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Ideal magnetohydrodynamic theory and its apphcation to magnetic fusion systems are reviewed. The re-
view begins with a description and derivation of the model as well as a discussion of the region of validi-
ty. Next, the general properties are derived which are valid for arbitrary geometry and demonstrate the
inherently sound physical foundation of the model. The equilibrium behavior of the currently most
promising toroidal magnetic fusion concepts are then discussed in detail. Finally, the stability of such
equilibria is investigated. Included are discussions of the general stability properties of arbitrary magnet-
ic geometries and of detailed applications to those concepts of current fusion interest.
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l. INTRODUCTION

A. The role of ideal MHD in magnetic fusion

In order to develop a viable fusion reactor there are
three basic physics requirements which must be satisfied.
(1) A sufficient density of plasma must be: (2) confined
for a sufficiently long time at: (3) a sufficiently high
temperature to produce net thermonuclear power [see
Ribe (1975) for a review of fusion reactor systems]. In
its most elementary form the net power balance for a
magnetic fusion system is described in terms of the
Lawson parameter n~E, with n the plasma number densi-
ty and ~E the energy confinement time (I.awson, 1957).
At break-even conditions nrE )f (T), where typically

f ( T)= 10' cm sec for the optimized temperature
T=1S keV.

From an admittedly oversimplified view of the phys-
ics, the problem of maximizing n&E separates into two
relatively independent parts. First, the maximum energy
confinement time ~E is determined by the microscopic
behavior of the plasma. This behavior ultimately leads
to macroscopic transport, which can be either classical or
anomalous depending on the processes involved. Since
these phenomena require a knowledge of individual par-
ticle motion on short length and time scales, they are
usually treated by kinetic models, but including only lim-
ited geometry [see, for instance, Montgomery and Tid-
man (1964), Krall and Trivelpiece (1973), and Hinton
and Hazeltine (1976)]. Such models are also used to
determine the energy disposition and plasma temperature
T associated with various methods of heating.

Second, the maximum density n is almost always
determined, not by microscopic kinetic processes, but
rather by macroscopic equilibrium and stability limits set
by the magnetic geometry. Actually, at a given T, the
critical figure of merit is p:2ponT/B, the r—atio of
plasma energy to magnetic energy. Because of the rela-
tively slow time and large length scales involved, these
phenomena are best described by Auid models.

Ideal magnetohydrodynamics (MHD) is the most basic
single-Auid Inodel for determining the macroscopic
equilibrium and stability properties of a plasma. The
model essentially describes how magnetic, inertial, and
pressure forces interact within an ideal (i.e., perfectly
conducting) plasma in an arbitrary magnetic geometry.
[Gther reviews of ideal MHD equilibrium and stability
theory have been given by Shafranov (1966), Kadomtsev
(1966), Wesson (1978), Bateman (1978), and Goedbloed
(1979).] There is general consensus that any magnetic
geometry meriting consideration as a fusion reactor must
satisfy the equilibrium and stability limits set by ideal
MHD. If not, violent termination of the plasma on a
very short time scale (i.e., typically less than 100 psec) is
often the consequence.

Thus the role of ideal MHD in magnetic fusion is the
discovery and analysis of different magnetic geometries,
with the aim of distinguishing those which are particu-
larly attractive for use in fusion reactors.

One should keep in mind, however, that while favor-
able ideal MHD properties are necessary in a reactor,
they may not, even in the restrictive context of low-
frequency macroscopic behavior, be sufficient. It is
sometimes possible for nonideal effects such as electrical
resistivity to allow the development of slower, weaker in-
stabilities, which nevertheless may still lead to enhanced
transport or even, in certain circumstances, violent ter-
mination of the plasma. Clearly a complete evaluation
of any given concept requires a knowledge of both the
strong, ideal MHD behavior and the weaker, but still po-
tentially dangerous, nonideal effects. In the present re-
view consideration is given only to the ideal MHD
model. The effects of resistivity on macroscopic equili-
brium and stability have been reviewed by Greene (1976).

Another point to note is that the separation of the two
basic physics questions (i.e., n~ ideal MHD and ~z~
kinetic) is only approximately correct, and often there is
significant overlap. For instance, ideal MHD often sets
limits on the current that can flow as well as on p.
Clearly a current limit will have a direct effect on the
maximum possible ohmic heating. Another example is
associated with the fact that pressure and current pro-
files are usually determined by transport. In certain
magnetic configurations the pressure and current limits
are strong functions of the profiles, again indicating
overlap in the physics. It should be kept in mind that by
studying only ideal MHD behavior one does not treat
such interactions self-consistently.

With these considerations as background, it is the goal
of this article to review the ideal MHD equilibrium and
stability theory of magnetic fusion configurations and to
develop an understanding as to why certain geometries
are preferable to others. Since a main virtue of ideal
MHD is its ability to distinguish different magnetic
geometries, a number of specific examples are discussed.
These are chosen from the currently most promising
concepts in the international magnetic fusion program
and include the tokamak, stellarator, Elmo bumpy torus
(EBT), and reversed field pinch (RFP). Each of these is
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a toroidal configuration. For reasons discussed later,
ideal MHD provides a very poor description of the
behavior of open-ended devices. Thus there is no discus-
sion of the important mirror concept, The topic of mir-
ror physics has been reviewed by Baldwin (1977), and the
recent tandem mirror concept has been discussed by Di-
mov et al. (1976), Fowler and Logan (1977), and Baldwin
and Logan (1979).

The approach that has been adopted in the presenta-
tion of this review is one which relies heavily on analytic
theory. In particular, once the general properties of the
model are established, each magnetic configuration is
distinguished by its own characteristic asymptotic expan-
sion (where the expansion parameters are usually
geometric or field amplitude ratios). Although such ex-
pansions are sometimes only marginally valid in actual
experiments, they are extremely useful in delineating the
basic physics issues of a given concept. Extensive nu-
merical computations have been carried out for many
ideal MHD problems, and these results are summarized
in the context of the analytic theory.

The review is organized as follows.

B. Outline of Section li {the MHD model)

The main purpose of Sec. II is to provide a physical
understanding of the ideal MHD model. This is accom-
plished by deriving the model from a more basic kinetic
description and then discussing its regions of validity.
The starting point of the derivation is a kinetic model
described by the Boltzmann-Maxwell system of equa-
tions. After taking moments, a set of two-fluid equa-
tions is obtained, and the ideal MHD model represents a
low-frequency, long-wavelength limit of these equations.

It is shown that ideal MHD accurately describes phe-
nomena involving the macroscopic length scale a, the ion
thermal velocity scale Vz;, and the corresponding time
scale ~=a / VT; if the following three conditions are sa-
tisfied: (1) the gyroradius of an average ion must be
much less than the macroscopic scale length; (2) the
plasma must be sufficiently large and collision free so
that resistive diffusion is negligible; and (3) the plasma
must be sufficiently collision dominated so that the pres-
sure is isotropic, the heat conduction parallel to the field
is small, and the electron and ion temperatures are
equilibrated.

Although there is always a region of parameter space
where these three conditions are simultaneously satisfied,
plasmas of fusion interest usually lie outside this region.
Specifically, the condition of collision dominance is
violated. Despite its apparent lack of validity it is point-
ed out that in practice MHD has had wide success in
predicting the macroscopic behavior of experiments.
The difficulty is resolved by noting that the errors result-
ing from violation of collision dominance involve phe-
nomena with gradients parallel to the magnetic field.
However, in the analysis of most MHD equilibrium and
stability problems, the parallel gradients are either zero
or small; that is, the model is incorrect only when it is

not important. The situation is further simplified by the
introduction of the "perpendicular MHD model, " which
is valid over a wider range of parameters, including low
collisionality, but which is more restrictive in the class of
allowable motions. This model makes predictions very
similar to those of ideal MHD.

C. Outline of Section III {general properties
of ideal MHD)

Section III discusses some of the general properties of
ideal MHD, with the aim of demonstrating that the
model does indeed possess a firm physical foundation for
investigating the macroscopic behavior of fusion plas-
mas. The first topic considered is that of boundary con-
ditions, that is, conditions that must be satisfied at the
plasma surface when connecting the plasma to its exter-
nal environment under a variety of situations. The sim-
plest case corresponds to a boundary which is a rigid,
perfectly conducting wall. A more realistic situation al-
lows the plasma to be isolated from the wall by a vacu-
um region. The most realistic case has the plasma sur-
rounded by vacuum, without a conducting wall, but with
fixed external current-carrying conductors.

The second topic discussed concerns conservation
laws. It is shown that despite the significant number of
assumptions made in the derivation, the model exactly,
nonlinearly conserves the mass, momentuxn, and the en-
ergy of the system.

The final topic involves the conservation of flux. Be-
cause of the assumption of perfect conductivity associat-
ed with the ideal model, it is possible to interpret the
plasma motion as one in which both the plasma and
magnetic flux move together. This has important impli-
cations for plasma stability, in that the magnetic field
line topology is constrained to remain unchanged during
any plasma motion occurring on the MHD time scale.

D. Outline of Section IV {equilibrium)

The aims of Sec. IV are to investigate the properties of
static ideal MHD equilibria and to develop a physical
understanding of how the various forces are developed
which hold a plasma in macroscopic force balance. To
begin, the general properties of such equilibria are dis-
cussed. It is pointed out that, in order to avoid the po-
tentially large end losses implied by the enormous ratio
of the thermal conductivities parallel and perpendicular
to the magnetic field, most magnetic fusion configura-
tions are toroidal.

It is then shown that two basic problems must be
solved in order to produce toroidal equilibria. The first
is that of radial pressure balance, which requires
"cylindrical" plasma confinement within the minor cross
section. The second problem concerns toroidal force bal-
ance, which requires the development of a restoring force
to compensate for the outward force inherent in any
toroidal configuration. If uncompensated, this force
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causes a uniform expansion of the major radius of the
plasma.

By considering large-aspect-ratio tori, one can achieve
asymptotic separation of these two problems; radial pres-
sure balance corresponding to zeroth order and toroidal
force balance to first order.

In this expansion radial pressure balance reduces to
that in a one-dimensional, infinitely long, straight
cylinder. It is demonstrated that two fundamental con-
figurations can produce radial pressure balance: (1) the
Z pinch (i.e., toroidal current); and (2) the 0 pinch (i.e.,
poloidal current). Attempts to "bend" these configura-
tions into a torus by accounting for toroidal force bal-
ance show that (1) the Z pinch has satisfactory toroidal
equilibria, but that (2) no such equilibria exist for the 0
pinch. It is pointed out, however, that stability analysis
predicts strong instabilities for the Z pinch, but either
positive or neutral stability for the 0 pinch.

This, then, is the basic dilemma of macroscopic
toroidal confinement. Its solution lies in the discovery
of optimal con1binations of Z pinch, 8 pinch, and
perhaps other sn1all auxiliary fields which maximize the
density and P that can be held in stable toroidal equili-
brium.

Such equilibria have been found in two- and three-
dimensional geometries. They each make use of one of
three different mechanisms which generate a toroidal re-
storing force. The two-dimensional configurations dis-
cussed are axisymmetric tori and include the reversed
field pinch (RFP), the conventional tokamak, the high-P
tokamak, the noncircular tokamak, and the flux-
conserving tokamak. In these configurations, toroidal
force balance is similar to that in a Z pinch; that is, it
occurs by the interaction of a net toroidal plasma current
with either an externally applied vertical field or the im-
age currents induced by a perfectly conducting shell sur-
rounding the plasma.

The most successful axisymmetric toroidal configura-
tion at present is clearly the tokamak. Despite its many
virtues it does have the disadvantage as a reactor of be-
ing an inherently pulsed device, since the toroidal current
required for equilibrium usually corresponds to the
secondary of a transformer. [One recent idea to avoid
this problem makes use of a radio-frequency current
drive (Fisch and Bers, 1978; Fisch, 1978)j.

In fact it is the desire to have configurations with zero
net toroidal current that is perhaps the prime motivation
for studying the very much more complicated three-
din1ensional geometries, in particular the Elmo bumpy
torus (EBT), the high-P stellarator, and the conventional
stellarator. Each of these concepts has auxiliary helical
or bumpy fields superimposed on a basic 0-pinch field,
but zero net toroidaf current. These configurations make
use of the two other, son1ewhat subtle, mechanisms of
generating toroidal force balance. These restoring forces
result from the interaction of the applied helical (or
bumpy) field with induced helical sideband currents
and/or induced toroidal dipole currents.

In summary, Sec. IV demonstrates how the ideal

MHD n1odel can be used to calculate a variety of dif-
ferent equilibria of interest to-the magnetic fusion pro-
gram. These equilibria serve two valuable purposes.
First, they represent the basis for stability analysis which
can then distinguish which configurations are n1ost at-
tractive in terms of P and current limits. Second, nu-
merically computed ideal MHD equilibria are very useful
in the practical design and operation of experiments —for
example, in choosing the location and current distribu-
tion of external conductors, in determining the shape of
the plasma, in the investigation of single-particle con-
finement, aIld 1I1 thc iIltcrplctat1on of many d1agnost1cs.

E. Outline of Section V (stabiiity)

Section & contains a discussion of the linear stability
properties of static ideal MHD equilibria. The goal is to
distinguish those configurations which are potentially at-
tractive for use in fusion reactors with respect to P and
current limits, and to develop an understanding of the
basic features of magnetic geometries which are favor-
able for n1acroscopic stability.

The first part of the discussion concerns the basic
theoretical concepts of ideal MHD stability. It is shown
that a current-free, infinite, homogeneous system is ex-
ponentially stable; that is, the natural waves which pro-
pagate are purely oscillatory. In order to investigate
n1orc interesting, inhomogeneous equilibria, a general
formulation of the linearized stability equations is
presented. These equations, valid for arbitrary geometry,
are ultimately cast in the form of an eigenvalue problem.
The resulting system is shown to be self-adjoint, imply-
ing that the eigenfrequencies are either purely real or
purely growing and that stability transitions occur when
the eigenfrequency crosses zero.

The linearized eigenvalue equations are then cast into
a variational form from which it is possible, because of
the conservation of energy, to derive an Energy Princi-
ple. This principle determines whether or not a system
is stable by examining the sign of a single potential ener-

gy integral for all allowable plasma motions. It is the
simplest and most convenient procedure for testing sta-
bility and is used in all the later applications. The sim-
plicity follows because the Energy Principle, which gives
exact information about instability thresholds, only esti-
mates the eigenfrequencies (i.e., growth rates). This lack
of information is usually not important because ideal
MHD growth times are much shorter than experimental
times. Hence a knowledge of the threshold conditions to
avoid such instabilities is far more important.

Proceeding with the general formulation of ideal
MHD stability, it is demonstrated that, except for cer-
tain special configurations, the eigenfunction at a stabili-
ty threshold corresponds to an incompressible motion of
the plasma. A subtle point is then discussed to illustrate
the difference in stability between a plasma surrounded
by a vacuum region and an ideal force-free plasma carry-
ing zero current in the equilibrium. Because of the topo-
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logical constraints associated with perfect conductivity,
the vacuum case is often far less stable. In reality the
colder, low-density, current-free plasma surrounding the
plasma core is usually a good, but not perfect, conductor.
However, the small resistivity of the outer plasma causes
the thresholds to be identical to those of the vacuum
case but with much smaller growth rates.

The final point concerning the general formulation is
the classification of ideal MHD instabilities. While the
current-free, infinite homogeneous plasma is stable, sys-
tems with current flowing either parallel or perpendicu-
lar to the magnetic field can drive instabilities. These
are referred to as current-driven Inodes or pressure-
driven modes, respectively. Both classes of modes have
relatively small parallel wave numbers. The least stable
pressure-driven modes have large perpendicular wave
numbers and occur when: (1) the average curvature of
the magnetic field lines is convex to the plasma (inter-
change perturbations), or (2) the local curvature is con-
vex (ballooning modes). Current-driven modes, however,
have small to moderate perpendicular wave numbers and
occur when the parallel current gradient and/or the total
parallel current is too large (kink modes).

With this as background, a number of applications are
considered. These are restricted to one- and two-
dimensional equilibria, since the stability theory for
three-dimensional systems is rather incomplete. For the
one-dimensional case the first stability analyses presented
correspond to the pure 6 and Z pinches. The results
demonstrate the stability properties stated in connection
with the problem of toroidal equilibrium. A formulation
is then given of the energy principle for an arbitrary hy-
brid 0-Z pinch, known as the general screw pinch. The
reversed field pinch (RFP) is accurately described by this
one-dimensional model, and its stability properties are
discussed in detail. It is also possible to make a one-
dimensional model of a "straight" tokamak. The corre-
sponding stability analysis is reasonably reliable with
respect to current-driven modes, but makes optimistic
predictions for pressure-driven modes. A more exact
treatment of tokamak stability, including pressure-driven
Inodes, is the main topic of the two-dimensional applica-
tions. Finally, the stability properties of an infinitely
long, two-dimensional model of the Elmo bumpy torus
(EBT) are summarized.

This chapter thus demonstrates how the ideal MHD
model can be used to test the macroscopic stability of
realistic magnetic geometries and indicates why the
specific concepts chosen are potentially attractive for use
in fusion reactors.

ll. THE MHD MODEL

A. Introduction

The main goal of this section is to provide a physical
understanding of the ideal MHD model. This includes:
(1) a basic description of the model, (2) a derivation
starting from a more fundamental kinetic description,
and, most important, (3) a discussion of its range of va-
lidity.

As has been often pointed out, plasmas of fusion in-
terest do not satisfy all the criteria for validity; in partic-
ular, they are not sufficiently collisional. On the other
hand there is overwhelming empirical evidence that ideal
MHD provides a very accurate description of the macro-
scopic behavior of fusion plasmas. This fact is more
than a coincidence. It is explained here by the introduc-
tion of a slightly different model, the "perpendicular
MHD model, " which in most cases of interest makes
predictions almost identical to those of ideal MHD but
which is valid over a much wider parameter range of
fusion interest.

Other discussions of the MHD inodel can be found in
Rose and Clark (1961), Braginskii (1965), Boyd and San-
derson (1969), Krall and Trivelpiece (1973), and Bateman
(1978).

B. Ideal MHO equations

The ideal MHD model provides a single-Auid descrip-
tion of long-wavelength, low-frequency, macroscopic
plasma behavior. The equations of ideal MHD are given
by

Bp +V.pv=0, (2.1)

dv
p =Jx&—Vp,

dt
(2 2)

are maintained, up to the point in Sec. II where the ideal
MHD equations are derived. In the final form of the
MHD equations, only po appears. From this point on,
po is set equal to unity. This implies, for instance, that
magnetic pressure is B /2 and that the magnetic field
due to a uniform-current-carrying wire is B =I/2~r.
Whenever critical dimensionless parameters appear, they
are defined in terms of both the modified units and, in
parenthesis, the actual mks units, maintaining po.

F. Units (2.3)

The basic units used throughout the text are mks
units. However, certain "standard" simplifications are
introduced. First, wherever Boltzmann's constant K ap-
pears in the text it is absorbed into the temperature.
Thus the symbol T refers to temperature measured in en-
ergy units. The permittivity co and the permeability po

8+v XB=O,

VXB=poJ,
V.8=0

(2A)

(2.5)

(2.6)

(2.7)
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In these equations, the electromagnetic variables are the
electric field E, the magnetic field 8, and the current
density J. The fluid variables are the mass density p, the
fluid velocity v, and the pressure p. Also y= —, is the ra-
tio of specific heats, and d/dt=B/Bt+v-V is the con-
vective derivative.

Equations (2.5) —(2.7) indicate that in ideal MHD the
electromagnetic behavior is governed by low-frequency,
pre-Maxwell equations. Equations (2.1)—(2.3) govern
the time evolution of mass, momentum, and energy,
respectively. The basic physics of the momentum equa-
tion corresponds to that of a fluid with three interacting
forces, the pressure gradient force Vp, the magnetic force
JXB, and the inertial force pdv/dt. The energy equa-
tion expresses an adiabatic evolution characterized by a
ratio of specific heats, y= —,. The remaining relation,
Eq. (2.4), is Ohm s law, which implies that in a reference
frame moving with the plasma the electric field is zero;
that is, the plasma is a perfect conductor. In fact it is
the perfect-conductivity assumption of Ohm's law that
gives rise to the name "ideal" MHD.

Although many important plasma physics phenomena
are neglected in the derivation of the ideal MHD model,
the one critical phenomenon that remains is the effect of
magnetic geometry on the macroscopic equilibrium and
stability of fusion plasmas.

~'
J

= Xc-I (2.13)

where C~p represents collisions of particles of species a
with particles of species P, then:

(1) Conservation of particles in like and unlike particle
collisions implies

Here f (r, u, t) is the distribution function for each
species n, and is in general a function of the spatial
coordinate, the velocity, and time. It shall be assumed
that the plasma is fully ionized and consists of two
species; electrons and ions. Hence a =e, i.

In the Boltzmann description there are two types of
forces which act on the particles. First there are the
long-range Lorentz forces q (E+uXB), in which E and
8 are smoothly behaving fields calculated from the aver-
aged current and charge density, as indicated in Eqs.
(2.11) and (2.12). Second, the right-hand side of Eq.
(2.8) represents the forces due to short-range interactions,
or collisions. In the derivation presented here, the details
of the collision operator are not important, only certain
global conservation relations. For plasmas of fusion in-
terest, the dominant collisions are elastic Coulomb col-
lisions between both like and unlike particles. The con-
servation laws for elastic collisions can be summarized as
follows. If the collision operator is defined in the usual
way,

C. Starting eqoations fC„du=fC,, du= fC„du=fC,,du=0; (2.14)

In order to more fully appreciate the physics content
of ideal MHD it is useful to derive the equations starting
from more basic principles. A number of such deriva-
tions exists in the literature, and each, including the
present one, follows the same general procedure. See, for
instance, Braginskii (1965) and Boyd and Sanderson
(1969). The starting point for the present derivation is
the full set of Maxwell's equations coupled with a kinetic
model of the plasma, described by a Boltzmann equation
for each species [a discussion of the starting equations
themselves can be found in Montgomery and Tidman
(1964) and Krall and Trivelpiece (1973)]. These equa-
tions are given by

fm, uC„du=fm;uC;;du=0,

—m, u C„du= —m;u C;;du =0;1 2 1

(2.15)

(2.16)

(3) Conservation of total momentum and energy in col-
lisions between unlike particles implies

f (m, uC„+m;uC;,)du=0, (2.17)

m, u C„.+m;u C;, du=0. (2.18)

(2) Conservation of momentum and energy in col-
lisions between like particles implies

+u. Vf + ( E+uX B). Vf =
Bt m~

VXE=- BB
Bt

V.8=0,
VXB=poJ+ 1 BE

c~ Bt

1 BE=pop qu f ufadu+ c2 Bt

o. 1VE=—=—gq ff du.
Cp Cp

Bt

(2.8)

(2.10)

(2.1 1)

(2.12)

More detailed discussions of collisions in a plasma have
been given by Spitzer (1956), Rose and Clark (1961), and
Krall and Trivelpiece (1973).

The full set of Boltzmann-Maxwell equations provides
a very detailed and complete description of plasma
behavior. Gn the one hand it contains microscopic in-
formation about the orbits of individual charged parti-
cles, while on the other hand it accurately describes the
macroscopic behavior of large plasma experiments. Not
surprisingly, the complexity arising from this breadth of
information makes it virtually impossible, even numeri-
cally, to solve the Boltzmann-Maxwell system of equa-
tions in any nontrivial geometry. This realization has
led to the development of several simpler models with
narrower physical content. Ideal MHD is such a model.
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D. Two-fluid equations h = —,'n m (w'w), (2.27)

The first step in the derivation of the MHD equations
is to take appropriate moments of the Boltzmann equa-
tion. This leads to a set of "two fluid'* equations. The
appropriate moments correspond to mass, momentum,
and energy; that is,

df du=0 (i=1—3),
at

Qi ——1, Q2 ——mau Q3 2 mau (2.19)

(m n v )+V (m n. (uu)) —q n (E+v &(B)
B

at
=fm uC pdu, a+P, (2.20)

( , m —n (u ))+V.( —,m n (u2u)) —q n v .E
Bt

1 2mau Capdll, cx+P .
CX

Here n and v are the macroscopic number density and
fiuid velocity defined by

After some straightforward algebra the fluid equations
for each species can be written as

Bn +V.n v =0,

the mean momentum transfer between unlike particles
due to the friction of collisions,

R—= fm wCpdw, (2.28)

2
Qa ——

2 mawaCapdw . (2.29)

Substituting these relations into Eq. (2.20) and perform-
ing some standard algebraic rearrangement then leads to
the following set of two-fluid equations:

71a +n V.v =0,
dt

cEv~
nama qa—na(E+v &&8)+V P

3 8T~
2 dt

n —+P:Vv +V.h =Q

V~E=-
ai

1 BE
V )& B=poe(n; v; n, v,—) + c2 Bt

eV' E= . (n; n—, ), —
E,o

and the heat generated due to collisions between unlike
particles,

na(r, t)= ffadu, V.B=O, (2.30)

v (r, t)= fuf du.1

~a
(2.21)

The quantities (uu ), ( u ), and ( u u ) are higher mo-
ments of the distribution function defined by the general
relation

&Q&-=„' fQf.d-. (2.22)

2
pa —

3 nama&w

the total pressure tensor,

(2.23)

As is customary in deriving fluid equations, a new

velocity variable is introduced, w=u —v (r, t), represent-
ing the randoin motion of the particles, so that (w) =0.
By introducing this variable into Eq. (2.20), we can write
the fiuid equations in terms of more physical macroscop-
ic quantities. In particular, it is useful to introduce the
scalar part of the pressure,

where it has been assumed that the ions are singly
charged so that q; = —q, =e.

Equations (2.30) are exact, if not very useful, since
there is as yet no prescription for closing the sequence of
higher-order moments of the system. The particular
prescription which leads to the ideal MHD equations
consists of the following steps. First, certain asymptotic
approximations are made which eliminate the very-high-
frequency, short-wavelength information. These approx-
imations are easily satisfied when considering macro-
scopic behavior of fusion plasmas. Next, the equations
are rewritten as a set of single-fluid equations by the in-
troduction of approximate single-fluid variables. By as-
suming the plasma is collision dominated, one can ap-
proximate the higher rnornents from standard transport
theory. It is then possible to determine a set of validity
conditions such that the remaining equations are those of
ideal MHD.

P =n m &ww&,

the anisotropic part of the pressure tensor,

+a:Pa PaI,
the temperature,

Ta=pa~na ~

the heat Aux due to random motion,

(2.24)

(2.25)

(2.26)

E. Asymptotic approximations

There are two important asymptotic approximations
which can be made. They are asymptotic in that each
one eliminates a leading-order time derivative, thus alter-
ing the basic mathematical structure describing the time
evolution.

The first of these is the transformation of the full
Maxwell's equations to the low-frequency Maxwell's
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equations. This limit can be obtained formally by letting
co~0. As a result the displacement current coBE/Bt and
the charge EoV.E can both be neglected. The neglect of
the displacement current implies that the electromagnetic
waves of interest will have phase velocities much slower
than the speed of light, co/k «c. Also, the thermal ve-
locities are assumed to be nonrelativistic, V&„VT;~~c,
VT~ ——(2T~/m )' . The neglect of EOVE'. restricts at-
tention to phenomena whose characteristic frequency is
much less than the electron plasma frequency ~~~co&„
co~:(n—e /m, EO)' and whose characteristic length is
much longer than the Debye length I.~~ A,&,
A,~= VT, /~z, . Each of these assumptions is very well
satisfied when considering the macroscopic behavior of
fusion plasmas.

The neglect of coV.E implies that n; =n, =n. This re-
lationship is called the "charge neutral" approximation.
Note that it does not imply that E or V.E=O. What is
implied is that the electric field must adjust itself so that
charge neutrality persists. For example, in an electro-
static problem E= —VP, and one can imagine calculat-
ing n, =n, (P,r) and n;(P, r). Equating n, to n; and in-
verting the relationship then gives P=P(r). The neglect
of EOV Eco-rresponds to calculating E=—VP and show-
ing that coV-E/en &~1.

The second asymptotic approximation neglects elec-
tron inertia in the electron momentum equation and is
accomplished formally by letting rn, —+O. This implies
that on time scales of MHD interest the electrons have
an infinitely fast response time because of their small
mass. Specifically, time scales which are long compared
to those of the electron plasma frequency m&, and the
electron cyclotron frequency co„=eB/m, are required.
Similarly, the length scales must be long compared to the
Debye length A~ and the electron Larmor radius
rI, ——VT, /co„. As before, these conditions are easily sat-
isfied for macroscopic phenomena in fusion plasmas.

One somewhat subtle point should be made regarding
the neglect of electron inertia. There is a class of low-
frequency, long-wavelength modes in plasmas whose
length and time scales are not too much shorter and fas-
ter than those of MHD. These modes, called drift
waves, are strongly affected by resonant particles moving
along field lines. Thus, even with their small mass, the
electrons do not respond "instantaneously, " since they
have to move a long distance to traverse one wavelength.
When electron inertia is neglected, the physics of the
drift wave is no longer accurately treated. [The theory
of drift waves has been reviewed by Mikhailovskii (1967)
and Krall and Trivelpiece (1973).] Thus one should keep
in mind that a complete study of low-frequency plasma
stability may require several separate treatments of dif-
ferent phenomena.

F. Single-fluid equations

Using the asymptotic approximations just described,
one can derive a set of single-fluid equations by intro-
ducing appropriate fluid variables. To begin, it is cus-

tomary to introduce a mass density rather than a number
density. Since I,~O and n;=n, —=n, the mass density
is defined as

p=m;n . (2.31)

Likewise, the momentum of the Quid is carried by the
ions, so that the appropriate definition of the fluid velo-
city is given by

v =vs ~ (2.32)

The current density is proportional to the difference in
Aow velocity between electrons and ions

J=en (v; —v, ) (2.33)

or

v, =v —J/en . (2.34)

The final definitions required are for the total pressure
and temperature

p=nT=pe+p~ ~

T=T.+T- . (2.35)

Bp +V.pv=O, (2.36)

which is identical to Eq. (2.1), the ideal MHD mass con-
servation relation. The other information contained in
these equations is obtained by multiplying the electron
and ion equation by e and then subtracting. The result
is

V.J=O (2.37)

Equation (2.37) is consistent with charge conservation in
the low-frequency form of Maxwell's equations.

The next set of MHD equations follows from the
momentum equations. The electron and ion equations
are first added together. Making use of the fact that
R, = —R; leads to the relationship

lv
p —JxB+Vp= —V. II, +H,

dt
(2.38)

Here d/dt=8/Bt+v-V now represents the convective
derivative moving with the (ion) fluid. The left-hand
side of Eq. (2.38) corresponds to the ideal MHD momen-
turn equation. The condition under which the right-
hand side is negligible determines one range of validity
for the MHD equations and will be discussed shortly.
Note that there is no electric force ~E acting on the
Quid, since o.=O as a result of the charge neutral ap-
proximation.

The other information contained in the two-fluid
momentum equations is obtained by simply rewriting the
electron equation in terms of the single-fluid variables.

Equations (2.31)—(2.35) relate the single-fluid variables

p, v, J,p, T to the two-fluid variables n, v;,v„p„p;,T„T;.
The first of the MHD equations is obtained from the

conservation-of-mass equations. Multiplying the ion
mass equation by m; one finds
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This leads to the following relation:

E+vXS= (JXS—Vp, —V.II, +R, ) .
en

(2.39)

(2.40a)

g, —eh, —II, : v-
3p

Pe

en p~
(2.40b)

The last term in Eq. (2.40b) results from the relation
(d/dt), =(d/dt) (J/en). V.—The left-hand side of Eq.
(2.40) is closely related to the ideal MHD equation of
state. There are a number of terms on the right-hand
side; neglecting these imposes further conditions on the
region of validity. Furthermore, since MHD is a single-
fluid model, still other assumptions must be made to
closely couple the electron and ion energies into a
single-fluid energy.

The final equations of the single-fluid model are the
remaining low-frequency Maxwell's equations given by

The left-hand side of Eq. (2.39) corresponds to Ohm's
law. The conditions under which the right-hand side is
negligible determine another region of validity, to be dis-
cussed shortly.

The third set of MHD equations follows from the
two-fluid energy equations. After some straightforward
algebra one obtains

(Q; —V.h; —II;:v),
dt p~ 3p~

d Pe J
dt p~ en

given particle remains reasonably close to its neighboring
particles during time scales of interest. In this case the
division of the plasma into small, identifiable fluid ele-
ments provides a good description of the physics.

In the collision-dominated limit the distribution func-
tion for both electrons and ions is nearly locally Maxwel-
lian in form. As a consequence, one can refer to well-
established theories (e.g., Braginskii, 1965), in order to
obtain expressions for the higher-order fluid moments in
terms of appropriate transport coefficients. By defining
the characteristic length and time scales of ideal MHD,
it is possible to compare the MHD terms with the trans-
port terms. This then determines the conditions under
which the right-hand sides of the single-fluid equations
are negligible, and the model reduces to ideal MHD.

A convenient place to begin the analysis is with the
specification of the characteristic MHD length and time
scales. Since the main goal of ideal MHD is the investi-
gation of macroscopic phenomena, the length scales of
interest correspond to the macroscopic dimensions of the
plasma denoted by a. The typical time scale of MHD
interest corresponds to a/VT;, VT,. (2T, /m——;)'~, the ion
thermal transit time across a macroscopic plasma dimen-
sion. This time scale is characteristic of many MHD
plasma instabilities. It should be noted that other MHD
instabilities and phenomena can have time scales some-
what faster or slower than a/VT;. For the present pur-
poses, however, it is not crucial to make these distinc-
tions. In determining the scaling relations it is helpful to
introduce the characteristic MHD frequency cu and wave
number k as follows:

a
Bt a

V'XB=poJ,

V.8=0 (2.41) and similarly, the resulting velocity

(2.42)

As stated previously, Eq. (2.37) is consistent with the
low-frequency form of Ampere's law.

The single-fluid model is described by Eqs.
(2.36)—(2.41). No assumptions other than the asymptot-
ic approximations have been made at this point. Al-
though the left-hand side of the Quid equations is identi-
cal to the MHD model, the full set of equations is still
incomplete because of the presence of the as yet unde-
fined higher moments.

G. The ideal MHD limit

In this section the single-fluid equations are investigat-
ed quantitatively to determine the conditions under
which the model reduces to ideal MHD, in particular, to
determine when the righthand sides of Eqs.
(2.38)—(2 40) become negligible.

The basic requirement for the validity of ideal MHD
is that both the electrons and the ions be collision dom-
inated. This is the usual requirement for a Auid model
to be useful. If there are sufficiently many collisions, a

(2.43)

The next step in the analysis is to consider the condi-
tions necessary for the approximation of collision domi-
nance to be valid. There are two such conditions. The
first is that during MHD time scales of interest each
species have sufficiently many collisions to make the dis-
tribution function nearly Maxwellian. For the ions the
dominant collision mechanism is due to ion-ion interac-
tions, characterized by a collision time ~;;. The electrons
become Maxwellian by colliding with either other elec-
trons or ions. Since ~„-~„,it is not important to make
this distinction. Hence the condition that each species be
collision dominated is given by:

Ions e~;; —VT;~;;/a &&&, (2.44a)

Here use has been made of the fact that
r„-(m,/m;)'~ r;; when T, —TI. As might be expected,

Electrons d'or„—VT;r„/a -(m, /m;)' Vz;r;;/a «1 .

(2.44b)
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this condition is more restrictive for ions than for elec-
trons.

The second condition for collision dominance to be
valid is that the macroscopic scale length be much longer
than the mean-free path. Noting that the mean-free path
for each species is given by A, —VT ~, the condition

«a reduces to Eq. (2.44a) for both electrons and ions;
that is, for the ions both the time scale and length scale
requirements yield the same condition for high col-
lisionality. For the electrons, the length scale require-
ment is more restrictive and yields the same condition as
for the ions. Thus the conditions for a collision-
dominated plasma can be summarized as

VTr~„/a —VT,r„/a«1 . (2.45)

I Vp, /en
I

IvxBI
rL;

where rL; ——Vz;. /ap„. is the ion gyroradius. Thus if it is
assumed that

PL

a
(2.49)

the J)&B and 7p, terms can be neglected in Qhm's law.
The remaining term on the right-hand side of Eq. (2.39),
R, /en, represents the momentum transfer due to the
friction ~of collisions between electrons and ions. The
dominant contribution to R, is electrical resistivity. Us-
ing the results from transport theory, R, can be ex-
pressed as

Consider now the effects of collision dominance on the
single-fluid equations, starting with Eq. (2.38), the
momentum equation. The matrix elements for H; and
II, are a rather complicated series of terms. The
leading-ordering effect, however, is viscosity. Moreover,
the ion viscosity coefficient is larger than that of the
electrons by a factor (m;/m, )'~ . Using the results of
BraNinskii (1965), it follows that the largest elements of
the II; tensor have the form (in rectangular coordinates)

2
II,, -p(2V~~. v~~

——,V.v)-pVT;/a,

p n+i7ii

If the right-hand side of Eq. (2.38) is now compared
with the Vp term one finds

I
V II;/Vp

I

—VT, r;;/a «1 . (2.47)

Therefore, if collision dominance is satisfied, the viscosi-
ty is negligible and the momentum equation reduces to
that of ideal MHD.

The next equation to consider is Ohm's law, given by
Eq. (2.39). From the argument just given it is clear that
the H, term is negligible compared to the Vp, term.
From the momentum equation it also follows that the
J&B and Vp, terms are comparable. The J&B term
represents the Hall effect, while the Vp, term basically
describes the electron diamagnetism. Comparing either
of these terms with the v&B term yields

1 R, -gJ,
Pl~

g
/le +ei

(2.50)

Using the scaling relation (from the momentum equa-
tion)

I
J

I

—
I Vp I

/
I
8

I
leads to the following condition

for the gJ term to be negligible compared to the v&8
term:

CO'Th- a
(2.51)

Equation (2.51) implies that, whereas a sufficient number
of collisions is required for the theory to be valid, there
should not be too many collisions or else the plasma will
be dominated by resistive diffusion. Alternatively one
can view Eq. (2.51) as a requirement that the macroscop-
ic dimension a be large enough so that the resistive dif-
fusion time is long compared to the characteristic MHD
time. Thus, in order to apply the ideal MHD Qhm's law
the small gyroradius and small resistivity conditions
must both be satisfied.

The last equations to consider are the energy relations
given by Eq. (2.40). With the assumptions already made,
most of the terms on the right-hand sides are negligible.
In particular,

II, :V(J/en)

Bp, /Bt

(J.Vp, ) /en

Bp~ /8t

II, :Vv

Bp, /Bt

rL;

1/2
VT;~;;

H;:Vv

Bp; /Bt
(2.52)

where z,q is the energy equilibration time. As they now

The remaining terms contain the heat flux h and the col-
lisional heating g. The largest contribution to h is due
to thermal conductivity. For both electrons and ions
there are separate conductivity coefficients along and
perpendicular to the field. By far the largest coefficients
are those along the field, so that hi — ~IiI~lITi
main contributions to the collisional heating Q are joule
heating and electron and ion energy equilibration. If the
condition to neglect resistive diffusion, Eq. (2.51), is sa-
tisfied, then joule heating is also negligible. Therefore
what remains of the energy equations is

p; 2 n(T, —T)
V~~. (a~~;VT~)+-

p~ 3p~

n(T, T)—
dt P~ 3P~ vpq

(2.53)
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stand, these equations describe the separate time evolu-
tion of both the electrons and the ions. In order to ob-
tain the MHD energy equation, a further assumption is
required which couples the electron and ion energies to-
gether. This assumption corresponds to the condition
that the energy equilibration time be short compared to
the characteristic times of interest, so that T, =T;. This
can be expressed as ~~,& && 1 or, using the relation
r,q -(I;/m, ) 1/2

1/2
m; VT;-w;;

(2.54)

Because the energy equilibration time is long coIDpared
to the momentum exchange time, Eq. (2.54) is even more
restrictive in terms of collisionality than Eq. (2.44), the
basic condition for the collision dominance expansion to
be valid.

If Eq. (2.54) is satisfied, then Eq. (2.53) implies that
T;=T,. The other information contained in Eq. (2.53)
can be obtained by adding the equations and setting
T, =T; =Tj2. The result is

(1) Small gyroradius y «1
(2) Large collisionality x «1
(3) Small resistivity y /x «1 . (2.58)

These conditions are illustrated in Fig. 1. The shaded
region on each of the curves indicates that the given con-
dition has been satisfied. In the region labeled "ideal
MHD" all three conditions are simultaneously satisfied.
Although a significant number of approximations have
been made in the derivation, there is a substantial region
of parameter space where all the assumptions are satis-
fied and the ideal MHD equations are valid.

The next question to be asked is whether plasmas of
fusion interest lie in the region of MHD validity. This
can be answered by transforming the (x,y) diagram into
an (n, T} diagram and observing whether values of n and
T of fusion interest lie in the region of validity.

The first step is to define the parameter range of
fusion interest. Past experiments and extrapolations to
future fusion reactors indicate that the densities and tern-
peratures of fusion plasmas lie in the range

p
dt p~

1

3p Y
VII ~(~lie+ il~' VII+1. (2.55) 10 cm (n (10 cm

0. 1 keV&T&10 keV . (2.59)
The ideal MHD equation of state follows if the right-
hand side of Eq. (2.55) can be neglected. The parallel
electron thermal conductivity is larger by (m;/m, )'~
than that of the ions. Thus, using the result from trans-
port theory that K'(~e nTe~ei ~~e. it follows that the
right-hand side is negligible if

1/2
m; V~~;;

(2.56)
Bp /Bt

which is identical to Eq. (2.54).
This completes the derivation of the ideal MHD equa-

tions. In summary, the validity of ideal MHD imposes
several conditions on the plasma: (1) collision domi-
nance, (2) characteristic dimensions much larger than an
ion gyroradius, and (3) sufficient size that resistive dif-
fusion is negligible, despite the high collisionality.

These conditions describe a rectangle in the (n, T) dia-
gram.

The next step is to rewrite the conditions in Eq. (2.58)
in terms of n and T. Since the 8 field explicitly appears,
a prescription is needed to specify how 8 varies with n

and T Areaso. nable choice is to assume p=2ponT/8
is held fixed. The parameter p measures the ratio of
plasma energy to magnetic energy. Its value is impor-
tant in fusion reactor designs and is often limited by

H. Region of validity

At this point it is useful to list in detail the most res-
trictive conditions required for the derivation of the ideal
MHD equations and to discuss their regions of validity.
This can be conveniently accomplished by introducing
the dimensionless variables,

x=1

1/2
VT,.~g,.

(2.57) p i
0

As we have seen above, there are three independent con-
ditions which must be satisfied for ideal MHD to be
valid. They are:

FICs. l. Region of validity of the ideal MHD model in terms
of the normalized variables y =rI I la, vs x = (m;/rn, )'
x ( VT,.~;;/a).
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(2) Large collisionality

(3) Small resistivity

9 88X 1017 (~ 1
na

y /x =5.26X10 «1 . (2.60)
QT

In these expressions the units are a (m), T(keV), n(cm ).
Also the Coulomb logarithm appearing in the expression
for ~;; has been set to 18, and the ion mass corresponds
to deuterium.

Equation (2.60) is illustrated in Fig. 2 for the case
a=1 m and P=0.05. Observe that the conditions of
sma11 gyroradius and small resistivity are we11 satisfied
for plasmas of fusion interest. Note, however, that the
large collisionality condition is not satisfied. Thus the
region where ideal MHD is Ualid completely excludes
plasmas offusion interest In fac.t, even if one puts aside
the question of electron-ion equilibration and considers
the less restrictive collisionality condition co~;;
=(m, /m;)' x «1 (the dashed curve in Fig. 2), the re-
gion corresponding to plasmas of fusion interest is still
almost completely excluded.

From the above analysis one is forced to conclude
that, whatever virtues the ideal MHD model may have,
the model is, strictly speaking, not valid for plasmas of
fusion interest. However, as was stated previously, there
is overwhelming empirical evidence that ideal MHD pro-
vides a rather accurate description of a wide variety of
macroscopic plasma behavior. For examples of this, see,

IO

IIO—

0IO—

-I) IO—
0)

-2~ IO—

/ J

PLASMAS OF

FUSION INTEREST

Zgg/ZXY8//2///z z'llPZz l ''i'/WE 'l/Ills i'Zlx, ~l/i i

-4
IO—

IO '

IO9 IOIO lo

FICJ. 2. Region of
parameter space for

y2=x&
I I I

IO 2 IO» IO« IOI5 IOI6 IOl7

n(crn )

validity of the ideal MHD model in (n, T)
fixed P=0.05 and a = 1 m.

MHD instabilities. Consequently treating p and the
scale length a as parameters leads to the following ex-
pressions for the three MHD criteria of validity:

(1) Small gyroradius
1/2

y =2.28& 10
a n

Furth (1975), Bartsch et al. (1978), Bateman (1978), and
Bodin and Newton (1980). There is good reason for this
apparent good fortune, and the explanation is given in
the next section with the introduction of the "perpendic-
ular MHD" model.

I. Perpendicular MHD

1. General discussion

The perpendicular MHD model has the property of
making predictions which are almost identical to those
of ideal MHD in almost all cases of interest. However,
its region of validity includes plasmas of fusion interest.
In those cases where the predictions are not sixnilar, nei-
ther model is in general reliable.

The main difference in the models is that perpendicu-
lar MHD assumes that fusion plasmas are nearly col-
lision free rather than collision dominated. In this limit
the magnetic field in a certain sense plays the role of col-
lisions; that is, perpendicular to the field, particles stay
in the vicinity of a given magnetic line if their gyrora-
dius is much smaller than the characteristic plasma
length. Consequently, it is appropriate to treat the per-
pendicular behavior of the plasma with a fluid model.

However, the situation parallel to the field is much
more complicated in a collisionless plasma. In fact, it is
here that ideal MHD treats the physics very inaccurately
and leads to the conclusion that the model, in particular
the energy equation, is almost always invalid. The situa-
tion cannot be easily remedied by assuming a different
expansion and proceeding with dimensional analysis.
The reason is that the motion along field lines is kinetic,
and the time scale describing such phenomena is typical-
ly a~~/Vz;. This is identical to the time scale of MHD
interest.

One way to correct the problem is with the guiding-
center plasma model, as described, for instance, by Grad
(1962, 1967b). Here the perpendicular motion is fluid-
like, while a one-dimensional kinetic equation governs
the behavior parallel to the field. This model is more
general than ideal or perpendicular MHD in that aniso-
tropic pressure is allowed. It is also more difficult to
solve, particularly when parallel motion is involved. For
the special subclass of isotropic equilibria, the guiding-
center plasma model often makes macroscopic stability
predictions remarkably close to those of ideal or perpen-
dicular MHD. Similarly, there is another model, the
guiding-center fluid model, described by Conrad (1967b)
and Chew, Goldberger, and Low (1956), in which the
pressure is allowed to be anisotropic and there is a
separate equation of state for pz and p~~. This model
also makes predictions similar to those of ideal MHD
for the isotropic case, but its validity, like that of ideal
MHD, should be questioned for collisionless plasmas,
which in general are not fluidlike along the field.

The simplest model for investigating macroscopic sta-
bility in collision1ess but approximately isotropic plasmas
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is the perpendicular MHD model. Here the difficult
question of behavior parallel to the field is resolved by
restricting the class of allowable motions to those in
which parallel disturbances do not occur. In other
words, the perpendicular MHD model is valid over a
wider and more useful parameter range than ideal MHD,
but is more restrictive in the class of motions which it
permits. Specifically, the essential difference is that the
propagation of sound waves is suppressed in perpendicu-
lar MHD. Such an assumption is inherently more valid
in a toroidal system, where large parallel transport
quickly damps any substantial parallel gradients. It is a
poor representation for an open-ended system, where the
overall confinement is strongly coupled to the behavior
parallel to the field.

The question, then, that naturally arises is why the
stability predictions of perpendicular MHD should be so
similar to those of ideal MHD, and even if so, why
should either model be valid. The answer to the first
part is related to the fact that in ideal MHD sound
waves are very stable and involve motion which is
predominantly parallel to the magnetic field. Since per-
turbations leading to macroscopic instabilities are nearly
transverse to the field, they are only very weakly cou-
pled, if at all, to the sound waves, and suppressing these
waves from the model has almost no effect. This is not
true for all MHD phenomena, but only those in which
the equation of state (i.e., the appearance of y, the ratio
of specific heats) does not play an important role. One
counterexample, for instance, is magnetoacoustic heating.
If such heating takes place in a collisionless plasma, then
neither model is reliable.

The answer to the second part of the question is more
difficult. With respect to the perpendicular MHD
model, the concern is whether relaxation of the con-
straint which restricts motion along the field lines can
lead to much more severe instabilities when parallel ki-
netic effects are included. This is in general not the
case. For static equilibria the effect of the ions is to pro-
duce a strong kinetic damping (ion Landau damping) of
any perturbations along the field lines. [A discussion of
this effect can be found in Krall and Trivelpiece (1973).]
In these cases, as in ideal MHD, the least stable modes
are only weakly coupled to the parallel motion, and
hence perpendicular MHD is an accurate description.
At somewhat higher frequencies and shorter perpendicu-
lar wavelengths, the electron kinetic effects become im-
portant and can drive new instabilities called drift waves
[see, for instance, Mikhailovskii (1967) and Krall and
Trivelpiece (1973)]. These waves lie outside the realm of
any of the single-fluid MHD models and must be treated
separately.

To summarize, the additional physics included in ideal
MHD, the sound wave, is treated incorrectly for col-
lisionless plasm as, leading one to conclude that the
model is not valid. However, for MHD instabilities, the
sound wave is almost completely decoupled from motion.
Hence, even though the model is incorrect, the errors are
usually unimportant. Similarly, completely suppressing

2. Derivation from the Boltzmann equation

The perpendicular MHD model can be derived in a
number of ways. One method starts with a hybrid
model in which the ions are a fully collisionless kinetic
species and the electrons are an isotropic massless elec-
tron fluid (Freidberg and Hewett, 1977; Pearlstein and
Freidberg, 1978). For the present purposes the model
can perhaps be most easily derived by making use of the
moment equations. Assume first that the plasma is col-
lisionless, so that

VT;r;; /a —VT,r„la&& 1 . (2.61)

Consider now the closure of the set of moment equa-
tions. It is assumed that the configurations of interest
are initially isotropic. The perpendicular part of the
momentum equation can be written as

dv
P =J~8—V~ — V H;+II, (2.62)

In a collisionless plasma the main contribution to II is
the so-called magnetic viscosity coefficient, which is
larger for ions than for electrons by m;/m, . The actual
form for the II; elements is somewhat complicated. For
dimensional purposes it suffices to say that the perpen-
dicular part of V.H; scales as follows:

Pr(V.II; )g - V~(eb ~vi)-
ag ag

(2.63)

where cb is a unit vector along 8. This term is negligi-
ble compared to Vzp; if

(2.64)

The parallel component of the momentum equation is
very complicated because of the strong kinetic damping
along the field, but it is not explicitly needed in the per-
pendicular MHD model. Instead, it is approximated by
a relation in which U~~ is determined so that there are no
pressure perturbations allowed along B; that is,

B.Vp =0 (2.65)

The exact prescription for determining v~~ will become
apparent shortly.

The closure of Qhm's law for perpendicular MHD is
very similar to that in ideal MHD. The dominant terms
on the right-hand side of Eq. (2.39), the generalized form
of Ghm's law, are still the Hall effect and the electron
diamagnetism. Both of these are negligible if rI;/a &&1.

the sound wave in the perpendicular MHD model makes
little difference in the results, but extends the region of
validity to include low collisionalities.
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The resistivity term is less important than in ideal MHD
because the plasma is assumed to be collisionless. As be-
fore, a comparison of E

~ l

and Ez indicates that
El~/Ey-rL;/a &&1. The neglect of the small E)~ is even
less important in perpendicular MHD because the model
is restricted so that no parallel perturbations occur.

Finally, as with the parallel momentum equation, the
energy equation is also very complicated because of ki-
netic effects. In perpendicular MHD the energy equa-
tion has the form

Perpendicular MHD

dp
dt

p =JXB—Vp
Dv
Dt

V.v =0

dp
dt

Ideal MHD

dpP= —pVv
dt

p =&Xs—Vp
dv
dt

dp
dt

= —ypV v

B.VT=0, (2.66)

which in an approximate sense can be viewed as the lim-
it of "infinite parallel thermal conductivity. " This is a
much more accurate assumption than that of zero paral-
lel thermal conductivity used in ideal MHD. Clearly
Eqs. (2.65) and (2.66) imply that

aB
at

=VX(vXB) as
at

=VX(vXB)

VXB=J VXS=J

Here the perpendicular inertial force is given by
B.Vp=0 (2.67) dvz de&

In perpendicular MHD, Eqs. (2.65) —(2.67) constrain all
density, temperature, and pressure perturbations to be
constant along a field line. These relations can be cast in
a more convenient form as follows. First Eq. (2.67) can
be transformed into an equation for U~I by using conser-
vation of mass and Faraday's law, with E given by
Ohm's law with perfect conductivity. The result is

d (8 Vp)+2V v(B.Vp)= —pB V(V.v) .

Thus, if 8 Vp=O, it follows that B.V(V.v)=0. Assum-
ing B-V does not identically vanish

V.v=0 (2.69)

or

B.V = —Vi.vi .8 (2.70)

(B.Vp) =B.V dp
dt

(2.71)

Hence, if B.Vp =0 and B.V does not identically vanish,
Eq. (2.71) reduces to

(2.72)

The condition V-v=0 is sometimes assumed to be an
equation of state, but in perpendicular MHD it is
perhaps more appropriate to view it as the equation of
parallel momentum flow which determines U

~
~.

A second convenient relation is obtained by substitut-
ing Faraday's law and Eq. (2.69) into Eq. (2.65). One
finds

where v=vzez+Ul~eb and e„=eb)&ez. The second term,
which is perpendicular to both eb and ez, represents the
centrifugal effects. One can essentially go from ideal
MHD to perpendicular MHD by replacing the equation
of parallel momentum balance with the condition
V.v=0

In the derivation of perpendicular MHD there are
essentially two basic assumptions which must be satis-
fied: low collisionality, VT;~;;/a &&1, and small gyrora-
dius, rL;/a «1. A reexamination of Fig. 2 indicates
that these conditions are well satisfied for plasmas of
fusion interest. A further point to emphasize is that in
several places in the derivation it was assumed that the
operator B.V does not identically vanish. In almost all
cases of interest this is indeed the situation. There are,
however, several notable exceptions which will be dis-
cussed later. In these cases, the perpendicular MHD
model is not reliable. Similarly, the ideal MHD model is
not accurate in these cases, since the results are then
rather strongly dependent on the energy equation.

The conclusion from this analysis is that plasmas
whose ideal MHD stability properties are only weakly
coupled to sound waves (i.e., whose perturbations are
nearly incompressible, V v=O) will have almost identical
stability properties when investigated in the perpendicu-.
lar MHD model. However, when comparing the regions
of validity for each model, it is clear that perpendicular
MHD is much more appropriate for plasmas of fusion
interest.

The remainder of the paper will deal primarily with
ideal MHD, mainly for historical reasons, but at certain
critical points detailed comparisons will be made to show
the similarity of the models.

and can be viewed as the energy equation for perpendicu-
lar MHD.

The equations of perpendicular MHD are summarized
here and compared with ideal MHD. (Note that here
and in the remainder of the text po ——1.)

3. Derivation from single-particle orbit theory

A final topic of interest to the physics of the perpen-
dicular MHD model is an intuitive derivation based on
single-particle orbit theory. The derivation consists of

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems 815

Vgq-—-VE+VPg+ V„+Vp,

where VE is the "EXB"velocity

EXBVE=

(2.73)

(2.74)

V~& is the "grad-B" velocity

ug BX~B
QB (2.75)

V& is the "polarization" drift

d EXB
X (2.76)

and V„is the "curvature" drift

calculating the currents directly from the perpendicular
guiding-center drifts in the low-frequency (m «co„.),
small-gryoradius (rl; «a), collisionless limit. The cross
product of this current with B then gives the perpendicu-
lar MHD equations.

To show this explicitly, consider a particle gyrating
about a magnetic field line with a velocity
U —Ug+ u

~ ~

e~ +Vgz. Here u
~ ~

Is the velocity along the
magnetic field, uz is the fast gyration velocity about the
field line, and VgJ is the slower drift velocity of the par-
ticles guiding center. In particular, Vg~ is given by [see,
for instance, Chen (1974)]

One now computes the cross products of Eq. (2.79)
with B. Some simple manipulations yield

dvg
p e& X Xeb J——XB V—jp, (p—

~[
pJ)a . (2.81)

dt, ,

Equation (2.81) is the perpendicular momentum equation
for the more general guiding-center plasma model and
the guiding-center fluid model. For toroidal systems in
which it can be assumed that the pressure is approxi-
mately isotropic, Eq. (2.81) essentially reduces to the
momentum equation of perpendicular MHD; that is, set-
ting pz ——p

~ ~

=p and noting that (e& Xv~) Xeb
=e&U& ez—(vz e„),-it follows that only the e—u~~( eb e„).
term, representing the parallel centrifugal force, need be
"patched on" to Eq. (2.81) to obtain the perpendicular
MHD equations. This effect was not included in the
single-particle derivation.

To summarize, it has been shown that the perpendicu-
lar MHD model can be derived in an intuitive manner
from collisionless single-particle orbit theory. In effect,
from a single-particle point of view, the macroscopic
MHD equilibrium and stability properties of a plasma
are determined by the currents induced from the EXB,
grad-B, curvature, and polarization guiding-center drifts.

III. GENERAL PROPERTIES OF IDEAL MHD

u~~ KXB
B (2.77)

A. Introduction

Vgs, -Vgs, =vj EXB/B—— (2.78)

This is equivalent to Ohm's law in ideal MHD.
The total perpendicular current is calculated by in-

tegrating the guiding-center drift velocity over velocity
space and adding the magnetization current

Jj e I [Vz——g;f;(u) Vzg,f, (u)]du+J~ . — (2.79)

JM =V XM,

with a =eb.Veb ——R, /R, the curvature vector of the
magnetic field line (i.e., R, is the radius of curvature).
These expressions are valid for both electrons and ions
when one uses the appropriate magnitude and sign of q
and m appearing in co, . Also, the fields are to be
evaluated at the guiding center of the particle.

In the MHD limit, the EXB drift is assumed to be
dominant, so that

In this section several of the basic properties of ideal
MHD are discussed. These properties form the physical
foundation for the model and provide insight as to why
the model is as reliable as it is when predicting experi-
mental behavior.

First, a short description is given of three different
classes of boundary conditions which show how a plas-
ma can be coupled to its external surroundings. The
most complex of these provides a quite accurate descrip-
tion of realistic experimental conditions.

Second, it is shown that despite the significant number
of approximations made, the ideal MHD model still con-
serves mass, momentum, and energy, both locally and
globally. This is one basic reason for the reliability of
the model.

Finally, a short calculation shows that if one assumes
perfect conductivity, the motion of the system can be in-
terpreted as one in which the plasma and magnetic field
are constrained to move together. This leads to impor-
tant topological constraints on the model.

PxM= — eb .B (2.80)
B. Boundary conditions

The magnetization current arises even if there is no drift
of the guiding centers. It occurs when there is a density
gradient of guiding centers (more precisely, a gradient of
their magnetic moments). A more detailed discussion of
the magnetization current can be found in I.ongmire
(1963).

In order to fully specify an MHD problem, a set of
appropriate boundary conditions is required to couple the
plasma to its external surroundings. For problems of
MHD stability there are three classes of boundary condi-
tions, of varying complexity, which are often used. Each

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems

is now discussed separately. Other discussions of ideal
MHD boundary conditions can be found in Bernstein
et al. (19S8) and Goedbloed (1979).

1. Perfectly conducting wall

system as follows. In the plasma region the ideal MHD
equations apply, while in the vacuum region, where the
fluid variables are not defined, the relevant equations are
given by

VXB=O,

n &(E=O,

n&B=O .
(3.1)

(3.2)

Here n is the outward-pointing normal vector. It then
follows from Ohm's law in ideal MHD that n &E
=(n.B)v—(n.v)B=O; that is, the normal component of
velocity also automatically vanishes on the wall:

n.v=O . (3.3)

Thus, once appropriate initial data and the shape of the
wall are specified, any two of the conditions given above
completely specify the problem.

2. Insulating vacuum region

A somewhat more realistic set of boundary conditions
assumes that the plasma is isolated from the conducting
wall by a vacuum region, as shown in Fig. 3(b). In most
cases this model is more appropriate than the previous
one for describing "confined" plasmas.

In principle one solves the combined plasma-vacuum

PER F ECTLY
CONDUCTING WALL

P E RF ECTLY
CONDUCTING WALL

VAC UUM

The first and simplest boundary condition assumes
that the plasma extends out to a stationary, perfectly
conducting wall, as shown in Fig. 3(a). In this case the
electromagnetic boundary conditions require that the
tangential electric field and normal magnetic field vanish
on the conducting wall:

V.B=O . (3.4)

Here quantities with a denote vacuum variables.
Assume that the equations can be solved in each re-

gion and consider the boundary conditions. On the per-
fectly conducting wall, r =R (O,z),

n.Big ——0 (3.5)

n.B
i g ——n.B

i g ——0 . (3.6)

In general, the plasma surface can move, since the plas-
ma is surrounded by vacuum. Hence n.v

~ z is arbitrary.
It is possible, however, to have jumps in the pressure and
the tangential magnetic field across the surface. Integra-
tion of the momentum equation and Ampere's law then
requires

g2
p+ =0,

R
(3.7)

[nX 8]g ——K (3.8)

where [Q] denotes Q —Q and K is the surface current
density.

Although Eqs. (3.5)—(3.8) completely specify the
boundary conditions, the plasma-vacuum problem is in
practice difficult to solve. The reason is that a straight-
forward counting of boundary conditions indicates that
there appears to be one condition too many. This is not
actually the case. If one wants to independently specify
the surface currents and the shape of the outer conduc-
tor, one must self-consistently determine the correct
shape of the plasma surface. Therein lies the extra de-
gree of freedom. Often in problems of this type it is
easier to specify the shape of the plasma surface and
then determine the appropriate shape of the outer perfect
conductor.

must be satisfied.
At the plasma-vacuum interface there are several con-

ditions. Since the plasma surface r =R(8,z, t) is by de-
finition a constant-pressure surface (i.e., a flux surface),
it follows that

PLAS
EXTERNAL

COILS 3. Plasma surrounded by external coils

(c)
FIG. 3. Illustration of the three classes of boundary condi-
tions often used in ideal MHD: (a) perfectly conducting wall,
(b) plasma isolated from the wall by a vacuum region, and (c)
plasma surrounded by external coils.

The most difficult and realistic set of boundary condi-
tions corresponds to the situation where the plasma is
confined by the magnetic fields created by a fixed set of
external current-carrying conductors, as shown in Fig.
3(c). A convenient way to specify these currents is to as-
sume they are located on a surface r =R~(8,z) and cor-
respond to a surface current density K (O,z, r)
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This problem is more difficult than the previous one
because the current-carrying conductors must necessarily
have gaps between them. Consequently, the interior and
exterior regions are no longer isolated from each other,
and the MHD solution cannot be obtained unless the
equations are solved in both domains.

In terms of the boundary conditions the requirements
on the plasma-vacuum interface remain unchanged [i.e.,
Eqs. (3.6) —(3.8) still apply]. However, with external
coils the wall condition, Eq. (3.5), is replaced by

[n.B]g ——0,
[nXB]~ =K~ . (3.9)

C. l ocal conservation relations

In addition, the vacuum fields outside the wall must
satisfy a regularity condition as r~ ao.

Solutions to the MHD equations satisfying boundary
condition 3 provide an accurate description of plasma
behavior in realistic experimental situations. Because of
their complexity it is perhaps not surprising that most
applications of boundary condition 3 require substantial
numerical computations.

The MHD equations and any set of the boundary con-
ditions just discussed form a complete basis for investi-
gating, the macroscopic equilibrium and stability of
fusion plasmas.

where the stress tensor T, energy u, and energy flux s are
given by

T=pvv+ p+ I—BB,
2

B2

u= 2pU + +
2 y —1

(3.12)

2pU + p V+EBB .—1

0 0 0
Tg ——00 0

00pv
(3.13)

Thus the effect of the Reynolds stress is to produce a
pressure along v. This term represents an important
contribution to systems with large fluid flow, but is usu-
ally not very important in studies of plasma stability
where the flows are mostly small or zero.

The reinaining part of the stress tensor includes the ef-
fect of the pressure and the magnetic field. In a local
coordinate system in which 8 is in the z direction, this
part of the tensor can be expressed as

Note that the stress tensor is composed of three terms.
The pvv term is the Reynolds stress. In a local coordi-
nate system in which v is in the z direction, this part of
the tensor has the form

The original Boltzm ann-Maxwell equations from
which the MHD model was derived conserve mass,
momentum, and energy, not only macroscopically, but
microscopically as well. Since a considerable number of
assumptions were made in the derivation of the MHD
equations, it is useful to investigate whether the resulting
model still satisfies the basic conservation laws. In this
section the question of local conservation is treated by
showing that both the ideal and the perpendicular MHD
models can be written in conservation form. The impli-
cations for global conservation are discussed in the next
section. An excellent review of ideal MHD conservation
laws has been given by Goedbloed (1979).

In order to show local conservation it is necessary to
write the mass, momentum, and energy equations in the
orm

(3.10)

Once this is accomplished, it is straightforward to derive
the global conservation relations.

After some standard manipulations the ideal MHD
equations can be expressed in conservation form,

Bp
Bt

+V.pv=0,

pg 0 0
0 pi
0 0 p))

(3.14)

where

B2
px=p+

2

B2
Pti=P —

2
~

(3.15)

u =up+up
1

uk ——,pu

B2
u, =

2

(3.16)

The q ant t es p~ and pII rep esent the pressures perpen-
dicular and parallel to the magnetic field, respectively.
Equation (3.15) implies that the magnetic field adds to
the pressure in the perpendicular direction while decreas-
ing pressure, producing a tension, in the parallel direc-
tion.

Consider now the energy equation. The quantity u
represents the sum of the plasma kinetic energy uk and
potential energy u~,

8
Bt

-pv+V. T=0,
Bu +V.s=0
Bt

(3.11)

Note that the potential energy is made up of two con-
tributions, the magnetic energy and the internal energy

3 5of the plasma [( , nT for y= —,].—Thetotal energy flux s
can be expressed as
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s= —,pU + v+pv+E&B .2 (3.17) (3.22)

Bp
at +V.pv =0,

where

(3.18)

8
Ll = 2 pUg+

s= —,pvzv+pv+E&8 . (3.19)

This decoupling of the plasma internal energy (i.e., the
sound waves) from the remainder of the energy can easi-
ly be seen by comparing the ideal and perpendicular
MHD Inodels.

Here the first term represents the flow of plasma energy.
The second term corresponds to the mechanical work
done on or by the plasma as it moves, and the last term,
the Poynting flux, represents the flow of electromagnetic
energy.

To summarize, it has just been demonstrated that the
ideal MHD equations can be written in local conserva-
tion form, in which each of the terms has a simple phys-
ical interpretation. A similar situation prevails for the
perpendicular MHD model.

An important feature of the perpendicular MHD
model is that the energy equation separates into two
parts because of the decoupling of the sound waves.
These are given by

Q +V.s=O
Bt

where M is the total mass of the plasma

(3.23)

P is the mechanical momentum of the plasma

(3.24)

and 8' is the total kinetic and potential energy of the
plasma and magnetic field

8'= —pu + + — dr .
. 2 y I 2. (3.25)

(3.26)

Equation (3.20) demonstrates that the total mass of
the plasma is conserved. Equation (3.21) describes the
conservation of momentum. The boundary term
represents the total force exerted by the walls on the
plasma. If the configuration is to remain in place, this
force must vanish identically and dP/dt=O; that is,
mechanical Inomentum is conserved. The final equation,
Eq. (3.22), shows that the total energy of the system is
conserved. It implies that during a given plasma motion
(an instability, for instance) energy can in general be
transferred between the magnetic field, the plasma inter-
nal energy, and the plasma kinetic energy. This should
be compared with the energy relations for perpendicular
MHD which have the form

D. Global consefvation laws

By integrating the local conservation laws just derived
over a volume appropriate to any of the three sets of
boundary conditions previously discussed, it is possible
to obtain a set of global conservation laws for ideal
MHD. These laws are exact and valid for general, non-
linear, multidimensional, time-dependent situations.
Since they depend on the particular boundary conditions
applied, it is useful to treat each of the three sets
separately.

1 B8'= —pU +—dr,
2 ' 2

U= I@dr. (3.27)

In this model the suppression of sound waves implies
that the total internal energy of the plasma remains con-
stant during any plasma motion. If there is to be a
transfer of energy, it can only occur between the magnet-
ic field and the perpendicular kinetic energy.

Perfectly conducting wall

For this case it is appropriate to integrate the local
conservation laws out to the conducting wall. Making
use of the boundary conditions given by Eqs. (3.1)—(3.3)
then leads to the following global conservation relations:

(3.20)

(3.21)

2. Insulating vacuum region

When the plasma is surrounded by a vacuum region it
is of particular interest to focus attention on the conser-
vation of energy. This relation is slightly more compli-
cated than the case of the perfectly conducting wall,
since the plasma boundary is now allowed to move. The
result is that it is not the individual but the combined
plasma-vacuum energy which is conserved.

To show this, first note that for a global quantity Z,
defined by

Z(t)= I zdr, (3.28)
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the total time derivative in a volume whose boundary is
moving with velocity u is given by"„'= f 'dr+ f zn u. dS . (3.29)

Equation (3.29) is applied to the plasma volume moving
with velocity u=v in the local energy conservation rela-
tion. If use is made of the ideal Ohm's law and the
plasma-vacuum boundary conditions given by Eq. (3.6),
it follows that

d—(W+W)= —f (EXB) n~dS~ .
dt

(3.35)

Equation (3.35) can be simply interpreted as showing
that the rate of increase of the total energy in the com-
bined plasma-vacuum system is equal to the electromag-
netic power flowing into the region.

ductors. The boundary term no longer vanishes on this
surface since it is not a perfect conductor. Instead one
Obtains

d8', 8p+ n-vdS .
dt 2 E. Conservation of flux

Here the plasma energy W is given by Eq. (3.25). Note
that if the plasma surface is moving, the boundary term
is in general nonzero.

Consider now the vacuum region. Here the total ener-

gy is given by

W= f dr,
2

(3.31)

The final conservation law to be considered concerns
the Inagnetic flux. The basic result, a consequence of
the perfect conductivity assumed by Ohm's law, is that
the magnetic flux passing through any arbitrary surface
element moving with the plasma is constant; Aux is con-
served locally as well as globally.

To show this, note that the time rate of change of the
fIux passing through any moving surface S is given by

from which it follows that

"W=f —' B" dr f "nvdS.
dt 2 Qt

(3.32)

d BB= f .ndS —f uXB.dl .
dt dt

Here u is the velocity of the surface and

(3.36)

n.vdS .

This equation is simplified by substituting Faraday's law
with E= —vXB for BB/Bt. After some straightforward
algebra, where use is again made of the boundary condi-
tions [Eq. (3.6)], one obtains

(3.33)

g= f B.ndS

is the magnetic flux.
If Ohm's law is substituted into Faraday's law,

BB
Bt

=-&X(vXB),

(3.37)

(3.38)

The final energy relation is obtained by adding Eqs.
(3.30) and (3.33),

and the velocity u is chosen as the plasma velocity v, a
simple calculation then shows that

dt
(W+W)=0. (3.34) (3.39)

Here the boundary terms cancel by virtue of Eq. (3.7),
which is the pressure balance jump condition.

Equation (3.34) implies that if an ideal MHD plasma
is isolated from a conducting wall by a vacuum region,
the combined energy of the plasma-vacuum system is
conserved. The fact that only the total is conserved indi-
cates that, in general, energy will flow from one region
to the other as the plasma. moves.

3. Plasma surrounded by external coils

If the conducting wall in the vacuum is replaced by a
series of current-carrying conductors, the energy of the
system is no longer conserved. The reason is, of course,
that with external sources present, energy can be sup-
plied or extracted from the system. Nevertheless, it is
still possible to derive a relatively simple energy relation
for the region interior to the conductors. The procedure
is almost identical to that given for boundary condition
2. The main difference is that in the vacuum region the
integration is carried out to a surface just inside the con-

Since the derivation of Eq. (3.39) applies to any arbi-
trary surface area, it follows immediately, by considering
the entire plasma cross section, that the total flux in an
ideal MHD plasma is constant. A Inore interesting case
is to allow the surface area to coincide with the cross
section of a long thin flux tube. Application of Eq.
(3.39) then leads to the well-known intuitive picture that,
in an ideal MHD plasma, magnetic lines are "frozen into
the fluid. "

The relation for conservation of flux has very impor-
tant implications for the structure of the magnetic field.
This follows because, for any physically realizable
motion of the plasma, neighboring fluid elements stay in
the vicinity of one another; that is, fluid elements are not
allowed to tear or break away into separate pieces. Since
the magnetic lines move with the plasma, the field line
topology cannot change during any physically allowable
MHD motion. This is a very strict requirement on the
structure of the magnetic fields. Other discussions of
the structure of magnetic fields and the motion of mag-
netic field lines can be found in Grad and Rubin (1958),
Newcomb (1958), Morozov and Solov'ev (1966), and
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Bateman (1978).
There are many configurations in plasma physics in

which it is intuitively clear that it is energetically favor-
able for field lines to break and reconnect into new con-
figurations with lower potential energy. Such transitions
are not allowed because of the constraint on the topolo-
gy. It is for this reason that the introduction of even a
small resistivity can have a dramatic effect on plasma
stability, much larger than is indicated from simple di-
mensional arguments. A small dissipation removes the
topological constraint and allows a much wider class of
motions to take place. The inclusion of resistive effects
is outside the scope of the present work, but is discussed
in detail in the review article of Greene (1976).

We have seen in this section that the ideal MHD
model conserves mass, momentum, energy, and magnetic
flux. These conservation laws apply to general non-
linear, time-dependent, multidimensional systems. In
view of the many assumptions made in the derivation of
the model, the existence of such laws is a nontrivial re-
sult. However, having shown the existence of the con-
servation laws, one can proceed with some confidence to
the crucial problems of equilibrium and stability of mag-
netic fusion configurations, knowing that the model
should provide valuable insight because of its inherently
sound foundation.

IV. EQUILI BRIUM

The goal of MHD equilibrium theory is the discovery
of inagnetic geometries which simultaneously (1) confine
and isolate hot plasmas from material walls and (2) have
good stability properties at sufficient values of P (P—:plasma energy/magnetic energy) to be promising for
use in potential fusion reactors. There are a number of
existing concepts which satisfy these criteria. Section IV
begins with a discussion of the common features of such
configurations resulting directly from MHD equilibrium
requirements. Next, the specific properties of the most
promising concepts are described in more detail. Includ-
ed are the tokamak, stellarator, Elmo bumpy torus, and
reversed field pinch.

A. General properties

1. Basic equations

2. Virial theorem

The ideal MHD equilibrium equations satisfy a partic-
ular integral relation known as the virial theorem
(Shafranov, 1966). A consequence of this is the basic re-
quirement that any confined MHD equilibrium must be
supported by external currents. It is not possible to
create a configuration confined solely by currents flow-
ing within the plasma itself.

To demonstrate this, recall that the equilibrium equa-
tions can be written in conservation form,

T T=O, (4.4)

where the stress tensor T is given by

Pl(I eheb ) +P
~ ~

eheb

g2
pl=p+

2

g2
pL~=p —

2

(4.5)

(4.6)

(4.7)

(4.8)

Note that in a 1ocal rectangu1ar coordinate system, with
8 defined in the z direction, T has the form

ble, but are not considered here for two reasons. First,
the kinetic energy of flow represents a source of free en-

ergy which often derives instabilities. Such instabilities
in the ideal MHD model have been discussed by Taylor
(1962), Freidberg and Wesson (1970), Spies (1978), and
Hameiri (1981). Second, when plasma flows do occur,
they are usually small and are caused by physics not in-
cluded in the ideal MHD model (i.e., resistivity, finite
Larmor radius effects, etc.). [See, for instance, Taylor
(1962); Rosenbluth et al. (1962); Bowers and Haines
(1971);and Freidberg and Pearlstein (1978).] It would be
incorrect to include the dynamic effect of such small
flows without including the physical effect itself which
drives the flow.

Having made these points one should keep in mind
that while flow is destabilizing in most cases of interest,
this is not a universal result. Counterexamples have been
investigated by Hameiri (1979) and Spies (1980).

Finally, note that for static equilibria the density p(r)
is arbitrary.

Consider first the MHD equilibrium equations given
by

pi 0 0
T= 0 pg 0

0 0 p()

(4.9)

JXB=Vp,

VXB=J,
V.B=O

(4.1)

(4.2)

(4.3)

These are just the time-independent form of the full
MHD equations with v=O; the equilibria of interest are
static. Stationary equilibria with nonzero Aow are possi-

so that pz and pI~ represent the pressures perpendicular
and parallel to 8, respectively.

The next step in deriving the virial theorem is to in-
tegrate the identity

V.(r T)=r.(V.T)+Tr(T) (4.10)

over an arbitrary volume V, surrounded by the surface S.
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f 3p+ d V= III
B2

p+ (n r)

—a'(r. eb)(n. eb) dS,

Setting V.T=O for equilibrium, one obtains VAC UUM CH AM 8 ER
MfALL

I. IJ

MAGNETIC
LINES

nor

~L
dS=ndS . (4.11)

Assume now that the virial theorem is false; confined
equilibria do exist without external currents. Let S be
outside the confined plasma so that p (S)=0. If no
external currents are present, S can extend to infinity.
Furthermore, if the equilibrium currents are indeed con-
fined to the plasma, then B(S)(1 lr for large r. Under
these circumstances the right-hand side of Eq. (4.11)
vanishes. The resulting contradiction thus proves the
virial theorem. %'hen confined equilibria are surrounded
by external conductors, Eq. (4.11) is no violated since the
right-hand side must now be evaluated over the surface
of the conductors.

3. Toroidal geometry

LINE

(&)
FIG. 4. Magnetic field line trajectories in (a) open-ended sys-
tems and (b) toroidal systems.

The most obvious common feature in current magnetic
fusion concepts is that, with one important exception,
each is toroidal. The intent is to create a configuration
in which magnetic field lines remain contained within
the toroidal volume; lines should not intersect the exter-
nal current-carrying conductors or even the vacuum
chamber, which is usually somewhat closer to the plas-
ma.

The reason for building relatively complicated toroidal
systems rather than simpler, linear, open-ended systems
is the enormous difference in the energy loss rates per-
pendicular and parallel to a magnetic field. In an open-
ended device, magnetic field lines leave the system and
ultimately make contact with material walls [see Fig.
4(a)]. Both density and energy can be lost very quickly
because charged particles move freely along magnetic
field lines. Assuming that the potentially faster particle
loss is eliminated by magnetic trapping, the dominant
remaining energy-loss mechanism is parallel thermal
conduction by electrons. In a toroidal device with con-
tained hnes, the dominant energy-loss mechanism is
cross-field ion thermal conduction; Fig. 4(b). The ratio
of the classical thermal conductivities is given by
(Spitzer, 1956; Braginskii, 1965)

1/2 ' 5/2

Pl~ TgKi

T(eV) 8(G)
n(cm 3)

(4.12)

where co„.is the ion cyclotron frequency and ~;; is the
ion-ion collision frequency for momentum exchange. In
the numerical formula, it is assumed that (1) the ions are
singly charge@i deuterons (Z =1, m;=2m~, «,„),(2) the

electrons and ions are at the same temperature
(T, =T; =T), and (3) the Coulomb logarithm appearing
in r;; has been set to 18 (lnA=18). For plasma parame-
ters corresponding to either current experimental opera-
tion or to reactor conditions, this ratio is enormous. As
an example consider a tokamak with T =2 keV, B =25
kG, and n =3 )& 10' cm . In this case x

~
~, /~i;

=2.4~ 10".
In practice the actual values of perpendicular electron

and ion thermal conductivities in toroidal devices can be
substantially larger than their classical values. The
reasons for this are twofold. First, the orbits of a rela-
tively few particles are strongly modified by toroidal ef-
fects, leading to a disproportionately large contribution
to ~i; (neoclassical transport). [See, for instance, 'Hinton
and Hazeltine (1976).] Second, anomalous effects due to
plasma microinstabilities increase the effective collision
frequency, leading to enhanced values of ai, (Molvig
et al. , 1979). Experimental measurements of ~~~, indicate
that its value is approximately classical (McKenna et al. ,
1979). Even with these larger values of ~i, the ratio
x~~/t'ai remains so large that the consensus in the magnet-
ic fusion community is that, to avoid such losses, the
magnetic configuration must be toroidal.

The one major exception to this consensus is the
open-ended mirror confinement concept. [See, for in-
stance, Baldwin (1977) and Baldwin and Logan (1979).]
Here, by a combination of clever design and plasma
operating regime, the plasma energy density at the point
of material wall contact is sufficiently low so that the
plasma electrostatically shields itself from the wall. One
criterion of success for the mirror concept is the effec-
tiveness of this shielding and its ability to keep the paral-
lel losses to an acceptable level.
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4. Magnetic flux surfaces

In fusion devices of interest, the magnetic field lines
lie in general on a set of closed nested toroidal surfaces.
This follows from the equilibrium relation

FIELD LINE PROJECTIONS
IN THE POLOIDAL PLANE

B.Vp =0 (4.13)

That is, for well-confined equilibria the pressure in most
configurations is maximum near the center of the po-
loidal cross section and is approximately constant as a
function of toroidal angle (Fig. 5). For such profiles the
contours of constant pressure are nested toroidal sur-
faces. From Eq. (4.13) it follows that the magnetic lines
lie on the p=const contours, and consequently these con-
tours are usually referred to as either magnetic surfaces
or flux surfaces. The limiting magnetic surface, which
approaches a single magnetic line where the pressure is
maximum, is called the magnetic axis.

There are two important classes of magnetic surfaces
that must be distinguished; those in which a given mag-
netic field line exactly closes on itself after a finite num-
ber of toroidal circuits and those in which it does not.
The first class consists of the rational surfaces. The
second class contains magnetic lines which ergodically
cover the surface and hence consists of ergodic surfaces.
All configurations will in general have rational surfaces,
although the number of such surfaces is usually of mea-
sure zero compared to the ergodic surfaces. The
tokamak, stellarator, and reversed field pinch are config-
urations of this type. One notable counterexample which
has only closed lines is the Elmo bumpy torus.

The usual way to characterize the two classes of sur-
faces is in terms of the rotational transform, defined as
follows. Imagine t'he projection of a magnetic line on a
given poloidal cross section, as shown in Fig. 6. After
one transit around the torus, the magnetic line returns to
a slightly different angle, 00+60, on the flux surface.
In general, 60 depends upon the poloidal angle 00 where
the line started. The rotational transform ~ is the aver-
age value of the angle 60 after an infinite number of
transits

FIELD LINE SURFACE

FIG. 6. Magnetic field line projection used in the definition of
rotational transform.

(4.14)

5. Freedom to specify an equilibrium

By utilizing the equilibrium equations it is possible to
define certain quantities by performing appropriate in-
tegrals over the magnetic surfaces. In general these "sur-
face quantities" describe special global properties of the
equilibria. The number of global properties which can
be independently specified is of great interest physically
in distinguishing different equilibria and of great impor-
tance mathematically in correctly formulating a method
of solution. It is this topic that is considered here.

To begin, note that the current lines as well as the
Inagnetic lines lie on the p =const magnetic surfaces, a
consequence of the equilibrium relation

If ~ is a rational fraction of 2m, the line is closed. If it
is not, the line is ergodic. The rotational transform
plays an important role in both equilibrium and stability,
and the procedures for calculating it are discussed later.
Note that ergodic surfaces can be mapped out either by
plotting p=const contours or by tracing magnetic field
line trajectories around many circuits of the torus. For
closed-line systems, however, the magnetic surfaces are
defined only as p =const surfaces, since closed lines do
not trace out complete surfaces.

J.Vp =0 (4.15)

FIG. 5. Contours of constant pressure in a well-confined
toroidal equilibrium.

This has the simple interpretation that the current must
flow between magnetic flux surfaces. Since J and 8 lie
on the magnetic surfaces it follows that each of the
quantities

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems 823

I,= f J dS, toroidal current

I~ = J.d Sz poloidal current

g, = f B dS, toroidal flux

g~= f B.dS~ poloidal flux (4.16)

defined as an integral from the magnetic axis out to a
given magnetic surface (see Fig. 7) is a function only of
that magnetic surface (and not of the remaining nonin-
tegrated toroidal or poloidal angle). Such quantities are
called surface quantities. By definition, the pressure and
rotational transform are surface quantities, while, for ex-
ample, the poloidal magnetic field and current density
are not.

These surface quantities, which often play an impor-
tant role in equilibrium and stability, are not indepen-
dent. Intuitively, one expects two surface quantities to
be free. This intuition is based on the fact that there are
two independent controls that can be exercised via the
external circuits producing any given configuration; one
in the toroidal field circuit (e.g., regulation of the
toroidal flux) and one in the poloidal field circuit (e.g.,
regulation of the toroidal current). The existence of two
arbitrary independent surface quantities has been shown
explicitly in exact calculations of one- and two-
dimensional equilibria and in asymptotic calculations of
three-dimensional equilibria.

Therefore, in order to completely specify an equilibri-
um, one must be able to prescribe two independent sur-
face quantities which reflect the history of the evolution
to steady state of the toroidal and poloidal magnetic
fields.

configuration must provide radial confinement (i.e., radi-
al pressure balance) in the poloidal plane so that the
pressure contours form closed nested surfaces. Although
the manners in which they do so are quite different, ei-
ther toroidal or poloidal fields can easily accomplish
this. The second, and by far the more difficult, problem
is the design configurations which compensate for the
force of outward expansion inherent in all toriodal con-
figurations, without sacrificing stability. With this in
mind, it is helpful to examine two opposing limiting
cases which serve to illustrate the basic nature of the
toroidal force balance problem.

First consider a configuration with a purely poloidal
magnetic field, as shown in Fig. 8(a). There are two
forces which cause the plasma to expand outward in the
toroidal plane (i.e., in the +R direction): (1) an outward
hoop force, just as would exist in a circular current-
carrying loop of wire, produced by the toroidal current
which generates the magnetic field; (2) a net outward
force, even when the plasma pressure is constant, because
the area on the outside of the torus is slightly larger than
that on the inside. The situation is similar to that in a
rubber tire tube. The combined outward force can be
compensated for in two different ways. If a perfectly
conducting shell surrounds the plasma, then as the plas-
ma expands in response to the outward forces, the po-
loidal magnetic flux outside the plasma is compressed,
thereby increasing the magnetic pressure [Fig. 8(b)].
Equilibrium is achieved when the plasma shifts far

6. The basic problem of toroidal equilibrium

In an approximate sense the requirements for toroidal
equilibrium separate into two parts. First the magnetic

PERF ECTLY
COND U CT I N G

l 5 \ DCI

COMPRESSED
FLUX

0
PLASMA

I I I I

TWO NEIGHBORING
FLUX SURFAC E S

FICx. 7. Illustration of the poloidal and toroidal surface ele-
ments dS~ and dS, .

(b) (c)
FIG. 8. Toroidal equilibrium in a configuration with purely
poloidal field: (a) geometry, (b) equilibrium by a conducting
wall, (c) equilibrium by a vertical field.
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enough that, due to the increased magnetic pressure, the
inward force balances the outward force.

A second way to balance the outward force is to re-
place the conducting wall with a set of fixed current-
carrying vertical-field coils [Fig. 8(c)]. By a proper
choice of magnitude and sign, the vertical fields generat-
ed by these coils can produce an .inward compensating
J&8„„force for equilibrium.

Thus configurations with purely poloidal magnetic
fields can easily be designed with good toroidal equilibri-
um properties. However, it will be shown later that, in
general, such configurations develop strong instabilities,
which often lead to the destruction of the plasma.

Consider now the opposite limit, that of a pure
toroidal field, as shown in Fig. 9(a). As will be demon-
strated in Sec. V, this configuration has inherently better
stability properties than the purely poloidal case.
Nevertheless, from the simple calculation outlined below
it follows that a purely toroidal configuration cannot be
held in magnetohydrodynamic equilibrium. To show
this, assume that all the current flows solely in a thin
layer at the plasma surface and that the pressure p is a
constant po in the plasma and zero outside. (Note that
JXB=Vp is trivially satisfied in the plasma. ) Assume
that the plasma is completely diamagnetic, so that the
magnetic field in the plasma is zero. Outside, from
Maxwell's equations, it follows that the toroidal field de-
creases inversely with It; that is, B=BO(RO/R)e~ [see

Fig. 9(b)]. Because of the 1/R dependence, it is clear
that the Inagnetic pressure on the inside of the torus
(ir/2&8&3ir/2) is always greater than that on the out-
side. This effect is partially compensated for by the
slightly smaller area on the inside, but there always
remains a net outward force. There is an additional out-
ward force arising from the "rubber tire tube" effect,
identical to that in the purely poloidal case. The com-
bined outward force (in the +R direction) can easily be
calculated by integrating the e~ component of the total
pressure jump over the plasma surface [i.e.,2' ——J(2p —B )cos02m'R(8)a d8]. For large aspect
ratios, R /a && 1, the force per unit length, is given by

+R +p Q
2

(4.17)

Since the magnetic field is in the toroidal direction, a
conducting wall is not able to compensate for this force;
that is, as the plasma moves outward, the magnetic lines
simply slip around and let the plasma drift through [Fig.
9(c)]. Likewise, vertical fields do not help because by
symmetry they cannot produce any net force.

The conclusion from this calculation is that a configu-
ration with a purely toroidal magnetic field cannot be
held in equilibrium because of the I/R dependence of
the magnetic field resulting from the toroidal geometry.
One question to be asked is whether or not the outward
drift can be negligible on the time scale of interest if the
aspect ratio is made sufficiently large. The answer is
negative. If a vacuum chamber were located at a minor
radius b, then the time required for the plasma to make
contact would be given by

2bt=
I'g /M

1/2 4'.ppp
1/2

8p+2@
(4.18)

(R)
PERFECTLY
COND UCTIN6
SALL ~

R

(b)

FICx. 9. Toroidal force balance in a configuration with purely
toroidal field: (a) geometry, (b) 1/R dependence of the toroidal
field, (c) lack of toroidal equilibrium.

where pp is the plasma mass density. Even in. an extreme
case (b =1 m, Ro ——1 km, B0=5 T, no ——10' cm
2p =Bo, and deuteriuin mass), w= 18 psec, which is
much too short to be of practical interest.

The basic problem of finding satisfactory magnetic
geometries for confining fusion plasmas can be summa-
rized as follows. On the one hand, closed toroidal sys-
tems, where the predominant magnetic field is poloidal,
have good toroidal equilibrium properties but poor sta-
bility properties. On the other hand, when the toroidal
field is dominant, stability is inherently much better, but
serious equilibrium problems exist. Attempts to resolve
this dilemma have led to the discovery of a number of
different configurations, often managing to combine the
desirable features of both toroidal and poloidal systems
while, to a reasonable extent suppressing the undesirable
ones. In the remainder of this section the currently most
promising configurations are discussed from the point of
view of equilibrium, the stability questions being ad-
dressed in Sec. V.
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B. One-dimensional configurations

Even though the magnetic configurations of interest
are toroidal, a very useful way to develop intuition is to
first study their one-dimensional cyclindrically sym-
metric analogs. In this way the two basic problems of
MHD equilibrium, toroidal force balance and radial
pressure balance, are isolated from each other, thereby
making their understanding considerably simpler. The
one-dimensional model focuses on radial pressure bal-
ance. The question of toroidal force balance does not
appear, since by definition the geometry is linear. Con-
sequently toroidal force balance can only be accounted
for by considering multidimensional geometries. Also,
note that certain configurations are inherently multidi-
mensional (e.g., the stellarator, the Elmo bumpy torus)
and hence have no simple one-dimensional analog.

Given be1ow is a description of the basic one-
dimensional configurations and how they provide radial
pressure balance in a plasma.

1. 0 pinch

The 0 pinch represents the one-dimensional analog of
the toroidal configuration with a purely toroidal field.
The "equivalent" torus consists of a section, 2mRO in

length, of the infinitely long, cylindrically symmetric,
linear plasma column. In a 0 pinch the only nonzero
component of 8 is in the z direction. It is applied exter-
nally and induces a large diamagnetic 0 current

Js ———dB, /dr in the plasma, as shown in Fig. 10 (hence
the name 0 pinch).

The basic equilibrium relation for the 8 pinch is ob-
tained from the radial component of the pressure balance
equation, Js8, =dp/dr (all other equations being trivially
satisfied). The result is

where 80 is the externally applied field.
Equation (4.20) indicates that at any local value of r

the sum of the particle pressure and the magnetic pres-
sure is constant and equal to the externally applied mag-
netic pressure. Illustrated in Fig. 11 is a set of typical
profiles. Note that the pressure is peaked at r =0 and
decreases rapidly for large r, thus isolating itself from
the containing wall. This indicates good radial contain-
ment and closed nested pressure contours.

One measure of the effectiveness of plasma contain-
ment is the quantity P, which is the ratio of plasma en-

ergy to total energy,

P(r) —=

p+8 /2

0&P&1 . (4.21)

For a 8 pinch, the central P [i.e., PO=P(0)=2p(0)/80]
can have any value between zero and unity. This flexi-
bility, including access to high values of Po, indicates
that the 8 pinch is an excellent radial container of plas-
ma.

Regarding toroidal equilibrium, the 8 pinch represents
a highly degenerate configuration. Stability analysis in-
dicates that the straight 8 pinch is neutrally stable in the
ideal MHD model, and as has been previously shown,
when it is bent into a torus, its equilibria do not exist.
Therefore additional fields must be added to provide
equilibrium, and since the basic configuration is neutral-

ly stable, the overall stability wi11 depend sensitively on
the additional fields. Thus the important problems have
yet to be faced. Nevertheless, the 8 pinch represents the
radial pressure balance properties of a number of in-
teresting fusion concepts, in particular, high- and low-P
stellarators, high-P tokamaks, the central cell of the tan-
dern mirror, and the Elmo bumpy torus.

=0

or, upon integrating,

8,'(r) 82o
p(r)+

(4.19)

(4.20)

2. Z pinch

The Z pinch is a one-dimensional model of the
toroidal configuration with purely poloidal field and is in
many ways orthogonal to the 0 pinch. In a Z pinch,
only Be is nonzero and consists entirely of the self field

M/ALL

FICx. 10. 0-pinch geometry. FIG. 11. Equilibrium profiles for a 8 pinch.
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induced by the longitudinal current J,=r 'd(rBs)/dr
flowing in the plasma (hence the name Z pinch). See
Fig. 12. Unlike the case of the 0 pinch, when the plas-
ma current vanishes in the case of the Z pinch there is
no background B field remaining.

As before, the only equilibrium equation that is not
trivially satisfied is the radial component of pressure bal-
ance, J,B~———dp/dr, which reduces to

Bg Bg
l& 2 P

p+ + (4.22)

I aJ =—
(r2 +g 2)2

I a
Svr (r +a )

(4.23)

where I is the total plasma current and a is the plasma
scale length.

Note that the value of p on axis, po, is always unity
for a pure Z pinch since 8&(0)=0. Although high po is
in general desirable, the inabi1ity to achieve small to
moderate po can be a disadvantage; that is, some classes
of potentially dangerous MHD modes can be stabilized if
po is sufficiently low. The fact that this cannot occur in
a pure Z pinch is one reason why its stability properties
are so poor.

The energy balance in a Z pinch can be more con-
veniently expressed in terIns of certain macroscopic
quantities, in what is known as the Bennett pinch rela-
tion,

I2
8p ——

Sm
(4.24)

where &~=2~fpr dr (apart from a factor y —1) is the

Equation (4.22) is somewhat similar to that of the 8
pinch, but an additional inward force arises because of
the tension in the curved magnetic field lines. It is
straightforward to generate simple, physically realizable
Bs profiles which satsify Eq. (4.22) and provide good ra-
dial containment. As a specific example, consider the
well-known Bennett profiles (Bennett, 1934)

I r
Bg ——

2& p' +a

energy line density (i.e., plasma energy density integrated
over the cross section). This relationship, which is valid
for any self-consistent profile, indicates that the energies
in the plasma and the magnetic field are comparable.

As stated previously, a Z-pinch equilibrium can easily
be bent into a torus, although its stability properties
remain poor. Nevertheless, the Z pinch represents the
radial pressure balance properties of several interesting
fusion concepts, including the conventional tokamak and
reversed field pinch.

3. General screw pinch

It should come as no surprise that in the search for
satisfactory toroidal equilibria, one approach of interest
is to consider configurations with both toroidal and po-
loidal fields. The hope, of course, is to combine the
favorable and suppress the unfavorable features of each
field. The one-dimensional analogs of such systems have
both B~ and B, nonzero.

For the general screw pinch, with B& and B, arbitrary,
the equilibrium pressure balance reduces to

B, +Bg Bg
p+ + (4.25)

and in a sense represents a simple superposition of the 0
pinch and Z pinch. Even this simple relation exhibits
many of the features expected in more realistic, multidi-
mensional toroidal calculations.

First, there are two free functions available to specify
the equilibrium; for example, Bs(r) and B,(r). The 0
pinch and Z pinch are special choices where either B~ or
B, is set to zero, respectively. In the general case, once
both profiles are specified, the pressure is calculated
from Eq. (4.25).

Second, the contours of constant pressure are given by
r =const. Thus the magnetic flux surfaces are cylinders
whose cross sections are closed concentric circles.

Third, the p value can be varied over a wide range if
B Is not equal to zero.

Fourth, the magnetic lines wrap around the column
along helical paths. See Fig. 13. This gives rise to a
nonzero rotational transform which can be calculated as
follows: the average value of the angle 68 [see Eq.
(4.14)] is independent of Ho, the starting angle, because of

AL
INE

FIG. 12. Z-pinch geometry. FICx. 13. Helical field line trajectory in a general screw pinch.
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the circular symmetry. Thus to calculate ~ it is only
necessary to integrate the field line trajectory a distance
2mRO in z, corresponding to one transit around the
"equivalent" torus,

4g 2mRO ggt—=60= f d8= f dz . (4.26)

Using the equations for the field line trajectories,

de Be«)
dz rB,(r)

B„(r)=0,
dz B,(r)

then gives

(4.27)

2mR oBe( r)
t(r) =

rB,(r)
(4.28)

Oftentimes it is convenient to introduce a quantity q
called the safety factor (for stability reasons to be dis-
cussed later), which is related to the inverse of
t:q= 2@It o—r

The specific combinations of Be and B, describing
each of these devices are illustrated in Fig. 14. From the
point of view of radial pressure balance and toroidal
force balance, observe that a conventional tokamak is
similar to a pure Z pinch but with a large vacuum B,
field to improve stability. On the other hand, plasma is
contained in a high-P tokamak by a small diamagnetic
well in the B, field. Even though the well is shallow, it
is still sufficiently deep to enable a higher P to be con-
tained than in a conventional tokamak because
B,5B, »Bs. Thus a high-P tokamak is both confined
radially and stabilized as in a 0 pinch, the purpose of the
small Be field being only to provide toroidal force bal-
ance. The somewhat unusual profiles characterizing the
reversed field pinch were observed first in the Zeta ex-
periment, and later shown theoretically (Robinson, 1971)
to have good ideal MHD stability properties. The
reasons for this are discussed in Sec. V. In any event,
the profiles have comparable B~ and B, and the pressure
is hollow rather than peaked. The plasma is compressed
between the B~ pressure on the outside and the B, pres-
sure on the inside.

rB, (r)
q(r) =

RoBs(r)
(4.29) C. Two-dimensional configurations

The quantity q can be interpreted as the ratio b,P/2n.
where b,P is the change in toroidal angle of a magnetic
line as it traverses one complete poloidal circuit,
60=2m. Note that ~=0 in a 0 pinch, since the field
lines are straight, and that q =0 in a Z pinch, since the
field lines have no axial motion.

Equation (4.25) represents a complete leading-order
approximation (i.e., appropriate combinations of Be and
B, for radial pressure balance and stability) of toroidal
devices with axisymmetry and nearly circular flux sur-
faces. Even within this subclass there are a great many
possible configurations. However, current experimental
and theoretical evidence indicates that several configura-
tions in particular are potentially attractive for use in
fusion reactors. They are the tokamak [see, for instance,
Furth (1975), Wesson (1978), and Bateman (1978)], by
far the most important fusion concept both nationally
and internationally, and the reversed field pinch, a com-
pact, high-P device based on the early British experi-
ment, Zeta (Butt et al. , 1958; Bodin and Newton, 1980).

In the preceding section it was shown that a one-
dimensional model could provide a reasonably good ap-
proximation to the radial pressure balance properties of
certain axisymmetric toroidal configurations. This sec-
tion contains a description of equilibria which are func-
tions of two variables. In particular, a derivation is
given of the Grad-Shafranov equation, the basic equation
describing axisymmetric toroidal equilibrium. The solu-
tions to this equation provide a complete ideal MHD
equilibrium description (i.e., radial pressure balance,
toroidal force balance, equilibrium P limits, rotational
transform profiles, etc.) of the following toroidal devices:
conventional tokamak, high-P tokamak, noncircular
tokamak, flux-conserving tokamak, and reversed field
pinch.

In addition, an equation similar to the Grad-Shafranov
equation, but for helically symmetric equilibria, is
presented. This equation, which is at least as difficult to
solve, represents the leading-order description of low-P
and high-P stellarators and the Elmo bumpy torus. The
solutions all correspond to infinitely long straight helices.
Bending such a configuration into a torus requires a full
three-dimensional calculation and is discussed in the next
section.

1. The Grad-Shafranov equation

(o) (b) (c)
FIG. 14. One-dimensional equilibrium profiles for: (a) a con-
ventional tokamak, (b) a high-P tokamak, and (c) a reversed
field pinch.

The Grad-Shafranov equation is a two-dimensional,
nonlinear, elliptic partial differential equation obtained
from the reduction of the ideal MHD equilibrium equa-
tions [Eqs. (4.1)—(4.3)] for the case of toroidal axisym-
metry (Grad and Rubin, 1958; Shafranov, 1960). It can
be derived as follows. Consider the geometry illustrated
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in Fig. 15. Here R,P,X describe the usual right-handed
cylindrical coordinate system. The assumption of
toroidal axisymmetry imphes that 8/BQ=O. It then fol-
lows from V-8=0 that 8 can be written as

18=Byes+ B~, Bq —— —VQ Xep, (4.30)

where B~ is the toroidal field, Bz is the poloidal field,
and g/R =A~, the toroidal component of the vector po-
tential. It can also be easily shown that the poloidal flux

P& is related to g by g& ——2n.f. In axisymmetric tori it is
convenient to label the magnetic flux surfaces with g
rather than the pressure p.

Substituting Eq. (4.30) into Ampere's law yields

J= — b.*fey—+ V(R—Bp) && ep,
1 ~ 1

A 8
where 6* is the elliptic operator given by

a 1 a@ a'q
M R M gz2

(4 31)

(4.32)

Similarly, the J component gives J Vp =0
X V(RB&)=0, so that RB~ is also a surface quantity,

RBp ——F(g) .

It can easily be shown that F(P) =I&/2m; where I~ is the
poloidal current passing through the surface bounded by
8 =const, Z =0.

The Grad-Shafranov equation is obtained by substitut-

ing these results into the Vg component. The result is

The last step in the derivation is to substitute Eqs.
(4.30) and (4.31) into the momentum equation [Eq. (4.1)].
An efficient way to do this is to decompose Eq. (4.1)
into three components, along 8, J, and Vg (normal to
the flux surface). The 8 component gives 8 Vp=0 or
e~.V/XV'p =0. As expected, this implies that p is a sur-
face quantity,

(4.33)

R2 dp FdF
df dg

(4.35)

& =&o+r cosO, Z =r sing

can be expressed as

(4.36)

Rdg dr rd0
Bq

where dl=[(dr) +(rd8) ]' is the poloidal arc length
=(B +Be)' =

~ Vf~ /R is the poloidal mag-
netic field. As the magnetic line wraps exactly once
amund the poloidal cross section, the toroidal angle b,P
along which it travels is given by

(4.38)

Thus the average fractional poloidal transit per single
toroidal transit is just ~ = 2'(2m /b P), the rotational
transform. The safety factor q =2~/~ then has the form

Equation (4.35) is a second-order nonlinear partial dif-
ferential equation describing axisymmetric toroidal
equilibria. The nature of the equilibria (i.e., tokamak, re-
versed field pinch, etc.) is to a large extent determined by
the choice of the two free functions p(g) and F(P) and,
of course, the boundary conditions. These issues are dis-
cussed in more detail on an individual basis ia later sec-
tions.

Consider now the macroscopic plasma parameters P
and q. There is no unique definition of P which is
simultaneously meaningful in all geometries and simple
to evaluate. The different definitions, which usually are
not too dissimilar from each other or Eq. (4.21), are also
discussed on an individual basis.

On the other hand, the safety factor q is uniquely de-
fined and can be calculated as follows. The equation for
a magnetic field line in toroidal coordinates r, 8,$ de-
fined by (see Fig. 15)

(4.39)

FKJ. 1S. Axisymmetric toroidal geometry.

In Eqs. (4.38) and (4.39) the integrals are to be evaluated
on the flux surface on which the magnetic line lies.

Because of the nonlinearity, the Grad-Shafranov equa-
tion must in general be solved numerically. Most of the
major fusion laboratories around the world have
developed such codes. They can be used for essentially
arbitrary p(g) and F(g), as well as for rather sophisti-
cated boundary conditions. Examples of these numerical
equilibria are presented later.

However, from the point of view of obtaining physical
understanding, it is perhaps more instructive to perform
asymptotic analysis of the Grad-Shafranov equation.
The simplifications that arise often permit analytic solu-
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tions which are of great aid in developing intuition. The
basic expansion parameter is the inverse aspect ratio
r!R. %'hen r/R «1, the toroidal effects are weak, al-
lowing many configurations to be viewed as perturba-
tions about a straight system. Extensive use of the in-
verse aspect ratio expansion is made in the remainder of
this section.

Before proceeding with the applications it is useful to
note that a "Grad-Shafranov" equation also exists for
systems with helical symmetry. In such systems all
quantities are functions of the two independent variables
(r,a—=18+hz), where 2~/h is the helical period and l de-
scribes the order of the poloidal periodicity. The deriva-
tion of the equation is similar to that of the axisym-
metric torus, and the results are as follows (Solov'ev,
1967):

laB = ——
r Ba

IB +era, =
Br

Bp

Bp

P- —1,2p
B2

rBp

RBp

(4.41)

P(», 8) =gp(r)+f~(r)cos8 (4.42)

where P~/gp-s and gp/»RB& —1.
In zeroth order B„p(r)=0,Bop(r)=gp(r)/Rp, F(fp)

=RpB~p(r), and p(gp)=pp(r). The corresponding con-
tribution to the Grad-Shafranov equation is obtained by
noting that, in r, O coordinates,

This ordering implies that the reverse field pinch is a
high-/3 device, operating with a small safety factor, in
which both poloidal and toroidal fields play an impor-
tant role in radial pressure balance. Using Eq. (4.41),
one can solve the Grad-Shafranov equation by expanding
the flux function as follows:

lB, h»Bs —F(P),——
2hIF dp F BF

(l2+h2 2)2 dg l2+h2»2

a r an't

r ~»l+h r ~» r Ba

6 =V ——cosO2 1

R Br

1 8 8 1 8+r Bp' BI' p
2 QO2

The result is

sinO

r BO
(4.43)

2. The reversed field pinch

It is convenient to begin discussions of individual con-
cepts with the reversed field pinch bemuse it, of all oth-
ers, is the one most accurately described as a perturba-
tion about a linear system. Application of the appropri-
ate aspect ratio expansion leads to a relatively simple an-
alytic solution to the Grad-Shafranov equation. Con-
cerning boundary conditions, it is realistic to assume that
the plasma is surrounded by a perfectly conducting cir-
cular wall of minor radius b. On such a surface n.8=0,
implying that the wall is a flux surface. Hence the
boundary conditions require (1) regularity throughout the
domain and (2) g(b, 8) =const.

The asymptotic expansion is defined in terms of the
inverse aspect ratio

c:—a/Ro«1, (4.40)

where a is the typical scale length of the minor plasma
radius (i.e., r-a). Keeping in mind that the toroidal
and poloidal fields are comparable in a reversed field
pinch, the appropriate ordering is given by

The equation for g is of comparable difficulty to the ax-
isymmetric Grad-Shafranov equation. It provides a good
zeroth-order description of stellarators and the Elmo
bumpy torus, but does not include the effects of toroidal
force balance. This requires a three-dimensional calcula-
tion and is discussed in the next section.

d Byo Boo d
pp+ + (»Bep) =0,

2 p' dp'
(4.44)

which is just the radial pressure balance relation for the
straight general screw pinch [Eq. (4.25)]. In place of
p(f),F(f), two of the four quantities pp(r),
Byp( r),Bsp( r), gp( r) can be specified as arbitrary free
functions. For convenience assume that Bsp and B~p are
free, that pp is determined from Eq. (4.44), and that fp
is determined from gp Rp J Bepdr. ——

Continuining, the order c contribution to the Grad-
Shafranov equation can be written, after some algebra, as

zdprBg = —2r +rB~ .
dr dr B dr

L

(4.45)

For simplicity the subscript 0 has been dropped from the
zero-order quantities. The solution to Eq. (4.45) satisfy-
ing the boundary conditions is given by

The contribution of g& to the total flux represents the
toroidal correction to reversed field pinch equilibria.

Consider now the basic properties of such equilibria.
Since B~ and B~ are both leading-order quantities, the
values of P and q are essentially the same as in the
straight system. In measuring the efficiency of magnetic
field utilization it has been proven more useful to define

el(r)=Be(r)I, I 23 3»e(3» —d3 .dx " 2dp(y)
r xBe(x) P dg

(4.46)
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an average, rather than a local, p. A reasonable defini-
tion follows from an integral form of Eq. (4.44) given by

2ir f p+ rdr= + n—b B~(b),
b B~ I' 1 2 2

2 8~ 2

where I is the toroidal current.
First, a quantity known as the "poloidal beta" is intro-

duced as follows:

(p, ) = w, /w, +o(E),
b

Rz 2' f——prdr,

8g ——I /8~ .

(4.48)

rB~(r)
q(r)= +0(e') .

RoBe(r)
(4.49)

q is typically of order c. and actually passes through zero
where B~ reverses (see Fig. 14). The question of how a
configuration with such a small safety factor can be
made MHD stable is discussed in detail in Sec. V. Brief-
ly, though, the answer is the high shear associated with
the B~ reversal and the presence of a perfectly conduct-
ing wall close to the plasma.

Since q —1/I is small, the toroidal current is large.
This has the effect of requiring only a small outward
shift of the plasma to compress sufficient flux for
toroidal equilibrium, even with (p) —1. To see this,
consider a realistic plasma model in which all the plasma
currents effectively vanish outside a particular flux sur-
face. Assume that this surface is a circle whose center is
slightly shifted from the center of the wall located at
R =Rp, Z=0; it is denoted by r, =a+AcosO, 4«a.
The shift 6 is determined from the condition
g[r, (8),8]=const or 6- Pi(a)/go(a). —After some
straightforward algebra it follows that (Shafranov, 1966)

I- —1 b(P)+ '
1—,+ln-

b2 a
(4.50)

where I; is the normalized internal inductance per unit
length associated with the toroidal current,

This quantity is useful in the understanding of both re-
versed field pinches and tokamaks. Now, since the re-
versal of the toroidal field B~(b) is usually small in a re-
versed field pinch (see Fig. 14), a convenient definition of
the average beta is given by (p) =—(p~ ). Note that (p)
is of order unity and can assume a wide range of values,
depending upon the strength of the B~ field in the plas-
ma interior. Also, (Pz ) =1 for a pure Z pinch.

The safety factor q is given approximately by its
straight value

Note that 5 is positive, indicating an outward shift.
Since b/R «1 in the asymptotic expansion, Eq. (4.50)
verifies that the equilibrium shift is indeed small.

The principal response to the outward shift can be
seen by calculating the poloidal magnetic field on the
plasma surface,

it', (a)
B~[r, (8),8]=B, 1+

R pB~

a
cosO

Rp

=B, 1+ (p~ ) +——1 cos8, (4.52)
Rp ~ 2

where B,=I/2m. a. The first term, independent of 0,
represents the straight cylindrical contribution of the
toroidal current. Of the cos8 terms, the ( —1) contribu-
tion is a result of the toroidal geometry, which causes 8&
to decrease slightly on the outside (8=0) and increase on
the inside (8=m. ). The 1;/2 term represents a redistribu-
tion of the plasma currents and compression of the outer
poloidal flux in response to the outward shift of the plas-
ma. Hence it causes 8& to increase slightly on the out-
side and decrease on the inside. The (Pz ) term contains
the combined response of the "tire tube" force and the
1/R toroidal field force. If the toroidal field were zero,
then (p~) would be unity [Eqs. (4.47) and (4.48)]. This
term then represents a compression of the outer poloidal
field caused by the outward shift of the plasma pressure.
If the toroidal field is not zero, then (Pz ) is somewhat
reduced, thereby decreasing this compression of the flux.
Stated another way, the B~ field in a reversed field pinch
is paramagnetic (i.e., large when the pressure is high and
small when the pressure is low). Thus, in contrast to the
8 pinch, which is diamagnetic, the 1/R force due to the
toroidal field is actually inward. It partially compen-
sates for the pressure force, resulting in a reduced
compression of the outer poloidal flux.

"Exact" numerical solutions of the Grad-Shafranov
equation indicate that the asymptotic expansion
described above represents an excellent approximation of
reversed field pinch equilibria. A typical example of a
numerical equilibrium is shown in Fig. 16. Here the
functions p(f) and I'(f) were chosen to closely simulate
experimental profiles. Note the small outward shift of
the plasma pressure and the increase of the poloidal field
on the outside of the torus.

In summary, the reverse field pinch is a high-p, low-q
configuration in which the plasma is contained radially
between the toroidal magnetic pressure on the inside and
the poloidal magnetic pressure on the outside. A large
toroidal current provides toroidal force balance by
compressing the poloidal flux between the conducting
wall and the slightly outward-shifted plasma.

2I- /Ro~

2
—L,I =2m.R 8', 8 =2m rdr .

2Pp
(4.51)

3. The conventional tokamak

At the present time the conventional tokamak is the
leading contender in the international magnetic fusion
program. In particular, PLT, TFTR, Doublet III, Alca-
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FIG. 16. Equilibrium flux plot for a reversed field pinch. Also shown are the pressure, toroidal field, and poloidal field along the
midplane, Z=O (courtesy L. W. Mann, Los Alamos Scientific Laboratory, 1981).

tor, JET, T-10, TFR, ASDEX, and DIVA are major de-
vices in the United States, Western Europe, Japan, and
the Soviet Union, whose basic mode of operation is that
of a conventional tokamak. [For a summary of the ma-
jor fusion experiments throughout the world see IAEA
(1976).]

Although the basic field configuration of the tokamak
is quite different from the reversed field pinch, the
analysis is nevertheless quite similar. The underlying
reason is that the pressure is sufficiently small so that
only a small outward shift is required for equilibrium,
thus implying that the inverse aspect ratio expansion
should be very accurate. [See, for instance, Shafranov
(1966), Wesson (1978), and Bateman (1978).]

In applying the expansion it is initially assumed for
simplicity that the plasIna is surrounded by a perfectly
conducting shell. This assumption is then relaxed and
replaced by the condition that toroidal force balance is
achieved by an external vertical field. Since the typical
experimental time scales of tokamak operation are much
greater than the skin penetration time of the surrounding
walls, the vertical-field boundary condition is a much
more realistic one.

In terms of the inverse aspect ratio, c, =—a/Rp the ap-
propriate expansion for the conventional tokamak is
given as

Bp

Bp

2pP- z-e
Bp

rBp

ABp

(4.S3)

The configuration is dominated by a large toroidal
vacuum field. The plasma pressure is contained radially
primarily by the poloidal field, as in a pure Z pinch.
This field is made as large as possible to facilitate
toroidal equilibrium and to maximize P and ohmic heat-
ing, but is limited by the stability constraint that the
safety factor be of order unity. Even so, the maximum
pressure is still sufficiently low that the equilibrium
toroidal shift is small. In practice the toroidal field can
also enter the radial pressure balance either diamagneti-
cally or paramagnetically. However, in a conventional
tokamak, the deviation from the vacuum field is very
small (i.e., of order e ), leaving the Z-pinch nature of the
radial confinement unchanged.

Under the conventional tokamak ordering, the Grad-
Shafranov equation is solved by formally expanding as
follows:
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P(r, 8) =Pp(r)+P, (r) cos8. . .

4 2(40)
~(W) =S 2(40)+

0

F(g) =RBp Rp——Bp+Fi (fp). . .

(4.54)

where Bp ——constant is the toroidal vacuum field at A
=Rp and f&/fp —s, $0/rRBp-s, p2/Bp —e, F, /rBp

The leading-order contribution to the Grad-
Shafranov equation gives

Bgi d (rBgi )

dl" (p2+B0Be2)+ r dr
=0,

In conventional tokamak operation (pz)=1. Equation
(4.59) then implies that the total pressure that can be
contained is proportional to I, and in this sense radial
pressure balance in a conventional tokamak is similar to
that in a pure Z pinch.

Consider now the toroidal corrections to f(r, 8). The
equation which determines g|(r) is obtained from the
first-order contribution to the Grad-Shafranov equation.
Not too surprisingly, this equation is identical to Eq.
(4.45). If the plasma were surrounded by a perfectly
conducting shell located at r =b, then the solution would
be identical to Eq. (4.46), repeated here for convenience:

1 d't('0
Bgi(r) =

Rp dp'

dx "
2

F�2�(3')

Wi(r) =Be|(r)I, fr xBpi(x) 0 dy
—yBeib» dy.

Be(r) =Bp+Be2(r),

Beg(r) =Fi(gp)/R p ~

(4.55)

As in the reversed field pinch, radial pressure balance
is identical to that in a straight screw pinch. Likewise
the basic plasma parameters are essentially given by their
equivalent "straight" values. In particular, it follows
that the safety factor q can be expressed as

rBp -a
RpBgi

(4.56)

and is in general an increasing function of radius. The
average p is defined in terms of the toroidal magnetic
energy, since B~ ))Bz

8& ——2m p2r dr, (4.57)

8T———mb Bp .

In tokamak theory it is also convenient to introduce
the poloidal P, a quantity which measures the ratio of
plasma energy to poloidal magnetic field energy,

(4.60)

To simulate more realistic tokamak boundary conditions,
assume that a set of vertical-field coils has been placed
outside the conducting shell. In vacuum these coils pro-
duce an additional magnetic field, B„cz.

In actual tokamak experiments, it is the interaction of
this field with the toroidal current that produces the
compensating force required for toroidal force balance;
that is, the typical penetration time of a copper shell is
sufficiently short compared to experimental times that
the shell does not behave like a perfect conductor. One
must thus use a vertical field for toroidal equilibrium.

Assume that the vertical-field coils have been ener-
gized for a sufficiently long time so that their fields have
penetrated the conducting boundary. Keep in mind that,
once this has occurred, the wall still acts as a perfect
conductor on the faster MHD time scale. In this situa-
tion, the boundary condition on the flux function is
modified so that g(b, 8) =const +g„(b,8), where g„(r,8)
=R0B„rcos8 is the flux function due to the vertical
field.

The full toroidal correction to g is obtained by adding
an appropriate homogeneous solution to $1 [Eq. (4.60)].
Writing g, (total) =1(&(r) cos8 one finds

(4.58)

bR pB„
Pi«) =01(r)+ Bei(r) .

Bgi(b)
(4.61)

(pp)e'
q (a)

(4.59)

Wl I /8w . ——
An examination of the general, one-dimensional, equilib-
rium integral relation [Eq. (4.47)] indicates that when

Be2 ——0 (i e , for a. .purely vacuum toroidal field) then
(Pz ) = 1. If Be2 & 0, the plasma is diamagnetic and
(pz) ) 1, since part of the pressure is now contained by
the toroidal field. Similarly, for a paramagnetic configu-
ration, Be2 )0 and (P~ ) & 1.

A further useful equilibrium relation can be obtained
by considering the model where all the plasma pressure
and currents vanish outside a radius r =a. In this case,
it follows directly from the definitions that

The main effect of adding the vertical field is to
change the toroidal shift of the plasma, which is now
given by

&= —Qi(&)/$0(~)
= —fi(~)/$0(~) —&„,

where

b,, =bB, /Bgi(b) .

This can be written as

Bv

Bb

(4.62)
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Bg]I dr= —— (L,I ),
dRO ~ 2 2 dRO

(4.63)

where I., is the external inductance associated with
the poloidal flux P, between the plasma and the wall.
Since g, =L,I is constant under this displacement,
I' =(1/2)I (dL, /dR p).

If the wall is reasonably near the plasma, then

L, =ppRp ln
b

(4.64)
a

where Bb ——Bet(b) =I/2mb, . I; is given by Eq. (4.51), and
typically I; & —,.

It is of particular interest to determine the vertical
field required to make the plasma shift with respect to
the geometric axis R =Ra equal to zero. This is easily
accomplished by setting 5=0 in Eq. (4.62) and solving
for B„.Even more important is determining the vertical
field required to hold the plasma in equilibrium with its
center and R =Ro when no conducting shell is present.
To obtain this result it is necessary to set 6=0 and take
the limit b/a ~~1. This limit is smooth for the first
group of terms in Eq. (4.62). The logarithmic term is
more complicated, since as b gets larger it eventually
reaches its geometric limit b =Ro. In fact, a reasonable
estimate of the required vertical field is obtained by set-
ting b, =0 and b =Rp in the logarithmic term (i.e.,
lnbla —+1 Rnp/a)

The exact value of B„requires a lengthy calculation
(Shafranov, 1966; Mills, 1970; and Bateman, 1978). See
also Sec. V.D.1.g. However, a more accurate value than
the heuristic one just given is obtained by noting that the
ln(b/a) term represents the force due to the change in
magnetic energy between the plasma and the wall as the
plasma shifts outward by a small amount dRO ——h. It is
the analog of the I; term, except applied to the external
flux. This force can be written as

The results described above have proven to be a very
reliable guide for the operation of tokamak experiments.
They have also been shown to be quite accurate when
compared to exact numerical solutions of the Cirad-
Shafranov equation. In fact, because of the importance
of tokamaks to the international fusion program, a num-
ber of sophisticated numerical codes have been developed
to solve the Grad-Shafranov equation. [See, for instance,
Callan and Dory (1972), Helton and Wang (1978), and
Johnson et al. (1979).] Gne important feature incor-
porated in these codes is the ability to solve the more
difficult, but realistic, problem in which the plasma is
surrounded by a set of external coils rather than a per-
fect conductor. An example of such a numerical calcu-
lation is illustrated in Fig. 17 for the PLT experiment.
Note the small shift of the flux surfaces and the
compression of the poloidal field on the outside of the
torus, in agreement with the asymptotic theory.

To summarize, a conventional tokamak is a device in
which both radial containment and toroidal force balance
are achieved almost entirely by the poloidal field, as in a
Z pinch. The toroidal current is limited in amplitude by
the requirement that the safety factor q be of order unity
for stability. The sole purpose (from the ideal MHD
point of view) of the large, technically and economically
expensive, toroidal field is stability. Since all the heating
and confinement are provided by the relatively small po-
loidal field, the resulting pressure is very small (p-s ),
requiring only a small shift or small vertical field for
toroidal force balance.

4. The high-P tokamak

The progress in physics of conventional tokamaks has
been impressive over the last few years, particularly in

8Ro
L, =ppRp ln —2

a
(4.65)

After carrying out the differentiation with respect to Ro
and equating the forces, it follows that the appropriate
limit for ln(b/a) as b~Rp is given by

8RO Ro
ln —~ln —1 =ln + 1.079 .

a a a
(4.66)

Note that this differs from the heuristic assumption only
by the factor 1.079. Substituting Eq. (4.66) into Eq.
(4.62) and setting 6=0 yields the value of B„required
for toroidal equilibrium with no conducting shell:

p 8RpB„= (4.67)
PRO a(P )+—I; ——+ln1 3

2' 2

If the wall is removed from the plasma, then the value
of L,, to be used should correspond to that of a circular
current-carrying loop of wire with major radius Rp and
minor radius a. This value of I., can be found in stan-
dard electromagnetic textbooks (Stratton, 1941). For
&/Rp «1,

e 0 4 -' .:,.' ..

LU

0.2 -::,='.:

Q

0-:''
C)

o -02
e

CL

~ -0.4 -.,
'', '';. '

e

~0

0.8 I.O I.2 IA l.6 l.s
MAJOR RADIUS POSITION (meters}

2.0

FIG. 17. Equilibrium flux plot of the PLT tokamak. The
+ 's and —'s correspond to the location of vertical-field coils
(from Johnson et al. , 1979).
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2p

Bp

rBp
g ~

RBp

2p 1

c

(4.68)

Note that p is one order larger than in a conventional

the achievement of high temperatures and long energy-
confinement times. [See, for instance, Eubank et al.
(1979) and Gondhaleker et al. (1979).] In fact, if it were
not for the inherently low (P)'s (from the reactor phys-
ics requirement point of view), the conventional tokamak
would be a much more desirable axisyrnmetric toroidal
system. However, since the ( P ) 's are low, it is
worthwhile to investigate variations of the basic tokamak
configuration which attempt to correct this problem. At
present, two separate methods have received serious con-
sideration.

The first method requires the application of external
heating sources such as neutral beams or rf power. Even
putting the question of (p) aside, such external heating
will almost certainly be required, since ohmic heating
alone will probably not be able to raise the temperature
in a tokamak sufficiently high to cause ignition. With
external heating the plasma (P) can be raised substan-
tially, leading to a class of configurations described as
"high-p tokamaks. " [See, for instance, Shafranov (1971);
Freidberg and Haas (1973); Clark and Sigmar (1977).]
These are discussed here and in Sec. IV.C.6 on "The
flux-conserving tokamak. "

The second method of raising (p) is to allow the
cross section of the plasma to become noncircular. Op-
timizing over this new degree of freedom leads to higher
(P)'s and is discussed in Sec. IV.C.S on "noncircular
tokamaks. "

The basic idea of the high-P tokamak is as follows.
Application of an independent source of external heating
at fixed toroidal current and toroidal field causes an in-
crease in the plasma pressure. The higher (p) that re-
sults is contained by poloidal diamagnetic currents in-
duced in the plasma. When sufficient heating is applied,
radial pressure balance is provided almost, entirely by the
toroidal field. This is the regime of the high-p tokamak.
The plasma pressure is decoupled from the ohmic heat-
ing current (in contrast to the conventional tokamak),
and confinement is more closely related to that in a 8
pinch rather than a Z pinch. The key feature of the
high-p tokamak is that the (p) is raised to the max-
irnum value that can be supported in toroidal force bal-
ance by a toroidal current satisfying the stability condi-
tion q &1.

Taking these requirements into account leads to the
folllowing inverse aspect ratio expansion for the high-P
tokamak:

Bp

Bp

tokamak. Also pz —I /e indicates that the poloidal field
has only a minor role in radial pressure balance. The
confinement is provided by a smaH diamagnetic well in
the toroidal field. Even though the well is small, of or-
der c., it still confines 1/c. more plasma than the poloidal
field.

Because of the higher p's, the toroidal shift of the flux
surfaces is of order unity, and the flux surfaces them-
selves are no longer small deviations from circles. Con-
sequently, although the inverse aspect ratio expansion
does somewhat simplify the Grad-Shafranov equation,
the leading-order equilibrium remains inherently two di-
mensional; that is, radial pressure balance and toroidal
force balance enter simultaneously.

As a result of this feature, only the leading-order con-
tribution to the Grad-Shafranov equation is required.
The appropriate formal expansion for the high-p
tokamak is given by

g(r, 0)=go(r, g). . .

p(4) =p i(4o)
(4.69)

where PolrRB&-c and p, /Bo-E. The expansion for
F(g) is slightly subtle because the Grad-Shafranov equa-
tion basically determines the poloidal field, whereas the
primary radial pressure balance is dominated by the
toroidal field. The expansion for F(f) must automati-
cally take this into account. The procedure is to in-
trodce a new function, G2(P), in place of F(g),

2R o p (P)+F'(g) =R o [So+G2(@)]

=R o[&o+Gz(fo) (4.70)

where, as before, B0 is the vacuum toroidal field at
R =Ro. Equation (4.70) implies that the deviation from
a 9-pinch pressure balance relation is of order G2/B0-c, which is one order smaller than the pressure itself.
Substituting into the Grad-Shafranov equation leads to a
two-dimensional partial differential equation for high-p
tokamak equilibria. This equation is given by

V go= ——,Ro Gz+4p', cosO
0

(4.71)

where prime denotes differentiation with respect to Po.
Since Eq. (4.71) is a nonlinear two-dimensional partial

differential equation, it must in general be solved numer-
ically. However, for special choices of G2(go),p&(go),
Eq. (4.71) can be solved analytically, and it is such solu-
tions that provide a great deal of the insight into the na-
ture of high-P tokamak equilibria. The tnodel discussed
below was first investigated by Haas (1972). Other sim-
ple high-P tokamak equilibria have been given by
Shafranov (1966), Laval et al. (1970), Strauss (1971), and
Solov'ev (1976).

Consider the case where Gp(go) and p~(go) are linear
in go, so that G2(fo) = —A, p~(go)= —C. Assume the
plasma surface is circular, with radius a, and is sur-
rounded by vacuum. The linear dependence of G2 im-
plies that the toroidal current density is nearly uniform
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in the plasma (at least for low P) and abruptly jumps to
zero across the plasma surface. The function go(r, 8)
must be regular for r & a and is normalized so
$0(a, 8)=0. The solution to Eq. (4.71) inside the plasma
is given by

Q
2 a Bp2

340=—
2(P)q* 2q*pi —— [u —1+v(u —u) cos8],

is not simply proportional to I.
The next and perhaps most interesting feature of

high-P tokamak equilibria is the appearance of an upper
limit on the value of (P) that can be contained for a
given current. This can be seen in Eq. (4.75), which re-
quires v&1 for reality of the solutions. At the limiting
value v= 1, the plasma parameters are given by

&&o v
Bs ——u + —(3u —1)cos8

q
)fC

(4.72)

(P) =./q*', &P, &=1/. ,

q (a)~ 0D, 5/a = 1/3 . (4.76)

1 1 I
q* cBo 2ma

2m Rpf Be(a,8)d8=
o '

4&o

u =—,v=(P&q* /c, -l .r 2

Q

Equation (4.72) is expressed in terms of the plasma
parameters (P), q*, rather than the constants A, C:

For a given inverse aspect ratio c, the actual numerical
value of (P) is obtained from the minimum allowable
q~, as determined from stability considerations.

The origin of the equilibrium limit can be understood
by examining the fields in the vacuum region. The solu-
tion which matches Eq. (4.71) and satisfies the vacuum
equation V italo

—0 is given by

2 a
&P)—= , , fp, rdrd8= — C.

ma 8o 2q*
a Bp2

v 1
lnu +—u ——cos8

2 Q
(4.77)

Here the quantity q* is by definition inversely propor-
tional to I. It is similar but not equal to the safety fac-
tor. The exact relationship is discussed shortly.

There are a number of points to be made concerning
the solution. First, note that the pressure profile is basi-
cally parabolic. The shift of the magnetic axis [i.e., the
radius where df(r =b, ,8=0)/dr =0] with respect to the
plasma surface is given by

I+ (I+3v') 'r' (4.73)

This is analogous to Eq. (4.59) except that in the present
case (P) and (P~) are each one order larger in E.
Furthermore, from the definition of v [Eq. (4.72)] it fol-
lows that v= E(Pp ).

The third point to note is that in the high-)33 ordering
the variation of B~ around the cross section is of order
unity, in order to support the higher pressure in toroidal
force balance. This variation by definition averages to
zero when calculating 1/q*, so that q~ —1/I. However,
when calculating q(a) as defined by Eq. (4.39), the in-
tegrand is more strongly weighted on the inside of the
torus where Bs(a,8) is small. This leads to the result
that q(a) )q*. More explicitly,

&&o 2~ dO q~q(a)=
2~ ~ B,(a, 8)

(4.75)

In the limit of low (P), v~0 and q (a)~q*.
Nevertheless, in the high-P regime it is important to dis-
tinguish between q* and q(a), particularly since 1/q(a)

Since v-1 in the high-P ordering, the shift of the mag-
netic axis is finite, not small as in the conventional
tokamak.

Second, if (P~) is defined as in Eq. (4.58), then the
equilibrium relation between (P) and (P~ ) has the form

(4.74)

The first term represents the equivalent "straight" con-
tribution of the toroidal current, while the last two terms
correspond to the vertical field and its diamagnetic
response, respectively. Note that the vacuum field has a
separatrix at the point defined by Be(r„8,)
=B„(r„8,) =0, where 8, =sr and

(4.78)

For low (P), v&&1, and the separatrix u, =2/v is far
from the plasma surface. As (P) (i.e., v) increases, the
vertical field increases, and the separatrix moves in to-
wards the plasma. When v=1, the separatrix moves
onto the plasma surface. Since it can move no further,
this corresponds to the equilibrium limit. The existence
of the separatrix is shown graphically in Fig. 18; it is ob-
tained by summing the contributions of the vertical field
and the 1/r field of the toroidal current.

From the results presented above, one might conjec-
ture that all high-P tokamaks have an equilibrium (P)
limit with similar scaling in c. This is only true if in-
creasing values of (P) are maintained in toroidal force
balance by increasing the vertical field, but keeping the
toroidal current fixed Such a proce. dure is very can-
venient for numerical calculations. .. but does not in gen-
eral represent the physical evolution of a given experi-
mental discharge. This problem is addressed in Sec.
IV.C.6 on "The flux-conserving tokamaks, " where it is
shown that an equilibrium limit of the type discussed
does not exist for interesting regimes of tokamak opera-
tion, although the nature of such equilibria changes qual-
itatively when (P)q* /s) 1.

Another interesting point to note about high-P
tokamak equilibria is that the toroidal current can re-
verse on the inside of the torus before the equilibrium
limit is reached. For the special model discussed, the
current reverses for —, & v & 1 on the cylindrical surface,

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems

&P&q*2/E=s&P& &, &P&/s becomes linearly dependent
on E&Pz & and in fact achieves its maximum value at the
equilibrium limit E&p& & =1. Consider now another real-
istic situation in which the most severe stability limita-
tions arise, not from the current, but from the value of
the safety factor on axis [i.e., q(0) &q, for stability]. In
this case the relationship for & p& should be written as

/ Byart const
&P& 2( ) &p

&q'(0)
qg2

(4.81)

PLASMA

where, after expanding the flux function about the mag-
netic axis and substituting into Eq. (4.39), it can be
shown that

1/2

q(0)=~o(4 fee) '"=q'
i)(2+iI )

g=(1+3v )' =(1+3m, &P &~)'~2 (4.82)

SEPA RAT h

Here the flux function is to be evaluated on the magnetic
axis, r =b, , 0=0. After substituting Eq. (4.82) into Eq.
(4.81) it is clear that the right-hand side is no longer a
simple linear function of E&p& &, but is now more com-
plicated. In fact the right-hand side has a maximum
when & sP& & =0.842, and gives

&P&q (0)/c. ~,„=&P&q, /a=0. 379 .
FLUX SURFACES

FICi. 18. The appearance of a separatrix in a high-P tokamak.

The curves of maximum &p& vs &p~ & are shown in Fig.
19 for the two cases q, =q~ and q, =q(0). These results
show that when stability is determined by q (0), the max-
imum & p & is not achieved at the equilibrium limit
sP& ——1, but at some slightly smaller value. This some-
what surprising result is a consequence of the fact that,
for the given profiles, as pz is increased the current must
be decreased in order to keep q (0) fixed, thereby weaken-
ing the restoring force for toroidal force balance.

An important conclusion from the above analysis is
that, in order to make predictions in the regime of the

R =Re(1—e/2v) . (4.79)
EQ U I L I BR I U M

A current reversal may be difficult to realize in systems
with finite conductivity, but this question lies outside the
scope of ideal MHD.

The question of the vertical field required for toroidal
force balance is easily answered by examining Eq. (4.77).
Since the u cos0 term explicitly represents the vertical-
field source, it follows that

I.O

0.8

&p, &. (4.80)
04

This result is consistent with the corresponding result for
the conventional tokamak given by Eq. (4.67) if one
keeps in mind that the &p~ & term would be I/s times
larger than other terms in the high-P ordering.

The final point to be discussed is a slightly subtle one
concerning the maximum &P& limit and its relation to q*
and the safety factor. Consider a system with a given
aspect ratio, whose most dangerous modes can be stabi-
lized by keeping the current below some critical value
(i.e., q* &q, ). Thus, if we set q*=q, in the relation

0.2

0 0.2 0.6 0.8 I.0
e(pp)

FIG. 19. Plot of (P) vs (P~) for the two cases q, =q* and

q, =q(0).
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high-p tokamak, one must exercise caution in distin-
guishing the various q's which appear and their relation
to stability, since they can lead to qualitatively different
results.

A number of numerical studies have been carried out
which investigate the equilibrium properties of high-p
tokamaks. [See, for instance, Callan and Dory (1972),
D'Ippolito et al. (1977), and Dory and Peng (1977).] A
particular example of a plasma with a circular cross sec-
tion is illustrated in Fig. 20. Note the large shift of the
peak plasma pressure. Also, to contain such high (P)'s,
the toroidal current peaks on the outside of the torus,
and reverses on the inside. The corresponding B~ profile
indicates that a diamagnetic well has formed and is pri-
marily responsible for radial pressure balance.

To summarize, a high-p tokamak is a configuration in
which radial pressure balance is provided almost entirely
by the toroidal field, as in a 8 pinch. The toroidal
current provides toroidal force balance but is limited in
magnitude by the stability condition q) 1. The large,
nearly vacuum, toroidal field is responsible for stability,
as in the conventional tokamak. In the regime of the
high-p tokamak, the (p) is raised to the largest value
that can be held in toroidal force balance by a current
satisfying q) 1. This leads to a scaling (p) -e, (p )
—I/e, which is one order larger in E than a conventional
tokamak. There will in general be an upper limit on the
achievable (p) s if, as (p) is raised, toroidal force bal-
ance is maintained by increasing the applied vertical field
but keeping the toroidal current and toroidal field fixed.
In this case a separatrix forms and ultimately moves
onto the plasma surface.

A more realistic description of the plasma behavior as
(P) increases is given in Sec. IV.C.6 on "The flux-
conserving tokamak. " This discussion begins with a
summary of the properties of noncircular tokamaks.

further optimization can be performed, leading to higher
p's (see, for instance, Solov'ev et al. , 1969; Laval et al. ,
1971, 1972, 1974; Freidberg and Haas, 1974). The intui-
tive prescription for optimization follows from the modi-
fication of the basic equilibrium relation given by Eq.
(4.59). For noncircular configurations, this relation
(which is derived later for a specific model) has the form

q
)AC 2

G(C/2~a) . (4.83)

ab80 ~2 y2

,2+ b2
—' (4.84)

Here e—:a/Ro, and a is the width of the minor plasma
radius. The quantity 6 is a geometric factor describing
the effects of noncircularity and is a function of C/2+a,
where C is the poloidal plasma circumference. For a cir-
cular cross section 6~1, whereas for highly elongated
shapes G-(C/2m'a) .

It thus follows that, for fixed (pz ) and inverse aspect
ratio e, the value of (p) increases quadratically with
minor circumference if the Ualue of q* required for stabil
ity is independent of elongation; that is, either conven-
tional or high-p tokamaks with highly elongated cross
sections should be capable of achieving much higher (P)
values. In practice, however, the critical q for stability
is also an increasing function of elongation, so that the
gains in (P) are not as large as might initially be antici-
pated. Nevertheless, these gains still remain significant.

A brief description is now given of a simple noncircu-
lar equilibrium from which the function G can be explic-
itly calculated. If one reexamines the high-p equilibrium
discussed in Sec. IV.C.4 one can easily see by direct sub-
stitution that, for G'(fo) = —A and p'(P )=o—C, the
solution to the corresponding Grad-Shafranov equation
[Eq. (4.71)] for an elliptically shaped plasma is given by

5. Noncircular tokamaks

The second method which has received serious atten-
tion for increasing p in a tokamak is that of using a
noncircular cross section. It is clear that if one allows
an additional degree of freedom in the equilibrium, a

IRo
q* 2~ab8o

2ab

a +b
(4.85)

Here x and y are horizontal and vertical rectangular
coordinates, a is the width of the ellipse, and b is the
height of the ellipse. The quantity q~ is defined by

The geometric factor associated with q* has been chosen
so that, in the limit of low p (i.e., v—+0), q~~q (a). For
arbitrary v, q* and q (a) are related by

q
)fC

q(a) =
(1—v)

where, in Eqs. (4.84) and (4.86),

(4.86)

20

4a
3b +a

Using these relations, one can define (p~ ) as

(4.87)

Pp = 7.2
FIG. 20. Equilibrium flux plot for a high-P tokamak (from
Callan and Dory, 1972).

(P~)= fpdxdy (gI /8~) (4.88)

where g is a geometric factor chosen so that (p&) =1
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when v~O, 6. The flux-conserving tokamak

g =2ab/(a +b ) . (4.89)

Combining these results, one obtains the basic equilibri-
um relation

(p, )E'

q+ 2
b +a

2a
(4.90)

Consider the application of Eq. (4.90) to a convention-
al tokamak, (p&) =1. For fixed inverse aspect ratio E,
the value of (p) increases quadratically with b/a for
b/a »1 if the value of q~ for stability is independent of
elongation. In the high-p regime, there is an equilibrium
limit, as in the circular case. For the noncircular case,
the equilibrium limit v= 1 is given by

3b +a
4a

(4.91)

FICx. 21. Equilibrium flux plot of the JET tokamak showing
both elongation and triangulanty. Also shown are the pres-
sure, toroidal field, and toroidal current along the midplane
Z=O. (Courtesy J. A. %'esson, Culham Laboratory, 1981).

Here also the limiting (P) scales quadratically with b/a
for b/a »1 and q* fixed.

There have been a number of recent analytical and nu-
merical investigations of the stability of noncircular
tokamaks (Sykes et al. , 1977; D'Ippolito et al. , 1978;
Todd et a/. , 1979; and Bernard et al. , 1980). However,
there is still no uniquely defined, optimal cross section.
There are strong indications that the critical q~ for sta-
bility is an increasing function of elongation, thus nulli-

fying much of the gain anticipated for b/a »1. This,
coupled with various technological constraints and
vertical-stability requirements, leads one to infer that
elongations on the order of 2:1 may be optimum in the
practical sense.

The theoretical studies have also shown that a com-
bination of elongation and outward-pointing triangularity
can have a net stabilizing effect on certain classes of
internal instabilities. A particular example of a major
tokamak which makes use of this stabilization is the JET
experiment being built in England (IAEA, 1976). A nu-
merically computed equilibrium of this device is shown
in Fig. 21.

A more detailed discussion of the effects of noncircu-
larity on MHD stability is given in Sec. V.

The existence of an equilibrium (p) limit for high-p
tokamaks has been shown to be strongly coupled to the
constraint imposed on the safety factor. In particular,
for fixed profiles, if the current (i.e., 1/q*) or the safety
factor on axis is kept fixed, there exists an equilibrium
limit. However, it has also been pointed out that numer-
ically computed equilibria satisfying either of these con-
straints do not in general represent the actual evolution
of a given plasma discharge. Shafranov (Shafranov,
1971; Mukhovatov and Shafranov, 1971), in fact, first
noted that a tokamak surrounded by a perfectly conduct-
ing shell could not evolve in such a way as to form a
separatrix if one did not originally exist because of the
topological constraints of ideal MHD; thus it would ap-
pear that such systems do not have an equilibrium (p)
limit.

This problem has been resolved by the concept of the
flux-conserving tokamak (Clarke and Sigmar, 1977; Dory
and Peng, 1977). Here the evolution to higher p is
governed by a different set of constraints and leads to
the conclusion that no equilibrium (p) limit exists. The
basic idea is to model the actual evolution of a single
plasma discharge by devising a realistic prescription for
choosing the free functions p(g) and F(P). This is done
as follows. Consider a system which is initially operated
as a conventional tokamak, p-E,p&-1. The plasma is
then heated by a high-power external source, neutral
beams for instance. It is assumed that the time scale for
heating is long compared to characteristic Alfven times.
Thus MHD inertial effects are negligible, and the plasma
evolution can be viewed as a series of quasistatic equilib-
ria, each one satisfying the Grad-Shafranov equation.
On the other hand, the time scale for heating is assumed
to be short compared to the magnetic diffusion time,
whether it is classical or anomalous. In this situation
the plasma behaves like a perfect conductor during the
heating process.

Keeping these assumptions in mind, the function p (g)
can be modeled by a weighted scaling of the initial pres-
sure distribution associated with the conventional
tokamak operation; that is, p (P) = W(t/r)p;(g), with p;(P)
the initial pressure distribution and 8'(g) the weight
factor. Since the theory and computation of neutral-
beam deposition are reasonably well understood, it is not
very difficult to obtain good approximations for JY(g).
These approximations directly specify the evolution of
p (f) in the Grad-Shafranov equation and thus eliminate
the need for solving the energy transport equation.

The interesting new feature of the Aux-conserving
tokamak is the specification of F(g). Since the plasma
behaves like a perfect conductor during the heating pro-
cess, both the toroidal and poloidal fluxes are conserved,
and it is this condition which determines F(P). To find
the relationship for F(P), first imagine that in each
quasistatic equilibrium the flux surfaces are labeled by
/=const. Since the poloidal flux g~ =2~/, flux sur-
faces with the same g label in different equilibria by def-
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q
)fC

(1—2)tn (4.96)

(2) qp [Eqs. (4.82) and (4.84)]
' 1/2

qp= q*, q=(1+3v )'~3

g(2+g) (4.97)

(3) general equilibrium [Eq. (4.90)]

2a(1 —v )

1+ (4.98)

(4) v*

3+cx

3/2

Here a=a/b and v and q* are defined in Eqs. (4.85) and
(4.87). These should be viewed as four equations for the
four unknowns, v, a, q*, and E(P~ },which are functions
of v* for fixed q, qp.

Dividing Eq. (4.97) by Eq. (4.96) indicates that v is in-
dependent of v~ and is a function only of ratio
k =q, /qp. .

as (P}~00. This is in contrast to what one might ex-
pect from the equilibrium relation, Eq. (4.74), which
would indicate (Pz } and (P} increasing in unison. The
explanation is again associated with the fact that, for
large (P} both the pressure and current are increasing,
causing the ratio (Pz } -p/I to saturate.

Although the simple model just described predicts the
correct qualitative behavior of the flux-conserving
tokamak, the results can be further quantified by adding
an additional degree of freedom which allows both q,
and qp =q (0) to remain fixed as (P} increases.

An intuitive choice for this freedom is as follows. Re-
call that the explicit choices p ~ (P) =const, G2 (g) =const
give rise to a current profile with a jurnp at the surface
[see Eq. (4.72) and the accompanying discussion]. This
model thus describes the core of a more realistic plasma
in which the current vanishes on the boundary. In a
realistic plasma, as (P} increases, the flux surfaces are
shifted further outward. As a consequence one would
expect the plasma core to be compressed, assuming a
vertically elongated shape. As an approximation to this
behavior, the simple circular model is generalized to al-
low for an elliptical cross section (of width a and height
b). The ellipticity represents the extra degree of freedom
and must be adjusted to keep q(0) constant as (P} in-
creases.

Using the results of the previous section, the critical
relations for the Aux-conserving tokamak can be easily
derived. Assume that q„qp, and the plasma cross-
sectional area nab are held fixed during the external
heating. An appropriate definition of the heating
parameter is then v* =(P}q,/e, where E =(ab)'~ /Rp.
One then calculates:

(1) q, [Eq. (4.86)]

1 (k —1)(3k + 1)
(k+1)

(4.100)

The dependence of u on v* now follows directly from
Eq. (4.99). For simplicity assume that the initial state
corresponds to a conventional tokamak, v* «1. In such
a state, the constant-current model predicts q, =qp, lead-
ing to a value of v«1. Thus the heating process begins
with v~ =v && 1 and a circular cross section n = 1
—(v~/v —1) . . . After substantial heating has taken
place (i.e., (P}-v*~ oo ), the cross section becomes
quite elongated: a = (3v/4v*) ~ .

Assuming a=a(v*) is known, it is straightforward to
calculate e(P~ } from Eq. (4.98) and I/Ip from the rela-
tion

I
Ip

(1—2)-'" 1+a'
qa 2a

Ip
(4/»)' '

2qa
g 2/3 (4.101)

These results are also illustrated in Fig. 22. As in the
simpler model, the current I increases with (P}, thereby
allowing higher (P}'s to be maintained in toroidal force
balance without the appearance of a separatrix on the
plasma surface. The quantity E(P~ } increases linearly
with (P} for v*&&1. At large v* the curve bends over,
but does not saturate as in the simple model.

The basic features of the flux-conserving tokamak dis-
cussed above were first found in a more sophisticated an-
alytic theory by Clarke and Sigmar (1977) and a series of
numerical computations by Dory and Peng (1977). The
results just presented are in qualitative agreement with
the analytic theory, although the scaling of I with (P} is
slightly different, presumably bemuse of different as-
sumptions regarding the shape of the cross section. An
example of a series of numerically computed flux-
conserving equilibria is illustrated in Fig. 23. Note the
large shift and elongation of the flux surfaces as (P} in-
creases. This is accompanied by a strong peaking of the
current on the outside of the torus. Also plotted for
comparison is the behavior of E(P~ } and I/Ip as a func-
tion of the heating parameter v~. This should be com-
pared with Fig. 22. In all cases, substantial increases in
the toroidal current and vertical field are required to
maintain equilibrium as the plasma evolves.

To summarize, a Aux-conserving tokamak is an exter-
nally heated high-P tokamak in which the heating rate is
slow compared to Alfven times and fast compared to the
magnetic diffusion time. In this regime the plasma
behaves like a perfect conductor, passing through a series
of quasistatic equilibria during the heating phase. The
requirements of flux conservation, in addition to a sim-

where, for this case, Ip 2m.abBp——/Rp. Note that in the
initial low-(P} state, E(P~} =v* and I/Ip =1/q, . For
large heating (v*~ ao ) there is again no equilibrium lim-
it and

c,(Pp }=[2(3v/4) ~ ]v*'
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p =1.2 /e
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& g) ( /o)

FICx. 23. Series of flux-conserving equilibria for increasing values of (P) (from Dory and Peng, 1977). Also shown are plots of
e(P~) and I vs (P)-v~, which should be compared with Fig. 22.

pie modeling of the heating, serve to determine the func-
tions p (g) and F(g) for each quasistatic state. The most
interesting feature of the Aux-conserving tokamak is that
no equilibrium (P) limit exists, although when

s(P~) —1, the profiles become quite peaked on the out-
side of the torus. The avoidance of the equilibrium limit
is accomplished by a combination of increased toroidal
current, increased vertical field, and reshaping of the
plasma core. In practice the assumption of slow magnet-
ic diffusion will likely break down at some point because
of anomalies created by the increased (P). Such ques-
tions lie outside the realm of ideal MHD. Nevertheless,
the fact that no equilibrium limit is set by ideal MHD
must be viewed as an optimistic result for tokamaks.

D. Three-dimensional configurations

In the previous section it was shown that toroidal
MHD equilibria possessing axisymmetry could be con-

structed from the ideal MHD model. Specifically, the
RFP and the various types of tokamaks are of this class.
Although radial pressure balance could be predominantly
that of a 8 pinch or a Z pinch, each configuration re-
quires sufficient toroidal current to counterbalance the
outward toroidal drift force.

The present section considers toroidal MHD equilibria
which are inherently three dimensional. The motivation
for investigating such obviously more complicated
equilibria is that they possess the potential for providing
toroidal confinement without the need of a net toroidal
current. This makes the possibility of ultimately achiev-
ing a steady-state fusion reactor more feasible, since such
configurations no longer require a toroidal current
transformer.

The basic configurations of interest are: (1) the Elmo
bumpy torus, (2) the conventional stellarator, and (3) the
high-P stellarator. Although they appear physically
quite different, each can be reasonably accurately
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categorized as a toroidal helix. For all three configura-
tions, radial pressure balance corresponds to that of a 0
pinch, while toroidal force balance results from the
development of slightly subtle helically induced restoring
forces. There are two such forces, each one important,
representing the basic mechanisms for providing toroidal
force balance in configurations with no net toroidal
current.

Because of the lack of symmetry, no exact Grad-
Shafranov-like equation can be derived for any of these
concepts. As a result, equilibrium investigations have re-
lied either on asymptotic expansions or on numerical
computations. Regarding the analytic studies, there is
evidence that "exact" three-dimensional equilibria may
not even exist (Grad, 1967a); that is, small changes in the
boundary conditions can lead to large changes in the to-
pological structure of the flux surfaces —for example, the
formation of fine-scale magnetic islands. Although such
phenomena may be unimportant or dominated by other
physics in a real experiment, the inevitability of their ex-
istence in three-dimensional MHD equilibria implies that
asymptotic analysis may not only be mathematically
simpler but may represent the most useful and accurate
procedure for practical applications. It is this approach
which is followed here. For each of the configurations
of interest, an appropriate asymptotic expansion is for-
mulated which demonstrates the basic nature of the radi-
al pressure balance and the toroidal force balance.

It should be noted that the existence of exact three-
dimensional equilibria raises no problems if all the mag-
netic field lines are closed (Lortz, 1970).

MAGNET IC

FIG. 24. Geometry for calculating the closed-line "flux func-
tion. "

JV.Jdr= JJ dS=O. (4.102)

&XVp (4.103)

Qn surfaces A and A', lying on the p =const contours,
the differential area element dS points in the Vp direc-
tion. Since J.Vp =0 in equilibrium, the surface contri-
bution on A and A' must vanish; that is, the current
flows parallel to constant-pressure surfaces. Keeping in
mind that the magnetic lines lie on constant-p surfaces,
the differential area element on C and C' can be written

Flux function in a closed-line system

The first configuration to be investigated is the Elmo
bumpy torus (EBT). One basic feature of this concept is
that all the magnetic lines exactly close on themselves
(i.e., the rotational transform ~ equals zero). In this con-
nection it is useful to derive a general equilibrium rela-
tion, valid for any closed-line toroidal system, before
proceeding with the specific formulation of the EBT
configuration.

In a system with ergodic field lines, the constant-
pressure surfaces can be traced out by following magnet-
ic field line trajectories many transits around the torus.
In the axisymmetric torus, these surfaces are labeled by
the poloidal flux, g, and p =p(g). Consequently con-
tours of constant flux also correspond to surfaces of con-
stant pressure. In a closed-line system, however, a mag-
netic line by definition does not trace out a surface. The
question that is then posed is whether or not an
equivalent "flux function" for determining the pressure
contours exists for closed-line systems. The answer is
that there is such a function, and its specific form is ob-
tained from the following derivation (Shafranov, 1966).

Consider two contours of constant pressure in a
closed-line system, as illustrated in Fig. 24. Upon in-
tegrating V.J=O over the shaded volume, one obtains

Here dl=(B/8)dl represents the arc length along the
magnetic field, and dr =(Vp/

~
Vp

~
)dp represents the

"radial" line element expressed in terms of p. Using the
fact tht J~ =(BXVp)/B, it then follows from Eq.
(4.102) that

dpdl I dpdl
c g c' (4.104)

Equation (4.104) expresses the condition that the current
I flowing into C' equals the current I flowing out of C.
Consider the limit in which the two pressure surfaces are
arbitrarily close to one another, p2 ——p~ +5p, 5p/p~~O.
In this limit, the current I flowing out of C is given by

(4.105)

where the line integral is taken along the magnetic line
contained in the surface C as it shrinks when 5p~0.
Equation (4.104) implies that I will be the same for any
other arbitrary surface C' bounded by p& and pI+6p.
This can only be true if the quantity

(4.106)

is constant on every magnetic line lying on the constant-
pressure surface. Note that the differential volume dV
of a small flux tube with cross-sectional area dA and Aux
d+=BdA is given by dV(%) =dW I dl/B; U is the

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems

volume per unit flux.
To summarize, in a closed-line system, U plays the

role of the Aux function. It is determined directly from
the magnetic field, and surfaces of constant U corre-
spond to surfaces of constant p, so that p =p ( U).

imation to the actual experiments and serves to separate
a number of physical phenomena such as radial pressure
balance, toroidal force balance, maximum P, scaling with
aspect ratio, etc. The basic expansion parameter is the
amplitude of the bumpy fields created by the mirror
coils,

2. The Elmo bumpy torus (EBT) 6= +max +min

+max ++min
(4.107)

The Elmo bumpy torus is the simplest of the three-
dimensional configurations discussed in this section.
Even so, analysis of EBT equilibrium properties requires
very lengthy algebraic calculations (Hedrick, 1979; Grad,
1971; and Freidberg, 1980). For this reason it is more
appropriate to outline the main features of the analysis
and then summarize the results.

The Elmo bumpy torus is a large-aspect-ratio, closed-
line, toroidal configuration consisting of a series of
linked mirrors, as shown schematically in Fig. 25
(McAlees et al. , 1976; Hedrick et aI. , 1977). The mirror
coils produce a magnetic field with periodic variation in
the toroidal direction, thus producing localized mirror
cells or "bumps. " There is no net toroidal current in the
EBT configuration. Midway between each mirror coil,
in the bulge region, is a hot electron ring generated by a
high-power rf source resonant with the electron cyclo-
tron frequency. The resonant radius where the ring is
formed determines the radial boundary of the main
toroidal plasma. The electron rings have several crucial
roles in the EBT concept. First, they must ultimately
provide a large fraction of the heating in the main
toroidal plasma, since they themselves are typically at
several hundred keV due to their resonant formation.
Second, they are vital for the stability of the main plas-
ma core. Without the rings, the system would be un-

stable to both gross and localized MHD modes. Interest-
ingly enough, the rings are not required to produce the
equilibrium itself, only to stabilize it. For this reason
the treatment of the rings can be greatly simplified for
equilibrium calculations by assuming the ring pressure is
isotropic. Consequently the pressure p appearing in the
MHD equilibrium equations consists of two contribu-
t&ons p =@~ +@~~ whcIc p~ 1S thc pressure of thc toroldal
plasma core and p, is the electron ring pressure.

The basic physical issues associated with Elmo bumpy
torus equilibria can be investigated by means of the EBT
expansion. This expansion provides a reasonable approx-

BUMP Y F lELD

P-5, a/R0-5, ha —1,
V= V'0+(a/RO)VT, Vo —V'T —1 . (4.108)

Here I. =2~/h is the spacing between the mirror coils,
and the gradient operator has been expanded as a
straight cylindrical part 7o plus a toroidal correction
(a/Ro)VT. In the expansion, the toroidal effects are as-
sumed to be very small, a/Ro —5, thus spreading out
the mlculation over several orders. This has been delib-
erately done to demonstrate that toroidicity is required
only as a mechanism to close the magnetic lines and has
no significant effects on the stability.

Consider now the EBT expansion, order by order. In
zeroth order the only field present is a uniform vacuum
field pointing in the toroidal direction. Hence

&o——&oe~, Bo——const,

Jo=ao=o- (4.109)

In first order a small bumpy vacuum field is added
representing the effect of the mirror coils. This field
satisfies

(4.110)

In this order the fields are azimuthally symmetric, so
that B& ——B,(r,z), where z =Rag represents length along
the toroidal direction. Bemuse of the symmetry, one can
write B~ ——(VQ~Xeo)/r. For sinusoidal bumps, g~(r, z)
=g&(r) cos(hz) with P&(r) satisfying

Typically 5= —, in actual experiments, so that while the
expansion may be qualitatively correct it should not be
used for quantitative predictions. In the EBT expansion
it is necessary to carry out the calculation to fifth order
in 5 in order to account for the small, but nevertheless
unavoidable, toroidal effects. As for axisymmetric
toroidal equilibrium, the calculation is carried out in
(r, 8) poloidal coordinates (see Fig. 15). In terms of 5,
the basic EBT expansion is given by

(4.111)

FIG. 25. Schematic diagram of the Elmo bumpy torus.

A regularity condition at r =0 and specification of the
amplitude of the bumps is sufficient to uniquely deter-
mine g~.

In second order the effects of the pressure first enter
the calculation. The inverse aspect ratio is ordered suffi-
ciently small so that in this order the pressure contours
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Vo 83——(a /R0)Vz" Bo ~ (4.113)

There are a number of inhomogeneous terms driving the
third-order fields. First, the (VOX82) XB~ gives rise to
a diamagnetic correction to the bumpy vacuum field of
order pB~ -5 . The resulting field 83 is only a function
of (r,z) and hence can be written as 83(r,z)
= ( V/3 Xee) /r with g3 satisfying

I r g

r pr —h 1(3=—— g~(r),
2 f'

P(.) =2p, /B,'-S' . (4.114)

Second, it is here that the toroidal effects first enter the
calculation, and the last term in Eq. (4.113) gives rise to
the well-known (r/Ro)cos8 correction to B&, resulting
from the 1/R dependence associated with the geometry.

are nested circles (i.e., toroidal distortions of the plasma
appear in higher order). Consequently all quantities are
functions only of r, and the second-order equations
describe the radial pressure balance of EBT, which corre-
sponds to that of a low-p 8 pinch:

Bp——B2(r)ep, Jz ——J2(r)ee, p2 ——p2(r),

(VOX Bp) XBO—VOp2 ——0, (p2+BOB2)'=0 . (4.112)

The pressure is ordered as 5 so that the "magnetic well"
contribution due to the electron rings is comparable to
the average destabilizing effect of the bumpy field. Here
a magnetic well refers to the sign of the quantity BU/Br,
U being the "flux function" for closed-line systems de-
fined in Eq. (4.106). It has been shown that the magnet-
ic well quantity BU/Br plays a very important role in
the stability of closed-line systems. [See, for instance,
Kadomtsev (1960), Nelson and Hedrick (1979).] For the
present, it is sufficient to note that a bumpy field of or-
der 6 produces destabilizing effects of order 5 . These
can be compensated for by electron rings with p-5 by
adjusting the profile and p to produce a magnetic well
(i.e., BU/Br &0). It should also be noted that equilibria
exist with P, —:2p, /Bo —1 and P, —:2p, /B o -5, still
possessing a magnetic well. Such equilibria are more
complicated to analyze; for simplicity, p, has been or-
dered so that P, —P, -5 .

Continuing, in third order, the equilibrium equations
are given by

(Vox 83)x Bp—Vop3

= —(VOX82) xB)—(~/Ro)(VT xBp) x Bo,

83—83(r, z) + [B3(r) —Bo(r /R o ) ] cos8 e~

p3 =p3(r, z)+p3(r) cos8, (p3+BOB3)'=0 . (4.115)

The fourth-order equations are quite complicated:

(VOXBg) XBO—VOP4

( Vo X83 ) X8] ( VOX 82) X82

—(0/Ro)[(VT X Bo) XB~ —(VT X 8])X Bo]

VO. 84———(a/Ro)VT 8) . (4.116)

Of the many driving terms, the only ones which ulti-
mately affect the fifth-order toroidal force balance are
those with explicit 0 dependence. There are two such
contributions. One represents the toroidal correction to
the bumpy vacuum field (i.e., the terms multiplied by
a/Ro). Since these are corrections to a vacuum field,
their contribution eventually cancels when one computes
force balance. The most important contribution arises
from the ( VQ X 83) XB~ term and represents the develop-
ment of sideband fields resulting from the fact that the
plasma is no longer centered in the bumpy vacuum
fields:, that is, because of the cosO shift of the flux sur-
faces associated with the homogeneous terms (B3,p3),
the basic bumpy field develops sidebands of the form B4
=B4(r,z)exp(+i8) It is the .currents associated with
these sideband fields that ultimately provide the toroidal
force balance (Ribe, 1969; Miller, 1977). The solution to
Eq. (4.116) is somewhat tedious; it suffices to say that
after a straightforward but lengthy calculation the 0-
dependent, fourth-order fields can be explicitly deter-
mined.

Finally, consider the fifth-order momentum equation,

Finally, there are homogeneous solutions of the form
B3( r, 8 )e~,p 3 ( r, 8 ) which must be included. It is a fairly
common occurrence in three-dimensional equilibrium
calculations that homogeneous solutions must be allowed
at some intermediate order to satisfy a periodicity con-
straint occurring at some higher order. This "higher or-
der" corresponds to the condition for toroidal force bal-
ance. Since the outward toroidal force is of order
p( a /R o ) [see Eq. (4.17)], the EBT expansion must be
carried out to fifth order to determine the homogeneous
terms. The results of this calculation show that B3 and

P3 are of the form B3 ——B3(r)cos8 and p3 ——p3(r) cos8,
indicating that the distortion of the flux surfaces has the
form of a small toroidal shift. Combining these results,
one can write the total third-order fields as

(VOX 85) X Bo—Vop~ ———(Vox 84) X B~—(V'OX 83) X 82 (V'pX 82) X 83

—(a/Ro)[(V~ XB )XB +(V' XB~)XB~+(VTXB,)XB,] . (4.117)

The toroidal force balance periodicity constraint arises
because the fifth-order fields S5 and p5 vanish when the
operation BO.VX(Eq. (4.117)) is performed. Here ( )
denotes an average over one period of the bumpy field,
and performing this average focuses attention on the net

toroidal forces. The toroidal constraint can only be
satisfied by properly choosing the as yet undetermined
homogeneous field 83. Note that when the operation
Bo.V'OX ( ) is performed on any of the lower-order
equations, the resulting constraints are trivially satisfied,
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so that no other homogeneous terms are required.
Evaluation of the toroidal constraint again involves con-
siderable algebra. The details of this calculation show
that there are two outward toroidal forces, one due to
the 1/R effect of the geometry and one due to the
"rubber tire tube" effect (see Sec. IV.A.6), just as in a
toroidal 0 pinch. As previously stated, there is only one
force to compensate for this outward force. It arises
from the ( Vp X B4) X8 i term and corresponds to the in-
teraction of the basic bumpy field with the sideband
current.

The overall results of the calculation are summarized
below. The magnetic field and pressure, correct to third
order, are given by (Freidberg, 1980)

8=Bo 1 ——,P— —,P, + cos8 e~R

+—Vo[(pi+i/r3) cos(hz)] Xee,1

2p
2 =P+P, cosO+P' cos(hz),

Bp rBp

(4.118)

where P(r) is assumed given and

Bp5
i/, (r) = r Ip(hr)

I
i

1/3(r) = , i/ i(r) 1—, f g, (y)dy, (4.1 19)
r i/j2(x ) 0 y

2p3(r)
p, (r)=

Bp

2Bp r 4p

h Ro gi(2rg/i', —P, )

An examination of these results indicates the following.
Toroidal closed-line EBT equilibria with no net toroidal
current exist in the asymptotic sense. For these equilib-
ria radial pressure balance is similar to that in a low-P
toroidal 0 pinch. The outward toroidal drift force is bal-
anced by the sideband force resulting from the interac-
tion of the basic bumpy field with the sideband currents
generated by the toroidal shift of the plasma. The
toroidal shift b, = —p, /p', as given by Eq. (4.119), is,
perhaps surprisingly, inward. This is a clear indication
of instability (i.e., displacement and restoring force in the
same direction), and were it not for a special treatment
of the electron rings in the stability analysis, this would
indeed be so. This question is discussed in more detai1
in Sec. V. In the EBT expansion, p-/i -(a/R) ~, in-
dicating that p is higher than in the high-p tokamak.
Finally, it is interesting to note that evaluation of the
toroidal force balance constraint yields an algebraic ex-
pression for p, (r) rather than a partial differential equa-
tion such as the Grad-Shafranov equation for axisym-
metric tokamak equilibria. The question of whether
toroidal force balance is algebraic or differential is of
fundamental importance in distinguishing different con-
figurations. Analysis of the conventional and high-P

stellarator sheds further light on this question, and a
more complete discussion is deferred until later.

3. The high-P stellarator (HBS)

Note that the amplitudes of the sideband fields and the
main helical field are assumed to be comparable. In
terms of 5, the HBS expansion is given by

P- 1, a/Rp-5, ha —1,
V =Vp+(a/Rp)VT Vp VT 1

(4.121)

As in EBT, Vp is the straight cylindrical operator and

Although the high-p stellarator effort in the interna-
tional fusion program has been greatly reduced in recent
years, the concept itself remains of significant scientific
interest, particularly for aiding in the understanding of
the relation between EBT, the conventional stellarator,
and the high-p tokamak. In fact, the basic physical idea
of achieving toroidal force balance by means of a helical
sideband field originated with the analysis of high-p stel-
larator equilibria (Blank et al. , 1969; Rosenbluth et al. ,
1969; Ribe, 1969; Miller, 1977; Freidberg et al. , 1979).

A high-p stellarator is a large-aspect-ratio, high-p
toroidal device whose magnetic field configuration con-
sists primarily of: (1) a large toroidal field, (2) a
moderate sized helical field characterized by /0+hz, (3).
one or two small, externally applied helical sideband
fields characterized by (l+ 1)6)+hz, and (4) no net
toroidal current. Here z =RotI), I- =2m. /h is the helical
period, and l describes the multipolarity of the helical
field. Since high-p stellarators operate as short pulse de-
vices (r(100 psec), the required helical fields can be
generated not only by externally applied coils, as in the
ISAR experiment (Funfer et al. , 1975), but equally well
by shaping the surface of the surrounding copper wall,
as in the Scyllac experiment (Ellis et a/. , 1974). A typi-
cal example of a Scyllac conducting shell is shown in
Fig. 26. Here, as in all high-p stellarators, the main hel-
ical field corresponds to l =1 (for stability reasons), and
in this particular case the sideband field corresponds to
I =o.

The basic physical questions associated with high-p
stellarator equilibria are addressed by the HBS expan-
sion. Conceptually, the Elmo bumpy torus and high-P
stellarator expansions are very similar. However, be-
cause of the high p, the HBS expansion is significantly
compressed, so that one need only carry out the calcula-
tion to second order to compute toroidal force balance.
In this connection, it is worthwhile pointing out that
with regard to MHD equilibria, the EBT can be con-
sidered as the low-P limit of an / =0, high-P stellarator.
Similarly, if the hot electron rings are ignored, then a
finite-p EBT is equivalent to an / =0, high-p stellarator.

The basic parameter of the HBS expansion is the ratio
of the helical field amplitude to the main toroidal field
(Blank et al. , 1969; Rosenbluth et al. , 1969).

(4.120)
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FIG. 26. Shaped conducting wall for producing an
1=1,0 high-P stellarator configuration in the Scyllac ex-
periment (courtesy K. F. McKenna, Los Alarnos Scien-
tific Laboratory, 1981).

(g/Ro)VT is the toroidal correction. Since the outward
toroidal force is of order P(a/Ro), the expansion must
be carried out to second order to include the effects of
toroidal force balance. [Nonlinear high-P stellarator
equilibria without expansions have been calculated nu-
merically by Brackbill and Pracht (1973), Betancourt and
Garabedian (1976), and Barnes and Brackbill (1977).]

Consider now the HBS expansion order by order. The
zeroth-order equations describe radial pressure balance.
As no net current flows in a high-13 stellarator, the
zeroth-order field is purely in the toroidal direction, Bo
=Boe~. Since P- 1, there is also a nonzero pressure po
and current Jo. A crucial feature of the HBS expansion
is that the lowest-order quantities must all be functions
of (r, O); that is, the tempting hypothesis which assumes
all zero-order quantities to be cylindrically symmetric
(i.e., only functions of r) leads to an overdetermined sys-
tern with no solutions. The zeroth-order equations are
given by

(VoXBo) XBo—Vopo=0 Vo'Bo=o

po =po(r, O), Bo——Bo(r, O)e~,

which simplify to

( Vo X Bo) XB) + ( Vo XB
& ) X Bo—Vop &

——0,
~o Bi=0 . (4.124)

The first-order fields are assumed to contain an arbitrary
number of helical fields with different I values but all
with the same pitch number h. These fields can be ex-
pressed as

B~(r,O,z) =B~(r,O) exp(ihz)+c. c. ,

p&(r, O,z) =p, (r, O) exp(ihz)+c. c. (4.125)

Equation (4.123) shows that radial pressure balance in
a high-P stellarator corresponds to that in a 8 pinch.
Since po ——po(r, O), the zeroth-order pressure surfaces are
allowed to have finite noncircular distortions which are
as yet undetermined. In fact, the function po(r, O) exact-
ly corresponds to the third-order homogeneous solution
of the EBT expansion. Because of the high P and the
assumption a/Ro-5 rather than 5, the homogeneous
solutions appear in zeroth order. Also the toroidal ef-
fects on the flux surfaces are finite and in general distort
the shape of the surfaces as well as shifting them.

In first order the main helical field and all helical
sideband fields are added. These fields satisfy

Vo(po+B o/2) =0 . (4.123) Straightforward analysis shows that the first-order quan-
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tities can be expressed in terms of a single scalar func-
tion @(r,8) as follows:

B)g(r, 8)= ( 1/Bp )Vg@,

p&(r, 8) =ih0&,

B)p
——(i/h )V~ B.)~,

(4.126)

where l refers to the poloidal plane. The function @ sa-
tisfies

V~4& —h @+(VQ Vg@)/(1 —P) =0,
P(r, 8) =2pp(r, 8)/B, =1 Bp—/B, , (4.127)

There are two inhomogeneous terms driving the second-
order fields. The (a/Rp) term represents the outward
toroidal force on the plasma. The (VpXB~)XB~ term
represents the force associated with the helical field in-
teraction. This restoring force is slightly more compli-
mted than for EBT bemuse the expansion has been
compressed. Thus the term includes the interaction of
any given helical field component with both its own
current and its sideband currents. As with EBT, the
most important information contained in Eq. (4.128) ar-
ises from the z-averaged part of R. In particular, if one
performs the operation Bp VpX (Eq. (4.128)), the expli-
cit second-order fields vanish, leading to the toroidal
force balance constraint e~ VpX(R)=0. After consid-
erable algebra, this constraint can be written as (Freid-
berg et al. , 1979)

~

cp
~

=B,(1—p) [G(p) —(r/Rp)cos8] .

(4.129)

Here G (p) is an arbitrary free function resulting from an
integration of the constraint equation. Before discussing
Eq. (4.129), it should be pointed out that Bp. (R) is in
general nonzero (although it is zero for the special case
of closed-line symmetry corresponding to EBT). To bal-
ance this term, a second-order field of the form
B2=e~X VQ is required. After another lengthy calcula-
tion it can be shown that 2 is given by

ep V~@*XV~@-+H( ),
hB.' (1—P)'"

where H (P) is a second free integration function.

(4.130)

where B is the externally applied toroidal field.
For the boundary conditions it is assumed that the

plasma is surrounded by a shaped conducting shell
whose surface is given by r =b[1—XI buncos(l8+hz)],
with Ai-5. Specification of the heliml distortions 4i,
combined with regularity at the origin, is sufficient to
uniquely determine 4& for a given P.

In second order the toroidal effects first enter the cal-
culation. The corresponding equations are given by

(V,XB,) XB,+(V', XB,) XB,—V~, =R,
R= —(V'pXB~) XB~—(a/&p)[(VT XBp) XBp—Vip],

(4.128)

Thus the equilibrium of a high-P stellarator is given
by the simultaneous solution of Eqs. (4.127) and (4.129),
a set of coupled nonlinear partial differential equations
for the unknowns N and p. In conjunction with Eq.
(4.130) there are, as expected, two free functions G(P)
and M(/3) to specify the equilibrium. The function M(P)
is directly coupled to the vector potential 2 and hence
the toroidal current. Assuming 4& and P have been cal-
culated, M (p) can then be adjusted to give any
prescribed averaged toroidal current distribution as a
function of pressure contour, including the pure stellara-
tor case where (J„,) =0 on each surface.

Consider now the toroidal force balance relation, Eq.
(4.129). There are basically two different ways in which
the toroidal drift force [i.e., the (r/Rp)cos8 term] can be
balanced. First, as in the case of EBT, a single helical
field can be used to create an equilibrium. In this situa-
tion, the plasma shifts with respect to the center of the
helical field, generating self-induced sideband currents.
In this limit an approximate solution can be obtained
by assuming P=gp(r)+13, (r)cos8 with P, &Pp and
@=@~(r)exp(il8). The purely radial parts of Eq. (4.127)
and (4.129) become

1 0+i'+ —+ @i-
r 1 —Pp

I2
+h2 C, =O,

p 2 (4.131)

12
+ 2 +h 4&E . (4.132)

r

(4.133)

This relationship is a high-P, arbitrary-l generalization of
the EBT shift given by Eq. (4.119) and reduces exactly
to Eq. (4.119) in the limit of low P, l =0,

For practical cases the predicted shift of the flux sur-
faces for a high-P, 1 =1 system is quite large. This leads
to a second method of creating toroidal force balance
and requires the addition of one or two small, externally
applied, helical sideband fields; that is, since the plasma
shift is determined by the induced sideband currents, it
should be possible to control the shift by applying exter-
nal sideband fields (Ribe, 1969). An approximate solu-

If one now treats Pp(r) as the given free function, Eq.
(4.131) can be easily solved numerically for N~, and Eq.
(4.132) can be used to determine G(Pp)=(1 —Pp) G(Pp).
Note that the self-interaction of a single helical field
leads to a purely radial dependence for the left-hand side
of Eq. (4.129) and a cylindrically symmetric Pp(r); that
is, the basic purpose of the main helical field is to re-
move the degeneracy of the pure 0 pinch by creating a
well-defined set of closed flux surfaces. The nature of
the torodial force balance can now be ascertained by
expanding G(P) =G(Pp)+6'(Pp)P, cos8 and equating the
cosO terms. After some algebra one finds

P, (r) =(1 Pp)'(rPp)(r/& —p)D

2

2(i+br�)@,

l 2 rPo

B, r r' 1 Pp—
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tion for this case can be obtained by writing

P(r) =Po(r)+P, (r}cos8

and

p, (r)=
r o 2

D
[(1—Po} («&o}+I'ti+i]

2, , l(l+ I)I1,1+1— 2 ~ 1 @1+1+ 2 +~ +1@'1+1
a r

(4.134)

Note that the interaction of a helical field I with either
of its sidebands I+1 gives rise to a force Fl 1+1 in the
same (or exactly opposite) direction as the toroidal drift
force. The @1+1 are determined by equating the
exp(+i8) components of Eq. (4.127) to zero. The result-

ing second-order, ordinary differential equations are
linear in %1+1, with an inhomogeneous term linearly
dependent on p, . Thus these equations, coupled with

Eq. (4.134), must be solved simultaneously. This re-

quires a lengthy calculation. However, it is intuitively
clear from Eq. (4.134) that by adjusting the amplitudes
of the main helical field and the externally applied side-
bands one can set the shift of any given flux surface to
zero. In particular, if the center of gravity of the plasma
coincides with the geometric center of the conducting
wall (i.e., I r p, dr =0) then the equilibrium relation for
a "zero-shift" high-p stellarator is given by

g 1,1+1~1~1+1+gl, 1 —1~1~1—1
2 (4.135)

Here the gt i+i are functions of &Po), a/b, and ha, and
are usually. determined numerically. In general the
dependence on a/b and ha is weak. For the special ex-

arnple of an /=1 system with a step-function pressure
profile, the coefficients can be obtained analytically in
the limit a/b, ha «1. The results are (Blank et ai.,
1969; Rosenbluth et al. , 1969)

2
g12 2 &P )

(3—2&P. &)
810 (2—&Po))(1—&Po&)

' (4.136)

where & Po) = [2m fpor dr]/[maB, /2]. .
A final point to note in the theory of high-P stellara-

tors is that the toroidal force balance constraint, given by
Eq. (4.129), is algebraic (in P) and not a partial differen-
tial equation as for tokamaks. This is another indication
of the similarity between EBT and high-p stellarator

@=Nt(r)exp(il8)

+Nt+, (r)exp[i (1+1)8]

with P, &Po and Nt+i&@t. The purely radial part of
the equilibrium is identical to the single helical field
case, and the same results and interpretation apply. The
nature of the toroidal force balance can again be ascer-
tained by expanding G(p) and equating the cos8 terms.
Qne finds

equilibria. The question of algebraic versus differential
is addressed at the end of the next section.

To summarize, large-aspect-ratio, toroidal, high-p stel-
larator equilibria without net toroidal current have been
shown to exist in the asymptotic sense. The radial pres-
sure balance of these equilibria corresponds to that of a
0 pinch. Toroidal force balance is achieved by the addi-
tion of a helical magnetic field. The interaction of this
helical field with either a shift-induced or externally ap-
plied sideband field produces a restoring force for
toroidal force balance.

In practice high-P stellarators have great difficulty in
achieving stable operation (Funfer et al. , 1975; Ellis
et al. , 1979}. The high p leads to relatively strong insta-
bilities, even for the optimized I =1 system, and can only
be stabilized by a very close conducting wall [see, for in-
stance, Davidson and Freidberg (1976)] or by feedback
stabilization (Ribe and Rosenbluth, 1970). Neither of
these can easily be achieved in a technologically attrac-
tive way, and as a result much, if not all, of the high-p
stellarator research has been stopped.

4. Stellarators, heliotrons, and torsatrons

The final three-dimensional concept to be discussed is
the conventional stellarator. This configuration, one of
the earliest suggested in the fusion program, is a large-
aspect-ratio, low-to-moderate-p, toroidal device whose
main field components are a large toroidal field and a
single, somewhat smaller helical field, usually I =2 or
l =3 (Spitzer, 1958). It can in principle operate with no
net toroidal current, although in practice such currents
are often present for purposes of ohmic heating [see Mi-
yamoto (1978) for a review of stellarator experiments].

Typical time scales for stellarator experiments are tens
of milliseconds, and future extrapolations are thought of
in terms of steady-state operation. Consequently the hel-
ical fields must be generated by means of external coils
(rather than a shaped copper shell), and three different
methods have been suggested —the stellarator, the
heliotron, and the torsatron, as illustrated schematically
in Fig. 27. The stellarator consists of 21 helical wires
with alternating direction of current flow, situated in a
large toroidal field. This is perhaps the most flexible
configuration from the point of view of physics, but
there exist very large forces, alternating inward and out-
ward on the helical coils, making extrapolations to
higher fields and larger experiments very unattractive, if
not impossible. The constraints imposed by the radially
inward forces are more severe, since the helical coils are
usually mounted on a relatively fragile vacuum chamber.
If the appropriate set of alternate helical coils is elim-
inated, the remaining coil set experiences only outward
forces. This is the heliotron. Although not quite as effi-
cient as a stellarator in generating helical fields, it has a
considerable structural advantage. Note that the helical
coil system itself produces a net toroidal field, since all
the currents flow in one direction. If in fact the external
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a nonzero contribution from the right-hand side which
can only be balanced by adding a homogeneous term to
82 of the form e~Q V'OA. After a lengthy calculation, 3
is found to be

A =
3 ep VIII&*XV'III&+H(p),

h8,

which is just the low-p limit of Eq. (4.13) in the HBS ex-
pansion. In conventional stellarators, it is customary to
label the pressure contours with a quantity l(o, the total
averaged poloidal flux. This is accomplished by noting
tliat, M (P ) = —fp/2IrR p and llereafter treating P=P( Qo)
as a free function.

The important difference between the high- and low-p
stellarator occurs in the toroidal force balance relation
Bp ' Vo X (R ) =0. Tllc dlffclcIlcc arises bccRllsc of tllc
additional force associated with the transverse field A.
In both cases, this force, (Vo XBz)XB2, is of fourth or-
der. However, in the HBS scaling the toroidal forces are
of second order, and hence the additional force is negli-
gible. This is not so for the conventional stellarator.
After a lengthy calculation the force balance relation can
be written as (Greene and Johnson, 1961; Strauss, 1979)

2IrR o
I
~ c'I'+h'I @I'

g2
r

+ 8, cosO+G(p) (4.142)

Note that the term in the bracket is just the low-p .imit
of the HBS result given by Eq. (4.129). The addition»
force due to the transverse field 2 appears as the T 2
term and would be negligible if p —1 as in the HBS.
This term completely changes the structure of the force
balance relation, converting it from an algebraic relation,
as for the EBT and HBS, into a partial differential equa-
tion similar to the Farad-Shafranov equation. In fact, if
one sets @=0 (i.e., eliminates the helical fields), Eq.
(4.142) becomes identical to the equation for the high-p
tokamak given by Eq. (4.71).

The procedure for solving the conventional stellarator
equations is as follows. First, Eq. (4.138) is solved for

Equation (4.141) then gives fo ——Po(A, r, O). This is
substituted 1Ilto Eq. (4.142), which Is baslcRlly a Iloil-

linear elliptic partial differential equation. Here p(po)
can be chosen arbitrarily, and by iteration G [P(lifo)] can
be determined to give any specified net toroidal current
distribution as a function of flux surface, including the
important case (J&)=0. Because of this complexity, the
stellarator equations must in general be solved numeri-
cally. One interesting analytic limit is that in which
P(go)/e is ~~e~~ed as smail. » t is 1~~i~ one exPR»ds all
quantities as Q =Qo(r)+Q, (r, O) with Q, /Q, «1. For
the case of a single helical field [i.e., Q-II(hr)exp(ilO)],
the toroidal contribution to the stellarator equations is
given by

&II ~i
a

= —P,'(r) cosO,

A, (O, O) regular;

A, (r~ co, O) =B,r cosO, (4.143)

o
A(r) =-

rgIIB,

+o +U ~ dx ~ y p'(y)+
&H &. " X' ' &H(J»

(4.144)

There are several points worth discussing about the solu-
tion. First, the helical sideband force found in the EBT
and the high-/3 stellarator is not present; that is, the con-
tribution of

I
VI/ I

+h
I p I

proportional to cosO does
not appear when P/E« l. It may, however, make a
contribution when p/s-1. The conclusion is that in a
conventional stellarator the helical sideband force may
make quantitative changes in the equilibrium, but is not
fundamental in producing toroidal force balance.

Second, the basic force that balances the outward
toroidal force [I.e ~ the Po(r)cosO term in Eq. (4.143)] is
proportional to g~V' 2, . This can be interpreted as fol-
lows. To understand the restoring force, one must iden-
tify ihe J and 8 which interact to produce an inward
J&&B force. The 8 in this relation corresponds to g~,
that is, in an approximate sense g~ represents the average
helical field on a given pressure contour. The leading-
order helical field, of order 5, averages to zero because of
the helical symmetry. However, since the surface itself
has a small helical distortion, there is a higher-order 5
contribution which does not average to zero. This
nonzero average is directly related to gII, the helical vac-
uum transform. The J appearing in the restoring force
corresponds to V A, . This quantity represents the so-
called Pfirsch-Schluter toroidal dipole current, induced
by the shift of the plasma and required to maintain J
divergence free. Thus the&~V' 3 term describing the in-
teraction of the Pfirsch-Schluter currents with the aver-
age poloidal helical field represents the second of the hel-
ical restoring forces to provide toroidal force balance in
current-free configurations.

The third point of interest concerns the effect of the
vertical field. From the form of Eq. (4.143) it is ap-
parent that the effect of an external vertical field j3, can
be accounted for by adding the term B„rcos9 to A, .
Since V (B,r cosO)=0 it follows that the vertical field
does not produce a net body force on the plasma. This
should not be surprising, since there is no net current

where B„,is the externally applied vertical field, po(r) is a
free function representing the leading-order contribution
to the pressure, and ~~ ——2~gII is the vacuum helical ro-
tational transform. Note that for ha «1,
&~(r) =&0(~)[«~l" '.

The solution for A, is related to the toroidal shift
5= —P, /Pp as follows:
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flowing in a stellarator.
Fourth, a perhaps paradoxical point is that, even

though a vertical field produces no net body force on the
plasma, it does shift the plasma flux surfaces, as evi-
denced by Eq. (4.144). One possible resolution of this
"paradox" is that, as the vertical field changes from one
value to another, transient electric fields are induced
which drive parallel currents. It is these currents in-
teracting with the vertical field that produce a force.
Once the transients decay, the vertical-field force van-
ishes. However, in evolving from one state to another,
the Pfirsch-Schluter current continuously readjusts itself,
so that after the transient there remains the correct di-
pole current to hold the plasma in its new equilibrium
position. One conclusion from this discussion is that, re-
gardless of its inAuence on stability, a vertical field is
not required to produce toroidal stellarator equilibrium.

Nevertheless, the presence of the transverse fields 2 in
the toroidal force balance relation completely alters the
structure of the equilibrium equations; that is, in a con-
ventional stellarator one has the freedom to apply what-
ever external transverse fields are desired, zero being a
particular case. This freedom results because Eq. (4.142)
is a partial differential equation with a corresponding
freedom to specify boundary conditions. In a high-P
stellarator, the order of solving the equations is reversed,
and A is only determined afterwards from Eq. (4.130).
Since this is an algebraic relation, one is not free to
specify boundary conditions and must simply apply
whatever field is required. Because of the additional
freedom, the conventional stellarator expansion consti-
tutes a maximal ordering, as compared to the high-p
stellarator.

Whether the toroidal force balance is to be described
by a partial differential equation or by an algebraic rela-
tion is determined by whether or not the transverse po-
loidal fields play a major role in producing the restoring
force. This issue has been considered by Lortz and
Niihrenberg (1978), Spies (1978a) and Freidberg (1980).
It appears that the transition criterion for any two- or
three-dimensional toroidal configuration is given by

( 1 differential equation
2 )) 1 algebraic relation

In summary, conventional stellarators, heliotrons, and
torsatrons are toroidal helices, capable of achieving
toroidal equilibria with no net toroidal current. Their
p's are in general lower than that in the EBT and the
high-P stellarator, but are comparable to those of the
high-P tokamak. In fact, if one considers a generalized
hybrid tokamak-stellarator concept, then the high-p
tokamak and the pure stellarator (i.e., (J& ) =0) are both
special examples corresponding to particular choices of

and G in Eq. (4.142). As with other three-
dimensional configurations, radial pressure balance is
similar to that in a 0 pinch. However, the helical side-
band force is not basic to toroidal force balance in these
configurations as it is for the EBT and the high-P stel-
larator. Instead, the interaction of the Pfirsch-Schluter

currents with the average helical field produces the
restoring force. This force is negligible in the EBT and
the high-p stellarator. Moreover, a vertical field is not
required for toroidal equilibrium, as it is in the tokamak.

5. The parallel current constraint

1e~.V =
2

(eq. Vp Xa) .g2 (4.145)

Note that there are a number of ways to rewrite the
right-hand side using the equilibrium relations. The
specific form shown has been chosen so that the
leading-order contribution to the right-hand side is al-
ready small in any of the standard expansions. For this
reason it is unnecessary to calculate explicit higher-order
fields to evaluate the periodicity constraint.

Consider now two different situations. In the first, as-
sume that the configurations of interest have closed lines
or, for ergodic systems, that attention is focused on the
rational surfaces. One now integrates Eq. (4.145) along
one full circuit of a magnetic line (i.e., until it closes on
itself). Since J~

~

must be single-valued, the left-hand
contribution vanishes. %'hat remains is the parallel
current constraint, which must be satisfied on each mag-
netic line,

dl
2

(eq. Vp Xa. ) =0 .
Q2 (4.146)

A final point of interest concerns the periodicity con-
straint which appears in the analysis of each of the
three-dimensional concepts investigated: the EBT, the
high-p stellarator, and the conventional stellarator. Re-
call that, in each case, in order to calculate the fields to
a certain given order, the analysis must be carried out
several orders higher. Ultimately, a solvability condition
arises in the form of a periodicity constraint, which then
serves to determine the lower-order pressure contours.

The periodicity constraint occurs in a straightforward,
natural way in the analysis and provides valuable insight
into the nature of the toroidal restoring force. Neverthe-
less, substantial extra calculations of higher-order fields
must be carried out to explicitly evaluate the constraint.
This disadvantage can be eliminated by the derivation of
a general form of the constraint which is valid for arbi-
trary toroidal geometry. The resulting expression is
known as the "parallel current constraint, " and its
derivation is outlined below.

There are two methods by which the general con-
straint can be derived. The first is an obvious generali-
zation of that used in the asymptotic analysis. Here one
substitutes J=VQB into the momentum equation and
then applies the operator (B.V X ). At this point no
averaging along field lines is as yet carried out. In the
second method, which is completely equivalent, one
writes V.J=V.(J~

~

eb +J~) =0 and then substitutes Jz
from the momentum equation. Either procedure leads to
the following equation for J~

~

..
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Equation (4.146) can be viewed as a constraint on the
line-averaged toroidal forces, which, when satisfied,
guarantees that the J~~ required to make V.J=O is single
valued.

For the second situation, when the flux surfaces are
ergodic, the constraint is slightly modified. Equation
(4.145) is multiplied by B and then integrated over the
volume enclosed by a given flux surface. Again, the
left-hand contribution vanishes, since n.8=O on a
/=const surface. The remaining expression is a flux
surface average generalization of the parallel current
constraint given by

J (eb.Vp Xtr) =0 .dS

Here the integration is carried out over the area of the
flux surface. Equation (4.147) must be satisfied for
every value of 1(.

In summary, the periodicity constraint appearing in
the asymptotic analysis of certain three-dimensional con-
figurations can be generalized to arbitrary toroidal
geometries. The resulting parallel current constraint is
significantly simpler to evaluate, since its leading-order
contribution is already small. This can save considerable
effort in the analysis.

E. Surnrnary

In this section it has been shown how the MHD model
can be used to describe the basic equilibrium properties
of magnetically confined plasmas.

The equilibria of interest are in general toroidal and
are characterized by a set of nested, closed, magnetic
flux surfaces. The problem of achieving equilibrium in
such systems separates into two distinct parts. First, the
plasma must be held in radial pressure balance in order
that it be isolated from the surrounding walls. This can
be accomplished by either 0-pinch or Z-pinch confine-
ment, or any combination thereof. Second, the magnetic
configuration must be such that the outward toroidal
drift force, inherent in any toroidal system, is somehow

compensated for.
Concerning toroidal force balance, it was pointed out

that the Z pinch has favorable toroidal equilibrium prop-
erties but poor stability. The opposite is true for the 6
pinch. This basic conAict has led to a wide variety of
different concepts which attempt, by various combina-
tions, to optimize the good features while minimizing the
unfavorable ones.

Three basic methods were described to compensate for
the toroidal drift force. First, if sufficient toroidal
current flows, toroidal force balance may be achieved by
the interaction of this current with image currents in-
duced by a perfectly conducting shell or with an exter-
nally applied vertical field. Such configurations can pos-
sess toroidal axisymmetry and include the various types
of tokamaks and the RFP. In the second method,
toroidal force balance is achieved by the generation of a
helical sideband force induced when the plasma shifts

away from the geometric center of the applied helical
field or when an additional sideband field is externally
applied. This type of equilibrium is in general three-
dimensional and thus considerably more difficult to
analyze. Nevertheless, it is of considerable interest since
it can exist without any net toroidal current. Included in
this case are the EBT and the high-P stellarator. Third,
in conventional, low-P stellarators the dominant restoring
force is not the helical sideband force, but the force re-
sulting from the interaction of the Pfirsch-Schluter
currents and the poloidal component of the helical mag-
netic field averaged over the surface.

In summary, the MHD model provides a very reliable
description of the equilibria of magnetically confined
fusion plasrnas.

V. STABILITY

A. Introduction

This section is concerned with determining the stabili-
ty of ideal MHD equilibria. The goal is to develop an
understanding of the various mechanisms which drive in-
stabilities and to discuss possible ways to avoid them.
Equally important, it is shown why many of the particu-
lar equilibria discussed in Sec. IV have favorable stability
properties, thus at least partially justifying their prom-
inence in the international fusion program.

There are a number of techniques available for investi-
gating ideal MHD stability. By far the greatest effort is
devoted to linear stability analysis. Because of this and
the fact that physical intuition is most easily acquired
when analytic treatment is possible, the present review is
almost exclusively concerned with linear stability. Qther
techniques, which are only briefly mentioned, include
nonlinear analysis and large-scale numerical simulation.

The beginning of Sec. V outlines the basic concepts
and formulates the general linearized MHD stability
problem. In addition there is a discussion of some gen-
eral properties common to all geometries.

The second part discusses applications to various
equilibria. Because of the enormous volume of literature
available, this discussion is restricted to the currently
most promising concepts in the United States fusion pro-
gram: the tokamak, the EBT and the RFP. While there
is renewed interest in the stellarator, as a result of some
very encouraging results from the W VIIA experiments
(Bartlett et al. , 1980), this concept still remains a rela-
tively minor part of the national fusion program. Thus
the stellarator is not included in the stability discussion.
A recent review of stellarator theory and experiment is
that of Miyamoto (1978). Note again that the important
mirror concept is not included because of the basic inap-
plicability of the ideal MHD model. For a summary of
the mirror concept one should refer to the recent articles
by Baldwin (1977), Fowler and Logan (1977), and
Baldwin and Logan (1979).

It is also useful to mention that. a number of more de-
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tailed reviews of the MHD stability theory for specific
concepts have appeared recently. In particular, for
tokamaks one should see Furth (1975), Wesson (1978),
Bateman (1978), and Bateman and Sigmar (1982). The
stability of the EBT has been summarized by Nelson and
Hedrick (1979), while reviews of the RFP have been
given by Robinson (1971) and Bodin and Newton (1980).

B. Basic theoretical concepts

1. Exponential stability: the homogeneous plasma

P=Pp ~ (5.1)

where Bp, pp, and pp are constants and where it has been
assumed that B points in the e, direction. Note that this
"equilibrium" has no gradients, so that Vp =Up= J=O.

The linear stability of this configuration is determined
by linearizing all quantities as follows: Q (r, t)
=Qo+Q~(r, t) with Q~ being a small first-order pertur-
bation. Since the equilibrium is both time- and space-
independent, the most general form of perturbation can
be written as

Q, (r, t) =Q & exp[ i (cot k.r)—1—
k=kj ey+k~Ie, ,

V-r=k~+k~~z . (5.2)

Here, without loss in generality, it has been assumed that
the wave vector k lies in the (y,z) plane. Also, the sub-
scripts 1 and

~ ~

refer, respectively, to directions perpen-
dicular and parallel to the equilibrium magnetic field.

It is appropriate at this point to more precisely define
stability and instability. With very few exceptions the
simplest and most reliable definition corresponds to ex-
ponential stability; that is, if any of the eigenfrequencies
co correspond to exponential growth, the system is ex-
ponentially unstable. If not, it is exponentially stable:

Imago & 0 exponential instability . (5.3)

Implicit in this definition is the assumption that the
modes are discrete with distinguishable eigenfrequencies.
This is not true in general. However, no difficulties arise
for the homogeneous equilibrium. Perhaps more impor-

As a useful starting point for stability analysis, consid-
er the configuration in which the magnetic field is infin-
ite, homogeneous, and unidirectional. This system,
which is not toroidal and does not confine plasma, is
nonetheless very useful to investigate, for its stability
corresponds to a determination of the basic waves which
propagate in an MHD plasma and thus forms the foun-
dation upon which intuition is developed.

The equilibrium of the homogeneous system is given
by

B=Bpez ~ p=pp ~

J=O, v=O,

tant, no problems exist for the general case if one is in-
terested only in the unstable part of the spectrum (i.e., in
whether or not a plasma is exponentially unstable).
These questions and the frequency spectrum of ideal
MHD are discussed in more detail in Sec. V.B.3. [More
detailed discussions of the MHD spectrum include those
of Grad (1973), Goedblomi (1975), Tataronis and
Grossmann (1977), and Goedbloed (1979).]

Continuing with the homogeneous problem, one sub-
stitutes Eq. (5.2) into the linearized MHD equations.
After some straightforward algebra (not using the
momentum equation), all quantities can be expressed in
terms of the perturbed velocity vi. The result is

~pl= —po(k v]) ~

~pi = 'Ypo(k—'vi)

toB~=kX(v~XB,),
~J& ='k X [kX (v»&Bo)] ~ (5.4)

k)( V, V2 2 2

a =4 k' (V, +V.')'
(5.5)

where k =kq+k~~, V, =(ypo/po)'~ is the adiabatic
sound speed, and V, =(Bo/po)'~ is the Alfven speed.
Note that there are three branches to the dispersion rela-
tion, and since 0&ca (I they all correspond to purely
oscillatory solutions. Consequently Im(co)=0 for each
mode, and the homogeneous magnetic field configuration
is exponentially stable. This is not surprising, since this
system is in thermodynamic equilibrium, and there are
no sources of free energy available to drive instabilities.

The first branch of the dispersion relation co, =k~~V,
is known as the shear Alfven wave. Its polarization is
such that the perturbed magnetic field and velocity are
always perpendicular to Bp and k; the wave is purely
transverse. This produces a shear in the magnetic field
and causes the magnetic field lines to bend. It also re-
sults in an incompressible Aow, V.vi ——pi ——0. The shear
Alfven wave describes a basic oscillation between perpen-
dicular plasma kinetic energy and perpendicular "line
bending" magnetic energy.

The second branch of the dispersion relation (i.e., the
+ sign) describes the fast magnetoacoustic wave coI. A
simple calculation shows that coy) co, . This is a wave in
which both the magnetic field and the plasma pressure
are compressed, so that V.v&, p&+0, and B~ has both y
and z components. In the interesting limit
P- V, /V, &~1, the fast magnetoacoustic wave reduces
to the compressional Alfven wave coI =(kq+k

~~
) V, .

Here the wave is nearly transverse (u~„&&u~,) and de-
scribes an oscillation between perpendicular plasma ki-

Substituting this into the linearized momentum equation
and setting the resultant determinant to zero yields the
following dispersion relation:

2 2 2~ =k~~v. ,

to = —,k (V, + V, )[1+(1—a )'~ ],
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netic energy and the combined magnetic compressional
and line bending energies.

The third branch of the dispersion relation corre-
sponds to the slow magnetoacoustic wave m, . This wave
always satisfies to, (to, . Its polarization is similar to
that of the fast magnetoacoustic wave and thus also
represents a compression of both plasma and magnetic
energy. In the limit V, /V, «1 the slow magnetoacous-
tic wave reduces to a sound wave co, -kl~V, . Here the
mode is nearly longitudinal (i.e., u~, &&u~~) and describes
a basic oscillation between parallel plasma kinetic energy
and plasma internal energy.

It is interesting to note that if one repeats this calcula-
tion for the perpendicular MHD model, the resulting
dispersion relation consists of two branches given by

2 2 2
co =k

ii V~

to =(kg+k
~~

) V, .

These correspond to the shear Alfven and compressional
Alfven waves, respectively. The sound wave is
suppressed. This result can be obtained from the ideal
MHD dispersion relation by setting y=0 and suppress-
ing the slow magnetoacoustic wave.

The three waves given by Eq. (5.5) describe the basic
wave propagation characteristics of an ideal MHD plas-
ma. In the homogeneous geometry, all are stable. In
more physically interesting inhomogeneous geometries,
each of these waves is modified and can couple to the
others. An important result concerning stability is that,
for reasons to be discussed later, the most unstable per-
turbations almost always involve the shear Alfven wave.

2. General linearized stability equations

The stability of an arbitrary MHI3 equilibrium can be
investigated by means of the general linearized equations
of motion. [See, for instance, Bernstein et al. (1958),
Goedbloed (1979).] These equations can be formulated
either as an initial-value problem or a normal-mode
problem. To begin with, consider the initial-value for-
mulation and assume that a static, ideal MHD equilibri-
um, satisfying

Jo&&o=~S o ~&&o=Jo

V'.Bo——0, vo ——0,
is given. All quantities are then linearized about
this background state: Q (r, t) =Qp(r) +Q, (r, t), with
Q&/Qp &&1. When substituting into the MHD equa-
tions, it is convenient to express all perturbed quantities
in terms of a vector g' defined by

Note that g' represents the displacement of the plasma
away from equilibrium. In an initial-value formulation
one needs to specify appropriate initial data. A very use-
ful (but not completely general) choice of initial data for

stability problems is as follows:

g'(r, O) =B&(r,O) =p&(r, O) =p, (r, O) =0,
Bg'

at
(r, o) =V, (r,O)~0 . (5.9)

This corresponds to the situation where, at t =0, the
plasma is in its exact equilibrium position but is moving
away with a small velocity v&(r, O). Under such condi-
tions the linearized form of the equation for conservation
of mass, the energy relation, and Faraday's law give,
respectively,

Pi= —V (po4»

A = 4Vp—o —)'poV'4 ~

B)——V X (g'X Bp) . (5.10)

These quantities can be substituted into the momentum
equation yielding a single, vector equation for the dis-
placement g:

B2
pp

——F(g'),
Bt

(S.l 1)

p~ = Vpp4-
pi = 4.Vpo )poV 4,— —

Q=B)——VX(gXBp),

~'no4 =F(k)

(5.13)

(5.14)

(5.15)

=(VXQ) XBp+(VXBo)Xg —Vp& . (5.16)

In this approach only appropriate boundary conditions

where F(g) = Jp X8~+ J& X Bp —Vp~ can be written as

F(g)=(VXBp)XQ+(VXQ) XBp+V(g Vpp+) ppV g)

(S.12)

and Q =B&——V X (g'X Bo). Equation (5.11), subject to
g'(r, O) =0, g(r, O)/Bt ='v~(r, O), and appropriate boun-
dary conditions (as discussed in Sec. III.B), constitutes
the formulation of the general linearized stability equa-
tion as an initial-value problem. The initial-value ap-
proach has the advantage of directly determining the ac-
tual time evolution of a given initial perturbation. It is
also useful in a number of ways when numerically for-
mulating the full nonlinear problem (Sykes and Wesson,
1974, and Bateman et al. , 1974). The drawbacks are that
it often contains much more information than is required
to determine stability, one consequence of which is that
numerical calculations are often very time consuming.

A more efficient way to investigate linear stability is
to reformulate Eq. (5.11) as a normal-mode problem
(Bernstein et al. , 1958). This can easily be done by let-
ting all perturbed quantities vary as follows:
Q&(r, t)=Q&(r)exp( —icot). Since the right-hand sides of
Eqs. (5.10) and (5.11) contain no exphcit time deriva-
tives, the normal-mode formulation of ideal MHD stabil-
ity, expressed in terms of the transformed variables has
the form
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on f need be specified, so that Eq. (5.16) can be solved as
an eigenvalue equation for the eigenvalue co . The
normal-mode method is more amenable to analysis than
the initial-value approach, and more efficient with
respect to numerical computations (Freidberg and Mard-
er, 1973; Grimm et al. , 1976; and Berger et a/. , 1977a).
However, there is no obvious way to exploit these advan-
tages in a full nonlinear formulation. Finally, there is a
subtlety involved with the normal-mode approach; its
usefulness is strongly coupled to the assumption that for
the problems of interest the eigenvalues are discrete and
distinguishable, so that the concept of exponential stabili-
ty is valid. %'hile this is likely true for the unstable part
of the spectrum, the full situation is more complicated,
and to obtain a more complete understanding, additiona1
detailed knowledge of the properties of the force opera-
tor F is required. These questions are discussed in the
next section.

dH
dt

r

d 1 2 1 2 p
dt 2 2 y —1

—pu + —8 + dr=0. (5.18)

For simplicity, it is assumed that the plasma is sur-
rounded by a perfectly conducting wall. However, the
proof can easily be generalized to include boundary con-
ditions which allow a vacuum region between plasma
and wall.

The integrand in Eq. (5.18) is linearized and expanded
to second order in amplitude. The zeroth-order contri-
bution trivially vanishes, since the equilibrium quantities
are time independent. The first-order contribution, com-
bined with Eq. (5.10), yields the ideal MHD equilibrium
equations. The second-order energy can be written as
H2 ——%+68, where

2

3. Properties of the force operator F 5&=5&(g,g) . (5.19)

The force operator F possesses an important
mathematical property which greatly aids in the analysis
of linearized MHD stability. In particular, F is a self-
adjoint operator. This implies that the eigenvalues co

are purely real. Hence stability transitions always occur
when co crosses zero, rather than at some general point
on the real axis where Re(co)+0. This fact ultimately
leads to an elegant and efficient formulation for testing
linear stability known as the Energy Principle, which is
discussed in the next section.

Finally, a further examination of the properties of I'
shows that the frequency spectrum consists not only of
discrete modes, but of continua as well. Fortunately, in
most cases of interest so far investigated, the continua lie
on the stable side of the co plane or at most reach the
origin, cg =0. Thus when attention is restricted to ex-
ponential instabilities there is strong justification for us-

ing the normal-mode approach.
Each of these issues is now discussed separately.

Although 68' can be calculated, its specific form is not
required. The important feature is that 58' is quadratic
in g and is not explicitly dependent on Bg'/Bt. The latter
point, which is crucia1 in the derivation, follows because
the relevant part of the integrand is a function of B~, 82,
p~, and pq. Equation (5.10) shows that B~ and p~ are in-
dependent of g/Bt. As a result it is straightforward to
show that p and B are independent of Bg/Bt to all orders
in the amplitude (Bernstein et al. , 1958). The conserva-
tion of energy then implies that Hi IC+5W=——0, or'

(5.20)

Substituting Eq. (5.11) into the left-hand side of equation
(5.20) leads to

f .F(g')dr= —58' g,Bt Br

a. Self-adjointness of F

As stated, the self-adjointness of F has a major impact
on both the analytic and the numerical formulation of
linearized MHD stability. To demonstrate this property,
it is necessary to show that for any vectors g and g
satisfying appropriate boundary conditions, such as those
discussed in Sec. III.B, the following relation holds:

f g. (gF)dr= f g.F(Fy)dr . (5.17)

Equation (5.17) can be derived by a direct but lengthy
calculation. A more elegant derivation has been given by
Bernstein et al. (1958), and it is this calculation which is
outlined here.

The proof is based on the fact that the total energy of
the system is an exact nonlinear constant; that is, as
shown in Sec. III,

Since g and g/dt are in g'eneral independent vectors,
each satisfying the boundary conditions, @/dt can be re-
placed by g. The self-adjointness property then follows
immediately by interchanging g and rI and noting the
symmetry on the right-hand side of Eq. (5.21).

Finally, for the special choice rI =g', it follows that

5W(g', g') = ——,f g'.F(g)dr . (5.22)

Thus the relation %+58'=0 has the following simple
interpretation. The quantity X represents the kinetic en-

ergy of the perturbation. 58' represents the change in
the potential energy associated with the perturbation and
is equal to the work done against the force F in displac-
ing the plasma by an amount g'. Since the total energy is
conserved, the change in the kinetic plus potential energy
must equal zero.
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Rea/ co

By making use of the self adjointness of E, it is
straightforward to show that for any discrete normal
mode, the corresponding eigenvalue co is purely real
(Bernstein et al. , 1958). The proof is obtained by form-
ing the dot product of Eq. (5.16) with g*(r) and in-
tegrating over the plasma volume. The result is

co f pa i
g'i dr= —f g~.F(g)dr . (5.23)

The procedure is then repeated with the vector g(r) and
the complex conjugate of Eq. (5.16). Using the self-
adjoint property of F, it follows that

(co —co* )f po pi dr=0 (5.24)

or co =~*, that is, co is purely real. Furthermore, the
fact that the differential operators in Eq. (5.16) are real
implies that g'(r) itself is real.

In terms of the definition of exponential stability, a
normal mode with co ~0 corresponds to a pure oscilla-
tion and hence would be considered stable. Conversely,
for a mode with ~ & 0, one branch must grow exponen-
tially and thus would correspond to instability. Clearly,
the transition from stability to instability occurs when
co =0. It is worthwhile emphasizing the importance of
this result. In general, a stability transition occurs when
Im(co)=0 with Re(co)+0. This makes the determination
of marginal stability boundaries considerably more com-
plicated, since Re(co) must also be calculated. However,
in ideal MHD the self-adjointness of F guarantees that,
at any stability boundary Im(co) =0, the Re(co) must also
be zero simultaneously.

Finally, it is worth noting that a derivation similar to
the one given above shows that for two discrete normal
modes (g„,co„),(g, co ) the following relation must hold:

(co„—co )f pop* g„dr=0
where use has been made of the self-adjointness of F.
This demonstrates that the normal modes are orthogonal.

c. Spec'trum of F

Because of the self-adjointness of F, one is strongly
motivated to choose the normal-mode approach rather
than the initial-value approach when considering the
linearized stability of ideal MHD plasmas. In fact, if
the operator F allowed only discrete eigenvalues, the con-
cept of exponential stability could easily be extended to
include both oscillatory and damped motions of the plas-
ma. However, this is not the case. To show this in detail
would require a complete spectral analysis of the force
operator F, a task beyond the scope of the present work
and one which has indeed only been carried out for spe-
cial MHD equilibria. Nevertheless, it is worthwhile to
indicate typical spectral properties which can occur and
their influence on stability, based on these calculations
(Grad, 1973; Goedbloed, 1975, 1979).

The spectral properties of F follow from an examina-

tion of the operator (F/po —A. )
' for all complex A, . If

this operator exists and is bounded for a given A, ,
the linearized inhomogeneous MHD equations
(F/po —A, )/=a (which would occur when solving an
initial-value problem by Laplace transforms) can be in-
verted to yield g'=(F/po —A, ) 'a. The spectrum of F
consists of those values of A, for which the operator
(F/po —A, )

' cannot be inverted. There are two impor-
tant cases. First, the familiar situation when A, is such
that {F/po —A, )g'=0 possesses a nontrivial solution.
These values of k correspond to the point or discrete
spectra of F and represent the normal-mode eigenvalues
to be examined for exponential stability. In this case it
is clear that the operator (F/po —A, )

' does not exist.
In the second case of interest, A, is such that

{F/po —A, )
' exists but is unbounded [e.g.,

(F/po —A, ) =k
~~

V, (r) —A, =O]. Usually there is a continu-
ous range of A, (determined by varying r in the range of
0&r &r,&&) over which the operator is ill behaved. A
typical ideal MHD spectrum is illustrated schematically
in Fig. 28. Notice that the continuous spectra could sig-
nificantly increase ihe complexity of determining plasma
stability if the corresponding frequencies were located in
that part of the complex co plane where Im(co) ~0. For-
tunately this appears not to be the case. In most prob-
lems of interest thus far investigated containing con-
tinua, the frequencies are located on the real axis (i.e.,
co &0). Grad has conjectured that this should be true
for any arbitrary static ideal MHD equilibrium. Recent
studies show that this conjecture is still unresolved and
somewhat controversial. A calculation by Spies (1979)
indicates that in certain special cases unstable continua
exist. A recent calculation by Tataronis and Salat (1981)
implies that for general three-dimensional geometries no
unstable continua exist.

One consequence of the existence of a continuum is
that discrete modes can accumulate at either of its boun-
daries. If one boundary extends to the origin m =0, as
it often does, it is possible to have an accumulation of
unstable modes with growth rates approaching zero (see
Fig. 28). Although such behavior is perfectly acceptable
mathematically, if not accounted for properly it can ob-
scure the concept of marginal stability. On the other
hand, if it is known that a continuum extends to the ori-
gin, it is often possible to derive an analytic criterion, de-
pending only upon the equilibrium quantities, which
determines whether or not there is an accumulation of
unstable modes. This procedure is far simpler than com-
puting normal modes and gives rise to sufficient condi-
tions for instability.

DISCRE T E MODES

ACCUMULATION
PO IN

CON T IN UA

UNSTABt E

V 'Ll ili/iAL ~ aAAIP A MAPS'

0 STABLE

%AAAJ 2

FIG. 28. Schematic diagram of a typical ideal MHD spec-
trum.
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In summary, the spectrum of the force operator F(g')
contains both discrete eigenvalues and continua. It is
very likely that the continua exist only for co &0. This
assertion provides further motivation for examining plas-
ma stability by the normal-mode approach, restricting at-
tention only to the question of whether or not exponen-
tially growing modes exist. Even so, the situation can
become somewhat complicated as ~ —+0, since unstable
modes can either accumulate or make smooth transitions
from instability to stability.

4. The Energy Principle

The stability of any given magnetic configuration as
determined by the normal-mode approach requires the
solution of ordinary or partial differential equations. In
this section it is shown that the general stability problem
can be recast in the form of a variational principle, thus
providing an integral description of linearized MHD.
Furthermore, if the primary goal is a determination only
of whether a system is stable or not, as opposed to a cal-
culation of specific growth rates (which can often be
easily estimated), one can derive a powerful minimizing
principle based on the conservation of energy. This for-
mulation is known as the Energy Principle and
represents the most efficient and often the most intuitive
method of determining plasma stability (Bernstein et al. ,
1958). It receives wide application in the literature and
will be used extensively in the remainder of Sec. V.

The Energy Principle can be applied in a direct
manner to systems in which the plasma is surrounded by
a conducting wall. It also applies, in principle, to the
situation where a vacuum region is present. However, in
this case the actual calculations can become somewhat
cumbersome because of the complicated boundary condi-
tions across the plasma vacuum interface, specifically the
linearized pressure balance condition. These difficulties
are resolved by means of the extended Energy Principle,
in which the vacuum contribution is explicitly isolated,
thereby eliminating the need for the pressure balance
jump condition.

With the establishment of the extended Energy Princi-
ple, it then becomes useful to display several convenient
forms of the energy integral which are often utilized in
carrying out specific calculations. Finally, the concept
of o stability is discussed brieAy; this variation of the
Energy Principle provides a useful procedure for numeri-
cally calculating MHD stability and, in particular, avoids
the problems that occur when co ~0 (Goedbloed and Sa-
kanaka, 1974).

a. Variational formulation

The linearized normal-mode equations describing ideal
MHD stability can be cast in a variational form as fol-
lows [see, for instance, Bernstein et al. (1958) or Goed-
bloed (1979)]. Consider 0 (g'~, g') to be a functional of g
defined by

(5.25)

Since 5g' is arbitrary, Eq. (5.27) implies that

—~ pg=F(g') . (5.28)

This completes the proof and shows that the normal-
mode eigenvalue equation [Eq. (5.16)] and the variational
principle [Eq. (5.25)] are equivalent formulations of
linearized ideal MHD stability.

b. Statement and proof of the Energy Principle

It is often of primary interest to determine whether a
given system is stable or unstable, without being particu-
larly concerned about the specific values of growth rates.
The reason is that the growth times (r(50 psec) are typ-
ically much shorter than experimental times (r & 1 msec).
Thus it is far more important to determine the condi-
tions for avoiding instability than to calculate precise
growth rates. In such cases, the variational formulation
just derived can be further simplified, leading to a more
convenient procedure which exactly determines stability
boundaries but only estimates growth rates. This simpli-
fied formulation is known as the Energy Principle (Bern-
stein et al. , 1958).

The physical basis for the Energy Principle is the fact
that energy is exactly conserved in the ideal MHD
model. As a consequence, the most negative stationary
value of 0 (g', f} actually corresponds to a minimum in
the potential energy. This in turn implies that the ques-
tion of stability or instability can be determined by
analyzing only the sign of 5W( j,g'} and not the full vari-
ational problem. Specifically, the Energy Principle states
that an equilibrium is stable if and only if

58'(g', g) &0 (5.29)

Although g(r) has been shown to be real, it is treated as
complex in Eq. (5.25) in anticipation of cases where, be-
cause of symmetry, several spatial coordinates can be
Fourier analyzed. The variational principle states that
any allowable function g for which Q becomes station-
ary is an eigenfunction of the ideal MHD normal-mode
equations with eigenvalue co =Q (g'*,g'). The proof fol-
lows by letting g'~g+ 5g' and setting the resulting
5Q =0 (corresponding to Q being stationary). After
some simple rearranging, one finds

5W(5g*,g')+58'(g'~, 5$) 5W(g*,g)
K(5g~, g')+K(g'~, 5$) K(g*,g')

Using the self-adjoint property of F, Eq. (5.26) can be
written as

f drIg * [F(g')+co'pop']+5) [F(g*)+co'pop*]]=0
(5.27)
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for all allowable displacements (i.e., g' bounded in energy
and satisfying boundary conditions). The proof of this
assertion will bc given shortly. Assuming thc pIoof, con-
sider the advantages that follow. First, if one has some
intuition about the form of an unstable perturbation, this
form can be substituted into 68' as a trial function. If
6g &0, the minimizing principle guarantees that the ac-
tual eigenvalue co must be smaller (i.e., more unstable)
than the value co =5W/X &0 calculated by using the
trial function; that is, the existence of an allowable trial
function which makes 68'&0 is sufficient for instability.
Second, the Euler™Lagrange equations following from
5W correspond to the marginal stability form (i.e.,
co =0) of the normal-mode equations and are usually far
simpler to ana1yze. Third, in the integral form of 68',
the various stabilizing and destabilizing mechanisms ap-
pear quite transparently, thus helping in the development
of physiml intuition.

Finally, there exists a very practical method based on
the Energy Principle, for numerically testing MHD sta-
bility. In this procedure one chooses a suitable set of
basis functions g'„and writes g' as an arbitrary sum of
these functions, g'=pa„g'„. Substituting into the ex-

pression for 5W then yields 5W =+A „aa„where the
„=5W(g',g'„) are well defined, computable matrix

elements. Once the 2 „areknown, the expression for
68' can be minimized with respect to the coefficients a
given some suitable normalization. Clearly a clever
choice and/or a sufficient number of basis functions
gives an increasingly accurate indication of whether or
not 68 can be made negative. Note that the minimiza-
tion with respect to the a can be carried out for any
convenient choice of normalization, not necessarily
K(g', g) =const. This procedure for determining stability
is very effective in multidimensional geometries, where
numerical shooting methods are not possible (Freidberg
and Marder, 1973; Grimm et a/. , 1976; and Berger et al. ,
1977a).

The proof of the Energy Principle would be straight-
forward if F allowed only discrete normal modes, con-
stituting a complete set of basis functions g„.In this
case, any arbitrary g(t) could be expanded as
g=ga„g'„exp( iso„t), wh—ere co„are the normal-mode
eigenvalues. If the g„are chosen orthonormal with
respect to a weight function po, then 68' has the value

5w=g
I a„

I
co„.

Thus if a g(t) could be found for which 5W&0, at least
one ~„is negative, indicating instability. Conversely, if
5W) 0 for all g(t), then each co„)0, indicating exponen-
tial stability. Unfortunately, this proof, first given by
Bernstein et al. (1958), is not completely valid for the
general case because of the existence of continua.

An elegant proof of the Energy Principle has been
given by Laval et al. (1965), which does not assume a
complete set of discrete normal modes. The proof is
based on the conservation of energy H =K ( g, g )

+5W(g, g) H =0. To show sufficiency, assume that 5W

is positive for all allowable g(r', i) .Energy conservation
implies 5W =H —lC & 0+$ =const. Hence unbounded
exponential growth of the kinetic energy IC (i.e., exponen-
tial instability) would violate energy conservation.

To show necessity, assume a perturbation g(r) exists
such that 5W(g, g) &0. Consider a displacement g'(r, t)
satisfying initial conditions g(r, t) =g(r), g'(r, 0)=0.
Energy conservation implies that H (t) =H (0)
=5W(g, q) &0. This is substituted into the rela-
tion I=ZK($, $)—25W(g, (), where I =K(g, g). Set-
ting 5W(g, g) =H(t) IC(g, g—) leads to the result
I=4Ã(g, g) —2H & 2H &0—; that is, I grows without
bound as taboo, indicating that g increases as least as
fast as t L. aval et al. (1965) showed by a somewhat
more complicated analysis that if 5W(g, g) &0, there ex-
ists a g' which grows exponentially [i.e., g'-exp(A, t)],
with a growth rate at least as fast as
k=[ 5W—(g, 7J)/IC(7), g)]'i .

The extended Energy F'rfnciple

The Energy Principle, calculated with F(g') given by
Eq. (5.16), is valid if the plasma is directly surrounded
by a conducting wall or if there is an isolating vacuum
region. In the first case, applimtion of the Energy Prin-
ciple is straightforward, since the only boundary condi-
tion that need be satisfied is

(g gi) I,il
——0. (5.31)

When a vacuum region is present, the situation is
more complicated because the vacuum fields do not ap-
pear explicitly in 68' but enter only through the boun-
dary conditions at the plasma surface.

To see this, consider the full set of linearized boundary
conditions, obtained by expanding Eqs. (3.5) —(3.7) about
the perturbed surface r, =r+g,

.|i=0
(n.B, ) I,„~=n.V'x(4ixBo)

I «~

(n B)) I,„e=nV'x(4'j. x Bo)
I «a

(Bo Bi+ —,4 ~Iso —)'I o~ 4')
I -~

=(Bo Bi+ —,4' ~Iso)
I ..~.

(5.32)

(5.33)

(5.34)

(5.35)

Here the notation represents the vacuum region, and
the subscript "surf" refers to the unperturbed surface.
As intuitively obvious as Eqs. (S.33) and (5.34) may
seem, their derivation is nontrivial. Each result is de-
rived in an identical manner, in which not only must 8
be evaluated on the perturbed surface, but the normal
vector must be expanded as n =no+ n] with
ni ———(Vg').no+no[no. (V'g'). no]. Note that, for the plas-
ma, Eq. (5.34) is automatically satisfied by virtue of Eq.
(5.1S). Equation (5.33) couples the vacuum field Bi to
the plasma displacement g' and is an important relation,
since g is not defined in the vacuum. The pressure bal-
ance jump condition is straightforward to derive, but has
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a rather complicated form. As a consequence, direct ap-
plication of the Energy Principle to a system with a vac-
uum region can be cumbersome, first because of the
complexity of Eq. (5.35), and second because the form of
58' with F given by Eq. (5.16) is not very intuitive (as
the vacuum contribution does not appear explicitly).

These issues are resolved by a reformulation of 58'
known as the extended Energy Principle (Bernstein et al. ,
1958 and Goedbloed, 1979), in which the vacuum contri-
bution explicitly appears and Eq. (5.35) is no longer
needed. The first step in the reformulation is to perform
an integration by parts of the g

*.Vp ~ and
'(VXQ) XBo terms in 5W. After some algebra one

obtains

58'= 8'~+8.T. ,

8W, = —, f dr[IQI' —g*, .(J,XQ)

5~=5W +5m, +5m, , (5.41)

~~.= ~ f,«[
I Q I

' —4 *. (JoX Q)+)po I
V.4 I

'

+(g'g. Vpo)V. g'j ],
5W = —f dS

I
n g'

I

n. [V'(p + —g )],
5Wy ———, f drIB, I~.

(5.42a)

(5.42b)

(5.42c)

The vacuum contribution appears explicitly and is cou-
pled to the plasma displacement by solving
VXB~——V.B~ ——0 subject to the conditions

This completes the derivation. To summarize, in the
extended Energy Principle a system is exponentially
stable if and only if 5$'&0 for all allowable perturba-
tions with

+ypo I
V 0 I

'+(4i.Vpo)V 4i]
B.T = —, fsdS(n 4 j. )(Bi Bo—'poV 0—4 Vpo) .

(5.36)

n BI I wall

n.B, I,„~=n.VX(gXBo) I.a~.

(5.43)

(5.44)

Here Q—:B&——VX(g'j XBo) and g'=gz+g'~~, where J. and

II refer to the equilibrium magnetic field Bo. Also, the
labels I', 5, and V appearing on the integrals correspond
to the unperturbed plasma volume, plasma surface, and
vacuum volume, respectively. Using Eq. (5.35) in (5.36)
leads to the following expression for the boundary terms:

B.T.=ares+ —,
' f ds(n. g*, )Bo.B, ,

58;=—, f dS
I

n. g'z
I

n [V'(po+ —,Bo)), (5.37)

where [T] denotes the jump in T from vacuum to plas-
ma. In deriving Eq. (5.37), use has been made of the
equilibrium relation [po+Bo/2) =0 to infer that the
tangential jumP in V (Po+8o /2) also vanishes. The
quantity 5Ws is usually referred to as the surface contri-
bution and vanishes unless surface currents flow on the
plasma-vacuum boundary. [This last result is implied by
Eq. (3.8).]

The remaining term in Eq. (5.37) is identical to the
perturbed magnetic energy in the vacuum region,

~II v= —, f «I Bi I'. (5.38)
A

To show this, write B~ as B)——V&A] with VQ V
&A& ——0. Integrating by parts then converts 58'z into a
surface integral,

5$'y ————, f dSn. (Ai XBi) . (5.39)

Note that the contribution on the outer conductor van-
ishes by virtue of Eq. (5.32). On the surface A& can
be expressed in terms of n g' by using the relation
n.B~——n VXA~ ——n VX(g'XBo); that is, A, =g'
XBo+Vp. If p is chosen so that the gauge condition is
B&.(nX VP) =0, then Eq. (5.38) reduces to

5WV ———, f dS(n. gi)Bo.Bi, (5.40)

which is identical to the remaining term in Eq. (5.37).

Note that the complicated pressure balance condition is
no longer needed; that is, the boundary term in Eq.
(5.37) has been rewritten in a form which is self-adjoint
by construction. Hence, the contributions 58'z and 58'z
are variational so that Eq. (5.35) need no longer be expli-
citly satisfied by any given minimizing function
Furthermore, after a somewhat lengthy calculation it can
be shown that Eq. (5.44) can be expressed only in terms
of n g'z on the boundary by the relation

n.B&
I
aa&=Bo.V(n.gq) —(n g~)[n. (n. V)Bo]

I sac (5.45

Thus, in a plasma-vacuum system, one can specify an ar-
bitrary surface distortion n.g'z, which is then sufficient to
determine both the surface and vacuum contributions to
5W. For the special case where there is no vacuum (i.e.,
where the plasma extends to the wall), n.g'j on the boun-
dary must vanish and 5$'=58'z. Equation (5.41) is the
standard form of the extended Energy Principle and is
used widely throughout the literature.

d. Forms of 6WF

The extended Energy Principle, described by Eqs.
(5.41) and (5.42), is completely adequate for application
to any magnetic geometry. Nevertheless, in order to fur-
ther clarify some of the mathematical and physical is-
sues, it is useful to present several alternate forms of
58+. In particular, there are several forms of 58'z
which explicitly show the self-adjointness of I' and one
which provides a simple physical interpretation of the
different phenomena occurring in plasmas. Each of
these forms requires a lengthy manipulation of Eq.
(5.42). For present purposes it suffices to state the re-
quired forms. Finally, a brief comparison is given of the
forms of the energy and variational principles for the
ideal and perpendicular MHD models.

To begin, consider the question of self-adjointness.
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Here the definition n—:Vpo/I Vpo I
is extended over the

whole plasma volume and represents the unit vector nor-
mal to the magnetic surfaces. When g is considered as
an independent vector g, it follows by inspection that
5W remains unchanged if g and g are interchanged. A
different self-adjoint form of 5W~ has been given by
Berge and Freidberg (1975):

&WF ———, f «[
I
Bo.~4il

+&o
I

~.4i+24i.~
I
'+7Po

I

~.4'
I

'

+4 j..(4j. ~) lpo 4&o
I ki —&

I

'] (5.47)

The first explicit form demonstrating this property was
given by Bernstein et al. (1958):

~We=, f «I: I
Q+(n 4')(Jo»)

I +}'po I
~'4'I

—2(Jo»).(Bo ~»
I

n g I
'] .

&(g*,P=&z(4'i fi)+ ' f polk'[[ I
dr. (5.50)

The corresponding variational principles are given by

to =(5WF+6Ws+5Wy)/K (ideal MHD),

co =(5Wq+5Ws+5W~)/ICq (perpendicular MHD) .

(5.52)

Both 5W~ and X~ are independent of g~~. It is now pos-
sible to make a direct comparison of the energy and vari-
ational principles corresponding to the ideal and perpen-
dicular MHD models. For the energy principle, a neces-
sary and sufficient condition for exponential stability is

o~F+5Ws+5Wy) 0 (ideal MHD),

gW~+QWs+5W&&0 (perpendicular MHD) .

(5.51)

The terms in Eq. (5.48) have the following simple physi-
cal interpretation. The

I Q~ I
term represents the ener-

gy required to bend magnetic field lines. It is the dom-
inant potential energy contribution to the shear Alfven
wave. The second term corresponds to the energy neces-
sary to compress the magnetic field and describes the
major potential energy contribution to the compressional
Alfven wave. The ypo I

V'.g I
term represents the ener-

gy required to compress the plasma. It is the main
source of potential energy f'or the sound wave. Each of
the contributions just described is stabilizing. The
remaining two terms can be positive or negative and thus
can drive instabilities. The first of these is proportional
to Vpp —J~ X Bp, while the second is proportional to
Jp-Bp-J~~. Thus, while a vacuum field is MHD stable,
either perpendicular or parallel currents represent poten-
tial sources of instability. The former type are some-
times referred to as pressure-driven modes and the latter
as current-driven Inodes. A more detailed discussion of
the classification of MHD instabilities is given in Sec.
V.87.

As a final point, it is useful to note that each of the
four forms of 8'z can be written as

&WF(4*,4)=~Wi(ki gi)+ , f '}po
I

~ 4 I'«—(5.49)

Similarly, the ideal MHD normalization K can be ex-
pressed as

where Vpo—:V(po+Bo/2)=Bo VBo and a=eb Yet„w'ith
cb =Bp/Bp. K is the curvature vector of the magnetic
field lines. This form has proven very useful in the
asymptotic analysis of helically symmetric geometries.

Perhaps the most intuitive form of 68 has been given
by Furth et al. (1965) and greene and Johnson (1968):

&WF= f dry
I Q& I

+&o
I

t7 4' +24 ~
I +ypo I

~ 4'I

Jp.Bo
2(4l lpo)(+ 4 l) 2 (4 ~l +Bo) Qi]

&o

As might be expected, the quantity g'~~ never appears in
the perpendicular MHD formulation. The only differ-
ence between these models is the plasma compressibility
contribution, which is almost always very small if not
identically zero. A more detailed comparison is made in
Sec. V.B.5, where the significance of incompressibility,
V'.g'=0, is discussed.

e. o stability

The extended Energy Principle is perhaps the most
elegant and efficient method for examining MHD stabili-
ty. There is, however, one additional modification that
can be made, which further increases its usefulness, par-
ticularly for numerical calculations. This modification,
introduced by Goedbloed and Sakanaka (1974), is known
as o. stability.

Application of the o. stability criterion, rather than the
extended Energy Principle, eliminates the following diffi-
culty. Even though it is very likely that no continua ex-
ist in the unstable portion of the ~ plane, there are many
cases where one or more continuum may extend to the
origin. When this occurs, discrete modes can accumulate
from the unstable side of the spectrum, in which case the
marginal point u =0 becomes singular. In numerical
studies, one wishes to avoid such singularities whenever
possible. This is the purpose of the o. stability concept.

The basic idea is to use a more practical definition of
stability; that is, a configuration is said to be o. stable if
there are no exponential modes growing faster than
exp(o.t). Here 1/o represents some important limiting
physical time scale, such as the decay time of the exter-
nal circuits, the decay time of the plasma currents, the
particle or energy loss time, the time scale for validity of
the MHD model, etc. If modes grow on a time scale
slower than 1/o. , they are likely to be unimportant or
significantly altered in an actual experiment. To incor-
porate this feature into the stability analysis one consid-
ers a modified form of 58' given by
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5W (g', g)=5W(g*,g)+~ &(g*,g) (5.53)

for all allowable g'. [A detailed discussion of this topic,
including examples, has been given by Goedbloed
(1979)].

The additional term added to 5W in Eq. (5.53) elim-
inates a small portion of the co plane, near co =0, from
stability considerations. Thus the problems associated
with Inodes accumulating at the origin are avoided.
Furthermore, since modes cannot accumulate at
co = —o. , a transition in o. stability always occurs for an
isolated mode, a distinct advantage numerically. These
features are illustrated schematically in Fig. 29.

Observe that the variational form, or the equivalent
Euler-Lagrange equations associated with o stability, are
identical to the full MHD equations with co replaced by
—o. . The similarity is deceptive, since o. is not an
eigenvalue to be determined. On the contrary, one sets a
value for o. and then applies any of the well-established
minimizing techniques to ascertain the sign of 58' .
This is particularly useful for multidimensional
geometries. One drawback to o. stability is that the pres-
ence of the additional terms increases the complexity of
the equations (i.e., more terms, more complicated coeffi-
cients, etc.) This is usually not important in numerical
investigations.

In summary, the concept of o. stability should receive
serious consideration if one intends to investigate MHD
stability primarily by numerically means. For problems
in which analysis is the main method of investigation,
the additional complications introduced by o. stability
suggest that the extended Energy Principle is a more
convenient formulation. Most of the cases considered in
the remainder of this section fall into the latter category,
leading to frequent use of the extended Energy Principle.

5. IncompressibiIity

Because of the simple way in which
g~~ appears in 5W,

it is possible to minimize the potential energy once and
for all with respect to g~

~

for essentially arbitrary
geometry. The resulting form of 58' is only a function
of g'q, and thus the number of unknown dependent vari-

o- S TA B I LI TY
BOUNDARY

UNSTABLE
AC C UMULAT ION
POIN T

CON T INUUM

UNSTABLE

A ~ ~AAp rzssss tv

FIG. 29. Schematic diagram of the co plane, indicating the ad-
vantages of the o. stability concept.

Equation (5.53) states that the potential energy avail-
able to derive any MHD instabilities is reduced by an
amount o. K. An analysis similar to that given by Laval
et al. (1965) demonstrates that the necessary and suffi-
cient condition for o stabi1ity is

(5.54)

ables is reduced from three to two.
The minimizing condition follows from letting

g~~g~+5g~~ in Eq. (5.49) and then setting the corre-
sponding variation equal to zero. The result is

Bp'V(V g') =0 . (5.55)

In fact, since g'~~ also appears in a simple form in the
MHD normalization K [see Eq. (S.50)], the actual equa-
tion of motion for arbitary co can be calculated similar-
ly. The full equation is given by

co ppgii+(ypp/Bp)Bp. V(V.g) =0 . (5.56)

As expected, at marginal stability, co =0, the condition
to minimize 58' is identical to the equation of motion.

For most configurations, the operator BO.V is non-
singular, and consequently Eq. (5.55) implies that the
general minimizing condition is

V./=0, (5.57)

V.g=F( U),

(5.58)

that is, the most unstable perturbations (i.e., those with
the lowest thresholds) are incompressible.

In a sense this is obvious from Eq. (5.49), since the
only term containing g~~ is positive. Thus its smallest
value is zero and is obtained by setting V.g'=0. Howev-
er, it is the components of g which are the physical
quantities and not V.g itself. Therefore, in order to set
V.g'=0, one must be able to choose such a g'~~ for any
given g~. This g~ ~

is given by the solution of
Bp V( g~

~

/Bp ) = —V fy Phy. sically acceptable solutions
for g'~~ are possible only if the operator Bp.V is nonsingu-
lar, as is the case in most configurations of interest.
(Even if Bp.V vanishes on isolated magnetic surfaces, a

g~~ can be constructed which is bounded in the vicinity of
the surface but which makes a vanishingly small contri-
bution to the plasma compressional energy. )

It is worth noting that there are two special cases
where the operator Bo V cannot be simply inverted. In
the first case, if there exists sufficient equilibrium sym-
metry, the operator Bo.V identically vanishes for certain
special modes. As an example, consider a pure Z pinch
with equilibrium magnetic fields Bp Be(r)ea —I—f the.
perturbations are Fourier analyzed with respect to 0 and
z so that g g(r)exp-[i'(m8+kz)], then for the m =0
mode the operator Bp.V (scalar) identically vanishes. In
this situation V (=V gz+Bp. V'(g~~./Bp) =V. z gz, that is, .
g~~

does not appear in 5W, and the compressibility term

ypp ~
Vj g'j

~

must be maintained and included in the
minimization with respect to g'z.

The second case corresponds to the situation of
closed-line symmetry, where the operator Bo-V is not in
general singular, but there is a periodicity constraint re-
quiring g~~( l )=g'~~(1+L) on every magnetic line, since
the lines are closed. (Here 1 is arc length and L is the to-
tal length of a given field line. ) In this case it is neces-
sary to add a homogeneous solution to Eq. (5.55) so that
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F(U)=&V g, ),
(tI Q dl/8O

dI /Bo
(5.60)

The end result is that in closed-line systems the
minimum value of the plasma compressibility term can-
not be made zero, but has the value

(5.61)

Note that, for the general case where V./=0, 5W(ideal
MHD)=5W(perpendicular MHD), indicating that both
models predict identical stability boundaries. For either
of the special cases discussed, there is an additional sta-
bilizing term in ideal MHD proportional to y. Consider-
ing the lack of validity of the ideal MHD energy equa-
tion in most cases of physical interest, the contribution
of this term is likely to be unreliable. Similarly in the
perpendicular MHD model, the assumptions made re-
stricting the class of allowable motions are also violated
for the two special cases, indicating that this model is no
more reliable than ideal MHD. In summary, for cases
where V.g=O, both models give the same predictions;
for either special case, neither model is particularly reli-
able.

Finally, it is worth pointing out the following
mathematical result. For the full variational problem,
applied to the general or either special case, it can be
shown that for unstable modes

co (perp MHD) & co (ideal MHD) . (5.62)

Thus the perpendicular MHD model is more pessimistic
with regard to growth rates.

6. Vacuum versus force-free plasma

One important but somewhat subtle issue is the gen-
eral stability relationship between configurations which
are surrounded by a vacuum or by a force-free plasma [a
detailed discussion of this topic, including examples, has
been given by Cioedbloed (1979)]. This problem arises
physically as follows. Many confinement configurations
consist of a hot core of plasma carrying nearly all of the
plasma current. This core is often surrounded by a cold,
low-density, current-free plasma which ultimately makes
contact with the first wall. Since the electrical conduc-
tivity of the outer plasma is Inuch less than that of the
core, it might appear not unreasonable to treat this re-
gion as a perfect insulator (i.e., a vacuum). However, it
is more often the case that the conductivity of the outer

where I is an arbitrary function of U, and U satisfies the
homogeneous equation BO.V'U=0 (see Sec. IV.D.1).
Solving Eq. (5.58) for g~~ yields

= I [F(»—V 4il. (5.59)
&o ' &o

The periodicity constraint requires that F(U) be chosen
as follows:

region is still sufficiently high that the resistive diffusion
time is long compared to characteristic MHD time. It
would thus seem more realistic to treat this region, not
as a vacuum, but as an ideal MHD plasma with low
pressure (i.e., force-free), carrying no equilibrium current.

The replacement of a perfectly insulating region with
a perfectly conducting region might be expected to have
a large effect on the overall stability. %'hile this is often
true, there are many cases where there is no effect at all.
To understand this situation, compare the outer region
contribution to 5W for each case: (a) the vacuum, given
by Eq. (5.42c), and (b) the force-free, currentless plasma,
given by 5W~ [Eq. (5.42a)] with Jo,pa~0.

5WV ———, I I
Bi

I
dr (vacuum),

5Wp= —, I I Q I
dr (force-free plasma) . (5.63)

Since Q =—Bi=V X (g'i XBp), both energy contributions
are identical in form. One might then be led to conclude
that the magnetic perturbation 8&, which minimizes the
vacuum energy, also minimizes the force-free plasma en-

ergy, and thus both contributions should always be ident-
ical. Although this is true for the magnetic perturbation,
there is an additional constraint in the case of the force-
free plasma. In particular, the plasma displacement re-
sulting from the minimizing magnetic perturbation must
correspond to a physically allowable motion [i.e.,
Kg ~,gi) must be bounded]. No such constraint exists in
the vacuum, since gi is not defined in this region.

For a well-defined, bounded magnetic perturbation, the
force-free-plasma topological constraint arises when at-
tempting to invert the relationship B,=VX(g'gXBO) to
determine g'i. Whether or not the inversion is singular,
is closely rdated to the properties of the Bo V' operator.
For example, in a general one-dimensional screw pinch,
the relation between Bi„andg„is given by Bi„——Bo Vg„.
After Fourier analyzing with respect to 8 and z, one can
invert this relationship, yielding g„= iB i „/F, —
F =kB,(r)+mme(r)/r. Hence, if F(r) vanishes any-
where in the outer region, g', is singular. When this situ-
ation occurs, the stability of the force-free region must
be recomputed with n S~ set to zero, not on the outer
conductor, but on the singular surface. The force-free
plasma is now more stable than the vacuum, since the
new boundary condition is equivalent to moving the con-
ducting boundary inward.

Even with the above distinction between vacuum and
force-free plasma, there still remains one crucial physics
issue. Each of the two cases discussed represents a limit-
ing description of the outer region. In reality, the outer
plasma has a small but finite resistivity. If such an ef-
fect is included in Ohm's law, the plasma can diffuse
through the magnetic field, and the ideal MHD topologi-
cal constraint of perfect conductivity is no longer re-
quired. In this situation, the marginal stability boun-
daries are identical with those of the vacuum case (since
no additional constraints are necessary), but the growth
rates are much lower and depend upon the value of the
resistivity in the region of the singular surface.
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In summary, the stability behavior of the outer region
is as follows. The most pessimistic description corre-
sponds to the vacuum case. Here no additional con-
straints need be imposed, and the characteristic growth
times are those of ideal MHD. If the vacuum region is
replaced by a force-free plasma, the stability may or may
not change, depending upon whether the particular mode
under consideration has a singular surface in the outer
region. With no singular surface, the situation is identi-
cal to the vacuum case. If there is a singular surface,
the force-free plasma is considerably more stable because
of the topological constraint. Finally, when the outer re-
gion is replaced with a resistive force-free plasma, the to-
pological constraint is eliminated. The marginal stability
boundaries are again identical to the vacuum case, but
growth rates are much lower when a singular surface ex-
ists.

The resistive force-free plasma provides the most real-
istic description of the outer region. Therefore, since the
remainder of this section is primarily concerned with the
determination of stability boundaries, whenever the outer
region plays an important role in the stability of a given
mode, we shall treat this region as a vacuum.

7. Classification of MHD instabilities

In this section the various methods used to classify
MHD instabilities are summarized. Also, wherever ap-
propriate, those properties of an equilibrium magnetic
configuration which are effective in reducing or eliminat-
ing a given instability are discussed. Note that many
modes have descriptive names based on the physical is-
sues involved, but do not have precise mathematical de-
finitions except in special limits (e.g., ballooning mode,
high-P interchange mode). Similarly certain "modes"
correspond to specific choices of trial functions which
are likely to cause instabilities, but which are not the
true minimizing functions (e.g., interchange mode, rigid
shift displacement). Such trial functions give rise to con-
ditions which are necessary for stability and sufficient
for instability. In general, a complete and exact minimi-
zation of 58' for any nontrivial geometry requires nu-
merical computation.

Because of the imprecisions discussed above, any clas-
sification system should be viewed as providing general
guidelines for understanding MHD instabilities rather
than providing a unique prescription for distinguishing
different MHD modes.

The first step in classification is to note that all MHD
modes can be reasonably well distinguished by their main
driving source of instability. Thus a given mode can be
either pressure driven or current driven.

possible sources of MHD instability. Those modes in
which the dominant destabilizing term is the one propor-
tional to JO.BO are known as current-driven modes. They
are driven by parallel currents and can exist even in a
zero-pressure, force-free plasma.

b. Pressure-driven modes

Similarly unstable MHD modes in which the dom-
inant destabilizing term in Eq. (5.48) is the one propor-
tional to V@0 are known as pressure-driven modes. They
are driven by perpendicular currents and can exist even
if no parallel currents are present in the equilibrium.

The second step in the classification procedure is to
determine whether or not a given MHD mode causes the
plasma surface to move from its equilibrium position.
This feature distinguishes internal and external modes
(also referred to as fixed-boundary and free-boundary
modes, respectively), which can be described as follows:

c. /nternallfixed-boundary modes

Consider a magnetic configuration in which the plas-
ma is surrounded by a vacuum. Perturbations which
maintain the plasma-vacuum boundary fixed at its
equilibrium position are called internal or fixed-boundary
modes. The boundary condition applicable to such
modes is n.g ~,„~=0and is equivalent to moving a con-
ducting wall onto the plasma-vacuum interface. For
internal modes it is only necessary to minimize 5WF,
since 5m, =5m, =O.

d. Externals'free-boundary modes

If the plasma-vacuum interface is moved from its
equilibrium position during an unstable MHD perturba-
tion, the corresponding modes are known as external or
free-boundary modes. For such instabilities 5$'z and
58'v must be evaluated as well as 5S'F, since
n.g'~,„~+0.Although an internal mode can be viewed
as the special case of an external mode with n. g' ~,„~=0,
the definition assumed here makes each mode mutually
exclusive; that is, if n.g ~,„&=0,the mode is an internal
mode. If not, it is an external mode.

These categorizations represent a general classification
system for MHD instabilities. There are, however, alter-
nate categorizations which distinguish MHD modes in
somewhat more detail. The most important of these are:
(l) the kink instability, (2) the interchange instability,
and (3) the ballooning mode. Most MHD instabilities
can be described by one or more of these basic modes.
A brief discussion of each is given below.

a. Current-drIven modes

It was shown in Sec. V.B.1 that a homogeneous, uni-
directional magnetic field is always MHD stable. Furth-
ermore, it was shown by Eq. (5.48) that there are two

e. Kink modes

The designation "kink mode" refers to either an inter-
nal or an external current-driven mode. The internal
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mode is important in the RFP. The external mode is
dominant (at least theoretically) for the tokamak, al-
though the internal mode also plays an important role
experimentally.

Consider first the external kink mode. The main des-
tabilizing terin for high-m modes (m is the azimuthal
wave number) is the radial gradient in the parallel
current. For low-m numbers, m=1 in particular, the
current profile is not as important as the total current it-
self. The basic form of the perturbation is such that the
plasma surface "kinks" into a helix as illustrated in Fig.
30. The unstable modes occur for long parallel wave-
lengths (i.e., k~~/ki &&1), minimizing line bending. Usu-
ally the most dangerous kinks correspond to low perpen-
dicular wave numbers (i.e., kia -m —1).

There are several ways to improve the stability of a
given configuration to external kink modes. First, for a
prescribed geometry there is usually a critical parallel
current indicating the onset of instability. Stability can
be achieved by keeping the parallel current below this
value. Likewise, for a fixed parallel current, a toroidal
device with sufficiently small major circumference will
prohibit the formation of long-wavelength kinks.
Second, to the extent that one can experimentally control
the field profiles, higher-I kink modes can be stabilized
by peaking the parallel current profile, keeping the total
current fixed. Third, since low-m kinks have a broad ra-
dial extent, they can be stabilized if a perfectly conduct-
ing shell is placed sufficiently close to the plasma sur-
face.

The internal kink has many properties similar to those
of the external kink, although it is in general a weaker
instability. In fact, for a tokamak it is usually only
m=1 that can become unstable. As before, a combina-
tion of low current and/or tight aspect ratio can help to
stabilize internal kink modes, particularly in a tokamak.
Neither of these methods is effective in the RFP; there,
interestingly enough, a broad profile helps to provide sta-
bility. That is, for internal modes, broadening the
current profile at fixed total current effectively moves a
conducting wall closer to the current channel, thereby
providing stability. Although broad profiles would be

detrimental for external kink stability, such modes are
not expected to be important in the RFP since the plas-
ma is in fact surrounded by a conducting shell.

f. interchange instabilities

Interchange instabilities are internal modes driven by
the pressure gradient and are very similar in nature to
the Rayleigh-Taylor instability [see, for instance, Chan-
draseker (1961), Bateman (1978)]. Actually, except in
special asymptotic limits, the interchange perturbation is
not a true mode of the system but represents a special
choice of trial functions which attempts to minimize the
line bending contribution in 58'F (i.e., for an interchange
Bii=0). The interchange instability is important in the
RFP, the Elmo bumpy torus, the stellarator, and some-
times the tokamak.

The interchange perturbation can lead to instability,
depending upon the relative sign of the magnetic field
line curvature and the pressure gradient. If the field
lines are convex towards the plasma, their tension tends
to make them shorten and collapse inward. The plasma
pressure, on the other hand, has a natural tendency to
expand outward. In such cases a perturbation which
"interchanges" two flux tubes at different radii leads to a
system with lower potential energy and hence instability
(see Fig. 31). Because of the way the surfaces are fluted,
the perturbations are also sometimes known as "flute
modes. " When the field lines are concave to the plasma,
the system is stable to interchange perturbations.

From this description it follows that interchanges
represent plasma perturbations which are nearly constant
along a field line (i.e., which have no line bending). Per-
pendicular to the field, the most unstable perturbations

UNSTABLE
PLASMA —VACUUM
INTERCHANGE

PI ASMA

STABLE
PLASMA —VACUUM
INTE RCHAN G E

FIG. 30. Illustration of an m=1 kink instability.

(b)
FIG. 31. Illustration of (a) unstable and (b) stable interchange
perturbations.
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have very rapid variations (i.e., k~~lkz c& l,kia &) 1) if
J~~=0. These are known as localized interchanges and
are very amenable to analysis. In general, they lead to
necessary conditions for stability which can be expressed
solely in terms of local values of the equilibrium quanti-
ties. Examples of such conditions are the Suydam cri-
terion (for one dimension) and the Mercier criterion (for
two dimensions). Interchanges with more moderate or
global variation perpendicular to the field can also exist,
but in general require numerical computation. One spe-
cial case which can be solved analytically is the m=O
"sausage" mode in a pure Z pinch, discussed in Sec.
V.C.2.

There are several features of the magnetic geometry
which can be effective in stabilizing interchanges. First,
if there is shear in the magnetic field from one Aux sur-
face to another, it is not possible to interchange two
neighboring flux tubes without some line bending occur-
ring. If the pressure gradient is sufficiently small com-
pared to the shear, the interchange can be stabilized. A
second method makes use of the fact that on the inside
of a torus the local field line curvature is often favorable.
Thus, as a given magnetic line encircles the torus, it in
general passes through alternating regions of favorable
and unfavorable curvature. By carefully designing the
configuration, one can make the average curvature favor-
able, thus stabilizing interchanges. Such configurations
are said to possess a "magnetic well. " [An early discus-
sion of interchange instability has been given by Rosen-
bluth and Longmire (1957)].

g. Ballooning modes

Ballooning modes are also driven by the pressure gra-
dient and can occur either externally or internally, al-
though in recent years most of the interest has focused
on the latter. These instabilities occur in tori or other
multidimensional configurations and are important in
that they determine one set of' criteria which limits the
value of P due to MHD behavior.

The designation "ballooning" refers to the fact that in
multidimensional geometries the curvature of the mag-
netic field line often alternates between regions which are
favorable and unfavorable. Thus a perturbation which is
not constant, but varies slowly along a field line in such
a way that the mode is concentrated in the unfavorable
curvature region, can lead to more unstable situations
than the simple interchange perturbation. In effect, the
ballooning nature of the perturbation in the unfavorable
curvature region increases the pressure-driven, destabiliz-
ing contribution to 5WF. If the localization is not too
severe, the increase in stability from line bending cannot
compensate for this destabilizing effect.

Magnetic shear is somewhat effective in stabilizing
ballooning Inodes. However, once in the regime where
ballooning modes are important, the most effective way
to stabilize given magnetic field profiles is to keep p
below some critical value.

In general ballooning modes are difficult to calculate

because they are inherently multidimensional. The sta-
bility problem is greatly simplified by considering the
asymptotic limit k~) jkg &&1,kga ~~1, where there is very
rapid variation of the perturbation perpendicular to the
field, although less than in an interchange perturbation.
In this case the stability problem reduces to the solution
of a one-dimensional differential equation on each flux
surface. Substantial progress has been made, using this
procedure, in the study of ballooning modes in
tokamaks. One interesting feature of the ballooning
mode equation is that, in a special limit, it reduces to the
localized interchange criterion (i.e., the Mercier cri-
terion).

8. Summary

In this section the general features of MHD stability
theory have been described. Starting from the linearized
equations of motion, it was shown that a powerful
method, known as the Energy Principle, exists for deter-
mining linear MHD stabihty. The existence of this prin-
ciple is directly related to the self-adjointness of the force
operator F(g') and the exact, nonlinear conservation of to-
tal energy.

An examination of the Energy Principle indicates that,
except in certain special cases, the perturbations which
minimize 68F are incompressible. It was also pointed
out that it is important to distinguish whether the region
surrounding the main plasma core is a vacuum, an ideal
MHD plasma, or a resistive MHD plasma. The ideal
MHD plasma often predicts considerably greater stabili-
ty because the class of allowable perturbations is restrict-
ed as a result of the topological constraints of perfect
conductivity.

Finally, the various types of MHD instabilities that
can occur were described and discussed. In general, in-
stabilities can be driven by currents flowing parallel to
the field (current-driven m.odes) or perpendicular to the
field (pressure-driven modes). They are also dis-
tinguished by whether or not the unstable displacement
perturbs the plasma surface (external versus internal
modes). These classifications were further categorized
into kinks, interchanges, and ballooning modes. Depend-
ing on the mode in question, such equilibrium features as
a conducting wall, maximum current, maximum p,
shear, magnetic well, or tight aspect ratio could be used
to improve stability. As a general feature, essentially all
MHD instabilities correspond to plasm'a displacements
which are nearly constant along a field line (i.e., k~~ =0
to minimize line bending). However, perpendicular to
the field they can vary macroscopically (as in kinks) or
very rapidly (as in interchange and ballooning modes).

C. Application to 10 configurations

This section describes the application of the Energy
Principle to one-dimensional cylindrical configurations.
First, the stability of the two basic configurations, the 0

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal rnagnetohydrodynamic theory of magnetic )Usion systems

pinch and the Z pinch, is investigated. It is shown that
the 0 pinch has inherently favorable stability properties,
while the opposite is true for the Z pinch. Next, the En-
ergy Principle is applied to the general screw pinch.
Even this relatively basic configuration exhibits a rather
high level of coInplexity. Three important results which
are discussed are Suydaro's criterion for localized inter-
changes, Newcomb's general procedure for testing stabili-
ty, and the oscillation theorem describing the eigenvalue
behavior for the full linearized stability equations.

Based on these results, a relatively complete descrip-
tion of the stability of the reversed field pinch is then
given. The ordering of the fields in the aspect ratio is
such that the one-dimensional stability analysis is essen-
tially all that is required for the reversed field pinch, the
toroidal effects leading only to small corrections. Final-
ly, a discussion is given of the "straight" tokamak. Al-
though a relatively complete stability picture is again ob-
tained, the results must be used cautiously since, for the
tokamak, there are toroidal modifications which are of
comparable importance.

1. The 0 pinch

As a first application of the Energy Principle, consider
the 0 pinch. Recall that the equilibriuIn is described by
p (r),8=B,(r)e„where

p (r)+ ,B,(r) = —,B, — (5.64)

ically in this expression. Consequently 58'F is Inini-
mized by choosing

m +kr2 (5.68)

68'F k 8,= m J r dr [ I
(rg)'

I
'+kor

I

g'I ] .
kpr

(5.69)

2. The Z pinch

For the next application of the Energy Principle con-
sider the Z pinch described by p (r), 8=Bg(r)eg, where

Here kor =k r + m and g'=g„.
Observe that 68'F ~ 0 for any nonzero k, and

68'F~O as k ~0; that is, the 0 pinch is positively
stable for finite wavelengths and approaches marginal
stability for very long wavelengths. These are the favor-
able stability properties previously mentioned.

A simple physical explanation for the stability is as
follows. A (9-pinch equilibrium has no parallel currents,
so that current-driven modes cannot be excited. Like-
wise, since the field lines are straight, their curvature is
zero (i.e., radius of curvature is infinite) and pressure-
driven modes cannot be excited. Any perturbation to the
equilibriuIn either bends or compresses the magnetic
field lines, and both are stabilizing influences.

and 8 is the externally applied field. Since the equili-
briuIn is symmetric with respect to 0 and z, the plasma
displacement can be Fourier analyzed as follows:

dp -86 d
(rBg) =0 . (5.70)

58'F
0

I(r)r dr, (5.67)

g( r ) =g'(r )exp[i (m 8+kz) ] .

Here m and k correspond to the "poloidal" and
"toroidal" wave numbers, respectively.

The first step in the minimization of 5W' is to note
that the incompressibility condition, V.g=O, yields the
following expression for

g~~
=g', :

[(rg, )'+imgg] .1

kr
(5.66)

Hence, as long as k+0, the minimizing perturbations are
incompressible.

Consider now the general internal modes of the 0
pinch. Straightforward substitution into 6&=58'z [i.e.,
Eq. (5.48)] gives

As before, the equilibrium symInetry implies that the
perturbations can be Fourier analyzed with respect to 0
and z:

gg ———[(rg„)'+ikrg,] . (5.71)

For m =0 the general minimizing condition B.V(V g ) =0
is automatically satisfied, and gg never explicitly appears
in the calculation. In this case, V g'=V. g'i and the plas-
ma compressibility must be maintained.

Thus the two cases m~O and m=O must be treated
separately. Consider first internal modes with m~O. In
analogy vAth thc 8-pmch case~ thc Energy Pnnclplc
yields a quadratic expression in which g', appears only
algebraically. The minimizing g, is given by

g(r)=g(r)exp[i(m0+kz)] .

The first step in the minimization procedure is to ex-
amine the incompressibility condition. For m+0 it fol-
lows from V.g'=0 that g~~ =gg is given by

where a is the outer radius of the plasma and I, is the
length of the column. Note that gg appears only algebra-

ikr '
m+kr

which, when substituted into 68'F, yields
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rdr (2''+m'ae)
l gl kg, =

~ rBs
i

yp+ge r + (rg'„)'
r

2 2+2
+ m+kr 6W ~ d, 4@~me

2 +2rp'
n+&e

(5.74)

where g=g„. Note that k only appears in a positive
term, so that the minimizing perturbation occurs for
k ~ oo. 58'z thus reduces to

2rp'+m Be (5.72)

Equation (5.72) implies that the necessary and suffi-
cient condition for stability in the case when m~O is
2''+ m Bs&0 [see, for instance, Kadomtsev (1966)].
Using the equilibrium relation, this can be rewritten as

r' &e (—(m —4) .
Be r 2

(5.73)

The standard Z-pinch profile has Be/r as a decreasing
function of radius. For such profiles Eq. (5.73) predicts
stability for m &2. It also predicts stability for m= 1 in
the outer low-current regions where Be-1/r. However,
near the axis Be-r. Consequently the inner core of the
Z pinch is always m=1 unstable.

The source of the instability can be seen in Fig. 32.
As the plasma undergoes an m=1 deformation, the mag-
netic lines concentrate in the tighter portion of the
column. The corresponding increased magnetic pressure
produces a destabilizing force in the direction to further
increase the m = 1 deformation —hence, instability.

Although the plasma distortion has the appearance of
a helix, it does not correspond to a kink mode, since

JI
I

=0. The mode is perhaps best described as a
pressure-driven interchange in which line bending and
magnetic compression are minimized by choosing
k

~ ~

=m ir as small as possible (i.e., m = 1) and
ki —=k~ ao so that $,~0.

Consider now the m=0 mode. The evaluation of 58'z
again shows that g, appears only algebraically. Minim-
izing 68'z yields

The necessary and sufficient condition for stability when
m=0 is thus given by (Kadomtsev, 1966)

rp' 2yae
(5.75)

yp+&e

This condition can be satisfied for suHiciently gradual
pressure profiles. Note, however, that the criterion is a
strong function of the ideal MHD energy equation,
which provides a poor description of the physics in a
collisionless plasma. The corresponding condition from
perpendicular MHD, equally unreliable since 8 V—:0, is
obtained by setting y=O. The resulting stability cri-
terion, rp'!p &—0, is always violated for a confined
plasma.

The m=O instability is an interchange mode often
known as the "sausage instability. " The basic nature of
the mode is illustrated in Fig. 33. When an m =0
"sausage" perturbation is superimposed on the Z-pinch
equilibrium, the magnetic field in the throat region in-
creases, since the plasma carries the same current in a
smaller cross section. The increased magnetic pressure
produces a force which tends to further constrict the
column.

In summary, a Z pinch is always unstable to m=1
perturbations and is likely to be unstable to m=0 as
well. The unstable modes basically have the form of
pressure-driven interchanges. These results form the
basis of earlier statements attributing very poor stability
characteristics to the Z pinch.

SMALLER
B

WEAKER 88

FICx. 32. Physical mechanism of the m=1 instability in a
pure Z pinch.

FIG. 33. Physical mechanism of the m=O sausage instability
in a pure Z pinch.
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3. The general screw pinch

a. Evaluation of 6I4'

As a first step in finding configurations which com-
bine the favorable equilibrium properties of the Z pinch
with the favorable stability properties of the 0 pinch,
consider the general screw pinch. The relevant equilibri-
um quantities are p(r) and 8=Be(r)ee+B,(r)e„' they
satisfy

The remaining terms in oWF are functions only of g
and g. As in previous cases, straightforward substitution
shows that g appears only algebraically. The minimiz-
1ng condition gives

[G (rg')'+2kBeg]
rk OB

(5.83)

with ko ——k'-+ m Ir and 6=mB, /r —kBe. After a
slightly tedious calculation, one can write 58F in the
following form (Newcomb, 1960):

[p + , (B—e+B,)]+
dr r

(5.76)
58F

dr( fg' +gg ), (5.84)

Although two field components are present, the systeIn
still possesses (O,z) symmetry, so that the perturbations
can be Fourier analyzed: g(r)=g'(r)exp[i(m8+kz)]. &n

fact, it is this dual symmetry that is ultimately respon-
sible for the algebraic elimination of two components of
g' in the minimization procedure.

For the screw pinch it is convenient to decompose the
displacement vector as follows:

k
2P+

ko

kor —1
rF +2 kB, —

kor rko4

mBg F.

(5.85)

g'= ge„+ye„+g
~
~eb

where cb is the unit vector along 8 and

)( =(KeBe+'k.B.)/B
ri=(keB. C.Be)/B—

e„=(B,ee Bee, ) /B . —

(5.77)

(5.78)

F=k-S=mBg/r+kB, . (5.80)

Excluding the very special case of zero shear [i.e.,
(BelrB, )' =0], F will in general be nonzero except
perhaps at a finite number of discrete radii. If F is
nonzero everywhere, a well-behaved

g~~
can be chosen in

accordance with Eq. (S.79), and the plasma compressibil-
ity term in 68'F vanishes. Even when F=0 singular
points exist (as they almost always do), the compressibili-
ty term can be made negligibly small with a well-
behaved

(5.81)

The first step in the minimization procedure is to ex-
amine the incompressibility condition. For a given I
and k, setting V g'=0 yields

.8
g~~

=i Vg, , —

6WF 68 F
L, L

(ext) = (int)+~
k2 2~2 2g2

g'(a) .
k2or '

a

(5.86)

Here 5Wb. (int)/L is given by Eq. (5.84). These must be
combined with the surface and vacuum contributions to
6g. If the assumption is made that no surface currents
Aow in the plasma, then 68~ ——0. The remaining vacu-
um term is calculated, as follows. In the vacuum,
8& ——VP& with P, satisfying V P~

——0. The solution for
P~, assuming a conducting wall at r =b, is given by

r

Kb
P, =A K„—— I„exp[i(m 9+kz)], (S.87)

where K, =K (kz) and I, =I~(k ).zThe amplitude A is
related to g(a) through the boundary condition
n.8,=8 Vg —gn. (n V)8 [see Eq. (5.4S)]. One finds

t'

iF(a)g(a) Kb Ia

Equation (5.84) is the usual form of the Energy Principle
for internal modes [i.e., g(a) =0].

Consider now the generalization to external modes.
First, when g(a)+0 there is an additional boundary term
to 68'F resulting from the several integrations by parts
required to obtain the form given by Eq. (S.84). The full
58'F can be written as

where o. &0 is small but nonzero. In this case the
compressibility term is approximately given (for one
singular point located at r =r, ) by

The last step in the computation is to make use of the
fact that V P& ——0 and transform 5WV into a surface in-
tegral. The result is

(5.82)
5Wr= —, I dr

I
8)

I

= ——, I dS(n. VQ))P ) . (S.89)

and becomes arbitrarily small as ca~0.
Substituting into Eq. (5.89) and combining the results
with Eq. (5.86) yields the following expression for 5W:
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where

kryo, —mBg r A,rF+ F' g (a),
kor Ptl

(5.90)

rF'
k2 f&

"s

2

5Wf= f dx x +a/ (5.92)

mE,
A, =—

kaX,'
1 (Kb—I )/(IbK )

1 (Kb—I,' )/(IbKo )

where

2k p'
rF' r,

2p p
2 pi2

(5.93)

(5.91)

To summarize, the Energy Principle for the general
screw pinch reduces to a quadratic form in one depen-
dent variable, g'. This expression, given by Eq. (5.90), is
exact in that the minimizations with respect to g~ ~

and q
have been carried out without approximation. Equation
(5.90) is valid for either external modes or internal modes
if g(a) is nonzero or zero, respectively.

An examination of Eq. (5.90) indicates that screw-
pinch stability is rather complicated because of the com-
plexity of g(r). Nevertheless, there are a number of gen-
eral properties that can be proven for arbitrary profiles.
First, necessary and sufficient conditions for stability
based on the behavior of g' have been given by Newcomb
(1960). Second, a general oscillation theorem proving the
Sturmean. and anti-Sturmean behavior of the eigenvalues
has been given by Goedbloed and Sakanaka (1974). Both
of these properties are extremely valuable, not only for
their physical content, but for their practical usefulness
in devising numerical schemes for testing stability. The
third property of interest is known as Suydam's criterion
(Suydam, 1958). This is a purely analytical criterion, de-

pending only on the equilibrium profiles, which provides
a test of stability to the special class of perturbations
corresponding to localized interchanges.

b. Suydam's criterion

The Suydam criterion is derived by assuming that g(r)
is a highly localized function of radius when evaluating
5W. Since this corresponds to a special subclass of trial
functions, the Suydam criterion is necessary but not suf-
ficient for stability. The motivation for a localized
eigenfunction follows from the observation that if F=O
at some radius r =r„then each term in f and g vanishes
except the p' term, which is almost always negative (i.e.,
destabilizing). Thus a perturbation localized about r=r,
has a reasonable likelihood of causing a pressure-driven
instability. Note that F—=k-B=O corresponds to k~I =0,
so that such perturbations tend to minimize the bending
of the magnetic lines. Consequently the Suydam cri-
terion describes the stability of internal localized inter-
change perturbations.

The first step in the derivation is to assume that g(r) is
localized about the singular surface F(r, ) =0. All quan-
tities in 5Wz are then expanded about x=r —r, . The
leading-order contribution is given by

p=B~/r8, is the pitch number of the magnetic field,
and p' is the shear. The quantity b, «a is a measure of
the localization. The function g, which minimizes 5Wf,
satisfies the Euler-Lagrange equation

d 2dg
dX dX

(5.94)

and has as its solution

g=Cix '+C2x

p& 2
————,+ —,(1+4a) ~1 1 1/2 (5.95)

Since at least one solution for g is always singular, one
cannot simply use the solution to Eq. (5.95) as a trial
function in 5Wf. Whether or not g can be modified
very near x=O so that it becomes a well-behaved, allow-
able trial function, still capable of making 58'f &0, de-
pends upon the sign of 1 + 4a.

For 1 + 4a &0 the roots are complex and

», [Cisi (k.» lx I )+C2cos(k„lnl x
I )l

1

k„=—,[—(1+4a)]'~ (5.96)

The solution as x~0 oscillates infinitely rapidly with a
diverging envelope proportional to 1/

I
x

I

'~ . Because
of the oscillatory behavior, it is possible to construct a
well-behaved g' such that 5Wf is always negative (i.e, un-
stable). The modified g is illustrated in Fig. 34. In re-

gions I and V, /=0 so that 5Wf(I)=5Wf(V)=0. In re-

gions II and IV, g satisfies the Euler-Lagrange equation.
The corresponding contributions to 5Wf are obtained by
inultiplying Eq. (5.94) by g' and integrating over each re-

gion. Since either g or g' is zero at the end points of
both regions, one finds

5Wf(II)= f (x g' +a/ )dx=x g' „,=0,
1

5Wf(IV)= f (x g' +a/ )dx=x g' „,=0. (5.97)

The total contribution to 6Wf arises from region III,
where g'=const and is given by

x3
5Wf = f (x g' +a/ )dx =ago(x3 —x2) .

By assumption a & —1/4. Therefore 6Wf &0 and the
system is unstable.

When 1+4a ~0, the indicial roots are real and at least
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c. Newcomh's ana!ysis

I

I

I

I

I

!

I

!

l

I

!
l

—I/2g~l x l

A general analysis of the Energy Principle for the
screw pinch has been given by Newcomb (1960). In this
investigation a set of necessary and sufficient conditions
for the behavior of g are derived for determining MHD
stability of arbitrary internal modes. Although the end
results do not yield analytical criteria, such as the Suy-
dam criterion, they provide a simple general prescription,
which can easily be implemented numerically, for testing
stability of arbitrary screw-pinch profiles. A key feature
of the analysis is the use of ideas associated with Sturm's
separation theorem. A brief outline of Newcomb's
theory is given below.

To begin, consider 5WF given by Eq. (5.84) and as-
sume that m and k are such that F(r)+0 in the interval
(O,a). In this case, the Euler-Lagrange equation

d dg
dr dr

(5.100)

FIG. 34. Trial function leading to violation of Suydam's sta-
bility criterion.

is nonsingular and has two independent solutions:

4=Ci ki(r)+ C24(r) . (5.101)

one solution is singular. In this case oscillatory solutions
do not exist, and a localized, well-behaved trial function
cannot be constructed; that is, if 1 + 4a) 0 the system is
stable to localized interchange perturbations.

The stability boundary 1 + 4a & 0 is known as
Suydam s criterion. If it is violated for any r, in the in-
terval (O,a), the plasma is unstable. The usual form for
Suydam's criterion is given by (Suydam, 1958)

T 2
I

ra,' ~ (5.99)
p

+8@'&0 .

Equation (5.99) indicates that the stability boundary in-
volves two competing effects. The destabilizing term,
corresponding to the interchange drive, results from the
combination of a negative pressure gradient and the un-
favorable curvature of the B field. The stabilizing
term, proportional to p', represents the work done in
bending the field lines when interchanging two flux tubes
in a system with shear.

One final question to be addressed is whether a mode
with such highly localized structure would be important
in an actual experiment and not be dominated by other
physics. The answer is connected with the oscillation
theorem discussed later. Briefly, the theorem shows that
violation of Suydam's criterion corresponds to the ex-
istence of an accumulation point of discrete eigenvalues
at co =0 from the unstable side of the spectrum. In ad-
dition, the theorem proves that the unstable eigenvalues
and eigenfunctions have Sturmean behavior; that is, if a
highly oscillatory localized mode with a certain growth
rate exists (as implied by violation of Suydam s cri-
terion), a gross mode with zero nodes must also exist and
have the maximum growth rate. Thus it is the guarantee
that such a large-scale mode must exist that makes the
violation of Suydam's criterion important.

kzki —k4z
2
2

(5.102)

it follows that Y' can equal zero only if the Wronskian
g'2g —g~g2

——0 somewhere in the interval. However,
should this occur, the assumption that g, and $2 are in-
dependent is contradicted. Hence, the zeros must alter-
nate.

Using this result, a trial function can be constructed
using g~(r) and g'2(r) in different parts of the interval
(O,a) as shown in Fig. 36(a). Here it is assumed that
g&(r) has one zero at r&. (The results can easily be gen-
eralized to include more than one zero. ) The separation
theorem guarantees that an r 2 must exist such that
$2(r2) =0 with 0 & r2 & r &. Likewise, in the interval
r2&r &a, $2(r) cannot have a second zero: g'2(r)~0,
r2&r &a. The trial function is constructed using g&(r)
to the left of the intersection point ro and g'2(r) to the
right. The value of 58F is obtained by multiplying Eq.

Here g~(r) can be chosen to be regular at r=O, but g'&(a)

is not in general zero. Similarly g'2(r) can be chosen so
that $2(a) =0 but $2(0) is not in general regular at r=0.

In the first part of the analysis it is shown that when

g, (r) has a zero anywhere in the interval (O,a), a trial
function can be constructed which makes 58 F &0. If no
zero exists, the system is stable to the given m and k.
The analysis is based on the separation theorem, which
proves that the zeros of any two independent solutions of
Eq. (5.100) [g~(r) and $2(r), for instance] must alternate.

This is easily demonstrated by assuming the opposite;
that is, g|(r) has two consecutive zeros, r~ and r2, and

$2 (r)+0 in the interval (r„r2) (see Fig. 35). Clearly,
/=0 for some intermediate ro, r& &ro&r2. Therefore
the well-behaved function P=g, (r)I/2(r) also has zeros
at r& and r2 and an intermediate zero derivative. If one
now computes
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I

l

I

l

I

I

0

FIG. 35. Illustration of the separation theorem.

(5.100) by g and integrating over the separate regions.
The result is

~f( 0)k( 0)l kl( 0) k2( 0)] (5.103)

FIG. 36. Trial functions showing: (a) instability, and (b) sta-
bility by means of Newcomb's analysis for the case where
F{r}+0,0&r &a.

Because of the separation theorem, g (ro) —$2(ro) &0, im-

plying 5&~&0, the system is unstable. If, however,
g&(ro) has no zeros in the interval (O,a), the only type of
trial functions that can be constructed consistent with
the separation theorem and the boundary conditions are
shown in Fig. 36(b). In this case Eq. (5.103) still applies,
but f~(ro) —$2(ro) &0 and the system is stable.

The first part of Newcomb's analysis can thus be sum-
marized as follows. For values of k and m such that
E(r)+0 in the interval (O,a), the screw pinch is stable if
and only if the nontrivial solution of the Euler-Lagrange
equation [i.e., Eq. (5.100)], which is regular at r=O, does
not have a zero for 0& r &a.

The situation is slightly more complicated if Ii (r, ) =0,
0&r, &a. In this case, the Euler-Lagrange equation is
singular, and the proper prescription for calculating g in
the vicinity of the singular surface must be determined.
Recall that in the vicinity of r, the behavior of g is given

by (=Coax '+ C2x ', where x=r r, and p& —2
=—( —,)+(—,)(1+4a)' [see Eq. (5.95)]. To determine
the conditions for stability one must assume
(1+4a), &0 or else Suydam's criterion is violated. The

proper choice of g' is then determined by the physical
condition that the potential energy remain bounded.

1 j.
Hence the root p~ ~ ——, is allowable, while p2& ——,

leads to a divergent energy. That is,

dx x '+o,' x '&+'
2p+l

10 for p) Q —
2

1«rp2& ——, -

The conclusion is that in connecting through a singu-
lar point one must choose trial functions containing only
the small solution (i.e., the root p~). In effect the singu-
larity acts like a regularity condition at the origin, in
that it singles out one of the two independent solutions
as admissable. Because of this, the interval (O,a) must be
broken into subintervals whose boundaries correspond to
the successive zeros of F(r) =0. The first and last inter-
vals are bounded by r=0 and r=a, respectively.

Each subinterval must be tested for stability separate-
ly. The analysis given for E(r)+0, 0&r &a can be
directly applied to each subinterval. Typical trial func-
tions for the case of one singular surface are illustrated
in Fig. 37. The corresponding value of 58+ is given by
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=~f(ro)Pro)fbi("o) —k(ro)l . (5.104)

Note that the requirement that g~(r) contain only the
small solution guarantees that the boundary contribution
at r =r, vanishes. As before, if g&(r) has a zero in the
subinterval, 68'F ~0 If not, 68'F )0.

The second part of Newcomb's analysis can be sum-
marized as follows. For values of k and m such that
F(r, ) =0, 0 & r, & a, the screw pinch is stable if and only
if: (1) Suydam s criterion is satisfied at r =r„and (2)
the nontrivial solution of the Euler-Lagrange equation
containing only the small solution at r =r, does not have
a zero either for r, ~r &0 or for r, ~r ~a.

Newcomb's analysis clearly shows how the stability of'

a given screw-pinch profile is related to the solution for
of the corresponding Euler-Lagrange equation. For

any specific application, one can easily solve Eq. (5.100)
numerically and then ascertain stability by Newcomb's
procedure.

A final practical point worth noting is that in large-
aspect-ratio systems where k can essentially be con-
sidered a continuous rather than quantized mode num-
ber, the range of (m, k) parameter space that needs to be
tested for stability is significantly reduced from the full
range —oo (I+ oo, —oo Q k &. Oo. This follows froIIl
the form of f and g given in Eq. (5.85). For m~0 con-
sider k'=k/m and m as the two independent mode
numbers. Under this transformation, f is independent of
m, and g contains only one term with explicit I depen-
dence given by

g(m, k', r) =g(r, k')+m r (O'B, +Bs/r) (5.105)

Since the m-dependent term is always stabilizing, the
most unstable case corresponds to m=1. Similarly for
m=O, f is independent of k, and g contains only one
term with explicit k dependence,

g(m =O, k, v)=g(r)+rk B, .

In this case, the most unstable mode corresponds to
k 0.

Consequently, when testing for stability, it is necessary
and sufficient to examine only m = 1,—Oo ~ k ~ oo and
m =O,k ~0, a significant reduction of the overall
parameter space.

6W r '+g r dr (5.107a)

l
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(a)

in which the eigenvalue enters the equations. A brief
outline of the derivation and conclusions of Cioedbloed
and Sakanaka is given below.

Since the calculation involves the behavior of co, the
full eigenvalue equation is required and not simply the
Euler-Lagrange equation corresponding to 68 . The
derivation nevertheless is very similar. One writes
g=ge, + qe„+g~leb and substitutes into the full varia-
tional form 5M=58' —co K. Again, because of symme-
try, minimization with respect to gll and g is algebraic.
After a slightly tedious calculation one obtains the fol-
lowing variational formulation [see Goedbloed (1979) for
a detailed derivation of Eq. (5.107)]:

d. Oscillation theorem

Goedbloed and Sakanaka (1974) have derived an im-
portant result concerning the stability of arbitrary screw
pinches by showing the existence of an oscillation
theorem for the full eigenvalue problem. For fixed m
and k, the oscillation theorem implies that as the number
of radial nodes in a sequence of unstable eigenfunctions
monotonically decreases, the corresponding eigenvalue m

also monotonically decreases (i.e., becomes more un-
stable). The problem is conceptually similar to that of
the classic Sturm-Liouville system, but is significantly
more difficult in practice bemuse of the complex manner

rs

(b)

FIG. 37. Trial function showing (a) instability and (b) stability
by means of Newcomb's analysis for the ease where F(r) =0 at

rs.
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or the equivalent Euler-Lagrange equation [first derived
by Hain and Lust (1958)],

f (rg) g—(rg) =0,cl

dr dr
L

where

(5.107b)

x(r()

g = — (~ —~~ )+r

p(V,'+ V,') (~' —~,')(~' —cop)

(~ —Q)f )(~ —~~ )

4k Bg V, (co —cog)

r (co —cof )(co —co, )
3 2 2 2 2

Bg 2kBgG ( V, + V, )(co —cog )
2 2 2 2 2 2r r (Ii) —cgf )(cg) —co& )

(S.108)
FKj'. 38. g solution used in the derivation of the oscillation
theorem.

G=mB, /r kBs, —co, =F /p,

V, =B /p, co~ ——co, [ V, /( V, + V, )],
V, =yplp, co ——s co, (V, /V~),

cof, ——, ko(V, —+V, )[1+(1—a )'~ ],
cc =4 V, co, /[k 0( V, + V, ) ])0 .

the complexity of g. Goedbloed and Sakanaka have
pointed out a simple method of evaluation by transform-
ing to the original set of dependent variables g,g,g~~ as
follows:

+&2+ 8 g2a.~, a
Bco ] Bco

&

dX
dr dr

(S.109a)

The complexity of Eq. (5.107) gives some appreciation of
the simplicity of testing stability by means of 58' rather
than the full eigenvalue formulation.

The oscillation theorem is derived by examining the
behavior of g(a) as a function of co . Consider two solu-
tions, X=rg, and g=rg2, corresponding to two neighbor-
ing values of co, co&, and mz, respectively. Assume each
solution is regular at the origin and that co2 ——co~+5co,
g=X+5X with 5co and 5X small. [Note that, for a
given co&, 7 will not in general satisfy the boundary con-
dition X(a)=0.] The equations of motion determining X
and 5X are given by

(5W co K)—
Bco

Equation (S.110) now has the form

( fX'5X)„,=5' K/~L,

(S.111)

(S.112)

d d5X
5 5 2 d Bf dX

dr dr dr c)~
&

dr
Bg

9

86)
&

(S.109b)

where f=f (r, co~), g =g(r, co~)

Assume now that X(r ~ ) =0, 0 & r
&

& a (see Fig. 38).
The relationship between 5X(r&) and 5' is obtained by
multiplying Eq. (S.109a) by 5X, Eq. (S.109b) by X, in-
tegrating over the range 0(r (r ~, and then subtracting.
The result is

a„~ dr (S.110)
co

&
Bco I

Although the integral in Eq. (S.110) is straightforward to
evaluate in principle, it is difficult in practice because of

which implies that a given change in 5' causes a corre-
sponding change in 5X(r~), the sign of which is deter-
mined by the sign of f(r, )X'(r&). In the unstable por-
tion of the spectrum, co &0 so that f(r)) 0, 0&r &a.
Consequently, if 5' &0, the radial node of X at r] al-
ways moves outward.

Continuous application of this result for a sequence of
negative 5' 's leads to the oscillation theorem. If an un-
stable eigenfunction exists with n radial nodes and corre-
sponding eigenvalue co =~„&0,then a continual de-
crease in co (i.e., an increase in instability) eventually
gives rise to unstable eigenfunctions with n —1, n —2,
n —3, . . . , 0 radial nodes. In all cases, the zero-node
mode has' the fastest growth rate. Therefore, if
Suydam s criterion is violated, the oscillation theorem
guarantees the existence of a macroscopic zero-node
mode with maximum growth rate (for the given m and
k). This points out the importance of satisfying
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Suydam's criterion. The oscillation theorem also shows
that co =0 is a point of accumulation from the unstable
side of the spectrum when Suydam's criterion is violated.
A complete derivation of the oscillation theorem, includ-
ing its implications on the stable side of the spectrum,
can be found in the lecture notes of Goedbloed (1979).

Finally, it is useful to note that as a consequence of
the oscillation theorem numerical parameter studies of
maximum growth rates are significantly simplified by re-
stricting attention only to the zero-node mode.

4. The reversed field pinch

a. Introduction

In this section the general screw-pinch analysis is ap-
plied to the reversed-field-pinch configuration. Recall
that the appropriate inverse aspect ratio expansion for
the RFP requires 8,/Be, -p/8~ —1. Consequently the
toroidal corrections are indeed small, and an essentially
complete MHD stability description is obtained from an
analysis of the one-dimensional cylindrical model.
Furthermore, since the RFP is surrounded by a conduct-
ing wall, only internal modes need be considered.

By making use of Suydam's criterion and various trial
functions, it is possible to develop an intuition as to why
RFP profiles have favorable stability properties with
respect to pressure-driven and current-driven modes.
Such analyses have been carried out by Robinson (1971)
and more recently by Sakanaka and Cxoedbloed (1974).
They have shown that of all reasonable B& and B, pro-
files containing an isolating, current-free region near the
conducting wall, the RFP profile is the one most capable
of sustaining complete ideal MHD stability at high
values of p. In each case, the intuitive arguments are
supported by numerical calculations of the exact equa-
tions. As an example, Robinson showed that with a
reasonably located conducting wall, b/a-2, completely
stable RFP profiles exist for p=30%. This optimistic
theoretical result and the experimental data from the
"quiescent" operating regime of Zeta [see Bodin and
Newton (1980) for a review of RFP experiments] provide
strong motivation for consideration of the RFP configu-
ration as a fusion concept.

Finally, a brief outline is presented of the recent
theory of Taylor (1975) concerning the time evolution of
pinch discharges. His theory suggests that, under a wide
range of conditions, many configurations will naturally
evolve to low-P "RFP-like" profiles, including self-
reversal of the toroidal field.

ty. Second, the use of appropriate trial functions gives
reasonable bounds for the overall limit on (p).

Consider first Suydam's criterion. If the toroidal
current density on axis, J,(0), is nonzero, then near r=0
Suydam's criterion has the form

1 p "(0)
2 ' p(0)
—B,(0) r +8@"(0)r&0 . (5.113)

68'F
(77$O I g dl (5.114)

If p' is eliminated by the pressure balance relation, then
g can be rewritten as

g(r)= k r 2B +2@
ko

Near the axis there is insufficient shear to stabilize the
interchange perturbation. To avoid such instabilities it is
necessary that p"(0))0, implying that for small r the
pressure profile must be hollow or extremely flat.

Suydam's criterion also points out the importance of
the reversal in B,. To show this, it is convenient to in-
troduce the pitch length Q—:I/p=rB, /Bs. If there is a
current-free region near the wall, then 8, —const,
B&- I/r, and Q-r . In addition, near the axis, B, de-
creases more rapidly than J, (to keep the pressure profile
hollow), so that Q is also a decreasing function of r.
Consequently, if B, does not reverse, there must be a
minimum in Q near the outside of the plasma as shown
in Fig. 39(a). Suydam s criterion indicates that an insta-
bility will occur if Q'=0 when p'&0. This situation is
avoided if B, reverses, in which case Q passes through
zero and Q'+0 [see Fig. 39(b)]. Thus, in the RFP con-
figuration, stability to interchange perturbations requires
a hollow pressure profile to avoid modes near r=O and
high shear caused by the 8, reversal to avoid modes on
the outside of the profile.

Although Suydam's criterion provides valuable insight
into the local properties of the RFP, it does not provide
an overall (P) limit. Such limits can be estimated by
substituting appropriate trial functions into 68' for the
m=-1 and m=O modes. For the m=1 mode, a trial
function likely to cause instability is illustrated in Fig.
40(a). By letting g drop to zero [as it must since
g(b)=0] in a thin layer about r„where E(r, )=0, the
stabilizing contribution vanishes: ' dr~O as c~O.
Furthermore, , the destabilizing region is maximized when
r, ~b. Using this trial function, the Energy Principle
implies that

6 Pressure-driven modes k—4k rp —r 2 k8, —
0

(5.115)

To determine the influence of pressure-driven modes
on the RFP configuration, two stability tests are per-
formed, as originally suggested by Robinson (1971).
First, an examination of Suydam's criterion shows that
the profiles must possess certain local features for stabili-

Since the last term is always negative, a necessary condi-
tion for stability is that the remaining contribution be
positive. Setting k= Be(b)/bB, (b) and u—sing the RFP
definition of (p) given by Eq. (4.48), it then follows that
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0

(b)
FIG. 40. Trial functions for (a) the m=1 and (b) the m=0
macroscopic pressure-driven modes.

Fits. 39. Avoidance of a pitch minimum in the Q profile by
reversing 8, (a) No reversal ~ instability, (b) reversal ~ sta-
bility.

obtains

f+r g =2r p'+2rB, . (5.118)

(5.116)

5WF g'o 'O

2 I (f+r g)dr .2 (5.117)

Upon setting m=O, k ~0 (the most unstable k ), one

Clearly the m = 1 (P) limit is a very weak restriction.
A more stringent condition arises from the m =0

mode. In this case the appropriate trial function is illus-
trated in Fig. 40(b). Note that the jump in g occurs at
r=ro, where f(ro)-B, (r&&) =0. Hence the potentially
large stabilizing contribution from the layer where f is
large vanishes as e~O. For this trial function,

Usually the reversal point is relatively close to the
current-free region. Thus, to within a small error, sub-
stitution of Eq. (5.118) into Eq. (5.117) yields the stabili-
ty condition

(5.119)

The m=0 condition is more stringent than for m= 1,
but still represents only a weak overall limitation on
(P). It reflects the physical fact that near the center of
the profile there must be sufficient B, field to "stiffen"
the plasma against m =0 sausage perturbations.

In summary, a combination of profile shaping and a
weak (P) limit is required to stabilize the RFP configu-
ration against pressure-driven modes.
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c. Current-driven modes

rk Bg=, (kg+ 1)[(3+@'r')kg —1+k'r'],
0

(5.120)

where, as before, Q =1/p=rB, /Ba and ko=k
+m /r . Equation (5.120) corresponds to the most un-
stable situation, m=1. A useful way to ascertain the
sign of g(r) for a given k is to plot a diagram of k vs r
whereg(r) vanishes:

kg =(1 kr )/(3+—k r ) . (5.121)

The influence of internal current-driven modes on the
RFP configuration can be determined by means of a pro-
cedure first suggested by Robinson (1971). In this pro-
cedure a necessary condition for stability is derived by
examining the sign of g(r) vs r and determining under
which circumstances it is negative, consistent with a trial
function that makes the fg' contribution vanish.

To begin, consider g(r) as given by Eq. (5.85). For
low-P systems, whose stability is dominated by current-
driven modes, p' can be set to zero and g can be written

Q(o) & ——,Q(b) . (5.123)

There are two alternative forms in which Eq. (5.123)
can be written, which point out the influence of current-
driven modes on RFP profiles. First, the radius of the
current channel and hence the plasma can be defined as
follows: a =I/~J, (0). In this case Eq. (5.123) reduces
to

Note that the trial functions for the m=1 pressure-
driven and current-driven modes are identical, having
been chosen to minimize the stabilizing line bending
magnetic energy. At the singular surface, F(r, )=0 cor-
responding to a wave number k = —I/Q(r, ). If the
conducting wall is sufficiently far out, a value of r, (i.e.,
k) can be chosen so that k (0) & k & k (b), where
k (0)= 1/3Q(0) and k (b) = —1/Q (b) (see the curve
k =k, in Fig. 41). In this case g(r) is negative over the
whole range 0&r &r„and instability will occur. As the
wall is moved closer in, the range of k's for which g(r)
is always negative diminishes. Eventually, when
k (b) & k (0), the most unstable k becomes k =k (b), since
r, cannot exceed b for the trial function to satisfy the
boundary condition g'(b) =0. In this situation a stabiliz-
ing contribution develops near the axis, which increases
as k increases (i.e., as the wall moves further in) (see the
curve k =k2 in Fig. 41). It thus follows that a necessary
condition for stability is k (0) & k(b) or

This is illustrated in Fig. 41. In the unshaded region
g &0 (i.e., destabilizing). For the trial function shown in
Fig. 40(a), 5W satisfies

8,(0)
a' 8,(b)

& —3 (5.124)

T

&go I g(r)« . (5.122) For a given field reversal, the conducting wall must be
sufficiently close to the plasma to prevent current-driven
instabilities. The conducting wall essentially prohibits
potentially unstable singular surfaces from existing in the
plasma.

The second form of Eq. (5.123) is an approximate rela-
tion obtained by assuming that 8, =8,(0) for 0&r &a
and 8, =8,(b) for a & r & b Under. this assumption
the total toroidal flux is given by
X[8,(0)~'+8, (b)(b' —a')]. Equation (5.124) can then
be written as 4&era 8,(0)[2—3(a2/b2)].

In any realistic RFP experiment it is very difficult to
make b/a &2 without causing significant plasma-wall
interaction. Thus, as a practical matter, 2 —3(a /b ) &0,
implying that despite the need for a reversed B, to stabi-
lize interchanges, the total toroidal flux must still remain
positive,

N)0. (5.125)

FIG. 41. Plot of k vs r where g (r) vanishes for m = 1

current-driven modes.

In other words, the region of reversed field cannot be too
large.

Finally, consider the situation where B, does not re-
verse and there is a pitch minimum on the outside of the
profile. An analysis similar to the one just presented
then shows that an m=1 trial function can be construct-
ed which makes 68' & 0 even if p' =0; that is, a pitch
minimum can lead to both pressure-driven and current-
driven instabilities.
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d. Summary and numerical results e. Taylor's theory

In the previous sections it has been shown on the basis
of various necessary and sufficient conditions that stable
high-P RFP profiles exist possessing the following prop-
erties:

(1) A hollow or very flat pressure profile to suppress
interchange modes near the magnetic axis.

(2) A 8, field which reverses on the outside of the
plasma. This provides shear to stabilize interchange
modes and prevents the formation of m = 1 current-
driven modes, both of which would occur in the presence
of a pitch minimum.

1

(3) A value of (P) & —, to suppress m=0 pressure-

driven sausage modes.
(4) A conducting wall sufficiently close to the plasma

(corresponding to a net positive toroidal flux) to suppress
m = 1 current-driven modes.

Since some of the above properties were obtained by
the use of trial functions, one cannot guarantee that they
are complete or sufficient for stability. However, exten-
sive numerical computations using the exact 58' and the
full eigenvalue equation indicate that these properties
provide a very reliable set of guidelines for obtaining
stable configurations. [See, for instance, Robinson (1971)
and Sakanaka and Cioedbloed (1974)]. One early exam-
ple of physically interesting RFP profiles, completely
stable to all internal ideal MHD modes, has been given
by Robinson and is illustrated in Fig. 42. All the
features of the guidelines are present. Typically, the
wall-to-plasma ratio must lie in the range 2 & b/a & 3 to
provide both stability and isolation. In addition, the
pressure profile corresponds to an (P) =0.31, a very op-
timistic result.

—3-

Although stable high-P RFP profiles have been shown
to exist theoretically, they are difficult to achieve experi-
mentally by direct programming of the toroidal and po-
loidal circuits. The main reasons are technological, in
that very fast rise times, on the order of tens of psecs,
are required for full control of the profiles.

A possible solution to this problem is suggested by
some of the data from the Zeta experiment. [See, for in-
stance, Bodin and Newton (1980).] Here, after a rather
turbulent initial phase, the plasma under certain condi-
tions remarkably evolves to a stable, quiescent state very
similar to that of an RFP, including a spontaneous self-
reversal of the toroidal field. A theory explaining the
evolution to "RFP-like" profiles and the conditions
under which self-reversal occurs has been presented re-
cently by Taylor (1974, 1975, and 1976), and these re-
sults are summarized here.

The basic idea is as follows. Consider a slightly dissi-
pative plasma surrounded by a perfectly conducting shell
which initially is not in a state of stable equilibrium. As
the plasma turbulently, perhaps violently, evolves from
its initial state, it dissipates energy (through thermal con-
tact with the wall, resistive diffusion, etc.). It will con-
tinue to do so until it reaches a state of minimum ener-

gy, after which it is incapable of further motion. The
properties of the final minimum energy state are deter-
mined by the constraints governing the evolution. Clear-
ly, the crucial physics issue is the determination of the
appropriate constraints, from which it is then relatively
straightforward to obtain the final profiles.

The calculation begins with the following form of the
potential energy:

W= —, f 8 dr . (5.126)

For simphcity it is assumed that the plasma energy is
much smaller than the magnetic energy (i.e., (P) «1),
as is often the case experimentally. The effect of finite
(P) is discussed later.

To help understand the constraints in a realistic plas-
ma with small but nonzero dissipation, it is useful to in-
vestigate the ideal plasma, E+ v&B=O, in order to es-
tablish a frame of reference. For the ideal case, as the
plasma moves, the magnetic field is coupled to the plas-
ma velocity v by the relation

aa =VX(vXB) . (5.127)
Bt

As shown in Sec. III.D, Eq. (5.127) corresponds to hav-
ing magnetic lines "frozen into" the plasma so that field
line topology is preserved; that is, no coalescing or tear-
ing of field lines is allowed as the plasma moves.

It has been proven by Woltjer (1959) and Taylor (1975)
that the restrictions associated with Eq. (5.127), which
define the class of allowable magnetic field variations,
are equivlent to an infinite set of integral constraints of
the form

FIG. 42. A set of RFP profiles completely stable to all inter-
nal ideal MHD modes for (P) =0.31 (from Robinson, 1971).

E = A Bdr=const,
V

(5.128)
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(5.129)

For ideal MHD, E+v&B=O and dX/dt is identically
zero.

The energy W can now be minimized, subject to the
constraints T.B=O and E const. The minimizing state
must satisfy

V' XB=A,(r)B,
S.VA, =O (5.130)

Here k is the Lagrange multiplier which must be deter-
mined locally on every flux surface (or closed magnetic
line) from the corresponding initial values of K. Hence
the final state depends directly upon the details of the in-
itial conditions. It is also force free, since the plasma
energy has been neglected in W.

The strong correlation between final and initial states
is highly artificial and is very unlikely to occur in a real-
istic plasma with dissipation. It is, in fact, a direct
consequence of the perfect conductivity approximation,
which prohibits changes in topology. Therefore many
nearby states are inaccessible, and there must be a one-
to-one correspondence between Aux surfaces in the initial
and final states.

With the admittedly unrealistic ideal case serving as a
reference, consider now the appropriate constraints in a
plasma with small but nonzero dissipation. In such sys-
tems, field line topology need no longer be preserved as
the plasma moves, so that a much wider class of lower-
energy states is now accessible. Furthermore, small
changes in the magnetic field can often lead to finite
changes in the magnetic topology. Consequently, even
when the dissipation is small, it is no longer correct to
assume that K is conserved on every flux surface during
the evolution, since the continual tearing and coalescing
of field lines destroys the identity of most surfaces.

Taylor pointed out that in systems with small but
nonzero dissipation over the entire plasma volume, the
only flux surface that would preserve its identity during
the evolution is the plasma boundary, since it is assumed
to be rigid and perfectly conducting. He thus concluded
that it was inappropriate to minimize the energy while
requiring the infinity of ECs to remain invariant. In-
stead, the proper minimization satisfies only the con-
straint that Kb remain invariant, where K~ is the helicity
associated with the total volume.

Minimization of 8' subject to V'.B=O and Kb ——const
leads to a lowest-energy state described by

where A is the vector potential. The quantity K, some-
times referred to as the helicity, is constant over any
voluine enclosed by an ergodic flux surface (or flux tube
surrounding a closed line). That each of the infinity of
K's is constant follows from the relation

dK = —2 f E.Bdr+ f n.AX(E+vXB)dS .

having the same value on all surfaces. Not surprisingly,
the final state is force free, since the plasma energy has
been neglected in W. Furthermore, its characterization
by only a single constant, p, indicates that the evolved
state is almost independent of initial conditions. The en-
ergy of this state is lower than that of the corresponding
ideal case with similar initial conditions, since all but one
of the infinity of L constraints has been relaxed. The
equilibria satisfying Eq. (5.131) are states of minimum
potential energy, thus guaranteeing ideal MHD stability
(and resistive MHD stability as well).

The quantity p is related to the value of the invariant
Xb. Simple dimensional arguments show that
Kb/f =F( pb,pR), where P is the total toroidal flux.
is conserved during the evolution because of the conduct-
ing shell, and I is a function determined by solving Eq.
(5.131). It can also be shown that Kb is related to g and
V„the volt-seconds stored in the system, by Kb ——V, g.
Thus V,/g=F( pb,pR). By specifying the initial
toroidal flux, the stored volt-seconds, and the dimensions
of the system, one is then able in principle to compute p
and Ks. [It is also worth noting that, in the final state,
integration of Eq. (5.131) gives pb =29, where
g=(p, I/2mB;b) is the pinch parameter, I is the final
toroidal current, and B; is the intial uniform bias B,
field. This is only true in the final state, since Eq.
(5.131) is not satisfied during the evolution. ]

Equation (5.131) has been analyzed by Taylor (1975)
and more recently by Reiman (1980). Their results show
that the solution is not unique. Both cylindrically sym-
metric and finite-amplitude helical solutions exist. De-
pending on the ratio V, /f, the plasma will evolve to that
particular force-free configuration corresponding to the
absolute minimum energy. In the limit of large aspect
ratio (i.e., the straight cylinder) there are only two con-
figurations which can have absolute minimum energy:
ihe m =0 cylindrically symmetric state,

(5.132)

and the mixed m=0, m= 1 helically symmetric state,

B,"'/Bo =Jo( pr)+cJ, (ar)cosX,

B& /Bo= Ji( pr) pJ', (ar—)+—Ji(ar) cosX,(&) C k
a CXT

B„"'/Bo ——kJi (ar)+ Ji(——ar) sinX . (5.133)
CX ar

Here X=O+kz, a=( p —k )'~, c is an arbitrary helical
amplitude, and Bo=(g/m. b )p, b/2Ji(pb) has been chosen
so that each configuration contains the same toroidal
flux.

The local minimum energy of any force-free state can
be expressed in terms of Eb as

V'~ 8=pB, (5.131)

where p is now a singhe-constant Lagrange multiplier
W= —,p Kb+(RQ /b)

Jo(v»
Ji( pb)

(5.134)
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(where for uniqueness it has been assumed that

IA, dS =0). After a nontrivial analysis, it can be
shown that, of the two states of interest, the one corre-
sponding to absolute minimum energy has the lowest
value of p for the given Kb (Reiman, 1980).

For small-to-moderate values of V,/P, the cylindrical-
ly symmetric state has the absolute minimum energy. In
this case the boundary condition 8„(b)=0 is satisfied for
any p, and p is determined by directly computing Kb
and P. The result is a transcendental equation given by

the complete decoupling just discussed. The actual pres-
sure profiles will depend upon the details of the plasma
turbulence and its effect on the resistivity and thermal
conductivity transport coefficients which determine the
energy balance. It is likely that the final (P)'s will be
considerably less than the maximum (P)'s which can be
theoretically constructed. The determination of the
evolved pressure profiles and final (P) remains one of the
important areas of RFP research.

bV, 2

R
= [x (Jo+J i ) —2JOJ i ]/J i, (5.135)

f. Overview of the RFP

with x =pb, Jo ——,Io(x), and Ji ——Ji(x). In general, as
V, /g increases, the value of p also increases.

An important feature of the m =0 solution is that, for
pb ~ 2.40 (or 8~ 1.20), the 8, field is predicted to exhibit
self-reversal. This is in good agreement with the data
from Zeta, which indicates that self-reversal occurs at
0= 1.4.

At some point, as V, /f increases above some critical
value, the helically symmetric configuration switches to
the absolute minimum energy state. For this system the
boundary condition B„(b)=0 is nontrivial and can only be
satisfied for certain p=p(k). A numerical minimization
over k indicates that the lowest value of p occurs for
kb =1.2 and is given by pb=3. 11 (or 0=1.56). This is
the transition point between the two configurations and
corresponds to bV, /R /= 8.21. Above this value, pb con-
tinues to increase for the m =0 solution. However, once
bV, /R@ exceeds the transition value, p, b remains constant
at 3.11 for the m =1 helical state. Instead, the excess
volt-seconds cause the helical amplitude to continually in-
crease, as given by an increasing value of the constant c in
Eq. (5.133).

In summary, Taylor's hypothesis concerning the con-
stancy of Kb during the evolution of the plasma has been
shown to provide a very satisfactory qualitative and semi-
quantitative guide to the behavior of reversed field
pinches. Within the enormous space of possible equilibri-
um profiles, most discharges should evolve to an MHD
stable, force-free configuration uniquely determined only
by the initial toroidal flux, stored volt-seconds, and
geometric dimensions. Furthermore, for the final config-
uration to remain cylindrically symmetric and possess a
field reversal (which is important when pressure effects
are included), the pinch parameter must lie in the range
1.20 & 0 & 1.56 or equivalently 2.40 & bV, /R f & 8.21.

The fact that the final state is force free should not be
surprising in view of the fact that plasma energy was
neglected in the minimization of 8'. However, to the ex-
tent that the tearing and reconnecting of field lines allows
the pressure to redistribute and equalize itself, the force-
free result would apply even for finite-P initial states (i.e.,
the variation of 5p would be independent of 5B and upon
separate minimization would lead to Vp =0). This would
be a very pessimistic result. In a real plasma, however,
the situation is probably somewhere intermediate between
the perfect coupling of 5p, 5B to 5U, as in ideal MHD, and

By combining the equilibrium and stability results, one
can obtain an overview of the RFP, at least with respect
to ideal MHD.

The RFP is an axisymmetric toroidal configuration
with B-B, -p, which achieves MHD equilibrium and
stability with an optimally efficient use of a minimum of
toroidal field. Its radial pressure balance and toroidal
force balance are similar to those of a Z pinch. Because
of the relatively large B~, toroidicity is required only to
close the field lines, but is not required for MHD stabili-
ty. Hence the device can have the technological advan-
tage of a large aspect ratio. Another attractive feature is
that the toroidal shift of the plasma is very small.
Perhaps the main advantage of large Bs is that it is possi-
ble in principle to joule heat an RFP to ignition, although
such strong heating has yet to be observed experimentally.

Since P-1 and q «1, the stability of the RFP is in
general quite sensitive to profiles. For stability at high P
the pressure profile must be hollow and the 8, field re-
versed on. the outside. Equally important, a perfectly con-
ducting shell relatively near the plasma is required, and
this is a disadvantage technologically. The rather compli-
cated profiles required for stability are difficult to pro-
gram externally. However, a recent theory (Taylor, 1976)
suggests that over a certain range of the pinch parameter
0 the system will evolve naturally to an "RFP-like" pro-
file, although very likely with (P)'s significantly lower
than the theoretically predicted maximum. In addition,
once quiescence is reached it is a difficult problem to fur-
ther increase the joule heating without raising (p) or
altering the stable profiles, either of which could lead to
further relaxations and loss of energy.

Even so, the possibility of producing an MHD stable,
high-P plasma, capable of being joule heated to ignition,
makes the RFP an interesting and important concept to
investigate in the magnetic fusion program.

5. The "straight" tokamak

a. Introduction

The final one-dimensional configuration examined by
means of the general screw-pinch analysis is the
"straight" tokamak, a circular cylinder of plasma of
length 2mR, in which the fields satisfy the tokamak in-
verse aspect ratio expansion Be/B, -E,q —1,p/B, -E
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(conventional tokamak) or p/B, -s (high-P tokamak).
Although a reasonably complete stability picture is ob-
tained from this model, the results can be unreliable be-
cause the geometric effects of toroidicity are of the same
order as the field ratio. Thus toroidicity sometimes gives
rise to contributions in 58'which are of the same order as
those of the straight tokamak. Despite these uncertainties
the model provides a very useful frame of reference for
the understanding of tokamak stability.

It is shown that the most dangerous instabilities in a
straight tokamak are current-driven modes, both internal
and external. In the straight tokamak case, unlike that of
the RFP, external modes play a major role because: (1) in
current experiments, time scales are sufficiently long
compared to the penetration time that the first wall does
not behave like a perfect conductor, and (2) in future
tokamak extrapolations, particularly those with divertors,
the first wall is located a significant distance from the
plasma surface. The pressure-driven modes do not have a
dominant role because of the combination of finite shear
and low P.

The straight tokamak is predicted to have good MHD
stability properties if the total toroidal current is limited
and the current profile is peaked. This result is qualita-
tively and often quantitatively valid for the fully toroidal
case. The stability of the straight tokamak imposes no
important restrictions on (p) or the pressure profile, and
in this is qualitatively different from the torus. Toroidal
modifications to tokamak stability are discussed in Sec.
V.D.1.

As in the case of the RFP, much of the intuition con-
cerning stability is derived from the use of trial functions
and from the exploitation of the tokamak expansion in
58'. This intuition is supported by a large number of nu-
merical calculations carried out in recent years.

Finally, it should be noted that the discussion here is
limited in scope in that it is concerned primarily with the
basic physics issues of ideal MHD stability in tokamaks.
Much more complete and extensive reviews of ideal and
resistive MHD tokamak stability have been given by
Mukhovatov and Shafranov (1971), Wesson (1978), and
Baieman (1978).

b Internal modes .(IocaItzed)

Stability against localized interchange modes can be
determined by substituting the tokamak expansion into
Suydam s criterion, which is valid for arbitrary profiles.
Using the relationship for the safety factor,
q =1/pR =Q/R, and the definition P(r) =2p (r)/B—o,
Suydam's criterion has the form

the straight tokamak, these modes can be stabilized by
keeping the pressure flat over a region br, /a —p'~ &&1,
which represents only a minor restriction on the profile.

Furthermore, as shown in Sec. V.D.1, there are impor-
tant toroidal modifications to Suydam's criterion when
q-1. These are unimportant for the RFP, since q-c.
However, for the tokamak they imply that, under reason-
able conditions, even the small flattening of the pressure
profile is no longer required for stability.

In summary, the combination of low p and increasing q
profile implies that localized interchange perturbations
are not very dangerous in a straight tokamak.

c. Internal modes (general)

The stability of general nonlocalized internal modes can
be ascertained by substituting the tokamak expansion into
5W+ as given by Eq. (5.84). This gives rise to an asymp-
totic expansion of the form 5 Wp ——58 0+E 5 W2
+c. 58'4 . . - . The calculation is straightforward, al-
though one must include the toroidal periodicity con-
straint by setting

k = n /8— , (5.137)

with n an integer representing the toroidal mode number.
Toroidal periodicity is important in tokamaks because the
unstable modes correspond to long wavelengths, typically
n —l. (This is not important in an RFP, where the insta-
bilities occur for ka —1 or n —1/e; hence n can effective-
ly be considered continuous. )

The first contribution to 5' which does not trivially
vanish is of second order and is given by (Shafranov,
1970)

c 5$'2 mBP ~ n
2 2

2mR R2 o m

2

[r g' +(m 1)g ]r d—r .
q

(5.138)

5g 4 ~Qp r, p2

z /of rp'+
2

1 —— 3+— rdr,
2mR R2 o R2 q q

Since 58 2 & 0 for m & 2 and n arbitrary, these modes are
stable. Similarly, the m =1 mode in systems with in-
creasing q profiles is stable if nq (0) & q (0)) l.

However, if a q =1 surface exists in the plasma [i.e.,
q(0) &1&q(a)], a trial function can be constructed as
shown in Fig. 43, which in the limit 5 +0 causes
58'2~0. For this case, stability is determined by the
high-order corrections to 58'F. The next contribution is
of order e and for n =1 can be written as (Rosenbluth
et al. , 1973)

(rq'/q) +4rp') 0 . (5.136) (5.139)

Since p is either of order E or s, and q is a monotonically
increasing function of radius with rq /q-l, (i.e., finite
nonzero shear), Suydam's criterion is easily satisfied over
almost the entire profile. The only exception is very near
the axis, where the shear is small, a situation similar to
that in the RFP [see Eq. (5.113)]. Within the model of

where r, is the location of the q(r, )=1 surface. In Eq.
(5.139) the contributions from both the pressure and
parallel current are destabilizing, and thus the system is
unstable.

This instability is often referred to as the m = 1 internal
kink mode, a slightly misleading nomenc1ature since the
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than k ~ oo, see Eqs. (5.73) and (5.74)] in order to prevent
a strong stabilizing contribution from line bending. In
fact, the criterion q (a) & 1 can be viewed as a condition on
the geometry (i.e., the inverse aspect ratio) for prohibiting
the formation of potentially unstable long-wavelength
modes because of toroidal periodicity requirements.

Finally, it is worth noting that the m =1 external kink
is difficult to observe experimentally because higher-m
modes, usually resistive, impose even stronger require-
ments on q(a). These modes, although more sensitive to
profile and slower growing, can terminate the discharge
by means of a "major disruption" before the current can
be increased above the Kruskal-Shafranov limit. [For a
theoretical discussion of major disruptions, see Waddell
et al. (1978, 1979), Bateman (1978), and Hicks et al.
(1980).]

e. External modes (m & 2 kinks)

58' m
1 ——

8'p nq

m —1

nfl
(5.145)

where Wo ——[2m.EBo(n /m)g, ] R. Consequently, for a
given n and m, the regions of instability are bounded by
(Shafranov, 1970)

m —1 m&q(a) &
n n

(5.146)

Equation (5.146) is usually not a very useful estimate be-
cause a continual incrementing of m by one indicates that
the entire range of q„O& q, & oo could be potentially un-
stable. However, for the special case B,= const, B~ ~ r,
the J, profile is constant for 0&r &a and jumps to zero
just outside the plasma surface. This corresponds to a
shearless q profile, q(r) =q(a)= const, and implies that
the inequality in Eq. (5.145) becomes equality so that the
entire range of q is indeed unstable.

Shafranov (1970) first pointed out that this pessimistic
result is strongly dependent upon the shape of the current
profile. He showed both analytically and numerically
that for more realistic profiles, where the current goes
smoothly to zero at the plasma surface, the stability prop-

In general the m )2 external kinks impose more
stringent conditions on q(a) and the current profile than
those corresponding to the m = 1 mode.

The m )2 stability boundaries also follow from an
analysis of Eq. (5.141). Clearly, a sufficient condition for
stability to a given (m, n) mode is q(a) & m/n This. is not
a very useful criterion because it imposes unnecessarily
low limits on the toroidal current for high-m, low n-
modes.

A slightly improved stability estimate can be obtained
by noting that for monotonically increasing q profiles, a
lower bound for 5W is obtained by setting q(r) =q(a) in
the integral contribution (since by definition q, & m /n for
an external mode). The factor (n /m —1/q, ) can then be
removed from the integrand and the remaining integral
minimized by choosing g(r) =g'(a)(r/a) '. The result-
ing form of 5Wis given by

erties are far more optimistic. In essence, for m )2 exter-
nal kinks the main force driving the instability is propor-
tional to the current gradient at the surface rather than to
the total current itself. In this connection, Wesson (1978)
has given a physical picture which demonstrates how the
current gradient produces a destabilizing torque on the
plasma. A convenient way to obtain a quantitative ana-
lytic theory which describes these results has been given
by Laval and Pellat (1973) and Laval, Pellat, and Soule
(1974). They considered the external kink mode in the
limit of large m, including the effects of noncircularity.
For the present purposes, it suffices to summarize their
theory for the circular case.

The key feature in the analysis is the realization that,
for large m, instability can only occur if the resonant sur-
face lies slightly outside the plasma. This gives rise to a
plasma displacement which is highly localized just inside
the plasma surface. By calculating the large-m asymptot-
ic solution to the Euler-I. agrange equation one can obtain
a good estimate of the integral contribution to 5W, from
which it is then straightforward to determine the stability
boundaries.

If one sets g(r)=b(r)/[r ~ b.(r)],r =a(1—z/2m}, then
near the plasma surface 0&z&1 the Euler-Lagrange
equation for b in the limit of large m is given by

r

d b 1

d 2 4
(5.147)

where b, (r) =[mlnq(r)] —1, 6, =b,(a), (J)=I/ma,

m
zo ——mA~

nq,
J(a)
(J)

and

aJ'(a)
(J)

J(a)
(»

where %(a,c;x) is the confluent hypergeometric function
containing the logarithmic singularity as x~O (Erdelyi,
1953). Substituting Eq. (5.148) into Eq. (5.141) yields the
following expression for 58':

'o m

ql'(zo)1—
%(zo)

1 2 J(a)
(mb, , ) — (md~)

ZQ

(5.149)

There are two regimes of interest to consider. First, as-
sume the current profile is a decreasing function of r

Note that, for large m, 0 & 6, « 1 (i.e., the resonant sur-
face is just outside the plasma) and, for monotonically de-
creasing J profiles, 0&A, «1. Also, since zo)Q, Eq.
(5.147) is nonsingular in the regime of interest z & 0.

The solution for b which is regular as z~ ~ and satis-
fies b (0)=a ~ A, g, is given by

%(1—A, ,2;z+z, )b(z)=a ~ h, g, (1+z/zo)e
W 1 —A,,2;zo)

J

(5.148)
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J(a) m

( )
~q(a) & (5.150)

which remains finite at r =a [i.e., J(a)+0]. In this case
the (ql'/'0+ 1/zo) term can be neglected and the stability
boundaries are given by 0 & md &J(a)/( J ) or

bilize all high-m and low-m modes, respectively. The
dual requirements of q(0) & 1 for internal mode stability
and peaked current profiles for high-m external kink sta-
bility can only be simultaneously satisfied if q(a) & 3. It
is for this reason that m & 2 kinds impose stronger con-
straints on q (a) than the m = 1 Kruskal-Shafranov mode.

(J)
m —exp 2m

Pf aJ'(a) &q(a) &
n

(5.151)

Thus, if the current vanishes at r =a, the range of un-
stable q, values is greatly reduced. If in addition the
current gradient vanishes, the high-m external kinks can
be completely stabilized. Exactly how fast the current
gradient must vanish [i.e., if J~(a r)" for r —near a,
determine the critical v] is difficult to calculate, particu-
larly for the low-m modes where the eigenfunctions are
not highly localized.

This question has been addressed numerically by Wes-
son (1978), who studied the family of profiles
J=Jo(1 r la )" or — equivalently q =q (a)u
X [1—(1—u)"+'] ' with v+ 1 =q(a)/q(0) and
u =r /a . Note that the parameter q(a)/q(0) is a mea-
sure of the steepness of the current profile. The results of
W~son s calculations are illustrated in Fig. 44 as margin-
al stability curves of q(a)/q(0) vs q(a). Also superim-
posed is the stability boundary for ideal internal kink
modes, q(0) ) 1.

Observe that the unshaded region is stable to both
internal and external ideal MHD modes. Most existing
tokamaks operate in this regime. With regard to external
kinks, Wesson finds that for v&2. 5 or q(a)/q(0) &3.5,
all m & 2 modes are stable for any q, . Windows of stabili-
ty in q also exist for 1&v&2.5. Complete stability is
achieved by the additional requirement q, & 1 to stabilize
the m =1 mode. In fact, if it were not for the internal
mode criterion, tokamaks could operate at significantly
higher currents (i.e., lower q, ) than they normally do;
for instance, q(a)=1, q(0)=l/4 satisfies the external
kink conditions.

To summarize, it has been shown that the m & 2 exter-
nal kink mode is driven by the toroidal current gradient
and is consequently sensitive to the features of the profile.
A combination of rapidly vanishing current gradient and
a limit on the total current is sufficient to completely sta-

Equation (5.150) shows that any profile with a current
jump at the surface is unstable to high-m external kinks
over bands of q, values. The most unstable case occurs
for uniform current, J(a)/(J) =1, in which neighboring
bands touch and all q, values are unstable. As the current
at the boundary decreases, the unstable bands become nar-
rower, forming windows of stability.

In fact, Eq. (5.150) implies that when the current on the
boundary vanishes, J(a)=0, the system becomes stable.
This is not quite the situation because the (4 /4+ 1/zo)
term then becomes important. The most unstable regime
corresponds to zo«1, and in this limit q"(zo)/q'(zo)
+1/zo- —A, lnzo. Instability occurs only over exponen-
tially narrow bands of q, given by 1+A, lnzo & 0 or

f. Summary

The one-dimensional "straight" tokamak provides a
useful, if sometimes unreliable, guide to the stability of
the tokamak configuration. The model predicts that the
most dangerous ideal MHD instabilities are the current-
driven, external kink modes. The m =1 mode becomes
unstable if the total toroidal current exceeds the Kruskal-
Shafranov limit; that is, independent of profile, q(a) &1
leads to instability. High-m external kinks are driven un-
stable if a significant current gradient exists at the edge of
the plasma. These modes require a peaked current pro-
file, q(a)/q(0)-3 [i.e., J'(a)—&0] in order to be stabi-
lized.

Of the internal modes, only m =1 can be unstable in a
straight tokamak. This is a weaker instability than the
external kink, but can be driven by either the parallel
current or the pressure gradient. The stability condition
for the m =1 mode is q(0) ) 1. In practice most experi-
mental tokamaks exhibit a form of relaxation oscillation
near the magnetic axis as a result of the competition be-
tween the m = 1 internal mode (and its nonlinear resistive
evolution) and a thermal instability resulting from the
temperature dependence of the resistivity, which causes
the current to peak. The net effect of these "sawtooth"
oscillations is to maintain q(0) at unity during most of
the duration of the experiment.

In general the straight tokamak provides an unreliable
description of the influence of p on ideal MHD stability.
Specifically, most of the stability results are only weakly
dependent on p. Consequently, even in the regime of the
high-P tokamak, no P limits arise within the context of
the model. This is perhaps the main deficiency of the
straight tokamak, since there are important P limits when
one considers the full toroidal geometry. These are dis-
cussed in the next section.

In summary, the combination of peaked profile
q (a) lq (0))3 and limited current density on axis q (0) & 1

is sufficient to stabilize the straight tokamak to ideal
MHD instabilities. It should be noted, however, that
there are important resistive MHD modes (i.e., tearing
modes) which can also occur. [See, for instance, Furth,
Killeen, and Rosenbluth (1963), and Greene (1976).]
These modes further decrease the stable region of parame-
ter space illustrated in Fig. 44. Most tokamaks, in fact,
actually operate in a regime that is resistively unstable.
Such operation is possible because resistive modes are in-
herently much weaker instabilities than those of ideal
MHD. Their nonlinear evolution often produces only
minor turbulence while permitting operation at much
higher currents than those allowed by "completely stable"
operation. This subject has been reviewed by Bateman
(1978).
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FpQ. 44. Marginal stability diagrams for external kinks in a straight tokamak for the current profile J(r)=Jo(1—r /a ) . The
stable region is unshaded (from lesson, 1978).

D. Application to 2D configurations

This section describes the effects of multidimensionali-
ty on ideal MHD stability. The main application con-
cerns the influence of toroidicity on tokamaks. In addi-
tion, wherever applicable, a brief description of the effects
of cross-section shaping is presented as well. A second
application discusses the stability of an "infinitely long"
two-dimensional Elmo bumpy torus.

As a general comment it should be noted that 2D con-
figurations are considerably more difficult to analyze than
their 1D counterparts. Consequently, most of the analysis
involves studies of special classes of modes, usually those
highly localized in the vicinity of a flux surface. To ob-
tain more complete stability results one must make use of
rather sophisticated numerical codes which have been
developed in recent years (Sykes and Wesson, 1974; Bate-
man et aE., 1974; Grimm et al. , 1976; and Berger et al. ,
1977a).

f . Tokamak

a. Introduction

It is shown here that toroidicity plays a very important
role in determining the stability of tokamaks, particular1y
the high-P tokamak. Toroidicity often leads to quantita-
tive changes in the stability of current-driven modes.
More important, it leads to qualitative changes for
pressure-driven modes. For these perturbations its main
effect is to determine an upper limit on the value of (P)
that can be stably confined.

The first instabilities discussed are those involving lo-
calized interchange perturbations. These give rise to the
Mercier criterion, a 2D generalization of Suydam s cri-
terion. This is an exact analytic criterion, necessary but
not sufficient for stability, which makes important modi-
fications to the 1D criterion in the vicinity of the magnet-
ic axis.

A second class of modes discussed represents a general-
ization of the interchange perturbation and aHows the
plasma displacement to "baHoon" in the regions of un-
favorable curvature. The corresponding ballooning mode
formalism leads to a one-dimensional ordinary differential
equation that can be solved on one flux surface at a time,
a significant simplification over the fu11 2D problem.

Although some analytic work has been performed on
global, low-m internal modes, much of the recent progress
has resulted from numerical studies. The situation is
somewhat similar with respect to external modes. Horv-
ever, in this case there exists a relatively simple model,
known as the surface current model, which Inakes
surprisingly reliable predictions of external kink mode
stability limits. The current status of this research is
briefly summarized.

Finally, a short discussion is given of the axisymmetric,
n =0 mode, the most unstable perturbation usually corre-
sponding to a nearly rigid vertical shift. In the straight
tokamak with circular cross section, such modes (by sym-
metry) are neutrally stable. In a torus, however, if the
vertical field is not properly designed, the plasma, partic-
ularly if it is elongated, has a tendency to drift upward.
Stabilization of the n =0 mode is discussed at the end of
this section.

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982



J. P. Freidberg: Ideal magnetohydrodynamic theory of magnetic fusion systems

6 .Internal modes (localized: Nlercier criterion)

One of the simplest and most widely used tests for
tokamak stability is the Mercier criterion for localized in-
terchanges (Mercier, 1960; Greene and Johnson, 1962;
Solov'ev, 1968). This is a necessary but not sufficient
condition, which is valid for arbitrary P, and arbitrary as-
pect ratio. The derivation, outlined below, requires two
steps. First, a general form of 5W is derived for the most
dangerous modes in the limit n ~ ao. This form, which is
valid for both interchange and ballooning modes, is an ex-
plicit function only of the single scalar n g'.

Second, by substituting a special trial function for n.g'

corresponding to the interchange perturbation, it is possi-
ble to evaluate 58' and derive the Mercier criterion. A

more general choice of n.g' leads to the ballooning mode
equation, and this is discussed ih the next section. [Other
localized stability criteria have been derived by Lortz
(1973), Mercier (1973), and Mikhailovskii (1973).]

The first step in the calculation is to express the exact
5W for an axisymmetric torus in terms of a more con-
venient set of "flux coordinates. " In the new system the
transverse variables (r, 8) are replaced by the coordinates
(g,X), where f{r,8), the poloidal flux function, plays the
role of a radial variable and X(r,8) is an anglelike variable
orthogonal to 1t (i.e., VQ.VX=0), normalized so that
X=2nis th. e natural period. After a straighforward cal-
culation, 5W can be expressed as [see, for instance, Con-
nor, Hastie, and Taylor (1979).]

B2 2

+B~ in U+ +,X —2K
~

X
(

'
RBp

(5.152)

1

l I JB Bg

v(Q, X)=FJ/R

and the quantity E is given by

K =
2 (lnR ) — (1nJB&),FF' 8 Jy 8

Jy=Rp'+ = —— (JB ) .FF' R
R Ja@

(5.153)

(5.154)

Also, Bz R~——Vg
~

and p(@),F(f) are the free functions
appearing in the Grad-Shafranov equation [Eq. (4.35)].

In this expression X =RB&n.gi and U=n'(BXgi)/RBi,
are proportional to the two components of gi, J rep-
resents the Jacobian of the transformation (i.e.,
rR dr d8dg= JdgdXdg), k~~ represents the derivative
along the field line

I

Note that f vdX=2 qir(f) and that the plasma compres-
sibility term has been eliminated by a proper choice of g~~.

Consider now the limit n~00. Equation (5.152) im-
plies that unless k~~ -0 (1), 5W will be large and positive
because of the line bending terms; that is, instabilities can
only occur for perturbations which are nearly constant
along a field line. Similarly, unless there is rapid varia-
tion perpendicular to the field (i.e., BX/Bg inU)-, there is
a large stabilizing contribution from the magnetic
compression terms. These properties imply that the
minimizing U can be represented as an asymptotic expan-
sion in 1/n as follows: U=Up+ Ui/n + U2/n . .. T.he
value of OUI/BX can then be determined by a straight-
forward iteration of Eq. (5.153): 8 Ui /BX
= —in v UI +iJBk

I I UI ]. This feature allows for an
order-by-order algebraic minimization of 5$' with respect
to the UI, since BU/BX does not explicitly appear.

Carrying out this procedure yields an expression for the
leading-order 6W which is a function only of X and
which is valid for interchange and ballooning modes:

2

{5.155)

RB~
fl

B
JB B ~X

(5.156)

Here ~„and ~, are the normal and geodesic curvatures,
respectively,

For the Mercier criterion, the next and perhaps key step
in the derivation is to devise an accurate representation of
the interchange trial function for substitition into 5W. In
analogy with Suydam s criterion, the perturbation is as-
sumed to be almost exactly constant along a field line
[i.e., ik~~X(gp, X,Q) =0],

X(tP,X,P) =f (Q,X)exp in/ in J v(fp, X')dX'—

Equation (5.155) indicates that the only destabilizing term
is driven by the pressure gradient. The current-driven
term is negligible in the limit n ~ Do.

(5.157)

The surface g=Pp is assumed to be rational, so that
q(nP )=pm, thus guaranteeing that the rapidly varying
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exponential part of the perturbation is periodic in g. The
function f(f,X) is slowly varying and also periodic in X,
but very rapidly varying in g. It is convenient to distin-
guish between the two widely disparate radial length
scales appearing in the analysis by introducing a new radi-
al variable x =n (g —gp). Hence equilibrium quantities
are functions of g=Pp, while perturbation quantities are
functions of x. This implies that the geodesic curvature
term is large in magnitude but oscillatory in 7 and leads
to an appropriate representation for f(g,X) given by

Bv d v dp B

vature contribution is large, the small ballooning effect
makes a contribution to 5S' comparable to that of the
normal curvature.

Substitution of Eqs. (5.157) and (5.158) into Eq. (5.155)
leads to an expression which can be algebraically mini-
mized with respect to 8 f~/Bx BX. Taking into account
the constraint that f~

must be periodic in X, one finds

' af,
Bg Bx

f (1(,X)=fo(x)+ f((—x,X). . .I

n
(5.158)

In the 1D case f~ ——0, since a; =0. In the 2D case f~
jI'epresents a very slight ballooning of the perturbation
which emphasizes the regions of local unfavorable geo-
desic curvature. The constraints of periodicity in g and
strong localization in f imply that with the form of X
given by Eq. (5.157) only a small ballooning effect is al-
lowed (i.e., f& In «fo). Even so, since the geodesic cur-

with A,(fo) the Lagrange multiplier given by

A(go) = f 2 dX 2~F (xfo)
Bp p dx

+IF P f, dX
dgo Bp

(5.159)

(5.160)

Here the integrals are performed over the surface P=Po.
When Eq. (5.159) is substituted into 5W, an expression is obtained which is identical in form to that arising in the

derivation of Suydam's criterion [Eq. (5.92)j:

5$'= 8'o Jdx x +afo2 dfo 2

tl GX

2

p B~
(5.161)

a(gp) =
F(2mdq /d Po).

P

1a+ —&0 .
4

(5.162)

The criterion, which must be tested on every flux surface,
is necessary but not sufficient for stability, since the spe-
cial interchange perturbation has been substituted for X.

Mercier's criterion is perhaps the simplest test of
tokamak stability, although it still in general requires a
numerical solution to the equilibrium Grad-Shafranov
equation. One of the better known limits (Ware and
Haas, 1966; Shafranov and Yurchenko, 1968) corresponds
to the case of circular cross section, large aspect ratio, and

Note that the specific form for f given by Eq. (5.158) has
resulted in a one-dimensional integral independent of X.
The original P dependence of 58' appears only as equi-
librium averages in the coefficient a.

In exact analogy with Suydam's criterion, an analysis
of Eq. (5.161) indicates that, for sufficiently negative a,
the behavior offp becomes oscillatory, implying instabili-
ty. The transition from oscillatory to exponential
behavior is known as Mercier's criterion and is given by
(Mercier, 1960)

r
Pz —1, and is given by

(rq'/q) +4rP'(I —q ) &0. (5.163)

Note that this expression is very similar to Suydam s cri-
terion for the straight tokamak [Eq. (5.136)] except for
the factor (1—q ). This modification predicts that con-
figurations with a negative pressure gradient, even near
the axis, can be stabilized if q~1. In contrast, the
straight tokamak always predicts a small region of insta-
bility under similar circumstances.

The additional stability found in the torus is associated
with the existence of a "magnetic well. " It corresponds to
the fact that in a torus the average curvature of a field
line, which is precisely what the interchange perturbation
samples, can be favorable; that is, on the inside of the
torus (8=m) the toroidal field bends away from the plas-
ma, producing favorable curvature. The opposite is true
on the outside (8=0). A careful averaging indicates that
there is a net favorable effect. If the poloidal field, which
has unfavorable curvature everywhere, is sufficiently
small, q & 1, the overall effect of both fields remains
favorable, and the system is stabilized.
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The full Mercier criterion essentially sets a limit on the
minimum q (0). In addition, once p (i)'j),F(ifj) are specified
and the Conrad-Shafranov equation solved, a (P) limit is
implied for sufficiently large Pz —1/e where Eq. (5.163) is
no longer valid; (that is, at high Pz the plasma diamagnet-
ic currents significantly alter the toroidal field, destroying
the magnetic well).

Perhaps a more important question concerning the
Mercier criterion is the effect of noncircularity. This
problem has been investigated by a number of authors,
who examined the behavior of the Merrier criterion near
the magnetic axis [see, for instance, Solov'ev et al. (1969),
Laval et al. (1971), Lortz and Nuhrenberg (1973), Mi-
khailovskii and Shafranov (1974), Mikhailovskii (1974),
and the reviews by Solov'ev (1976), Wesson (1978), and
Bateman (1978)]. Their results can be summarized as fol-
lows. For Pz —1, ellipticity by itself tends to be destabil-
izing [i.e., the allowable value of (RJ~/B~) on the mag-
netic axis is reduced]. However, a combination of ellipti-
city and triangularity is favorable for an elongated
outward-pointing triangle or a flattened inward-pointing
triangle. For higher Pz (but still Pz —1) the ballooning
nature of the perturbation, which is destabilizing, be-
comes more apparent, while the larger toroidal shift in-
creases the magnetic well effect, which is stabilizing. The
overall picture is slightly complicated. For relatively
large ellipticities, the ballooning effect dominates, and
higher Pz is destabilizing. For nearly circular cross sec-
tions, the increased magnetic well dominates, and higher

Pz is stabilizing.
In summary, the Mercier criterion basically limits the

value of J~ —1/q on axis in a toroidal tokamak. For suf-
ficiently high q (0) the average curvature of a field line be-
comes favorable, and a negative pressure gradient on axis,
which is always unstable in the straight tokamak, is stabi-
lized. As with the Suydam criterion, a Mercier inter-
change perturbation by itself is unlikely to be important
in a real experiment. However, the presence of such in-
stabilities implies that dangerous large-scale modes are
also very likely to exist.

c. Internal modes (localized: ballooning modes)

One of the most important physics questions in the
tokamak program is the determination of the (P) limits
resulting from ideal MHD instabilities. Such limits can
result from both internal and external modes. In this sec-
tion a summary is given of the ballooning mode analysis,
which determines the critical (P) for stability against
n ~ ao internal modes. [The ballooning mode formalism
has been investigated by a number of authors, including
Laval et al. (1970), Coppi (1977), Dobrott et al. (1977),
and Connor et al. (1978). A complete theory has been
given by Conner et al. (1979).]

The end result of the analysis is an ordinary differential
equation describing the angular dependence of n.g on
each surface. It can be solved on one flux surface at a
time, providing a substantial saving over the full 20 prob-
lem. The analysis, which is valid for arbitrary P and arbi-

iLf = +ix f—.Bf . Bv (5.165)

Since the modulations are finite, the X dependence can no
longer be eliminated by expanding f(x X)=fp(x)
+ifi(x,X)/n. Instead, the full two-dimensional system
must be solved self-consistently. If the requirement of
periodicity in P is temporarily relaxed, a convenient way
to solve the Euler-Lagrange equation resulting from Eq.

trary aspect ratio, determines the true minimizing pertur-
bation for n~ao modes. Thus the resulting (P) limits
are both necessary and sufficient for these modes. The
corresponding eigenfunctions have a strong tendency to
concentrate in the regions of unfavorable curvature.

As stated previously, the derivation begins with Eq.
(5.155). However, in contrast to the special interchange
trial function, a more general, maximally ordered (with
respect to n) perturbation is allowed. Its form can be as-
certained by noting that, as for any instability n.g must
be nearly constant along a field line (i.e., ik

~
~X=0) or else

58' is dominated by large stabilizing line bending contri-
butions. Consequently, to leading order it is appropriate
to write

x
X(Q,X,Q)=f(Q, X)exp in/ —in f v(@p X )cfX'

(5.164)

where gp is any rational surface. The function f is slowly
varying in X, but rapidly varying in P.

In analogy with the Mercier criterion, a new "radial"
variable can be introduced to distinguish the slow hatt

varia-
tion of the equilibrium quantities from the rapid f depen-
dence of the perturbation. For the maximally ordered
ballooning mode the appropriate "length" scale is
x =n(g —@p) [as oPPosed to x =n (fait

—1itp) for Mercier
interchanges]. Consequently, while ballooning modes are
still localized radially, they are not so localized as inter-
change perturbations. This has the following physical ef-
fect. Even though n~ ao implies rapid oscillations, Mer-
cier interchanges are so localized that the deviation from
ik~~X =0 on nearby flux surfaces (b1(-t1/n ) involved in
the perturbation remains small [i.e., on the surface f
=@ (p1 +1 /n),

~
Rk~~X( i,tjXQ) ~/[X

~

—1/n &&1]. As
a result only small modulations in P are allowed, in order
to prevent large stabilizing line bending contributions
from dominating. In contrast, the ballooning perturba-
tion extends sufficiently further out that the deviation
from ik~~X=O is of order unity [i.e., on the surface
W=gp(1+1/n)

~
Rk~~X(g, XQ) /~x (

—1]. Thus the
maximal expansion creates a situation where the effects of
line bending and ballooning are both finite and competi-
tive in the same order.

Introduction of the ballooning mode scaling into Eq.
(5.155) leads to a form of 5&independent of n, given by

2

5W=mfdpdX, .
2 ~Lf ~2+ (Lf)

JR Bp JB2 X
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(5.165) is by Fourier analysis in x:

f(x,X;gp) =g (k,X;gp)exp(ikx),

k(X, fp) =k —f v(gp, X')dX' .
p (j

(5.166)

Here k is the transform variable. In this case, 58'reduces
to a one-dimensional quadratic form with k and gp ap-
pearing as parameters,

5W= —fdx dX
' 1+'IU 1

n JR B
RBk

B
Bg
ax

&n—2p'J
RBp

Fez, k
B2

(5.167)

f(x,X;gp) =gf(x,X+2m m", Pp) . (5.168)

Since f by definition is periodic, it can be expanded in a
Fourier series,

As convenient as this form is, it has the difficulty that
unless g smoothly approaches zero at each end of the in-
terval 0&X&2m', the function f will not in general be
periodic on all nearby surfaces away from the resonant
surface, x =0. The basic incompatibility between periodi-
city in X and local Fourier analysis in x (i.e., use of an
eikonal representation) was resolved by Connor et al.
(1979). They pointed out that, starting with a nonperiodic
function such as that given by Eq. (5.166), one can gen-
erate a periodic function by extending the domain of va-
lidity from 0 &5 &2m. to —ao &7 & op and assuming suit-
able convergence properties at 7=+ Oo. This procedure
leads to the quasimode representation off,

This equation is identical to the Euler-Lagrange equa-
tion resulting from the "nonperiodic" 5$' [i.e., Eq.
(5.167)j. However, the boundary conditions require only
that g vanish sufficiently rapidly at 7=+Oo. Further-
more, because of the quasimode representation, the full
solution for f is periodic even though g itself is not.

Equation (5.171) is the ballooning mode differential
equation. It is an ordinary differential equation that can
be solved separately on each flux surface gp for any given
k once an equilibrium is specified. Stability can be ascer-
tained in either of two ways. First, Newcomb's analysis
can be applied. Thus, if on any flux surface a value of k
is found such that the solution to Eq. (5.171), which is
regular at X~—00 and has a zero crossing for X & + oo,
the system is unstable. A second approach is to introduce
a convenient normalization and then compute the corre-
sponding eigenvalue (as a function of k) as a two-point
boundary value problem. Stability is determined by the
sign of the eigenvalue.

Recently an analytic solution for the large-aspect-ratio,
circular-cross-section configuration has been given by Po-
gutse and Yurchenko (1978). They find a local criterion
for the maximum allowable value of P'(r), which is given
by

S +2rP' 1 —q 1 ———1 ——S exp —1/~S
~

2 2 7R 5 2

4 r 7

——S(rP')' )0, (5.172)

where the shear S=rq'/q
Note that near the magnetic axis S-r, and the bal-

looning mode criterion requires a magnetic well q(0) & 1

for stability. However, unlike the Mercier criterion, a
well does not imply stability away from the axis. In fact,
a simple estimate obtained by neglecting the middle term
of Eq. (5.172) shows that, for stability,

1/2f(x,X;Pp) =+A~( gx)expp(i Xm), (5.169) 2—rP' & —S
3 Rq

(5.173)

where it can be shown by direct calculation that the coef-
ficients A are related to f as follows:

A (x;Pp) = dX f(x,X;Pp)exp( imX) . —2'
(5.170)

a . 1

JB B
1+

2 2RB~ 2

ax

2p'J FRY+ &„—
2

-ka; g=0 . (5.171)
RBp

If one now Fourier analyses f(x,X;Pp)
=g(k, X;gp)exp(ikx) and substitutes into the Euler-
Lagrange equation resulting from Eq. (5.165), there re-
sults a single ordinary differential equation for g given by
[see, for instance, Connor et al. (1979)]

For the simple model, q =q(0)(1+r /rp), integration of
Eq. (5.173) over the plasma cross section yields

' 1/2
2 c. 1 9'o

(n) &,~ 9o 2 gg

9'o

Va

(5.174)

where qp
——q (0) and q, =-q (a) =qp(1+a /rp). Equations

(5.173) and (5.174) indicate that the critical (P) scales as
that of a high-P tokamak and that large shear is favorable
for stability against ballooning modes.

Because of the relative simplicity of Eq. (5.171), a num-
ber of numerical codes have been developed for testing
ballooning mode stability (Dobrott et al. , 1979; Miller and
Moore, 1979; Charlton et al. , 1979; Todd et al. , 1979;
Bernard et al. , 1980). Such studies show that by optimiz-
ing profiles and cross sections, one can obtain critical
(P)'s on the order of 5 —10%. This optimistic result
should, however, be viewed cautiously. The most stable
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configurations almost always have broad pressure profiles
with relatively sharp gradients near the plasma surface
where the shear is high. Thus the optimistic stability re-
sults are to a certain extent a consequence of the "wall
stabilization" associated with the boundary condition
n.g=O for internal modes. As indicated before, sharp
gradients near the plasma surface are likely to drive
higher-m external modes unstable. Since there are oppos-
ing constraints for ballooning mode and external kink sta-
bility, the optimum profile represents some compromise
between those two effects.

Finally, it should be noted that both analytical (Connor
et al. , 1979) and numerical (e.g., Charlton et al. , 1979;
Todd et al. , 1979), studies have shown that the (p) limits
for arbitrary internal modes are most stringent for the
n~ao ballooning modes. However, modes with such a
fine-scale structure are likely to be affected by other phys-
ics (e.g., by finite gyroradius). Consequently, in a real ex-
periment, the most unstable modes will probably corre-
spond to lower-n values, with somewhat higher (p) lim-
its than for n —+Do. The nonlinear evolution of such
modes, including resistivity, is an important area of
current theoretical tokamak research.

In summary, ballooning modes are pressure-driven in-
stabilities localized in the region of unfavorable curvature
on the outside of the torus. These modes set an upper
limit on the value of (P)-c,/q (0) that can be stably
confined in a tokamak. High shear is in general favorable
for stability. However, near the magnetic axis where the
shear is small, a magnetic well is required [q (0) & 1], as in
the Mercier criterion. This corresponds to a limit on the
current density on axis. The current-density limit is not
too restrictive in that, even if it is violated, a small local-
ized flattening of the central pressure profile restores sta-
bility. Numerical calculations have shown that reason-
able current and pressure profiles can be stable to balloon-
ing modes, as well as to all other internal modes, for
(P) -5—10%.

d. Internal modes (general)

Although the high-n ballooning modes lead to the
lowest critical (p)'s for internal instabilities, it is still of
interest to examine more general lower-n modes. The
reason is that such modes set an upper limit on the
toroidal current density on axis. Recall that in a straight
tokamak q(0) & 1 is required for n =l,m =1 stability.
Note also that q(0) & 1 is required in a torus for a mag-
netic well, but this is a weak condition because a small
Aattening of the pressure profile eliminates the high-n in-
terchanges near the axis.

Since low-n modes have large-scale radial structure, the
stability boundaries can often only be determined by nu-
merical computation. However, an interesting analytic
calculation has been carried out in the limit of a large-
aspect-ratio, circular-cross-section tokamak by Bussac
et al. (1975), which sheds considerable light on this prob-
lem. By applying the conventional tokamak expansion,
P-s, P& —1, they derive an expression for 5W as a func-

tion of n for the toroidal case. Since p is not assumed to
be large (i.e., not the high-p tokamak ordering), ,their cal-
culation can be viewed as a determination of the effects of
toroidicity on the current-density limit of low-n internal
kinks.

After a rather involved calculation, Bussac et al. derive
an expression for 58'which can be written as

5W ~&ohio

2+R R' 1 — 58, + 58'T1 1

n 6
(5.175)

Here
T

5W, =f rP'+, 1— 3+ 1

nq
rdr

(5.176)

R2

S

(S.177)

Note that, for n »1, 5W=(~8 o/R)5W, and stability
is identical to that in the straight tokamak, requiring
nq (0) & 1. For the most severe case, n = 1, the cylindrical
contribution vanishes and 5W=(~Bo/R )5WT. Here, in
contrast to the cylindrical result, the internal kink mode is
stable in the limit p~~O if q(0) &1. However, in both
cases, increasing pz is destabilizing and the toroidal calcu-
lation predicts instability for p~ & V 13/12=0.3 unless

q(0) & 1.
Similar results have been found numerically (Sykes and

Wesson, 1974; Kerner, 1976; Berger et al. , 1977). These
calculations show that for small pz there still exists a
current-density limit, but that it is associated with the
n =2,m =1 mode, q(0) &0.5. Consistent with the ana-
lytic calculation of Bussac et aI., the n =1 mode is stabi-
lized by toroidicity at low pz. However, as pz increases
the n =1,m =1 mode is excited. The numerical results
show that this instability is stabilized for q (0) & 1.

In summary, toroidicity has a number of important ef-
fects on the stability of internal ideal MHD modes:

(a) Toroidicity has a stabilizing effect on pressure-
driven interchanges to the extent that a magnetic well can
be created.

(b) Toroidicity has a destabilizing effect on more gen-
eral pressure-driven modes. In particular, ballooning in-
stabilities, which have no simple analog in the straight
tokamak, can be excited, even if q(0) & 1. These modes
set an upper limit on the value of (p) /E.

is the contribution due to a straight tokamak using the
standard m = 1 internal mode eigenfunction [see Eq.
(5.139) and Fig. 43] with r, the singular surface defined

by nq(r, )=1. The toroidal contribution 5WT is in gen-
eral quite complicated. However, in the limit of

~ q (0)—1
~

&& l,q (0) & 1, and with a parabolic current
profile, a simple expression is obtained,

371 Ps 13 25 WT —
2 [1—q (0)] —pqR
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(c) Toroidicity has a slight stabilizing effect on the lim-
iting current density on axis, due to the internal

1

m =I,n =1 kink mode at low pz. However, for pz & —,,
stability still requires q (0) & l.

Thus, in order to stabilize a tokamak to internal modes,
the current density on axis must be limited to q(0) & 1

and the pressure must be sufficiently low so that
(p) (0. l. In general profiles with high shear have
higher (p) ballooning limits. The alternative approach
to ballooning mode stability, very low shear plus a mag-
netic well, is not likely to be satisfactory when one in-
cludes the low current gradient requirements of external
kinks. Noncircularity, if properly chosen, can also im-
prove internal mode stability. A combination of elonga-
tion and outward-pointing triangularity can lead to sub-
stantial increases in the (p)/e limit, as well as the on-
axis current density. These increases appear to saturate
for elongations greater than about 2:1.

e. External modes

As in the straight tokamak, the external modes set the
most severe limits on ideal MHD stability. Recall that in
a straight tokamak stability is achieved by requiring

q (a ) & 1 for the m = 1 mode and requiring a peaked
current profile for the higher-m modes. In a torus, there
is a further limitation which sets a maximum value for
(P). This limit is in general more severe than that due to
n —+ Do internal ballooning modes.

In the regime of the conventional tokamak, (p) —E,
ballooning effects are unimportant. Stability is deter-
mined by external kink modes, and the results are similar
to those in the straight tokamak. The new stability limits
appear in the high-(p) regime ((p) -E) and are associat-
ed with toroidal ballooning effects. In fact, for the most
unstable modes, the eigenfunction corresponds to a com-
bination of ballooning and kinking. Thus, in contrast to
n ~~ internal ballooning modes, which are driven solely
by the pressure gradient, external modes are driven by a
combination of the pressure gradient and the parallel
current.

Since these are low-m modes with gross radial struc-
ture, many of the stability results have been obtained
from numerical computations (Wesson and Sykes, 1974;
Schneider and Bateman, 1974; Todd et al. , 1977, 1979;
Berger et al. , 1977; Dory et al. , 1977; Charlton et al. ,
1979; and Bernard et al. , 1980). There is, however, one
simple equilibrium model which gives unexpectedly reli-
able information about the (p) limits. This model is
known as the surface current model, and its equilibrium
and stability properties are summarized below (Freidberg
and Haas, 1973; D'Ippolito et al. , 1978).

In the model, the shape of the plasma surface is
prescribed and all currents are assumed to flow only in
this surface. Within the plasma J=0 and p =const. Out-
side, the plasma is surrounded by a vacuum. The only
requirements for equilibrium are [n.B]=0 and

[p +B /2] =0 across the surface. Because of its simplici-

ty, the model can be solved exactly or in the context of ei-
ther the conventional or high-p expansion. For present
purposes it is useful to focus attention on the high-p ex-
pansion. In this case it has been shown that for a circular
cross section the poloidal field just outside the plasma is
given by (Freidberg and Haas, 1973)

88(a, 0)
cBo

[1—k sin (8/2)]'~2,
q* 2E k

(5.178)

(p)/E (H/16q*

e(P, ) &H/16. (5.179)

In analogy with the uniform current equilibrium (see Sec.
IV.C.6), a crude approximation to flux conservation can
be made by requiring q(a) to be held fixed, rather than
q*, as (p) is varied. In this case there is no equilibrium
limit, and, as (p) /E~ oo,

(5.180)

Thus, despite its simplicity, the surface current equilibri-
um has many features in common with more complicated
diffuse high-P equilibria.

The stability of the system is determined by an analysis
of the extended Energy Principle, 5&=68'~+58'z
+58'v (see Sec. V.B.4.c). An advantage of the surface
current model is that, after Fourier analysis with respect
to P the stability problem is reduced to a minimization
with respect to a single, one-dhmensional, scalar quantity
(8)=n.g[r~(8),'0],—evaluated on the plasma surface

r =r~(0). The procedure can be carried out for arbitrarily
shaped cross sections and represents a substantial saving
over the general diffuse case, where the unknown pertur-
bations are two-dimensional functions of r and 0.

Some insight into the nature of the high-(p) instabili-
ties can be gained by examining 6S'q, the only source of
instability in the surface current model. For the circular-
cross-section case,

58@ = —cBo
2~&o

x I, (g(&) ~'
8,(a, 6)) (p) cosO d8 .

cBp

(5.181)

Note that there are two contributions to instability. The
f]trst, proportional to B~, is the usual destabilizing effect
of the parallel currents (i.e., the kink term). The second

where (in mks units) q*=2na Bo/pofRO, E(k) is the
complete elliptic integral of the second kind, and k —1 is
a parameter related to (p):2p/B—o by

(P)q* /a=[irk/. 4E(k)]

As (p) varies, the shape of the cross section is held
fixed. If the current I (i.e., q~), is also held fixed, there is
an equilibrium limit corresponding to k —+1, given by
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58'
2~&o

=n.E Bog'g W pg~, (5.182}

where the matrix elements W~p for the circular-cross-
section case are given by

Wmp = Wpm = Imp+ g—'«tmGip+Gtm Gtp)/ I
l

I

I

(P) I 2 —k'a, = — 4, &,+3(&, &+&,
2c.

GI ———n 5I

Bg
Gt~ = —n5t +—J cos[(l —m)8]d8 . (5.183)

0 Ego

The marginal stability boundary is determined by varying
(P) until the lowest eigenvalue of W crosses zero. This is
a simple numerical procedure.

The stability curve for the circular-cross-section, high-
P tokamak is shown in Fig. 45. Plotted here is the critical
(P)/E vs q —1/I. Also illustrated is the equilibrium
limit (P)q» /E=ir /16. Observe that for low-q»(&1)
the plasma is unstable for any (P). When q» ( & 1) the
plasma becomes stable and the critical (P) increases from
zero. At q*=1.7 the stability curve intersects the equili-
brium curve, predicting a maximum critical
(P)/a=0. 21. At higher values of q* the plasma is al-
ways stable, but these lower currents support increasingly
smaller (P)'s in toroidal equilibrium.

Thus the surface current model demonstrates that
external modes in a toroidal tokamak require both a
current limit q» & 1 and a pressure limit (P) /v=0. 21 for
stability. The (P) limit, which is not very high for the
circular case, has also been investigated for a number of
noncircular cross six:tions (Freidberg and Haas, 1974;
D'Ippolito et al. , 1978). For the ellipse, which is relative-
ly pointed at the ends, the critical (P) increases with
elongation, b/a, up until an optimum value bja =2.2,
after which it decreases. The optimum critical (P) at
b/a =2.2 is equal to (P)/a=0. 37. For more rounded,

contribution is the effect of the toroidal field curvature
(i.e., the pressure-driven term). The cos8 dependence re-
flects the fact that the toroidal curvature is unfavorable
on the outside of the torus but favorable on the inside.
Indeed, it is just this effect which causes the eigenfunction
to balloon. Observe, also, that for the conventional order-
ing (P) -c, the ballooning contribution is negligible.

The stability analysis is carried out by first Fourier
analyzing the normal component of plasma displacement,

g(8}=exp( —in/)g'g'~exp(im 8),
m

and then minimizing over the coefficients g'~. Both the
plasma and vacuum contributions can be converted to
surface integrals. These are then expressed in terms of
the g~ through the solution to Laplace's equations for the
perturbed scalar magnetic potentials and application of
the boundary conditions given by Eq. (5.45).

After a lengthy calculation, an expression for 5W is ob-
tained which can be written as (Freidberg and Haas, 1973)

l.o

jl 0.8—

0.6—

0 4—

0.2—

0
0

I

0.5 1.0 1.5 2.0 2.5

FIG. 45. Stability boundary for external modes in a high-P
tokamak described by the surface current model (from
D'Ippolito et al. , 1978).

"race-tracklike" cross sections, the critical (P) appears to
increase with elongation and then saturate, rather than de-
crease at large b/a. The saturated critical (P) is approx-
imately (P)/E=0. 5. It has also been shown that the
presence of force-free currents on the outside of the plas-
ma can lead to substantial further increases in the critical
(p).

Recently, more realistic numerical studies of external
kink stability have been carried out. [See, for instance,
Todd et al. (1979), Charlton et al. (1979), and Bernard
et al. 1980).] These calculations are based on an exact
formulation of the Energy Principle in which no expan-
sions are made with respect to (P) or the inverse aspect
ratio. The numerical results and the surface current re-
sults agree surprisingly well, despite the simplicity of the '

latter model. One possible reason may be that, as indicat-
ed by the straight tokamak, the stability of m =1 external
kinks is independent of current profile.

At present, there is no unique optimum value of critical
(P) for a tokamak, since the results depend somewhat
upon profiles and cross sections. However, the numerical
results indicate that external modes give rise to the most
severe limits on critical (P), which typically lie in the
range of 1 —5%. The higher values are obtained with
elongated cross sections, b/a -2, sometimes modified by
a small outward-pointing triangularity. To achieve much
higher (P)'s a conducting shell quite close to the plasma
is required, a,i~/api„-1.2. As in the straight tokamak,
sharp gradients near the plasma surface lead to high-m
instabilities unless the conducting shell is very close.

In summary, external modes appear to be the most
dangerous ideal MHD instabilities from the theoretical
point of view. However, their behavior is strongly depen-
dent on external conditions, so that the presence of a met-
al limiter or quasiconducting vacuum chamber near the
plasma could have a substantial effect on the actual criti-
cal (P) achievable in any experiment. These problems re-
quire further investigation, particularly an understanding
of their nonlinear consequences.
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f. Axisymmetrie modes

@(R,Z) = LI—1 2

2

gp(R, Z) =LI —2m. J Bz(R',Z)R'dR' .
(5.184)

Here L (R ) =poR[ln(8R /a) —2] is the external induc-

The final class of toroidal instabilities to be considered
is the axisymmetric mode. This perturbation corre-
sponds to an n=O external mode which at marginal sta-
bility can be viewed equivalently as a neighboring equili-
brium state. The most unstable perturbation usually cor-
responds to a nearly rigid vertical shift of the plasma
(i.e., there is a large m= 1 component to the eigenfunc-
tion). It is important to stabilize these modes, since they
represent a macroscopic motion of the plasma towards
the wall of the discharge chamber.

The stability of axisymmetric modes is directly cou-
pled to toroidicity and noncircularity. This can be seen
by examining 68' for the m=1,n=O external mode in a
straight circular tokamak [see Eq. (5.142)). As might be
expected because of symmetry, one finds 58'=O, indicat-
ing neutral stability. Toroidicity and noncircularity in
general require relatively complicated two-dimensional
calculations. There is, however, one simple model that
can be analyzed, illustrating the basic nature of the ax-
isymmetric instabiHty. This model, first investigated by
Osovets (1959) and later by Yoshikawa (1964) and
Mukhovatov and Shafranov (1971), is discussed below.
It has also been recently summarized by Wesson (1978)
and Bateman (1978).

The calculation treats the plasma as a thin (a/Ro « 1)
current-carrying loop of wire embedded in an externally
applied vertical field. For simplicity the effects of plas-
ma pressure and internal magnetic flux are neglected.
The object of the calculation is to determine the ap-
propriate constraints on the shape of the vertical field to
provide stability against rigid vertical and horizontal dis-
placements. Clearly, a pure uniform vertical field
B,=B,c„B,=const would not be adequate, since by
symmetry the system would be only neutrally stable to
vertical displacements.

The calculation proceeds by introducing a potential,
N(R, Z), such that the equilibrium forces acting on the
plasma are given by F(R,Z) = —V@. Equilibrium
occurs at the point R o,Zo where Fz (R o,Zo )

=Ez(R p, Zp ) =0. The condition that the plasma then
remain stable to a rigid shift in either
the vertical or horizontal direction is that
BFz(RO, ZO)/dZO & 0 and r)F& (Ro Zp)/Mo & 0, respec-
tively; that is, stability occurs when the restoring force is
in the opposite direction from the displacement. Note
that because the plasma is a perfect conductor the calcu-
lation must be carried out under the constraint that the
poloidal flux contained within the current loop be con-
served under either plasma displacement.

For the simple model under consideration, the ap-
propriate equilibrium potential and the poloidal flux con-
tained within the current loop are given by (see Fig. 46)

Fz Jgx BR

Fz= JpxBR

FIG. 46. Geometry for calculating n=O, axisymmetric mode
stability.

M I dI.
Fg ———LI

BR 2 dR

(5.185)

From /~=const it then follows that the equilibrium re-
lation F(RO, ZD) =0 reduces to

Bg (RO,ZO) =0,
I dI.

Bz(RO,ZO) =
4~Ro dRo

(5.186a)

(5.186b)

Note that Eq. (5.186b) is identical to those terms in the
Shafranov shift associated with the external poloidal flux
[see Eq. (4.67)].

Consider now the stability of the plasma to a rigid
vertical shift. Using the fact that V &8=0 for the
externally applied vertical field, one can easily calculate
dFz(RO, Zp )/BZp. One finds

BF,
BZp

where

I dI.
2Rp cgRp

(5.187)

Rp BBz
( nR, oZ)=—o-

(Bz ~R. ~,,z,
is known as the decay index. The condition for vertical
stability is thus given by

(5.188)

This condition can easily be understood from Fig. 46.
If the directions of the vertical field and toroidal current
are as shown, then: (1) the vertical field produces an in-

tance associated with the toroidal current I, and Bz and
Bz are the components of the externally applied vertical
field.

The equilibrium forces, calculated from @, can be
written as

M
Fz ———L,IBz
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ward force for toroidal equilibrium, and (2) a small up-
ward shift of the plasma gives rise to a downward J)&8
force, of magnitude 2mRIB~, which is in the direction to
restore equilibrium. Thus the curvature of the vertical
field shown in Fig. 46 is the appropriate one for stabili-
ty, and corresponds to the condition n ~ 0.

A more exact theorem concerning vertical stability,
similar to Earnshaw's theorem in electrostatics, has been
derived by Haas and Papaloizou (1977). They considered
an arbitrary-cross-section, arbitrary-aspect-ratio, axisym-.
metric torus subject to antisymmetric perturbations
about the Z=O plane. By allowing a more general trial
function than the simple rigid shift displacement, they
were able to prove the following theorem. "Any axisym-
metric toroidal plasma with toroidal current decreasing
monotonically towards the boundary, and maintained in
equilibrium by external fields such that the decay index
is negative throughout the region occupied by the plas-
ma, is unstable in the absence of active or passive feed-
back. "

Consider now horizontal stability which is only slight-
ly more complicated. In this case, a straightforward cal-
culation yields the following expression:

Mp 2Rp dRp

1 d ln(dL/dRO)

2 d lnR

(5.189)

In the simple limit 1n(SRO/a) »1 horizontal stability is
achieved when

Rebhan, 1975; Haas, 1975). Also, with no wall, the criti-
cal elongation does not depend very strongly on (Pz ) or
the current profile. If a conducting wall is allowed even
a moderate distance away, a,~~/a„~„-1.5 —2.0, there is
a substantial improvement in vertical stability. However,
the need for such a wall in a reactor is a disadvantage.
Even more important, such a wall would certainly be
resistive on the reactor time scale, necessitating a feed-
back system for vertical positioning. This would be in
addition to the horizontal feedback system, which is re-
sponsible for centering the plasma column along the ma-
jor radius.

A further point concerning the stability of elongated
plasmas has been made by Thyagaraja and Haas (1979).
They showed that, even when the m=1 vertical shift
mode is assumed to be feedback stabilized, higher-m in-
stabilities can be excited if more realistic boundary con-
ditions are applied. Specifically, the usual assumption
which treats the whole system (including the vacuum re-
gion) as being surrounded by a closed conducting shell is
relaxed. Instead, it is assumed that the plasma is held in
equilibrium by a set of fixed external currents. The re-
sulting m )2, so-called secular instabilities are difficult
to feedback stabilize and lead to further strong limita-
tions on the allowable elongations.

In summary, n=O axisymmetric modes can lead to
potentially serious instabilities in a tokamak. For circu-
lar cross sections, a moderate shaping of the vertical
field should provide stability. For noncircular tokamaks,
vertical instabilities produce important limitations on the
maximum achievable elongations. Even moderate
elongations require a conducting wall or a feedback sys-
tem for vertical stability.

n &3/2 . (5.190)

This situation can be understood as follows. Assume
the plasma is given a small outward shift. At constant
flux, the outward hoop force on the plasma decreases be-
cause of the smaller current at the larger major radius.
However, because of the larger radius of curvature of the
vertical field, the toroidal restoring force also decreases
at the larger major radius. The stability condition given
by Eq. (5.190) requires that the curvature of the vertical
field be sufficiently weak that toroidal restoring force de-
cay at a slower rate than that of the hoop force, thus
providing a net inward stabilizing force.

The results of this simple model are in good agree-
ment with more exact numerical calculations (Wesson
and Sykes, 1974; Johnson et a/. , 1977). In general, for
circular-cross-section plasmas, axisymmetric stability is
relatively easy to achieve, requiring only a modest shap-
ing of the vertical fields. The situation is more serious
for elongated tokamaks. In such configurations there is
a strong tendency for the plasma to be unstable to verti-
cal shifts as the elongation increases. A number of cal-
culations which derive a more accurate form of the verti-
cal stability condition and relate the elongation b/a to n

indicate that only rather small elongations, b/a &1.25,
can be stable to vertical shifts when no conducting wall
is present (Laval et aI. , 1974; Laval and Pellat, 1973;

g. Overview of the tokamak

By combining the equilibrium and stability results one
obtains the following overview of the tokamak concept
with respect to ideal MHD behavior.

The tokamak is a relatively low-P axisymmetric
toroidal configuration. It has a large component of
toroidal magnetic field which is required for stability. In
the "high-P" regime, P-E, the toroidal field also sup-
ports the plasma in radial pressure balance (as in a 8
pinch). The poloidal field provides radial pressure bal-
ance in the conventional regime, P-E (as in a Z pinch).
In both cases toroidal force balance is provided by a
small torodial current B~/B~ —e interacting with an
externally applied vertical field. Since the highest values
of P and toroidal current scale with e for a fixed toroidal
field, tokamaks are inherently low-aspect-ratio devices,
somewhat of a technological disadvantage for reactor
use.

There are two classes of ideal MHD instabilities which
define important boundaries for tokamak operation.
These involve a current limit which is found in both
straight and toroidal systems and a P limit which is
predominantly a toroidal effect.

The best known current limit arises from the m=1
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external kink mode. This leads to the Kruskal-
Shafranov condition q(a) & 1. Also, m= 1 internal kinks
and their nonlinear resistive evolution are responsible for
the sawtooth oscillations observed in most tokamaks.
The net effect of the internal modes is to cause tokamaks
to operate on the borderline of MHD stability, q(0)=1.
In practice, even with q(0)=1, tokamaks cannot reach
the q(a)=1 limit but instead operate with q(a)=2 —3.
This is not inconsistent with the requirements of higher-I external kink mode stability. But it is almost certain-
ly more related to the presence of resistive teasing
modes, which can cause major disruptions and terminate
the discharge if the current becomes too large. Thus,
with regard to current-driven instabilities, most
tokamaks operate in a regime which is stable, or at least
marginally stable to ideal modes, but with some finite
level of resistive MHD turbulence. Although there are
regions of parameter space where even resistive modes
can be stabilized, these are not very attractive because
they correspond to low values of the current limit; that
is, the benefits of higher current outweigh the enhanced
transport due to weak resistive modes at the optimum
operating conditions.

The second class of instabilities is responsible for set-
ting limits on the maximum achievable (P). These lim-
its, which occur for both internal and external modes,
are associated with the tendency of unstable perturba-
tions to balloon in regions of locally unfavorable curva-
ture. In general the low-n external ballooning kink
modes predict more severe (P) limits (1—5%) than
those of the n ~ oo, internal ballooning modes (3—10%).
However, the seriousness of either of these modes has
not as yet been established experimentally, since most
tokamaks operate well below the maximum limits. One
exception is the ISX experiment at Oak Ridge, which
has recently achieved (P) values on the order of 3%.
This is just the regime where ballooning effects should
become important, and future experimental investigations
should shed considerable light on the important issue of
(P) limits.

There is one further, indirect constraint on tokamak
operation, resulting from MHD requirements, which
should be noted. The combination of the stability re-
quirement q &1 and the technological constraints limit-
ing the maximum B~ sets an upper limit on the toroidal
current. There is theoretical and experimental evidence
that this current can, at most, joule heat a plasma to
several keV, still significantly below the ignition tem-
perature. As a result, the standard operation of both
current experiments and future reactor tokamaks re-
quires some form of auxiliary heating, such as neutral
beams or rf power.

In summary, ideal MHD equilibrium and stability re-
quirements impose significant constraints on the opera-
tion of a tokamak. Nevertheless, the available stable
operating space is sufficiently broad and flexible that
tokamaks are currently the most successful experimental
configuration and the most promising concept on the
path to a fusion reactor.

2. Closed-line configurations

a. Interchanges, ballooning modes,
and the "magnetic we/I"

Significant simplifications occur in the stability
analysis of multidimensional closed-line configurations,
in particular of the EST. Such systems have either zero
or small zero-averaged parallel currents, so that
pressure-driven modes are the dominant source of insta-
bility. Of these, the localized kz~ ao modes usually lead
to the most severe f3 limitations in the context of the
ideal model. The simplifications associated with closed-
line symmetry allow a more general and complete deriva-
tion than that presented for the tokamak.

This simplification is realized by reducing 6S' from its
original three-dimensional form, involving the three
components of g', into a more tractable one-dimensional
form, involving only the normal component of g'. Stabil-
ity can then be tested separately on each magnetic line,
representing an enormous savings in effort. The key
feature in this reduction is the restriction of the class of
modes under consideration to those with kz —+ ao. These,
in fact, are often the most unstable, and take the form of
interchanges and ballooning modes.

The analysis proceeds as follows. Consider the "intui-
tive" form of 5&+ [i.e., Eq. (5.48)], repeated here for
convenience:

J.B—2(g'g Vp)(gj.a)—,(gj XB).g~

(5.191)

where kz is defined as

kj ——V'S(P,X),
B.VS =0

(5.193)

The quantity vgj(Q, X,l) is assumed to vary "slowly" with
(Q,X,l) on the equilibrium length scale. In contrast, the
assumption kI~ oo implies that the (g,X) dependence of
S is "rapid. "

The mathematical motivation for introducing separate
length scales can be understood by substituting Eq.
(5.192) into Eq. (5.191) without approximation. The re-
sult is

The calculation is carried out in flux coordinates (Q,X,I),
where 1t and X are poloidal variables representing "ra-
dius" and "angle, " respectively, and I is arc length along
the magnetic field. Without loss in generality P can be
chosen so that: (1) p =p(g); (2) lt, X, and 1 are locally
orthogonal; and (3) 8=V'/XVX.

In order to exploit the kj —+Do limit, an eikonal repre-
sentation is used for g'z.

g'q= gq(Q, X,&)exp[&&(Q,X)],
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&w~= 2 f«
I
vx(n, xB)il'+&'Iiki m.i+v n.i+2» nil' —2(wi v.p)(wi ».) —,(NixB).vx(gixB)i

(5.194)

gl glO+ ill (5.195)

with lqii I
/

I rlio I

The zeroth-order contribution to 58'F reduces to

tiWo ———,
' f drl ,k"n, ol'. (5.196)

Clearly, the minimizing perturbation satisfies ki.gio ——0,
implying that gzo can be written as

rico ——F(sf',X, l)eb Xki . (5.197)

Here Y is a scalar quantity, varying on the "slow" equili-
brium length scale.

The first nonvanishing contribution to 5WF occurs in
second order. In this expression the only appearance of
the quantity gz& is in the magnetic compression term,

Note that the plasma compressibility term is not includ-
ed in Eq. (5.194). Strictly speaking, the analysis present-
ed in Sec. V.B.5 indicates that the stabilizing effect of
compressibility must be included for closed-line systems.
Nevertheless, it is neglected here: (1) for reasons of
mathematical simplicity, (2) because of the unreliability
of the energy equation, (3) because the specific applica-
tion considered, the EBT, is quantitatively but not quali-
tatively affected by compressibility, and (4) because by so
doing one is led to a conservative estimate of 58'F.

An examination of Eq. (5.194) indicates that the only
explicit appearance of S (i.e., ki) occurs in the inagnetic
compression term. If one now considers the limit
kj ~ ao, 5S' can be systematically minimized by expand-
ing gz,

2

5W2 ———, f dr ki
BX

—2 z (eb Xki Vp)(ei, Xki ») . (5.200)

2

f dl k2 aX
(5.201)

2IX I2 IV@I dp k2
d11

kkaJ-"
aim

In the above expression, the curvature and wave vector
have been decomposed into normal and geodesic com-
ponents, »=»„e„+»,e„ki k„e„+k——,e„with e„=Vg/

I
V1(t

I
and e, =eh Xe„.Here

Upon explicitly introducing flux coordinates, one can
rewrite 58'2 in a form in which stability can be tested
individually on each magnetic line. This form is given
by

5' ———, f dfdX W(alt, X),

5W2(coinP ) f dr a
I
i k ri +V i r+io2il»io

(5.198)

Clearly 5W2 is minimized by choosing ik J Tfi\
V bio 2» —rico . Th—us t.he m. ost unstable modes for

ki~ ao do not involve any compression of the magnetic
field.

In the evaluation of 5' it is useful to note that the
quantity V X (riiox B)i can be expressed as

(5.202)

p+

lvxl M
a ax

Also, in deriving Eq. (5.201), use has been made of the
general parallel current relationship [i.e., Eq. (4.144)] to
obtain the identity

BXVX(gioXB)i= al eb Xki (5.199) al g ~2 d@
(5.203)

where X(Q,X,l) =—BFand a/al =ei, V Asimp. le.calcula-
tion then shows that the quantity (bio XB) V
X(gioXB)=0. Thus, in the limit ki~ao, the kink
term makes no contribution to stability.

The remaining contributions to 58'2 describe a com-
petition between the stabilizing effects of line bending
and the destabilizing effects of unfavorable curvature:

Equation (5.201) implies that a configuration will be
stable to kq~oo modes if and only if the quantity
W(g, X) is positive on each magnetic line (i.e., for every
value of g and g). Furthermore, when minimizing W,
the angle y—=tan '(k, /k„) representing the orientation
of ki must be varied, as well as the eigenfunction X.

The first useful stability information from Eq. (5.201)
follows from employing the special trial function X=1,
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thus setting the line bending magnetic energy to zero and
causing the contribution of the geodesic curvature to
average to zero. This corresponds to the "interchange"
perturbation. The resulting stability condition has the
orm

dp ~ dl 8 B
dg+g3BQ 2

(5.204)

A more familiar form, valid for P«1, is obtained by
neglecting the p term in the integrand of Eq. (5.204) and
setting 8 =B, the vacuum field. One finds

dp 8 ~ dl

de ay&~ (5.205)

—2—-~x„/Xf2
B d

(5.206)

When Eq. (5.205) is satisfied, the configuration is said to
possess a "magnetic well. " Since the interchange pertur-
bation samples the average curvature of the field (i.e.,
ballooning effects are not included), it is perhaps more
appropriate to describe such systems as having "average
favorable curvature. "

Because of its simplicity, and the fact that only a
knowledge of the vacuum fields is required, Eq. (5.205)
is widely used in the evaluation of different magnetic
geometries, including both closed-line and ergodic sys-
tems. Strictly speaking, Eq. (5.205) is a necessary cri-
terion for stability only for low-p closed-line systems.
At higher p, the self-consistent diamagnetic fields must
be included, as in Eq. (5.204). For ergodic systems, the
surface-averaged generalizations of the conditions are
neither necessary (since the effects of shear are not in-
cluded) nor sufficient (since X= 1 is not the minimizing
eigenfunction, even for k~~oo). Hence caution should
be used in applying these criteria to such configurations.
Even so, the property of average favorable curvature
often does provide a reliable general guideline to the
evaluation of different magnetic geometries.

Consider now the general minimization of W(g, X).
On each magnetic line this requires the solution of a
one-dimensional (in l) Euler-Lagrange equation for X.
Stability can be determined by introducing an appropri-
ate normalization and then calculating the value of the
corresponding Lagrange multiplier (i.e., eigenvalue) so
that X is periodic over the length of the line, 1.. The
sign of the eigenvalue then determines stability or insta-
bility.

In applying Eq. (5.201) to general three-dimensional,
closed-line systems, one must vary k, /k„separately on
each magnetic line to minimize O'. A considerable sim-
plifimtion occurs in an axisymmetric geometry, such as
would characterize a "straight EBT" configuration. For
such systems the symmetry implies that X=0, B(equil.
quant. )/88=0, and a, =0. It then follows that the most
unstable orientation of kz is such that k„=O; that is,
S=S(X). To within a positive multiplicative factor, 8'
reduces to

where r =r(1(t, l) is the radial equilibrium position of the
magnetic line under consideration.

For the EBT geometry, ~„oscillates between regions
of favorable and unfavorable curvature. The minimizing
perturbation then has the structure of a ballooning mode,
concentrating in the unfavorable regions. It does this in
such a way that the increase in the destabilizing term
more than compensates for the increase in stability from
the line-bending energy. Perhaps the most important
consequence of ballooning mode analysis is that the re-
sulting stability criterion sets a maximum (p) limit for
k&~ Co modes, which is usually the most severe limit for
internal modes.

In summary, by considering the kz~ ao limit, one can
reduce the stability of multidimensional closed-line sys-
tems to a one-dimensional Energy Principle whose
behavior can be examined one magnetic line at a time.
In this limit there are two competing effects determining
stability: the stabilizing effect of line bending and the
destabilizing effect of unfavorable curvature. The inter-
change perturbation represents a special trial function
which causes the line bending to vanish. The resulting
necessary condition for stability, is that systems have
"average favorable curvature" or possess a "magnetic
well. " The ballooning mode represents the true minimiz-
ing eigenfunction and in general sets a limit on the max-
imum stable (p). These criteria will now be used to in-
vestigate the stability of the EBT configuration.

b. Application to the Elmo bumpy torus

In Sec. IV.D.2 it was shown that the EBT can be
viewed as a closed-line toroidal configuration consisting
of a series of linked mirror cells. In the bulge region of
each mirror there is an ECRH (electron cyclotron reso-
nance heated) electron ring. The combined effects of
toroidicity and mirror bumpiness imply that the EBT is
a three-dimensional configuration. However, because of
the large aspect ratio, toroidicity does not play an essen-
tial role in EBT stability, and in this respect it is suffi-
cient to treat the system as a straight, infinitely long,
two-dimensional series of linked mirrors. The MHD sta-
bility of such systems has been investigated extensively
at Oak Ridge [see, for instance, Nelson and Spies (1974),
Nelson and Hedrick (1979)] and this section presents a
summary of these results.

The most dangerous MHD instabilities in the EBT are
k&~ ao, internal pressure-driven ballooning modes. This
follows bemuse J~~ =0, so that current-driven kinks can-
not exist. Furthermore, since the most severe stability
limits arising from pressure-driven modes occur for
kz —+ao, the corresponding eigenfunctions are highly lo-
mlized in radius. Consequently the vacuum region is
decoupled, and only internal modes need be considered.

The basic instability mechanism of the EBT is associ-
ated with the alternating regions of favorable and un-
favorable curvature in the configuration. A detailed
analysis shows that without the hot-electron rings, the
low field, unfavorable regions are more heavily weighted,
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so that both interchange and ballooning modes can be
driven unstable.

The analysis of EBT internal modes is very similar to
that of the n —+Do ballooning modes in tokamaks. There
are, however, three distinctions which must be made.
First, in the analysis the hot-electron rings are assumed
to remain rigid during the MHD perturbation of the
main plasma core. The physical reason for this is the
normal EBT operating condition T„.g/Tp& —10, which
implies that the characteristic diamagnetic drift velocity
VD —T„„s/erBis much greater than the ion thermal
velocity VT; -(T;/m; )'~ (Nelson, 1980). If the rings
were allowed to move as part of the plasma, the system
would be very unstable (Nelson and Spies, 1979). The
effect of holding the electron rings rigid is to modify the
Energy Principle as follows (Johnson et al. , 1969):

5&=—, f dr[ I@I'+(Vx8—J, )xf,".g
+ (4i Vp»)(V Ci) rs I

—V 4 I
']

(5.207)

where J, is the hot-electron current and p is the pressure
of the plasma core.

The second distinction is associated with compressibil-
ity. Since the EBT has closed field lines, one cannot set
V.g=O because of periodicity requirements. Nelson and
Hedrick (1979) have taken this into account and have
shown that there is an additional stabilizing contribution
in 5W (i.e., from the yp I

V.g'I term), which makes a
quantitative but not qualitative change in the stability.
Nevertheless there is stiH uncertainty with respect to the
compressibility because of the unreliability of the equa-
tion of state. For these reasons, and for the sake of sim-
plicity, the compressibility contribution is neglected, thus
leading to a more conservative form of 58'.

The third distinction has to do with shear and periodi-
city. Recall that in the tokamak geometry it was neces-
sary to introduce the quasimode representation for the
eigenfunction to insure periodicity [Eq. (5.168)]. Since
there is no shear in an EBT, this problem does not arise,
and one can Fourier analyze the perturbation X(r, 8,z) as

X(r, 8,z) =X(r,z)exp(im 8),
where X(r,z) =X(r,z +L), L is period of the mirror
cells, and the z variation of X is "slow" (i.e., on the
equilibrium scale).

With these considerations in mind, the appropriate 58'
for the EBT can be derived in a manner very similar to
that used for the ballooning mode for tokamaks, or
equivalently to the general analysis of closed-line systems
given in Sec. V.D.2.a. The EBT 58'is given by

2

p d dh BX
n ~ re al

IxI'J,
rB dg " B

(5.209)

With the exception of the J, term, Eq. (5.209) is identi-
cal to Eq. (5.201), or can be obtained by making the
identification B~r, Z —+z, P~g, x~n(P f—o), n~m,
B~ +B—, JdX=dl/B, and setting v(g)=E(g)=0 in Eq.
(5.171). Note that dl corresponds to arc length along the
magnetic field and that the most unstable k value in Eq.
(5.171) corresponds to k =k =0 when I'=0.

Equation (5.209) has been analyzed and solved numeri-
cally by Nelson and Hedrick (1979) for realistic experi-
mental situations, including the effects of anisotropic
hot-electron rings, finite mirror ratio in each cell, and
finite P's in the plasma core and hot-electron rings.

The key physical results of their investigation can be
obtained analytically by introducing the appropriate
small-mirror-ratio asymptotic expansion. The basic or-
dering, which is somewhat different from that intro-
duced for the three-dimensional EST equilibria [Sec.
IV.D.2, Eq. (4.108)], is given by

+zmax dmin
ha —1, 5—=

+zmax+ +zmin

(5.210)

2Bp
p (r)+ —,B.. o(r) =

2

1 d4oBzp

(5.211)

In first order, g~ satisfies

d B'o d
dr r dr Bzp

b B,o
r Bzp

=0,

Here P, and P, are the beta values of the plasma core
and hot-electron rings, respectively, h =2~/I. is the
pitch number of the mirror fields, Bp is the average am-
plitude of the vacuum mirror field, and 5 represents the
bumpiness of the mirror field. As in Sec. IV.D.2, the ex-
pansion parameter is 5«1, and for simplicity the hot-
electron rings are assumed to be isotropic. The main
difference in the expansions is that in the present stabili-
ty analysis P, —1, whereas in the toroidal equilibrium
calculation P, -5 for purposes of analytical simplicity.
Since only a two-dimensional equilibrium is required for
the stability analysis, it is possible to analytically treat
the case P, —1, which corresponds to the maximal order-
ing; that is, the small destabilizing effect of the mirror
field, of order 5, is stabilized by the small magnetic well
created by the low-/3, -5 hot-electron rings, thus pro-
viding a configuration which can stably confine a high-
P, —1 plasma core against all ideal MHD modes.

Under these assumptions it is straightforward to calcu-
late an expanded equilibrium. The magnetic field is
written as 8(r,z)=(1/r)VQXes, where the flux function
P(r, z) =go(r)+@,(r)cos(hz), (g, /go-5) satisfies the
Grad-Shafranov equation with I =O. In zeroth order
one finds

r 8 B"=B a@
P+ 2 f)(0)=0; gI (b) =5bBo .

(5.212)
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Here it has been assumed that far from the plasma,
b /a » 1, the applied magnetic field has the form
B,(b,z) =Bo[1+5cos(hz)].

Assuming that, g~ and hence B&, p~, and ~„are
known, this equilibrium is substituted into 5W [Eq.
(5.209)]. The eigenfunction X must also be expanded.
On each magnetic line, X has the form
X =Xo+X~cos(hz), where Xo(r) and X& (r) are constants
on the rapid x scale and represent the interchange and
ballooning contributions, respectively. After a straight-
forward calculation, 58' can be written as

68' =—I dx 58'
n

STABLE
MAGNETIC
'll'E LL
REGION

p,
'

5W=
2 2

—p+2rBo (1 P) 2

(1—P, )
X0

P,'U

r(1 —P, )

where Y~ ——hX& and U(r) =hg&(r)/B, o(r).
There are two stability conditions of interest resulting

from Eq. (5.213). First, the special interchange perturba-
tion F& ——0 gives rise to the necessary, but not sufficient,
stability condition

p; p,'+—
Necessary and sufficient conditions follow from the full
ballooning mode perturbation, obtained by algebraically
minimizing over the coefficient P~. The result is

(1—P~)U
p; p,'+-c e (5.215)

From these two conditions emerges the following rela-
tively simple picture of EBT stability. Consider first the
interchange condition and assume P,

'
& 0 for confine-

ment. The term in the bracket of Eq. (5.214), which
represents the total magnetic well, is positive (i.e., desta-
bilizing) if P,

' ~0, since U is in general an increasing
function of radius. The well contribution can be nega-
tive only if p,

' is sufficiently negative. Since the hot-
electron ring pressure is peaked off axis, the region from
the axis r=0 to the maximum ring pressure is potential-
ly unstable because of the average unfavorable curvature
of the mirror field. To avoid such instabilities, the EBT
pressure profile must be flat (i.e., p,'=0) out to a radius
somewhat past the peak of the ring pressure, ~here the
well first forms. The entire pressure gradient of the
plasma core must occur over the relatively narrow region
of space where p', is sufficiently negative to create a
well. Typical stable profiles are illustrated in Fig. 47.

A simple criterion for the minimum properties re-
quired to create a well can be obtained as follows. First,
assume that the hot-electron ring profile is parabolic:
p, =p, o[1 (r —a) / d ], whe—re p, o is the peak beta, a
is the radius where the ring is located, and d is the half-
width of the ring. Second, consider the "slow z" approx-

FIG. 47. Stabilized EBT plasma pressure profiles due to the
magnetic well of the hot-electron rings.

imation, ha «1, and the limit of a thin ring, d/a «1.
Under these conditions, in the region of interest the
function U is given by U=A5r / [2(1—P,o)], where P, o
is the peak beta value of the plasma core. Substituting
into Eq. (5.214) then yields the following condition for
creating a magnetic well:

3 h 5
peo+ 4 1 p

(5.216)

d

dx p, d
(5.217)

where p„=(—,)h 5 ad, x =r —a, x &x &d, with
x

&
——d (P„/P,o). Note that for a magnetic well P,o &P„.

The maximum stable (P, ) can be calculated by assum-
ing equality in Eq. (5.217) and then integrating across
the magnetic well region. Using the relation (p, ) =p, o
for a thin ring, one finds

3 d P.o P„—
p, op„ (5.218)

This result is in good agreement with the numerical
studies carried out by Nelson and Hedrick (1979}. They
found that for realistic configurations, including finite
mirror ratio, finite p, anisotropic hot-electron rings, and
plasma compressibility, the threshold value of p, o occurs
between 0.1 and 0.15. Above this threshold the marginal
value of (p, ) increases rapidly, and in the case of long

The next question that arises is to determine the max-
imum p, that can be stably confined in the magnetic
well. The P, limit is a consequence of ballooning modes
and can be estimated from the necessary and sufficient
conditions given by Eq. (5.215}. Using the same assump-
tions made above, and ordering P,o-d/a «1, it follows
that
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electron rings a value of p, o ——0.2 stabilizes the plasma
core up to values of (P, ) =0.3.

In summary, high-(p, ) EBT profiles exist which are
stable to all ideal MHD modes, in particular to inter-
change and ballooning modes. The stability is sensitively
dependent upon the assumption that the hot-electron
rings are rigid with respect to MHD perturbations.
Without this assumption, the system would be very un-
stable. An interesting feature of the results is that finite
values of (P, ) can be stabilized by relatively low values
of P o if the mirror ratio (i.e., P„)is also small. (This
optimistic result does not hold when the hot electron
rings are treated with a self-consistent kinetic model. In
this case typically (p, ) (p„.) One characteristic
feature of the stable profiles is that plasma pressure must
be flat, out to the magnetic well region, in order to avoid
instabilities. In a certain sense this requirement corre-
sponds to "infinite" transport in this region, since no
gradients are allowed. Consequently the overall trans-
port is determined by the properties of the well region
and may give rise to an energy confinement scaling law
~E-ad rather than a as in the tokamak or RFP. The
question of transport, as well as a more realistic treat-
ment of the hot-electron rings in the MHD stability
analysis, are important areas in EBT research.

Vl. CONCLUSIONS

It has been shown that ideal MHD is a single-fluid
model which describes the macroscopic equilibrium and
stability properties of toroidal magnetic fusion configura-
tions.

With regard to equilibrium, the model explains how
forces are developed which hold the plasma in both radi-
al pressure balance and toroidal force balance. In partic-
ular, two basic methods of radial pressure balance are
identified, the 8 pinch and the Z pinch. Similarly, three
basic methods of toroidal force balance are also identi-
fied: equilibria by net toroidal current (e.g., Z pinch,
RFP, tokamak); equilibria by the helical sideband force
(e.g., EBT, high-p stellarator); and equilibria by the
Pfirsch-Schluter-current average helical field force (e.g. ,
conventional stellarator).

It was pointed out that there is a fundamental incom-
patibility between toroidal equilibrium and stability; that
is, the pure Z pinch can easily be bent into a toroidal
configuration but has very poor stability properties. On
the other hand, the straight 0 pinch has inherently good
stability properties but no toroidal equilibria exist. In
order to resolve this incompatibility, researchers have
evolved a number of different configurations, each con-
taining various combinations of the basic fields, with the
aim of simultaneously optimizing equilibrium and stabil-
ity behavior.

Once toroidal equilibrium is achieved, a configuration
can in general become unstable from two different
sources: current-driven modes and pressure-driven
modes. In current-free devices such as the EBT and the
stellarator, the most dangerous modes are kz —+co inter-

change and ballooning instabilities. If the average field
line curvature is unfavorable, interchanges are likely to
occur for any negative pressure gradient. If the system
has average favorable curvature, there is a maximum P
limit set by ballooning modes.

For configurations with nonzero parallel current, low
kz current-driven kink instabilities can be excited. These
modes can be stabilized by keeping the total current suf-
ficiently low and somewhat peaked (tokamak) or by hav-
ing a conducting wall very close to the plasma (RFP).
In systems with J~~ +0, the resultant shear can also help
stabilize pressure-driven modes, even if the average cur-
vature is unfavorable.

Ideal MHD theory has received wide application in
the experimental fusion program. To appreciate its use-
fulness in this connection, it is worthwhile pointing out
that each of the currently successful fusion concepts is
designed to operate on or near certain critical boundaries
of equilibrium and/or stability set by ideal MHD.

However, it should also be noted that ideal MHD
equilibrium and stability are not sufficient to guarantee a
macroscopically well-behaved system. In many cases
there exist a variety of resistive instabilities which, al-
though growing more slowly, allow the magnetic field
topology to change on a time scale shorter than typical
experimental lifetimes. This can have important conse-
quences, particularly in configurations with J~

~

+0.
These modes lie outside the scope of the present review.

In summary, despite its apparent simplicity, the ideal
MHD model provides a very reliable guide to the under-
standing and evaluation of the macroscopic equilibrium
and stability properties of toroidal magnetic geometries.
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