
lines of research have merged with the Wigner phase-
space-distribution approach in the hands of Heller (1976,
1977) and others. In the case of bound states, the investi-
gations of Berry and collaborators are especially to be not-
ed (Berry, 1977; Berry and Balazs, 1979).

D. Solid-state physics

The tradition of kinetic equations and collective
motions is very deeply rooted in condensed matter phys-
ics. We have already described in Sec. IV.C the Vlasov
equation for a Coulomb gas treated in this context. We
also mention the books of Kadanoff and Baym (1962) and
Klimontovich (1967).

There has been little emphasis on the Wigner function
per se in the many-body problem, largely due to the large
number of equivalent and equally effective alternate for-
malisms. An especially nice application of this formalism
has been made, however, by Kubo (1964) and Jannusis,
Streklas, and Vlachos (1981), to the description of elec-
trons moving in a magnetic field.

E. Second-quantization approach
to inclusive reactions

V
i

Bt 2m
(5.18)

where the current j is

j(x)=fd x'P+(x')U(x —x')g(x')g(x) .

In the sense of weak convergence, we have the limits

%~An

+~
The particle coordinates are defined by

(5.19)

(5.20)

p(x, t) =f e'~ "a(p, t), - (5.21)

where a,„,;„(p,t)=a,„,;„(p)exp(—ip t/2m), with the a' s
obeying Eq. (4.63). The a,„, and a;„coordinates destroy
suitable out and in field quanta.

In order to integrate formally the equation of motion
(5.18), we need the retarded Green's function

p2
i + Gti(x, t) =5(t) .

Bt 2m
(5.22)

Fourier transforming G as

3

( ) f d~d p icot+ip—xG
(2m. )

we find in momentum space

GR(p, co) =(co p /2m +—ie)

d p . 2p ip x ip /2mt—@(t)
(2m. )

iG~(x, t) =e+" 5(x)
imx 2I2t

e

[2mt/mi ]~.
In terms of the in field, therefore, we have

P(x, t) =P;„(x,t)

d pi fd x—'f p, f dt J(X', t )
(2m. )

(5.23)

(5.24)

(5.25)

(5.26)

ip ) (x —x') —ip /2m ( t —t')
Xe

(5.27)

The out field similarly involves the advanced Careen's
function. Using (in the sense of weak convergence)

(4.71), dropping indices, we find the equation of motion
for the Heisenberg interpolating field g to be

In Sec. IV.E we considered the itii body problem f-or a
system of identical particles in the framework of second
quantization. Here we approach the scattering problem
via the route of reduction formulas and in-out fields
(Goldberger and Watson, 1964). For the Hamiltonian

a,„,(p) = f e '-"-+' 'p(x, t) ~, +
in (2~)'

we easily derive

(5.28)
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a,„,(p)=a;„(p) ij(p,co=p /2m)/(2m) /

j(p,co):f—d'xdte' ' 'p"j(x-,t) .

(5.29)

(5.30)
F(p, q) =G '(p+ , q—)F(p,q)G '(p ——,q), (5.38)

where D(x)it/(x) =j(x). Integrating by parts, we can fac-
tor out free inverse propagators, giving

Now consider the reaction

A+B~n+X, (5.31)

where X denotes a sum over all other possibilities and X
denotes one of the g quanta. The outgoing number distri-
bution

dN, „, = (AB in
I
a,+„,(p„)a,„,(p„) IAB in)

d Pn
(5.32)

using four-vector notation. Changing variables to
R = 1/2(X +X'), r =x' —x, we find

fd'R fd'r e"" "

X (AB in
I

j+(R —, rj)(R+ —,r)
I
A—Bin) .

(5.34)

Since
I

AB in) is a normalized state, we cannot and do
not want to use translation invariance to remove the 8
dependence.

Comparison with Eq. (2.18) for the one-particle wave-

function case reveals a very similar structure. The cross
section naturally involves currents, while the simplest
theoretical object involves the fields.

Defining the second-quantized Wigner function as

F(p,R)=—fd re'P'

X (AB in
I
p+(R —, r )p(R + , r )I A—Bin ), —

(5.35)

an obvious generalization of Eq. (4.61) for

p =
I
AB in ) (AB in I, we find that the corresponding

function involving currents is

F(p, R)—= fd"r e'P'"

X (AB in
I

j+(R —, r )j (R + , r )
I

AB i ). n——
(5.36)

We define F(p, q) by

F(p, q) = fd R e 'q "F(p,R )

d4 d4 I i(p q/2) x' i(p+q/2). xD——+(.~
~

~

X (AB in
I

p+(x)g(x')
I
AB in) D(x') .

(5.37)

is, apart from the flux factor, the inclusive differential
cross section for production of particle n.

To exhibit the connection with the Wigner distribution
in its simplest form, we assume that

I

AB in) contains no
n quanta. Then Eq. (5.32) is

fd x d4x'e " (AB in
I
j+(x)j(x )

I
AB in&

(5.33)

where F(p, q) is defined from Eq. (5.35) in analogy to the
first line of Eq. (5.37).

The physical cross section (5.34) is determined by

dX =F(p„,q =0) .
d Pn

(5.39)

To find F, we write the equation of motion for F(p,R) us-

ing Eq. (5.18). Clearly this leads again to a hierarchy
structure to be solved in some approximate way. For ex-
arnple, factorization of the fourfold operator leads direct-
ly to TDHF for fermions. Having found F(p, q), one am-

putates external legs and takes the limit q~O as in Eq.
(5.39).

Our formalism is now set up in a form suitable for ex-
tension to the relativistic regime. Note that formally
there is no problem in setting up the reduction formulas
for outgoing composites.

Finally we note that, in the continuum limit, Eq. (5.34)
is nothing but a generalized absorptive part. Hence the
coupled hierarchy equations for the generalized Wigner
functions constitute an approach to evaluating the absorp-
tive parts of the theory.

F. Relativistic formulation
of the phase-space approach to scattering
and production processes

After this long essay we finally reach the starting point
of the whole investigation —the formulation of a suitable
unified transport theory approach to the description of in-

clusive multiparticle production processes in the ultrarela-
tivistic domain. This technique was designed to avoid the
naive oversimplification of perturbative approaches such
as the multiperipheral model, which typically discard the
extensive final-state interactions which play a dominant
role in collective effects. In many ways this program was
too ambitious in attempting to bypass the complex struc-
tural questions already posed by the nonrelativistic
many-body problem. In addition, the special problems
posed by QCD and quark confinement seemed to require
too extensive an investment of effort in the absence of a
clear understanding of the analogous nonrelativistic prob-
lems.

In order to express the basic ideas of this approach, we
consider the production of spinless neutral particles (Car-
ruthers and Zachariasen, 1976). Given an incoming nor-
malized Heisenberg state %';„, we define a covariant one-
particle distribution function F(p,R ) by

where y(x) is the usual Klein-Gordon field obeying the
equation of motion

F(p, R)—:fd r e'p "(O';„I (p(R '—
2 r)y(R+ 2 r) %';„),

(5.40)
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, =&+;.I~.+.]{p)~-]{p)I
P-&

d p
{5.42)

for the outgoing number distribution of the quanta of the
field y. Using standard reduction formula techniques
leads to the formula

4 gp (x2 —x()d x~ d x28
d3p (2m)

x&ql;„I j( )j( )
I
q';„) .

(5.43)

(6+m )]]]](x)=j(x),
and where j(x) is the current source depending on the de-
tailed theory under consideration. =B&B" is the
Dalembertian, with a metric {+———).

Since we wish to retain information about the space-
time localization, we use normalized states 0';„so that the
R dependence does not cancel out of the matrix elements.
In analogy to Eq. (5.32), we have

2ip . F(pR)= Jd~r e'&"B.
M

X [(j(R —, r—)&p(R+—,r) )

—(tp(R —, r )j(R+—,r ) ) ] . —(5.50)

The operator p 8/M =po(B/Bt+ p/po ']7) is the covariant
analog of the usual D/Dt of ordinary hydrodynamics.
The right-hand side is highly model dependent.

Ordinarily the interaction Lagrangian is such that the
right-hand side of Eq. (5.50) cannot be expressed in terms
of the one-particle distribution itself, but instead will re-
quire the introduction of higher-order distribution func-
tions which will, in turn, generate still more complicated
objects on the right-hand side of their equation of motion.

The simplest case—analogous to the simple harmonic
oscillator driven by a C-number source —involves a
Lorentz scalar source V(x) coupled linearly to the meson
field, i.e.,

The right-hand side can be written as
I.;„t= V(x)q](x) . (5.51)

(
2 2)2

(2m ) p 2 p 2

(5.44)

For this simple case, the current is j(x)=V(x) and the
formal solution to the equation of motion,

q](x) =q2;„(x)—J d "x'A(x —x') V(x') (5.52)

When +;„describes two colliding incident particles,
2~dX/d p is the usual one-particle inclusive differential
cross section apart from the incident flux factor.

As in the previous section, it is useful to define an auxi-
liary function in terms of the current,

F(p,R)—= fd'r e'~ "(+;„
I
J(R , «)J(R+—, —r)

I
p;. ) .-

F(p, q)=V(p+ —,q)V (p ——,q),
giving the usual number distribution:

(5.53)

where b, (x ) is the free retarded Green's function, is an ex-
plicit solution.

Particle production from the incoming vacuum is now
easily computed in terms of F as

Defining Fourier tranforms as in Eq. (5.37) leads to

F{pq)=[{p+ , q)' V'J[{p -, q)—' i 'jF(—p —q)—

(5.45) dX J V(p) I'
d'p 2'(2m )

(5.54)

In order of complexity, the next most difficult problem
is the pair model, with

(5.46)
L;„,= —, V(x)q] (x) . (5.55)

In this notation we can write Eq. (5.44) as

dX 12', =,F(p q) I
=o.

d p (2')
(5.47)

An equation-of-motion approach paralleling the usual
Boltzmann approach can be easily found for the function
F(p, R) by subtracting the two equations of motion

This problem is basically just a relativistic Schrodinger
problem. In momentum-space the equation of motion is

Zp. qF(p, q) =I V{q')
(22«)'

X [F(p+ —,q', q —q')

( ]+]M')(q](x])p(x2) ) = (g(x] )y(x2) )

(5.48)

—F{p——,q' q —q') l . (5.56)

Defining R =(x]+x2)/2 and r=x2 —x], we note the
identity

Fo(p, q) =(2') 5(q)5 (p p)—(5.57)

Consider the solution of this equation in an iterative
scheme, beginning with an incoming vacuum, having an
unperturbed distribution

BR Br

The basic equation is then

(5.49) appropriate to uniform space-time; 5 means that only
the po ~ 0 root of the 5 function is to be taken.

To second order, we find
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~ l(p+ —,q)' —S') & t(p —, q—)' S—'I
F(p, q) =(2'.) 5 (p —p )5(q) —2', +

(p q)2 p2 (p+-, q)' —S
'

y
d q' V(q')V(q —q')
(2~)' (~p+p'+ , q)'-i '—

1 I:(p+ 2
q)' —p'lt(p —

2
q)' —i"~

4

xJ,V(q')V(q —q'» Pp+p' ——,'q)' —p'f .(2'�)' (5.58)

x& [(p+p' ——,q)' —p l (5.59)

Inspection of these contributions (and higher-order terms)
shows that Eq. (5.58) is the sum of the discontinuities of a
scattering amplitude for mesons of initial and final mo-
menta p+ —,q off the potential V (Fig. 10). F(p, q) corre-
sponds to including discontinuities of internal lines only
and amputating external legs. The lowest-order contribu-
tion to F is

y4
F(p, q)=2m. f 4 V(p')V(q —p')

(2~)

I

ous technical complications arise. For Dirac particles of
spin —,, a fully general treatment requires a 4&4 matrix
phase-space density, for example (Hakim, 1978). At
present the study of extended relativistic systems in QCD
and their equations of state is a fully developed subject
(Hakim, 1978, Shuryak, 1980). Still, the application to
relativistic scattering is terra incognita The. formalism of
this section is, however, especially suited for the produc-
tion of nonconserved quanta, such as pions in nucleus-
nucleus collisions. For example, in the popular model of
EX'. coupling with the Lagrangian

giving the number distribution of produced particles as
L;„,=g(bNn. +H. C. ), . (5.61)

fd q ~

V(p+q)
~

5+(q p) . —
d p 2'(2m)

(5.60)

Generalization to higher-order inclusive cross sections
and possible collective modes can be found in the cited
reference (Carruthers and Zachariasen, 1976). However,
few insights into the collision problem were yielded by
this investigation.

For the purposes of the present article, the main point
of the present section is to show that relativistic kinemat-
ics sees no barrier to the definition of appropriate phase-
space distributions, cross sections, and equations of
motion. In describing particles with spin, however, tedi-

the current is j=g(ZN+H. C.), giving a structure to the
right-hand side of Eq. (5.50) of the form

(5.62)

which gives, for positive energy states, a covariant version
of the 6-hole model. Naturally, the development of this
formal structure into a full-blooded cross section requires
extensive work. Nevertheless, the present theory provides
all the ingredients for a satisfactory description of this
and similar processes.
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