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The theory of magnetism in solid *He is reviewed with emphasis on the multiple-spin-exchange theory of
the magnetic interaction. Critical experiments are discussed briefly, and the most reliable present values for
various quantitites are chosen. Various theories of 3He magnetism are considered, with the conclusion that
multiple particle exchange is the most likely mechanism. The microscopic theory of exchange is presented
mainly from the standpoint of tunneling ducts. The spin Hamiltonian which results from two-, three-, and
four-particle ring exchange is derived and studied in the high-temperature limit, in mean-field approxima-
tion, and with spin waves. Two reasonable parameter sets are selected which fit the experimental data,
with the conclusion that the exchanges are mainly three- and four-particle rings. A discussion is given of

remaining problems together with some conjectures.
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. INTRODUCTION

A system of helium atoms seems to be particularly sim-
ple: The He atoms are practically impenetrable hard
spheres, the attractive part of their interaction potential
being weak. However, in the condensed state both iso-
topes “He and *He present a large variety of interesting
properties as a direct consequence of quantum mechanics.
Because of this weak attractive interaction and of the
light mass of the atoms, the zero-point agitation is large,
and helium cannot solidify under atmospheric pressure,
even at T =0. Nevertheless, a solid can be obtained at
high pressure by decreasing the available space for each
atom. In the solid the mean-square displacement of the
atoms is large (30% of the interatomic distance for *He),
and in contrast to ordinary solids, atom-atom exchange
processes are significant. For spin-+ 3He fermions this
exchange induces an effective interaction between nuclear
spins (as a consequence of the Pauli principle, which cou-
ples the spin state with the parity of the orbital wave
function). These exchange interactions cause the nuclear
spins to order at a temperature around 1 mK. 3He is the
only solid in which nuclear magnetic ordering due to ac-
tual whole-atom exchange has been observed. In other
solids nuclear exchange interactions are always much
smaller than dipolar magnetic nuclear interactions, which
lead to magnetic order at extremely low temperatures in
the microKelvin range. (See Abragam and Goldman,
1982.)

The most obvious mechanism for magnetism in *He is
nearest-neighbor exchange. Nearest-neighbor exchange
leads to an ordinary Heisenberg model for the spin Ham-
iltonian. The sign of the exchange constant must be nega-
tive, corresponding to antiferromagnetism. It is, there-
fore, called the Heisenberg nearest-neighbor antiferromag-
netic (HNNA) model. The earliest high-temperature
magnetic experiments agreed with this model reasonably
well. However, the HNNA model soon proved to be
inadequate. Almost every prediction it makes at low tem-
peratures is qualitatively wrong. In particular, it predicts
a second-order transition at about 2 mK, but experiment
has shown a first-order transition at about 1 mK. It
predicts a decrease in susceptibility relative to the Curie-
Weiss law, while experiment shows that it increases. It
predicts a single low-temperature phase in the field-
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versus-temperature phase diagram, while experiment finds
two phases. It predicts a suppression of the critical tem-
perature with increasing field, and experiment finds that
the high-field critical temperature increases with field.

Recent experiments have provided further unexpected
results. Most peculiarly the low-temperature, low-field
phase is now known not to be cubic (in its magnetic struc-
ture), and is probably the antiferromagnetic ‘“uudd”
phase. This phase has alternate pairs of ferromagnetic
planes of atoms with the planes normal to the 100 direc-
tion (or 010 or 001). The spins in these planes are orient-
ed up, up, down, down, thus the abbreviation uudd.

At first it was hard to think of any kind of exchange
mechanism that would be more plausible than the
nearest-neighbor exchange. That the mechanism is actual
atom exchange is almost dictated by the fact that the ef-
fect is about three orders of magnitude greater than mag-
netic dipole interactions and about three orders of magni-
tude smaller than phonon effects. All theories suggesting
an actual mechanism have therefore been exchange
theories, but with complications. Some mechanism must
always be envisaged to “stir” the atoms in the solid. The
method of stirring can be due to vacancies, rings of atoms
exchanging, or double pair exchange mediated by pho-
nons. Ordinary pair exchanges interacting via lattice dis-
tortion, which has also been proposed as a mechanism, is
a case of the last mentioned type where the phonons are
virtual. Only the ring-exchange suggestion has been able
to explain most of the phenomena observed.

The exchange mechanisms in 3He are certainly very
different from those in electronic magnetic materials: In
3He, not only the electrons but the whole atoms, electrons
and nuclei, exchange places. Exchange corresponds to
real permutations of hard spheres. Exchanges involving
rings of more than two particles (three or four) are
reasonable. To illustrate this, think of the following pic-
ture suggested by Willard (1980). Suppose you are travel-
ing at rush hour in the metro—the crowd is so dense that
people can hardly move; if you want to trade places with
your neighbor, it is practically impossible, but if two or
three people agree to move cyclically with you, you can
change places. This is exactly the situation we find in a
hard-sphere solid at large densities.

A short time after the observation of the magnetic or-
dering, Hetherington and Willard (1975) showed that
large ring-exchange terms can account for the first-order
transition at 1 mK and give qualitatively the shape of the
phase diagram.

High-temperature series expansion of a Hamiltonian
which included multiple exchange terms (Roger and Del-
rieu, 1977) then showed that large four-spin terms can ex-
plain an increase in the susceptibility with respect to the
Curie-Weiss law extrapolated to low temperatures, as is
experimentally observed. At the same time, new varia-
tional approximations of the wave function, taking into
account the geometric correlations between hard cores,
were proposed by Delrieu and Roger (1978). In contrast
to earlier calculations based on Gaussian wave functions
(McMahan and Wilkins; 1975; McMahan, 1972b), these
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approximations lead to the conclusion that three- and
four-spin exchange are at least of the same order of mag-
nitude as two-particle exchange in hard-sphere quantum
solids.

The purpose of this paper is to review our knowledge of
the microscopic origin of ring-exchange Hamiltonians
and their consequences for the magnetic and thermo-
dynamic properties of solid bec *He.

The subject breaks naturally into two parts. First is the
question of the microscopic calculation of the exchange
rates. The microscopic theory gives only order-of-
magnitude estimates of the exchange rates, but it gives
support to the ring-exchange model (Roger, 1980; Delrieu
et al., 1980a).

Second is the phenomenological analysis of the four-
spin exchange Hamiltonian (Roger, Delrieu, and Landes-
man, 1977; Delrieu and Roger, 1978; Roger, Delrieu, and
Hetherington, 1980c). It leads to:

(i) increased susceptibility with respect to the Curie-
Weiss law,

(ii) a high-field phase with strong ferromagnetic ten-
dencies, having large magnetization even at relatively low
field (~5 kG) and a second-order critical temperature of
transition to the paramagnetic phase, which increases
with the magnetic field H, and

(iii) an antiferromagnetic phase at low field, appearing
through a first-order transition.

All these features are in agreement with the experimental
results. In fact quantitative fits of most measured quanti-
ties and qualitative fits of the phase diagram are possible
with only two or three exchange parameters.

All theorists are not in accord that ring exchange is the
complete explanation. We shall mention other theories in
Sec. III and return to our own views of the successes and
problems in Sec. XII.

Section II summarizes the main experimental data on
the nuclear magnetic properties of solid bcc *He. Section
III gives an outline and a critical analysis of the different
theoretical models proposed during the last decade. The
microscopic origin of multiple spin exchange in a hard-
sphere quantum solid is explained in Sec. IV. Fundamen-
tal assumptions based on the ideas first published by
Thouless (1965a) are used there to estimate the exchange
frequencies. New variational approximations of the wave
function, taking into account the hard-core correlations
during the exchange process, are considered. After estab-
lishing the general form of the Hamiltonian in terms of
permutation operators and spin operators (Sec. V), we ex-
hibit the high-temperature series expansion up to third or-
der for zero field and to second order for arbitrary mag-
netic field H (Sec. IV). As a general result, we show that
large four-spin terms can account for the increase of sus-
ceptibility with respect to the Curie-Weiss law and the
unexpected value of the 73 term in the specific-heat ex-
pansion.

In Sec. VII we give general methods for minimizing the
free energy within the molecular-field approximation. We



emphasize some general results about the phase diagram.
For most physical values of the parameters, the high-field
phase has two simple sublattices. With large values of the
four-spin exchange parameters this phase presents strong
ferromagnetic tendencies as observed experimentally. Its
phase diagram agrees qualitatively with the experimental
results [the second-order transition temperature 7,,(H)
increasing with H up to high field].

Section VIII presents a search for the simplest model
fitting the available experimental data within the pre-
cision of the experiments, and for the phase diagram
within the accuracy of the mean-field approximation
(which is poor at low field). Most of the experimental
data can be fit with a two-parameter model retaining only
three-spin exchange J, and planar four-spin exchange K,
(pair transposition being neglected).

A spin-wave calculation for the uudd phase is discussed
in Sec. IX. The spin-wave spectrum of the uudd phase
presents an optical branch with a frequency of the order
of 150 MHz in zero field. We suggest the experimental
investigation of this optical mode by observing the small
coupling between spin waves and phonons. Such an ex-
periment could test whether the ordered phase is really
the uudd (the Osheroff experiment does not identify this
phase with certainty); it could also test the validity of our
model. The renormalization of the zero-temperature
molecular-field energy by the spin waves is calculated for
the uudd and the high-field phase. This allows calcula-
tion of a higher approximation to the field of transition
between the two phases. We also evaluate the mean spin
deviation (%—Sz) at zero temperature. We calculate the
mean spin-wave velocity at low temperatures. The
theoretical value obtained with the two-parameter models
given in Sec. VIII disagrees by about 30% with the exper-
imental value given by Osheroff and Yu (1979). This
leads us to readjust the parameters J;, K, of our two-
parameter model (Sec. X). We then investigate models
with more than two parameters, taking into account pair
exchange or folded four-spin exchange in order to obtain
a better quantitative agreement with all experimental data
(Sec. XI).

Section XII is a summary and Sec. XIII an overview.
Appendix D contains a summary of the spin-wave theory
as applied to four-spin systems. It is relegated to an ap-
pendix because of its rather mathematical character, but
it is intended to be readable enough that students could
understand the calculations without special knowledge.

Il. EXPERIMENTAL RESULTS
A. High-temperature data

1. Expansions in powers of 1/T

In order to clarify the relationship between various
high-temperature measurements it is useful first to
develop a “model-independent” expansion of the free en-

ergy.
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In a magnetic field H, the partition function is
Z=tre PH, H=H.+H, . (2.1)

H.,, is the exchange Hamiltonian and H,=—v#% 3, S;"H
is the Zeeman Hamiltonian.

Expanding the exponential factor in powers of B and
taking the logarithm, we obtain the free energy F:

F=——1InZ

4
’}’EHB’ (14ayB+apf+---)

+ (2.2)

The reader will note that the coefficients are not con-
sistently named. Values for &,, &3, and © are usually
quoted in this form (some drop the tildes). a;, a;;, and
d,, have never been measured and cannot be said to have
become standardized. It is still necessary to check values
quoted in the literature to see how they are defined. (For
another notation see Guyer, 1978.)

This expansion is based on the hypothesis that an ex-
change Hamiltonian describes the spin properties correct-
ly, which it does if solid He is strongly localized. This
means more precisely the following:

(i) There is one atom localized at each site.

(11) The rates of exchange are very small compared to
the energy of the zero-point motion.

(iii) The concentration of ground-state vacancies or
thermal vacancies is negligible, so that the hypothetical
system formed by these vacancies does not modify appre-
ciably the magnetic order due to exchange.

These hypotheses are certainly valid at high densities (in
particular, in the hep or fcc phases), but they are not de-
finitively proved in the bcc phase near melting.

However, if the system were not localized, the expan-
sion (2.4) would contain not only forms in 8" n >2, but
possibly a form in T (as in a Fermi liquid), in 1/7, or InT.
Until now such terms, as predicted by Heritier and Leder-
er (1978) for example, have never been observed, and we
suppose this hypothesis of localization to be valid.

The expansion (2.2) is general and does not make any
hypotheses on the structure of the exchange Hamiltonian.
From this expansion, we deduce the following:

(i) The entropy at zero field,

oF

S==%r

=Nkg(In2—&,82/8+&8/12+ - -+ ) . (2.3)

(ii) The specific heat at zero field,



Roger, Hetherington, and Delrieu: Magnetism in solid *He

as
=T aT
v
Nk
== @B T ) (2.4)
(iii) The inverse susceptibility at zero field,
~1
X__] — v 82F
Hokp | dH?
=CTT—6+B/T+ "), (2.52)
a
B=02— —82— , (2.5b)
2
_ HoR | y#i
== |2k, ] , (2.5¢)

where p is the permeability of free space, R the gas con-
stant, v the specific volume, and y#/2kp the Zeeman

splitting in mK per tesla. With this definition of C;, X is
in dimensionless mks units.
(iv) The pressure,

B/8—&3B2/24+ -+ )
+(yAHB/2)XO' /2+a5B/16+ - -+ ),

[
—
N
[

(2.6)

where the primes indicate differentiation with respect to
molar volume v.

The earliest measurements of magnetic exchange coeffi-
cients were made by Reich (1963) and Garwin and
Landesman (1964), using NMR techniques. These and
other NMR experiments are discussed in a reveiw of
NMR effects in quantum solids by Guyer, Richardson,
and Zane (1971). Non-NMR experiments were reviewed
by Trickey, Kirk, and Adams (1972).

Among the high-temperature coefficients which have
been measured (€,,83,0,B), &, is certainly known with
the best accuracy. The pressure measurements of
Panczyk and Adams (1970) in zero field in the high-
temperature range 13<7 <100 mK provide accurate
values of 9¢, /dv, in terms of the molar volume, and give,
after integration,

&, =5.14(v /24)%-%(mK?) ,

where v is in cm®/mole. For the melting curve volume,
v =24.2 cm®/mole, we have

&,~6.95 mK? .

The specific-heat measurements performed in a high-
temperature range 20 <7 <50 mK (Greywall, 1977; He-
bral et al., 1979),

R &

C,,STF ,
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give values of &, in a good agreement with the measure-
ments of Panczyk and Adams.

Greywall (1977) quotes the smallest errors and gives
values at v =23.785 and 24.454, which can be interpolat-
ed by

&, =4.971(v/24)**% (mK?) .

This gives & =6.58 mK? at v =24.2 cm’®/mole.

At low temperatures 2< 7 <20 mK the specific-heat
measurements show a deviation of 72C,(T) with respect
to a constant which is identified with the next term of the
series:

TZC,,(T)=% [52_73
For the same molar volume v =23.8 cm®/mole, Dundon
and Goodkind (1974; 1975) give e;~+11 mK?3, and He-
bral er al. give |&;| <2 mK>. Halperin (Halperin, 1979)
has suggested that this Hebral et al. data should be
corrected for a thermometric effect. Our own estimate of
&5 derived from Hebral with the inclusion of this effect is
€;~3.5 mK?>. Recent measurements by Mamiya et al.
(1981) give &3~25 mK? at the melting curve and estimate
&, to vary as v92*3 in terms of molar volume v. Although
the measurements of this coefficient do not agree, they
seem in contradiction with the Heisenberg model, which
predicts large negative ;. Along the melting curve, the
experimental entropy of Kummer et al. (1977) can be re-
markably well fit above 1.2 mK by the high-temperature
expansion (2.3) with & =7 mK? and &;=7.8 mK? (Fig. 3
below). We doubt, however, that this expansion, limited
to the third order, makes any physical sense at such low
temperatures so near the first-order transition.

The Curie-Weiss temperature (generally deduced from
susceptibility measurements) is not known accurately. It
has been measured either at too high temperatures (Kirk,
Osgood, and Garber, 1969), where the deviation with
respect to the Curie law is too small to give good pre-
cision, or at low-temperature ranges 2<7T <15 mK
(Prewitt and Goodkind, 1977; Bakalyar et al., 1977),
where deviations from the Curie-Weiss law become im-
portant. Kirk et al. give ©~—310.4 mK, Prewitt and
Goodkind give ©~—2.6 mK, and Bakalyar et al. give
©=—3.3mK. Thus

—3.3<0<—2.6mK .

Below 10 mK, in contrast to the behavior of an ordi-
nary Heisenberg antiferromagnet, the susceptibility in-
creases with respect to the Curie-Weiss law. This result
was first reported by Osheroff (1972) and was based on
one experimental point. It was confirmed by the results
deduced from multiple echos observed by Bernier and
Delrieu (1977). It was also confirmed by Bakalyar et al.
(1977) using pulsed NMR. A more detailed measurement
was then performed by Prewitt and Goodkind (1977), who
gave the following values for the coefficients © and B in



the high-temperature expansion (2.5):
©6=-2.6mK and B=—-2.7 mK?.

This negative value for B is in contradiction with a
Heisenberg model which gives B= Y (z,/2 W2 (z, is the
number of nth neighbors and J, the interaction between
nth neighbors). The large uncertainty on © leads to a
large uncertainty on B. Moreover, the conventional
method of measurement gives only relative values of X.
Fitting the experimental curve by the theoretical expan-
sion (2.5) requires the adjustment of three parameters: O,
B, and C, (the volume of solid being unknown). The pre-
cision on B estimated by Prewitt and Goodkind is certain-
ly optimistic. We do not think B is determined to better
than 50% accuracy.

A unique method, the investigation of multiple echoes
(Bernier and Delrieu, 1977), can give absolute measure-
ments of the local magnetization, eliminating one parame-
ter in the fit of Eq. (2.5). This method might be used to
obtain accurate absolute values of the magnetization at
any field.

2. Pressure versus field measurements

An important experiment in the history of the theory
of magnetism in solid *He is that of Kirk and Adams
(1971), measuring P(T,H). This experiment measures e)
and O’ [see Eq. (2.6)]. The experiment was interpreted as
a breakdown of the Heisenberg (HNNA) model at a time
before the phase transition’s peculiarities were known.
That general conclusion we now know to be correct, but
none of the theories introduced to explain this experiment
were successful. It seems probable now that there are un-
recognized errors in the measurements. The data can be
treated as in Panczyk and Adams (1970), that is, by in-
tegrating the values of d©/dv to find ©. The data do not
agree well with Eq. (2.6), however, and no complete agree-
ment can be expected unless we go outside the framework
of a spin Hamiltonian [see the discussion below Eq. (2.2);
see also Guyer, 1978]. Private communication with
Adams indicated a possible error might be an undeter-
mined additive constant in P, which could differ from one
field to another. Even taking this into account does not
resolve all difficulties. By assuming Eq. (2.6) holds, and
that an overall unknown field-dependent pressure must be
added, our analysis of the P(H,T) data of Kirk and
Adams (1971) gives ©=—1.55+0.25 mK, which is still
in substantial disagreement with other measurements.

At the time this manuscript was being revised, an ex-
periment by VanDegrift, Bowers, Pipes, and McQueeney
(1982) showed agreement with the main features of the
Kirk and Adams experiment. They quote a © value of
—1.60%0.06 mK for v =24.25 cc/mole. We have made
preliminary fits and find the results of the later sections
of this paper to be surprisingly insensitive to the value of
O. Therefore, we have not thought it necessary to adjust
our fits until an experimentally agreed upon value of O is
available.
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B. Ordered phases—phase diagram

1. At low field H <4.1 kG, an unexpected
antiferromagnetic phase

The susceptibility measurements performed a long time
ago (Kirk, Osgood, and Garber, 1969) at 10<T <30 mK
showed that solid *He had an antiferromagnetic behavior
with a negative Curie-Weiss constant O~—3 mK. With
a nearest-neighbor Heisenberg model (HNNA), we would
have expected a second-order transition at T,,~2 mK to
a two-sublattice antiferromagnetic phase (normal antifer-
romagnet), the “naf phase.” This result is deduced from
the high-temperature series expansion (Rushbrooke, Bak-
er, and Wood, 1974) of the HNNA model, which gives
T.,=—0.690. A slightly higher transition temperature
might be expected because experimentally the second-
order transition in a “well-behaved” spin-% Heisenberg
antiferromagnet like SmGaG (Onn, Meyer, and Remeika,
1967) is observed at T,,= —0.86. This expected transi-
tion was briefly thought to be found at 2.7 mK (Osheroff,
Richardson, and Lee, 1972). But it soon proved that the
2.7-mK transition was the much anticipated superfluid
transition in liquid 3He. (This confusion arose because of
the presence of both the liquid and the solid in the
Pomeranchuk refrigerator.) Finally, the observation in
1974 (Halperin et al., 1974; Kummer et al., 1975) of an
abrupt drop of entropy at a much lower temperature
T.1=1 mK, suggesting a first-order transition, demon-
strated the inapplicability of the HNNA model. The re-
cent experiments have proved that this transition is actu-
ally first order, with a discontinuity in magnetization
(Prewitt and Goodkind, 1980) and in entropy (0.442R In2;
Osheroff and Yu, 1980).

Nothing was known about the magnetic structure of
this phase until the magnetic resonance experiments of
Osheroff, Cross, and Fisher (1980). The phases occurring
within a Heisenberg model, including first- and second-
neighbor interactions have two or four sublattices with
cubic symmetry (see, for example, Herpin, 1968). As the
dipolar interaction energy is zero at lowest order in a cu-
bic lattice, those phases would give a very low resonance
frequency (of the order of a few kHz).

The observation by Osheroff et al. (1980) of a large
zero-field resonance frequency Q,=2825 kHz proved that
the actual magnetic structure does not have cubic symme-
try. By using monocrystals in a magnetic field they ob-
served three domains having only three possible spin
orientations. Consequently the direction of anisotropy is
along one of the three axes, (001), (010), (100). Any other
symmetry axis would give more than three possible direc-
tions.

Investigating simple one-Fourier-component structures
described by the plane-wave equation

S,' =Re(Skeik.R') ’

they found only one of these structures in agreement with
the experiment. Its wave vector is k=1/a (001). It con-
sists of 001 “ferromagnetic” planes (planes of parallel
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spins) arranged in the sequence up, up, down, down, . . .,
(uudd phase). The structure is illustrated in Fig. 1.
Owing to uniaxial symmetry, the dipolar energy is

Ep=5Md?*?,

where d is a unit vector indicating the direction of, say,
the up spins. The estimation of A in molecular field gives
k=7.26p2(%7/ﬁ)2 where p is the number density. As A is
positive, the dipolar energy is minimum for d?=0. The
spins orient in a direction perpendicular to (001), i.e., in
the plane of the (001) ferromagnetic planes. Thus the an-
isotropy is “planar,” in agreement with the behavior of
the resonance spectrum that they observed. The orienta-
tion of the spins is free within (001) planes. Any small
magnetic field removes this degeneracy, orienting the
spins perpendicular to itself.
The zero-field resonance frequency is

Qo=(}»’}’2/Xl)1/2 .

Taking the experimental value of the susceptibility X
(Prewitt and Goodkind, 1977), Osheroff, Cross, and Fish-
er found Q(~875 kHz in good agreement with the experi-
mental value.

The uudd phase is the simplest structure agreeing with
the experimental results, but more complicated phases

(a)

(o]]¢]

001 PLANE -+ (b)

AN

100

FIG. 1. The uudd phase. The bcc lattice is split into two sim-
ple cubic lattices, respectively represented by full and dashed
lines. Within a given (001) plane (dashed plane) the spin vectors
are identical and lie in the plane. (a) In zero field, the spin
orientation is free in the dashed (001) plane. (b) When a small
field is applied, the spins remain in the 001 plane but become
oriented perpendicular to the field.
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with several Fourier components are not excluded. For
example, structures consisting of a sequence of n layers of
(100) ferromagnetic planes with spins “up” alternating
with n layers of (100) ferromagnetic planes with spins
“down” give approximately this same resonance spectrum
with a zero-field resonance frequency Q, differing from
the resonance frequency €, of the uudd phase by less
than 10% (Roger, 1980): (Q, —Q)/Qp is 6% for n =4
and 7.4% for n— . More experiments are needed to
identify this phase with certainty. The uudd phase has
four magnetic sublattices. Consequently, for symmetry
reasons, the spin-wave spectrum has one acoustic mode
and one optical mode (each doubly degenerate). Within
the four-spin exchange model (see Sec. IX), the frequency
of the optical mode is estimated to be 150 MHz. In Sec.
IX we suggest that the coupling between the exchange
and the phonons will allow observation of this optical
mode and identification of the uudd phase. Neutron dif-
fraction will give a direct classification of the phase, but
the large absorption cross section of 3He for neutrons
makes this a very difficult experiment. Nonetheless, pre-
liminary experiments are encouraging (Benoit et al.,
1982).

Prewitt and Goodkind (1977) made the first observa-
tion of the low-field (uudd) phase off the melting curve,
and also give a value for the magnetic susceptibility of
that phase:

X=C,/5.2 mK .

Recent results by Morii et al. (1978) give X slightly lower,
C, X C,
5.9 mK A< 5.2mK °

Osheroff and Yu have measured the shape of the melt-
ing curve from about 0.4 to 1 mK and have been able to
deduce the entropy as a function of temperature. It fits
well with the T* behavior expected from spin-wave
theory, and they deduce a “mean spin-wave velocity.”
They obtain 8.4+0.4 cm /sec™! for this quantity, making
it one of the best measured properties of magnetic *He.

2. At fields larger than 4.1 kG, a phase
with strong ferromagnetic tendencies

In a magnetic field, the first-order transition to the
phase described above is observed up to H =4.1 kG, at a
critical temperature T, (H) which decreases slightly with
H. Above 4.1 kG a second-order transition is found with
a critical temperature T,,(H) increasing with H. The oc-
currence of this second-order transition was first suggest-
ed on the basis of the entropy curves and confirmed by a
careful analysis (Adams, Delrieu, and Landesman, 1978)
of the thermodynamical measurements of Kummer,
Mueller, and Adams (1977) in a magnetic field H between
4 and 12 kG. The existence of this transition has been
confirmed by other experiments (Godfrin et al, 1980;
Schuberth, Bakalyar, and Adams, 1979). The second-
order transition was recently investigated up to high field,
H =72 kG, by Godfrin et al. (1980). The measurements
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of Godfrin et al. do not define exactly the second-order
critical temperature, but a temperature somewhat lower at
which the entropy becomes negligible (S=~0.21n2);
nevertheless, their experiments indicate that the critical
temperature increases up to 7~3.5 mK at H =72 kG.

The magnetization of this phase can be estimated from
several experiments (Godfrin et al, 1980; Kummer,
Mueller, and Adams, 1977; Adams et al, 1980). They all
agree with a value of about one-half of the saturation
magnetization M, at the relatively low value of the mag-
netic field H =4.1 kG. This is a field such that
viH /2k32715 | ©|, whereas in ordinary antiferromag-
nets this quantity needs to be of order |©| for such
strong magnetization. Godfrin et al. (1980) measured the
variation of the limiting pressure AP(H)=P(H)—P(0) in
a Pomeranchuk cell in terms of the magnetic field H.
Neglecting the entropy at very low temperature, the laws
of thermodynamics give

dp
dH

Ms '-MI

v, @.7)

melt

where M; and M, are, respectively, the magnetizations of
the solid and the liquid, while V; and ¥V, are the molar
volume of the solid and the liquid. [This equation is simi-
lar to the Clausius-Clapeyron equation, the conjugate
variables (H,M) being substituted for (7,S).] Neglecting
the magnetization M; of the liquid, we deduce the mag-
netization M; of the solid by taking the slope of the curve
P(H):

M, ~(V,—V;)(dP/dH) .

The experimental curves of P(H) and M (H) deduced
from Godfrin et al. are shown in Fig. 24 below. The
magnetization varies slowly from 0.6M, around 4 kG to
0.7M, at 72 kG. The magnetization at low field agrees
with the value measured directly by Prewitt and Good-
kind (1980): 0.5M at 4 kG.

These results are consistent with the magnetic reso-
nance data of Adams et al. In this phase, they observed a
broadening and shift of the resonance line almost in-
dependent of the field between 4.3 and 29 kG, which indi-
cates that the variation of the magnetization is quite low.
No precise value of the magnetization can be deduced
from their measurement, because the shape of the sample
is undetermined. Recent experiments of Osheroff (1982)
on monocrystals give M =0.57M,. Thus this phase has
strong ferromagnetic tendencies: high magnetization and
a critical temperature, increasing with the field. It differs
strongly from a ferromagnetic phase, however, because its
magnetization differs from the saturation magnetization.
The shape of the whole diagram is shown in Fig. 2. It
does not resemble the usual antiferromagnet, which has
only one phase with cubic symmetry (the naf phase),
bounded by a second-order transition. In the usual anti-
ferromagnet the transition temperature decreases with in-
creasing magnetic field H.
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3. Other phase transitions

Some other possible phase transitions or specific-heat
anomalies have been suggested. Schuberth, Bakalyar, and
Adams (1979) indicated they had discovered a possible
phase transition in the solid, more or less coincident with
the 4 transition in the liquid, at fields above 27 kG. (The
experiments were carried out in a Pomeranchuk cell, so
that both the liquid and the solid were present.) Yu and
Anderson (1979) and Delrieu (private communication)
suggested that this was a nonequilibrium artifact due to
the formation of underpolarized solid from the liquid.
This seems to have been confirmed by recent work of
Hunt, Morii, and Adams (1981).

The peak in the specific heat at 2 mK (see Fig. 3) has
been speculated in the past to be related to a second-order
phase transition, although this does not seem to be con-
sidered likely now because no coincident effects in other
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FIG. 2. Experimental phase diagram in the H-T plane for bce
3He near melting. Osheroff (1982) observed a first-order transi-
tion bounding the low-field phase (@), and another first-order
transition (O). Adams’s group (Kummer et al., 1975) observed
a first-order (X) and a second-order (+) line. Godfrin et al.
(1980) observed a strong entropy anomaly (M), presumably an
extension of the second-order phase transition of Adams.
Prewitt and Goodkind (1980) observed two transitions for fields
near 0.4 T which they reported to be second order (A). This
figure shows that the situation near 0.4 T and 1 mK is not yet
clearly defined by experiment. However, the low-field, low-T
phase is almost certainly entirely bounded by a first-order tran-
sition, and coming out of the region near 0.4 T and 1 mK a line
of some kind clearly extends to the upper right. Osheroff’s
(1982) recent experiments seems to show definitely that some
part of this extension is also a first-order transition. All these
results are in strong contradiction to an HNNA model which
leads to a second-order transition arcing from 77 at T =0 to 2
mK at H =0.
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FIG. 3. Specific heat for solid *He in the range 0.4—300 mK.
The curve labeled Osheroff-Yu (1980) exhibits T3 behavior
characteristic of spin waves. The vertical line at 1.03 mK corre-
sponds to the first-order phase transition, the entropy change
being 0.443R In 2 as measured by Osheroff. A somewhat less
well-known region above the transition is shown by the older
measurements of Halperin et al. (1974, 1978). Also shown is
the line %(7.0T‘2—7.8T“3) which fits the data of Kummer
et al. (1975) in this region rather well. Hebral et al. (1979) have
measured the T2 region from 5—50 mK. Greywall (1977) has
measured above 50 mK, where the phonon (T3) contribution be-
gins to come in.

parameters have been found and because no indication of
the transition seems to have been found in NMR experi-
ments.

Prewitt and Goodkind (1980) find a second transition
below the second-order transition studied by Godfrin et
al. and by Adams et al. at about 4.1 kOe. This region is
complex both experimentally and in mean-field theory.
The recent observations in this region by Osheroff (next
paragraph) confirm this complexity, although it is not
certain that the second transition observed by Prewitt and
Goodkind is one of the transitions observed by Osherhoff.

Osheroff (1982) has traced the boundary of the low-
field phase down to 0.4 mK. He has reported that the
first-order boundary of the low-field phase shows a sharp
bend at about 0.89 mK and 4.0 KOe, which indicates that
another first-order phase line meets it there. His investi-
gations seem to show a first-order transition between the
high-field phase and the paramagnetic phase, which more
or less follows the supposed second-order transition found
by other workers. His measurements of this first-order
phase line extend up to about 6 KOe and 1.15 mK. If our
mean-field theory results are meaningful, we would expect
this first-order line to end at a critical point.

C. Effect of specific volume

Most of the results so far quoted refer to experiments
done on or near the melting curve. It is possible to corre-
late all results above the melting curve which have been
obtained so far by assuming that all quantities of dimen-
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sion mK scale as v¥ where y=18+1 (e.g., &,, which has
dimensions of mK?, scales as v, etc.). (See, for example,
Mamiya et al, 1981). If this result holds true in detail
(i.e., if the phenomena all scale according to a single func-
tion of v), then we shall have to presume that only a sin-
gle physical mechanism of exchange is important. As the
experimental results cannot be interpreted with less than
two exchange mechanisms—three-particle exchange J;
and four-particle exchange Kp (see Sec. VIII)—all signfi-
cant exchange frequencies J;,Kp, ..., will have to vary
according to a single function of v. At first sight there
seems no simple way to link these mechanisms to a single
physical process. However, the calculations of Avilov
and Tordansky (1982) suggest that J, and Kp are nearly of
the same size and will vary with v in a similar way. We
return to this point briefly in Sec. XIII.

ll. THEORETICAL MODELS

A. Pre-1975 theories

The earliest work on magnetism in solid *He was done
by Bernardes and Primakoff (1960) and thereafter by
Nosanow and co-workers (Nosanow, 1964; Nosanow and
Mullin, 1965; Hetherington, Mullin, and Nosanow, 1967).
These workers used a perturbation-theory approach to
determine the exchange rate. The sign of the exchange
was not understood to be definite.

Even as late as 1972 the question of the sign of the ex-
change was not universally agreed upon. Trickey, Kirk,
and Adams (1972), in their excellent review, said that it
might depend on the delicate cancellation of large num-
bers.

Thouless’ paper in 1965 (Thouless, 1965a) marks a
turning point in the understanding of exchange in solid
3He. Thouless settled the question of the sign of the ex-
change. (It is antiferromagnetic for nearest-neighbor ex-
change, ferromagnetic for three-particle rings, etc.; see
Secs. IV and V.) He also gave the form of the spin ex-
change operator for four-spin ring exchange.

During this period there were a large number of
theoretical papers on the magnetic effects. All of them
were based on the assumption that only nearest-neighbor
exchanges are important. That idea can now be ruled out.
We mention the review by McMahan (1972a) as being
very good in that context. A different approach by Bran-
dow (1971, 1972) and by @stgaard (1972) was based on
the t-matrix theory taken over from nuclear physics. The
effective density in solid *He is much higher than in nu-
clei, so the t-matrix approach becomes very difficult.

More or less beginning with Thouless (1965a), the sug-
gestion that higher exchanges play an important role was
an undercurrent. Guyer and his collaborators kept the
idea alive with a series of papers using three- and four-
spin exchange in various contexts (Guyer and Zane, 1969;
Zane, 1972; McMahan and Guyer, 1973; Mullin, 1975;
and Guyer, Mullin, and McMahan, 1975).

By 1974 Guyer (Guyer, 1974) was convinced that the
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theory which relied on nearest-neighbor exchange was
inadequate. He also gave a convincing presentation of the
contradictions at a meeting in Aussois, France in 1974.

B. Post-1975 theories

After the experiments of Kummer et al. (1975) and of
Halperin et al. (1974, 1978), the theories changed charac-
ter to a more speculative form. The review by Guyer
(1978) gives an idea of the theoretical situation at that
time. The paper of McMahan and Wilkins (1975) was an
attempt to calculate the magnitude of four-spin ex-
changes, perhaps in the older tradition. Beal-Monod
(1977) proposed a model based on spin glasses, which
must be ruled out now that we know that the low-
temperature phase is ordered. Sokoloff and Widom
(1975a, 1975b) proposed a ground-state vacancy model.
Two more vacancy models were proposed by Andreev,
Marchenko, and Meierovich (1977) and by Heritier and
Lederer (1977, 1978).

These vacancy models were suggested by the ferromag-
netic tendencies of 3He in the paramagnetic state. The
fact that vacancies favor ferromagnetism can be simply
shown in the following way: When, after n successive
jumps on a closed path, a vacancy returns to its initial po-
sition, the net effect is a cyclic permutation of the n —1
atoms involved on this path. If only jumps to nearest-
neighbor sites are allowed, all such closed paths in a bcc
lattice have an even number of steps (such a lattice is
called “alternated”), and correspond to cyclic permutation
of an odd number of particles. Such permutations favor
ferromagnetism (see Sec. V). Thus, if all allowed permu-
tations are odd, one can prove easily that the ground state
for one isolated vacancy is ferromagnetic (Nagaoka, 1965,
1966). Consequently, in an antiferromagnetic lattice, a
vacancy can lower its energy by constructing a local fer-
romagnetic surrounding called a “polaron.” The presence
of a concentration x~5X107* of such (possibly none-
quilibrium) polarons could account for the enhancement
of the low-field susceptibility at low temperatures (Heri-
tier and Lederer, 1977; Montambaux, Heritier, and Leder-
er, 1982). Until now no explanation of the first-order
transition and of the structure of the low-field phase has
been given within this model. On the same basis, but tak-
ing into account the variation of the number of vacancies
with the magnetic field, Andreev, Marchenko, and
Meierovich (1977) reported that ground-state vacancies
can induce a ferromagnetic phase above some finite exter-
nal field H. The first-order transition they predict be-
tween this phase and the paramagnetic phase is in con-
tradiction with the experimental results. With a concen-
tration of vacancies of the order of 10~* we expect some
anomalies in the high-temperature thermodynamic data
in the range 10<T <100 mK (Heritier and Lederer,
1978). Careful specific-heat measurements revealed no
anomaly (Greywall, 1977; Hebral et al, 1979). However,
in fairness to the conceivers of the vacancy idea, it should
be mentioned that all earlier measurements of specific
heat had indicated just such an anomaly (Castles and
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Adams, 1973; Pandorf and Edwards, 1968; Sample and
Swenson, 1967).

Another approach to the problem was suggested by Pa-
poular (1978). Papoular proposed some kind of lattice
distortion which would “freeze in” the antiferromagne-
tism. More recently Guyer and Kumar (1982) have sug-
gested a similar, more specific model: A phenomenologi-
cal treatment of the free energy, expanded in powers of
the order parameter p =(2S,), shows the negative p*
terms can induce a first-order transition (Landau and
Lifschitz, 1958b, Statistical Physics). A possible physical
origin of such fourth-order terms is the coupling between
exchange and phonons. As a rough approximation, we
can take an HNNA model with an exchange constant J
varying isotropically with the molar volume V-
J=Jy[1+T;(AV/V)]. A free-energy expansion in
powers of the order parameter shows that a first-order
transition can occur if the critical parameter
n= %NkBK TyT3 (Ty=4J is the Néel temperature and K
the compressiblity) is larger than one (Bean and Rodbell,
1962). Although I';=d InJ /d InV ~18 is quite large, 7 is
nevertheless of the order of 1.6Xx 102 (Landesman,
1978), which is much too small to induce a first-order
transition. Guyer and Kumar note that an examination
of the X~ ! vs T curves shows that they become rather
straight at low temperatures and would apparently pass
through the origin if extrapolated. They say that this
may mean an absence of a temperature scale in the under-
lying physical exchanges, whatever they may be. They
thus assume that some static deformation effect as
described above (but involving the proper shear distortion
to induce the uudd structure) is needed to obtain the ob-
served first-order transition. Models based on this
exchange-phonon coupling each fit only one experimental
datum (the critical temperature of the first-order transi-
tion) with one adjustable parameter. The value given for
this parameter seems to require a very large dependence
of J on the molar volume or shear distortion.

The low experimental value of 7 leads to the conclusion
that the coupling of exchange with phonons is likely not
essential for the magnetic properties of solid *He. Furth-
ermore, with large exchange-phonon coupling we would
again expect some anomalies in the high-temperature
thermodynamic data (in the range 10 <7 <300 mK), for
which there is no evidence.

Finally, the multiple exchange model proposed by
Hetherington and Willard (1975) was a phenomenological
success, but when it was first proposed lacked sufficient
theoretical support for general acceptance. Their multiple
exchange model incorporated large values for the four-
spin exchange terms. Such multiple exchange models
with large four-spin ring exchanges are at the present
time the only ones which can account for most of the
available experimental data.

C. Ring-exchange models

Two main ideas lead us to choose this model. (a)
Four-spin exchange gives fourth-order terms in the ex-
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pansion of the free energy and can induce a first-order
transition. (b) By simple geometrical arguments we are
convinced that multiple exchanges (like three- and four-
particle cyclic permutations) could be microscopically jus-
tified in hard-sphere quantum solids. We view the multi-
ple exchange theories to be in the tradition of earlier cal-
culations of exchange, say those of McMahan and Wil-
kins (1975). However, unlike them, we refuse to trust the
variational wave functions in the exchanging configura-
tions.

The Lennard-Jones interaction potential between the
atoms presents an imprenetrable hard core of diameter
og=2.14 A and a weak attractive part (see Fig. 4). Be-
cause of the light mass of *He atoms, the kinetic energy
term in the Schrodinger equation is more important than
the attractive part of the potential energy. Therefore, a
simple hard-sphere model can be useful in describing *He
(Kalos, Levesque, and Verlet, 1974). Thus exchange pro-
cess in >He can be approximated as real permutations of
hard spheres.

Let us take now the simple model represented by Fig. 5.
Four hard discs, a,b,c,d are free to move in the space lim-
ited by eight fixed discs (1—8). The positions of these
discs are those of four *He atoms and their eight nearest
neighbors in a 110 plane of the bec lattice [Fig. 5(a)].
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FIG. 4. Lennard-Jones potential. The equilibrium distance R,
between atoms is larger than the distance ¢ corresponding to
the minimum of the Lennard-Jones potential. oy=2.14 A is
the equivalent hard-core diameter. The arrows show the dis-
tance between atoms during two- or four-atom exchange with
fixed surrounding neighbors. The approximate kinetic energy
per pair (open circles) in the *He ground state as a function of
nearest-neighbor distance shows that the kinetic energy is as
large as the potential energy is the equilibrium configuration.
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FIG. 5. Ring exchanges in the bcc lattic. (a) Four atoms and
their eight first neighbors in a (110) plane of the bcc lattice. (b)
As the lattice opens, o/a =ry, the first exchange to occur is cy-
clic four-particle exchange. (c) and (d) show how two- or three-
particle exchange requires overlapping of the hard cores at the
same density as (b). The eight surrounding atoms are supposed
to be fixed.

(i) If the ratio r =0 /a between the radius o of the discs
and the parameter a of the unit lattice cell is larger than
some critical value r4, any permutation of two, three, or
four discs is geometrically impossible without overlapping
the hard cores.

(ii) With 7 slightly smaller (corresponding to lower den-
sity) than r4, the permutation of two or three discs
remains impossible, but four atoms can exchange cyclical-
ly.

(iii) As r decreases, the lattice becomes more open, and
with 7,34 <7 <F34, three- and four-particle cyclic permu-
tations are allowed but two-particle exchange is forbid-
den.

(iv) All three kinds of permutations (with 2, 3, or 4
atoms) can only occur if 7 is smaller than r,34.

Thus, as the lattice opens, the last type of exchange to
occur is that of the two-particle permutations, and this
simple picture suggests that three- and four-particle ex-
changes could be favored at large densities. However, this
model is very crude because it does not take into account
the displacements of the surrounding atoms and because
it is planar. We need more quantitative arguments.

Estimates of the exchange rates corresponding to dif-
ferent permutations can be carried out only if we are able
to find a reliable approximation for the wave function in
the exchange configuration. Although it gives a correct
value for the ground-state energy, the Gaussian wave
function generally used in the literature (i.e., a product of
Jastrow functions with independent phonon eigenfunc-
tions; McMahan, 1972b; McMahan and Wilkins, 1975)
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does not describe the wave function correctly in the ex-
change configurations. The Gaussian tails of these wave
functions are unreasonably small in the exchanging con-
figurations. Exponential tails, which are longer, are ex-
pected to be a better description in these configurations.

IV. PHYSICAL ORIGIN OF MULTIPLE EXCHANGE

A. Exchange Hamiltonian—main hypothesis
for the calculation of the exchange rates

In spite of the large zero-point motion, exchange occurs
“rarely,” the experimental exchange frequencies J, ~ 107
Hz being 10* times smaller than the Debye frequency
®p~3.5%10"" Hz. Thus the He atoms can be con-
sidered to be strongly localized in the solid. The fact that,
at low temperatures 5 mK <7 <100 mK, the entropy is
reduced to the magnetic entropy ~R In2 seems to con-
firm this hypothesis.

The study of this kind of exchange as it applies to solid
3He was begun by Thouless (1965a). His work is based on
the earlier work of Conyers Herring (1962). We review the
theory here and derive Thouless’ result that the exchange
rate is given by a surface integral over the “home-based”
wave function, which we define below.

In this section only identical distinguishable particles
will be considered. The restriction to totally antisym-
metric wave functions will be made in the next section,
where the spin pseudo-Hamiltonian will be derived. By
restricting our discussion to distinguishable particles for
the moment, we need consider only the “orbital” part of
the wave function, since there is no spin-spin or spin-orbit
interaction.

In the 3N-dimensional configuration space, the orbital
wave function ¥(r), r=(r,15, . . ., Iy), takes appreciable
values only when each particle i is near its lattice site R;.
The ground-state wave function is of constant phase and
has no nodes, and therefore we can assume that it is real
and positive. Following Thouless (1965a), we give the
name “cavity” to a region of configuration space where
the probability 1/*(r) for the wave function is high. For a
system of N identical but distinguishable particles, there
are N! ways to assign N particles to N lattice sites. Thus
we define N! cavities {1p, each containing configurations
in which each particle i is near the lattice site Rp(; (P
representing any permutation of N numbers). These cavi-
ties are connected by regions of small but finite probabili-
ty for the wave function called “ducts.” The cavity
centers can be defined as the points in hyperspace where
each particle is exactly located on a lattice site. There-
fore, the cavity centers are the points where ¥*(r)=max
(i.e., at r=Rp(;). The idea of the cavity can be visualized
if one considers the surfaces of constant probability densi-
ty, $*(r)=const, as comprising a 3N-dimensional topo-
graphic map. For #?(r) just less than the maximum we
find hyperspherical surfaces surrounding the cavity
centers. As the probability density is decreased the spher-
ical contour surfaces grow and become deformed. (In
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fact, certain local maxima in the wave function may exist
which would complicate the picture.) At very low proba-
bility densities the surfaces of the distinct cavities ;
would first touch, then become connected along the paths
of the “ducts.” The ducts can therefore be defined as
paths along which the probability density of this ground-
state wave function is always greater than some value;
these paths connect the cavities corresponding to different
permutations P. The exchange P of N particles corre-
sponds to the tunneling from one cavity Qy (E =identity)
to O P-

Figure 6 illustrates the partition of the four-
dimensional configuration space into two cavities {}; and
Q, and two ducts D; and D, for the very simple case of
two particles in a two-dimensional box. In a 3N-
dimensional configuration space, the topology of cavities
and ducts is very intricate. Nevertheless, the problem can

(0
N

I ——x

D
D,

FIG. 6. The exchange of two hard disks in a box of two dimen-
sions. x;,y; and x,,y, are the coordinates of particles 1 and
2, respectively, and x =x;—x; y=y,—y); X=(x,4+x,)/2,
Y =(y;+y,)/2 are their relative coordinates. The particles are
shown in 4 and B in positions which correspond to the two
“cavities” Q4 and Qp. In D, and D, the particles are shown in
the ducts. In C the four-space is represented by the two-
dimensional plane (x,y). At each point (x,y) the orthogonal X, Y
subspace is rectangular (L;,L;) although its shape changes from
point to point on the x,y plot. Contours in the lower right of C
show the area 4 =L L, corresponding to each point x,y. Also
shown in the upper left of C are transverse “kinetic energies”
calculated as (1/L%)+(1/L3), being proportional to the energy
of a two-dimensional particle in a box of sides L;,L,.

Dy
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be simplified by the following physical hypothesis.

Let us imagine a perfectly localized system where there
is no exchange at all (all paths or “ducts” between cavities
are closed). In this case the ground state of the N identi-
cal but distinguishable particles is N! degenerate. The
opening of the ducts removes this degeneracy. The num-
ber of ducts leading from any one cavity is equal to the
number of physically possible exchanges. For example, if
only nearest-neighbor exchange is possible then there will
be %qN ducts leaving each cavity (where g is the number
of nearest neigbors). With four-particle rings of nearest
neighbors tunneling cyclically, we would still have a num-
ber of order-N tunnels from each cavity. Each pair of
cavities connected by ducts corresponds to one type of ex-
change. Some pairs of cavities may be connected by more
than one duct, but in this case these parallel “ducts” are
simply different orientations of the same particles while
tunneling (for example, when nearest neighbors tunnel
and are passing each other there are several orientations
with equal probability). For convenience we shall refer to
all the parallel ducts connecting two cavities as a single
duct.

In the limit of low exchange rates (compared to the De-
bye frequency), the opening of one duct between two cavi-
ties Qr and Qp changes the relative phases of the wave
function ¥(r) in Qf and Qp, but does not appreciably af-
fect the magnitude |¥(r)| of the wave function in the
cavities. Therefore, we can isolate two cavities, Oz and
Qp, and one duct D, connecting both cavities, indepen-
dently of other ducts and cavities. We calculate the ex-
change frequency Jp corresponding to the permutation P
as the tunneling rate between the cavities Qr and Qp
through the duct D (see Fig. 7). The exchange frequency
Jp is defined as one-half of the energy difference ES— E4
between the ground state ¢° and the first excited state 34
in the region Qg —D —Qp.

Writing the Schrdédinger equations for both states, and
combining these equations in order to eliminate the poten-
tial energy U(r), we obtain

(EA—ES)Wtﬁs:%(WVZ:/fg—:/FVZW) .

Integrating both sides over a part v (e.g., over one cavity)
of the 3N-dimensional configuration space and applying
integration by parts on the right-hand side, we obtain

(EA—E9) [ y*ydv
ﬁZ
g [ WAV —ySVyhds . (a1

3, is the hypersurface limiting the hypervolume v. If v is
chosen to be the half space of configurations limited by
the (3N —1)-dimensional nodal surface Xy (where
14 =0), we obtain the simple formula (Thouless, 1965a)

—2Jp=E4-ES

=—% f2N¢SV¢A'dS/ [ vvsav .

Note that with this definition Jp will always be negative.

(4.2)
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(c) Vit
Qe | LoD Qe
Vi(t)
nZ
Eo 52 Eo
RZ t

FIG. 7. Schematic representation of exchange: (a) In the con-
figuration space of two cavities Qg and Qp corresponding to the
permutation P and one duct D connecting Qg and Qp. Qf and
Qp represent the system in permuted configurations at ‘“equili-
brium” (i.e., when each atom is near its lattice site). Exchange P
occurs through the duct D connecting Qfr and Qp. The duct
section is small compared to the dimensions of the cavities be-
cause the space for zero-point motion is reduced by hard cores
in the exchange configurations. X is the (3N — 1)-dimensional
median plane equidistant from the centers C; and C, of the two
cavities. .Z(t) is the fall line along the middle of the duct,
where the real ground-state function is maximum. A correct
“home-based function” as defined by Herring (1962) is the exact
solution of the Schrddinger equation in Qg and D, with D closed
at A near Qp. (b) Behavior of some wave functions along the
line .£(¢). t is the curvilinear coordinate along the line .Z(z).
Wo(2): exact symmetric ground-state function. W(z): exact an-
tisymmetric first excited state. W(¢z): Home-based function,
solution of the Schrédinger equation in Qg and D, with D artifi-
cially closed on 4 at the end of the duct (¥=0 on 4). V¥ de-
creases exponentially near the center of the duct. ¢,(z): Jastrow
wave function, depending only on distance from the wall. It is
approximately constant at the center of the duct and too large
compared to W. ¢o(?): product of Jastrow wave functions and
Gaussian-like functions. It decreases too rapidly in the duct
compared to W. (c) Structure of the effective potential ¥ de-
fined by Eq. (4.4), representing the localization energy of the
system in a given section of the duct.
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In order to calculate Jp, Eq. (4.2) makes it clear that
the wave function must be determined in the center of the
exchange duct. Of course this kind of many-body wave
function cannot be calculated except by methods which
take full account of the many-dimensional character of
the problem.

In principle, the Monte Carlo procedure developed by
Kalos and co-worker (Ceperley and Kalos, 1979) can
determine exact solutions of the Schrédinger equation.!
The ground state 1° and the first excited state 3 could be
determined separately by assigning adequate limiting con-
ditions on the surface =. An important question still
remains: Within a reasonable computing time can we ob-
tain a sufficient number of events in the low-probability
region D to deduce accurate values of ¥ and ¢ on the
exchange surface 3? We think this calculation is possible.
In any case the method is worth investigating because it
seems to be the only one which could give definite values
of the exchange frequency Jp.

As a first step, if we want only to compare the relative
orders of magnitude of the different kinds of exchange Jp,
we can use approximations to the wave function.

B. Approximation to the wave function

1. Definition of a home-based function

If the duct is narrow, the magnitudes |¢°| and |¢*|
of the even and odd modes are practically the same in the
cavities Qg and Qp. Consequently the linear combination

=5 +9) 4.3)
is mainly localized in one of the two cavities, and
=55 =y

is localized in the other (see Fig. 7).

As defined by Herring (1962) and McMahan (1972a,
1972b), 1, represents a ‘“home-based function” for the
system. Thus

l/fg=(¢1+¢2) and I//’I(lb]—lbz) . (4.4)

In the half space v limited by the median hyperplane =,,,
we have

[ 5| =9 |~y
and the integral f v =
Using this fact and Egs. (4 4) and (4.1), one obtains

JP=—2—2; f2(¢1v¢2—¢2v¢1)-ds . 4.5)

IWe note that Thouless (1965b) was the first to suggest that a
Monte Carlo method could be used to improve the wave func-
tion in the duct. He made a model calculation based on two
particles in a box (the three-dimensional equivalent of Fig. 6)
and showed that exchanges could be calculated in that six-
dimensional problem.
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This relation emphasizes that ¢ must be known with
accuracy inside the duct, in particular in the middle, on
the exchange surface X.

2. Approximation to the home-based function y

We must find reliable approximations to ¢¥. As pointed
out by Thouless (1965a), a good approximation to the
home-based function ¥, can be obtained by localizing the
wave function in one cavity C,, artificially closing the
duct D at its end 4 opposite to C, (see Fig. 7). The exact
home-based function as defined in Eq. (4.3) actually gets
smaller as one passes the nodal plane of ¥, until a point
near the second cavity, where it must cross zero and be-
come negative (although small), as can be seen by consid-
ering the fact that ¥, and v, are orthogonal. Closing the
duct on the nodal plane of y; would leave it unchanged.
If the exchange is small, so the ¥, is very small in the
neighborhood of its nodal plane and near the end of the
duct, then closing the duct arbitrarily at a surface near
the end should not affect ¥; much near the center of the
duct.

If we are able to solve the Schrodinger equation thus
obtained, in C; and D, the solution ¥, is a reliable approx-
imation to the home-based function.

a. Definition of a one-dimensional path along the duct

The topological structure shown schematically in Fig.
7(a) allows us to distinguish the direction along the duct
from the directions perpendicular to it.

For this purpose we define new coordinates in configu-
ration space: Let L (z) be a one-dimensional path joining
the centers of the two cavities through the midst of the
duct D. The parameter ¢ is the distance along the path.

L(t) is given by its trajectory x(#)=(x(¢),
x5(2), ..., x35(2)). We define a new local system of coor-
dinates, including the variable ¢ and 3N —1 variables
uj(t,xy, . . ., x3y) orthogonal to ¢ and to each other.

b. Behavior of the wave function in the duct,
along the path L (t)

Let us consider a path L (z) such that the Schrodinger
equation can be separated in the following way:

ﬁZ 62
— Uy=Ey, 4.6
Ly E s Uy=Ew (4.6
where V? designates the Laplacian operator in the
(3N —1)-dimensional subspace orthogonal to ¢. This
separation is obvious if L (¢) is a straight line. It is also
true if L (¢) is a gradient line of v, as shown in Delrieu,
Roger, and Hetherington (1980a).
We can define an effective potential V inside the duct D
# iy
V=—a—-——4U, 4.7
m ¥ + 4.7)

and we can write Eq. (4.6) in the one-dimensional form
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#

—E—at—z (4.8)

Y+VyY=Ey .
V depends mainly on the variable ¢, and at fixed ¢ is of the
order of the localization energy of the system inside the
duct. The first term of Eq. (4.7) measures the local curva-
ture of ¢ in the subspace orthogonal to ¢; it is roughly
fixed by the hard-core limiting conditions (=0 if two
hard cores touch each other). The duct being narrow, V is
much larger than E,. For this reason, Eq. (4.8) has a sim-
ple WKB solution along the line L (¢):

= fot

In the center of the duct V is roughly constant, that sec-
tion of duct being by symmetry nearly constant. Thus the
decrease of 9 is roughly exponential. A good approxima-
tion of ¥ must satisfy this condition. The wave functions
used in exchange calculations made heretofore do not
(McMahan, 1972a, 1972b; McMahan and Wilkins, 1975).

172

P(t)=C exp %(V—E) dt

c. Inadequacy of variational wave functions

The essential correlations between hard cores can be
described by Jastrow wave functions (Hansen, Levesque,
and Schiff, 1971),

Hf(r,-—rj) .

i<j

f(r;—r;) is a continuous function, depending only on the
distance | r; —r; | between particles, constant at large dis-
tance and null if two hard cores overlap:

f(r;—r;)=0 if |r,—1;| <0 . 4.9)

The Jastrow function is sometimes used by itself to ap-
proximate the ground state of the quantum liquid. It
does not directly introduce long-range order, while it does
prevent overlapping of hard cores. The advantage of
specifying this function over specifying the two-body
correlation function is that there are no difficult con-
straints on the functions. There is, however, the difficulty
that exact matrix elements cannot be calculated because
integrals over it do not separate and remain 3N-
dimensional. Feenberg (1969) develops the theory of these
functions, which he calls BDJ functions (for Bijl-Dingle-
Jastrow).

If the width of the duct is roughly constant near the
median surface =X, the Jastrow function, which depends
only on the distance between the particles, is roughly con-
stant (see Fig. 7). In contrast, the exact wave function 3
has a faster exponential decrease. Thus use of the Jastrow
function alone would overestimate the exchange frequen-
cies.

The same reasoning explains the fact that in calcula-
tions performed on liquid or solid He, using only Jastrow
wave functions, the liquid-solid transition is found at
much too large a density compared to the experimental
result.
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A more localized description of the helium atoms can
be given by

o= [Ifri—1) [1

i<j i

—_— .—_ 2
e A(r;—R;) , (4.10)

which is a product of a Jastrow function with indepen-
dent Gaussian functions, localizing the atoms on their
sites, or it can be given by a more complex function:

(Dph= Hf(ri_rj)'(ﬁph »

i<j

4.11)

which is a product of a Jastrow function and a phonon
wave function.

Variational calculations using ®¢ or @, give a correct
value of the ground-state energy E, (compared to the ex-
act results obtained by Hansen, Levesque, and Schiff,
1971, using Monte Carlo methods). This indicates that
these functions describe correctly the true wave function
¥ in the regions where || is large (i.e., in the cavities).
However, exchange being ~10* times smaller than the
Debye frequency, the minimization in those calculations
is practically independent of the value of v inside the
duct.

These Gaussian-type functions ®g or @, fall off much
too rapidly (like e —at? along L (z) inside the duct, the de-
crease of the correct wave function being rather exponen-
tial. For this reason they underestimate the exchange fre-
quencies. For four-spin exchange, the exchange duct is
longer than for pair exchange, and the Gaussians fall off
drastically in the middle of the duct, so that these approx-
imations strongly underestimate four-spin exchange with
respect to pair exchange. We believe that is why
McMahan and Wilkins (1975) find negligible values for
four-spin exchange. It is for this reason that we believe
those results are unreliable.

C. Improvement of the wave function in the duct

1. The correction factor £ (t)

As emphasized in Sec. IV.B, the function ®; describes
correctly the wave function ¥ in the cavities and needs
essentially to be corrected along L (¢) inside the duct.

We discuss here the possibility of improving the func-
tion ®; by multiplying it by a one-variable function f(¢)
and taking the trial wave function

Y(r)=dg(r)f(¢(r)),

where for every point P of coordinates r, ¢ (r) corresponds
to the orthogonal projection of P on the trajectory L (¢)
(i.e., the closest point).

The form of ¥ so chosen supposes that ®; describes
sufficiently well the variations of the wave functions with
respect to the variable orthogonal to ¢, and must only be
corrected along L ().

Two methods have been used to optimize the function
-

(i) In Sec. IV.C.2 we develop a variational method: f(t)

(4.12)
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is determined by requiring that (r) satisfy the
Schrédinger equation as well as possible for each point of
the duct (Delrieu and Roger, 1978).

(ii) A simpler method is outlined in Sec. IV.C4. If
L (¢) is a gradient line of the exact wave function v [i.e.,
in each point of L (¢) the tangent to L (¢) is parallel to the
gradient of ], ¥ satisfies a one-dimensional Schrodinger
equation along L (z). For this method an approximate
one-dimensional Schrddinger equation is solved on L (¢).
(See Delrieu, Roger, and Hetherington, 1980a.)

The second approximation may be less satisfying than
the variational method, which requires that the
Schrédinger equation be approximately verified not only
on a one-dimensional path L (¢) but for each part of the
duct. However, it is much simpler and gives the essential
results for calculating exchange. The physics of the ex-
change process appears more clearly with the second
method. It also allows us to consider simple optimiza-
tions of the path L (¢) (i.e., to determine the structure of
the displacement of the surrounding atoms).

2. Principle of the variational method

The solutions of the Schrédinger equation (in this para-
graph we take #°/2m =1 to simplify the formulas),

—VY+Uy=Ey,
make the quantity

I=(|Vy|)—(E—-U)|¢|2)

stationary.

Here ( ) designates the integration over the 3N-
dimensional space. The function f(¢) is determined varia-
tionally by minimizing I.

If 89 =¢5f represents a variation of i, the variational
principle gives

8I =8f {{dVX$f)) +((E —U)$*f) }=0,

where ( ), represents the integration over the (3N —1)
variables u;, orthogonal to ¢.

The calculation can be carried out for any trajectory
L (2), but is very intricate for a general curved path. It be-
comes much simpler if we take L (¢) as the straight line
joining the centers of the cavities. [This approximation is
valid if the radius of L (¢) is very large compared to the
width of the duct.] In this case the condition (4.13) leads,
after some algebra (see the details in Appendix A), to the
following one-dimensional Schrédinger equation:

(4.13)

2 . _
_%f(xw VOFt)=EF(t) (4.14a)
with
(U, 1 <¢2V21n¢>1 1 32 2
Vit)= o, -5 7oy +Z—8t2 In{(¢*), ,

(4.14b)

where F@&)=f()(#?)1”?. The exchange parameter J is
5(Es—E,), where Eg and E, can now be interpreted as
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the energy of the lowest two states of the Schrédinger
equation (4.14).

For each value of 7, f(¢) gives the mean-square value of
¥ in the subspace orthogonal to ¢, ¢ being fixed. Physical-
ly the effective potential ¥ (¢) can be interpreted as the lo-
calization energy of the system inside the duct for a given
value of 7. Thus exchange appears as the tunneling of the
system through an effective potential barrier, which for
3He is essentially the kinetic energy of the particles
[second term in Eq. (4.14b)]. In the lattice positions, the
particles are away from the minimum of the potential en-
ergy U; during exchange U actually decreases as the hard
cores come close together, but the kinetic energy term
#?V?Ing increases.

3. Calculation of two- and four-spin
exchange in bcc solid *He

a. Choice of the path L (t)

Consider the straight line joining the center C; of Qg
of coordinates (R,R,, ..., Ry) to the center C, of Qp
of coordinates (R"x’RVz’ ce, Rv',), with v; =P (i).

The projection ¢ of a point r in configuration space
onto C,C, is defined by the simple relation

ri'(Ri_Rv,-)
{0=2 e €

i
with

[IC1Cal|=

) 1/2
S IR —R, | ‘
i

The arbitrary constant C can be chosen such that t =0
at the center of one cavity. Figure 8 illustrates this pro-
jection ¢ in the case of two- and four-particle exchange.

The choice of this path means that we consider only the
movement of the exchanging particles, the mean positions
of the surrounding particles being unchanged. This ap-
proximation is correct for four-atom exchange because
this exchange can occur easily without a large displace-
ment of the surrounding atoms (see Fig. 5) and the
straight line C,C, follows approximately the middle of
the duct. The choice of a straight line is not valid for
two-particle exchange, which requires a large displace-
ment of the surrounding atoms in order to prevent hard-
core overlap. In this case the straight line C,C, is outside
the duct. A better choice for L (¢) would be the straight
line joining the center of the cavity to the middle of the
duct. This choice is better physically because it takes into
account the increase of the length ¢5 of the exchange path
due to hard-core repulsion [cf. Fig. 9(a)]. The numerical
value of the effective potential barrier does not change ap-
preciably between this choice and the first one (¥ is essen-
tially fixed by the “free space” 8 between hard cores dur-
ing exchange).
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FIG. 8. Definition of the exchange variable ¢, .#(¢) being
chosen as the straight line joining the centers C,,C, of the two
cavities (a) for two-particle exchange, (b) for four-particle ex-
change.

b. Calculation of the effective potential V(t)

The potential V(¢) is given by Eq. (4.14b). The integra-
tion { ), was performed by Monte Carlo—Metropolis
techniques (Hammersley and Handscomb, 1964) on 16
particles surrounding the exchanging atoms with periodic
boundary conditions. To simplify U(r) the hard-sphere
model was chosen: U= if for any pair |r;,—r1;| <0
(0=2.144).

For two-spin exchange, the value of ¥ is sensitive to the
variational parameter 4 of the Gaussian wave function
®;. The parameter 4 is chosen to minimize the ground-
state energy E, with y=®g;. It is not determined with
good accuracy; from Hansen, Levesque, and Schiff (1971)
we take 4 <4 <5.

Figure 9 shows V(z) for two-particle exchange, with
A=4,4=5.

The potential corresponding to four-particle exchange
is less sensitive to 4 because the displacement of the sur-
rounding particles is less important.

c. Calculation of the exchange constant
The exchange frequency is determined by the one-

dimensional Schrédinger equation (4.14a) with effective
potential V(z) [Eq. (4.14b)]. Although this equation can
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FIG. 9. Effective potential V(f) of the one-dimensional
Schrodinger equation (4.10) obtained in the variational method
by Monte Carlo integration: (a) four-particle exchange, (b) two-
particle exchange; for two-particle exchange this potential is
function of the value of the parameter 4 ~4 or 5 of the Gauss-
ian trial wave function ¢ [Eq. (4.8)].

be solved numerically, we find it more convenient to ap-
proximate V (¢) by its first Fourier component:
8V . mt
V(t)=—sin—— .
(1) 5 sing .

In this case, the solutions of the Schrodinger equation
are Matthieu functions, and the exchange frequency is
given by (Erdelyi et al., 1953)
2

(bl-—ao)=8

12
3/4, —4Vq
[ s

2
m

L

2
T

o

2Jp =
P= 2L

with ¢ =(L2/72)8V, L representing the length of the path
L (t) from the center C; of one cavity to the exchange
surface =, and 8V being the difference of potential be-
tween these extreme positions. Thus

172

2 (8V)*/*exp

L

Jp=—4 . (4.15)

_AL sy
T

(It should be noted that (4/7)V8V -L corresponds to the
term f [V (t)—Ey]'/*dt given by the WKB approxima-
tion to Eq. (4.14b).)

(i) Two-spin exchange. The length of the path joining
the center C; of Qp to the middle of the duct is
L =1.490; with 4=4 we obtain 8V=~96/0> and
Jan=—1.2X10"%/0?=—2.1x107> mK; with 4 =5
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we have 8V =118.4/0°> and Jyn=—1.8X10"%/0?
=—3.1x1073 mK.

(ii) Folded four-spin exchange Kp. The length of the
path is twice the distance between nearest neighbors. The
potentail 8 does not depend on A4; 8§V ~65.2/8% We ob-
tain Kp=—1.8X10"%/0%= —3.1x 1073 mK.

This result indicates that four-spin exchange is of the
same order of magnitude as two-spin exhange, but the cal-
culation is too rough to determine whether folded (F) or
planar (P) four-spin exchange is larger. (See next section.)
We chose to study K because at the time this calculation
was performed there was no experimental evidence for
predominant planar exchange Kp. The results are not
satisfying because they are about 3 orders of magnitude
too small. In Sec. IV.C.5 we discuss a variant of this ap-
proach which should lead to more realistic values of the
exchange, as it has for hcp *He.

4. Analysis of the one-dimensional
Schrédinger equation in L (t)

For the exact function 1, we define a gradient as a path
L,(t) such that at each point the tangent to L (¢) is paral-
lel to the gradient of :

il/—}‘—:Mt)———ax'(t) .

ax,' at
(In particular, the ridge fall line of 4 is a gradient line.) It
can be shown easily (Delrieu, Roger, and Hetherington,
1980a) that if L,(t) is a gradient line, the exact wave
function @ obeys along L,(#) the one-dimensional
Schrddinger equation

# 3
—Eg;j¢(t)+ V()(t)=Ey(t) (4.16a)
with effective potential
_u_
V(=U—-—Vilny, (4.16b)

where V| is the gradient in the configuration space
orthogonal to the tangent to the line L (¢). V(¢) is essen-
tially the energy of the system in the exchange configura-
tion for a given value of ¢.

Equation (4.16b) is exact if we know the exact wave
function . However, if we have some approximation ¢
of 1, we can obtain a simple estimate V' of V by replacing
¥ by ¢ in Eq. (4.16b):

Vety=U — 72 1ng
- 2m 't ’

We can then solve (numerically) the one-dimensional
Schrodinger equation (4.16a) with potential V(¢). If the
solution 1%(¢) thus obtained is close to the function ¢
along L (t), ¢ is certainly a good approximation to the ex-
act wave function. If ¢f(z) is very different from ¢, ¢
cannot give a reliable approximation to the exchange fre-
quency, but we can take 9° instead of ¢.

This method gives a very simple way (i) to test the va-
lidity of a given variational wave function ¢ (up to now
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no published calculations of exchange, based on variation-
al wave function ¢, have given estimates of their accura-
cy); (i) to improve a given trial function ¢.

Application of this method to the variational wave
functions [Egs. (4.10) and (4.11)] shows that V* is close to
the variational potential ¥ calculated in Sec. IV.C.3, but
that ¢¢ deviates strongly from ¢, the Gaussian-type
function ¢ having too rapid a decrease in the duct.

5. Optimization of the path L (t)

In the WKB approximation, the exchange frequency
corresponding to the one-dimensional Schrodinger equa-
tion (4.16) is

15 172
- f 0 dt
(ts is the value of ¢ on the exchange surface 3). The op-
timum path L (z) is that which gives the maximum value
for Jp. It thus minimizes the integral
t

I=[7 (m[v—E}"dr .

This integral is similar to the “action” S defined for a
classical system,

S= [, ImE'—-U]"%dT.

Jp ~exp

{zh—’?[V(t)—E]

As pointed out by Gervais and Sakita (1977), the path
which minimizes I satisfies the equations

Y
dt? or
2

L [ar

Tme | S0 =—E+Va,

’

which are equations of classical mechanics if ¢ is ima-
ginary time.

Hence if the effective potential (4.16b) is known (i.e., if
the exact wave function is known), the optimum path is
the classical trajectory with potential — V(r) and energy
—E passing through two given points in configuration
space: the centers of the two cavities. [This path is
analogous to the “most probable escape path” (MPEP) de-
fined in Banks, Bender, and Wu (1973)].

In practice, this path is very difficult to determine be-
cause, first, we do not know the exact wave function
giving the effective potential V' (¢) [we can, however, re-
place ¢ in Eq. (4.16b) by an approximation ¢; see Sec.
IV.C.4], and, second, the problem of finding the classical
trajectory in a many-dimensional space is a huge task!

Let us now proceed to crude approximations: As seen
in Sec. IV.C.3, it is reasonable to approximate the poten-
tial V' (¢) by its first Fourier component. In this case,

I~V'VoL,

where ¥V represents the maximum value of the potential,
and L =ts5, the length of the path L (¢).
We can now discuss the physical meaning of two limits
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of the path we consider in this paper.

(i) The straight line we choose in Sec. IV.C.3 minimizes
the length L of the path without attention to V. It corre-
sponds to the physical limit where the neighboring parti-
cles do not move. We expect this approximation to be
better at lower densities.

(ii) An opposite limit can be obtained by minimizing V'
for each value of ¢, without taking L into account. In this
“adiabatic” limit, for each value of ¢ the surrounding
medium deforms elastically in order to make ¥ minimum.
This approximation has been used for hcp *He at high
densities by Delrieu and Sullivan (1981); it leads to an
elastic deformation in 1/R? at large distances.

In fact the optimum path is generally between these
two limits. It minimizes the product /¥, L and not L
or V, separately, as was done in (i) and (ii), respectively.
Roger has shown (1980) that it corresponds to an ex-
ponential falloff of the atomic displacements at large dis-
tances.

6. More straightforward approximations
for the potential V

A very simple method of estimating 8V proposed by
London (1954) gives the same result as the variational
method described above.

The particles are considered to be independent. The ki-
netic energy of one particle is taken as that of a point
mass in a spherical potential of radius ;. The radius §;
corresponds to the largest sphere allowed by the hard
cores when the neighbors are fixed in their equilibrium
position:

E=3

2
I
5;

The difference of potential 8V between the equilibrium
position (center of the cavity: r=0) and the exchange
configurations (exchange surface 2: ¢t =ty3) is

1 1

SV =m? —_
”2 52ts)  5X0)

4.17)

We assume equal spacing between the exchanging parti-
cles in the exchange configuration 2. For four-spin ex-
change, the available space § is restricted in only two di-
mensions for each particle (i.e., the neighborhood has a
roughly cylindric shape). For this reason

1 1
82ts)  8X0)

’

8?:372 2
3 i

where §; is the spacing between particles in the plane per-
pendicular to this cylindric box. With this approximation
we obtain

8V =69/02 .

(The variational method gives 8V =65/0%) This method
has been used by Delrieu, Roger, and Hetherington
(1980a, 1980b) to compare the rates of two-, three-, and
four-atom exchange in triangular lattices.

Rev. Mod. Phys., Vol. 55, No. 1, January 1983

7. Estimation of 8V from experimental elastic
compressibility of *He

The absolute values of the exchange constant given by
the variational method for bcc 3He or by the London
method (Delrieu, Roger, and Hetherington, 1980a, 1980b)
in triangular or hcp lattices are several orders of magni-
tude lower than the experimental results. For example, in
bee 3He we found (Sec. IV.C.3)

Kp~—3%10"3mK .

These methods overestimate the potential barrier for two
reasons:

(a) They neglect the attractive part of the Lennard-
Jones potential. This part can play an important role in
the evaluation of the effective potential barrier 8V. As
pointed out before, due to the large kinetic energy of the
atoms, the equilibrium distance (Ry=3.65 A for bee He
at melting) between the atoms is larger than the distance
R, =2.9 A, corresponding to the minimum of the
Lennard-Jones potential. During exchange, the distance
between the moving particles is reduced. For example, in
bee 3He, in the critical exchange configuration the dis-
tances between exchanging particles and their nearest
neighbors is reduced to 3.1 A for planar four-spin ex-
change and 2.85 A for two- body exchange, as shown by
the arrows on Fig. 4 (we assume the neighboring particles
to be fixed). These distances are near the minimum of the
Lennard-Jones potential, hence the potential energy de-
crease of about 5 K per pair of atoms. Rough estimation
leads to a net decrease of the effective potential barrier of
about 10—15 %, due to this effect.

(b) We take limit (i) of Sec. V.C.5. The opposite limit
(ii) is certainly more realistic, in particular at high densi-
ties; hence Delrieu and Sullivan (1981) applied it for hcp
3He. They take the effective potential barrier 8V as the
elastic compression energy due to the local increase in
volume Av =v —v, required for exchanging the particles.
They estimate the exchange length

L =[=;(8x;)*]'?

by finding the approximate displacements of all atoms in
the exchange configuration, including those in the sur-
rounding medium. The geometry of the three-particle ex-
change in the hcp solid is shown in Fig. 10.

The results, in terms of the molar volume are shown in
Fig. 11 and compared with the experimental values given
by Guyer, Richardson, and Zane (1971). The agreement
is satisfactory.

D. Conclusions about the exchange mechanism

The calculation of exchange from first principles is a
huge problem. A lot of work remains to be done to im-
prove the rough approximations used in the calculations
which have been presented here.

Through the approach presented, exchange in a quan-
tum crystal appears as tunneling through a barrier of
essentially kinetic energy. The hierarchy among the dif-
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FIG. 10. Geometry of the exchange of *He atoms in the hcp
solid. The atoms that move are shown in bold lines in their dis-
placed position. Only six atoms are treated as moving, as far as
a determination of the length of the exchange path is concerned.
The three atoms involved in the cyclic motion are assumed to
maintain their original distances from each other, while the dis-
tance to near neighbors is allowed to be slightly less (see text)
(from Delrieu and Sullivan, 1981).
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FIG. 11. Comparison of the calculated and measured exchange
constant for hcp *He. The solid line is the calculation of Del-
rieu and Sullivan (1981), while the measured points are various
NMR measurements (as compiled by Guyer, Richardson, and
Zane, 1971). Also included for comparison is the result of the
same calculation extended into the bcc regime, where it is not
expected to be correct because of the differing geometry and ex-
pected four-spin exchange effects (from Delrieu and Sullivan,
1981).
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ferent types of exchange is determined by two competitive
effects:

(i) Exchange increases when the height V of the poten-
tial barrier decreases (V is roughly the kinetic energy of
the atoms in the exchange configuration).

(ii) Exchange decreases when the length L of the path
L (2) leading from one equilibrium position to the ex-
changed position increases.

Multiple three- or four-spin exchanges have a longer
path L than do pair exchanges, but a much smaller energy
barrier V because the hard cores are farther away. For
higher-order multiple exchanges of n atoms (n > 4), the ki-
netic energy barrier is not much lower than the barrier
corresponding to three- or four-spin exchange, but the in-
creasing L disfavors these exchanges. We expect that this
competition between the effects of these two characteris-
tic parameters favors one or two types of multiple ex-
change which, depending on the geometry of the lattice,
could be three- and/or four-spin exchange. We do not ex-
pect multiple exchanges of a large number of atoms to be
of the same order of magnitude because the exchange fre-
quencies are exponential functions of these parameters.
In a bee lattice, four-spin exchange is probably prepon-
derant. (Phenomenological analysis based on the experi-
mental results leads us to consider also three-spin ex-
change, smaller than four-spin exchange but not negligi-
ble. See Secs. VII and VIII.) In a triangular geometry,
three-spin exchange disturbs the surrounding atoms less
than other types of exchanges and is probably prepon-
derant. This result is particularly important because even
permutations (e.g., three-spin exchange) favor fer-
romagnetism (see Thouless, 1965a, and Sec. V); thus the
model predicts ferromagnetism in hcp *He. The ordering
temperature estimated from nuclear-magnetic-resonance
experiments is about 50 K. The sign of the Curie-Weiss
constant could be determined by susceptibility measure-
ments at, say, 0.2—1 mK. Such temperatures are attain-
able by nuclear adiabatic demagnetization.

We also predict ferromagnetism for one (or two) layers
of 3He atoms adsorbed on surfaces. Ferromagnetism has
been observed for *He adsorbed on graphite. Actually it
is not clear whether this effect is related to the first solid
layer, the second layer, or the liquid (Godfrin et al.,
1980). Three-spin exchange is negligible in the first layer,
which is too dense. However, if the arrangement of
atoms in the second layer is approximately triangular,
three-spin exchange could provide a reasonable intepreta-
tion for the observed effect. Other models suggest that
this ferromagnetism comes from the liquid (Beal-Monod
and Mills, 1978). Further experiments are needed.

This approach can be applied to other quantum solids,
for example to solid hydrogen (Delrieu and Sullivan,
1981). The frequency of cyclic three-molecule exchange
is estimated to be in the range of 1 kHz, or 10* times
larger than previous calculations in solid H,, which were
based on Gaussian wave functions. This exchange fre-
quency could explain the motional narrowing of the reso-
nance line observed for HD impurities in hcp parahydro-
gen (Delrieu and Sullivan, 1981). The method can be ex-



Roger, Hetherington, and Delrieu: Magnetism in solid *He 21

tended to understanding tunneling effects in other many-
body systems: bandwidth of vacancies in He, effects at
the surface of solid He, and H in metals.

Our viewpoint also offers a qualitative explanation for
a surprising theoretical result recently obtained. Theoreti-
cal calculations (Levesque, 1980) using Jastrow functions
find that in liguid *He the polarized state is energetically
more favorable than the unpolarized state. We put for-
ward the following interpretation: As shown in Sec.
IV.B, the Jastrow functions alone overestimate dramati-
cally the exchange frequencies; Jastrow functions give, at
very large density, an hcp solid so that the fluctuations in
the hypothetical liquid described by this kind of varia-
tional function correspond to those of the hcp phase, i.e.,
to three-particle exchange as shown above. This may ex-
plain the corresponding ferromagnetism found by
Levesque. However, in true liquid *He, the tunneling and
exchange frequencies are much smaller, near solidifica-
tion, and the fluctuations correspond to the bec solid
phase (not found with Jastrow alone), i.e., to four-atom
ring exchange, which is antiferromagnetic. We might
conjecture that the liquid would be ferromagnetic for the
same reason near a graphite surface (i.e., because the
atomic arrangement is triangular there).

V. EXCHANGE HAMILTONIAN IN TERMS OF SPIN
OPERATORS

A. Introduction of the spin coordinates

In Sec. IV we showed that a two-cavity wave function
for distinguishable particles would have two almost de-
generate states of energy +J (relative to their average en-
ergy). The two-cavity Hamiltonian equations can be writ-
ten

EP(R)=JPY(R,),
EP(Ry)=JY(Ry),

where R; and R, are the 3N-dimensional coordinates of
the centers of the two cavities? (i.e., R;,R, correspond to
all of the atoms being on lattice sites, the difference being
the permutation of a few atoms.) Assuming, as we have,
that the ducts are independent, we may write the effective
many-cavity Hamiltonian as EY(R)=3  J,PS ¢(R),

2We have chosen here to express the effective exchange Hamil-
tonian in terms of ¥(R;), which are the values of the many-
dimensional wave function at the cavity centers. The ¢¥(R;)
might just as well be thought of as the expansion coefficients in
an expansion for ¢ in terms of home-based wave functions, be-
cause the wave function in the neighborhood of the cavity
centers will always be proportional to the home-based wave
function in that cavity. The reader should take care to distin-
guish between these concepts of localization in many dimen-
sions and the idea of Wannier functions, which are single-
particle functions. One could approximate the home-based
wave function as a product of Wannier functions, but this has
not proved useful.
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where R runs over all permutations of the atoms and
where P® is a coordinate permutation corresponding to
the ath duct.

We may antisymmetrize by introducing fermion
creation operators which place particles on the lattice
sites, e.g., A j*,;,j creates a particle at site j with spin m;. A
basis set of antisymmetric functions can be introduced.
These functions have spin projection m; associated with
each site j,

[{m))=[my - my)=Aipy A, - Aibm 0 .

Then the combined spin and the space wave function
(valid if all particles are on lattice sites) is

I¢>= 2 X(ml"'mN)Al_tnl"'AI_VFmN,0>'
my-omy
(5.1

| ) is guaranteed to be antisymmetric under exchange of
spin and space together, because each of its components is
antisymmetric:

PRPY | {m})=(—1| (m})
The Hamiltonian depends on spatial permutations only,
E|V)=3 /P | W)
a
=3 Vo S X(m)PG | (m])
a  {m]
But by rearranging the antisymmetry condition,
PE [ {m})=(=D"*(P{) | (m}) .

we can express the Hamiltonian in terms of spin permuta-
tion operators only,

E|¥)=3J (-1 3 x({m P | {m}) .

{m])
Therefore,
E|W)=SJ(—D=3 x({m}) | (P)"'{m}),
a {m}

where we have recognized that |(PY))~!{m}) is simply
|mimj - -+ my) where the m; are the permuted m;.
Since the {m/ } run over all 2V states as the {m;} do, we
may change the summation variable to {m'}:

E|W)=3J(—1'* 3 XPL(m})| [(m'}) .

{m’}

Projecting onto states { {m'’} |, we have

EX({m"}))=SJo(— D X(PP(m"}),

a

or more conventionally

EX=SJ (=) [PP] x .

a

For some kinds of exchange (e.g., two-body exchange)

[P 17 1'=P?; for others this is not true (e.g., three- or
four-atom ring exchange). When [P2’]~! and P\’ are
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not equal, the sum over a always includes both of them
because both ducts must be considered and in fact must
have equal exchange constant J,. Therefore, we may
drop the inverse to obtain finally

EX=J,(—1)p@x . (5.2)
a

The totally antisymmetric wave function valid at cavity
centers is obtained from Eq. (5.1). The quantity
X(mq,m,, ..., my) represents the amplitude for the spin
projection m at site 1, m, at site 2, etc.

For the energy spectrum and statistical mechanics of
this system, therefore, the pseudo-Hamiltonian (5.2) is all
we need to consider, and there is a one-to-one correspon-
dence between its eigenstates and those of the whole sys-
tem.

Any spin permutation operator can be written in terms
of the familiar two-particle exchange operators. The
operators we shall need for solid *He are the three- and
four-body cyclic permutations; they are developed in Sec.
V.C.

B. Dominant exchanges expected in a bcc lattice

We restrict our attention to cyclic exchanges involving
the most compact cycles of two, three, and four atoms.
For two-atom transposition, we retain only nearest neigh-
bors, and we call Jyy the corresponding frequency. The
most compact cycles of three atoms in a bce lattice have
two first-neighbor and one second-neighbor link; let J, be
the corresponding exchange frequency. There are two
kinds of four-spin cycles involving four first neighbors.
One is planar, Kp, and such that one of the diagonals cor-
responds to second neighbors and the other to third neigh-
bors; the other is folded, Ky, and both diagonals are
second neighbors (see Fig. 12). Some authors (Zane,
Krantz, and Sites, 1977) have taken the following nota-
tion:

Inn=J11, Jr=J112, Kp=J1111,23 and Kp=J 11,2, -

Noticing that a cyclic permutation of an even (odd) num-
ber of particles is odd (even), the Hamiltonian is written

(1) (D
Heo=—Jxn X Pi+J, 3 [Pi+ (PP~
€i,j) (ij,k)
(P) ) .
—Kp 3 [Pha+Pja)"']
(iyjoke 1)
(F) 1
—Kr 3 [Pgu+(Pga)"'1. (5.3)
(i ji k1)

P, P, P represent, respectively, the two-, three-, and
four-spin cyclic permutation operators. The sums are
taken over all distinct two-, three-, or four-spin cycles.

C. Cyclic permutation operators in terms
of Pauli spin operators

For two-spin permutations we have the familiar expres-
sion
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3
FIG. 12. Compact cycles in a bee lattice. (a) The most compact
three-particle cycle; one leg of the triangle is a second neighbor,
and two legs are first neighbors. (b) Most compact four-particle
cycles; there are two quadrilaterals with nearest-neighbor sides
in the bec lattice, one planar, the other folded.

Pg=(1+0’i'0j)/2. (5.4)

A three-spin permutation operator can be written as the
product of two transposition operators,

o =PIPg =+ (140,-0))(14+0;°0) .
Expanding the right-hand side and using the identity
(oi-0j)0;0r)=0;0r+io;"(0;X0oy) , (5.5)
we obtain
ik =%[1 +0;°0;+0;0
+0ogo;i+io;(o;XoE)] . (5.6)
The imaginary terms cancel in the summation:
P +( o) =5(140;°0;+0;°0, +0x°0)) -
A four-spin cyclic permutation operator can be written
P =P P .
Using relations (5.4)—(5.6) we find, after some algebra,

ngl+(ng1)—1=% 1+ E ay.av+Gijk1 > (5.8)
Bp<v
where the sum 2“ < 18 taken over the six distinct couples
(u,v) among the four particles {ijkl}, and
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G =(0;0;) 0, 01)+(0;°0)) 0 0F)
—(ai'ak)(aj'al) . (5.9)

In terms of Pauli spin operators, the Hamiltonian is

J, J, @
Hex=—“2_l‘ 20’,"0’1'—72 20’,"0'1'
i<j i<j
J; 3) Kp (P)
“‘Z_EUi'Uj-‘T > Giu
i<j i<j<k<l
Kr (F)
- 2 Gijir - (5.10)
i<j<k<l
The sum zi';) j is taken over all distinct nth neighbors;

the sum Zfﬁ’kk <1 With A=P or A=F is taken over all
distinct four-spin planar or folded cycles. The coeffi-
cients of the two-spin Heisenberg terms are

Ji=JInn+3(-2J,+Kp+KF),
J2=2(‘—2J1+KF)+KP ’
J3:Kp/2 .

(5.11)

D. Kind of cycles and sign of the exchange

In Sec. IV [Eq. (4.2)] we mentioned that J is always
negative. Therefore, Jyn, J;, Kp, and Kr are always neg-
ative as we have defined them. It is clear from Egs. (5.10)
and (5.11) that two-body exchanges always lead to an or-
dinary Heisenberg Hamiltonian with antiferromagnetic
exchange. Furthermore, three-body ring exchange leads
to a Heisenberg Hamiltonian with ferromagnetic ex-
change. It can be shown that a system with only even ex-
changes (e.g., 3, 5, 7, etc. rings) will always yield a fer-
romagnetic ground state.

Suppose that only even permutations P, are allowed.
Then

PW=+V.

In the configuration space the regions which correspond
to one another by a forbidden odd permutation are
disconnected. We thus have a partition of the configura-

tion space into disconnected domains. We know from a
general theorem about the Schrédinger equation (Courant
and Hilbert, 1937) that the ground-state orbital wave
function for N distinguishable particles in one of those
domains has no nodes. Hence g is symmetric with
respect to all allowed permutations

Pefo=+15 .

Thus we must take a symmetric (ferromagnetic) spin-
wave function X§ such that P,X§= +X§ and ¥=W¥XJ to
obtain

P.Y=P o P yg=+¥.

The ferromagnetic  spin-wave function verifies
P2X§= +X{ for any set of even permutations.

Thus, as shown by Thouless (1965a), even permutations
favor ferromagnetism and odd permutations anti-
ferromagnetism, and all constants J, in Eq. (5.2) are neg-

ative.

Vi. HIGH-TEMPERATURE SERIES EXPANSIONS

A. Description of method

In this section we take for the exchange Hamiltonian a
form slightly more general than Eq. (5.10). We include
the possibility of noncyclic four-spin permutations such
as the rigid rotation of a four-spin cluster like P;;* Py —
(0;'0;)(or a;), as shown in Fig. 13. The fourth-order
terms in the Hamiltonian are written in a more general
way:

K[(a.i.a-j)(o-k-gl)+(0',-'0'1)(0'j'0'k)
—1—-}»(0',-'0']( )(Uj‘al)] .

This expression takes into account all four-spin permuta-
tions, cyclic or not (Roger, 1980; Utsumi and Izuyama,
1977). If only cyclic permutations occur, A is reduced to
—1 [see Eq. (5.9)].

The total Hamiltonian H =H, + H, is the sum of the
exchange Hamiltonian

n=3|J,
Ho=— 3 |5 2 0i'0;
n=1 i<j
(a) K,
- 3 —o;- o)) o) o))+ (00 0;0%) + A0 0k )Noi-07)] (6.1)
J fj j
a={P,F}i<j<k<l 4
and of the Zeeman Hamiltonian ! - -
Z =trfe Pee Py (6.3)

1L=—ZY%“%’ (6.2)
J

H being the applied external field. Here P and F stand
for planar and folded four-atom cycles.

Since H, commutes with H,,, the partition function
Z =tr{e ~P#} can be written
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The identities (07)*"=1I and (07)** *1=0? imply
e P I1 [(coshy)I + (sinhy)o?] (6.4)

with y =(y#/2)BH. We now expand the first factor
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FIG. 13. Rigid rotations of the four-spin tetrahedrons.

- Hex

e in powers of 3, but keep the exact form (6.4) for
the second term (the series expansion thus obtained is
valid only for T >0 ~(H,), but at any value of the
magnetic field H):
n
Z=u|3$ ! B) =B g, e P

n=0

(6.5)

With the following notations:

Zo=tre P _2 coshy )V
and for any operator 0p,

(0,) tr(ope—ﬁHz)
p/ ZO
~ z

I+po;
2

N

0, I1

i=1

=tr (6.6)

with p'=tanhy, we write

z= zoz

The free energy is

F=—B"'InZ=—-8"! [mz + 2
n=0

where K, is the nth-order cumulant

K,,=l In¢e” >] ) (6.8)
A=0

A"

& (P)=4(1—p*){(34+1552)J3 +
+6p°[4+Ap+ 724 Ap)p>

522+ 3Ap + 11(2+Ap)

W1 Kg+

The first terms are
K 1= <H ex ) ’

K2=<He23x)—<Hex)2 ’

Ky=(H})—3(H%)(H,)+2(H,)>

Within the Ising and Heisenberg models, some di-
agrammatic methods have been developed to evaluate
directly each cumulant K; (Rushbrooke, Baker, and
Wood, 1974). These method can be generalized to the
multiple exchange Hamiltonian. They are very efficient
for calculating high-order terms on computers.

As we are, however, only interested here in calculating
by hand the first few terms of the series (up to order
three), it makes no difference if we apply those diagram-
matic methods or if we evaluate each term of each cumu-
lant in a straightforward way.

At order three, we restrict our attention to the zero-
field term (H 0); in this case (H ) cancels and K,
reduces to (H2, ).

Thus we only need to calculate (H") for n <3. The
traces involved can be generally written

tr[(o;0;)(oroy) - - -

(6.9)

(040,) 00,05 - 0g] .
Such traces can be evaluated and summed by a simple di-

agrammatic method.

Some details about this calculation are given in Appen-
dix B.

B. Results

The results have been published in Roger and Delrieu
(1977) and Roger, Delrieu, and Landesman (1977).

(a) The partition function is given by
Bz B

N~YnZ =InZ,—&,(p 0

)B+e5(p) e3(p)—

(6.10)
where InZy=In2— +(1—p?),

~2 ~4
e~1(17)=—6%~3[(2+AF)KF+(2+kp)Kp]£2— ,

(6.11)
and where

9=4J1 +3J2 +6‘,3
is the Curie-Weiss constant.

(6.12)

T4+ 115IE 4+ 2 (34235203 4 (247,175 + 48713 + 36027 35>
65 [4+Ap+7(2+Ap)p"V 1 Kp
P71 2Kr+ 5P

24 3Ap+23(2+Ap)P°,Kp

+72(2+)LF) J3K1:+ 2P [2+37\.P+47(2+7\,p)1) ]J3KP

+ 3[3(8 4405 +313) +3(8 +-4Ap + 3A3 )P+ (100 + 76 +23A3)5* + 71(2 + A5 )5 1K 2

+3[3(8+4Ap+3A3) —

(84-4Ap +3A3)5%+8(16+ 11Ap +3A3)5* +72(2+ A 5°1K 2

+ 5 [8(8+2Ap +2Ap + 3ApAp)52 4 8(28+ 10Af + 10Ap + SApAp )5 + 144(2+ A )2+ Ap O IK 7K p )
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(6.13)
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&3(F)=12J3 +9J3 —54J3 —108J3(J, +J;3)— 108723 —54J2[(4+ Ap)Kp + (4 +Ap)Kp]
—27[J3Kp(243Ap)+J,J3Kp(2+3Ap) ] +270(KE + K3)J,
—27[21,K3(1 =2 — 3AF) +(J2 +J3)KF(1—2Ap — 3A3)]

— 54, KpKp(8+2Ap +2Ap +3ApAp) — 27T KA (8 +4Ap +30%) — S K2 (4+30p+ 202 +A3)

— ZK3(4+30p +203 +A3) +2TKEKp(2—4hp — 2 p + 205 + 4Aphp + 3AEAp)

~+terms in 172,54, R ,f)’lz .

(b) The specific heat in zero field is

3’F R _ _ 3
Cy(H=0)=—T v :7[e2(0)/32—e3(0)/3 1.
(c) The inverse susceptibility is
nZ |
X~ N(D=

From the p? terms in Eq. (6.13) we obtain the zero-field
susceptibility

>

H—->0
with
B =4J3+3J5+6J5—6J,[(4+Ap)Kp+(4+Ap)Kp]
— 2 T,[2(243Ap)Kp+ (24 34p)Kp]

x—‘(T>=cr‘lT—e+§+---

— 2 J3(243Ap)Kp—3(842Ap +2Ap + 3ApAp)KpKp
+2(8+4Ap+3A3)K3 .

As first shown in Roger and Delrieu (1977), large four-
spin terms (Kp or Ky) can account for the increase of the
susceptibility with respect to the Curie-Weiss law and for
the unexpected sign of the T3 term in the specific-heat
expansion. This result is shown in Fig. 14 where we re-
tain only cyclic exchanges (Ap=Ap=—1) and take the
Hamiltonians (5.10) with four adjustable parameters
J1,J2,Kp,Kp [J3=5Kp; see Eq. (5.11)].

The experimental values of &,(0) and © give two rela-
tions between these four parameters, reducing the number
of independent variables to two.

Figure 14 represents a two-dimensional plot of
B*=B/|©|%and e} =23/|0© |3 in terms of the reduced
parameters Kz =K/ |©| and K; =Kp/|©| for a ratio
e5=8,/|©|?=0.95. The experimental values (see Sec.
II) give 0.62 <e3 < 1.17.

J, and J, are obtained by solving the system

©=4J,+3J,+6J; ,
&, =12J24+9J2 +18J2 +31.5(K2 +K3) ,

deduced from Egs. (6.12) and (6.13).

Of the two solutions, we retain only that which has
some physical meaning (the other giving J;>0 or
|[J2| > |J1|). With |Kp+Kp| >0.076, B is negative and
€; positive, in agreement with the experimental results.
The experimental values of &,,¢3,0,B, although they are
not known with sufficient accuracy, put stringent con-
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(6.14)

I

straints on the choice of parameters of the phenomenolog-
ical Hamiltonian. A careful analysis of these constraints
is given in Sec. XI.

VIl. PHASE DIAGRAM WITHIN THE MOLECULAR-FIELD
APPROXIMATION

A. Application of the molecular-field approximation
to the four-spin exchange Hamiltonian

The molecular-field approximation (MFA) replaces the
interaction of one atom i with the rest of the crystal by an
effective mean field H}".

The mean-field theory for spin—% particles can be de-
rived from a variational principle. In that case one shows
that the free energy is bounded by a free energy deter-
mined from a trial density matrix. Since the results are
identical and the physical motivation somewhat clearer,
we proceed to derive the mean-field equations for four-

en=8y/1013
B*=B/6?

FIG. 14. Four-parameter model J,,J,,Kr,Kp. We retain only
cyclic exchange (Ar=Ap= —1) and also take J3=Kp/2 [cf. Eq.
(5.11)]. The experimental data give (see Sec. II)
0.6:§e’2k =€2/6251.2. One relation among the parameters is
obtained by fixing e}. By defining the reduced parameters
J1=J1/|0|3J5 =1,/ 0 |;KE=Ks/|© |;KE=Kp/ ||, we
have only two independant variables, K5 and K#. This figure
represents the variations of B¥*=B/|© |?and e} =&,/|6|%in
terms of Kf and K} for e3=0.95. The hatched area corre-
sponds to B >0 and the dotted area to &; < 0. We note that out-
side these areas (i.e., roughly for |Kr|+ |Kp| >0.07|©|B is
negative and &3 positive, in agreement with the experimental re-
sults.
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spin interaction from the effective-field veiwpoint.

The mean value of the energy Eq=(5") is calculated
by neglecting the fluctuations of the spins o; around their
mean value {o;). Within this approximation,

(o;°0;)~(0;)(0;) (7.1a)
and
((g;°0;) ok 0;)) ~(a;){o;))(or) o)) .
(7.1b)

The Hamiltonian (5.10), or one of similar type, may be
separated into two parts, one which contains the quadrat-
ic terms E, [of type (7.1a)], and one which contains the
quartic terms [of type (7.1b)]: Eq=E,+E,. We write

1 OE, 1 OE,
Ey=3 |~ ~
0 2 2 3(o;) 4 3a;)

(o;) .

Defining the mean field H" as

2 1 OFE, 1 OE,
H'=— | = | |= - )
i 7 | 12300y T4 3o, | 7.2)
we have
Eo=— 2 S HI(o,) . (73)

With an external magnetic field H, we obtain more gen-
erally

E(H)=—12ﬁ S H (o) (7.4)

where the effective field Hf =H” +H is the sum of the
mean field I-II,'" and the external field H.
For spin 5, the entropy can be written

S=kp{N1In2—5 3 [(1+p)In(1+p;)

pi= | {a;) | is the sublattice polarization.
The minimization of the free energy F =E — TS with
respect to p; leads to the following equation:

(o;)=5tanh . (7.6)

In all that follows we omit the symbol { ) and write o;
for (o;).

B. Minimization of the free energy—general methods
Some systematic methods have been worked out to

minimize the molecular-field free energy, using a quadrat-
ic Hamiltonian.

1. The method of Luttinger and Tisza

The method of Luttinger and Tisza (1946) is applicable
to a system of classical spins S; of the same magnitude
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S%:S 2, Its principle is to replace the minimization con-
dition of the free energy,

St2 =S 2 ’
by the “weak condition™

oF

(B)| %5
3 Si=Ns?.
i

By introducing one Lagrange multiplier A, the “weak con-
dition” (B) leads to a system of N coupled equations:
oF
oS;

—AS;=0 with 3 S7=NS2.

With a quadratic Hamiltonian, these equations are linear
and can be solved easily by Fourier transforms. If the
solution of (B) also satisfies (A) the problem is solved,
otherwise the method fails.

Unfortunately, with a four-spin interaction Hamiltoni-
an, these N equations are of the third order and cannot be
solved algebraically.

2. The method of Villain

The method of Villain (1959) determines the ordered
structures which can appear from the paramagnetic phase
through a second-order transition. At a second-order
transition, the order parameters can be supposed to be ar-
bitrarily small, and the molecular-field equation (7.6) can
be linearized. Thus we can apply this method, but phases
which occur through a first-order transition may be
missed.

If o; on each site is arbitrarily small, the third-order
terms in H® coming from four-spin exchange are negligi-
ble with respect to the linear terms in o;. Thus HJ" can
be written

2
j

[J;; is the exchange frequency corresponding to the
transposition (ij)].

In zero magnetic field, the linearization of Eq. (7.6)
gives
1
T 2kpT

j
Defining the Fourier transform

(k)= 2a.ieik-Ri ,
i

we reduce the system of N coupled equations (7.7) to

a(k)=%-a(k)
B
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with

S (k)= 3 Jye
j

ike(R;—R;) (7.8)

The molecular-field equation (7.6) has a nonzero solution
only if the temperature is smaller than the critical value
T.=#(k)/(2kp) given by Eq. (7.8).

The stable phase corresponds to the solution that gives
the highest critical temperature. Thus we assume that the
stable structure has only one Fourier component k,, giv-
ing # (ko) maximum. This wave vector k, verifies the
equation

3, (ko)

oKy 0.

The structure is thus described by the plane-wave equa-

tions with one Fourier component,
iky'R; —ikyR;
'kO 1+0.;0e ‘k() i

l‘O'RE) X

0',-=0'k0e

.—=Re(ak0e' (7.9
Thus the nature of the phases which can appear from the
paramagnetic phase through a second-order transition and
their critical temperatures in zero magnetic field do not
depend on the fourth-order term in the Hamiltonians
(5.10). They depend only on the effective quadratic in-
teractions J,J,,J3, (5.11) between first, second, and third
neighbors.

For the structures described by Eq. (7.9), all the spin
vectors g; are parallel to the same plane:
ik-(Ri—Rj)_e—ik-(Ri—Rj)) ‘
The difference of exponentials is a pure imaginary num-
ber, thus D=i (0} X o%) is a real vector, and the above re-
lation proves that all the spin vectors are perpendicular
to D.

The condition a%:const, true at zero temperature, is
assumed to remain valid at finite temperature. This con-
dition restricts the ensemble of structures to the two fol-
lowing types (Roger, 1980; Villain, 1959):

(a) Helicoidal phase (ks4Q/4; Q being any vector of the
reciprocal lattice). All the spin vectors are parallel to a
same plane. From one site i to another j, o rotates in this
plane by an angle k-(R; —R;) [see Fig. 15(a)].

(b) Structure (4,B,—A4,—B; k=Q/4; Q being a vector
of the reciprocal lattice). The planes perpendicular to k
are ferromagnetic (all vectors o; are identical). o
can take only four values, A,B,—A,—B. Successive
planes perpendicular to k have respective spins
A,B,—A,—B... [see Fig. 15(b)]. The uudd phase be-
longs to this category, with k||(100).

With effective pair interactions J,J,,J3 (5.11),

o Xo;=(oXoy)(e

/(k)=J1g1(k)+J2g2(k)+J3g3(k) . (7.10a)
where
(n) 4. R._R.
gnk)= 3 TR (7.10b)

j
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Y A A A

FIG. 15. One-Fourier-component phases. The condition
o;=const restricts these phases to two types of structures: (a)
Helicoidal, (b) Ferromagetic planes in a sequence A,B —A,
—B,....

3™ describing the sum over the nth neighbors of site i.

The minimization of # (k) for the bcc lattice has been
performed in Cooper (1960). For J; <0, the result is sum-
marized by Fig. 16. Depending on the value of the
parameters £=J,/J, and {=4J;/J,, six phases can ap-
pear through a second-order transition:

(p1) The “normal antiferromagnetic phase” (naf):
k=27/a(1,0,0) with two simple cubic ferromagnetic sub-
lattices with opposite magnetization.

(p2) The “simple cubic antiferromagnetic phase”
(scaf)): k=m/a(1,1,1) with two simple cubic antifer-
romagnetic sublattices with orthogonal magnetizations.

(p3) “AF 100” phase: k=w/a(1,1,0): alternate (110)
ferromagnetic planes with opposite magnetization.

(p4) “H 100”: helicoidal phase with axis parallel to 100

k=2/a(¢,,0,0) with ¢, =arcos(—1/(£+&)) . (7.11)

(pS) “H 111”: helicoidal phase with axis parallel to
(111)

k=2¢/a(1,1,1)

with ¢ =arccos({ —1—[1—8&(E—E)]1%} /4E) .
(p6) Helicoidal phase H 110 with

k=2/a(¢,$,0); p=arccos[(—1+&)/E]2.

With a quadratic Hamiltonian with no anisotropy, it can
be proved that in mean field the phase transitions are al-
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H100

naf

FIG. 16. One-Fourier-component structure having the highest
second-order critical temperature in terms of £=(J,/J;) and
&=4J5/J,, assuming J, <0.

ways second order and that the phase appearing at T,
remains stable at a lower temperature. This is not true
with a four-spin exchange Hamiltonian:

(i) Other structures with one or more than one Fourier
component can appear from the paramagnetic phase with
a first-order transition.

(i) If one of the structures described above appears at
T ¢, with a second-order transition, another phase can ap-
pear at T¢y < T, through a first-order transition.

3. Computer minimization

There is no simple algebraic method by which to find
systematically the stable phase; thus we need a computer
minimization of the free energy. We take a finite number
2n? of spins (n=2, 3, or 4) with periodic boundary condi-
tions, and minimize their free energy at zero temperature:

a. Elementary method

The form of the Hamiltonian shows that the
molecular-field energy is linear with respect to each iso-
lated spin o;. The Hamiltonian is therefore minimum
with o; parallel to

_3E
aa,- ’

i =

(7.12)

For a given configuration C, of the system, we isolate
one spin o;, calculate the field H; = —9dE /d0;, and put o;
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parallel to H;, which gives a maximum decrease of E with
respect to ;. We thus obtain a new configuration C, ,,.

Starting from a configuration C, where the spins are
distributed at random, this process converges very rapidly
to a structure such that, for each site, o; is parallel to H;.
We thus obtain a local minimum of the energy; however,
it can be different from the absolute minimum we seek.

b. Method using some ‘“‘thermal agitation”

For this kind of problem, the Metropolis method
(Hammersley and Handscomb, 1964) is usually applied.
This method simulates thermal agitation by generating
configurations with probability e /%7, E being the corre-
sponding energy. The advantage of this method is that it
“explores” the configuration space; as the temperature is
slowly decreased, we find the configuration with
minimum energy. However, at low temperature the con-
vergence is very slow. A greater efficiency can be ob-
tained by combining this method with the preceding one.
That is, we superpose a Brownian type agitation and a
force tending to align the spins in the direction of the
molecular field H;.

Starting from a configuration C,, we choose (either at
random or following some order—this does not affect the
result) a site i. We add to o; a random fluctuation of
maximum amplitude § (5 is analogous to some ‘“‘tempera-
ture”). Then we move o;, with an angular ratio a of the
order of 0.1, toward the direction of the molecular field
H;. By decreasing 6 slowly, this process converges to the
structure of minimum energy.

This method has been applied with some sets of param-
eters chosen to fit as well as possible the high temperature
results or other experimental data, in order to find the
stable phase at low field and low temperature. The results
are described in Secs. VIII, X, and XI. In some cases
(large K,) we found a new phase with more than one
Fourier component which cannot be described by Eq.
(7.9).

C. Systematic search for the high-field phase

at zero temperature, assuming it appears

from the ferromagnetic phase at some critical field H,
through a second-order transition

Although the method of Villain fails at low field be-
cause the transition is experimentally shown to be first or-
der, it can be successfully applied at high field where a
second-order transition is expected.

At very high field and T=0, the system is ferromagnet-
ic with all spins aligned in the direction of the magnetic
field. In the ferromagnetic phase, using Hamiltonian
(5.10) and the approximation (7.1), the free energy per
particle is

E(H)=— 1[4, +30,+ 603+ 3(Kp +Kp )1~ L

(7.13)
When H is decreased, the ferromagnetic phase becomes
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unstable below some critical value H,: i.e., the appear-
ance of components of the spin vectors perpendicular to
H lowers the energy. An example of this is the oc-
currence of the naf spin-flop phase in an ordinary Heisen-
berg antiferromagnet. We thus write

o; =a§+a£~| ,
af and a!.' being the components of o;, respectively, per-
pendicular and parallel to H for each site i.
We have

2 2
0'?20': +all 1. (7.14)
We suppose that the transition is second order (o7 can be
arbitrarily small). At lowest order in o}, the variation of
the energy with respect to the ferromagnetic phase takes
the form

SE=3 Ajotol+ J’zﬁH Sob - (7.15)
ij i

The condition 9E /d0; =0 gives the following system
of equations:

lf—Ha,*: — 3 Ayoj - (7.16)
ij
Defining the Fourier transform
ot=S ote™™, (7.17)
we can write Eq. (7.16) as
2 Hoy = (Ko,
with
MR (7.18)

J

From this equation we deduce that the stable phase corre-
sponds to the wave vector ky, which maximizes the critical
field

2

—1
lﬁ—] J(k),

but

aJ(k)
ok

k=k0=

The corresponding structure has only one Fourier com-
ponent kg,

ikgR;
a§=ka0e Ko .

We take
|of | =const=x .

This condition is similar to what we have at T=0, H=0:
|o; | =const, and thus the same kind of formulas are ob-
tained; the possible structures are restricted to those
described in Sec. VII.B.2 and in Fig. 15.

We can write, using Eq. (7.14),
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x?
2
(a) For the helicoidal structures at high field

2

lol |2=1—x? and lol | ~1—

x coskR;
or= |xsinkR; | ,

0 (7.19)

a}-o}:xzcos[k'(Ri—Rj)] .
8E [Eq. (7.15)] becomes, to second order in x,

2
SE = — NT" ([J1+3(Kp+Kp)]g1 (k)

+(J2—2KF—KP)g2(k)
+(J3—3Kp)gs(k)—8J, —6J, —12J;

—12(Kp+Kp)—yAH} . (7.20)

The condition §E=0 gives the critical field
vAiH.=[J,+3(Kr+Kp)lg (k) +(J, — 2Ky —Kp)g,(k)
+(J3—5Kp)gs(k)—8J;

—6J,— 1203 —12(Kp+Kp) . (7.21)

[The functions

(n) 4 R._R.

g, (k)= Eezk(R, R;)

J
have been defined in Eq. (7.10).] It has been proved re-
cently that this MFA value of the critical field is exact, at
least if only one kind of four-spin exchange, K or Kp, is
present (Hetherington, 1981). With Hamiltonian (5.3),
J3=Kp/2 [see Eq. (5.11)], and H, reduces to

y#H,=Ag(k)+Bg,(k)+C ,
with
A=J,4+3(Kp+Kp)=JINN+6(Kr+Kp—J,)
and
B=J,—2Kr—Kp=—4J, .

This relation is similar to Eq. (7.10), with the g; term
eliminated. For all physical values of the parameters giv-
ing a negative Curie-Weiss temperature, 4 is negative. In
this case the structure minimizing H, is found along the
horizontal axis (§=0) of Fig. 16 with £=B/A. B is posi-
tive, thus £ is negative, and we always obtain the struc-
tures with k=(27/a)(1,0,0) (naf spin-flop phase),
represented on Fig. 17. There are two simple cubic sub-
lattices 4,B with respective magnetization M ,Mjp at
equal angles to the field H, and on opposite sides of it:

L(MA,H):L(H,MB)=¢ and IMA I = |MB' .

Its critical field is
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FIG. 17. Structure of the naf phase or the pf phase (both have
the same symmetry, the only difference being that the magneti-
zation of the pf phase is not zero at H =0). There are two sim-
ple cubic sublattices with respective magnetization M, and Mp;
the angle between M, and Mj is 2¢.

—16
Hc=7[']1 +3(Kr+Kp)]

= _1_6[JNN+6(KF+KP_J2)] .
YA
(b) Structures of the second type (4,B, —A, — B) can be
eliminated at high field. Such structures can only be en-
ergetically more favorable than a helicoidal phase with
the same k if 4 =B (see Roger, 1980, for details). In this
particular case the structure can be noted (4,+,—,—).
In a bec lattice, there are three (4,4, —, —) phases de-
pending on the orientation of k, which must be a symme-
try axis.
(i) k||100 (uudd) phase

(7.22)

8
H = —;h‘UNN—SJz +6(Kp+Kp)] .

(ii) k||111 scaf||phase, which can also be described by
two simple cubic antiferromagnetic lattices with parallel
spins,

Hc=—%[JNN—m,+6<KF+KP)1 .

(iii) k| 110
H,— —%[JNN—— 10J, + 6K +5.5Kp] .

It is easily verified that for physical values of the
parameters (J;, <0), these three critical fields are always
smaller than the critical field of the naf phase. Therefore,
we expect the naf phase to be present at low temperature
and at fields near the ferromagnetic transition.

D. Properties of the high-field naf phase

1. Free energy and magnetization as a function
of the field H

We define u=cos¢, ¢ being the angle between the mag-
netization of one sublattice and the field H:

¢=/(My,H)=/(H,Mp) .

At finite temperature T and magnetic field H, the free en-
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ergy is F(T,H,p,u)=E (H,p,u)—T-S(p), with

E(H,p,u)— _%{(—u] 130, +6J;5)p>
+3(Kp+Kp)p*+24(Kr +Kp)p*u*
+8[J; —3(Kr+Kp)p*lpu?

+y#iHpu} .

S (p) is the entropy given by Eq. (7.5); p = (o%).

For this phase all four-spin cycles (i,j,k,!) planar or
folded, have the same spin configurations
(04,0p,04,0p); thus the free energy depends only on
KX =Kp+Kp. The coefficient of the p? term

T.o=—4J,+3J,+6J3 ,

represents the critical temperature of the second-order
transition in zero field.
With the above notations,

E(H,p,u)= -—%[Tczp2+3ﬁfp4+24.2’/p4u4

+8(J, —3¥ pHp*u+y#Hpu] ,

(7.23)
p and u are obtained by minimizing the free energy.
The condition (0E /du)=0 gives
96.% p*u+16(J, —3.% p®p*u +y#iHp =0 . (7.24)

We obtained u (H) and the magnetization M (H)=M,u
(M, being the saturation magnetization) by solving this
third-order equation.

It is important to notice that, when H is decreased from
H_ to zero, M (H) decreases from M, to a finite value
generally different from zero. If J,/(3.%)—p? is nega-
tive, Eq. (7.24) gives at H=0 the two solutions, #=0 and

172
Ji

1—
3% p?

u= (7.25)

1
2

The second equation gives a lower energy at zero field:
E(p)=— %[Tcp2+3.2’p4—2(J1 33 ].

(7.26)

At zero temperature (p=1) the magnetization M (0) extra-
polated to zero field is thus
‘ 172

With Hamiltonian (5.3) we have [see Eq. (5.11)]

Ji

=37

M(0)=Mou =M, %

Ji=JInn—6J,+3F

and
—Ian/64+7 |17

(7.27)
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With four-spin exchange %" and with three-spin exchange
J; large enough in magnitude that (|J, | > | Jnn | 76), the
extrapolation of the curve M (H) in zero field gives a fin-
ite value, M (0)s£0. This phase presents a spontaneous
magnetization in zero field. Its symmetry is the same as
for a “weak ferromagnetic” phase. However, its magneti-
zation can reach a large value and cannot be considered as
“weak.” We denote this phase in zero magnetic field as
“pseudoferromagnetic.”

Three different experiments agree with a value of the
magnetization of the order of 0.5M, at a relatively low
field of 4 kG (Sec. II). As M (H) does not vary very
much between 0 and 4 kG, this can be achieved by a ratio

—JInn/6+J;
X
Thus we need both four-spin and three-spin exchange with

comparable order of magnitude to explain this unusually
high magnetization experimentally observed at 4 kG.

=~0.25 .

2. Phase diagram

a. Second-order transition line between the naf phase
and the paramagnetic phase

In the paramagnetic phase, the energy is
N
E(pu=1)=——-[6p’+3¥p*+yhHp] ,

where © =4J + 3J, +6J; is the Curie-Weiss temperature.
The value of p is obtained by minimizing the free ener-

gy,
F(p)=E((p)—TS(p) .

Using the relation 3S(p)/dp= — N(tanh)~'p, we write the
condition 9F (p)/dp=0

p=tanh | (7.28)

©p +6%p3+I%H—

The magnetic field H being fixed, the naf phase appears
at some critical temperature T,,(H), when the energy is
lowered by adding an infinitesimal component oj =—0}
of the spin vectors of each sublattice 4,B, perpendicular
to the field.

This condition can be written

oE (p,u)

=0 N
du

u=1

so that, using Eq. (7.23), one obtains

247 p*+8Jp%+ :%ﬁ-Hp=0 . (7.29)
The phase diagram is obtained by solving Eqgs. (7.28) and
(7.29) numerically.

Figure 18 compares the phase diagrams in reduced
coordinates [T/|©| and (y#/2)H/|O|] for several
values of Jyn/ | © | and J, /%", and Fig. 19 compares the
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FIG. 18. Molecular-field phase diagram of the naf phase: solid
lines, first-order transition from the pf phase to the naf phase;
dashed and dotted lines, second-order transition to the paramag-
netic phase for different values of the ratio a=J,/(Kp+KF),
with Jyn=0 and Jyn=0/10, respectively. (All variables are
normalized to the Curie-Weiss constant |© |.)

magnetization curves. The critical temperature T,.,(H)
increases with magnetic field up to some limiting field H;
it then decreases and reaches zero at the critical field H,
given by Eq. (7.22). The ferromagnetic tendencies (large
magnetization in zero field, H;,H_) increase with the ratio
a=J,/% . Nevertheless, even with a=0, without fer-
romagnetic triple exchange, the phase diagram already
has a large ferromagnetic tendency: 7T,.,(H) increasing
with H, with only four-spin exchange. This ferromagnet-

M/ M,
08— -
0o ol 02 03 =
06 a -
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FIG. 19. Magnetization of the naf phase vs the reduced mag-
netic field, (3-7%H /| © | ), and the ratio a=J, /(Kp+Kp). Solid
lines, Jyn =0; dashed lines, Jyn=6/10.
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ic behavior is in qualitative agreement with the experi-
mental results.

b. The transition “pseudoferromagnetic’”—snaf

For each p, we minimize the energy E (p,u) [Eq. (7.23)]
with respect to u:

OE (H,p,u)

on =0. (7.30)

We thus obtain an expression of the free energy in terms
of H,T,p:

F(H,T,p)=E(H,p,un,)—TS(p) . (7.31)

At fixed field H and temperature T, with both sufficiently
low, and with |J, | > |Jnn | 76 [see Eq. (7.27)], the curve
F(p) has two local minima p; and p,. At zero field, p,;
corresponds to some finite value u; of u (pseudoferromag-
netic phase with finite magnetization) and p, corresponds
to u, =0 (naf phase). At low temperature, the first local
minimum (pf phase) has a lower energy, but as the tem-
perature is increased, both minima approach and cross for
some critical temperature T,,. We thus obtain a first-
order transition between the pf and naf phase, with
discontinuity in angles ¢ and polarization p.

The transition line obtained by varying the field H ends
at some critical point (H,T). This transition line is shown
in Fig. 18.

Vill. A TWO-PARAMETER MODEL

As shown in Sec. IV, the exchange frequencies are ex-
ponential functions of some characteristic parameters (ef-
fective potential ¥V, length L in the configuration space).
Thus we do not expect a large number of them to be of
the same order of magnitude. However, a one-parameter
model (four-spin exchange only) cannot explain all the ex-
perimental data. As emphasized in the preceding section,
we need both three- and four-spin exchange to explain the
large observed magnetization at 4 kG.

Nevertheless, it is interesting to first study the proper-
ties of the simplest one-parameter models.

A. One-parameter models

1. Triple exchange

J, alone leads to ferromagnetism and is excluded by all
the experimental results, primarily by the sign of the
Curie-Weiss constant.

2. Folded four-spin exchange K¢

With only folded four-spin exchange, the minimization
of the free energy at zero temperature is quite easy. The
contribution to the mean-field free energy of one isolated
cycle (1,2,3,4),
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E=(Pi34+Pi3ia) »

in the notation of Sec. V is minimum for the spin config-
uration (t,—,l,«<). The four-spin vectors are in the
same plane, from one site to the nearest neighbor. The
spin vectors rotate by 7/2. In a bcc lattice it is possible
to make up a structure with all folded cycles having the
configuration (1,—,!,«) of lowest energy. This phase
(denoted scaf) minimizes the total free energy. It has (see
Fig. 16) four fcc sublattices with orthogonal magnetiza-
tions. It can be described by two interpenetrating simple
cubic antiferromagnetic lattices with orthogonal magneti-
zation. As this magnetic structure has cubic symmetry,
the magnetic dipolar interactions are null to lowest order
because of cancellations in the cubic lattice. The zero-
field magnetic resonance frequency expected for such a
structure is of the order of one gauss and thus is in funda-
mental disagreement with the results of Osheroff et al.
(1980), who measured a frequency of several hundred
gauss.

The high-temperature data also cannot be correctly fit
within this model. The expansion gives

B=0; e,=175.5K%; ©=18Ky .

Fitting e, =7 mK? gives Kr=—0.2 mK and leads to
O = —3.6 mK, too negative compared to the experimental
results. More details on this simple model have been
given in Roger, Delrieu, and Hetherington (1980a).

3. Planar four-spin exchange Kp

a. Low-field phase

In contrast to the preceding case, it is not possible to
obtain all planar cycles with the configuration
(1,—,1,<) of lowest energy. The system is “frustrated”
in some way. Finding the stable structure is not straight-
forward. We used the computer minimization explained
in Sec. VII and found the unusual phase shown in Fig. 20.
This structure has ferromagnetic lines (aligned spins)
along the OX direction, parallel to one of the three axes,
(100), (010), (001). Perpendicular to 0X, these lines define
a planar structure with two interpenetrating simple square
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FIG. 20. “Simple square antiferromganetic phase” (ssqaf)
|Kp| > |J¢| /4. The lines (100) are ferromagnetic. Perpendic-
ular to (100) we have a planar structure with two interpenetrat-
ing simple square antiferromagnetic lattices.
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antiferromagnetic lattices with orthogonal magnetization.
We denote this phase ssqaf. It has two Fourier com-
ponents and cannot be described by the plane-wave equa-
tion (7.9). The four magnetic sublattices are not cubic,
and therefore we expect a large dipolar anisotropy. How-
ever, the structure of this anisotropy does not agree with
the experimental results.

The order parameter is a trihedral given by two orthog-
onal directors (d, 1,d2) corresponding to the direction of
the spins in each antiferromagnetic sublattice.

Using the symmetry of the magnetic lattice, the aniso-
tropic part of the dipolar energy can be written

2
Ep=—(1/2)Vp? % ] {Col(dT)?+(d3)?]

+Ci(did5+did3)} , 8.1

where p=N/V is the number density and where the fer-
romagnetic lines are along the 100 direction. By numeri-
cal summation within the molecular-field approximation
(Roger, 1980) we have determined C, and C, to be

Co=2.16 and C,=5.31 .

The equilibrium configuration is determined by the sign
of C,=(C,)/2—Cy. With C, positive, d, and d2 are
parallel to (010) and (001), respectively.

The second derivative 3%Ep /96 with respect to the ro-
tations of (d 1,d2) around (010) or (001) gives two degen-
erate zero-field resonances:

b

2
= |Lp Yh
X 2

C, 172
—Z——Co ~0.3 MHz .

(8.2)

The second derivative d%E;, /36? with respect to the rota-
tion of (d,,d,) around the anisotropy axis 0X parallel to
100 gives the resonance

7

x.”

172

2
22| 5¢, | ~1.4 MHz . (8.3)

Q =
! 2

[X, and X)| are the susceptibilities for H, respectively, per-
pendicular and parallel to the plane (d 1 ,dz) ]

Even taking into account the renormalization due to
the zero-point motion (Sec. VIIL.B) ~0.95 and the spin
waves (Secs. VIILB and IX) ~0.8, ,; is too high com-
pared to Osheroff’s results. In a magnetic field, the de-
generate frequency (2, splits into two modes, giving a
more complicated spectrum than that observed by Osher-
off et al. (1980).

b. High-temperature series expansions
We have ©=18Kp, e,=153K}; fitting e,~7 mK?

would lead to ©=—3.8 mK (the experiments give
—2.5>6> —3.3mK).
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B. Two-parameter model (J;,Kp)

The high-temperature data can be fit either with a
two-parameter model, including triple-exchange J, and
Jfolded four-spin exchange K (Roger, Delrieu, and Heth-
erington, 1980a), or with a two-parameter model includ-
ing J, and planar four-spin exchange Kp (Roger, Delrieu,
and Hetherington, 1980b, 1980c). Both models fit the fer-
romagnetic tendencies of the high-field phase equally
well. Because the planar and folded cycles have the same
spin configuration in the naf phase, they are equivalent
whenever that phase is stable. Only the nature of the
low-field phase allows us to choose between the two
models: (i) The (J,,Kr) model has been studied by Roger
et al., (1980a). It leads to the scaf phase at low field with
cubic symmetry and small dipolar anisotropy and is now
excluded by the experiment of Osheroff et al. (1980). (ii)
We retain here only the (J;,Kp) model, i.e., three-spin ex-
change and planar four-spin exchange, all other exchanges
being neglected.

1. Low-field phase

We used the computer method described in Sec. VII.B
to find the configuration of lowest energy for different
values of the ratio a=J,/Kp. The ssqaf phase remains
stable for a <0.25. For a>0.25 our computer process
converged to the uudd phase proposed by Osheroff.

The energies are

ssqaf: E(p)=-12Xp2[—4J,+(2+3p2)Kp] ,

uudd: E(p)=%p2(41,+3KPp2).

They are equal at T=0 for J,=Kp/4. The contribu-
tion to the energy of one isolated three-spin cycle J,
is minimum for a ferromagnetic configuration
(i,j,k)=(1,1,1); in the ssqaf phase all three-spin cycles
have a “frustrated” configuration (1,1,!); in the uudd
phase one-half of the three-spin cycles are ferromagnetic,
the others are frustrated with (t,1,!). For this reason the
uudd phase is favored by large J,.

2. Critical temperature of the uudd phase.
Adjustment of the two parameters

The free energy of the uudd phase is (within the MFA)

2
Fuedd(p)— N 22-(4J,+3KPp2)—TS(p) (8.4)

For the parameters we are led to choose, the ratio of the
p* term to the p? term is quite large. For this reason, we
obtain a strong first-order transition to the paramagnetic
phase at a temperature T¢;, with a large drop of entropy
(~0.81n2).

The first-order transition is extremely abrupt, so the
value of p obtained by minimizing Eq. (8.4) is almost 1 up
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to TCI' Thus

N

uudd( ),
F"%%p)~ >

(4J,+3Kp) .

A good approximation to the critical temperature T¢; can
be obtained by equating this approximate energy of the
uudd phase to the energy of the paramagnetic phase
—NT In2:

—Tc\In2=5(4J,43Kp) . (8.5)

This reasoning is valid only if no other phase occurs
with a critical temperature larger than T¢;.
With J, < Kp /4, in Fig. 16 we have

J,  —4J,+Kp
f=—=7"T"""<
Ji 3(—2J,+Kp)
and
4J3 2Kp 4
;:'—_—-—R—>_
J1 3(—2J,+Kp) " 3

The highest second-order critical temperature is obtained
for the helicoidal H100 phase with wave vector
3(Kp—2J,)

2
_Z(O’O’kz)’ k,=arcos | — 3K, _4J,

Its critical temperature is

[3(Kp—2J,)]
_—p—— "' 4] . 8.6
Tcs 2 3K, _4J, J, (8.6)

The Curie-Weiss temperature is
O=18(—2J,+Kp) . (8.7)

Equations (8.5) and (8.7) give a very simple way to adjust
the two parameters J,,Kp according to the experimental
values

TC1:1 mK
and
—3.3<6<«<—-2.5mK .

The large uncertainty in © allows us to adjust J;,Kp
such that TCZ < TCI' With

J;=—0.1 mK ,
Kp=—0.355 mK ,

we obtain, T¢1=1.06 mK and ©=-2.79 mK (with
TC2= 1.05 mK < TCI)'

3. High-temperature data

The set of parameters J,=—0.1 mK and K= —0.355
mK is in quantitative agreement with the experimental
data within their accuracy. We obtain
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&y =30+ 60J, +180J2~7.15 mK? (8.8)
in perfect agreement with the results of Panzyck and
Adams (1970). e;~+0.8 mK?3 is positive, as observed ex-
perimentally (Hebral et al., 1979; Dundon and Goodkind,
1975, Mamiya et al., 1981), but probably too small. The
second coefficient in the inverse susceptibility series,

e 23
432 6
is negative but rather small compared to the value given
by Prewitt and Goodkind (1977). However, we think the
experimental error they estimated is rather optimistic,
given the low precision on ©. We believe this partly be-
cause the measurements are made at low enough tempera-
ture that higher-order terms in the series expansion can
lead to an “apparent” value of B different from the real
value.

6J,+57J}~—0.5 mK (8.9)

4. Susceptibility, dipolar anisotropy, resonance properties
of the uudd phase

The symmetry of the uudd phase being uniaxial, the di-
polar energy can be written

i
2

2
Ep— %;ﬁ Cold? . (8.10)

0Z is the direction perpendicular to the ferromagnetic
planes, and d is the direction of the spin vectors. The
constant Cy~ +7.263 can be obtained from Cohen and
Keffer (1955). (See also, Osheroff et al., 1980, and
Roger, 1980). As Cy is positive, the spins orient them-
selves perpendicular to 0Z, i.e., parallel to the ferromag-
netic planes (see Fig. 1). The orientation of the spin vec-
tors in these ferromagnetic planes is free in zero field.
(This is a “planar anisotropy.”) Any external field H
orients the spins perpendicular to itself, removing this de-
generacy, and the spins flop slightly toward H. The cor-
responding susceptibility is, within the MFA,

X =—C;/(—=32J,424Kp) , (8.11)

where C, is given in Eq. (2.5¢). With J,=—0.1 mK and
Kp=—0.355 mK, we obtain

Prewitt and Goodkind (1977) give X, ~+C, /(5.2 mK).
Recent measurements by Morii et al. (1978) give

C,/5.9 mK <X, <C,/5.2 mK . (8.12)

Even in arbitrarily small field H, the “spin-flop” phase
described above is obtained, and there is no simple means
to measure the parallel susceptibility X ;.

There is only one resonance frequency in zero field,

12— - 2 1/2
2

S .C
le 0

Q=
0 2

With the theoretical value of the susceptibility calculated
in the MFA with a two-parameter model J,=—0.1 mK,
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Kp=—0.355, we obtain
Qy~1163 kHz .

With the experimental values (8.12) of the susceptibility
we conclude that

1150< (<1225 kHz . (8.13)

These MFA values must be corrected by two renormaliza-
tion factors:

(i) The first is due to the fact that the MFA does not
give the correct ground state.

A better value of the dipolar anisotropy can be evaluated
within the spin-wave theory. In principle we have to cal-
culate the mean value

2 < (ai'rij)(oj'rij) >
3

ij Tij

(8.14)

taken on the spin-wave ground state. As the main contri-
bution comes from the diagonal part o707, we roughly es-
timate the normalization factor to be proportional to
p=1—(AS,) at zero temperature.

For the uudd phase, the spin-wave calculation gives
(Sec. IX) p~0.64. Taking this factor into account, we ob-
tain

736 < Q0 <784 kHz . (8.15)

The fluctuations of the uudd phase with respect to the
molecular field (p~0.64) are much larger than those ob-
tained with an ordinary antiferromagnet (p ~0.85). Con-
sequently the value (8.15) of () is lower than that given
by Osheroff et al., who took arbitrarily p =0.85.

(ii) The second renormalization factor is due to the
large zero-point motion of the atoms.

We have calculated the correction of the dipolar energy
due to the zero-point motion by a Monte Carlo integra-
tion based on the variational wave function ¢s [Eq.
(4.10)] generally used for the calculation of the ground-
state energy. For all except this uudd phase, this renor-
malization factor is on the order of V/0.9~0.95.

Although mathematically quite different, this renor-
malization factor is of the same order as that of the dipo-
lar renormalization in the paramagnetic phase calculated
by Harris (1971) and Landesman (1973).

In the uudd phase, the contribution of the first neigh-
bors is zero,” hence the renormalization factor coming
essentially from the contribution of the second neighbors
is smaller (around V'0.95). Taking into account both re-
normalization factors, we obtain

720 < Q<760 kHz .

This result is below the experimental value Q,~825 kHz,
but the renormalizations are very rough and, as pointed

3We are indebted to D. S. Fisher for illuminating discussions
about this point.
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out in (i), the complete calculation of Eq. (8.14) in the
spin-wave approximation is needed.

5. High-field phase

According to the general results established in Sec. VII,
the high-field phase is the naf phase represented in Fig.
17. It has two simple cubic sublattices with
respective magnetization M4,Mp, such that Z(M, ,H)
=/(H,M,)=¢ and |M, | =|Mp|. The extrapolation
to zero field of the angle ¢(H) gives the finite value

¢(H —0)=arcos ' J,/Kp

(pseudoferromagnetic phase) .
The corresponding value of the magnetization is
M(H—0)=v'J,/KpM, ,

M, being the saturation magnetization My=Ny#/2.
With our parameters, we obtain M(H—0)=0.53M,.
Osheroff (1982) measured 0.57 M, at 4 kG.

At zero temperature, the critical field of transition be-
tween the uudd and pseudoferromagnetic phases is

Hle:lZ.l kG .

This value is too high compared to the value given by
Osheroff (1982). However, phase diagrams in molecular
field usually give only qualitative agreement with the ex-
periment (even with a Heisenberg model!).

In our model, the second-order critical field between
the naf phase and the ferromagnetic phase at T=0 is [see
Eq. (7.22)]

96
vh

This theoretical value of the transition field is exact
(Hetherington, 1981). This is more than twice the value
obtained with an HNNA model for the same value of O.
It correlates well with the extrapolation of the magnetiza-
tion curve of Godfrin et al. (1980) to saturation (Frosatti,
private communication). The magnetization of this phase
varies slowly from 0.6M at 12 kG to 1.0M at the criti-
cal field H¢, (see Fig. 21), in perfect agreement with the
experimental results described in Sec. II.

Figure 21 compares theoretical results for M(H) and
for the limiting pressure P(H) in a Pomeranchuck cell to
the experimental curves deduced from Adams, Delrieu,
and Landesman (1978). The theoretical limiting pressure
P(H) is related thermodynamically to the magnetization.
Equation (2.1),

Hey= — >(Kp—J,)~157 kG . (8.16)

aP
dH

Ms—MI

= , 17
7, (8.17)

melt

gives after integration

AP(H)=p(H)— P(0) = —

Vi—Vi

H
J, Ms(H)aH
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FIG. 21. The limiting pressure AP =P(H)— P(0) measured in
a Pomeranchuck cell (dashed line) compared with the theoreti-
cal curve (solid line) obtained from the two-parameter model
Jy=—0.1;Kp=—0.355. The experiments points (), are from
Godfrin et al. (1980) and (V) from Kummer, Mueller, and
Adams (1977). The inset compares the magnetization deduced
from the experiments by a thermodynamic relation [Eq. (8.17)]
with that derived from mean-field theory in the same model.

where we have neglected the magnetization of the liquid.
The right-hand side represents, in fact, the magnetic ener-
gy density E(H).

Experimental and theoretical curves agree quite well.
The shift between the two curves representing AP comes
mainly from the disagreement between the experimental
critical field Hy;~4 kG and the value calculated within
the MFA H:1~12 kG.

The critical temperature of transition to the paramag-
netic phase increases with magnetic field up to H; ~120
kG, where Tcy(H;)=3.8 mK. Tc,(H) then decreases
and reaches zero at the critical field Hc,~157 kG.

6. Whole phase diagram

The whole phase diagram is represented by Fig. 22. At
high field, it is in quantitative agreement with the experi-
mental results. At low field, it gives the essential experi-
mental features, particularly a first-order transition at 1
mK to the uudd phase. However, the field of transition
between the uudd and pf phase is too high.

There is a first-order transition between the naf and pf
phase (see Sec. VII), ending at a critical point which
parallels the second-order transition between the naf and
paramagnetic phases. We initially assumed this was
perhaps an artifact of the mean-field calculation. Howev-
er, a recent measurement by Osheroff (1982) indicates a
first-order transition in this vicinity, and we expect that it
is related to the one we find in mean field. We still have
no way of deciding if an exact calculation would cause the
parallel first- and second-order transitions to merge, al-
though it would not surprise us. The experimental situa-
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FIG. 22. The phase diagram obtained from the mean-field ap-
proximation in our two-parameter model (J,,Kp): solid curve,
first-order transition; dashed curve, second-order transition; O
first-order data points of Kummer et al. (1975); ®, second-order
data points of Kummer et al. (1975); X, approximate second-
order transition temperature given by Godfrin et al. (1980);
dot-dash line in the inset, the single second-order transition of
the HNNA model.

tion at this interesting triple point is not clear enough to
make any definitive statement about the details of the
phase diagram.

The mean-field theory also yields a helicoidal phase
H 100 in a narrow domain near the same triple point. Ex-
act calculation could easily modify this phase or cause it
to disappear. Experiment has not excluded it.

7. Main features of the two-parameter model Jy,K),

This simple two-parameter model accounts for the fol-
lowing data:

(i) High-temperature coefficients

* quantitative agreement with 6,25,

* qualitative agreement with the signs of &; and B.

(ii) Low-field phase

* gives the uudd phase in agreement with the Osheroff
measurements,

* gives a first-order transition with large drop of entro-
py at T=1mK,

* gives the susceptibility and resonance frequency in
agreement with the experiment.

(iii) High-field phase

* quantitative agreement with the observed phase dia-
gram between 10 and 70 kG,

* quantitative agreement with the unexpectedly high
and slowly varying magnetization.

The molecular-field phase diagram is only in qualita-
tive agreement with the experimental results for H <10
kG. However, we cannot expect very accurate results
from the molecular-field approximation, in particular
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with a slightly frustrated system like the uudd phase.
Some criticism could be formulated about our method
of determining the parameters. We chose to fit the tem-
perature of the first-order transition 7¢;=1 mK within
the MFA. This provided an easy way to determine the
parameters, but we do not know how accurate the calcula-
tion of this temperature is within the MFA. This will be
discussed in more detail in the following sections.

IX. THE SPIN-WAVE APPROXIMATION

At low temperature it is possible to make the harmonic
approximation about the mean-field solution. This leads
to spin waves and to some lowering of the energy of the
system. Appendix D gives an exposition of the technique,
which is mathematically tedious, and then applies it to
the spin structures and Hamiltonians of interest to us, i.e.,
naf, scaf, and ssqaf phases. We summarize here the main
results obtained in Appendix D and analyze their physical
consequences.

A. Spin-wave Hamiltonian

The quantization axis 0Z is chosen along the common
direction of the spins (see Fig. 34 in Appendix D). We
quantify the spin deviations with respect to the
molecular-field approximation in the usual Holstein-
Primakoff (1940) formalism. We introduce the spin-
deviation boson operators a; ; by

+
Si zal,i ’
- +
Si :al,i ’

z 1 +
Si~5—ajay; ,

K
w(k)= —{-—2.]2—*4.]3——-4KF——12KP—2(J2 +Kp)(COS(1kx +cosaky)—4 lJ3+TP

for the two sublattices /=1, / =2 with up-spins and
Sf’za}f} ,

Sj=~ay; ,

Sj~— T +afiay

for the sublattices /=3 and / =4 with opposite spins. We
define the Fourier transforms

where the sum is extended over one sublattice ¢;. The
Hamiltonian can be written in the quadratic form.

H=Eo+ 3 [af tk),af (k),a;( —k),as(—k)]
k

Y(k)=2cosak,[ —J, +2Kp+Kp+(—2J3+Kp)(cosak, +cosak,)] ,

aky, ik, /2)

. ak,
wk)=|v|e'P=(—-J, —KF—3KP)4COS'_2_COSTC

(Zl(k)
Qr ay(k)
af(—k)
Q,T are 2 X2 matrices,
1) y v*
0= n* and I'= vyl
with
cosak,cosak, ,
(9.2)

’

aky, ik, /2)

) ak
nk)=|n|eP=(—J, +KF+3KP)4cos—2—xcosTe

Note that v and  have the same complex phase, p=ak,/2. E, is the molecular-field energy. The Hamiltonian % is

put into diagonal form

H=Eo+ 3 {Aylef (kley(k)+eT (kles(k)1+A_[eF (Kley(k)+ed (Key(k)]+[A 4 +A_—20(k)]} 9.3
k

by using the linear transformation 7'(k),

e (k) a,(k)
ez(k) a2(k)
ef(—k) af (—k)

The 4 X4 matrix T(k) satisfies the identity
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[
T-Yk)=IT*T ,
9.5

I 0
0 —1

b

I being the 2 X 2 identity matrix. This preserves the boson
commutation rules for the new operators e;(k).
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There are two doubly degenerate eigenmodes A, and
A_ corresponding, respectively, to one acoustic and one
optical mode,

Ar=[ut(|v]|2=c2)12]172
with
c=2|m| |v|sin2¢,
u=w’—y’+|n|>—|v|?, 9.6)
v=2(n* —p)=2w|n|e P—y|v]|e'?).
The eigenvectors e; (k) are given by Eq. (9.4) with

RTR™ 7
T(K)= R- R+ 9.
The 2 X2 matrices R * are defined by,
[r’é‘ re
Rt=
st —s,
with
__ 1 i¢p,, + ,—it + it
re=se'?[ule "4+eute”],
T _ 9.8)
sE=—2-e’¢[,uj.e"+e,u:e -]
where & is given by
172
" , e 'Re[v(n+4ev*)] 1
uE = { o+e'y+ (o |*—c) 72 (2A¢) .
9.9
The phases ¢ and ¢ are defined by
2ip__ %
ert=vt/lvl 9.10)

e2it:[( IUIZ—CZ)I/Z-FIIC]/?U ' .

B. Properties of the spin-wave spectrum

1. Optical modes

At k=0, we have ¢=0, and the coefficients 7,v are
real; thus

Ae=u+ev=(0+en+y+eviot+en—y—ev).
(9.11)

We obtain an acoustic mode and one optical mode with
frequency

A% (k=0)=16(Kp+3Kp)(—8J, +4J,+16J3+12Kp) .
9.12)

In the particular case of a two-parameter model (J,,Kp)
[see Eq. (5.11)], this relation reduces simply to

A_=16V'6KpJ, . (9.13)
With J,= —0.1 mK and Kp = —0.355 mK, we obtain
A_~150 MHz .

The spin-wave spectrum is shown in Fig. 23.
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FIG. 23. Spin-wave spectrum of the uudd phase within a two-
parameter model (J;=—0.1 mK; Kp=—0.355 mK). The
eigenenergies are plotted vs k for two particular directions:
solid lines, k|| parallel to the anisotropy direction (001), i.e., per-
pendicular to the ferromagnetic planes; dashed lines, k, perpen-
dicular to (001), in the ferromagnetic planes. The zero-k fre-
quency of the optical mode is 16V KpJ,;~150 MHz.

2. Possible experimental investigations
on the optical mode

It is interesting to speculate on how this mode might be
observed. The optical mode corresponds to small varia-
tions of the relative angle between the directions of the
two antiferromagnetic sublattices (4,4') and (BB’), with
each antiferromagnetic sublattice conserving a zero mag-
netization. Consequently if we neglect the dipolar Hamil-
tonian #°p we cannot excite the optical mode at k =0 by
a uniform radiofrequency field of frequency w. (If
[27,9¢p]=0 we can only excite the Larmor frequency
o=vH at k=0.)

The dipolar Hamiltonian, by itself, shows a coupling,
reduced by the ratio {%°p ) /{(5). This coupling is quite
weak; therefore we can probably rule out magnetic reso-
nance. However, the exchange Hamiltonian is strongly
coupled to the phonons. By measuring the velocity and
damping of sound waves, we could expect some effect at
the crossing with the optical mode (w=~150 MHz). The
dependence of these measurements upon the orientation
of the sound wave with respect to the crystal axis could
give interesting information on the the anisotropic varia-
tions of the exchange parameters in terms of the lattice
deformations. Up to now the low-field phase has not
been identified with certainty (see Sec. II.A.1). The exper-
imental investigation of this mode would be a good test
for the uudd phase and the validity of our theory.
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3. Experimental evidence of the acoustic mode
at low temperature

At zero magnetic field the acoustical mode is accessible
through measurement of the entropy as a function of tem-
perature. Osheroff and Yu (1980) have measured the
low-temperature pressure dependence of the phase line be-
tween the solid and the liquid. They find a T* variation
in agreement with spin-wave theory. They find a T°
specific heat,

Cv 4’7T2 kB

o AT B T

% 5 % ik (9.14)

with the mean spin-wave velocity C =8.4 cm/s.
This “mean spin-wave velocity C” can be calculated
within our model. At low k, we can write

Ay (k)= |k | (visin’6+vficos?0)! 2= | k | C(6) .
+ |
9.15)

6 is the angle between k and the anisotropy direction 0Z;
vy, and v, are the slopes at k~0 of the curves represented
on Fig. 23 for k, parallel to 0Z =(001) and (100), respec-
tively (k is supposed small compared to 1/a, but suffi-
ciently large to neglect the dipolar anisotropy).

The magnetic energy and specific heat are obtained
from the spin-wave acoustic modes A (k) in the same
way that we usually calculate the lattice energy and
specific heat from phonon modes. The only difference in
the final formula is a factor % due to the ratio of the
number of spin-wave acoustic modes (two degenerate
modes) to the number of phonon modes (three).

The number C defined in Eq. (9.14) is given by

1 [l de_ 1
c? Cc¥6) 4w vva '

The coefficients v|2| and v? can be obtained in a straight-
forward way using Eq. (9.6) and expanding w,v,v,n [Eq.

(9.2)] to second order in k. After tedious algebra some
simplifications appear; the term

X l=—Cr'2020,+J,+4J3+3Kp) ,

representing the inverse susceptibility X[ ' of the uudd
phase, can be factored. We obtain finally (see Appendix
D),

9.16)

9.17)

2

vi= |3 | 42 +J2+405+3Kp)
X[J2+4J3—Kp—J1/3Kp+Kp)] ,
(9.18)
2
vi= % 42 +J,+4J34+3Kp) Kp—J,)

This factorization is easily understood if we write the
equations of spin hydrodynamics in solid *He, which are
identical to those obtained in the anisotropic 4 phase of
superfluid liquid *He (Graham and Pleiner, 1975). The
order parameter is represented by the spin direction n=d.

Rev. Mod. Phys., Vol. 55, No. 1, January 1983

1is the anisotropy axis perpendicular to the ferromagnetic
planes of the uudd phase.
From Eq. (13) of Graham and Pleiner (1975),

C=[(Mk}+Mfk})x7 "k,
we have

M M
vﬁ:—”— and vf:—){—l .
1 1

(9.19)

X, is the perpendicular susceptibility [Eq. (9.17)]. M, and
M || represent the increase of the energy due to small gra-
dients of the order parameter perpendicular and parallel,
respectively, to 1. M, and M), are calculated in Appendix
C within the MFA. The expressions thus obtained give
precisely Eq. (9.18) after using Eq. (9.19).

From Eq. (9.16) we obtain

C= % 22 4T, +4T3 4+ 3Kp) A Kp—J )13
2 1/6
Tyt 4y —Kp—e =1 (9.20)
X |J2 3R 3K 1 K, .

The energies (at T=0) of the uudd and ssqaf phases are,
respectively, :

N
Euudd=*7[J2—2~73—~(KF+3Kp)] ,

N (9.21)
Essqaf= ~2#[']2 +2J3+3Kp—Ky] .

The spin-wave velocity cancels at the limit of stability be-
tween the two phases:

(EuuddzEssqaf) < (Kp—J,=0) .

Our two-parameter fit (J,=—0.1 mK, Kp=—0.355
mK) is close to this boundary. We obtain [see Eq. (5.11)]
Kr=0 and J,=-—4J,+Kp~0.045 mK. Thus the
theoretical value of the velocity C~5.8 cms™! is too
small compared to Osheroff’s value. Osheroff’s experi-
ments measure directly the cube of C. Thus we believe C
to be known with good accuracy. In Sec. X we readjust
our parameters to move away from the boundary
Kyp—J,=0 to see if fitting C is compatible with other ex-
perimental information.

C. Spin fluctuation at 7=0. Numerical evaluations
The spin fluctuations cause a lowering of the energy of

the system. Their magnitude gives some idea of the im-
portance of corrections to the molecular-field theory.

1. Corrections to the molecular-field energy at T=0

At zero temperature, the spin-wave energy differs from
the molecular-field energy E by the term [Eq. (9.3)]

AE=S [Ay+A_—20(K)].
k

(It can be shown that this energy shift is always negative.)
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After transforming the summation over the reciprocal
lattice by an integration over the first Brillouin zone, we
have calculated AE by Gaussian quadrature for the two-
parameter model, J;,=—0.1 mK, Kp=—0.355 mK. We
find for the uudd phase AE= —0.499 mK. In the naf
(spin-flop) phase at 0.9 T we find AE = —0.26 mK.

The fact that the naf energy correction is smaller than
that for the uudd means simply that the fluctuations are
larger for the uudd phase. Consequently the transition
field between the uudd and naf phases at 7=0 is still
larger in the spin-wave approximation than in the
molecular-field approximation.

This seems in contradiction with the experiment giving
a field of about 4 kG (Osheroff, 1982). However, the
spin-wave corrections to the molecular-field energy are of
the same order of magnitude as the difference of the
molecular-field energy between the uudd and naf phase!
It is consequently probable that even the spin-wave ap-
proximation is not reliable for evaluation of the transition
field.

2. Zero-point spin deviation

The ground state |0) being different from the
molecular-field state, the mean value of

4 i
(Sz)=_zv 2 (0]s;|0)

i€g;

differs from % The spin deviation is

<As,>=§—<s,>=% S (0|afiay |0)

i€g;
—2 3 (0lafkayk)|0) .
N &%,

The a; are expressed in terms of the e; by solving Eq.
(9.4), using the definitions given by Egs. (9.5) and
(9.7)—(9.10). With the obvious identities

(0| efe; |0) =0 and (0| e;ef |0) =5, ,
we obtain
0| af (k)a;(k)|0)=r_r* 4+5s_s*

3 e

+1
*1

_1
T4

£
¢

(1L

— s whpt fuguT e e

1

The last term is simply — 5 [see Appendix D, Eq. (D44)].
The first term is deduced from Eq. (9.9). We finally ob-
tain

4 1 1 1
(as)=%2 '4 1, T ]
Re(vn) 1 1
+ (|U|2_c2)1/2 ()\' K__
1
——2‘), (9.22)
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with [see Eq. (9.6)]
Re(vn)=2[w|n|*—7|v| | n]|cosakz] .

Within the two-parameter model, J;=-—0.1 mK,
Kp=—0.355 mK, we obtain (AS, )~0.175, much larger
than the value obtained for an ordinary antiferromagnet
within a HNNA model ({AS, )~0.07). The polarization
at zero temperature is

p~1—2(AS,)~0.65 .

Such large fluctuations call into question the validity of
the molecular-field approximation and even the validity
of this noninteracting spin-wave theory. This phase being
“frustrated” (see Sec. VIII), such effects are not surpris-
ing. Further approaches using the random-phase approxi-
mation have been recently investigated by Iwahashi and
Masuda (1981). The decoupling schemes used in such ap-
proximation are never fully consistent (even applied to the
simple HNNA model). These decoupling schemes seem
to us even more arbitrary if one attempts to generalize
them to the four-spin Hamiltonian.

X. REFITTED TWO-PARAMETER MODEL,
TAKING INTO ACCOUNT THE SPIN-WAVE VELOCITY

A. Determination of the parameters

The most accurate experimental data known about the
nuclear magnetic order of bec solid *He are certainly

(i) the temperature of first-order transition T¢c;=1 mK,

(ii) the high-temperature coefficient &,~7+0.3 mK,

(iii) the mean spin-wave velocity C~8.4+0.4 cms™!.

The molecular-field theory can give only a rough
evaluation of T, and approximations beyond mean field
seem very difficult to work with, especially with four-spin
exchange. In constrast, the high-temperature coefficient
@, has been exactly calculated with four-spin exchange,
and we think the spin-wave theory developed in Sec. IX
may give a reliable estimate of C at low temperature.
Hence it now seems natural to use these two accurate
data, &, and C, to determine the parameters J, and Kp of
a two-parameter model. Even if C is not calculated
correctly, it is interesting to see what effect it has on the
fits if we use it rather than T, as the crucial low-
temperature parameter.

Figure 24 represents the variations of &, (solid lines)
and C (dashed lines) in terms of (J;,Kp). The experimen-
tal results (ii) and (iii) above restrict the parameters to the
shaded area. We note that this area is somewhat outside
the domain limited by the errors on the measurements of
O:

~33<0<—25mK.

Within the shaded area we choose a point M, giving
the largest value of |©O |:

J,=—0.13mK ,
Kp=—0.385 mK .
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FIG. 24. Two-parameter model, planar four-spin exchange Kp
and triple exchange J,; solid lines variation of &, (in mK?; dot-
ted lines spin-wave velocity C (cmsec™!). The experimental re-
sults on e, and C restrict the parameters to the dotted area. The
straight dashed lines are lines of constant ©. Our first fit,
represented by M, is outside the domain given by Osheroff’s re-
sults on C. The fit M, gives a value of © slightly below our es-
timation of the lower limit of © from the experiments. Consid-
ering the large experimental uncertainties, it can be considered
as acceptable.

We obtain ©~—2.25 mK, which, given the low pre-
cision of the measurements, can still be considered reason-
able.

Thus we have moved to M, at constant &, from our
first fit represented by M, away from the boundary be-
tween the uudd and ssqaf phase, in order to increase the
mean spin-wave velocity. The high-temperature coeffi-
cients B and @; are represented in Fig. 25. At M,,
B=—0.2 mK? is smaller in magnitude than our first fit
(B~—0.6 mK?) and &, = — 3 mK? is negative but small.

Prewitt and Goodkind (1980) give a larger negative
value of B (B~—2.7 mK?), while Hebral et al. (1979),
Halperin (1979), Dundon and Goodkind (1975), and
Mamiya et al. (1981) show that &3 >0. However, it is
probable that at low temperature the behavior of the sus-
ceptibility and specific heat involves a lot of higher-order
terms. The discrepancy, therefore, with “apparent”
values of B and &3, which are not very well measured
(Hetherington, 1978), is perhaps not significant.

B. Phase diagram

The phase diagram, Fig. 26, differs only slightly from
Fig. 21. The critical temperature T¢; of the first-order
transition to the uudd phase is slightly higher, T¢c;~1.2
mK. Since we know that the molecular-field approxima-
tion generally overestimates the critical temperature, this
result is not unsatisfying. The helical phase H 100 disap-
pears. The critical field of transition between the uudd
and naf phase remains high: H,~16 kG at T=0, but
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FIG. 25. Variations of B (mK?) (solid lines) and &; (mK?) (dot-
ted lines) within the same model (see Fig. 24). We exclude the
lower dashed area corresponding to B > 0, which contradicts the
experiments. In the rest of the domain, B is negative but small
in magnitude. €3 is small but positive or negative. Our fit M,
gives &3~—3 mK?3, which seems in contradiction with the ex-
perimental results available to date; however, more accurate
measurements, taking into account higher terms, are needed.
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FIG. 26. Molecular-field phase diagram obtained with the
two-parameter model J,= —0.13 mK; Kp=—0.385 mK: solid
line, first-order transition; dashed line, second-order transition.
We compare to the experimental results: X, second-order tran-
sition from Godfrin et al. (1980); ®, second-order transition ob-
tained by Kummer et al. (1975, 1977); O, first-order transition
from Kummer et al. (1975, 1977).
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again both phases are almost degenerate, and we cannot
trust the theoretical evaluation of this field within the
molecular-field approximation.

The diagram of the high-field phase is comparable to
that obtained with the first model and fits the experimen-
tal data of Godfrin et al. (1980) and Adams, Delrieu, and
Landesman (1978) just as well.

C. Magnetization of the high-field phase

The theoretical curves of limiting pressure and magnet-
ization in terms of the external field H are compared to
the experimental results of Godfrin et al. (1980) in Fig.
27. The agreement is comparable to that obtained with
the fit discussed in Sec. VIII (Fig. 22).

D. Susceptibility of the uudd phase

The molecular-field approximation gives [Eq. (8.11)]
X, =—C;[8(—4J,4+3Kp)]"'=C,/5.08 mK .

Prewitt and Goodkind (1977) give X;=C, /5.2 mK; and
Morii et al. (1978) give C,/5.9 mK <X, <C;/5.2 mK.

34k

343

P (MPa)

HI(T)

FIG. 27. Comparison of theory with experimental measure-
ments of the limiting pressure P(H) in a Pomeranchuk cell:
dashed line, A experiments of Godfrin et al. (1980); v, Kum-
mer et al. (1977) as analyzed by Adams, Delrieu, and Landes-
man (1978); solid line, theoretical prediction of our two-
parameter models. Inset (a) compares the experimental and
theoretical magnetizations deduced from the slope dP (H)/dH.
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As the fluctuations can lower the molecular-field value
by 10—15% (as in an “ordinary” antiferromagnet), the
agreement with experiment is satisfying.

E. Spin-wave calculations

1. Optical mode

The k=0 frequency of the optical mode is [see Eq.
(D57)]

161/6KpJ,~180 MHz .

2. Mean spin-wave deviation at zero temperature

Using Eq. (9.22), we obtain
(AS;)~0.13 .

The polarization is ~0.74.

3. Nuclear-magnetic-resonance frequency in zero field

Taking the experimental results on the susceptibility
[Eq. (8.12)], we evaluated in Sec. VIII, Eq. (8.13), the
zero-field resonance frequency in MFA,

1150 < Q< 1225 Hz .

When we neglect the terms in afraj—, the renormaliza-
tion of the dipolar energy by the spin waves gives

851 < Qp~pQ, <907 kHz .

Finally the renormalization factor due to the motion of
atoms (Sec. VIII) V'0.95, gives

829 <} <884 kHz ,

in good agreement with Osheroff’s value.

4. Variation of the zero-field resonance frequency
with the temperature

At low temperature, the polarization p(7) can be es-
timated by applying boson statistics:

(0| et (k)e;(k) | 0) =n; =[exp(A; /kpT)—1]"" .
We have p(T)=(1—2(AS,)) and, from Sec. IX,

(AS))=2 S (Jat(Ray(k)|) .
N v&x,

The a,;(k) are transformed into the e;(k) by the relations
in Sec. IX.

We finally obtain for (AS, ), Eq. (9.22) except that the
A’s are replaced by their thermal averages,

2
exp(Ay/hpT)—1

L +1
(Ax)  As
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and p(T)=1—-2(AS;).

The variations of p%(T)/p*(0) so determined are com-
pared to the curve Q*(T)/Q*0) obtained by Osheroff in
Fig. 28.

The difference between the two curves does not exceed
10%. This comparison presupposes that the dipolar ener-
gy is essentially renormalized by a factor p, neglecting the
terms in {070} ). Calculation of the dipolar energy in
the complete spin-wave approximation should give a more
reliable comparison.

Xl. THREE-PARAMETER MODELS

Up to now we have completely neglected pair exchange
Jnn and folded four-spin exchange Kp. It is interesting
to see whether we can improve the quantitative agreement
with all available data by including one of these types of
exchange.

A. Three-parameter model including J;,Kp, Kr

1. High-temperature results

As emphasized before, the high-temperature coefficient
determined experimentally with best accuracy is certainly

&,~7.0+0.3 mK? .
From Sec. VI we have [Eq. (6.13)]
&)= 576J] —(144Jyn + 576K + 504K p)J,
+ 1203 + 72w Kp+Kp) +175.5K2
+153K2+252K-Kp . (11.1)

For the first model, we assume Jyy=0. We choose Ky
and Kp as independent variables, and take &, =7, so that
Eq. (11.1) is a second-order equation for J,. Of the two
solutions, we retain only that with the plus sign before the

a(1)\? N
(ﬁ(—o)) from OSHEROFF i

06 o
L p(TN\2 .
(—( 5 ) spin wave approx

04 plo)

0.2

T T 7T
1

Il 1 1

| | L 1
0 06 0.8 10

|
0 0.2 0.4

FIG. 28. The variation of the zero-field resonance frequency Q
vs T, obtained by Osheroff, Cross, and Fisher (1980), compared
to the theoretical calculation of the polarization (T") in the
spin-wave theory. Both Q(T) and p(T) are normalized to the
values at T =0. The two curves agree within 10%. This rough
comparison neglects the terms in {o*o~) in the spin-wave cal-
culation of the dipolar energy.
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FIG. 29. Three-parameter models including triple exchange J,
and the two kinds of four-spin exchanges Kp and Kr. From ac-
curate experimental results we take é,=7. This gives a quad-
ratic relation between the parameters. We choose Kr and Kp as
independent variables. The quadratic equation has no real root
in the lower dashed area. The upper dashed area corresponds to
J: <0 and is also excluded. The contours are lines of constant ©
in mK. The shaded area corresponds (cf. Fig. 31) to a spin-
wave velocity 8 < C < 8.8 cms~! according to Osheroff’s results.

radical, the other giving unphysical low negative or posi-
tive values of ©. The high-temperature coefficient © is
shown in Fig. 29 in terms of Kp,Kp.

2. Stable phase at T=0 and H=0

We have minimized the free energy by computer, ac-
cording to the method described in Sec. VII for a limited
number of points distributed in the plane (Kg,Kp). (J, is
determined as described.) Four possible phases have thus
been found, depending on the parameters: scaf, ssqaf, pf,
uudd. The stability domains of each phase are shown in
Fig. 30.

3. Mean spin-wave velocity

For the uudd phase, the mean spin-wave velocity is
represented in Fig. 31. Osheroff’s result, C=8.4+0.4
cms™!, restricts the parameters to the shaded area in
Figs. 29 and 31. Figure 31 shows that with C constant, B
increases with Kp. Introducing Kr can also slightly in-
crease the value of |©|. Inside the shaded area &;
remains quite low: &3 <2 mK>.

4. Choice of a set of parameters

We determine the parameters in order to fit the spin-
wave velocity of Osheroff (shaded area) and the value of
B~—2.7 mK? given by Prewitt and Goodkind. The
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FIG. 30. Phases found in mean-field theory at zero field and
low temperature as a function of K and Kp, where J, is deter-
mined by the constraint &, =7 mK? as in the previous figure.

point in the (Kz,Kp) plane is chosen at the upper limit of
the shaded area in order to obtain the largest possible
values of ©~2.7 mK and &;~2 mK?.

We therefore propose

Kp=—0.33 mK ,
Kp=—0.15mK ,
J,=—0.165 mK ,

and thus have C~8 cms™! and & =7 mK? Further-
more, €3~+2 mK3, and thus is positive in agreement
with the experimental results, while O~—2.7 mK, and
B~—2.7 mK?, in agreement with Prewitt and Goodkind
(1980). All high-temperature results plus the spin-wave
velocity are thus quantitatively satisfied.

5. Phase diagram

The phase diagram obtained with this parameter set is
represented in Fig. 32.

The critical temperature of the first-order transition in
zero field is approximately (see Sec. VIII)

FIG. 31. The variation of the quantities B and C in the uudd
part of the phase diagram of the previous figure.
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FIG. 32. The phase diagram in the H-T plane as determined by
mean-field theory with parameter values corresponding to point
M of Fig. 31.

TClz—Euudd(T:O)/]nZ ,
Tey~—(2J,++Kp—5Kp)/In2~1.08 mK .

The high-field phase diagram is roughly the same as that
obtained in the two-parameter model. The molecular-
field value of the critical field at T=0 between the uudd
and naf phase,

Hc~8 kG,

is lower than that obtained with the preceding models,
and in better agreement with the experimental results.
Thus this model seems to fit all the experimental data
better. We note that the first-order transition line be-
tween the pf and naf phase (see Sec. VII) goes up to a very
high field, of the order of 20 kOe.

6. Susceptibility and zero-field resonance frequency

The molecular field susceptibility is

¢

=—C[8(—4J,+2K;+3Kp)]" '~
X C[8 :+2Kp+3Kp)] 5.04

mK ,
in agreement with the experimental value.
The spin-wave calculation gives
p~0.65 .

Taking the experimental value of the susceptibility, we
obtain after renormalization (see Sec. VIII)

730 < Q§ <780 kHz .

The performance of this three-parameter model is among
those compared in Table I below.
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B. Three-parameter model including Jnn, Ji, Kp

For this model we follow the same scheme as in the
preceding paragraph. We take &, =7 mK? and choose
(Jnn>Kp) as independent variables; J, is given by Eq.
(11.1), with Kz=0. As in the preceding case, only one of
the two roots gives physical values of ©. Osheroff’s re-
sult on the spin-wave velocity is used to restrict the
parameters. With this restriction,

(i) B remains negative but small, | B | < —0.5 mK?
(ii) e; is negative (&3 < —2);
(iii) |© | is small, |©| <2.4 mK.

Thus introducing Jyn does not improve the agreement
with the high-temperature results.

On the phase diagram, the main tendency of pair ex-
change Jyy is to favor the naf phase. (We recall that the
naf phase is the phase which appears with only Jyy, i.e.,
the HNNA model.) Hence, with Jyy sufficiently large,

(i) the transition field at T=0 between the uudd and
naf phase decreases;

(i) the ferromagnetic tendencies decrease; in particular,
the first-order transition line between the naf and pf
phases ends at lower field;

(iii) the second-order critical temperature of the naf
phase increases and is larger than the critical temperature
of first-order transition to the uudd phase, within the
MFA; we thus obtain a molecular-field phase diagram
similar to that presented by Hetherington and Willard
(1975).

Thus, although an admixture of Jyy exchange is not el-
iminated, it does not seem to significantly improve the
overall fit to the data.

Xil. SUMMARY

The theoretical predictions of the multiple exchange
models are summarized in Table I (columns 1 and 3).
They all agree qualitatively (also quantitatively, for most
of them) with the experimental results shown in column
1. The contrast with the predictions of the HNNA model
is underlined again in column 4.

Columns 2 and 3 represent, respectively,

Model 1. The two-parameter fit J,=—0.13 mK;
Kp=—0.385 mK, Kr=0 proposed in Sec. X.

Model 2. The three-parameter fit J,=—0.165 mK;
Kp=—0.15 mK, Kp=—0.33 mK discussed in Sec. XI.

Both models agree qualitatively with the data. Model 2
gives a better quantitative agreement with high
temperature results.

A. Phase diagram

The essential feature of the phase diagram is the evi-
dence of two almost degenerate phases with absolutely
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different characters which compete at low field.

At low field, the stable phase is antiferromagnetic. Its
noncubic uudd structure gives a resonace spectrum with a
large zero-field resonance frequency in quantitative agree-
ment with the results of Osheroff et al. (1980). Its low-
field susceptibility agrees with the experimental results
(Prewitt and Goodkind, 1977; Morii et al., 1978). The
spin-wave spectrum gives, at low k, a mean spin-wave
velocity in quantitative agreement with the results of Osh-
eroff and Yu (1980). At T~1 mK this phase undergoes a
strong first-order transition to the paramagnetic phase.

When the magnetic field is increased, our model
predicts a first-order transition to a two-sublattice phase
with strong ferromagnetic tendencies. Its symmetry is
that of a “normal antiferromagnetic” spin-flopped phase.
However, its uniqueness lies in its large spin-flopped an-
gle, giving an unusually large magnetization (0.6 times the
saturation magnetization M, at the transition field), vary-
ing slowly with the field and extrapolating to a finite
value ~0.5M at zero field. This is in perfect quantita-
tive agreement with the experimental results of Godfrin
et al. (1980).

As the temperature is increased, this phase undergoes a
second-order transition to the paramagnetic phase at a
critical temperature T,,(H), increasing with H up to
H~12T. Then T,,(H) decreases with H to reach zero at
a critical field H,, of order 15 T. The phase diagram has
been investigated up to 7 T by Godfrin et al. (1980) and
agrees with our theory. We urge experimentalists to ex-
plore the upper part of the phase diagram, which remains
unknown. As shown recently by Hetherington (1981), the
value of H,, calculated in MFA is exact. Thus we expect
the MFA to be very accurate at high field and to lead to a
reliable comparison with experimental results.

In contrast, at low field, we do not expect from the
MFA more than qualitative information. In particular,
our prediction of the field of transition between the uudd
and high-field phase, which results from the comparison
between two almost degenerate energies, cannot be stated
with accuracy. It is estimated to be 1.5 T in Model 1 and
~1 T in Model 2. The experimental value of this first-
order transition field, recently measured at 0.5 mK by
Osheroff (1982), is 0.4 T.

Our model also gives in the high-field phase a first-
order transition line, ending at some critical point corre-
sponding to a change of the spin-flopped angle and a
change in the sublattice polarization. We point out that
Osheroff (1982) recently observed in this region a first-
order transition which could correspond to this line.
Futher experimental investigations in this area—where
several transition lines meet—are needed. In addition, ap-
proximations beyond the MFA are needed in the critical
region.

B. High-temperature series expansions

1. Zero-field expansion of the partition function

Our parameters have always been adjusted to fit the
coefficient &, of the T2 term, which is experimentally
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TABLE I. Comparison of various models of solid *He with experimental results.

Roger, Hetherington, and Delrieu: Magnetism in solid *He

Triple exchange and
planar four-spin
exchange

Triple exchange +
both kinds of four-
spin exchange
;=—0.165 mK

Heisenberg

Experimental J;=-—0.13 mK Kp=—0.15 mK first neighbor
results Kp=—0.385 mK Kp=—0.33 mK Ji=—0.75 mK
High-temp data
L —3 mK?
Susceptibility O~ —2.6 mK® O~—-2.25 mK O~—-2.7 mK O6=-3 mK
X“:c(T—e—k% cee) B=—-2.7 mK?® B~—0.2 mK? B~-2.7 mK? B=+2.25 mK?
Specific heat ;=7 mK?*® &,~7 mK? &,~7 mK? e;,=6.8 mK?
~ = d
C=£ 6—2_8_3 e = 24 mK 832-—3 mK3 €~3z+2 I'I’II(3 53=—5 l'IlI(3
T4 T T 7 2 mK?e
HIT) ST LT H(T)
PHASE DIAGRAM UNEXPLORED v :; V /l
) / / 10
First-order 7 ; - / oF
trans. e P el o 0.7=~<0_ -
______ Second-order P 15 2 03 = n aF N
trans. 0.4 x| \T(mK) uudd, | TimK) “[uudd ) | T(mK) | Y T(mK)
0 1 2 3 0 1 2 3 2 0 1 2
( MOLECULAR FIELD) MOLECULAR FIELD
Low-field phase
Structure Resonance spectrum’ uudd uudd antiferromagnetic
in agreement with uudd
s c c c c c
S tibilit — —t = = =£
fsceptibiity 5.9 <¥<33 =508 =50 =%
Zero-field 0,=825 kHz' 800<0,<860 kHz  700<Q,<760 kHz  CUuPic anisotropy

resonance frequency

Mean spin-wave
velocity

High-field phase
High magnetization

¢=8.4+0.4 cms™!"

varying from 0.6M,

to 0.75M, between

1

0.5

M/M,

—

¢c=8 cms™!

High magnetization
varying from 0.6M,
at 15 kG to 0.8M,
at 72 kG

05

H

c=8 cms™!

High magnetization
varying from 0.6M,
at 8 kG to 0.8M,
at 72 kG

M/M,

/

Q<1 kHz

Only one phase
antiferromagnetic

4 and 72 kG'
1 IM/M,
(Mo : saturation ) /"_
magnetization 0.5
L H
0 7

#Kirk, Osgood, and Garber 1969.
YPrewitt and Goodkind, 1977.
‘Panczyk and Adams, 1970.
9Dundon and Goodkind, 1974, 1975.
‘Hebral et al. 1979.

fOsheroff, et al., 1980.

&Morii et al., 1978.

hOsheroff and Yu, 1980.

iGodfrin et al., 1980.
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measured with accuracy. The next coefficient &3 is not
determined with good precision but is proved to be posi-
tive. Recent measurements (Mamiya et al., 1981) indicate
that it is quite large. Our first fit (Model 1) gives &3 small
and negative, while the second fit (Model 2) leads to a
positive but too small value of &j.

2. Susceptibility

Both fits give a theoretical value of © in agreement
with the experimental results (taking into account the low
precision on the experimental value).

One of the first observed unexpected features of bcc
3He was the increase in susceptibility with respect to the
Curie-Weiss law corresponding to B <0. Both fits 1 and
2 give negative values of B. Only fit 2 gives a large | B |
in agreement with the results of Prewitt and Goodkind.

Such a long list of data fitted with only two or three
adjustable parameters gives good confidence in the validi-
ty of the multiple exchange model. Of course some
features of the model are not exclusive properties of a
multiple exchange Hamiltonian. In particular, it has been
proven by renormalization-group methods that the uudd
structure always gives a first-order transition to the
paramagnetic phase, independently of any model (Bak
and Rasmussen, 1981). However, this general technique
does not tell us if the first-order transition is sufficiently
strong. One also needs a model that explains why the
uudd phase appears, which the multiple exchange model
does.

Perhaps the strongest evidence for the multiple ex-
change model is the observation of the high-field phase,
whose unusual features are qualitatively predicted if
strong four-spin exchange (of any kind!) is introduced.

Xlll. GENERAL PERSPECTIVE

The great theoretical fascination with solid *He is that
it represents a system wherein one might hope to
comprehend all the physical phenomena directly in terms
of electromagnetic interactions and quantum mechanics.
Few if any other solids offer this hope. In addition, the
quantum effects are large in helium and intrinsically in-
teresting. The path is rather long nevertheless: First, one
calculates the wave function for helium atoms, then the
Lennard-Jones potential, and then the wave function for
the solid. Furthermore, we have that in order to under-
stand the magnetic properties, we must deduce the solid
wave function in a difficult region of configuration space
and from that calculate the quantum tunneling exchange
rate. Finally, one obtains from this a pseudo-
Hamiltonian, which must be solved for the magnetic
properties and phase diagram. It is now possible to think
that we know the basic physics behind each of these steps
and that improvements will be made by better approxima-
tions at each step of the way rather than by new concepts
of what must be approximated. At this time we cannot
be sure of this. The physics behind the exchange may be
more complicated than that proposed here or different.
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However, any completely new theory must fit the rather
large number of parameters and qualitative features that
we have been able to fit with two or three parameters.

Perhaps the most puzzling conceptual question is why
more than one exchange (J;, Kp, and perhaps Kj) is
necessary (see Sec. VIIL.A) to obtain successful fits. A
simple argument based on the tunneling theory we have
préesented leads one to think that in all probability only
one type of exchange would dominate: The tunneling is
an exponential of a quantity which should be very dif-
ferent from one type of exchange to another. Therefore,
it seems improbable that if the tunnelings are distinct pro-
cesses they should happen to be nearly of the same order
of magnitude.

Furthermore, all data which have been so far obtained
above the melting pressure can be correlated by assuming
that the Hamiltonian depends essentially on one unique
parameter, which scales with the specific volume approxi-
mately as v'%. If these results are confirmed, one might
conjecture that the various types of exchange go by some
single mechanism we have not investigated. For instance,
if ground-state vacancies exist and are in sufficient num-
ber, they may play an essential role in the exchange
mechanism.

Another mechanism which would explain the near
equality of the magnitudes of the exchanges is the possi-
bility of a liquidlike intermediate state (“‘doorway state”
in nuclear physics parlance)) A few atoms could
transform to this liquid ordering in a sort of bubble, then
return to the solid form again with several more or less
equally probable permutations. As pressure is increased,
this bubble would have higher energy and might therefore
lead to a single functional variation with volume, at least
over a limited volume range. The basic ideas of Sec. IV
would still be valid, but would require careful calculation.

It is possible of course that two exchange mechanisms
just happen to be of the same size and because the ex-
change path lengths and potential barriers are approxi-
mately equal, they might also vary the same way with
volume.

As we move to a higher pressure regime, our conjecture
that one exchange should dominate may become more
correct. One might expect either Kp or J, exchange to be-
come most prominent at, say, 21 cc/mole. In this case we
would expect either a ferromagnetic second-order transi-
tion, if J, dominates, or the ssqaf phase at low field if Kp
dominates (K would lead to the scaf phase). As pointed
out, because of the triangular coordination in the hcp
solid, one would expect mainly triple exchange J, and
thus ferromagnetism at about 50 uK and 100 atmo-
spheres.

But these speculations have a certain mundane quality,
while solid *He can surely be depended upon for still more
surprises.

APPENDIX A: VARIATIONAL METHOD
FOR THE TUNNELING PSEUDOPOTENTIAL

In Sec. IV.C we propose to correct the usual trial wave
function ¢(r) (i.e., the product of a Jastrow wave function
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and a phonon eigenfunction), along the line .#(¢), follow-
ing the middle of the “duct,” by multiplying it by an ap-
propriate one-dimensional function f(¢):

Y(r)=¢(r)f(¢(r)) .

r is a 3N-dimensional variable represented by a point
M(r) in the configuration space; ¢ is the curvilinear coor-
dinate of the orthogonal projection (i.e., closest point) of
M(r) on the path .£(¢). From the variational principle
the one variable function f(¢) is determined to minimize
the quantity

I={| (V)| —(E=U)|¢|?) .

( ) means the integration over the 3N-dimensional con-
figuration space. We now prove that the condition

(A1)

8I=0 (A2)

leads to a simple one-dimensional Schrodinger equation
for f(2).
With

SyY=¢8f (¢ is given)
Eq. (A2) gives
SI=5f{(dVHPf)) +((E—U)* ) }=0, (A3)

( ), meaning the integration over the (3n —1)-dimen-
sional space orthogonal to the tangent to the trajectory
Z(t) at the point of coordinate ¢.

If £(¢) is a straight line, we can easily separate, in Eq.
(A2), t and the 3N —1 orthogonal variables. Using the re-
lation

VAGf )=V +2V-Vf+ [V,
we can write Eq. (A3)

f <. +22 (524)

+f(¢V?¢) +f(E—U)$*),=0.

This equation can be simplified if we define a new func-
tion ¢ such that, for each value of ¢,

(62),=1.
Hence we take
é=00(1),
Y=¢f(1)
with
0(t)=(¢>)'"%.
With this choice, the second term of Eq. (A4),

2 (05r0) = (24) = in] %wm],

ot
is null ((¢ 2}, being constant). Equation (A4) can be writ-
ten

(A4)

F)=6="Y0)f(1)

(AS5)

Rev. Mod. Phys., Vol. 55, No. 1, January 1983

- o
‘%fmmU¢2>l—<¢v2¢>l>f<t>=Ef<t>~ (46

Hence f(1) is a solution of a one-dimensional Schrédinger
equation with effective potential

V(t)=<U$2)l—<$V2$>i .

We usually take ¢ as a product of one-particle wave
functions. In this case it is useful to express #V%*¢ in a
more convenient form. For any function ¢, we can write

V2% =e"V% = V(¢ VIng)=$V2Ing +(V$)VIng .
Thus
($V%$) =($2Vng) +{(V$)?) .

On the other hand, the integration by parts of ($V?$)
gives

(V%) =—((V§)?) .
Adding these two last equations, we obtain
2(gV%4) =($’V’Ing ) .

If ¢ is a product, it is easier to deal with the right-hand
side of this equation. With ¢ =¢6(¢) we obtain

($V24), = 5($*Ving),
=16X¢*VIng), + 5 92(¢2)l-—ln9

Since 8=(¢?){!/?, the second term can be written
—(az/at2)1n<¢2) 1. Substituting in Eq. (A6), we finally
obtain

2 ~ o~ ~
—%;f(wr VOF(=Ef(t) , (A7)
with
(Ug*), 1 {¢*Ving), 1 @ )
Vit)= <¢2>l —-—2‘ <¢2)l —th—z—ln((b )1.
(A8)

APPENDIX B: SERIES EXPANSION DETAILS

We give here some details of the high-temperature
series expansion described in Sec. VI.

We are led to calculate (#5,) =tr¥ne A% The ex-
change Hamiltonian 57, contains two-spin terms o;°0;,
represented by

~—

i ]
and four-spin terms,
A’a
S ijkl = (o;°0j) oK o))+ (0;0))(0;0F)

+Aqloi0¢)0j00y) ,
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schematized by

R

| k

%, is expanded as a sum of products of these elementary
terms; each product is represented by a diagram. For in-
stance,

| k

represents . :}‘i,f :;‘fk,aj-am in 7%,

We list here all the diagrams occurring in the calcula-
tion of (™), n <3, their respective number, trace
(weighted by e “#*?), and contribution to the cumulants
K, (see Sec. VI). Table II represents the results concern-
ing the second-order term in B%: K,={(¥?)—(#)>
The topological structure of each diagram is sketched in
the second column. In the first column we indicate the
product of the coefficients (— K, /4Y-(—J,/2), p+q=n
[see Eq. (6.1)] corresponding to each diagram.

The same labeled diagram, representing a product of n
terms in J7", occurs v times in #™, v being the number of
ways of ordering the different terms of the product (v/n!
is usually called the symmetry factor of the diagram). v
is indicated in column 3. The number of unlabeled dia-
grams of each type is shown in column 4. The trace of
each term is shown in column 5. Column 7 represents the
contribution of the corresponding disconnected diagram
for —(#°)%. The contribution of each diagram to the cu-
mulant (difference between columns 5 and 7) is reported
in column 8). Thus the net contribution of each diagram
to K, is obtained by multiplying columns 1, 3, 4, and 8.

Remarks: (i) The free energy being an extensive func-
tion, disconnected diagrams do not contribute. (ii) The
free energy is an even function of H or p; hence only dia-
grams with an even number of single nodes have nonzero
trace. (iii) In the limit H— w or p—1, the partition

. —B¥,
function reduces to the zeroth-order term Z =tre z
thus all the other terms of the series cancel for p=1, and
(1—p2) can be factored out.

The calculation of the third-order term at H =0 is sum-
marized in Table III with the same conventions. With
H =0, we have (J7,,) =0, and the cumulant K5 reduces
to (H#3). The contribution of each diagram to
(#2)=Kj is obtained by multiplying columns 1, 3, 4,
and 5. Only the diagrams with no single nodes contribute
to the zeroth-order term in H. More details about this
high-temperature expansion are given in Roger (1980). In
particular, there are a lot of ways (more or less sophisti-
cated) to calculate the traces explicitly (Rushbrooke, Bak-
er, and Wood, 1974). A simple straightforward way is
suitable for up to third order, as presented in Roger
(1980).
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APPENDIX C: CALCULATION OF THE SPIN-WAVE
VELOCITY IN THE UUDD PHASE

1. General hydrodynamic equations

We refer the reader to the paper of R. Graham and G.
Pleiner (1975; hereafter referred to as GP) on the spin hy-
drodynamics of *He in the anisotropic 4 phase. The same
equations apply for spin dynamics in a solid antifer-
romagnet.

To the orbital anisotropy axis 1 corresponds the aniso-
tropy axis 1 of the magnetic phase (1 perpendicular to the
100 ferromagnetic planes for the uudd phase). In the
solid, the order parameter n is the direction of the spins.

A small spatial gradient Vn of the order parameter
creates a change of energy (using the summation conven-
tion)

e=M;(8y —RIRY) 3 (Vim N(V;n;) . (cn

Here we use Eq. (8) of GP, and the definition of #;; as
conjugate parameter of V s

ds=1/;,-jd(an,~) .

In a reference frame with OZ parallel to the anisotropy
axis 1, M;; is diagonal and has only two different com-
ponents M|, M ,:

The spin-wave velocity is given in terms of the “mass
densities” M| and M, defined in Eq. (C2), and the per-
pendicular susceptibility is given X, by Eq. (13) of GP:

C=y[(M k}+Mkf) /X, |k |22 (C3)

The “perpendicular” and parallel spin-wave velocities are
then

Co=Y(Myo/X)"* a=||or L. (C4)

This proves that the factorization of the inverse perpen-
dicular susceptibility is a very general property, indepen-
dent of any model Hamiltonian.

We now need to calculate X, and the M, within the
multiple exchange model. An exact calculation is not
possible, so we simply use the molecular-field approxima-
tion, which, as we shall prove, leads to the same results as
the spin-wave approximation developed in Sec. IX and
Appendix D. (This illustrates the fact that the spin-wave
approximation is no more than a quantization of the fluc-
tuations around the molecular-field state.)

2. Mean spin-wave velocity in the molecular-field
approximation

a. Susceptibility

For obvious symmetry reasons, in a magnetic field H
the magnetizations of each of the four sublattices, initially
perpendicular to H, are tilted at the same angle o toward
H.
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TABLE II. Diagrams and factors used in calculating &,(p).

1 2 3 |4 5 6 7 8
diagram choice, no. 2 diagram 2 Ky= <HI>- <H>?
Coef. of <H?> | HxH | Nx <H®> of - <H>? - <H> Common factor (1- p2) x
W 4 3-2p®
| e——= | 1 | 3 * -p4 3+p2
I 6
Wl 8x7/2
IR 6 x5/2
J32/10 12x11
2 p? -ph B2
VP2 8x6
13 /4 8x12
Jpylh 6x12
1 2 3 |« 5 6 7 8
diagram Choice| no. ) diagram 2 Ky= <H?>. <H>?
Coef. | of <H2> | HxH | Nx <H®> of -<H>2| - <H> Common factor(1- B2) x
3, K18 26 | (4enp)p2-2pt — s -(2+ Xp ) B8 P2lA+Ap+(2+Xp) B2 ]
2
J,Kp8 26 | (herp)p2-2pt -2+ Xp ) BB P2l4 + Ap+(24Xp) P2 ]
J,Ke18 12 (243 X)P2-2 A p* -2+ Xp )6 P2I2+43 X+ (24X, ) P2]
J,Kpi8 2 6 (2+3 Xp)P2- 2 2p P* -(2+ Ap )8 P2I2+3 Ap+(2+2p) P2]
J3Kp/B 6 " " "
)1 Kef8 4x6x6
J,Kel8 4x5xB ) (24 Ap ) Bt . (24 Ap ) B8 (2+ Ap ) B4
J3Ke/8 ) 4x12x6
J1Kpl8 4Lx6x6
(2x5x6 . ) i
J,Kpl8 [ 2x6x6) (2+ Xp ) P* -(2+ xp )1p® (2+ xp )P*
J3Kpl8 (2116
3Kel L2xDx6
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TABLE 1I. (Continued.)

1 2 3 | 4 5 6 7 8
diagram  |Choice| no. ) diagram 2 Ky = <HZ>- <H>?
Coef. | of <HZ> | HxH | Nx <H®> of - <H>? - <H> Common factor (1- p2) x
K2 2412 Xg +I AL ' 24412 g +9 A
6 6 | (32416 Aq +12 A2 )52 ). (B+4Ag+3k)p?
1 g -(2+ Xq) P8
5,_2,_ . +(12+8X g +42%) B +(2+Aq)pt
16 a=For a=P +{2+2g)? f)s
‘Kq.gp - (8+2 Xg +2 Ap +3 X Ap)p2 L2ea)(2eA P B2I8+2 (Xp+Xp)+3X¢ Xp
-2(2+ Xg Xp) Pt F P +(2+Xg) (2+Xp) (P2+p4) ]
\ 2
2\ ~2 | ~2
Ké 4Lx6 | (B+4A+3AE )P 2 2 58 PIB+4AF+3 A Ap
Ke -(2+
® 2| 22402 ) TR P (242002 (B2ept))
K K (642 Ap+2Ap + AF Ap) P4 B 16+2 (Ap+Ap)+ Ap A
e LxixB FrespriRse -2+ A (24 2P0 A
-2 pS +(2+ Xp) (24 2p) B2
2 2 ~ 4 ~b 2
_t(_g_ 2 |4x3x6 (6#1¢XF+ AF)p L2 )2ﬁ8 p l6+4 Ag+ Af
1 2 -2 55 F *(2+AF)252]
2 ~ ~
e ises|  (B+6rpe XD )5 N B
6 2 -2 B8 pIP v (24 2p ) P2
1 2 3 4 5 6 7 8
diagram  |Choice| no. ) diagram ) Ky= <HZ>- <H>?
Coef. of <HZ> |[HxH| Nx <H®> of - <H>? - <H> Common factor (1- p2)x
Ke Kp ::
16 0
Ke? . . . . .
= 2 2;5 (beLApe3 2)p* 22 28 (2420258 B lhraA R (200 P B2 )
2
i:f_ 1x6 |(L+lApe3NRIPF -223 8 < : —(2:2p2P8 | PlarbApsINE +(20p)2 B2]
2
%’ tx(2:6) (2+Ag)(2+2p )58 (2402 Ap)P8 (2A£ )2 +Ap)B°
Ke? 2 3«6 (24260758 2+ Ppt 2+ 1258
F x13x +Ag) D -(2+ F!/P +Apl P
2 /
Kp 2(12 (2+xp)2p° @ 258 258
Kp_ B “(2+2p) (2+xp )
16 +13)x6[2 P PIP P

The corresponding change in energy is [see Eq. (5.10)] with u =sina.

Its minimization with respect to u

AE=E(H)—E(0)
oE

du

u=ug

=N(2J,;+J,+4J3+3Kp)u?—N(y#/2)Hu
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TABLE III. Diagrams and factors used in calculating &3(0).

Roger, Hetherington, and Delrieu: Magnetism in solid *He

Coefficient

diagram

choice
HxHxH

number
Nx

Ky= < H}>

o| 4
w

-
[+ -1 ey
w

12

12

+3

Coefficient

diagram

choice
HxHxH

number
N x

_Ke i’
16

Kp ;2
16

12

12

Ke Jo2
16

KpJyJa
16

Ke2dy
32
Kp'dy
32

Lx6

-30

Ke'da

32
Kp2J2
32

Kels

32

N

2x6

12-24 Ap -18 A(2

12-24 Ap -18 Ap?
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TABLE III. (Continued.)

. A choice b =
Coefficient diagram th-'le nurrr\}xer Ky= < HY > (p=0)
Kr K
__%2"& . ax6 24+6XAF +6Ap+9NpAp
6
2
Ke'ds 2x6 24412Xp +9N2
32
K3
"84 36(4+3Xp+ 20240 5)
| 6
Xe2 2 . 3
""64 36(4+3Xp+2Xp +Ap)
_Ke®ke
7y 6 2x6 6(-2+4\F +2Xp-2Ap2-4NpAp -3Np2N)
leads to
2 o = 1 l J1
" = —
=N 20— N | B[40, 42,4872+ 6Kp] 2| 3Ketkr
and
(C5)
N Ji
e=—0 —J2—4J3+KF+_——“—
' 4 3Kp+Kj
b. Calculation of M, :
The initial direction of the spin is perpendicular to I:
1/|0Z; noy||0X. The uudd phase belongs to the structures
(A4,B,—A,—B) (see Sec. VII) with two interleaved anti- Z’
ferromagnetic sublattices 4 and B. We consider separate-
ly each antiferromagnetic sublattice, as shown in Fig.
33(a). For each sublattice we take the same gradient of
the order parameter in the direction parallel to the aniso- o -
tropy axis 1: i.e., within one sublattice going from one vy

plane perpendicular to the anisotropy axis to the next, the
order parameter turns by an angle 6. From Eqgs. (C1) and
(C2), we obtain

2
e=Mjj T LV +(Vm, V1= | (c6)

The angle 0’ between the order parameters of the two sub-
lattices (see Fig. 33) must be chosen in order to minimize
the variation of energy €(6,6").

In the molecular-field approximation, the energy varia-
tion is
Jy 3Kp

Jy 7
2+ +3+4

2
; 6

€(60,0')=—N

+ [J1—(3Kp+Kr)]06'—(3Kp +K5)0'? ] .
Minimizing with respect to 8’, we obtain
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e+e>r

(@)

’{e’e’

(b)

FIG. 33. Sublattice spin orientations for calculation of (a) M
and (b) M,.
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which gives with Eq. (C6)
2

J1
_J,— _— | C7)
J,—4J3+Kp+ 3K, + Ky (

M) ==

c. Calculation of M,

We take a gradient V,#; in the direction OX perpendicu-
lar to the anisotropy direction (1 axis), as shown in Fig.
33(b). As explained before, the lattice is split into two
simple cubic antiferromagnetic sublattices 4 and B. In
each sublattice, the order parameter turns by an angle 6 as
one goes from one plane perpendicular to OX to the next.

The variation of energy is

2
e=M, 5 [(Vin, P +(Vin, )= 1M, lgl .

The angle 6’ between the order parameters of the two sub-
lattices is determined so as to minimize the variation of
energy. We obtain in molecular-field approximation

J, 3K, Kr

— 6?
4 4 2

€(6,6')=N

— (3Kp+Kp)0'2—006")

The minimum in terms of 6’ is obtained for 6'=0/2.
Thus

9?
€= N (J2 _KF)
We deduce
2
M, = N; (Jy—Kp) . (C8)

Substituting Egs. (C7) and (C8) in (C3), we obtain the
spin-wave velocities C)| and C,. The results are the same
as those given by a straightforward but tedious expansion
at low T of the dispersion relation of the spin waves (see
Sec. IX).

APPENDIX D: SPIN-WAVE APPROXIMATION

In this section we present the spin-wave calculation for
the main phases, uudd, naf, ssqaf, and scaf, which can oc-
cur with four-spin interactions. Although the ssqaf and
scaf phases do not appear experimentally at the melting
curve molar volume, they are not excluded at higher den-
sities. In particular, if J, decreases faster than K, when
the molar volume is decreased, the ssqaf phase can be-
come stable.

1. Generalities on the spin-wave approximation

a. Quantization of the spin fluctuation
in the Holstein-Primakoff (1940) formalism
(for spin 1/2)

For each site i, the spin is quantized along the direction
0Z of the molecular field. We assign to the two states
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S7= +%, Si= ——% the respective boson states |0), |1).
We introduce the corresponding boson creation and an-
nihilation operators af and @;. From the boson commu-
tation rules, it is easily proved that the operators

Sz——— af a; ,
St=(1—a}fa;)a; , (D1)
ST =af (1—afa;),

satisfy the commutation rules for spin operators. The
fluctuations with respect to the molecular field are gen-
erally weak. Thus at lowest order we retain in the Hamil-
tonian only the linear and quadratic terms which makes
its diagonalization possible. Hence we can write

Here

SV=

Nj- O O

is the molecular field, and
slaf +a)
58~ %(af —ap) | . (D2)
—a; q;

b. Expansion of the Hamiltonian at second order in 8S;

Retaining only the first- and second-order terms in 88;,
we can write the Hamiltonian
3’E
as;3s;

x= E+2 as+2285 -88; ,

as

(D3)
where E designates the molecular-field energy (all deriva-
tives are taken at the molecular-field value S; =SY).

The derivatives that we need with a four-spin Hamil-
tonian are simply
(i) two-spin terms,
2

BS—'(S,'SJ)zsl

(D4)
3%(S;-S;)
8S; ———-1—-8S;=5S;"5S; ,
‘oas;es; Y J

(ii) four-spin terms

d
‘EE(S;'SJ' )(Sk'SI)Z(Sk‘SI )Sj )

88;- asazzas (8;°,)(S¢S;) |-88;=(S,$,)(8S,-5S;) ,
(D3)
aZ
5S;- [as,.as,- (8:°8;)(8;°S)) ]-ss,:(sk-as,. (S;-5S,) .
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c. Diagonalization of the Hamiltonian

We restrict our attention to an n sublattice magnetic
structure. For each sublattice ¢;, we define the spin-wave
boson operators aff,- and a;; (0<l<n). We define the
Fourier transforms

172 "
a;(k)= n 2 aI,ie_' R; ,
N iEqJ,
172 (D6)
a}"(k): —n-— 2 a}f,-e“kR" N
N i€

the summation being taken over one sublattice ¢;, where
N is the total number of atoms. Reciprocally, we have

H=Eo+ Y,
k

2 Cy(k)ay (k) —k)+Cj(k)ait (k)ajt (—k)+ Cj(k)ay (k)aj (k) + Cj* (k)i (k)a; (k)
”]
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172 N
ap = o > a,(k)e' R‘,
N kER,
(D7)
172
+ n + ~ikRi
ofi=|—= > af (ke ,
' N kER,

the summation being taken over the reciprocal lattice Z#;
of ‘48

The linear terms in the spin-wave Hamiltonian cancel
because the stable structure corresponds to a minimum of
the molecular-field energy. Using Eq. (D7), we obtain a
quadratic form of the Hamiltonian in terms of the a;(k),
o} (k). Taking into account the Hermitian properties, we
can write the Hamiltonian

Because of time-reversal invariance (¢— —t or k— —k) and the centrosymmetry of the lattice [C*(—k)=C (k)] we can

write

¢ =Ey+const+ Y,
k

or in a matrix form,

H=Eo+~ S [la*(k),'a(—k)|M (k) o)
- 0+2§[a ’a(_ ] a+(___k)
with

a,(k) ai (k)

ay(k) a; (k)

alk)= ; atk)=| - ,

a,(k) a;f (k)
la(k)=[ay(k), ...,a,(k)] and ‘at(k)=[ai(k),...,
af (k)]

A B
M((k)= B Al

A and B are two nXn matrices. The diagonalization of
the Hamiltonian can be performed with a linear transfor-
mation as

e(k) (k)
e+(—k) = k) a+(—k) (D9)
with
e (k) ei (k)
ek)=] + |, et(k)=| -
e, (k) e, (k)

The transformation U (k) must conserve the commutation
relations for the new boson creation and annihilation
operators
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+ const

2 Cyj(K)[a;i(Kaj(—k)+ait (—k)aj (k)] + Cj(k)[a;(kaj (k) +ait (—k)a;(—k)] ]
".I

[es(k),ejt (k)] =85 -

Using our vectorial notation, this condition can be written
as follows:

e(k
e+(_k |LeT(R) (=]
et(k _
— le(—k) |etR)fe*(—=K)]=I (D10)
with
_ 1o
I=\o 1|~

where I is the n X n unity matrix and O the n X n zero ma-
trix. Substituting Eq. (D9) into (D10), we obtain

v | et et —oTU )
at(—k) ’
at _
—U*(k) al—k) [falk),’aT(—Kk)YU(k)=I .

(D11)

Factoring out U (k) and ‘U*(k) in Eq. (D11) and remark-
ing that the a(k),a*(—k) satisfy the boson commutation
relation analogous to (D10), we obtain

Uk)IU*(k)=I . (D12)
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From this relation we deduce the inverse matrix

U~Yk)=TU*(k)T , (D13)
which transforms the ¢;(k) into the ¢;(k):
a(k) PO T e(k)
at(—k) =I'U*(k)I et(—i) | - (D14)

U is chosen such that the linear transformation diagonal-
izes the Hamiltonian:

[TU (T IM (K[ TU (KT ]1=A , (D15)

where A is a diagonal matrix, A; =0 for i#j. Multiply-
ing by I to the left, we obtain

(UM (I UHKI]=IA . (D16)

TA is also a diagonal matrix. U (k)T and U* (k)T are in-
verse matrices [see Eq. (D13)]. Thus we are simply led to
diagonalize the 2n X 2n matrix:

A —B

MoI=p _,

. (D17)

Because of the symmetry of this 2x X 2n matrix, the prob-
lem can be reduced to the diagonalization of an n X n ma-
trix, in the following way:

Let 2 =(Y) be an eigenvector of MI with eigenvalue A
(U and V are two n-dimensional vectors). The vectors 7~
are columns of U *(k)I. We can write

AU —BV =AU,
(D18)
BU —AV=AV,
or, after combining both equations,
(A+B(U—-WV)=MU+"V),
(D19)

(A4 -B(U+V)=MU-V).

Taking (U — V) from the second equation and substituting
in the first, we obtain

(A+BXA—B)(U+WV)= A U+V). (D20)
In the same way we can write
(A —B)A +BXU —WV)=AXU—-V) . (D21)

Generally A and B do not commute. Thus U +¢€V is an
eigenvector of P,=A%—B%—¢[4,B] with eigenvalue A’
(e==1). (If A and B commute, U and ¥V are common
eigenvectors of 4 and B.) P, and P_ have the same
eigenvalues {A} ...,A2}. Thus the matrix A defined in
Eq. (D15) becomes

A 0

(D22)

and therefore
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A 0

If W, and W_ are, respectively, eigenvectors of P, and
P_ with eigenvalue A, we have

U+eV=pW, (e==+1). (D23)

The constant u. are determined so that U and ¥V must
solve Eq. (D18) or (D19) and are normalized by the condi-
tion obtained from the diagonal elements of Eq. (D12):

TUrKU="v*V=1. (D24)
We thus proceed as follows:
(i) find the common eigenvalues and eigenvectors W
and W_ of P, and P_;

(ii) determine U and V from the above conditions and
Eq. (D23).

Since

U
|4

form a column of the matrix U*(k)I, we may easily con-
struct the relation between the spin-wave operators

et(—k)
et(k)
and the single sublattice operators

a(t)
at(—k)

2. The uudd phase

a. Spin-wave Hamiltonian

The respective magnetizations of the four sublattices
are shown in Fig. 34(a). The crystal axes x,y,z are such
that z is perpendicular to the ferromagnetic planes. The
quantization axis 0Z is parallel to the magnetization of
the four sublattices. Thus for each sublattice the spin
vectors in the molecular field are in the reference frame
XYZ:

0 0
SIZ 0 > Sz= 0 »
1 1
2 7
0 0
S3= 0 ’ S4-— 0 ’
2 2

and the spin deviations are
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1
Slati+ay;) (a) uudd
88,,;= %(a?,'i-al,i) ,

lx
+
—Qy,xy,;

P L —>  z
slayj+as;) )

SSZ,j: é(ai‘:‘,‘“‘az,j) ’ ‘

+
-—az’jaz'j
1 + (D25) (b) scaf s f
slazg+asg) sqa
883k _%(a;:k“alk) ,

+
+oa3 a3k

1
Tlad+aq,)

88s,1= | — (@i —as)

+
+agis, . (e} pf

(Note that for sublattices 3,4, the operators change S7 X 2

from —% to —;— in the frame XYZ.) 2xe / _
We begin with Eq. (5.10) of the Hamiltonian, including .,

two-, three- and four-spin cyclic exchanges. We expand /

the Hamiltonian to second order in 8S, ; according to the /

method presented above (see Sec. 1.b). Using Eq. (D25), *

we express the 88, ; in terms of the a; ;,a;f; and finally  FIG. 34. Mean-field ground-state spin orientation and sublat-
apply the Fourier transform defined by Eq. (D6). tice numbering for calculation of spin waves in the (a) uudd, (b)
After tedious calculations we obtain as a final result scaf and ssqaf; and (c) pf structures.

4
H=Eo+ 3 |ok) S aff (Kayk)+yk)ai (kai (—k)+a(k)as(—k)+ai (kai (—k)+ay(k)ay(—k)]
kER, =1

+v(k)[ay(K)ay —k)+ait (k)af (—k)]+v*(k)[af (k)ai (—k)+ay(kas(—k)]

+ (B [ait (K)ay(k) +aif (Kag —K)]+n*(k)[a(k)as (k) +as(k)ad (k)] ] . (D26)

E, is the molecular-field energy, and the coefficients w,y,v,n are c-numbers, @ and ¥ being also real. In the frame
(x,y,2) determined by the crystal axes (see Fig. 34),

K
o(k)=+2J, —4J3 —4Kz— 12Kp —2(J, +Kp)(cosak, +cosak, ) —4 J3+—2—’; cosak,cosak, ,
Y(k)=2cosak,[ —J2+2Kp+Kp+(—2J3+Kp)(cosaky +cosak, )] ,
i ak, ak, ;
vk)= iV|e’¢=(’-J1—KF—3Kp)4cos——2 cos——zy ' (D27)
i ak ak, ;
(k)= | n|e®=(—J, +Kr+3Kp)4cos 2x cos 2y o (@72

Note that v and 77 have the same phase: @=ak,/2. The details of this calculation are presented in Roger (1980), Ap-
pendix 6.

Using the general notation of Eq. (D8), we can write

A B
B 4

a(k)

aH(—k) (D28)

H=Eo+ 3 | sl (k) 'a(—k)] ,—%trA
k
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with

Q0
0O

or

A= ro

’ ’

Q and I" being the 2 X2 matrices defined by

v ov*
Q= n* o and I'= v oy |
The constant term — 5trd = —23 ,w(k) arises from the commutator:

a)(kajt (k)=1+aj (k)ay(k) .

Because of this term, the net effect is for the energy to be lowered below the mean-field energy E,,.

b. Diagonalization of the Hamiltonian

In the uudd phase, the operators a;(k),a,(k) being coupled only to ai (k),a; (k) and a;( —k),as —k), the general ex-

pression (D28) of the Hamiltonian can be simplified as

Qr
H=Ep+ 3, [af (k),af (k),a3(—k),a(—k)] r o
k
We use the linear transformation 7' (k):

e)(k) a](k)
e,(k) ay(k) D30
et (=i |TTH ot~k (D30

e (—k) af(—k)

As shown for U in Sec. 1.c, Eq. (D13), the conservation of
the commutation relations for the new boson operators e;,
e;T also requires that

T~ Yk)=IT(kK)I , (D31)
and we are led to diagonalize the matrix
Qr|. |9 -T
MI=|r ogI=|r _al- (D32)

As shown in Egs. (D20) and (D21), if 77 =(Y) is an eigen-
vector of M'I with eigenvalue A, U +¢€V is an eigenvector
of the 2 X2 matrix P, =Q?—TI?—¢[Q,T'] with eigenvalue
AZ. P, has the form

u —eic v*
Pe=1| u+sic] ’
with
c=—ilgv—m*v*)=2|7| |v|sin2¢,
u=o’—y+ |n|*—|v|?, (D33)
v=2(en*—yv)=20|n|e ¥—y|v|e"?).

P and P_ have the same eigenvalues
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ai (—k)

af(—k)

a](k)

ay(k)
—TrQ | . (D29)

-

AM=u+e(|v]2=cH?, g=+1 (D34)

(which are independent of the subscript on P but which
have the parametrization €' coming from the solutions of
the quadratic characteristic equation). If

is an eigenvector of P, with eigenvalue A2,
P.WE=\w¢
we have, using Eq. (D34),
vye=Dix, (D35)
vx{ =D{*yf ,

with D{ =¢'(|v | —c?)!/2+-eic. From Eq. (D35) and the
identity | D | = |v | we deduce

EES
Defining ¢ and ¢ by the relations

v¥=|v |e%¢,

(D36)
(v |2=e)V2tic=|v |,
we define the symmetrized eigenvector
, xi' oi($—se't)
Wi = »E | = |ere—i@—een (D37)
The eigenvector (§) of M'T is such that
U+eV=uswe , (D38)
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or
U=~ ws +pswe),
= (S W —us W) .
U and V¥V must also satisfy relations analogous to Egs.
(D20) and (D21); for example,

(D39)

(Q+eITNU —eV)=A (U +¢V) . (D40)
Using the definition of Q and I [Egs. (D28) and
(D37)—(D39)], this relation gives explicitly

/J'E' eA f:' =,u'§,)\'£' ’

(D41)
pE AT =piA,,
where

AS -—((D+8'}/)€2‘EE’+(7]+8V*)8’ -—-21¢
Substituting Eq. (D36) in (D40), we find after some rear-
rangements that A{ is real:

={(o+ep)(|v |2=cH24e'Re[v(n+ev*)]}/|v | .

We thus obtain
ﬂ's—’A i— :“E—;ke' ’
piAT =psA,
[The eigenvalue A, given by Eq. (D34) also verifies
}\‘2‘= fi- As
Thus Eq. (D41) has a solution different from zero.] The
coefficients u have the same sign for the positive eigen-

value +(4% A< )!/2 and opposite signs for the negative
eigenvalue —(A . A° )72 Their absolute values are

€ € 1/2
pe=C¢ [ € ] .

The constant C is determined by the normalization con-
dition (D24), which gives with Eq. (D38)

(D42)

(D43)

Re[ps s (W )* W 1=1 (D44)
or
“i#i(CZit+e_2it)=l .
Using Egs. (D37)—(D43), we obtain
2C2IA (v |2=cHV2/ v | =1. (D45)
Finally,
P12
e (D46)
He= | o0 ,
with ,
. AL |v
B = £2 | Iz 172
(Jv]*—c?)
’ *
—otert e'Re[v(n+ev*)]

( , v I 2__C2)l/2

The eigenvectors (Y) are thus determined by Egs. (D39),
(D37), and (D46). As shown by Eq. (D16), the eigenvec-
tors (Y) are columns of the matrix T*(k)I. We thus
deduce the matrix 7T (k):

Rt R™

T (k)= R- R+ ’ (D47a)
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R®(e"==+1) being the 2X 2 matrix

*
. Fen  Fen
RE = *
Sgr —Sgn

with

reo=ye¥ute " re'ute],

1 . (D47b)

ser=7e'[uTe+e'ue .
[We recall that uf is given by Eq. (D46), and the phase ¢
and ¢ are defined by (D36).] The inverse matrix 7~ !(k),
giving the a;(k) in terms of the ¢;(k), is obtained by the
transformation (D31).

3. scaf and ssqaf phases

a. Hamiltonian

Both phases have four sublattices with orthogonal mag-
netization. The scaf phase has been treated by Utsumi
and Izuyama (1977). We choose the reference frame
represented in Fig. 34(b). The spin vectors of each sublat-
tice in the molecular field are thus

7]
—0
Il
O O M-
17/}
Do
I
O M= O

and the spin deviations are

+
—Qy,idy,;

88, =

azl)

_ +
88,,;= —ag;ay ,

3lad;+ay))
+ (D438)
+a3 ok

553,k= —é(a;fk -—a3,k) ’

1
T(afk+aszy)

P+
“2‘(0‘4,1—014,1)
_ +
8841=| Haija4;
1
sladi+aq)

Note that for each sublattice the operator ;" change S
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from + 5 to — 5, the quantization axis 0Z, being taken
along S2.
The procedure for expressing the Hamiltonian (5.10) in

terms of a, ;,a;; and, after Fourier transforming (D6), in
|

#=E 2[‘ +(k), al k))AB ol
=Lo+ Za y al—
~ |2 B A| |at(—k)
with
o m & 7*
*o ' 8
A= 778 ’ % K ’
7”* o 7
7 8 n* o
(D490b)
E v y V¥
v¥ & v vy
B= v V¥ e v [°
vy v* e

and, for the scaf phase,
olk)=—6(J,—2J3)—12(Kr—Kp)—J383(k) ,

V)= —J,g,(k);8(k)= — (2Kr —Kp)g, (k) ,
Kp
(k)= ——g;(k),
2
WK =v' (k)= — 5[] +3(Kr—Kp)1f1 (k) , (D50)

n(k)=n'(k)=— 5[], —3(Kr—Kp)1f1(K) ,

f1k)=4 cosfk—xcosﬁcosakz
2 2 2
ak ak
+isinszinTysin 22 ,
(n)
g (k)= ie:k(ki—Rj) )

j
where Y, is over the nth neighbors of i. For the ssqaf
phase,

(k)= —2(J,+2J3)+4Kp —12Kp
—2J,cosak, —4J3cosak,cosak, ,

y(k)= —2(J, +2J3cosak, ) cosak, +cosak,) ,

8(k)= —2Kp(cosak, +cosak, )(1+cosak;) ,

e(k)=(—4Kf+2Kp)cosak, +2Kpcosak,cosak,, ,
ak a (D51)
vik)=—2(J, —KF—|—3KP)cos—2—zcosz(k,,r +k,),

akz a
Vi(k)=—2(J, —KF—|—3KP)cosTcosE(kx —k,),

ak,
(k)= —2(J, +Kp—3Kp)cosTcos%(kx+ky) ,

akz a
n'(k)=—2(J, +Kp—3KP)COSTCOS'E(kx —ky) .
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]— —;—trA

terms of a,(k),ai (k) is exactly the same as that used for
the uudd phase. We give here the results. The details of
this tedious calculation are described in Roger (1980), Ap-
pendix 6. We obtain '

» (493)

f
b. Diagonalization of the Hamiltonian

In the scaf phase [see Eq. (D52)], v=+' and =7’
hence the lines of each matrix 4 or B [Eq. (D49)]; deduce
from one another by cyclic permutation. Such matrices
have four eigenvectors V™ with respective components

V,:" :emmﬂ/z .

Thus A and B have the same eigenvectors V™; the corre-
sponding eigenvalues are, for 4,
dm =w+neim(ﬂ/2)+8eimn+n*e—im(1r/2) , (D52a)
and, for B,
B :E+Veim(ﬂ/2)+,},eim1r+v*eim(1r/2)
m .

It is clear that P, =P_ =A%— B? has the same eigenvec-
tor V™ with eigenvalues

A =2 — B . (D52b)
The eigenvectors 7™ of

A —B
B —4

MI =

are
r,Vm

s V™ (D53a)

M=

The constants r,, and s,, are determined by
(i) MT?™=A,, 2™ giving
(A g — Ay Wy — B 1Sy =0,
B outm Ly + Ay )5 =0,

with the compatibility equation (D52b).
(ii) The normalization condition (D24), giving

4r2—s2)=1.

We obtain

172
1 A

=23 | TH

and
172
(D53b)

1
m=0a A

Associated with the eigenvalues
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A=+l 0y — B )

are the eigenvectors

1 o 172
- m imn(mw/2)
en(k)= NV ? [ l . +1] e a, (k)
172
A .
+ [_}_\'____1} etmn(ﬂ/l)a;i-(__k)] .

(D54)

A =—(Z2, —B%)/? is associated with e, (—k).]
From Eq. (D13) we obtain the «, in terms of the e,,:

1 o 172
k)= —— —m —imn(mw/2)
a,(k) 2\/§§ " +1] e e, (k)
172
_ [__f'" _1] e—"'""‘"/z’e,:(—k)‘ .

(DS55)

This agrees with the result given previously at k =0 by

and B are real: v=v* v'=v'* n=n% n'=n"* [see Eq.
(D51)]. We note that for each matrix (D49b), the coeffi-
cients of the second, third, and fourth line are deduced
from the first line by the respective permutations
(P13P34),(P31Pyy),(P14Py3). We can easily prove that the
four eigenvectors are

1
V'u"ul = “I

’

s

with u=+1, u'=+1. The corresponding eigenvalues for
A and B are, respectively,

ol =K+ (k) +p'8(K) +pp'n' (k)
(D56)
B = (k) +pv (k) +p'y (k) +pp'v'(k) .

Following the same scheme as for the scaf phase, we ob-
tain the eigenmodes of the Hamiltonian

Utsumi and Izuyama (1977). )L"’”'z('gl’z"”’_%‘i’”')l/z (D37)
In the ssqaf phase, the coefficients of the matrices 4 and the associated eigenvectors
172
e ,(k)=——1— L +1 [a(k)+pay(k)+p'as(k)+pp'al k)]
ol 2V2 || A
o 172
+ k“”j —1 [ar(—k)+#a2+(—k)+y'a;*(—k)+uu'ar(—k)]] . (D58)
ot

Both the scaf and the ssqaf phases give three acoustic
modes and one optical mode, each being doubly degen-
erate.

4. pf phase, the spin-flop naf phase

a. Spin-wave operators

As shown in Fig. 34(c), the magnetic field is directed
along the z axis. In the molecular field the magnetiza-
tions M, and M, of each sublattice are symmetric with
respect to z. The angle between M| and z, or z and M, is
¢. In the (X,Y,,Z,) frame related to M, (Z,||M,), the
spin operators are

%(aif,‘ +a1,,-)
S/ =S,+868;=

+ é(aﬂ'i—alvi) (D59)

vj- O ©

+
— Qi

We write a similar relation for the spins of the other sub-
lattice in the (X,,Y,,Z;) reference frame with Z,||M,.
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I
b. Hamiltonian

The Hamiltonian (5.10) is transformed using the
method described above for the other phases. We obtain
as our final result

FH=Eo+ 3 |3lat(k),'al—Fk)]
A B alk) .
X g 4l la(—k) | —7tr4| (D602
where
o & £y
A4=15 o | yel|’
and where
w(k)=28J,cos2¢ +6J, +12J;
+12(Kp+Kp)(2cos?2¢—1)
+g2(k)[—J2+(2KF+KP)00822¢]
Kp
+g3(k) —J3+TCOS 2¢ | +vH cosd ,
(D60Db)
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) KP )
e(k)=g,(k)[2Kr+Kp]sin 2¢+g3(k)Tsm 2¢ ,

(D60c)
PK)=~g (K)[ —J,(1—cos2¢)
—3(Kp+Kp)(cos2d —cosdd)] ,
(D60d)
8(k) =g, (K)[ —J;(1+cos2¢)
—3(Krp+Kp)(cos2¢+cosdd)] ,
(D60€)
Here [see Eq. (7.10b)]
g, (k)= geik'(kj—Ro) ,
j

where j runs over the nth neighbors of 0.

c. Diagonalization

The eigenvectors of 4 and B are simply

1

Yi=lcm

, m=12.

The corresponding eigenvalues for A and B are, respec-

tively,
A y=0+(—=1)"8, B, =e+(—1)"y. (D61a)

Following the same method used for the scaf and ssqaf

phases, we find the eigenmodes
Am =(Z% — BL)? (D61b)

and the eigenvectors

172
1 | Ay
e™k)==|—+1 [a(k)+(—1)"a,(k)]
2| An
172
A
+% T—ll [af (—k)+(—=1)"af (—k)] .

(D61c)

d. Correction to the molecular-field energy
at 7=0

The Hamiltonian can be written

H=Eo+ 3, {5[MK)+Ayk)—trd]
k
+A(Ke (Key (k) +Aykles (k)ey(k)] .

(D62)

The constant term AE:Ek—;—[kl(k)+7»2(k)—2w(k)]
represents the correction to the molecular-field energy.
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