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The physical and theoretical foundations are presented for the mean-field theory of nuclear structure and

dynamics. Salient features of the many-body theory of stationary states are reviewed to motivate the time-

dependent mean-field approximation. The time-dependent Hartree-Fock approximation and its limitations
are discussed and general theoretical formulations are presented which yield time-dependent mean-field

equations in lowest approximation and provide suitable frameworks for overcoming various conceptual and

practical limitations of the mean-field theory. Particular emphasis is placed on recent developments utiliz-

ing functional integral techniques to obtain a quantum mean-field theory applicable to quantized eigen-

states, spontaneous fission, the nuclear partition function, and scattering problems. Applications to a num-

ber of simple, idealized systems are presented to verify the approximations for solvable problems and to
elucidate the essential features of mean-field dynamics. Finally, calculations utilizing moderately realistic
geometries and interactions are reviewed which address heavy-ion collisions, fusion, strongly damped col-
lisions, and fission.
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I. INTRODUCTION

A fundamental challenge pervading theoretica1 physics
is the problem of understanding the properties of systems
possessing large or infinite numbers of degrees of freedom
in terms of the underlying interactions between consti-
tuents. The particular case addressed in this review, the
structure and dynamics of self-bound composite systems
governed by nonrelativistic quantum mechanics and in-
teracting via a static two-body potentia1, retains much of
the challenge of the general many-body problem, while in-
corporating sufficient simplifications to render it tract-
able.

Whereas the essential elements of the theory are of gen-
eral applicability to a variety of many-particle systems,
there are compelling reasons for investigating the mean-
field theory within the context of nuclear physics. In the
first place, the role of the mean field in nuclear ground
states is already well understood and provides a natural
foundation for exploration of dynamics. Furthermore,
the phenomena and modes of excitation observable in nu-
clei are exceedingly rich and varied. Even in nuclear
ground states, one observes strong interplay between
single-particle structure and shape degrees of freedom.
The phenomenology of excited states is even richer, with
the full spectrum of single-particle and collective degrees
of freedom arising in appropriate reactions. The accessi-
bility of nuclei to diverse probes allows the methodical ex-
ploration of the charge, current, and magnetization densi-
ties with electromagnetic probes and the systematic exci-
tation of states of most desired quantum numbers with
mesonic and hadronic probes. Finally, the possibility of
studying reactions with projectiles ranging from a single
nucleon to the heaviest nuclei at energies ranging up to
hundreds of MeV per nucleon offers incomparable oppor-
tunities to investigate dynamics under diverse conditions.
For all these reasons, then, nuclear physics provides a na-
tural testing ground in which to try out our first tentative
ideas in formulating a general dynamical theory.

Given the complexity of the full time-dependent
many-body problem, it is desirable to formulate a general
hierarchy of successive approximations such that the
lowest order contains the physics of the mean field. Cer-
tainly one great appeal of such a systematic approach is
the freedom in each order from any adjustable parameters
or adjustable assumptions. Given the nuclear Hamiltoni-
an and appropriate initial conditions, the theory itself
determines the relevant collective or single-particle de-
grees of freedom. If some significant feature of the force

is changed, the system responds appropriately. By simply
changing the initial conditions, one should be able to ob-
tain a single unified description of such diverse phenome-
na as transitions to excited states induced by external
fields, large amplitude collective oscillations, fission,
fusion, compound nucleus formation, dissipation, strongly
damped collisions, fragmentation, and high-density self-
sustaining spin-isospin instabilities.

Such a microscopic description is in marked contrast to
the plethora of models which, guided by the phenomenol-
ogy, have deliberately built into them just those features
one ultimately wishes to observe in a particular applica-
tion. Only certain degrees of freedom are included, and
no change in the interaction or initial conditions can bring
in other, suppressed degrees of freedom. When one
changes from the description of one phenomenon to
another, a new model with different degrees of freedom
and assumptions is invoked, thereby losing all contact
with a general unified description. Not only is there no
systematic program of successive corrections to a hydro-
dynamic model, various friction models, or the assump-
tion of random nuclear matrix elements, but often, due to
the multiplicity of adjustable parameters and assump-
tions, it is not even possible to perform a definitive test of
the underlying theory. Indeed, it is most worthwhile to
fully savor the essential shortcomings of such models so
as to be adequately tolerant of numerical difficulties asso-
ciated with solving the self-consistent time-dependent
mean-field equations arising from the microscopic theory.

A. The mean field

Since the mean field plays a central role in the present
formulation, it is useful at the outset to review the physi-
cal rationale for a mean-field description of low-energy
dynamics. One of the best justifications is Hartree s origi-
nal intuitive argument for the static problem that an indi-
vidual particle should respond to the average field gen-
erated by interactions with surrounding particles. In
dynamics, this average field is the obvious candidate to
communicate collective information. In contrast to other
formulations which single out several assumed collective
coordinates, the mean field may be viewed as a collective
field containing an infinite number of degrees of freedom.
A subset of these degrees of freedom, of course, includes
all the familiar surface deformations and shape degrees of
freedom, but the essential feature is that the theory con-
tains from the outset all the relevant collective degrees of
freedom, with different collective variables coming into
play as the specific situation demands.

The fact that a one-body mean field governs the struc-
ture and low-energy dynamics of nuclei in spite of the
exceedingly strong two-body interactions described by the
nucleon-nucleon potential arises primarily from the Pauli
exclusion principle. The question of whether one-body
behavior or two-body collisions dominate depends essen-
tially on whether the nucleon mean-free path is much
longer or shorter than the nuclear size. The simple esti-
mate A. -(op) ' yielding a mean-free path of several
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Fermis is qualitatively altered by Pauli blocking and the
density of states in the nuclear medium. For a single nu-
cleon of energy E outside of a Fermi gas of Fermi energy
Ez (Galitskii, 1958) the result is

4 ~F

3(op) s —EF

yielding greatly enhanced mean-free paths for energies
sufficiently close to eF

An estimate far more relevant to nuclear collisions is a
calculation of the decay time for the edges of the Fermi
spheres representing two interpenetrating Fermi gases.
Given one gas, representing a projectile, with an energy
per particle Ez relative to the other gas, corresponding to
a target, the decay time is approximately (Bertsch, 1978b)

1000 MeV fm c
Ep

(1.2)

This simple formula is in qualitative agreement with ex-
plicit numerical calculations (Bertsch, 1977a). At in-
cident energies greater than roughly 8 MeV per nucleon,
nuclei essentially pass through each other, so a charac-
teristic decay length is the distance two nuclei would in-
terpenetrate at the incident velocity during the decay
time r

fm MeV
46. 1 1/2 (1.3)

At an incident energy of 10 MeV per nucleon, A. =15 fm,
so the relevant decay length is comparable to the diameter
of the largest existing nuclei. At lower energies, Pauli
blocking is even more effective in increasing the mean-
free path. In addition, the nonlocality of the mean field
decreases the density of states near the Fermi surface,
thereby significantly increasing the mean-free path in nu-
clear matter beyond that due to the Pauli principle alone
(Fantoni, Friman, and Pandharipande, 1981; Negele and
Yazaki, 1981). Hence it is reasonable to expect the mean
field to provide a valid description for dynamics up to en-
ergies of the order of 10 MeV per particle. The precise
value of 10 MeV is, of course, subject to the obvious un-
certainties in all mean-free path arguments, but there
must surely exist a distinct low-energy regime in which
nuclear dimensions are smaller than the characteristic di-
mension at which two-body collisions begin to dominate
mean-field dynamics.

Whereas the concept of a mean field has the clear phys-
ical foundations discussed above and is crucial to our
present understanding of nuclear ground states and the
shell model, one must ultimately face the fact that it is
purely an artificial theoretical construct. It cannot be
uniquely dined and it does not correspond to any ob-
servable operator which even in principle could be mea-
sured. Thus, it is inevitable that reference to the mean
field will necessarily be imprecise, and that different for-
malisms addressing alternative features of the physics will
yield somewhat different definitions of the mean field.
The one limit in which essentially all formulations of

mean-field theories merge is in the limit of ar arbitrarily
weak interaction, in which case the mean field simply be
comes the Hartree-Fock potential produced by the in-
tegral of the antisymmetrized two-body potential with the
instantaneous one-body density matrix. This Hartree-
Fock limit has given rise to a certain imprecision in ter-
minology, in which time-dependent theories involving
mean fields defined in terms of effective interactions in-
stead of the bare two-body potential are often loosely re-
ferred to as the time-dependent Hartree-Fock (TDHF) ap-
proximation.

B. Phenomenology

Although I shall attempt to formulate a theory which
is microscopic at the level of nuclear structure, until
present qualitative ideas concerning meson exchange and
interactions between bags of quarks are replaced by a
tractable quantitative theory of strong interactions, the
theory will necessarily remain phenomenological at the
level of the nucleon-nucleon interaction. The approach in
this present work is simply to postulate the existence of a
static nucleon-nucleon potential and to let its spatial, spin,
and isospin dependence be determined phenomenological-
ly from two-body scattering data and properties of the
deuteron. Whereas essential fundamental limitations are
imposed by the suppression of underlying meson and
quark degrees of freedom and lack of experimental con-
straints on the off-shell behavior of the phenomenological
potential, the potential approximation yields a well-
defined many-body problem which may be addressed by
microscopic theory.

The validity of this approach has already been explored
for nuclear matter and the ground states of finite nuclei.
Whereas the qualitative features are correctly reproduced
by a potential such as the Reid potential (Reid, 1968), the
equilibrium density of nuclear matter and corresponding
interior densities of finite nuclei are quantitatively in er-
Ior.

To establish detailed quantitative contact with real nu-
clei, then, a second level of phenoinenology must neces-
sarily be introduced. In the framework of effective opera-
tors, it is possible to include the physics of suppressed de-
grees of freedom by defining effective operators in a re-
stricted model space which reproduce the same expecta-
tion values as the true operators acting within the full
space. In this language, then, meson exchanges between
one nucleon and two others which overlap in time or in-
volve virtual isobar excitation give rise to three-body ef-
fective interactions. Similar processes in which a photon
couples to a virtual nucleon-antinucleon pair or isobar
which is created or annihilated by interaction with anoth-
er nucleon in the medium give rise to two- and higher-
body contributions to the effective electromagnetic
current operator. The fact that perturbative estimates
based on the longest-range meson contributions yield
many-body effective interactions and current operators of
the required order of magnitude, renders such many-body
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effective operators the most physical explanation of the
discrepancies arising in the theory including only two-
body potentials. The second level of phenomenology is
thus introduced by postulating a three-body effective in-
teraction which is phenomenologically defined to repro-
duce the known density and binding energy of bulk nu-
clear matter.

Since we are lacking a fundamental theory of nuclear
interactions, the ultimate test of this phenomenological
potential theory is its consistency. As will be reviewed in
Sec. II, one obtains a consistent theory of ground states of
nuclei throughout the Periodic Table, so it is physically
plausible that the same potentials should adequately
describe low-energy nuclear dynamics. As unpleasant as
any recourse to phenomenology may seem, it is important
to bear in mind that the theoretical developments present-
ed in this review concerning many-body dynamics with
static potentials stand on their own merits, independent of
specific limitations of our present knowledge of nuclear
interactions. Fuithermore, it is possible that future prog-
ress in deriving effective many-body interactions in the
nucleon-nucleon space will produce fundamental interac-
tions sufficiently close to the phenomenological ones used
at present that the framework envisioned in this review
will prove essentially correct. Alternatively, some en-
largement of the space may ultimately turn out to be
forced upon us. A particularly innocuous enlargement
would be to include 5 isobars coupled to nucleons with
static transition potentials, in which case the present
theory would carry over immediately with only the tech-
nical complications of carrying an additional spinlike la-
bel distinguishing nucleon and 6 states. Only if one is
forced to the explicit inclusion of mesons, antiparticles, or
quark and gluon degrees of freedom will the essential sim-

plicity of the present approach be seriously compromised.

C. Outline

This review is organized according to the following
outline. For the reasons discussed in this introduction,
Sec. II reviews the status of microscopic many-body
theory for stationary states. Subject to the two levels of
phenomenology explained above, it is shown that mean-
field theory yields a quantitative description of binding
energies and matter distributions throughout the Periodic
Table. The systematics of density distributions and
shapes of intrinsic states are particularly relevant, since
such shape degrees of freedom play a crucial role in low-

energy dynamics. Several explicit comparisons of theoret-
ical predictions with electron scattering data are included
to emphasize the level of quantitative precision presently
obtained.

As an introduction to dynamics, the simplest version of
the time-dependent mean-field theory, the TDHF initial-
value problem, is presented in Sec. III. Instead of deriv-
ing it as the first step in a systematic hierarchy, I have
utilized the concise form provided by the time-dependent
variational principle. Salient properties of the TDHF

equations are presented, and special limiting cases are re-
viewed. Finally, the need for more systematic general ap-
proaches is motivated by discussion of two fundamental
limitations of the TDHF initial-value problem: the omis-
sion of multiparticle correlations and the conceptual am-
biguities associated with description of a quantum many-
body problem in terms of an equation of motion and ini-
tial condition for a one-body density matrix. One solu-
tion to the first problem is presented in Sec. IV, in which
alternative truncations of hierarchies of coupled equations
for many-particle correlation functions are discussed and
it is argued that the time-dependent coupled-cluster ex-
pansion is a particularly economical and practical ap-
proach.

The problem of systematically approximating exact ex-
pressions for quantum observables in such a way as to ob-
tain a first approximation to the time-dependent mean-
field form is addressed in Sec. V. Using alternative func-
tional integral representations for the evolution operator,
application of the stationary-phase approximation yields
self-consistent time-dependent mean-field equations
which, in principle, may be systematically corrected by
expanding the corrections to the stationary-phase result.
Applications are presented to the calculation of quantized
states of large-amplitude collective motion, tunneling de-
cay in spontaneous fission, and response to an external
potential.

Applications of the general theory of Secs. II—V to a
variety of model and realistic problems are presented in
the last two sections. Section VI addresses simple, ideal-
ized systems. Exact and mean-field approximations are
compared for two solvable models: particles in one spa-
tial dimension interacting via an attractive delta-function
two-body potential and the two-level Lipkin model
(Meshkov, Glick, and Lipkin, 1965}. As a prelude to real-
istic three-dimensional geometry, numerical solutions for
a one-dimensional saturating model and semi-infinite
slabs of matter with nontrivial spatial dependence in only
one dimension are presented for a variety of dynamical
processes. Applications to nuclear physics are presented
in Sec. VII. Following a survey of approximations re-
quired to implement practical numerical calculations,
three aspects of heavy-ion collisions are reviewed: the
systematics of fusion cross sections, qualitative features of
strongly damped collisions, and the onset of spin-isospin
instabilities. In addition to these scattering problems, pre-
liminary efforts to understand the dynamics of induced
and spontaneous fission are discussed.

II ~ MICROSCOPIC THEORY OF STATIONARY STATES

As a prelude to dynamics, it is useful to address a num-
ber of questions concerning the present status of many-
body theory for stationary states. Just how reliably can
one calculate observables with a two-body potential pos-
sessing the properties of the Reid potential: strong long-
range attraction, an extremely repulsive short-range core,
pronounced spin-isospin and angular momentum depen-
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dence, and a strong tensor force? How much of the full
theory may be embedded in a suitable definition of the
mean field? What are the systeinatic shortcomings of a
theory based on a static nucleon-nucleon potential, and to
what extent can they be resolved by introducing a
phenoinenological effective interaction with few parame-
ters? Finally, to what extent does the resulting mean-field
theory correctly describe the observable properties of fin-
ite nuclei, and what is its predictive power?

A. Many-body theory

To address these and other related questions, it is ap-
propriate to review several relevant topics of quantum
many-body theory.

Expectation values of few-body operators

At the outset, it is essential to accept the fact that,
whereas many-body theory may under certain cir-
cumstances yield excellent approximations to expectation
values of few-body operators, it is inevitably inadequate to
describe the full N-body wave function. Consider the
familiar example of a fully interacting N-particle ground
state in which each particle has a small probability E of
being excited out of its normally occupied single-particle
state. Whereas a determinant of the occupied single-
particle states will reproduce expectation values of few-
body operators to order c', the probability of all N par-
ticles' simultaneously being in the occupied states is
(1—s) -e ', rendering the overlap between the deter-
minant and the exact wave function exponentially small.
An alternative physical argument may be made in coordi-
nate space. Whereas the mean value of a finite-range
two-body operator is obviously sensitive to two-body
correlations, it is unaffected by multiparticle correlations
specifying what additional particles are simultaneously
doing far away elsewhere in the system. The error in
describing the behavior of other particles far away from a
correctly correlated pair simply contributes an arbitrary
normalization factor which cancels out of the numerator
and denominator of (6') =(f~ 6'

~
f)l(f

~
itj). In con-

trast, full knowledge of N-particle correlations and hence
at least X orders of perturbation theory are required to
describe adequately the full wave function. For large sys-
tems we must therefore give up all pretense of calculating
wave functions and deal exclusively with mean values of
few-body operators.

The distinction between mean values and overlaps of
X-body wave functions is particularly crucial in address-
ing time-dependent problems. Sloppiness in making the
corresponding distinction for stationary states is seldom
disastrous, because virtually all experimental measure-
ments deal with expectation values of one- or two-body
operators. Thus binding energies, removal energies, and
charge density distributions do not really probe the full
wave function, but rather just the expectation value of the
Hamiltonian and one-body density operator. Similarly,

despite loose talk concerning testing wave functions, in
practice only transition densities induced by one-body
operators can be compared with experiment. Time-
dependent applications, however, are far more demand-
ing, since experimentalists insist on confronting theorists
with S-matrix elements, which are overlaps of X-body
wave functions evolved through some interaction time
with other appropriate X-particle wave functions describ-
ing final asymptotic states. Only in very special cases is
an S-matrix element specified by calculating a few-body
operator. One such example is elastic scattering of a nu-
cleon from a nucleus, in which case calculation of the
self-energy of the one-particle Green's function yields the
exact optical potential and thus the elastic scattering cr'oss
section. In all other cases, rather than address individual
S-matrix elements, it appears far more prudent to restrict
our attention to mean values of appropriate operators. In
heavy-ion collisions, such operators might include the
fragment mean proton number, neutron number, and cm
momentum or higher moments like the dispersion in these
quantities.

2. Hole-line expansion

Suitable resummations of perturbation theory provide
the most powerful technique presently available for sys-
tematically approximating expectation values of few-body
operators in either finite or infinite systems. Since a de-
tailed treatment of the expansion may be found in recent
reviews of nuclear matter theory (Day, 1978; Bethe, 1971),
only the essential physical ideas will be summarized here.

One begins with the Goldstone expansion (Goldstone,
1957), in which observables are calculated in terms of a
sum of linked time-ordered graphs. In contrast to Feyn-
man diagrams, which sum over all relative time orders,
time-ordered Goldstone diagrams retain a fundamental
distinction between hole lines, representing propagators
for normally occupied single-particle states, and particle
lines, representing propagators for normally unoccupied
states.

Bemuse of the strong repulsion between nucleons at
short distances, the perturbation series is first rewritten in
terms of the reaction matrix 6, which sums all possible
rescattering of two interacting nucleons into unoccupied
intermediate states. This ladder sum, represented graphi-
cally in Fig. 1, yields the integral equation

FICz. 1. Sum of two-body ladder diagrams defining the reac-
tion matrix G. Dashed lines represent the two-body potential,
solid lines with upward arrows represent particle propagators,
and the wavy line denotes G.
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G=v —v—G,
e

(2.1)

the ladder sum builds into P the short-range correlations
induced by the repulsive core. In free space, G reduces to
the familiar T matrix, and P simply corresponds to the
exact scattering wave function defined by the potential v.
The difference between U and G is far from a minor quan-
titative effect: matrix elements of v and 6 display enor-
mous qualitative differences. The diagonal matrix ele-
ments (v)v2

I
U

I
v)vz —tv) ) which occur in the Hartree-

Fock approximation to the energy, where the v's denote
occupied states, are strongly repulsive for realistic repu1-
sive core potentials and would never lend to binding. In
contrast, the corresponding matrix elements in the
resummed theory, (v)v2

I
G

I
v)v2 —v2v, ), are attractive

and yield roughly the required nuclear binding.
Having rewritten the Goldstone expansion in terms of

6 matrices, the next resummation is effected by summing
all ladders in which three particles rescatter from each
other via G matrices any number of times into unoccu-
pied states. This ladder sum is represented graphically in
Fig. 2 and yields the three-body Fadeev equations

T(3) G G (T())+T(2) )
e

where the fu11 three-body amplitude is defined

T =T(')+ T' )+ T( )

(2.3)

and the superscript denotes the particle which is a specta-
tor during the last potential interaction. Just as all Gold-
stone diagrams containing at most two independent hole
lines could be summed in terms of the two-body reaction
matrix, so also all three-hole-line contributions are
summed via the three-body Faddeev equations. Higher-
order approximations are obviously formulated by solving
n-body Faddeev equations which sum all n-hole-line dia-
grams.

A common argument for the grouping of diagrams ac-

I 2 3 I 2 3 I 2

I 2
I

I 2 3 I 2

FIG. 2. Sum of three-body ladder diagrams defining the Fad-
deev amplitude T =T"'+T' '+T' '. The wavy lines denote G
matrices as defined in Fig. 1.

where Q projects onto unoccupied states and e denotes the
energy denominator pertinent to the specific Goldstone
graph under consideration.

Physically, defining the correlated wave function g in
terms of the uncorrelated wave function (t. ,

(2.2)

cording to the number of hole-lines is based on the effect
of adding an additional 6 matrix to an arbitrary Gold-
stone diagram in nuclear matter (Day, 1967). If it is ad-
ded such that the total number of independent particle
lines is increased by one, a simple estimate shows that the
ratio of the new diagram to the original one is of the or-
der of unity. If, however, it is added so tha& an additionaI
independent hole line is generated, then a rough estimate
suggests that the ratio of the new diagram to the original
diagram is of the order of magnitude of ~, the excitation
probability of a pair out of the normally interacting Fer-
mi sea:

V)V2

1
V& V2 V1V2 V1V2 V1V2 AS

V(V2

(2.4)

6 U(n) —U(2)v" (2.5)

where U(2) denotes the two-hole-line approximation.
An alternative physical argument to motivate the hole-

line expansion is to recognize that the effect of solving the
three-body Faddeev equation is to correct the error from
approximating three-body correlations by the iterated
products of two-body correlation functions. Since prod-
ucts of two-body correlation functions already exclude
three particles from each other's cores, the bulk of the
physics has already been accomplished by the 6 matrix,
and the fractional change arising from improving the
three-body correlations should be correspondingly small-
er. Similarly, it is reasonable to expect that errors' in-
duced by differences between exact n-body correlations
and products of lower-body correlations will continue to
decrease with n and that the parameter characterizing the
magnitude of the correction relative to that in the previ-
ous order should be something like the dimensionless
wound integral K.

An alternative formalism intimately related to the
hole-line expansion is the coupled-cluster expansion
(Kummel, Luhrmann, and Zabolitzky, 1978) discussed in
Sec. IV. For the present discussion, it is sufficient to note
that the nth order approximation includes all n-hole-line
diagrams. The fact that certain classes of diagrams in-
cluding higher numbers of hole lines are also included,
such as 6 matrices with "backward-going" hole-line seg-
ments and subsets of RPA ring diagrams, is of technical
interest, but does not seriously affect the present con-
siderations.

The crucial question for the intellectual credibility of

In Eq. (2.4), the v's denote occupied hole states, p's indi-
cate unoccupied particle states, and g denotes the corre-
lated two-body wave functions, Eq. (2.2). This "wound
integral" or pair excitation probability )r is of the order of
15% for the Reid potential at nuclear matter density and
allows one to estimate the uncertainty of an n-hole line
approximation to the potential energy as
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the theory is the convergence of the hole-line expansion.
Aside from apparent numerical convergence, which is a
necessary but not sufficient condition, the only other evi-
dence presently available comes from model systems for
which independent calculations exist utilizing alternative
techniques. For this reason, we now turn to nuclear
matter.

3. Nuclear matter

0.8 I.O I.2
I

. I
i

I
I

I.4
I

1.8
I

NUCL EAR MATTE'R

(Reid Potential)
E: (2)

E: (3)
E (4)

-20—

I

O. I

I

0.2
I

0.3
I

0.4
p (fm )

FIG. 3. Binding energy per particle of nuclear matter, with
the full Reid potential in the n-hole line approximation, E(n).
Error bars for E(2) and E(3) represent the wound integral er-
ror estimate, Eq. (2.5), and for E(4) represent conservative es-
timates of errors in the four-hole-line calculations. The shaded
region denotes the saturation point extrapolated from empirical
data.

Nuclear matter is a fictitious infinite uniform system
comprised of equal densities of neutrons and protons in-

teracting with nuclear forces in the absence of Coulomb
interactions. The binding energy per particle of 16+0.5
MeV may be reliably extrapolated from the systematics of
nuclear binding energies throughout the Periodic Table.
The inferred equilibrium density pp =0. 16+0.0 15 fm
corresponding to a Fermi momentum kF ——1.34 depends
slightly upon our current theoretical understanding of fin-
ite nuclei to extrapolate from the interior proton densities
measured experimentally in finite nuclei. The theoretical
advantage of dealing with nuclear matter
arises from two simplifications arising from translation
invariance: the single-particle wave functions are plane
waves instead of self-consistent Hartree-Pock wave func-
tions, and momentum conservation eliminates whole
topologies of diagrams and yields equations which are di-
agonal in momentum space.

The results of the most extensive nuclear matter calcu-
lations to date (Day, 1981a, 198lb) are shown in Fig. 3.
The binding energy per particle in the n-hole-line approxi-
mation E(n) is denoted by solid lines, and the uncertainty
expected from Eq. (2.5) is indicated by error bars for E(2)
and E(3). Uncertainties in estimating four-hole-line

graphs are denoted by the error bars for E(4), and the ex-
trapolated saturation point is indicated by the shaded re-
gion. Salient points relevant to convergence are the facts
that changes from one order to the next are rapidly de-
creasing and that Eq. (2.4) yields an adequate order-of-
magnitude error estimate. One should note that the bind-
ing energy is a particularly sensitive quantity because of
the large cancellation between kinetic and potential
energies —the expansion is actually for the potential ener-

gy, and the final uncertainty of several MeV out of a total
of 40 MeV is quite satisfactory. We will return to the
question of the discrepancy with the extrapolated equili-
brium density in Sec. II.B.

In recent years, a number of comparisons have been
made between hole-line results and variational calcula-
tions for various model problems. Since a number of re-
views are available (Zabolitzky, 1980; Pandharipande and
Wiringa, 1979; Negele 1977, 1979), only the results will be
summarized here. For central potentials, a Jastrow trial
function is used

(2.6)

where P is a Fermi gas determinant or constant for fer-
mions or bosons, respectively, and correspondingly more
complicated trial functions are invoked for state-
dependent potentials. Two techniques are available for
evaluating the expectation value of the Hamiltonian with
trial functions of the form (2.6). Whereas the
hypernetted-chain expansion is a powerful tool, it invokes
truncations with associated convergence ambiguities and
thus provides less than compelling evidence concerning
convergence of the hole-line expansion. Whatever the
brute-force technique of evaluating the energy numerical-

ly with Monte Carlo integration may lack in elegance is
more than compensated by providing rigorous bounds
subject only to controllable statistical sampling errors.

The results of hole-line calculations and variational
bounds are shown in Fig. 4 for a "homework potential"
defined as a central potential equal to the S& component
of the Reid potential (Day, 1981a, 1981b). Here, the two-,
three-, and four-hole-line results appear to converge
roughly as in the case of the full Reid potential, and the
estimated range of error in the four-hole-line result is in-
dicated by the error bars. The two Monte Carlo varia-
tional upper bounds, denoted by the points labeled MC,
are close to, but safely above the hole-line result (Ceper-
ley, Chester, and Kalos, 1977). Combined with experience
for boson systems, in which comparison with exact solu-
tions to the Bose matter problem obtained using the
Green's-function Monte Carlo method (Kalos, Levesque,
and Verlet, 1974) shows that Jastrow functions yield
bounds for hard-core potentials quite close to the exact
energy, Fig. 4 constitutes extremely favorable evidence for
the validity of the hole-line expansion. With the rapid
progress in treating state-dependent model problems and
the possibility of utilizing Green s-function Monte Carlo
techniques for fermions, even more definitive evidence
should be forthcoming in the near future.
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FIG. 4. Binding energy per particle of nuclear matter for the
central "homework" potential in the n-hole-line approximation,
E(n). Error bars for E(4) represent conservative estimates of
errors in the four-hole-line calculation. The two squares la-

beled MC denote variational bounds using a Jastrow wave

function, and the error bars indicate Monte Carlo sampling er-

rors.

4. Finite nuclei and the mean-field approximation

H =Ho+H

where

(2.7a)

Ho ——T+ U (2.7b)

and

Accepting the premise that the apparent numerical con-
vergence of the hole-line expansion should be taken at
face value, we now address finite nuclei.

The only other systems besides nuclear matter for
which it is possible to calculate all three-hole-line contri-
butions and estimate four-hole-line diagrams are light nu-
clei, in which the small number of occupied states contri-
buting in the coupled-cluster formalism compensates the
complexities arising from the loss of translation invari-
ance in nuclear matter. Thus, aside from "He, ' 0, and

Ca, for which coupled-cluster calculations have been
performed (Kummel, Liihrmann and Zabolitzky, 1978),
and the extrapolation to the large-A limit implied by nu-
clear matter, the rest of the Periodic Table is inaccessible
to such complete calculations. Fortunately, it turns out
that most of the essential physics can be included in the
mean-field approximation.

A convenient and natural way to define a mean field in
the context of the hole-line expansion is to add to and
subtract from the Hamiltonian a one-body potential U,

FIG. S. Some low-order contributions to the ground-state ex-
pectation value of a one-body operator, denoted by a solid dot,
in terms of the G matrix, denoted by a wavy line, and the po-
tential ( —U), denoted by a cross.

one-body operator. The ground-state expectation value of
a one-body operator is given by the sum of all Goldstone
diagrams containing a single dot, corresponding to that
operator, any number of crosses, corresponding to the po-
tential U, and any number of wavy lines, corresponding to
G-matrix ladder summations of the bare two-body in-
teraction (Thouless, 1972). Typical low-order contribu-
tions containing minimal numbers of hole lines are
enumerated in Fig. 5.

The crucial matrix elements of the mean field U in a
finite nucleus are those connecting particle and hole
states, since particle-particle and hole-hole matrix ele-
ments do not alter the determinantal eigenfunctions of Ho
or therefore the leading contribution to ( d') [diagram (a)
of Fig. 5]. Thus, we shall define the particle-hole matrix
elements of U to effect a maximal cancellation of relevant
many-body diagrams. Diagrams (c)—(e) enumerate vari-
ous ways a one-particle, one-hole excitation can be created
by the inclusion of additional hole lines. These ampli-
tudes are evidentally precisely cancelled by —U if the ma-
trix elements of U are defined by the diagrams in Fig. 6.
The analogous contributions in which diagrams (c)—(e) of
Fig. 5 are drawn upside down are obviously also can-
celled. Higher classes of diagrams are evidently also can-
celled by this definition —for example, diagrams (f) —(i),
(k) —(m), and more general contributions in which the
upper cross in (f) —(i) and (k) —(m) is replaced by a gen-
eral particle-hole amplitude.

Contributions to (6') which cannot be cancelled by
the definition of Fig. 6 or an appropriate generalization
thereof are indicated by the correlation diagrams (j) and
(o) of Fig. 5. It is clearly impossible for multiparticle,
multihole excitations created prior to the action of 6' and
annihilated subsequent to its action to be precisely can-

H& ——U —U, (2.7c)

to develop the perturbation theory in terms of U —U, to
resum in terms of appropriate G matrices and Faddeev
amplitudes, and to define U so as to identically cancel the
dominant corrections arising in the expectation value of a

{a) (b) (c)
FIG. 6. Diagrammatic definition of the particle-hole matrix
elements of the mean field. The mean field U is denoted by a
cross, and G matrices are indicated by wavy lines.
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celled by the action of any one-body potential U. Howev-
er, the leading contributions of this type, diagrams (j) and
(o) of Fig. 5, yield a total contribution very small com-
pared with that of diagram (a). In the first place, &j) and
(o) are each an order of x smaller than (a). Furthermore,
considering their contributions to the one-body density,
the probability of depopulating all normally occupied
states equals the probability of populating all normally
unoccupied states, so the volume integral of diagram (b) is
equal and opposite to that of diagram (j). Finally, since
the short-range nuclear potential induces high-energy vir-
tual excitations which must be correspondingly short-
lived and limited in spatial extent, the correlation range is
small compared to the nuclear size and the resulting spa-
tial distributions for diagrams (j) and (o) are necessarily
very similar in shape although opposite in sign (Strayer,
Bassichis, and Kerman, 1973; Negele 1970a). The net ef-
fect of all these considerations is that when diagrams
(b) —(i) and (k) —(m) have been eliminated by the ap-
propriate definition of the mean field, diagram (a) yields
an excellent first approximation to (6') and correlation
diagrams of the forms (j) and (o) constitute small correc-
tions.

The first term in the expansion of the 6 matrix in Fig.
6(a) yields the Hartree-Pock definition of the potential.
Retention of the rest of the series defining the G matrix is
essential, as discussed previously, to incorporate the two-
body correlations induced by the hard core. Diagrams (b)
and (c) are one factor of ~ smaller than diagram (a), and
thus build in important features from the next order in
the hole-line expansion. As is argued in the context of the
coupled-cluster expansion (Kummel, Liihrmann, and Za-
bolitzky 1978), diagram (b) is the leading term in the
three-hole line contribution to the particle-hole potential.
Diagram (c) is approximately —a times the contribution
of diagram (a) and is best interpreted as an occupation
probability correction to it. That is, diagram (a)
represents the average field arising from interaction with
normally occupied states, but roughly 15% of the time,
the value of ~ in nuclear matter, these states are not occu-
pied, so this fraction of their contribution should be omit-
ted. Ideally, one should also account for the interaction
with normally unoccupied states for this 15% of the time,
thereby treating particles and holes more symmetrically as
argued by Jeukenne, Lejeune, and Mahaux (1976). Physi-
cally, we justify the present asymmetric treatment by the
fact that matrix elements of the nuclear potential with
high-momentum states are on the average much weaker
than those with low-momentum hole states, and appeal to
the apparent convergence of hole-line and coupled-cluster
calculations as evidence that this technically convenient
choice is in fact satisfactory.

Retention of the full nonlocality and energy-
dependence implied by the diagrammatic definition of the
mean field U renders an exact calculation in heavy nuclei
even at the mean-field level intractable. A crucial addi-
tional simplification, therefore, is to find an accurate ap-
proximation to deal with this nonlocality and energy
dependence. A useful preliminary step is to note that the

diagrammatic defimtion of U in Fig. 6 is precisely ob-
tained by formal variation of the following approximate
expression for the energy (Davies et al. , 1974):

E =y (v
I
T

I
v&+-, & &»'I G(s +s~)

I

»' —v'v&

(2.8a)

where

G ( W) = u —uQ QG ( W),1

T —W
(2.8b)

e = (v
I
T

I v)+g (vv'
I
G(E„+E )

I

vv' —v'v),

the Pauli operator Q is defined

Q =2
I
pp'&&pp'I

PP

(2.8c)

(2.8d)

and, as before, v's and p's denote occupied and unoccu-
pied states, respectively. Considering the general infini-
tesimal variation,

Is '& =
I p& —~; I

v&

I

v'& =
I
v&+~,- I p & (2.9)

p(x,y)=g(x Iv)(vIy)

=g g*(y)g (x), (2.10)

we observe that the (nonantisymmetrized) Pauli operator
may be expressed directly in terms of this density matrix:

formal variation of Eq. (2.8a) yields four terms multiply-
ing A~. the trivial kinetic terms from varying the ket in
the kinetic energy; diagram (6a) from varying v or v' in
the ket of the G matrix; diagram (6b) from varying the
matrix element of G with respect to the projector Q,
which depends on A,&„ through Eq. (2.8d); and diagram
(6c) from varying the matrix element of G with respect to
the energies (E +E~), which in turn depend on Az„
through Eq. (2.8c). It should be emphasized that we are
in no way appealing to the Ritz variational principle,
since Eq. (2.8a) is not the expectation value of the Hamil-
tonian with respect to any trial function, but rather are
simply noting an expression capable of yielding the
desired mean field upon variation. The key elements in
generating diagrams (6b) and (6c) are evidently the Pauli
operator Q, and self-consistent single-particle energies s„,
respectively. One should, in principle, therefore, retain a
6 matrix which depends not only on the relative coordi-
nates and all spin-isospin variables, but also upon energy
and the global Pauli operator.

Fortunately, the dependence on both energy and the
Pauli operator may be adequately approximated by depen-
dence on the local density. Defining the one-body density
matrix
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&xixz
I Q I&»2 &

= &xix2
I
(1 —g I

v& &v
I

)(1—X I

v'& &v'
I

) la»z &

=[5(x,—y~) —p(x~,y~)][6(x&—y~) —p(x2,y~)] . (2.1 1)

Physically, one expects the off-diagonal density matrix p(R +r/2, R r/2—) to tend to zero when the relative coordi-
nate

I

r is of the order of m. /kF, where k~ is the local Fermi momentum. Thus, one obtains an excellent approximation
to the angle-averaged density matrix by truncating the exact expansion (Negele and Vautherin, 1972)

3j; (kFr) 35j3(kFr), , z
p R + —R, ——= p(R)+ 3 [ , V' p—(R) r(R—)+ , kFp—(R)]

2
' 2 kFr 2kFr

2(n —1)
V) —V2

X p(R i,R2)
2 F

Ri ——R2 ——R

(2.12a)

where

r(R) =g
I
~g.«)

I

' (2.12b)

and kF is the Fermi momentum corresponding to the den-
sity p(R). The first term is just the nuclear matter density
matrix at the corresponding density and gives rise to the
local density approximation which adequately accounts
for the gross behavior of the density matrix, and thus the
Pauli operator, within the range of the two-body poten-
tial. The small errors in the surface, where the local den-
sity approximation slightly overestimates the off-diagonal
range of p(R+r/2, R r/2), are well —treated perturba-
tively by use of the second term in Eq. (2.12a). In the
same spirit, one may approximate the energy dependence
of the G matrix appearing in Eq. (2.8a) by the average
single-particle energy of nucleons in nuclear matter and
perturbatively correct for the difference (Negele and
Vautherin, 1972, 1975). The net result is that in lowest
approximation, both the effect of the global Pauli opera-
tor and the dependence on single-particle energies have
been replaced by dependence on the local density,
a[(~i+~2)/2]

G(r~ —r2, Q, E)

G I ~ 1 ~2 Q[p((r ~ + ~2 )/2)], E[p((~~ + ~2)/2)] I

(2.13)

Variation of the energy expression (2.8a) evaluated using
the local density approximation immediately yields tract-
able approximations to each of the three terms in Fig. 6.
Variation of the kets in the G matrix yields diagram (a),
BG/BQBQ/BP* yields diagram (b), and BG/BcBE/BP*,
yields diagram (c).

The importance of each of these contributions to the
mean field is emphaized in Fig. 7, where the charge densi-
ty for Ca is calculated three different ways. Including
only the lowest-order 6 matrix yields a density which is
roughly 50% too high in the interior, a deficiency of the
Brueckner-Hartree-Fock approximation which has been
recognized for many years (Davies, McCarthy, and Sauer

1

1972). The combined effect of adding diagrams (b) and
(c) resolves roughly two-thirds of the discrepancy with ex-
periment. [The curve corresponding to the combined ef-
fect of diagrams (a) and (c) comes from a calculation with
several technical differences relative to the other curves
utilizing the local density approximation, but should still
be representative of the qualitative effect of the diagram. ]
Thus, we conclude that contributions corresponding to di-
agrams (b) and (c) of Fig. 6 play an important role and
must necessarily be included in a mean-field theory.

Similar conclusions follow in the context of the more
complete and systematic coupled-cluster formalism. Un-
fortunately, due to complicated cancellations, it is difficu-
lt to unambiguously assess the role of individual Gold-
stone diagrams in the n-body coupled-cluster approxima-
tion. In the review by Kummel, Liihrmann, and Zabol-
itzky (1978) it is demonstrated in (their) Sec. 4.3 that dia-
gram 6(b) is a leading contribution from the three-body

0.16

"Ca

0.12—

Ex pe riment

I

E

0.08

0.04

r (frn)

FICx. 7. Charge density of Ca calculated using three dif-
ferent combinations of contributions to the mean field. The
experimental charge density is shown for comparison.
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amplitude and increases the rms radius as in the mean-
field theory. In that work, arguments were also presented
in connection with Figs. 4—6 suggesting that diagrams
6(c) also significantly increased the radius. Subsequent
calculations (Zabolitzky, 1981) have shown that in He
this effect is cancelled by other higher-order terms, and
since the analogous calculations have not been performed
in heavier nuclei, the role of this term is presently unclear.
At the suggestion of Zabolitzky, coupled-cluster results
displayed subsequently in Fig. 8 are for the case in which
terms corresponding to diagram 6(c) have been omitted.
The final coupled-cluster results for Ca with the Reid
potential show reasonable evidence for numerical conver-
gence at an interior density which is somewhat higher
than experiment and a binding energy several MeV per
particle less than experiment, in qualitative agreement
with the simple local density approximation results
presented here.

Through the use of a mean-field theory utilizing a
density-dependent reaction matrix, then, one is able to re-
tain most of the essential features of the hole-line expan-
sion in a theory applicable throughout the Periodic Table.

B. Deficiency of two-body potential theory

Since, primarily for historical reasons, most relevant
calculations of finite nuclei and nuclear matter have been
performed with the Reid potential, our considerations
thus far have been restricted to a single phenomenological
potential. To distinguish between the limitations arising
from the assumption of a two-body potential and those

due to this specific interaction therefore requires a critical
look at systematics.

1. Systematics

The essential features of saturation with the Reid po-
tential are as follows. The three-body system may be
solved essentially exactly, so the underbinding of 1.5 MeV
in He (Payne et al. , 1980) is a clear deficiency of the
Reid potential. The rms radius is 9% high and the
second maximum of the form factor at high momentum
transfer, even when corrected for meson exchange
currents, is significantly lower than experiment. Turning
to heavier systems, calculated consistently through the
three-hole-line approximation, one observes a smooth sys-
tematic behavior in binding and saturation. Light nuclei
are somewhat underbound but have roughly the proper
spatial extent. The proper rms radius is largely fortui-
tous, since in light nuclei (r ) '~ is strongly influenced by
the exponential decay of the single-particle wave func-
tions, which is, in turn, much too slow due to underbind-
ing. Heavier nuclei attain proportionally more binding
energy, but shrink to unphysically high central densities
with correspondingly smaller radii. In the limit of nu-
clear matter, the binding energy per particle is approxi-
mately correct, but the density is definitely too high.

Can these systematic deficiencies be remedied by
changing the off-shell behavior of the two-body potential
while maintaining the on-shell behavior dictated by phase
shifts and deuteron properties? Present evidence, summa-
rized in Figs. 8 and 9, indicates that they cannot. The
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FIG. 8. Binding energy per particle of ' 0 vs 1/r for the
Hamada-Johnston potential (triangles), Reid soft core potential
(squares), and super-soft core potential (diamonds), calculated
in the coupled-cluster approximation. Results including two-
body and three-body subsystem amplitudes are denoted by
open and solid symbols, respectively, and the dashed lines are
to guide the eye. The experimental saturation point is indicat-
ed by the error bar.
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FIG. 9. Binding energy per particle vs kF for nuclear matter.
The polyhedrons denote the same potentials as in Fig. 8, and
results for a number of other potentials are indicated by cir-
cles. As in Fig. 8, open and solid symbols represent two- and
three-hole-line approximations, respectively, the dashed lines
are dragon to guide the eye, and the extrapolated saturation
point is indicated by the error bar.
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scale specifying saturation in finite nuclei, analogous to
the Fermi momentum kz in nuclear matter, is 1/r, where
r denotes the rms radius. Hence, to compare systematic
behavior in finite nuclei with that in nuclear matter, Fig.
8 shows results by Kiimmel, Liihrmann, and Zabolitzky
(1978) for E/A versus 1/r in ' O using two other poten-
tials which are consistent with scattering data. The
Hamada-Johnston (HJ) (1962) potential has an infinitely
repulsive core, and the supersoft core (SSC) potential of
De Tourreil and Sprung (1973) has an extremely soft
repulsive core. At the E(2) level of the coupled-cluster ex-
pansion, which corresponds closely to the two-hole-line
approximation in nuclear matter, one observes that these
three results lie on a smooth curve lying well above and to
the right of the experimental result. If one utilizes the
off-shell freedom to increase binding, one necessarily at
the same time increases the central density. Similar re-
sults are obtained for Ca. The same behavior is also evi-
dent in a corresponding plot of E/A vs k~ for nuclear
matter in Fig. 9, where the equilibrium binding energy per
particle in the two-hole-line approximation is shown for a
much larger variety of potentials (Day, 1981a, 1981b).
This clustering of the results of virtually all known poten-
tials in a narrow band, known as the Coester band, sug-
gests there is essentially only one degree of freedom in the
off-shell behavior which affects the saturation properties.
As in ' O, varying this off-shell behavior dictates corre-
lated changes in energy and density, so that the density is
necessarily increased with increasing binding energy.

The E(3) level of the coupled-cluster expansion, which
contains all three-hole-line contributions, and which is be-
lieved to have essentially converged, displays the same
qualitative behavior in Fig. 7 as the E(2) approximation.
Since this curve does not pass through the experimental
point, we conclude that simply varying the off-shell
behavior of the two-body force will not simultaneously
yield the correct interior density and binding energy.
Similarly, in nuclear matter, the single E(3) results indi-
cate that three-body contributions will not shift the Coes-
ter band far enough to become consistent with the extra-
polated empirical saturation point of nuclear matter.
Hence, at present we are forced to conclude that
suppressed degrees of freedom play a non-negligible role,
and to include their effect phenomenologically through an
effective interaction.

2. Effective interaction

Attempts to date to estimate the effects of many-body
forces arising from multiple meson exchange and 5 prop-
agation are schematic but suggestive. They appear to
offer the prospect of increasing the He binding energy by
an MeV, introducing correlations which deplete the cen-
tral density of He, and yield a contribution in nuclear
matter which shifts the saturation density to somewhat
lower values. Hence, since our goal in constructing a
mean-field theory is to accurately describe the mean field
in a real nucleus, instead of that in a ficticious system

H= I d RH(R), (2.14a)

where the Hamiltonian density is a functional of the pro-
ton and neutron densities, p„(R) and p~(R), and the kinet-
ic energy densities, r„(R) and r~(R), and thus a particu-
larly simple functional of the single-particle wave func-
tions f„,

bound by the Reid potential, we shall phenomenologically
parametrize such many-body forces so as to reproduce the
observed binding and saturation properties of nuclei.

%'e observe that 5's may enter in two characteristic
ways, both of which may be represented by a short-range
density-dependent two-body force. If the nuc1eon-nucleon
potential in free space is defined in terms of all irreducible
meson-exchange diagrams including nucleon or 6 inter-
mediate states, then components of the free potential will
have nucleon-5 intermediate states built into them. In
nuclear matter, because of the Pauli principle, some of
these intermediate states will be blocked, giving rise to
density dependence of the potential itself, in addition to
the obvious density dependence of the iterated 6 matrix.
Because of the relatively high masses involved, this densi-
ty dependence is of correspondingly short range. A
genuine short-range three-body force, arising, for exam-
ple, from a virtual isobar connected by mesons to two
other nucleons, when evaluated in a nuclear ground state
and summed over all occupied orbitals, is also qualitative-
ly similar to a density-dependent two-body force. Thus
both effects may be included phenomenologically by add-
ing to the energy expression, Eq. (2.8a), a short-range
density-dependent two-body force. Since the saturation of
nuclear matter specifies only two conditions, the equilibri-
um energy and density, essentially only two parameters of
the density-dependent force are specified. Because the
mean field is dominated by the G matrix, with its spin,
isospin, and density dependence dictated by a potential fit
to phase shifts, the detailed spin, isospin, and density
dependence of the short-range phenomenological force are
not quantitatively important as long as the proper satura-
tion conditions are satisfied. The ultimate test of any
such phenomenology, of course, is its ability to reproduce
systematic properties of nuclei throughout the Periodic
Table, and this topic will be considered in Sec. II.C.

Numerous effective interactions have been developed
during the last decade following the general philosophy of
beginning with a realistic 6 matrix and adjusting it
phenomenologically to obtain the proper saturation prop-
erties (Negele, 1970a; Sprung and Banerjee, 1971; Negele
and Vautherin, 1972; Campi and Sprung 1972; Fai and
Nemeth, 1973; Coon and Kohler, 1974; Gogny, 1975). Of
these various forms, the simplest to use in coordinate
space calculations is the density matrix expansion (DME)
form (Negele and Vautherin, 1972). The energy expres-
sion Eq. (2.8) is written for a spin-saturated system in
terms of integrals of the G matrix and the one-body densi-

ty matrix, the density matrix is expanded using Eq.
(2.12a), and integrals over relative coordinates are per-
formed. The final result is of the form
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H(R) =H[p„,pp, r„,r~] =H [g*„,g„] . (2.14b)

C. Survey of results for finite nuclei

As a prelude to the study of nuclear dynamics, this
brief survey of results for finite nuclei has three purposes:
to show that two phenomenological parameters produce

The DME form of Hamiltonian density is completely
analogous to that arising from the purely phenomenologi-
cal Skyrme force (Vautherin and Brink, 1972). Ignoring
spin orbit and Coulomb terms for the moment, the
Skyrme force has five parameters specifying the strength
and spin dependence of two- and three-body 5-function
potentials, and a zero-range two-body potential with qua-
dratic momentum dependence. Treating this effective in-
teraction as if it were the bare potential, even though it is
unrelated to scattering properties, and making the
Hartree-Fock approximation yield a Hamiltonian density
for spin-saturated systems depending on products of
pz(R) and r~(R), where q denotes protons or neutrons.
Since values of the parameters obtained phenomenologi-
cally by fitting observed nuclear properties are very close
to those obtained by linearizing the DME Hamiltonian
density about nuclear matter density, one may regard
Skyrme forces (at least those having values of effective
mass near 0.7) as economical parametrizations of realistic
effective interactions. Thus the long sequence of argu-
ments concerning calculations of ladder sums, conver-
gence of the hole-line expansion, and a variational defini-
tion of the mean field which includes the dominant dia-
grams and introduction of a phenomenological three-body
or density-dependent two-body force ultimately reduce to
an incredibly simple recipe: treat the Skyrme force in the
Hartree-Fock approximation or, equivalently, treat the
DME Hamiltonian density variationally.

The explicit form of the effective Hamiltonain density
commonly used in time-dependent mean-field calculations
is given in Sec. VII.

systematic agreement with experiment throughout the
Periodic Table, to give examples of quantitative predictive
power, and to set a precedent for the level of quantitative
precision one will ultimately hope to achieve in dynamic
problems. For consistency and ease of comparison, most
results will be quoted for the DME theory.

The general systematics of binding energies and remo-
val energies are well reproduced by most of the effective
interactions cited in the last section. The accuracy in
binding energy per particle of 0.3 MeV achieved by the
DME out of a total potential energy per particle of rough-
ly 40 MeV appears quite reasonable, given the various ap-
proximations involved. Introduction of additional param-
eters in other interactions can reduce this deviation still
further.

Similarly, the systematics of rms charge radii are well
reproduced and typical DME results are compared with
experiment in Table I. For spherical nuclei throughout
the Periodic Table, the maximum discrepancy between
the DME and the experiment is 0.05 fm, with agreement
for good closed-shell nuclei like Ca and Pb being con-
siderably better. Thus, the fractional error in both the po-
tential energy per particle, as reflected in the binding en-

ergy, and the spatial extent, as manifested in the rms ra-
dius, are at the level of l%%uo.

Our most detailed knowledge of the spatial distribution
of matter in nuclei arises from precise high-momentum
transfer elastic scattering measurements during the last
decade. As an example of the predictive power of the
DME, the elastic scattering cross sections for 0 Pb
predicted by the DME (Negele and Vautherin, 1972) are
compared in Fig. 10 with the subsequent impressive ex-
perimental measurements at Saclay (Frois et al. , 1977)
spanning 11 orders of magnitude.

A more useful qualitative understanding of the physical
content of such high-momentum transfer experiments is
provided by inverting the electron data, as well as muonic
x-ray transition energies, to obtain an envelope of density
distributions which are statistically consistent with the

TABLE I. Comparison of experimental rms radii, in fm, with DME mean-field theory. Experi-
mental charge radii, (r ),'(, are taken from the compilation of DeJager, DeVries, and DeVries
(1974); and, except where errors are indicated, the experimental uncertainty is less than 0.01 fm.
Experimental values for the difference between rms neutron and proton radii, (r')„' —(r2)~
deduced from high-energy proton scattering are taken from: (a) Chaumeaux, Layly, and Schaeffer
(1977); (b) Varma and Zamick (1977); {c) Varma and Zamick (1978); and (d) Ray (1979); and the
theoretical uncertainty in the analysis is of the order of +0.06 fm.

2) 1/2 ( 2) 1/2 ( 2) 1/2 ( 2) 1/2 ( 2)1/2 ( 2)1/2

Theory Experiment Theory Experiment

16O

Ca

"Ca

Ni
"Zr
116sn
208Pb

2.79
3.50

3.50

3.80
4.29
4.63
5.49

2.71+0.01
3.48

3.47

3.78
4.28+0.02
4.62+0.01
5.50

—0.03

—0.05

0.18

0.00
0.07
0.12

0.20

0.00 a
—003 a
—0.04 c

0.16 a
0.19 c
0.01 d
0.13 b
0.15 d
0.21
0.16 d
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measured cross sections and their experimental uncertain-
ties. Details of the analysis are described in a review arti-
cle (Friar and Negele, 1975) and error envelopes obtained
in this way for a variety of spherical nuclei (Sick, 1974;
Sick et al. , 1975; Friar and Negele, 1977, Sick et al. ,
1979) are compared with DME calculations in Fig. 11.
Whereas the overall agreement appears quite satisfactory,
individual discrepancies between the mean-field theory
and experiment are latent with interesting nuclear struc-
ture information. For example, whereas Ca and Pb con-
stitute good shell closures, Zr is known to have a signifi-
cant depopulation of the lpi~2 and Of&~2 orbitals and cor-
responding occupation of the Og9/2 level. A simple
schematic calculation based on the pairing theory (Negele,
1971) shows that in Zr the correlation correction de-
creases the interior density in the region of 2 fm by
roughly 8%, significantly improving the agreement with
experiment. (Analogous pairing calculations in Ca and

Pb yield no change in the density. ) The Ni nucleus is
another special case. When one calculates its energy as a
function of deformation, one finds it to be exceedingly

IO

IO-(—

soft with respect to quadrupole deformations. Thus the
simple static mean-field approximation is inadequate, and
one must allow for large amplitude collective motion in
the quadrupole degree of freedom. Although the general
formalism for large-amplitude collective motion in Sec. V
has not yet been applied to this nucleus, one observed that
the shapes of the prolate and oblate admixtures in the
wave function are sufficiently different that one expects
the large-interior density fluctuation to be somewhat di-
minished (Negele and Rinker, 1977). In all these cases,
then, one is led to the conclusion that the mean-field ap-
proximation not only describes the systematic behavior of
spherical nuclei throughout the Periodic Table, but also
serves as a valid starting point for systematic examination
of specific structure effects which go beyond the mean
field. Thus the phenomenological component of the ef-
fective interaction is small enough that it is sensible to
evaluate leading corrections to the mean field as if the ef-
fective interaction were actually derived from an underly-
ing two-body potential.

The discussion of the spatial distribution of matter thus
far has dealt essentially with protons, since we have only
considered the charge scattering of electrons. From a
theoretical point of view, given the strong interplay be-
tween neutron and proton distributions in the self-
consistent mean-field theory, it is difficult to imagine how
one could systematically obtain the correct proton distri-
butions throughout the Periodic Table while making sig-
nificant errors in neutron distributions. Nevertheless, al-
though neutron distributions are much more difficult to
measure experimentally and are subject to greater ambi-
guities of interpretations than protons, it is worthwhile to
briefly survey the present status of measurements of neu-
tron distributions.

The least ambiguous probe of neutron distributions is

C
~IO~—

0.08—

Io 6—

IO-'—

IO-'—

IO '—

IO '

Og

0.

0.

0.08

0.06

0.08—

0.06—

0.04—

0.02—

I I

2.5 5.01.5I.o 5.50 05 2.0
q(fm )

FIG. 10. Cross sections for elastic electron scattering from
Pb at 502 MeV compared with DME mean-field theory pre-

diction (solid line).

I 2 5 4 5
r(urn)

FIG. 11. Comparison of DME mean-field theory charge dis-
tributions in spherical nuclei (dashed lines) with empirical
charge densities. The solid curves and shaded regions
represent the error envelope of densities consistent with the
measured cross sections and their experimental uncertainties.
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FIG. 12. Comparison of experimental measurements of the
magnetic form factor for ' Sr (a) and Nb (b) with mean-field
theory (long dashed lines). The effect of omitting the contribu-
tion of meson exchange currents is indicated by the short
dashed curve for Sr.

magnetic elastic scattering. Time reversal and parity re-
strict the transverse electromagnetic current to odd mag-
netic multipoles, and in nuclei like Sr and Nb, which
have an odd g9~2 neutron hole and an odd g9&z proton
particle, respectively, the M9 form factor directly mea-
sures the spin density of the g9/2 orbital. An important
feature of the analysis is inclusion of the sizeable contri-
butions of exchange currents (Suzuki, Hyuga, and Arima
1979; Dubach, 1980), and Fig. 12 shows mean-field re-
sults by Decharge and Gogny (1980), including exchange
current corrections by Dubach, compared with experi-
mental Saclay results (deWitt Huberts et al. , 1971, Sick
et al. , 1977). Recent calculations by Desplanques and
Mathiot (1982) which deemphasize exchange currents and
include core polarization contributions to the effective
current operator, yield results which are essentially identi-
cal to the long dashed curves in Fig. 12. The case of Nb
is basically a check of the analysis: we already believe on
other grounds that mean-field proton distributions are
correct and Fig. 12 thus confirms that the exchange
current calculations and nuclear structure assumptions
are valid. Comparable agreement for Sr then implies
that the neutrons are indeed where the mean field says
they should be.

Since good closed-shell nuclei with odd neutrons in
J=l + —, orbitals are far from copious, evidence for sys-

tematics must be gleaned from more ambiguous high-
energy proton scattering. Because nuclei are strongly ab-
sorptive, the least model-dependent feature of high-energy
scattering is the positions of diffraction minima, which
reflect the strong absorption radius. In all Glauber theory
and optical potential analyses, the mass radii inferred
from minima are highly insensitive to theoretical correc-
tions. Furthermore, in mirror nuclei these analyses yield
neutron-proton radius differences consistent with the
small and reliably calculable Coulomb-induced radius
shifts, so these analyses should be believable within uncer-
tainties of the order of 0.06 fm. Table II also shows the
results of such analyses for (r„)' —(rz )' compared
with mean-field predictions. Subject to obvious uncer-
tainties, the tentative conclusion is that mean-field sys-
tematics for neutron distributions are essentially as good
as for protons.

One of the most important successes of the static
mean-field theory from the viewpoint of dynamics is its
ability to accurately predict the shapes of deformed nu-
clei. Viewed as a classical Hamiltonian field theory, as
will prove fruitful in the treatment of nuclear dynamics,
the Hamiltonian density H(g*, g ) exhibits spontaneous
symmetry breaking. That is, some of the static solutions
to the variational equations do not possess all the sym-
metries, such as rotational invariance, of the underlying
interactions. Whereas all the exact many-body eigenstates
must, of course, be eigenstates of angular momentum, in
the case of rotational nuclei in the rare-earth and actinide
regions, the mean-field theory yields an excellent approxi-
mation to the deformed intrinsic state from which all the
states of the ground-state band are generated.

The important feature for our present consideration is
the fact that the effective interaction with two
phenomenological constants determined by nuclear sa-
turation yields sufficiently accurate energy of deformation
surfaces so as to correctly decide between spherical and
deformed configurations and to dictate in detail the
shapes of intrinsic states. Since the intrinsic state approx-
imation is most accurate for nuclei with the deepest mini-
ma in their energy of deformation surfaces and the largest
values of (J ), U is the best case for which experimen-
tal electron scattering data presently exists in which to
quantitatively test the mean-field predictions. Figure 13
shows a contour plot of the predicted proton and neutron
densities of the axially symmetric intrinsic state of U

TABLE II. Parameters of the effective Hamiltonian density Eq. (7.2) for four interactions
described in the text.

tp

Xp

t3
Ui

UU

p
m*/m

Force

(MeVfm )

(MeVfm )

(MeVfm )

(MeV fm6)

(MeV)
(MeV)
(f ')

SK II
—104.49

4.01
585.6

—27.1

9331.0
—444.85
—868.63

2.175
0.58

SK III
—334.47

1.743
395.0

—95.0
14000.0
—355.79
—619.60

2.175
0.76

Local

—497.726
0
0
0

17270.0
—363.044
—363.044

2.175
1

Zero-range

—1099.0
0
0
0

17 624.0
0
0
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FIG. 13. Proton (a) and neutron (b) density contours of the
deformed intrinsic state for U calculated in the mean-field
approximation. The density contours are in increments of
0.005 fm, the labels denote the density multiplied by 100,
and the distance z along the symmetry axis and the radial dis-
tance r are in fm.

10 I

(Negele and Rinker, 1977). In addition to the obvious
quadrupole deformation, the intrinsic der. sity also
displays nontrivial deformation of higher multipolarity,
as well as the usual fluctuations associated with shell
structure. In the intrinsic state approximation, the form
factor for the transition from the ground state to the J+
state in the ground-state band determines the Jth mul-
tipole in a Legendre expansion of the intrinsic density.
The comparison in Fig. 14 between the theoretical DME
prediction for the inelastic ground-state band transitions
(Negele and Rinker, 1977) and the s tbsequent experimen-
tal data (Creswell et al. , 1981) shows that the predictive
power for the first four multipoles of the intrinsic state of

U is comparable to that for spherical nuclei. In lighter
nuclei, for which the intrinsic state approximation is ex-
pected to be less accurate, some discrepancies do arise in
4 and 6 transitions, but the 0 and 2 form factors are of
comparable accuracy to those shown here.

In summary, the mean-field approximation, founded in
two levels of phenomenology, yields a very satisfactory
understanding of the gross features of finite nuclei. Bind-
ing energies, rms proton and neutron radii, the radial dis-
tribution of charge in spherical nuclei, and detailed shapes
of deformed nuclei are quantitatively reproduced, and, in
many cases, even predicted prior to experimental mea-
surement. To the extent that the bulk of the mean field
may be understood microscopically in terms of two- and
three-body correlations in the many-body medium in-
duced by the strong short-range behavior of the nuclear
potential, one may reasonably aspire to attain a compar-
able understanding of the mean field in dynamical situa-
tions. The remaining part of the mean field which
presently can only be understood phenomenologically at
least yields a systematic description of a wide range of nu-
clear properties and may plausibly be expected to be
equally applicable to low-energy nuclear dynamics. Final-
ly, given the success of purely phenomenological forces of
the Skyrme type or of the form presented in Sec. VII
when used in the static Hartree-Fock approximation, it is
reasonable for one's first explorations of dynamics to sim-
ply utilize these forces in the time-dependent Hartree-
Fock approximation.

10'

10 '

10 5 I I I I I ! I I I I I I I I I I I I I I I

0.4 0.8 1.2 1.6 2,0 2.4
q,«(fm )

FIG. 14. Cross sections for elastic and inelastic scattering
within the ground-state rotational band of U compared with
the DME mean-field theory predictions (solid line).

III. TIME-DEPENDENT HARTREE-FOCK
INITIAL-VALUE PROBLEM

The objective of this section is to review the essential
features of the time-dependent Hartree-Fock (TDHF) ap-
proximation with a minimum of technical complications.
Thus, for the present considerations, the two-body poten-
tial shall be assumed to be sufficiently weak that short-
range correlations are inessential and the Hartree-Fock
term is an adequate approximation to the full mean field.
The derivation of systematic hierarchies of successive ap-
proximations will be postponed, and here the TDHF ap-
proximation will be obtained by application of the time-
dependent variational principle to a determinantal trial
function. For initial exploratory applications to finite
nuclei, one would imagine applying the same theory, in-
cluding trivial generalizations for three-body or density-
dependent forces, using the phenomenological Skyrme-
like interaction discussed in the previous section. The
ultimate justification, of course, must be founded in the
subsequent systematic derivations in Secs. IV and V.
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A. Variational derivation

The time-dependent variational principle (Kerman and
K.oo»n, 19'76) may be motivated by noting that the full
many-body Schrodinger equation follows from varying
the action

S =fdt f dr& d. .r.„f~(r& r.„. ,.t) i H-
Bt

To obtain the TDHF equations, the many-body wave
function is parametrized by a time-dependent Slater
determinant,

+SD(r 1 r2 ' '

1
Det[tp~(r ~, t), $2(r2, t). ..f„(r„,t)], (3.3)

nI

where the single-particle wave functions g(r) are ortho-
normal. With this wave function, the action is

X P(r, ...r„,t) (3.1)

As usual, the result of varying the real and imaginary
parts of 2/ is reproduced by independent variations with
respect to f* and @, with the result that g must satisfy
the Schrodinger equation,

. ai P(r, ...r„,t)=HQ(r, . ..r„,t) .
at where

= fdt g fdr P„*(r)i f (r) A(g*,—P)

(3.4)

~(y*,g) = g fdr/*„(r)K(r)g„(r)+ —, g fdr~dr2dr3dr4$„(r~)p&(r2)V(r~, r2,'r3 r4)p&(r4)p„(&3), (3.5)

the antisymmetrized potential is defined

V(r~, r2, r3 V4')=(r~r2
~

V
~
r314 P4Y3) (3.6)

and the kinetic energy operator is denoted K. Variation with respect to g* yields the TDHF equation of motion

(Dirac, 1930)

. a aAi 1t„(r)=, =K(r)f„(r)+ g dr2dr3dr4$&(r2)V(r, r2,'r3 P4)gp(r4)$„(r3) —(K+ 8')t/j„,
at

(3.7a)

and similarly, variation with respect to g„yields

(3.7b)

The TDHF approximation thus acquires the form of a
classical field theory with the Hamiltonian A (g~, P)
given in Eq. (3.5) obeying the Hamiltonian equation (3.7)
and its complex conjugate. The degrees of freedom of
the determinant (3.3) are actually less than specified by
the functions gz(r), since any unitary transformations
among the P&'s yields the same determinant. The field

theory is correspondingly gauge invariant with respect to
these unitary transformations.

Physically, nuclear dynamics is described in this ap-
proximation by the simultaneous evolution of A single-

particle wave functions in the nonlocal mean field 8'. It
is an initial-value problem, since the first-order differen-
tial equation in time requires specification of the wave
function at the initial time. This time-dependent theory
exhibits many features which are already familiar in the

I

I

static HF approximation. In both cases, the structure of
linear quantum mechanics is replaced by a system of
coupled nonlinear equations. Unavoidable semiclassical
features arise in both cases: the localized center-of-mass
wave function represents a wave packet of momentum
eigenstates and a deformed HF wave function must be
understood as a wave packet of angular momentum
eigenstates. In neither case is there an obvious way to
systemati. cally improve the variational ansatz for the
wave function. Hence there is no obvious means in this
formulation to derive an appropriate effective interac-
tion.

1. Conservation laws

Several conservation laws follow immediately from the
TDHF equations of motion, Eq. (3.7).

The overlap matrix of the single-particle wave func-
tions is a constant of the motion:

d fd g'„( )g„( )= fd B~g —P*B =i fdr dr'P*, (r)[(K+8') —(K+ W)]t/i&(r')=0 . (3.&)

This conservation law is the Noether theorem associated with the gauge invariance of A with respect to unitary
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transformations among the single-particle wave functions. Given an initial condition in which the determinantal wave
function is expressed in terms of orthonormal single-particle wave functions, these wave functions remain orthonormal
in time. Clearly, the Pauli principle in this case is implemented through the simultaneous evolution of all 3 wave
functions in the common Hermitian potential W. Two obvious consequences of Eq. (3.8) are conservation of the norm
of the TDHF wave function and conservation of the expectation value of the number operator ¹

The time dependence of the expectation value of any operator 6' having no intrinsic time dependence may be writ-
ten (Koonin, 1979)

. d g(@) . W.(r)
(PSD I

&
I PSD ) = g f

L

S(~) 8~
&g,(r) nq*, (r)

aq'„(r)

&P'(r)

a(~)
gq*, (r) 5$.(r)

(3.9)

If d' is the Hamiltonian H, then ( 8') = (H ) =A so that the TDHF energy is conserved as expected. What is not so
obvious is that the expectation value of any one-body operator which commutes with H is also conserved. In second-
quantized notation with the convention that a,P. . .e run over all states and v,p denote occupied states, we may write

+g d'~&a~a~, QKysayas+ 4 g Vys, &ay as a„a,
ap y5 y5cq

1= y (6'~gyp —K~yeyp)asap+ —, y (d'~, v,pys
—V~pysd', s)a~pasay,

apy apy5c
(3.10)

so that the determinantal expectation value is

([d',K+V]) = y (d'~ —K d', )

+ g(@ V,„—V d', „) . (3.11)

Rewriting Eq. (3.11) in coordinate representation repro-
duces the right-hand side of Eq. (3.9), so that (d') is
conserved if it commutes with H. Conserved quantities
of particular interest in physical applications are the ex-
pectation values of the total momentum P=g. PJ, and

the total angular momentum J=g (rj XP&+st), where

sj. denotes the spin operator. By the preceding argument,
these are both conserved if the two-body potential is
Galilean invariant.

2. Alternative representations

Because of the gauge freedom in writing the TDHF
equations of motion in terms of single-particle wave
functions, it is useful to reexpress the equations in a rep-
resentation independent form using the one-body density
matrix.

The one-body density matrix is defined in terms of
field operators by the relation

fdr'p(r, r')p(r', r")=p(r, r') . (3.14)

By Eq. (3.12) p is Hermitian and by (3.14) it can only
have eigenvalues 1 or 0. From the conditions on the
trace, 3 of the eigenvalues must be 1 and in the diagonal
representation, the density matrix may therefore be writ-
ten in the form

p(x,x') = g P*„(x')g,(x),
v=1

(3.15)

where the P,'s are orthonormal. This is precisely the
form of p obtained by substituting the determinantal
wave function (3.3) in the definition (3.12). Conversely,
given a determinantal wave function, the resulting densi-

ty matrix, Eq. (3.15), immediately satisfies p =p.
The TDHF equation may be expressed in terms of the

density matrix as follows. The single particle equation,
Eq. (3.7) may be written

i g„(r)= fdr'h(r, r')f (r'),
ai

where

(3.16)

The one-body density matrix can be generated from a
determinal wave function of the form Eq. (3.3) if and

only if it satisfies the idempotency condition p =p', that
is,

p(x, x', t) = (4'(t)
I

gt(x')g(x)
I
%(t) ) . (3.12) h (r, r') =K(r, r')+—W(r, r'), (3.17)

The expectation value of a one-body operator may there-
fore be expressed

W(r, r')= fdr2dr4(rr2
I

V
I
r'r4 r4r')p(r4, r2), —

(4'(t)
I

8'
I
V(t)) = fdr'dr d'(r'r)p(rr')=tr8'p .

(3.13)
K (r, r') = 5(r r') V'„—. —2'

(3.18a)

(3.18b)

For the case in which 6' is the number operator, it fol-
lows that the trace of p is A, the number of particles.

In the famihar case of a local Galilean invariant poten-
tial
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(r~r21& lr3r4~ @r&—r3)5(r2 —r&)u(ri —r2),

(3.19)

(3.17a)
I

the single-particle Hamiltonian h becomes

h (r, r', t) = K(r, r')

+'6(r r'—)fdr2p(r2, r2, t)u(r r2)—
p(r—, r';t)u (r —r') .

The first potential term is just the Hartree convolution
of the diagonal density, p(r)=p(r, r), with the two-body
potential, and the last term is the nonlocal exchange con-
tribution. By Eq. (2.12a), the range of this nonlocality is
of the order of n/kF. .

Using Eqs. (3.15) and (3.16) and the Hermiticity of h,
one obtains the following equation of motion for the
one-body density matrix:

i p(x,x')= gP'(x') fdx "h(x,x")P (x")—g fdx "P"„(x")h*(x',x")P„(x)
at

=fdx "[h (x,x")p(x",x') —p(x,x")h(x",x')] . (3.20)

Equations (3.20) and (3.17) may be written more com-
pactly, using an obvious matrix notation, as follows:

I

the Fourier transform with respect to the relative coordi-
nate of the one-body density matrix (Wigner, 1930).

ip= [h,p],
h =K+trvp .

(3.20a)

(3.17b)
f(R,p) = f e'~ "'"p R+ —,R —— . (3.21)

This form of the TDHF equations is illuminating in
the sense that one may think in terms of evolution of a
one-body density matrix instead of a full many-body
wave function. As already emphasized in the preceding
section, it is much more reasonable to seek to approxi-
mate expectation values of one-body operators than to
approximate the full many-body wave function. Al-
though the variational derivation utilized a determinantal
many-body wave function, if the TDHF approximation
has physical validity, it rests far more in its predictions
concerning the one-body density matrix than in its
description of a full A-particle wave function. Note fur-
ther that Eqs. (3.20a) and (3.17b) specify a general
initial-value problem for any one-body density matrix,
not just an idempotent one satisfying p =p. All these
considerations, then, suggest that one profitable approach
to generalizing the TDHF approximation would be to
generate systematic approximations to the equations of
motion of few-body density matrices; this approach will
be reviewed in the next section.

A second alternative representation of the TDHF
equation is in terms of the Wigner transform of the
one-body density matrix (Koonin, 1975, 1979). The
signer phase-space distribution function is defined as

I

p(R)= f dp f(R,p),

p(p) = fdR f(R,p),

(J(R) ) =fdp (p/m) f(R,p),
(K(R)) =fdp (p /2m) f(R,p),

(3.22a)

(3.22b)

(3.22c)

(3.22d)

where, of course, quantities like the kinetic energy densi-
ty are subject to arbitrary integrations by parts. Taking
the Wigner transfer of Eq. (3.20), defining transforms of
the local Hartree and nonlocal Fock terms of Eq. (3.18)
by

W (R,p)= fdru(r)p(R+r), (3.23a)

W"(R,p)= fdr e't' "~+p R + —,R ——u(r),

and retaining factors of fi yields

(3.23b)

In the classical limit f becomes the classical distribution
function and aside from lacking positive definiteness, re-
tains quantum mechanically many of the properties of
the classical distribution function. As may be verified
directly from the definitions,

f(R,p, t)p
Bt m BR

+—sin —(8 .
B~, —B~ 8 ) I[W (R,p, ) —W (R,p, )]f(R,p, t)J

R l
——R2 ——R,pl ——p2

——p
=0. (3.24)

Ignoring the nonlocal Fock term 8', we note that in the
classical limit or the limit of long-wavelength density
fluctuations of a uniform medium, only the first term in
the expansion of the sine contributes, and the time-

a p a
Bt m BR

88' f(R,p, t) =0 .
ap

(3.25)

I

dependent Hartree equation becomes the Vlasov equation
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For infinite nuclear matter in the Hartree-Fock approxi-
mation, f is a uniform sharp Fermi distribution,

f(r,p)=~(pf I—» I
) h,

1

p(x, x', t) =e' "'" " 'p (x u—t,x' u—t),

W(x,x';t)=e' '" " 'W (x u—t,x' u—t) .

(3.29b)

(3.29c)

Based on results in the hole-line expansion, the exact
momentum distribution differs by having on the order of
15%%uo of the probability removed from the Fermi sea and
distributed above pf. For finite systems in the HF ap-
proximation there is some diffuseness in the Fermi sur-
face induced by the finite geometry, as well as the fami-
liar diffuseness in the surface in coordinate space. In the
crudest approximation, the phase-space distribution is ex-
pected to evolve like an incompressible fluid of density
1/A' . Explicit calculations of f(R,p, t) will be shown in
Sec. VI.

A second limiting case of TDHF is the random-phase
approximation (RPA). Consider a density matrix p
which differs from the ground-state density matrix po by
an infinitesimal deviation p&,

p —=po+p] ~ (3.30)

Explicitly displaying the functional dependence of W on
p~

'(Po+P'i) =[(T+W[po]+ W[p&]), (po+p&)] . (3.31)

Using the fact that po satisfies the static equation, and
retaining only first-order infinitesimals, the following
equation is obtained (Goldstone and Gottfried, 1959):

3. Limiting cases »pi = [ W[pi I pol+ I: T + W[po] pi] . (3.32)

Several limiting forms of the TDHF equations are
worthy of note. In the case of stationary states, for
which

P„(x,t) =g,(x)e

Eq. (3.16) reduces to the usual static HF equation

T+ W[po] I
~ & =&

I

~ &,

and using (3.18a), &a
I p I

p& is given by

(3.33)

Letting a,P,y,5,$ denote occupied or unoccupied orbitals
in the HF basis

hg„( )x=c, f (x) . (3.26) &
——« —&t) &~ipIP&
a
Bt

The representation-independent form of the static HF
equation

[ho pol=o (3.27)

= g P, (r')P„(r) . (3.28)

Any solution to the static HF equations may be boost-
ed with velocity v to obtain a uniformly translating solu-

tion to the TDHF equation. It may be verified by sub-

stituting in Eqs. (3.16) and (3.20) that the following solu-

tions satisfy the equations of motion:

(3.29a)

follows immediately upon noting that the time-dependent

phase factors cancel out of the density matrix:

po(r, r';t) = g P (r')e P (r)

=& i[W[p, ],p.]in&
= X (&~)'I u IP—&k& &~

I pi I
x& &4 I po I

&&

—&~lpol&&&A'I I'IP~ ~P&&&lpily&) .

(3.34)

Since the most general infinitesimal change from
ground state is given by a superposition of particle-hole
excitations, the most general form of infinitesimal devia-
tion in the density matrix with a single frequency co is

p&(t) =p~e ' '+pte'"', (3.35)

where p] has only particle-hole matrix elements. Thus,
denoting particles and holes by p and v, substituting Eq.
(3.35) in Eq. (3.34), and equating terms with the same
time dependence yields

[~—« —Ep)]&v I pi I p& = —X&vr I

I'
I
pt' —&p&&&

I pi I) &

2 —&»'
I
I' Isn' p's & &p'

I pi I
v'& —&vp I

»—'
I s

v' v'p& &v'
I pi I

p'&—
V,p

[—~—« —Ee)]&vl pi I p&= 2 —&»'
I

V
I
pp' —p'p&&p'I pi I

v'& —&~i 'I I'I pv' —v'p&&v'I pt I
p'& .

v,p

(3.36)
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The standard form of the RPA equations is obtained
with the definitions

A „~z
= (Ez E—„)5 5~ + & vp'

I
v

I
pv' —v'p &,

(3.37)

mode which approaches zero excitation energy linearly
with momentum q is the zero sound mode. One may es-
tablish contact with Landau's derivation of zero sound
(Landau, 1957) by linearizing the Vlasov equation, Eq.
(3.25), with respect to small fluctuations about the nu-
clear matter distribution function. The solution for the
zero sound mode with wave vector q is then

in which case, Eq. (3.36) becomes
5f(R

pq@ J
co —p'q/pl

(3.39)

X
Y =co —Y (3.38)

Since the RPA specifies the linear response of the system
to arbitrarily weak excitations by an external probe, it
provides an ideal first test of the application of the
mean-field approximation to dynamics. In the case of
inelastic electron scattering, the external field is the tran-
sient electromagnetic field of the scattered electron,
which is both very weak and accurately known. Just as
in the case of elastic electron scattering, high-momentum
transfer inelastic form factors have been inverted to
specify transition density distributions in coordinate
space. Figure 15 compares the experimental transitions
densities for the lowest 2+ and 3 states in Pb with
the theoretical RPA predictions based on the Gogny
density-dependent effective interaction (Gogny, 1979).

In translationally invariant infinite matter, the RPA

0.08—

Hl

E

—0.04
L

0

—0.04
E
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208 pb p+ /
ti
( «
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~i t
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FIG. 15. Comparison of experimental and RPA transition
densities for the lowest 3 and 2+ states in Pb. Error en-
velopes enclosing transition densities consistent with the mea-
sured cross sections and their experimental uncertainties are
denoted by the solid curve and shaded region, and the RPA re-
sults are denoted by the dashed curves.

where the frequency is specified by s defined by

CO= S
Ul

which satisfies the equation

(3.40)

2m*kF Jdr V(r)
s s+1—ln —1
2 s —1

(3.41)

For an undamped mode, Eq. (3.41) implies that the
volume integral of V must be repulsive and that s, which
by Eq. (3.40) is the ratio of the zero sound velocity to
the Fermi velocity, must be greater than one.

This simplified treatment of zero sound in the time-
dependent Hartree approximation is deficient in two
essential respects. The exchange interaction, which was
omitted to obtain the Vlasov equation, Eq. (3.25), is in
fact stronger than the direct Hartree term. Its inclusion
by solving the full RPA equations in an infinite medium
is only an additional technical complication. A more
serious conceptual problem is that in the HF approxima-
tion the same bare potential V(r) is simultaneously re-
quired to be strongly attractive, to produce a bound sys-
tem, and to be repulsive near the Fermi surface to gen-
erate isosmlar, spin-scalar zero sound. To resolve this
problem, it is essential to derive an effective interaction
to replace the bare interaction in the HF energy func-
tional.

For the Skyrme interaction, it is straightforward to
derive the parameters Fp and Fi, which enter into the
counterpart to Eq. (3.41), which is derived in Fermi
liquid theory (Abrikosov and Khalatnikov, 1959)

1+—,Fi
1

Fp+ —,FpFi +Fis
s s+1=—ln —1
2 s —1

(3.41a)

Since the Skyrme parametrization mn accomplish sa-
turation either through repulsive momentum-dependent
terms or a repulsive three-body force, there exists a con-
tinuous family of interactions consistent with bulk nu-
clear properties. A convenient measure of the amount of
momentum dependence is the effective mass I* [which
corresponds to a constant k mass in the general treat-
ment of Jeukenne, Leujeune, and Mahaux (1976)j. For
m* =m, there is no momentum dependence, and satura-
tion requires strong repulsive density dependence. The.
second derivative of the energy with respect to density
defining the effective interaction in Fermi liquid theory
thus strongly amplifies this three-body repulsion and
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934 Negele: Mean-field theory of nuclear structure and dynamics

Up kF'/m =84+3 fm/10 ' s (3.42)

This should be compared to the speed of ordinary sound,
' 1/2

-2i,
9m

(3.43)

where we have used the value of the compression
modulus K=220+20 MeV implied by the energy of the
isoscalar monopole resonance (Blaizot, 1980). The ratio
Up /U ~ is fortuitously close to the value ~3 which occurs
in the limit of an arbitrarily weakly interacting Fermi
liquid. In addition to this sound modes involving fluc-
tuations in the total density, spin waves, isospin waves,
and spin-isospin waves of similar nature are possible, de-
pending upon the spin and isospin structure of the effec-
tive interaction.

The final important limit of TDHF is an adiabatic
limit (Baranger and Veneroni, 1978). A general density
matrix satisfying p =p may be written in the form

p elXp e
—EX (3.44)

where pp is time even and satisfies pp=pp. If g is suffi-
ciently small, which implies that all velocities are small,
a systematic expansion may be developed in which ap-
proximate equations of motion for pp and X are deter-
mined from the TDHF equation. This formulation pro-
vides an elegant and general method for deriving a col-
lective Hamiltonian which contains not only the usual
simple potential energy terms, but also the crucial mass
parameters associated with each collective variable.
Whereas applications of the adiabatic theory to date have
been limited, it offers an appealing alternative to the
solution of the full TDHF theory in appropriate cases.

4. Semiclassical scattering problem

In the context of the TDHF initial-value problem, col-
lisions of nuclei may be described by an intuitively plau-
sible but nonrigorous semiclassical approximation. For
the initial state, an (A&+A2)X(A~+A2) determinantal

yields the Landau parameters Fp ——+0.74 and F~ ——0
(Hackman, Jackson, and Speth, 1975). With m*=0.38m,
the Skyrme force saturates with no density dependence,
and the resulting values Fp ———0.45 and F~ ———1.9 im-

ply that the zero sound mode does not propagate.
Within the Skyrme parametrization, the F's are mono-
tonic functions of m */m and the left-hand side of
(3.41a) is positive only for m*/m greater than 0.85.
Since nuclear matter calculations suggest that m* in the
Skyrme force is of the order of 0.7m (Negele and
Vautherin, 1972), and given the uncertainties in deriving
Landau parameters, it is inconclusive whether or not this
zero sound mode actually exists. For any of the interac-
tions for which the driving term is positive, the magni-
tude is sufficiently small that the zero sound velocity im-
plied by Eq. (3.41a) is only slightly greater than the Fer-
mi velocity,

wave function is constructed from the HF ground-state
wave functions of nuclei with 2

&
and 32 nucleons,

respectively. Denoting the HF single-particle wave func-
tions in the rest frame of the HF potential with A, parti-
cles as g„"(x), the A~+A2 initial wave functions for the
system are chosen to be

g(tp, x)=e ' P'„'(x —R, ) . (3.45)

(3.46a)

As long as the two nuclei are sufficiently separated that
the HF potential generated by wave functions in one nu-
cleus has negligible overlap with the wave functions in
the other nucleus, each nucleus will translate freely in its
HF ground state with momentum k, by Eqs. (3.29).
Thus one has semiclassically specified both the position
R, and momentum k, of each fragment. For a given re-
lative momentum k~ —k2, all impact parameters may be
explored by varying the initial relative coordinate
R) —R2.

Once the nuclei begin to enter each other's Coulomb
field, all A &+A2 single-particle wave functions are influ-
enced by all others. At large relative separations, the nu-
clei essentially follow Coulomb trajectories with negligi-
ble excitation. As the nuclei approach each other more
closely, Coulomb excitation and eventually nuclear exci-
tation will occur. In those cases in which distinct frag-
ments separate after a collision, with cm coordinates
denoted R,', each fragment may, in general, have com-
ponents from each of the 3&+22 single-particle wave
functions. In contrast to the special case of the initial
state, Eq. (3.45), in general for the final state no unitary
transformations will be able to bring the single-particle
wave functions into a form in which one subset of wave
functions vanishes everywhere except in the region of R

~

and the remaining wave functions vanish everywhere ex-
cept in the region of R2. In terms of the density matrix,
the off-diagonal contributions p(R~+x, Rz+y), where x
and y are of the order of the size of the nuclei, are de-
fined to vanish for the initial wave function, but in gen-
eral the corresponding terms p(R '~ +x,R 2 +y) are
nonzero for the final state. At the level of obtaining ap-
proximations to expectation values of one-body opera-
tors, the interpretation of these final density matrices in-
troduces no conceptual ambiguities. If one instead at-
tempts to formulate a complete scattering theory, then
these so-called "spurious cross-channel correlations"
(Griffin et a/. , 1979) are but one of several shortcomings
of the semiclassical TDHF initial-value problem which
need to be resolved along the lines reviewed in Sec. V.

At the semiclassical level, it is useful to examine the
implications of the wave packet defined by the initial
condition in Eq. (3.45). In principle, each fragment
should, of course, have a wave function which factorizes
into a cm wave function multiplying an intrinsic wave
function depending only on relative coordinates

r

A

P~(r~ r„)=exp iK. ... —g rj. P;„,(x~"...x„'" ~) .
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In contrast, the Galilean-invariant initial wave function
of Eqs. (3.29a) and (3.45) has the form

g~(r1. ..r„)=exp i (Ak) —g rj P "(r,...r„) .J ''' n

(3 46b)

Whereas the wave function translates with the proper cm
momentum K =A k and thus has the correct value for
(p, ), f " is not a function of relative coordinates, and,
in particular, has the feature of vanishing when the cm
coordinate is outside the nucleus. Thus one is unavoid-
ably dealing with a localized cm wave packet so that

fi
dkp ) ] /32r pA

(3.47)

and the corresponding fractional spread in beam energy
IS

fi

(2mEroA )
' (3.48)

where E is the beam energy per particle. For an oxygen
nucleus at 2 MeV per particle, Eq. (3.48) implies an 8%%uo

spread in beam energy, so for light ions at low energies
such considerations begin to become relevant. In terms
of the expectation value of operators, one observes that
although the initial condition is capable of describing the
proper mean value for the momentum (p), the TDHF
one-body density matrix is incapable of representing the
proper dispersion, ((p —(p)) )'~, even in the initial
state.

A final consideration suggesting that it is the expecta-
tion values of one-body operators, rather than the full
determinantal wave function, which should be taken seri-
ously in the semiclassical scattering problem is the
dispersion in particle number for the final-state frag-
ments. To define the number of particles in a final-state
fragment, it is convenient to define a number operator
which counts particles in an appropriate region of space.
For simplicity, consider a binary final state with frag-
ments receding in the positive and negative z directions
in the cm frame, so that the particles in the right-hand
half space may be counted by the right-hand number
operator

= gN tta~t3,R R

aP

where, in coordinate representation,

N (r, r')=5(r —r')8(z) .

(3 49)

(3.50)

(3.51)

Following Bonche, Koonin, and Negle (1976), from the
fact that N in Eq. (3.50) is a projector one is enabled to
write the determinantal expectation value of the disper-
sion in particle number as

1/2
((NR (NR) )2)1/2 g NR g NR NR

where, as usual, v and p denote occupied single-particle
wave functions. As observed by Dasso, DgSsing, and
Pauli (1979), the eigenvalues of the matrix N„are & 1,
so that the dispersion is necessarily less than or equal to
(A/4)' . At the formal level, the observation that the
dispersion in fragment particle number is bounded by
(A/4)'~ is analogous to the bound on the dispersion in
momentum in Eq. (3.47). Physically, it is a much more
significant bound, since the experimentally observed
dispersion tends to grossly exceed (A/4)'~ .

B. Theoretical limitations

Both the formal presentation in the context of the
time-dependent variational principle and the discussion
of the semiclassical description of scattering have re-
vealed limitations and deficiencies of the TDHF initial-
valve problem. As a prelude to generalizations in subse-
quent sections, it is useful to group these limitations into
two broad categories which will ultimately be addressed
by different techniques.

Correlations and collision terms

One salient limitation in the TDHF approximation is
the treatment of the two-body correlations.

Because of the imprecision pervading discussions of
the extent to which two-body collisions are included in
TDHF, it is useful to rewrite the full time-dependent
Schrodinger equation in a basis defined by the complete
set of eigenfunctions of the TDHF single-particle Hamil-
tonian h of Eq. (3.17). Let the full wave function be ex-
panded in determinants of the form Eq. (3.3)

qj = g C(„)(t)%'(„}(t),
Inj

where VI„I denotes a determinant comprised of time-
dependent wave functions satisfying

(3.53)

where a denotes either occupied or unoccupied single-
particle states, and the occupation numbers Inj are de-
fined relative to the normally occupied states such that
IOI denotes the TDHF wave function, Ip, vj denotes a
particle-hole excitation relative to IOJ with particle state

p occupied and hole state v empty, and similarly for
multipaiticle, multihole excitations. Differentiation of
(3.52) with respect to time, substitution of Eqs. (3.53)
and (3.17), and projection onto state 4( )

then yields
equations for the time dependence of the CI„I's. Of par-
ticular interest is the equation of motion for C~p~

..
1

tc( )=——, g (, I vl, )c(
vl v2

+ g C(p,p, v, v2) (p1p2I I
I

v1v2& (3 54)
vlv2P1P2

The first term on the right-hand side of Eq. (3.54) sim-
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ply corrects the phase associated with P(o) which must
evolve with the total HF energy instead of the sum of
the HF eigenvalues. The only admixtures in the wave
function are introduced through the two-particle, two-
hole contributions in the last term. Thus we observe
that at each instant, all the proper one-particle, one-hole
excitations are exactly accounted for by the TDHF equa-
tion of motion, and only the two-particle, two-hole exci-
tations must be added. Far from omitting the effect of
two-body collisions, the TDHF approximation therefore
includes all the forward scattering terms and one-
particle, one-hole contributions, and only the two-
particle, two-hole amplitudes have been neglected.

In the static case, as discussed in Sec. II, it was crucial
to modify the static HF theory by including the two-
particle, two-hole excitations contained in the reaction
matrix. This same class of diagrams may be approxi-
mately included in the time-dependent case by using in
the time-dependent problem the density-dependent effec-
tive interaction derived for ground states. Although the
basic features of the two-body correlations should be in-
cluded sensibly, the time dependence of these correlations
is totally neglected and presumably becomes a serious er-
ror in sufficiently high energy reactions. Associated
with the fact that the ground-state correlations are
frozen into the effective density-dependent interactions is
the feature that two-body and higher-body density ma-
trices have no reason to be reliable in the TDHF approx-
imation.

These limitations associated with correlations suggest
a natural rationale for a systematic hierarchy of succes-
sive approximations. If one is interested in the time evo-
lution of successively higher-body correlation functions,
it is reasonable to formulate an exact system of coupled
equations for n-body density matrices. In truncating this
hierarchy to obtain closed, and therefore solvable, equa-
tions, one may be guided by the desire to obtain the
TDHF equation, Eq. (3.20a), in lowest order, something
like a time-dependent reaction matrix at the next level,
and a theory incorporating the physics of a time-
dependent Faddeev equation at the following level. For-
mulation of a theory in terms of density matrices instead
of a complete wave function may, in principle, compli-
cate questions concerning interpretation and semiclassical
aspects of the theory. However, as long as questions are
posed in terms of expectation values of few-body opera-
tors, there are no conceptual problems in principle. Al-
though one will never have a full wave function to
implement —for example, the boundary conditions for in-
coming waves — one may at least construct n-body densi-
ty matrices for the initial conditions which have the
proper values for expectation values, dispersion, and up
to nth moments of any operators of physical relevance.
Since the dynamics of correlations is presumably most
important at high energy, emphasis on few-body density
matrices instead of on the entire wave function presum-
ably should cause little difficulty. The systematic hierar-
chy of approximations emerging from this rationale will
be reviewed in Sec. IV.

2. Quantum theory

Complementary to the correlation questions which are
relevant at high energy are the intrinsically semiclassical
aspects of the TDHF initial-value problem at low energy.
To calculate any physical observable, the TDHF initial-
value problem requires, in addition to the equation of
motion, the imposition of some suitable initial condition.
In general, there is no systematic procedure by which to
derive this initial condition. In cases such as the scatter-
ing problem described in Sec. III.A.3, intuitively plausi-
ble semiclassical initial conditions can be formulated
which, despite conceptual ambiguities, reproduce much
of the observed phenomenology. In other applications,
such as spontaneous fission or the construction of eigen-
states of large amplitude collective motion, no obvious
satisfactory initial conditions emerge. For spontaneous
fission, the deformed HF minimum for a fissionable nu-
cleus, which might superficially appear to be the physi-
cally correct initial condition, is manifestly unsuitable
because by Eq. (3.28) the resulting one-body density ma-
trix is time independent. Indeed, for both fission and
large-amplitude collective motion, it will be shown in
Sec. V that the proper quantum problem is not formulat-
ed in terms of an initial condition at all, but rather in
terms of a periodic boundary condition.

A related ambiguity concerns quantization of the
TDHF equation. Although the TDHF equation of
motion reproduces the familiar RPA equations, Eq.
(3.38), nowhere does there emerge a natural quantization
condition on the amplitude of the excitations, expressed
either in terms of p [Eq. (3.35)] or of X and F [Eq.
(3.37)]. Even though Eq. (3.7) looks like a classical field
theory that might conceivably admit second quantization
and it is tempting to apply a standard quantization
prescription to the Hamiltonian obtained from the adia-
batic reduction in Eq. (3.44), in the present context there
is no rigorous justification for such quantization pro-
cedures.

The theoretical framework for addressing such
quantum-mechanical questions is complementary in
many respects to the hierarchy of coupled density-matrix
equations designed to address many-body correlations.
At the low energies at which such quantal issues are
relevant, the dynamics of correlation functions are not
crucial and may plausibly be treated by the ground-state
effective interaction. Hence the primary emphasis is on
writing exact expressions for quantum-mechanical ob-
servables and systematically approximating these expres-
sions in such a way as to obtain a quantum mean-field
theory in lowest order. A natural formalism for such
approximations turns out to be that of functional in-
tegrals, and this theory will be developed in detail in Sec.
V.

IV. TRUNCATION QF EQUATIONS OF MOTION

The formulation of a systematic microscopic theory of
nuclear dynamics ultimately requires at least as careful a
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treatment of two-body and higher-body correlations as
was necessary for the stationary states reviewed in Sec.
II. Ideally, in addressing the problems associated with
correlation and collision terms emphasized in Sec. II.A. 1,
it is desirable to establish contact with, and fully exploit,
our present understanding of the time-independent
many-body problem.

The approach in this section will be to consider alter-
native formulations of general hierarchies of equations of
motion coupling n-body correlation terms to those in-
volving correlations of n+ 1 bodies. The primary cri-
teria for choosing between alternative formalism will be
the economy of representation of the relevant correlation
terms and the degree to which the time-dependent theory
can be understood as a generalization of the familiar
time-independent theory.

= K(x)f(x, t)

+fdx, P (x»t)u(x x')P—(x»t)g(x, t) .

(4.3)

Using Eq. (4.3) and its adjoint, the time derivative of an
operator containing products of n creation and n annihi-
lation operators will yield an expression involving at
most products of n + 1 creation and annihilation opera-
tors, so that the evolution of expectation values of n

body operators will necessarily be coupled with expecta-
tion values of n + 1 particle operators.

A. Density-matrix hierarchies

g(x, t)—:e' 'P(x)e (4.1)

Exact equations of motion for expectation values of
operators may be derived from the Heisenberg equation
of motion for the second-quantized field operator

Density matnces

A particularly simple hierarchy of equations of motion
is obtained in terms of density matrices. The n-body
density matrix is defined

p„( 1,2.. .n; 1'2'. ..n '; t)

= (ty] (t)$2 ...$„(t)y„(t)...1t2(t)$$(t) ) . (4 4)
Commutation with the second-quantized Hamiltonian

H= fdxif (x»t)K(xi)f(x&, t)
1+ —, dx)dx2$ (x)&t)g (xp, t)v(x) —x~)

X f(x2, t)f(x &, t)

yields the Heisenberg equation

(4.2)

By application of Eq. (4.3) and its adjoint n times, the
time derivative of the n-body density matrix may be ex-
pressed in terms of integrals over n and n + 1 body den-
sity matrices, yielding a hierarchy analogous to the Bo-
goliubov, Born, Green, Kirkwood, Yvonne hierarchy in
classical statistical mechanics. The equation of motion
for the one-body density matrix is thus

A
i p)(x', x;t)=(g (x,t) K(x')+ dx, g (x„t)P(x„t)v(x)—x')

df

—K(x) fdx&g (x&, t—)P(x&, t)u(x& —x) g (x', t))

=[K(x') K(x)]pi(x', x;—t)+ fdxi[u(x& —x') u(xi —x)]p2(x', x&,x,—x&, t) . (4.5)

p2(x $ yx2 jx )x2 jt) ~p$(x ]~x $ yt)p[(x2~x2 jt)
—p](x ] yx p j t)p)(xp~x ] jt) ~ (4.6)

Substitution of Eq. (4.6) in (4.5) immediately reproduces
the TDHF equation, Eq. (3.20), with h as defined in Eq.
(3.18).

Since the only correlations imposed by the ansatz Eq.
(4.6) are the Pauli correlations associated with antisym-

The crucial issue is, of course, truncation. Other than
the obvious desire to approximate p~„+&~ in terms of p„
and lower-order terms, in the language of density ma-
trices one has no physical guidance. In lowest order,
there is relatively little choice. Expressing p2 as products
of p~'s and requiring antisymmetry leads to the approxi-
mation

fdx2p2(x &,x2,'x I,x2, t) = ( g"(x &,t)~f(x ~ ) )

= (A —1)pi(x i,x i, t) (4.7a)

where .rV denotes the number operator, whereas from
Eq. (4.6)

metry, it is reasonable that all dynamical correlations as-
sociated with the two-body interactions are neglected.
However, it is surprising, and symptomatic of the non-
transparent nature of implications of truncation prescrip-
tions, that asserting Eq. (4.6) as a strict equality implies
that the full wave function may be represented as a
determinant. This observation (Koonin, 1979) follows
from setting x2 ——xq and integrating over xz in Eq. (4.6).
From the defintion, Eq. (4.4),
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938 Negele: Mean-field theory of nucIear structure and dynamics

dx2p2(x l,x2',x l,x2', t)

=A pl(xl, x'» t) —fdxzp, (x„xz,t)p, (x2,x't) . (4.7b)

Equating (4.7a) and (4.7b) implies p =p, and hence, as
shown in Sec. III, the wave function may be represented
as a determinant.

To obtain an equation for p2, it is necessary to impose
an approximation for p3. In this case, there are many
possibilities for expressing p3 as products of p2p~ or

plplpl and antisymmetrizing. Unfortunately, there is no
obvious way to relate any of these prescriptions to our
previous experience with perturbation theory, or even to
see in advance whether they are consistent with conser-
vation laws. Hence it is useful to consider an alternative
hierarchy based on Green's functions.

2. Green's functions

Instead of the equal-time expectation value of field
operators in Eq. (44), the n-particle Green's function is

defined as the following time-ordered product of field
operators:

(t ) Gn(Xltl~ ' ' ~ Xntn~x 1tl Xn tn ):—(Tp(xl, tl ) . Q(x„,t„)@~(x„'t„') . ~ @ (x'lt'l )),
(4.8)

where T denotes the time-ordering operator. Formula-
tion in terms of Green's functions is in general less
economical than density matrices, since G„ involves 2n
time arguments instead of the single time argument of
p„. In compensation, however, the time-ordered product
enables direct comparison with perturbation theory
through application of Wick's theorem.

The hierarchy of coupled equations of motion for
Green's functions (Martin and Schwinger, 1959) is ob-
tained by representing the time-ordered product in Eq.
(4.8) in terms of theta functions and using the equation
of motion, Eq. (4.3):

i G, (xt,x't') = [0(t t')(P(x—,t)gt(x', t') ) 8(t' t)(g—t(x', t—')g(x, t) ) ]
Bt Bt

=5(t t')5(x ——x')+ —.K(x)( Tg(x, t)gt(x't') ) + —.fdx" ( TP (x",t)v (X,X")P(x",t)@(x,t)g (x', t') ) .
l

(4.9)

If we denote a time infinitesimally greater than t by t+, noting that

—i dx "v x,x" G2 xt,x "t;x't', x "t+ =i' dx "v x,x" T x",t x, t x",t x't' (4.10)

and abbreviating the space-time variables (x„t„)by (n), the lowest-order equation becomes

—K(xl) Gl(1, 1')=5(1,1')—i fdx2v(xl —x2)G2(1,2;1'2+), (4.11)

By similar algebra, the general equation in nth order is

—K(xl) G„(1,2, . . n;1', 2'. ...n')= g 5(l, i')( —1)' 'G„ l[2...n;1'. ..(i —1)',(i+1)'...n']

i fdx„+—lv(xl —x„+l)G„+l[1,2, . . .(n ~1);1',2'. ..(n +1)'+].

(4.12)

In general, the time evolution of 6„ is coupled to G„+& and 6„&,so as before the hierarchy may be truncated by
specifying a physically motivated prescription for approximating some G„+l in terms of G„and lower-order Green s

functions. The TDHF approximation arises from a factorization analogous to Eq. (4.6):

G2(12, 1'2') =Gl(11')G, (22') —Gl(12')Gl(21') . (4.13)

i —K(xl) Gl(1, 1')=5(l, l') —i fdx2v(xl —x2)Gl(1, 1')Gl(2, 2+)—Gl(1,2+)Gl(2, 1'),
Bti

(4.14a)
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or

i G)(1,1')= 5(1,1')

dX3A X$ X3 t] 6] X3t) X ]f $

(4.14b)

where h(x~, x3, t~) is given by Eq. (3.18), so that G~
evolves in the same mean field as the TDHF wave func-
tions. Evaluating the difference between Eq. (4.14b) and
the adjoint equation

i —G, (1,1')= 5(1,1')
Bti

+ fdx, G(x, t~&x3tI )h(x3pxfjtI )

(4.14c)

for t& ——t&+ yields the TDHF equation

i (g (x', t)f(x, t)+f (x', t)g(x, t) )

=ip(x, x', t)

=fdx3[h (x,x3, t)p(x3, x', t) p(x, x3—, t)h(x»x', t)] .

(4.15)

Whereas the Careen's-function formulation does not
uniquely specify compelling truncation prescriptions in
higher orders, known properties of Green's-function ap-
proximations provide considerable guidance. For exam-
ple, simple conditions on G2 (Baym and Kadanoff, 1961;
Baym, 1962) ensure number, momentum, and energy
conservation, and can be implemented by generating a
truncation by functional differentiation of a set of skele-
tal diagrams with respect to an external source.
Motivated by the role of ladder summations in the per-
turbation expansion of the ground-state energy, one can
also adopt a conserving truncation which sums all two-
hole-line ladders in the ground-state energy expansion.
As may be straightforwardly verified by expressing the
ground-state energy as an integral over the coupling con-
stant of the product of the Green's function and the
proper self-energy (Fetter and Walecka, 1971), such a
conserving ladder summation is accomplished by replac-
ing Eq. (4.13) by an integral equation for G2..

assess the level of complexity required to generalize
beyond the TDHF approximation and to understand why
the alternative formulation in the next section is prefer-
able. The simplest structure for an equation of motion
for p2(x&, x2, x&, xz, t) arises when p3(t) is expressed in
terms of spatial integrals over p, (t) and p2(t), in which
case a coupled set of equations first order in time for p&
and p2 must be evolved in time. The minimum level of
complexity thus involves evolution of a function pz of
four vector spatial variables and one time variable. This
same minimum level of complexity arises in the
Green s-function formulation only in special cases in
which all time arguments are set equal. In these cases,
the Green's-function expression reduces to a correspond-
ing density-matrix result, as was the case in Eq. (4.15).
In cases for which the Green's-function hierarchy differs
from that for density matrices, presumably to accom-
plish some physical objective such as summing ladder di-
agrams, evolution of 6 instead of p2 necessarily involves
retention of additional time dependencies and possibly, as
in the case of Eq. (4.16), the solution of integrodifferen-
tial equations instead of simple first-order differential
equations.

Even at the minimum level of complexity, evolution of
a function of four vector variables and time appears suf-
ficiently impractical that it is desirable to turn to the
coupled-cluster theory which represents two-body corre-
lations in finite systems more efficiently. The alternative
of introducing further approximations in the Green s-
function formalism is explored in the literature (Wong
and Tang, 1978, 1979; Orland and Schaeffer, 1978) and
calculations of the effects of collision terms have been
reported by Richert, Brink, and Weidenmiiller (1979) and
Wong and Davies (1980).

B. Coupled-cluster approximation

The formulation which appears most suited to the
present problem is a time-dependent generalization of the
exp(S) or coupled-cluster approximation pioneered by
Coester (1958) (see also Coester and Kiimmerl, 1960),
and subsequently applied extensively to fermion systems
(Kiimmel, Liihrmann, and Zabolitzky, 1978). In this
theory, the full many-body wave function at any time is
written in the form

G2(12, 1'2') = G) (11')G)(22') —G) (12')G) (21')

+i f dx 3dx4dt4G ~ (13)G ) (2,4)

4=exp(S)@,

where

(4.17)

Xv(x3 x4)5(t3 t4)G2(34&1—'2') .

(4.16)
n=1

(4.18)

Obviously, even more complicated integral equations
could be envisioned to effect more complete summations.

Having seen the general structure of density-matrix
and Greens-function hierarchies, we can now critically

and S'"' represents the most general n-particle, n-hole
operator defined relative to the Slater determinant of oc-
cupied states 4. The time-dependent Schrodinger equa-
tion implies a hierarchy of nonlinear, coupled equations
for the static or time-dependent n-particle, n-hole ampli-
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tudes, which may be truncated in the same manner as a
density-matrix or Green's-function hierarchy. However,
the n-particle amplitude may be expressed in terms of n

spatial coordinates and n occupied state labels v; rather
than 2n coordinates, since S'"' may be written where

XQ (xi)Q (xp) . . P (x„)a„.. a„a,

S = (xix. x„ I

S'"'
I
v, v2 ~ ~ . v„)

(n!)

(4.19)

(x,x, . - x„ IS'"'Iv v, v„)—:g (x, Ip, ) . &x. Ip. &&pi
. . p. IS. Ivi . .

1. Time-independent coupled-cluster approximation

For stationary states, equations for the n-particle, n-
hole amplitudes appearing in Eqs. (4.17)—(4.18) are ob-
tained by projecting the Schrodinger equation

e He I@)=EI@) (4.20)

onto a complete set of m-particle, m-hole states. Denot-
ing unoccupied states by p;, the following hierarchy of
equations arises:

(&bIe He I@)=E, (4.21a)

(@
I a„aze He

I
@)=0, (4.21b)

(4
I
a ...a a& . . .ace He

I
N) =0 .

From the identity

(4.21c)

e Oe =0+[0,X]+—
I [O,X],X

I
+ . . (4.22)

The economy of dealing with particle-hole amplitudes
S'"'(x i...x„;vi. ..v„) instead of density matrices
p„(x, . . . , x„, xi, . . . , x„') is appreciable. For a system
of A particles, S"' is specified by A functions of one vec-
tor variable compared with pi, which is a function of
two vector variables. Stated differently, evolving pi in-
stead of Si is as inefficient as integrating the TDHF
equation for the full one-body density matrix Eq. (3.20),
instead of realizing that because p =p, one may go to
the diagonal representation and simply evolve A single-
particle functions according to Eq. (3.16). For n-body
amplitudes, this economy is raised to nth power as n

vector variables in p„are replaced by n discrete occupied
state labels.

Whereas the basic ideas underlying the coupled-cluster
hierarchy are very simple, the technical details involved
in applying even the time-independent theory to the most
general case are somewhat tedious and notationally
cumbersome. Therefore, this review will emphasize only
the essential features and general structure of the theory.
As a preparation for the application to time-dependent
problems, the time-independent theory will first be re-
viewed in the next section. The general time-dependent
theory with the simplest truncation procedure wiH be
presented in the following section and truncation for
strongly repulsive forces is treated in Sec. IV.B.3.

it is evident that if H contains only one- and two-body
operators, repeated commutation with H can remove at
most two pairs of creation and annihilation operators
from the particle-hole operators S'"'. Thus, since
e He

I
@) must connect to

I
@) in Eq. (4.21a) and at

most two pairs of particle-hole operators have been con-
tracted, the resulting equation can involve only S~ and
S2. In fact, for the special case of Eq. (4.21a), the exact
equation

& e
I

H(s'"+ —'s'"s'"+s"')
I
e) =E (4.23)

is trivially obtained by noting (@
I
S =0 and expanding

e . Similarly, Eq. (4.21b) involves amplitudes only
through S' ', and in general Eq. (4.21c) includes ampli-
tudes through S' + '. The explicit form of the general
equation is somewhat complicated, but follows straight-
forwardly from substitution of Eq. (4.22), which ter-
minates after five terms when O=H, in Eq. (4.21c).

Since the resulting hierarchy of equations for the S'"'s
is equivalent to the original Schrodinger equation, physi-
cal approximations are introduced by the method of
truncation. The simplest truncation prescription, which
we shall use in the present section, is to specify that
S'"'=0 for all n ~m. This has the effect of treating
particle-hole correlations of up to m particles exactly,
while retaining only those correlations for more than m
particles which arise from products of lower-order am-
plitudes. In terms of familiar perturbation theory, trun-
cation at m =2 suIDs particle-particle and hole-hole
ladders as well as RPA ring diagrams, and this approxi-
mation has been shown to be accurate for a single Lipkin
model and for systems with long-range forces (Kummel,
Liihrmann, and Zabolitzky, 1978). For potentials which
are infinitely repulsive at short distances, it is incon-
sistent to define the higher S(n)'s to be zero, and instead
one must impose a prescription which makes the wave
function vanish when n particles are within a hard-core
radius. For finite but strongly repulsive cores, a similar
condition is physically reasonable, and this truncation
procedure will be addressed subsequently in Sec. IV.B.3.

Retaining only m nonzero amplitudes yields m equa-
tions of the form (4.21c) in m unknowns which com-
pletely specify the S'"'s. With these amplitudes, Eq.
(2.21) yields an mth order approximation to the energy
which is distinct from the expectation value of H with
the wave function

'—=exp(S"'+S' '+ +S' ')
I
@)
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since —S+S . Truncation at tn= 1 yields the Hartree-
Fock approximation, which is most obvious by noting
that the most general determinant may be written
exp(S"')

l
@) by Thouless' theorem (Thouless, 1972). In

general, one always has the freedom to specify S'"—:0
and to solve an equation for the single-particle wave
functions comprising the determinant

l
@).

2. Time-dependent coupled-cluster approximation

e He i@)=ie e
at

(4.24)

onto n-particle, n-hole states:

(@le He i4&)=i(@le e i@),
Bt

(4.25a)

(@la„a~e He i@)=i(C&la„a e e i@),
Bt

(@la„,...a az .. .az, e He~i@)

(4.25b)

=i(@
l
a , ...a, az ...az, e e

l
4&) . (4.2Sc)

The general structure of these equations is observed by
noting that

The time-dependent coupled-cluster theory (Monk-
horst, 1977; Hoodbhoy and Negele, 1978, 1979; Schon-
hammer and Gunnarson, 1978) is obtained analogously
by projecting the time-dependent Schrodinger equation,

=(4
l
a„...a„at ...&~ +S~+—[S,S]

l
4') .

(4.29)

Although Eq. (2.26) yields many terms, the only nonvan-
ishing term involving the time derivative of an S'"' am-
plitude, as opposed to the derivative of a basis function

(Pia) is (pi. ..p iS (t) iv, ...v ) .
dt

Thus, Eq. (4.25) specifies d/dt (p l
S"'(t)

l
v) in terms of

known functions at time t, providing a first-order dif-
ferential equation in time for the one-particle, one-hole
amplitudes. In general, Eq. (4.25c) provides a first-order
equation for the m-particle, m-hole amplitude, so that
given initial conditions at time t=0, the amplitudes may
be evolved in time by numerically integrating a system of'

first-order equations. The first equation, Eq. (4.25a),
clearly plays no role in the time evolution, since no time
derivatives of particle-hole amplitudes survive in the
right-hand side. It could be satisfied identically by intro-
ducing an appropriate time-dependent phase in the defin-
ition of 4&, but since such an overall phase is unobserv-
able, Eq. (4.25a) is devoid of physical content. Formally,
it is satisfied identically when the order of truncation, m,
equals the number of particles.

Truncation of the time-dependent hierarchy proceeds
precisely as in the time-independent theory. In lowest
order, setting all S'"'s equal to zero for n )2 yields the
TDHF approximation, which is again most readily ap-
parent by choosing the basis in which S"' is identically
zero. In this case, Eq. (4.2Sc) becomes

g Q ge e = +S+—[S,S]+—([S,S],S)+
Bt Bt 2! ' 3!

(4.26)

and writing S'"' in an arbitrary time-dependent basis,

(Cia az H i i@—)=0,
Bt

which implies the TDHF equation

&pl i I
v) =&p lh I

v&
. a

(4.30)

(4.31)

, , 2 &pi "p. I
s"(t)

l i " .&

(n!) p.„

Xap, (t). ..ap (t)a, (t). . .a, (t) .

with h as defined in Eq. (3.17). Making the usual arbi-
trary choice for hole-hole matrix elements yields the
more familiar form

Since

(4.27) i
l
v) =h

l
v) .

Bt
(4.32)

a = g (P i a)att, (4.28)
Gt

each nonvanishing term on S' ' either contains an ap OI
~(m) ~(~)a„ term, for which [S,S " ]=0, or contains at most

one a or a& term, in which case the commutator
Ay][S,S"] contains only a& and a„operators. Hence, in

l

any case, the multiple commutator ([S,S],S) must van-
ish and

Truncation at n=2 yields two closed coupled equations
for S"' and S' ' in terms of S'" and S' ' which describe
the time evolution of two-body correlations, and in nth
order one obtains rn equations for S'" through S'

A particulary attractive feature of the theory is the
fact that solutions to the truncated time-independent
equations at any order m are stationary solutions to the
truncated time-dependent equations truncated at the
same order by virtue of the fact that the left-hand terms
of Eqs. (4.21) are identical to those of Eqs. (4.25). Thus
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one immediately capitalizes upon knowledge of the per-
turbation theoretic content and numerical convergence of
the time-independent theory. In this sense, the coupled-
cluster theory retains the advantages sought in the
Green s-function formulation, while retaining the simpler
structure of first-order differential equations in time for
amplitudes with n spatial variables, n single-particle la-
bels, and one time argument instead of integrodifferential
equations for functions with 2m spatial variables and up
to n time variables. In addition, since the time-
dependent equations reduce to the time-independent
theory for stationary states, it is immediately evident
how to pick initial conditions for scattering problems
which are precisely commensurate with the approxima-
tions built into the dynamical equations. A final techni-
cal point is that just as the HF equations may be effi-
ciently solved by evolution of the TDHF equations in
imaginary time (Davies et al. , 1980) so the static
coupled-cluster equations may be solved by evolving an
initial guess for a wave function in imaginary time or by
beginning with a solution to a one-body Hamiltonian,
Ho ——T+U, and adiabatically switching on the interac-
tion H' = V —U in the time-dependent theory.

adequate for the model problem in Sec. VI, it is unsuit-
able in the presence of potentials with highly repulsive
cores. In this section, a truncation suitable for
repulsive-core interactions will be motivated physically,
and the resulting coupled equations of motion for S~ and
S2 will be presented (Hoodbhoy and Negele, 1979).
Since the essential features of this truncation problem
arise already in the static coupled-cluster theory, a more
general presentation may be found in the review by
Kummel, Luhrmann, and Zabolitzky (1978). Formally,
in terms of reduced subsystem amplitudes P'„'J' defined in
that work, the general algorithm for truncation at order
n is to set g'J+& ——g'J+2 ——0 in all terms containing the
two-body potential V(x;xJ) and to set the particle-hole
amplitude S~+i ——0 in all other terms.

To facilitate the physical discussion of truncation at
second order, it is useful to define a subsystem amplitude
(Kummel, 1974) which specifies the amplitude for find-
ing in P n particles localized at positions xt through x„
and A —n particles in single-particle states v„+~ through
v„. This subsystem amplitude is defined

(xt xn "I fn I
vt" vn &

3. Truncation for repulsive-core interactions =(@
I
a„.. .a P(x„).. .g(xt)e*

I
Ct&, (4.33)

Whereas setting all S'"'=0 for n ~m in the time-
dependent coupled-cluster equations of the previous sec-
tion is the formally simplest truncation procedure and is

where the particle-hole amplitudes S are defined in
Eqs. (4.17)—(4.19). Expanding out the exponential in
the last term of Eq. (4.33), it follows that

(4.34b)

(4.34c)

&xt I @t I
vt &

= &xt
I
vt &+ &xt

I
St

I
vt & (4.34a)

&xtxz
I 6 I

vtv~& =&xt
I lt I

vt&&x2
I @t I

vz& —&xt
I ft I

v2&&x2
I ft I

vt&+&xtx2
I
S2

I
vtv2&,

(xtx2x3 I 6 I vtv2v3=~ (&xt
I @t I

vt & &xz
I @t I

v2& &x3
I @t I

v3&+ &xtx~
I
S2 I vtv2&&x3

I @t I
v3&

+ (xtx3
I
S2

I vlv3& &x&
I 41 I

v2&+ (x2x3
I
Sl

I v2v3&(xt I @t I
vt &+ &xtx2x3

I
S3

I
vtv2v3&) ~

and so on, when M„represents antisymmetrization, as in
Eq. (4.34b), with respect to all v's except those within
the same S or f. In each order, S„represents that part
of P„which cannot be decomposed into antisymmetrized
products of lower amplitudes and thus physically corre-
sponds to a correlation amplitude.

When the equations of motion implied by Eqs. (4.25)
are worked out in detail, the equation for

d
dt

(xt. . .x„
I

S"
I
vt. . .v„&

contains higher-order amplitudes involving products of
the form

V(x,x')(xx'y3. . .y„+t I f„+t I
vt. . .v„+t &, (4.35a)

V(»x ) &xx y3. yn+21@n+2 I
vt vn+2&, (4.35b)

and

&(x)(xy2. yn+t I @n+t I
vt vn+t& ~

where d'(x) may be the kinetic energy operator K(x) or
the time derivative of a single-particle wave function
t)t, (x). It is the potential terms, Eqs. (4.35), which re-
quire a modified truncation procedure in the presence of
highly repulsive cores. Clearly, any exact subsystem am-
plitude, obtained by projecting the exact wave function
onto a state localizing particles at x and x', must have
the property that it goes to zero as x approaches x'. The
product of this amplitude with U(x —x') will then be
well behaved and remain finite even when v becomes in-
finitely repulsive. To obtain a satisfactory truncation,
this same property must be built into any approxima-
tions for subsystem amplitudes whenever they are multi-
plied by the two-body potential. Since (xx'

I $2 I
vv'&

satisfies a two-body equation analogous to the Bethe-
Goldstone equation, it necessarily possesses the desired
properties for small (x —x'). These same properties in
(x —x') may be assured in Eqs. (4.35) if one imposes an
independent-pair approximation specifying that the two
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particles interacting via the potential propagate indepen-
dently of the others with correlation described by gz.
The approximation for Vii|3 is thus

=W„V(xx') &xx'
I @2 I

v&v2& &y
I P& I

v3& . (4.37)

Comparison with Eq. (4.34c) indicates that this is dif-
ferent from specifying S3 ——0, since certain products of
the form &xy IS2

I
v;vj &&x'Ig~

I
vk& are also omitted.

Whereas antisymmetry is thereby relinquished, just those
terms involving products of S's having arguments other
than x and x' are dropped, so as to ensure the proper
behavior for small (x —x'). The analogous truncation
for VP& is

V(xx') &xx'y~y2
I g4 I v~v2v3v4&

V(Xx ) &XX
I

lj/2
I
v]v2 & &y )y2 I

1/J2
I
v3v4 & . (4.38 )

In contrast to these terms involving the two-body poten-
tial, there is no reason for the operator 6 in Eq. (4.36) to
single out any particular pair of particles or for the
behavior of small values of any relative coordinate to be
relevant. Thus it is natural to use the familiar totally
antisymmetric truncation for Eq. (4.36) obtained by sim-

ply specifying S„+~
——0.

Substitution of these independent-pair truncations for
Eqs. (4.35) and totally antisymmetric truncations for Eq.
(4.36) into the equations of motion, Eqs. (4.25), and
straightforward albeit tedious algebra yield coupled
first-order differential equations in time for the evolution
of correlation amp1itudes S& through S . The first gen-
eralization beyond TDHF arises at m =2. In an arbi-
trary basis of time-dependent orthonormal wave func-
tions, p (x, t), the equation of motion for 1'& (and thus
S, ) may be written

i &x
I @, I

v&=E'(x)&x
I @, I

v&+g J dx'qP(x')[K(x')&xx' IS2 I

vv'&+V(xx')&xx'
I 1t2I »'&]

at

—2 &x
I @i I

v'&h +i g I dx'0*. (x')(&xx'I S2 I

»'& —&x'
I @i I

v&&x
I li I

v'&) (4.39)

where

V V

h„,„,= J dx P,(x) K(x)&x
I g, I v2&+g f dx'P*(x')V(xx')&xx'I $2 I

v2v& (4.40)

This equation may readily be observed to have the struc-
ture of X time-dependent Brueckner-Hartree-Fock equa-
tions by considering it in the maximum overlap basis
(Coester and Kummel, 1960), in which, by definition, the

P (x)'s are defined such that S& is identically zero and
thus &x

I f~ I
v&=P (x). The amplitude P2 satisfies a

time-dependent Bethe-Goldstone equation, so that
v(xx')&xx'

I g2 I
vv'& corresponds to

G[P (x)P (x') —P,(x')P (x)],
and thus the seqond term on the right-hand side of Eq.
(4.39) contains essentially the mean field arising from a
6 matrix. In this basis, the third term is a physically ir-
relevant unitary transformation among occupied-state
wave functions and the last term ensures orthonormality
of the time-dependent maximum overlap wave functions.
The time-dependent Bethe-Goldstone equation is some-
what more lengthy, but has the structure of expressing
the time derivative of S2 in terms of S2, S&, and the
basis functions, and thus may straightforwardly be
evolved in time. Further discussion of the properties of
the repulsive-core coupled-cluster equations, details of
the derivations, and the final results may be found in the
literature (Hoodbhoy and Negele, 1979).

In summary, the coupled-cluster expansion appears to
provide the most promising theory presently available for
systematically extending the TDHF approximation to in-
clude the effects of collisions and correlations. Since it

involves functions with fewer spatial variables and time
arguments than alternative Green's-function and
density-matrix formulations, it is correspondingly easier
to implement numerically. The corresponding theory for
stationary states has already been evaluated, retaining
amplitudes through S3 for nuclei as heavy as Ca, not
only demonstrating satisfactory convergence and ade-
quate treatment of repulsive cores, but also setting a
scale for practical calculations. Since iteration of the
static problem to self-consistency is computationally
analogous to evolution in time for a comparable number
of time steps, it is quite reasonable to expect that at the
much simpler level of retaining only S2, calculation of
collisions for light systems should be feasible. Model
calculations for one-dimensional systems would be even
easier and would already begin to resolve many of the
open questions concerning collision and correlation
terms.

V. FUNCTIONAL INTEGRAL FORMULATION

An alternative generalization of the time-dependent
mean-field approximation utilizing a functional integral
representation of the many-body evolution operator
resolves many of the deficiencies associated with the
semiclassical aspects of the TDHF initial-value problem
discussed in Sec. III.B.2.

To appreciate the power and conceptual advantages of
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this functional integral approach, it is useful to briefly
recall the deficiencies of conventional treatments of col-
lective motion in nuclear physics. The first step in con-
ventional theories is the ad hoc selection of collective
variables, which may well be biased by some combina-
tion of technical convenience and prior knowledge of the
experimental phenomena one wishes to coax the theory
to reproduce. Given some set of coordinates to be im-
posed upon the system, canonically conjugate momenta
are either derived or postulated. The next step is to ob-
tain either by derivation or prescription an adiabatic
Hamiltonian involving at most quadratic terms in the
momenta and, in general, an inertial tensor and potential
depending upon all the coordinates. Finally, a quantiza-
tion prescription is imposed on the resulting Hamiltoni-
ans to arrive at a quantum theory of collective motion,
the validity of which is difficult to assess and which is
exceedingly difficult to systematically improve.

In the functional integral formulation, in contrast, one
writes an exact expression for a quantum observable in
terms of a functional integral over a field containing all
the degrees of freedom of the one-body density matrix.
In particular, the one-body density matrix contains all
the shape degrees of freedom one believes to be impor-
tant from semiclassical intuition, but, in addition, an in-
finite number of degrees of freedom are equally accessi-
ble to the theory with no a priori bias. A systematic ap-
proximation scheme is then obtained by application of
the stationary-phase or saddle-point approximation and
subsequent evaluation of higher-order corrections. The
lowest-order theory is a time-dependent mean-field
theory in which the coordinates, momenta, equations of
motion, and quantization conditions have been simul-
taneously and consistently specified by the underlying
Hamiltonian and the specific quantum observable under
consideration. Although technical and mathematical
problems certainly arise, the functional integral formal-
ism at least offers the potential of extending the quan-
tum theory of collective motion significantly beyond the
state of the art obtained with conventional technique.
Certainly the recent achievements using analogous tech-
niques in field theory lend further credence to this prom-
ise (Abers and Lee, 1973; Dash en, Hassla cher, and
Neveu, 1974a, 1974b; Rajaraman, 1975; Faddeev, 1976;
't Hooft, 1976; Polyakov, 1977; Coleman, 1977).

The emphasis of the functional integral formalism,
which develops a consistent quantum-mechanical gen-
eralization of the TDHF initial-value problem, is com-
plementary to that of the coupled-cluster expansion,
which addressed many-body correlations. Unlike the
coupled-cluster theory, the present theory replaces the
initial-value problem with a fully specified boundary
value problem and, where appropriate, specifies quantiza-
tion conditions on the dynamical variables. In doing so,
however, in lowest order, it sacrifices the general treat-
ment of many-body correlation, which was the primary
objective of the coupled-cluster approach. In practical
applications, it is generally obvious which of these com-
plementary features is physically most relevant, and it

remains a problem for future research to combine both
these quantum and correlation reports into a single for-
malism, as discussed subsequently in Sec. V. H.

A. Overview

Because of the potential importance of functional in-
tegral methods, the unfamiliarity of many nuclear physi-
cists with these techniques, and the highly technical na-
ture of the research literature, this section will attempt to
provide a detailed and pedagogical review of the func-
tional integral approach to many-body theory. The pre-
sentation will necessarily be somewhat parochial, in that
there exist a number of technically different alternative
formalisms which yield very similar and often identical
results. Whereas it is clearly not desirable to display all
the technical details of each method, it is at least useful
to sketch the essential elements of each approach. A na-
tural compromise is to present in detail a method which
makes direct contact with mean-field theory and has
been utilized in recent research (Levit, Negele and Pal-
tiel, 1980a, 1980b; Negele 1979), and only briefly to sum-
marize the major features of alternative approaches.

Outline of method

The basic approach consists of five main steps. First,
one selects a quantum observable to be evaluated. In
view of the earlier discussion of approximation of few-
body operators versus the full many-body wave function,
it appears most prudent in any practical applications
where only low orders of corrections to the stationary-
phase approximation can realistically be evaluated, to re-
strict attention to expectation values of few-body opera-
tors.

Next, one expresses this observable in terms of the
many-body evolution operator. Since the evolution
operator contains all the information available from the
full many-body Schrodinger equation, this may always
be done through evaluation of an appropriate trace or
level density, adiabatic switching on of an interaction,
preparation of in or out states, or some other suitable
construction. An example of considerable generality will
be the evaluation of the expectation value of any opera-
tor 6' in an eigenstate of the many-body Hamiltonian.
Following Gutzwiller (1967, 1969, 1970, 1971), one may
write

i I dt e' —trd'U(T, O)

= —i JdTe' g(X~~e ~ ~X)

(N iw[x)
g E —EN+I 1

where tr denotes the trace, U is the evolution operator,
and I ~

X) I denotes a complete set of eigenstates. Thus
the Fourier transform of the trace of 6' times the evolu-
tion operator yields a simple pole at each eigenvalue E~
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2. Example with one degree of freedom

Before embarking on the solution of the many-body
problem, it is useful to illustrate the salient elements of
the method by applying it to the trivial problem of one-
dimensional quantum mechanics in the potentials
sketched in Fig. 16 (I.evit, Negele, and Paltiel, 1980b).

To find the eigenstates in a potential V(q), we set
6'= I in Eq. (5.1), evaluate the trace by integrating over
a complete set of coordinate states

~
q), and utilize the

Feynman path integral representation for the evolution
operator (Dirac, 1933; Feynman and Hibbs, 1965; Reed
and Simon, 1972) to obtain

FIG. 16. Sketches of potentials V(q), periodic trajectories, and
turning points as discussed in the text. i f—dTe' f dq(q ~e

'
~q)

with a residue equal to the expectation value of 6' in that
state. For evaluation of the spectrum, 6' may simply be
taken as unit.

The third step is to write a functional integral repre-
sentation for the evolution operator U(T, O). At this
stage, the theory is formally exact, and one still has the
quantum mechanics of the full many-body problem.

The fourth step, which yields the lowest-order approx-
imation, is to apply the stationary-phase approximation
(SPA) to the functional integral appearing in U, as well
as to any other integrals which cannot be performed
analytically, such as the time integral in Eq. (5.1). Of
the infinite number of fields occurring in the exact func-
tional integral for U, the SPA selects one or more dis-
tinct fields which render the action stationary and thus
constitute the "best" fields with which to obtain a
leading-order approximation to the observable of interest.
In all the alternative functional integral formulations,
these stationary solutions will have the physical interpre-
tations of a mean-field theory, and the formalism
presented subsequently in detail renders this mean-field
physics particularly transparent. Ambiguities concerning
initial conditions have no opportunity to arise in this
theory, since the SPA specifies the boundary conditions
as well as equations of motion for the mean field. Also,
since application of the method to different problems
will yield different functionals to be approximated in the
SPA, each problem will give rise to a different mean-
field theory.

The final step in the method is to systematically evalu-
ate the corrections to the SPA. Formally, for problems
with time-independent mean fields, one may obtain vari-
ous familiar forms of perturbation expansions. A partic-

= —i dtei
0

f „q f D[q(, )]e,s(, (~)I

(5.2)

where

S[q(t)]=f dtI —,mq(t) —V[q(t)]I (5.3)

is the classical action for a trajectory q(t) satisfying the
boundary conditions

q(0)=q(t)=q . (5.4)

Application of the SPA to the functional integral over
q (t) yields

iS jq(t)] I &, iS[qo(t)]
(5.5)

where qo is the stationary solution to the classical Euler-
I.agrange equation arising from 5S=O. That is, qo(t)
satisfies

Gj
m qo

———(()' V(qo),2 (5.6)

subject to the boundary condition Eq. (5.4). The factor
A is the result of performing the Cxaussian integral for
quadratic fluctuation about qo(t), and its explicit form is
immaterial to the present argument.

To apply the SPA to the integral over q in Eq. (5.2),
we note that S[qo] in Eq. (5.5) depends upon q through
the end points of qo(t), Since the derivative of the ac-
tion with respect to the end point yields the momentum,
stationarity of S[qo] requires
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as[q, ] as[q, ] as[qo)0= + =p(t) —p(0) .
aq

=
aq(t) aq(0)

=

Thus Eq. (5.2) becomes

(5.7)

1Tr E —H +ig
.~,g (

i f W[T(E)])m

iW[T{E)j

iW[T{E)] (5.14)

Tr = iA—' f dT e'~T+~'T'
0

which has poles for all energies satisfying the quantiza-
tion condition

iR {T)
0

(5.8)
n 2'= W[T(E)]=f p dq . (5.15)

as(T)
aT (5.9)

where E(T) is the energy of a classical periodic orbit of
period T The f. inal SPA result obtained by summing
over all periods T which satisfy the stationarity condi-
tion Eq. (5.9) is

(5.10)

where f~ denotes the factor obtained by integrating the
quadratic fluctuations around the stationary point T

The structure of the final result, Eq. (5.10), is particu-
larly simple for the case of a potential V(q) with a single
minimum as sketched in Fig. 16(a). The classical period-
ic trajectory may be visualized in terms of the motion of
a particle constrained to move on a surface the shape of
V(q) in a uniform gravitational field. When it is
released from position q, it executes periodic classical
motion with energy E and fundamental period

I /2

(5.11)T(E)=2 f 2[E —V(q)]

Clearly, any integer multiple of T(E) satisfies the sta-
tionarity condition, so that T =mT(E). Noting that
the exponent in Eq. (5.10) may be written

T
W(T )=ET + f (pq —H)=mW[T(E)],

(5.12)

where

T{E)
W[T(E)]=f pq dt =f p dq

where S(T) is the classical action for a classical trajecto-
ry which is periodic both in coordinate q and momentum

p with period T, and where an additional quadratic fluc-
tuation factor is included in A'.

Noting that the derivative of the action with respect to
the final time yields the negative of the energy, applica-
tion of the SPA to the T integral in Eq. (5.8) leads to the
condition

a'
m qo ———V[ —V(qo)],

ar
(5.17)

so that the effect of continuation to imaginary time is to
replace the original classical problem by the analogous
problem in the inverted potential shown in Fig. 16(c).
Calculation of the stationary solution in region II corre-
sponding to one classical oscillation from q2 to q3 and
back and repetition of the steps performed above for real
solutions gives rise to the period

1/2
PlTn(E) =& 2

2[ V(q) E]—(5.18)

and a contribution to the trace of e ", where

The factors f~ turn out to contribute the same magni-
tude for each m and a phase of rr/2 for each classical
turning point (Gutzwiller, 1967), so their inclusion sim-
ply changes the minus sign in the denominator of Eq.
(5.14) to a plus and thereby yields the correct Bohr-
Sommerfeld quantization rule (Kramers, 1926)

(2n + 1)rr= W(T(E))=f p dq . (5.16)

The lowest state in the well thus acquires its proper
zero-point energy in this approximation.

An interesting and important new feature arises in the
analogous treatment of the double-well potential in Fig.
16(b). For energies between Eo and Ei, classical periodic
solutions of the form discussed above exist separately in
regions I and III. The fundamental period TI and re-
duced action Wi in region I are given by Eqs. (5.11) and
(5.13), respectively, and the analogous expressions for re-
gion III are obtained by the appropriate change of limits.
Since the SPA for the time integral in Eq. (5.8) requires
summation over all the isolated stationary points in the
complex T plane, in addition to all integral multiples of
the real periods TI and T»&, integral multiples of classi-
cal periodic trajectories with complex periods must also
be included.

For the potential of Fig. 16(b), the existence of a clas-
sical periodic solution with purely imaginary period may
be easily understood by considering the continuation of
the classical equation of motion, Eq. (5.6), to imaginary
time. Replacing (it) by r, Eq. (5.6) may be written

=2 f I2m [E—V(q)]J' dq, (5.13)
Wir ——2 f I2m[V(q) E]J' dq . —(5.19)

and ignoring the factor f„, Eq. (5.10) yields the follow-
ing series:

A general periodic trajectory in the double well of Fig.
16(b) is thus comprised of any number of closed orbits in
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each of the three regions connected in any order, so that
the SPA approximation Eq. (5.10) is generalized to

1 . , 'kWr( ) lrr rr( ) '~rr rrr(E)Tl —EA ki e eE —H+tg
(5.20)

The technical question of phases in the quadratic correc-
tion factor fki is addressed by Bender et al. (1978),
with the result that fkt~ is a constant times ( —1) +i+
Calculating the sum over all trajectories beginning in any
of the three regions and containing all combinations of
cycles in each region yields

Tl 1

E —H +ig n=1 m=0

OO —e "'g —e
m=0n=1

OO iWI
oc —e ' —e ( —e )

j=o

m n

m
'wilr l

( —e )
j=o

OO OO —wg ( —e ')"( —e ")g ( —e "')'
m=1 n=o l =0
n

'm

—wu —e
i(H i+ Wur) iW—2e —e —e

(1+e' ')(1+e' '")+e—wry
(5.21)

Two special cases of the general double-well problem
are of particular interest. For the symmetric double
well, 8'» ——8'»i and we may recover the familiar WKB
expression for the splitting of the nearly degenerate even-
and odd-parity states. In lowest approximation, if the
central barrier were very high, the problem of Fig. 16(b)
would reduce to a degenerate pair of single-well prob-
lems, yielding degenerate solutions satisfying Eq. (5.16):

W, (E„' ') = (2n + 1)rr, (5.22)

where E„' ' denotes the zeroth approximation to the nth
eigenstate. This result follows immediately from the
SPA result, Eq. (2.21), since in the case of a high bar-
rier, 8'» is very large, rendering e " exponentially
small, and the denominator reduces to double poles at
energy E„' '. In next approximation, we may write
En=E„+bEn and expand the condition for a pole in
Eq. (5.21),

(
i Wr(ED+ trE„),p

—
Wrr (E„+t)E„)

(5.23)

to first order in E„. Using Eq. (5.22), noting from Eqs.
(5.11) and (5.13) that

BW(E) 2rr

BE N

—W11(EO)
and observing that e " " AEn is second-order small,
we obtain

+~E ) W11(E +~Ett )
(5.26)

and expansion to first order in b.E„as before yields

solutions corresponding to imaginary time.
A second application, closer in spirit to our subsequent

treatment of tunneling decay, is obtained by distorting
the right-hand well to extend to the edge of an arbitrari-
ly large normalization box, yielding the potential for a
metastable state sketched in Fig. 16(d) (I.evit, Negele,
and Paltiel, 1980b; Patrascioiu, 1981; Lapedes and Mot-
tola, 1982). The lifetime is obtained by evaluating the
smoothed level density, defined as the imaginary part of
Eq. (5.2) with the infinitesimal g replaced by a finite
width y, such that y is smaller than any physical width
but larger than the level spacing in the normalization
box. In this case, we obtain periodic stationary solutions
in region I as before, and in lowest approximation these
yield the result Eq. (5.22) for the energies of the quasi-
stable states. Also, as in the case of the symmetric po-
tential, periodic imaginary-time trajectories are obtained
in region II, corresponding to solution of the classical
equations of motion in the inverted potential sketched in
Fig. 16(e). The role of periodic solutions in region III is
quite different in the present problem, and one may

iwin
show that e '" yields negligibly small contributions.

Thus the smoothed density of states has poles at com-
plex energies E„+EE„satisfying

2
B8'1 w, (E0)bE„=e (5.24)

lI nhE„=—

where

(5.27)

which yields the familiar WKB result for the energy
splitting

a)(E ) —rr, (E„)I n=2 e
2&

(5.28)

0 ~ —W2(E„)/2n= n+
2

Thus, in this application, the dominant quantum effects
in the classically forbidden region, region II, have been
reproduced in the SPA through the periodic stationary

Near E„, the level density is therefore proportional to

2 —1

(E E„)'+—
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so that I „ is the inverse lifetime of the metastable state.
To within the factor of 2, which is presumably corrected
by a careful evaluation of all corrections to the SPA, Eq.
(5.28) is recognized as the familiar WKB formula for
tunneling decay of a metastable state.

This simple example from one-dimensional quantum
mechanics, which of course could be solved much more
easily by conventional techniques, turns out to embody
all the essential features of our subsequent treatment of
the eigenstates of large-amplitude collective motion and
tunneling decay of quantum many-body systems. In par-
ticular, application of the basic steps in our systematic
procedure yields periodic equations of motion evolving in
either real or imaginary time. Calculation of an ap-
propriate action specified in terms of these stationary
solutions then provides the necessary information to ex-
tract the leading approximation to the spectrum of
bound states, and energies and lifetime of quasistable
states.

3. Limitations

I(e)=f dx g(x)e (5.29)

Expanding f(x) and g(x) about the point xp at which

f(x) is a minimum, expanding all terms other than

f "(x) in the resulting exponent, and integrating the re-
sulting products of polynomials multipled by a Gaussian
yield the series

—f(xo)/c,I(E)=g(xp)e
1/2

27TE,

f "(xp)

g "(xp)
X 1+~

2g (xo)f "(xo)

f""(xo)
8[f"«o)]'

g'(xp)f '"(xp)

2g (xp)[f "(xp)]

5[f"'«o) ]'
+Wc

24[f "(xo)l'
(5.30)

It is clearly desirable for the functional integrals we
utilize to have a form analogous to Eq. (5.29) with an
explicit parameter corresponding to c.. One such alterna-
tive is a semiclassical expansion in powers of A. The ex-
ample in the last section of one-dimensional quantum
mechanics was such an expansion. Explicitly including
the factors of fi normally suppressed for economy, the

Whereas the functional integral formulation offers the
compelling conceptual advantages emphasized above, it
is not without its own problems and limitations.

The most salient problem of physical concern is the
absence, except in specifically constructed models, of an
explicit small parameter in which to generate an asymp-
totic expansion. For purposes of discussion, it is useful
to consider the familiar Laplace method for generating
an asymptotic expansion for the integral

functional integral JD[q]e'~ '&' is directly analogous
to Eq. (5.30), with A' playing the role of the expansion
parameter c. Unfortunately, although the exponents of
the many-body functional integrals may be written expli-
citly to contain a multiplicative factor of 1/A, they will
also contain additional A' dependence, rendering a strict
semiclassical expansion impossible.

A second alternative would be to generate a 1/X ex-
pansion. One may imagine a class of theories which
differ from one another both by their interaction
strength and the spin degeneracy N in some spin degrees
of freedom. In certain special cases, requiring that the
class of theories has a sensible limit for large N specifies
the Pf dependence of the interaction strength and allows
one to rescale the integration variables such that an ex-
plicit factor of N will multiply the action. The resulting
formal expansion in powers of 1/X may then be useful
if the physical Hamiltonian embodies a sufficiently high
spin degeneracy. The question thus arises whether in nu-
clear physics one might attempt to formulate such an ar-
gument on the basis of the spin-isospin degeneracy of
four. Unfortunately, when such a 1/K expansion is car-
ried out, the leading contribution to the potential energy,
the direct Hartree potential, is considerably weaker than
the Fock exchange term, which formally should be a fac-
tor of 1/X smaller. Although we will later examine a
model in Sec. VI which does admit a 1/X expansion,
there appears no way, at present, to motivate a 1/X ex-
pansion for a realistic nuclear Hamiltonian.

The lack of an explicit expansion parameter does not
necessarily preclude application of the SPA or saddle-
point approximation. Indeed, the functional integrals we
evaluate may well possess saddle points with very large
second derivatives in the directions of steepest descent,
giving rise to useful and accurate low-order approxima-
tions. For example, in the case of very collective states,
it seems physically plausible that many particles partici-
pate in motion characterized by the appropriate collec-
tive variable, and that the action for this variable is thus
multiplied by a suitably large constant reflecting this col-
lectivity. However, in this case, there is as yet no quan-
titative measure of the accuracy of the expansion.

A second aspect associated with the lack of expansion
parameter is the freedom to write a variety of different
exact expressions, each of which yields a different SPA
lowest-order approximation. For example, in Eq. (5.29),
if we set v=1, there is no criterion by which to decide
that f belongs in the exponent instead of f ln(g) or any
other arbitrary decomposition of the integrand. Much
more freedom exists in the many-body case, as we shall
see below, with the result that we can arrange for the
SPA to yield a mean field of the Hartree, Fock, or pair-
ing form, as well as any reasonable or even unreasonable
combinations of' these forms. Pragmatically, one may be
guided by physical arguments and the minimization of
corrections to the SPA, but formally the theory suffers
from the lack of an explicit expansion parameter.

In addition to these formal considerations, there are
serious practical limitations associated with evaluating
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27TE,

f "(xo)

' 1/2 —f t,'xo)/&
g(xo)e

in Eq. (5.30), it is usually practical to explicitly calculate—f (xO)/c
only the stationary contribution g(xo)e . The sig-
nificance of omitting the Gaussian integral may be seen
by rearranging Eq. (5.30) to obtain the logarithm of I(E):

even the Gaussian integrals arising in the SPA. As we
shall see in the next section, generalization of Eq. (5.30)
to many degrees of freedom replaces f "(xo) by the deter-
minant of the second functional derivative of the action.
In a problem involving only one nontrivial space-time di-
inension, whether the functional depends upon functions
of time, functions of one spatial dimension, or functions
of one variable parametrizing symmetric behavior in
space and time, simple techniques exist for evaluation of
the resulting determinants (Coleman, 1977). In a time-
independent application with three spatial degrees of
freedom, however, the problem is equivalent to solution
for all the eigenvalues of the random-phase approxima-
tion (RPA). Including time dependence further compli-
cates the problem to a four-dimensional generalization of
the familiar RPA problem.

Thus, although it is straightforward to generate formal
expressions corresponding to the multidimensional gen-
eralization of the term B. The auxiliary field

To obtain a functional integral representation of the
many-body evolution operator, it will prove useful to
rearrange the nuclear Hamiltonian as follows:

w+ ~+~0= ~ Tapaaap+ 2 ~ Vapy5 a p 5 y
ap apy5

x 1

apPap+ 2 ~ Uapy5PayPp5 ~

ap apy5
(5.32)

A final limitation to bear in mind is the problem of
the effective interaction. Since, as demonstrated below,
the SPA and its systematic corrections generate the full
perturbation expansion, the method in principle includes
all the two-body ladders and higher correlations wihch
are to be included in the effective interaction. Although
formal methods to treat these higher-order terms are dis-
cussed, no practical calculation has yet been implement-
ed, so the pragmatic approximation adapted at present is
to utilize the effective Skyrme-like interactions motivated
by our present understanding of the ground-state prob-
lem. Although the aesthetic deficiencies of this approxi-
mation are all too obvious, as discussed previously, there
are strong physical grounds for expecting the effective
interaction for low-energy dynamics to be very well ap-
proximated by that derived for the nuclear ground state.

1— 2' (xo)E
lnI(E) =—[—f(xo)]+—ln f "(xo)

+cA+ 6'c. where

w+ w
Pay=aa Ay (5.33)

(5.31)
and

where A denotes the coefficient of E in Eq. (5.30). Thus
the stationary contribution yields the correct 1/c leading
behavior lnI(E), and evaluation of the Gaussian integral
includes corrections which are formally of order inc. In
a departure from the usual mathematical usage, we shall
refer to evaluation of the stationary contribution—f(xo)/c,
g (xo)e as the SPA, and refer to the factor
[2irs/f "(xo)] as the quadratic correction. In this termi-
nology, then, the SPA yields the dominant I/E behavior
of lnI(E), the quadratic correction yields the lnE correc-
tion, and higher-order corrections yield terms of order c
and higher. We have already seen in the example in the
last section that the simple SPA yielded a meaningful
first approximation. For example, the SPA quantization
condition Eq. (5.15) yielded the same structure and quali-
tative behavior as the quadratically corrected expression
Eq. (5.16). It is reasonable to expect, therefore, that in
subsequent applications, omission of multiplicative deter-
minantal factors which are impractical to evaluate still
yields a meaningful first approximation. This expecta-
tion is further strengthened by the fact that the resulting
theory reduces to well-known useful approximations in
certain limits. In any event, for the pedagogical pur-
poses of this review, it does not appear worthwhile to be-
come excessively mired in the technical details of evalua-
tion of quadratic corrections; and for these specialized
details, the reader is referred to the original literature.

1

+as =Tas 2 g Uapps .
p

(5.34)

The unphysical self-interaction term arising from an-
ticommuting the annihilation operators in the normal-
ordered two-body interaction which has formally been
grouped with the kinetic energy in K will ultimately be
removed from the theory. Transforming to the interac-
tion representation by defining time-dependent operators
which include evolution under the one-body operator
E=g&E~ttp t3,

t—he density operator becomes

(t) iti hatt (5.35)

(5.36)

To avoid notational confusion, in this section I shall af-
fix a subscript to the time ordering operator T, to indi-
cate the variable with respect to which operators are or-
dered, denote the kinetic energy operator as T, its matrix
elements as T~ti or T(x), and reserve the symbol T for
the period of a periodic solution.

The problem of evaluating the trace of the evolution

and the full many-body evolution operator in the interac-
tion representation may be written

r

Ui(tI, t;)=T,exp ——I dt g p r(t)u ttrsptts(t)
apy5
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950 Negele: Mean-field theory of nuclear structure and dynamics

operator involving the exponential of a two-body opera-
tor is structurally analogous to calculation of the parti-
tion function of a system containing two-body interac-
tions. Thus it is useful to utilize a technique first intro-
duced by Stratonovich (1957) and Hubbard (1959) for the
case of statistical mechanics and recently applied to the
nuclear many-body problem by Kleinert (1977, 1978) and
by Levit (1980). These authors introduce an integral
over an auxiliary field to reduce the exponential of a
two-body operator to a functional integral over an infin-
ite set of exponentials of one-body operators. The ad-
vantage of this transformation is that the trace of the ex-
ponential of one-body operators may be evaluated easily,
and the resulting functional integral may be approximat-
ed utilizing the SPA.

The introduction of the auxiliary field is based on the
I

familiar Gaussian integrals for the exponential of a qua-
dratic form specified by a real symmetric matrix A~„

dOm l

(2~i)'" o(oj

=(detA)-'"
iA,J

' (5.37a, b)

These identities follow immediately from performing an
orthogonal transformation to bring A into diagonal form,
noting that its Jacobian is unity, and performing the in-
dependent Gaussian integrals to obtain the product of
the inverses of the square roots of the eigenvalues, which
yields (detA)' . Shifting each variable of integration o~
by the constant p~ and rearranging Eq. (5.37a) yields

exp ——g p A p ~ =(detA) f Q, &
exp —g o A o. ~ exp i g—o A p (5.38)

For noncommuting operators p, an analogous result may by obtained to leading order in At, where Amm = Vmm ht,
by expanding the exponential exp( i b,tg —„o V~„P„) and performing the Gaussian integrals using Eqs. (5.37). Not-
ing that only even powers of o are nonvanishing and retaining all factors of b, t yields

l

~

~
dOm l

, &2 exp b, t o. V „c„—re pxibt ger —V „P„

dOm l
exp b, t go. V „o. —

(2~i.)'" 1+—i Ltd o.~ V~„P„+d'( b t )
mn

=det(&tV) '~'
1 ——g (htV) ' btV „p„btV .„.p„.+p(gt')

mm'
nn'

=det(btV)' exp — At gp„V„„p„+—6'(ht)2
nn'

(5.39)

which is equivalent to Eq. (5.38) to leading order. To re-
cover the evolution operator UI the time interval is bro-
ken up into small discrete steps such that tI ——lht and a
time-ordered product of identities of the form (5.39) is
constructed. Letting the index m denote a, p, and tl,
where u and P represent a complete set of spin, isospin,
and spatial quantum labels, the following notation is
convenient for the continuum limit:

tf
Ul(tf, t; )—:T,exp ——f dt Ip(t)up(t) It.

tf= f D [cr]exp —f dtIo(t)uo(t)] UI (tf, t; )

(5.42)

where
~m ~~aP(tl ) ~

Pm ~PaP( tl )

A ~ ~A p p(tl, tl )(b,t)', .

g h, tf (t, ) f dt f(t) .

(5.40)

(5.41)

tf
UI (tf, t; ) = T,exp i f dt Icr(—t)up(t)]

L l

the measure is defined

f D[o.]—:det[u5]+ f

outdo

p(tl)

pl (2~i)'"

(5.43)

(5.44)

and the curly brackets denote matrix sums of the form
Taking the continuum limit, which is discussed in detail
by Kerman, Levit, and Troudet (1982), yields the result

Ip(t)up(t) I —= g p p(t)u pp pa p (t) .
aPa'P'

(5.45)
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ff
U, (tf, t;)= f D[o]exp —f dtIo(t)vo(t)I U, (tf, t;),

(5.46)

where

f
Ug(tf, t;)=T,exp i —dth (t) (5.47)

and

r

A A
h (t)=g K~p+g op(t).u~~p p a~p .

ap a'p'
(5.48)

In addition to Eq. (5.42), a second useful relation fol-
lows from Eq. (5.38). For a general matrix A, which is
not necessarily diagonal in time, setting p =0, taking
the continuum limit, and using the fact that the measure

Although the interaction representation was useful in
deriving the functional integral representation, Eq. (5.43),
it will be convenient in evaluation of the trace in Eq.
(5.1) and for obtaining equations of motion for wave
functions to transform back to the Schrodinger represen-
tation:

in (5.44) is defined relative to v5, Eq. (5.38) yields

f d[o.]exp i/2f dtdt' g o p(t)A~p~p (t, t')a~p(t')
apa'p'

1/2
det(u5)

detA
(5.49)

This result will be useful in evaluating quadratic correc-
tions to the SPA.

It is important that the significance of Eq. (5.46) not
be overlooked in the proliferation of new notation and
definitions. The evolution operator U, describes the
evolution with, respect to a one-body time-dependent
Hamiltonian h~ parametrized by the auxiliary field o(t).
Equation (5.46) simply states that the exact evolution
operator is obtained by multiplying Us by a functional
of o(t) and .integrating over all o. Thus, as desired, evo-
lution under the influence of a two-body potential has
been reduced to a functional integral over evolution
operators involving only a one-body potential.

Evaluation of the trace of U, requires calculating ma-
trix elements of Eq. (5.46) for a complete set of states

~
f„). Applying the SPA separately to each matrix ele-

ment yields

5SN
TrU&(tf, t;)= g f D[o]exp i Sz[o ]+f dt f dt' g, (o p(t) op(t))[—o p (t') op(t')—].

N P tP a~P t CTth P''

det(u5)

N 5SN
det

5o.5o.

' 1/2 .
t 0)

(5.50)

where

S&[cr]—:—, f dtIcr(t)ua(t)I

—ile tPtt T,exp —i f dth (t) tP)t)
f

t

(5.51)

and o satisfies the condition 5S„[o]/5 a0. Utilizing
the definition Eq. (5.48), stationarity of Eq. (5.48) yields
the result

ff
T,p X(t)exp —i fdtit (t) th, tt)

(r~p(t) =
IPtt T, exp —if, d ( ) ttj

t

(5.52)

Although in the Schrodinger representation p p—=a~p
has no explicit time dependence, a time parameter is in-
troduced in Eq. (S.S2) so that the time-ordering operator
T, places P~p(t) at the correct position t in the h in-
tegral. Choosing the basis

~

hid„) to be a set of deter-
minants of eigenfunctions g of U, , as will be construct-
ed explicitly below, the stationary solution of o is the

one-body density matrix

(5.53)

Using this expression for cr, we note from Eqs. (5.47)
and (5.48) that the evolution operator for the stationary
solution, U, , describes evolution in the one-body poten-
tial

W p (t)=gv pp pp (t) .
ap

(5.54)

Comparison with Eq. (3.18a) indicates this is just the
direct term of the familiar TDHF mean field. Thus, at
the level of the SPA, the approximate evolution operator
is directly related to the familiar mean-field theory. Of
all the o's which in principle must be included to obtain
the exact evolution operator, the most important one, in
the SPA sense, is the self-consistent one-body density
matrix specified by the eigenfunctions of U . The po-
tential defining U, in turn, is the direct Hartree contri-
bution, Eq. (5.52), defined by this same one-body density
matrix.
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Thus far, at the expense of rather cumbersome nota-
tion, the full generality of the spatial, spin, and isospin
dependence of the one-body density operator P~t](t) has
been retained. Except for the subsequent presentation in
Sec. V.D of how to obtian the Hartree-Fock approxima-
tion instead of the present Hartree theory, this generality
is superfluous and provides a significant impediment to
displaying the essential structure of the theory. Hence, it
is useful to suppress spin and isospin variables, specialize
to the case of a local potential specified by Eq. (3.17),
and use coordinate representation. In this case, the la-
bels a and P associated with p &(t) may be replaced by a
single spatial coordinate r so that only the diagonal den-
sity operator p(r)=gt(r)P(r) and a local field, o(r, t),
contribute. Equation (5.45) is replaced by

[p(t)vp(t)] =—f d r d r'p(r, t)v (r r')p(—r', t), (5.55)

The operator ho(t) in Eq. (5.57) is the second quantized
representation of the one-body operator

h (t)=gh (r;,t), (5.58)

where h (r;, t) is the one-body Hamiltonian

h (r, t)= — V'„——V(0)2' 2

+ f d r'o(r', t)v. (r r') . — (5.59)

C. Calculation of quantum eigenstates

In the subsequent presentation, both the context and
the distinction between curly brackets in Eq. (5.45) and
square brackets in Eq. (5.55) should distinguish the sim-
ple Hartree equations from the general case.

the mean field, Eq. (5.54) becomes

W(r, t)= fd r'u(r r')p(r', —t),
and the single particle Hamiltonian becomes

(5.56)
We are now prepared to approximate eigenstates of a

quantum many-body system in a manner analogous to
that in Sec. V.A.2 for a system having one degree of
freedom.

h (t)=T+ f d r ——u(0)+ f d r'o(r', t)u(r r')—1. Periodic solutions

X1ij*(x)1((x) . (5.57)
It is convenient to write the trace in Eq. (5.50) in the

Schrodinger representation for a symmetric time interval

g
T/2 T/2

Tr ((t/T, 2—T/2)=g jd [a]exp —f dl[tr(t)ea(t)] 'Pa T exp —i i dt)t (t) 2'ttl
N

(5.60)

and to define single-particle wave functions which evolve
with the single-particle Hamiltonian, Eq. (5.59):

l

Equations (5.61) and (5.62) are equivalent to the
boundary-value problem

gk(r, t) = U, (t, ——T/2)1i)k(r, —T/2)

—:T,exp i f —dt'h (r, t') pk(r, —T/2) .

(5.61)

i pk(r, t) =h —(t)gk(r, t),~ a

with the boundary condition

(5.64)

The trace in Eq. (5.60) is conveniently evaluated by de-
fining the states

~

]II&) to be determinants comprised of
the eigenfunctions of the single-particle evolution opera-
tor on the interval (+T/2, —T/2)

T/2—i dt'h (r, t')
T,e —T&2

'
gk(r, —T/2)

Pk(r, T/2) =e ' ' ]Pk(r, '—T/2) . (5.65)

(5.66)

one obtains the equivalent boundary-value problem

Defining new single-particle functions with a phase fac-
tor removed,

=e " '
Pk(r, —T/2), (5.62)

where a is real, since the single-particle evolution opera-
tor is unitary. Letting In I denote the occupation num-
bers of the single-particle wave functions included in the
determinant %]v, Eq. (5.60) may be written

~ a ak(a, T)
i —h (t) pk(r, t) = pk(r, t),

Bt T

with the periodic boundary condition

4k(r T/2)=4k(r —T/» .

(5.67)

(5.68)

TrU(T/2, —T/2)
T/2

X f D[a]exp f dt[cT(t)uo(t)]'
Inj

—T/2

ak(at T) ~ (5.63)
kEInI (5.69)

At this point, the stationary sigma field o. may be ob-
tained from Eq. (5.52), as in the last section, or
equivalently from variation of the exponent of Eq. (5.63)

T/2
S(„)[o]=—, f dt[o(t)uo(t)] —g ak(o, T) .

2 —T/2 kejn'l
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cr(r, t*)*=o(r,t) . (5.70)

noting that the equation of motion, Eq. (5.67) implies

This latter expression is particularly useful in setting the
stage for continuation to imaginary time and for subse-
quent variation with respect to the period. The function-
al derivative of ak(o, t) .with respect to o may be com-
puted by multiplying (5.67) for a solution P"'(r, t) in a
field o'" by P' '(r, t*)~, subtracting the complex conju-
gate of the analogous equation for P' '(r, t*) multiplied
by P'"(r, t), and integrating over r and t A.ssuming, for
the moment, that

iterate to self-consistency.
Just as the classical equation, Eq. (5.6), when contin-

ued to purely imaginary time, admitted periodic solu-
tions which described tunneling in the classically forbid-
den region, so also Eqs. (5.67), (5.68), and (5.74) yield
periodic solutions when continued to imaginary time
which we will subsequently utilize to understand spon-
taneous fission. For purely imaginary time, we define
(it)—:r and let Pk(r, r)=Pk(r, r/i) be a real solution to
the equations obtained by replacing (it) in Eq. (5.67) by

It follows that Pk[r, (r/i)*]* =Pk(r, r), —so that the
self-consistent coupled equations in imaginary time are

T

d
dt f dr P (r, t*).*gk(r, t)=0

so that the normalization may be defined

f dr QJ(r, t*)*pk(r, t)=5~k,

and taking the limit as cr' ' approaches o'" yields

(5.71)

(5.72)

V, ——V(0)
Bt 2m " 2

+ f dr'u(r —r') gP(r, r)P(r,—r) Pk(r, r)

pk(r, t) . (5.76)
=f f f dr dr'dt 5cr(r', t)u(r r')—

5o.

&&/„(r, t*)*P„(r,t) . (5.73)

Hence, stationarity of S(„)[cr] in Eq. (5.69) yields

cr (r, t)= y yk(r, t*)*yk(r,t),
kcInI

(5.74)

which is consistent with the assumption Eq. (5.6) and
which agrees with Eq. (5.50) for real time.

The self-consistent set cf equations (5.67), (5.68), and
(5.74) merit several comments. Clearly, this set of equa-
tions is the many-fermion counterpart of the periodic
classical solutions to Eq. (5.6) for one degree of freedom.
Since the P's are periodic, o (r, t) is necessarily periodic.
The form of solution P=e ' '~ P, with P periodic, then
follows from Floquet's theorem, and as in the analogous
case of Bloch's theorem for crystals, in which periodic
functions are multiplied by exponentials containing a
quasimomentum, the quantity a/T has the physical in-
terpretation of quasienergy. For real time, these equa-
tions reduce to the self-consistent coupled equations

Solutions to Eqs. (5.76) may be found by the same itera-
tive method as for Eqs. (5.75) and will be discussed more
fully in Sec. V.D.

Returning to real time, a particular class of solutions
to Eq. (5.75) is those with no time dependence, in which
case the SPA simply reproduces the static Hartree equa-
tions. Multiplication of Eq. (5.75) by yak(r) and integra-
tion over d r yields the familiar Hartree single-particle
energy

=(k [rC
~
k)+ g (kl

~

u
~

kl ),
lcI n I

(5.77)

S(„)[o. ]=—TEH,

where

(5.78)

where, in an obvious notation, the kets denote single-
particle states. If we recognize that

T/2f dt(o'vo')-
may be written as T g (kl

~

u
~

kl ), Eq. (5.69) yields
k, lc, In I

i —— V'„——V(0)
1 2 1

Bt 2m ' 2

EH —— g (k ~K
~
k)+ —, g (kl

~

v
~
kl) (5.79)

kcI n J klEIn I

+ f dr'u(r r') gPk(r, t)—Pk(r, t) Pk(r, t)
k

ak
pk(r, t) (5.75)T

and thus

TrU(T/2, —T/2)= g e
InI

det(u5)

g2g I n I

det

1 /2

with the boundary conditions that P vanish on the spa-
tial boundaries and be periodic with period T. As a
four-dimensional generalization of the three-dimensional
Hartree equations, one straightforward and successful
means of solution is to specify an initial function o(r, t),
solve the eigenvalue problem Eq. (5.75) for the resulting
P's in this potential, calculate the corresponding cr, and

(5.80)

The quantity E~ is the familiar Hartree approxima-
tion to the total energy, and arises from the fact that the

1factor —, dt[oucr ] prop.erly corrected the overcounting
of the potential energy which occurred in the sum of
Hartree eigenvalues. Deferring to the next section con-
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sideration of the quadratic corrections reflected in the
determinant in Eq. (5.80), the Fourier transform of the
leading contributions to trU(T/2, —T/2) in Eq. (5.80)
thus has a pole at the Hartree energy for each set of oc-
cupation numbers t n I yielding sensible physical approxi-
mation for one class of eigenstates.

I

terms. With this expression for E, one may then observe
that in W(T), defined in Eq. (5.83), ET cancels all the
terms in S(T) except those involving the time derivatives
of single-particle wave functions, with the result

T/2
W(T)=i f dt f dr gPk(r, t) it)k(r, t) . (5.85)

2. Quantization conditions for time-dependent solutions

In the general case of time-dependent solutions to Eqs.
(5.75), ignoring quadratic corrections as before, eigen-
states are specified by poles of the following Fourier
transform:

tr . = f dTe' trU(T/2, —T/2)E —H+ig

n

where S(„)[o,T] is given by Eq. (5.69). For notational
simplicity, it is useful to restrict our attention to the par-
tial trace associated with one particular set of occupation
numbers, to suppress I n ] from the notation, and to
adopt the convention that sums over single-particle state
labels are restricted to this set. Once one specifies occu-
pation numbers and the period T, the self-consistent
periodic time-dependent Hartree equations specify o and
the associated u's. Hence o. and the a's depend parame-
trically upon T, and S[o ] is a function of T, which we
emphasize by writing

S(T)=—, f «[o (t)uo (t)] —gak(o, T),
k

(5.82)

and the partial trace associated with occupation numbers

I nj is

U(E) «ei [ET+s(T)) dt eiw(T) (5 83)
0 0

The formal similarity between this problem and the
one-dimensional example, Eq. (5.8), is now explicit.
Whereas in that one-dimensional example stationarity of
ET +S(T) led to the condition that E be the energy of
the classical solution, in the many-body case stationarity
implies that E is the Hartree energy of the self-consistent
periodic solution:

(5.84)

where the Hartree energy functional is defined by Eq.
(3.5) with the exchange terms omitted. Since the ())'s are
related by a phase factor, Eq. (5.66), to the P's which
satisfy a time-dependent Hartree equation, M(P&, P&) is
time independent by Eq. (3.8). Equation (5.84) is derived
by rewriting Eq. (5.75) in terms of a scaled time variable
rl =t /T, noting that T then appears as an explicit
parameter, calculating the variation of the eigenvalue
Ba/BT as in the steps leading to Eq. (5.73) and noting
that f dt [(r Uo ] removes the potential overcounting

From this point on, derivation of the quantization condi-
tion follows precisely as in the one-dimensional example,
Eqs. (5.10)—(5.15). Denoting T(E) as the fundamental
period which gives rise to periodic time-dependent Har-
tree solutions with energy E, stationary points in Eq.
(5.83) are obtained for all integral multiples, mT(E),
with reduced action W[mT(E)] =m W[T(E)]. The
same geometric series, Eq. (5.14), arises, yielding the
quantization condition

n 2~= W[T(E)]
T(E)/2=i f dt f dr gpk(r, t)—(t')k(r, t) .

k

(5.86)

The structural similarity of Eqs. (5.86) and (5.15) is even
more evident if one notes from the Hamiltonian equa-
tions of motion, Eqs. (3.7), that the momentum conju-
gate to the field (ti(r, t) is m(r, t)=if*(.r, t), so that to
within terms involving a s, Eq. (5.86) is essentially of the
form f dr m dP, which is the natural multidimensional
generalization of (IIi() dq.

At the SPA level, quantum states of large-amplitude
collective motion are fully specified by the self-consistent
equations for periodic time-dependent Hartree solutions,
Eqs. (5.75), and the quantization condition, Eq. (5.86).
In general, Eqs. (5.75) specify time-dependent oscillations
having amplitudes which depend continuously upon T,
and the quantization condition singles out a discrete set
of amplitudes and energies corresponding to quantum
eigenstates. The theory represents the simplest available
approximation that has all the physical elements of a
fundamental theory of quantum collective motion. All
the degrees of freedom of the one-body density are acces-
sible, and the dynamical equations and quantization con-
ditions arise with no further prescriptions concerning
collective variables, inertial parameters, or quantization
procedure. Furthermore, as discussed in the next sec-
tion, corrections to the SPA may in principle be sys-
tematically evaluated.

Two special limits of these time-dependent equations
should be noted. Time-independent solutions to Eqs.
(5.75) correspond to n =0 in Eq. (5.86), so the static
Hartree states discussed previously are automatically in-
cluded. For infinitesimal periodic fluctuations about the
static Hartree solutions, the time-dependent quantized
theory reduces to the familiar random-phase approxima-
tion (RPA). Omitting technical details, which are given
by Levit, Negele, and Paltiel (1980a), linearization of Eq.
(5.75) yields the RPA equations, Eqs. (3.38), where A and
8 now include only the direct Hartree matrix elements,
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and periodicity of the single-particle wave functions re-
quires that the period be 2~/co„ for some RPA eigen-
value co . The quantization condition reproduces the
normalization condition E —EN+ 9

(5.89)

PP

(5.87)

where X and Y are defined in Eq. (3.37), and the en«gy
of the state is

E=EH+ma) (5.88)

where EH is the Hartree energy, Eq. (5.79). Recovery of
the well-known RPA in the infinitesimal limit thus lends
further credence to the general theory for finite ampli-
tude quantized vibrations.

D. Corrections to the stationary-phase approximation

Since corrections to the SPA for the many-body prob-
lem involve considerable technical complications and
since the results are generally not amenable to analytical
or numerical evaluation, several comments are warranted
to place this present section in proper perspective.

A primary motivation for the consideration of correc-
tions, of course, is to establish that one is dealing with a
systematic, consistent theory. In addition, insight into
the structure and physical significance of various correc-
tions may be obtained by establishing contact with exist-
ing theory in appropriate limits. Even in cases for which
explicit calculations are impractical, there is considerable
practical value in identifying how to utilize the freedom
in writing different exact functional integral expressions
to minimize the leading corrections. In particular, such
arguments will subsequently be presented to obtain the
Hartree-Fock and Hartree-Pock-Bogoliubov approxima-
tions.

For these reasons, the objective of this section is to
sketch the essential ideas and results, with no attempt to
be technically complete. References for details include
Rajaraman (1975), Coleman (1977), Negele (1979), Levit,
Negele, and Paltiel (1980a, 1980b), and Reinhardt (1980,
1981). For readers who wish to skip this section entire-
ly, no loss of continuity will-arise in subsequent sections
if one accepts the assertion that the self-consistent,
periodic, time-dependent Hartree problem, Eq. (5.75),
may be replaced by the analogous TDHF equation with
the exchange term properly included and 1/2V(0) re-
moved.

One of the arbitrary choices to be made in application
of the SPA is whether to apply it separately to each state
in the sum over N in Eq. (5.50) or to apply it to the full
trace, in which case each matrix element (f~ ~

U
~ f~)

would be replaced by a trace. The effect of treating each
state separately is seen by considering the result of re-
placing the trace in Eq. (5.1) by a matrix element in a
single state

~ P) and, for simplicity, treating the usual
case in which the operator 6' commutes with the Hamil-
tonian:

Thus a single state
~ P) yields poles at the energies of

all the eigenstates which are not orthogonal to
~ P) and

residues equal to the expectation value of d multiplied
by the probability

~ (P ~N)
~

. Exact evaluation of any
term in Eq. (5.50) therefore yields the spectrum of all
eigenstates having nonzero overlap with

~
P~), and the

SPA may be expected to yield a useful approximation to
the state with maximum overlap.

Although application of the SPA to each set of occu-
pation numbers separately is thus adequate for evaluat-
ing the spectrum and will be presented in detail below,
there are situations in which it is necessary to evaluate
corrections to the full trace. One obvious case is calcula-
tion of the expectation value (N

~

0
~

N ) without the ad-
ditional overlap probability

~
(N ~P ~

) . Other applica-
tions include the treatment of systems at finite tempera-
ture, such as neutron star matter, and evaluation of the
nuclear partition function. Utilizing the complete set of
eigenfunctions of U, (T/2, —T/2) defined in Eq. (5.62),
when the single-matrix element in Eq. (5.60) is replaced
by a trace, one obtains (Reinhardt, 1981; Kerman and
Levit, 1981)

Equation (5.69) is then replaced by

$[o]—:—, f dt[ouo] i gin—(1+e ),
k

so that stationarity generalizes Eq. (5.74) to

yfk0k(r r ) 4k(~ i)

(5.90)

(5.91)

(5.92a)

where

fk—=(1+e ") '. (5.92b)

Thus, the sum over n states with unit occupation is re-
placed by a sum over all states with occupation numbers
fk. Projection onto definite particle number may be ac-
complished in the usual way by introduction of a chemi-
cal potential, and recalling from Eq. (5.76) that for static
solutions ak/T plays the role of the single-particle ener-

gy Ek, one notes that when iT~r, fk becomes the fami-
liar Fermi function, (1+e")

From the pedagogical point of view of extracting the
physical essence with a minimum of technical complica-
tions, however, separate approximation of each term in
the trace, as in Eqs. (5.50)—(5.52), yields somewhat more
transparent results. A useful condition in implementing
this approch is to define the basis as the eigenstates of a
definite oo rather than as a functional of o.. By choosing

TrU(T/2, —T/2)= f D[o]e ' f ( " ltrU, (T/2, T/2)

(i/2) dt [cmo]
1

—rak
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956 Negele: Mean-field theory of nuclear structure and dynamics

o'p to be the self-consistent solution for a particular set of
occupation nuinbers {nJ, one retains the results obtained
previously in the SPA for that {n J. As long as we are in-
terested in changes in the position of the pole for this set
{n], it is immaterial that the basis is not optimal for cal-
culating poles associated with other sets of occupation
numbers. A simple way to understand the rationale for a
fixed basis, rather than one functionally dependent upon
a, is to consider the possible terms arising from variation
of S„[cr] in Eq. (5.48). If

~ g„) is independent of o, the
only possible variations are those of o's in the exponent,
so the formal structure of the nth functional derivative is
identical to that in which the expectation value with
respect to

~ f~ ) is replaced by a full trace. In contrast, if
~ P~ ) also depends implicitly on o. (instead of op), in ad-

dition to the derivatives of the exponents, a whole new
class of derivatives of the wave function arises, which
ruins the simple formal structure of the first class of
terms. Guided by this observation that evaluation of a

single term with a fixed basis yields the same formal
structure and physical results as the more complicated al-
ternative of using the full trace, I will proceed with the
evaluation of corrections for a single term in a fixed basis.

RPA correlation energy

The first objective is to correct the leading order SPA
results of Sec. V.C by evaluating the quadratic corrections
specified by the factor

' 1/2
det(U5)

5 S„
det

in Eq. (5.50). The second variation of S„[o.], Eq. (5.51),
in a fixed basis is

5 S„o.
dt"QV», 5(t t") 5(t" —t')5p 5»—. fdt"'+—5(t"' t')V pr—sDpsps(t", t"')

5o r(t)5o~ y(t')

—= (u5)[1 —D (U5)], (5.93)

where

LDpsp s (t, t ):—( TtPps(t)Pp'5'(t ) )
—(pps(t) ) (Pp s (t') ),

( T, d'(t) &'(t') )

(5.94a)

(5.94b)

To understand the physical content of this result, note
first that iD is a simple time-dependent generalization of
the familiar density-density correlation function or polari-
zation propagator. When o. is time-independent and +„ is
an eigenstate of h, expectation values such as those oc-
curring in Eq. (5.94) may be expressed directly in terms of
Green's functions in the one-body field h . From Eq.
(5.94b),

( 8'(t) 6"(t') )

and where, as noted after Eq. (5.52), the time labels t and

t on the Schrodinger representation operators are intro-
duced for proper positioning by the time-ordering opera-
tor.

Using the symbolic matrix notation in the last line of
Eq. (5.93), cancelling out the singular factors det(u5), and.
using the identity det4 =exp(tr lnA), the quadratic correc-'
tion factor becomes

' 1/2
det( V5)

d [1 D( 5)]—i/2

5S
det—

=e —(1/2)tr in[1 —D (v5)]

=exp —g —tr[D (U5)]"
1 1 o

2 n=l"

(5.95)

(5.96)

Expressing 6' and d' in terms of field operators directly
yields a Green's function which may be represented in
terms of Feynman diagrams. The quantity iD in Eq.
(5.94a) is thus a product of two one-body Green's func-
tions starting at t and t' and terminating at t' and t,
respectively, so that it represents a particle-hole bubble.
Had we dealt with the trace instead of a single g„, the
zero-temperature Green's functions would be replaced by
their finite temperature counterparts.

With this direct correspondence to Feynman diagrams
for time-independent solutions, we are now in a position
to examine the quadratic corrections to the Hartree ener-

gy, Eq. (5.79). The term [D (v5)]" appearing in the ex-
ponent of Eq. (5.95) is a matrix product describing an n

term chain of particle-hole bubbles connected by direct in-
stantaneous matrix elements of U. The trace connects the
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SPA

+ -- ——— + +

FICi. 17. Feynman diagrams contributing to the ground-state
energy, including the SPA and quadratic corrections.

chain back on itself, creating a direct RPA ring diagram
as shown by the last term in Fig. 17, and the I/n factor
corrects for the n different ways one could pick the top of
the ring.

The n =1 term involves two density operators at equal
times and requires separate consideration. Specializing to
a local interaction and dropping spin-isospin indices as
before

—,TrD u5= — dr—dr' I dt[(P (r)g(r)Pt(r')P(r') ) —(gt(r)g(r) ) (P (r')P(r') ) ]v (r r')—

TJ—dr dr' 5(r r')p—(r) gg—k(r)P~ (r')fk(r')QI(r) v (r r')—
2 kl

XV(0)—g(kl
i

u

ilk�)

2 kl
(5.97)

Collecting terms in the exponent of Eq. (5.80), from Eqs.
(5.79) and (5.97), we thus obtain

trU(T/2, —T2)

=exp iT g—(k
~

T
~

k)
k

+ g(kl
~

u
~

kl —lk)+ERpA
kl

(5.98)

where ERPA represents the terms in the sum for n & 1 in
Eq. (5.95). Although the correlation energy E„p~ agrees
with the standard Green's-function result derived for
homogeneous systems (Fetter and Walecka, 1971), the
present derivation is applicable to inhomogeneous sys-
tems.

Since the coefficient of T in the exponent of (5.98) is
the energy, it is evident that the quadratic corrections
produced three significant improvements. The annoying

1

self-energy term —,v (0) ever present in the one-body
operator K was exactly cancelled by a compensating term
in —, TrD u5, the Fock exchange term was included, and
the sum of all direct ring diagrams was generated. Feyn-
man diagrams for the energy at this level of approxima-
tion are displayed in Fig. 17, and it is straightforward to
verify that all combinatorial factors are correct. Al-
though a general discussion of corrections for time depen-
dent h is deferred to Sec. VD.4, one may immediately
note that the structure of the —, TrD v5 term will be
identical in the time-dependent case, and thus generate
self-energy and exchange terms.

2. The Hartree-Fock and Hartree-Fock-Bogoliubov
approximations

Although the energy in Eq. (5.98) is the correct HF en-
ergy, the single-particle wave functions defining the ma-
trix elements in that equation are generated by a Hartree

single-particle Hamiltonian, Eq. (5.59), and the theory as
it stands falls short of a self-consistent HF theory.

That we obtained a Hartree, rather than Fock or
Hartree-Fock mean field, is associated with the fact that
we applied the SPA to one particular choice from a large
class of formally exact functional integral representations
of the evolution operator. The theory was essentially re-
stricted to a local mean field by applying the Hubbard-
Stratonovich transformation to the Hamiltonian written
in the form Eq. (5.32). Diagonality in the indices ay and
P5 implies that only the diagonal density instead of densi-
ty matrix appears in the subsequent equations and that o.
defined in Eq. (5.49) must necessarily also be local. To
appreciate the freedom available in writing different exact
functional integral expressions, note that it was an
arbitrary choice in Eq. (5.32) to group a with az and att
with a~. One could just as well have grouped a with a~
and a& with a&, obtaining a different but correct expres-
sion. A simple formal manipulation to effect this inter-
change is to note, by antisymmetry, the identity

1

—, ~ V~~&~a~a~a5a& ————, ~ V~~~&a~a pa~a&,
(5.99)

so that all the exact functional integral expressions must
remain correct if V~p&~ is systematically replaced by
—

V~@~& in the preceding derivation. This seemingly trivi-
al change in the exact expression yields nontrivial changes
in the SPA result. Specializing to a local spin-isospin in-
dependent potential and denoting spin and isospin states
by s and r~, respectively, one may substitute in Eq. (5.45)
and elsewhere the expression

V pcs = —5(r rs)5. ..5, ,5(rp rr—)—
)&5, , 5, , V(r r~) . —(5.100)

In contrast to the Hartree expression, Eq. (5.53), one now
obtains from Eq. (5.45) the result

Ip(t)up(t)I~ —g Jd rd r'p„, ~(r, r', t)u(r r')—
$$18

(5.101)
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For spin-isospin saturated nuclei, the resulting mean field
from Eq. (5.74) is diagonal in spin-isospin, with the form

tr, ~~(r, r') =5„.5,gpss*„(r)P„(r'), (5.102)

where the P's are now eigenfunctions of Eq. (5.67) with
h defined by

h (r, r', t), , ~ ——5„5~ 5(r r') —— V'„——SE1 2 1

2m 2

—u (r r')g—f*„(r')P„(r) (5.103)

is clearly unsatisfactory, with repetition of the preceding
analysis yielding a mean field equal to one-half of the HF
mean field, an SPA energy including only one-half of the
HF potential energy, and with the other half of the HF
potential energy coming from the n =1 term of the qua-
dratic corrections. It is a curious fact, as will become evi-
dent in Sec. V.G, that in many other functional integral
approaches, as well, formulation in terms of antisym-
metrized matrix elements of v generally gives a mean field
containing only half of the HF potential.

The appropriate decomposition to obtain the full HF
field may be motivated by the fact that application of
analogous functional integral techniques to a field theory
of nucleons coupled to mesons yields direct and exchange
terms in the fermion potential arising from the classical
fields of distinct mesons. Thus in a static potential theory
one may decompose the interaction into two terms:

u=u +u (5.105)

such that u will generate the direct Hartree potential and

instead of the Hartree Hamiltonian in (5.57), and where
SE denotes the self-energy term arising from

, g V —~pa ap in Eq. (5.34).
Comparison with the HF single-particle Hamiltonian,

Eq. (3.18), indicates that Eq. (5.103) precisely includes the
Fock exchange term, completely omits the Hartree direct
term, and in addition has a different spurious self-energy
term. Repetition of the calculations leading to Eq. (5.98)
with the form of V in Eq. (5.100) shows that the SPA
yields the proper kinetic energy plus Fock exchange term
plus a spurious self-energy, that the n = 1 quadratic
correction in Eq. (5.96) exactly removes the self-energy
and inserts the proper Hartree term, and that the n ~ 1

terms include exchange RPA ring diagrams.
The purely Fock SPA theory obtained above is no more

satisfying than the previous Hartree theory, but is indica-
tive of the freedom available by writing alternative exact
expressions, and suggests that a proper HF theory should
be attainable by an appropriate representation of the two-
body potential. The naive guess of writing the interaction
in ihe antisymmetrized form

1 1 1 1

—, g V~prsa ~a pa sar —, g——( —, V~prs ——, V~psr)a ~a pa sar
apy5 apy5

(5.104)

u will generate the exchange Pock potential. To effect
this decomposition, a sufficient condition is to require
that the direct Hartree potential of u and the exchange
Fock potential of u vanish in the state

~

4'„), that is

g(kI ~u ~a )=g(kt~u ~kI)=0. (5.106a)

Although this condition may be enforced in an arbitrary
system, and the derivation is by no means limited to
closed shells or nuclei with at most one particle or hole re-
lative to a closed shell, these latter systems are particular-
ly simple to treat by the requirement that the following
spin sums vanish:

D ~ E
Vss's's =gauss'ss' =0 . (5.106b)

By virtue of Eq. (5.105) and our previous arguments, one
obtains an exact evolution operator if one systematically
Icplaccs u p&s by thc expression (u p&s

—u ps&). Thc Ic-
sult of such a substitution with a local potential is evident
from preceding arguments. The potential u will generate
the terms of the preceding Hartree theory except that, by
Eq. (5.106), the self-energy term vanishes and the Fock
term in the n =1 quadratic correction vanishes. Similar-
ly, u will yield the preceding Fock theory, except that
the self-energy is again zero and the Hartree term in the
n =1 quadratic correction again vanishes. The net result
is that the SPA yields an h which contains the proper
HF mean field and the correct HF total energy and that
the n =1 Cxaussian correction vanishes identically. As
remarked earlier, these conclusions pertain to time-
dependent, as well as time-independent solutions.

The observation that the leading quadratic correction
vanishes provides the best justification for selecting this
particular decomposition of the interaction. In the ab-
sence of a formal expansion parameter, it is clearly desir-
able to force as much of the physics as possible into the
stationary contribution. An obvious criterion for selec-
tion between alternative exact functional integral expres-
sions is that the saddlepoint be as steep as possible, or
equivalently, that the quadratic corrections be minimal.
Since the leading quadratic correction is proportional to
tr(u5D), it is clear by construction that condition (5.107)
will make it vanish, so one is led naturally to the same
HF decomposition from the viewpoint of minimizing the
leading correction.

Condition (5.106), to obtain the HF decomposition,
may be implemented in a variety of ways. As a prelude to

Equation (5.106b) may be implemented easily by spin
algebra, as suggested by the example of the one-pion po-
tential. Since it contains Ir~'cT2TI 7 ~, the spin (or isospin)
trace vanishes and it automatically represents a com-
ponent of V .

Finally, using the antisymmetrization freedom in Eq.
(5.97), the interaction may be written in the form

z
—, ~ u~prsa~a pasar =

2 X u~prs u~psr)a ~ pa sar .
apy5 apy5

(5.107)
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E
U =(

3 cTi cT'p)v(ri —rp) (5.108)

When the potential is written in this form, it becomes
clear that the one-body density matrix, and thus o., may
be thought of as four independent spatial functions

3

cT(ricri, r2c'r2)=cro(rir2)+ y(cT2
~

cT;
~
cri)cT;(ri, r2) .

(5.109)

Writing v and v as in Eq. (5.108}yields identical equa-
tions of motion for the three spatial components, so in
fact only two independent cT fields are actually utilized in
the functional integral. T'wo linear combinations of these
independent o fields ultimately generate the direct and ex-
change components of the HF mean field. Thus, in ex-
ploring the freedom to write alternative functional in-

I

the Hartree-Fock-Bogoliubov theory, it is useful to con-
sider the special case of' a central potential and a closed-
shell nucleus and to note that the following decomposi-
tion satisfies condition (5.107) and thus Eq. (5.106):

v =(1 —, o—,o.,)v (r, —r~),1

tegral representations, we were led from the Hartree and
Fock theories which each utilized a single cr field, to the
HF approximation which utilized two independent fields.
Since there are four fields available for a system with spin
and sixteen available for nucleons with spin and isospin, it
is clear that there is still a great deal of additional free-
dom in the functional integral representation which, in
principle, could be used to advantage.

Since Hartree and Fock mean fields arise from applica-
tion of the Hubbard- Stratonovich transformation to the
alternative groupings of creation and annihilation opera-
tors in Eq. (5.32), it is natural that the pairing field should
arise from grouping the creation operators together and
the annihilation operators together. Thus, following Hub-
bard (1959), one may introduce a complex field X ti, de-
fine the operators

YJ&g=Q&Qg (5.110)

'g&g=Q gQ &,

and obtain the following alternative to Eq. (5.42) for the
interaction representation evolution operator:

T,exp —— dtyl ti(t)V &ysy)ys(t) =D[X~,X]exp — dtX*ti(t)VatiysXys(t) T,exp —— dt V ttys[X'tigys+yI'tiXys]

where fD [X*,X] indicates independent integration over
the real and imaginary parts of X. Repetition of the steps
which led to Eq. (5.52) yields

~

~

~

T, Pi p(i)exp( —i fdi h~(i)di) 'P„)
Xapt = . , (5.112)

~

~

~

~

~

T,exp —i fdi hzii)dt d„)
where the mean field appearing in the single-particle
Hamiltonian is now the pairing field:

hz(t) =T+ —, g Vatiys[Xap(t)y)ys+gaHys(t}] .
apy5 (5.113)

~+~E+ ~P (5.114a)

where the exchange and pairing matrix elements of v

vanish, the direct and pairing matrix elements of v van-
ish, and the direct and exchange matrix elelents of U van-
ish. For a central potential and a closed-shell nucleus,
these conditions are satisfied by the following generaliza-
tion of Eq. (5.108):

To combine Hartree, Fock, and pairing fields in the
same theory requires a generalization of the decomposi-
tion, Eq. (5.105):

l

The total mean field in this case is

h(t)=T+ g I cr(aty)(V p as
—yVapsy)pps

apy5

(5.111)

+ —, Vatiys[X*p(t)y)ys+yjattX ys(t)] I,
(5.115)

with o and X specified by equations of the form (5.52)
and (5.112), but with h and h& replaced by the total
mean field h(t). Instead of defining

~ i'„) in Eqs. (5.57)
and (5.112) to be a Slater determinant, the self-consistent
problem is much simpler if

~ g„}is chosen to be a BCS
wave function, in which case the periodic self-consistent
HF equations are replaced by self-consistent Hartree-
Fock-Bogoliubov equations. Introduction of the pairing
field has also been treated recently by Kleinert (1978}and
by Tomoda and Sevgen (1982).

Several other alternatives to the decomposition (5.105)
may be used to generate a Hartree-Fock rather than a
Hartree mean field. Writing the Hamiltonian in terms of
antisymmetrized matrix elements Vap&5=Vap&~ —Yap~&,
one may arbitrarily decompose the evolution operator in
the form

v =(1—cTToT)v(ri —rq),~D 1 2

v = —,(o.„o.„+o,cr, )v(ri r.2), —~E & 1 2 1 2

v = , (o„'oT o,'cT, )v (r, r2)—. —. —(5.114b)

exPI c [ ~PayVapysPps++ +( d +~)PayVapysPps] I

The density operators p in the first term may be removed
by replacing them by derivatives with respect to external
sources, as in Eq. (5.124) below, and the second term may
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be linearized with an auxiliary field. Since the first term
deliberately has been made independent of the auxiliary
field, application of the SPA yields a stationary field
which is any desired multiple of the density and thus, as
utilized by Reinhardt (1980) for A, = —, one obtains the HF
mean field. In addition to the usual class of SPA correc-
tions, one also has an infinite sei of perturbation correc-
tions arising from the derivatives with respect to the
external source. Since this method effectively removes
part of the potential energy term from the variation with
respect to the auxiliary field, an equivalent result may be
obtained by arbitrarily requiring that a factor e' not
be varied in the SPA, corresponding to g in Eq. (5.29),
and. that the remaining factor e " + ' be varied in
the usual way, corresponding to f in Eq. (5.29). Again,
adjustment of k yields any desired multiple of the density
and the HF field arises for A, = ——,. Systematic correc-
tions for any choice of A, are given by Eq. (5.30). Yet a fi-
nal method by Kerman, Levit, and Troudet (1982) utilizes
the fact discussed in connection with Eq. (5.39) that the
odd terms in o. in the expansion

&
i(c/2)cmcr —iso.vp

~
~ ~

p2
do. e "r ' " 1 —isoup ——(ovp )+

2

(5.116)
do not contribute to the exact integral and that therefore
the linear term may be modified at will. Since it does
contribute to the SPA, it may be adjusted to yield the HF
field or a number nonconserving part may be added to ob-
tain the Hartree-Pock-Bogoliubov field (Troudet, 1982).
The special cases of Hartree, Fock, and one-half Hartree-
Fock discussed above arise in this method for the three
choices of the arbitrary linear term which may be
resumrned to order c. as an exponential.

In all these methods, the key question is how to justify

a particular value of an arbitrarily introduced parameter.
Although ideally one would like to demonstrate that a
particular parameter optimizes convergence, in practice
one must settle for more limited arguments. One possibil-
ity is to minimize a particular correction which is be-
lieved to be of leading order. In very special cases one
may use the parameter to minimize the sum of all correc-
tions to a given approximation. Since the exact evalua-
tion of the functional integral is independent of the
parameter, the sum of all corrections to an approximation
is stationary with respect to variation of the parameter
when the approximation is stationary. Thus, in any case
for which the approximate expression is also a bound on
the exact result, the corrections are minimized by requir-
ing that the bound be stationary with respect to variation
of the parameter. This situation occurs, for example, in
evaluating the SPA plus the n = I quadratic corrections
for the ground-state energy, in which case the energy is
the expectation value of II in a determinant of eigenfunc-
tions of the mean field. By the Ritz variational principle,
this determinantal trial function yields an upper bound,
and if some value of the arbitrary parameter governing
the mean field is capable of generating the HF field,
minimization of the energy will necessarily specify that
value. Whereas this argument provides a rationale for the
HF choice in this particular case, it is clearly of very lim-
ited applicability.

3. The loop expansion

Thus far, only quadratic corrections to the SPA in Eq.
(5.50) have been evaluated, yielding RPA ground-state
correlation corrections in the case of a time-independent
mean field. In this section, a perturbation series is ob-
tained by expanding the functional integral

5'S [cro]fD[o]e = f D[g]exp i S[oo]+—,fdx, dx2 g(x, )g(x2)50'xi 50 x2

oo l tl 5"S[ool
, +fdxq(x, ) (5.117)

where o.o is a stationary time-independent solution, S[o] is given by Eq. (5.51) with a fixed basis of eigenstates generated
by cro, g=o —o.o, and x, denotes the space-time coordinates (x„t,). The resulting expansion is closely analogous to the
loop expansion in field theory (Bender, Cooper, and Cruralnik, 1977), with meson propagators being replaced by RPA
phonons. One thus obtains a derivation of the diagram rules for expressing the energy of a nuclear eigenstate in terms of
fermion and RPA phonon propagators (Reinhardt, 1978). For notational clarity, the expansion will be written for the
simple Hartree form of the auxiliary field.

The evaluation of Eq. (5.117) proceeds in two steps. We shall first calculate the general functional derivative

5"S[cro]

5cr(x)) . . 5o(x„)
and then address the functional integral over r). The second derivative of S has already been calculated in Eq. (5.93) to
obtain (u5)[1 D(v5)]. Noting th—at the first term in Eq. (5.51) will not contribute to higher derivatives, we need only
consider the term

iS[~]—=In(+
~
T,e

~

q ), (5.118)
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where, for convenience we write

i—fh = i—fdtIC+ fdxo(x)f(x)
with

f(x):— i f—dx' V(x —x')p(x ')

and

V(x —x') =U(x —x')5(t t'—) .

A general derivative of iS evaluated at o.o is calculated as follows:
r

4 Texp gx x exp —i h

(4
~
T,exp i f—h

~

'I}

, fdx I . . .dxnq( XI ). . .g(xn )( Tf(x I ). . .f(x„)}
nf

1=exp g, dxI. . .dx„ri(XI ). . q(xn). (Tf(XI ). . .f(x„)}LINKED
n f

(5.119)

(5.120)

(5.121)

(5.122)

The second line in Eq. (5.122), which arises from expanding the exponential e " and using the definition (5.94b),g(x)g(x)

may be directly interpreted in terms of diagrams. Using the argument subsequent to Eq. (5.96), and applying Wick s

theorem, ( T;p(x I ). . .p(x„' ) } generates the set of all linked and unlinked diagrams connecting the points x I. . .x„with
oriented lines from x; to xj corresponding to the propagator ( Ttg(XJ )Ij't (x;)}such that each point has one incoming and
one outgoing line. Diagrams for (T;f(x, ). . .f(x„)}differ only trivially in that point x; is linked by a potential interac-
tion to x which in turn has incoming and outgoing fermion propagators. The last line in Eq. (5.122) follows from the
fact that all diagrams are generated by the exponential of the sum of all linked diagrams. Hence

5"S[o.o] gn
dx I. . dx~ q (x. I ). . .g(x~ ) ( Tf(x I ). . .f(Xnt ) }LINKED

5o(x I ). . .5o.(x„) 5g(x I ). . .5g(x„)

=(Ttf(XI) f«n) &LINKED

(5.123)=(—I )"f dx'I. . .dx„' V(x I
—x I ). . . V(x„—x„)(T p(x I ). .p(x„)}LINKED .

As a check, we note that 5 S/5o(xI )5 (x2) correctly reproduces the term —V( T pp}LINKEDV—:—(v5)D (U5) in Eq.
(5.93).

—i dxA. (x)g(x)
Turning now to the q integral in Eq. (5.117), it is convenient to introduce a source term e ",replace q(x, )

by i [8/BA, (x, )] in the terms with n & 3, and evaluate the resulting Gaussian integral over q as follows:

oo l
n 5"S[~01fD[o]e"( )=exp iS[oo]+ g Q fdx, i

l 5'S[~o]
)& f D[q] xpe—fdxIdxq rt(XI)g(X2) i fdx A(x)—g(x)

2 5o. xI 5o. x2
A, =O

iS [crO]=e det V

5S
det

)&exp g fdxI. . .dx„ fdxI. . .dx„' V(xI —x'I ). . . V(x„—x„')
3n.t

tP(x I ) P(xn ) }LINKED M, XI Bt(, Xn

&&exp ——fdx dye. (x)l 5S
2 5o.5o. („„)

&(y) (5.124)
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962 Negele: Mean-field theory of nuclear structure and dynamics

To understand Eq. (3.94) in terms of diagrams, first
note that repeated differentiation of the Gaussian in k
brings down successive factors of (5 S/5o5o)~„~~ and
that only those terms in which both A, 's associated with a
given 5 S '/5o 5o have been differentiated survive in the
limit A, =O. The exponential in Eq. (5.124) containing the
8/BA, derivatives generates products of closed fermion
propagator loops. In each loop, fermion propagators con-
nect three or more points x'1 through x„', and each point
xj is connected in turn to the factor iV(xj —x~)5/Mxj.
Hence one obtains all diagrams in which the points in the
various closed fermion loops are connected in all possible
ways by the quantity (i/2—)V(5 S/5o5o) '. V. By Eq.
(5.93), recalling that V defined in Eq. (5.121) includes a 5
function in time, FIG. 19. The general form of the two-loop corrections.

V= V[V(1—D0V)] 'V

= g v[D, v]"
n=0

(5.125)

yielding the RPA phonon propagator shown in Fig. 18
which sums all chains of interactions connected by
particle-hole bubbles. Rewriting Eq. (5.124) in the abbre-
viated form

istic~~

is det V
o. S

det

1/2

X

iS [cro] —1/2 tria(1 —Do V)+ F0 0 (5.126)

the preceding argument shows that X is the sum of all di-
agrams, both linked and unlinked, comprised of any num-
ber of closed fermion loops connected in all possible ways
with RPA phonons such that at least three phonon ver-
tices connect to each ferrnion loop. By the linked-cluster
theorem, the quantity I' in the last line of Eq. (5.126) is
then the sum of all such diagrams which are completely
linked. These linked diagrams constitute the higher-order
corrections to the HF plus the RPA correlation energy
represented by the first two terms in the exponent. To es-
tablish contact with the loop expansion in field theory,
note that the number of loops refers to the number of
RPA phonons, not the number of fermion loops. In this
language, the —,trln(1 DOV) term graphed i—n Fig. 17 is
the one-loop correction, since it consists of a single RPA
propagator connected to a closed fermion propagator.
This term cannot be generated again in Y because of the
requirement that each fermion loop contain at least three
phonon vertices. The general two-loop connections are
graphed in Fig. 19, as well as typical terms arising from
expansion of the RPA phonons. Whereas for terseness

the preceding derivation has ignored signs and factors, it
is straightforward to verify that the signs and factors
agree with the first few orders of standard perturbation
theory (Negele, 1979).

4. Time-dependent generalization

5S
[op(x, t)]=0,

5o.
(5.127a)

then another solution is obtained by shifting the time ori-
gin

5S
[op(x, t —to)] =0 .

5o. (5.127b)

Naive application of the SPA by integrating over all
values of to and evaluating (det5 S/5o. 5o.)

'~ commits
two related errors. By Eqs. (5.127) for infinitesimal to,

In the last section, the structure of the corrections to
the SPA was displayed in the special case of a time-
independent mean field o.o(x). Infinitesimal fluctuations
about ao corresponded to RPA phonons, and systemati-
cally summing these RPA fluctuations reproduced stand-
ard results familiar from diagrammatic perturbation
theory. For a time-dependent stationary solution era(x, t),
the structure of the corrections is analogous, except that
the fluctuations have nontrivial temporal as well as spa-
tial dependence. Treatment of these fluctuation correc-
tions is more difficult due to the emergence of technical
complications, the unfamiliarity of diagram expansions
for time-dependent potentials, and the lack of any
relevant analytic or numerical solutions for such time-
dependent problems.

One technical difficulty ignored thus far arises from in-
variance with respect to translations in space and time. If
oo(x, t) is a periodic stationary solution

5S
dx dt, , oo(x, t) =0, (5.128)

+ + + + ~ o ~

FIG. 18. The RPA phonon corresponding to Eq. (S.125).

so that (8/Bt)oo is an eigenfunction with zero eigenvalue.
The resulting divergence in (det5 S/5o. 5o) '~ reflects
the fact that in some direction the integrand, which was
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assumed to be Gaussian, in fact has infinite extent. This
direction corresponds to displacements in time origin tp,
which have already been treated explicitly by integration
over tp and are thus being double counted. Thus the
correct quadratic correction factor becomes (Coleman,
1977)

' —1/25S
det

5S~a Jdto det'

—1/2

(5.129)

X f~(x2t2)gp(y2ti )

+~(t2 tl w p(x2t2 )1 (y2t2)

X p~(xj ti )gp(y, tz)], (5.130)

where n p is an occupation number which is 1 if P is occu-
pied and 0 of it is unoccupied and the g's are defined by
Eqs. (5.64) and (5.65), it follows that in the P basis, D
satisfies the equation

0!P +a p[D pcs(

tits�

)]

=5 s5pg(ti —t2)(n —np) . (5.131)

Noting that D is defined only in the particle-hole space,
we may write schematically

where det' denotes the determinant evaluated in the space
orthogonal to (anat) oo(x, t) and a is a calculable constant.
The zero eigenvalue arising from invariance with respect
to spatial translation is treated analogously.

The details of the explicit evaluation of
det'(5 S/5o 5o ) =det'( V —VD V) are presented by
Reinhardt (1981a, 1981b). The calculation is simplified
by writing D in the basis of eigenfunctions o. of the
periodic mean field, Eq. (5.67). Since

iD (xiyiti, 'x2y2t2)

=gnp(1 n~—)[8(ti t2)g—p(xiti)g (yiti)
aP

eigenvalues minus the sum of the particle-hole energies
(ap —a )/r. In the general time-dependent case, these
fluctuation terms modify both the energy condition, Eq.
(5.84), and the quantization condition, Eq. (5.86). In the
special case of a time-independent o.o, for the ground state
this correction reduces to the RPA correlation energy,
thereby reproducing the previous time-independent result
obtained diagrammatically. In addition to the ground
state, however, one also obtains an infinite sequence of ex-
cited states corresponding to all possible occupation num-
bers for RPA phonons built on the ground state. For
these states, the quantization condition, Eq. (5.86), is un-
changed, while the energy, Eq. (5.89), is shifted from the
HF energy by the RPA ground-state correlation energy
plus the sum of the RPA energies of all the occupied pho-
non modes.

Thus the formal structure of the fluctuation corrections
corresponds to a natural and physically understandable
generalization of the time-independent RPA. Since the
generalized RPA equations depend upon time as well as
spatial coordinates, explicit calculation of these effects is
presently computationally impractical.

E. Barrier penetration and spontaneous fission

In the example of quantum mechanics with one degree
of freedom in Sec. V.A.2, evolution in classically forbid-
den regions was described by complex stationary points in
the application of the SPP. to the time integral in Eq.
(5.2). In particular, for the classically forbidden region II
of Fig. 16(d), stationary solutions with purely imaginary
period corresponded to classical solutions in the inverted
potential of Fig. 16(e). The action calculated for these
periodic solutions in imaginary time then yielded the fam-
iliar WKB penetrability for the decay width, Eq. (5.28).
In this section, we shall therefore examine the analogous
continuation of the many-fermion evolution operator to
imaginary time to obtain a quantum mean-field theory of
spontaneous fission.

One possible approach to the spontaneous fission prob-
lem is to evaluate the imaginary-time behavior of the evo-
lution operator

I5 SDet'
(qg

~

e
— r

~
g) ID[o]ei~[0] (5.133)

Det'(D o V)' =Det'[Do(Dp ' —V)]=
DetDp '

-aDet' i
Bt

uP —O.a
T

—V

Det s
at

a~—e
T

(5.132)

The matrix in the numerator of Eq. (5.132) is a time-
dependent generalization of the RPA matrix, Eq. (3.38).
Reinhardt (1981) and Kerman and Levit (1981) show how
the ratio of the determinants in Eq. (5.132) can finally be
expressed in terms of the sum of the generalized RPA

(Negele, Levit, and Paltiel, 1979; Negele, 1979; Reinhardt,
1981), following the treatment of Coleman (1977) for
spontaneous decay in field theory. In the limit of large r,
the lowest state dominates Eq. (5.133) and application of
the SPA yields a set of solutions analogous to the instan-
tons or pseudoparticles arising in field theory. An infinite
set of these solutions may be approximately summed,
yielding an imaginary part to the energy which is inter-
preted as the lifetime. This approximation yields the
same penetrability as derived below fmm the density of
states, as well as an explicit premultiplying factor arising
from the quadratic corrections. The validity of this
premultiplying factor, however, is now suspect as a result
of a calculation by Patrascioiu (1981) showing that it
yields the incorrect result in a one-dimensional example.
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0k(» r»

with Pk(», r) satisfying the periodic condition

(5.134)

„», =4—», (5.135)

and the orthonormality relation

fd» 4, (» rH4—(»,r) =~~k, (5.136)

Although the self-consistent eigenvalue problem, Eq.
(5.134), is not Hermitian, it has a set of real solutions with
real eigenvalues, and genera1 solutions differ from these
real solutions by the trivial phase factors e' ~" " and
eigenvalue shifts i (2irn /T), where n is any integer.

Written in terms of P(r) and P( r), it is n—ot evident
that continuation from (it) to r has reversed the sign of
the effective potential energy as in the one-dimensional
example. This sign reversal is manifest if one performs a
canonical transformation in the action, Eq. (3 4) (Levit,
Negele, and Paltiel, 1980b). Choosing the time origin at a
classical turning point, the periodic real-time dependent
solutions to Eq. (5.75) may be written

(» t )[p(» t)] i /2/ix(rf) (5.137)

where p, analogous to a coordinate, is real and time even

p(», t)=p(», t)=g(», t ),— (5.138)

and 7, corresponding to a momentum, is real and time
odd

X(», &) = —X(», —&) =&f (», t') . —(5.139)

Transforming the Hartree action expressed in terms of P
and P* to these new variables yields

An alternative approach, presented here, extends the
calculation of the level density, Eq. (5.21), to the many-
fermion problem (Levit, Negele, and Paltiel, 1980b). Gen-
eralization of the treatment of one-dimensional quantum
mechanics involves two principal components. First, it is
necessary to continue the mean-field equations to ima-
ginary time and to understand how replacing (it) by r in-
verts the analog of the potential in Fig. 16 (d). Secondly,
it is necessary to sum the appropriate stationary solutions
in classically allowed and forbidden regions, joining them
properly at turning points, and including all relevant de-
cay modes.

The continuation to imaginary time has been per-
formed in Eqs. (5.71), (5.74), and (5.76). Specializing to
the Hartree case and omitting self-energies for simplicity,
the self-consistent mean-field equation in a classically for-
bidden region, Eq. (5.76), is

1 2'()', + d»'u(» »')gPt(», —r)Pt—(», r) Pk(», r)
7 2'

where

V(p) = fd»g
(~pk)'

k 8~ Pk

+ —' fd»'gpk(», t)u(» »')p—(»', t)
l

(5.141)

p(», r) =p», —=g (», 2)=p(», —r)—
L

(5.142)

and

X(»,r) =iX», =rf (», r') = —X(»,—r), — —
I,

(5.143)

so that

[
—

( ]1j2&X(r, r) (5.144)

v. (Q)

EHF ———

The potential V(p) depends upon all the degrees of
freedom in the one-body density (and in the general HF
case, the one-body density matrix) and by Eq. (3.137) is
just the expectation value of the HF energy for a time-
even determinant. A convenient way to appreciate its
gross features is to evaluate the constrained energy of de-
formation surface defined by ininimizing V(p) with
respect to all determinants satisfying one or more con-
straints. A familiar example with one constraint relevant
to fission is the energy as a function of quadrupole mo-
ment, as sketched in Fig. 20. The point Q) is the relative
minimum corresponding to the HF ground state of the
parent nucleus, and Q2 is the fission saddle point. Intro-
ducing more constraints would generalize Fig. 20 to a sur-
face representing more of the shape degrees of freedom of
the one-body density matrix.

Continuing to imaginary time by replacing (it) by r as
in Eq. (5.76) yields

s= J dt('0 i H@l— I

Ql

I

I

Qp

I

I

Qz Q

= f dt f d»g Xk pk+ pk(V'Xk) +V(p)

(5.140)

FICT. 20. Sketch of the constrained Hartree-Fock energy E(Q)
as a function of quadrupole moment Q for a fissile nucleus.
At any value of Q, E(Q) is defined as a minimum of the HF
energy, Eq. (3.4) or (3.141), in the space of time-even deter-
minants having quadrupole moment Q.
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The imaginary-time action becomes

S= fdr(%' — H0—'l

=J«J «g &k Pk — pk(~&k)' +V(p)
k dw 2m

(5.145)

and one notes that the sign of the second term in Eq.
(5.145) has changed relative to Eq. (5.140). Finally, mak-

ing use of the arbitrariness in the definition of the sign of
X, the variable change Xk~ —Xk in Eq. (5.145) yields
Euler-Lagrange equations for X(r,r),p(r, r) identical in
form to those for X(r, t),p(r, t), except that V(p) and V(p)
enter with opposite signs. Thus the multidimensional
generalization of Fig. 20 is indeed inverted, and the
periodic, self-consistent solutions to Eqs. (5.134) are
therefore precisely analogous to periodic solutions to the
real-tiine equations, Eqs. (5.75), in a region surrounding a
local ininimum in V(p).

Several new features arise in summing stationary trajec-
tories in the many-fermion problem. In the one-
dimensional quantum-mechanical example in Figs. 16(b)
and 16(c), a general periodic trajectory could always be
decomposed into a sequence of periodic trajectories within
each of the regions I, II, and III. It was this decomposi-
tion which allowed one to express the sum of all possible
trajectories in terms of a multiple geometric series involv-

ing one single periodic solution in each of the three re-
gions, Eq. (5.21). In the analogous many-body problem,
however, to decompose a trajectory involving two regions
into periodic solutions for each separate region, the deter-
minant of single-particle wave functions Pk satisfying the
real-time self-consistent eigenvalue problem, Eq. (5.75)
must equal the determinant of functions ((}k satisfying the
imaginary-time equations Eq. (5.76) at the corresponding
turning points. In general, for an arbitrary energy, there
is no reason why periodic solutions in classically allowed
and forbidden regions should join, and there is therefore
no practical way to sum all periodic trajectories. As ar-
gued in Sec. V.A.2, the case of tunneling decay is simpler
than the general double-well problem because trajectories
in the exterior region III of Fig. 16(d) do not contribute to
the smoothed level density from which the decay width is
calculated (Appendix A of Levit, Negele, and Paltiel,
1980b). Thus in the nuclear fission problem one is faced
with summing all trajectories in regions I and II of the
multidimensional analog of Fig. 20.

In the limit of infinite period, stationary solutions to
Eq. (5.76} in the classically forbidden region II of Fig. 20
have the static HF energy and exactly join the static HF
solution of region I at the turning point Q&. In general,
there are several distinct, well-separated solutions in re-
gion II, corresponding to symmetric fission, asymmetric
fission, and alpha decay, as well as more complicated
many-body breakup. Each such solution evolves from the
HF ground state at Qi through a saddle point to some
distinct configuration at the boundary of the classically

the contribution of all stationary solutions to the trace is
T

Ig g II

+ k k=1 n=O a

+X Xe "X e''
k=1 a n=0

(5.147)

If analogous solutions in regions I and II could be joined
infinitesimally above EHF, then by the arguments leading
to Eq. (5.28) one would obtain the total width as a sum of
partial decay widths

(5.148)

where

I {a} aw,
aE

—WiI(~)
e (5.149)

Since the joining problem has been solved only at the HF
energy, the present treatment yields only the penetrability

~(&)
e ",and the appropriate premultiplying factor has not
yet been derived.

The theory of spontaneous decay arising from self-
consistent solutions to the imaginary-time mean-field
equation, Eq. (5.76), appears to embody the essential
physics of the fission problem. Single-particle behavior,
through the evolution of a determinantal wave function as
well as all the relevant collective degrees of freedom, are
consistently combined in a microscopic quantum theory.
The competition between alternative decay modes is man-
ifest in the distinct solutions governing each partial
width. Thus it is reasonable to expect that appropriate
numerical solution of the mean-field equations can pro-
vide a quantitative understanding of fission lifetime sys-
tematics, including such details as shell effects and the
competition between symmetric and asymmetric fission.

F. Scattering

In principle, the general program outlined above may
be applied to scattering theory by writing exact functional
integral expressions for observables and systematically ap-
plying the SPA. In practice, significant problems arise in
the scattering problem which were not present in the
simpler case of the evaluation of the trace of the evolution
operator for quantum eigenstates and spontaneous decay.

allowed regime, and all solutions involving any combina-
tion of these trajectories should be summed in the SPA.
Denoting the reduced action, Eq. (5.86), in region I by W&

and defining its imaginary-time counterpart in a specific
decay channel (a) by

T/2
8 ii ——I drdrgPk' (r, —r) Pk (r, r) . (5.146}
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One serious problem concerns the feasibility of ade-
quately approximating the S matrix in the SPA. Al-
though the S matrix is a natural quantity to utilize in for-
mal scattering theory the fact that it ultimately corre-
sponds to the overlap of many-body initial and final states
renders it as difficult to calculate in principle as the
ground-state wave function discussed in Sec. II.A. 1.
Whereas the initial efforts in scattering theory reviewed
below deal directly with S matrix elements, the validity of
the theory for individual amplitudes is presently uncer-
tain. Either proof is required that commensurate approx-
imations to in and out states yield overlaps much more
favorable than those between model states and eigenstates,
or the theory should ultimately be formulated in terms of
expectation values of few-body operators rather than S-
matrix elements.

Additional technical complications arise in scattering
theory as a result of the need to define reaction channels
and to project onto states of well-defined cm momentum.

I

Hence, instead of addressing the full scattering problem,
it is valuable to begin with the simpler case of excitation
by an external one-body potential.

1. Response to an external potential

S = liin U()(O, T)U(T, —T)U()( —T,O),T~ (x)
(5.150)

where Uo denotes evolution under the many-body Hamil-
tonian, Eq. (5.32), and U denotes evolution under the
many-body Hamiltonian plus an external field V(r, t). As
in Eq. (5.46), each evolution operator may be written in
terms of a functional integral with respect to an auxiliary
field, with the result

The problem of the response of a many-fermion system
to an external potential has been addressed by Alhassid
and Koonin (1981). The S matrix is given by the limit of
the following evolution operator:

(P'~& ~P)= lim f f f D[(rf]D[tr]D[o.;]exp —f dt(trfuof)+ f dt(ouo)+ f 'dt(o;uo;). .

&&(P'i V f(O, T)U (T, T)U '( ——TO) i/3), (5.151a)

where, as in Eq. (5.47),

af, , i I dt—[X' +( af pu)]
U 't', t=Te— (5.151b)

i dt—[t+ f ( t)r( +a)u]tu
U t', t =Te— (5.151c)

(P'iTgv v v 'F13)
tri(t) =Re

(P'~ U U U '~P)
(5.152)

where o.i denotes any one of of, o., or o.; and T, inserts P
into the corresponding interv al (0, T), ( T, —T), or
( —T,O), respectively, at time t.

As shown by Alhassid and Koonin (1981),Eqs. (5.151)
I

()o(T))=(P
~

U(O, T)p(T)V(T, o)
~

)()])

the quantities (o.uo) and (oup) are defined in Eq. (2.55),
and

~
P) and

~

P') denote initial and final states. The
distinction of these separate auxiliary fields is artificial,
although useful, and one could view Eq. (5.151a) as the
evolution in a single time variable which runs from 0 to

Twithout an—y external field, from —T to +T in the
presence of the external field, and from T to 0 without the
external field. The SPA is applied in each of the three
time intervals, assuming that the modulus of
(P'

~

U ~U U '
~
P) is slowly varying and thus requiring

stationarity of the argument of (P'
~

U fU U '
~
P) plus

the exponential in Eq. (3.151a). The stationary solution,
analogous to Eq. (5.52), is

I

and (5.152) possess several desirable properties. For times
—~ prior to the interaction period, tr, ( r) =—o ( —~) and
similarly for ~ subsequent to the interaction period
o.f(~) =cT (~). Since the evolution by U ' prior to the in-
teraction time is precisely compensated by U and simi-
larly for the evolution subsequent to the interaction time,
it therefore follows that the SPA approximant to the S
matrix, obtained by substituting the stationary solution a
in Eq. (5.151a), is independent of T once T exceeds the in-
teraction period. The limit in Eq. (3.151a) thus exists in
the SPA, and in contrast to the treatment of Griffin et al.
(1979), there is no need to introduce any ad hoc time
averages. A second desirable property is that if V(r, t) has
time-reversal symmetry, the SPA approximant to Eq.
(3.151a) also displays time-reversal symmetry. In general,
however, the present approximation is not unitary. Ap-
plications of this theory to a solvable model is reviewed in
Sec. VI.B.

2. Expectation values of one- and two-body operators

The problem of calculating the time evolution of one-
and two-body operators has also been addressed by Alhas-
sid, Miiller, and Koonin (1981). Introducing auxiliary
fields in the usual way, according to Eq. (5.46), one gets
an exact expression for the evolution of the one-body den-
sity,

= fD[oi]D[o'2]exp —f dt(tr)uo))+ f dt(tr2utr2) (P~ U '(O, T)p(T)v (TO) ~P) . (5.153)
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By changing the variable of integration in the Gaussian integral over the auxiliary field at a specific time, the following
identity may be verified:

D [ ] i [)/2(rrvrr) ( rrvP)] D r q~ i [1/2(rrvrr) (o—vir)} (5.154)

so (5.153) may be rewritten

0 T
&p(T)&= fD[o)]D[(72]o(T)exp —f dt(cr)ui2))+ f dt(o2uo2) &p~ U '(O, T)U '(TO)

~
p& . (5.155)

Applying the SPA, assuming o(t) is slowly varying and
thus requiring stationarity of the exponent in Eq. (3.155)
plus ln &13

~

U U
~
P&, yields the stationary solutions

~0 ao
&Pi U '(O, t)U '(t, T)U '(T, t)pU '(t, O) iP&O2t =

&P
~

U '(O, T)U '(T, O)
i P&

(5.156a)
~

P&= limT-- &Pol U) (0 —T) IPo&
' (5.158)

out states which is commensurate with the approxima-
tions made to the evolution operator.

One possible method of generating a compatible ap-
proximation for channel eigenstates is by adiabatically
switching on the two-body interaction:

and
~0 ~0

&Pi U '(O, t)pU '(t, T)U '(T, t)U '(t, O) ~P&

& P ~

U '(0, T) U '( T,O)
~
P & H2, =Ir: + "/(, , pup+(1 ——k)Up, (5.159)

where U~ is the evolution operator with respect to the
Hamiltonian

(5.156b)

A self-consistent solution to Eqs. (5.156) is
(T)(t) =(Tz(t) —=o (t), since in this case
U (t, T) U (T, t) =1, rendering Eqs. (5.156a) and (5.156b)
identical. For a general state f3,

&P i
U (O, t)pU (t,O)

i P&

(sin&
and in the special case in which ~P& is a single Slater
determinant comprised of single-particle wave functions
qrk(r, O),

A, (t) is adiabatically switched on from 0 to 1, U is a con-
venient one-body potential, such as the self-consistent HF
potential, and

~
Po& is an eigenstate of K+ UP. As in Eq.

(5.151), a functional integral representation for an S-
matrix element may be obtained by introducing auxiliary
fields for each of the five evolution operators in the ma-
trix element

&P'
~

s
~
P& = lim & Po ~

U2„(T',0)Uo(O, T)U(T, —T)
T ~00

X Uo( —T )0'�( OTr) i Po &

o (r, t) =g%'k(r, t)%k(r, t), (5.157b)
(5.160)

where 4k(r, t) is the solution to the TDHF equation,
(5.64), with the initial condition Vk(r, O).

This derivation may be extended in two simple ways.
Whereas, as usual, the Hartree case has been treated for
simplicity, following the treatment in Sec. V.D.2, intro-
duction of a nonlocal auxiliary field o(r, r', t) yields the
analogous result for the one-body density matrix and thus
any one-body operator. In addition, the identity (5.154)
may be applied to both o.

~ and o.2, so that
&p(r)r2, t)p(r3r4, t)& may be evaluated in the same way,
yielding an analogous result for the expectation value of a
two-body operator.

The final result is that a first approximation to the time
evolution of the expectation value of any one- or two-
body operator is given by Eqs. (5.157a) and (5.157b). In
the case in which

~
P& is a single Slater determinant, this

derivation both justifies the TDHF initial-value prescrip-
tion and, through corrections to the SPA, provides a for-
mulation for calculating systematic corrections.

3. Asymptotic states

and appreciable simplifcations ensue at the SPA level if U
in Eq. (5.159) is chosen as the HF potential. An alterna-
tive method of implementing commensurate approxima-
tions on the evolution operator and asymptotic states uti-
lizes the coherent-state representation of Sec. V.G (Levit,
Negele, and Orland, 1981).

The treatment thus far has ignored the need for con-
structing eigenstates of cm momentum. Formally, a state
of definite momentum may be constructed by projection

%p ——fds e ' '%(r) +s, . . r„+s).
= fdse "P ~")p-(r„..r„), . (5.161)

where P is the one-body momentum operator. Applica-
tion of the SPA to a matrix element of the form

(5.162)

yields the stationary solutions

A primary difficulty in the scattering problem is to
find a tractable approximation for the asymptotic in and &P[e

' )Ue' '[P&
(5.163a)
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&Ple
' 'Ue' 'IP&

(5.163b)

These self-consistent equations are analogous to Eqs.
(5.152) and (5.156) in the sense that I'; is required to equal
an expectation value of I' at an appropriate time in the
evolution. They differ because I'& and I'2 are implicit
functions of the positions Si and S2 at which the final
and initial states are localized by the SPA. Many of the
technical details of the construction of asymptotic states,
projection, and self-consistency conditions arising from
application of the SPA may be found in a recent paper on
scattering theory by Reinhardt (1982).

In conclusion, the formal elements of scattering theory
are now developed to the point that one may begin to ad-
dress the fundamental conceptual questions raised at the
beginning of this section. The most essential problem is
to determine which scattering observables may be legiti-
mately approximated by the SPA. In sufficiently simple
models, such as the one-dimensional delta-function prob-
lem discussed in Sec. VI.A, the existence of an explicit ex-
pansion parameter should allow one to calculate the full S
matrix in appropriate limits. Physically, it is also plausi-
ble that one may treat sufficiently simple excitations in
realistic systems, such as transitions induced by an exter-
nal field between different RPA vibrations built upon the
same intrinsic state of a closed-shell nucleus. In this case,
it is reasonable to expect that the poor overlap with the
exact intrinsic state will be irrelevant to the transition am-

plitude and that the collective excitation of vibrational
modes will be adequately described. There is much less
reason for optimism, however, for 5-matrix elements be-

tween in- and out-channel states differing essentially in
structure, in which case wave-function overlap becomes
crucial. In these more complicated cases, it will be neces-
sary to focus attention on suitably defined inclusive ob-
servables, rather than individual S-matrix elements. Even
when these conceptual issues are resolved, it is clear that
significant technical and practical problems need to be
overcome before calculations of nuclear collisions are
feasible.

G. Alternative formulations

A variety of alternative functional integral representa-
tions exist for the many-fermion evolution operator, each
of which yields its own technology for obtaining a mean-
field theory and systematic corrections. The essential
features of these alternative approaches are reviewed in
this section, and technical details may be found in the
referenced literature.

A useful method for generating functional integrals for
the many-body problem is to use overcomplete sets of
states (Orland, 1980; Blaizot and Orland, 1980b). Let

I
Z& be an overcomplete set of vectors in a Hilbert space

parametrized by a continuous family of parameters
Z—:Z = IZi, Z2. . . j and having a measure diu(Z) such
that the unit operator in the Hilbert space may be written

fdp(Z) I
Z& &Z

I
=1 . (5.164)

Breaking the evolution from t; to t~ in the full space into
N steps of time duration s=(t~ —t;)/N and inserting the
unit operator, Eq. (5.164), between each step, a matrix ele-
ment of the evolution operator between states

I
Z;& and

& ZI
I

may be written

&zIle
'"" "'Iz &= f dp(z~ i) f dp(z„2) f dI (zi)&zfle ' 'lz~ i&&z~ ile ' 'lz~ 2&

+&zN —2I lzi&&zi l~ '"'Iz
& (5.165)

In the large-N limit, assuming piecewise continuity in Z as a function of time and retaining terms of leading order in c,,

&Z„
I

e ' '
I
Z„,& = &Z„

I
(1—iHE)

I
Z„&—s

= &Z„
I
Z„&exp

iE Z„ i——H Z„

&z„
I
z„&

(5.166)

so that

&Z«) IZ«»

Z(t) i HZ(t)—~ a„( ~
—

I
z, &= f„,'„, ', ~[z]. p f, '« +ln&zf

I
z(rI) (5.167a)

where the measure is defined

&[Z]—= Q dp[Z(r)]&Z(r)
I
Z(r) & .

tf (f ( fg'

(5.167b)
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Several alternative functional integral expressions may be
obtained straightforwardly by different choices for the
overcomplete set

~

Z).
(Z

~

XA (c,c)
~

Z') =e A (Z*,Z') .
The closure relation (Bargmann, 1961) is

(5.170)

Boson coherent states

For a system of bosons with creation operators c,
coherent states are defined

~Z)=e
e~u a~0) (5.168)

(Z
~

Z') =e (5.169)

and that the matrix element of a normal-ordered operator
1s

where
~
0) denotes the vacuum. Using the properties of

eigenfunctions of the number operator, it is elementary to
prove that the overlap of two coherent states is

. f dZ* f dZ ~Z)(Z~ =1,
(5.171)

where the real and imaginary parts of Z must be in-
tegrated independently. This result may be verified
straightforwardly in polar coordinates.

To obtain a functional integral for a many-boson sys-
tem, Eqs. (5.169)—(5.171) are substituted into Eq. (5.167).
The measure is simplified by the fact that the exponential
factor in the overlap, Eq. (5.169), cancels the negative ex-
ponential in Eq. (5.171). Transforming from number rep-
resentation Z (t) to coordinate representation P(x, t), a
matrix element of the many-boson evolution operator be-
comes

p~(x, tf ) =pf(x) tf
exp[ iH(tf—t;)] IN—t)= f,„.. . ,

N(P*, P)exp i f dt f dxP~(x, t)
t C

i + V ——, f dx'P~(x', t)P(x', t)U(x —x') P(x, t)
dt 2m

+ f dx Pf(x)P(x, tf) (5.172)

The corresponding formula for the trace is further simpli-
fied by the fact that integration over a complete set of
states has a factor analogous to the exponential in Eq.
(5.171), which removes the final logarithm in Eq. (5.172),
and one obtains periodic boundary conditions on

f &(P*P). Application of the SPA to Eq. (5.172) by in-

dependently varying the real and imaginary parts of P, or
equivalently P and P~ in the exponent, immediately yields
the time-dependent Hartree equation

i P(x, t)= — V + —, f dx'P~(x', t)P(x', t)
dt '

2m

X o.(x —x') P(x, t) .

I

larger boson Pock space defined as a direct product, of &
boson spaces (Blaizot and Orland, 1980a, 1980b), where
an additional label, denoting the boson space, is affixed to
all operators and variables of integration, P*;(x,t), appear-
ing in the functional integrals. To project into the fer-
mion space, it is necessary to antisymmetrize with respect
to the labels (i). If one thinks of the additional label as a
color quantum number, then one is projecting onto a color
singlet. Since the overall boson wave function is totally
symmetric, and the color singlet is totally antisymrnetric,
the remaining portion of the wave function i.s antisym-
metric and thus correctly describes a fermion. Defining a
Hamiltonian H in the direct product Boson space

(5.173)

N
H= g f dxP;(x)

g2
V P;(x)

For a general matrix element, as in Sec. V.F, the function
P* satisfying the boundary condition Pf at tf need not be
the complex conjugate of the function p satisfying the
boundary condition P; at t;, but in the physically impor-
tant case of the trace, in this and subsequent formulas, P
and p* are complex conjugates. Thus one has described
the dynamics of the many-boson system in terms of the
evolution of a single condensate wave function P(x, t) for
the macroscopically occupied Bose condensate, and it is
physically reasonable that the direct Hartree field should
define the potential.

Gne way to obtain a functional integral for the %-
fermion problem is to embed the fermion space in a much

+ —, g f dx dx'P;(x)P~(x')cr(x z)PJ(x')P;(x), —

(5.174)

where P; and P; are creation and annihilation operators in
the ith Boson space, it may be verified that H has the
same matrix elements in the antisymmetric (singlet) sub-
space as H has in the fermion space and that H commutes
with the projector P which projects onto the singlet space.
It follows that if the initial state is defined as the singlet
projection of the direct product of N coherent states
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l
@;&=&exp g f dx Pk(x) jk(x)

k=] (5.175)

and similarly for (4&j l, then the matrix elements of the many-fermion evolution operator are given by

d
Xexp i f dt f dx gPk(x, t) i —+ V

t dt 2m
I

——, f dx'yyj(x', t)yj(x', t)v(x —x') (bk(x, t), (5 176)

where, for simplicity, the boundary conditions and over-
lap at the final time have been omitted. As was the case
with Eq. (5.172), application of the SPA to Eq. (5.176)
yields time-dependent Hartree, rather than time-
dependent Hartree-Pock equations for the Pj's. Given
that the N-fermion problem was embedded in a many-
boson space, it is not surprising that one obtains an ap-
proximation equivalent to the evolution of X independent
boson condensates. [That the functions must be indepen-
dent follows from the fact that the singlet projector yields
zero in Eq. (3.175) unless the functions Pk are linearly in-
dependent. ] If one formally replaced V in Eqs. (5.175)
and (5.176) by one-half of the antisymmetrized potential,
the matrix elements of H would still be correct, but the
Hartree potential in the SPA would be replaced by one-
half of the correct Hartree-Fock potential, a fact reminis-
cent of the discussion subsequent to Eq. (5.109).

2. Slater determinants

In terms of an overcomplete set of Slater determinants,
a convenient expression for the unit operator (Blaizot and

Orland, 1980, 1981) is

r

+ f N[Pk(x), P, (x)]o f dxPk(x)P, (x) 5kj-
k,j

(5.177)

where ~ is a normalization constant,
l
P~Pz. . . P& )

denotes a determinant comprised of the single-particle
wave functions P~, P2. . . P„, and the real and imaginary
parts of P and P* are integrated independently. This re-
sult may be verified directly, obtained from Schur's lem-
ma, or derived by applying singlet projectors to the left
and right of Eq. (5.171). By virtue of the 5 function in
Eq. (5.177), the overlap factor in the general equation
(5.167b) is a constant, and to within an irrelevant multi-
plicative constant, the many-fermion evolution operator
between initial and final determinantal wave functions

l
4&;) and

l
4&j ) is

'(C~f
I
e '

I
C' &= f ~(Pi g 4i. . . 4x) + & f dx P*(x,t)P;(x, t)

k,j
t~ d A'

Xexp i f dt f dx gg(x, t) i + 7' Pk(x, t)
dt 2m

—f f dxdx'gPk(x, t)Pz(x', t)v(x —x')

X [yk(x, t)yj(x', t) yj(x, t)yk(x', t)]— (5.178)

Two salient differences relative to Eq. (5.176) are the ex-
plicit appearance of exchange terms in the exponential,
arising from the fact that the expectation value of H in
Eq. (5.167) is evaluated between determinants instead of
between products of coherent states, and the 5 function
restriction to integration over orthonormal functions.
Application of the SPA to Eq. (5.178) immediately yields

the TDHF equation, Eq. (3.7a), rather than the time-
dependent Hartree equation, and the required orthonor-
mality at all times follows automatically from Eq. (3.8).

The SPA equations for quantized eigenstates may be
seen to be equivalent to the self-consistent periodic eigen-
value problem, Eq. (5.75), except of course for the addi-
tional Fock exchange term, as follows. Evaluation of the
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trace, as in the boson case, imposes a periodic boundary
condition. Variation of the exponent in Eq. (3.178) sub-

ject to the constraints of orthonormality and periodicity
may be accomplished by introduction of the Lagrange

I

T

i —— V„+ f dx'u(x —x') QPJ*(x', t)P~(x ', t) P-k(x, t)
Bt 2m j

multipliers

y f dtakj(t) f dxpk(x, t)QJ(x, t)
kj

with the result

—f dx dx'u(x —x') $ PJ'(x', t)PJ(x, t)P„(x',t) = $ a„,(t)p (x, t) . (5.179)

By an appropriate transformation, cz may be diagonalized.
The periodicity condition is satisfied by any function of
time, ak(t), such that

Tf dt at, (t) =ak, (5.180)

where ak is defined by Eq. (5.75). The solutions to Eq.
(5.179), with diagonal ak satisfying (5.180), are gauge-
equivalent to the solutions of (5.75) and thus yield the
same SPA result for eigenstates. Although this method
thus provides an economical derivation of the previous
SPA results, nontrivial technical problems arise in
evaluating corrections to the SPA (Blaizot and Orland,
1980b).

An alternative, but equivalent, treatment of deter-
minants (Kuratsuji and Suzuki, 1980; Blaizot and Orland
1980b) is formulated in terms of the Thouless parametri-
zation of a determinant

dg =0,

f ding =1,
and involution is defined such that

(p)*=/

(5.183a)

(5.183b)

(5.184a)

The boson coherent states, Eq. (5.168), may be modified
to treat fermions by replacing the ordinary variables Z~
by Grassman variables g which anticommute with each
other and with fermion creation and annihilation opera-
tors a,a . By virtue of this anticommutation, pa=0 and
the most general functions of Grassman variables are
monomials. Elementary functions are defined by their
Taylor-series expansions, which terminate after the linear
term. To obtain a resolution of unity analogous to Eq.
(5.171), the definite integral of a function of Grassman
variables is defined by the relations

s "ia
~S)=e ~ ~'~ ~0) (5 181) and

where Sz„ is a particle-hole amplitude in the notation of
Sec. IV.B. Resolution of the unit operator is accom-
plished by finding the invariant measure for the group of
unitary transformations among the determinants, Eq.
(5.181), with the result

—Nf + . Det 1+ QS, S ~

~
S)(S

~

=1,
2&l

(5.184b)

It then follows that a Gaussian integral for Grassman
variables is given by

f dgdg~e ~ ~= f dg f dg~(1 —/*ad)

= f dg —f /de *a/=a,

(5.185)
(5.182)

so that by diagonalization, as in Eq. (5.37),

f +dgQg' p p p=d tA = "' (5.186)
where X is the sum of the dimension of the particle and
hole spaces. Blaizot and Orland (1980b) demonstrate in
an appendix the equivalence of Eqs. (5.182) and (5.177).

3. Grassman variables

A final functional integral which may be used to gen-
erate representations for the many-fermion evolution
operator is provided by coherent states utilizing Grass-
man variables. Whereas this approach involves consider-
ably more formal apparatus than in alternative methods,
it is extensively utilized in analogous field theory prob-
lems and an understanding of at least its basic elements is
therefore crucial for reading the relevant literature. An
extensive treatment of Grassman variables is provided by
Berezin (1966), and a detailed derivation of fermion
coherent states is given by Ohnuki and Kashiwa (1978).

dZadZa
2mt'

XaP a aP P [de~]—i e
—trlnA

(5.187)

only in the sign of the exponent, suggesting how the
Grassman formalism eventually generates the appropriate
relative signs in fermion and boson many-body theory.

Fermion coherent states analogous to Eq. (5.168) are
defined by

(5.188)

This result differs from the corresponding integral over
ordinary variables, appropriate for bosons,

r
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Using this definition and the preceding relations for
Cxrassman variables, it follows that the overlap of two
coherent states is

(5.189)

and the closure relation is

(5.191)

the matrix element of a normal-ordered fermion operator
1s

(5.190)

Since these relations are precisely analogous to Eqs.
(5.169)—(5.171), the matrix element of the many-fermion
evolution operator may be written

tf . d A'

)&exp i f, dt f dxj~(x, t) i + '(7 ——, f dx'g*(x', t)g(x', t)v(x —x') g(x, t)
t

+ f dx Pf(xg(x, t)f' (5.192)

which differs from Eq. (5.172) only in the replacement of
the variables P by Grassman variables g. Because of an-
ticommutation of the g variables, the expression for the
trace has an additional minus sign relative to Eq. (5.191),

f dC.dg
a

(5.193)

so that the fina[ overlap factor in Eq. (5.192) is removed
in the trace or partition function as for bosons, but the re-
sulting functional integral is over antiperiodic rather than
periodic functions. The periodicity and antiperiodicity
for bosons and fermions, respectively, ultimately specifies
the proper boundary conditions for Green's functions and
yields the proper boson and fermion occupation number.

%'hereas the parallel between fermions and bosons has
l

r

thus far been complete, there is no direct way to apply the
SPA to Eq. (5.192) to obtain a Fermion time-dependent
Hartree equation corresponding to Eq. (5.173). Thus, at
this point, the only way to proceed further is to remove
the Grassman variables from the problem completely.
Indeed, the most unsatisfactory feature of the formalism
is the fact that having gone to the effort of expressing the
evolution operator in terms of Grassman variables, one
must ultimately remove them from the problem and in-
troduce auxiliary fields, which we have already seen could
have been done directly without such a digression.

Introducing an auxiliary field in Eq. (5.192), as in Eq.
(5.38), to reduce the exponential of a quadratic form in
g*g to an integral over exponentials linear in g*g and
schematically indicating the x, t dependence by an obvious
matrix notation,

t'g [i(a/at) Kj ttgtt
—(i/2)pg —v tt &p&g~ . . . (i/2)tr u tt &trt)5 if*[i(a/at) —K u tt &trjg—Ct

(i/2)tr u tt ()tr&+)nDet[(a/at)+iK+iv tt ~tritSjWoe (5.194)

where the last line follows from Eq. (5.187). Using the re-
lation

DetA =AJ:; DetA,a

IJ
(5.195)

and Eqs. (4.8) and (4.11), stationarity of the exponent in
Eq. (5.194) yields

cr(x' t x t)= i i ——K —vo

iG(x, t, x't ) =—p(x', x) . (5.196)
Thus, the Green's function evolves in the Hartree mean
field v~p&~o.~, where o. is just the one-body density ma-
trix, and by the arguments in Sec. IV.A.2, the SPA is
equivalent to the time-dependent Hartree approximation.
Clearly, the derivation in Eqs. (5.194)—(5.196) applies

I

equally well to boson coherent states, with two additional
Ininus signs in the Gaussian integral, and in the relation
between the density and the Green's function yielding the
same time-dependent Hartree equation. Because of its ul-
timate reliance upon the introduction of an auxiliary field,
this formalism yields a Hartree theory unless one of the
techniques discussed in Sec. V.D.2 is utilized to generate a
Hartree-Fock or Hartree-Fock-Bogoliubov mean field.
Details of the application of this formalism to the calcu-
lation of quantized eigenstates and spontaneous fission are
presented by Reinhardt (1981a, 1981b).

Two-body correlations

The functional integral methods presented in this sec-
tion are strictly applicable only to two-body potentials
which are sufficiently weak that the Hartree-Fock mean
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field is a sensible starting point for a systematic expan-
sion. Unfortunately, there is, at present, a major concep-
tual gap in developing a functional integral formalism
utilizing many-body techniques comparable to those
described in Secs. II.A. and IV.B for treating strong
short-range repulsion. Therefore, in this concluding sec-
tion it is possible only to sketch several alternative ap-
proaches which may eventually be used to develop a
theory suitable for nuclear forces. Given the practical
difficulties of solving self-consistent time-dependent
mean-field equations and the additional complexity in-
volved in any explicit treatment of two-body correlations,
it is clear that in the short term practical calculation will
be forced to utilize effective interactions. Ultimately,
however, one may hope either that the insight from a
proper formal treatment of correlations will provide a
more satisfactory definition and justification of the effec-
tive interaction or that new and tractable approximation
techniques will be developed.

One alternative, implicit in the original work of Hub-
bard (1959), is to sum the quadratic corrections to the
functional integral over the complex pairing field in Eq.
(5.111). Just as the quadratic corrections for the Hartree
or Hartree-Fock mean field in Secs. V.D.1 and V.D.2
summed direct or exchange particle-hole ladders, or RPA
diagrams, the quadratic corrections to Eq. (5.111) sum
particle-particle and hole-hole ladders. Thus, in the
evaluation of the energy, the matrix element of the bare U

is essentially replaced by a G matrix.
One major problem with this theory is the fact that the

mean field does not contain the ladder sums [and unless
the decomposition (5.114) is utilized, contains only the
pairing field]. In addition, there is no obvious way to sys-
tematically sum three-body and higher-order Faddeev
ladders. Finally, from our physical understanding of the
quadratic corrections to the Hartree or Hartree-Pock
mean field as the collective RPA vibrations, the essential
physics of the corrections to Eq. (5.111) should be the
physics of collective pairing vibrations rather than short-
range Brueckner correlations.

A closely related alternative is to add and subtract a
term formally in the functional integral, Eq. (5.111),as at
the end of Sec. V.D.2. Defining a new variable

—(i/2)(o ~q+o.g )
7 (5.200)

thereby reformulating the theory in terms of G. Applica-
tion of the SPA assuming the first term is slowly varying
then yields a mean field in terms of G plus systematic
corrections. Although this manipulation allows one to ex-
press the formalism in terms of a G matrix instead of a T
matrix, there is no indication that this is optimal. Orland
(1981) has shown, using Grassman variables to calculate
the trace of the evolution operator, that the quadratic
term in the exponent is of precisely the form e
required to yield the T matrix. This is consistent with the
preceding observation that the quadratic corrections sum
particle-particle ladder diagrams.

A final alternative is close in spirit to the coupled-
cluster approximation of Sec. IV.B. At each point in Eq.
(5.165) at which a complete set of states is inserted, one is
free to insert instead

Jdp(Z)e s~Z){Z~es=l, {5.201)

where 5 is any operator. Allowing S to be time dependent
but continuous, repeating the steps which led to Eq.
(5.167a), and specifying the states

~
Z) to be determinants

yield

&& + 5 I dxit)'„(x, t)ct) (x, t) 5. —
k,j

where

Xe
I'A (P+). . . P~)

(5.202a)

the propagator P is chosen to be Q/e and the T matrix if
the propagator is 1/e. Solving Eq. (5.199) for G ', Eq.
(5.198) may be rewritten

(—i/2)r) Vr) ~[ ccc ] (i/2)o~Po (i/2)cr~G Ccr
f

~ap= ~apyn&yS ~
{5.197)

and using an obvious matrix notation, Eq. (5.111) be-
comes

T e
—(i/2)r) Vr) 1 ~[ ccc ] (i/2)o ~V cr (i/2)(crier)+or—) )

(5.198)

We now seek to define the mean field in terms of the solu-
tion to an integral equation

G =u —uI'6, (5.199)

which corresponds to the familiar G matrix, Eq. (2.1), if

(5.202b)

To establish contact with the coupled-cluster approxi-
mation, S must be restricted to be a sum of n-particle, n
hole operators. Whereas this restriction is impossible
relative to all determinants sampled in the functional in-
tegral, the S's at each time may be defined to contain only
particle-hole operators relative to the stationary deter-
minant satisfying the SPA equation at that time. Fluc-
tuations relative to the stationary determinant may be
parametrized by the Thouless form, Eq. (5.181), so that in
the infinitesimal limit, stationarity of A, Eq. (5.202b) re-
quires
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r

f de+ 5ze„(p, . . . pa a„are e i FI e—e p, . . .
pa)

pv

+gZ. , --.
N

e-~ i —II e~a~a. , N
——O. (5.203)

Stationarity with respect to 5Z&, yields precisely the coupled-cluster equation (4.25b) defining the evolution of S"', and
stationarity with respect to 5Z&, yields a TDHF-like equation for the evolution of P„. For the stationary solutions, the
exponent (5.202b) may be written

where P& and $2 are defined in Eqs. (4.34), the potential
term thus having the form of an effective interaction U$2.
Although, at present, the details of the theory have not
been worked out, and the quadratic corrections subject to
the constraint in Eq. (5.202) have not been evaluated, this
approach has many appealing features and merits further
investigation.

In summary, the functional integral formulation pro-
vides an elegant, powerful, and general technique for ad-
dressing a wide variety of static and dynamic problems in
many-body theory. Although significant progress has
been made recently in the conceptual understanding of
long-standing problems in the quantum theory of collec-
tive motion and spontaneous decay, substantial formal
problems still remain, especially in scattering theory and
dealing with short-range correlations. In addition, im-
mense practical problems arise in attempting to apply the
functional integral formalism to realistic systems, even at
the level of the mean-field approximation using simple ef-
fective interactions. Indeed, the decisive factor in deter-
mining whether these new ideas ultimately have signifi-
cant impact on nuclear physics will be the ingenuity and
energy devoted to solving these practical problems. This
is an appropriate point, then, to shift from the primarily
formal emphasis of the last five chapters to address
specific applications to model and physical systems.

Vl. APPLICATION TO SIMPLE, IDEALIZED SYSTEMS

Application of the mean-field theory developed in the
preceding sections to simplified model problems serves
several useful functions. For analytically solvable prob-
lems, it provides both a quantitative test of the theory and
insight into how the mean field describes many-body
dynamics. Realistically, of course, just those features of a
simplified model which make it solvable also render it un-
representative of the general many-body problem. Thus,
in this section, two very different solvable models are ex-
plored, the first having nontrivial spatial dependence but
a very sparse S matrix and the second having a more in-
teresting S matrix but no meaningful spatial dependence.

As emphasized in Sec. II, a crucial feature of nuclear

many-body systems which should be embodied in models
is nuclear saturation. This saturation implies that both
the density and mean field in finite nuclei are approxi-
mately constant in the interior and that they approach
zero rapidly in the surface. Since no analytically solvable
saturating models have been discovered, numerical solu-
tions for two simplified saturating models are presented
and discussed in detail. Both models have nontrivial spa-
tial dependence in only one dimension and employ
density-dependent effective interactions. The virtue of
one-dimensional spatial dependence is twofold. The re-
sulting numerical simplifications allow broad exploration
of a large class of applications, and the essence of the re-
sults may conveniently be displayed graphically. As mill
become evident subsequently, the collisions treated in Sec.
VE.D manifest virtually all the relevant physical features
of more realistic applications in two- and three-
dimensional geometry.

A. One-dimensional system
with attractive delta-function interactions

g N
X.—X.l Ji(j=1

(6.2)

A wave function which is antisymmetric with respect to
interchange of two variables loses the benefit of one of the
delta-function interactions and is unstable with respect to

Consider a system of N particles in one spatial dimen-
sion governed by the Hamiltonian

d2 N
H= ——, g 2

—g g 5(x; —x~. ),
l =I d l (J=1

where, for convenience, energy units are defined such that
fi /m=1. (The interaction strength g may also be re-
moved from the problem by measuring length in units of
fi /2mg and energy in units of 2mg /A', so the only
meaningful parameter in the model is N, the number of
particles. )

This Hamiltonian has spatially symmetric bound states
of the form (Bethe, 1931)
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break-up into two subsystems. Thus, to obtain stable X-
particle bound states one must either consider bosons or a
system of fermions having an additional color quantum
number with degeneracy 2S+1=N, allowing the wave
function to be antisymmetric in color and symmetric in
space. The boson case will be treated here for simplicity,
but the results may be generalized straightforwardly to
the fermion case with the additional color degree of free-
dom.

1. Bound states

(N 1 )zg2

8

The resulting Hartree energy

—N(N —1) g
24

and Hartree density

N(N —1)g
p~(x) =

2 (N —1)gx
2

(6.10)

(6.1 1)

(6.12)

Exact bound-state solutions have been obtained by
McCxuire (1965) and have been compared with mean-field
approximations by Calogero and Degasperis (1975), Nohl
(1976), and Yoon and Negele (1977).

A system of X bosons interacting with the Hamiltonian
(6.1) has a single N-particle bound state

agree with the exact results, Eqs. (6.4) and (6.6), to leading
order in X.

As usual in the mean-field theory, errors of order 1/N
relative to the leading contribution arise from the spuri-
ous cm motion. Minimization of (H H, )—, where H,
= —,(g,.P;), yields the Hartree energy

@~=N'L(N —1)'g '3'"exp ——X2.i &j=1

&H N (N —1) 2
N 24

(6.13)

with energy

N (N2 1)g'—
(6.3)

(6.4)

and density

p~(x)= I dx). . . dx~5 —g x;
~ Q~ ~

5(x) —x)

N —1

1)„+& n exp( —gnN
~

x
~

)

(N +n —1)!(N n —1)!—
(6.5)

In the large-X limit

p~(x)
Pf 2g

N~oo
2 NgX4 cosh 2

2

11+W—. (6.6)

The mean-field approximation is obtained by choosing
the trial wave function,

N

+=vw Qy„(, ), (6.7)

1 d —g (N —1)
~
Pb(x)

~

—e Pb(x) =0 (6.8)
8x

has one bound-state solution

[(N —1 )g]'

h
(N —1)gx2 cosh

2

with energy eigenvalue

(6.9)

and minimizing (H ) with respect to the normalized
single-particle wave function, Pb (x ). The resulting
single-particle equation

thus eliminating half of the order X discrepancy between
Eq. (6 4) and (6.11).

The Hartree results (6.11) and (6.12) suggest that the
mean-field theory yields an asymptotic expansion in 1/X,
the particle number N being the only parameter in the
model after appropriate scaling to remove the mass and
coupling constant. Additional insight into the theory
may be obtained by examination of the systematic correc-
tions to the mean-field result. The 1/N expansion may be
obtained straightforwardly either by perturbation theory
or by examination of the appropriate functional integral.

The perturbation series for fermions is obtained directly
from the Goldstone expansion. For bosons, the same re-
sult is straightforwardly obtained by assigning a color
quantum number with degeneracy (2S+1)=N, adiabati-
cally switching on from an unperturbed color singlet, and
disregarding the unphysical singlet color component of
the wave function. Any linked graph in the Goldstone
expansion for the energy has I interactions and C closed
loops. Every interaction contributes a factor of (N —1)
which arises from the normalization of the particle and
hole eigenfunctions of the Hartree potential and a factor
of (N —1) ', which arises from the integration over spa-
tial variables. This latter factor may be extracted only be-
cause all the wave functions are functions of (N —1)x and
the interaction is zero range, allowing the removal of all
X dependence from the integrand by change of variables.
Every closed loop contributes a factor of N arising from
the sum over color states. For every graph, there are
I —1 energy denominators, each of which contributes a
factor of (N —1) . Hence the overall N dependence of
any Goldstone diagram in the energy expansion is
(N —1) N -N + . A similar argument shows that
the X dependence for the expansion of the one-body den-
sity is N +'.

This analysis yields an unambiguous accounting of the
asymptotic dependence of individual graphs on the parti-
cle number. The only energy diagram which contributes

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982



976 Negele: Mean-field theory of nuclear structure and dynamics

in order N is the Hartree diagram, shown as the SPA
term in Fig. 17, which has C=2 and I =1.

Since the fermion propagators are defined as eigenfunc-
tions of the Hartree potential, they sum to all orders Har-
tree self-energy insertions which have C =1 and I =1 and
are thus independent of N.

Energy diagrams of order N must have equal numbers
of interactions and closed loops, and thus are restricted to
the exchange diagram, labeled n =1 in Fig. 17, and the
RPA ring diagrams also shown in Fig. 17. The energy,
Eq. (6.13), includes the diagrams labeled SPA and n =1
in Fig. 17 plus the cm energy correction, so the remaining
error of order N arises from the RPA diagrams of Fig.
17 with n)2. The n =2 diagram yields (Yoon and

Negele, 1977)

2
hE = —0.9956N(N —1)

24 ' (6.14)

thus removing all but —,% of the N discrepancy with the
exact result.

An alternative approach to the 1/N expansion utilizes
the functional integral expressions (5.192) or (5.199) for
bosons or fermions, respectively. Denoting color variables
for fermions by Greek subscripts, utilizing an auxiliary
Geld in the usual way, and introducing new scaled vari-
ables g'=gN and o'=(1/N)cr, the functional integral for
the time of the evolution operator becomes

1 d 1f &(g g~)exp i f dtdxg@(x, t) i +—
z

——

gpss(x,

t)g~(x, t) g (x, t)
2 d~2 2

= f ~(g*g ) f ~(o')exp i f dtdx g g'(x, t) i +— go(x—, t) g (x, t) exp — dtdx o (x, t)g
1 l 2

Bt 2 d&2 2

& cr exp NlnDet a
Bt

1 d—l —gO
dx

exp —f dt dx g[o(x, t)]~
2

~ o' exp X ~ ln Det —i — —g'o'1 d
at 2 d. +—f dt dx g'[o'(x, t)]

2
(6.15)

By virtue of the explicit factor of N in the exponent of
(6.15) and the removal of all other N dependence, applica-
tion of the SPA to Eq. (6.15) yields an asymptotic expan-
sion in 1/¹ The leading term is then the SPA result in

Fig. 17, with the quadratic corrections yielding the ex-
change and RPA diagrams of next order in 1/N in agree-
ment with the preceding perturbation analysis. The fact
that diagrams are classified according to N follows
immediately from the scaling requirement that the cou-
pling constant scale as N ' and that the Green's function,
which by Eq. (5.196) equals o, scale as N.

Although the manipulations in Eq. (6.15) could have
been carried out for a general finite-range potential, the
1/N expansion hinged crucially upon the fact that the in-
teraction was a delta function and thus had no length
scale. For a general potential, the transformation
U p&~=u~p&~X would change the Hamiltonian, requiring
one to consider a hypothetical class of theories in which
the interaction strength varies with N as discussed in Sec.
V.A.3.

Similar functional integral techniques have been uti-
lized by Nohl (1976) to calculate bound-state energies for
bosons and fermions. In this work, a bare mass term in
the nonlinear Schrodinger equation is adjusted to repro-
duce the proper energy of a one-particle state so that
evaluation of quadratic fluctuations yields not only the
correct N and N dependence of the energy, but also the

correct N dependence. An additional result is the inter-
pretation of P~, the solution to the mean-field equation
(3.31), as the expectation value of a field operator evaluat-
ed between eigenstates, Eq. (6.3), for N and N + 1 particle
systems.

2. Scattering

b, t = 5(k)—1 d

4g g tn

4I 2+~ 2g2 k(4k +N g )

(6.16)

where k is the initial cm momentum.
The time-dependent Hartree initial-value problem for

the collision of two X-boson states is speciGed by the
equation

The complete scattering matrix for distinguishable par-
ticles has been derived by Yang (1967), utilizing the Bethe
ansatz, and the most salient feature is that only elastic
scattering occurs in the model. Using this method for the
scattering of two N-boson bound states, Yoon and Negele
(1977) derived the phase shift from which the following
time delay is obtained:
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l d2
i +— +(2N —1)g

~
P(x, t)

~
$(x, t)=0 (6.17a)

Bt 2 d~

with the initial condition

(x„x . . x, t )= + e 'P„(x;+R)
2

—ikx,.+ e 'Pb(x; —R)
&2

(6.17b)

where pb denotes the N-particle bound-state Hartree wave
function of (6.09). Although, as discussed in Sec. II.A.4,
the initial condition does not correspond to two intrinsic
wave functions multiplied by a cm momentum eigenfunc-
tion, the separated fragments do evolve like freely
translating ground states and have the correct expectation
value of the cm momentum. The cubic Schrodinger equa-
tion, Eq. (6.17a), may be solved using the inverse scatter-
ing technique of Zakharov and Shabot (1972), and the
two-soliton solution satisfying the initial condition (6.17b)
is (Dolan, 1976)

y( t) ~ae —(i/2)(k2 —a )t

—a (x —kt) k —a (3x +kt) &ikx &
—a (x +kt) —a (3x —kt)

(k —ia) (k +ia)
2skx k

X 1+2e cosh(2akt) 8—a e '"Re
2 + 2

e
4(k+ia) (k +a )

(6.18)

where a =—(2N —1)g/4 and k is the cm momentum. This
solution describes the transmission of two solitons
through each other with a time delay but with asymptotic
shape after the collision identical to the initial shape prior
to the collision. Thus, the most salient feature of the ex-
act solution, restriction to purely elastic scattering, is ex-
actly manifested in the soliton behavior of the mean-field
solutions. The time delay defined by Eq. (6.18) is

At = ln 1+
—4 (2N —1) g

(2N —l)gk

[lnN+ 6'( I)]4 (6.19)

and agrees with the exact result, Eq. (6.16), to leading or-
der in 1/N. This same result is also obtained by
Reinhardt (1982) in his formulation of mean-field reac-
tion theory. In view of the generality of the functional in-
tegral derivation of the 1/N expansion, Eq. (6.15), one
could, in principle, calculate systematic corrections to the
phase shift and thus the time delay.

The one-dimensional delta-function problem thus pro-
vides a model system in which the mean-field theory
yields an excellent, controlled approximation for bound
states and scattering. The general considerations concern-
ing evaluation of few-body operators instead of wave
functions are borne out concretely. The binding energy,
one-body density, and time delay (which may be defined
in terms of the center of mass of the separating frag-
ments) are all calculable with errors of order 1/N despite
the fact that overlaps between exact and mean-field wave
functions are exponentially small. Similarly, it provides a
pedagogical counterexample to criteria which have been
suggested for the validity of the time-dependent mean-
field theory based on the lifetime of a determinant
(Lichtner and Griffin, 1976), since in this model the life-
time estimate would erroneously imply validity for only

3. The sigma model in one spatial dimension

%hereas semiclassical and mean-field approximations
to field theories lie beyond the purview of this work, the
semiclassical approximation to the sigma model is so in-
trinsically related to the one-dimensional delta-function
model that a terse review is appropriate. The sigma
model is a simple field theory in which fermions are cou-
pled to a single scalar field, and may be regarded as a
schematic model of nuclei bound by a meson field instead
of instantaneous potential interactions. The theory and
its semiclassical approximation are treated in detail by
Campbell (1978) and Campbell and Liao (1976), and the
resulting semiclassical equations may be written

iyo +iy) ——m —gP 0;(x)=0
Bt Bx

(6.20a)

(6.20b)

where the Dirac matrices in one dimension may be de-
fined yo

——o.3 and y) ——ia), g is a two-component Dirac
spinor for the nucleon, no denotes the number of nucleons
in each positive-energy orbital, and nucleon and meson
masses are m and m, respectively. Since two of the four
parameters appearing in Eq. (6.20) may be removed by
appropriate definition of the length and time scales, it is
convenient to characterize the theory in terms of the two

I

infinitesimally short time intervals. The chief limitation
of the model is the unrealistically sparse S matrix mani-
festing neither rearrangement nor inelastic scattering, and
this deficiency motivates the complementary investigation
of the Lipkin model in Sec. VI.B.
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parameters
2

5:—
m

and

(6.21a)

ma model thus provides the opportunity to investigate a
number of interesting aspects of the generalization of
nonrelativistic many-body theory to a tractable field
theory. Many more details may be found in the cited
literature.

(6.21b) B. The two-level Lipkin model

In this approximation, a pion corresponds to a periodic,
self-consistent solution to Eq. (6.20b) in the absence of a
nucleon source, an isobar is a periodic solution coupled to
a single nucleon, and a nucleus is an assembly of static
solutions to Eq. (6.20) in which nucleons are bound in the
mean field P,':which in turn is generated by the nucleon
source. Thus the model, in principle, affords a laboratory
in which to extend classical nonrelativistic nuclear phys-
ics based on potential interactions to a field theory allow-
ing for explicit treatment of mesons and isobars.

A remarkable feature of the model is that for 5=4,
that is, for a meson twice as massive as the nucleon, the
coupled equations (6.20) are analytically solvable and
yield several classes of localized soliton solutions, one
class of which corresponds to finite nuclei (Campbell and
Liao, 1976).

A second interesting feature is that the nonrelativistic
reduction, which requires (y/5) «1 and y /5 «1,
yields the nonlinear Schrodinger equation (6.17a) (Camp-
bell, 1979). This follows directly from Eqs. (6.20), since
in the nonrelativistic limit, the upper component of g sat-
isfies a Schrodinger equation in the potential gP, and in
the appropriate limit all the terms on the left-hand side of
Eq. (6.20b) are negligible except m, so that P is propor-
tional to the square of the wave function. Since the non-
relativistic limit may be attained for the analytically solv-
able case of 5=4 by decreasing y, the analytic soliton
solutions to the one-dimensional delta-function problem
are a special case of the general solutions to the 5=4 sig-
ma model.

Finally, it is useful to note that whereas the 5=4 and
nonrelativistic limits of the theory do not yield saturating
solutions for finite nuclei, the general model possesses
sufficient flexibility to produce saturation. From the fact
that the one-dimensional delta-function potential does not
saturate, it is evident that the ratios y /5 and y /5 can-
not simultaneously be small for a saturating system.
However, when y /5 exceeds the order of unity, the mean
field becomes so large that a different instability arises
and a nucleuslike solution is unstable with respect to
breakup into kink-antikink solutions which have no coun-
terpart in nonrelativistic nuclear physics. Thus, for a
meson mass significantly lighter than the nucleon mass,
as is the case for pions and nucleons which correspond to
5= », there is a large window between the nonrelativistic
nonsaturating region and the kink-antikink instability.
Numerical solutions of the sigma model (Campbell and
Negele, 1981) for 5=—„and y= », are qualitatively
similar to those of the saturating model discussed below
in Sec. VI.C.

As this brief survey suggests, the one-dimensional sig-

This Hamiltonian describes two levels separated in energy
by E and having equal matrix elements for raising or
lowering a pair of particles. The eigenfunctions and
eigenvalues are easily found by introducing quasispin
operators obeying angular momentum commutation rela-
tions

N

J,=——,
'

~~ sa,a,
p =1,%
s=1

Af A ~ ~At A+
ap+1ap 1 ap 1ap+1

(6.23)

in terms of which H may be written

H =EJ,+ V(J„—Jy) .

The Hamiltonian commutes with the total quasispin

J —J„+Jy+Jz,
the number operator

np ~ apsaps ~

(6.24)

(6.25)

(6.26)

and the parity operator

i'&=8 (6.27)

The eigenstates may be found by diagonalization within
each subspace of definite J, making use of the fact that
since H commutes with H, even and odd M may be diago-
nalized separately. Since H and the external potentials
considered in this section commute with J, we shall re-
strict our consideration to the ground-state multiplet,
J =N/2.

1. Eigenstates

The spectrum of I in the ground-state multiplet for a
14-particle system obtained by diagonalization is shown
as a function of effective coupling strength by the crosses
in Fig. 21. Only half the spectrum is considered, since
eigenvalues come in pairs of opposite sign by virtue of the
fact that H changes sign under rotation through 180'

A solvable many-body Hamiltonian, commonly re-
ferred to as the Lipkin model, is defined by the Hamil-
tonian (Lipkin, Meshkov, and Glick, 1965)

t- ~ w-t t-H =— sap, ap, +— ap, ap, ap, ap
p =1,% p,p ,s
s =+1

(6.22)

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982



Negele: Mean-field theory of nuclear structure and dynamics 9?9

l2—

l0—

m=0 +

/ /

/ /

/ /

/ /

I /

/ /
/ +

/

+/

I

/
I +

/

/

/

/

/

/+
+

where

1
coscx =

x '

having energies
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P

(6.30a)

(6.30b)

EHF =
r

c.X 1—+X (6.30c)

parity symmetry is spontaneously broken and there are
two degenerate HF states

+

+~
m=4 +~+~

—+

+
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+
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+

ITI= 7
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about the x =y axis.
The Hartree-Fock approximation, obtained by minim-

izing the expectation value of H with respect to a varia-
tional wave function which is a product of X identical
single-particle wave functions, yields two distinct solu-
tions, depending on the strength of the potential (Agassi,
Lipkin, and Meshkov, 1966). A dimensionless parameter
characterizing the strength of the interaction is defined by

FIG. 21. Comparison of approximate and exact eigenvalues

E/c of a 14-particle Lipkin system for the ground-state multi-

plet as a function of the effective coupling strength
c, =N V/c. Crosses denote exact eigenvalues, solid and
dashed lines denote approximate levels for even and odd m,
respectively, in the unbroken symmetry region, and dot-dashed
lines denote doubly degenerate solutions in the region of spon-
taneous symmetry breaking. A logarithmic scale for the cou-

pling strength is used for compactness. (6.31)

A useful parametrization for product wave functions for
subsequent developments is provided by the unitary
transformation

Pp+1

Pp —1

ap(t)
cos

2
ap(t);(I, (g)—l sin e

2

ap(t) ((I (() ap(t)—i sin e ~ cos
2 2

a&+ &

ap

where X is defined in Eq. (6.28).
The degeneracy may be removed by taking linear corn-

binations of the degenerate solutions, giving rise to parity
doublets in the strong-coupling regime. The solid and
dashed lines labeled m =0 in Fig. 21 denote the weak and
strong coupling energies, respectively, and indicate that
the mean field yields a useful first approximation for the
ground state.

A comparable description of the complete spectrum of
the ground-state multiplet is provided by the SPA ap-
proximation to the functional integral formulation of Sec.
V.C (Levit, Negele, and Paltiel, 1980a). Introduction of
an auxiliary field for the Hamiltonian, Eq. (6.24), as in
Eq. (5.46), yields the trace

(X)

dT e lETtre —EHT
0

T
00 iV (o2 —o2)

dT e' &(o„,op )e
T

dt(cJ +2v(cr„J —cr J )1
Q trI, T&e

X—=(X —1)V/e . (6.28)
(6.32)

For weak coupling, 7 & 1, the HF ground state is the un-

perturbed ground state with all the particles in the lower
level

(6.29a)

(6.33)

in terms of which a general product state may be written

l
y(t) &

= II y,', (t)e
' ~ '

l
o& .

P

with energy

c.X
EHF

2
(6.29b)

In the special case Xp ——Pp ——0, this reduces to the result
Eq. (6.30a). As in Eq. (5.52) or (5.75), application of the
SPA to the o. integrals in Eq. (6.31) yields

N
o

I „l(t) = Q (7'( „'l ( t) = p (,'0
I yp, z,» 1'p',

I
o & .

y p ] y & & ty)
Note that since only positive energies are shown in Fig.
21, the ground state corresponds to the negative of the
highest state in the figure. For strong coupling, g ~ 1, the

(6.34)

Observing that for the relevant stationary solutions the
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single-particle states are identical for all Ii's, using the
equation of energy conservation and performing some
algebra, the quantization condition, Eq. (5.86) becomes

N f cos —dP=m 2m,
2

(6.35)

I+ g 1p+1/p —1

P=]

I =I+,
I,—:,g Syp, gp, .

(6.38)

where cos (a/2) as a function of itj is defined by the equa-
tion

cos —= — 1 ——+—(E +x 4Ex—)
A' 1 E 1

2 2 x x

~
y+(t) ) =(I+1T)

~
y(t) ) . (6.37)

Instead of yielding doubly degenerate solutions in the re-
gion of spontaneously broken symmetry, the projected
theory produces separated, nearly degenerate doublets
which join continuously to the weak-coupling solutions.
Thus the projected theory yields a much more accurate
description of the transition region.

Higher-order corrections to the mean-field energies
have been calculated using perturbation theory (Lipkin,
Meshkov, and Glick, 1965), linearized equations of
motion (Meshkov, Glick, and Lipkin, 1965), diagram
summations (Glick, Lipkin, and Meshkov, 1965), and the
coupled-cluster approximation (Liihrmann, 1977; Hood-
bhoy and Negele, 1978). As a prelude to the subsequent
treatment of the time-dependent coupled-cluster theory, it
is interesting to examine the S' ' corrections in the static
coupled-cluster approximation. Quasispin operators I
may be defined in terms of the y's defined in Eq. (6.32)
analogous to the operator J defined in terms of a' s, and it
is now convenient to use raising the lowering operators in-
stead of x and y components:

(6.36)

where Z=s/NV, E=E/N V, and x =cos2$. Evaluation
of (6.35) for all the physical branches of (6.36) yields the
nondegenerate solutions denoted by solid and dashed lines
in Fig. 21 and the doubly degenerate solutions indicated
by dashed-dot lines. The ground-state result agrees with
Eq. (6.30b), except that the factors (N —1) are replaced by
N, because the Hartree mean field in (6.31) does not in-
clude the exchange terms at the SPA level.

As evidenced in Fig. 21, the qualitative features of the
full spectrum are well reproduced in the mean-field ap-
proximation. In particular, the grouping of exact eigen-
states into nearly degenerate pairs in the spontaneously
broken symmetry region of E/c &N/2 is reflected at the
SPA level in the occurrence of doubly degenerate mean-
field solutions. The nonlinear self-consistent mean-field
equations for quantum eigenstates are evidently much su-
perior to the RPA, which would necessarily predict uni-
form level spacings.

Using arguments based on gauge invariance and the
time-dependent variational principle, Kan, et al. (1979)
obtain the same quantization condition and results as ob-
tained above for the Lipkin model. A subsequent im-
provement was introduced by Kan (1980) by replacing the
wave function (6.33) by a parity projected ansatz

(6.39)

Hence the static coupled cluster equations, Eq. (4.21),
truncated to include only S' ' may be written

(6.40a)

(6.40b)

(6.40c)

and after suitable angular momentum algebra yields the
results (Hoodbhoy and Negele, 1978)

E = ——,EN[X(l —S' ')

—X cos a(1+S' ')+cosa], (6.41a)

where

1 —(N —1)S' '

coscx =
[1 (N —3)S(')—]X

(6.41b)

(N 7N+9)(1—+cos a)X(S' ')

+ [6+(N —2)(1—cos a) +4(N —1)cosa]S' '

= —(1+cos a)X, (6.41c)

where X is defined in Eq. (6.28). In the approximation
S' '=0, Eqs. (6.41) reduce to Eqs. (6.29) and (6.30) in the
weak- and strong-coupling regimes, respectively. The ex-
act energy E for a 14-particle system and the deviation
between truncated approximations and the exact energy
are shown in Fig. 22 as a function of interaction strength
V. The discrepancy between the Hartree-Fock approxi-
mations and the exact result, which was barely visible in
Fig. 21, is clearly seen to increase in the strong-coupling
regime. Including S' ~ not only significantly diminishes
the error at the transition point between the weak- and
strong-coupling regimes, Vz ——c/X —1-0.077, but also
greatly improves the approximation throughout the entire
strong-coupling regime.

2. Response to an external potential

Alhassid and Koonin (1981) have applied the function-
al integral formalism of Sec. V.F.1 to the response of a

p =1,%
s =+1

The uncorrelated wave function in the coupled-cluster ex-
pansion is

~

P(t) ) defined in Eq. (6.33) and the parameters
a and g are determined to make S'" vanish identically.
By the symmetry in particle labels, S' ' is characterized
by a single parameter and may be expressed in terms of
I+..
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V(r)=f(r) J. (6.42)
I

Lipkin model system to an external perturbation of the
orm

As in Eq. (6.31), auxiliary fields o„and o~ are intro-
duced, which at the SPA level in the simplest case con-
sidered here are identical for each particle label p. The
SPA for the S matrix, Eq. (5.15a) thus becomes

(p'~S
~
p) —exp iN(N —l)V I dt(of of )+ f dt(a„—o'&)+ I dt(o;„—o;&)

X (P'
~

U f(O, T)U (T, T)U—'( T—,O)
~
P), (6.43a)

where
t

U '(t', t)= T,exp i —I dh[EJ +5~pf(r) J+2(N 1)V(o'e~x o—rye�)l

(P'~TgJ „U fU U '~P)
o I„I(t)=Re

(6.43b)

(6A3c)

U f(t, T)U (T, —T)U '( —T,O)=e—(6.44)

and similarly the products U U ' and U ' are expressed
in terms of a and a;. The equations of motion for the

where sr~ denotes any one of of, cr, or cr;, T, inserts J into
the corresponding interval (O, T), (T, —T), or ( —T,O) at
time t, and 510 indicates that the external source only con-
tributes to U .

In the self-consistent equations (6.43) the states
~
p)

and
~

p') are not restricted to determinants, so instead of
parametrizing a general time-dependent determinant, it is
useful to parametrize an arbitrary evolution operator in
group-parameter space. Any sequence of evolution opera-
tors is a unitary operator and thus may be expressed in
the form

I

parameters u are obtained from the equation of motion
for the evolution operator yielding nonlinear self-
consistent first-order equations for a which may be
solved numerically. The exact evolution of the system,
for comparison with the mean-field theory, is obtained by
expanding the wave function in eigenstates of the
ground-state multiplet, yielding a first-order equation to
be integrated numerically for the time-dependent expan-
sion coefficients.

Typical numerical results for a Gaussian external field,
—(ct)2V(t) ~e '"' (J„+J„+J,), in the weak-coupling regime,

7=0.5, are shown in Fig. 23. The modulus of the ampli-
tude to excite the nth eigenstate from the ground state

~
S„~ is shown for three values of the particle number N.

The qualitative behavior of the mean-field amplitude is

0.3— -IO

-l2

& 0.2—
Ld

O. I— -I8

-20

0
O. I 0.2 0.5 0.4

V ( MeV)

FICi. 22. The exact ground-state energy E (solid leone), deviations from E of the HF energy {short dashes), and deviations from E
of the coupled-cluster energy including S' ' (long dashes). Note that E is referred to the scale at the right and that the energy de-
viations use the scale at the left.
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FIG. 23. Modulus of the amplitude
~
S„o

~

to excite the nth excited state of the Lipkin model with a Gaussian time-dependent
external field. Circles and triangles denote exact and mean-field amplitudes, respectively.

good, although the amplitudes in the regimes of strongest
excitation are systematically underestimated and the
violation of unitarity is non-negligible. Although the
theory does not yield a strict 1/X expansion, the agree-
ment appears to improve with increasing N.

3. Interaction of two systems

An extreme caricature of a nuclear collision is provided
by two interacting N-particle Lipkin systems. Initially,
like two distantly approaching nuclei, particles in each
isolated system interact only among themselves, and each
system evolves in its respective ground state. At time
t =0, all 2N particles interact with each other, analogous
to two overlapping nuclei. Finally, after some interaction
time T, the two systems again separate, and each particle
is again restricted to interacting with particles within its
own system. Since at every time the evolution of the sys-
tem is exactly solvable in terms of eigenstates of an %- or
2X-particle Lipkin model, it is straightforward to obtain
the exact solution for the wave function and any observ-
ables of interest.

The derivation of the time-dependent coupled-cluster
equations follows that of Eqs. (6.40), with the exception
that separate operators I& and I2 must be defined as in
Eq. (6.38) for the two N-body systems and Eq. (6.39) must
be replaced by the general form for S

S' '(t)= , S'I '(t)It++ , S, —(r)I2++Sp,'(r)I—,+I,+ .

(Jz) ( Jz ) —( Jz)
T DHF —I.27
Exp (S2)
Exact -I,44

3, 38
4, 6l
5, oo

T=4x IO s

O. 2—
0

O. I—

0

where d' denotes I;, (I; ), or I; I;+ and the subscript
(i) represents either of the two systems. Algebraic details
are given by Hoodbhoy and Negele (1978), and only a few
representative results are summarized here.

If S' I is set to zero, Eqs. (6.46) yield TDHF equations
of motion for a; and t/i; parameterizing the uncorrelated
wave functions, with the results shown in Figs. 24 and 25.
A convenient representation of the wave function is pro-
vided by quasispin eigenstates with J=N/2 and spin pro-
jection M, corresponding to X/2 —M particles in the
lower level and M —X/2 in the upper state. The even-
odd staggering of the exact results in Fig. 24 reflects the
parity symmetry of the Hamiltonian. Prior to the interac-

0
n1

I I I I I I I I

-7 -5 -3 —I l 3 5 7
(6.45)

The coupled-cluster equations for the parameters a;(t)
and l(;(r) appearing in I;, which define the single-particle
wave functions, and for the correlation amplitudes S; and
S&2 are obtained by projection as before:

FIG. 24. The probability P for obtaining 7-MJ particles in the
lower level of a 14-particle Lipkin system after interaction
with a second 14-particle system. Exact, TDHF, and
coupled-cluster results are denoted by solid lines, triangles, and
circles, respectively, the Lipkin parameters are v=1 MeV and
XV=5 MeV, and the interaction time is 4)(10 s.

(6.46)(y ~.-~'*"" sr i e~ ""y)=0—'at '
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C. One-dimensional saturating system

N x 73

The preceding solvable models fail to address the cru-
cial feature of saturation in finite nuclei. The eigenstates
of the one-dimensional delta-function potential shrink in
spatial extent instead of increasing with the number of
particles, and the Lipkin model has no spatial degrees of
freedom. Thus, to begin to explore mean-field dynamics
in a saturating system, it is useful to define a simple
model system in one spatial dimension which is construct-
ed to produce saturation.

A simple one-dimensional saturating Inodel is specified
by the following Hamiltonian density (Levit, Negele, and
Paltiel, 1980b):

I

6
T (IO s)

I

la

+ —, f dx'p(x, t)V(x x')p(x', t—)

FIG. 25. Excitation energy AE and mean value
function of interaction time for the system treated
using exact (solid lines), TDHF (short dashed
coupled-cluster wave functions (long dashed lines).

of J~ as a
in Fig. 24,
lines), and

where

+ —, V,p'(x, t),

p(x, t) =M g P~(x, t)f (x,t);

(6.47a)

(6.47b)

tion, only pairs of particles can be removed from the
ground state, so only components with even numbers of
particles in the lower state (odd MJ) are nonvanishing.
Interactions between one particle in one system and one in
the other introduce components with odd population of
the lower state, as well, but for the short interaction time
shown in Fig. 24, the correlation is still quite strong. Un-
less parity projections are explicitly imposed, no approxi-
mation with fewer than 14 particle correlations can possi-
bly represent the individual amplitudes, so it is only
reasonable to seek to reproduce expectation values of
few-body operators. As seen in Fig. 24, (J, ), and thus
the mean number of particles in the lower state, is well
reproduced by the mean-field theory, whereas the disper-
sion of occupation of the lower state, specified by
(J, ) —(J,), is poorly represented. Introduction of
two-body correlations in the coupled-cluster expansion
not only further improves (J, ), but, more important,
yields a reasonable value for the dispersion. Similar re-
sults occur in Fig. 24, where the expectation value of two
two-body operators, (J„) and the excitation energy, are
shown as a function of the interaction time T. Again one
observes that qualitatively incorrect behavior of two-body
operators in the mean-field theory is dramatically im-
proved by inclusion of two-particle correlations in the
coupled-cluster approximation.

Although two interacting Lipkin systems constitute a
crude representation of a scattering problem, the success
of the mean-field theory in representing expectation
values of one-body operators and the necessity of includ-
ing two-particle, two-hole amplitudes to treat two-body
operators certainly suggest that similar features may arise
in nucleus-nucleus scattering.

(6.48a)
L

for real time and

at
+h [p] P~(x, r) =k P~(x, r) (6.48b)

for imaginary time, where

82
h [p]=— + f dx'p(x, t)V(x —x')+V3p (x, t) .

Bx

(6.48c)

P (x, t) denotes P*(x,t) or g (x, t) fo—r real or imaginary
time, respectively, V is the sum of a short-range attrac-
tive Gaussian and a long-range repulsive Gaussian, ener-
gies are measured in units of Eo —A2/2mlo2, time is mea-
sured in units of to ——A/Eo, and the length scale Io is de-
fined as the reciprocal of the saturation density. Satura-
tion is achieved by virtue of the repulsive three-body
force, the relative strengths of the attractive two-body
and repulsive three-body forces are chosen to reproduce
the ratio of Fermi kinetic energy to potential energy in
nuclear matter, the range of the attractive Yukawa is
chosen to be half the mean distance between particles,
and the spin-isospin degeneracy M is 4. The long-range
repulsive Gaussian force is introduced to mock up the
effect of Coulomb repulsion and produce fission of suffi-
ciently large systems, and its strength is defined to
render a 16-particle system unstable with respect to
breakup into two eight-particle fission fragments, which
in turn are stable with respect to further decay. Remov-
ing a multiplicative factor as in Eq. (5.66), the periodic
mean-field equations for this Hamiltonian density are
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9S4 Negele: Mean-field theory of nuclear structure and dynamics

Static solutions to these equations yield the Hartree-Fock
ground-state density distributions shown in Fig. 26. The
salient result in this figure is the fact that behavior as a
function of x for this one-dimensional model faithfully
reproduces the behavior of physical nuclear densities as a
function of radius r T. he surface thickness is essentially
independent of particle number, and the interior density
displays small quantum density fluctuations around a
constant value displaced slightly below the value which
would obtain in infinite matter in the absence of a
Coulomb-like force. Thus, it is reasonable to expect vi-
brational states to reflect the behavior of monopole
modes in spherical nuclei and fission dynamics to be
relevant to neck formation in finite nuclei.

1. Periodic solutions

To appreciate the methods available for solving Eqs.
(6.48), it is useful to consider the structure of the real
and imaginary time eigenvalue problems. There is no
known method for finding all the periodic solutions to
these nonlinear, self-consistent equations of motion, and
as in the static Hartree problem one must iteratively re-
fine an initial guess for either the potential or the wave
functions. Selecting the time origin to coincide with a
classical turning point so that the density is time even,
one may show that for a specified density p(t) the evolu-
tion operator

may be expressed in the more convenient Hermitian
form

(U+U )P~(x, —T/2)=(e +e )P (x, —T/2),

(6.49d)

=A, + n,2m

T (6.50a)

where n may be positive or negative, whereas for ima-
ginary times the additional eigenvalues with n+0 are
necessarily complex:

A,„=A, +i n.. 2n

T (6.50b)

For imaginary time, an alternative iterative method
may be implemented by calculating

from which P (x, t) may be obtained as in the imaginary
time case. The self-consistency condition on the density
may be fulfilled by iteration, and in this approach each
iteration requires the diagonalization of a dense M„)&M
matrix, where M„denotes the number of spatial mesh
points (or terms in an expansion in a complete set of
functions).

In addition to the M„orthogonal eigenvectors defined
above, each of these eigenfunctions may be multiplied by
a phase factor e' "~ " to obtain new solutions to Eqs.
(6.48). For real time, the resulting eigenvalues are un-
bounded, and may be written

T/2
U(x, T/2;x', —T/2) =T,exp i—f —dt'h [p(t')]

(6.49a)

+'(x, r) =exp —P +h [p]
B7

P (x,r) (6.51)

and the corresponding operator in imaginary time are
symmetric. For imaginary time, since U is real, one may
solve the Hermitian eigenvalue problem

U(T/2, T/2)P (x, ——T/2) =e P~(x, —T/2)

(6.49b)

for P~(x, —T/2) at the initial time and use this initial
condition in the first-order equation (6.48b) to obtain
P~(x, t) For real t.ime, using the facts that U =U
and U =U, the eigenvalue problem

U( T/2, —T!2)$~(x,—T/2) =e P~(x, —T/2)

(6.49c)

1.0
I ~
~V

0.5

FIG. 26. Czround-state HF density distributions for 4-, 8-, and
16-particle systems. The length scale lo is defined such that
saturation density for a uniform medium without the repulsive
Coulomb-like force is 1.0, and because of reflection symmetry,
distributions are shown only for positive x.

and defining I ++'(x, r) I to be orthonormal linear com-
binations of Ig +'(x,r) J with respect to the norm

f dx d~f (x, —r)g~(x, r)=$ &. (6.52)

(6.53)

where P is a polynomial defined to peak sharply at the

If the initial g are chosen purely real and are sufficient-
ly close to a self-consistent solution, one can show that
each application of Eq. (6.51) amplifies eigenfunctions
with the largest values of A, and that the set of wave
functions converges to a self-consistent solution to Eq.
(6.48b). This method is completely analogous to solution
of the static Hartree-Fock problem by evolution in ima-
ginary time (Davies, et al. , 1980). If the time interval is
discretized into NT time steps and the exponential in Eq.
(6.51) is expanded in a power series, a sequence of multi-
plications by a sparse (Nr XM„) matrix rather than di-
agonalization of a dense M~/M„matrix is required.
The same method, unfortunately is inappropriate to the
real time problem because the spectrum, Eq. (6.50a), is
unbounded. An alternative iteration procedure is given
by

2

g~(x, t),
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origin, A, is the expectation value of [ —i(BIBt)+h] in
the state P~, and the X's are orthogonalized appropriate-
ly. In the present one-dimensional example, both diago-
nalization of the evolution operator and the iterative
methods in Eqs. (6.51) and (6.53) have been successfully
implemented (Levit, Negele, and Paltiel, 1980b; Negele,
Serr, and Vichniac, 1982). The development of the latter
techniques, however, is absolutely crucial to treatment of
higher dimensions, where the diagonalization of a dense
matrix of dimension corresponding to the total number
of spatial points is totally impractical.

In addition to technical questions of methods to solve
Eqs. (6.48), there is the problem of the stability of solu-
tions which are stationary points rather than relative
minima. One class of static Hartree-Fock solutions cor-
responds to relative minima in the space of Slater deter-
minants, and the only practical problem in numerical
calculations is to find an initial guess which evolves into
the desired minimum. Other interesting stationary
points, such as the fission saddle-point configuration,
have one or more directions in which the energy de-
creases; and iterative solutions for these configurations
require the imposition of an external constraint to obtain
a stable solution. Analogous constraints are required for
Eqs. (6.48) and are discussed in the references cited
above.

Even with a constraint, the initial guess must be close
in some sense to a periodic solution, or else iteration will
evolve it into an uninteresting solution, usually a static
Hartree-Fock solution. An adequate strategy for finding
eigenstates of large-amplitude collective motion is first to
solve the RPA equations for infinitesimal vibrations.
Starting with the time-dependent wave functions for a si-
gle mode, a series of sequential self-consistent calcula-
tions may be performed gradually increasing the period
from the RPA value T0 ——2m/co. By continuity, the ini-
tial wave function for each new period may thus be
made sufficiently close to an exact solution that conver-
gence for an entire family of solutions of increasing am-
plitude may be assured. The quantum eigenstates corre-
spond to those members of the family which satisfy the
quantization conditions Eqs. (5.86). For solutions in im-
aginary time the same approach may be taken in the in-
verted well, Fig. 16(e), and as the period is increased to
infinity, the solution approaches the bounce described in
Sec. V.E.

0.8

HF
T" l.042 To

0,2

0
X )2

~\

OC

The nonlinearity of the vibrations is shown in the
lower graph. For infinitesimal vibrations, the deviation

T 2m'
[p(x, &) —pHF(x)]l I dt I dx x cos

0 T

X [p(x, t) —pHF(x)]

FIG. 27. Large-amplitude vibrations for a four-particle sa-
turating system. The upper graph compares the static HF
density (solid curve) with the densities at the classical turning
points, p(x, —T/2} and p(x, 0), for the periodic solution with
period T =1.042Tp (dot-dash curve}. The deviation of the
density at the classical turning points from the HF density,
normalized as described in the text, is shown in the lower
graph. An infinitesimal RPA vibration, corresponding to
period To, is denoted by the solid lines. Vibrations with suc-
cessively larger amplitudes and longer periods are indicated by
short dashes, long dashes, and the dot-dash curves.

(6.54)

2. Large-amplitude vibrations

Solutions to Eq. (6.48a) for large-amplitude vibrations
of a four-particle system are shown in Fig. 27. Three
periods, 0.34%, 1.49%%uo, and 4.23% larger than the RPA
period To are considered, yielding fluctuations in the
central density of 5%, 11%, and 18%, respectively. The
range of shapes attained for the largest-amplitude case is
indicated in the upper graph, which compares the spatial
density distributions at the classical turning points of the
vibration with the static Hartree-Fock density.

is independent of the amplitude and equals the RPA
transition density denoted by the solid lines. As the
period increases and nonlinearities become non-negligible,
the deviation at the turning points begins to differ from
the RPA result. For the largest amplitude, the shape de-
viates significantly from the RPA transition density, par-
ticularly in the surface, where the vibrations above and
below equilibrium density necessarily became quite asym-
metric.

The four-particle system is so small that even the larg-
est amplitude vibration is insufficient to satisfy the
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986 Negele: Mean-field theory of nuclear structure and dynamics

quantization condition for the first quantized excited
state. For larger systems, however, vibrations with phys-
ically reasonable amplitudes will satisfy the quantization
condition and will be of physical relevance to monopole
vibrations in nuclei.

4„(x,-&) 4„(X,O)

3. Spontaneous fission

Solutions to Eqs. (6.48b) for the spontaneous fission of
a 16-particle system into two eight-particle fragments are
shown in Figs. 28 and 29. The sequence of density pro-
files in Fig. 28 exhibits the essential features of the
bounce solutions to the tunneling equations. At large
negative times, the density is indistinguishable from the
HF ground state, and the deformation to the scission
configuration is localized in a time interval around ~=0.
Further increase in the period induces negligible changes
in the density in the vicinity of r=0 and the total energy
and simply introduces an arbitrarily long initial period
during which the solution is indistinguishable from the
static HF solution.

The extent to which the configuration at ~=0 approx-
imates two nearly separated eight-particle fragments is
indicated in Fig. 29, in which the four distinct single-
particle wave functions are shown at ~= —T/2 and
r=O At tim. e r= —TI2, the wave functions are simply
the zero-, one-, two-, and three-node eigenfunctions of
the static HF potential. The elongation to form a neck
at the origin at ~=0 changes the structure, so that the
first two wave functions resemble even and odd com-
binations of nodeless wave functions localized on
separate sides of the origin and the last two correspond
to even and odd combinations of wave functions local-
ized on each side of the origin containing a single node.
Hence a more illuminating representation would be states
corresponding to sums and differences of the first two
and last two wave functions, in which the total wave
function would approximately factorize into two nearly
separated subsystems. Whereas the fission lifetime of

FIG. 29. Normalized self-consistent fission wave functions at
times r= —T/2 and ~=0 for the solution shown in Fig. 28.

this one-dimensional model has no direct physical
relevance, the dynamics of the neck formation and struc-
ture of the periodic self-consistent tunneling solutions are
quite similar to those arising in the three-dimensional
calculation in Sec. VII.

Two obvious shortcomings of the one-dimensional
model treated in this section are the ambiguities in defin-

ing an effective Hamiltonian in one dimension which is
genuinely analogous to one in three dimensions and the
possibility that phase-space differences between one and
three dimensions will significantly alter the qualitative
behavior. For these reasons, it is valuable to consider
semi-infinite slab geometry in the next section.

D. Semi-infinite slabs

The simplicity of one-dimensional dynamics may be
retained in three-dimensional phase space utilizing a real-
istic effective interaction by considering semi-infinite
slabs of matter in which the transverse degrees of free-
dom are completely decoupled from the longitudinal
dynamics (Bonche, Koonin, and Negele, 1976). Since a
primary feature of TDHF dynamics in unrestricted
geometry is the weak coupling to transverse degrees of
freedom, slab collisions illustrate the dominant longitudi-
nal equilibration with a minimum of extraneous compli-
cations and clearly display the essential features of realis-
tic three-dimensional collisions.

1. Slab geometry

Semi-infinite slabs of spin-isospin symmetric matter
are considered which are translationally invariant in the
two transverse directions. The general form of single-
particle wave functions for such geometry is

g„z (r)= ~ e ' 'P„i, (z, t), (6.55)

FIG. 28. Density profiles for a 16-particle system undergoing
fission into two eight-particle fragments, at evenly spaced in-
tervals from t = —T/2 to t =0 in time increments of 20tp.

where ri —= (x,y), ki =(k„,k~), and 0 is a transverse nor-
malization area. For the most general interaction, P is a
function of three continuous variables, z, k„, and kz, and
no particular simplification ensues. However, for the ef-
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fective interaction

t3
U(r, r') =t05(r r'—)+ —Sir r—')p(r)

6

e l" "~ ' 16 4

I
r r—'I /a 15 15

(6.56)

where P„denotes the space exchange operator, the
mean-field appearing in the single-particle equation Eq.
(3.7a) is

W(z) = top—(z)+ tip (z)=3 3 2

+2na Vo I dz'p(z')e (6.57)

(6.58)

where n denotes the spatial quantum numbers, 7 is a
spin-isospin spinor, and P„"(z) satisfies

1 d + W( ) yHF( ) yHF(
2m dz

(6.59)

The resulting density, obtained by filling all states
below the Fermi energy cf, is

I @.k I

'p(»=4 X X
n

l
k

~
&2m(cf —e„)

(ef —e„)
I
P„"(z)

I

pg

and the HF equations are thereby separable. The in-
teraction of (6.56) is closely related to the Skyrme forces
discussed in Sec. II.B.2 except that one combination of
the quadratically momentum-dependent terms is replaced
by a more physical finite-range force, and the other com-
bination is constrained to be zero so that the HF equa-
tion is separable. The specific combination 4+P„ in the
finite-range force is necessary to eliminate the spatial ex-
change term, which would otherwise destroy separability.
This interaction, which is a special case of Eq. (7.2) dis-
cussed subsequently, is adjusted to yield a nuclear matter
binding energy of 15.77 MeV per particle at a saturation
density of p=0.145 fm, corresponding to kF ——1.29
m

—'.
The static HF problem is solved by spatial wave func-

tions of the form

1
iP„(z,t) = + W(z, t) P„(z,t) .

2m Bz2
(6.62)

2. Initial states and TDHF evolution

The static HF equations, Eq. (6.59), may be solved for
any specified integrated slab thickness, M= I dzp(z).
Hence cF and the number of occupied states are implicit
functions of M. Slab density profiles are shown in Fig.
30 for slab thicknesses corresponding to the integrated
density occurring in typical nuclei. These slabs contain
from four to seven different z wave functions and are
qualitatively very similar in shape to the Pb HF densi-
ty distribution displayed in the upper right portion of the
figure.

The TDHF equations, Eq. (6.62), may be evolved in
time by the Crank-Nicholson algorithm, used in the ori-
ginal work of Bonche, Koonin, and Negele (1976), or by
expanding an exponential approximation to the evolution
operator as described in Sec. VII.A. The two most cru-
cial technical points in the evolution are to utilize a uni-
tary approximation, which guarantees stability and
orthonormality, and to avoid spurious dissipation by de-
fining the evolution from t„ to t„+b, t by the potential at
t„+btl2. As discussed in Secs. II.A.3 and II.A.4, the
initial conditions for a scattering problem are specified
by preparing two slab ground states in relative transla-
tional motion towards each other by multiplying static
HF wave functions by the phase factor e +—' ', Eq. (3.45).
For simplicity, most of the examples in this section are
for symmetric collisions, which are displayed in the cm
system and specified by the cm energy per particle. The
energy per particle of the projectile in the lab is four
times the quoted cm energy per particle. Asymmetric
collisions exhibit the same qualitative behavior as shown
in these examples.

—ik ~jt/2mThe phase factor e never contributes to any ob-
servables, so, as in the static case, the transverse wave
functions play a completely passive role. A different set
of transverse wave functions is associated with each
longitudinal wave function through the factor A„when
the initial conditions are established, and simply remains
attached to that wave function for all subsequent times.

IyHF( ) I2 (6.60)
3. Single-particle propagation in the mean field

From Eq. (6.60) it is evident that the transverse wave
functions play a completely passive role, simply deter-
mining the relative weighting of the various longitudinal
wave functions g"(z).

Similarly, the TDHF problem is solved by spatial
wave functions of the form

(6.61)

where P„(z,t) satisfies

The essential physics of the TDHF approximation is
most evident if one thinks about each single-particle
wave function s evolving independently in the time-
dependent mean field. Of course, all the occupied orbi-
tals must be evolved together to construct the mean field,
but given the resulting time-dependent potential, W(z, t),
it is true that each single-particle wave function simply
satisfies the one-body Schrodinger equation, (6.62), in
that well. Thus, all intuition regarding wave packets in
one-dimensional potential wells is immediately applicable
to TDHF evolution. Although keeping track of indivi-
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dual wave functions is of pedagogical value in under-
standing the dynamics, one must ultimately bear in mind
that there is no physical significance to any particular
decomposition of the determinant into single-particle
wave functions and no observable operator distinguishes
contributions from single-particle orbitals originating in
one particular slab.

Figures 31 and 32 display the total density and the

contributions to the density from the first and third orbi-
tals of the left-hand slab at successive times for an initial
cm energy of 3.5 MeV per particle. The second and
fourth orbitals are also shown at the final time in Fig.
32. Because of the Yukawa interaction, even when the
density fluctuates, the mean field is quite smooth, so the
single-particle orbitals essentially propagate in a smooth
50 MeV well and are reAected from the well edges. The
lump at the edge at t=0.32&&10 ' s evidently arises
from the reflection of the third orbital rather than from
any sort of Benard instability in fluid mechanics and is
chiefly responsible for beginning to move the edge of the
well back to the right. At this energy, when scission oc-
curs, most of the orbitals which began on the left are
trapped on the right, but are significantly distorted from
their original shape, giving rise to the high excitation en-
ergy and conspicuous density fluctuations in the emerg-
ing fragments. The slabs have thus essentially passed
through each other, dissipating much of their transla-
tional kinetic energy in the process, and this behavior
persists at all higher bombarding energies.

Qualitative1y different behavior occurs at a cm energy
of 1.5 MeV per particle, for which the corresponding
density profiles are shown in Fig. 33. In contrast to the
higher-energy case, after having elongated at time
t=0.625&&10 ' s, the compound system contracts and
only scissions after a second elongation.

At still lower energies, the repeated multiple reflec-
tions of single-particle wave functions from the well
edges completely equilibrate the original collective
translational kinetic energy into single-particle excitation,
forming an oscillating compound slab.

-I 5 —
I 2 -9 —6

I I

0
z{fm)

6 9 IZ
4. Dissipation and fusion

FICx. 31. Density profiles p{z,t) at sequential times t, specified
in units of 10 ' s, for a cm energy E/A =3.5 MeV.

Many essential features of TDHF dynamics are sum-
marized in Fig. 34, which displays the ratio of final to

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982



Negele: Mean-field theory of nuclear structure and dynamics 989

0.05—
0

t =0.08

I I
1

I I I I
1

I i I i
l

I i I I l I i I I
1

l I I I
l

t I i I
l

I

E/A = 3.5 MeVO.IO—

0
—-5C

.to

0

N

t =0.16

t =0.24

CV

N

t =0.32

t =0.40

t =0.48

A, I q, 1'
———A& ly&l'——w(z)

t = 0.56

L
Ap l y~ I'

--—A ~ l y41

l i i «1 i i i i 1 I i i i 1 « i i 1 i I & i 1 i i i i 1

-15 -10 - 5 0 5 10 15
z (fm}

FICi. 32. Contributions of individual single-particle wave
functions for the collision shown in Fig. 31. En the upper
graphs, the mean field is denoted by the long-dashed line, with
the scale shown to the right. The contributions to the density
of the lowest orbital and third orbital originating in the left
slab are indicated by the solid and short-dashed lines, respec-
tively. The bottom graph displays the contributions of the
second and fourth orbital at the final time.

incident translational kinetic energy for symmetric col-
lisions of M=1.4 fm slabs as a function of bombard-
ing energy. Two qualitatively distinct regimes are ob-
served in this figure. Above a cm energy of 2 MeV per
particle, corresponding to a lab bombarding energy of 8
MeV per particle, slabs always pass through each other
dissipating on the order of 90% of their collective
translational energy into internal excitation energy. As
observed in the case shown in Fig. 31, in this regime the
single-particle wave functions beginning on the left
emerge in the right-hand fragment, with the drastic
modification of their nodal structure reflecting the col-
lective energy that has been dissipated into internal exci-
tation. The transition at a cm energy of 2 MeV per par-
ticle is of wider generality than the specific choice of tar-
get and projectile slab thicknesses considered here and is
discussed by Bertsch and Mundinger (1978).

Qualitatively different behavior occurs below 2 MeV
per particle, where sufficient dissipation occurs to render

-15 -12 -9 -6 -5 0 5 6 9 12 15
z (fm)

FIG. 33. Density profiles as in Fig. 1 for cm energy
E/A =1.5 MeV.
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FIG. 34. Ratio of final to incident translational kinetic energy
as a function of cm incident energy for symmetric slab col-
lisions.

fusion possible. At these low energies, if scission does
not occur within the first few oscillations, further equili-
bration from subsequent reflections makes it highly un-
likely later. Thus the question of whether scission oc-
curs at a particular energy is very delicate, depending
crucially upon whether the single-particle orbitals con-
spire to create a relative maximum or minimum in the
neck region as the compound slab reaches its point of
maximum stretching. A tiny change in initial conditions
modifies the arrangement of single-particle oribtals in an
essential way and thus qualitatively affects the final out-
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come of the reaction. The resulting resonance behavior
is clearly demonstrated in Fig. 34. Below 2 MeV, com-
plicated multiple reAections occur, giving rise to com-
pound slabs which undergo length oscillations without
scissioning (plotted as a ratio of 0 in Fig. 34), as well as
resonances in which the slabs separate on the second or
subsequent oscillation.

Two essential features of TDHF dynamics seen in
these slab collisions are relevant to heavy-ion experi-
ments. One feature is very strong damping in which ini-
tial translational kinetic energy is transferred into other
degrees of freedom. In realistic geometry, this approxi-
mately accounts for both the observed fusion cross sec-
tions and the strong dissipation observed in deep inelastic
collisions. The second feature is the presence of pro-
nounced single-particle resonances, arising from the fact
that one or several single-particle orbitals in the neck re-
gion can play a decisive role in determining whether or
not fusion occurs. These resonances are extremely sug-
gestive of the resonances in fusion cross sections ob-
served in ' C+ ' C and ' 0+ ' C reactions (Sperr, Vig-
dor et a/. , 1976; Sperr, Braid et al. , 1976). Unfortunate-
ly, ambiguities in the TDHF calculation of fusion cross
sections and technical limitations which preclude in-
clusion of the spin-orbit force have rendered it impracti-
cal to perform definitive three-dimensional calculations
to verify the presence of oscillations in reactions of ' C

O with ' C and the absence in reactions of i8O and
19F 12C

5. Particle emission

linear density plots. Hence density profiles for two
separating slabs are shown on a logarithmic plot in Fig.
35, along with the velocity distribution (Negele, 1977).
For a static slab in its ground state, the densty distribu-
tion at the left surface would be purely exponential. The
shoulder in the distribution at roughly one percent of sa-
turation density indicates the high momentum com-
ponents which are beginning to emerge. For this col-
lision with E/A=2. 4 MeV, the initial velocity of each
slab is v/c=0. 07, and the maximum velocity component
in the Fermi gas model would be U/c=0. 34. As ob-
served in the lower part of Fig. 35, the velocity distribu-
tion at the leading edge shows this range expected in the
Fermi gas limit, as well as extending somewhat beyond
due to high-momentum components induced by the sur-
face.

Physically, it is reasonable to expect this mean-field
particle emission mechanism to be one source of the
promptly emitted particles in heavy-ion collisions. An
approximate mean-field calculation for N on ' 0 was
performed by Bertsch (1977b) and the simple Fermi gas
estimate discussed above has been applied to realistic
geometries by Bondorf et al. (1979, 1980). Realistic
TDHF calculations of particle emission are discussed in
Sec. VII.B. Clearly, another physical mechanism for
particle emission is short-range nucleon-nucleon col-
lisions for which some kinematically allowed final states
are no longer blocked by the Pauli principle. A complete
theory of particle emission must provide a unified treat-
ment of both mean-field and two-body processes.

Two physical mechanisms exist in the mean-field
theory for particle emission. Considering the target nu-
cleus in the Fermi gas approximation, the criterion for
escape of a particle introduced into the system with
momentum k is

lp I

k' kF'
+p, (6.63)

where p is the nucleon separation energy. From the rest
frame of the target, the projectile appears to be a Fermi
gas displaced in momentum space by the projectile
momentum, and thus may possess momentum corn-
ponents exceeding the escape criterion, Eq. (6.63). To
the extent to which the far surface of the target nucleus
is not altered by the projectile, those projectile momen-
tum components satisfying the escape condition will pro-
pagate through the target and emerge in the forward
direction. As the projectile energy increases, the fraction
of the projectile particles fulfilling the emission condition
increases and is easily evaluated in the Fermi gas approx-
imation. A second emission mechanism is the generation
of high-momentum components in both the target and
the projectile by the motion of the surfaces of the
single-particle potential.

Although this particle emission expected on very gen-
eral grounds is present in the collisions shown in Figs.
31—33, the amplitude is so low that it is not evident on

to 6

lp-7 I I I I I I I I I I I I I I I I I I I I I I
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FIG. 35. Density profiles and velocity distributions for
separating slabs showing particle emission. In contrast to Figs.
31—33, only the left half-plane is shown for this symmetric
collision at a cm energy of 2.4 MeV/A. The velocity is speci-
fied by P=U/c.
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6. The Wigner distribution
O,IO-

t=0.0 0

~e 'dsdk, , (6.64)

The Wigner distribution f (R,p) defined in Eq. (3.&1),
is particularly easy to visualize in slab geometry and has
been calculated by Kohler and Flocard (1979). As dis-
cussed in Sec. III.A.2, this distribution function possesses
most of the features of the familiar classical distribution
function with the exception that it is not positive defin-
ite. Whereas the general Wigner function in three di-
mensions is a complicated function of six variables pos-
sessing very large, often negative, fluctuations about its
average semiclassical value, the average of f(R,p) over
the perpendicular momentum components has relatively
smooth behavior and provides additional insight into the
dynamics of slab collisions.

Using the interaction specified by Eq. (6.56), Kohler
and Flocard consider the collision of a finite slab projec-
tile with a stationary infinite slab, with the results for a
collision of projectile energy E/2=2 MeV shown in
Figs. 36 and 37. Note that this is a somewhat lower in-
cident energy than the collision depicted in Fig. 33, since
the 1.5 meVA ' cm energy for a symmetric collision
corresponds to a lab energy of 6 MeVA '. Figure 36
displays the total density at a sequence of times, as well
as the contribution to the density arising from. the pro-
jectile orbitals. Figure 37 presents the Wigner function
integrated with respect to the transverse components of
the momentum

F(z,k, ) = J dk„de f (x,k)

kf s g s
4m
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FIG. 36. Density profiles p(z, t) at sequential times t, specified
in units of 10 ' s. The energy of the incident slab is 2
MeV/A and the density is plotted in units of fm . The solid
lines denote the total density and the dashed lines indicate the
density arising from orbitals originating in the right-hand slab.

where k, replacing n in Eq. (6.61), denotes either a con-
tinuum state in the infinite slab or a discrete state in the
finite slab and f is independent of y and z by translation
invariance. The analogous function I' in a Fermi gas
would be a parabola proportional to kF —k, extending
from —kz to kF.

As seen in Fig. 37, prior to the collision the target and
projectile distributions correspond closely to the parabol-

t= 0
t =0.32
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FIG. 37. The %'igner distribution integrated with respect to transverse momentum E(z, k, ), defined in Eq. (6.63), for the collision
shown in Fig. 36. Contours of the distributions are plotted at 20, 30, 40, 50, and 60% of the maximum phase-space density. Note
that the ordinate k is the negative of k„so that the slab displaced to positive values of k propagates in the negative z direction.
The arrow denotes the maximum momentum present in a Fermi gas boosted to an energy of 2 MeV/A.
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ic momentum distribution expected from a Fermi gas,
with minor modifications induced by the spatial surfaces.
As the slabs merge, producing a single essentially uni-
form potential well, particles at the interface in phase
space travel at momenta ranging from kF—to +k~, so
that the inclination of the interface increases with time.
When orbitals reflect from the right-hand side, the
momentum component in the Wigner function reverses
sign, giving rise to a counterclockwise flow up the right-
hand side of Fig. 37 and back to the left across the top.
The flow in phase space across the top also shows very
clearly the behavior discussed in the preceding section,
whereby that portion of the momentum distribution of
the projectile which is displaced beyond the Fermi sur-
face of the target simply propagates through the system
and is eventually emitted from the other side. The
behavior of two interpenetrating Fermi gases, which is
discussed in detail by Bertsch (1978a) thus explains the
qualitative dynamics within the single well of the com-
pound system.

The detailed shape of the Wigner function is compli-
cated and cannot be understood solely in terms of the
Fermi gas model. The irregularities in shape reflect
single-particle effects, or, equivalently, the nonlocal con-
dition p =p. By virtue of the complicated structure of
the Wigner function as a function of k at fixed z, it is
evident that at the stages of the reaction shown in the
figure, the system is far from thermal equilibrium. Even
at later times, and in collisions of finite slabs in which
significant reflections have occurred from the edges of
the potential well, plots of the one-body density matrix,
equivalent to the Fourier transform of the Wigner distri-
bution, indicate that the system remains far from ther-
mal equilibrium (Bonche, Koonin, and Negele, 1976).

The TDHF results for the Wigner function have been
compared with analogous mean-field evolution via the
Vlasov equation, Eq. (3.25), by Tang (1981). Whereas
the qualitative behavior expected from Fermi-gas argu-
ments is well reproduced, the TDHF and Vlasov results
differ in quantitative detail. Ironically, for the sizes of
systems relevant to nuclei, numerical integration of the
Vlasov equation is technically more difficult and more
expensive than solution of the TDHF equations, so it is
presently not clear if the Vlasov equation will be of prac-
tical value.

In summary, because of the weak coupling between
longitudinal and transverse degrees of freedom in mean-
field dynamics, collisions of semi-infinite slabs display
the essential phenomena of the theory in a particularly
clear and unencumbered form. The strong dissipation,
leading to either deeply inelastic scattering or fusion, the
emission of particles in the forward direction, and the
lack of longitudinal equilibrium exhibited in the slab col-
lisions of this section are salient features of the more
realistic calculations presented in the final section.

Vll. APPLICATION TO PHYSICAl SYSTEMS

The cumulative evidence from previous sections sug-
gests that the time-dependent mean-field approximation

is a viable starting point for a systematic theory of nu-
clear dynamics. In addition to the formal arguments,
the success of the mean-field approximation for station-
ary states and the degree to which slab collisions repro-
duce the salient features of heavy-ion reaction
phenomenology strongly motivate the application of the
general time-dependent mean-field theory to finite nuclei.

A. Approximations

Application of even the lowest-order mean-field ap-
proximation to all but the lightest nuclei presents a com-
putational problem of formidable proportions, requiring
the solution of coupled integrodifferential equations for
complex single-particle functions of four continuous
variables for each particle. Reduction of the mean-field
theory to manageable proportions therefore requires the
introduction of additional approximations. As discussed
in Sec. II.B.2, one crucial simplification is utilization of
an appropriate effective interaction.

In addition, it is essential to drastically reduce the
number of degrees of freedom in the full TDHF problem
such that the essential dynamics is contained in those de-
grees of freedom which have been retained. The primary
means of reducing degrees of freedom is to utilize sym-
metries which are exactly maintained by the mean-field
equations or to impose constraints on the form of the
single-particle wave functions. With practical restric-
tions on the form of the effective interaction and wave
functions, special cases may require the use of the filling
approximation to deal with partially filled shells and
time-dependent pairing to change the occupation num-
bers when single-particle level crossings occur.

Finally, even after the number of spatial and spin-
isospin degrees of freedom has been reduced as much as
possible, it is still necessary to replace the infinite num-
ber of degrees of freedom associated with continuous
space-time variables by a finite number of discrete vari-
ables. It is argued below that this reduction is best ac-
complished by utilizing a discrete lattice in space-time,
and the salient aspects of evolution of the resulting
discrete finite-difference equations are briefly reviewed.
A more detailed discussion of many of these approxima-
tions may be found in lectures by Koonin (1979) and
Negele (1978b).

1. Effective interaction

As shown in Sec. II.B, the essential physics of a realis-
tic 6 matrix with phenomenological adjustment to obtain
proper saturation and binding energy is contained in a
Hamiltonian density of the form Eq. (2.14b), specified ei-
ther by the DME functional or a phenomenological
Skyrme force. The form of interaction utilized most
commonly in time-dependent mean-field calculations is a
slightly modified version of the Skyrme Hamiltonian
density (Hoodbhoy and Negele, 1977; Negele et al. ,
1978). In addition to zero-range density-independent and
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J(R)= g Im[g', (R)V'g (R)], (7.1)

density-dependent terms, which may be interpreted as a
linearized density expansion around the saturation densi-

ty, the Skyrme force contains two types of momentum-
dependent terms which may be interpreted as the leading
terms in a gradient expansion of a finite-range interac-
tion. The first term, involving the Galilean-invariant
combination (pqrq —Jq) arises from the nonlocality of the
Hartree-Fock potential and is retained in its original
form. Here ~~ denotes the kinetic energy density Eq.
(2.12b) for neutrons or protons, J is the current density

which vanishes in the ground state but contributes in a
general time-dependent state, and the isospin label q dis-
tinguishes protons and neutrons. The second
momentum-dependent term in the Skyrme force involves
gradients of the density and essentially arises from trun-
cating a Taylor-series expansion of the convolution of
the density with a finite-range two-body force. From
both physical and numerical considerations, it is prefer-
able to replace it by convolution with a finite-range
force, with a Yukawa potential being technically con-
venient. Thus the effective Hamiltonian density utilized
in time-dependent mean-field calculations has the follow-
ing form:

H = f H(r)d r = I d r (rn+rp)+ —(2+xo)p„pp+ (p„+pp)
&o (1—xo)

~~+~2+ [(p„+pp)(r, +qp) (J, +J—p)']

~2 —
~& 2 3 2 2+ (Pnrn Jn+Pp+p Jp )+ (PnPp+PpPn )

+
2 [Ey(Pn P )+Ey(Pp, Pp)]+ "UEy(P„,Pp)+ I d (7.2)

where the Yukawa contribution is defined

e
—Pl r-r'

Ey(pq pq') = I f d r d r pq(r)pq'(r )
l ir —'I

(7.3)

and the labels p and n denote summation over only pro-
ton or neutron orbitals, respectively. Although second-
and higher-order effects of the tensor force are implicitly
included in the central effective interaction, no explicit
tensor or spin-orbit interaction is included.

One linear combination of the five phenomenological
Skyrme parameters (Vautherin and Brink, 1972) is un-
determined by the volume energy, surface energy, sym-
metry energy, and saturation density (as reflected in
charge radii). The undetermined combination, determin-
ing the relative importance of momentum dependence
and density dependence in producing saturation, is con-
veniently specified by the effective mass m*/m, which
ranges from roughly 0.3 to 1 for the most commonly
used Skyrme forces. Since microscopic nuclear matter
calculations indicate that m*/m is on the order of 0.6 to
0.7, the most physical Skyrme forces are interactions II
and III, with m~/m=0. 58 and 0.76, respectively. In ad-
dition, as noted in Sec. II.B.2, they agree closely with the
DME functional.

Several sets of parameters defining the Hamiltonian
density, Eq. (7.2), are specified in Table II. The nonlocal
interaction SK II is straightforwardly derived from the
Skyrme II interaction with m*/m=0. 58 (Hoodbhoy and
Negele, 1977). This has become the standard nonlocal
interaction appropriate for spin-saturated systems with

I

unequal numbers of neutrons and protons and has been
used by Bonche et al. (1979), Davies (1979), Davies and
Koonin (1981), Davies, Maruhn-Rezwani et al. (1978),
Davies, Sandhya Devi, and Strayer (1979, 1980, 1981a,
1981b), Dhar (1979), Dhar and Nilsson (1978, and 1979),
Dhar et al. (1981), Krieger and Davies (1978), Krieger
and Weiss (1981), Negele et al. (1978), Sandhya Devi,
Dhar, and Strayer (1981), Sandhya Devi, Strayer, Davies,
Koonin, and Dhar (1981), and Sandhya Devi, Strayer, Ir-
vine, and Davies (1981). To bracket the physical range
of effective mass, the parameters of the interaction SK
III, derived from the Skyrme III force with
m*/m =0.76, are also tabulated in Table II.

In addition to these two realistic interactions, the
parameters of two simplified interactions utilized in the
earliest TDHF calculations are also recorded in Table II.
A purely local interaction, with m*/m =1, yields signifi-
cant simplifications by eliminating the current terms in
Eq. (7.2) and decoupling the transverse wave functions
for semi-infinite slabs. This case reduces to the interac-
tion Eq. (6.56) used for the original slab calculations, and
its parameters are tabulated in the column marked local
in Table II. This force, which contains no isospin
dependence, was derived only for %=Z mirror nuclei
and has been used in calculations of light nuclei by
Bonche, Grammaticos, and Koonin (1978), Cusson et al.
(1981), Cusson, Maruhn, Stocker (1980), Cusson and
Meldner (1979), Davies, Feldmeier et al. (1978), Flocard,
Koonin, and Weiss (1978), Koonin, Davies et al. (1977),
Koonin, Flanders et al. (1978), Krieger and Davies
(1979), Maruhn-Rezwani, Davies, and Koonin (1977),
and Weiss (1977). Finally, an additional technical sim-
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plification utilized in early calculations was to replace
the finite-range local interaction by a zero-range interac-
tion, with the parameters tabulated under the heading
zero-range in Table II. It was used in early work by
Koonin (1976), Cusson, Smith, and Maruhn (1976), and
Cusson, Maruhn, and Meldner (1978), and as pointed out
by Bonche, Grammaticos, and Koonin (1978) has an un-

physically small surface energy and correspondingly
sharp surface, giving rise to unrealistically low fusion
cross sections.

2. Symmetries

One general technique for significantly reducing the
number of dynamical degrees of freedom is specification
of an initial wave function possessing symmetries which
also occur in the mean field. The time-dependent mean-
field equations automatically preserve any such sym-
metries in time. Thus it is possible to select targets, pro-
jectiles, and initial conditions which preserve reflection,
inversion, spin, and axial symmetry under evolution in
the mean field. Such solutions are very special. Not
only are they especially cheap to calculate, because they
evolve in a limited space, but for the same reason they
also have less freedom for randomization and thus dissi-
pation and equilibration. The essential fact to bear in
mind is that in considering a realistic ensemble of initial
conditions, these special symmetric cases receive negligi-
ble weight and one must be alert to the possible unrealis-
tic consequences of such symmetries.

A few computational results suggest that symmetric
initial conditions are not misleading. For example,
three-dimensional calculations of head-on collisions do
not differ qualitatively from those at small but finite im-
pact parameters. Similarly, the qualitative behavior of
collisions with identical target and projectile is the same
as for asymmetric collisions.

3. Reduction of degrees of freedom by constraints

In addition to utilizing symmetries to reduce the num-
ber of degrees of freedom, it is also possible to impose
simplifying constraints on the wave function. In the
case of symmetries, the evolution of the wave function is
governed by the exact mean-field equations, and the
physical approximation lies in interpreting the result as
being representative of more general initial conditions.
In contrast, imposition of a constraint yields new
dynamical equations which are physically distinct from
the original mean-field equations.

A simple example is to constrain the spatial wave
functions for neutrons and protons to be identical for
X =Z nuclei. With this isospin constraint and the spin-
independent interaction Eq. (7.2), a single spatial wave
function represents four nucleons, protons, and neutrons
with either spin projection; and the original mean-field
for protons and neutrons has been replaced by that for
particles with effective charge —,. Given that the

Coulomb interaction is much weaker than the strong in-
teraction, this approximation is physically reasonable for
a variety for applications. Where the total dissipation is
of quantitative interest, however, such freezing of the
isospin degrees of freedom can cause significant
discrepancies. An example is the fusion cross sections
discussed subsequently in Fig. 43, for which Krieger and
Davies (1978) show that the dissipation, and thus the
low-energy cross sections, is significantly reduced by im-
position of an isospin constraint.

Whereas an isospin constraint reduces the number of
1

degrees of freedom by a factor of —,, much larger reduc-
tions may be achieved by restricting the spatial wave
functions to depend upon two, rather than three, spatial
coordinates. One useful two-dimensional approximation
arises from requiring the mean field to be axially sym-
metric. This may be accomplished, for example, by con-
straining the single-particle wave functions to have the
form

4 =e ~e' '""~'g (r,z)e (7.4)

where A is the Hamiltonian, Eq. (3.5), for the axially
symmetric wave functions in the intrinsic frame, and the
moment of inertia Jr is a specified functional of the den-
sity and velocity field X. Physically, the moment of in-
ertia corresponds to irrotational flow, and Eq. (7.5) yields
the unconstrained TDHF equations in the two limits of
zero and infinite impact parameters. Alternatively, an
axially symmetric approximation may be obtained by
postulating the Hamiltonian Eq. (7.5) (Koonin, 1976) and
adopting a physically motivated prescription for the mo-
Inent of inertia. For separated ions, W is taken to be
that of two separated point particles

A)A2
~point =~ E.

A t+A2
(7.6a)

where R denotes the distance between the centers of
mass, and when the target and projectile are significantly
overlapping, the rigid body moment of inertia is used,

W„;d=m2m. f dr dz(z +r /2), (7.6b)

The validity of the axial approximation and optimal
definition of the moment of inertia have been investigat-
ed by Davies et al. (1978) by comparison with three-
dimensional calculations of ' O+ ' O and Ca+ Ca

where r,z,P are cylindrical coordinates in an intrinsic
frame which is rotated an angle g about the y axis rela-
tive to the laboratory frame, P is a coherent velocity
field, and m is the orbital angular momentum projec-
tion along the symmetry axis. Application of the time-
dependent variational principle, Eq. (3.1), with a deter-
minant of wave functions of the form (7.4) yields canoni-
cal equations with the Hamiltonian (Feldrneier, 1977;
Negele, 1977)

L 2

II=A [(g (r, z)e " )*,g (r,z)e " ]+~ p,X]
(7.5)
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collisions at cm energies of 0.4 and 1.3 MeV per particle
above the Coulomb barrier. For impact parameters such
that the three-dimensional calculation does not produce
fusion, the axially constrained theory with moments of
inertia (7.6a) and (7.6b) for separated and overlapping
configurations yields an excellent approximation. In
contrast, the fusion occurring in the three-dimensional
calculations is not reproduced in the axially symmetric
approximation, reflecting the fact that restriction to axi-
ally symmetric shapes has eliminated shape deformations
crucial to the randomization of single-particle motion re-
quired for fusion. The irrotational moment of inertia,
Eq. (7.5), arising from the assumption of a common
velocity field X for each single-particle wave function,
Eq. (7.4), is considerably less accurate than Eqs. (7.6a)
and (7.6b) indicating that this ansatz is too restrictive. It
remains an open question whether allowing a different 7,
for each wave function significantly improves the ap-
proximation.

For detailed calculations of collisions of heavy nuclei,
the axially symmetric approximation is the only compu-
tationally viable theory. Based on the comparison with
three-dimensional calculations for light nuclei, it is as-
sumed to yield reliable results for nonfusion inelastic
scattering events for cm energies of the order of 1 MeV
per particle above the Coulomb barrier. Results based
on this approximation will be presented subsequently in
Figs. 41, 43, 45, and 47 —49.

A second constraint to reduce the dynamics to two
spatial dimensions is to require that each wave function
have the separable form of a component in the reaction
plane multiplied by a normal component

P (r, t) =P„(x,y, t)X (z, t) . (7.7)

Head-on axially symmetric calculations and full three-
dimensional calculations support the intuitive expectation
that very little equilibration occurs out of the reaction
plane, since single-particle orbitals with. high initial mo-
menta in the reaction plane acquire relatively insignifi-
cant transverse momentum components from reflections
at the well edge. The ansatz, Eq. (7.7), capitalizes on
this lack of equilibrium out of the reaction plane, while
allowing maximal freedom for motion in the reaction
plane. The randomization arising from multiple reflec-
tions in an arbitrarily shaped cavity shonld be more ac-
curately reproduced by this wave function than by an ax-
ially constrained one, thus yielding a more accurate
description of dissipation and fusion for large impact
parameters.

As in the axially constrained case, one must derive or
define equations of motion for wave functions of the
form (7.7). The most theoretically appealing method
would be to apply the time-dependent variational princi-
ple to obtain equations for P; and X;, but for technical
reasons this approach has not been implemented. For
light nuclei, a natural approximation is suggested by the
fact that harmonic oscillator functions are separable and
yield reasonable approximations to Hartree-Fock wave
functions. Thus, a sensible trial solution is (Sandhya

Devi and Strayer, 1978a, 1978b)

P;(r, t) =P;(x,y, t)X," (z), (7.8)

(7.9a)

where 8 „ is related to the full local Hartree-Fock poten-
tial by

W„(x,y)= f dz X (z)
~

W(x,y,z) (7.9b)

g2 ygHO
2

&T, ),= f dz (7.9c)

Static and time-dependent separable solutions using
Eqs. (7.9) have been compared with three-dimensional re-
sults by Koonin et aI. (1978). For the light, oscillator-
like nuclei ' 0 and Ca, the static densities agree reason-
ably well, especially if one averages the shapes in the z
direction and in the x-y plJne, and the binding energies
and rms radii agree to within 2%. For heavier nuclei,
significant discrepancies arise from the fact that oscilla-
tor functions do not produce saturating density distribu-
tions. In the Thomas-Fermi limit, for example, the den-
sity distribution generated by harmonic oscillator func-
tions is given by an inverted parabola raised to the —,

power. It remains an open question whether a fully vari-
ational calculation with the general wave function (7.7) is
significantly better in heavy nuclei. The agreement be-
tween separable wave functions of the form (7.8) and ex-
act three-dimensional calculations for the scattering of

Ca + Ca at 278 MeV is striking. In addition to
agreement in final scattering angles, final fragment angu-
lar momenta and energies agree within 2% at all impact
parameters, and the same fusion window from L=30A
through L =80fi occurs in both calculations.

The separable approximation is thus in many respects
complementary to the axially symmetric approximation.
In contrast to the axial symmetry constraint, the separ-
able approximation enforces a sharp dichotomy between
shape deformations in the reaction plane, which are cru-
cial to the randomization required for fusion, and trans-
verse degrees of freedom, which are frozen out. It yields
an accurate approximation for both fusion and inelastic
scattering of light nuclei and is used extensively in the
calculations summarized subsequently in Figs. 41, 42, 45,
and 46. Unlike the axial-symmetry constraint, it is not
applicable to nuclei much heavier than the Ca isotopes,
and does not yield the exact solution for head-on col-
lisions.

where the oscillator size parameter may be determined
by minimizing the ground-state energy with the trial
function. The equations of motion for PJ using an effec-
tive Hamiltonian density which produces a local
Hartree-Fock potential are

g2 Q2 Q2

, +, +&T.&.+~.(x,y) y„,
Qy

2
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4. Occupation numbers

In the mean-field approximation, open-shell nuclei
possess multiply degenerate ground states, so that there
is no unique initial condition for TDHF evolution. As a
result of omission of the spin-orbit force, even nuclei
corresponding to physically closed subshells also suffer
from this ambiguity with the effective Hamiltonian den-

sity Eq. (7.1). Hence an approximation specifying
unique and physically motivated occupation numbers is
required for most heavy-ion collisions.

The simplest approximation is the familiar filling ap-
proximation, in which valence nucleons are uniformly
distributed throughout the partially filled valence shell.
The one-body density matrix, Eq. (3.15), is thus replaced
by the generalization

l
~ Uj

~

—6(ttjuj —ttJUJ )
dt

(7.13a)

i (ujuj) =2ujuj(Ej —A, )+A(2
~ uJ

~

—1),
dt

(7.13b)

where

E~= f Pj*hgj, (7.13c)

and Flocard, 1976). To within a phase factor, the
single-particle wave functions evolve according to the
TDHF equations. The BCS u's and u's, defined with the
convention that uj is real, are determined by the equa-
tions of motion:

p(x, x') = g n;g*;(x')P;(x), (7.10) the Lagrange multiplier A, is defined to conserve particle
number

iK = [M,K],
where the augmented matrices are defined by

(7.11)

p X
(7.12a)

—(h —A. )
* (7.12b)

(7.12c)

)&X(r ",r "')dr "dr", (7.12d)

where the time-independent occupation numbers are de-
fined to be n; =1 for filled shells, n; =m/2(2l+1) for a
shell of orbital angular momentum / containing m parti-
cles, and n; =0 for unoccupied shells. The resulting
mean field is spherically symmetric, eliminating the
necessity of integrating over initial configurations corre-
sponding to all relative orientations of deformed target
and projectile.

An alternative approach would be to solve time-
dependent pairing or time-dependent Hartree-Fock-
Bogoliubov equations. Formally, the Hartree-Fock-
Bogoliubov theory is quite appealing, having the same
form as Eq. (3.20a)

X6+ g [Ej ( tt1Uj+ Eg~ UJ ) —5]
j&0

g (ttjuj+ ttjUJ )
j&0

(7.13d)

and the occupation probabilities in the density matrix,
Eq. (7.10), defining the mean field, are given by
n, = /u, /'.

Since no matrix elements of an effective interaction
are evaluated with the constant gap constraint, Eqs.
(7.13) involve negligible computational effect. This ap-
proximation is commensurate with other approximations
made in obtaining the phenomenological effective in-
teraction, since the gross features are correctly repro-
duced by using the experimental value of A. The time-
dependent occupation probabilities specified in this ap-
proximation are qualitatively important when a con-
straint or symmetry would otherwise prevent mixing be-
tween two single-particle levels which cross during the
shape deformation of the mean field, and a specific ex-
ample is discussed below in the case of induced fission.
Time-dependent mean-field calculations with BCS occu-
pation probabilities have been reported by Cusson et ah.
(1981), Cusson, Maruhn, and Stocker (1980), Cusson and
Meldner, (1979); and Negele et ttl. (1978). The other cal-
culations involving open-shell nuclei have utilized the fil-
ling approximation.

p and h are defined in Eqs. (3.12) and (3.18), and the
chemical potential k constrains the mean particle num-
ber. Although K =E as p =p, the trace of K is infin-
ite, so, unlike the TDHF case, Eq. (7.11) cannot be
solved by evolution of a finite number of eigenfunctions
of K. Given the technical difficulties in solving the
TDHF equations, it is not surprising that numerical
solution of Eq. (7.11) is presently impractical.

A much simpler approximation which retains some of
the same physics is obtained by application of the time-
dependent variational principle to a BCS wave function
with the constraint that the gap remain constant (Bfocki

5. Discretization and evolution approximations

The continuous space-time variables in the TDHF
initial-value equations, Eq. (3.7), or in the periodic self-
consistent equations for nuclear eigenstates, Eq. (5.75),
and spontaneous fission, Eq. (5.134), must be approxi-
mated by a finite number of degrees of freedom. The
two most obvious techniques are truncation of an expan-
sion in a complete set of functions and utilization of a
discrete mesh in space and time.

Experience in static Hartree-Fock calculations indi-
cates that coordinate space calculations, which either
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directly or implicitly through a numerical integration al-
gorithrn assume that wave functions are defined on a
discrete mesh, are superior to expansion in a set of basic
functions, such as harmonic oscillator functions. Since
shape degrees of freedom are essential, it is crucial that
truncation or discretization errors be shape independent.
In the case of defoimed nuclei, the accuracy of an ex-
pansion in oscillator functions is highly shape dependent,
so that even gross qualitative features of the results may
be contaminated by basis constraints. Even a 14-
oscillator shell basis, for example, is barely adequate for
heavy deformed nuclei (Negele and Rinker, 1977) and is
quite unreliable for calculation of fission barriers. The
fact that there are no realistic analytically solvable
models necessarily implies that in general there is no op-
timal basis for truncated expansions. In contrast, the
equivalence of all points on a uniform spatial mesh
essentially eliminates shape dependence in coordinate-
space calculations. Furthermore, the fact that the max-
imum rate of spatial variation in all low-energy processes
is specified by the Fermi wavelength provides a scale
such that discretization errors may be absolutely con-
trolled. Hence, except for some early exploratory calcu-
lations (Cusson and Maruhn, 1976; Maruhn and Cusson,
1976), TDHF calculations presently utilize a discrete
mesh.

In formulating a mean-field theory on a mesh in coor-
dinate space, it is extremely useful to replace the spatial
integrals in the action, Eq. (3.1), which is a functional of
3 single-particle wave functions, by discrete sums with
suitable weights yielding an approximate discretized ac-
tion which is a function of the values of each of the
single-particle wave functions on each of the mesh
points. In the limit of small mesh spacing, of course,
the discretized action approaches the true action. How-
ever, for any finite mesh spacing, variation of the discre-
tized action yields a well-defined set of differential equa-
tions in time and difference equations in spatial mesh la-
bels which approximate the TDHF equations. Such a
discretized functional yields exact conservation of
discrete approximations to the energy, momentum, and
angular momentum, eliminates various consistency diffi-
culties which arise in discretizing the TDHF equations
directly, guarantees Hermitian approximations to the
single-particle Hamiltonian, and provides a convenient
conceptual framework for thinking about the structure
of the resulting equations.

The simplest example of discretization of the kinetic
energy is the approximation for each Cartesian coordi-
nate:

J dt g*(t)i g(t) =g [p*(t;+—, )+g*(t, )]

X [Q(t 1) Q(t )] (7.15)

and its variation yields the three-point formula for the
first derivative with respect to time in the single-particle
equation. An analogous five-point formula may be
straightforwardly derived and is utilized in the calcula-
tions reviewed in Sec. VII.F below.

In contrast to the periodic boundary value problem,
space and time play dissimilar roles in the TDHF
initial-value problem, Eq. (3.7), and are thus treated in-
equivalently. Instead of varying an expression for the
action discretized in time to obtain finite difference
equations, evolution from time t„ to t„+&

is accom-
plished by a unitary approximation to the evolution
operator

q(n+)) ~ y(n)
1J J (7.16)

where (n) denotes the time and the indices i and j label
discrete spatial coordinates. Denoting the discretized
single-particle Hamiltonian at an appropriate intermedi-
ate time by h, the basic approximations for the evolution
operator are of the form

—ihht/A (7.17a)

or

1978) yields the corresponding five-point formula. The
accuracy of the three- and five-point formulas is indicat-
ed by the fractional errors they yield for the kinetic ener-
gy of nuclear matter of 2I

(—k~M) and „,(k~M),
respectively, corresponding to underestimates of the ki-
netic energy on a 1-fm mesh of 6.2~o and 0.8~o, respec-
tively. Because of the ease of dealing with sparse ma-
trices, for a given accuracy it is most efficient in Carte-
sian coordinates to utilize the five-point formula with
correspondingly fewer mesh points. Discretization in cy-
clindrical coordinates is discussed by Davies and Koonin
(1981), Koonin et al. (1977), and Hoodbhoy and Negele
(1977), who present explicit evaluation of correction
terms and comparison with exact Hartree-Pock results.

For the periodic boundary value problems, Eq. (5.75)
and Eq. (5.134), in which space and time enter
equivalently, it is obvious that time derivatives should be
treated analogously to spatial derivatives. The approxi-
mation of the time derivative in the action analogous to
Eq. (7.14) is

d2
dX X

2 X . Xi +1 Xi
dX

(7.14)

ihht
2A'

ibad, t
2A

(7.171)

Variation of this expression yields the standard three-
point difference formula for the kinetic energy operator
in the single-particle equation. Generalization of Eq.
(7.14) to contain f's at three adjacent mesh points with
appropriate coefficients (Flocard, Koonin, and Weiss,

Three-dimensional Cartesian calculations utilize a
series expansion of (7.17a) (Flocard, Koonin, and Weiss,
1978), whereas axially symmetric calculations use the
Peaceman Rachford or local one-dimensional variations
of Eq. (7.17b) (Davies and Koonin, 1981). The practical-
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ity of both these procedures hinges crucially on the fact
that only multiplication of sparse matrices or inversion
of tridiagonal matrices is required. Energy conservation,
which is automatic for variation of an action discretized
in space and continuous in time, can also be maintained
for evolution by the approximations, Eq. (7.17), if the
terms in h arising from two-and three-body forces are
expressed in terms of specific combinations of p'"+" and
p'"' (Flocard, Koonin, and Weiss, 1978).

Typical three-dimensional calculations involve the or-
der of 15000 spatial mesh points with a mesh spacing
M —1 fm, and axially symmetric calculations utilize an
order of magnitude fewer mesh points with Ax -0.5 fm.
Wave functions are typically evolved several hundred
time steps of magnitude —5X10 S. Energy conser-
vation and orthonormalization of single-particle wave
functions are typically enforced to fractions of a percent.
Studies of numerical accuracy with smaller spatial and
time intervals and tests such as comparison of axial and
three-dimensional calculations of head-on collisions con-
firm the reliability of the discretization and evolution ap-
proximations described in this subsection and ensure that
the results reviewed in the remainder of this section re-
flect mean-field dynamics and not spurious numerical ef-
fects. An alternative technology utilizing fast Fourier
transform and predictor corrector algorithms is described
by Cusson, Maruhn, and Meldner (1978).

B. Qualitative features

Many qualitative features of the mean-field dynamics
of heavy-ion collisions may be seen in contour plots of

the density distribution in the reaction plane integrated
with respect to the normal to the reaction plane. The
essential features at sequential times are clearly displayed
in the single case of the ' 0+ Ca collisions shown in
Figs. 38 —40 for three initial angular momenta (Weiss,
1977). Similar plots for many other reactions in the
low-energy regime may be found in the literature includss

mg He+ Ca (Weiss, 1977), ' 0 + ' 0 (Cusson, Smith,
and Maruhn, 1976; Cusson, Maruhn, and Meldner, 1978;
Flocard, Koonin and Weiss, 1978), Ca+ Ca (Bonche,
Grammaticos, and Koonin, 1978), Kr + ' La and

Kr + Bi (Davies, 1979; Davies, Sandhya Devi,
Strayer, 1981) and ' Xe+ Bi (Dhar et al. , 1981).

Figure 38 displays the unrestricted three-dimensional
evolution of a nearly central collision. The laboratory
energy of 316 MeV corresponds to a cm energy per par-
ticle above the Coulomb barrier of roughly 3.6 MeV, so
that on the basis of slab dynamics the projectile is ex-
pected to pass through the target. As seen in the figure,
in which the ' 0 nucleus approaches from the upper
right-hand corner, this expectation is borne out. Alss

though the rate of separation of the fragments is much
slower than the initial approach indicating significant
longitudinal equilibration, there is little indication of ex-
citation of transverse modes; supporting the assertion
that the mean field does not induce significant excita-
tions perpendicular to the reaction plane. The predomss
inant excitation is observed to be an axially symmetric
octupole oscillation. The approximate axial symmetry of
the density suggests that head-on collisions are in fact
reasonably representative of general collisions at small
but finite impact parameters.
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F&G. 38. Contour plots at sequential times of the density in the cm integrated over the normal to the reaction plane for ' ++~ca
collision at a laboratory energy of 315 MeV. The initial angular momentum l =2(Hi corresponds to a nearly head-on collision.
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FIG. 39. Contour plots for the same reaction as in Fig. 38 with an initial angular momentum of I =6(Hi.

Evolution of a collision with higher angular momen-
tum, l =60fi, leading to fusion is shown in Fig. 39. Here
the projectile moves to the left with a much smaller
downward velocity component and is captured by the
target leading to a tumbling compound nucleus analow

gous to the compound slabs in slab fusion events. From
the complicated sequence of shapes, it is evident that the
randomization of single-particle wave functions reflected

from the well edges plays a significant role in dissipating
the original collective translational energy. Whereas it is
clear that most of the intermediate shapes could be ap-
proximated qualitatively by axially symmetric configura-
tions, the axial approximation would yield quantitative
inaccuracy at energies of several MeVA

Finally, Fig. 40 shows a peripheral collision with
l =80A, in which the projectile moving to the left with a
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FIG. 40. Contour plots for the same reaction as in Fig. 38 with an initial angular momentum of I =80fi.
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negligible downward velocity component grazes the sur-
face of the target and separates, having undergone signi-
ficant dissipation. The shapes in this case are much
more axially symmetric, consistent with the fact that the
axial constraint yields an adequate description of inelas-
tic scattering even when it is inadequate for fusion.

After we have seen the salient features of forward
transmission, fusion, and deep-inelastic scattering for
three impact parameters in a single nucleus, it is useful
to consider the systematic behavior for all impact param-
eters and a range of target and projectile masses. Several
gross features of systematics are evident from the deflec-
tion functions, specifying the center of mass scattering
angle, 0, , as a function of initial angular momentum I
presented in Fig. 41. This figure summarizes results of
three-dimensional calculations of ' 0 + ' 0 (Flocard,
Koonin and Weiss, 1978) and Ca+ Ca (Weiss, 1977);
separable calculations of ' 0 + Nb (Sandhya Devi
et al. , 1981); and axially constrained calculations of

Kr+ ' La (Davies, Sandhya Devi, and Strayer, 1979),
Kr + Bi (Davies et al. , 1978), and ' Xe+ Bi

(Dhar et al. , 1981). Similar calculations, not included in
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FICx. 41. Deflection functions (solid lines) specifying the
TDHF scattering angle in the cm, 0, , as a function of initial
angular momentum I specified in units of A. The projectile lab
energies are specified for each reaction, and correspond to cm
energies per particle above the Coulomb barrier of 1.28, 1.07,
1.19. 0.70, 0.41, and 0.35 MeV for the lightest through heavi-
est systems, respectively. The dashed curves denote pure
Coulomb deflection functions, the shaded areas denote fusion
regions, and the solid points indicate results for individual
TDHF calculations. Note that for the two symmetric col-
lisions, the scattering angle is defined modulo 180, and the un-
conventional choice of 0' at I =0 has been made to correspond
to the projectile passing through the target as observed in
asymmetric collisions.

the figure, have been performed for the sytems Si+ Si
(Bonche et a/. , 1979), Ar+ Ni (Koonin, 1979), and
s Kr+ Pb (Davies et al. , 1978). The cm energy per
particle, calculated relative to Coulomb energies defined
at quarter-point radii tabulated by Huizenga (1975) range
from 0.35 to 1.28 for the system shown in Fig. 41 with
the axially symmetric calculations being restricted to the
lowest energies to maximize their accuracy.

The deflection functions in Fig. 41 display several
semiclassical features common to classical phenomeno-
logical models of heavy-ion collisions. Collisions at large
impact parameters are dominated by the Coulomb in-
teraction, and the deflection function thus approaches
that of pure Coulomb scattering at large l. In light nu-
clei, as the impact parameter decreases, the nuclear at-
traction overcomes the Coulomb repulsion, shifting the
deflection from positive to negative angles. Still further
reduction of the impact parameter yields fusion, indicat-
ed by the shaded region for which no scattering angle is
defined. As the charges of the target and projectile in-
crease, the relative importance of the Coulomb interac-
tion increases. For the Kr+ ' La system, the Coulomb
repulsion is sufficiently strong that the nuclear potential
no longer results in negative scattering angles. The
difference between the TDHF and Coulomb deflection
functions continues to decrease smoothly with increasing
charge until for the heaviest system, ' Xe+ Bi, the
mean-field result is qualitatively quite similar to that for
pure Coulomb scattering. The absence of fusion for the
three heaviest systems results from the low energies of
0.3 —0.4 MeVA ', and is discussed in Sec. VII.C below.

In addition to these semiclassical aspects, the deflec-
tion functions in Fig. 41 also display several features
unique to mean-field theory. As already seen in Fig. 38,
for sufficiently small impact parameters at high enough
energies, the projectile does not dissipate all its transla-
tional energy and passes through the target. In addition
to ' 0+ Ca, this transmission window is observed in
' 0+ Nb for angular momenta below 3(Hi. Similar
behavior is also observed in ' 0+ ' 0 and Ca+ Ca,
although because of the identity of target and projectile
one cannot distinguish between forward and backward
scattering, and the deflection function is only defined
modulo 180. A second feature is that single-particle ef-
fects can introduce fluctuations, as seen, for example, in
the Kr+ Bi deflection function near I —1754 or in
the sensitivity of the fusion region to small changes in
incident energy.

A final qualitative feature of mean-field dynamics is
particle emission. As discussed in Sec. VI.D5 and shown
in Fig. 35, high-momentum components of single-
particle wave functions propagating through the well
emerge in the forward direction. Just as these low-
amplitude components were not visible on linear plots of
slab collisions, Figs. 31—33, they are also not apparent
in Figs. 38—40. Recent separable calculations of
' 0+ Nb with sufficient attention to numerical accura-
cy (Sandhya Devi et al. , 1981) display the same particle
emission seen in slab collisions and expected from Fermi
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gas estimates. In this work, contour plots are generated
of the neutron density in the range between 1% and
10%. For a head-on collision, as the oxygenlike frag-
ment emerges in the forward direction, a low-density
component of high-momentum neutrons is seen to pro-
pagate beyond the front of the fragment well and escape
in the forward direction as in Fig. 35. Since in such an
asymmetric collision it is meaningless to consider Nb
propagating through an ' 0 nucleus, the present con-
siderations apply only in the forward direction of the
smaller nucleus propagating through the larger or for
nearly symmetric collisions. To the degree to which the
axial approximation applies, at finite angular momentum
one would expect high-momentum components to be
emitted in the forward direction in the rotating frame
and with a probability which decreases with increasing
angular momentum reflecting the decreased component
of relative velocity along the symmetry axis. This expec-
tation is well borne out in the separable calculations,
which do not enforce such symmetry in the reaction
plane. Fermi gas estimates using the criterion Eq. (6.63)
in the rest frame of the Nb target agree semiquantita-
tively with the actual mean-field results for both the
emission probability and angle as a function of angular
momentum, although numerical uncertainties in evaluat-
ing the velocity of the emitted components preclude
quantitative velocity comparison. In spite of the ambi-
guities of interpreting properties of final states in the
TDHF initial-value problem and the fact that particle
emission from collision processes is ignored, it is in-
teresting that the mean-field prediction for the neutron
multiplicity in coincidence with deep-ine1astic final states
of 0.19 is consistent with the experimental result of
0.15+0.5 (Gavron et al. , 1982). Calculations of forward
emission have also been performed for collisions of He,
' C and ' Au projectiles on ' C and ' Au targets
(Stocker et al. , 1981). Although strong forward emission
is observed, at the much higher energies in this work,
ranging from laboratory energies per projectile particle of
30—85 MeVA ', physical interpretation becomes much
more difficult. The validity of the mean-field approxi-
mation is highly suspect at these energies, and even
within the mean-field framework it is difficult to define
the frame in which to apply the criterion, Eq. (6.63).

A second aspect of particle emission concerns the for-
mation of alphalike clusters in the neck region of low-
energy separating fragments. It has already been shown
in connection with Fig. 34 that infinitesimal changes in
initial conditions determine whether there is a relative
abundance or deficiency of single-particle wave functions
in the neck region of a scissioning system and that these
single-particle effects may qualitatively affect the nature
of the final state. In realistic geometry, it is therefore
expected that initial conditions may be found giving rise
to an aggregation of single-particle wave functions in the
neck region of a scissioning nucleus which produce a
sufficiently large density Auctuation that an alphalike
cluster asymptotically separates from the two receding
major fragments. Examples of such effects have been

observed in 710 MeV Kr+ ' La collisions at angular
momenta near 100irt (Davies, Sandhya Devi, and Strayer,
1979), in 1130 MeV ' Xe+ Bi collisions at angular
momenta near 100'' (Dhar et al. , 1981), and in the in-
duced fission of 3 U (Negele et al. , 1978). Experimen-
tally, alpha emission from the neck of moderately heavy
systems in deep-inelastic scattering is known to be large
(Miller et al. , 1978), and in U fission the probability
of emitting an alpha particle from the neck region is 1 in
600. Thus, although there is presently no precisely for-
mulated mean-field reaction theory for the probability of
such emission, it is interesting and suggestive that such
events occur in the TDHF initial-value problem.

C. Fusion

One of the least ambiguous observables which may be
calculated in the mean-field theory is the fusion cross
section. Extensive calculations and comparisons with ex-
periments have been carried out for light nuclei, yielding
satisfactory quantitative agreement. Since the crucial
prerequisite for the fusion of two colliding ions is dissi-
pation of the initial collective relative translational ener-
gy, this agreement constitutes strong support for the va-
lidity of the mean-field dissipation mechanism.

The fusion regions

In the TDHF initial value problem, the fusion cross
section is calculated as (Koonin, 1979)

(7.18)

where k is the reduced wavelength for motion in the in-
cident channel and the sum extends over all impact
parameters for which the projectile and target fuse into a
single compound system. The regions in E and l for
which TDHF calculations are observed to fuse are shown
in Fig. 42 for four typical reactions: ' 0+ ' O, calculat-
ed in three dimensions (Bonche, Grammaticos, and Koo-
nin, 1978), ' O+ Mg calculated in the separable ap-
proximation (Krieger and Weiss, 1981), and the systems

Si+ Si and ' 0+ Ca calculated both in the separ-
able approximation and in three dimensions (Bonche
et al. , 1979).

All the results in Fig. 42 show the same qualitative
behavior. In the present semiclassical approximation,
there is no fusion below the Coulomb barrier. For ener-
gies slightly above the Coulomb barrier in these light
systems, fusion occurs for head-on collisions and all im-
pact parameters up to a critical peripheral value, corre-
sponding to I ~, beyond which all impact parameters
yield inelastic scattering. As the energy increases fur-
ther, a threshold is reached beyond which nearly head-on
collisions below a lower cutoff I &.. do not fuse, but rath-
er as in Fig. 38, the projectile is transmitted through the
target and emerges in the forward direction. As the en-
ergy is further increased, the I ~ and I & cutoffs come
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FIG. 42. Fusion regions, indicated by shaded areas, specifying
the ranges of initial angular momentum I in units of A and cm

energy, E, , in MeV for which the TDHF initial value prob-
lem leads to a final state interpreted as a fused compound sys-
tem.

closer together, and eventually at a sufficiently high en-

ergy no impact parameters yield fusion. The three cases
shown in Figs. 38—40 were selected to be representative
of the regions below I &, between I ~ and I ~, and above
I &, respectively.

Systematic calculations of the fusion regions for heavy
systems comparable to those summarized in Fig. 42 are
unavailable due to the prohibitive expense of three-
dimensional calculations and the limitations of the axial
approximation to low energy and the separable approxi-
mation to light systems. Head-on collisions of

Kr+ ' La and Kr+ Bi have been calculated by
Davies, Sandhya Devi, and Strayer (1979, 1981). As in
the case of light systems, below a low-energy threshold
of E~,b ——650 and 850 for the La and Bi cases, respective-
ly, the Kr projectile does not fuse, but rather bounces
back; above a high-energy threshold of 850 and 1100
MeV, respectively, the Kr projectile passes through the
target; and for intermediate energies, fusions occur. The
behavior of these heavy systems using the SK II interac-
tion differs from light systems in two respects. Whereas
the low-energy cutoff for fusion in light systems occurs
at the Coulomb barrier, for these heavy systems it occurs
considerably above the barrier. This dynamic result re-
flects the macroscopic behavior pointed out by Nix and
Sierk (1977) that, in order for the dynamical path to pass
inside the fission saddle point and thus produce fusion,
systems beyond mass 220 must exceed an energy thresh-
old higher than the Coulomb barrier. A second differ-
ence is that, below the energy threshold for fusion, long-
lived resonances are observed, analogous to the reso-
nances in slab collisions seen at low energy in Fig. 34.
Recent calculations by Davies, Sandhya Devi, and
Strayer (1981) using the SK III interaction of Table II
indicate significant interaction dependence in the low-
energy cutoff. The SK III interaction yields a cutoff for

(kF+k) kF +p, (7.19)

where k is the momentum per particle of a nucleus in
the cm frame. For a Fermi energy cF ——35 MeV and a
removal energy of 8 MeV appropriate to finite nuclei,
Eq. (7.19) specifies transmission when the cm energy per
particle above the Coulomb barrier exceeds 0.41 MeV.
The corresponding threshold in ' 0+ ' 0 of E, =28.4
is in reasonable agreement with the TDHF results in Fig.
42 of 27 MeV. For slab co11isions in which there is no
Coulomb force, the separation energy equals the binding
energy per particle of 16 MeV, so the criterion, Eq.
(7.19), yields a threshold of 1.52 MeV per particle, in
qualitative agreement with the calculated value of 2 MeV
per particle in Fig. 34. Wong shows that the systematic
behavior of the transmission window is reproduced by
Eq. (7.19) for a variety of target and projectile combina-
tions. If application of the escape criterion in the cm
frame is quantitatively reliable, it has the interesting
consequence that the transmission threshold decreases as
the effective mass is decreased.

Unfortunately, there is no direct experimental test of
the mean-field transmission prediction. The strongest in-
direct evidence for the window is the agreement with ex-
periment of mean-field predictions for fusion cross sec-
tions discussed subsequently in connection with Figs.
43 —45. Although, by Eq. (7.18), only the combination

Kr+ ' La 150 MeV lower than SK II, so that the
long-lived resonances observed with SK II evidently fuse
with SK II.

In the context of purely classical models, the most
dramatic feature of mean-field fusion dynamics is the
presence of the transmission window below I&. It is
therefore important to understand its origin, assess
whether corrections to the mean field will eliminate it,
and obtain a definitive experimental test of this predic-
tion.

The mechanism is clearly the same mean-field
transmission seen in slab collisions, and the thresholds in
finite nuclei may be partially understood by a Fermi gas
argument by Wong (1979). In the case of particle emis-
sion in which only a few particles originating in the pro-
jectile escape from the far side of the target, it is clear
that the escaping particles arise from the high-
momentum components which traverse the potential well
most rapidly, so the far edge of the nuclear potential
from which they emerge is virtually unaffected by the
collision. Thus the obvious frame in which to apply the
escape criterion, Eq. (6.63), is the rest frame of the tar-
get. As more and more target particles interact with the
surface, it is slowed down, brought to rest, and finally
accelerated in the opposite direction. It is physically
plausible that flow-through and thus transmission occur
when the criterion, Eq. (6.63), is satisfied in a frame
representing an average velocity of the surface during the
time projectile particles are impinging on it. Wong as-
sumes that the appropriate frame is the c.m. one, in
which case the transmission criterion becomes
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(l & + 1) —(l & + 1) is experimentally determined, the
agreement seen in Fig. 43 for ' 0+ ' 0 would be re-
placed by overestimates of up to 33% at the highest en-
ergies if all impact parameters below l & were assumed to
fuse. Thus, if the mean-field theory is in error in
predicting the transmission window, it mysteriously
makes compensating errors in l & such as to reproduce
observed fusion cross sections.

Experimental attempts to look for the transmission
window in ' 0+ ' 0 (Kox, Cole, and Ost, 1980) and

Al+ 3 S (Natowitz et al , 1.979) reach opposite con-
clusions and are subject to controversial model assump-
tions. A careful measurement of the fragment kinetic
energies at forward angles in ' 0+ ' 0 collisions at
E, =34 MeV has been made by Lazzarini et al. (1981).
As seen in Fig. 42, this energy is slightly above the
predicted threshold, and trajectories up to 6A are predict-
ed to yield inelastic scattering in the forward direction
instead of fusion. Whereas the predicted events of 4A'

and 6A are in definite disagreement with the data, the
measurement is so close to the threshold, which in turn
is subject to significant theoretical uncertainties, that the
existence of the transmission phenomenon is not ruled
out by this experiment. Thus as yet the phenomenon has
been neither unambiguously confirmed nor disproven ex-
perimentally.

2. Fusion cross sections

Fusion cross sections, defined by Eq. (7.18), have been
calculated as a function of bombarding energy for the
following systems: ' C+ ' N (Maruhn-Rezwani, Davies
and Koonin, 1977); ' C+ ' 0 and ' C+ ' 0 (Krieger
and Davies, 1979); ' 0 + ' 0 (Bonche, Grammaticos,
and Koonin, 1978; Krieger and Davies, 1978);
' 0+ Mg (Krieger and Weiss, 1981; Sandhya Devi,
Dhar, and Strayer, 1981); ' 0 + Al (Sandhya Devi,
Dhar, and Strayer, 1981); ' 0 + Ca and Si + Si
(Bonche et al. , 1979); and Ca+ Ca (Bonche, Gram-
maticos, and Koonin, 1978; Krieger and Davies, 1978).
Theoretical results @re compared with experimental data
in Figs. 43 —45 for three systems which are both
representative of results throughout the region and sub-
ject to a minimum of technical and theoretical uncertain-
ties.

Figure 43 compares two sets of TDHF calculations for
' 0 + ' 0 with experimental data of Conjeaud et al.
(1977). Theoretical results are presented as error bars re-
flecting the uncertainty in locating l& and l& with the
discrete values of angular momenta utilized in the calcu-
lations. In addition to displaying excellent agreement
with experiment, this figure shows the relative insensi-
tivity of ' 0+ ' 0 results to the interaction and compu-
tational constraints. The three-dimensional calculation
of Bonche, Grammaticos, and Koonin (1978), denoted by
open circles, used the local interaction of Table II and
constrained the isospin by constraining proton and neu-
tron wave functions to be identical. The axially con-
strained calculations by Krieger and Davies (1978),

denoted by triangles, utilized the nonlocal interaction SK
II of Table II and had unconstrained isospin. Additional
evidence from other calculations indicates comparable in-
sensitivity to independent changes in constraints and the
interaction.

Mean-field calculations of Sandhya Devi, Dhar, and
Strayer (1981) for ' 0+ Mg are compared with experi-
mental data of Tabor et al. (1978) in Fig. 44. Since no
isospin constraint is imposed on the calculation, the full
nonlocal SK II interaction is used, and the validity of
the separable approximation for light systems has been
well verified by detailed comparisons with three-
dimensional calculations, these results are expected to be
theoretically reliab1e. The excellent agreement with ex-
periment is comparable to that obtained in ' 0+ ' O.

Several approximate theoretical calculations for
Ca+ Ca fusion cross sections are shown in Fig. 45.

The axially constrained calculations of Krieger and
Davies (1978) with unconstrained isospin utilizing the lo-
cal and nonlocal SK II interactions of Table II are
denoted by open squares and triangles, respectively.
Note that compared with ' 0+ ' 0, this system is more
sensitive to the interaction with the nonlocal interaction
yielding somewhat lower cross sections. Three-
dimensional calculations of Bonche, Grammaticos, and
Koonin (1978) with constrained isospin and utilizing the
local interaction of Table II are denoted by open circles.
Again in contrast to the ' 0+ ' 0 case, one observes a
significant difference between calculations utilizing the
same interaction but different constraints. Since the ac-
curacy of the axial constraint has been verified at low
energies, the important difference between the loca1 cal-
culations at low energies is the isospin constraint. The
fact that cross sections with unconstrained isospin (open
squares) are several hundred mb higher than with con-
strained isospin (open circles) indicates that the Coulomb
force is strong enough in this system to induce quantita-
tively significant dissipation. Two sets of experimental
data for Ca+ Ca are compared with the theoretical
predictions in Fig. 45. The earliest data by Doubre et al.
(1977) are denoted by crosses and are in serious disagree-
ment with theory at low energy. Since both the mean-
field theory and technical approximations utilized in the
calculations should be most accurate near threshold, such
disagreement, if substantiated, would have serious impli-
cations. Two recent experiments, however, yield dif-
ferent low-energy fusion cross sections which are con-
sistent with each other and with theory. The data of
Tomasi et al. (1982) are denoted by the solid circles in
Fig. 45 and are observed to agree as well with mean-field
theory as the data for lighter systems shown in Figs. 43
and 44. As seen in Fig. 4 of the paper of Tomasi et al. ,
the unpublished results of Barreto et al. (1980) are also
in excellent agreement with these new data. Thus the

Ca+ Ca system now appears to provide a rewarding
example of genuine predictive power of the mean-field
theory and vindication of the effort to avoid phenomeno-
logical tampering with the underlying theory.

Results for the other light systems for which fusion
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FIG. 43. Fusion cross sections as a function of energy for
' O+ ' O. Open circles denote three-dimensional calculations
with the local interaction and constrained isospin. Triangles
indicate axially constrained calculations with the SK II interac-
tion and no isospin constraint. Experimental data are denoted
by solid circles.

FIG. 45. Fusion cross sections for Ca+ Ca as in Fig. 43.
Open squares and triangles denote axially constrained calcula-
tions with no isospin constraint utilizing the local interaction
and the SK II interaction, respectively. Open circles indicate
three-dimensional calculations with constrained isospin. Ex-
perimental data by Doubre et aI. and by Tomasi et aI. are
denoted by crosses and solid points, respectively.

cross sections have been compared with experiment are
roughly comparable to those shown in Figs. 43 —45.
Calculations for ' 0+ Ca show the same sensitivity to
constraints and the interaction as Ca+ Ca and yield
comparable agreement. Results for ' 0 + Mg using
five different Skyrme forces display much less interac-
tion sensitivity than the heavier systems. Open-shell sys-
tems, in which the filling approximation is made, do not
differ appreciably from the closed-shell systems shown
here. In general, the quantitative agreement with experi-
ment is satisfactory, with discrepancies of at most
20—30%.

For technical reasons, no systematic calculations exist
in heavy nuclei. Davies, Sandhya Devi, and Strayer
(1979) estimate a lower limit to the fusion cross section
for Kr+ ' La at 710 MeV to be 118 mb on the basis
of axially constrained calculations. This result is con-
sistent with the experimental upper limit of 500 mb by
Vandenbosch et al. (1978). A similar lower bound of
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FIG. 44. Fusion cross sections for ' O+ Mg as in Fig. 43.
Open circles denote calculations using the separable approxi-
mation, the SK II interaction, and no isospin constraint. Solid
circles indicate experimental data.

].00 mb is obtained by Davies, Sandhya Devi, and
Strayer (1981) for Kr + Bi which is again safely
below present experimental bounds for low-energy reac-
tions.

In summary, the success of the mean-field theory in
predicting fusion cross sections for light systems pro-
vides substantial evidence for the validity of the theory.
Technical limitations presently preclude meaningful
comparisons in heavier systems, and as yet there exists
no definitive experimental test of the predicted transmis-
sion for nearly central collisions.

D. Deep inelastic scattering

A different and potentially sensitive test of many as-
pects of mean-field dynamics is provided by the striking
features of heavy-ion inelastic scattering. The dissipa-
tion and relaxation observed in strongly damped col-
lisions and the systematic behavior throughout the
Periodic Table of fragment mass and energy distributions
as functions of scattering angle place stringent demands
on a microscopic theory having no free parameters.

A convenient way of summarizing experimental data
for comparison with the semiclassical results of the
TDHF initial-value problem is provided by a Wilcynski
plot, displaying contours of the double-differential cross
section for the projectilelike fragment as a function of
energy and angle. Each impact parameter in a TDHF
calculation yields a single point in the E-0 plane, and in
the semiclassical limit these points should reproduce the
major qualitative features of the contour plot, with a
high density of points corresponding to high cross sec-
tion and corrections to the semiclassical approximation
presumably defining the falloff away from the semiclas-
sical trajectory.

Such Wilczynski plots may be constructed for all the
systems cited in Sec. VII.B for which deflection func-
tions have been calculated. Four representative curves
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FIG. 47. Wilczyriski plot as in Fig. 46 for Kr+' La at
E~,b ——610 MeV. The calculated points are labeled with the or-
bital angular momentum.

are shown in Figs. 46—49, corresponding to four sys-
tems which have been discussed and referenced in Sec.
VII.B and for which deflection functions are presented in
Fig. 41.

The experimental data of Obenshain et al. (1981) is
compared with TDHF results in the Wilcynski plot
shown in Fig. 46. For arbitrarily large impact parame-
ters, there is negligible energy loss and these Coulomb
trajectories lie on a horizontal line corresponding to the
elastic peak in Fig. 46. Below l —10(Hi, the deflection
function in Fig. 41 decreases with decreasing I, and the
trajectory in Fig. 46 passes through zero degrees. Al-
though negative-angle scattering has been indirectly con-
firmed in light systems using photon polarization to
infer the angular momentum direction, the cross sections
depend only on the magnitude of the scattering angle,
and the VA'lczynski plot thus does not distinguish posi-
tive and negative scattering angles. The negative-angle
branch above the fusion region is indicated by the dashed
line and corresponds quite closely to the ridge passing

downward and to the right in the figure. This agreement
indicates that the mean field not only qualitatively repro-
duces the dissipation occurring in strongly damped col-
lisions, but also quantitatively predicts the nontrivial an-

gular dependence of the energy loss. The branch below
the fusion region is indicated by the solid line, but is
quantitatively less important due to the small weighting
of low-impact parameters.

A similar comparison is shown for Kr+ ' La in

Fig. 47, based on the experimental data of Vandenbosch
et al. (1978). For this heavier system, the deflection
function is everywhere positive. The trajectory follows
the pronounced ridge in the experimental data from the
elastic peak at the grazing angle down to the Coulomb
barrier of approximately 220 MeV at the minimum
scattering angle. The experimental data display a hor-
izontal ridge slightly below the Coulomb barrier extend-

ing to large scattering angles, and this qualitative
behavior is reproduced by the mean-field trajectory but
with a shift of roughly 50 MeV in energy loss.
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Figure 48 compares experimental data for Kr+ Bi
(Wolf et al. , 1974; Wolf and Roche, 1976) with mean-
field predictions seen in Fig. 41. The deAection function
is qualitatively similar to that for Kr+ ' La, but the
minimum scattering angle now is much larger, giving
rise to concentration of scattering at the rainbow angle in
the region of 50'. Instead of a monotonically decreasing
ridge, this system displays a local maximum in the
deep-inelastic region near the rainbow angle. Again, the
mean field reproduces the average trend from the elastic
peak down to the minimum angle near the Coulomb bar-
rier energy of approximately 310 MeV, exhibiting some
single-particle fluctuations, as already discussed in con-
nection with Fig. 41. Strongly damped events at low-
impact parameter qualitatively reproduce the horizontal
ridge extending to large scattering angles but again un-
derestimate the energy loss by up to 50 MeV.

A final Wilczyriski plot is shown in Fig. 49 for
Bi+ ' Xe, using the data of Schroder and Huizenga

(1977) and Schroder et al. (1978). The Coulomb energy
is so high in this system that the deflection function is
monotonic with no rainbow scattering. The experimental
data comprise a single ridge passing downward and to
the right, which is well reproduced by the mean-field
theory.

The salient features of the distributions of projectile-
like fragments in energy and angle are thus systematical-
ly reproduced throughout the Periodic Table. It should
be emphasized that the results shown here are genuinely
representative of the level of agreement with experiment
obtained for all the systems and energies referenced in
Sec. VII.B in connection with ca1culations of deflection

functions. The primary quantitative deficiency is the ap-
parent underestimation of the energy damping at low-

impact parameters. This apparent discrepancy is cloud-
ed by several experimental and theoretical uncertainties.
Although the lowest l point in the Kr+ Bi calcula-
tion at 600 MeV appears to conflict with the data in Fig.
48, the data were analyzed ignoring the fact that the
mass of the projectilelike fragment is significantly larger
than 84 for large scattering angles, leading to a spurious
decline in the back-angle ridge. Analogous calculations
for the essentially similar reaction Kr + Pb at 494
MeV (Davies, Maruhn-Rezwani, et al. , 1978) yield quan-
titative agreement with the ridge at backward angles. In
the case of Kr+ ' La, the mass distribution for the
most strongly damped events is comprised of two com-
ponents, one centered around the projectile mass and one
centered around symmetry, and the mean-field result
should be compared to data with the latter fusion-fission
component removed. Finally, aside from these experi-
mental considerations, the possibility exists that the axial
constraint is less accurate in representing the dissipation
in heavy systems than is presently assumed. For all
these reasons, then, the quantitative tests of mean-field
dissipation at backward angles are presently indecisive.

Other observables beside the fragment kinetic energy
in principle may be compared with experiment as a func-
tion of the scattering angle. The mean mass number of
the projectilelike fragment may plausibly be approximat-
ed by the number of particles in the TDHF final state,
and its qualitative behavior with scattering angle is
reproduced. In contrast, the dispersion in particle num-

ber, as discussed in Secs. III.A.4, II.B.1, and VI.D, re-
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quires dynamical treatment of two-body correlations
which are neglected in the mean-field theory. Not
surprisingly, this dispersion is underestimated by an or-
der of magnitude in TDHF calculations. To the extent
to which one is willing to use the scattering angle as a
clock to determine the contact time, the equilibration of
various degrees of freedom in the one-body density ma-
trix„may be studied and compared with diffusion and
transport theories as discussed by Davies, Maruhn-
Rezwani, et al. (1978) and Koonin (1979).

In summary, subject to the conceptual limitations of
the TDHF initial-value problem and the approximations
required to render numerical solution of the mean-field
equations practical, the microscopic TDHF theory with
no free parameters is remarkably successful in predicting
the salient features of deep-inelastic scattering
throughout the Periodic Table. These results, combined
with the fusion cross sections reviewed in the preceding
section, constitute the primary experimental evidence for
the validity of mean-field dynamics.

E. Fission

In principle, spontaneous and induced fission provide
a rich testing ground for the mean-field theory. The
quantum mean-field theory of tunneling decay derived in
Sec. V.E contains the combined physics of the collective
dynamics of shape degrees of freedom and single-particle
effects and should be capable of describing the systemat-
ic behavior, complete with shell fluctuations, of partial
widths to decay by symmetric and asymmetric fission
modes throughout the Periodic Table. Although im-
plementation of the theory was straightforward in the
one-dimensional model in Sec. VI.C.3, a realistic calcula-
tion in three spatial dimensions for a heavy nucleus is
beset with formidable obstacles. Implementation of the
corresponding generalization to induced fission (Kerman
and Levit, 1981) is even more impractical, since at finite
temperature the self-consistent equations require solution
for the unoccupied as well as normally occupied orbitals.
Only in the semiclassical approximation above the fission
barrier does the computational problem reduce in scope
to that of the TDHF initial-value problem, and this limit
is treated in the following section.

1. Semiclassical approximation to induced fission

For induced fission near threshold, the initial condi-
tion for the separating fragments corresponds to a wave
packet of collective shapes passing close to the fission
saddle-point configuration with low collective velocity.
Analogous to the TDHF initial-value problem for
scattering, then, the natural initial condition for induced
fission at threshold is to release the system from an ini-
tial configuration infinitesimally beyond the saddle point.
Since, experimentally, the most probable fission fragment
kinetic energies display smooth behavior as a function of
fissility, systematic calculation of the final fragment ki-
netic energies should provide another test of dissipation
in the mean-field theory. In addition, such calculations

provide insight into the shapes and time scale involved in
the passage from saddle to scission.

The induced fission of U in this semiclassical ap-
proximation has been calculated by Negele et al. (1978).
As is clear from previous discussion of collisions, com-
putational considerations require constraint to axial sym-
metry in order to render the calculation feasible. In con-
trast to the case of collisions, however, evolution of an
axially symmetric configuration beyond the saddle point
is totally misrepresentative of nearby slightly asymmetric
configurations. Since the axially symmetric Hamiltonian
does not connect different angular momentum and parity
substates, Nilsson levels cross with no mixing and the or-
bital occupation is locked in orbitals for which the total
energy eventually increases with increasing deformation
and fission is impossible. In contrast, for any finite axial
asymmetry, levels do not cross and there is no impedi-
ment to the descent to scission.

To obtain nontrivial dynamics with an axially sym-
metric constraint, it is necessary to allow the residual in-
teraction to mix the states which are not connected by
the mean field, and the simplest treatment uses the
constant-gap pairing approximation, Eq. (7.13). The
conceptual limitation is that the gap must represent not
only the true pairing matrix elements, but also the aver-
age effect of the mean-field matrix elements which have
been artificially suppressed by symmetry. The gap, 5, is
therefore taken as a phenomenological parameter with
the physical constraint that it should be somewhat
greater than the pairing value. In the space employed in
the calculation, values of 6=2 and 6 MeV correspond to
the two-body matrix elements G=0. 17 and 0.29 MeV,
respectively. For comparison, 23/A yields G=0. 1 and
realistic reaction matrix elements range from 0 to 0.4
MeV in this region of the Periodic Table (Negele, 1970b),
so these values are representative of the range of physical
interest.

The sequence of densities occurring during fission of
U for 6=2.0 MeV is shown in Fig. 50. Salient quali-

tative features include the preservation of uniform sur-
face thickness and formation of a highly elongated neck
which ruptures rapidly.

Quantitative results depend significantly upon the
value of the phenomenological gap A. As 6 is increased
from 2.0 to 6.0 MeV, the transfer of probability to lower
energy orbitals is facilitated, with the result that the
transit time from 1 MeV below the saddle point to scis-
sion is decreased from 3.4 to 2.2&10 ' s and the dissi-
pation is decreased, yielding an increase in the final
translational kinetic energy from 142 to 166 MeV. Ex-
perimentally, the most probable fission-fragment kinetic
energy is 168.0+4.5 MeV (Burnett, 1963), reflecting
roughly 18 MeV of dissipation relative to the theoretical
macroscopic result in the absence of viscosity. Thus
variation of 6 in the physically reasonable range yields
uncertainty in dissipation of the order of the experimen-
tal effect, and the present practical restriction to axial
symmetry thus precludes a quantitative test of the
mean-field theory.
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FIG. 50. Contour plots of the nuclear density in a plane con-
taining the symmetry axis at time intervals of 4&10 ' s dur-
ing induced fission of U. The outer solid lines denote densi-
ties of 0.02, 0.08, and 0.14 fm, and the dashed lines denote a
density of 0.16 fm and thus reveal shell fluctuations.

2. Spontaneous fission

The computational scale of the self-consistent periodic
eigenvalue problem, Eq. (5.134), for the bounce solution

governing spontaneous fission is much larger than that
of the TDHF initial value problem, and the results are
correspondingly meager.

An exploratory calculation has been performed for Be
in three spatial dimensions plus time, using the local in-
teraction of Table II and the method of solution
described in Sec. VI.C1 (Negele, 1980). Unfortunately,
in the case of Be the spurious cm motion error varying
as I/A introduces an error of the order of 16 MeV' be-
tween the energy of the parent nucleus and the two
daughters, when the physical Q value is of the order of
only kilovolts. Since as yet no practical method for
treating this effect in mean-field theory has been
developed, the effective Hamiltonian must be modified to
cancel the cm error in order to obtain fission, and there
is no reason to believe such a major modification is
quantitatively reliable. In the referenced calculation, the
strength of the Coulomb interaction was enhanced by in-
creasing the charge of the proton as a prelude to investi-
gating fission systematics as a function of fissility.

Figure 51 shows perspective plots of the half-density
surfaces for the bounce solution for symmetric fission of
Be at sequential times. One feature of the fission of

this system which is not at all representative of heavy
fissile nuclei is the fact that the turning point at the en-

try to the classically allowed region is far past the scis-
sion point, so that the bounce solution near ~=0 corre-
sponds to two well-separated alpha particles. Thus, al-
though this schematic Be calculation plays a useful role
in demonstrating the feasibility of solving the self-
consistent tunneling problem and in developing tech-
niques for heavier systems, it has little direct physical
relevance.

The feasibility of calculating fission in systems as
large as Si and S, with suitably enhanced proton
charge, offers several interesting possibilities. Since the
crossing of Nilsson levels is already important in this re-
gion, it is possible to study directly the breaking of axial
symmetry in the self-consistent bounce solution. Direct
comparison with adiabatic reductions and formulations
in terms of a single collective variable will be possible
with the same effective interaction. Finally to the extent
to which 2 =30 is large enough to embody liquid drop
behavior, the dependence of the penetrability on fissility
may be calculated by keeping 2 fixed and increasing e .
Thus, although we are presently very far from a realistic
microscopic fission calculation for uranium, there do ex-
ist viable avenues of investigation.

F. Pion condensation

A final, highly speculative application of mean-field
dynamics to finite nuclei is the search for pion condensa-
tion in heavy-ion collisions (Krewald and Negele, 1980).
This application is speculative not only because a defini-
tive calculation lies well beyond present capabilities, but
also because collision energies are involved which ap-
proach or exceed the limits of validity of the mean-field
approximation. Nevertheless, the intrinsic interest of the
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Er[V.(S~ —S„),V (Sp —S„)],f2

p
(7.20)

where the spin density is defined

Sq(r) = g 4*'~(r)o„'V„'~(r), (7.21)

H denotes the Hamiltonian density Eq. (7.2), the Yukawa

expectation value of the source term V (err) plays the
role of the expectation value of the pion field or order
parameter in the condensed phase. Since the time-
dependent mean field describes the evolution of the
matter densities of the colliding nuclei, includes the RPA
fluctuations with respect to the instantaneous one-body
density matrix, and governs the nonlinear growth of a
condensate in the self-consistent field, it provides a uni-
fied microscopic description of pion condensation in
heavy-ion collisions.

The critical density for pion condensation during a nu-
clear collision is much lower in the mean-field theory
than in a treatment assuming local equilibration. The
essential mechanism may be seen by comparing a system
of two interpenetrating Fermi gases with a single Fermi
gas of the same total density. For a single Fermi gas of
nuclear matter at density p, the driving term for the in-
stability in the RPA propagator is the zero-frequency
Lindhard function (Lindhard, 1954), IIO(q, kF ), where
kF ——(3n p/2)'~ . In contrast, for two separated Fermi
spheres representing interpenetrating gases each of densi-
ty p/2, and for the most favorable case of condensate
momentum q, perpendicular to the beam direction, the
driving term becomes 2110(q„2 ' kF ) (Gyulassy and
Greiner, 1977). The multiplicative factor of 2 increases
the driving term much more than shifting the argument
to 2 ' kF decreases it, reflecting the physical fact that
the phase space for particle-hole excitations of momen-
tum q, around the surface of two separated Fermi
spheres is much larger than that around a single larger
Fermi sphere corresponding to the same total density.
The net effect is that the condensation threshold occurs
in the two-gas problem at a total density of roughly
one-half that for a single equilibrated gas. Since realistic
estimates for the threshold in an equilibrated gas are in
the range of 1.5 —3 times nuclear matter density and the
corresponding thresholds for colliding nuclei are thereby
reduced to 0.75 —1.5 times nuclear matter density, this
effect could be absolutely crucial in producing pion con-
densation in a feasible experiment. This significant
feature of the mean-field theory is completely lost, how-
ever, if pion condensation is included only in an equation
of state depending on the density, as in the calculations
by Pirner et al. (1979) and Stocker et al. (1980).

In the exploratory calculations of Krewald and Negelq
(1980), head-on axially symmetric collisions of ' N+ ' N
were calculated in the time-dependent mean-field approx-
imation using the Hamiltonian density

~=II+—(S~+S„) +—(S~ —S„)
~4 2 ~5

convolution is defined in Eq. (7.3), f and p are the effec-
tive pion coupling constant and mass, the charge sub-
script q denotes either protons or neutrons, s indicates
the spin projections, and a denotes Pauli matrices. The
effective interaction thus includes the one-pion exchange
potential plus zero-range u o. and o'cn"v components,
and the parameters were adjusted to reproduce realistic
calculations of pion condensation thresholds and ap-
propriate Landau parameters. Since ~+, m. , and m.

modes are nearly degenerate in collisions involving nuclei
with nearly equal neutron and proton densities, the cal-
culation was simplified by omitting all charge-changing
components and thus considering only ~ condensation.

Calculations were performed at a cm energy per parti-
cle of 20 MeV so as to obtain most of the enhancement
of the Lindhard function for two separated Fermi
spheres without totally invalidating the mean-field ap-
proximation, and detailed plots of V (o'r) are presented
in the original reference. Whereas nonlinear growth of
the spin-isospin mode during the time of nuclear overlap
is clearly observed, it is not dramatic and results in no
significant signature in the final collision fragments. It
is an open question as to how large the growth would be
for a full three-dimensional calculation of Pb + Pb,
where the larger overlap time, the greater spatial extent,
and possibility of planar rather than cylindrical fluctua-
tions are all much more conducive to the growth of an
instability.

Even in the event that a short-lived pion condensed
state with pronounced spin-isospin instabilities should
arise in actual collisions and be adequately approximated
in mean-field calculations, the fact that it is not accessi-
ble to external probes, such as electrons, photons, or
pions, renders it a nontrivial problem to verify its ex-
istence unambiguously. Possible signatures, such as pion
emission or spin-isospin correlations, are beset with un-
certainties. Hence, it is possible that pion condensation
may in fact occur in these intermediate-energy heavy-ion
reactions as a result of the favorable phase space, and
nevertheless be relegated to the realm of speculation for
lack of an adequate signature.

Vill. SUMMARY AND FUTURE OUTLOOK

The mean-field theory reviewed in this work provides
the foundation for a systematic theory of a wide variety
of problems in nuclear structure and dynamics. Reduc-
tion of the full Schrodinger equation to a theory involv-
ing the one-body density matrix is an immense simplifi-
cation of the many-body problem, which, nevertheless,
contains an infi'nite number of degrees of freedom from
which the collective and single-particle variables relevant
to a particular process emerge naturally. With an ap-
propriate effective interaction based on the phenomeno-
logical knowledge of nuclear interactions and the satura-
tion of nuclear matter, quantitative success is obtained in
a variety of applications, ranging from the energies and
density distributions of nuclear ground states to the cal-
culation of fusion cross sections and the dissipation and
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gross features arising in inelastic heavy-ion scattering.
A number of interesting formal and conceptual prob-

lems remain unresolved. Even at the level of the mean-
field theory, new and more powerful techniques are
needed to deal with large numbers of degrees of freedom.
Instead of evolving (A

& +22) &C X„XX» && X, complex
numbers, representing single-particle wave functions on a
mesh, it would be desirable to reformulate the mean-field
approximation in terms of a sma11 number of the most
relevant variables. Viable, controlled approximations to
the TDHF theory are needed which clearly separate col-
lective, single particle, and statistical effects and which
deal efficiently with the truly statistical aspects. In situ-
ations in which single-particle behavior does not dom-
inate the physics, it should be possible to formulate a
much simpler theory involving only the nearly diagonal
properties of the one-body density matrix (or, equivalent-
ly, low-momentum moments of the Wigner transform),
utilizing the density p(R ), kinetic energy density r(R ),
current density J(R), and spin density S(R). Similarly, it
is equally desirable to formulate simplifications of the
two-body time-dependent coupled-cluster equations, both
to extract the essentia1 physics from the complicated
general formalism and to render quantitative calculations
tractable.

The functional integral formulation also raises a num-
ber of significant unresolved problems. The most salient
conceptual problem is that, in the absence of an expan-
sion parameter, there is no criterion for choosing be-
tween equivalent exact expressions which yield differing
lowest-order SPA results. %"hereas the freedom in defin-
ing the mean field has been utilized thus far to embed
desirable, previously known approximations in the func-
tional integral formalism, it is necessary to learn to ex-
ploit this freedom to optimize corrections. Two particu-
larly crucial areas for future efforts emphasized in Sec.
V are the derivation of a scattering theory formulated in
terms of few-body observables and the development of
techniques to deal with the short-range repulsion in the
nuclear interaction. Present methods of evaluating qua-
dratic and higher-order corrections to the SPA are tract-
able only in simple cases for which the SPA equations
can be solved analytically, and in which only one non-
trivial space-time coordinate is involved. Clearly in the
nuclear physics applications considered in this work,
more powerful general techniques are needed, with the
Monte Carlo method being a particularly promising pos-
sibility.

The region of validity of the mean-field approximation
has yet to be understood quantitatively. Although sys-
tematic expansions in principle provide a framework for
calculating or estimating errors, present considerations
are limited to intuitive agruments. It has been argued
above that the role of the Pauli principle in generating a
large mean-free path justifies the mean-field description
of low-energy collective modes, collisions slightly above
the Coulomb barrier, and fission. Other interesting re-
gions of validity, however, also seem possible. %'henever
the process may be specified by the action of an external

potential, the mean-field theory should provide an excel-
lent description of the response of the system. Thus,
peripheral and grazing collisions at arbitrarily high ener-
gies appear to fall within the purview of the theory, with
the fragmentation of peripheral relativistic heavy-ion col-
lisions being a particularly interesting possibility. Other
applications might arise when one can isolate some re-
gion of a system in which particles have low relative
momentum, such as the coalescence of final fragments
from an excited intermediate system. In addition, appli-
cations in other fields, such as atomic physics, surely
abound.

The initial exploratory phase of numerical calcula-
tions, reviewed in detail in Sec. VII, appears to be nearly
completed, and significant technical advances and
developments in computer capabilities are required for
substantial new progress. Coven that one of the virtues
of the mean-field theory is its treatment of single-particle
effects, it is clearly desirable to include eventually the
spin-orbit interaction to obtain the proper single-particle
level ordering. Similarly, systematic calculations of
spontaneous fission lifetimes in the actinide region, in-
vestigation of spin-isospin instabilities in the collisions of
heavy nuclei, and the inclusion of two-body collisions in
the time-dependent coupled-cluster theory will be ex-
tremely interesting when technically feasible. For the
present, however, possibilities for practical calculations
offering significant new insights into mean-field dynam-
ics are rather limited.

Experimentally, the primary challenge is to measure
observables which definitively distinguish the mean-field
theory from other approximations. During intermediate
stages of evolution, the density distributions arising in
the TDHF theory and fluid dynamics differ significant-
ly. In a head-on collision, for example, the limited
transverse equilibration in the mean-field theory yields
compound systems which are always prolate, whereas
fluid dynamics may yield intermediate systems which be-
come highly oblate. As yet, however, no experimental
signature of this qualitative difference has been found in
the final-state observables. Even more dramatic are the
mean-field predictions of the forward transmission win-
dow for small-impact parameters in fusion reactions and
the possibility of large-amplitude spin-isospin fluctua-
tions in higher-energy collisions of heavy nuclei. Ciiven
recent experimental advances in precision and specificity
in coincidence experiments, serious effort should be ad-
dressed to formulating definitive tests of the mean-field
theory.

In conclusion, it is clear from these and other open
questions that nuclear dynamics continues to challenge
our understanding of the physics of many-body systems.
It is hoped that the modest successes of the mean-field
theory reviewed in this work provide the impetus to meet
this challenge.
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