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The review consists of two major parts. In the first part, several calculable R-matrix and related theories
are described and discussed. These include the Kapur-Peierls, Wigner-Eisenbud, calculable standard R-
matrix, extended R-matrix, finite-element, natural boundary condition, and variational methods. The vari-
ous approaches are critically compared using four selected applications: (i) exactly soluble model using two
coupled square-well potentials, {ii) elastic scattering of neutrons from '2C, (iii) elastic scattering of electrons
from He atoms, and (iv) a-a elastic scattering. In the second part, the Baer, Kouri, Levin, and Tobocman
many-body scattering theory is reviewed. The principal results of the theory are derived, and a survey of
calculations applying the theory is presented. The derivation is carried out in the context of the R-matrix
method wherein the many-body scattering is treated ab initio as a steady-state process. This has the ad-
vantage that the channel states form a complete orthogonal set. These same channel states are used to pro-
vide explicit representations of the partition Green s-function operators.
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I. INTRODUCTION

The narrow resonances observed in nuclear reaction
cross sections led to the "compound nucleus". picture
(Bohr, 1936) in which the available kinetic energy is as-
sumed to be shared among many nucleons and the sharp
resonances considered to correspond to very complicated
compound states of the colliding systems. Consequently
the early reaction theories (Kapur and Peierls, 1938;
Wigner, 1946a, 1946b; Wigner and Eisenbud, 1947) were
of a formal nature and did not attempt to describe the res-
onances in terms of nuclear structure models. Indeed, it
was considered advantageous that resonances could be
simply parametrized and cataloged without such models.
However, following the successful description of low-
lying nuclear energy levels in terms of the shell model
(Mayer, 1949; Haxel, Jensen, and Suess, 1949} attempts
were made (Lane, 1960; Barker, 1961) to retate resonance
parameters to shell model (bound-state) calculations. A
more unified approach involving projection operators to
specify both open and closed channels and emphasizing
the dynamical origin of the resonances was proposed by
Feshbach (1958, 1962). Subsequently, this approach was
followed by the development of a wide variety of reaction
formalisms (see, for example, Robson, 1975) which permit
the calculation of scattering and reaction cross sections
from a model Hamiltonian. Some of these ==.g., the
standard R-matrix method (Lane and Robson, 1966)—
have been widely used not only in nuclear physics but also
in atomic and molecular physics (Burke and Robb, 1975).
It should be mentioned, however, that the resonating-

group method of Wheeler (1937a, 1937b) has been em-

ployed since the early 1940's (Buckingham and Massey,
1941) for fairly sophisticated calculations of few-body
scattering problems. This quite general approach (see Sec.
VIII) gives rise to a set of coupled integrodifferential
equations. Unfortunately, these equations become more
unwieldy as the number of particles increases, especially if
the exchange effects arising from the Pauli exclusion
principle need to be taken into account. It is for this
reason that considerable attention has been given in recent
years to developing alternative techniques.

In this review article we consider primarily two types
of calculable theories. In the first part (Secs. II—VIII) we
deal with those techniques which employ the division of
configuration space into internal and external regions, as
in R-matrix theory. These methods are more suitable
(Takeuchi and Moldauer, 1970) for the inclusion of ex-
change effects than either the Feshbach and related (Mac-
Donald, 1964a, 1964b, 1964c; Bloch and Gillet, 1965;
Weidenmuller, 1966; Weidenmuller and Dietrich, 1966)
approaches or the coupled-channels method (Tamura,
1965) associated with various collective nuclear models.
In the second part (Secs. IX—XVI), a calculable transition
operator formalism which is based upon the R-matrix ap-
proach is described.

In Sec. II, the many-body scattering problem is stated
and various useful forms of asymptotic boundary condi-
tions are discussed. Section III gives a description of the
R-matrix method which determines the scattering wave
function from the Schrodinger equation and the boundary
condition constraints. This description is carried out us-
ing the elegant operator method of Bloch (Bloch, 1957;
Lane and Robson, 1966) and two alternative system
Green's-function operators. Modifications of these R-
matrix formalisms to include an optical-model Hamil-
tonian to represent background scattering and to give the
X-matrix description (Garside and Tobocman, 1969) are
also discussed.

The calculable standard R-matrix (SRM) method
(Haglund and Robson, 1965; Lane and Robson, 1966} is
introduced in Sec. IV following brief reviews of the earlier
related theories of Kapur and Peierls (1938) and Wigner
and Eisenbud (1947). The SRM method involves the
separation of the Hamiltonian into two components: a

part Ho defining the basis states when certain homogene-
ous boundary conditions are applied at the internal boun-
dary (channel radius) of the channel region, and a residual
interaction. Unfortunately, the SRM method suffers
from slow convergence of the basis set expansion arising
from the discontinuity of the derivative of the scattering
wave function at the boundary. Various techniques for
overcoming this problem are discussed: the correction of
Buttle (1967) in Sec. IV.D; the finite-element method
(Nordholm and Bacskay, 1978) in Sec. IV.E; the extended
R-matrix method (Tobocman and Nagarajan, 1965; Gar-
side and Tobocman, 1968, 1969; Lane and Robson, 1969a;
1969b), which was primarily developed in an attempt to
extend shell model and related techniques into the contin-
uum, in Sec. IV.F; several natural boundary condition
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methods; the eigenchannel method (Danos and Greiner,
1966; Barrett et al. , 1973); the method of Barrett and Del-
santo (1974); and the iterative R-matrix method (Ahmad,
Barrett, and Robson, 1976a, 1976b), in Sec. V, and varia-
tional techniques in Sec. VI.

In Sec. VII the scattering of composite particles is con-
sidered in more detail. Several approaches in which the
generator coordinate method (Hill and Wheeler, 1953;
Griffin and Wheeler, 1957) is combined with one or
another of the calculable reaction theories are discussed.

Section VIII, which forms the final section of the first
part, gives a fairly detailed discussion of four selected ex-
amples in which several different calculable methods have
been applied to the same scattering problem. A critical
comparison is made of the alternative approaches.

In the second part of this review article we discuss a
calculable transition operator formalism for many-body
scattering. The R-matrix type of formalisms discussed in
the first part of this article ultimately require the solution
of the Schrodinger equation by the inversion of E-II' sub-
ject to appropriate asymptotic boundary condition con-
straints. In contrast to this, transition operator formal-
isms seek to determine the many-body collision matrix by
solving the integral equations for the transition operators.
In this approach the asymptotic boundary condition con-
straints enter through the driving terms and partition
Green's-function operators employed in the integral equa-
tions.

As is well known there are several obstacles in the way
of doing this for the Lippmann-Schwinger (LS)
(Lippmann and Schwinger, 1950) integral equations for
the transition operators. It was noted by Foldy and To-
bocman (1957) that these integral equations may fail to
embody a complete specification of the asymptotic boun-
dary conditions of the scattering process. Secondly, as
observed by Faddeev (1960), the LS equations do not have
connected kernels. Since this property is necessary for
compactness and since compactriess is sufficient for the
Fredholm alternative, one does not expect that these equa-
tions are susceptible to solution by standard methods. Fi-
nally, the LS equations involve the partition Green's-
function operators G,Gp, . . ., which will be defined
below. These are complex many-body operators which
must fulfill complicated asymptotic boundary conditions.
Thus the difficulty in constructing an adequate represen-
tation for the partition Greens-function operators is a
third obstacle for a transition operator formalism.

These difficulties were overcome for the three-body
problem by Faddeev (1960). In this treatment, the transi-
tion operator is written as the sum of three auxiliary
operators which are the solutions of three coupled integral
equations. These equations become connected-kernel
equations after a single iteration. By using three simul-
taneous equations one can fully specify the asymptotic
boundary conditions for the three-body system. The par-
tition Green's-function operators are replaced by free-
particle propagators in a transformation which replaces
the two-body interaction potentials by two-body transition
operators. Lovelace (1964) later derived a similar set of

three coupled integral equations for the transition opera-
tors themselves, thus avoiding the introduction of auxili-

ary operators.
The Faddeev-Lovelace approach was generalized to the

more-than-three-body case bv Yakubovskii (1967), Alt,
Grassberger, and Sandhas (1967), Sloane (1972), Bencze
(1973), Redish (1974), Karlson and Zeiger (1975), and
Vanzani (1976). Again free-body propagators replace par-
tition Green's-function operators. However, in place of
the two-body transition operators needed in the three-
body case, the %-body problem requires a family of two-,
three-, . . ., and (N —1)-body transition operators to be
determined via the solution of a hierarchy of equations.

In Secs. IX and X, an alternative transition operator
treatment of the many-body scattering problem is given.
In contrast to the Faddeev-Lovelace approach, the origi-
nal LS equations are retained as the dynamical equations
to be solved. It is shown that for an %-body system it is
possible to specify a set of ~(%) coupled LS equations
which fully incorporate the N-body asymptotic boundary
conditions and which after ~(N) 1 iterat—ions become a
set of ~(X) uncoupled, connected-kernel integral equa-
tions for the transition operators. The quantity ~(X) is
the number of distinct two-cluster partitions that can be
formed from the given X-particle system. In place of the
fewer-than-S-body transition operators required by the
Faddeev-Lovelace method, this approach requires as in-
put all the subsystem bound and scattering state wave
functions. The set of ~(%) coupled LS equations chosen
are known as the Baer, Kouri, Levin, and Tobocman
(BKLT) equations.

To derive the dynamical equations for many-body
scattering we adopt the R-matrix theory approach rather
than the more conventional wave packet method. This
method has two distinctive aspects which are advanta-
geous. First, the system is confined to a finite volume in
configuration space for the process of deriving the equa-
tions of motion. - The limit of infinite volume is then tak-
en as the very last step. This allows one to formulate the
scattering problem in terms of orthogonal, normalizable
channel states. Second, the dynamical development is
formulated as a steady-state Aow rather than as the col-
lision of wave packets. This permits one to avoid the pre-
liminary step of using time-dependent scattering theory in
the derivation of the time-independent equations of
motion.

The R-matrix formalism is used to derive the LS equa-
tions. This method introduces the asymptotic boundary
constraints in a very explicit and well-defined way. In
this manner it is possible to formulate the LS equations
employing a calculable representation of the partition
Green's-function operators in place of the conventional
ones. As a consequence of this and of the fact that one
has connected-kernel equations, we call the resulting tran-
sition operator formalism calculable. Some variational
functionals for the many-body transition amplitude are
given in Sec. XI, and the extension of the BKLT formal-
ism to include exchange symmetry is discussed in Sec.
XII.
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Of course, the fact remains that the complexity of the
BKLT equations increases with the number of degrees of
freedom and that this in turn depends on the number of
particles. Thus a full dynamical calculation is presently
feasible only for few-body systems. Nevertheless, we be-
lieve that the calculable transition operator many-body
formalism will prove useful because its simple structure
and calculable form should provide a sound basis for in-
troducing approximate treatments for the many-body
problem. This is illustrated in Sec. XIII, where it is
shown how the BKLT formalism can serve as the basis of
a few-cluster model or a restricted basis model analysis of
the many-body problem. The ease and directness with
which this may be done is one of the attractive features of
this formalism.

The explicit inclusion of breakup channels in the cal-
culable transition operator formalism is discussed in Sec.
XIV, and the question of spurious solutions of the BKLT
equations is considered in Sec. XV. Finally, Sec. XVI
gives a short review of the various calculational tests and
applications of the BKLT formalism which have been
made so far.

II. MANY-BODY SCATTERING PROBLEM

(H E)+k =0, —
where

(2. l)

(2.2)

(2.3)

is the kinetic energy and P is the potential energy. In the
kinetic energy term, M; is the mass of the ith particle and
R; is its position, while M is the total mass and R is the
position of the cm. The potential energy 7 will consist
of a sum of functions of the relative displacements of the
particles, and many-body potentials may be included as
well as two-body potentials. All the terms of P which
involve the particles I' and j will be required to decrease at
least as rapidly as (

~
R; —RJ

~
)

' in the region of config-
uration space where the separation of particles i and j is
large.

The asymptotic boundary conditions are formulated in
terms of the concepts of partition and channel. A parti-
tion of the system is the division of the % particles into n
groups or clusters. For this purpose all particles are re-
garded as distinguishable, and the consequences of ex-
change symmetry will be introduced only at a later stage
of the analysis (see Secs. VII.C, XII). For the most part
we shall require only two-cluster partitions, which will be
identified by lower case Cxreek letters. Associated with

A. Formalism

The nonrelativistic quantum-mechanical dynamical
problem for an %-body system consists of the solution of
the Schrodinger equation subject to certain asymptotic
boundary conditions. The Schrodinger equation has the
form

each partition a is an infinite set of channels c,c',c",. . .,
each corresponding to a possible product state of the
internal motion states of the two clusters of partition a.

Let h~ ' and h~ ' be the Hamiltonians for the internal
degrees of freedom of the two clusters of partition a. The
channel states X«are defined to be the eigenstates of

(1) (2) ~

ha +ha

0'k= g X,u'",'(r ) (large r ),
cEa

(2.5)

where the expansion coefficients, the channel relative
motion wave functions, necessarily are solutions of

Z (1)Z(2) 2

2mc ra
(2.6)

where

(2.7)

Here m, is the reduced mass of the two partition a clus-
ters in channel e, and Z'"e and Z' 'e are their electric
charges. The index k serves as a reminder that the Hil-
bert space of the multichannel scattering system at any
energy is m-fold degenerate, where m is the number of
open channels. To describe the system completely, it is
therefore necessary to determine a set of m wave func-
tions %1,%'2, . . .,4

The asymptotic boundary conditions for the scattering
wave function %k may now be stated in terms of the
channel relative motion wave functions. It is required
that for large values of r the latter must have the forin

u'",'(r )= Y~
' (i~)[g~, '(i~)&,k g~+, '(r )U,k]—

(large r~), (2.8)

where Y~
' is the spherical harmonic and for open chan-

C

nels g', '
(g~, ) is the unit current outgoing (incoming) ra-

dial Coulomb wave function, given by
1/2

ie '[GI (k, r ) iF~ (k, r )]r
c

mc

X exp(+i [ k, r —i), ln2k, r —
2 1,ir I ) . (2.9)

For closed channels (E,&0) we assume

(2.4)

Let r be the relative displacement of the centers of mass
of the two clusters for partition a. The region of configu-
ration space where r is large relative to the internal coor-
dinates of each cluster is called the partition a asymptotic
region. In this region of configuration space, the scatter-
ing state wave function %k may be expanded in terms of
the partition a channel states
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g~+, '(r~)- exp( k—,r~ —g, 1n2k, r ) .
ra

Here

(2.10)
of the various reaction cross sections is straightforward
(see, for instance, Preston, 1962).

k, =(2m,
I E~,

I

/f2)'

o, =argI (1, + 1+iri, ),

(2.11)

(2.12)

(2.13)

(2.14)

The convention of Bloch (1957) has been used in which
) denotes functions of all coordinates except r~ Then.

Eqs. (2.5), (2.6), and (2.8) become

and U is the collision (or scattering) matrix. It is evident
that 4k represents the scattering state which has unit flux
incident in channel k and purely outgoing flux in all other
channels. These states will be denoted by %k+'. We have
implicitly assumed above that the index c includes within
it the quantum numbers I, and pc.

It will be convenient to make our notation a little more
compact by redefining the channel state so that it includes
the spherical harmonic. In addition, the spherical har-
monic is coupled to the spins of the two clusters to form
an angular momentum eigenstate. Henceforth by channel
state we shall mean the quantity

B. Alternative asymptotic boundary conditions

where A,k and B,k are complex coefficients and the col-
lision matrix is given by

UI, = QB,k(A ')kk .
k'

(2.22)

Several different sets of asymptotic boundary conditions
have been used widely in the literature and we shall dis-
cuss each in turn.

Although Eqs. (2.14), (2.15), and (2.17) define the phys-
ical scattering boundary conditions, it is often very con-
venient to use alternative asymptotic boundary conditions.
Such equivalent mathematical formulations of the many-
body scattering problem are simply linear transformations
of the equations which incorporate the physical asymptot-
ic boundary conditions. This means that the U-matrix
elements can be obtained by linear transformations of re-
lated quantities in the alternative formulation.

In the partition a asymptotic region, the general solu-
tion of the radial wave equation [Eq. (2.16)j has the form

x', '(r~) —= (c
I +k ) = /~, '(r~ )A,k —g~+, '(r~ )B,/, y

(2.21)

%k+ = g I
c)w ",(r ) (r large),

cGa

1 d
2mc r~ dr

Z ( & )Z(2)e 2

r~

(2.15)
1. Scattering boundary conditions

As indicated earlier, in this case each of the wave func-
tions %k

' (k =1,2, . . .,m) is required to represent a sys-
tem with unit incoming flux in channel k and only outgo-
ing flux in all other channels. This implies

(2.23)

(2.17) and

(H E)
I
c)w'",'=0—,

where

(2.18)

is the channel radial wave function.
The partition a asymptotic states

I
c)w'",' are eigen-

states of the partition Hamiltonian H:
&ck = Uck (2.24)

so that x'",'(r )—:w'", '(r ) is given by Eq. (2.17).
In the following it will be convenient to distinguish be-

tween open (c) and closed (c) channels. Thus we write
for large r~

a l

The partition a residual interaction

(2.19)

(2.20)

—g I
c )g~+,—'(r ) U, k . (2.25)

vanishes in the partition cz asymptotic region.
The above equations show how the solution of the

many-body Schrodinger equation is characterized by the
collision matrix U when scattering boundary condition
constraints are imposed. The objective of any reaction
calculation is the determination of the matrix elements
U,k. Once the collision matrix is known, the calculation

2. Standing-wave boundary conditions (open channels)

The imposition of standing-wave boundary conditions
requires that the amplitudes of ingoing and outgoing
waves be equal in each open reaction channel but that
there be a phase shift between them. These requirements
may be written

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983
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—'5ck
A-k =v-I e

(2.26)

(2.27a)
1

—i0'-
A,-k ———,(5,-k —iK, k'-)e (2.34)

where K~ are the elements of the real reactance matrix.
Thus here,

+i5 ~kB,-k ——v,-ke (2.27b)
and

1 +io
&rk —

2 (4k+«;k)e (2.35)

where v,-k and 6,-k are real. Thus for large r

I

qp ) y I
c)U [g(

—)(» )e
' k g(+~)(» )e+' k)

(2.28)

(2.36)

If I, A, B, E, and X are the matrices with elements 6,-k,
ia

A k, B,k, E,-k, and e '6,-k, respectively, then the col-
lision matrix for the subspace of open channels

The restrictions of Eqs. (2.26) and (2.27), combined with
the requirement that the

I
%k) be degenerate eigenfunc-

tions of the Hamiltonian in the internal region, are insuf-
ficient to specify completely the set of functions

I

(Ilk),
and an infinity of such sets of standing waves is possible.

3. Eigenchannel boundary conditions (open channels)

~ lk ~2k ~mk ~k (2.29)

This extra condition restricts the infinity of allowed. sets
of

I

0'k ) which existed in the previous section to just one
set. In this case

—)5k
A,-k ——v,-ke

+i5k
Bek =eke

and for large r

(2.30)

(2.31)

I
qy ) g I

—
) [g(

—
)( )

k g(+)( ) ):]

The eigenchannel boundary conditions require that
there exist a set of standing waves with a common phase
shift in each open reaction channel in the external region.
In other words, the requirements of Eqs. (2.26) and (2.27)
are satisfied with the additional restriction that

U =BA

=X(I+iK)(I iK—) 'X

=X(I—iK) '(3. +iK)X . (2.37)

The tilde over U serves to indicate that only the subspace
of open channels is included.

5. Transformation between different asymptotic
boundary conditions

In the internal region, each of the wave functions
I

(Ilk )
is a degenerate eigenfunction of the Hamiltonian of the
system. Any linear combination of the

I
(Ilk ) will also be

a degenerate eigenfunction of the same Hamiltonian. In
the external region, this means that a linear combination
can be taken of the wave functions

I
(Ilk) corresponding

to one set of asymptotic boundary conditions to transform
to the wave functions

I
%k ) corresponding to another set.

For example, let x',-'(r~) represent the radial wave
functions in channel c belonging to partition a obtained
with standing-wave boundary conditions as discussed in
Sec. 11.8.2 and let r()',-(r ) represent the corresponding
wave functions for the scattering boundary conditions of
Sec. II.B.1. Then for large r~, we can write

(2.32)
r()', '(r~) = g-x', '(r~)(A ')k k,

k'
(2.38)

4. Reactance matrix (or K-matrix) boundary conditions
(open channels)

The eigenchannel boundary conditions generate one
specific set of standing waves out of the infinite number
of possible sets that can be constructed in the various
open reaction channels. Another important set of stand-
ing waves can be generated by the imposition of reactance
matrix (or K-matrix) boundary conditions in the external
region.

In this case, for large r
1/2

[Fr (k,-r )5,- +Gkr (k,r)K,k]r--
(2.33)

(large r ), (2.39)

so that

(large r ) . (2.40)

Comparing Eqs. (2.40) and (2.17), we can see that

U=A*A-' . (2.41)

Using this relationship and the symmetry of the U ma-
trix, we can readily see that the matrix product A~A,
where f denotes the Hermitian conjugate, is real. From a

where A is the transformation matrix with elements—i 5kk
Akk ——vkk e . In this notation
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knowledge of the amplitudes u,-k and the phase shifts 5,-k
obtained for a particular set of standing-wave boundary
conditions, Eq. (2.41) enables the collision matrix and
hence the various reaction cross sections to be determined.

In the special case of eigenchannel boundary condi-
tions,

'~k
A,-k ——u,-ke (2.42)

or

W =ue-'~, (2.43)

where u and 6 are matrices whose elements are u,-k and

5k5,-k, respectively. In this case the collision matrix is
given [Eq. (2.41)] by

u~ 2l ku —1 (2.44)

The columns of the matrix u contain the eigenchannel
vectors, and the diagonal elements of the matrix 6 are
known as the eigenphases.

In this section we have discussed the channel region of
configuration space where the short-range polarizing in-
teractions are negligible and the asymptotic forms of the
wave functions of the ingoing and outgoing clusters are
known. The complete specification of the wave functions
throughout configuration space requires a solution of the
dynamical equations for the system in the internal region
where the short-range interactions are important. There
is a variety of methods to achieve this aim. Some of these
methods will be discussed in detail in the following sec-
tions.

III. R-MATRIX SCATTERING FORMALISM

A. Some concepts and definitions

At this point we shall use the R-matrix formalism
(Lane and Thomas, 1958; Breit, 1959) approach to refine
our discussion of the asymptotic boundary condition con-
straints on the scattering wave function. The discussion
given in Sec. II lacks precision, because it is not clear
what criterion is to be used to specify when the partition
radial coordinate r is to be regarded as large compared
to the internal coordinates of either cluster. In addition,
the channel states

~

c) belonging to one partition are not
independent of the channel states belonging to any other
partition. Thus it is not clear that the boundary condition
constraints imposed in the asymptotic region of one parti-
tion are necessarily independent of those imposed in
another such region.

The R-matrix method avoids these difficulties. The
procedure is to introduce a finite volume of the 3%—3-
dimensional configuration space of the N-body system.
This volume is centered on the point corresponding to all
X particles being at the same position. The 3X—4-
dimensional hypersurface enclosing this volume is called
the channel entrance surface, and the interior is called the
interaction or inside region. The asymptotic boundary
conditions constraining the scattering wave function are

then specified in terms of a complete, orthogonal set of
surface harmonics defined on the channel entrance sur-
face.

The channel entrance surface harmonics are defined in
the following way. The channel entrance surface is taken
to be a 3X —4-dimensional polyhedron, which has a face
defined by r =a for each two-cluster partition a. This
face is called the partition a channel entrance, and the
constant a is the partition o. channel radius. On each
channel entrance a complete, orthogonal set of states is
defined. The channel radii will be taken to be sufficiently
large that these states can be taken to be the channel
states

~

c) defined by Eqs. (2.4) and (2.14). However, Eq.
(2.4) will be supplemented by the requirement that the
states

~

c) fulfill real homogeneous boundary conditions
on the outer boundary of channel entrance a. This outer
boundary is the intersection of channel entrance a with its
neighboring channel entrances.

We can see that this scheme has several desirable conse-
quences. First, by allowing all the channel radii simul-
taneously to become sufficiently large, we can cause all
the channel entrances to become asymptotic in the sense
that the non-Coulomb part of the residual interaction V~
will be negligible in the vicinity of channel entrance a.
The geometrical constraints are such that as all the a 's
increase simultaneously, the difference between a and
the maximum value possible on channel entrance a for
any of the internal relative coordinates of the two parti-
tion a clusters becomes arbitrarily large. Thus the con-
cept of asymptotic region has been endowed with pre-
cision.

Another desirable consequence is that the spectrum of
channel states

~
c) becomes purely discrete and the chan-

nel state wave functions are all normalizable. There is no
overlap between channel state wave functions belonging to
different partitions. Thus the channel state wave func-
tions form a complete, orthogonal set of harmonics for
the channel entrance surface.

The one undesirable consequence of confining the chan-
nel states to the interiors of their respective channel en-
trances is that they can no longer be regarded as
representing physical asymptotic states of Inotion. If only
two-body channels are open, all the channel states. are
bound states and the use of finite channel entrances has a
negligible effect. However, in the case where three-body
channels are open, the channel states approach the physi-
cal asymptotic states of motion only in the limit that all
channel radii simultaneously become infinitely large.

An alternative formulation of multibody breakup chan-
nels, which has been outlined by Robson (1975) for a
schematic three-body model, does not possess the above
undesirable feature, but requires the use of nonorthogonal
channel wave functions. This formalism has not yet been
employed in any practical application.

To employ the R-matrix formalism at energies above
the breakup threshold would probably require larger
channel radii than are really practical. Thus for such
cases a transition matrix formalism like the one discussed
in Sec. IX is likely to be more useful.
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B. R-matrix formulations of collision matrix

{e
I
~

I
+k & {e

I

H —H'
I

q'k & (3.1)

Having made our specification of the asymptotic boun-
dary condition constraints unambiguous, we next derive
two relationships, each of which determines the scattering
wave function from the Schrodinger equation and the
boundary condition constraints.

Consider the quantity

Bloch (Bloch, 1957; Lane and Robson, 1966), who added
W(b, )0'k to both sides of the Schrodinger equation:

[H+~(b, ) E—]%„=W(b,)ek . (3.8)

Operating on both sides of this equation with the
system Green's-function operator 6, which is the left in-
verse of I H +W(b, )—E I or the right inverse of
tH +Mt(b,*)—E], i.e.,

where 8 is a function which is regular within the interac-
tion region but otherwise is arbitrary. The integrations
denoted by angular brackets are confined to the interac-
tion region. This will be tacitly assumed for all such ma-
trix elements unless explicitly stated otherwise. Assuming
the interaction potentials to be real multiplicative opera-
tors allows us to write

yields

+k=G W(b, )+k .

(3.9)

{e
I
~

I
~k & ={o

I
T —Tt

I qk & . (3 2)

By a simple change of scale, the kinetic energy operator T
can be transformed into a 3N —3-dimensional Laplacian
(Breit, 1940, 1959). Then Green's theorem can be used to
transform the volume integral into a surface integral over
the channel entrance surface. The result can be written
very concisely, using the fact that the channel states

I
c)

are a set of surface harmonics for the channel entrance
surface. We have

{0 I
H Ht

I 4k & = {e—I
wt(b,*) w(b, )

I
I k &—,

(3.3)

If the parameters b, are real (from here on this will be as-
sumed unless explicitly stated otherwise), there is no need
to distinguish between left and right inverses for
IH+W(b, ) —E], since Eq. (3.3) implies

H+W(b, )=H +W (b, ) .

The distinction between 6 and —6 is that the surface
term in Eq. (3.9) constrains G to fulfill a particular
boundary condition on the channel entrance surface,
while there is no such constraint for 6 contained in Eq.
(3.6). Indeed, Eq. (3.9) is equivalent to the two equations:

where W(b, ) is the boundary condition operator (Bloch,
1957)

(E —H)( —G') =1 (3.12)

(3.13)W(b, )G =0 .

If the constraint of Eq. (3.13) is imposed on the operator
G and the parameters b, are real, Eq. (3.7) becomes identi-
cal in form to Eq. (3.10). The system Green's-function
operators play a central role in the R-matrix formalism.
They embody the dynamics of the system, and Eq. (3.7)
or (3.10) serves to join the dynamics to the boundary con-
dition constraints. The task of solving the Schrodinger
equation has now been replaced by the task of construct-
ing a system Green's-function operator.

Suppose we had succeeded in constructing 6 . How
would we use it to calculate Ok'? We cannot simply make
direct use of Eq. (3.10), because from Eqs. (2.14), (2.15),
and (2.17) we see that the asymptotic behavior of %k is
pararnetrized in terms of the collision matrix U, which
remains to be determined from the dynamical equations.
Well, Eq. (3.10) expresses the dynamics, since G has
been constructed. So we use Eq. (3.10) first to calculate U
by matching at the channel entrance surface and then
substitute U back into Eq. (3.10) to obtain %'k.

Projecting both sides of Eq. (3.10) onto the channel
state (c

I
and matching the internal [Eq. (3.10)] and exter-

nal [Eq. (2.15)] solutions for %k—=qfk+' at r =a gives
the set of coupled equations

(3.4)

with arbitrary constants b„which in general may be com-
plex.

Since 0 is arbitrary and since +k is a solution of the
Schrodinger equation, Eq. (3.3) can be written

(E —Ht)+k ——I W (b,') W(b, ) I 4k =A—%k . (3.5)

Operating on both sides of this equation with the system
Green's-function operator 6, which is defined to be the
left inverse of (E H), or, equivale—ntly, the right inverse
of (E H), i.e., —

G (E H) = (E H) G = 1, — — (3.6)

we obtain

qk =G[W'(b,*) W(b, )I%'k=Gbl k . — (3.7)

This result is the Green's-function relationship for the
scattering wave function, which expresses the value of Vk
at any point in the inside region in terms of its value and
normal derivative at the channel entrance surface.

An alternative form of Eq. (3.7) was originally given by

fiw(b, )= g g Ic) 5(r —a ) r b, (c I—
2mcaa ~~a

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



Barrett, Robson, and Tobocman: Calculable methods for many-body scattering 163

A' apR„(a,ap) = g (c,a
I PJ ) (G)~J'(PJ I

c',a p)cc a 2~ a l JJ J

= g g R„(a,ap) ap b-,
p ~p Rap Rap (c,a

I
6

I
c',ap),

2mc
(3.22)

X [("p, '(a p)&, k gp+—, '(a p) U, k] (3.14)

where the R matrix R (a,ap) has elements

f2
R„(a~,ap)= g(c,a

I
PJ)(6 ))& (P~ I

c',ap)
2m

Rap (c,a
I

6
I

c',ap),
2mc'

(3.15)

(c,a
I P, ) =(c

I PJ. )„ (3.16)

and the quantities (c,a
I PJ ) are radial functions at

r~ =a~ corresponding to some complete set of basis states

I PJ ), which are regular at the origin and in general are
nonorthogonal over the internal region. The notation
(c,a

I PJ ) denotes integration over all coordinates except
r, which is set equal to a, i.e.,

Rap
(+)a p

— a p gp—,—,(ap),
Rap

(3.23)

and the collision matrix is given by a relation analogous
to Eq. (3.20).

It should be noted that Eq. (3.6) does not determine 6
uniquely. Its asymptotic behavior can be varied by add-
ing regular solutions of the corresponding homogeneous
equations. However, these variations in asymptotic
behavior have no effect on Eqs. (3.21)—(3.23) and Eq.
(3.7), which determine the scattering wave function from
the Schrodinger equation and the boundary condition
constraints.

and the arrow indicates operation to the left. The corre-
sponding Z matrices are

Z„=, = 5„-,gp—, (ap) —R„-,(a,ap)(+) (+)

The elements (6 )JJ belong to a matrix whose inverse has
elements (P~ I

H+W(b, ) E
I P~ ), —where the tilde

denotes that the radial part of the wave function is to be
complex conjugated. It should be noted that for
nonorthogonal basis states

(3.17)

C. Insertion of optical potential

Both of the R-matrix formalisms discussed above may
be modified by the insertion of an optical-model Hamil-
tonian H~ to represent the background scattering for par-
tition o, . These insertions are based on the resolvent rela-
tions for the Green's-function operators:

&OJ I
IH+~(b, ) EI '

I
WJ'& —= &0) I

6'
I
0—1 &«6'~,,

(3.18)

6 =tH+W(b, ) EI '=6~——6 V GL (3.24)

When we define

R„,(a,a p) — -a p b, gp , , (—a p), -—
(3Q p

6=(E Ht) '=6 +6 —(V +-6)G=G +6 W G,

Ga IHa+W(bc) El =1— (3.26)

(3.25)

where the optical-model Green's-function operators G I.

and G are given by

(3.19) and

the collision matrix for the subspace of open channels is
given by

G (F —H )=1, (3.27)

U [Z(+)L] )Z( )L (3.20)
V =H H=(H H)— — (3.28)

If the same procedure is carried out for Eq. (3.7), one
obtains the set of coupled equations is the residual interaction. We require that H does not

produce any nonelastic scattering. Then for partition a

H =H +U (r ), (3.29)

=g g R„(a.,ap)
p c'Hp

8
aap

'p aalu'p

X[/'p, '(ap)5, „gp+, '(ap)U, „],—

where the R matrix R (a,a p) has elements

(3.21)
&a= & —Ua

which vanishes in the partition cx asymptotic region.

(3.30)

where H is given by Eq. (2.19) and U is a real optical-
model potential. Thus the residual interaction V is given
by
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The Hamiltonian H has regular scattering eigenstates

~
c)u,—such that

+5
Z,——,—,=v Qa ) ie '&;;.+

Aa (u,-~ W' G
~

c ', ap)
rri;

C

(M E—)
~
c)u,-(r )=0,

and for large r

(3.31)
X

Rap

a ~+
ap — ap gp

——,(ap)
Rap

u Pr )- m-
C

A'k,—

1/2

r ' sin(8,-+5, ), (3.32) (3.40)

where

0,—=k,-r —g,-ln2k,-r ——,l,-m (3.33)

and 6,—is the phase shift due to U and the Coulomb in-

teraction. Corresponding to each such regular solution,
there is an irregular solution

~

c )v,—such that

D. X-matrix formalism

Both of the R-matrix formalisms of Sec. III.B may be
transformed by the following substitutions for the
Green's-function operators:

6 =Ga —Ga Va Gp+ Ga Va 6 VpG p
——Ga +GaXapG p,

(M E)
~

—c)v,-(r )=0, (3.34)
(3.41)

and for large r

v-(r )—
m

C

A'k,—

1 /2

r 'cos(0, +5, ) —s,-u,—. (3.35)

6=Ga+ Ga WaGp+ Ga 8'aGWpGp ——Ga+ GaXapGp,

(3.42)

R, , (a,ap)—= Rap
2m-

(c,a ~G ~c', ap)

p u,-(a )vp,—,(ap)5,—,—,.I-.
C

Here the parameters s,—are arbitrary and the phase shifts

5,—are real.
Provided the s,—are appropriately chosen, both the ma-

trices ( —R ) and R corresponding to ( —G ) and G,
respectively, may be represented by

and

Xap ———Va+ VaG Vp

Xap ——8 a+ 8'a68'p

(3.43)

(3.44)

are the reaction matrix operators. Equations (3.41) and
(3.42) result from iterating the resolvent relations, Eqs.
(3.24) and (3.25). For details see Sec. IX.

Substitution of Eqs. (3.41) and (3.36) into Eq. (3.19)
gives, using Eq.(3.37), the X-matrix form of the Z ma-
trices,

(3.36)

For the representation of ( —R ~ ), the s,—must be chosenL

so that

0

Z,',+=,' =i v(a~)[5, , (s, , +i)X,—,—,]e

where

X~~,—,= —2A' '(u,—~X~p
~ up; ) .

(3.45)

(3.46)

W(b, , )
~

c ')vp,—,(rp) =0, (3.37)
Similarly, substitution of Eqs. (3.42) and (3.36) into Eq.
(3.23) yields

so that W(b, )G =0.
Substitution of Eqs. (3.24) and (3.36) into Eq. (3.19) and

using Eq. (3.37) gives the Z matrices modified by the in-
clusion of an optical-model Hamiltonian:

Z,' +—, ,'=iv Qa )[5,—,, —(s,—,+i)X~, .]e

where

X~,—,———2R ' (u,- i X~p i
u p,—,) .

(3.47)

(3.48)

I-
C

(u,-~ V G ~c',ap) The collision matrix U is given by

U =d( jl —Ys+ ) '( I —Ys )d, (3.49)

where

ap b,—, gp-, ,(ap)—(+i
Bap

(3.38) where

(s +),, =(s, +—i )—5—,,,
'8,

d,—,—.=e '6,—,—.,

(3.50)

(3.51)

+ac C Qac ra (3.39)

Similarly, substitution of Eqs. (3.25) and (3.36) into Eq.
(3.23) yields the corresponding modified Z matrices:

and F is X or X, respectively.
The X-matrix formalism leads to the "volume" form of

the collision matrix in the sense that the channel radii ap-
pear only implicitly in the expression [Eq. (3.49)], serving
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to define the volume of configuration space for the matrix
elements and the boundary at which the boundary condi-
tion parameters are defined. It is expected that such a
form should be less sensitive to the values of the channel
radii than the corresponding "surface" forms of Sec.
III.B. The X-matrix formalism also permits the use of an
optical potential to describe the background, and a judi-
cious choice of such a potential should give results which
are much less sensitive to the truncation of the basis used
to construct the system Green's-function operators.

If all the parameters s,— are chosen equal to —i and
U =0, the 7 matrix becomes equal to minus the conven-
tional T matrix (see also Secs. VI.D and IX). The theory
of Brown and de Dominicis (1958) discussed in Sec. IV.A
falls into this category. For s, =0 (all c), the Y matrix is
closely related to the K matrix of Sec. II.B.4. Note that,
for this case, Eq. (3 49) reduces to Eq. (2.37) for U =0.
Calculations based on the X-matrix formalism will be dis-
cussed in Sec. VIII. Further discussion of the closely re-
lated T-matrix formalism and the more general X-matrix
formalism is given in Sec. IX.

IV. CALCULABLE R-MATRIX AND RELATED METHODS

As we have seen in Sec. III, the collision matrix may be
obtained within the R-matrix formalism once a Green s-
function operator has been constructed for the system. In
general, it is not practicable to use eigenfunctions of the
total Hamiltonian as basis states for representing such a
Green's-function operator; a "calculable" R-matrix
method usually employs eigenstates of some simpler
Hamiltonian to generate the required basis states. How-
ever, since the original R-matrix reaction theory (Wigner
1946a, 1946b; Wigner and Eisenbud, 1947) has been ex-
tensively used in the analysis of data to obtain empirical
information on the energies and partial widths of nuclear
resonances, we shall first give a brief review of both this
method and the closely related earlier theory of Kapur
and Peierls (1938) before discussing such calculable R-
matrix methods.

A' aa
1/2

(c a
~

qlk)

where

= g g Rcc (a~, ap)
p c'Ep

ap ap b, —yp, (ap),1/2 ~ 1/2 (k)

Rap

L L
cc (a'~ p) $ 1jc(G ~jj'Yj 'c'

JJ
1/2

(4.1)

(4.2)

PJC
2mc

(c a ~P, ) (4.3)

[ g(+)( )]jg(+)(
Ba

=S,(k~ )+iP, (k,-a )-, (4.4)

where

P,-(k,-a )=(k,-a )[Gt (k,-a )+Ft (k;a )] (4 5)

S;(k;a )= Gt~(k;a ) Gt~(k;a )
8

BQ~

+Ft~(k a ) Ft (k a ) P (k a )k
—'

(4.6)

are known as the penetration and shift factors, respective-
ly. Thus defining

is called the reduced width amplitude and where the sur-
face integrals are evaluated at the boundary of the inter-
nal and external regions. The functions (t)z are members
of a complete orthogonal basis set.

In the theory of Kapur and Peierls, the parameters b,
corresponding to open channels are chosen such that

A. Kapur-Peierls theory

We start from Eq. (3.14), which when multiplied by the
factor (A' a /2mc)'~, allows a more symmetrical R ma-
trix, R„,to be defined. We haveL

I 4k,-a )=e '[Gt (k,-a ) iFt (k,-a )]—

*O,-(k,-a~ ), (4.7)

we have for open channels, assuming %'k satisfies scatter-
ing boundary conditions,

1/2 1/2 ( k) ~

ap a p b,—, y p, (a p) =i-—,
sa p

' ' 2k,—,

1/2 ~'

Op,—,(k,—.a p)5&,—. Op, , (k, ,a p) Ip, , (k—,,a p—) Ip,—,(k, ,a—p) —O—p,—.(k,—,a p)
ap Qp

Rap'
2k;

1/2

( 2ik, )Op,
'—(k, , a—p, )5~-., . — (4.8)
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For closed channels

atJ ap b—, y&-.(att)=0.1/2 ~ 1/2 (k)
c c

p
(4.9)

where the parameters b, are defined by Eqs. (4.4) and
(4.9). In this case, the eigenenergies 8'J are in general
complex. For this orthogonal representation, the
Green's-function operator G is given by

Thus Eq. (4.1) becomes
1/2

(I Ak Oa—cU.k)
2k, a

X X CC

p c'Ep

1/2

( 2i—k, ap—,)O p,'5,-,

(4.10)

(G )~ =(p,
~
IH+W(b, ) —EI '~QJ')

=(&, E)—'5,; (4.20)

where QJ. is the state QJ with complex conjugated radial
part. Thus

and

I, (2k, a )'~ (2kkap)~~
5,k+i R,k .

Oac Oac Opk

(4.21)
If E= @'J., one can make a one-level approximation to the
U matrix,

(4.1 1)

Defining

Oac

1/2
I O-=e

' 1/2
(Gt iF( )—

C C

(G( +iFt )

i(o —P ) iQ=e ' ' =e

(4.12)

where

P, =tan '(F( IGt ) (4.13)

Now

2kka p
& R,-k

IpkOpk

1/2

(4.14)

is known as the hard sphere phase sh-ift (since it is the
phase shift produced by an infinitely repulsive sphere of
radius a~), Eq. (4.11) may be written for open channels

1/2
s(n +n ) 2k,-aa-=' ' ' '-+'I

Oac ac

(4.22)
Lejeune and Nagarajan (1970, 1971) have applied the

Kapur-Peierls formalism to a soluble model of weakly
coupled square-well potentials. These studies will be dis-
cussed in Sec. VIII.

The theory of Brown and de Dominicis (1958) uses the
same basis states [i.e., eigenstates of H+W(b, )] and
boundary condition parameters b, [Eq. (4.—4)] as the
Kapur-Peierls theory but is based upon Eq. (3.45) of the
X-matrix formalism, with s,-= —i, i.e., the T-matrix form.

Both the Kapur-Peierls and Brown —de Dominicis
theories have two major shortcomings from a practical
point of view. These arise because energy-dependent and
complex boundary condition parameters are employed.
Such parameters lead to (i) energy-dependent and complex
eigenenergies 8'J and reduced widths y. ,—and (ii) a non-

unitary collision matrix for a truncated basis set. The ori-
ginal R-matrix formahsm of signer and Eisenbud (1947)
was developed to overcome both these deficiencies of the
Kapur-Peierls dispersion theory.

P~ (k~ )l(I,0,)——, --
and defining the partial width amplitude

(4.15)

(4.16)

B. Wigner-Eisenbod theory

In the signer-Eisenbud theory, the normalized orthog-
onal and regular (at the origin) basis states satisfy Eq.
(4.18) but obey the boundary conditions

then W(Il, ) ~y, ) =0, (4.23)

where the parameters B, are real arbitrary numbers. In
this case

In the Kapur-Peierls theory, the basis states
~ PJ ) are

assumed to be normalized regular eigenstates of the total
Hamiltonian, i.e.,

(4.18)

(G )JJ'= (pj.
~
H+W(b, ) E~ QJ-)—

=(@', E)&JJ'+ g yj.,yj', (&, b—, ) . (4-24)—

For closed channels, we can choose for convenience

and to obey the boundary conditions

W(b, )
~ QJ ) =0,

B,-=b,—,

(4.19) so that Eq. (4.24) can be written

(4.25)
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(6 )qj- (——5'J E—)5~q'+ g y ,y-., (B-, ——S, —iP,-),

U~ ——U~ ——(U ')» . (4.27)

This form of the R-matrix theory has been reviewed in
detail by Lane and Thomas (1958).

The one-level approximation, as in the Kapur-Peierls
theory [Eq. (4.22)], leads to the Breit-Wigner formula for
the scattering cross sections. The retention of additional
levels corresponds to the various multilevel formulas
which are used to describe cross sections which deviate
appreciably from the simple Breit-Wigner shape. In the
Wigner-Eisenbud theory, these formulas are considerably
simpler to employ than the analogous formulas of the
Kapur-Peierls theory, since the parameters 8'J and y. ,—
are both real and energy independent. Thus the Wigner-
Eisenbud formalism has been used extensively to
parametrize resonance data to obtain empirical informa-
tion on the energies and partial widths of the various nu-
clear levels.

The values obtained for the energies and widths will de-
pend on the choice of the real boundary condition param-
eters B~. Vogt (1962) has studied the accuracy of the
one-level R-matrix formula for the simple case of s-wave
neutron potential scattering. He concluded that in this
case, the one-level approximation is most accurate when

8,—is chosen so that

(4.26)

where the penetration factor P~ and shift factor S,— are
given by Eqs. (4.5) and (4.6), respectively. Thus the col-
lision matrix is rather more complicated than the corre-
sponding expression in the Kapur-Peierls formalism [Eq.
(4.21)], being given by Eqs. (4.1) and (4.26). However,
since the parameters B, are real, both the eigenenergies
w'J and the reduced widths y. ,—are also real (and energy
independent). Moreover, it can be shown (Wigner and
Eisenbud, 1947; Lane and Thomas, 1958) that the corre-
sponding U matrix is unitary and symmetric even for a
truncated basis set, i.e.,

U=[g'+'] 'll R—L'+'} 'I I R—I.'

IHIP)/2I I R LL (+)
I
—1

I I RLL ( —) IP —1/2II

(4.32)
iQ

where 0 and P' are matrices with elements e '5,—,—,and
P-' 5 -„respectively.

For the special choice b~ B~,——Eq. (4.32) becomes the
standard form given by Eq. (1.5) of Sec. VII.1 in the pa-
per by Lane and Thomas (1958), with

R„(a~,ap)= gy/, (8'J. E) '—yj, . (4.33)

For b, =S,-+iP,—,I.'+' becomes the null matrix and Eq.
(4.32) reduces to Eq. (4.17). The latter equation corre-
sponds to the standard level matrix formula for the col-
lision matrix U, given by Eq. (1.14) of Sec. IX.1 in the pa-
per by Lane and Thomas (1958), when their R matrix
vanishes.

C. Standard calculable R-matrix method

Although the Wigner-Eisenbud R-matrix formalism
represents a valuable framework for the analysis and
description of experimental data, it has become clear in
the last decade that the R-matrix approach is also useful
for the calculation of reaction cross sections starting from
an assumed underlying model Hamiltonian for the sys-
tem. In this section, we shall discuss the R-matrix
method from this point of view.

In the Wigner-Eisenbud theory, the basis states are tak-
en to be eigenfunctions of the total Harniltonian H, and
the resonance energies 8'J. and partial widths I -,—are fit-
ted to the experimental data. For an ab initio calculation
employing a model Hamiltonian, it is generally necessary
to generate the basis states

I PJ ) as the eigenfunctions of
some simpler Hamiltonian Ho, for which the Schrodinger
equation is readily soluble, i.e.,

(4.34)

where

B,-=S,—. (4.28) Ho —II—V (4.35)

It should be noted that the collision matrix is given
only by Eq. (4.17) for b, =S, +iP, ;a-ny a-rbitrar—y choice
(e.g., b,-=0) will lead to the same results (Mori, 1972), but
the expression for the U matrix is more complicated [Eq.
(3.20)]. We have, writing Eq. (3.19) in matrix form,

and V is a residual interaction. The basis states are as-
sumed to satisfy the boundary conditions of Eqs. (4.23)
and (4.25), so that

Z(+)L
I I RLL (+)Ig(+) (4.29) (4.36)

where L ' —) and g( —+' are matrices with elements

I.,'+-, ,
' =(S,,+ip, , —b, , )n, ,

and

(+) (+)g=-, =gp—.(ap)5--, ,

(4.30)

(4.31)

respectively. Using Eqs. (3.20) and (4.29), we can write
the collision matrix U in the form

and the matrix R can be obtained by means of Eqs. (4.2)
and (4.3). The calculation of the collision matrix using
Eq. (4.17) is then straightforward. We call the above for-
malism the standard (calculable} R-matrix (SRM}
method.

As previously indicated, the choice of the basis states
I PJ ) is dependent upon the way in which the total Ham-

iltonian H is split into the two components, Ho and V,
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and also upon the boundary conditions satisfied by these
states at the channel radii a . Although in principle any
complete set of basis states will allow the computation of
the collision matrix using the procedure outlined above, in
practice a judicious choice of the states

~ PJ & will enable
the number of terms which must be retained in the expan-
sions in Eq. (4.2) to be minimized. A reduction in the nu-
merical computational effort is thereby achieved.

The division of the Hamiltonian H into the components
Ho and V is often governed by the nature of the scattering
problem to be solved. In any case, a selection which en-
sures that the residual interaction V is as small as possible
ensures optimum convergence of the series in Eq. (4.2).
The second problem, the choice of the optimum set of
boundary conditions to be satisfied by the basis states at
the channel radii, forms the subject of Sec. V.

Haglund and Robson (1965) first applied the SRM
method to the simple case of two weakly coupled square-
well potentials, and later Buttle (1967) considered the
more realistic case of nucleon scattering from ' C in a
particle-plus-rotator picture. These calculations showed
that the SRM method is a practical approach for the solu-
tion of coupled-channels problems. However, the method
has one major flaw. Since the basis states are assumed to
satisfy fixed boundary conditions at the channel radii [Eq.
(4.23)], the scattering wave function which is expanded in
terms of such basis states will have the same boundary
conditions. This means that in general the scattering
wave function which has been constructed wi11 have a
discontinuity of slope at the channel radii. This discon-
tinuity gives rise to slow convergence of the basis set ex-
pansion for the scattering wave function

(4.37)

(4.38)

so that
O-L OR„=g Yjc( G )JJ. )'J, 6„.

JJ

(4.39)

The term 5cc in Eq. (4.39) arises, since, for Ho single par-
ticle in nature, there is no channel-coupling present.

The equation analogous to Eq. (3.10), which defines the
scattering wave function when V=O, can be written

(4.40)

truncation error arises because of the retention of only a
finite number of basis states in the expansion of Eq. (4.2)
for the R matrix, and as a consequence, even in this sim-L

pie case, the R-matrix method yields a result which
differs from the correct solution.

Buttle (1967) has given a procedure to obtain a correct-
ed R-matrix, R, in which the truncation error described
above has been completely eliminated when the residual
interaction is zero. It is expected that the same procedure
will also reduce the truncation error in the more general
case when the residual interaction is finite, since the cou-
pling ( QJ ~

V
~ QJ & between distant levels (j'&j), which

oscillate rapidly with the radial coordinate, is likely to be
weak. We shall now describe the "Buttle correction" to
the SRM method in some detail.

In the following, a convention is adopted where a left
superscript zero added to a quantity indicates that this
quantity is calculated when the residual interaction V has
been set equal to zero. For instance, with this convention,
we have from Eqs. (4.36) and (4.2)

(OG~ )JJ'=(8'J E)5~~ + g—y ,y, (B.-, S, i—P,-)—,—

where the ai~"' are appropriate coefficients.
One method of improving the results obtained using the

SRM method is the "Buttle correction, " which is dis-
cussed in the next section. Another approach is to em-

ploy basis states which are complete over a larger region
of configuration space than the internal region. This ex-
tended (or generalized) R-matrix (ERM) method will be
considered in Sec. IV.F. Other techniques are the finite-
element method (Nordholm and Bacskay, 1978) (see Sec.
IV.E), the natural boundary condition (NBC) methods
(see Sec. V), and variational methods (see Sec. VI).

D. Buttle correction

In any calculation of the scattering cross sections for an
assumed Hamiltonian, it is possible to investigate the ef-
fect on the scattering cross sections of "switching-off"
the residual interaction, i.e., of arbitrarily setting the term
V in Eq. (4.36) equal to zero. If the unperturbed Hamil-
tonian Hp is single particle in nature, the scattering prob-
lem reduces to simple potential scattering, which is readi-
ly soluble exactly. However, it is still possible (although
unnecessary) to use the R-matrix formulation for the solu-
tion of the potential scattering problem. In general, a

Then, corresponding to Eq. (4.1), we have
1/2

2mc
o (k)

R„(a,ap)
P c'CP

X ap a& b, y& (a&)—1/2 ~ 1/2 p (k)

Rap

oR L 1/2 ~ 1/2 o
cc aa „aa —bc yac (aa) ~

oQ~
(4.41)

In Eq. (4.41), application has been made of the fact that
%'k has components in only one channel and that the ma-

trix R is diagonal in channel space. Thusp L

1/2o-L & ~ 1/2o (k)Rcc' o {k) (aa yac ( a)) ~cy, (a ) Ba

(4.42)

which is readily calculable from the known eigenfunctions
of the single-particle Hamiltonian Hp.
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Equations (4.39) and (4.42) thus represent two alterna-
tive expressions for the matrix elements R„. If the rep-p L

resentation of G in Eq. (4.39) is truncated at j =n, the
error (b,R ) involved in the truncation is given by

1/2 —1

1/2 p (k)
(k) ~

[aa 3 ac( a)] bc
yc(a )Ba(bR)„=

yjc( )Jj'"yj'c ~cc' ~ (4.43)

where G is the inverse of the matrix given by Eq. (4.38).
Thus the Buttle-corrected R-matrix (BCRM), R, has ele-
ments

nR„= g yj, (G )jjyj', +(bR)„. (4.44)

with one of the eigenvalues 8'; equal to E. In this case

(4.47)

For satisfactory convergence, the truncated basis set
(j & n) must contain at least the basis state corresponding
to the eigenvalue 8'; and hence the "pole" terms in the
matrix R . Thus the Buttle correction,

The Buttle correction (hR ) vanishes in the limit as
n ~ Do. For finite values of n, it is anticipated that R
will lead to more accurate results for the collision matrix
than the uncorrected corresponding R matrix, R . In theL

case where the residual interaction Vbecomes vanishingly
small, the BCRM leads to the exact result for the U ma-
trix.

The Buttle correction also vanishes if the basis states
satisfy the same (natural) boundary conditions at the
channel radii as the scattering wave function, i.e.,

W(b, )
~ QJ ) =W(b, )

~
%k ) =0 . (4.45)

For such boundary condition parameters, the matrix Rp L

given by Eq. (4.42) becomes singular. This implies [Eq.
(4.39)] that the matrix G is also singular for natural
boundary conditions. Indeed, 6 has matrix elements

(4.46)

E. Finite-element method

Nordholm and Bacskay (1978) have suggested using the
finite-element method (Strang and Fix, 1973) to overcome
the slow convergence of the SRM method. By the addi-
tion of a small number of sine functions localized within
an interval [a~ —ha~, a ] to a standard set of SRM basis
states

~ Pj ), which satisfy Eqs. (4.23) and (4.34), the
boundary condition problem can be resolved. For exarn-
ple, if the basis states

~ Pj) obey Eq. (4.23) with Bc=0,
then the added sine functions might be

1/2

sin[a (l n—)(r —a +b a~ )/ha ],2
haa

(4.49)

where I =n+ 1,n +2, . . ., so that these added basis states
correspond to 8, values of plus or minus infinity.
Nordholm and Bacskay have found that about five such
sine functions and an interval ha~ =2a ~ /n produces
about optimal efficiency. Applying this method to poten-
tial scattering, they obtained results comparable in accu-
racy with the BCRM method.

F. Extended (or generalized) R-matrix method

The extended (or generalized) R-matrix (ERM) method
was initiated by Tobocman and Nagarajan (1965) and was
further developed and tested by others (Nagarajan, Shah,
and Tobocman, 1965; Adams, 1967; Czarside and Toboc-
man, 1968, 1969; Lane and Robson, 1969a, 1969b; Pur-
cell, 1969a). The method was devised in an attempt to ex-
tend nuclear structure calculations based on the shell
model and generalizations thereof to multichannel nuclear
reaction calculations. The SRM approach has an inherent
obstacle to such a unified reaction theory: It employs
basis states which fulfill "homogeneous" boundary condi-
tions at the channel entrance surface, so that it is difficult
to comply with the nuclear structure boundary conditions
in all but the simplest calculations. The ERM formalism
seeks to remedy this difficulty by using basis states which
fulfill homogeneous boundary conditions on a hyper-
sphere located external to the channel entrance surface,
i.e.,

(bR)„= g yj, (S'j —E) '5„,
j&n

(4.48) (r Pj) =B, for a' &a
1

ra r =a'
(4.50)

does not contain any singular terms, since for j & n,,
8'j ~E, and hence its contribution vanishes, because in
Eq. (3.14) the R matrix is multiplied by a factor which
vanishes for natural boundary conditions.

The essence of the Buttle method is to solve the Hp
scattering problem exactly, i.e., without truncation, and
then to incorporate that result into the R-matrix formal-
ism. Another way to achieve the same result is provided
by the technique of inserting an optical potential for the
background scattering described in Sec. III.C. One must
merely identify the "optical-model" partition Hamiltoni-
an H with Hp.

By allowing the hypersphere to be located at infinity, one
is free to use conventional nuclear structure wave func-
tions (e.g. , single-particle harmonic oscillator states).
Such wave functions are nonorthogonal over the interac-
tion region, and this is the essential difference between the
ERM and SRM methods. It should be noted that the for-
malism of Sec. III.B, which expresses the collision matrix
in terms of R matrices, is valid for such nonorthogonal
basis states representing the Green's-function operators.

The use of a nonorthogonal basis set is expected to lead
to more rapid convergence as the number of basis states is
increased than that provided by the orthogonal basis of
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the SRM method. This is because the nonorthogonal
states have boundary conditions on the channel entrance
surface which are usually sufficiently "inhomogeneous"
to resolve the external boundary constraints. On the other
hand, for such a basis, it is a nontrivial task to separate
the E. matrix into "nearby" and "distant" levels so that
one can no longer apply the Buttle correction for distant
levels.

Initially, the ERM method, employing a harmonic os-
cillator basis set, was tested by application to relatively

simple model scattering problems (Nagarajan, Shah, and
Tobocman, 1965; Adams, 1967; Purcell, 1969a). It was
found that oscillator functions provided a convenient
practical basis set which gave satisfactory convergence to
the exact results. Moreover, in some cases =.g., the con-
tinuum shell model (Mahaux and Weidenmuller, 1969)—
oscillator functions also allow any spurious cm motion to
be separated out (Philpott, 1977).

More recently, similar ERM calculations have been
carried out (see, for example, Philpott and George, 1974)
for more realistic problems, and satisfactory convergence
has also been obtained, provided the channel radii were
chosen carefully. This sensitivity to the channel radii
arises because the ERM method using oscillator functions
is generally only semiconvergent —i.e., for given channel
radii the method converges quite rapidly as the size of the
basis is increased to a result close to the exact one, but
then diverges again fairly rapidly as the number of basis
functions is increased beyond a critical value. This semi-
convergence can be avoided if special care is taken to treat
correctly the tail of the interaction outside the channel en-
trance surface, but this procedure is inconvenient and not
in keeping with the usual philosophy of R-matrix theory.

Philpott and George (1974) have devised a criterion for
choosing values for the channel radii which optimize the
convergence of the ERM method when a nonorthogonal
basis set is used. They find that the optimum radii have
values which minimize the difference between the loga-
rithmic derivatives of the internal and external wave func-
tions at the channel entrance surface. In the following
section (Sec. V), we shall discuss methods for which the
convergence criterion of Philpott and George is automati-
cally satisfied.

Philpott and co-workers (Philpott, 1976; Philpott,
Mukhopadhyay, and Purcell, 1978) have proposed a tech-
nique to avoid the above sensitivity to the channel radii.
This involves the use of two linearly independent energy-
dependent radial functions in each channel, which are
treated as additional basis states. These auxiliary func-
tions are chosen in such a way that essentially they im-
prove the form of the trial wave function only near the
channel entrance surface. Thus the remaining part of the
basis (set of oscillator functions) still carries the full struc-
ture content of the model. This technique of Philpott
et al. is similar in concept to the use of localized sine
functions in the finite-element method of Sec. IV.E. With
the introduction of the auxiliary functions, fewer oscilla-
tor states are required to achieve the same accuracy in the
calculations, and the results are much 1ess sensitive to the

choice of channel radii.
Applications of the ERM method and comparison with

other techniques are given in Sec. VIII.

V. NATURAL BGUNDARY CGNDITIGN METWQD3

A. Natural boundary condition parameters

As we have seen in Sec. IV.D, the Buttle correction to
the SRM method vanishes when the logarithmic deriva-
tives of the basis states

l PJ ) are equal to the logarithmic
derivative of the scattering wave function

~
4t, ) at the

channel radii and the energy E at which the R-matrix
method is applied is equal to an eigenvalue of the total
Harniltonian in the internal region. In this case

W(8, )
l

%k ) =0, (5 1)

(5 2)

(5.3)

The quantities 8, which satisfy the above three equations
are defined to be the natural boundary condition (n.b.c.)
parameters for the wave function

~

'Pk ) at the energy E.
The aim of the natural boundary condition (NBC)
methods is to find a technique by which these n.b.c.
parameters B, may be determined.

The R-matrix method can be applied for any choice of
the basis states

~
PJ. ) and will yield correct results for the

collision matrix, provided an adequate number of terms is
retained in the expansion for R [Eq. (4.2)]. However,
the convergence of this expansion clearly depends on the
particular choice of basis states. The latter in turn are
governed by both the nature of the scattering problem,
which determines Ho, and the choice of the boundary
constraints at the channel radii. The calculation and in-

I, —'
version of the matrix G, necessary for the computa-
tion of the R matrix, can require a substantial fraction of
the total computing time for the problem. Any procedure
which selects a set of basis states producing improved
convergence in the expansion Eq. (4.2), which of necessity
must be truncated, thereby also reduces the dimension of

L —1

the matrix G to be calculated and inverted. For a
given Hamiltonian Ho, the optimum convergence is ob-
tained when the corresponding basis states of Eq. (4.34)
satisfy natural boundary conditions.

That this latter statement is true is shown by the fol-
lowing considerations. In the general case, when the basis
states satisfy parameters other than the natura1 boundary
conditions at the channel radii, the expansion of the
scattering wave function in terms of the basis states [Eq.
(4.37)] does not converge uniformly at the channel radii.
This effect corresponds to the Gibbs phenomenon of
Fourier analysis (see, for instance, Carslaw, 1930), which
arises due to the inability of the basis states to resolve the
boundary conditions. As mentioned in Sec. IV, this lack
of uniform convergence leads to a discontinuity of the
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slope at the channel radii. This is particularly unfor-
tunate for the SRM method, since some of the important
quantities, namely, the partial widths I .,—and thus the
collision matrix, depend on the expansion of the scatter-
ing wave function just at the channel radii. The number
of terms required in the expansion to represent the
scattering wave function adequately in the internal region
including the boundary therefore becomes large. When
n.b.c. parameters are employed at the channel radii, the
problems caused by the lack of uniform convergence are
avoided. The internal scattering wave function, which is
the eigenfunction associated with an eigenvalue of the to-
tal Hamiltonian in the internal region, joins smoothly (i.e.,
with no discontinuity of slope or value) to the known
asymptotic form of the scattering wave function at that
energy.

The main complication introduced by the NBC ap-
proach is that the n.b.c. parameters are energy dependent.
This necessitates the calculation of the basis states

~ PJ &

at each energy. Clearly, the numerical procedures used to
achieve this must be highly efficient; otherwise the corn-
putational advantage, gained by the reduction in size of
the matrices to be manipulated, will be lost. A discussion
of this problem and a comparison of the relative efficien-
cy of the different approaches is contained in Sec. VIII.
In this section we shall present the mathematical formal-
ism of the various NBC methods.

B. Eigenchannel method

The eigenchannel method, developed by Danos and
Greiner (1966), was the first of the NBC methods to re-
ceive wide usage. This approach and its application to
photonuclear reactions has already been reviewed
comprehensively (Barrett et al. , 1973) and so will be dis-
cussed here only in order to set it in context with the
other NBC methods.

In the eigenchannel method, the scattering wave func-
tion satisfies Eqs. (5.1) and (5.3), and the orthogonal basis
states are given by Eq. (5.2) and the relation

IM, +W(8, ) —8', I ~ P, & =0,
where 8, are n.b.c. parameters and

(5.4)

(5.5)

where V is a residual interaction. As before, the scatter-
ing wave function can be expanded in terms of the basis
states

(5.6)

Substitution of Eqs. (5.4) and (5.6) into Eq. (5.3) and pro-
jecting onto the basis state (P; ~

lead to the infinite set of
equations

(5.8)

The problem is therefore to determine the expansion coef-
ficients aj' ' for the scattering wave function by solving
Eq. (5.7).

In the eigenchannel method, the additional requirement
is imposed that the scattering wave function in the exter-
nal region consist of a set of standing-wave solutions with
a common phase shift, the eigenphase 5k, in each open
channel. This asymptotic boundary condition has been
discussed in Sec. II.B.3.

Numerically, the eigenchannel procedure is as follows:
(1) An arbitrary value is assumed for the eigenphase 5k.
(2) Assuming that this value chosen for the eigenphase

is correct, the boundary condition parameters B, in each
channel for the scattering wave function

~
Vk & are given

in terms of the known asymptotic form of the radial wave
function in each channel, i.e.,

8:
(k) [0 X«(a )]

x«(a~) 0&

where for open channels

(5.9)

(5.10)

and for closed channels

h,~
——8'J.5,J. + V,J. (5.12)

can then be computed and diagonalized to obtain a set of
eigenvalues EJ.

(5) If by chance one of the eigenvalues obtained in step
(4) is equal to the energy E, then the value chosen for 5k
is indeed an eigenphase. Normally this will not be the
case and a search procedure is required to vary the as-
sumed value for 5k until one of the eigenvalues EJ is
equal to the energy E. From the associated wave func-
tion, the amplitudes v~ are determined.

(6) In this manner, each member of the total set
of m eigenphases (for m open channels) —i.e., 5k
(k = 1,2, . . . , m )—can be obtained in turn.

(7) Once the complete set of eigenphases 5k and corre-
sponding amplitudes v~ has been obtained, the collision
matrix at energy E and hence the various reaction cross
sections can be calculated using the relation [Eq. (2.44)]

v~ 216v —1 (5.13)

(5.11)

The wave functions g' —,' are defined by Eqs. (2.9) and
(2.10) and are known.

(3) Using the values of the parameters 8, obtained in

step (2), a set of basis states
~ P~ & can be determined

which obey Eqs. (5.2) and (5.4).
(4) The matrix h with elements

Q aj' '[(8'~ E)5;J+ vj. ]=0, —

where

(5.7) where v and 5 are matrices whose elements are v~ and

5k 5~, respectively.
Although extremely simple in principle, the eigenchan-
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nel method suffers from two major disadvantages. First,
since the n.b.c. parameters are energy dependent, it is
necessary to repeat all of the steps (1)—(7) for each energy
at which a calculation of the scattering cross sections is
desired. Second, the method involves an iteration pro-
cedure, each stage of which requires the determination of
a new set of basis states

~ PJ ), as well as the computation
and diagonalization of a vm &vm matrix, where v is the
number of basis states retained in each channel (it is as-
sumed that v is independent of c). The time required for
matrix diagonalization increases rapidly as the size of the
matrix increases, so that, f'or problems involving many
coupled channels, most of the computing time is spent
handling matrix diagonalizations. Thus any numerical
advantage over the SRM method, obtained by the im-
proved convergence of the expansion of Eq. (5.6) when
n.b.c. parameters are used to define the basis states

~ Pz ),
is largely lost by the inefficiency of a technique requiring
many diagonalizations of large matrices. The second
NBC method, which will be discussed in the following
section, was designed to minimize this numerical ineffi-
ciency of the iteration procedure of the eigenchannel ap-
proach while retaining the superior convergence proper-
ties of the basis states resulting from the use of n.b.c.
parameters.

C. Barrett-Delsanto method

As indicated in Sec. II.B, the eigenchannel boundary
conditions are just one of an infinite set of possible
standing-wave boundary conditions which can be imposed
on the scattering wave function at the channel radii. In
the more general case, the phase shifts between incoming
and outgoing waves in each open channel, 5~, are not
equal. It is the requirement of the eigenchannel method
that these phase shifts be the same for each open
channel —i.e., be eigenphases —which leads directly to the
numerical inefficiency of the method.

As can be seen from Eq. (5.9), any change in the eigen-
phase 5k which occurs for an iteration in the eigenchannel
method involves a recalculation of the boundary condition
parameters B,—for all the open channels considered. Thus
for each iteration a different set of basis states is em-
ployed for each open channel, so that the matrix h must
be substantially recalculated (only the closed channel basis
states remain constant) and diagonalized. In the Barrett-
Delsanto (BD) method (Barrett and Delsanto, 1974), the
eigenchannel requirement that the phase shifts 5~ be the
same for all open channels is dropped. In this case, the
boundary condition parameters for (I—1) of the m open
channels can be arbitrarily chosen and kept constant and
an iteration carried out only for the boundary condition
parameter for the remaining open channel until one of the

!

eigenvalues E~ of the matrix h coincides with the energy
E at which the collision matrix is to be calculated. The
set of parameters B, so determined are n.b.c. parameters
in the sense of Eqs. (5.1)—(5.3) for the particular set of
asymptotic standing-wave solutions chosen. From the as-
sociated wave function [Eq. (5.6)], the corresponding
quantities v~ and 5~ can be obtained, using Eqs. (5.7)
and (5.9). This procedure is repeated by carrying out the
iteration for each of the open channels in turn, with arbi-
trary boundary conditions imposed on the remaining
(m —1) open channels. In this way a set of degenerate
wave functions

~
fk) (k=1,2, . . . , m) is obtained and

hence a complete set of amplitudes v~ and phase shifts
6~. The collision matrix U can then be calculated using

Eq. (2.41), i.e.,

U=A*A -', (5.14a)

where

A~ ——v~e (5.14b)

(5.15)

where

The numerical advantage of the BD approach over the
eigenchannel method is twofold. First, since arbitrary
boundary conditions are imposed on all but one of the
open channels, it is necessary to recalculate the basis
states ~PJ) in only that one channel during the search
procedure for the n.b.c. parameters. Second, as a result of
this, a large block of the h matrix is left unchanged dur-
ing the iteration procedure, and a different technique can
be employed to find the eigenvalues of the h matrix [Eq.
(5.12)]. This technique involves the diagonalization of a
v&v matrix rather than the vm &&vm matrix of the eigen-
channel method. For most applications, v is of the order
of 4 or 5, while m can be quite large ( ~ 20) (see Barrett
et aI. , 1973). It is this dramatic reduction in size of the
basic matrix to be diagonalized in the iteration procedure,
which results in a large saving of computing time in the
BD method when compared with the eigenchannel
method. The special matrix diagonalization technique
employed in the BD method will now be presented.

In the matrix diagonalization, it is convenient to
separate the matrix h given by Eq. (5.12) into submatrices
corresponding to the nature of the boundary conditions
applied to the basis states used in the calculation of the
matrix. In one channel —say, c =1—the boundary condi-
tions are to be changed during the iteration procedure; in
the others they remain fixed, being arbitrary values for
the remaining open channels and the known n.b.c. values
for the closed channels. Accordingly, the matrix h can be
written as

1+ V11

V21

V1

V12

+2+ V22

V2 8' +V

(5.16)
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@'v+i+ v~+iv+i

V+2 +

Vvm v+1

V.+1 +2

@'+2+V+2 +~

Vvm v+ 2

V+1m
V+2 m

+vm + Vvmvm

(5.17)

V1+2 V1 m

V2v+1 V2v+2 V2vm

(5.18)

and

z=Cy .

(5.26)

(5.27)

Vvv+1 Vvv+2 ' '
Vvvm

The system of equations (5.25) can be written as two
simultaneous equations:

Defining the two column vectors x and y by

(1)a1

Px+ 8'z =Ex,
8 x+Az=Ez,

(5.28)

(5.29)

and

(1)a2
x=

a"'
v

(5.19)

where E is the diagonal matrix with elements Ejp:E5'j.
Neglecting the possibility of E being exactly equal to one
of the eigenvalues A,; of the matrix Q [although this possi-
bility can be easily treated (Barrett and Delsanto, 1974)],
Eqs. (5.28) and (5.29) can be combined to give

y=

(1)a v+1
(1)a v+2

(1)
avm

(5.20)

[(I' E)+ W(E —A) 'W ]x =—0 . (5.30)

(5.31)

For a given set of boundary condition parameters B„
the matrix h with elements

Eq. (5.12) can be rewritten in matrix notation as

P V x x
Vtg y y

(5.21)

y=Cz,
where C is a unitary matrix such that

(5.22)

The procedure is now to "prediagonalize" the matrix Q,
a process which is performed only once and not at each
step of the iteration procedure. This is accomplished by
making use of the transformation

can be calculated and diagonalized. In general, none of
the eigenvalues of h will be equal to the energy E. As be-
fore, an iteration procedure can be set up to vary the
boundary constraint for channel c=1 until the energy E
coincides with one of the eigenvalues of h, in which case
one set of n.b.c. parameters has been found. The expan-
sion coefficients aj~" (j=1,2, . . . , v) of the total wave
function in the first channel are simply the elements of
the eigenvector x associated with the particular eigenvalue
of h which is equal to E. The coefficients aj &'„ in the oth-
er channels are the elements of the vector y and can be ob-
tained using Eqs. (5.27)—(5.29) from the relation

(5.23) y =C(E A) 'Wtx . — (5.32)

and A is the diagonal matrix with elements

Agq —A,;5,J .

Multiplying Eq. (5.21) on the left by the matrix

1 0
0 CT

and applying Eqs. (5.22) and (5.23) yields the results

(5.24)

Other sets of n.b.c. parameters may be obtained by a dif-
ferent choice of the open channel upon which the itera-
tion is to be performed. In this way, m independent sets
of n.b.c. parameters can be determined. The collision ma-
trix U is then given by Eq. (5.14), where the amplitudes
v~ can be obtained by matching the internal and external
total wave functions

~
%k ) at the channel radii and where

the phase shifts 5~ are given in terms of the n.b.c. param-
eters by Eq. (5.9).

where

P 8' x
PfA z

x=E
z

Energy correction to the BD method

It is possible to make a simple correction to the energy
eigenvalues and wave functions obtained in the BD
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We now investigate the effect of including a previously
neglected level, P . The addition of this level modifies
Eq. (5.33) for the wave function, which is now given by

I
q, &= g~,"I y, &+b."I y. & . (5.35)

method to allow approximately for the effect of the
neglected higher levels with a consequent improvement in
accuracy (Ahmad, Barrett, and Robson, 1976b}. This is
done in the following manner.

Let us assuage that the BD method has been carried out
using a set of basis states truncated to v levels in each
channel. The iteration of the boundary condition parame-
ter for one open channel has been completed, so that one
of the eigenvalues E; of the matrix h [Eq. (5.12)] is equal
to the energy E and the boundary constraints are natural.
Then the eigenfunction

I
'Ii; &, associated with the eigen-

value E;, can be expanded in terms of the basis states
1()I)J &, which satisfy n.b.c. parameters:

I+;&=X 'ls, &. (5.33)
J

and the secular equation [Eq. (5.7)] may be written

+ ~I'"&4k IH
I 4 & = &Pk IH

I

q' & =E ~k'

(5.34)

Rearrangement of Eq. (5.40) yields

ZII =b~ &eI
I
H

I y~ &l(E; —EI) y

which upon substitution into Eq. (5.41) gives

E, =&y IHIP' &++ I
&+ IH I W. & I'

(E; EI—)

(5.42)

(5.43)

Since we are interested only in the eigenvalue E;, which is
closest to the original eigenvalue E; =E, one term is ex-
pected to dominate the sum in Eq. (5.43), i.e.,

E, =&y IHIP' &+
(E; E;)— (5.44)

The solution of this equation for E; is

E; =
2 I &lp

I
H

I lp &+E;+[(&y
I
H

I y & E; )2—

+41&&

If we assume

(5.45)

IH I +, &1«(&0 IH14 &
—E, )

and expand the square root by the binomial theorem, the
solution for E; near E; is given by

(5.36)

and

g bj"&0 IH
I

(t', &+b"&0

(5.37)

where E; are the new eigenvalues, which have been slight-
ly shifted from the old values E; by the introduction of
the extra level. Let us define Z;~ by the relationship

Z;, gb, a,
J

where the aI~
' are given by Eq. (5.34). Then

b~(i) y (l)Z

I

(5.38)

(5.39)

since the coefficients aj'" are the elements of an orthogo-
nal matrix. Using Eq. (5.34) we may write Eqs. (5.36) and
(5.37) in the form

The sum in Eq. (5.35} (and in subsequent equations) runs
over only those levels

I PJ & which are treated exactly; the
extra level 1(t.~ & being written explicitly.

The secular equation now becomes

Xb,"&Wk IH I PJ &+b "&&k IHIP~ & =E b"

IH I P &
—E;

(5.46)

The effect of as many higher levels as necessary may be
approximately included by successive application of Eq.
(5.46) without increasing the dimensions of the matrices
to be diagonalized and thus without a substantial effect
on the computation time. The iteration procedure in the
BD method is now continued until the corrected value of
one of the eigenvalues, E;, is equal to E. The small
correction to the energy leads to slightly different values
for the n.b.c. parameters, B„and hence for the phase
shifts, 6~, in the asymptotic region.

The expansion coefficients, bi(' and b('), in Eq. (5.35)
must also be calculated in order to obtain the correspond-
ing "corrected" values for the amplitudes U~. From Eqs.
(5.39) and (5.42), we have, assuming E; =E;, that

(I) (I)
bI.

' =b '
aI.

(E, —E, )

... &q, IH
I P=b ' aj'

(E; E;)—(5.47)

b"=(E; E, )Z&e,
I
H

I
y— (5.48)

Since the normalization is arbitrary, it is convenient to
choose

and

EIZ I+b & PI
I
H

I 0 &'=E'Zil (5 40} so that

(i) (i)
b)

——aj. (5.49)

XZ;I &O. I

H
I

q I &+b."«.
I
H14. & =E;b."

I
(5.41)

Thus, with this choice of normalization, the expansion
coefficients, bj', for the components of the wave function
treated exactly remain unchanged by the correction, and
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the coefficient for the additional component is given ap-
proximately by Eq. (5.48). These coefficients may be em-
ployed to yield improved estimates of the amplitudes v~
and hence of the collision matrix U.

2. Perturbation treatment for the BD method

If the residual interaction V [Eq. (5.5)] is very small,
then using second-order perturbation theory (Delsanto
and Quarati, 1979), the BD method may be implemented
without any iteration or search process. The procedure is
as follows.

First, one chooses a set of values for all the boundary
condition parameters B, and —n.b.c. values B~ for the
closed channels. These determine a set of basis states

I PJ ) and eigenenergies 8'; given by Eq. (5.4). As a result
of the residual interaction, the eigenvalue 8", of the ma-
trix h of Eq. (5.31), which is required to be equal to the
energy of the system E, will be slightly shifted from the
corresponding unperturbed eigenvalue 8';. To second or-
der we have

I
~.k I

'
I I+~ll+ g (g g )

9

i k
(5.50)

where V;;, Wk, and A,k are given by Eqs. (5.8), (5.26), and
(5.24), respectively. This eigenenergy 8", is the energy E
corresponding to the chosen boundary condition values
B„which form one set—k, say of n.b.c. phrameters.
The phase shifts 6~ are given directly in terms of these
parameters B, by Eq. (5.9—), and the corresponding ampli-
tudes u~ can be obtained as before by matching the inter-
nal and external total wave functions

I

%'k ) at the channel
I

radii. Thus, by choosing I (the number of open chan-
nels) independent sets of n.b.c. parameters and using Eq.
(5.50), we can obtain the collision matrix U without any
iteration process, provided the residual interaction is suf-
ficiently small.

In the generalized nuclear shell model in which arbi-
trary finite single-particle potentials U; are added to the
kinetic energy T and subtracted from the potential energy
P, the residual interaction

N
V=m —g U, (5.51)

is often small. In such cases, the above procedure can be
employed, thus avoiding very many lengthy and complex
iterations, with a substantial saving of computing time.

D. Iterated R-matrix method

It is possible (Ahmad, Barrett, and Robson, 1976a,
1976b) to incorporate n.b.c. parameters into the standard
calculable R-matrix method discussed in Sec. IV.C. In-
stead of employing, as is customary, a fixed set of basis
states for all energies, an energy-dependent basis is chosen
by an iterative procedure based explicitly upon the fact
that a finite set of basis states with n.b.c. parameters pro-
vides the best estimate of the collision matrix. This is the
iterative R-matrix (IRM) method.

The IRM method is closely related to the BD method
in that it employs the same standing-wave asymptotic
boundary conditions. Substituting Eq. (2.28) into Eq.
(4.1) and assuming for convenience that b, =0 (all c), we
have for r~ =a~

1/2
+a

2m-

1/2

2&l-e

Rap= g g R,—,—,(a~, ap)p, p
2Pl-

' 1/2
a ( —) 'k (+) +'~- ka p U, k[gp, (—a,p)e —.' gp, (a—p)e —, ' ]

Rap

g2—g g R,—,—,(a,ap)

1/2
a

ap [gp, , (ap) U,—,k]
(+)

Gap
(5.52)

' 1/2
a

(e ~ Iq'k&=—
2Pl—

1/2

2

= g g R,—,—,(a~, ap)

1/2
c} ( —)

—i5c'k (+) +I5,kap v, , k[gp, , (ap)e ' —gp,, (—ap)e ' ]-—
Rap

—g g R, , (a,ap)
p c'ep

1/2
ap

2P7l—

a
ap [~pr'( p) r'k] '(+)

BQp
(5.53)
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Here

Aa
(c,a I(bJ ),XJc

2mc

L LR«(aa, ap) ——g yje(G ~jj'y'j' ~

J J
1/2

(5.54)

(5.55)

both the basis states and the scattering wave function
I
q'k) on the channel entrance surface, should not be

equal to the Bloch parameters b, ; otherwise, the right-
hand side of Eq. (5.56) would be indeterminate. On the
other hand, the BD method requires that b, =B, (all c)
and hence, in this sense, is "complementary" to the IRM
method.

the quantities (c,a
I PJ) are radial basis functions at

r =a, and 6 is the matrix whose inverse has elements

(QJ I
H+W(0) E

I

—
QJ ).

The U-matrix elements U~ and hence the cross sec-
tions may be determined in the following manner. The
known n.b.c. parameters for the closed channels, arbitrary
values of the B~ (and hence of the phase shifts 6~) for all

except one of the open channels k, together with an initial
guess for the value of Bk are used to construct a finite set
of basis states (say, v levels/channel). The R -matrix ele-L

ments are calculated in this basis and the coupled Eqs.
(5.52) and (5.53) are solved to obtain the remaining phase
shift 5kk (as well as the m —1 relative amplitudes
U,-klukk). From this derived value of 5kk, a new value of
Bk may be obtained using Eq. (5.9) and the calculation re-
peated with new basis states for the channel k. This de-
fines an iteration procedure which in general converges to
the identical result obtained by the BD method for the
same boundary conditions. The procedure has to be re-
peated m times, corresponding to a different choice of the
open channel k for which Bk is varied. In this way the
matrix elements A~, depending upon the phase shifts 5~
and amplitudes U~, are obtained and the U-matrix deter-
mined from Eq. (5.14a).

In both the IRM and BD methods two or three itera-
tions usually suffice to obtain the n.b.c. value for the
parameter Bk being varied. However, for some excitation
energies, the IRM method does not necessarily converge
to the corresponding BD result. If during the iteration
process the boundary condition parameter Bk becomes
large (say

I
Bk

I
) 100), the method often "converges" to

a value of
I
Bk

I
~ oo and not to the n.b.c. value. This is

a disadvantage of the IRM method, although the problem
is readily overcome by employing a better initial guess
(e.g., based upon knowledge of the n.b.c. value at adjacent
excitation energies) for the parameter Bk. The problem
appears to arise partly from numerical difficulties associ-
ated with the small R -matrix elements associated with
large values of

I
Bk I.

The BD and IRM methods are closely related tech-
niques using basis states, obtained by an iterative pro-
cedure, which satisfy n.b.c. parameters B, for the same
form of asymptotic wave-function boundary constraints.
However, the BD method uses a matrix diagonalization
procedure to solve Eq. (5.7), which requires the Bloch
parameters b, in Eq. (3.8) to be chosen so that b, =B„
while the IRM method employs the R-matrix formalism
and requires matrix inversion to solve Eq. (3.10), i.e.,

(5.56)

at the channel radii (r =a ). In order to solve Eq. (5.56),
it is essential that the n.b.c. parameters B„satisfied by

Vl. VAR IATIONAL METHODS

A. Hulthen-Kohn variational methods for the K matrix

U=X(3. iK) '(I+—iK)X, (6.1)

where the matrices I, X, E, and U have elements 6~,
lO-

e '6~, E~, and U~, respectively.
In the calculable R matrix (Sec. IV) and NBC methods

(Sec. V) the scattering wave function
I 4k ) in the internal

region is expanded in terms of a set of basis states, which
are chosen to be eigenstates of some simpler Hamiltonian
Ho, which is often single particle in nature. In the varia-
tional methods, the basis states (v per channel)

are assumed to be arbitrary linearly independent functions
but subject to the following constraints in the external re-
gion (r &a ):

1/2

Ft (k, r )r (6.2)

m-c
Ak,—

1/2

GI (k,r)r- (6.3)

and

(c
I p,—, 2) =0.

Then for r &a
1/2

[a,-'&'F~ (k~r )+a,'z'Gt (k,r)]r--
(6.4)

(6.5)

Several variational approaches have been employed to
solve the many-body scattering problem, especially for
atomic systems. Comprehensive reviews of such methods
and their applications have been given recently (Callaway,
1978; Nesbet, 1977, 1980). In this review, we shall there-
fore give only a brief summary of those methods which
are related to or have been compared with the methods
previously discussed. In particular, we shall discuss the
Hulthen (1944, 1948) and Kohn (1948) variational
methods for determining the E matrix. Since the E ma-
trix is real and symmetric, it provides a very convenient
representation of the open-channel asymptotic boundary
conditions for the scattering wave function (see Sec.
II.B.4). Once the K matrix is known, the collision matrix
U is given by Eq. (2.37), i.e., by the relation
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(H E—)+k =0 . (6.6)

In principle, the coefficients a,—',"' can be determined by
the solution of the Schrodinger equation

mG" EGG g
P gt N

(k) IF'
I (k) I G

(k) 0
(6.15)

This is in fact the procedure adopted in the calculable R-
matrix and NBC methods. In the variational approach,
the a,-'1' and a,-'z' coefficients are chosen so that

where the submatrices and their dimensions are tabulated
in Table I. In Eq. (6.15) the relations

{k) (k) (6.7) &0;; )2 I
~(bc)

I
'Pk & =o (6.16)

(k) (k)a,-2 ——E~ ——K,— (6.8) &0;; I
~(b. )

I +k & =o (6.17)

IH+ W(b, )—E I +k W(b, ——)%k, (6.9)

where W(b, ) is defined by Eq. (3.4), and using the expan-
sion

i.e., the wave functions (c
I
%k & are assumed to satisfy E

matrix standing-wave asymptotic boundary conditions
[Eq. (2.33)].

Writing Eq. (6.6) in the Bloch-Schrodinger form m' =(M"G)'. (6.18)

Equation (6.15) is equivalent to the following three ma-
trix equations:

~FFD(k)+~FG~(k)+pC(k) I F (6.19)

arising from the constraint Eq. (6.4) and the assumption
of the known n.b.c. values for the closed-channel parame-
ters b, , respectively, have been employed. Also,

we have

CS

(6.10) ~GFD(k)+MGG~(k)+ gc(k) L G

PtD(k)+gt~(k)+Nc(k) ()

(6.20)

(6.21)

pa,';"'IH+W(b, )—EI I
(t1„.&=M(b, )

I 4k & .
Cl

(6.11)

where Eqs. (6.7) and (6.8) have been substituted. Multi-
plying Eq. (6.21) from the left by the matrix N ' yields

c(k) N —)ptD(k) N —(gal( (kl (6.22)

Projecting both sides of Eq. (6.11) onto the basis state
&())), ; I

gives

ga,(;"'&(t, ; IH+W(b, ) E
I
P„&=&—(t1, ; I

~(b, )
I +k & .

and substituting into Eq. (6.19) and (6.20) gives

~FFD(k) +~FG~(k) 0

and

(6.23)

CE

(6.12)
GFD (k) + GG~(k) 0 (6.24)

Equation (6.12) can also be obtained "variationally" by
considering the functional

I= & %k I
H E

I
%k&-

+k
I
H+~(b. ) E

I
'4 &

—&+k—
I
~(be)

I
'4 &

where

~FF ~FF pQ —1pf YFF

m"'=M ' PN 'g' —YF'-, —
m "=M gN 'Pt Y— —

(6.25)

(6.26)

(6.27)

y u(k,')* a,',. '&P, ,' I H+W(b, ) F.
I
P„&— m GG MGG gN

—1g t YGG (6.28)

C L

(6.13)
Here the diagonal matrices Y, Y, Y, and Y have
elements

= g a,'; '
& (tI, ; I

H +W( b, ) E
I
P„.&—

(k')*
BQC~)

Cl

(6.14)

Then for arbitrary infinitesimal variations of the coeffi-
, the functional I is stationary if

aI

and

Y~~,—,= , AIF1 [F1' b~F( —(km~) ') I—5,—,—,,

Y~~,—,= , AI F( [G/ b,-G( (—km~) ') l5—,—,—,,

Y, , = —,1)1IGI [F/ b,FI (k~~) ']J5—-„--,

Y,—;.= —,1riI G) [G/ b;G( (km~) ']15;;,—

(6.29)

(6.30)

(6.31)

(6.32)

which is Eq. (6.12).
Equation (6.12) can be rewritten in the form

where the prime denotes the derivative with respect to the
argument km~. Using the Wronskian relation

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



178 Barrett, Robson, and Tobocman: Calculable methods for many-body scattering

TABLE I. Dimensions and elements of various matrices.

Element Dimension

MFF

MFG

M

M~, =(P-„
I
H+W(b, ) E

I

—P-, ., )

M„;=(y., I
H+W(b, ) E—

I y, ,, )
M~, = ( p, 2 I

H +W( b, ) E —
I p, , , )

M.,', = ((t „I
H+ W(b, ) —E

I y, , , )

P„,, ,„,=((t „I
H+W(b, ) E

I P,—, „)
P„.. .=(P„

I
H+W(b, ) E

I P,—, )

+ (
'' 2I (( 21H+~(b. ) E

I
(—-" 2)

Q„,, , =(Q„IH+W(b, ) E
I
P—, , )

„,—,, , „.= (P, , I
a +w(b, ) E

I P,—, „)
&I.;)2I-(r; I=&6;).I

a+~(b ) E I(t"—; )
X„-;„-,.;,=(y, IH+W(b, ) E

I y..—., )

X„„„,, =&(t„ Ia+W(b, ) —E I(t, , )

mmmm'
mmmm

mmmm

mmmm

m X[(v—2)m+vm]b

m X[(v—2)m+vm ]

[(v—2)m+vm ]X[(v—2)m+vm ]

a (k)

b(k)

(k)

(k)a — =6k-
C C

(k)b- —Ek-C C

(k) (k)
( ci & 2) ci & 2

(k) (k)c(, , )
——a, i

m &&1

[(v—2)m+vm ]X1

I F

L G

L,'=(P„
I
W(b„I 0„)

L —,= (p-, 2 I
W(b, )

I
%k )

m &&1

'm ( m ) is number of open (closed) channels.
v is number of levels/channel.

GI FI' —Fh G~' ——1, we can see that
C C C C

FG
( GF)t ( yGF)t yFG

2 (6.33)

since M satisfies Eq. (6.18) and since the matrix X is
Hermitian.

Noting that m, m, m, and m are independent
of the index k, we can generalize the column matrices
D'"' and K{"'in Eqs. (6.23) and (6.24) to the correspond-
ing square matrices l and E, respectively, and write

I(I( ) FF+ FG~ +I( 1' GF+~ t GG~ (6.37)

tion, two different values for K will be obtained from the
two equations. However, if the set of basis states used in
the calculation is sufficiently complete, Eq. (6.36) will be
approximately satisfied and the two values obtained for X
will be approximately equal.

In the method of Hulthen (1944), the two equations
(6.34) and (6.35) are combined into one equation by taking
the sum of the first equation and the product of K with
the second equation, i.e., the functional

m FF+m FGE —O (6.34)
is considered. If Eqs. (6.34) and (6.35) are satisfied, then

I(K)=0, (6.38)
m'F+m GGZ =O. (6.35)

Equations (6.34) and (6.35) have nontrivial solutions only
when the determinant

detm =
FF FG

mGF m GG =o. (6.36)

The aim of the variational approach is to determine the
K matrix from Eqs. (6.34) and (6.35). It is not generally
possible to do this unambiguously, since there are two in-
dependent equations in only one unknown. Unless the
determinant in Eq. (6.36) vanishes, which is the case when
the trial wave function I'Ilk ) is the exact scattering func-

although the reverse is not necessarily true. Hulthen pro-
posed that X be chosen so that Eq. (6.38) is satisfied. The
functional I(IC) is obtained from the functional I of Eq.
(6.13) when both the wave functions %k and qik are con-
strained to obey E-matrix standing-wave asymptotic

k'
boundary conditions. In this case, the coefficients a,-'", &'

and a,-',2' are held fixed and I is stationary, provided Eq.
(6.14) holds for the remaining coefficients c '" ', i.e.,

(6.39)

These conditions, when substituted into Eq. (6.13) for the
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functional I, yield the functional I (K).
When only one reaction channel is open, the matrices

m, I,m, m, and E reduce to simple variables,
and Eq. (6.38) becomes a simple quadratic in K. In this
case, K is tan5, where 5 is the elastic scattering phase
shift. Thus the phase shift 5 and hence the elastic scatter-
ing cross section can be calculated from Eq. (6.38), pro-
vided one knows which of the two solutions for tan5 to
discard. This constitutes a fundamental disadvantage of
the Hulthen method. Furthermore, the extension of the
method to the multichannel scattering problem is not
straightforward, so that its use has been confined to
single-channel scattering calculations.

An alternative variational approach which does not
suffer from the above disadvantages is that of Kohn
(1948). In Kohn's method, variations with respect to K
are allowed, so that the corresponding variation of I(K),

5I(K)=(m +K m )M+5K (I +m K)

(6.40)

given by

nI(K-') =[I'"+(K-')'m F]SK-"

+n(K '-)'(m '+mFFK '-).

Choosing

K —1
( FF) —1 FG

(6.48)

(6.49)

so that I(K ') is stationary with respect to 5(K ') and
substituting into Eq. (6.48) gives

oI (K ') = —, fi5K—

Thus the functional

W(K ') =I-(K ')+-

(6.50)

(6.51)

is stationary with respect to all infinitesimal variations of
K '. If we set I(K ') equal to zero, which is true for
the exact wave functions haik, Eq. (6.51) yields the
inverse-Kohn formula for K ', i.e.,

K ' =2' 'W(K ')
Then I(K) is stationary with respect to 5K if Eq. (6.35)
is satisfied, i.e., =2A' '[m —(I ) (m ) 'm ] (6.52)

K = (m GG) 'm'—F . - (6.41)

In this case, I(K) is not stationary with respect to 5K,
since

(6.42)

where we have used Eq. (6.33). Thus Kohn considers the
functional

W(K) =I (K)—, fiK, — (6.43)

= —2X-'[mF' —(I' )'(m GG)-'m "], (6.44)

where Eqs. (6.35), (6.37), and (6.41) have been used.
A related method, known as the inverse Kohn or Rubi-

now procedure (Hulthen and Skavlem, 1952; Feshbach
and Rubinow, 1952; Rubinow, 1955), is derived similarly.

The functional I of Eq. (6.13) can be written in terms
of K ', rather than K, by choosing the coefficients

a,—, =(K )~(k) (6.45)

(6.46)

which is stationary for all infinitesimal variations of K.
Setting I(K) equal to zero, which is true for the exact
wave function %k, we find that Eq. (6.43) yields the Kahn
formula for the K matrix, i.e.,

K = —2A' 'W(K)

from which the K matrix is obtained by matrix inversion.
In the numerical application of the Kohn method, dif-

ficulties are often encountered near those energies where
the matrix I becomes singular. In fact, near these en-
ergies, spurious resonances can appear in the scattering
cross sections calculated by the Kohn procedure. For
similar reasons, difficulties arise with the inverse Kohn
method at energies where m becomes singular. Nesbet
(1968) has suggested a procedure whereby the Kohn
method is employed whenever the determinant

~

m
~

~
~

m
~

and the inverse Kohn method for
~m

~
~

~

m
~

. This technique successfully eliminates
the problem of spurious resonances.

Once the K matrix has been determined, the co11ision
matrix U may be obtained from Eq. (6.1) and hence the
cross sections calculated. If detm =0, the Hulthen, Kohn,
and inverse-Kohn methods all give the same result. For
single-channel problems, Malik (1962) and Rudge (1973)
have proposed including in the trial wave function an ex-
tra parameter which can be adjusted so that detm=0.
This avoids the anomalous singularities of the Kohn
method by ensuring that if rn =0, then m =0, also,
so that (m ) 'I is finite. It should be noted that the
NBC methods automatically yield detm =0.

The above variational methods have usually been used
in the limit that the channel radii become very large. In
this case, the operator W(b, )~0 and integral operators
such as (H F) ' assume thei—r Cauchy principal values.

+(K ')'m '+(K ')'m -K-(6.47)

The variation of I(K ') for small changes in K ' is

Then, corresponding to I(K) of Eq. (6.37), we have the
functional

I(K ') =m +I K

B. Kohn variational method for the U matrix

The methods discussed in the preceding section can
also be employed to obtain the collision matrix U directly.
If, instead of Eqs. (6.2)—(6.4), the basis states satisfy the
following constraints in the external region:
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and

then for r~ )a~,

If we choose the coefficients a,-', ' and a,-'z' so that

(&)a

(6.53)

(6.54)

(6.55)

(6.56)

(6.57)

I= ('Pk
I
H E—

f

'Pk+ )

=(%k '
f
H+W(b, ) E—

f

4k+')

—(e,'-. '
I
W(b, )

I

e'„+')

= gaj' ' a&"'(p& IH+W(b, ) E I—QJ. )

where the expansions

(6.64)

(6.65)

the wave functions (c
I
%k)—:(c

I

4'k ') satisfy scattering
boundary conditions [Eq. (2.17)].

If the functional

I(U)=&~k~, ~IH Ef~k+~& (6.59)

is considered and the wave functions 4k+' and O'I, ' are
constrained to obey outgoing and incoming scattering
boundary conditions, respectively, i.e.,

(6.66)

have been used. Here the tilde denotes that the radial part
of the wave function is to be complex conjugated. The
functional I is stationary with respect to infinitesimal

k')variations of the coefficients aj ' if

(k, ). ——g aj '(pI
I
H +W(b, ) E

I
(hJ )—

c)QJ ~ J

(c
I
%k-') =+('+, '(k,-r )+g&, '(k~r )U~- (6.60)

(6.67)

for large r, then analogously to the preceding section it
can be shown that the functional

W( U) =I ( U)+i AU (6.61)

~(U ) = I ( U, ) +i fi( U„—U, ) =0, — (6.62)

where U„and U, are the "stationary" and "trial" values
of U, respectively. Equation (6.62) gives

U„=U, +i% 'I(U, ) .

Kamimura (1977) considers this expression to be supe-
rior to the corresponding one [Eq. (6.44)] for the K matrix
for two reasons. First, unitarity of the approximate U
matrices, U„and U„ is not assumed, so that the unitary
nature of U„can be used as a check on the calculations.
Second, the Kohn variational procedure for the K matrix
leads to difficulties near those energies where the matrix
m becomes singular: This situation does not appear to
occur in the variational method for the U matrix.

In the limit that the channel radii become very large,
the operator W(b, )—+ is, whe—re s is a small positive
quantity and the limit a~0 is to be taken (Robson and
Robson, 1967).

is stationary with respect to all infinitesimal variations of
U. Thus

This gives

a,' '= g (G ),, (p, I
~(b, )

I
q'k+'),

J

where the elements (G )JJ' belong to a matrix whose in-
verse has elements (PJ'

I
H+W(b, ) E

I Pi), —so that

I'4+'&= 2 I4'I &(G')JJ &4I I
~(b. ) I'4+'&-

JJ

(6.69)

Consequently, using Eq. (3.4) for the Bloch operator
W(b, ) and matching at r =a, we have

(c,a
I

4'k+') = g g R„(a,ap)
P c'EP

X a p
—b, (c',a p I

4k+'),
BQp

where R„(a,ap) is the R matrix defined by Eq. (3.15).
Equation (6.70) is identical with Eq. (3.14).

The above derivation of the R-matrix formalism places
no restriction on the basis states other than linear in-
dependence, unlike the usual R-matrix theory (Lane and
Thomas, 1958), in which the basis states satisfy a set of
fixed boundary conditions at the channel radii, i.e.,

C. Hulthen-Kohn variational method for the R matrix W(B, ) IP )=0. (6.71)

It is instructive to derive the R-matrix relation [Eq.
(3.14)] by a variational method. Consider the functional I
of Eq. (6.59), i.e.,

In general„nonorthogonal basis states may be used as in.
the ERM method (Sec. IV.F).

When the Buttle correction (see Sec. IV.D) is included
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in the SRM approach (see Sec. IV.C), the trial wave func-
tion 4'k+' of Eq. (6.64) is a linear combination of the fi-
nite set of basis states PJ and the function %'k, which is
the regular solution of Eq. (6.9) with H replaced by Ho.
Zvijac, Heller, and Light (1975) have shown that an addi-
tional improvement to the BCRM can be achieved by ob-
taining this combination variationally. As pointed out by
Nesbet (1980), the variational correction of Zvijac et al.
can be obtained more directly than in their paper by using
Eq. (6.70) with the function 4k+' included as one of the
basis states. It should be noted that if the basis states PJ
satisfy natural boundary condition parameters at the
channel radii (see Sec. V) then both the Buttle and varia-
tional corrections vanish for the reason discussed in Sec.
IV.D.

((g)(—)

i
V qg~ (+))+ (qadi

( —
i

V~
i

q ~(+))

—(4,-'' '
i

V —V G V i%' ', +')), (6.76)

—(M', ' 'i V.—V.G.V. i%',"+')),

where +,-'' —' are trial functions for '0,-'—+ '. First, this func-
tional gives the correct expression for the T-matrix ele-
ment T,—,—,when 0,'' —'=O',-' —'. Second, for arbitrary infin-
itesimal variations of 4-,'' ' near the correct state 0',-'
we have

(6.77)

D. Schwinger variational methods for the T matrix

In Secs. VI.A and VI.B we have discussed Hulthen-
Kohn variational methods based upon the Schrodinger
equation for obtaining the E matrix and U matrix, respec-
tively. In this section we shall indicate briefly alternative
methods based upon the Schwinger variational principle
(see, for instance, Joachain, 1975), which uses the
Lippmann-Schwinger (1950) integral equation for deriv-
ing the T matrix in the single-partition case. The mul-
tipartition case will be considered in Sec. XI.

We define the transition matrix T to have elements

which vanishes if +,-'', + '= 4,-'', + ', thus satisfying Eq.
(6.74). Similarly, for small changes in 4,'', +' around its
correct value, we have

5~,—,—,/5% I+'=0, (6.78)

G

CC

(qadi(
—)

i
V iq(+))(C, ( —)

i
V

i

qg~(+))

2r(q," 'i V.—V.G.V. i e,",+')

(6.79)

if %',-'' '=4,-' ', which satisfies Eq. (6.75).
An alternative variational functional for the transition

matrix elements is

where @,-'+' is the regular solution of the equation

(H~ E)4,'+'—=0

(6.72)

(6.73)

This form has the same properties as the previous expres-
sion [Eq. (6.76)] and is also independent of the normaliza-
tions of the trial wave functions 4,-'' —'. It is interesting to
note that the functional of Eq. (6.79) also agrees with the
Born series for the transition matrix in terms of distorted
waves up to second order, i.e.,

having unit current incident in channel c and purely out-
going current in all other channels. The states @,-' ' and

' are the states N,-+ and 4,'+', respectively, where the
-(+)

tilde denotes that the radial part of the wave function is
to be complex conjugated. The states 4,-' —' satisfy the
Lippmann-Schwinger equations:

((g,~(

—) V
~

q ~(+))

+(C,-' '~ V.G. V. ~@,-"')+ . ),
(6.80)

i e,'+') =
i e,'+')+G. V.

i e,'+')

(e,' i
=(e,' i+(e,'-'i V.G. ,

(6.74)

(6.75)

when ~%,-'', +') and (4,-'' '~ are approximated by
~

4~~+, ')
and (N:', ~, respectively, and when the second term is
small compared with the first term. The first term,
(2R) '(4&~~

~

V
~
+,-'+, '), constitutes the distorted-wave

Born approximation to the T matrix (Tobocman, 1961).
where G is defined by Eq. (3.27). The above definition
of the transition matrix T is a generalization of the con-
ventional transition matrix, in that a background poten-
tial U~ is allowed so that distorted waves, @,-' —', replace
the usual plane waves and the integration is restricted to
the internal region. In the limit that the channel radii be-
come infinitely large and U ~0, the T matrix of Eq.
(6.72) becomes the conventional transition matrix.

Let us now consider the following functional for the
transition matrix elements:

Vll. CALCULABLE METHODS
FOR COMPOSITE PARTICLE SCATTERING

In this section we shall consider the scattering of com-
posite particles in more detail. In any attempt to describe
processes such as nuclear heavy-ion scattering from a mi-
croscopic point of view, the composite nature of both the
target and the projectile must be taken into account. In
particular, the correct antisymmetrization of the wave
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function with respect to the interchange of nucleons be-
tween the target and the projectile is important. Two
closely related ways of including nucleon clustering in nu-
clear structure and scattering calculations are the resonat-
ing group method (RGM) (Wheeler, 1937a, 1937b) and
the generator coordinate method (GCM) (Hill and
Wheeler, 1953; Griffin and Wheeler, 1957). In the follow-
ing we shall outline several ways in which the GCM has
been combined with one or another of the calculable reac-
tion theories discussed previously to obtain composite
particle scattering cross sections. First, however, we shall
give a brief description of both the RGM and GCM
necessary for this purpose. For full details of these tech-
niques, the reader is referred to the recent review articles
of Wong (1975), Saito (1977), Horiuchi (1977), and Tang,
LeMere, and Thompson (1978).

A. Resonating group and generator coordinate methods

In the RGM the scattering wave function %'k is written
in terms of the channel (or cluster) function for all config-
uration space. For simplicity we limit the discussion to
two-spin —zero-cluster systems. Then the scattering func-
tion %'k can be written [see Eq. (2.5)]

Vk=Mg g X,u~, '(r ),
a cEa

(7.1)

where (as in Sec. II) the cm motion is assumed to have
been factored out and has been omitted for convenience.
Here the channel states X, are eigenstates of the Hamil-
tonian ha" +h' ' describing the internal degrees of free-
dom [Eq. (2.4)] of the two-cluster system in partition a,
i.e.,

the function u~",'(r ) is the wave function of relative
motion, and M is the antisymmetrization operator. It is
convenient to write

(7.3)

(X, I~ —&
I g g W'Xp, up', '(rp))=0,

p c'Ep
(7.5)

where the integration is over all coordinates except rp. In-
troducing the parameter coordinate rp (Wildermuth and
Kanellopoulos, 1958/59), we can write Eq. (7.5)

where M; is the antisymmetrization operator for the nu-
cleons in cluster i and M' is an operator which antisym-
metrizes the nucleons of one cluster with those of the oth-
er cluster. Then we have [Eq. (2.14)]

(7.4)
w(I)

where 7, are antisymmetrized cluster wave functions. In
the general case, the vector coupling of any internal angu-
lar momenta of the clusters has to be taken into account.

An equation for the relative motion wave functions can
be obtained by projecting the Schrodinger equation for 4'k
onto the channel state 7,:

(x, I
H E—

I g g W'Xp, up", '(rp)&(rp r—p)) =0,
p c'Hp

where the angular brackets denote integration over all
configuration space but not the parameter coordinate rp.
Defining

W'=5 p5„+W", (7.7)

we can write Eq. (7.6) as a set of simultaneous linear in-
tegrodifferential equations:

mc r

f K„(r',rp)u p",'(rp)dr'p 0,——

p c'Hp
(7.8)

and V, (r' ) is a "direct" potential given by

fi
K, (r~) = — V, + V, (r~) —E~,

2m,

= (x~,&(r —r~)
I
H —E

I X~, ) . (7.10)

In principle, the RGM is very satisfactory, since it em-
ploys completely antisymmetric wave functions which
contain no spurious cm motion. However, due to the
complicated nature of the RG wave function [Eq. (7.1)],
the calculation of the kernels K„becomes very tedious
for a large number of nucleons if the kernels are evaluated
using integration over the natural cluster coordinates, i.e.,
the internal and relative coordinates of the clusters. This
is bemuse a different coordinate transformation is neces-
sary for every permutation of the nucleons in the different
clusters arising from antisymmetrization.

Another approach, which is physically equivalent to
the RGM, is the GCM. This method was proposed as an
alternative formalism in the hope of simplifying the cal-
culations. For the single-channel case (c Ea), the GCM
employs total wave functions (i.e., including cm motion)
for the N-body system of the form

qkr(R, )= I f'"'(s)e(R, ,S)ds,

where

(7.11)

4&(R;,S)=W' X~, R;+ S X~, R; — S
N

(7.12)

is an antisymmetrized product of the Slater determinants
w(2)

and 7, representing the ground states of the two
clusters and where R; is the position of the ith nucleon.
The two Slater determinants are usually assumed to be
composed of harmonic oscillator orbitals centered at

where

K„(r.' rp) = &&.,&(r.—r.' )
I

~ —&
I
~"&p, 5«p —rp) &

(7.9)
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N—2S/N and N~S/N, respectively, where NJ is the num-
ber of nucleons in cluster j and where each orbital is mul-
tiplied by a spin-isospin function. The generator coordi-
nate S thus corresponds to the separation of the centers of
the harmonic oscillator potentials, i.e., the mean position
of the cluster cm coordinates. This form of the GCM
was initiated by Margenau (1941) and developed by Brink
(1966). If the same oscillator length parameter b is used
for each cluster, the function N(R;, S) can also be written

N(R;, S)=@, M'[I (r, s)X~,],
where

(7.13)

3/4

I (r,S)=
2 exp[ —N&N2(r —S) /(2b N)]

N(N2 2 2

mb N

(7.14)

The angular brackets denote integration over all configu-
ration space, but not the generator coordinates S and S'.
The same result can be obtained by projecting the
Schrodinger equation onto the function N and integrating
over the same space.

Comparison of Eq. (7.16) with Eq. (7.9) yields a rela-
tionship between the RG and GC kernels:

K(S,S')= f r(r, s)[K«(r, r' )

+If, (r )5(r —r' )]I (r', S')dr dr' .

(7.17)

The RG relative motion wave function u', '(r ) is also
simply related to the weight function f'"'(S):

u', '(r )= f 1 (r,S)f'"'(S)dS, (7.18)

or more simply in terms of an integral operator I
(k) (k)un' =reef (7.19)

Thus for the conditions discussed above, the RGM and
GCM are essentially equivalent, being related by an in-
tegral transformation, and one may either solve the Hill-
Wheeler equation [Eq. (7.15)] with GC kernels or the

and N, is the cm wave function.
The basic idea of the GCM (Griffin and Wheeler, 1957)

is to permit "collective" degrees of freedom to be intro-
duced into the N-particle scattering wave function
without any specific dependence upon collective coordi-
nates appearing in the wave function. The generating
wave (or weight) function f' '(S) of Eq. (7.11) which de-
scribes such collective effects is to be determined by the
Ritz variational principle 5E=O for infinitesimal varia-
tions 5f '"'(S). This leads to the Hill-Wheeler equation:

f K(S,S')f'"'(S')ds'=0, (7.15)

where the GCM kernels K (S,S') are given by

rC(S, S') =(X.,r(r, S)
~

H —E
~

W'X.,r(r, s')) .

(7.16)

RGM integrodifferential equation [Eq. (7.8)] with RG
kernels.

In general, the GC kernels of Eq. (7.16) are much easier
to calculate than the corresponding RG kernels of Eq.
(7.9), since they involve only the evaluation of matrix ele-
ments between single-particle wave functions. However,
for large clusters, calculation of the GC kernels is still la-
borious due to the nonorthogonal basis and the large
number of terms which arise from antisymmetrization.
Furthermore, in a numerical treatment, problems can
arise in the GCM due to rounding-off errors if the basis
states are almost linearly dependent (Galetti and de
Toledo Piza, 1978) [in practice, the right-hand side of Eq.
(7.11) is discretized]. The solution of the Hill-Wheeler
equation is also hampered by the singular character of the
weight function f'"'(S) (Giraud and LeTourneaux, 1972).

Another major difficulty with the GC approach is how
to choose the appropriate weight function in order to im-
pose the correct asymptotic boundary condition on the
scattering function Ok. In those methods which solve the
Hill-Wheeler equation in the whole configuration space
either by direct procedures [de Takacsy, 1972; Tanabe,
Tohsaki, and Tamagaki, 1973; Friedrich, Husken, and
Weiguny, 1974; Canto and Brink, 1977 (method 1)] or by
using variational techniques (Beck et al. , 1975a), it is
necessary to transform the known asymptotic RG relative
wave function into an appropriate weight function. This
procedure becomes tedious for large clusters. An alterna-
tive approach is to solve the Hill-Wheeler equation only
for the interaction region of configuration space and to
employ the known asymptotic RG wave function in the
channel region. Methods using this approach are the mi-
croscopic R-matrix method (MRM) (Horiuchi, 1970;
Baye and Heenen, 1974, 1977c), several Kohn variational
techniques [Mito and Kamimura, 1976; Kamimura, 1977;
Canto and Brink, 1977 (method 2); Nagata and Yamamo-
to, 1977], and the natural boundary condition method of
Baldock, Barrett, and Robson (1979). The above methods
will be discussed briefly in the following sections and
their application to cx-cx elastic scattering in Sec. VIII.D.

When the two clusters are represented by harmonic os-
cillator orbitals with different length parameters, as is
physically more reasonable for clusters of different sizes,
Eq. (7.13) is no longer valid and the cm and relative
motion are coupled together. In this case the GCM wave
functions may contain spurious components of cm excita-
tion. However, Fiebig and Timm (1981) have recently
given a simple technique based upon a single-momentum
projection method of Rouhaninejad and Yoccoz (1966)
for eliminating spurious cm effects in GC kernels and
furthermore have shown that in general such effects are
very small. Alternative procedures for treating the case
of unequal oscillator length parameters have been suggest-
ed (Siinkel and Wildermuth, 1972; Kamimura and
Matsuse, 1974; Giraud and LeTourneaux, 1975; Thomp-
son and Tang, 1975, 1976; Horiuchi, 1977; Tohsaki-
Suzuki, 1978). These methods involve various transfor-
mations between GC and RG kernels and generally de-
pend upon employing analytical forms for the kernels.
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q„'(R, )= g f e, (R, ,S)f,'")(S)ds, (7.20)

and application of the Ritz variational principle leads to a
set of coupled equations for the weight functions f,'"'(S):

g f rc„.(s,s')f,'")(s')ds=o . (7.21)

However, the latter equations are very difficult to inter-
pret physically and are probably meaningless (Giraud and
LeTourneaux, 1975). Thus, in this more general case, the
GC formalism applied to the whole configuration space
breaks down and it seems necessary to return to the
RGM. However, as in the case of unequal harmonic os-
cillator length parameters, it is convenient to obtain the
necessary RG kernels from the simpler GC kernels.
These kernel transformations, which form the basis of
methods such as the complex GC technique, have been re-
viewed by Horiuchi (1977). On the other hand, if the os-
cillator length parameters are equal for the two clusters
and the GC formalism is restricted to the interaction re-
gion of configuration space as in the MRM, the generali-
zation to multichannel scattering is straightforward
(Baye, Heenen and Libert-Heinemann, 1977). In the fol-
lowing sections we shall outline several methods for cal-
culating the simple one-channel case of the elastic scatter-
ing of two spinless closed-shell clusters.

B. Solution of Hill-Wheeler equation
in whole configuration space

This requirement is not very practical for two large clus-
ters, even when algebraic computer techniques (Tohsaki-
Suzuki, 1977) are adopted. One of the more successful of
these methods, the so-called "complex GC technique" has
been reviewed in detail (Tang, LeMere, and Thompson,
1978; Tang, 1981), and, since it is not closely related to
the calculable reaction theories of the present review, we
shall not discuss it further here.

If there are several channels, it is natural to extend the
GCM wave function of Eq. (7.11) to the more general
form (Griffin and Wheeler, 1957)

f(k)(S) S—i g f ( )(S)Qo(Q )
I

(7.23)

ft (S)=fi (S) (7.25)

where f~ (S) is the known asymptotic form of the GC
weight function. Then Eq. (7.24) can be written

S0 oo

Ki(S,S')fi"'(S')dS'= —f Ki(S,S')fi'(S')dS'

X,(—S) . (7.26)

This integral equation is transformed into a set of alge-
braic equations for the values f' '(S; ) corresponding to a
discrete set of 1V points S; over the range 0 & S & So by the
use of a Gauss-Legendre quadrature formula with weight
factors ta;. This gives X simultaneous linear equations:

N

g ICi(SJ.,S; )f~"'(S; )w; =X~(SJ.) (j = 1, . . . , g) .
i=1

(7.27)

de Takacsy, neglecting the Coulomb interaction, as-
sumed that

fi (S)=j i(kS)+ ni(kS)tan(5i —, l~), — (7.28)

where jI and nI are regular and irregular spherical Bessel
functions, k is the wave number for the relative motion,
and 5~ is the phase shift. In order to determine the phase
shift, one more equation is required: de Takacsy took this
to be Eq. (7.28) for some value of S =S„slightly larger
than So. The resultant N+ 1 simultaneous linear equa-
tions are then solved for the X+ 1 unknowns, fI' '(S;)
and 5i. Tanabe, Tohsaki, and Tamagaki (1973) suggested
that one can include the Coulomb interaction by express-
ing the asymptotic weight function fi (S) in terms of the
Coulomb functions:

Then the Hill-Wheeler equation [Eq. (7.15)] becomes

f K) (S,S')fi "'(S')dS' =0 . (7.24)

In the method of de Takacsy (1972), it is assumed that
for sufficiently large S ( & So, say) that

1. Direct solution (method of de Takacsy) fi (S)=Fi(kS)+GI(kS)tan5i . (7.29)

It is convenient to make a partial wave expansion:

K(S,S')=(SS') '+Xi(S,S')Fi (Qg)I') (As ),
lm

(7.22)

In order to avoid the requirement for a matching condi-
tion for the GC weight function which does not seem to
have been justified theoretically, Canto and Brink (1977)
in their method 1 eliminated any explicit dependence on
fr (S). By employing the asymptotic form of the GC ker-
nel, i.e.,

X (iS, S)=[1 +( —1}'5)v)v ] f I i(»,S)[Ti+Vc(R ) E„,)]I i(»,S')d»—

on the right-hand side of Eq. (7.26), they obtained

&l(S)= —[1+(—1)'5~,)v, ] f I i(»,S)[Ti+Vc(r ) —E„i]f I &(»,S')f& (S')dS'dr

= —[1+(—1) 5)v, )v, ] f I (»i,S)[T +Vie(r }—E„)]u)(r )dr

Here

(7.30)

(7.31)
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d
22m' dry

1(l + 1)
2"a

(7.32)

I i(r,S)=
3/4

N]N2
4+Sr exp[ NiN—2(r~+S )/2b N]ii(N, NqSr /b N),2 2 2 2

~I 'N (7.33)

5iv ~ has the value 0 or 1 if the clusters are different or identical, respectively, Vc(r~) is the Coulomb interaction, E„i is
1 2

the energy of relative motion, m, is the reduced mass of the system, and ii is the modified spherical Bessel function.
Canto and Brink took

with

ui(r )=rt(r )[I't(kr )+Gi(kr~)tan5i], (7.34)

0, if r (ao
(ai —ao)

rt(r )= ~ (r —ao)— sin
2m'

l, if r )a1.

2~(r —ao)
(a i

—ao)
(ai —ao), if ao &r &a, (7.35)

Thus by using the RGM relative partial wave function ui'(r )= f I i(»»)fr'(S)dS, (7.39)

ut(r )= g I i(r,S;)ci+ui(r ),
i=1

(7.36) where (for the special case qo ——0 in their paper)

fi (S)=fry(S)+fii (S)tan5t (7.40)
one can obtain a set of N simultaneous linear equations of
the form of Eq. (7.27) with the functions Xi(S;) given by
Eq. (7.31) in terms of ui (r ), rather than the GC weight
function fi(S) of the de Takacsy method. Instead of a
matching condition for the GC weight function [e.g., Eq.
(7.28)], Canto and Brink employed Eq. (7.36) for some
value of r =R & a1. The resultant N + 1 equations can
then be solved for the N+ 1 unknowns cr' and 5r.

2. Variational method

Beck et al. (1975a) have used the GCM wave function
as a trial function in a Kohn-type variational method (see
Sec. VI.A). Using the functional I of Eq. (6.13), one finds
the variational principle to be

The coefficients di„are to be chosen so that a proper
asymptotic form is obtained for ui (r~). The variational
principle of Eq. (7.38) leads to the set of equations of Eq.
(7.27) plus an additional Hill-Wheeler equation involving
the phase shift

N

g f Kt(S;,S)f&;(S)dS+Xt„+Xi;tan5t=0, (7.42)

and

fi, (S) p
' I' t(kS)

0 '=exp (k b NiN2/2N) g di„S "
G (kS) ~ .fii n=0

(7A1)

51 = (5+/ 0 E~ haik ) =0, — (7 37) where

where here the angular brackets will denote integration
over all configuration space. In partial wave form this is

f f 5fi '(S)&t(S,S')fi '(S')dS'dS=0. (7.38)

Thus if the weight function fi"'(S) could be chosen arbi-
trarily, Eq. (7.38) would give the Hill-Wheeler equation
for fi'"'(S'). However, it is necessary that fi'"'(S) should
lead to the correct asymptotic boundary condition on
ui(r ) via Eq. (7.18). On the other hand, if the Hill-
Wheeler equation [Eq. (7.24)] does have a solution with
the proper asymptotic form, then this solution is also a
solution of Eq. (7.38).

Beck et al. employed a trial function for the RGM par-
tial wave function of the form of Eq. (7.36) with ui (r )

given in terms of fi (S) by the relation

Xr. fi„(S')
——f fi;(S) f K (Si,S') '

o S, 'dS'dS .
li f ii

(7.43)

The N+ 1 equations [Eqs. (7.27) and (7.43)] can then be
solved for the N + 1 unknowns ct' and 5i.

C. Solution of Hill-Wheeler equation
in interaction region only

Microscopic R-matrix method

In the preceding section we have seen various attempts
to solve the Hill-%wheeler equation in the whole configura-
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tion space. This has the disadvantage that it requires the
evaluation of GC kernels in the channel region as well as
special care to obtain the correct asymptotic boundary
condition on the scattering function. An alternative pro-
cedure, initiated by Horiuchi (1970) and developed by
Baye and Heenen (1974) is the microscopic R-matrix
method (MRM). In this approach, the GCM wave func-
tion is used only in the interaction region and the known
RG wave function is employed in the external region.

In the MRM, the total scattering wave function is ex-
panded in terms of a discrete set of GC basis states
4'(R;, SJ. ) within the interaction region

+k(R;)= g f' '(SJ)@(R;,SJ), if r &a . (7.44)

For this antisymmetrized basis, the definition of the rela-
tive coordinate r is not unique: Other forms are given
by exchanging nucleons between the two clusters. Since
the X nucleons are indistinguishable, there are

(G )j,' ——(e(R;,SJ) ~H+w(b, ) —E
~

e(R;,SJ )) .

(7.51)

For the elastic scattering of two spinless clusters, this
gives

(7.52)

g (SJSJ ) 'I I(a,SJ )(6 )JJ I ((aI,SJ')

(7.53)

1 Xt
1+&x,X, &il&2t

(7.45)
g(+ )( )

1/2

ie '[GI(ka )+iF~(ka )]a

equivalent independent definitions of the relative coordi-
nate r'~' (p =1, . . . , n) The. interaction region is defined
to be that region of configuration space for which

~c)=N, M~c), (7.47)

where ~c) is defined by Eq. (2.14) and where for conveni-
ence we have included the cm wave function 4, . Then
the "reduced width amplitude"

(c,a
~

N(R;, SJ))=(c,a
~
4, W'1 (r, SJ)X, )

=I g(a, S ) . (7.48)

Here (as in Sec. III), the notation (c,a
~

) denotes in-
tegration over all coordinates except r ~, which is set
equal to a . Thus, in analogy to Eq. (3.14), we have

(c,a
~

qlk) = g(c,a
~
4(R;,S~))(G )J~'

where 3'(b, ) is a generalization of the Bloch operator
[Eq. (3.4)]

(7.50)

and 6 is a matrix whose inverse has elements

(7.46)

In order to deal in a straightforward manner with in-
tegrals involving antisymmetrized states of the complete
system, it is expedient to introduce (Barrett and Robson,
1979) the antisymmetrized channel states

(7.54)

For identical clusters, only even I values occur, since the
asymptotic radial relative wave function has an additional
factor [1+( —1)]. Equation (7.52) is readily solved for
the collision matrtx U~ =exp(2i5~). A similar expression
for the collision function is obtained for the alternative
formulation based on the Green's-function operator 6 of
Eq. (3.6) and the use of Eq. (3.7).

The MRM has been extended to multichannel scatter-
ing by Baye, Heenen, and Libert-Heinemann (1977) and
has been applied to a wide range of (but mostly single-
channel) heavy-ion scattering problems (Baye and Heenen,
1974; Heenen, 1976; Baye, 1976; Baye and Heenen, 1977a,
1977b; Baye, Heenen, and Libert-Heinemann, 1978; Baye
and Salmon, 1979a, 1979b).

In the special case where one of the clusters consists
only of a single nucleon, it is sometimes more convenient
to employ a single-particle continuum wave function,
which is defined relative tc- the same potential well used
to describe the single-particle bound states of the other
cluster, i.e., to take S=O in Eq. (7.12). In this case,
N(R;, S)=@(R;,0) is simply a single antisymmetrized
Slater determinant of single-particle orbitals and there are
just X equivalent independent definitions of the relative
coordinate r'~'. Equations (7.46)—(7.51) are essentially
valid (provided the vector coupling of the internal angular
momenta of the target cluster and single nucleon is taken
into account) and represent the R-matrix approach to the
continuum shell model (Mahaux and Weidenmuller,
1969). In such an approach, neglecting the cm motion,
Takeuchi and Moldauer (1970) employed a finite spheri-
cally symmetric potential with a spin-orbit term to
describe the single-particle states for neutron scattering
from ' O. On the other hand, for n-' C scattering, Phil-
pott (1973) used harmonic oscillator orbitals for both the
bound valency and continuum nucleons. This permits the
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separation of any spurious cm motion (Philpott, 1977),
which is important for nucleons incident upon light tar-
gets.

2. Variational methods

Canto and Brink (1977) in their method 2 have em-

ployed a Kohn variational method to solve the one-
channel partial wave form of the RGM equation [Eq.
(7.8)], using a trial function

u((» )= g cII )(»,S;)
i=1

(7.55)

with mesh points 5; within the interaction region. This
leads to an expression for the collision function Ul which
is identical with Eq. (7.52) of the MRM, so that the two
methods are equivalent. Nagata and Yamamoto (1977)
have also proposed such a variational approach. The
equivalence of the Kohn variational method and the
MRM follows from a generalization of the variational
derivation of the 8-matrix formalism as given in Sec.
VI.C.

Mito and Kamimura (1976) and Kamimura (1977) have
proposed Kohn variational methods to obtain the col-
lision matrix U directly, rather than the K matrix (see
Sec. VI.B). For the trial function of Eq. (7.55), this tech-
nique gives similar results but is not equivalent to the oth-
er methods since unitarity of the U matrix is not
guaranteed. Thus the unitary nature of the calculated U
matrix can be employed as a check on the accuracy of the
calculations.

D. Natural boundary condition method

The natural boundary condition (NBC) methods of Sec.
V have been extended to treat composite particle scatter-
ing by Baldock, Barrett, and Robson (1979). In this ap-
proach, the LCM is used to construct a set of basis wave
functions rather than the total wave function 0'k of Eq.
(7.11). An arbitrary choice can therefore be made for the
GC weight function f(S). However, to ensure a rapid
convergence of the expansion of the scattering wave func-
tion, f(S) is chosen so that the basis states have a suitable
asymptotic form. For the single-channel case and spin-
zero clusters, the basis states are taken to be

QJ~~ (R;)= Ij1(kJS)Y( (Qg)@(R;,S)dS, (7.56)

where jI(kJS) is the regular spherical Bessel function and
N(R;, S) is an antisymmetrized product of Slater deter-
minants representing the ground states of the two clusters
given by Eq. (7.12). If the same length parameter is as-
sumed for the single-particle harmonic oscillator states of
each cluster, then Eq. (7.13) is valid, so that the cm
motion separates out. For large values of the relative
coordinate r, it can be shown that

pj~ QJ' ~ [1+(—1) 4' x ]jr(kj» )Yi (I)r )&ue@cm

(7.57)

where N; is the number of nucleons in cluster i .
The use of the function jI(kJS)YI (Q~) for the GC

weight function f(S) has several advantages. First, it
projects out states of good angular momentum so that a
separate angular momentum projection is not required.
Such a projection is necessary when other than closed-
shell clusters are considered. Second, the basis states have
an appropriate asymptotic form which is suitable for the
application of NBC methods to obtain the scattering cross
section. Third, the use of standard functions allows most
of the matrix elements involved in the calculations to be
evaluated analytically.

The NBC methods require that the basis states satisfy
the condition

a Bjl(kja )

j~(kja~) Ba~
(7.58)

where g~ '(»~) are—defined by Eq. (7.54). Thus

g@T(l)Q~ k
+c

Ba

(7.59)

(7.60)

The eigenfunctions 'Ilk' ' of the Hamiltonian describing
the two-cluster system in the interaction region may be
expanded in terms of the basis states, i.e.,

(7.61)

The expansion coefficients ckj' may be obtained by solving
the set of equations:

(7.62)

where HT is the total Hamiltonian of the system, Ek are
the eigenvalues of the total energy when the wave func-
tions %k'" satisfy the boundary condition of Eq (7.60), .
and the angular brackets denote integration over the in-
teraction region.

Asymptotically, the allowed values of the kinetic ener-

gy of separation of the two clusters, Tk, are given by

where B; is the binding energy of cluster i. From the cal-
culated values of Tk, corresponding to a given value of
B„the wave number k of relative motion implicit in Eq.
(7.59) and hence the collision function U~ exp(2i5~) m——ay
be calculated using Eq. (7.60). By letting B, vary through
the range —ao to + oo, one can obtain the phase shift 6l

which gives a set of discrete values kj defining the basis
states for the interaction region. The constant B, for the
given channel c is the natural boundary condition for the
total scattering wave function %k, which for large separa-
tions of the two clusters can be written as a sum of partial
waves of definite angular momentum given by

+k' '-~[Pl '(» ) —gl+'(» )Ul]Yj (+, )+",'+",'@.
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at all energies.
The above method does not suffer from the instabilities

associated with the singular character of the GC weight
function f'"'(S}employed in those methods, which solve
the Hill-Wheeler equation by discretizing the interaction
region of coordinate space. The method also has the ad-
vantages of the NBC methods, which minimize the num-
ber of basis states required in the interaction region.
However, compared with the microscopic R-matrix
method (see Sec. VII.C.1), the NBC method involves ad-
ditional integrations over two generator coordinates, 8
and S', in the evaluation of the Hamiltonian and overlap
matrix elements, (P'; '

~HT
~

PJ'} and (P';"
~ Pz '), of Eq.

(7.62). This means that, except for the simplest closed-
shell systems, the calculations are extremely tedious even
when symbolic algebra computer codes are employed.
Applications of the technique have so far been limited to
a-a (Baldock, Barrett, and Robson, 1979) and ' 0-' 0
(Baldock, Robson, and Barrett, 1981}elastic scattering.

VIII. PRACTICAL APPLICATION
OF R-MATRIX AND RELATED THEORIES

The reaction theories described in this review are re-
ceiving widespread and increasing application in several
areas of physics. The standard R-matrix method (Sec.
IV.C), including the Buttle correction (Sec. IV.D), the ex-
tended R-matrix approaches (Sec. IV.F), and the various
natural boundary condition methods (Sec. V), have been
employed with considerable success for the dynamical
description of resonance phenomena observed in nucleon
elastic and inelastic scattering and in photonuclear reac-
tions. The applications have ranged from a calculation of
the structure of He (Bevelacqua and Philpott, 1977) to
studies of polarization-analyzing power differences- =.g.,
in the reaction ' N(p, n)'50* (Philpott and Halderson,
1980). For composite particle scattering, the microscopic
R-matrix (Sec. VII.C.1) and natural boundary condition
(Sec. VII.D) methods, which use a combination of genera-
tor coordinate and R-matrix techniques, have been em-

ployed to investigate the scattering of both light
systems =.g., a+a (see Sec. VIII.D) and heavier systems
such as Ca+ Ca (Baye and Salmon, 1979b). In atomic
and molecular physics, the R-matrix approach has been
applied both to comparatively simple systems like e -H
scattering and to more complex problems, such as elec-
tron scattering from molecular nitrogen (Burke and Robb,
1975; Buckley, Burke, and Lan, 1979). However, a
comprehensive survey of the many examples where cal-
culable reaction theories have been applied to the solution
of real physical scattering problems is too large in scope
to be contemplated here. Instead, in this section, we shall
present a fairly detailed discussion of a few selected exam-
ples where several different methods have been applied to
the same scattering problem. This allows a critical com-
parison of the alternative approaches.

The first example is an exactly soluble model consisting
of two coupled square-well potentials. This model has
been employed by a number of authors to determine the

A. Coupled square wells

An exactly soluble model comprising two square-well
potentials coupled by a square-well interaction has been
used by many authors (Newton, 1959, 1961; Fonda and
Newton, 1960); Weidenmuller, 1964, 1965; Haglund and
Robson, 1965; Mahaux and Weidenmiiller, 1965, 1967;
Glockle, 1966, Glockle, Hiifner, and Weidenmiiller, 1967;
Garside and Tobocman, 1969; Purcell, 1969a; Lejeune and
Mahaux, 1970; Lejeune and Nagarajan, 1970, 1971;
Schmittroth and Tobocman, 1971; Philpott, 1976; Ah-
mad, Barrett, and Robson, 1976b) as a test of various re-
action theories. The parameters of the model may be
varied to simulate bound states embedded in the continu-
um, and both elastic and inelastic scattering cross sections
can be calculated. By comparing the results obtained
from reaction theory calculations with the exact analytic
solutions, one can compare the rates of convergence of the
various formulations of reaction theory.

In this model, the system is described by the
Schrodinger equation

(H E)%=0, —
which in matrix notation can be written

(8.1)

convergence and accuracy of their numerical techniques
before applying the method to more realistic situations.
A reliable comparison of the accuracies of the various
techniques can be obtained with the model because of the
availability of an exact analytic solution.

The second example which will be considered is the
elastic scattering of neutrons from the ' C nucleus. This
is also a problem which has been approached using a
number of different techniques. Again, the availability of
a coupled-channels calculation enables a meaningful com-
parison to be made of the convergence rates of the various
reaction theories with each other. Futhermore, the prob-
lem is typical of many which arise in low-energy nuclear
physics.

The third example has been selected as a representative
of the application of reaction theory to problems in atom-
ic physics. The problem which will be considered is the
elastic scattering of low-energy electrons from the helium
atom. This is a topic to which a considerable amount of
experimental and theoretical effort has been directed in
recent years, in an attempt to establish a standard refer-
ence cross section for the calibration of other experiments.
A number of high-precision calculations have been per-
formed for the e -He elastic scattering cross section.

The last example is typical of an area of nuclear phys-
ics which is currently receiving increasing attention,
namely, the scattering of composite particles. To calcu-
late successfully the scattering cross sections for such a
process, the reaction theories previously outlined in this
review need to be combined with some method of describ-
ing the cluster nature of the particles as described in Sec.
VII. In this section, we shall present the results of the ap-
plication of these techniques to the calculation of the a-cz
elastic scattering cross section.
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T+ V»(r) —E V»(r) q ~&~

V»(r) T+ V»(r) —E+Q
+11

(barns)

=0, r)R . (8.3)

The basic coupled radial equations for the model, as-
suming s-wave scattering, are

(8.2)

Here, T is the kinetic energy operator, Q is the reaction
threshold energy in the second channel, and the potentials
V~(r) are of the form

Vgq(r) = —Vgj, r (R

0.25-
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(2)

2m 2Hz+ 2 [E—V~~(r)]u&(r)= 2 V&2(r)u2(r)
dr $2

(8.4a) 3.025
II

3.050 3.075 E (&le V)

and

2m 2fpz

d
+ [E—Q —V22(r)]u2(r) = V)p(r)u ~(r),

(8.4b)

FIG. 1. Curve 1 represents the exact value of the elastic scatter-
ing cross section vs energy for the model parameters of Table II.
Curve 2 shows the one-level approximation for a ~

——a2 ——6.0 fm,
81 ——0, and B2———2.262. Curve 3 corresponds to the one-level
approximation with a& ——a2 ——6.0 fm, B& ——4.6, and B2———2.262
(from Lejeune and Mahaux, 1970).

where m is the reduced mass of the scattered particle.
These equations can be solved exactly to obtain the radial
wave functions u&(r) and uz(r) for channels 1 and 2,
respectively. From these solutions, the collision matrix
and the associated elastic scattering and reaction cross
sections can be calculated. The parameters of the model
can be varied to simulate cases of weak, intermediate, and
strong coupling. We shall now investigate the application
of several of the reaction theories discussed in this review
to the solution of the above two-channel problem.

1. Wigner-Eisenbud R-matrix theory

In the Wigner-Eisenbud form of the R-matrix theory
(see Sec. IV.B), the eigenstates PJ and their eigenvalues
5'J, which play a basic role in this theory of multichannel
scattering, are solutions of the full Schrodinger equation
in the internal region, subject to chosen boundary condi-
tions B, at the channel radii a, . The validity of the one-
level approximation to Eq. (4.24) has been tested by
Mahaux and Weidenmuller (1965, 1967) and Lejeune and

Mahaux (1970). Some of their results for a weak coupling
model are presented in Fig. 1. The model parameters are
listed in Table II: a& ——a2 ——6.0 fm, B& ——0 (curve 2) and
4.6 (curve 3), and Bq ———2.262.

It is seen that the one-level approximation is unsatisfac-
tory. There appear to be two main reasons for this
failure. First, the background scattering phase shift
differs considerably from the hard-sphere phase shift, and
the one-level formula is unable to reproduce this differ-
ence. Second, the theoretical width of the resonance is
too large. Only if the interaction radius in the open chan-
nel is arbitrarily chosen, such that the hard-sphere scatter-
ing phase shift is approximately equal to the potential
scattering phase shift in the vicinity of the resonance, is
the one-level approximation adequate. Results for such a
case are shown in Fig. 2 for a~ ——11.537 fm, a2 ——6.0 fm,
B~

——0 (long dashes) and 7.5 (short dashes), and
B2 ———2.262.

The deficiencies of the one-level approximation are
largely removed and its accuracy is dramatically im-

TABLE II. Interaction parameters for coupled square-well problem.

Figs./Table

1—4, 10
5, 6, 11, 12
7, Table III
8, 9
13, 14, 19, 20
15—18, 23, 24
21, 22

V() (MeV)

31.0
32.0
32.161
32.161
42.0
10.0
32.0

V22 (MeV)

41.0
39.0
39.022
39.022
39.0
15.0
39.0

V» (MeV)

0.1

1.0
1.072

20.0
1.0
4.0
1.0

Q (MeV}

6.0
3.5
3.5
3.5
3.5
3.5
3.5

6.0
6.0
6.0
6.0
6.0
6.0
6.0

Refs. '
1—3

3
3
6

5, 6
5

'Reference: 1. Lejeune and Mahaux (1970); 2. Lejeune and Nagarajan (1970); 3. Ahmad, Barrett, and Robson (1976b); 4. Garside
and Tobocman (1969); 5 Philpott (1976); 6. Schmittroth and Tobocman (1971).
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(curve 2) and 12.0 fm (curve 3).
The results displayed in Figs. I—3 indicate that caution

must be exercised when employing the one-level approxi-
mation to obtain fits to experimental data if one wishes to
derive resonance widths and energies which have a clear
physical meaning. A similar conclusion is reached in the
discussion of ' C(n, n)' C scattering in Sec. VIII.B. In
general, for the weak-coupling case, the one-level approxi-
mation plus a constant background term gives a satisfac-
tory description of an isolated resonance. However, as
pointed out by Lejeune and Mahaux (1970), for some
choices of the open-channel boundary condition parame-
ter, two eigenstates are important in the R-matrix expan-
sion so that usage of the single-level approximation with a
constant background term would lead to the extraction of
meaningless resonance parameters. In this case, a two-
level approximation without any background term yields
a good description of the resonance.

FIG. 2. All curves refer to the model parameters of Table II.
The full curve is the exact elastic scattering cross section. The
other curves represent the one-level approximation with a2 ——6.0
fm, 82 ———2.262, a~ ——11.537 fm, B~ ——0 (long dashes), and
B~ ——7.5 (short dashes) (from Lejeune and Mahaux, 1970).

proved by the inclusion of a constant background term in
the expression for the R matrix. This term approximates
the effect of distance levels which are neglected in the
single-level expression. It was found to be important to
choose natural boundary condition parameters and a large
channel radius for the closed channel. In this case theory
gives a good description of the exact solution. The results
for the parameters listed in Table II are plotted in Fig. 3.
Here a& ——6.0 fm, B& ——0, B2———2.262, and a2 ——6.0 fm

F))
(barns)

0.75 ~==

0.50—

0.25—

3.025 3.050 3.075 E ( MyV)

FIG. 3. The full curve (1) represents the exact elastic scattering
cross section for the model parameters of Table II. Curve 2
represents the one-level approximation plus a constant back-
ground term evaluated at 3.050 MeV for a~ ——a2 ——6.0 fm,
Bl ——0, and B2———2.262. Curve 3 represents the one-level ap-
proximation plus a constant background term in channel 1 only
evaluated at 3.050 MeV for a~ ——6.0 fm, a2 ——12.0 fm, Bl ——0,
and B2———2.262 (from Lejeune and Mahaux, 1970).

2. Kapur-Peierls theory

The Kapur-Peierls dispersion theory has been discussed
in Sec. IV.A. This approach differs from the Wigner-
Eisenbud method in that outgoing wave boundary condi-
tions are applied to all open channels with the result that
the energy eigenvalues and eigenstates are complex and
energy dependent. As a consequence, the Kapur-Peierls
formalism has not found extensive application, although
the expression for the U matrix [Eq. (4.21)] is simpler
than the corresponding expression in the Wigner-
Eisenbud theory [Eqs. (4.17) and (4.26)].

Lejeune and Nagarajan (1970) have investigated the va-
lidity of the single-level approximation in the framework
of the Kapur-Peierls formalism using the two-channel
model of Eqs. (8.2) and (8.3). The results of their calcula-
tions for the model parameters of Table II and
a

&

——a2 ——6.0 fm are given in Fig. 4, where they are com-
pared with the exact solution. No background phase shift
was introduced to allow for the contribution from distant
levels. It is seen that the agreement between the exact and
the Kapur-Peierls value for the resonance energy is excel-
lent, although the magnitude for the peak cross section is
grossly overestimated.

Although the method does not preserve unitarity, it
was found that the resonance energy in the single-level
Kapur-Peierls formalism is practically independent of the
open-channel radius. Moreover, Lejeune and Mahaux
(1970) have shown, for the weak-coupling case, that the
violation of unitarity occurs mainly in the elastic channel.
For these reasons, they have suggested that for sharp res-
onances the Kapur-Peierls formalism is likely to be more
useful for multichannel resonance analysis than the
Wigner-Eisenbud method. However, in order to obtain a
satisfactory unitarized U matrix, Lejeune and Mahaux
found that it was necessary to employ essentially a two-
level approximation. In addition, the complications intro-
duced by the complex and energy-dependent boundary
conditions have limited the widespread usage of the
Kapur-Peierls approach.
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The effect of the Buttle correction (BCRM) in this
model has been investigated by Ahmad, Barrett, and Rob-
son (1976b) for two different values of the coupling
parameter. The results for an intermediate-coupling
strength using four levels/channel are shown in Table III
and Fig. 7 and for stronger coupling with six
levels/channel in Figs. 8 and 9. In each case, the Buttle
correction results in a marked improvement over the
SRM method. Channel radii a& ——az ——7.5 fm and boun-
dary condition parameters 8, =0 were employed.

An SRM calculation using the same weak-coupling
parameters as employed by Lejeune and Mahaux (1970)
has been carried out by Ahmad, Barrett, and Robson
(1976b). The results of these calculations using one
level/channel are given in Fig. 10. Provided that natural
boundary condition parameters are employed in the closed
channel, the resonance position and shape are well repro-
duced (curve SRM2). This is in agreement with the corre-
sponding results obtained with the Wigner-Eisenbud and
Kapur-Peierls methods.

0.25—
4. Extended R-matrix method

I

3.025 3.050
)

3.075 E (Me V )

FIG. 4. The exact elastic scattering cross section (curve 1) and
the one-level approximation Kapur-Peierls result (curve 2) for
a ~

——a2 ——6.0 fm. The model parameters of Table II are plotted
vs the incident energy (from Lejeune and Nagarajan, 1970).

3. Standard calculable R-matrix method

The standard R-matrix (SRM) method described in Sec.
IV.C has also been investigated using the two-channel
model of Eqs. (8.2) and (8.3) with the coupling potential
being treated as the residual interaction by Garside and
Tobocman (1969) and Ahmad, Barrett, and Robson
(1976b). The model parameters employed in these two
studies are listed in Table II.

The results obtained by Garside and Tobocman (1969)
for the elastic and inelastic scattering cross sections are
presented in Figs. 5 and 6 for a& ——a2 ——8.0 fm and
B& ——B2 ——0. The convergence of the SRM method is seen
to be quite slow, with 20 terms in the R-matrix expansion
still not producing an adequately converged result. While
the neglected distant levels may not be important for
determining the rapid energy variation of the coHision
matrix over a narrow resonance energy range, the
coherent effect of these terms is necessary to alter the
nonresonant background part of the collision matrix from
the otherwise hard-sphere scattering form. The Buttle
correction (see Sec. IV.D) to the SRM method allows in
an approximate way for the contribution of the neglected
distant levels.

Three extensive studies of the application of the extend-
ed R-matrix (ERM) method (see Sec. IV.F) to the coupled
square-well problem have been made by Garside and To-
bocman (1969), Schmittroth and Tobocman (1971), and
Philpott (1976).

In the first investigation the basis states were taken to
be eigenstates of the channel Hamiltonians T+V;;(r),
which fulfilled homogeneous boundary conditions at a ra-
dius r =a'. The channel radii a;=a were chosen such
that a & a', so that these eigenstates satisfied inhomogene-
ous boundary conditions at r =a. The results for a =6
fm, a'=8 fm, and the model parameters of Table II are
presented in Figs. 11 and 12. Comparison with Figs. 5
and 6 leads to two conclusions. First, the convergence of
the ERM method is faster than that of the corresponding
SRM calculation. Although this is partially aided by the
smaller channel radii, a nearly perfect fit to the exact
solution is obtained with only six levels in the R-matrix
expansion. Second, a narrow "spurious" resonance ap-
pears in the elastic scattering results for the ERM
method. This false resonance tends to disappear as the
number of levels in the R-matrix expansion is increased.

Schmittroth and Tobocman (1971) have also applied
the ERM formalism to the coupled square-well problem.
They have investigated the two formulations of R-matrix
theory involving the matrices R„and R«of Eqs. (3.15)
and (3.22), respectively, described in Sec. III.B. In the
latter case, the operator G defined in Eq. (3.6) and appear-
ing in the expression [Eq. (3.22)] for the R matrix was
calculated in two ways.

In the first method, the Hamiltonian was diagonalized
in a truncated set of harmonic oscillator basis states to
give a set of approximate Hamiltonian eigenfunctions

I 4& I with eigenvalues E~. The Careen's-function opera-
tor is then given by
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FIG. 5. 2mE(4m% ) ')& elastic scattering cross section for the model parameters of Table II, a~ ——a2 ——8.0 fm, and B~——B2——0.
Shown are the exact result and several SRM calculations (from Garside and Tobocman, 1969).
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where

(8.5)
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FIG. 6. 2mE(4m fi ) '&& inelastic scattering cross section for
the model parameters of Table II, a ~

——a2 ——8.0 fm, and
B~——B2——0. Shown are the exact result and several SRM calcu-
lations (from Garside and Tobocman, 1969).

(8.6)

Since the Hamiltonian H is not Hermitian for harmonic
oscillator basis states when integration is restricted to the
internal region, the diagonalization was carried out for
simplicity using Hamiltonian matrix elements calculated
by integration over all configuration space. The basic
idea of this approach is that direct use of Hamiltonian
eigenstates and eigenvalues provided by an independent
nuclear structure calculation could be employed. In the
second method, the matrix elements of E-H were evaluat-
ed over the finite volume of the internal region and then
the matrix was inverted at each required energy to obtain
the operator G. In a truncated basis space one would nor-
mally expect the diagonalization and inversion procedures
to give the same answer. However, the different regions
of integration employed for the calculation of the matrix
elements in the two techniques introduce a difference in
their respective rates of convergence. Calculations using
these methods are denoted by E-RM(DIACx) and
E-RM(INV), respectively, in Figs. 13—18.
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converge wi approx'th oximately ten levels/channel, provide
the inversion technique is used. For a smaller number o
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CM ENERGY (MeV)

FICx. 9. Total inelastic scattering cross sect'section for coupled
square-well model calculated by several methods for the param-
eters of Table II (see Fig. 8 caption for explanation of curves .
The result for the BD method including the energy correction is
indistinguishable from the exact calculation (from Ahmad, Bar-
rett, and Robson, 1976b).

(8.7)

and

G =(V—VG V) 'VG, (8.8)

respectively, where V denotes the optical potential matrix
with elements V;;6,J and G is the corresponding optical-
model Green's-function operator. Calculations using
these two forms to obtain the X-matrix operator

X=V+ VGV (8.9)

corresponding to the operator o Eq. 3.44) with the b,
term set to zero (see Appendix A) are denoted by X 1 and
X2, respectively, in Figs. 19 and 20. The third method
(denoted by XL) employed Eq. (3.24) for the operator G~,

improves the results but can lead to the appearance of
spurious resonances in the calculated cross sections. One
can show that with no optical potential both the E-
RM(INV) and L-OP techniques give the same results.
Figures 17 and 18 show that the inversion technique pro-
duces results which are distinctly more reliable than the
diagonalization procedure.

Schmittroth and Tobocman have also studied the X-
matrix forms of both R-matrix formalisms which have
been described in Sec. III.D. Figures 19 and 20 show typ-
ical results which they obtained for the elastic and inelas-
tic scattering cross sections using the intermediate-
coupling parameters of Table II. They employed three
methods to calculate the X matrix. In two of these
methods, the Careen's-function operator G of Eq. (3.6) was
represented by the relations (Hiifner and Lemmer, 1968;
Garside and Tobocman, 1969)

G =(V—VG V) ' —V

G =[H+W(b, ) —E] (8.10)
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FIG. 10. Total elastic scattering cross section for coupled
square-well model calculated by several methods for the param-
eters of Table II. Each method employed channel radii of 6.0
fm and only the basis state in each channel closest to 3.05 e
Curves SRM~ and SRM2 are SRM calculations with Bl ——B2 ——

h B =0 and natural boundary condition parameters in
closed channel 2, respectively (from Ahmad, Barrett, an o-
son, 1976b).

to obtain the corresponding X-matrix operator q.E . 3.43)

X = —V+VG V. (8.11)

In all three methods, the matrix elements were comput-
ed using the same harmonic oscillator basis as for the
ERM calculations of Figs. 13—18, and the parameters s,
of Eq. (3.35) were chosen equal to zero so that the X ma-
trix is identical with the E matrix of Sec. II.B.4. The
matrix calculations do not depend on the channel radii.
Companson wi'th Figs. 13 and 14 shows that the methods
Xl and X2 converge faster than the R-matrix calcu a-
tions even with the optical potential included and that
there is no problem with false resonances. On the other
h d for reasons which are not immediately apparent,an, or
the XI. method does poorly. It was found that false re
nances appear an cd onvergence is poor near narrow reso-
nances or near the threshold cusp in elastic cross sections.

In the calculations of Philpott (1976), both harmonic-
oscillator eigenfunctions and energy-dependent wave
functions obtained from the solution of the Schrodinger
equation or an af auxiliary potential were considere as
basis states. The auxiliary potentials were taken to be t e
channel potentials V~~ and V22, so that the residua in-
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fm. Shown are the exact result and ERM calculations for two levels (one level/channel) and six levels (three levels/channel) in the
R-matrix expansion (from Garside and Tobocman, 1969).

0.025 teraction was the coupling potential V~2. The energy-
dependent functions were defined to have radial wave
functions satisfying the following equations:

0.020-

and

(T„+V~; —E+Q5;2)v;(r) =0 (8.12)

0.015 ~
(T„+VI; E+ Q;5)2w;(r) +P;—V~;u;(r) =0, (8.13)

where T, is the radial kinetic energy operator. For open
channels, these functions satisfy the following relations at
large radii:

0OIO"

and

U;(r) =sin(k;r +5;) (8.14)

0.005 " m;(r) =cos(k;r +5;),
where

(8.15)

O I

35 4
I l I
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MOV

FIG. 12. 2mE(4m A )
' & inelastic scattering cross section for

the model parameters of Table II, a ~
——a2 ——6.0 fm and

a I
——a2 ——8.0 fm (see Fig. 11 caption for explanation of curves)

(from Garside and Tobocman, 1969).

k; =2m' (E —Q5;2) . (8.16)

The boundary constraint on to;(r) serves to determine the
constant factor P; of the term involving U;(r) in Eq.
(8.13), which ensures the linear independence of U; and w;.
Thus for each open channel the functions U; and m; pro-
vide two energy-dependent basis functions which are ca-
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FIG. 13. 2IE(4mA ) ')& elastic scattering cross section for ten-level (five levels/channel) R-matrix calculations for the model
parameters of Table II. The following methods are compared with the exact result: ERM with diagonalization, ERM with inver-
sion, ERM with inversion plus optical model, and W operator plus optical model. These curves are identified by E-RM(DIAG), E-
RM(INV), E-RM(INV) + O.M. , and I.-OP + O.M. , respectively. Each method employed channel radii of 7.0 fm and B,=O for
the W-operator result (from Schmittroth and Tobocman, 1971).

pable of describing all possible asymptotic forms of the
desired physical solution in that channel.

If channel 2 is closed, the asymptotic dependence is
described by a single energy-dependent function, which is
built upon the function w2(r), satisfying the asymptotic
form for large radii:

wz(r) =e
where

(8.17)

~ =-2m' (Q E) . — (8.18)

When no auxiliary energy-dependent functions were
employed, it was found that using four oscillator
functions/channel for the model parameters of Table II
and a& ——a2 ——6.0 fm already gives qualitative agreement
with the exact solution (see Figs. 21—24). Complete con-
vergence (not shown) was obtained for both eight and ten
oscillator functions/channel.

When the energy-dependent channel functions were in-
troduced, complete convergence was achieved in the
"intermediate-coupling" case with no additional oscillator
functions. In -the "strong-coupling" case, the same result

was achieved, using two additional oscillator functions.
Figures 21—24 also show results when the matrix ele-

ments of the residual interaction are treated more approx-
imately, by using a smaller basis set (N/channel) of har-
monic oscillator functions, than the remainder of the
operator H E(eight oscillator-functions/channel). The
curves illustrate the convergence of this method as the
number of contributing matrix elements of the residual
interaction is increased. It is seen that excellent agree-
ment with the exact result is obtained in all cases for
%=3. Complete convergence was found for X=4.

The resonance near 2.2 Me V in the intermediate-
coupling case (Fig. 21) is associated with a 3s quasibound
state in channel 2. Thus it is necessary to include this
state (i.e., %=3) before convergence can be expected. In
general, it is essential to include as many oscillator basis
functions as are necessary to account for the "structure"
problem associated with the internal region. The addi-
tional auxiliary energy-dependent functions are sufficient
to describe the "reaction" problem in each of the two-
channel regions, which otherwise would require a com-
paratively large number of higher oscillator functions. In
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FIG. 14. 2mE(4m. A ) ')& inelastic scattering cross section for ten-level (five levels/channel) 8-matrix calculations for the model
parameters of Table II (see Fig. 13 caption for explanation of curves) (from Schmittroth and Tobocman, 1971).

the latter case, the actual number depends rather critically
upon the channel radii employed. The use of the auxili-
ary functions causes the results to be essentially indepen-
dent of the channel radii.

This hybrid technique of Philpott is analagous to the
use of localized auxiliary sine functions by Nordholm and
Bacskay (1978) in their finite-element method as dis-
cussed in Sec. IV.E. The method (like the SRM ap-
proach) is noniterative and requires significantly fewer
matrix elements involving the residual interaction than
the corresponding SRM calculation. However, the basis
states are no longer completely energy independent.
There is no evidence in Figs. 21—24 of any spurious reso-
nances similar to those found by Garside and Tobocman
(1969).

5. Natural boundary condition methods

The Barrett-Delsanto (BD) (see Sec. V.C) and the itera-
tive R-matrix (see Sec. V.D) methods have been applied to
the coupled square-mell problem by Ahmad, Barrett, and
Robson (1976b). Both NBC methods produce identical
results, which are presented in Table III and Figs. 7—10
for the parameters of Table II. The basis states were tak-

en to be eigenfunctions of the channel Hamiltonians
T+ V;;(r). For the intermediate-coupling (Table III and
Fig. 7) and strong-coupling (Figs. 8 and 9) cases, four and
six basis states/channel were used, respectively. In these
cases, the channel radii were 7.5 fm. It was found that
the convergence of the NBC methods is considerably
better than either the SRM or BCRM methods for the
strong-coupling case. For the weak-coupling example
(Fig. 10) with channel radii of 6.0 fin, one level/channel
produced a result indistinguishable from the exact one.

The energy correction to the BD method (see Sec.
V.C.l) was also used, resulting in a significant improve-
ment in the corresponding calculations with little associ-
ated increase in computing time. For the intermediate-
coupling case, four levels/channel plus the energy correc-
tion with eight additional higher basis states/channel pro-
duced accurate results, and for the strong-coupling case,
six levels/channel plus six additional levels/channel treat-
ed in the energy correction were sufficient.

B. Neutron elastic scattering from ' C

The elastic scattering of neutrons from the ' C nucleus
below the inelastic scattering threshold has been often
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used as a test of reaction theories. The semimagic nature
of ' C results in a relatively large level spacing in the ' C
compound nucleus. As a consequence, a good theoretical
description of the experimental low-energy elastic scatter-
ing cross section is possible when only a few reaction
channels are treated explicitly. A number of coupled-
channels calculations based on either the shell model or
various collective models have been carried out. In some
cases, the same model has been employed in several in-
dependent calculations; we shall examine some of these
for comparative purposes. First, however, we shall con-
sider a parametrized multilevel R-matrix fit to the experi-
mental data.

Multilevel R-matrix fit

Westin and Adams (1971) have carried out a two-level
R-matrix fit to the ' C(n, n)' C total elastic scattering
cross section in the energy range 2.5—4.5 MeV (lab. ).
Their aim was to determine the resonance energies and as-
sociated reduced widths of the d3/2 double resonance
which exists in this energy region.

The two-level single-channel approximation to Eq.
(4.33), which may be written

R =Ro+ri(@'i —E) '+re(@'z —E) ' (8.19)

where 8'& and 5'2 are the resonance energies, yj and yq are
the reduced widths, and Ro is a background term
representing the contribution from all the other distant
levels, was used to fit the data as compiled by Stehn et al.
(1964). A preliminary potential scattering calculation
with a %oods-Saxon potential was performed to deter-
mine an optimum choice for the channel radius a and the
boundary condition parameter B such that the energy
dependence of the background term Ro was minimized.
The term Ro was not treated as an arbitrary parameter in
the R-matrix fitting procedure; instead the value obtained
from the potential scattering calculation was employed.

The calculation immediately revealed a major difficulty
associated with this method of resonance analysis. Fig-
ures 25 and 26 show two equally good fits to the data us-
ing quite different resonance parameters. These are listed
in lines 1 and 2 of Table IV, respectively. In using a mul-
tilevel R-matrix fitting procedure to determine the re-
duced widths, one can obtain significantly different re-
sults, depending on the arbitrarily chosen parameters a
and B. These differences propagate through to the spec-
troscopic factors associated with the resonances and hence
to the physical interpretation of the resonances.
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In a later paper, Westin and Adams (1973) investigated
the effect of using the extended R-matrix (ERM) formal-
ism for two-level fits to the elastic scattering cross sec-
tion. This approach allows one to employ different boun-
dary condition parameters for each level. In this case,
however, it is more difficult to calculate the background
term Ro, and the method results in a larger number of ar-
bitrary parameters for only a slight improvement in the
fit to the data. A typical set of results is presented in Fig.
27 for the parameters listed in lines 3 and 4 of Table IV.

The fact that the energies and reduced widths of levels
in the R-matrix theory are dependent on arbitrarily
chosen channel radii and boundary condition parameters
is well known. However, the calculated cross sections are
independent of these parameters provided that the series
expansion for the R matrix [Eq. (4.33)] has converged
adequately. An investigation by Barker (1972) has shown,
even when only a small number of terms is retained in
this expansion, that the cross sections can be made in-
dependent of the choice of boundary condition parame-
ters. It is not necessary, therefore, to treat these parame-
ters as adjustable. However, if the values of the resonance
energies and reduced widths obtained from a multilevel
R-matrix fit are to be compared with values calculated
from some nuclear model, the boundary condition param-

eters should be chosen to have the most appropriate
values. A common method in the single-channel case is
to set the boundary condition parameter equal to the shift
function [as defined in Eq. (4.4)] calculated at the average
energy of the resonances.

2. Standard calculable R-matrix method

~ =~I + T + +diag + ~coup1 ~ (8.20)

where HI is the internal part of the Hamiltonian giving
rise to the different target states and projectile states oc-
curring in channel

~

c) and T is the relative kinetic ener-
gy. The interaction consists of a part, Vd;,g, which is di-
agonal in channel sPace and a Part, V„„p1, which is not.
For the diagonal part of the potential, a real Woods-
Saxon potential plus a spin-orbit term of Thomas form
was used, and the coupling potential was described by a
derivative Woods-Saxon interaction with a coupling
parameter P, which is a measure of the permanent quad-
rupole deformation in the rotational model of Buck.

An early R-matrix calculation of the scattering of nu-
cleons from ' C was carried out by Buttle (1967). The
model employed was a collective model of Buck (1963) in
which the full Hamiltonian is
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Buttle investigated three levels of approximation in the
R-matrix method and compared his results with the cor-
responding coupled-channels calculations performed, us-

ing the program of Buck. In the first method (method I),
the basis states were taken to be eignstates of that part of
the Hamiltonian H which is diagonal in channel space,
and distant levels were ignored. This is the standard cal-
culable R-matrix method (SRM) described in Sec. IV.C.
In the second approximation (method II), the effect of
distant levels is partially included, using the Buttle correc-
tion (BCRM) of Sec. IV.D. In method III, distant levels
are taken into account by using distorted waves in the en-
trance and exit channels within the X-matrix formalism
of Sec. III.D. In this case, the optical potential employed
to describe the background was taken to be Vd;,g so that
the residual interaction was simply the coupling potential
V„„~~. The second term on the right-hand side of either
Eq. (3.41) or Eq. (3.42) gives rise to the conventional
distorted-wave Born approximation (DWBA) to the T
matrix [see also Eq. (6.80)]. The values of the parameters
a and B, were fixed at a =5.4 fm and B,=O. Little ef-
fect was observed by varying them. No attempt was
made to compare the results of any of the calculations
with the experimental data.

Figure 28 shows the results obtained by Buttle for the

' C(n, n)' C differential cross sections compared with the
"exact" coupled-channels calculation and the 0%'BA re-
sult in a nonresonant energy region. The inelastic scatter-
ing is to the 2+ first excited state in ' C at 4.433 MeV. In
the model, the target states were limited to the 0+ ground
state and this 2+ state. Three levels/channel were used in
the SRM method. It is seen that method I gives qualita-
tive agreement with the "exact" results but tends to
overestimate the elastic scattering forward peak. In-
clusion of the Buttle correction (method II) greatly im-
proves the results. Method III does not represent any im-
provement over the BCRM method. For the strong-
coupling case of Fig. 28, the DWBA is not a good first
approximation and method III gives poorer results than
method II. Furthermore, it was found that method III
sometimes gives rise to spurious resonances and therefore
is unreliable. Figure 29 shows some corresponding results
for the ' C(p,p')' C reaction in a resonant region. A
spurious resonance is clearly visible near 6.25 MeV.

3. Extended R-matrix method

The extended (or generalized) R-matrix (ERM) method
has been described in Sec. IV.F. It was first applied to
the elastic scattering of neutrons at low bombarding ener-
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gies (&4.4 MeV) by Purcell (1969b). Purcell employed a
model for the positive parity states of ' C, which consist-
ed of a neutron weakly coupled to a deformed axially
symmetric ' C core. The basis states for the construction
of the R-matrix comprised the simple rotator states for
the ' C target (limited to the 0+ ground state and 2+
4.433-MeV first excited state) coupled to the single-
particle neutron states assumed to be moving in a spheri-
cally symmetrical harmonic-oscillator potential. The use
of these harmonic-oscillator states results in a nonorthog-
onal basis set, necessitating the application of the ERM
formalism developed by Tobocman and co-workers (To-
bocman and Nagarajan, 1965; Nagarajan, Shah, and To-
bocman, 1965; Garside and Tobocman, 1968, 1969).

The results obtained by Purcell for a suitably chosen set
of model parameters are shown in Fig. 30. Here the cal-
culated total elastic scattering cross section for the reac-
tion C(n, n)' C, using four levels/channel, is presented
and compared with the experimental data. The conver-
gence of the method is illustrated in Fig. 31, where the
cross section for the d3/2 partial wave is plotted as a func-
tion of the number of basis states/channel (Nr). Little
change is observed as Nr is increased above four, indicat-
ing that the procedure has converged satisfactorily. The
channel radius was set at 5.7 fm.

A similar calculation to that of Purcell was performed
by Robson and van Megen (1972b), in which both the R-
matrix theory and the Feshbach (1958, 1962) unified
theory were studied. In this case, however, the
harmonic-oscillator potential used by Purcell for the neu-
tron single-particle well is replaced by a more realistic
Woods-Saxon potential. The results for this calculation
are shown in Fig. 32 for two different values of the chan-
nel radii.

In the calculations both of Purcell and of Robson and
van Megen, the calculated width of the d3&2 resonance
near 3.3 MeV is too small. This discrepancy is attributed
by Robson and van Megen to the neglect of the distant
levels, which is a consequence of the severe truncation of
basis states and to the inadequacy of the model Hamil-
tonian. Robson and van Megen used up to two
levels/channel.

To remove any ambiguity created by the inadequacy of
the physical model employed for the ' C system, Philpott
and George (1974) have performed an ERM-type calcula-
tion using a collective model due to Reynolds et al.
(1968). The latter authors used this model in a coupled-
channels calculation to obtain a good fit to the low-energy
elastic scattering ' C(n, n)' C data. An R-matrix or, for
that matter, any reaction theory "alculation should give
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identical results to the corresponding coupled-channels
calculation, if identical model parameters are used in both
cases. The model of Reynolds et aL is similar to the col-
lective model employed by Robson and van Megen
(1972b), except that the internal ' C excitations are
represented by the surface oscillations of a liquid drop in-
stead of the rotation of a deformed core. The single neu-
tron moves in a %'oods-Saxon potential.

The results obtained by Philpott and George are shown
in Fig. 33 and are essentially identical to those of the
coupled-channels calculation. Philpott and George em-
ployed eight harmonic-oscillator functions/channel for
the single-neutron basis states, and the channel radii were
7.0 fm. The convergence of the method as the number of
basis states is increased is illustrated in Fig. 34. It is seen
that in this case eight basis functions/channel are re-
quired for satisfactory convergence. In addition, it was
found that the rate of convergence depends on the choice
of the channel radius, with the best choice being such that
the internal and external logarithmic derivatives of the
wave functions in each channel are as nearly matched as

possible.
In some cases, it was found that the convergence of the

method is initially quite rapid but does not last beyond a
certain finite number of functions. In this mode, the
method is only semiconvergent. This semiconvergence
arises in the work of Philpott and George for two reasons.
First, for simplicity, the radial integrals involving the nu-
clear Woods-Saxon potential were not terminated at the
channel radius and, second, the nuclear potential was
omitted (as is usual) from the "asymptotic" external wave
function. Apparently, the higher-order harmonic-
oscillator basis functions penetrate to larger radii where
the tail of the nuclear potential, although very small, is
not sufficiently negligible and a significant error may be
introduced into the calculation. Thus to avoid the semi-
convergence problem, special care is necessary in dealing
with the tail of the interaction. However, Philpott and
George conclude that the ERM method, despite its ulti-
mate divergence as the number of harmonic-oscillator
basis states is increased, is a viable and accurate tool for
the calculation of nuclear reaction cross sections.
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FIG. 25. A fit to the d3/2 double resonance in ' C(n, n)' C us-
ing the R-matrix formulation. The dots are the experimental
data from Stehn et al. (1964), and the solid line is a fit using the
parameters in line 1 of Table IV (from Westin and Adams,
1971).

reaction theories using the R-matrix approach in compar-
ison with coupled-channels calculations and represents a
major attraction of the R-matrix method.

Figure 35 shows some typical results for the
' C(n, n)' C total cross section calculated by Mori (1973),
using a two-body interaction (BJ) due to Blatt and Jack-
son (1949), which are compared with both the experimen-
tal data and calculations employing matrix elements ob-
tained with a macroscopic phenomenological form factor
for quadrupole deformation (Mori and Terasawa, 1972).
The calculations included antisymmetrization either ex-
actly (DE) or by using renormalized matrix elements
(DN). It is seen that the resonance widths of the higher-
energy resonances are too small compared with the exper-
imental values even when the channel radius is reduced to
5.0 fm. This discrepancy is probably attributable to the
small number of levels (four) per channel used in the cal-
culations. The same comment also applies to the earlier

calculations of Robson and van Megen (1972a, 1972b), in
which similar results were obtained. Both sets of results
are analogous to those of Philpott and George (1974)
presented in Fig. 34, when only four levels/channel are
employed. The resonance widths are very sensitive to the
scattering wave function of the system near the channel
entrance surface, and a sufficient number of harmonic-
oscillator basis functions must be used to adequately
represent the scattering wave function near the channel
radii. On the other hand, some of the discrepancy may
arise from the use of an inadequate model Hamiltonian.
The calculations of Mori show that antisymmetrization
effects can be important.

4. Natural boundary condition methods

The weak-coupling collective model of Reynolds et al.
(1968) has also been used by Ahmad, Barrett, and Robson
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FIG. 24. 2mE(4m% ) '&& inelastic scattering cross section for
the model parameters of Table II (see Fig. 21 caption for ex-
planation of curves) (from Philpott, 1976).
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FIG. 26. A fit to the d3&2 double resonance in ' C(n, n)' C using
the R-matrix formulatiOn. . The dots are the experimental data
from Stehn et al. (1964), and the solid line is a fit using the
parameters in line 2 of Table IV (from Westin and Adams,
1971).
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TABLE IV. Parameters for the d3/2 double resonance.

a (fm) B2 Ro 8'& (MeV) 8'2 (MeV) yl (keV) y2 (keV)

5.5
5.5
5.5
5.5

—0.926
—0.561
—0.810
—0.870

—0.926
—0.561
—0.810
—0.760

0.21
0.21
0.0
0.0

2.95
2.90
2.95
2.95

3.50
3.30
3.50
3.50

68
180
90
78

460
440
593
640

(1976a) to investigate the convergence of two natural
boundary condition (NBC) methods. The first of the
NBC methods is essentially the Barrett and Delsanto
(1974) approach (see Sec. V.C), while the second is the
iterative R-matrix method discussed in Sec. V.D. A
Woods-Saxon potential was employed in these calcula-
tions to generate the single-particle basis states.

The results of the two NBC methods are essentially
identical and are presented in Fig. 36. Satisfactory con-
vergence was obtained using only two levels/channel. Ini+ 3+
Fig. 37 the sum of the J"=—, and —, contributions to
the total cross section for the reaction ' C(n, n)' C calcu-
lated by the NBC methods is compared with the corre-
sponding result of Philpott and George (1974) obtained
with the ERM theory. In the NBC methods only one
level/channel was employed, while the ERM calculation
used eight harmonic oscillator states/channel. A compar-
ison of Figs. 31, 34, and 37 illustrates the very rapid con-
vergence of the NBC methods.

Figure 38 shows a comparison of the relative conver-
3 +

gence of the NBC and SRM methods for the J = —,

contribution to the total elastic neutron cross section of
' C. In this case, the channel-coupling parameter of the
model of Reynolds et al. was increased by a factor of
about 5 in order to give a more stringent test of the
methods. The channel radii were set at 7.2 fm, and boun-

C' (n, n) C'

9 MeV

400. 'i

l

P ~ 0.4

EXACT
--—METHOD I

---—METHOD Nl—---- METHOD III

DWBA

dary condition parameters B,=0 were employed in the
SRM calculations. The NBC methods give convergence
using two levels/channel, while the SRM results, with
four levels/channel, have not fully converged.

Several points emerge from consideration of the con-
vergence properties of the NBC methods. First, the cri-
terion for optimum convergence formulated by Philpott
and George in the case of the ERM theory is automatical-
ly satisfied by the NBC basis states at each energy. In
fact, the success of the iterative R-matrix method, which
depends explicitly on the natural boundary condition
parameters providing the best rate of convergence, implies
that such boundary conditions require the minimum
number of basis states for a given Hamiltonain. Both the
Buttle correction to the SRM method (see Sec. IV.D) and
the additional variational correction proposed by Zvijac,
Heller, and Light (1975) (see Sec. VI.B) vanish automati-
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FICr. 27. Various ERM fits to the two — interfering levels in
' C(n, n)' C. The dots are the experimental data from Stehn et
al. (1964). The solid curve uses the parameters in line 1 of
Table IV but with Ro ——0.0. The dashed curve uses the parame-
ters in line 3 of Table IV, while the dot-dashed curve is from
line 4 of Table IV (from Westin and Adams, 1973).

FIG. 28. Differential cross sections for ' C(n, n)' C at 9 MeV
with strong coupling (P=0.4). The solid curve is the exact re-
sult. Three levels/channel are included in the various calcula-
tions: METHOD I (SRM), METHOD II (8CRM), and
METHOD III (X matrix), and the boundary conditions are
a =5.4 frn, B,=O. The dashed curve is the DWBA result
(from Buttle, 1967).
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FIG. 31. Cross section for d3/2 partial wave as a function of
the number of oscillator basis states/channel (Nr) (from Purcell,
1969b).

cally when n.b.c. parameters are used.
In applying the NBC methods, the Barrett-Delsanto ap-

proach requires no more than four iterations to determine
the n.b.c. parameters; the iterative R-matrix method also
requires only a few iterations at most energies, although
when B, approaches + oo, some numerical difficulties are
experienced. These can be easily overcome (Ahmad, Bar-
rett, and Robson, 1976a).

Recent application and extension of the Barrett-
Delsanto approach to nuclear reaction problems has been
made by Delsanto and co-workers (Delsanto and Quarati,
1976, 1978, 1979; Delsanto, Pompei, and Quarati, 1977),
and Ahmad (1978, 1979) has further developed and ap-
plied the iterative R-matrix method.

C. Low-energy electron-helium scattering

The elastic scattering of low-energy ( ~ 19 eV) electrons
from the helium atom has received considerable experi-
mental and theoretical attention. From an experimental
point of view, it is desirable to have a standard reference
cross section for the precise calibration of electron scatter-
ing apparatus. Helium is a promising choice for the
standard, because it is chemically inert and because the
scattering cross section is free from structure below 19
eV. Helium also presents a challenging problem to theor-
ists, because it is sufficiently simple that an ab initio cal-
culation of the e -He scattering cross section can be con-
templated with some hope of accurately describing the ex-
perimental data. In this section we shall describe the vari-
ous ab initio calculations which have been made using the
reaction theories previously discussed in this paper, and
we shall discuss the comparison of the calculated results
with the experimental data.

Experimental measurements

E (Mev) —M
l I l

I 2
FIG. 30. Total cross section for ' C(n, n)' C. The upper curve
and scale show the experimental total neutron cross section.
The lower curve and scale show the result of an ERM calcula-
tion using four oscillator functions (length parameter b =1.67
fm)/channel and channel radii of 5.7 fm (from Purcell, 1969b).

Until recently an uncertainty of approximately
10—15% existed in the experimental determination of the
e -He elastic scattering cross section (Bederson and
Kieffer, 1971). The direct measurements of Golden and
Handel (1965) were in disagreement with the results of
Crompton and co-workers (Crompton, Elford, and
Robertson, 1970; Milloy and Crompton, 1977). The latter
group employed an electron swarm technique which
necessitates a considerable amount of numerical analysis
of the experimental data. A discrepancy of 10—15 Jo is
obviously undesirable in a cross-section measurement
which is to be used as a standard reference.

Since 1974, however, there have been a considerable
number of new direct measurements (Andrick and Bitsch,
1975; Kauppila et a/. , 1977; Stein et a/. , 1978; Kennerly
and Bonham, 1978; Blaauw et a/. , 1980; Charlton et a/. ,
1980), which are all in agreement to within a few per cent
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FIG. 32. Total elastic scattering cross section for R-matrix method using Woods-Saxon basis states (one level/channel) for channel
radii of 6.0 and 7.0 fm (from Robson and van Megen, 1972b).

with the measurements of Crompton and co-workers.
Figure 39, which is reprinted from Blaauw et al. (1980)
indicates the state of agreement of the post-1970 experi-
ments. The existence of reliable experimental data pro-
vides an opportunity for a meaningful test of ab initio cal-
culations and an investigation of the number of excited
states of helium to be included in the close-coupling ap-
proximation. We shall now look in some detail at the
various approaches to the solution of this coupled-
channels problem.

2. R-matrix method

The application of the R-matrix method to problems in
atomic physics was pioneered by Burke, Hibbert, and
Robb (1971). This topic has been reviewed (Burke and
Robb, 1975), and the approach is being extended to

electron-molecule collisions (Burke, Mackay, and
Shimamura, 1977). The specific application of the R-
matrix method to electron-helium scattering has been
made by Burke and Robb (1972) and O' Malley, Burke,
and Berrington (1979).

In the earlier work, the static exchange approximation,
in which the helium atom is confined to its ground state
throughout the collision process, was used. This is a fair-
ly simple model which neglects the polarization of the
atom produced by the incoming electron. The polariza-
tion effect is important and can be treated by the in-
clusion of inelastic excitations of the helium atom. In
particular, the 2p excitation is largely responsible for the
dipole polarizability of the atom. Instead of including the
continuum of 2p, 3p, . . . , etc., physical states, it is often
preferable to include one state to represent as nearly as
possible the complete p-wave continuum. This state is re-
ferred to as the 2p pseudostate.
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FIG. 33. Total elastic scattering cross section for ' C(n, n)' C
calculated by the ERM method from a coupled-channels model
with parameters chosen by Reynolds et al. (1968) to fit the ex-
perimental data over the energy range from 0 to 5 MeV. The
ERM calculation employs eight (nine for s-wave channels) oscil-
lator functions/channel. The channel radii are 7.0 fm and the
oscillator length parameter b =1.67 fm (from Philpott and
George, 1974).

In the latter, much more sophisticated R-matrix calcu-
lation of O' Malley, Burke, and Berrington (1979), and a
multiconfiguration helium ground state was used, and
pseudo P and D states were constructed from optimized
ls through to 4f pseudo-orbitals. The estimated error in
the calculated cross sections is about 1%. The results of
this calculation are compared with the experimental data
for the momentum-transfer cross section and the total
elastic scattering cross section in Figs. 40 and 41, respec-
tively. As can be seen, the agreement between the theoret-
ical and experimental results is excellent.

3. Natural boundary condition methods

2 3
E (Mev)

I, . ~

2 3
E, (Mev)

FIG. 35 ~ Total neutron cross sections from ' C: (a) experimen-
tal [from Reynolds et al. (1968)] and calculated ones by (b)
macroscopic matrix elements with a (=a)=5.6 fm; (c) with
a =5.0 frn and by BJ potential with (d) DE matrix elements
and a =5.6 fm; (e) DN matrix elements and a =5.6 frn; and
(f) DE matrix elements and a =5.0 fm. The calcu1ations em-

ployed four oscillator functions (length parameter b = 1.67
fm)/channel (from Mori, 1973).

+
3/

has been made by Barrett and Robson (1979). Both the
Barrett-Delsanto and iterative R-matrix methods (see
Secs. V.C and V.D) were used, and the results of both
techniques were found to be in excellent agreement with
one another. Two models were employed for the

An application of the NBC approach to electron-
helium scattering at low bombarding energies (& 10 eV) Z0

~5
c/)0

4—

30

gl ~

I I0
0 t 2 5

(Mev)

1+ 3+FIG. 34. Calculated J =— and — contributions to the total

elastic neutron cross section from ' C plotted against energy for
various numbers of oscillator functions/channel. The channel
radii are 7.0 fm and the oscillator length parameter b = 1.67 fm
(from Philpott and George, 1974).

I I t I

0 1 2 3 4
C~ ENERGV (~eVj

FIG. 36. Total elastic cross section for ' C(n, n)' C. The curvesj+ 3+ 5+are (a) experiment, (b) sum of the J = 2, 2, and
2

contri-

butions calculated by the NBC methods with two basis
states/channel for the weak-coupling collective model of Rey-
nolds et al. (1968) (from Ahmad, Barrett, and Robson, 1976a).
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1 + 3 +FIG. 37. Sum of J =— and — contributions to the total

elastic cross section for ' C(n, n)' C, calculated by the NBC
methods with one basis state/channel, compared with the ERM
result of Philpott and George (1974) with eight harmonic-
oscillator states/channel for the weak-coupling collective model
of Reynolds et al. (1968) (from Ahmad, Barrett, and Robson,
1976a).

FIG. 38. Calculated J = — contribution to the total elastic

cross section for ' C(n, n)' C using the SRM method for
8,(—:b ) =0 in all channels with two or four basis
states/channel, compared with the NBC methods with two basis
states/channel for the collective model of Reynolds et al. (1968)
with the deformation parameter increased to P=0. 168 (from
Ahmad, Barrett, and Robson, 1976a)~
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FIG. 39. Total cross sections for electron-helium elastic scattering: , Blaauw et al. (1980); 0, Andrick and Bitsch (1975); Q, Gol-
den and Bandel (1965);,Kauppila et al. (1977);,Kennerly and Bonham (1977);,Crompton, Elford, and Robertson
(1970); ~ ~ -, Ramsauer and Kollath (1932); )( X )& )&, Bruche, Lilienthal, and Schrodter (1927); —- —.—., Ramsauer (1921a,
1921b); - - -, Normand (1930); ——,Brode (1925) (from Blaauw et al., 1980).
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FICi. 40. Momentum-transfer cross sections for electron-helium
elastic scattering plotted against wave number and energy:0, variational calculation of O' Malley, Burke, and
Berrington (1979); ——~ —., variational calculation of Sin-
failam and Nesbet (1972); ———,experimental results of
Crom pton, Elford, and Robertson (1970) and Milloy and
Crompton (1977) (from O' Malley, Burke, and Berrington, 1979).

electron-helium system: (i) the static exchange approxi-
mation and (ii) the ls-2p approximation in which virtual
excitation of a p-wave pseudostate of the target is allowed.
In both cases, the helium atom ground state was described
by a Hartree-Fock wave function assuming a simple ( is)
configuration, and exchange effects were fully taken into
account in the calculation of the s- and p-wave phase
shifts. Convergence of the NBC treatment was achieved
with four radial quantum numbers/channel for channel
radii of 6 a.u. The higher partial wave phase shifts were
calculated using the Born approximation.

The results of the calculations are compared with the
experimental total elastic scattering cross section and
momentum-transfer cross section in Figs. 42 and 43,
respectively. It is seen that the agreement with experi-
ment is good, considering the simplicity of the models
employed. The p-wave phase shifts were found to be
more sensitive than the s-wave phase shifts to the details
of the model representing the helium atom. This ac-
counts for the better agreement obtained for the total elas-
tic scattering cross section than for the momentum-
transfer cross section, which is affected more by the p-
wave and higher partial wave phase shifts.

The above calculations were the first application of the
NBC methods to an atomic system and demonstrated that
these methods provide a useful approach to such prob-
lems. Furthermore, the calculations indicate that the ex-
tension of the NBC methods to include particle exchange
effects, while nontrivial, is nevertheless essentially
straightforward.

4. Variational calculations

An early variational calculation of the low-energy
e -He scattering cross section based on the Kohn varia-
tional method (see Sec. VI.A) was made by Sinfailam and

6 0.

Op

5.02

0.3 ~.0 3.0 6.0
Electron energy {eV)

a

UJ

0 5-

FIG. 41. Total cross sections for electron-helium elastic scatter-
ing plotted against wave number and energy: 0
variational calculation of O' Malley, Burke, and Berrington
(1979); —- —- —., variational calculation of Sinfailam and Nes-
bet (1972); ---, theoretical semiempirical result of O' Malley
(1963); ———,older experimental results of Golden and Bandel
(1965); W, recent experimental results of Kennerly and Bonham
{1978)(from O' Malley, Burke, and Berrington, 1979).

ENERGY (eV)

FIG. 42. Total cross section for electron-helium elastic scatter-
ing. The data points are derived from the momentum-transfer
cross section measurements of Crompton, Elford, and Robert-
son (1970) and Milloy and Crompton (1977). The broken and
full curves are the predictions of the static-exchange and 1s-2p
models, respectively (from Barrett and Robson, 1979).
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Crompton (1977). The broken and full curves are the predic-
tions of the static-exchange and 1s-2p models, respectively (from
Barrett and Robson, 1979).

10

Nesbet (1972). The so-called "optimized anomaly free"
modification of Kohn's method (Nesbet and Oberoi, 1972)
was employed. The polarization and correlation effects
were taken into account using Bethe-Goldstone equations
(see Nesbet, 1980) in which all significant virtual excita-
tions of a single-target 1s orbital were included. The basis
states for the one-electron orbitals were chosen to have ex-
ponential radial form factors r" exp( —ar) with both a de-
creasing geometric sequence and an increasing arithmetic
sequence of coefficients a. Exchange symmetry was fully
taken into account. The results of the calculation are
compared with the data available at the time in Figs. 44
and 45.

A variational calculation of similar scope to the above
has been performed by Wichmann and Heiss (1974) using
the 1s-2s-2p close-coupling approximation. They em-
ployed both the Kohn and inverse-Kohn techniques. The
results of the two methods were identical to at least three
figures, implying that there were no problems with singu-
lar matrices. Up to 15 trial functions were used to
describe the scattering wave function. The p and d phase
shifts obtained by Vhchmann and Heiss are appreciably
lower than those of Sinfailam and Nesbet. This was attri-
buted to a difference in the choice of the helium wave
function in the two calculations. The results of the Wich-
mann and Heiss calculation for the total cross section are
shown in Fig. 46, where they are compared with the mea-
surements of Golden and Bandel (1965). The calculated
cross section is in fact larger than these early experimen-
tal results and is in much better agreement with the more
recent data shown in Fig. 39.

A recent, much more sophisticated calculation using
the Kohn variational procedure has been carrried out by
Nesbet (1979a, 1979b). This work is comparable in scope
and complexity with the R-matrix calculation of
O' Malley, Burke, and Berrington (1979) discussed in Sec.

15
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FIG. 44. Total cross section for electron-helium elastic scatter-
ing. The data points are the measurements of Cxolden and Han-
del (1965). The solid curve shows the variational calculation of
Sinfailam and Nesbet (1972); the dashed curve denotes the
static-exchange close coupling calculation of Burke, Cooper,
and Ormonde (1969), and the open circles are the results of Cal-
laway et al. (1968) using the polarized orbital method (from
Sinfailam and Nesbet, 1972).

VIII.C.2. The variational wave function represents
target-atom electronic correlation, electric dipole and
quadrupole polarizability response, and short-range
electron-atom correlation at a level of accuracy sufficient
for 1% accuracy in the differential scattering cross sec-
tion. Levels up to 5s, 5p, 51, and Sf were included in the
excited-atom wave function.

The results of Nesbet's calculation are displayed in
Figs. 47 and 48. The agreement with experiment is seen
to be excellent, and it would appear that the e -He
scattering cross sections at bombarding energies ~ 19 eV
are now known both experimentally and theoretically to a
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FIG. 45. Momentum-transfer cross section for electron-helium
elastic scattering. The data points are the measurements of
Crompton, Elford, and Jory (1967) and Crompton, Elford, and
Robertson (1970); 0 denotes the variational calcula-
tion of Sinfailam and Nesbet (1972) (from Sinfailam and Nes-
bet, 1972).
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FICx. 46. Upper portion: elastic e-He scattering from ground
state; dashed curve denotes the experimental results of Cxolden

and Handel (1965); solid curve shows the variational calculation
of Wichmann and Heiss (1974). Lower portion: elastic e-He
scattering from 2 5 state; data points are the measurements of
Neynaber et al. (1964); solid curves are the variational results of
Wichmann and Heiss (1974) {from Wichmann and Heiss, 1974).

precision of several percent. The earlier disagreements be-
tween experimental results and between experiment and
theory have been removed.

Although most of the variational calculations of
electron-atom scattering have been made using the
Hulthen-Kohn and associated methods, the Schwinger
variational method (see Sec. VI.D) has been applied to
e -He scattering by Lucchese and McKoy (1979). How-
ever, their calculation is more in the nature of a test of the
Schwinger approach than an attempt to accurately
describe the experimental data. The results obtained by
Lucchese and McKoy using the static exchange approxi-
mation to represent the electron-helium system are in
good agreement with the corresponding calculation of
Sinfailam and Nesbet (1972). Lucchese and McKoy claim
that the Schwinger variational approach gives accurate re-
sults with small discrete basis sets. The method has been
applied to an exactly soluble multichannel problem by
Takatsuka and McKoy (1980), and it was found to yield
accurate results with a convergence superior to those of
other variational methods. Its application to more realis-
tic physical problems is expected in the near future.

D. a-a elastic scattering

In Sec. VII we have outlined several ways in which the
generator coordinate method (GCM) has been combined
with one or other of the calculable reaction theories to en-
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FIG-. 47. Total and momentum-transfer cross sections for
electron-helium elastic scattering. Full curves: variational re-
sults of Nesbet (1979a, 1979b); P and O calculated and estimat-
ed values, respectively, of Q'Malley, Burke, and Berrington
(1979); S o.T, Kauppila et al. (1977) and o.~, Crompton, El-
ford, and Robertson {1970);,Andrick and Bitsch {197S); 4,
Sinfailam and Nesbet (1972) (from Nesbet, 1979b).

0.20.0 0.4 1.2

able the numerical computation of composite particle
scattering cross sections. In this section we shall describe
the application of these techniques to o.-a elastic scatter-
ing. The a-n system has often been used as a test of the
various methods because of its relative simplicity involv-
ing identical clusters, which are well represented by ( Is)
closed-shell model configurations and because the high
energy of the first excited state of the a particle ensures
that the inelastic reaction channels can be reasonably
neglected at sufficiently low bombarding energies.

Direct solution of Hill-Wheeler equation

It was seen in Sec. VII.A that the formulation of the
GCM leads to the Hill-Wheeler equation [Eq. (7.15)], an
integral equation for the GC amplitude or weight func-
tion f'"'(S). In what is probably the most direct ap-
proach towards a solution, de Takacsy (1972) transformed
this integral equation into a set of algebraic equations by
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FIG. 48. Differential cross sections for electron-helium elastic
scattering. Full curves are variational results of Nesbet (1979a,
1979b). The data points are the measurements of Andrick and
Bitsch (1975) scaled to give the same total cross section as the
calculation of Nesbet (from Nesbet, 1979b).

a discretization of the range of integration over the in-
teraction region and the use of a Gauss-Legendre quadra-
ture formula (see Sec. VII.B). The result is a set of simul-
taneous linear equations for the GC amplitude at each of
the discrete points. de Takacsy applied this method,
neglecting the Coulomb interaction, to the a-u elastic
scattering problem to demonstrate the usefulness of the
approach. In the external region, he assumed that the
partial-wave GC weight function could be represented in
terms of regular and irregular spherical Bessel functions
by the relation

fi(S)=JI(kS)+n&(kS) tan(5I —, ln), —.(8.21)

where k is the wave number for the relative motion and 5~

is the phase shift. A typical set of mesh points was ob-
tained by using spacings 0.3 fm for the range 0&S &2.4
fm and 0.6 fm for the range 2.4&S&6.0 fm (=So),
while the integral over the external region was performed
with a step size of 0.6 fm for the range 6.0 &S & 12.0 fm.
A four-point Gauss-Legendre quadrature formula was
employed for each step. de Takacsy concluded that this
direct solution of the Hill-%'heeler equation provides a
practical method for composite particle scattering.

Tanabe, Tohsaki, and Tamagaki (1973), using the de
Takacsy method, pointed out that one can include the
Coulomb interaction in the u-a elastic scattering problem
by assuming that in the asymptotic region one can express
the partial-wave GC weight function in terms of Coulomb

Oi
0 20

I

30 E„~(M+V)

FIG. 49. The a-a phase shifts calculated by direct solution of
the Hill-Wheeler equation using a harmonic-oscillator length
parameter b =1.38 fm for the 1s orbitals and the Volkov force
1 (Volkov, 1965). The dashed curve was calculated without, the
solid curve with the Coulomb interaction. The crosses represent
the experimental values (from Friedrich, Husken, and Weiguny,
1974).

wave functions:

fi(S)=F~(kS)+ GI(kS) tan5I . (8.22)

They also found it unnecessary to employ as many mesh
points as de Takacsy.

Friedrich, Husken, and Weiguny (1974) also extended
the method of de Takacsy to include the Coulomb in-
teraction using a different and more complicated repre-
sentation of the asymptotic GC weight function. Their
results, employing 14 mesh points equidistant in the range
0(S(12.0 fm, a harmonic oscillator length parameter
b =1.38 fm for the 1s orbitals, and the Volkov force 1

(Volkov, 1965), are shown in Fig. 49.
Apart from the difficulty of obtaining an appropriate

form of the GC weight function to give the correct
asymptotic boundary condition on the scattering wave
function, the direct solution of the Hill-Wheeler equation
also has convergence problems associated with the singu-
lar character of the weight function (Giraud and LeTour-
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neaux, 1972): As the mesh size decreases, the amplitudes
f~(S; ) oscillate more and more violently. Lumbroso
(1974, 1976) has avoided this trouble by formulating the
problem in a momentum representation. He has calculat-
ed the a-a elastic scattering phase shifts for 1=0, 2, 4,
and 6 partial waves using a Volkov force 2 with Majorana
component m =0.56 for the nucleon-nucleon interaction
and a harmonic-oscillator length parameter b =1.36 fm.
The results are shown in Fig. 50. Comparison of Figs. 49
and 50 shows a substantial disagreement between the two
sets of results, although similar models were used. How-
ever, the results of Lumbroso appear to be in close agree-
ment with those of Tanabe, Tohsaki, and Tamagaki
(1973) (not shown), implying that the de Takacsy method
provides a satisfactory approach to composite particle
scattering. The above discrepancy has been investigated
by Beck et al. (1975b), who employed a variational tech-
nique which will be discussed in the next section.

2. Variational techniques

As indicated above, the direct procedures for solving
the Hill-Wheeler equation are not ideal. The use of a

momentum representation involves much labor and the
formulation in coordinate space tends to be unstable. The
disagreement between the results of Friedrich et al. and
Lumbroso motivated the development by Beck et al.
(1975a) of an alternative technique employing the Kohn
variational method (see Sec. VI.A). This approach has
been discussed in Sec. VII.B.2.

The Kohn variational method has been applied by Beck
et al. (1975b) to a-a elastic scattering and their results
for the l =0 phase shift are shown in Fig. 51. It is seen
that good agreement is obtained with the earlier work of
Lumbroso when a Volkov force 2 is used (curve 1), but
that there is considerable disagreement (curve 2) with the
results of Friedrich et al. (curve 3). Both curves 2 and 3
employed a Volkov force 1 and nearly the same oscillator
length parameters, b =1.36 and 1.38 fm, respectively.
However, Friedrich et al. used a Majorana component
m =0.60, while Beck et al. employed m =0.55. Thus
the disagreement in the calculated results could be due to
the use of different exchange parameters. Beck et al.
concluded that the discrepancy may arise from different
approximations made in introducing the scattering boun-
dary condition into the Hill-Wheeler equation and that

ii 5(r ad)

~ ~ ~ ~ e ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~~ ~ ~ ~ + ~ '~ ~ 0 ~ ~ ~ ~
~ + 0~ ~ ~ ~ ~ ~ ~

e e ~
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20 30 40 50

FECx. 50. The a-o. phase shifts for 1=0(+), 2(+), 4(), and 6()&) partial waves calculated by Lumbroso (1974, 1976) using a
momentum representation for the direct solution of the Hill-Wheeler equation. A Volkov force 2 with Majorana component
m =0.56 for the nucleon-nucleon interaction and a harmonic-oscillator length parameter b =1.36 fm were used (from Lumbroso,
1976).
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FICr. 52. The a-a elastic scattering phase shifts for l =0, 2, and
4 partial waves. The solid curves are the calculations of Canto
and Brink (1977), and the points denote the phase-shift analysis
results of Afzal, Ahmad, and Ali (1969) (from Canto and Brink,
1977).
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FIG. 51. The a-a phase shift for the l =0 partial wave. Curves
1, 2, and 4 denote calculations of Beck et al. (1975b) using the
Kohn variational method with a Volkov force 2, a Volkov force
1, and the Brink-Boeker force B1, respectively. Curve 3 shows
the results of Friedrich et al. (1974) with a Volkov force 2. The
crosses represent the experimental values (from Beck et al.,
1975b).

those of Friedrich et al. may not be quite adequate. Fig-
ure 51 shows that while the Volkov forces 1 and 2 give
nearly the same result (curves 2 and 1, respectively), the
potential B 1 of Brink and Boeker (1967) gives quite a dif-
ferent result (curve 4). Thus the result is quite sensitive to
the nucleon-nucleon interaction employed.

Other calculations based on Kohn variational methods
have been carried out by Mito and Kamimura (1976) and
Canto and Brink (1977). The results of Canto and Brink
obtained with their method 2 (see Sec. VII.C.2), using a
Volkov force 1 with Majorana component m =0.55 and
an oscillator length parameter b =1.36 fm, are shown in
Fig. 52, where comparison is made with the phase-shift

analysis of Afzal, Ahmad, and Ali (1969). In the varia-
tional calculation, seven mesh points and a channel radius
a =7.0 fm were employed. The corresponding phase
shifts obtained by Canto and Brink in their method 1 (see
Sec. VII.B.2) are almost the same as those of method 2.
This is shown in Table V, where the convergence of the
two methods is compared for the I =0 phase shift. In
this table, N; denotes the number of internal mesh points
used, NJ the total number of mesh points used for
method j, and Sp the corresponding l =0 phase shift in ra-
dians. Overall, the convergence of method 2 seems
preferable, although both techniques appear to require the
same number of internal mesh points, which for larger
clusters will mainly determine the amount of computing
time involved in the calculation. It was found that the re-
sults of both methods were stable to changes in the chan-
nel radius a~ within the range 6.1—11.6 fm, provided a
sufficient number ( ) 3) of internal mesh points was used.

3. Microscopic R-matrix method

The microscopic R-matrix method (MRM) (see Sec.
VII.C.1) has also been applied to a-a elastic scattering by

TABLE V. Convergence of l =0 phase shifts at E, = 1, 12, and 20 MeV.

1 MeV
$2

12 MeV
$2

20 MeV

12
10

8
5

—0.456
—0.458
—0.464
—0.547
—0.768

—0.459
—0.464
—0.470
—0.473
—0.507

—0.334
—0.354
—0.339
—0.407

0.189

—0.335
—0.341
—0.357
—0.415
—0.833

—1.101
—1.167
—1.090
—0.985
—0.243

—1.104
—1.106
—1.108
—1.132
—1.398
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Horiuchi (1970) and Baye and Heenen (1974). For simpli-
city Horiuchi evaluated the Hamiltonian and overlap ma-
trix elements by integration over all configuration space
rather than the required interaction region. This approxi-
mation is analogous to the method E-RM(DIACx) of
Schmittroth and Tobocman (1971) described in Sec.
VIII.A.4. However, it leads to a strong dependence of the
results on the channel radius. Baye and Heenen avoided
the approximation made by Horiuchi and obtained satis-
factory results for the 1 =0, 2, 4, and 6 partial waves.

Figure 53 shows their results (curve 1) for the 1=0
phase shift compared with those obtained by Lumbroso
(1976) (curve 2) and Friedrich, Husken, and Weiguny
(1974) (curve 3) (see Sec. VIII.D.1). Baye and Heenen
used a Volkov force 1 with Majorana component
m =0.56 and an oscillator length parameter b =1.36 fm.
The same model was also employed by Tanabe, Tohsaki,
and Tamagaki (1973) as described in Sec. VIII.D.1, and
their results (not shown) are very close to curve 1. Curve
4 shows the corresponding results using Horiuchi's ap-
proximate treatment of the matrix elements. It is seen
that this curve oscillates around curve 1, becoming less re-
liable with increasing energy.

Baye and Heenen attributed the differences in the re-
sults to the use of either different nucleon-nucleon in-
teractions or more approximate treatments: Lumbroso
calculated the Coulomb matrix elements approximately,

and Friedrich et ah. used only 14 mesh points, compared
with the 32 mesh points of Tanabe et a/. In the MRM, it
was found that only four mesh points were necessary for
convergence. This is one of the main advantages of the
MRM compared with direct solutions of the Hill-Wheeler
equation. Another is that only numerical values of the
GC kernels are required, since there is no need for further
integral transforms of these kernels. This allows the
Coulomb matrix elements to be computed without ap-
proximation.

4. Natural boundary condition method

A combination of the NBC and GC methods has been
developed for the treatment of composite particle scatter-
ing by Baldock, Barrett, and Robson (1979). This tech-
nique has been described in Sec. VII.D. The basic differ-
ence between this approach and that of the MRM dis-
cussed above is that the GCM is used to generate basis
states for the solution of the many-body Schrodinger
equation rather than the solution of the Schrodinger equa-
tion itself. This difference ensures that there is no prob-
lem associated with numerical instabilities arising from
the singular character of the GC weight function. In ad-
dition, the NBC method automatically carries out the
projection over angular momentum, which is a separate
procedure in the other methods.

5.0

2.0

I.O

0.0,
Ec~(M@V)

-I.O—

-2.0—

-'5.0—

FIG. 53. The a-a phase shift for the l =0 partial wave. Curve 1 (solid curve): MRM calculation of Baye and Heenen (1974); curve
2 (short-dashed curve): calculation of Lumbroso (1976); curve 3 (dot-dashed curve): calculation of Friedrich, Hiisken, and Weiguny
(1974); curve 4 (long-dashed curve): calculation of Baye and Heenen (1974) with the method of Horiuchi (1970) (from Baye and
Heenen, 1974).
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The results of an NBC calculation (Baldock, 1980) for
a-a elastic scattering using a Volkov force 1 with Majora-
na component m =0.56 and an oscillator length parame-
ter b =1.36 fm are shown in Figs. 54 and 55 (solid
curves). Also shown for comparison are the phase-shift
analysis results of Afzal, Ahmad, and Ali (1969) and the
corresponding calculations of Canto and Brink (1977)
(dashed curves) and Baye and Heenen (1974) (dot-dashed
curves) which have been described in the previous sec-
tions, VIII.D.2 and VIII.D.3, respectively. Both these
calculations employed the same model as the NBC calcu-
lation, except that the exchange parameter was slightly
less (m =0.55) in the case of Canto and Brink. It is seen
that the NBC results are in good agreement with the ear-
lier calculations. It was found that the phase shifts were
independent of the channel radius for r ~ 5.5 fm, provid-
ed a sufficient number of basis states was employed. For
energies &30 MeV and a =6.0 fm, only three basis
functions were required. At higher energies, converged
phase shifts were obtained with only three basis states,
provided the energy correction of Sec. V.C.1 was ern-

ployed.

5. Discussion

5„
(rad)

2.0-

0.0

5,
(rad)

2.0-

0.0

(rad)
2.0-

0.0
10 20 30

CM ENERGY (MeV)
40

From the previous sections, it is apparent that there are
several useful techniques for the application of reaction
theories to the calculation of composite particle scattering
cross sections and that the use of these methods is a viable
alternative to the direct solution of the Hill-%'heeler equa-
tion in the LCM. In general, the methods have been ap-

5,
(rad)

2.0—

0.0

FIG. 55. The O.-a phase shifts for l =2, 4, and 6 partial waves
(for further details see Fig. 54 caption) (from Baldock, 1980).

plied successfully to o.-a elastic scattering. However, in
the case of larger clusters, the neglect of inelastic channels
usually cannot be justified and the resultant increase in
the complexity of the scattering problem leads to large
and very tedious calculations. Nevertheless, some prog-
ress in this direction is being made (Baye, Heenen, and
Libert-Heinemann, 1978), although only qualitative agree-
ment with experiment is possible with the simple models
employed. The extension of the methods to more realistic
models involving different oscillator length parameters
and more complicated shell-model configurations is ham-
pered by a further large increase in the complexity of the
many-body microscopic calculations. It seems likely that
the use of more realistic models will become possible only
if an adequate approximate treatment of the Pauli princi-
ple can be found.

-2.0- E. Conclusion

$0
I

20 30
CM ENERGY (MeV)

40

FICx. 54. The a-a phase shift for the I =0 partial wave. Solid
curve denotes the NBC calculation of Baldock (1980) using a
Volkov force 1 with Majorana component I =0.56 and an os-
cillator length parameter b=1.36 fm. The dashed and dot-
dashed curves are the calculations of Canto and Brink (1977)
and Baye and Heenen (1974), respectively. The points denote
the phase-shift analysis results of Afzal, Ahmad and Ali (1969)
(from Baldock, 1980).

In this section we have investigated the application of
calculable reaction theories to four selected problems in
different areas of physics. In each of these applications,
the reaction theory techniques have provided attractive al-
ternatives to the direct solution of a system of coupled in-
tegrodifferential equations.

A comparison of the results when different methods are
applied to the same scattering problem indicates that
most of the methods are accurate if sufficient basis states
have been included in the calculation. However, the rate
of convergence of the various approaches can be quite dif-

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



218 Barrett, Robson, and Tobocman: Calculable methods for many-body scattering

ferent, and the practicability of a given method needs to
be investigated in the context of the problem being stud-
ied before a decision is made as to which technique
represents the optimum procedure for obtaining the solu-
tion.

Of all the calculable theories investigated, the natural
boundary condition (NBC) methods have the fastest rate
of convergence with increasing number of basis states.
However, these methods suffer from the disadvantage of
requiring basis states which are energy dependent and
which therefore must be calculated at each energy of in-
terest. Thus sophisticated computer programs are re-
quired and have been developed to enable the basis states
to be determined very quickly. The eigenchannel method
(see Sec. V.B) was the first of the NBC procedures to re-
ceive wide application. Its use (Barrett and Delsanto,
1971) for the calculation of photon absorption in Pb in-
volved the solution of a 31 coupled-channels problem.
The Barrett-Delsanto method (see Sec. V.C) has supersed-
ed the eigenchannel method because it represents a sub-
stantial improvement in terms of the computing time in-
volved to achieve the same result. This method also
permits —via the energy correction of Sec. V C.1—
allowance to be made for the effect of neglected higher
levels with a consequent improvement in accuracy.

The R-matrix approach was developed in nuclear phys-
ics but is now receiving considerable attention also in
atomic and molecular physics. In general, the conver-
gence of the standard calculable R-matrix (SRM) method
(see Sec. IV.C) is quite poor. However, the use of the But-
tle correction (see Sec. IV.D) greatly improves the accura-
cy of this technique with only a small increase in the nu-
merical complexity and should therefore be regarded as a
mandatory requirement of the SRM method. The itera-
tive R-matrix method (see Sec. V.D), which is equivalent
to the Barrett-Delsanto method, optimizes the basis states
to maximize the rate of convergence in an R-matrix cal-
culation and is thus worthy of consideration in such an
approach.

The extended R-matrix (ERM) method was developed
primarily to enable the use of harmonic oscillator basis
functions, which are widely employed in bound-state nu-
clear structure calculations, to be carried over directly
into scattering calculations. Thus this approach has been
employed mostly in low-energy nuclear physics. For such
problems, the ERM method has enjoyed considerable suc-
cess, although care must be exercised to ensure that prop-
er convergence has been obtained. It was found that ap-
proximations (see Secs. VIII.B.4 and VIII.D.3) in which
the Hamiltonian and overlap matrix elements are calcu-
lated by integration over all configuration space, so that
direct use can be made of shell-model bound-state calcula-
tions, rather than only the required interaction region, are
unsatisfactory. The ERM method converges faster than
the SRM method but the Buttle correction is no longer
available to correct for distant levels. However, the con-
vergence rate of the ERM approach can often be im-
proved by using either an optical potential, which may
lead to spurious resonances, or auxiliary energy-dependent

wave functions to allow a better description of the scatter-
ing wave function in the channel region (see Sec.
VIII.A.3). Calculations based on the X matrix formalism
(see Sec. III.D) appear to converge faster than the ERM
calculations even with an optical potential included and
do not give rise to false resonances (see Sec. VIII.A.3).
This is true provided that the calculation is done by solv-
ing the Lippmann-Schwinger equation [inverting
V—VG V in Eqs. (8.7) and (8.8)] rather than by solving
the Schrodinger equation [inverting H +W(b, ) E i—n
Eq. (8.10)].

The variational approach (see Sec. VI) is an old tech-
nique, which is currently receiving considerable applica-
tion in nuclear, atomic, and molecular physics, and high-
precision results have been obtained.

In this section, we have presented selected examples of
the application of the various calculable reaction theories
discussed previously in this review. The advantage to a
particular investigator of one method over another de-
pends to a large degree on the problem under investiga-
tion and the availability of computer software. It is ap-
parent, however, that most of the methods are satisfacto-
ry when properly applied so that they represent viable al-
ternatives to the more direct approach, which involves the
numerical solution of a system of coupled integrodifferen-
tial equations.

In Sec. VII.A.4 we have seen that the calculations of
Schmittroth and Tobocman indicate that X-matrix for-
malism calculations can give very good results provided
they are based on solution of the Lippmann-Schwinger
(LS) equation rather than the inversion of FX+W E. —
The LS equation is the dynamical equation for the X ma-
trix. We designate formalisms based on the solution of an
equation for the transition operator as transition operator
formalisms to distinguish them from the R-matrix for-
malisms which are based on the evaluation of the inverse
of E —H or H+W —E.

In Sec. III.D we saw how the R-matrix formalism can
yield an expression for the collision matrix in terms of a
transition matrix operator X. The result followed from
the use of the iterated resolvent relation for the Green's-
function operator. We now address the task of deriving
the resolvent relation and obtaining dynamical equations
for the transition matrix operator.

Our analysis is based on the use of an explicit expres-
sion for the partition Green s-function operator. This will
be the following spectral decomposition:

G = g ~
c)g, (r, r' )(c ~, for r, r' &a

cuba

where

g, (r, r') = —2A' 'u, (r ( )v, (r ) ),
v, (r) =h, (r) —s,u, (r),

(9.1)

(9.2)

(9.3)

and r & (r & ) is the smaller (larger) of r and r'. The radial

IX. CALCULABLE TRANSITION OPERATOR FORMALISM
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u, (r )
(H E—)

i
c) ' '=0

v, (r )
(9.4)

functions u, and v, are regular and irregular eigenstates
of the partition o. Hamiltonian:

P G=G +G (V +h)G (9.12)

or

vent equation relating them to the system Green's-
function operator. This is found by multiplying Eq.
(9.10) on the right or left by G and using Eq. (3.6). The
result is a generalized resolvent relation:

1 d
2 ra

2m' ra dr

l, (l, +1)
2ra

+U~(r )

and are solutions of the radial wave equation
GPp=Gp+G( Vp b)G—p,

where

h=H —H =Ha —Ha=Hp —Hp .

(9.13)

(9.14)

Z(1)Z(2) 2

fa
'=0 .

v«(r~)
(9.5)

u, (r )- m-
C

1/2

r~ ' sin(8, +5, ) (9.6)

The background potential U~ is a real short-range func-
tion of r~, which is introduced to provide an additional
degree of flexibility in the formalism. For open channels,
the asymptotic forms of these radial functions are

The 5 arises because G and the partition Careen's-function
operators fulfill different asymptotic boundary condi-
tions. The presence of the projectors is due to the fact
that the partition Careen's-function operator Ga is non-
vanishing only in that part of the internal region which is
projected onto by P .

In Appendix A we shall present arguments supporting
the claim that the 6 terms in the resolvent relations be-
come negligible in the limit as the channel radii all be-
come very large. Therefore, we shall ignore such terms in
what follows and take the resolvent relations to be

and

m-
u«Qr~)-

1/2

r ' cos(8,-+5,-)—s,-u,—,

where

and

k,-=(2m,-R E,-)'~

0,—=k,-ra —g,—ln2k,-ra ——,l,-'IT'

(9.7)

(9.8)

(9.9)

P G=G +G VG

GPp ——Gp+ GVpGp .

If we substitute Eq. (9.16) into Eq. (9.15), we find

Pa GPp ——GaPp+ GaXapG p,
where

Xap ——V + VaGVp .

(9.15)

(9.16)

(9.17)

(9.18)

P~= g ~c)(c
~

cuba
(9.11)

P is clearly the projector on to the cylindrical volume
within which Ga exists.

To incorporate these partition Green's-function opera-
tors into the scattering formalism we need a kind of resol-

The phase shift 5,— is due to the potential U and the
Coulomb interaction, and the remaining quantities are as
defined in Sec. II. The parameters s,—in Eq. (9.7) can be

adjusted to give the desired asymptotic form. The choice
s, = —i gives pure outgoing wave asymptotic behavior.

The partition Green's-function operator G~ of Eq. (9.1)
is defined to be nonzero only in that part of the inside re-

gion where the channel states ~c)(cuba) are nonvanish-

ing. This region is a cylinder in configuration space hav-

ing as its cross section the partition a channel entrance.
On the sides of this cylinder G~ will fulfill the same
homogeneous boundary conditions as those imposed on
the channel states

~

c) at the outer boundary of channel
entrance a. Thus Eq. (3.27) must be replaced by

G (E H)=(E H~)G—=P~, — (9.10)

where

The quantity X p is the reaction matrix operator of Eq.
(3.44). If Eq. (9.17) is substituted into Eq. (3.22) for the R
matrix (the projection operators being quite appropriate in
that expansion), which in turn is inserted into Eq. (3.23),
the result is

Z,-' —,—,' =v, (a~)[5,,-(s, +—i—)X.—,-, ]-e—. (9.19)

where

X~;.———2R '(u,—iX p iu, . ) (9.20)

is identical with Eq. (3.48) with the ket defined by Eq.
(3.39).

If all the parameters s,—are equal to —i, the matrix X is

equal to the T matrix of Eq. (6.72) multiplied by a phase
—~(8,+8,, )

factor —e ' ' . In this case, the reaction matrix
operator X p of Eq. (9.18) becomes the transition matrix
operator Tap, which satisfies the relation

T pC,'+'=V +,'+' (c'eP) . (9.21)

Thus, noting that the states @,-' —' defined in Sec. IV. D are
just
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+8- +l8-
2e '~ u,-) =2e '~ c)u, (r ),

we can write Eq. (6.72)

(8,+8,, )= —X—,eCC (9.22)

where

=5,—,—,—2i( T~, .+ T, , , ), — (9.23)

'8, .
T,—,—,= —5,—,—,e 'sin5,— (9.24)

is the background potential transition amplitude. For
s~——0 (all c ) and U~ =0, X is the reactance or K matrix of
Sec. I!.B.4.

Finally, we shall derive dynamical equations for the re-
action matrix operator. This is done by substituting the
resolvent relations of Eqs. (9.15) and (9.16) into the defini-
tion of the operator X~p [Eq. (9.18)]. When the resolvent
relation of Eq. (9.15) is used, we find

X~p= V~+ V (1 Pr)GVp+—V~PrGVp

= V [1+(1 Pr)GVp+ Gr( —Vp —Vr)+ GrXrp],

(9.25)

and when Eq. (9.16) is used, we obtain

X~p=V~+ V G(1 Pr)Vp+ V —GPrVp

= V + V~G(1 Pr)Vp+X rGrV—p . (9.26)

If one sets (1—Pr) equal to zero in the above equations,
the result is what we shall call the Lippmann-Schwinger
equations for the reaction matrix operator:

and

X p = V~+ V Gr( Vp —Vr)+ V~GrXrp

= V~GyGp + V~GyXyp

= V~ Gr(E IIp ) + V GrXrp—

(9.27a)

(9.27b)

X~p ——V~+X~yGy Vp . (9.27c)

Equations (9.27) refer to the "post" form of the reaction
m, atrix operator. The "prior" form would have resulted if
we had derived Eqs. (9.17) and (9.18) by substituting Eq.
(9.15) into Eq. (9.16) instead of doing the reverse. The
"prior" form of the equations is

X p
——Vp+ V~GVp (9.28a)

Vp+ V GyXyp

=G 'Gy Vp+X~y Gy Vp . (9.28c)

(9.28b)

Substituting Eq. (9.22) into Eq. (3.49) for the collision
matrix gives

zi8,
U,—,—,=5,—,—,e '—2iT,—,—,

The equations of the above calculable transition opera-
tor formalism are identical in form with the equations of
the conventional version of many-body scattering theory
derived using a time-dependent approach (see, for exam-
ples, Ekstein, 1956; Kouri, Kriiger, and Levin, 1977b).
However, the definitions of the Green's-function opera-
tors differ in a significant way. The partition Greens-
function operator G& implicitly contains the projector P&,
which approaches the identity as the channel radii become
very large. In conventional many-body scattering theory
the Green's-function operators contain a convergence
parameter ic., which is associated with the extension of
the wave packets used to define the scattering wave func-
tion. The limit i c,~ 0 is to be performed on the final re-
sult, and special care is required when this limit is per-
formed on expressions containing products of Green's-
function operators.

The similarity of the equations in both the "calculable"
and "conventional" formalisms is a consequence of
neglecting terms containing (1—Pr) and b, in the former
approach. Clearly it is necessary to justify the neglect of
these terms. Arguments justifying such neglect are
presented in Appendix A.

X. BKLT EQUATIONS

A. The 8KLT reaction matrix operator equations

We have succeeded thus far in relating the collision ma-
trix U to a reaction matrix operator X. The elements of
the reaction matrix operator are related to each other by a
set of inhomogeneous linear integral equations, the
Lippmann-Schwinger (LS) equations. However, the LS
equations displayed in Eqs. (9.27) resist any direct at-
tempt at solution.

Equations (9.27) represent a very large set of coupled
integral equations due to the complete freedom one has in
the choice of indices a, P, and y. The kernel of each of
the equations is a nonconnected operator so that it cannot
be compact. In addition, while the set of equations as a
whole embodies the complete set of asymptotic boundary
condition constraints, this may not be true of particular
subsets. Thus single LS equations or arbitrary sets of
these equations will generally be unsatisfactory choices
for scattering dynamical equations. The selection must be
made with some care.

The Baer, Kouri, Levin, and Tobocman (BKLT) equa-
tions represent a selection of LS equations which should
provide a set of dynamical equations that are soluble by
standard methods. The BKLT method consists of choos-
ing a set of LS equations such that all two-cluster parti-
tions are coupled to each other sequentially in a closed cy-
cle. By including all two-cluster partitions, one uses all
two-cluster partition Green's-function operators, and thus
reference is made to every channel entrance. This brings
all the asymptotic boundary condition constraints into
play. By requiring sequential cyclic coupling we force the
equations to be of the connected kernel type.
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a+ 1 =P,
P+ 1 =y=a+2,

and

f+ 1 =co=a+~—1,

co+ 1 =a=a+~ . (10.1)

On the basis of this sequence we select the following
equations from those that can be obtained from Eq.
(9.27b):

Let us use the greek alphabet to represent a particular
arbitrary cyclic ordering of the set of~ two-cluster parti-
tions:

X= g (VWG)"VWGUG +(VWG)~X (10.8)

Wap 5——a p+1, P&~,
=5 1, P=~. (10.7)

The matrix U has every element equal to unity. The rna-
trix 8' the partition coupling array, has all elements
equal to zero except for a single one in each column and
each row. In W none of the unit elements falls on the di-
agonal. The W given by Eq. (10.7) is a particular exam-
ple of the general W just described.

%'e shall now demonstrate that when the BKLT equa-
tions are successively iterated ~—1 times they become
decoupled equations with connected kernels (Tobocman,
1974b). Iterating Eqs. (10.4) and (10.5)~—1 times gives

Xa& = VaGa —]G& + VaGa —]Xa—[p, a,p = 1,2, . . .,~ .

(10.2)

and

n=0
(10.9)

Equations (10.2) and (10.3) are two alternative formula-
tions of the BKLT many-body scattering formalism.
Equation (10.3) was first proposed by Baer and Kouri
(1973) for the three-body problem. Later, Kouri and
Levin (1974) formulated Eq. (10.2) for the three-body
case. Subsequently, Tobocrnan (1974a) gave the many-
body generalization and pointed out that this generaliza-
tion was a connected kernel formalism which employed
the complete set of asymptotic boundary condition con-
straints. This is a consequence of the fact that there is an
equation for each two-cluster partition in which the ker-
nel contains the associated partition Green s-function
operator. The asymptotic boundary condition constraints
are imposed when the inhomogeneous term of each in-
tegral equation is appropriately specified.

To help demonstrate that the above integral equations
are connected kernel equations we shall introduce a ma-
trix notation. The reaction matrix operators X p are the
elements of a matrix in "partition space. " Thus, taking
Ga and Va to be the elements of operator matrices G and
V which are diagonal in partition space, we can write Eqs.
(10.2) and (10.3)

X= VS'GUG + VS'GX (10.4)

Alternatively, from all the equations which can be ob-
tained from Eq. (9.27c) by changing the indices, we select
the following:

Xpa = Vp +Xpa+ & a+ & Va ~

(10.3)

respectively, When we say these equations are decoupled,
we mean that the same element of the X matrix appears
on both sides of the equations. This follows because the
kernels in Eq. (10.8) and (10.9) are diagonal matrices:

[(VWG) '
]ap

( VaGa —1 Va —1Ga—2 Va —.v+1Ga —W)5a —.~,p

(10.10)

and

[(GWV)" ]ap

(Ga Va —1Ga—1 Va —2 Ga —M+1 Va —W)5a —~,p
(10.11)

These are diagonal, since a —~=a.
To see that the kernels displayed in Eqs. (10.10) and

(10.11) are connected operators we note first of all that
the residual interaction V for every two-cluster partition
is contained as a factor in each kernel. Consequently, in
every term of the kernel there is a factor for each particle
of the system which is a function of the displacernent of
that particle from some other particle of the system. The
same statement is true for every cluster of particles as
well. Thus every term of the kernel depends on the rela-
tive position of every particle and every cluster. There-
fore, the kernel is a connected operator.

A third set of dynamical equations results when Eq.
(9.27a) is used as the starting point:

Xap Va + Va Ga —1 ( Vp Va —1 )+ Va Ga —1xa—lp t

and

X= VU+XG8'V, (10.5)

a~p = 1~2~. . .~M .

In matrix notation this becomes

(10.12)

respectively. Here U and 8'are numerical matrices given
by

X=VU+ VWG(UV —VU)+ VWGX . (10.13)

Uap ——1, (10.6)
This equation is an alternative to the Baer-Kouri and
Kouri-Levin formulations. It shares with the Baer-Kouri
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formulation the property that its first-order approxima-
tion is the usual Born approximation VU rather than the
RS'term given by the Kouri-Levin formulation.

(@(+)) ~(+) 8 C,(+) (k ~y) (10.21)

An alternative set of wave-function equations can be
derived from Eq. (10.5), which has the formal solution

B. The BKLT and LS wave-function equations

(Hr E)@k—+'=0 (key) (10.14)

having unit current incident in channel k( H y) and purely
outgoing current in all other channels. So we define sys-
tem wave-function components that show the effect of
the reaction matrix operator acting on such a distorted
wave:

In this section we shall show how the BKLT reaction
matrix operator equations can be transformed into a set of
coupled wave-function equations. Ultimately, as shown
in Eq. (9.22), one calculates the matrix element of the re-
action matrix operator with respect to "distorted"-wave
functions @k ', i.e., regular solutions of Eq. (9.4):

I=VU(3. —GIVV)

Substituting this equation into Eq. (10.19) yields

VI(V(I)'+ ' = VU( I —6W'V) 'e'+ '

Then defining

8 %(k) ——UX(k)
(+) (+)

X(k) =(I —GWV) @Ik)

=4(k) +6%VX(k)(+) (+)

In component form these equations read

(10.22)

(10.23)

(10.24)

(10.25)

(10.26)

(10.15)

Combining this equation with Eq. (10.2) gives the result

(+) —— (+)=@k ~ay+ Ga Vcr% a —1k (10.16)

where we have used the Lippmann identity (Lippmann,
1956). See Appendix B for a proof of the Lippmann iden-
tity. More explicitly, we have the following ~ integral
equations:

(+) —— (+)+ak Ga Va +cok

+pk ——GpVp+ k
(+) (+)

(+) —— (+)
(10.17)

(10.18)

Equations (10.15) and (10.16) have a convenient form in
matrix notation. Equation (10.15) is

4 N(k) ——VS"P(k)(+) (+)

while Eq. (10.16) is

4'(k) ' ——G UG N(k) '+ G VS'0'(k) ',
where

(10.19)

(10.20)

At first sight it appears that the elements of the wave-
function matrix can be identified with the system wave
function itself. It seems that the greek letter subscript on
the system wave-function component is superAuous.
However, following the definition we have chosen for the
partition Cireen's-function operators [Eq. (9.1)], it would
seem that these components should more properly be
identified with projections of the system wave function,
1.e.,

where

(+) (+) (+)+ak ~ay+k +Ga Va —1+a—1k (10.27)

( )~ (+) (+) (+)+ —(Xgk )Xp/( )Xyk &
~ ~ ~ )(k) (10.28)

(Ilk+'=(1+GVr)@'k+' . (10.30)

This result is valid for the case where G fulfills causal or
outgoing wave asymptotic boundary conditions. The cor-
responding expression for a general choice of G is given
by Tobocman (1972).

From Eq. (10.30) we have

qp(+ ) GG
—1@(+) Ggc (+ ) (10.31)

Operating with P on this equation and using the resol-
vent relation of Eq. (9.15) gives

(10.32)

This equation is identical in form with the conventional
Lippmann-Schwinger wave-function equation except for

These coupled wave-function equations derived from the
BKLT reaction operator equations are due to Hahn,
Kouri, and Levin (1974). In Eq. (10.26) we have ignored
the projector I' . Thus Eqs. (10.26)—(10.28) must be un-
derstood to hold in the region of configuration space
where all the projectors P,Pp, . . . overlap.

We shall end this section by deriving the calculable
transition operator formalism analog of the LS wave-
function equations. %'e can do this by defining the
scattering wave function 0''k+ ' by [Eq. (9.21)]:

T C,(+) V y(+) (k ~ ) (10.29)

Then from the definition of T given by Eq. (9.18) when
all the parameters s,-= —i, one can deduce that
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the presence of the projection operator P~ and the defini-
tion of G [Eq. (9.1)].

C. Alternative many-body scattering theories

Several other many-body scattering formalisms have
been proposed in addition to the BKLT theory and we
shall briefly describe some of these.

The formalism of Chandler and Gibson (1977) yields
the following dynamical equations for the elements of the
transition matrix:

P VpP +P V~(JJ ) g g GrP T
c "Cy

(10.33)

Go =(E—T) (10.35)

The operator Kr is the y-connected part of the reduced
scattering operator

Z.'&'= V, + V,G,m, , (10.36)

where 7 r——P —Vr. Thus to evaluate the BRS kernel, it
is necessary to calculate the transition amplitude for X
free particles to scatter into a partition o, channel when
the Hamiltonian is Hy ——T+1 y and then to find that
part of it which has corinectivity y.

The BRS equations are similar to the Faddeev three-
body equations in that in place of the residual interaction
Vy and partition Green's-function operators G~ one finds
reduced scattering operators and free-particle propaga-
tors. However, in the Faddeev equation the reduced
scattering operator is the readily calculable two-particle
transition operator, while for the BRS many-body equa-

Here P, (P,—,)—is the projector on to channel c Ha (c 'H p)
and J is the projector onto that part of Hilbert space
spanned by the asymptotic states 4,-'+'. The attractive
feature of this equation is that GrP, „appear-s in place of
Gr so that only those terms in the spectral decomposition
of Gy belonging to open channels need to be included.
The disadvantages are the difficulty in interpreting and
calculating the quantity (JJ )

' and the fact that the ker-
nel does not become connected upon iteration.

In the formalism of Bencze (1973), Redish (1974), and
Sloan (1972) (BRS), the dynamical equations for the ele-
ments of the transition matrix operator are

T~p Vp+ Q IC——r GOTrp . (10.34)
r

Here V~ is the sum of those interaction potentials which
are internal to partition P and external to partition a and
Gp is the free X-particle Green's-function operator

tion it is a rather complicated many-body operator.
In any many-body theory it is necessary to use the solu-

tions of reduced or fewer-than-N-body problems as input
for the calculation of the %-body transition operators. In
the BKLT and Chandler-Gibson theories, this fewer-
than-N-body information is contained in the partition
Green's-function operators. To construct 6 one needs
all the eigenstates of H~. It is expected that those eigen-
states of H~ which have energies closest to the energy of
the X-body system being analyzed will make the most im-
portant contribution. Thus in these theories one might
expect that in dealing with Hamiltonian eigenstates of re-
latively low excitation one might be better able to use
physical intuition to obtain appropriate models and ap-
proximations than one would in dealing with the opera-
tors K'~o' of the BRS kernel.

Finally, we shall mention the formalism of Yaku-
bovskii (1967). In this method, one is obliged to solve a
hierarchical set of equations for operator matrices whose
indices label chains of partitions. Consequently, the num-
ber of equations to be solved increases rapidly with the
number of particles in the system. However, the great ad-
vantage of the Yakubovskii formalism is the fact that the
solution of the equations is unique. In the other many-
body scattering formalisms, one has the possibility of the
admixture of spurious solutions w'hich could be generated
in a numerical calculation. The possibility of finding
spurious solutions for the BKLT equations is discussed in
Sec. XV.

In this article we shall discuss in more detail only the
BKLT formalism, which is mathematically the simplest
of all the many-body T-matrix formalisms that have been
proposed so far. This approach also has the advantage
that it is particularly simple to introduce into the BKLT
equations the few cluster and the restricted basis approxi-
mations.

XI. VARIATIONAL PRINCIPLES FOR TRANSITION
AMPLITUDE

In this section we shall present some variational func-
tionals for the many-body transition amplitude. The re-
quirement that these functionals be stationary will be ful-
filled by requiring that the variational scattering wave
functions be solutions of either the ~ simultaneous
Lippmann-Schwinger (LS) equations [Eq. (10.32)] or the
coupled Hahn-Kouri-Levin equations [Eq. (10.25)]. Vari-
ational principles of this kind have been published by To-
bocman (1974b) and by Kouri and Levin (1975a). Howev-
er, the functionals that are presented in these papers have
some unsatisfactory aspects (Goldflam, Thaler, and To-
bocman, 1981). The variational functionals presented
here, therefore, will be alternative forms which avoid
these difficulties.

A. Variational functional based on LS equations [Eq. (10.32)]

Consider the following functional for the transition amplitude:

(4,-'', '
I
ApVpGpV

I @,'-+')(N,-', '
I VpG V A

I
4,-''+')
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where

(11.2)
=(G~ —V )G V 0'

and channels c and c ' belong to partitions a and P,
respectively. The states 4,-'' —' are trial wave functions
corresponding to the states O',-' —'. An arrow over
6 ' is unnecessary because the quantity
GphG~:—Gp(G —G )G can be shown to vanish by
the same argument used in Appendix A to show that the
contribution GAGp to the resolvent relation [Eq. (9.13)] is
zero.

The requirement that the first variation of u,—,,—,due to
small changes in 'k,-'', ' near the correct state 4',-' ~ ', should
vanish, i.e.,

= V~(1 —G~ V~)'0 '+ (11.8)

Equations (11.7) and (11.8) are fulfilled by the solution of
Eq. (10.32), the ~ simultaneous LS equations.

To complete the verification of Eq. (11.1) as a varia-
tional functional for the transition amplitude, we note
that if Eqs. (11.4) and (11.7) are valid, then u, ,,—becomes
equal to the transition amplitude T,—,,—. Substituting Eq.
(11.4) into Eq. (1 1.1) gives

5w,—,,-/5%',-''. '=0,

is satisfied if

(11.3)

(11.4)

(11.9)

Then using Eqs. (11.7), (10.32), (9.21), and (9.22), we have,
for sufficiently large channel radii,

(11.10)
Similarly, ihe requirement that

gg@~ (+) O (11.5)

is satisfied if

Vp+,:. =6 GpVpAp+, -',( —) + ~ + + r( —) (11.6)

qp~ (+) qy~ (+)
c c (11.7)

Equations (11.4) and (11.6) are essentially complex con-
jugates of each other. Equation (11.4) is obeyed if

One of the difficulties with the variational principles of
Tobocman (1974b) and of Kouri and Levin (1975a) is that
they contain matrix elements of disconnected operators.
This is true also of the functionals given in Eqs. (6.76)
and (6.79) in the multipartition case being discussed here.
These matrix elements are nonconvergent integrals. Thus
such expressions appear to be too sensitive to the asymp-
totic behavior of the trial wave functions to be satisfacto-
ry variational functionals. On the other hand, the func-
tional given in Eq. (11.1) has the trial wave functions ap-
pearing in matrix elements with connected operators and
so should be free of such difficulties.

B. Variational functional based on Hahn-Kouri-Levin equations [Eq. (10.25)]

(11.11)

We now consider a variational functional based on the Hahn, Kouri, and Levin (1974) equations instead of the LS
equations. Since all the wave-function components are involved, it is convenient to use matrix notation

(@I,—,
I ~

VU
~ @I,-)')+

Uvq (+) Og -)GfVV& (+)
(c) (11.12)

and the complex conjugate equation for XI-') '. Since S is
proportional to the identity matrix, i.e.,

(11.13)

The requirement that this functional be stationary for
arbitrary infinitesimal variations of the trial functions

X~,-' —,

)
' yields the equation

UGWVXI,-')+' ——U9' V@I+)'

=U(G ' —V)-'Ve((+))

= U(I —GV)-'GVC('+) . (11.14)

(+) (+) - (+)+(~) +(~) +6
so that its formal solution is

(11.15)

Now in matrix notation, the LS equation for the scatter-
ing wave function is

it commutes with the matrix U, and Eq. (11.12) can be
written

O',—'= U( 1—G V) 'NI+) '
(~)

= U@I+)'+ U( 3.—G V) 'G V@I,-) ' . (11.16)
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Combining Eqs. (11.14) and (11.16) gives

4(+) ' ——UN(-)+ UGO'VX(-')+ ' . (11.17)

so that Eq. (11.17) is

Ug(-+) ' ——UN(-+) '+ UG 8'VX(-+) ' (11.19)

when XI,-')+' ——XI,-}'. Thus the variational functional is sta-
tionary if XI,-')

—' are solutions of the Hahn-Kouri-Levin
equations [Eq. (10.25)].

If the trial functions XI,-')
—' fulfill Eq. (10.25), we have,

substituting Eq. (11.12) into Eq. (11.11),

In this discussion we are not distinguishing between the
components of the partition space vector %I~+}}. There-
fore, Eq. (10.24) may be written here as

(11.18)

tions, it will be necessary to expand out notation some-
what.

When the system contains some indistinguishable parti-
cles, some partitions will be physically indistinguishable.
Thus we enlarge our partition labels to reflect this fact:
The labels a(l), a(2), . . .,a(~a) will identify a set of
two-cluster partitions which are physically indistinguish-
able. Another set will be p(1),p(2), . . .,p(~~), and so
on. Associated with partition y(i) will be a set of
channels c (i),c'(i),c"(i),. . . ,etc. The channels
c (1),c (2), . . .,c(~z) will be physically indistinguishable.

The consequences of exchange symmetry must be stat-
ed in terms of the transition matrix operator T rather
than the more general reaction matrix operator X because
of the requirements to sum and to average over transition
probabilities. What is required is that each class of physi-
cally indistinguishable partitions and channels be
represented by a particular member, say the one with in-
dex 1. In addition, the transition matrix operator is to be
replaced by

+(c'„=.,'i vOGwvix'„', +')) . (11.20)
Ta(, )lt(, )

——~a ~p g ( —1) "Ta())p(n)P)s(n)
1/2 —1/2 ~p(g)

Using Eqs. (11.19) and (11.18), we find that this becomes n=1

(12.1)

(@-'. '
~

vp
~

qI'-+') =T,—,, (11.21)

or by

—1/2 1/2 ~(n)
Ta())p()) =~a ~p y ( 1) Pa(n)Ta(n)p(1)

1

so that M,—,,—reduces to the transition amplitude T,—,,—.
The variational functional given by Eq. (11.11), unlike

that of Eq. (11.1), contains matrix elements of disconnect-
ed operators. However, the requirement that the com-
ponent X',-'+' vanish in all asymptotic regions except thatyc
belonging to the partition y is all that is needed to make
the matrix elements containing the trial wave functions
convergent integrals, provided the energy is below the
threshold for three-body breakup.

Xll. EXCHANGE SYMMETRY

(12.2)

where Pa(n) is the permutation operator for which

(+) (+)P ( a)Cn-( )

——)4 -( (12.3)

and era(n) is the parity of Pa(n) with respect to fermion
exchanges. It is understood that channels c(1) and c(n)
belong to partition o..

Let us now apply this procedure to the BKLT equa-
tions of Eq. (10.2), which for the present purposes can be
written

A. BKLT equations including exchange symmetry

In this section we describe how the BKLT many-body
scattering formalism of Sec. X can be modified to include
the effects of exchange symmetry. The procedure due to
Cxoldflam and Tobocman (1978) will be followed.

Let us suppose that in fact some of the X particles of
the system are physically indistinguishable from each oth-
er. If we continue to use distinct 1abels for a11 particles,
we must now require the system wave functions to be
symmetric in some particle coordinates and antisym-
metric in others. Then, in addition, sums must be per-
formed over the transition probabilities to physically in-
distinguishable final states and averages made over physi-
cally indistinguishable initial states. It has been shown
(Tobocman, 1961) that the consequences of these steps for
a many-body scattering formalism can be stated in very
simple terms. To do this in the case of the BKLT equa-

1

Ta(1)p(n) Va())Gcu())(Gp(n:)+ Tro( 1)p(n) ) .&

1
Ta(2)p(n) Va(2)Ga(1)(Gp(n)+ Ta(1)p(n) ) ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0

(12 4)
1

Ta( v }p(n) Va(.w )Ga( v' —1)(Gp(n)+ a(~ —l}p(n) ) ~

1

Tp())p(n) Vp(1)Ga( V )(Gp(n)+ Ta(W )p(n) ) ~

Carrying out a partial iteration of these equations so that
explicit reference to partitions with index different from 1

is eliminated, we have

1

Ta(1)p(n) ~a(1)~co(1)Gp(n) + ~a(1)~co(1)Geo(1) +co(1)p(n)

1

P(1)p(n) P(1) a(1) p(n) + P(1) a(1) a(1) a(1)p(n) ~

(12.5)
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where

~a(]) a(~a +Ga(Ma a(~a Ga(~a 1 +

+Ga(M~) Va(M~) a(M~ —1) Ga(2) Va(2) Ga(1)

(12.6)

and

(12.14)

and

~a(]) Ga(M~) Va(M~) Ga(M~ —1) Va(3) Ga(2) Va(2)

(12.7)

In matrix notation these equations become

(12.15)

Finally, combining Eqs. (12.1) and (12.5)
—1

a( ] )p( ] ) a(1) co(1) p( ] )

1/2 —1/2+ Va(])~a Ply~(])~~ G~(])T (1)-(1)

and

(12.16)

(12.17)

etc., where

(12.8) where all matrices are diagonal in partition space except
U, 8' and T.

G
—1 ~—1/2y( 1) ()G —lp ( )

n=1
(12.9) B. Single-clustering approximation

etc. , where

n=1

Ja(])—~ +Ga(2) Va(l) +Ga(3) Va(2) Ga(2) Va(1) +

(12.11)

+Ga(. & ) Va(. i —1)Ga(. -$ —1) Va(2) Ga(2) Va(1)

(12.12)

A similar process can be carried out using Eq. (10.3) in-
stead of Eq. (10.2) and Eq. (12.2) in place of Eq. (12.1).
The result is

1/2 g

T-(1)a(]) Vp(] )~a Ja(] )

—1/2 1/2+ T-(1)p(1) Gp(] )~p Ka(])~a Va(1)

(12.10)

A frequently used approximation for low-energy nu-
clear scattering is the single-clustering model. In this
model it is assumed that both the target and the projectile
remain in their ground states throughout the collision
process. When this approximation is imposed on the
wave function in the Schrodinger equation, the result is a
resonating group method (RGM) equation (Wheeler,
1937a, 1937b).

Let us impose the single-clustering approximation on
the antisymmetrized BKLT equations. To do this we
take Eq. (12.14) and (i) eliminate reference to all but one
partition and (ii) in the partition Green s-function opera-
tors eliminate all the terms except the one which refers to
the ground state of the target and the projectile. Thus we
have

(12.18)

where
and

+a(]) V (. 4 ) a(. 5 ) Va(. V —1) Ga(3) Va(2) Ga(2)

(12.13)

G =
~
c)g,'+'(r, r' )(c

~

Similarly

(12.19)

(12.20)
In Eqs. (12.8) and (12.10) the index 1 can be suppressed,

provided that it is understood that reference is made to
particular physically distinguishable partitions only. The
sam. e convention can be applied to the channel indices on
wave functions. Then we can write these equations in the
form:

Using the definitions of L~ and M [Eqs. (12.6) and
(12.7)], we can write Eq. (12.18)

(12.21)

where

pa(~a)+ ~a(i)Gn(~ )I a(~ )( —1) p (~ 1)

+ + Va(1) a(.V ) Va( 4 ) Ga( K —1) Ga(2) Va(2) Ga(1) (12.22)

and

Va(1)Ga(..& ) Va(A~ ) a(M —1) Va(3) Ga(2) Va(2) Ga(1) (12.23)
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Similarly, using the definitions of Ja and Ka [Eqs. (12.12) and (12.13)], we can write Eq. (12.20)

T- =C+DT-

where

(12.24)

C= g ( —1) '"'P (n) V („)
n=1

+ a(2) Va(l) + a(3) Va(2)Ga(2) Va(l) + +Ga(M ) Va(M —1)Ga(M —)) Va(2)Ga(2) Va(1) ) (12.25)

and where

a(1) a(. & ) a(~ ) a(.& —1) a(3) a(2) a(2) a(1) .

(12.26)

It is seen that in the single-clustering approximation
the antisymmetrized BKLT equations represent the
scattering process as a succession of knockout processes
in which the system passes cyclically through all rear-
rangements of the incident configuration. The matrix ele-
ment required in such a calculation is

Wa = (Ha() )
E—) —(H —E )Aa

=(Ha()) E)(1—Aa) Va())A

The formal solution of Eq. (12.32) is

(+) (+) (+)4,-(, )
——N,-(,)+6 (1)8' 4,-(, )

=(1—G (() W ) e-()),(+)

which, when substituted into Eq. (12.38), gives

(12.34)

(12.35)

(n)m-- =(u -()) ~
Va())Pa(n)

~

u —()) & 7 (12.27) Va(()Aa(1 Ga(1) 1Va)

where
~ u,-(, ) & is defined by Eqs. (3.39) and (9.5).

It is interesting to compare these results with the ex-
pressions given by the ROM. In the RCxM, the transition
matrix operator is defined by

(+) (+)T -+-(1)= ~a(1)~a+-(1) ~

where

'a

(12.28)

(12.29)

and

4-'()I ——
~

c(l))w -(, )(r ) . (12.30)

The Schrodinger equation is used to determine w, (,)(ra).-
Thus, since

= Va() )A a+ Ga(1) [(Ha() ) E)(—1 Aa —)
Va(1)Aa]Taa (12.36)

The RGM equation [Eq. (12.36)] is rather different
from the single-clustering approximation to the antisym-
metrized BKLT (SCABKLT) equation [Eq. (12.21)].
First, the RGM has a so-called nonorthogonality interac-
tion (Ha(() —E)(1—A ) which is absent from the
SCABKLT formalism. Second, only 6 (1) appears in the
RGM, whereas all the Ga(„) In =1,2, . . .,~ I appear in
the SCABKLT equation. Thus the ROM suppresses
intermediate-state propagation in the rearrangement chan-
nels, while the SCABKLT approach does not. Finally,
the RGM includes in the kernel contributions from elastic
processes along with the knockout contribution. The
SCABKLT method has only knockout process contribu-
tions. The elastic matrix elements are

[Aa, H] =0,
we have

(12.31)
(1)
Fr' ( aF()) ~ a()) ~ aF'()) & (12.37)

(c(1)
~

(H E)Aa
~ w,-(,))&=0.— (12.32)

(12.33)
l

To facilitate comparison, we transform this into an in-

tegral equation for T —. Equation (12.32) can be written

in the form

(c(1)
~

H ()) —E
~ w;(, )

) & =(c(1)
~
~a

~ w;(, )
) &,

We end this section by showing that if one makes an
exchange symmetry reduction of the LS equations [Eqs.
(9.27)] without first imposing the BKLT partition cou-
pling scheme, then a single-clustering approximation of
the reduced LS equations does give expressions which are
quite similar to the RGM equation. We shall follow the
method of Tobocman (1975b).

Applying exchange symmetry reduction to Eq. (9.27c),
we have

..P p

a())p()) ~a ~p g ( ) ( a(1) + Ta())y(j)Gy(j) Vp(n) ) p(
1/2 1/2 ~p(~)

n=1

1/2 —1/2=~a ~p ( Va() )A p+ Ta() )y(j)Gy(j)A p Vp() ) ), (12.38)
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where we have used

Vp(„)Pp(n) =Pp(n) Vp()) .

Next we make the substitution

(12.39)

Gy(J) =Py V)Gy(1)Py V)' (12AO)

and take note of the fact that Py(j) will be operating to the right on the state A~Vp~()
~
4,-'+, (I)). By virtue of the defini-

tion of Ap and the fact that @,-'+,
(1) is to be chosen antisymmetric with respect to intracluster permutations, the state

A&V&(1) ~
4,-'+,

(I) ) is completely antisymmetric with respect to fermion exchange. Thus Py(j ) acting on this state will

have the same effect as its inverse Py(j), namely, it will simply produce a factor of ( —1) "". Therefore, Eq. (12.38) may
be replaced by

1/2 —1/2T (()&(,)
——~a ~P [Va(()AP+Ta(1)~J)Py(j)G~()Py(J) AI)VP())]

~p [V (()A)s+ T ( )((y)J(
—1) Pyj()Gy(()ApVp())] (12A1)

This equation is valid for any choice of the ~y possible values of y(j). Thus averaging both sides of Eq. (12.41) with

respect to the index j gives

1/2 —1/2 ~y(J)
a())p(1)

= a p a() )~p+~y X Ta(1)y(J)( —1) ' y(j)Gy(()~ p Vp(1)
j=1

1/2 —1/2 —1/2 —1/2~p V (1)Ap+~y ~p T (1)~1)@~1)gpVp(1) . (12.42)

A similar analysis applied to Eq. (9.27b) yields
—1/2 —1/2 f —1/2 1/2 f —1

T-())p(, )

——~y ~a Va(1)AaGg))(~y ~P AyGP +T~()p(, )) . (12.43)

In the single-clustering approximation, these equations
become

Taa Va(1)~a +~a Taa Ga(1)~a Va(1) (12.44)

Taa =~a Va(1)~ aGa(1) (~aGa( 1 )+ Taa )

Va(1)A a( 1+Ga(1) T- ) (12.45)

where we have used the Lippmann identity to simplify
Eq. (12.45).

These equations are similar to the RGM equation in
that they have the interaction Va(1)Aa in the driving term
and in the kernel. They differ from the RGM equation in
that the nonorthogonality term is absent and factors of

are present. In a test calculation of dineutron-
dineutron scattering (Raphael, Tandy, and Tobocman,
1976), Eqs. (12A4) and (12.45) were compared with the
RGM equation [Eq. (12.36)]. Equation (12.44) gave re-
sults which were similar to the RGM, while the cross sec-
tion calculated from Eq. (12.45) was much smaller. Evi-
dently, the factor of ~ ' in the driving term of Eq.
(12A5) caused the small result. Adhikari and Glockle
(1980) have suggested that the ~a ' factor in the kernel
will lead to important disagreement with the RGM for
heavy nuclei where~ is very large. However, it may be
that the factor ~ ' in the kernel acts to compensate for
the missing nonorthogonality term.

XIII. FEW-CLUSTER AND RESTRICTED BASIS MODELS

We have formulated what we call a calculable set of
dynamical equations for the transition operators of. a
many-body system. They are calculable in the sense that
we use spectral decompositions in terms of channel states
for the partition Green's functions and that the integral
equations decouple and acquire connected kernels when
iterated. Qf course, there is still the inescapable compli-
cation of having many dynamical degrees of freedom.
Thus one is interested in simple models for the dynamics
of many-body systems which reduce drastically the num-

ber of degrees of freedom.
Qne such model which has proved to be very useful is

the few-cluster model. Qne attractive feature of the
BKLT many-body scattering formalism is that the few-
cluster approximation can be imposed in a very simple
and natural manner. In addition, one obtains "embedding
equations" which relate the model transition operators to
the exact ones. The embedding equations thus provide a
basis for calculating corrections to the few-cluster model.

Another model which can be treated in a similar way is
the restricted basis or shell model of scattering reactions,
which assumes that all dynamical processes take place in
a region of Hilbert space spanned by a given set of prod-
uct bound-state wave functions. The continuum state
process contributions neglected by this model can be es-
timated with the help of the embedding equation.

The technique we use is a mujitipartition generalization
of the Feshbach projection operator formalism (Goldflam
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and Tobocman, 1979). The basic equations can be derived
in just a few steps. First, Eq. (12.16) can be written in
the following simplified form:

T=A +BGT, (13.1)

~ ~

We take P to be a diagonal matrix like 6 so that

0 0

where 0 GpPp 0

A = V~'~ 8'L UG (13.2)
GP=

0 0 6 P
(13.13)

~=B+BG~ .

Then ~ and T are related by

T=A+&GA .

Defining the wave matrix operator Q by

v =QB,

(13.4)

(13.5)

(13.6)

we have

(13.3)

and the matrix operators V, ~', S' I., M, U, and G are
defined in Sec. X or XII. Next we introduce an auxiliary
operator ~ which is a solution of

M MThe operator B is defined by replacing G by G in Eq.
(13.13), i e , re. p.lacing G,Gp&. . . by G P,G~P~, . . .,
respectively, in the operator M. In addition, it may be
necessary to replace the partition coupling array W in B
by a model partition coupling array W™.

The Green's-function operators 6,6p, . . . describe the
propagation of the system through the various possible in-
termediate states between the transitions caused by
V, Vp, . . .. The projection operators P,Pp, . . . restrict
the choice of intermediate states. In the restricted basis
model we take

and

0= I+BGQ (13.7) &=& =&p= . = g ~X„)(X„~, (13.14)

T=A+QBGA . (13.8)

Thus we have replaced our dynamical equation for the
transition matrix [Eq. (13.1)] by an equation for the wave
matrix operator [Eq. (13.7)].

Now let us introduce the model wave matrix operator
Q, the wave matrix for the model dynamical system:

I +BMGM~M I+gMBMGM (13.9)

M Mwhere B G will be the approximation to BG provided
by the model. To relate the model wave matrix to the ex-
act one we note that

Q (B™G BG)Q=(Q ——I)Q —Q (Q —I),
(13.10)

so that

Q =QM+ QM(BG BG™)Q . — (13.11)

6 =GP . (13.12)

This is the embedding equation.
The basic idea is as follows. First of all, Eq. (13.9) is

solved for the model wave operator 0 . Then the embed-
ding equation [Eq. (13.11)] is employed to improve this
approximate wave matrix operator, and the result is sub-
stituted into Eq. (13.8) to obtain the transition matrix
operator.

The model system results from restricting the region of
Hilbert space to which dynamical development is permit-
ted to carry the system. This is implemented by using a
projection operator Inatrix P on the partition Careen's-
function operator matrix, i.e,

a =—(p)(3p, 3~),
P—:(2p, n)(2p, 2n),

y—= (p, n)(3p, 2n),

5=(n)(4p, 2n),

(13.15)

So for our problem we might choose the reaction mechan-
ism to be a+d+p. Then partitions a, P, and y belong to
this reaction mechanism, while partition 6 does not i.e.,

where the X„are an orthonormal set of wave functions.
Ordinarily, one chooses 7„ to be a product of harmonic-
oscillator wave functions.

To implement the few-cluster approximation we first
choose a set of few-cluster state configurations which we
believe to have the greatest importance for the system be-
ing considered. This has been called the "reaction
mechanism" by Polyzou and Redish (1979). Then we set
equal to zero every partition projector P~ belonging to a
partition y which cannot be subdivided so as to yield one
of the few-cluster configurations contained in the reaction
mechanism. A11 other P&'s are nonzero and are chosen to
project onto those few-cluster state configurations belong-
ing to the reaction mechanism. The projector P& should
include all open partition y channel asymptotic states.

For example, suppose we are analyzing the scattering of
protons by Li at energies well below the n+ Be thresh-
old. In this case the only open channels are the p+ Li,
the d+ Li, and the He + He channels. Let us label the
partitions in the following way:
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a = (p)(a, d ),
P=(p, d)(a),

y=(d)(p, a) .

For this case we would take

which are eigenstates of the same two-cluster partition
Hamiltonian. In this section we show that n-cluster chan-
nels can be described by asymptotic states which are
eigenstates of n-cluster partition Hamiltonians. This will
represent a simplification in the specification of breakup
channels.

Pa = (, X~X6„)(XpX. 6„

Pp=
~ X3„x4„)(X3„x4„~,

Pr-
~
XdX5, . )(XdXg, . (,

Pg-0 .

(3.17)

A. T-matrix including breakup channels explicitly

Consider the transition amplitude for a transition from
channel c Ha to channel c ' HP. We have [Eq. (9.22)]

&e(, '
~

V~(1+Gv. )
~
C,-'+'&

For the few-cluster approximation, the model partition
Mcoupling array 8' must be chosen to couple only those

partitions y for which the partition projector Pz does not
vanish. Choosing 8' to cycle sequentially through all
such partitions is sufficient to make the model dynamical
equations such that they become uncoupled connected
kernel equations after ~ iterations (Tobocman, 1974b).
Here ~ is the number of partitions y having a nonvanish-
ing partition projector P&.

For the case when none of the projection operators Pz
vanishes the procedure can be simplified considerably. In
this case it is not necessary to construct a model partition
coupling array to replace the original. One can simply in-
troduce P and Q=I P into th—e dynamical equation,
Eq. (13.1), directly. One obtains

T=A+BG(P+Q)T
=0 A+0 BGQT,

0 =()(—BGP)

=I +BGPQ

(13.18)

(13.19)

Then Eq. (13.19) can be regarded as the approximate
dynamical equation, and Eq. (13.18) is the embedding
equation. Alternatively, P and Q can be interchanged.
Then

&e,'-, )
~
v,GG.-'

~
e,'+'& . (14.1)

Suppose channel c is an n-cluster breakup channel. Let us
make our notation more explicit in this regard by writing

@(+) @(4-)a
C a2Cn

(14.2)

(14.3)

This notation endows the distorted-wave function with
three indices and provides subscripts for both the parti-
tion and channel indices, which in turn are written as sub-
scripts. The subscript partition index identifies the parti-
tion Hamiltonian of which the wave function is an eigen-
state. The subscript on a partition index denotes the
number of clusters in that partition. The subscript on a
channel index indicates the number of free clusters in the
incident wave part of the associated distorted-wave func-
tion. When these subscripts are omitted, they are under-
stood to be 2. The superscript identifies the channel en-
trance on which the channel state associated with that
distorted-wave function is defined.

Now let N'+-' be a wave function for n free clusters
~n Cn

which is identical with the incoming wave part of @'+,-' .ac
It is clear that

T=n~~+ n~BGPT (13.20) From Eq. (10.30) we have

is the exact dynamical equation, and A~A and Q~B are re-
garded as effective interaction potentials with

Q~=(I BGQ)—
= I+BGQQ& . (13.21)

So instead of using the embedding equation to calculate
corrections to the approximate transition operator
T =0 A, one uses Eq. (13.21) to generate the corrections
BGQQ~A and BGQQ~B to the approximate effective in-
teraction potentials A and B.

@(+) C(+)a (1+G V )g)(+)a
c a, c„ ~na ynCn

=G.G, 'e',+,', (14.4)

T~,, —— &N,', '~ VpG(P +KG )Gr

= ' &e'-, )~ v GG-'~e(+'&
~n Fn Cn

where V& a contains all interactions internal to partition
n

a and external to partition y„. Substitution of Eq. (14.4)
into Eq. (14.1) gives, using Eq. (9.13),

XIV. BREAKUP REACTION CHANNELS = ' &e(-, )

~

V~(1+GV, ) ~e,'+,'&, (14.5)

In the foregoing discussion we have treated breakup
channels on the same footing as two-cluster or "bound-
state" channels. Both are described by asymptotic states

where the 6 term has been discarded and P replaced by
one as before.

Alternatively, if we had started with c ' being an n'-
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cluster channel, we could have used post-prior
equivalence to give

T (q( —
)Pi G

—
GV

i

C,(+)) (14.6)

Then a similar analysis to the one just given would yield

T, = (@' '~
~
(1+Vs, G)V~

~
@,'-+') . (14.7)

Now suppose that both c and c ' are multicluster chan-
nels. Then, applying the post-prior equivalence (see Ap-
pendix B) to Eq. (14.5), we have

T, = (@','~~ (1+VpG)Vr
~

@'+~ ), (14.8)

and repeating the analysis leading to Eq. (14.7) gives the
general result

T, = (4' '~
~

(1+Vs, G)Vr
~

4&'+,-' ) . (14.9)

Thus we have been able to express the transition ampli-
tude in terms of asymptotic states that describe freely
moving clusters. The associated channel states on chan-
nel entrance a,

~
ay„c„) for various y„, do not constitute

an orthonormal set of surface harmonics. However, these
channel states stand in a one-to-one correspondence with
a complete orthonormal set of surface harmonics

~

c„)=
~

aac„). This guarantees that the above descrip-
tion of asymptotic fluxes is complete and involves no dou-
ble counting. The price that must be paid for this simpli-
fication of multicluster motion in the asymptotic region is
an increase in the number of transition matrix operators

T s PpVs, (1+GVr——)P (14.10)

which must be calculated. Note that the projection opera-
tors P and Pp which were formerly implicit in the defin-
ition of the transition matrix operator have been made ex-
plicit in Eq. (14.10). In addition, the partition indices
have been given superscripts to identify the channel en-
trance which is involved.

B. Coupled LS equations for T-matrix operators

Using these definitions, the analysis of Sec. IX gives

T ~@3 =P~ Vy G ~ G.g ~Pp+P~ Vy 6 ~ T ~ $p

(4.12)

T @
——P~Vy Pp+T „6 Vg, Pp . (14.13)

We shall now present a set of coupled LS equations for
the transition matrix operators of Eq. (14.10) which can
be derived in just the same way as in Sec. IX. First, how-
ever, the augmented notation of the preceding section
must be extended to the partition Green's-function opera-
tors. We write [cf. Eq. (9.10)]

G (E Hr )=(E Hr —)G =P . — (14.11)

These LS equations are identical to those derived in
Sec. IX [Eqs. (9.27b) and (9.27c)], except that the channel
projectors which originally were implicit are now explicit
and that the partition indices are more complex. Alterna-
tively, one can revert to the original notation by leaving
the projectors implicit as before and understanding that a
simple index y represents a more complex quantity y„.
What has been achieved here is that one can use free-
particle n-cluster channel states to calculate the elements
of the transition matrix. As before, a partition coupling
scheme can be introduced to give a connected kernel for-
malism. Note that the partition index y„not only identi-
fies a partition y„but also assigns that partition to a par-
ticular two-cluster partition u. Evidently, it is necessary
that partition y„be one of the n-cluster partitions that
can be formed by subdividing partition o..

In practice one will want to include explicit reference to
all partitions y„which correspond to open n-cluster chan-
nels. This is in addition to all two-cluster channels. The
choice therefore depends on the energy. Thus once one is
above the threshold for any of the partition y„channels,
partition y„should be included and assignments to all
possible two-cluster partitions o. must be made for index
y„. Then the various partition y„Green's-function opera-
tors G wil1 all play a role in the set of coupled LS equa-

~n

tions for the elements of the reaction operator matrix.
These differ from each other by virtue of fulfilling boun-
dary condition constraints on different channel entrances.

The construction of the partition y„Green's-function
operator G requires a knowledge of the wave functions

~n

for all the internal motion states for each of the n parti-
tion y„clusters. This includes the continuum states as
well as the bound states. Clearly, solution of the n-body
problem requires the previous solution of all the subsys-
tern bound and scattering problems.

By extending the formalism to include explicit refer-
ence to n ~ 2 partitions, we have first of all simplified the
construction of the asymptotic states for breakup chan-
nels. A second benefit resulting from this procedure is
that it provides a convenient framework for making the
few-cluster or "bound-state" approximation. In this for-
malism the few-cluster approximation results from
neglecting the continuum cluster states in the various par-
tition Green s-function operators. This approximation
has been discussed in more detail in Sec. XIII.

From the foregoing, it would appear that we are free to
increase the number of partitions to which reference is
made in the set of coupled LS equations beyond the num-
ber of two-cluster partitions possible for the system. All
the two-cluster partitions must be included to ensure that
the complete set of asymptotic boundary condition con-
straints have been imposed. A set of coupled LS equa-
tions which involves no more than the complete set of
two-cluster partitions is said to be "minimally coupled. "
It turns out that the conservation of Aux imposes a con-
straint on the content of the partition coupling scheme of
the BKLT formalism. This was pointed out by Benoist-
Cxueutal (1975), who derived from the BKLT equations
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an expression for the imaginary part of the elastic scatter-
ing amplitude. According to the optical theorem, this
amplitude should be equal to minus the sum over all open
channels of the squares of the magnitudes of the transi-
tion amplitudes to those channels. The analysis of the
imaginary part of the transition amplitude, which is
presented in Appendix C, shows that the BKLT equations
do indeed give such an expression but that the sum is over
all the open channels which are present in the spectral
decompositions of all partition Green s functions appear-
ing in the coupled equations. Thus the conservation of
flux requires that the sum total of the spectral decomposi-
tions of all the partition Green s-function operators in-
cluded in the coupling scheme must contain every open
channel just once.

It is clear that one is no more allowed to have too many
partitions in the coupling scheme than one is allowed to
have too few. Thus it is seen that if one seeks to add a
breakup channel to the partition coupling scheme, then
those breakup channels belonging to that partition must
be deleted from the partition Green's function of the cor-
responding two-cluster partition. However, this wiH have
serious consequences. The projector associated with the
depleted two-cluster partition Green's function,
P~ =(E H~)G~, —will no longer tend towards the identity
in the limit of infinite channel radii. Thus one cannot
justify setting (1—Pr) equal to zero in Eqs. (9.2S) and
(9.26) and one does not obtain the BKLT coupled LS
equations governing the dynamical development of the
system.

We conclude that, although it is possible to express
breakup transition amplitudes explicitly in terms of
breakup partition transition operators, it is not possible to
accommodate breakup transition operators in the BKLT
formalism. In brief, minimally coupled BKLT equations
are also maximally coupled.

structed. We start with the BKLT equation shown in Eq.
(10.4) and iterate it ~—1 times to obtain

X= g (VWG) UG —1+(VWG) "X .
m=1

(15.1)

The kernel of this equation is a connected operator and a
diagonal matrix in partition space. The solution of Eq.
(15.1) would not be unique if there existed nontrivial solu-
tions of the homogeneous equation

X"=(VWG) X" (15.2)

Let us also consider the associated wave-function equa-
tions. Iteration of Eq. (10.20) ~—1 times gives

(GVIV) GUG 4 Ig) +(GVR )
m=0

(15.3)

y(s)
( G~Vgr )~@Is) (15.4)

Following Kowalski, we start with the resolvent rela-
tion of Eq (9.15.) and write it in matrix form. We have

GU=GU+GVGU . (15.5)

Note that

VU= V8 U (15.6)

GU=UG . (15.7)

Thus the resolvent relation can be written

Again, the kernel is connected and diagonal. Again, the
question of uniqueness hinges on whether there exists a
nontrivial solution of the homogeneous counterpart to
this equation

XV. SPURIOUS SOLUTIONS
GU=GU+GVR'GU .

Iterating this equation ~—1 times gives

(1S.8)

As we have seen in Sec. X, the BKLT method consists
in taking ~ sequentially coupled LS equations and iterat-
ing them, The result is ~ decoupled connected kernel in-
tegral equations for ~ transition amplitudes or wave-
function components. It can be shown that the solutions
of the original LS equations are uniquely determined by
the asymptotic boundary conditions when the two-body
interactions are local and short-ranged (Cattapan and
Vanzani, 1979). The question naturally arises as to the
uniqueness of the solutions of the BKLT equations. A
lack of uniqueness would point to the existence of spuri-
ous solutions, i.e., solutions of the BKLT equations which
are not solutions of the Schrodinger equation. Qne can
demonstrate the existence of equations whose solutions
constitute spurious solutions to the 8KLT equations
(Adhikari and Cxlockle, 1979; Chandler, 1978; Vanzani,
1978). However, it has not been possible as yet to estab-
lish the existence of such solutions.

Following the method of Kowalski (1978), we shall
show how these spurious solution equations may be con-

GU= g (GVW) GU+(GVW)~GU.
m=0

(15.9)

Multiplying this equation by G ', G, and G ' yields

I 1 —(GVR') ' lU= g (GVIV) GG 'U . (15.10)

Now suppose that there is a vector = which is not a solu-
tion of the Schrodinger matrix equation, i.e.,

G
—1 ~0 (15.11)

but which is a solution of

g (GVW) GUG-'=-=0.
m=0

(15.12)

Then U:- would be a solution of Eq. (15.4), and there
would be a lack of uniqueness for the solution of Eq.
(15.3).

A similar result can be found for Eq. (15.1). If we mul-
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(G —G ') U= VU= VWU, (15.13)

tiply Eq. (15.10) by G ' after replacing ~ by ~+ 1 and
use the relation

constrained to move in a straight line and interact with
each other and with an infinite mass, inpenetrable scatter-
ing center. The Schrodinger equation is

we find that

I 1 —(VWG) I VWU= g (VWG) UG
m=1

Thus if we can find an operator Y such that

E+ 2 + z
—P (x,y) %(x,y) =0,

2m Qx2 Qy2

(16.1)
(15.14)

where the wave function satisfies the boundary conditions

(15.15)
%(x,O) =%(O,y) =0 . (16.2)

and
In the calculations of Baer and Kouri (1972), the potential
was taken to be

g (VWG) UG 'F=O, (15.16)

then VWUI' will be a solution of Eq. (15.2), and the lack
of uniqueness of the solution by virtue of the existence of
a spurious solution of Eq. (15.1) will have been establish-
ed.

W(x,y) =

—Vo, x&a, y&a
—Vo, x&a, y&a
—Vo, x&a, y&a
0, x&a, y&a .

(16.3)

XVI. REVIEW OF BKLT CALCULATIONS

Calculational tests and applications of the 8KLT
many-body scattering formalism are still in a rudimentary
stage. The following is a list of what has been done to
date:

(1) A two-body system model, which has one inelastic
channel. This is a one-partition two-channel model.

(2) Collinear scattering of three particles neglecting
three-body breakup.

(3) Low-energy e -H scattering using the bound-state
approximation.

(4) Atomic and molecular bound-state calculations.
(5) Nucleon transfer cross sections using the bound-

state approximation.
(6) Three-dimensional three-body problem with pure s-

wave interactions.

We shall give a brief account of each of these applications
of the BKLT formalism.

The first calculation on the list is due to Schmittroth
and Tobocman (1971). Strictly speaking, it is not a
BKLT calculation, since the two-body system has only
one partition. Nevertheless, we include it because it is an
example of the restricted basis method within the transi-
tion operator formalism (see Sec. XIII). In addition, it
provides a comparison between the R-matrix and the
transition operator formalisms. In this calculation, the
coupled square-well problem of Sec. VIII.A, in which
there is s-wave scattering of a particle by a two-state tar-
get, was considered. Using a harmonic-oscillator basis
set, Schmittroth and Tobocrnan found that the level ex-
pansion converged much more rapidly for the X-matrix
formalism than it did for the R-matrix formalism.

Next let us describe some of the BKLT calculations of
collinear three-body scattering. In this case, the dynami-
cal system consists of two equal-mass particles which are

This corresponds to both particles having a square-well
potential interaction with the scattering center and ex-
periencing, in addition, a three-body force with the
scattering center and each other. Alternatively, the sys-
tem can be viewed as the propagation of waves in a two-
dimensional waveguide having a right-angle bend. In all
the calculations described here, the energy was taken to be
below the threshold for three-body breakup.

In the limit Vo~oo, the Schrodinger equation can be
solved by wave-function matching following the method
of Hulbert and Hirschfelder (1943). This does not give
the wave function in closed form but rather as an infinite
sum over all possible two-body bound states. In this case
there is no three-body breakup. Baer and Kouri found
that the BKLT method yielded expressions identical with
those of Hulbert and Hirschfelder. They also did calcula-
tions with finite Vo and found that their results agreed
with those done by other methods. In calculations with
finite Vo, the spectral decomposition of the partition
Green's-function operator contains an integral over the
continuum of breakup states which was neglected by Baer
and Kouri.

The BKLT method has been tested by Lewanski and
Tobocman (1978) using the collinear scattering model
with the interaction potential

V(x,y ) = —V„O(a„—x ) —V» 8(a» —y )

—( V„» —V„—V» )8(a„—x )8(a» —y ),
(16.4)

where 0 is the Helmholtz step function. The constants
V„, Vz, and V„z were chosen to be infinite, but their
differences were taken to be finite numbers. When these
differences vanish we have the Hulbert-Hirschfelder
model for which there is exact agreement between the
BKLT method and the wave-function matching method.
When the differences are finite, it is still possible to use
wave-function matching to solve the Schrodinger equa-
tion but there is no longer exact agreement with the
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BKLT result.
Lewanski and Tobocman found that the Baer-Kouri

[Eq. (10.2)] and Kouri-Levin [Eq. (10.3)] versions of the
BKLT method gave different results for the "finite-
difference" cases. It was found that the level expansions
for the wave-function matching method and the Kouri-
Levin equation both converged to the same values for the
transition probabilities. However, the Baer-Kouri level
expansions converged to rather different values. The
Kouri-Levin results fulfilled the unitarity (flux conserva-
tion) constraint, while the Baer-Kouri results did not. Ex-
planations for this phenomenon have been proposed by
Kouri et al (19.7. 4) and Levin (1980), who suggested,
respectively, that the nonunitary result was a consequence
of either neglecting continuum states in the Green's func-
tions or the occurrence of inhomogeneous differential
equations for the Baer-Kouri wave-function components.

The third group of calculations to be discussed is those
in which the BKLT method have been applied to low-
energy e -H scattering. The first such calculation was
done by Baer and Kouri (1973), using the bound-state ap-
proximation in the Baer-Kouri form of the BKLT
method [Eq. (10.2)]. At low energies their results for the
s-wave phase shifts agreed very well with the essentially
exact results of Schwartz (1961). However, the unitarity
constraint was not satisfied. These calculations were re-
peated by Kouri, Craigie, and Secrest (1974), who also did
the calculation using the Kouri-Levin form of the equa-
tions [Eq. (10.3)]. They found that Eq. (10.3) gave the
same s-wave phase shifts as Eq. (10.2), but that the
Kouri-Levin transition amplitudes fulfilled unitarity.
The Kouri-Levin form of the calculation of the low-
energy e -H s-wave phase shifts was repeated by Kouri
er al. (1974) for various choices of the partition coupling
array W [see Eq. (10.7)]. For their two-partition system,
it was possible to use

x 18'=
1 —x x (16.5)

and fulfill the requirement that the sum of the elements
of any row or column is one. They found that the parti-
tion permuting choice x =0, which ensures that the
iterated kernel is connected, gave the best numerical re-
sults.

The fourth item on the list is the calculation of atomic
and molecular bound states. In the calculation of H2+
bonding (Kriiger and Levin, 1977; Levin and Kriiger,
1977a) reference was made to the two channels

+=X)+X2,
where X &

and +2 satisfy the coupled equations

(E H] )X]——V2X2—
(16.6)

(16.7)

(1) (p],e)+p2»d (2) p]+(p2, e) .

The third two-cluster channel was ignored. The Hahn,
Kouri, and Levin equations [Eqs. (10.25)—(10.28)] were
used for the two-channel problem. These can be written

and

H2 )~2 ~1~1 (16.8)

In addition to the two-channel approximation, it was as-
surned that

X~ =a~(R)q„(rj ), (16.9)

where I"J. is the distance of the electron from proton pj R
is the separation of the two protons, and g], is the hydro-
genic ground-state wave function. The coupled equations
were then solved for the coefficients aj(R) and energies
E(R) holding R fixed in accordance with the Born-
Oppenheirner approximation. Kruger and Levin found
an equilibrium separation Ro ——2.07ao (ao ——Bohr radius)
and a binding energy Do ——3.07 eV, which are to be corn-
pared with the exact values of 2.00ao and 2.79 eV, respec-
tively. Use of the same approximate wave function in a
variational or degenerate-perturbational calculation gives
the values 2.50ao and 1.76 eV. These results indicate that
the BKLT approach may be a superior framework for ap-
plying certain types of approximations. Similar results
using the same method were found for Hz, He, and HeH+
(Levin and Kriiger, 1977b; Levin, 1978).

Ford and Levin (1982) have attempted to improve the
Hz+ calculations by including more terms in the trial
wave function. However, their expansion was found to
converge to incorrect results. In an alternative approach
they solved Eqs. (16.7) and (16.8) for fixed R numerically,
using a configuration-space interpolation procedure (or
finite-element method). With as few as 115 interpolation
points, they have attained convergence to the exact
ground-state energy of H2+.

Another application of the BKLT formalism is the
analysis of nuclear rearrangement reactions using the
bound-state approximation (BSA). It has been pointed
out by Tobocman (1975a) and Kouri and Levin (1975b)
that if one makes the BSA in the BKLT dynamical equa-
tions the result looks very similar to the equations of the
coupled reaction channel (CRC) scattering formalism
with two important differences. First, the awkward
nonorthogonality terms of the CRC approach are absent
in the BSA to the BKLT method. This situation is simi-
lar to that encountered with the resonating group method
in Sec. XII. Second, the channel coupling is sequential
and cyclic in the BKLT equations, while it is symmetric
in the CRC equations.

Greben and Levin (1977,1979) have carried out a series
of calculations solving the coupled integrodifferential
wave-function equations of both the CRC formalism and
the BSA to the BKLT method. For both types of calcu-
lation, the restriction to two partitions was imposed.
They compared the results for several examples of single-
nucleon transfer reactions and found that both methods
give differential cross sections that are very similar in
both magnitude and shape. The results were also very
similar to those of corresponding distorted-wave Born-
approximation calculations, indicating that channel-
coupling effects were relatively weak for the restrictions
imposed by the approximations that were used.
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Finally, the sixth item on the list is a mlculation of the
binding energy and scattering reactions of a three-body
system with pure s-wave interactions by Tobocman
(1981). This calculation attempted an essentially exact
numerical solution of the BKLT integral equations [Eqs.
(10.2) and (10.3)] for the transition amplitudes, using the
restricted basis method (see Sec. XIII). The integral equa-
tions were converted to a set of simultaneous linear alge-
braic equations by expanding all operators in a
harmonic-oscillator basis. These equations were then
solved by matrix inversion.

Convergence with increasing size of the harmonic-
oscillator basis was found to be relatively slow. While the
results for the binding energy were satisfactory, those for
scattering state transition amplitudes were fairly poor at
low energy and deteriorated with increasing energy.
However, fairly good results were obtained with the
distorted-wave Baer-Kouri method.

It appears that the principal source of difficulty is an
inadequate representation of the continuum contributions.
This BKLT calculation, which is the first to attempt the
inclusion of continuum contributions, must be judged as
only partially successful. The expansion in a harmonic-
oscillator basis is crudely equivalent to restricting the in-
tegrations in configuration space to a fixed volume, which
only increases slowly with the size of the basis. However,
the continuum-continuum matrix elements of the interac-
tion potential, which are required in this calculation, are
slowly convergent integrals which have integrands that
are oscillatory and fall off slowly as one moves out to in-
finity. Thus expansion in a harmonic-oscillator basis is
inadequate and appears to be unsatisfactory at the higher
energies. It seems that it will be necessary to treat expan-
sion in a finite basis as a projection onto a restricted basis
as described in Sec. XIII so that the embedding equation
[Eq. (13.11)] may be used to improve the evaluation of the
continuum contributions.

We conclude that these preliminary calculations indi-
cate that it is likely that the BKLT formalism will pro-
vide a useful tool for analyzing the dynamics of many-
body systems.

ACKNOWLEDGMENTS

We wish to thank F. C. Barker, L. L. Foldy, K. L.
Kowalski, R. J. Philpott, D. Robson, R. M. Thaler, and
H. H. Wolter for helpful discussions, and the various au-
thors and editors for permission to reproduce diagrams
from their original articles. One of the authors (B.A.R.)
wishes to express his appreciation to the Universitit
Munchen for a position. as Guest Professor for six months
and to members of Sektion Physik for their kind hospital-
ity. Part of this work was supported by the National Sci-
ence Foundation under Grants Nos. PHY77-25280 and
PHY78-26595.

APPENDIX A: JUSTIFICATION FOR NEGLECTING
SURFACE TERMS IN THE RESOLVENT RELATIONS
AND PROJECTION FACTORS IN THE LS EQUATIONS
FOR THE REACTION MATRIX OPERATOR

In opting for the explicit spectral decomposition in
terms of channel states for the partition Green's-function
operator, we have caused the appearance of surface terms,
those containing b, , and projection factors P~ and Pp in
the resolvent relations of Eqs. (9.12) and (9.13). Follow-
ing the arguments of Chandler and Tobocrnan (1979), we
shall show that 6 can be replaced by the identity in the
resolvent relations and projection operators can be ignored
in the LS equations for the reaction matrix operator X
[Eqs. (9.25) and (9.26)], provided the channel radii are
taken to be sufficiently large.

First, let us consider the surface terms in the general-
ized resolvent relations of Eqs. (9.12) and (9.13). These
have the form G b,G and Gb, Gp. If the system and parti-
tion Green's-function operators were defined for the same
region and fulfilled the same boundary conditions on the
surface of that region, these terms would necessarily van-
ish. However, we have chosen to define G~ so that it van-
ishes outside the region projected onto by P .

Let A' represent the inside or interaction region of con-
figuration space where G is defined and let W be that
portion of A' onto which P~ projects and in which G is
defined. The quantity G AG is an integral over the sur-
face of W . Part of this surface is the partition a channel
entrance which makes no contribution to the surface in-
tegral channel bemuse G and G have the same behavior
there. The rest of the surface of A' lies interior to W.

This surface of A' interior to W—W, say—is the
boundary on which the partition a channel states fulfill
real homogeneous boundary conditions. Suppose the
boundary condition constraint is such that the channel
states vanish on the surface W~. Then the quantity
G~b, G will be the integral over W of the product of the
value of G and the normal gradient of G~. In the limit as
the channel radii are required to become arbitrarily large,
the surface W~ gets displaced to where it is arbitrarily far
from the center of the interaction region. In this limit,
the quantity, G EG becomes an arbitrarily rapidly oscil-
lating function of the energy. Therefore, if the general-
ized resolvent relation [Eq. (9.12)] is averaged over a
small energy interval, the surface terms average to zero.
This justifies the neglect of these terms in the generalized
resolvent equations and in the subsequent LS equations
for the reaction matrix operator [Eqs. (9.25) and (9.26)].
This phenomenon will be illustrated by a simple example
later in this Appendix.

On the basis of the foregoing argument we drop the
surface terms from the resolvent relations and turn our
attention to the LS equations for the reaction matrix
operator:

X p= V~[1+Gr( Vp Vr)+GrXrp+(1 Pr)GVp]

(A1)
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X p V~+X rGrVp+ V~G(1 Pr)Vp

The relative (r ) and internal (p ) coordinates for each
partition are

The projectors produce contributions to the operator X p
of the form

~P XP~ PP XN

~N =XN PN =Xp

(ASa)

(ASb)

C=P V~(1 Pr)—GVpPp . (A3) and

The projectors P and Pp have been inserted to make ex-
plicit the fact that ultimately the operator X~~ will be
placed in a matrix element with partition a and P asymp-
totic states, which implicitly contain these projectors.

The partition a region & has been defined to be that
portion of the inside or interaction region of configura-
tion space which is projected onto by P . The various
partition regions A,A'~, . . . overlap with one another at
the center of the inside region. Let A'o be the intersection
of all such partition regions. Within Wo every projector
P& is equal to the identity.

Now consider the quantities P V,Pp V~, . . .. These
quantities are nonvanishing only near the center of the in-
side region A'. In fact, the region of nonvanishing P V
for any partition a is contained almost entirely in Wo. In
the limit as all the channel radii become large and all the
regions A,A'O, W,A'p, . . . become correspondingly large,
the fraction of the region of nonvanishing P V excluded
from Wo becomes arbitrarily small. Also, the excluded
part of this region is the part which lies farthest from the
center of the interaction region. The excluded portion is
therefore the least important portion. Thus, in the limit
of large channel radii, the region of nonvanishing P~ V~ is
almost entirely contained within &0. It follows that
P~ V (1 Pr) can be—set equal to zero. We conclude that
the 1 —P& term in the LS equations for the reaction ma-
trix operator Inay be safely ignored.

Finally, we present a simple example to illustrate the
foregoing discussion. The system consists of three parti-
cles X, P, and C in one dimension. Particle C is infinitely
massive and inpenetrable for the other two particles. The
interaction between the particles is described in terms of
finite-range two-body potentials. The Hamiltonian for
this system is

MNxN +Mpxp
rD ——— PD —XN —Xp

MN +Mp
(ASc)

In terms of these coordinates, the kinetic energy opera-
tor is

T= T~+w~,

where

(A9a)

(A9b)

fi
'T

2p~ ()p
(A9c)

Here

and

mp ——Mp, pp ——MN,

IN ——MN, pN ——Mp,

(A10a)

(A10b)

MNMp
mD ——MN +Mp, pD ——

MN +Mp
(A10c)

H =H~+ V~ (Al 1)

H =T+A (A12)

where

Next we introduce the partition Hamiltonian H, the
partition internal motion Hamiltonian A, and the parti-
tion residual interaction V~:

(A4) ~p +P+ VNC~ VP VPC+ VNP ~

~N =&N+ Vpc VN = VNc+ VNP ~

(A13a)

(Al jb)

and

~D +D+ VNP~ VD VNc+ VPc . (A13c)

o.=P: (P)(%C),

a =%: (N)(PC),

a=D: (NP)(C) .

(A7a)

(A7b)

(A7c)

VNC(+Jv )+ VI'C(xI')+ VNP(
l
+N XP

l
)

To discuss the asymptotic behavior of the system, it is
necessary to introduce the relative Inotion and internal
motion coordinates for each partition. There are three
partitions:

(~ —E, )X,(p )=0. (A14)

Let E be the total energy of the system and
(k=1,2, . . .,m), where I is the number of open channels,
be the corresponding scattering wave functions which
satisfy the Schrodinger equation

(A15)

The asymptotic behavior of the system can be discussed
in terms of the channel states X,(p~), which are eigen-
functions of the partition internal motion Hamiltonian:
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and represent unit incoming flux in channel k and purely
outgoing flux in all other channels. Associated with each
partition a is an asymptotic region of configuration space
corresponding to large values of r~, where the partition
residual interaction vanishes. In this region, a channel-
state expansion

'Ilk+'(p~, r )= Q X,(p )m'",'(r )
c6a

(A16)

defines the channel radial wave functions co',', which are
solutions of

I, inside OPAD
P

0, elsewhere, (A20a)

space and the channel entrance surface for the simple sys-
tem being considered. The channel entrance surface is
made up of the segments PA, AB, and BH, which are the
channel entrances for the partitions P, D, and N, respec-
tively.

The inside region A' is the interior of the polygon
OPABH. The partition projectors are defined as follows:

(T E,)—co'",'(r )=0, (A17)
1, inside OCBH

0, elsewhere, (A20b)

where

g2E,= k, =E E,—.
2p1l ~

(A18)

It should be noted that for the purposes of this Appendix,
any dependence of the reduced mass m on the excitation
energy e, is neglected. The asymptotic behavior of the
system is described in term of the amplitudes of the ingo-
ing and outgoing wave parts of the radial wave functions,

(k) ~

&ac~ & e~

1, inside OEABH
D

0, elsewhere .

The channel radii are

Rp ——OP,

R~ ——OH,

RD ——OI

(A20c)

(A2 la)

(A2lb)

(A21c)
1/2

Vl~ &kr gk—r

C

In the R-matrix formalism, the channel states 7, are
required to vanish at the channel entrance edges, i.e.,

(large r~ ), (A19)

where U is the collision matrix.
Figure 56 shows the two-dimensional configuration

Xp =0 for pp =0 OD

X~, ——0 for pw
——O, OC,

XD,-=0 for pD= I.W, L,B . —

(A22a)

(A22b)

(A22c)

Cp

p iE

E i

/
W~ .l.

W g Qc.':.Ã ' '.

lRQ .L~x.:wp. -". ''

IV'a mw~

7 0 cN

FIG. 56. Configuration space diagram for the one-dimensional
three-body system. r~ and rp are the displacements of particles
X and I', respectively, from the infinite mass, impenetrable par-
ticle C:

rD ——(m~r~+ rnprp)/(m~+mp)

(from Chandler and Tobocman, 1979).

For this reason, the channel states provide a description
of the physical asymptotic states only in the limit as the
channel radii Rz, R~, and RD all approach infinity.

The dashed lines in Fig. 56 have been used to delimit
the ranges of interaction of the two-body potentials. The
potential Vpc is different from zero only between the lines
SV and OH, the potential Vz~ vanishes everywhere except
between the lines OP and KM, and the potential V&p is
nonzero only between the lines XX and IZ. The region
where Pp Vp is nonvanishing is speckled in the diagram,
the region where PD VD is nonzero is cross-hatched with
sloping lines, and the region where P~ V& is nonvanishing
is cross-hatched with horizontal lines.

The region %0, where Pp P& PD ——1, is——the re——ctangle
OCGD. One sees that only small cross-hatched and
speckled areas are excluded from A'0. Now consider what
happens when the channel radii Rp, R&, and RD get
larger, keeping their ratios to each other fixed. Certain
dimensions of the diagram increase while others do not.
The region A'0 grows, but the ranges of the potentials
PM, XZ, and VH do not. Consequently, increasing the
channel radii causes an increase in the cross-hatched and
speckled areas inside Ao while the cross-hatched and
speckled regions excluded from Wo remain fixed in area
but are displaced further from the origin O. Thus in the
limit when the channel radii become infinitely large, the
region of nonvanishing P V excluded from %0 loses all
significance.
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Now let us consider the question of the surface terms
G~AG and GEGp in the generalized resolvent equations.
These are in general difficult quantities to evaluate in ad-
dition to the fact that an explicit expression for the sys-
tem Green's function G is hard to construct. Consequent-

ly, we shall use the quantity G&EGp to illustrate the
phenomenon we employ to justify the neglect of surface
terms.

The partition Green's-function operators for the one-
dimensional three-body system are

G = g lx, ) ——f,(» )y, (» )(x, l,2

f,(» )-
1/2

sin(k, » ) (A24)

y, (» ) cos(k, » ) s,f,—(» ) . (A25)

where the asymptotic forms of the radial functions are

(A23) Using Eq. (3.5), we have

I

2
GN~Gp g l&~.(»p)fx. (»N) & '3N (aN)

CC'

+p '(~N ) &+p '(»N )~pg', Ng(»p )
l

+ g l~, (», )1. , „(» )& x,(a, )
2

mp Rap

a
&p'«p) &&p'(»x)fp'(»p) I

Hap
(A26)

Pp

+pc', Nc(»p ) ypc'(»p) f, d» g~, (»)f& (»)
ap

+f&~' "p f„d»X~, (»)y~, (») . (A27)

where

g2
C

2p~
(A30)

The lengths a& and ap are the dimensions of the region
~o:

a& ——OD and ap ——OC . (A28)

The boundary conditions imposed on the channel states
imply that

' 1/2

for the breakup channels ac. The bound-state (two-
cluster) channels can be ignored, since for arbitrarily large
channel radii the corresponding channel states will be
negligible at » =a . Inserting Eq. (A29) into Eq. (A27)
gives

sin[~, (» —a )] for» =a (A29) where

1/2
2

GN ~GP
7T

CC

1/2
2+

2vc'
y~, (~~)&xp, (»~)l p, ,~, (»p)

lm

2&cg l&~e(»p)I-Nc, pc'(»N) & 3'p '(&p)&&p '(»~)fp, (»p)
l

CC mp
(A31)

E+5f dE G~b, Gp =0 . (A32)

where use has been made of Eqs. (A22).
The dependence of this expression on the lengths a&

and ap is quite explicit. It is seen that the quantity
G~AGp is a sum of terms having a sinusoidal dependence
on k, a& or k, ap. Clearly, for large values of a& and ap,
one will observe a rapid oscillatory dependence of the
quantity G&AGp on the total energy E. Therefore, if an
energy over a small finite-energy interval is made, we
have

APPENDIX 8: POST-PRIOR EQUIVALENCE
AND THE LIPPMANN IDENTITV

In this Appendix we shall discuss the Lippmann identi-
ty and the post-prior equivalence in the context of the cal-
culable transition operator formalism of Secs. IX and
XIV. For these purposes we need only to recognize that
the partition Green's-function operators 6 are nonvan-

~n

ishing only in the region projected onto by the operator
I' and that G fulfills the same boundary condition

~n

constraint on the partition 0. channel entrance as does the

Rev. Mod. Phys. , Vol. 55, No. 1, January 19S3



Barrett, Robson, and Tobocman: Calculable methods for many-body scattering 239

system Green's-function operator G.
First, let us present a derivation of the Lippmann iden-

tity

@(+) G G
—@(+)P G gq (+)P

~n Cn X„n' ~n'Cn F„En'Cn (81)

This is the form appropriate to the R-matrix formulation
of scattering theory and differs from the form appropriate
to the wave packet formulations used by I.ippm ann
(1956). The Green's-function operators are understood to
fulfill outgoing wave boundary condition constraints on
the relevant channel entrances. The surface on which the
integral is performed is the boundary of the region pro-
jected onto by P Pp. If a&P, this region does not include
a channel entrance. In this case, the situation is similar to
that described in the discussion of Appendix A justifying
the neglect of the b, terms in the resolvent relations.
Therefore, we expect that when a&P, the right side of
Eq. (81) will be a strongly oscillatory function of the en-

ergy whose average over a finite-energy interval will van-
ish in the limit as the channel radii become very large.

In the case when a=p, the entire contribution to the
I

G p —— g ~

Py„c'„) ——u, (r()u, (r) )(Py„c „'
~

C„' ay~

(83)

Finally, using Eqs. (3.4) and (3.5) we have
r

~=X X
p c'Ep 2m, ap

a
5(rp —ap) rp

Brp

a
5(r& —ap) r& (c'

~

2mc ap Brp

(84)

Thus

surface integral on the right side of Eq. (81) comes from
the channel entrance p. For 4&',+,-'~ we can write

i8,e'+'p=2e@.„,c„=2e up,—(rp)
~
ps„c„), (82)

where u&,— is defined by Eqs. (9.4) and (9.6). For G p we
~n

can employ Eqs. (9.1) and (9.2) to write

G Se(,+,)l'= g e(+'t'e
Cn

—l8 l8-
"(py„c„'

~
pE„c„)e

m
Cn

a~u, (aI))
PCn Bap Rap

apus, (ap) . . (85)

The channel state overlap (py„c „'
~
pE„c„)vanishes unless

the channels c „' and c„have both the same cluster struc-
ture and the same relative asymptotic motion, i.e.,
c „' =c„. If c „' =c„,the overlap is unity and the Wronski-
an factor involving u, and u&,— becomes m,—/A', so that

n n n

G g@(+)P g (+)P
~n ll

This, of course, is just a special case of Eq. (10.31).
Next let us consider the post-prior identity

0=(c,'-,'i v, —v, ie,'+'~ ) . (87)

This transforms, using Eq. (14.3), to

o=&c(-,) )H& E+E ~~+—(+)&
&

~n n' 5 c

(BS)

The surface over which this integral is done is the boun-
dary of the region projected onto by P Pp. If p&a, the
surface over which the integration is done does not in-

elude a channel entrance. The surface integral then can
be expected to be a highly oscillatory function of the ener-

gy in the large channel radii limit, and we can expect that
the destructive interference when averaged over a finite-
energy interval will be complete, just as in the discussion
of Appendix A, justifying the neglect of the b, terms in
the resolvent relations.

If p=a, the entire nonvanishing contribution comes
from the channel entrance a. In this case there are two
possibilities: the internal energies E, and E, of the

n n' m Cm'

channel states
~
ay„c„) and

~

a5 c ) are either equal or
unequal. If they are equal, the radial wave functions will
be identical and the Wronskian of the radial functions
will vanish. If they are unequal, the wave numbers of the
two radial functions will not be equal and the %'ronskian
will be an oscillatory function of the energy. These oscil-
lations become more closely spaced as the channel radii
are increased and the average over a small finite-energy
interval will vanish.

Therefore, if an energy average over a small finite-
energy interval is understood, the post-prior equivalence
identity will be valid.

Alternatively, in the a =p case we can write

(q)( )P
i
g

i

q)(+)P )—
~n n' 5m Cm'

24
(py„c„~p5 c' )e e aiju~ (a~)m- n

C Rap

a
a~u&, (ap)

()ap
(89)

Rev. Mod. Phys. , Vol. 55, No. 1, January 1983



Barrett, Robson, and Tobocman: Calculable methods for many-body scattering

This quantity is seen to vanish as a consequence of the ef-
fective orthonormality of the channel states when~ pcn'&c m"

and for c '=c

T,-, —T—, , =—-—2ig
~
T, , „—~2,

II
C

(C6)

APPENI3IX C: UNITARITY CONSTRAINTS
ON THE BKLT FORMALISM

Conservation of flux and time reversal invariance re-

quire that the collision matrix be unitary and symmetric.
To determine the consequence of this for the transition
amplitude, we use Eq. (9.23):

UU =j(=(I—2iT)(I+2iT ), (Cl}

where

(C7)

For convenience, we introduce the operator ~, which is
the solution of the equation

which is the optical theorem.
Now let us see what the BKLT formalism predicts for

T, , —T,—,,—. A somewhat different analysis from the fol-
lowing has been given by Benoist-Gueutal (1975). For
s, = —i, Eq. (10.4) becomes

T= VR GUG + VR'GT .

~= VF+ VFG~= VF+~GV8' (C8)
T--,=T--.+T--

CC CC CC (C2)

By virtue of the fact that Eq. (9.23) can be written in the
form

and is related to the transition matrix operator T by the
equation

'8, 8,,

U~,—.——e '(5~, . 2i T,—,,—)e——
provided that we define

T,—,—,=2' '(u,-~ T p~ u~, ),

(C3)

(C4)

T=~GUG-' .

From Eq. (C8) and its complex conjugate we have

VW =(I+ ~6) 'r = r'(I +-G*r*)

and from this equation it follows that

(C9)

(C10)

~~T--.—T-i-= —2l~ T--ii T-i-ircc c c M cc c c (C5)

we see that definition (C4) is also consistent with Eq.
(Cl). Definition (C4) is used in what follows. Equation
(Cl) implies that

r= r(G——G* )r (Cl 1)

Taking the matrix element with respect to the asymptotic
states

~
u,-) and

~ ub,—,), we see that Eq. (Cl1) gives

(u, Pp~ —up,-) —(u, ,
~ ~*pin up,

-, )=g(u,—P r(Gr —G*)harp~ up;, ),
y

(C12}

where c Ea and c 'EP. For the imaginary part of the Careen's-function operators, we can write for sufficiently large
Channel rad11

Gr —Gr 2in5(E Hr——) = i4fi—' g—
~
u,-„)(u,-„~

c "6y
(C13)

= 2' '( u,-
~

r p ~

u p,-.), (C14)

by virtue of the Lippmann identity (Lippmann, 1956).
Substituting Eqs. (C13) and (C14) into Eq. (C12) gives

T,—,. T,',—.= — ~g —g—(u,-P -r~ u,-„)(u, ~rrp~ up; )
y c "Ey

= —2ig 'V T=..T-„-. .
CC C C

C "Hy

Equation (C15) is equivalent to the unitarity relation

[Eq. (C5)], since the transition matrix is symmetric. It
should be noted that the sum over channels in Eq. (C15)

where the summation is restricted to open channels.
From Eqs. (C4) and (C9) we have

T, , =2m-'(u. , ~

T".
p ~

u~, )

=2@ 'g(u. , P.pG,-G ~
u~, )

y

includes all the open channels which are included in the
spectral decompositions of the totality of the partition
Hamiltonians included in the coupling scheme. Benoist-
Gueutal noted that the coupling scheme must include all
two-cluster partitions, at least, in order for the sum to be
free of omissions. In addition, from the arguments given
in Sec. XIV, we note that the coupling scheme should
contain no more than the complete set of two-cluster par-
titions to avoid redundancy in the sum.
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