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This article gives a pedagogical review of recent work in which the Einstein-Hilbert gravitational action
is obtained as a symmetry-breaking effect in quantum field theory. Particular emphasis is placed on the
case of renormalizable field theories with dynamical scale-invariance breaking, in which the induced
gravitational effective action is finite and calculable. A functional integral formulation is used
throughout, and a detailed analysis is given of the role of dimensional regularization in extracting finite
answers from formally quadratically divergent integrals. Expressions are derived for the induced gravita-
tional constant and for the induced cosmological constant in quantized matter theories on a background
manifold, and a strategy is outlined for computing the induced constants in the case of an SU(n) gauge
theory. By use of the background field method, the formalism is extended to the case in which the
metric is also quantized, yielding a derivation of the semiclassical Einstein equations as an approximation
to quantum gravity, as we11 as general formu1as for the induced (or renormalized) gravitational and
cosmological constants.
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I. INTRGDUCTIGN

In the conventional formulation of general relativity,
gravitation is described by rewriting the matter action in
generally covariant form, and by adding to it the
Einstein-Hilbert gravitational action

ss„„= Jd x &—g (R —2A),16~6

with G Newton's constant and R the curvature scalar,
and with the cosmological constant A taken to be hiero.
The total action is then treated as a classical variational
principle, to be extremized with respect to variations of
the c-number Inetric gz„. As discussed in the survey ar-
ticles in Hawking and Israel (1979), the theory in this
form accounts very well for all astronomical gravitation-
al phenomena and has a structure which is understood in
considerable theoretical detail. On the other hand, when
treated as a fundamental quantum action, Eq. (1.1) leads
to a nonrenormalizable quantum field theory. This prob-
lem has long been known, and has stimulated much
theoretical effort aimed at achieving a satisfactory quan-
tization of the Einstein-Hilbert action or its supergravity
extensions. [For reviews of the current status of these
approaches, see Hawking and Israel (1979) and Van
Nieuwenhuizen (1981).]

An entirely different approach to quantum gravity
derives from work by Zel'dovich (1967) and Sakharov
(1967) on induced quantum effects. Zel'dovich studied
the effect of vacuum quantum fluctuations on the
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730 Adler: Einstein gravity as a symmetry-breaking effect

cosmological constant; extending this idea, Sakharov pro-
posed that Eq. (1.1) is not a fundamental microscopic ac-
tion, but rather is an effective action induced by vacuum
quantum structure (see also Ioein, 1974). To quote the
two key sentences from Sakharov's paper, "The presence
of the action (1) [Eq. (1.1)] leads to a metrical elasticity
of space, i.e., to generalized forces which oppose the
curving of space. ($) Here we consider the hypothesis
which identifies the action (1) with the change in the ac-
tion of quantum fluctuations of the vacuum if space is
curved. " Sakharov's proposal attracted attention from
the outset (see Misner et al. , 1970), but further progress
was hampered by the fact that in the free field models
for which he made his estimates, the induced gravita-
tional constant 6;„d is given by integrals which contain
both quadratic and logarithmic divergences. It is only in
the last few years that the technology of quantum field
theory has advanced to the point where one can sys-
tematically study induced quantum effects in interacting
field theories. These advances, and their application to
induced Einstein gravity, are the subject matter of this
review.

Since the topics discussed below span the areas of
high-energy physics and relativity, in which different no-
tational conventions are generally used, I have adopted
the following compromise with respect to notation. I use
microscopic units throughout,

dim[length) = —1, dim[mass] = + 1, (2.2)

dim[S]=0, dim[d x]=—4

~dim[W] =4 . (2.3)

1 p 1 P 2 1

Bpyd~p —
2 m og 4 ko (2.4)

with mo the bare mass and A,o the bare coupling, and
with

dim[8~—:8/Bx" ]= 1
- dim [p]= 1,

dim[no] = 1,
dim [A,o] =0 . (2.5)

For a spin-1 Abelian gauge field (the photon) we have

with

4 PV

Fp ——8 Ap —BpA (2.6)

From Eq. (2.3) we can infer the canonical dimensionality
of the fields and parameters from which elementary re-
normalizable matter theories are constructed. For a
scalar y field theory we have

A=c=1, (1.2)
dim [Fp~] =2,

so the only dimensional quantity is mass=(length)
The coordinates x" are taken to have the dimension
(length)', making the metric g&„dimensionless. In all
flat space-time examples and discussions, I use the
+ ——— signature convention of Bjorken and Drell
(1965), while in all expressions which involve a curved
manifold I follow the —+ + + convention of Misner
et al. , (1970). In the few places where it is necessary to
change from one convention to the other, I will explicitly
call attention to the transition.

dlm[c4p] = 1

while for a spin- —, Dirac field we have

(2.7)

W=Q(iy"8„mo)g—, (2.8)

dim[/] = —, (2.9)

Minimal coupling of the photon to a Dirac field or a
coInplex scalar field with bare charge eo yields the La-
grangian densities for quantum electrodynamics,

ll. FlELD THEORY PRELIMlNARIES

A. Actions and canonical dimension accounting
D„=B„+ie()A„,

(2.10)
The functional integral formulation of quantum field

theory (see Abers and Lee, 1973) expresses transition am-
plitudes in the form

For a spin-& non-Abelian gauge field (the massless gauge
gluon) we have

(2.1)

with Igj the set of fields present, S the action, and W
the Lagrangian (or action) density. Since the argument
of an exponential or a logarithm must be dimensionless,
in the conventional accounting of canonical dimension in
which

4 PV

E„' =B„A„' B„/I'„+gof'J"AJ„/lk, — (2.11)

with i the internal symmetry index, f'J the group struc-
ture constants, and go the bare coupling constant.
Minimal coupling of the gauge field to a Dirac field in
the fundamental representation (with representation ma-
trices —,A, } gives the basic Lagrangian density for quan-

tum chromodynamics,
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~@CD=—
&
F F +f(t'y ail rn0 )f

D —() +Lgp AA

from which we infer the dimensional assignments

dim [F„'„]=2,
dim[A&] =1, dim[/] = —, ,

dim[go] =0 .

(2.12)

(2.13)

All of the field theory models currently under study as
candidates for unified matter theories [for reviews see
Marciano and Pagels (1978); Fritzsch and Minkowski
(1981)] are combinations of scalar, Dirac, and gauge field
action building blocks of the basic types enumerated
above. The characterizing feature of all such renormal-
izable actions is that their coupling constants (Ao, eo,go
above) have canonical dimension zero.

B. Effective actions

Consider now a renormalizable field theory with ac-
tion

(2.14)

Z fd [PL jd [PH j
is[[/ l, {P l]

&s,rr[(4 i 1 (2.15)

where the effectiue action S,rr[ [p j ] for the light fields is
defined through

.rr[[& )) fd[~Hjeis[[y l, [y ll (2.16)

where [P j are "light" field components whose dynam-
ics we directly observe, while [P j are "heavy" field
components which infiuence the dynamics of the light
components but are not directly observable. The [P
can in general include fields with high physical masses
and high-momentum' components of fields with light
physical masses. Since the [P j are hidden from view,
it is convenient to rewrite the functional integral of Eq.
(2.1) in the following form,

linear interactions of photons,
eff[ b'av) ~ & ~ » QED1/2[i gav'1['~4))

For field strengths which are slowly varying over an
electron Compton wavelength, S,~~ can be approximated
by taking E&„——constant, which gives a problem which
can be solved in closed form. For weak, slowly varying
fields (on a scale of an electron Compton wavelength),
S,ff can be approximated by the first two terms in a
series expansion

(2.17)

Seff[Fpv] fd x jeff ~

2 2

W,tr= , (E —H)+— [ (E —H2)2
45m +7(E.H) ]+ . , l

(2.18)

with E,H the electric and magnetic fields, a the fine-
structure constant, and m the electron mass. If inter-
preted as a fundamental action and used (or, rather,
misused) beyond the tree-approximation level, Eq. (2.18)
would yield a nonrenormalizable perturbation expansion
in powers of the dimensional effective coupling
2a /4SI .

~err = ~ GF(jch+~ch )(JchA, +~chi. ) ~~2
~7r""' = - Gs(j. +J')V.i.+J.i) *V2

j,h ey (1———y, )v, +p, r terms,

&,h ——u yi.(1—y5)(d cos8c+s sin8C )

+charm terms,

j„=——,ey (1—y, )e+ —,v, y (1—y, )v,
~ A,

2. The four-fermion effective action approximation
to the Weinberg (1967)-Salam (1966) weak interaction
theory

At center-of-mass energies well below 100 GeV, the
weak interactions are described by a current-current
four-ferinion effective action

S,rr [ [fermions j ]=fd x (W',rr"s' +W7r"'"'),

("[early, the effective action, if exactly known, would

give a complete description of the dynamics of the fields

[ P j . In practice, one usually works with only an ap-
proximation to S,~~, obtained by keeping leading terms in
an expansion in a small parameter. Some examples of
commonly used effective actions are as follows.

+2sin O~ey e+p, ~ terms,

J„= , uy (1——y&)u——,dy (1—y5)d

—Zsin 8' ( , uy u ———,dy d)

+strange, charm terms, (2.19)

1. The Heisenberg-Euler (1936) effective action in quantum
electrodynamics (see also Schwinger, 1951).

Integrating out the electron fields in quantum electro-
dynamics gives an effective action describing the non-

]I wish to thank B. Holdom for suggesting the inclusion of a
momentum criterion in the definition, as a way of automatical-
ly including renormalization effects arising from overlapping
divergences. For recent discussions of effective actions, see
Weinberg (1980a) and Ovrut and Schnitzer (1980,1981).

1.023)& 10
2~ proton

(2.20)

2For a recent review of the phenomenology of the Weinberg-
Salam model, see Kim et al. (1981).

with e,v„u,d, s the electron, electron neutrino, and up,
down, and strange quark fields, respectively, and with 8z
and 0~ the Cabibbo and %'einberg angles. Since the
fermion fields have dimension —,, the Fermi constant GF
has dimension —2, and has the empirical value
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As expected for a theory with a dimensional coupling
constant, the use of Eq. (2.19) as a fundamental action
leads to a nonrenormalizable perturbation expansion in
6+. This difficulty is resolved in the Weinberg-Salam
gauge theory, in which in addition to the fermions, the
fundamental action contains gauge and Higgs boson
fields, and which has a renormalizable perturbation ex-
pansion in the gauge boson couplings g,g'. When the
boson fields are integrated out, according to

iSefff ( fermions) ]
e

iSsv;„b && ((fermions), (bosons) ]on s e
II~ ~ ~ ~e I~ n

dlII1[6 ]=d1111[A]=2,
~Planck 1 22 + 0 +e+ IPlanck

Ipl k =162& 10 cm,

~A~ (10 cm

(2.23)

and, as expected for the case when the couplings are not
dimensionless, leads to a nonrenormalizable quantum
field theory. The viewpoint of this article will be that
the gravitational action is not a fundamental microscopic
action, but rather is a long-wavelength effective action
similar to the ones discussed above. The fundamental
action will be assumed to be renormalizable, and condi-
tions on it will be formulated which guarantee that the
effective gravitational action is calculable in terms of
parameters of the microscopic theory.

the effective action of Eq. (2.19) is obtained as a leading
approximation, with the Fermi constant related to the
electric charge e, the charged gauge boson mass M~, and
singer by

g2
8M'

(2.22)
e

sino p

Let us now return to gravitation. The action of Eq.
(1.1) contains dimensional couplings 6 ' and A,

1/2 r I /2 p3p
——Z3 A p, Ep~ ——Z3 Ep„

eo =Z~ e~ Etio =Zm pl1/2 (2.24a)

A "di 0=z6'"r"d,0"

4r"equi P=zI4"r"e~i" It"=z2z,'"z3"IT"r"e~„"p",

Item g=Z Z Iti"mItr" . (2.24b)

From Eq. (2.24b) and the Ward identity (which is de-
rived from current conservation) one learns that

Z2
(2.25)

leaving as the independent renorInalization constants Z„
Z, and Z2. Thus the renormalization procedure calls
for the bare eo, mo, and 1(i to be adjusted to absorb all
divergences, leaving finite e, m, and g to be identified
with the measured values. To understand why e, for ex-
ample, cannot be calculated, let us recall that in one-loop
order, the divergence in Z, has the form

2

Z, =1+ logM +O(ao), ao —— , (2.26)3' 4m

Z, ~1+ - logM + log/ +O(ao), (2.27)
3& 3'

and hence the finite part of Z, is regulator-scheme
dependent. As a result, the finite quantity e extracted
from the divergent bare charge eo remains a free param-
eter of the renormalized theory. In general in a renor-
malizable field theory, we expect to find one free renor-
malized coupling or mass parameter for each bare cou-
pling or mass appearing in the unrenormalized Lagrang-
ian density.

Continuing for the moment to work to one-loop order,
the renormalization procedure given in Eq. (2.24b) for
the various dimension-four terms in the action density
can be rewritten in a compact matrix notation,

[q ]=[Z][+"],

with M a Inassive regulator. Under rescalings M —+/M
of the regulator mass, Z, changes to

C. Renormalizability and the dimensional algorithm

In quantum field theory, one in general encounters
divergences when evaluating radiative corrections. In re-
normalizable field theories, all divergences can. be elim-
inated by making divergent rescalings, or renormaliza-
tions, of a finite number of parameters of the theory,
which cannot be calculated from first principles but are
replaced by measured values at the end of the calcula-
tion.

For example, in spin- —, quantum electrodynamics,
working for simplicity to one-loop order, one introduces
renormalization constants Zl 23 „renormalized fields
A„", I'z, lt~", and renormalized charge and mass parame-
ters e, apl by wr]tting

EP& ~r +risv

Pr "di 4 0"r"d, P"

pm OI)'i g"m g"

Z3 0 0 0

0 Z2 0
o o z, o

0 0 0 Z2Z

0
(2.28a)

Beyond one-loop order, the renormalization constants as-
sociated with the action density terms E& E", . . . are no
longer simply products of the renormalization constants

Rev. Mod. Phys. , Vol. 54, No. 3, July 1982
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(F Fyv)r

(gy"B„g)'

(4y "eoAt 0)"
qgP

(t7mop)'

(2.28b)

with [4] as in Eq. (2.28a), with (F&„F"")",. . . , the re-
normalized action density terms, and with [Z] a nondi-
agonal renormalization matrix.

As we have seen from the above example, in the gen-
eric case multiplicative renormalization takes the more
general form of matrix multiplicative renormalization.
The set of operators which can mix under this renormal-
ization process is characterized by the following rule.

The dimensional algorithm [see Weinberg (1957), Zim-
mermann (1970), and Brown (1980)]. A composite
operator in quantum field theory is defined (up to a con-
stant factor) as the product of any number of fields or
field derivatives at the same space-time point. The di-
mensional algorithm states: (i) The most general basis
set of composite operators which can mix under renor-
malization are the polynomials of the same canonical di-
mension, and of the same symmetry type (spatial and
internal) formed from the bare fields, the bare masses,
and t)/r)x". (ii) The Lagrangian density for a renormal-
izable field theory must contain a complete basis set
(apart from total derivatives) of Lorentz- and internal
symmetry-invariant composite operators of canonical di-
mension four.

Let us illustrate the dimensional algorithm in the flat
space-time cases of scalar y theory, QED —,, and QCD,
and then use it to deduce additional Lagrangian counter-
terms which must be added to assure renormalizability
when these theories are embedded in a curved back-
ground manifold.

1. Scalar q
4 theory in flat space-time

Excluding total derivatives, the only dimension-four
composites even under q&~ —p (the internal symmetry
of the model) are

r)„qr)t'q, mo'q', q', (2.29a)

M, o (2.29b)
The operators of Eq. (2.29a) are just the ones appearing
in the Lagrangian density of Eq. (2.4), while in flat
space-time Eq. (2.29b) is an irrelevant constant which
can be dropped.

2. QED —, and QCD in flat space-time

For QED —,, the only dimension-four composites (ex-
cluding total derivatives) are

for the individual field, charge, and mass factors intro-
duced in Eq. (2.24a), and the action density terms them-
selves will mix under renormalization. The appropriate
generalization of Eq. (2.28a) then takes the form

[+]=[z][+"]

F„F"", Py "D„P, mope,
4

fPl p

(2.30a)

(2.30b)

3. Additional Lagrangian density terms
in a background curved space-time
(Brown and Collins, 1980)

When spin-0, spin- —,, or gauge spin-1 matter fields are
quantized on a curved background manifold with metric
gz, the action takes the form

~[IN I g,.]=Jd'x &—g ~[III g,.l,
with d x v' —g the invariant volume element, and with
W a scalar with respect to general-coordinate transfor-
mations. According to the dimensional algorithm, W
must contain all scalar diinension-four polynomials
which can be formed from the bare fields (including now

g& ), the bare masses, and 8/Bx&, and which are invari-
ant under the internal symmetries of the matter fields
The terms which can thus appear in W are easily
enumerated, and may be conveniently grouped into the
following four classes: (i) The generally covariant tran-
scriptions of the Lagrangian densities of Eqs.
(2.4)—(2.13), obtained in the usual manner by replacing
ordinary derivatives i)& by covariant derivatives V& with
respect to the background metric. (ii) The bare mass
terms mo of Eqs. (2.29b) and (2.30b), which contribute to
the cosmological constant on a curved manifold, as well

3The terms mo and moR, which 'appear in W multiplied by
independent renormaliz ation constants, may be considered,
respectively, as the bare cosmological constant Ao/Go and the
bare order-R Lagrangian density R/Go. Prior to the discus-
sion of the cosmological constant in Sec. VI.C, we shall not in-
troduce bare parameters AO, GO when not required to do so by
the presence of dimensional parameters in the microscopic
matter action.

fy"r)qP, moA~Ai', Aqr) A&, (8~A&) . (2.30c)
The operators of Eq. (2.30a) are just the ones appearing
in the Lagrangian density of Eq. (2.10), while in flat
space-time Eq. (2.30b) is an irrelevant constant. The
operators of Eq. (2.30c) are Lorentz scalars, but are not
invariant under the internal symmetry (or gauge)
transformation

A„+a„e,
(2.31)

and hence do not appear in the Lagrangian density. For
QCD the classification of gauge-invariant Lorentz scalar
operators constructed from the bare fields is
analogous- one simply adds an internal symmetry index
i, and changes the definition of the covariant derivative
as in Eq. (2.12). A careful proof that Az, A&' is not an
internal symmetry invariant in the non-Abelian case, tak-
ing account of the complexities introduced by gauge-
fixing and ghost terms, is given in Appendix A.
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734 Adler: Einstein gravity as a symmetry-breaking effect

as corresponding regulator mass terms M if massive re-
gulators are employed. (iii) Terms of first degree in the
Riemann curvature tensor,

PpR, (2.33)

multiplets, then there are no terms in W proportional to
R—that is, terms (iii) above are absent. Moreover, when
these conditions are satisfied, terms (ii) above are also ab-
sent, and the structure of W reduces to

with 6'2 a general-coordinate —scalar and internal sym-
metry-invariant operator of canonical dimension two.
The allowed forms for @2 are

~[I 4' j ~gatv] =~matter[ I 4 j»gatv]+ ~grav[gatv] r

Wg„„——Ap/+BpA +CpA (2.38)

mp, M, (2.34)

since as shown ln Appendix A, 2
@gal 1s cxcludcd by

gauge invariance. The differential operator Wq ——V&V'" is
omitted from the list because &—g V'„V"R is a total
derivative, and 6'2 ——VzA", with A" an Abelian gauge po-
tential, is omitted because it is not gauge invariant.
Moreover, as is also shown in Appendix A, the operator

is excluded by supersymmetry invariance when y is a
spin-0 partner of a massless supermultiplet. (iv) Terms
of second degree in the Riemann curvature tensor,

with ~,«„[IPj,g& ] the generally covariant transcrip-
tion of the flat space-time matter Lagrangian density
W[IPj]. The splitting of W into the "matter" and
"gravitational" parts given in Eq. (2.38) is unique, since
in the absence of dimensional constants W,«„and
Wg„„satisfy

~ .«-[Ioj g„.]=0,
~grav[9pv] 0 r ~matter[ I 0 j ~ lpv] ~[ I 0 j 1

(2.39)

(2.35)

I.coma 1. For a general renormalizable matter field
theory (spin-0+spin- —, + gauge spin-1 fields) in curved
space-time, quantized in a manner which respects all
gauge and supersymmetry internal symmetries, the La-
grangian density terms proportional to R are of the fol-
lowing types,

mOR, mo ——a bare mass,2

M 8, M =a massive regulator,

g R, y= a spin —0 field not a member

of a massless supermultiplet .

(2.37)

Lemma 2. If there are no bare masses or massive regu-
lators and if all spin-0 fields belong to massless super-

4No additional counterterms of first order in the curvature
tensor can be formed by using the Ricci tensor R„„,since these
must have the form 6'~q"E„, with P~q" a rank-two symmetric
tensor of canonical dimension two. The only possibilities are
8'2"——V'"2 "+9"2", which can be reduced to VQ "R by in-
tegration by parts and use of the Bianchi identity
V"R„=

2 V„R, and &~2"——&2g~, which is equivalent to Eq.
(2.33) of the text. Similarly, no additional counterterms can be
formed by using the Weyl conforrnal tensor C„„~,and so the
enumeration given in the text is complete.

5See Fayet and Ferrara {1977) for a discussion of supersym-
metry field representations.

with S the Gauss-Bonnet density and Cz ~ the Weyl
conformal tensor, which in four dimensions has the form

1

petr itvi tr 2 (Spy, vtr gptr vi. gviitrr +gvtr , pA,
+ —,«g„i.g, —g„.g.~) (2.36)

The results of this enumeration can be summarized in
the following lemmas:

D. Conditions for calculability
of the gravitational effective action

We are now ready to return to a discussion of the
gravitational effective action induced by quantized
matter fields on a curved background. Following Eq.
(2.16), we define the gravitational effective action by

' errlgpvt .. [I&I,g „j (2.40)

(2.41)

What are the conditions for 6;„d and A;„d to be uniquely
calculable in terms of the renormalized parameters of the
flat space-time matter theory? Clearly, if the fundamen-
tal action S[[gj,g&„] contains terms proportional to R,
then the finite renormalization ambiguities arising from
these terms will produce an undetermined finite contri-
bution to 6;„d, in this case the induced gravitational con-

In renormalizable theories, massless particle loops in general
give rise to logarithms of B~„„in the (B~„„) terms (that is, in
the curvature-squared terms) of Eq. (2.41). For example, the
existence of a conformal trace anomaly proportional to A in-
dicates the presence of an effective action term proportional to

d'x —g mlogm.

Since S,rr is a scalar under general-coordinate transfor-
mations, it may be represented as the integral over the
manifold of a scalar density, which for slowly varying
metrics can be formally developed in a series expansion
m powers of tiitg»,

S.rr[g,.l = Jd'x &—g ~.rr[g,.l

~.rr[gi ]=~'rr'[gi ]+~'N[g„]+o[(~ig„.)']

Rev. Mod. Phys. , VDJ. 54, No. 3, July 3982
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stant is renormalizable, but not calculable. On the other
hand, if no terms proportional to R appear in
S[Iil) l,g„„],then 6;„d will be calculable, since there will
now be no source of ambiguity proportional to R. In
this case the theory will yield a uniquely determined fin-
ite value for 6;„~. So we have the following result:

Theorem [Adler (1980a)]. Under the conditions of lem-
ma 2, a quantized matter theory in a curved background
produces a calculable induced gravitational constant—1
GI d

Consider next the induced cosmological constant A;„d,
which appears in the effective action in the dimension-
four combination A;„d/6;„d. Ambiguities in A;„d can
arise only from dimension-four terms in the flat space-
time limit of S[IQ],g&„] which are not determined by
the renormalization conditions on the flat space-time
matter theory. The decomposition of Eqs. (2.38)—(2.39)
guarantees that no such additional dimension-four terms
are present, and so we can conclude:

Theorem. Under the conditions of lemma 2, a quantized
matter theory in a curved background produces a calcul-
able induced cosmological constant A;„d, and so the en-
tire effective Einstein-Hilbert gravitational action is cal-
culable.

The basic theorems just stated give sufficient condi
tions for the finiteness of the induced gravitational ac-
tion. Of the three conditions in lemma 1, twc the ab-
sence of bare masses, and of scalar fields not in massless
supermultiplets —are also necessary conditions. Howev-
er, the exclusion of massive regulators is not necessary,
and in Appendix A the analysis is generalized to the case
where massive regulators are employed. As discussed in
Sec. 4.4 of Fadde'ev and Slavnov (1980), massive regula-
tors have useful formal properties, but they are awkward
to use in explicit calculations. A superior method for di-
agram evaluations is the technique of dimensional regu-
larization, which is discussed in Sec. III below. The sub-
sequent sections of this review contain elaborations on
the theorems of this section. For the theorems to have a
nontrivial content, we must have a way of generating a
nonzero scale for physical masses even when bare masses
are zero (otherwise we get 6;„d ——0, which is calculable
but trivial); this requires dynamical breaking of scale in-
variance, as discussed in detail in Sec. IV. In Sec. V, we
derive explicit, formal expressions for 6;„d and A;„d in
terms of expectations of operators in the flat space-time
matter vacuum. Finally, in Sec. VI, I extend the discus-
sion to include the effects of quantization of the metric.

III. DIMENSIONAL REGULARIZATION

A. Survey

The regularization of quantum field theory without in-
troducing massive regulators can be accomplished by an-

7This type of argument was first used in connection with the
calculability of mass relations by Weinberg (1972).

alytic regularization methods, in which divergent in-
tegrals are defined by analytic continuation in a dimen-
sionless parameter (for a review, see Leibbrandt, 1975).
It will suffice to limit the discussion to regularization
methods for flat space-time, since we will see below (in
Sec. V) that after doing the curvature arithmetic needed
to extract expressions for 6;„d and A;„d, we can explicit-
ly take the flat space-time limit in the resulting formu-
las. The most widely used form of analytic regulariza-
tion for flat space-time calculations is dimensional regu-
larization, in which the dimension of the space-tiine
manifold is continued from 4 to 2' by the coordinate
and momentum space replacements

fd'x fd'"x

fd'p fd'"p, (3 1)

whi1e keeping the formal structure of the action, in
terms of fields and field derivatives, the same as in di-
mension four. After Wick rotation to 2'-dimensional
Euclidean space, Feynman integrands in the continued
theory are evaluated by using the following simple rules.
The Kronecker delta P' obeys the usual composition law

&„"S."=P.',
but its trace is modified to

(3.2a)

&&=2co . (3.2b)

From Eq. (3.2) the symmetric average of momentum fac-
tors can be uniquely deduced, giving, for example,

P g,
&pppv &symmetric ~ 8'

average
(3.3)

Tr(y&y„) =2"5&, Tr(1)=2", (3.4b)

permitting one to deduce unique values for all spinor
loops not containing an odd number of factors y5. Us-
ing Eqs. (3.2) —(3.4) and rotational covariance, all pertur-
bation theory calculations can be reduced to multiple in-
tegrals of scalar-valued integrands over the momentum
space of dimension 2'.

The basic momentum space integral which appears is

f d'"pf(p») (3.5)

and is uniquely specified, up to an overall normalization,
by the following three conditions given by Wilson (1973),

I will use the notation to denote a Euclidean integral,
and will consistently use a ++++ metric convention in Eu-
clidean space formulas.

For recent discussions of the dimensional regularization
treatment of y5, see Gottlieb and Donohue {1979) and Ovrut
(1981).

The Dirac y matrices continue to obey a Clifford algebra

(3.4a)

and are trace normalized so that
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linearity:

f,d "pf~f i(p»)+bf2(p») l = ~ f,d'"pf i(p»)

+b f,d "p f2(p»)

translation invariance:

f.d"pf(p+e) = f,d'"pf (p»)

scaling law:

f d p f(sp)=s f d p f(p) .

The normalization which is conventionally used is

f d2"pe

(3 6)

(3.7)

between the representation of a four-dimensional loga-
rithmic divergence in the essive regulator and the di-
mensional regularization schemes. In N-loop order in di-
mensional regularization, one in general encounters
higher powers of logarithmic divergences
1/(2 —co), . . . , 1/(2 —co) near co=2; these divergences
must be cancelled against corresponding poles in the re-
normalization constants Z in order to extract finite phys-
ical amplitudes at dimension four.

B. Vanishing of quadratic divergences

The formally quadratically divergent (and m2-inde-
pendent) integral

but is fixed only at co=2; Collins (1975) shows that am-
biguities in normalization away from co=2 can always be
absorbed into the ambiguities of the renormalization con-
stants discussed in Sec. II.C. Hence dimensional regular-
ization gives a well-defined procedure for regularizing
the ultraviolet divergences of quantum field theory. '

Using the rules of Eqs. (3.5) —(3.7), we find, for exam-
ple, that

y2~ 2+ 2 —A ~ ~2 M — 38
1 (a)

For co —a ~0, the integral on the left is convergent in the
ultraviolet and yields the expression on the right, which
is meromorphic (analytic apart from isolated poles) in co

and a. The integral can then be defined by analytic con-
tinuation for cu —o, ~ 0, except at points where it develops
poles. For example, when a=1 we have

f d2"p =mr(1 —~)(m )"1

p +m

8 p
p

(3.12)

is assigned the value 0 by dimensional regularization,
since the right-hand side of Eq. (3.9) is proportional to
m at co=2. A more precise statement of this fact is
given by the following:

Iwmma. The only evaluation of the ultraviolet diver-
gent, infrared convergent massless integral

I"' =f d "p(p ), co —a~O, (3.13)

which is meromorphic in cu and u and which agrees with
the m~O limit of Eq. (3.8), is I" =0. The proof fol-
lows immediately from the observations that: (i) when
co —a &0 is not a positive integer, the limit as m~0 of
Eq. (3.8) exists, and is 0; and (ii) the only meromorphic
extension (to co —a=positive integer) of 0 is 0." Work-
ing from I"' =0, we can now prove the vanishing of

+finite, near co = 1
1 —co

+finite m2, near co=2,
2 —co

(3 9)

I" ~= d'"p(p') (»gp') ~, ~—iz&0
E

(3.14)

by repeated differentiation of I"'~ with respect to a, and
by repeated application of the Weyl transform (Erdelyi,
1954)

L

showing that the pole at ~=1 is associated with the
two-dimensional logarithmically divergent integral

i Co8'~I"' '~ = dy(y i—2)~ 'I" 2'»'
1 (P)

C9~ 1
G p
p 1 —M

(3.10a)
Since

d ~p F~p ~ logp (3.15)

(3.10b)

while the pole at m=2 is associated with the four-
dimensional logarithmically divergent integral

2

f d p ~
co~21 m

E (p 2)2

~P( 2) —a
( 2) —a dg gP —1( 2) —sp =

r(p) p 0 p

=(p ) (logp ) ~, 0&@&1, (3.16)

1
logM +-+

2 —co
(3.11)

i A detailed axiomatization of the rules of dimensional regu-
larization, along the lines sketched by Vhlson (1973), has been

given by Collins (unpublished).

The integral of Eq. (3.10b) would be represented by
vr log M using a conventional massive regulator, giving
the useful correspondence

we have

iAny nonzero evaluation of I" (such as the one given by
Leibbrandt, 197S) is thus necessarily not a meromorphic func-
tion of co. Such evaluations violate the basic philosophy of an-
alytic regularization, which is essentially a calculus of mero-
morphic functions. The vanishing of I"' in dimensional regu-
larization was first noted by 't Hooft and Veltman (1972), and
is deduced as a theorem in the axiomatization of CoHins (un-
published).
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~pIco, a,p' Iso, a,p'+ p 0 p ( 1

( a—yam)I"'p'=I 'p' (3.17)

(2.24) —(2.26) and Eq. (3.11) are used to write

FA.a Z —1Fr ~pgo
A,o'

and so by repeated operations any value of P can be
reached, starting from /3=0, where we have
I * ' =I ' =0. By continuing this procedure with
respect to the index P we can generate powers of
loglogp, etc., giving finally:

0!p~$ +
37' 2 —Q)

+&(~o),

ap
Z, = 1+ logM2+ Q(~20)3~

2

(3.23)

Iwmma. In dimensional regularization, for cu —o.'&0 we
have

d'"I V ') (logI ') (iogiogI ') '
=0. (3.18)

In particular, the generalized quadratically divergent in-
tegral vanishes,

I "P'r'''' — (log p ) P(loglogp ) r —0p 2

E p2

(3.19)

C. An application: the stress tensor trace anomaly
in gauge theories

As an application of dimensional regularization, let us
derive, to one-loop order, the flat space-time stress tensor
trace anomaly in QED —,. In spinor quantum electro-
dynamics, the symmetrized stress energy tensor is given
by

1 A.cT A,Tp = 4nI. F~ I'

+ t4(X D +7'D—W 4(D 1'.+D )'—WJ

DN =Bp+lepA~, Dp=B~ —EepAp (3.20)

Contracting with q" and using Eq. (3.2b) and the spinor
equation of motion

This result shows that computing radiative corrections to
the basic quadratically divergent integral of Eq. (3.12) al-

ways gives 0, independently of whether one proceeds or-
der by order in perturbation theory, which gives only
positive powers of logp (corresponding to I " "), or
whether one uses the renormalization group to sum
powers of logp into running coupling constant factors
(see Sec. IV.C below), giving the more general integral of
Eq. (3.18).

Ap+ + 0 ~ 0

3' (2—cg)

where we have worked to one-loop order in the photon
proper self-energy, and to iterated one-loop order in
Z, '. Substituting Eq. (3.23) into the first term of Eq.
(3.22), we get (in the limit as cu —+2)

—2(2 —co)Z,
2cxp

37K
1—&p 1

3& 2 —co

CKp

+
3

+ 4 ~ ~

(2—co)

2p i 2e e'
Ze

3m' 3m
(3.24)

Hence to one-loop order the stress energy tensor trace is

3m- ' (3.25)

The first term on the right-hand side, found by Coleman
and Jackiw (1971), Crewther (1972), and Chanowitz and
Ellis (1972, 1973), would be lost if one naively used the
equations of motion without attention to regularization,
and is called the trace anomaly. The derivation given
above can be generalized to all orders in perturbation
theory (Adler, Collins, and Duncan, 1977; Nielsen, 1977)
and yields

T&~—— , (F~ F )"+[—I+5(e)](/mod)", (3.26)

with P and 5 finite functions of e which are defined
through the renormalization group, and with the split-
ting of T~& into the two terms on the right-hand side
made unique by the specification of certain zero
momentum-transfer matrix elements of the composite
operators (F~ F )" and (/mod)". The analogous formu-
la for QCD (obtained by Collins, Duncan, and Joglekar,
1977 and Nielsen, 1977) reads'

iy "D„f=mog,i' „y"=mog, —

T"„= 2(2 co) , Fx F —+Pm—pQ .—

(3.21)

(3.22)

)"+I: I+&(g) l(ttmof)" .

For a pure SU(n) gauge theory with no quarks, the
second term on the right-hand side is absent, and the
trace anomaly formula simplifies to

Although the first term on the right-hand side of Eq.
(3.22) is proportional to 2—co, it. cannot be dropped as
m —+2 because the factor I'~ F contains a pole series in
(2 —co ) . To exhibit these poles explicitly, Eqs.

~ I have dropped equation of motion terms, which both van-
ish at nonzero momentum transfer and have vanishing zero-
Inomentum —transfer vacuum expectation values.
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TP P(g)
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Equation (3.28)an, w' play an im o
alysis, given in Sec. V

p rtant role in the
ec. .D below, of G.

n 'jgauge theory.
;„d and A;„d in an (4.3)

g=( —mo/Ao)'

at =0 becomes unstable, and
stable m in j

an V develops a pair of

IV. SYMMETRY BREAKDOWN

as shown in Fig. 1(b). Either the =f) ol

a r a perturbation expansion bn, y making a

A. Models with elementn ary scalars f =+f)+V' (4.4)

T—V

T= —, (&O1P
)'

1

(1) )p
1 p g 1+ 2 ~og + 4 ~of' (4.1)

Spontanp neous symmetry breakin lag p y

eration of the g

e eory models s
gauge oson masses ne

since it permitss gen-

iolet cancel lations h
'

h
The

w ic guarantee ren
ex 1 itin s o1 od 1 hb' g pontaneous symmetr

sca ar p field theory of E . (2.4q. .4),

f)=f)i + & f)2, (4.5)

and taking tp' as thetp' as e new field variable. M
'

e tw ons is not ossie two configurati

'
a e. Mixing between

e tw
'

p ssible, because in the
i e space-time volume th

i fi it t
h d -".,--...

as the quantum m hec anical vacuum
e two classical minimma

The simplest field th
m state.

symm etry is brok
ie t eory model in
en is obtained b m

w ich a continuuous

scalar field
y making f) a complex

For constant i(p, the oe potential V reduces to

y( 1 2 2 1

tp ~ =
2 PPl pip + A,()lp4 Of' (4.2)

with Lagrangia dn ensi ty
1

y8~ 2 mplp g — A, (o f) f, (4.6)

and has the behavi or sketched in Fi . 1.
t o 1 ~

2 0 th
minimum at =0

e potential ~as a single stable
as shown in Fi

w en the sign of
ig. 1 (a). However

o is reversed to m , the extremum V ~f +g s (4.7a)

When m 2
p +0 the potential V has theas the behavior sketched

obtained by makin th
ui a e quantum-mec

g e shift
ani cal vacuum is

(a)

with an y comp 1ex constant s 1n sca ar satisfying

I V I

'= —~o~~o . (4.7b)

In this case, a cocontinuous sym met
excitation f)' which

e ry is broken, and th
ic generates an infinite

'
e

o ation of

sca1 6 ld of
o stone mode. W

mmally coupled to

e physical degre s of f«edom, and the spin- 1 field be-

FIG. 1. (a) Potential O

FIG.G . . Potential V p x scalar model obtin the corn le

p otted vs Re(pe ' ~)l
t o the opotential surface 0 8

n ar j-
e, & & 2&,

Rev. Mod. Phys. , Vol. 54 N~ y ~ y Qr 3, July 1982



Adler: Einstein gravity as a symmetry-breaking effect

comes massive. This is the so-called Higgs mechanism,
which is used in the Weinberg-Salam model to generate
intermediate vector boson masses. (For a detailed
pedagogical review of these ideas and full references, see
Bernstein, 1974).

The suggestion of linking spontaneous scale symmetry
breaking with generation of the gravitational constant
first appeared in the context of scalar meson models [see
Fujii (1974), Englert, Truffin, and Gastmans (1976),
Minkowski (1977), Chudnovsky (1978), Matsuki (1978),
Smolin (1979), Zee (1979), Linde (1979, 1980) and Nieh
(1982)j. The basic mechanism of the above-cited papers
is to start from a Lagrangian density of the form

W=ey R+T—V(q& ), (4.8)

with V a symmetry-breaking potential as in Eq. (4.2). In
the unstable symmetric phase y=O there is no order-R
term in W, but in the stable broken-symmetry phase
with y = —mp/A, p an induced gravitational action is
generated with

1 -2=Eg
16m 6;„d

(4.9)

In such models, since both scalar fields and dimensional
parameters (m o+0) appear, the induced gravitational
constant is not calculable'; c is an additional curved
space-time parameter of the theory which is not deter-
mined by the flat space-time renormalized parameters
(Brown and Collins, 1980).

B. Dynamical symmetry breaking:
the renormalization group
in asymptotically free gauge theories

In order to get a calculable and nonvanishing induced
gravitational constant, we must turn our attention to
field theory models with dynamical scale-invariance
breaking. Such theories, by definition, are formally scale
invariant at the classical Lagrangian or tree-
approximation level, but exhibit spontaneous scale-
invariance breaking as a result of quantum corrections in
one- or higher-loop order. There are two reasonably well
understood mechanisms by which dynamical scale-
invariance breaking can occur. The first, which will be
discussed in this section, is through the renormalization
process itself, in infrared-singular theories such as unbro-
ken non-Abelian gauge theories. The second, which will
be described in Sec. IV.C below, is through the genera-
tion of a mass gap and a ferniion pair condensate in rela-
tivistic versions of the Bardeen-Cooper-Schrieffer (BCS,
1957) theory of superconductivity. The two mechanisms
are not really disjoint, and both are believed to be opera-
tive in non-Abelian gauge theories. This fact and some

further gauge theory-superconductor analogies are dis-
cussed briefly in Sec. IV.D. The material which follows
has been organized so that the reader who wishes to
proceed most directly to the gravitational applications of
Secs. V and VI can do so after reading Sec. IV.B alone.

The inost important class of field theory models exhi-
biting dynamical spontaneous scale-invariance breaking
are asymptotically free gauge theories [see 't Hooft (un-
published), Gross and Wilczek (1973), and Politzer
(1973)]. Consider an SU(n) non-Abelian gauge field cou-
pled to Nf massless fermions in the fundamental repre-
sentation, as is described, for example, by WQCD of Eq.
(2.12) with mo ——0 and with P replicated Nf times. In
tree approximation this theory contains no dimensional
parameters, and so scale invariance is unbroken; more-
over, since there are no scalar fields, all of the conditions
of the theoreins of Sec. II are satisfied. Let us now con-
sider the effect of quantum corrections to the tree-
approximation theory. When radiative corrections are
included, the coupling constant g appears in calculations
through the running coupling constant

2 2

(4.10)
I+ —,bog (p )log( q ly2)+—

g'( —q') =

with q the four-momentum squared, t[l an arbitrary
subtraction point, and g (p ) the value of the coupling
constant at —q =p . The appearance of the subtraction
mass p is necessitated by the fact that radiative correc-
tions to massless gauge theories are highly infrared
divergent, making it impossible to introduce a renormal-
ized coupling parameter by specifying the value of g at
q =0, as is done in the more familiar case of quantum
electrodynamics. The parameter bp is determined by
one-loop radiative corrections to be

1 11 2

8W
(4.11)

1 —
2 bplo@l~g'( i)

and is positive, provided that Xf is not too large. When
bo is positive, Eq. (4.10) shows that the running coupling
vanishes at large four-momentum squared, and the
theory in this case is said to be asymptotically free.

Let us examine the structure of Eq. (4.10) in the ap-
proximation in which only one-loop radiative corrections
are retained, whi1e the higher-loop contributions to the
running coupling constant, denoted by. . ., are neglected.
(As discussed in Appendix B.l, there is a well-defined
sense in which a one-loop analysis is exact. ) Evaluating
Eq. (4.10) at —q =p&, we get

2
1 1 i Pi—

2 bplog
g 2(p2 ) g 2(p2 ) p2

Strictly speaking, to get a renormalizable model an addi-
tional term 5moR must be included in W; the spontaneous
symmetry breaking then generates a change in the constant
factor multiplying R from 5mo to 5mo+cy .

1 ——,bploll 2

g 2(p2 )

showing that the scale mass ~(g(p),p) defined by

(4.12)
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P(g) = , bog—'+—«g') (4.15)

the function appearing in the trace anomaly formula of
Eq. (3.27), and again ~(g,p) is said to be renormaliza-
tion group invariant. An alternative, and frequently
used, way of specifying that M has the functional form
of Eq. (4.14) is obtained by requiring that ~ satisfy the
Callan (1970)-Symanzik (1970) differential equation

p +P(g) ~(g,p) =0 .
Bp Bg

(4.16)

Let us now apply the above analysis to determine the
structure of physically observable parameters, such as ef-
fective action parameters. Since observables must be
subtraction-point independent, they can depend on p
only through the scale mass ~(g,p), and. so we get the
following important result:

Theorem [Gross and Neveu (1974)]. Any physical
parameter P(g,p) which has canonical dimension dz in

the accounting of Sec. II.A must be equal to [MY(g,p)]dp

up to a calculable number,

P(g, p, ) =calculable number X [M&(g,p)] (4.17)

Equivalently, P (g,p) must satisfy the homogeneous re-

normalizatlon gl oup equation

p +P(g) P(g,p) =0,
Bp Bg

which for a quantity of canonical dimension d~ implies
Eq. {4.17).

According to this theorem, it is the dimensional scale
mass ~, rather than the dimensionless (but subtraction-
point dependent) renormalized coupling g2(p ), which in
asymptotically free gauge theories plays a ro1e analogous
to that played by the renormalized fine-structure con-
stant u in quantum electrodynamics. In other words, the
renormalization process has replaced a one-parameter
family of unrenormalized theories, characterized by their
values of the dimensionless unrenormalized gauge cou-
pling go, by a one-parameter family of renormalized

For a pedagogical discussion of the renormalization group
structure of non-Abelian gauge theories, see Stevenson (1981).

~(g(p), p) =p,e

is subtraction-point independent. In technical terminolo-

gy, the scale mass ~(g(p),p) is said to be renormaliza-
tion group invariant to one-loop order, since it is left
unchanged to this order by transformations of the renor-
malization point p and the renormalized coupling con-
stant g (p ). When radiative corrections to all orders are
kept, Eq. (4.13) generalizes to (Gmss and Neveu, 1974;
Lane, 1974a)

gV~

~(g(p), p) =pe

with

theories, characterized by their values of the dimension-
one scale mass ~(g,p). This change in dimensionality
of the effective parameter, when radiative corrections are
included, clearly implies that there has been a dynamical
breaking of scale invariance. The genera1 phenomenon is
called dimensional transmutation, after Coleman and
Weinberg {1973), who discovered similar behavior in
massless @ED 0 (a theory which, like the massless non-
Abelian gauge theory, is highly infrared divergent. )

C. l3ynamical symmetry breaking: relativistic
generalizations of the superconductor gap equation

Historically, the earliest suggestion that dynamical
symmetry breaking plays an important role in particle
physics was contained in the classic paper of Nambu and
Jona-Lasinio (1961), who proposed a model for nucleon
mass generation' based on an analogy with the BCS
theory of superconductivity. ' The Nambu —Jona-
Lasinio model starts from a Lagrangian containing mass-
less, interacting fermions„and then sets up a self-
consistent equation for the dynamically generated fer-
mion mass in analogy with the "gap equation" of super-
conductivity. In this section, I give a very schematic ac-
count of the basic approximation method used in the
8CS and Nambu —Jona-Lasinio models, and show that it
gives a dynamical version of the tree-approximation
model for symmetry breaking described in Sec. IV.A.

Let us consider a fermion with bare propagator Go ',
proper self-energy part X, and fu11 propagator 6 ', re-
lated to one another as usual by

(4.19)

Assuming the fermions interact through a potential V, a
simple self-consistent approximation for the proper self-
energy is obtained by truncating the Dyson equation for
X to include only the lowest-order skeleton diagram il-
lustrated in Fig. 3. This gives

VG

V Go '+X Go —X (4.20)

where I indicates symbolically a summation or integra-
tion over intermediate state (closed loop) variables. In
models with dynamical symmetry breaking, the unbroken
symmetry of the classical Lagrangian can be shown to

~5A very important aspect of the Nambu —Iona-Lasinio
model, which is not dealt with in this review, is the generation
of the pion as a zero-mass bound state. There has been recent
interest in analogs of this phenomenon in which the Higgs
scalars or pseudoscalars in unified theories are dynamically
generated composites of more fundamental fields; see Englert
and Brout (&964.); Jackiw and Johnson (l973); Cornwall and
Norton (IL973); Weinberg (1976); and Susskind (l979).

For texts on the BCS theory, see Schrieffer ( l 964) and
Fetter and Walecka (1971). The Ciinzburg-Landau phe-
nomenological theory is also described in these books.
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FIG. 3. Truncated Dyson equation for the self-energy part.
The dashed line and dots denote the potential V in the BCS
case, or the photon propagator and emission and absorption
vertices in the JBW model case. The heavy line denotes a full
electron propagator G=(60 ' —X) ', giving a nonlinear in-

tegral equation (the gap equation) for X.

imply that

VG, 6, —X' -'=0. (4.21)

Substituting Eq. (4.21) into Eq. (4.20) then gives the gen-
eral form of the "gap equation" for X,

X= VX Go —X

Equation (4.22) always has a trivial solution X=O, analo-
gous to the trivial root y=0 of the equation

0= V'(y) =$7(mo+A, pip ), (4.23)

which governs the vacuum structure of the scalar meson
model discussed in Sec. IV.A. However, when V has the
(attractive) sign for which dynamical symmetry breaking
occurs, there is also a nontrivial solution to Eq. (4.22),
corresponding symbolically to the root of

1=f V[GO —X ] (4.24)

and analogous to the symmetry-breaking roots y=+g of
Eq. (4.23).

To solve Eq. (4.24) explicitly in the case of the BCS
model, we make substitutions appropriate to the nonrela-
tivistic kinematics of the superconductor problem [see
Schrieffer (1964}],

f =if ' fd'k,

with N the density of states at the Fermi surface and c a
numerical factor of order unity. Solving Eq. (4.28) for b.
gives

1 1
boa exp

C
(4.29)

showing that the energy gap has a nonperturbative
dependence on the interaction strength V, with an essen-
tial singularity at V=O. The detailed analysis of the
BCS model shows that the energy gap 6 is proportional
to the ground-state expectation value of a product of
creation (or annihilation) operators for two electrons,
with opposite momenta lying near the Fermi surface and
opposite spins,

~g -]g o (4.30)

Thus, the presence of a nonvanishing energy gap in a
superconductor implies the existence of a ground-state
condensate of correlated electron pairs.

An analogous reduction of Eq. (4.22) (now using rela-
tivistic kinematics) can be carried out for the
Nambu —Jona-Lasinio model and for its more recent
gauge-theoretic extensions, in which the nonrenormaliz-
able local four-fermion interaction used by Nambu and
Jona-Lasinio is replaced by a renormalizable interaction
mediated by vector meson exchange. [See Johnson, Bak-
er, and Willey (1964), Jackiw and Johnson (1973),
Cornwall and Norton (1973), and Lane (1974b).] For de-
finiteness, let us consider the case of the Johnson-Baker-
Willey (JBW, 1964) model for fermion mass generation
in Abelian electrodynamics. These authors consider
zero-bare mass spinor electrodynamics [that is, WQED f/2
of Eq. (2.10), with ma ——0] in the approximation in
which all photon self-energy parts are neglected. The
dashed line in Fig. 3 then represents a bare photon pro-
pagator; thus to leading order of perturbation theory for
the vertex parts, the analog of Eq. (4.22) is

Gp ——ko (k kF) +i—v, — .

+2 Q2

(4.25)
X(p)-ia, f d'k X(p —k)

k

where kF is the Fermi momentum, and we carry out the
ko integration. Equation (4.24) then yields an algebraic
equation for the energy gap characterizing the low-lying
electronic excitations in a superconductor,

I
k2 —kg2

I =~a 1
(4.26)

~

k2 k2
~

p [(k2 k 2 )2+g2]1/2

X [(p —k) —X(p —k)2] (4.31)

where —indicates that numerical constants of order uni-
ty have been omitted. In addition to the trivial solution
X=0, Eq. (4.31) has a nonperturbative solution in which
X has the asymptotic behavior

with ~22 the Debye frequency, which serves as an effec-
tive ultraviolet cutoff in the BCS model. Because phase
space in the neighborhood of the Fermi rnornentum is ef-
fectively one dimensional,

X(p}-m
'5

Pl
2 , 5-ap—P

Equation (4.32) gives self-consistency because

(4.32)

d k=4~k~dk, (4.27)

Eq. (4.26) is logarithmically divergent at the lower limit
when 6=0, and for small b, can be approximated by

d4k 1 m

k (p —k)

'5
m

—(p —k)

1=%V " =Nvlg ", (4.28)

5
Pl 1

X(p),
Ap

(4.33)
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which follows from angular averaging and the elementa-
ry integral

1/2
s —4m

(4.39)

(4.34)

The parameter m in Eq. (4.32) is an arbitrary integration
constant introduced by the boundary condition

X(p = —m )=m, (4.35)

and clearly corresponds to an electron physical mass.
We see that as a result of dynamical symmetry breaking
a mass scale has appeared in the solution to Eq. (4.31),
even though no mass scale appears in the integral equa-
tion itself or in the fundamental Lagrangian from which
it was derived. The vanishing of mo is mirrored in the
fact that X(p) has a softer ultraviolet behavior

X(p) ~ 0
p ~oo

(4.36)

than would be found if a mass scale were introduced
kinematically into the Lagrangian. Such ultraviolet soft-
ness (seen also in the discussion of asymptotically free
gauge theories in Sec. IV.B above) is a very general
feature of field theory models where the mass scale is in-
troduced through dynamical scale-invariance breaking.
The detailed analysis of the JBW and other
Nambu —Jona-Lasinio type models shows that, associat-
ed with the generation of a nonvanishing fermion physi-
cal mass, the ground state contains a fermionic conden-
sate, this time involving a nonvanishing fermion-
antifermion expectation value of the form (Pf)0.

D. Gauge theory-superconductor analogies

Comparing Eq. (4.13) with Eq. (4.29), we see that
there is a close similarity between the nonperturbative
structure of the gauge theory one-loop scale mass
~(g,p) and that of the superconductor energy gap b..
As was noted in connection with Eqs. (4.26) —(4.28)
above, the e ' form in the superconductor case arises
from the effectively one-dimensional phase space near
the Fermi surface, which produces a logarithmically
divergent one-loop perturbation theory contribution

(4.37)

and vanishes at threshold for m &0. However, when
m =0, Eq. (4.39) reduces to p(s)=1, which is nonvanish-

ing at threshold as required by Eq. (4.38). Consequently,
the one-loop perturbation-theory integral

'~- ds'p(s')
(4.40)s' —q

is logarithmically divergent at q =0.
As suggested by this phase-space analysis, and as dis-

cussed in more detail by Gross and Neveu (1974) and
Lane (1974a, 1974b), the renormalization group mechan-
ism for dynamical symmetry breaking on the one hand,
and the superconductor gap equation mechanism on the
other, are really two complementary aspects of the
dynamical symmetry breaking which occurs in non-
Abelian gauge theories. The gauge theory-super-
conductor analogy can be carried considerably further.
Just as a superconductor contains an electron pair con-
densate proportional to the energy gap 5, quantum chro-
modynamics contains a fermionic condensate (fg)0 pro-
portional to the third power ~ of the gauge theory
scale mass ~, and very likely' contains a gluonic con-
densate (F~ F' )o proportional to ~ . When a super-
conductor and its energy gap are perturbed by a weakly
varying electromagnetic field, the resulting dynamics is
described by the induced effective action of the
Ginzburg-Landau theory. ' Correspondingly, when a
non-Abelian gauge theory and its scale mass are per-
turbed by a weakly varying metric, the resulting dynam-
ics, as we will see in detail below, is described by an in-
duced effective action of the Einstein-Hilbert form. '

V. INDUCED GRAVITATIONAL
AND COSMOLOGICAL CONSTANTS
FOR MATTER THEORIES
ON A BACKGROUND MANIFOLD

A. Path-integral derivation of formulas for G;„d and A;„d

From the viewpoint of the theorem of Gross and
Neveu discussed in Sec. IV.B, the induced gravitational

]/ 2
Similarly, the e ' form in the gauge theory case arises
from the logarithmic divergence of the one-loop contri-
bution to g ( —q )

' at q =0, which in turn comes from
the nonvanishing and effectively one-dimensional phase
space for a massless particle to decay into two massless
particles, as expressed in the identity

I
k~ I I

k2
I
5'(k —ki —k2)5(

f
k

I

—
I
ki

I

—
I
k2 f

)
1

=2~I dx 5 (k2 —kx)5 [ki —k(1 —x) j .

To see the effect of Eq. (4.38), let us recall that the S-
wave phase space for a pair of particles of mass m, at
center of mass energy Vs, is

'7For discussions of gluon pairing see Batalin, Matinyan, and
Savvidi (1977); Savvidy (1977); Pagels and Tomboulis (1978);
Vainstein, Zakharov, and Shifman (1978); Ambjorn and Olesen
(1980); Fukuda and Kazama (1980); Kazama (1980); and Mil-
ton (1981). See also Sec. V.D below.

8The superconductor phase space analogy is discussed briefly
in the "photon pairing" paper of Adler et al. (1976). One con-
clusion of their paper, that photon ladders cannot generate a
graviton in flat space-time, is a special case of a recent general
theorem of Witten and Weinberg (1980). The remainder of
their paper and a subsequent paper of Adler (1976) attempted,
unsuccessfully, to generate a gap equation as a curvature effect
in a model which has no gap equation in the absence of curva-
ture.
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&~,gI:g„„l, , ~ &~f I 0) g„„l

with

S,rr[g„„]=fd x v' —g (R —2A;„g)
16mG;„g

(5.1)

+O[(Big„„)], (52 )

constant G;„~ and cosmological constant A;„z of a gauge
field theory are simply physical parameters of canonical
dimension two, defined through the response of the
gauge field system to local perturbations in the space-
time metric. This suggests that it should be possible to
take formal derivatives with respect to deviations of the
metric g&„ from the Minkowski metric ri& thereby ex-
tracting expressions for 6;„z and A;„~ in terms of flat
space-time vacuum expectation values. Such an analysis
will be carried out in this section, using the metric and
curvature conventions of Misner et al. (1970).

The starting point of the derivation is the basic defini-
tion of the gravitational effective action given in Eq.
(2.40) above,

S[INj gi 1= fd"x~[l4j,g„.],
~[IIj,g„.l =—&—g ~[[0j,g,.] . (5.2b)

I will assume that the microscopic action density W is a
function of the metric and its first and second deriva-
tives,

(5.3)

making the derivation general enough to encompass the
case, discussed in Sec. VI below, where the metric itself
(and not just the matter fields IP j) is path integral quan-
tized. To proceed, let us calculate the conformal varia-
tion of Eq. (5.1) around a general background metric.
This is done by acting on the left- and right-hand sides
with the differential operator 2gz„(y)5/5gz, (y), where y
is an arbitrary space-time point which will shortly be
chosen as the origin, and then dividing by i exp(iS, ff).
Inserting the expansion of Eq. (5.2a) in the left-hand side
gives

2g„„(y) fd x &—g (R —2A;„z)+O[(Big„) ] =
5g„„(y) 16mG;„g

fdIpje ' ""2g „(y) fd"xW
5g~„(y)

fd I y j
is((k) slav)'

(5.4a)

where the quantities g&, W, R inside the x-integral are
values at space-time point x, and where the functional
integral fd [Pj is still an integration over the values of
the matter fields at all space-time points,

fd Iyj =IIfdIy(z) j . (5.4b)
2

with T[g&„,x] the stress-energy tensor trace functional
defined by

T[g„,x]=v' —g Tl„'

Bw Bw
Bg„B(Big„)

Equation (5.4a) can be evaluated using standard formulas
for the first variations {with T"", as before, the renor-
malized matter stress-energy tensor),

aw
~( r)i.dcrg pv

{5.8a)

gg 5gpv ~

5(V' gR )= —v' —g—(Rl'" , g""R)5g„„——
+ total derivatives,

5M= —T" 5g

T""=& gT""—

(5.5)

(5.6)

Bw Bw
~

Bw
~gatv ~(~igpv) ~(~Abc gpv)

Substituting these, and defining the point y to be the ori-
gin 0 in order to simplify the subsequent formulas, we
get

Taking the flat space-time limit of Eq. (5.7) and intro-
ducing the abbreviated notation

T(x)= T[ri„„,x]=T"—is (5.8b)

(5.9)

we obtain a formula for the induced cosmological term,

fd Igje
' ""T(0)

G, ~ fdI~j
&s((4) n„ 1

In order to extract a formula for the induced gravita-
honal constant, we must take a further metric variation
of Eq. (5.7). Since the left-hand side of Eq. (5.7) has no
tensor structure, it suffices to specialize' to a metric
which around x =0 has the conformally flat, constant-
curvature form

[R(0)—4A,„,]+O[(a~„„)']
ind

~s(ff) g„„l
(5.7)

For a derivation which does not make this specialization,
but instead proceeds from the general Riemann normal expan-
sion g„=g„„—( —)R„„px x + . , see Adler (1980c). See

also Brown and Zee (1982).
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g„„(x)=g„„[1——„R(0)x +O(PR R )l

gpv+~gpY &

„(x)= —~~„~'~ R (0)x', x'=(x')' —(x')'. (5.10)

Varying Eq. (5.7) around a Minkowski background, and
dropping terms which are higher than second order in
the expansion in powers of a~&„, we get

5 [R (0)—4A;„d]
8+G;„d

T(()) fd {~I
Hk) „„l,fd4

2

fd{~] ~sf(A} n„„l

R (0)
8~G;„d

fd{P]e ' " 5T[g„„,O]
(i)sH Pl'n„ l

fd {P]e' '"""T(0)ifd x 5W
+ ~'s((4) n„ l

fd {y ]
~s((4) & lyyl

(5.11)

Terms (ii) and (iii) on the right-hand side can be evaluated by using Eqs. (5.6), (5.8), and (5.10), which give

i fd x5Ã= — R(0)fd xx T(x) .
48

(5.12)

To evaluate term (i), we note that since 5g&„vanishes as x at x =0, the only terms which contribute to 5T[g„„,O] are
those in which 5g& is acted on by two derivatives. After a certain amount of algebra, we find

5T[g„„,O] =2R (0)U (0), (5.13)

with U(x) the functional defined by

$2~
$p g pvgaP give a(a )a(a ) gee a a(ap )

+g eljl iL a(a )a(ap )

a'w
gA, 8~0. g 8$ A,~cra(a,a.g„.)a(a~.,) a(a,a.g„„)a(ay~.,)

Inserting Eqs. (5.12)—(5.14) into Eq. (5.11) and dividing by 2R (0) gives the desired formula for G;„d,

(5.14)

1

16&GjlId

fd{QIe
' ""U(0)

&s((4) n„ 1

fd {Q I e ' ""T(0)T(x)d4. ~2
96 fd{~] &s(l4) n„„l

fd{gje ' ""T(0) d [ I 4 I '~""~T
2fd {~I

&s(!4'l m„„l'

(5.15)

If we define the subtracted functional T by

~s((d) v„„lT( )
T(x) T(x) s((y) ld{P]e

(5.16)

I

Finally, recalHng the correspondence (Abers and Lee,
1973) between expectations of functionals and vacuum
expectations of time-ordered products of the correspond-
ing operators,

1

16~G;„d

d e '" UO
S[ I PI'~pvj

fd{P]e ' ""T(0)T(x)
96 S[ I Q I,9p~}

(5.17)

and note that the second term on the right-hand side is a
constant, we can rewrite Eq. (5.15) as (5.18)

(5.19a)

d e '"AO
(~(0)),= ~sl lb), n„„)

(~ (~ (x)~(0))).=

we can rewrite Eqs. (5.9) and (5.15)—(5.17) in the com-
pact form

A;„d = ( T(0) )0,
2m G;„d
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=(U(0)) — fd [( (T( )T(0)))o96
—(T(0)) ]

= ( U(0) ),— fd'x x'(~ (T(x)T(0) ) )o,96
T(x)=T(x)—( T(x) )0 . (5.19b)

As noted above, we have so far carried along some ex-
tra generality, which will be needed to discuss the case
when the metric is a quantum variable. When the metric
is not quantized, the trace functional T[g„,0] depends
on derivatives of the metric only through terms of or-
der R, which come directly from the Lagrangian terms
9,A, A" of Eq. (2.35). The variations of these terms
vanish in flat space-time, and so when the metric is not
quantized, the functional U vanishes. Hence for matter
theories on a background manifold, Eq. (5.19b) reduces
to the form

fd x x (u (T(x)T(0)) )o
16m 6;„g 96

given by Adler (1980b) and Zee (1981).

(5.20)

B. Convergence and spectral analysis

From the explicit formula of Eq. (5.20), we can again
analyze the conditions for 6;„~ to be calculable. Since
Eq. (5.20) is a flat space-time formula, it will be con-
venient at this point to switch to the Bjorken-Drell
(1965) signature convention, in which Eq. (5.20) becomes

1

16mG;„g 96 o,

x2 ( 0)2 (xi)2 (5.21)
As discussed in Sec. III above, we define the flat space-
time matter theory by a renormalization procedure based
on dimensional regularization, and so Eq. (5.21) is to be
interpreted as a dimensional continuation limit

«0&o(~ ( T(x)T(0) ) )o
—— X logs

( z)c

+ 2 3 clogs+0
(x2)3

1
(5.23)

(x 2)2

The Lagrangian density W also contains metric derivatives
in the spin connections used in constructing the spinor kinetic
terms, but these do not appear in the trace functional T.

lim g 2'~ ~ 2 ~~ T ~ g O
co

16~G;„, 96 ~-2
(5.22)

where ( )0 denotes the vacuum expectation in the 2co-
dimensional theory. Equation (5.22) will give a calcul-
able 6;„z if the integral on the right-hand side is regular
at co=2, and as we have seen, the singularity structure in
the co plane is directly determined by the ultraviolet
divergence structure of the dimension-four integral of
Eq. (5.21). This can be studied by using the Wilson
(1968) operator product expansion of the time-ordered
product,

where "X logs" indicates the presence of power series in
logx, and where @o 2 are Lorentz-scalar, internal
symmetry-invariant operators of canonical dimension 0
and 2, respectively [corresponding to the fact that T has
canonical dimension four, and hence the left-hand side of
Eq. (5.23) has canonical dimension eight]. When Eq.
(S.23) is inserted in Eq. (5.21) the order (x ) terms give
formally quadratically divergent integrals, which vanish
by the lemma of Eq. (3.18) above, while the order (x )
and higher terms are ultraviolet convergent. However,
the order (x ) terms give logarithmically divergent in-
tegrals and thus generate poles at co =2 in the dimension-
al continuation, unless no operators 6'2 are present in the
theory, in which case 6;„q is calculable. %'e have there-
fore recovered the same calculability criterion as was ob-
tained from the dimensional algorithm in Sec. II.D
above.

Let us next attempt to put Eq. (S.21) into spectral
form, which if possible, would yield information about
the sign of G;„z. From the standard spectral analysis
for a scalar operator y, we have

i(u—(p(x)p(0)))0 ——f do p(cr )b~(x,o), (5.24)

with p the spectral function defined by

p(q )=(2m) g5 (p„—q) f
(0

f
p(0)

f
n )

f
&0,

n

and with EF the scalar Feynman propagator,

EF(x,o)= f ze
d k;k. 1

(2m ) k —o. +i@

(5.2S)

(5.26)

Ignoring for the moment questions of convergence, let us
set y=T in the above formulas and substitute into Eq.
(5.21), giving

16m 6;„g 96 f da p(o. ) —f d "x x h~(x, o. )

(5.27)
A simple calculation then shows that

d x x EF(x cr)=4 2 8 1

Bk„Bk~ (k —a )

—8
4

k=o

and so Eq. (5.27) yields

1 1 f~d pp(o ) (5.29)
16mG;„g 12 o g 4

which if correct would imply that 6;„q has manifestly
the wrong sign to give attractive gravitation. However,
Eq. (S.29) is valid only if the integral on the right-hand
side converges, which requires the vanishing of p(cr )la
as o becomes infinite. But in gauge theories, we have
seen in Sec. III.C above that T contains a trace anomaly

For a proof of the operator product expansion in perturba-
tion theory and a detailed discussion, see Zimmermann (1970).

22See Bjorken and Drell (1965), pp. 138—139 and pp.
387—390.

3Since p is gauge invariant, it can be evaluated in a canonical
gauge to establish positivity.
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term proportional to the hard operator [(FI„)]", as
a result of which p(o. ) behaves asymptotically as o.

logs, invalidating the spectral representation of Eq.
(5.29). The failure of the spectral representation, as indi-
cated by the quadratic divergence of Eq. (5.29), is just a
reflection of the formal quadratic divergence of Eq.
(5.22), arising from the leading (x ) term in the opera-
tor product expansion of Eq. (5.23).

The breakdown of Eq. (5.29) can also be rephrased in
the language of dispersion relations, by defining

X(k )=fd xe' '"( —i)(u(T(x)T(0)))0. (5.30)

lf g(k2) —g(0) obeyed an unsubtracted dispersion rela-
tion, then Eq. (5.29) could be derived, but in fact one
must make an additional subtraction, as in
X(k ) —X(0)—k X'(0), before getting a quantity which
obeys an unsubtracted dispersion relation. Substituting
this dispersion relation into Eq. (5.21) then yields

G;„d

ccrc

(0), which furnishes no a priori information
about the sign of 6;„d. The calculations discussed in the
next two sections suggest, in fact, that the sign of 6;„d is
sensitive to details of the infrared behavior of the matter
theory.

C. Early model calculations of G;„d

According to Eq. (5.21), the leading perturbative con-
tributions to G;„d are those in which two insertions of
the stress-energy tensor trace T are made in connected
matter diagrams of low-loop order, as shown in Fig. 4.
In theories with dynamical spontaneous symmetry break-
ing, such as SU(n) gauge theories, the diagrams of Fig.
4(a) and 4(b) are typically absent and the leading contri-
butions to 6;„d begin at three-loop order. However, one
way of simulating the ultraviolet softening produced by
dynamical scale-invariance breaking is to consider a mas-

sive fermion or scalar meson theory, in which the lead-
ing contribution is the one-loop diagram of Fig. 4(a), and
to include explicit, finite-mass Pauli-Villars regulators to
control the ultraviolet divergences. This calculation has
been performed by Sakharov (1975), Akama et al.
(1978), and Zee (1981), and Zee's results in particular
were important in motivating the general derivation lead-
ing to Eq. (5.21). Zee considers a fermion loop of mass
mo ——m, and by including two Pauli-Villars regulators
with mass m& 2, finds

16m.G;„d

2~2

3(2'�)
2 2 2I= g c;m; logm;, with g c; =0, g c;m; =0 . (5.31)

i=0 i=0
By some simple algebra, Eq. (5.31) can be rewritten as

2 2m( —m
I=m2 —

2 2m i —m2

2 2mi 2 m)
log 2

—m log
m2 m2

(5.32)

an expression which is positive as long as m &m
& 2, but

which can change sign when the regulator masses are
smaller than m, illustrating the sensitivity of the sign of
6;„d to dynamical details. In order to give the observed
magnitude of G;„d, Eq. (5.31) requires
m —mp), „,k = 1.22X 10' GeV, suggesting more generally
that to get a realistic theory of Einstein gravitation as an
induced quantum effect, the physics of dynamical scale-
invariance breaking must take place at energies near the
Planck mass.

According to the discussion of Sec. IV.B above, the
simplest field theory model which has calculable induced
gravitational and cosmological constants is a pure SU(2)
gauge theory. A direct evaluation of Eq. (5.7) has been
given in this case by Hasslacher and Mottola (1980), us-
ing the approximation of saturating the Euclidean con-
tinuation of the functional integral by a dilute gas of in-
stantons. Their result can be written as

I max C+C pE+ -. D pp
p

(5.33)

where the integral is over the instanton size parameter p,
and where p,„(R) symbolically indicates a cutoff on this
integration, of unknown form at present, produced by
the infrared vacuum structure of the gauge theory. The
instanton gas calculation gives a definite expression for
the integrand of Eq. (5.33), written as a series expansion
in R times the flat space-time instanton density D(pp),

FIG. 4. Typical diagrams contributing to 6;„d in (a} one-, (b)
two-, and (c) three-loop order, respectively, with the solid lines
indicating matter field propagators. In an SU(n} gauge theory,
the contributions of one- and two-loop order vanish, and the
perturbation series for G;„d begins at three-loop order, with a
leading term proportional to g .

24See also Terazawa et al. (1977a,b) for related earlier work
by this group.

25For a pedagogical review of instanton gas methods, see
Coleman (1979). A simplified derivation of the instanton den-
sity D(pp) (with p the subtraction mass discussed in Sec.
IV.C) is given by Bernard (1979).
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22
C =—

1

C2 ————,(u, +ap+ag ——,p),
48

z 6 ~ Exp= ~ log p'

(5.34)

In Eq. (5.34), Ci gives the contribution to the cosmologi-
cal constant arising from the instanton gas expectation
of the trace anomaly of Eq. (3.28), while C2 gives the
corresponding contribution to the induced gravitational
constant, obtained by sumxning contributions from the
various small fluctuation modes around an instanton.
Specifically, a„az, and ag are, respectively, the contri-
butions from the translational, dilatational and gauge
zero modes, while p is the contribution from the nonzero
modes. The logR terms in az and ug arise because these
zero modes make a contribution to Eq. (5.21) which is
infrared divergent. Since an exact evaluation of the Eu-
clidean continuation of the correlation function
&~ (T(x)T(0))&0 is expected to show an exponential de-

cay law for large separations x (see Sec. V.D below), Eq.
(5.21) should in fact be strongly convergent in the in-
frared. Thus the divergence leading to the presence of
logR in az and ag appears to be an artifact of the dilute
instanton gas approximation, and one expects the R logR
terms in the integrand of Eq. (5.33) to be cancelled by
corresponding terms in the integration cutoff p,„(R)
and/or in corrections to the instanton picture, leaving a
remainder of order R which is determined by the de-
tailed dynamics of the infrared region. This means that
the dilute instanton gas calculation, while demonstrating
the existence and ultraviolet finiteness of the induced
gravitational action in the gauge theory case, does not
yield a quantitative calculation of 6;„d.

p. A strategy for calculating Glgd and +ind

in an SU(n) gauge theory

Because a pure Yang-Mills theory is the simplest field
theory model with dynamical scale-invariance breaking,
it would clearly be desirable to carry out quantitative
calculations of 6;„d and A;„d in this case. I shall outline
below a general strategy for doing this, assuxning that
one can, in principle, make arbitrarily good Monte Car-
lo evaluations of the various gluon field vacuum expec-
tations which are needed, together with calculations to
any finite order of perturbation theory.

Let us begin with the induced cosmological term

A;„d/6;„d. Substituting Eq. (S.8b) into Eq. (5.19a) and
converting to the Bjorken-Drell metric convention (which
was used in the derivation of Sec. III.C), we get

6For a review of statistical physics applications of Monte
Carlo methods, see Binder (1976). Lattice gauge theories were
introduced by Wilson (1974); see also Kogut and Susskind
(1975) and the review by Creutz (1978). The application of
Monte Carlo methods to lattice gauge theories was initiated by
Creutz, Jacobs, and Rebbi (1979) and Creutz (1980).

(5.35)

The vacuum expectation on the right can be expressed in
terms of the gluon field strength by using the trace
anomaly relation of Eq. (3.28), giving

(P(g) (F ~,~ ),
) (5.36)

I
ca~ =

4m
(S.37)

where for a pure SU(n) Yang-Mills theory one would set
+f—0 Equation (5.37) expresses the induced cosmologi-
cal term as a multiple of the extensively studied' gluon
pairing amplitude &(a, /m. )((F'i ) )"&o. Since the gluon
pairing amplitude has canonical dimension four, it is
proportional to the fourth power of the renormalization-
group-invariant scale mass ~ introduced in Sec. IV.B
above,

a,
(Fi I"'~ )')0 c~~, =

—&/(hpg )~=pe
(5.38)

with c a numerical constant of order unity. According
to Eq. (5.38), the pairing amplitude has an essential

—4/(, bpg )
singularity of the form e at g =0, and vanishes
identically in perturbation theory. This agrees with what
would be found by making a Feynman diagram expan-
sion of the left-hand side of Eq. (5.38) and evaluating the
formally quartically divergent momentum space integrals
by using the lemma of Eq. (3.18).

In order to express Eq. (5.38) directly in terms of an
observable quantity, it is customary to introduce the
string tension o., defined as the coefficient of the asymp-
totic linear term in the heavy quark-antiquark static po-
tential,

V„„;,(R) = crR+ 0(1) .
A~00

(5.39)

Since the string tension has canonical dixnension two, it
is proportional to the square of ~,

(5.40)

with c' a second numerical constant of order unity.
Eliminating ~ from Eqs. (5.38) and (5.40), we get

"If the transformation of Appendix 8.1 is not made, the gen-
eral definition of the gluon pairing amplitude which corre-
sponds to that of Eq. (5.38) is (—2P/bog')(ia, /~)((Eg )')")0.

At this point it is convenient to choose a definition of
the coupling constant (see Appendix B.l for details) for
which the one-loop renormalization group structure of
Eqs. (4.11)—(4.13) is exact. Combining Eq. (5.36) with
Eqs. (4.11) and (4.15), we then find

' -'" =&T. &z~ 6,„,
1 11 2 s

n ——X (I"' F'~ )'l
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—(Fi F' )')0=@ tr"

c"=c/(c') (5.41) (5A6)

been determined to high accuracy by Monte Carlo stud-
ies. In the infrared region, %' behaves for large t as

—m t'~2
e(t) —e

which when substituted into Eq. (5.37) gives a relation
between the induced cosmological term and the string
tension,

+ind Jl 2= —2m —,( 3 n —, Ny—)c a.
6;„d

(5.42)

Methods for making a Monte Carlo estimate of c" in
pure SU(2) and SU(3) gauge theories (n =2,3; Xf ——0)
have been discussed by Kripfganz (1981), by Banks et al.
(1981), and by Di Giacomo and Paffuti (1982).

Let us consider next the expression for the induced
glavltatlonal constant 6;„d given 111 Eq. (5.21), which, we
have seen, must be interpreted as a dimensional con-
tinuation limit. Again substituting the trace anomaly
equation, and defining the coupling constant so that the
one-loop renormalization group is exact, we get

fdxx+( —x ),
16m6;„d 96

+( — ') —= (~ (T( )T(0)))o—( T )o', (5.43)

T= 4bog'(I"—~ I" )'

(5A4)

m2

96 (IUv+Im),
1

16+6;„d
to

IUv = f dt t %(t),

I&R ——f dt t %(t) .

(5.45)

Let us suppose that the correlation function %(t) has

To evaluate Eq. (5.43) it is convenient to make a Wick
rotation to the Euclidean section, which is formally ac-
complished by making the substitutions d x —+ —i d x,

2 ~ ~x ~—x, glvlng

1 1

16~6,„, 96 f dxx+(x).
In order to devise a practical method for implementing
the dimensional continuation limit implicit in Eq.
(5A4), we shall split the integration over the variable
x =t into an ultraviolet (UV) part 0&t &to, and an in-
frared (IR) part to & t & Qo,

1

——,b olog(~ t)
(5.49)

we have

with mz a parameter, called the glueball mass, which is
related to the string tension by

(5.47)

with cg a numerical constant. [Numerical Monte Carlo
estimates of cg for an SU(2) gauge theory, obtained by
studying the plaquette-plaquette correlation function,
have been given recently by Berg (1981) and by Bhanot
and Rebbi (1981).] As a result of the good asymptotic
behavior of Eq. (5A6), the infrared integral I&R of Eq.
(5.45) is convergent at r= oo, and can be evaluated by
numerical integration. Turning next to the ultraviolet
integral IUV, let us write it in the form

IUV =IUV+ ~IUV

IUv ——f dt t %,(t),
o

M'Uv ——f dt t [%(t)—'P, lt)], (5.48)

with %,(t) a comparison function chosen so that: (i) the
integral Ll Uv converges at t =0, and hence can be
evaluated by numerical integration; and (ii) the dimen-
sional continuation needed to evaluate IUv can be carried
out explicitly, leaving a convergent integral which can
again be done numerically. The motivation behind the
introduction of 4, is the evident fact that, while discrete
methods can be used to evaluate convergent integrals,
they cannot be used to make analytic continuations.

The general form required for the comparison func-
tion 'P, (t) can be inferred from the operator product ex-
pansion of Eq. (5.23). This expansion can be "im-
proved" by using the renormalization group and asymp-
totic freedom, which permit a partial resummation of
the power series of logarithms in the leading term of Eq.
(5.23) into a joint power series in the running coupling
constant g (t) and (since we have made the transforma-
tion of Appendix B.l) in its logarithm logg (t). Defin-
ing the coordinate space running coupling by

g'(t) —=

1 —, b g'clog( p—,'t)

Use of a coordinate space formalism is not necessary in or-

der to implement the dimensional continuation limit. For ex-

ample, one could equally well rewrite the spectral representa-

tion of Eq. (5.29) as

1 1

16 6 12
2

2P(~ )
JUV —

2
do 4 & JyR = dQ

0'0

and evaluate JUv by dimensional continuation. However, it is

hkely to be easier to extract the coordinate space function

%(x ) than the spectral function p(g ) from Monte Carlo stud-

ies of the infrared region.

2 The use of the same scale mass in Eq. (5.49) as in the one-

loop version of Eq. (4.10) is a rnatter of convenience; redefin-

ing ~ by a constant factor simply redefines the expansion
coefficients appearing in Eq. (5.50).

3"In general, such renormalization-group-improved operator
product expansions contain an additional fractional power

[log(~ rl], with the exponent 8 proportional to the difference

in anomalous dimensions of the operators on the left- and

right-hand sides. Since Tz and Po ~ 1 both have zero
anomalous dimension, this fractional power is absent from the

leading term in the expansion. See Gross and Wilczek (1974),

p. 982, for a detailed discussion of this point.
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1 1'p(r)=Cq
q 2 2 1+ [a)0+a)) loglog(~ t) ]+ ' +O(t )t ( l—og~ t) ( —log~ r)

(5.50)

The leading term in Eq. (5.50) is proportional to

1 4
2

ocg (t),
( —log~ r)

(5.51)

because, as seen from Eq. (5.43), the perturbation expan-
sion for 4 begins in order g; the constant C+ is com-
puted from lowest-order perturbation theory in Appendix
8.2, with the result

3+2
(2m )

(5.52)

[The two-loop contribution to the glueball propagator,
which gives the coefficients a&p, a]& in the series of Eq.
(5.50), has recently been calculated by Kataev et al.
(1982).] No order t term is present in the expansion
of Eq. (5.50) because of the absence of dimension-two
operators 62, while the order t and higher terms make
contributions to IUv which are convergent at t =0.
Hence it suffices to take as, the comparison function 4,
the leading t " part of %(t),

%,(t) = Cq
r "( logm'r)'—

[log log(~ t) ']
o

'

( —log~ t)

and to restrict tp by the condition

M to&1,

(5.53)

(5.54)

so that the logarithm log(~ t) does not vanish in the in-
tegration range 0&t &to of IUv. Substituting Eq. (5.53)
into IUv and making the change of variable u=M t
gives

2
"o du 6(u)IUV=C~~ 2 up ——M tp,u' (logu)'

6(u)=1+ g ga„, . (5.55)
(log u ')"

The evaluation of this integral by dimensional continua-
tion is carried out in Appendix B.3, with the result

Eq. (5.43) has been reduced to a sequence of steps which
can each be implemented by discrete methods.

Up to this point in the discussion I have used the
one-loop exact running coupling constant defined in Eq.
(5.49), which transforms the renormalization group to its
minimal, exponential form. However, in doing an actual
calculation it is not advantageous to make the nonanalyt-
ic transformation of Appendix B.l; instead, it is better to
work with a two-loop exact or more general definition of
the running coupling constant g (t), in terms of which
%,(t) takes the form of a simple power-series expansion

'p. (r) = ,bo—Cq, 1+ g c„[g'(r)]" . (5.57)[g (t)]
n=l

Corresponding to this, Eqs. (5.55) and (5.56) take the
form

B(u)=1+ g c„[g (u/M )]",

l ao

Iuv = &oCe~ Re du e"
log(..X/2to )

)& [g'(e "/~')] 6(e ") ~, (5.58)

with the coefficient c& known from the above-cited work
of Kataev et aI., and with the higher coefficients yet to
be computed. In doing a calculation it is of course
necessary to make an explicit choice both for the divid-
ing point tp, and for the accuracy to which the perturba-
tion expansion 4, is to be computed. A reasonable stra-
tegy for doing this, I believe, is as follows:

(i) Choose to far enough into the ultraviolet so that
perturbation theory is valid at tp, and so that

~
MUv/I&R

~

is small. Such a choice is always possible,
since the fact that lUUv is a convergent integral implies
that

gm v

S eo V

IUv ——C@~ Re I, , du 6(e "), (5.56)
log(~ to)

y plane

where Re indicates the real part, and where the integra-
tion contour is shown in Fig. 5. [As discussed in Ap-
pendix 8.3, the need to take a real part in Eq. (5.56), re-
flecting the existence of a cut in the co plane, arises from
the fact that the running coupling constant variable g (r)
used in the "improved" expansion sums an infinite num-
ber of Feynman diagrams. The dimensional continua-
tion of individual Feynman diagrams remains mero-
morphic in co.] The integral of Eq. (5.56) can be done by
numerical integration, and so the problem of evaluating

y = IQglUp l ~ 0

FICx. 5. Contour of integration C to be used in evaluating Eq.
(5.56). The contour begins at v=loguo ' ——log(~ to) ' and
must avoid the singularity at v =0.
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lim LUUv ——0 .
to —+0

(5.59)

=
4 b0cqPM Re dU 8

log(~ to)

X[g (e "/~ )] 8 (e "), (5.60)

with %', (t) and 8 (u), respectively, the truncations of
the series of Eq. (5.57) and Eq. (5.58) to the first X
terms. Such an approximation is possible because '

lim +,"(t)=+,(t)X~ oo

implies that

(5.61)

(ii) Then, keeping to fixed, compute a large enough
number X of perturbation-theory coefficients c„so that
IUv is well approximated by

to
dt t'e~(t)

0 ~
~ dimensional]y regularized

(Bl)], as happens, for instance, in QCD with 16 quark
flavors. Such a theory is still asymptotically free, but
has a nontrivial infrared stable fixed point at a small
coupling constant g~ = b—c/(2b~). In the approxima-
tion of retaining only the leading term in an expansion in
powers of g, one finds

'P(t) ='P, (t) = , boC—q, g—(t) 1—g'(t)
c 4 0 g 4

gg
(5.66)

with the two factors g (t)[1—g (t)/g, ] arising directly
from the two factors p(g)/g, which appear in 4 when
the trace anomaly formula of Eq. (3.28) is used. Hence,
in this model the entire answer is given by the power-
series expansion of Eq. (5.57), and the series terminates
after only a finite number of terms. The explicit calcula-
tion shows that the sign of 6;„d in this model depends
strongly on the values of the p-function coefficients bc
and b&, and thus again is sensitive to infrared details.
[For a further discussion, in the context of a survey of
induced gravitation generally, see Zee (1982c).]

lim IU"v=IUv-X~~ (5.62)
VI. EXTENSION TG A QUANTIZED METRIC

(iii) According to Eqs. (5.59) and (5.62), the total in-
tegral which we are calculating is given by the double
limit

I=—IiR+Iuv+~Uv
= lim lim (IiR+IUv),

to —+0 N~ oo
(5.63)

which with to and K chosen according to (i) and (ii), is
well approximated by

I=IIR+IUv . (5.64)

hm (IiR+IUv)=ac .
to~0

(5.65)

In other words, the order of the limiting operations in
Eq. (5.63) is significant, and is reflected in the procedure
for choosing to and N given in (i) and (ii) above.

In a recent paper, Zee (1982a) has given a model in
which the infrared region is explicitly known, permitting
the complete integral IUv+IIR to be evaluated explicitly
by dimensional regularization, and thus giving a simple
illustration of the methods outlined above. Zee's model
is a gauge theory in which the one-loop p-function coef-
ficient bo is positive and small, while the two-loop p-
function coefficient bi is negative [cf. Appendix B, Eq.

3lIf the series for +,{t) is only an asymptotic series, a sum-
mation procedure [such as Pade approximants or Borel sum-
mation; see Simon (1981)] is needed to extract, from the per-
turbation coefficients e„, a sequence of approximants %', which
satisfy Eq. (5.61).

However, for fixed N we must be careful not to let to be-
come arbitrarily small in the approximated expression of
Eq. (5.64), because as a result of the mismatch between
I&R and IUv and the quadratic divergence of the unregu-
larized integral, we find

A. The general-coordinate invariant effective action,
and derivation of the background metric Einstein
equations

Up to this point the metric g@ has been treated as a
purely classical variable, which determines the back-
ground geometry and thereby influences the dynamics of
the quantized matter fields, but which is not itself quan-
tized. While this classical metric formulation is useful
as a model, there are a number of arguments indicating
that it is not a satisfactory starting point for a funda-
mental theory. For example, Duff (1981) has pointed
out that if the metric is not quantized, then the system
of equations comprising the quantized matter fields and
the classical Einstein equations for the metric is not in-
variant under metric-dependent redefinitions of the
matter fields. Such redefinitions should be allowed in a
completely consistent formulation, and Duff shows that
they are in fact permitted if the metric is quantized. A
second argument is simply that if the metric is treated as
a classical variable, then the Einstein equations or the
equivalent Einstein-Hilbert action principle must be pos-
tulated on an ad hoe basis. As we will see below, when
the metric is quantized, the Einstein equations for the
background metric emerge automatically as the leading
long-wavelength approximation to the effective action
formalism.

In discussing the dynamics of a quantized matter-
metric system, it is necessary to give a procedure for
identifying that part g& of the metric which we observe
as the "classical" metric and a method for computing its
effective action functional. I do this by using the back-
ground field method of DeWitt (1965), in which the total
quantum metric g& is split, in a self-consistent fashion,
into the sum of a background metric g&~ and a quantum
Auctuation h&,
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gpss
—gl v+~1 v . (6.1)

Elaborating on earlier work by 't Hooft (1975), recently
Boulware (1981) and DeWitt (1981) have given an exten-
sion of the background field method which preserves
manifest general-coordinate covariance with respect to
the background metric, and hence is an ideal vehicle for
the discussion which follows.

To introduce the general-coordinate invariant effective
action formalism, let us consider first the case in which
no matter fields are present, so that the total microscopic
action density consists solely of the term Ws„„[g&„]in-
troduced in Eq. (2.38). The partition function is then
given formally by

Z fd[ ] sgrav(gpv)

~srav[gyy] =fd x + g ~sravfgpvl (6.2)

R pA. (6.5)

Equations (6A) and (6.5) are a natural generalization of
the usual harmonic coordinate condition, however, the
precise form of W~ (beyond the fact that it depends ex-
plicitly on the auxiliary metric g~p) will not play a role

2See also Fradkin and Vilkovisky (1976), who use the gauge
fixing

~a= —,g"""GpG.
I

Rs„„=t„„
to quantize the Einstein theory formally, and who suggest that
it gives a generally covariant effective action for g„. For the
use of the gauge-invariant background field method to com-
pute two-loop counter terms, see Abbott (1981) and Ichinose
and Omote (1982).

3For a discussion of the complexities involved in representing
higher-derivative gauge fixings in terms of a local "ghost" ac-
tion density, see Kallosh (1978) and Nielsen (1978).

but this expression is divergent because of the general-
coordinate invariance of the action. To get a useful ex-
pression for Z, a gauge-fixing term and a compensating
Fadde'ev-Popov (1967) determinant must be introduced
into Eq. (6.2). Let us choose the gauge-fixing term in
the action to have the form

S~[g p,g„„]=fd'x & g"~~[g—p,g„„], (6.3)

with g~p an arbitrary fixed reference metric (which for
the time being is distinct from g&„), and with W~ con-
structed so as to transform formally as a general-
coordinate scalar with respect to g p, when the total
quantum metric g& is treated as a tensor with respect to
g "p. A suitable gauge fixing for quantizing the
curvature-squared action of Eq. (2.38) would be

~gy[g P g„.]=—,g"' g "~RxGi ~ii G

with VR the covariant derivative with respect to g&„, and
with G„ formally a covariant vector with respect to g„„,
given by

in the following discussion. The gauge fixing of Eqs.
(6A) and (6.5) completely breaks the invariance of the
gravitational action under the group of general-
coordinate transformations g&„~g&, which has the in-
finitesimal form

5sg„„—=g„t)„(58 )+g t)„(58 )+(Bxg„„)58, (6.6)

with M an arbitrary infinitesimal contravariant vector.
The Fadde'ev-Popov compensating determinant for the
gauge-fixing action of Eq. (6.3) is defined by

(6.7)

with d [8] the invariant measure on the manifold of the
general-coordinate transformation group. Since the in-
variant measure satisfies

d[88']=d[8'8]=d [8] (6.8)

for any fixed general-coordinate transformation g&
~g&„, we learn from Eqs. (6.7) and (6.8) that the com-
pensating determinant is invariant under general-
coordinate transformations on gz,

R R 8'~[g.p,g,.]=~[g.p g,.] . (6.9)

4As pointed out by Fradkin and Vilkovisky {1975) and re-
viewed by Batalin and Fradkin (1979), the presence of a term
B~„„in 6qg„„ leads to a nonvanishing variation of the integra-
tion measure under genera1 coordinate transformations,

5Rd[gp. l Tr[~(58g,.(x))~5gx.(3»1

d'x a,5'(O)se'(x) .

The 8~5 (0) term vanishes in covariant calculations using di-
mensional regularization, and is ignored in the discussion of
the text, where d[g„„j is treated as being general-coordinate in-
variant. The variation of the integration measure cannot be ig-
nored in setting up a canonical, Hamiltonian formalism using
a massive regulator scheme; in this case it leads to an extra
Jacobian factor in the path-integral formulas, which can be
represented by a quartic local "ghost" action density. For a
related analysis of the connection between Jacobian factors in
the path-integral measure and chiral and conformal anomalies,
see Fujikawa (1981).

The discussion of Eqs. (6.7)—(6.14) is based on Sec. 3.3 of
Fadde'ev and Slavnov (1980). Strict1y speaking, the Lagrang-
ian form of the path-integral formula given in Eq. (6.10) must
be derived from the more fundamental Hamiltonian form, and
the standard textbook discussions describe this step only for
second-order actions. The derivation of Eq. (6.10) from the
Hamiltonian formalism in the case of fourth-order, curvature-
squared gravitational actions has been carried out by Boulware
(1982).

According to the Fadde'ev-Popov ansatz, a convergent
path-integral representation for the partition function is
then given by

Z fd[ ]g[ it
)

sggay(gR~)+~ gf(spgp g'p~)

(6.10)
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1=fd[8] Rf p' ""b[ '"
] (6.11)

To verify that Z is independent of the choice of the
reference metric g~p, let us multiply the integrand of Eq.
(6.10) by unity in the form

action functional I defined by

I=W+fdxgx J (6.19)

Varying Eq. (6.19) (for fixed g p) and using Eq. (6.17),
we get

giving

Z= f d[8]d[g„.]~[g.'p g„.]~[g.'p, g„'.]

51'=5W+ fd x(gi„5J +5gi„J~ )

= fd x5gi„J (6.20)

grav pv which shows that I is a functional only of g and g p,

g —1

Making the substitution gp ~gp, and using the fact
that the action Ss„„[g&], the compensating determinants
5 and the integration measure d[g&„] are all general-
coordinate invariant, and also using the invariance prop-
erty d [8]=d[8 '], Eq. (6.12) becomes

I = I [g',g'p],
and satisfies

JA, O'

(6.21a)

(6.21b)

Z= f d [8 'ld [g„.]~[g.'p, g„'. ]~[g' p g, ]

graiSg„~~[gi4„]+iSRi[R~p,si4„]+iSRf[g~pgi4„], , , „)

But now applying Eq. (6.7) once more (with 8 replaced
by 8 ') we get

Z fd[ ]g[ ~ R
]

' grav[&„~]+' Rf[&ap &„.]

which differs from the original form in Eq. (6.10) by the
replacement of g p by g'~.

Let us now introduce an external source J coupled
to the metric g~, so that the path-integral formula of
Eq. (6.10) is modified to read

i~[JkcrSR ]

=f d[g„.]~[g."p,g„.]

The partition function Z [J,g~p] can be reexpressed in
terms of the effective action I through the formula

&gr[JAa RR ] &r[ska gR ] & fd4&R gAa
e

' ~=ext~. e
g

(6.22)

where ext z ( ) indicates that one is to take the ex-
g

tremum of the parenthesis over all values of g . Equa-
tion (6.22) is verified by noting that the exponent on the
right-hand side is extremized at the metric g =g
for which Eq. (6.21b) is satisfied, and that at the ex-
tremum it can be rewritten, by using Eq. (6.19), to give
W[J,g p].

With these preliminaries completed, we are ready to
introduce the general-coordinate invariant effective ac-
tion functional I;„„[g ], defined by identifying the
reference metric g p with the expectation value g ~ in
the formulas given above,

'S ~„[g$'p~]+'S f[sR~p gi4„] ~ fd xg—g~JXe I -[g'1—= I [g',g.pl . (6.23)

(6.15)

0= „Z[0,g p] =
R W[0 g p]R ' ~

g R (6.16)

cannot be extended to the case when a source is present.
From the functional 8' we can calculate the expectation
value g~ of the metric in the presence of the source J
by using the formula

Both J and g~p are indicated as arguments of Z in Eq.
(6.15) because the source term breaks the general-
coordinate invariance of the action. As a result, when
J~ +0 the argument of Eqs. (6.11)—(6.14) cannot be ap-
plied, and hence the previously derived zero-source in-
variance,

To get an explicit formula for 1;„„let us multiply Eq.
(6.15) by exp(i fd x g~ J ) and change to h&, defined
in Eq. (6.1), as the new functional integration variable.
Making use of the identity

Sgf [gap~gi4v+hi4 ]=Sgf [gap~hi4 ]
= —,g g~ V~GpV G

& —pA,G =VPhpv —
2 gP V hp (6.24)

=f d[h„„]b,[g p,g„„+h„„]

(which follows from the fact that V~„„=O),we get the
following functional integral representation for I;„„

sr,„,[g ]

68'
gxo [J ~gap] = {gzcr ~g =—

$JA,O' (6.17)
iS, „[g „+h ]+iS~[g p, h „] i fd4xh~ —J~~[g p]grav pv pv

which can be inverted to determine J implicitly as a
functional of g~ (and of g p),

JA(T Jk(T[g/S gR ] (6.18)

Let us now introduce the Legendre-transformed effective

(6.25)

6I will assume here, and later on, that the extremum prob-
lems which are encountered always have a unique solution.
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0=(h,.),=- 5I"
(6.26)

The source current J in Eq. (6.25) is implicitly deter-
mined as a functional of g by the requirement

An alternative way of deriving Eq. (6.32) is to note that
when variations of g~p are included, Eq. (6.20) is modi-
fied to read

which is equivalent to

0= f d[h„„lh[g p,g„„+h„„jhi„.
iS „„[g„+h „]+iS&[g &h„,) i r—d X hg„Jg"[g p)grav pv pv

51"=fd x 8' 5g~p
5g p

+ —

&
8'+g~ 6J +5g~ J

$JAcr (6.34)

(6.27)

To see that I;„„is a general-coordinate invariant func-
tional of its argument, we note that we are free to take

h&„, which is a dummy integration variable, to transform
as a tensor with respect to general-coordinate transfor-
mations of g&„. By construction, S~ is then a scalar
with respect to such transformations, and therefore from
Eq. (6.7), the compensating determinant b.[g~p, g&„+Ii&„]
is also a scalar. Equation (6.27) then determines J to
transform as a tensor, and so the right-hand side of Eq.
(6.25) is manifestly invariant under general-coordinate
transformations of g„„.

Let us next show that the source-free partition func-
tion Z can be obtained by extremizing the gauge-
invariant effective action functional. According to Eqs.
(6.22) and (6.16), in the absence of an external source we
have

which implies that

p1llV [ A IT—
] pr Ji.CT[ ps ——

]R

+J'[g"g.p] .

At the solution g~p
——g~p of the equation

~'[g"g.pj=o,

(6.35)

(6.36)

we learn from Eq. (6.16) that both terms on the right-
hand side of Eq. (6.35) are zero, thus reproducing Eq
(6.32).

Having now established the procedure for identifying
the background metric and calculating its dynamics, let
us restore the matter fields to the analysis. Following
the notation of Eqs. (2.1) and (2.38), this is done by mak-
ing the substitutions

& ptAcr R ]Z=exti(e ' P), (6.28a) d[g„.] d[g„.]d I 4 I

5
R Z=O. (6.28b)R

The extremum in Eq. (6.28a) determines g to take a
value g [g p] at which

ggAa
~ a[g',g'.pj =o, (6.29)

and when expressed in terms of g, the reference-metric
invariance of Eq. (6.28b) takes the form

j=o
5g

and so we have

Z=ext i (e '""
) .&j;„„I:s

(6.32)

(6.33)

I am assuming that g ~ and g lie in a closed convex set,
so that the conditions of the Schauder fixed point theorem are
satisfied. I wish to thank J. and L. Chayes for a conversation
about the conditions for the existence of a fixed point.

, [g'g.'p]=0. (6.30)R

Since g [g~p] is a continuous map from the manifold of
reference metrics into itself, there is a fixed point

g~p=g~p for which g" [g~p]=g . At the fixed point,
Eqs. (6.29) and (6.30) become

,.1[g*',g'.p] = „&[g",g*.p] =o,

which together imply that

~grav [giiv ]~~ma«er [ I 0 I 4'pv] +~grav [giiv ]
~ .«„[I4],g„.l= fd'x &—g ~ .«.,[ak],g„.]

in Eq. (6.10), giving

Z= f d[g,.]d IP I ~[g'.p,g„.]
mattermatter t ~ ma I '& l+ rav~& v~+ gf ~~ap'&

(6.37)

(6.38)

Let us next divide the matter fields I/I into "light" and
"heavy" components as in Sec. II.B, and find the effec-
tive action equations governing the dynamics of the light

38As in the earlier sections, I do not explicitly indicate the
gauge-fixing procedure for the matter gauge fields.

The heavy "matter" fields can include any fields which are
not directly observable, including ones which are basically
geometric or pregeometric in nature, and auxiliary fields. The
only essential requirement for the discussion of Secs. VI.A and
VI.B is that the partition function be representable in the form
of Eq. (6.38) for some choice of heavy fields IP ). The dis-
cussion, as given, applies only to the case when the observed
matter fields aP I appear as elementary fields in the funda-
mental action. If, as has been much discussed recently, some
of the light fields are effective fields for composites formed
from the truly elementary fields, an extended effective action
formalism is needed, along the lines discussed by Cornwall,
Jackiw, and Tomboulis (1974). For a discussion of the effec-
tive action for composites in a nonrelativistic solid-state phys-
ics context, see Kleinert (1978).
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fields. The most straightforward way of doing this is to
introduce external sources {J j and expectation values

{P j for the light matter fields {P j, as well as an exter-
nal source J and expectation value g for the metric,
and to construct the Legendre-transformed effective ac-
tion functional I [{P j, g, g p] in analogy with Eqs.
(6.15)—(6.21) above. Following Eq. (6.28), the partition
function Z of Eq. (6.38) can be expressed in the form

gives the classical Einstein equations and the effective
classical equations for the matter fields,

1

,
.„d (G""+A;„dg" )

rrtp V
matter

pS.n; .«.,[{4 j,g ],
Z=ext, , (e

' ' P ),&~(IN I g 6 —L PSeff, matter[{0 j g ]=0 ~ (6.44)

5
~ Z=O,

6g p
(6.39)

with I;„,the general-coordinate invariant effective action

I';.,=I [{0'j,g', g.p] .

Equation (6.40) gives an exact description of the dynam-
ics of the light matter-metric system in terms of a classi-
cal variational principle

&g &{4'j
I -[{0'jg 1= —, I;.,[{0'j,g Pl=o;

(6.42)

that is, for an isolated system, the background metric
and the light-field expectation values must evolve ac-
cording to a principle of stationary effective action.

To put Eq. (6.42) in a more familiar form, let us as-
sume the background metric to be slowly varying on the
length scale of the heavy fields, so that the curvature
dependence of I;„,can be approximated by writing

~inv[{0 j~g ] Seff matter[{0 j4 ]+Serf grav[Rttp]

+ small corrections,

,«,„[{Pj,g P]= minimal generally covariant

extension of

I .[{4'jn l —I -[{0jn l

and the fixed point argument of Eqs. (6.28) —(6.33) can
then be used to show that Eqs. (6.39) are equivalent to

inv~ I&Z =ext tt I. (e '"" ' ),

Z fd{~Lj
t'it'((4 ) g pl

' ' = f d[g, ]d{W j~[g'p, g„.l

X~ matter& I & I'gpv~+ grav gatv~+ ~~g ap'tv ~

(6.45a)

(6.45b)

The dependence of 8' on g~p results from the fact that
the general covariance of Eq. (6.45b) is broken by the
fixed (nonscalar) light fields {P j, which act in the same
manner as does the source term in Eq. (6.15), and
prevent the application of the argument of Eqs.
(6.11)—(6.14). Let us now introduce an additional exter-
nal source I for the metric and use it to construct a
Legendre-transformed effective action functional for the
metric, I"[{Pj,g,g~p], as in Eqs. (6.15)—(6.22). [The
prime on I is to distinguish it from the functional
I'[{P j,g,g p] introduced following Eq. (6.38), which
was constructed by Legendre transforming with respect
to both the metric and the light fields. ] This allows us
to rewrite Eq. (6.45) in the form

Of course, making the approximations of Eq. (6.43) js
only a matter of convenience in dealing with slowly
varying background metrics, and the exact dynamics of
g p and {P j, including the effect of higher derivative
terms in I";„„[{p j,g p], is always governed by Eq.
(6.42).

An alternative way of describing the dynamics of the
light fields is to keep them as quantum variables and to
introduce, inside the {P j functional integration, an ef-
fective action which incorporates the quantum effects of
the heavy fields [cf. Eq. (2.15) above]. To do this, we
rewrite Eq. (6.38) in the form

S,rrg„„[g p]=l;„„[{Oj,g ]+0[(BM„„)]

=fd x +—g —(R —2A;„d),
16mG;„d

(
tr'((4') g' g'pl) (6.46)

with 8 =R[g p] the curvature scalar constructed from
g p. As defined in Eq. (6.43), S,ff tt contains terms in
I";„„which are P dependent and are of zeroth or first
order in space-time derivatives of g ~, while S,ff g „
contains terms independent of the matter fields
which are of zeroth through second order in space-time
derivatives of g p. Substituting Eq. (6.43) into Eq. (6.42)

~Derivations of the Einstein equations similar to that of Eqs.
(6.38)—(6.44) have been given by Fradkin and Vilkovisky
(1977a, 1977b), by DeWitt (1979), and by Horowitz (1981).
Fradkin and Vilkovisky (1977a, 1977b) and HeWitt (1979,
1981) have emphasized that Eq. (6.42) contains corrections to
the Einstein equations which are needed for rapidly varying
metrics. For discussions of the "out-in" form of the semiclas-
sical gravitational equations, see Kay (1981) and Horowitz
(1981).
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which gives an exact formulation of the quantum
dynamics of the light fields and the background metric,
expressed in terms of a general-coordinate noninvariant
effective action I '. Because the integrand in Eq. (6.46)
still depends on g~p, the fixed point argument of Eqs.
(6.28) —(6.32) cannot be used to introduce a gauge-
invariant effective action inside the light-field functional
integration. An alternative way of seeing this is to note
that the extremum in Eq. (6.46) makes g a functional
of the integration variables IP I, and so the fixed refer-
ence metric g p cannot be equated to g inside the
functional integration. To proceed further, let us consid-
er the mean-field approximation to Eq. (6.46), obtained
by pulling the extremum over g" to the outside of the
functional integration (which should be a physically
reasonable approximation for the slowly varying com-
ponents of g ),

Z J =ext g fd IPLIe (6.47a)

Since Z is independent of g"p, Z I is independent of g &
to within the accuracy of the mean-field approximation,
and so we have

6
5g p

(6.47b)

Equations (6.47a,b) have the same structure as Eqs.
(6.28a,b) above, and thus within the mean-field approxi-
mation we can apply the fixed point argument of Eqs.
(6.28) —(6.32), giving

Z~j ext ep fd I ftt Ie (6.48)

with l",'„„the general-coordinate invariant effective action

(6.49)

6 Ittd /Gtttd 1 +0[(lpiattek /litrt)tort ) ] (6.5 lb)

with I~„„„the proton Compton wavelength, the differ-
ence between the primed and unprimed constants is nu-
merically very small.

B. Formulas for G;„d and A;„d with a quantized metric

To complete the analysis begun in Sec. VI.A, we must
derive expressions for the induced gravitational and
cosmological constants in terms of functional integrals
over h„„and the matter fields, ' and discuss the condi-
tions under which these expressions yield finite answers.
Since the gravitational effective action relevant to astron-
omy and astrophysics is insensitive to the state of inotion
of the long-wavelength components of the matter fields,
it is most convenient to start the derivation of this sec-
tion from the formula

(6.52)

with ~0+) and ~0 ) the "out" and "in" vacuum states
for the observable matter fields. Thus, the background
metric formalism, with the mean-field approximation of
Eq. (6.47a) and an expansion for slowly varying metrics,
gives the "out-in" form of the semiclassical gravitation-
al equations. The quantum field dynainics for the
matter fields then follows in the usual fashion from the
approximation to the partition function given in Eq.
(6.50). Because the induced constants 6;'„d and A,'„d do
not include the quantum effects of the light matter
fields, they are not identical to the constants G;„d and
A;„q defined in Eq. (6.43), which do include such effects.
However, since one expects

Assuming a slowly varying background metric and mak-
ing an expansion of the primed effective action analo-
gous to that of Eq. (6.43), we can approximate Eq. (6.48)
by

Zg=ext p f dIttLI

,n;~,tI,„I IP t g 1+~,rr g„,tripl

(6.50)

This gives the field equations for the background metric
in the form

rather than from the functional I;„„[IOI,g pt] of Eq.
(6.43). It is also convenient at this point to represent
the gravitational compensating determinant h[g~p, g&„]
by an added action density v' —

gnash„„and

to adopt
the convention that a functional argument h& implicitly
indicates a dependence on the ghost fields and that the
integration measure d[hz, ] implicitly includes the ghost
integration measure. By substituting the expansion of
I;„„=S,frs„„ from Eq. (6.43) into the left-hand side of
Eq. (6.52), and noting that the right-hand side of Eq.
(6.52) has a functional integral representation obtained
by making the substitutions

d I
z L t eff matter( (~ ) 'gap) ~& ttt&
cy ~e ~ matter

fd I
yL& eff matter(('p )'gap)

fe

d[h„]~d[hp, ]d [PI,

~grav ~~matter +~grav

(6.53)

2 5
Tmatter ~ ~ eff, matter

g 6g„

(6.51a)

4'In an older terminology, we must compute expressions for
the renormalized gravitational and cosmological constants, in-
cluding radiative corrections arising from virtual metric and
matter fluctuations, in terms of the bare parameters appearing
in the fundamental Lagrangian.
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in Eq. (6.25), we can rewrite Eq. (6.52) in the form

i f d x( v —g (I/16 rrG;„d)(E 2—A;„d)+0[(sett )"])

The tensors g and g ~~ are implicitly defined by
the relations

d X W[(Pj,g p, h ]

~[[4] g p h,.l

g I ~matter[ I (( I ~gatv]+ ~grav[gpv]

+~st-t[g p h„.]]
++ gW—~[g p, h„]—hg J [g p],

Sp Rp +~p

Since we now wish to study the effective action at gen-
eral values of g~~, where ii is not stationary, it is essen-
tial to retain the source term J [g p] in W. The prob-
lem of extracting expressions for G;„d and A;„d from Eq.
(6.54) has the same formal structure as that set out in
Eqs. (5.1) and (5.2) and solved in Sec. V.A. Hence the
desired formulas are obtained by making the following
substitutions in Eqs. (5.8), (5.14), (5.18), and (5.19),

fd I OI fd[ ]—= fd[h„.]d I P],

0= (h~(0)),

~ fd[ ]e' hs, (0),

(h (0))5

6gq (x) ap ~up

~ fd[ ]e' V""(x)hg,(0),

= V", (x)+ V""(x),

V~t "(x)=2
Bx Q(ti~ „)

8+
A.Bx Bx B(BgB g~ )

V""(x)=2 fd x W[IP],g p, h„„]
pv

(6.58a)

(6.58b)

Spv 8'pv ~

&~[~I.~.-]-~-=fd' ~[I~I,~.p, h,.],
W~W[IP],g p, h„] . (6.55)

[gaping'] s

In order to indicate explicitly the appearance of the
source current in the following formulas, it is useful to
introduce the notation

~[Id],g.p, h„.]=~[IN] g p h, ]—h~ J'
~[I 0 I ~gap~hpv] = + g [~matter+ ~grav+ ~ghost]

++—g ~e

X r [IP],g p, h„„;x]

V2 "(x)= —2fd'», .(.)~'~~"(.,x) .

After simplifications using Eq. (6.58), the formulas for
&;„d/G;ad and G;„d take the form

=( Vt(0))p,
1lid

16 G ll1C1

fd xx (~(Vt(x)V&(0)))p

5
[g p,'y] — =g '" (y,x), (6.56)

in terms of which
fd[ ]e' A(0)

(A(0)),=
d[ ]e's

—(~ ( V, (x)V, (0) ) ),

S=fd x[W(I/I, tj p, h„)—hg g ] . (6.57)

~2In Eq. (6.54) we have not required the total space-time
volume to have a fixed value. Modifications required by a
volume constraint and by the presence of boundaries are dis-
cussed by Hawking (1979). A volume constraint can be includ-
ed by adding a Lagrange multiplier term apt —g to W, which

plays the role of a bare cosmological term and is discussed in
more detail in Sec. VI.C below. Space-time boundaries require
the addition to the Einstein-Hilbert action of a surface integral
over the boundaries. Hasslacher and Mottola (1981) show that
when the quantum fluctuations h„„ in Eq. (6.54) are con-
strained to have zero normal derivative on a boundary, so that
the boundary does not fluctuate, a surface term of the expected
form automatically appears in the induced gravitational effec-
tive action.

A;„d
~ ~b "t) p]+X'

Zm G;„, gg~~
(6.60)

d e Ax80
( w (A (x)B(0)) )p

——

d[ ]e'

Vt(x) = Vt(x) —( V)(x))p,

Vt (x)=t)„V~t'(x),

V, (x)=g„„V~2 (x), ( V, (x))p —0,
U(x) =Eq. (5. 14) with g„„—+g„, W~~ . (6.59)

A second useful formula for A;„d/G;„d can be obtained
by using Eq. (6.35) to calculate the conformal variation
of I, giving
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Since

W[g rs, rl~~]=0 when g =0, (6.61)

6| d (+[hp ]~0 (6.62)

proposed by Mansouri (1979, 1981), in papers suggesting
that Einstein gravitation is generated by dynamical
scale-invariance breaking in conformally invariant,
order-R 2 gravitational models. However, Eq. (6.62)
[which omits the nonlocal V terms of Eq (6.59. )] is not
a quantitatively correct expression for 6;„z.

C. Conditions for finiteness of 8;„~ and A;„&

and for the vanishing of A;„~

Let us turn now to the issue of whether the formulas
for 6;„z and A;„z given in Eq. (6.59) are finite. By con-
struction, the fundamental Lagrangian density
W~,«„+Ms„„contains a complete basis of dimension-
four operators formed from the fields which are present,
together with a number (say, N) of dimensionless un-
renormalized couplings. The dimensional algorithm of
Sec. II.C then guarantees that 6;„~ and A;„q will be cal-
culable in terms of the corresponding N renormalized
couplings. If scale invariance remains unbroken, we
get 6;„~=0=A;„q. If dynamical breaking of scale in-
variance occurs, we expect one of the N dimensionless
couplings to be replaced by a scale mass ~, as discussed
in Sec. IV.B, and the theory wi11 then yield nonvanishing
predictions for 6;„z and A;„z in terms of M and the
remaining N —1 dimensionless couplings. The ideal
case, of course, would be that in which the fundamental
action contains only one dimensionless coupling, so that
after dynamical symmetry breaking and dimensional

~ Note, however, that there is a dimension-two internal-
symmetry scalar operator d'2=R[h„„] which transforms as a
I.orentz scalar with respect to g„ the limiting value of the
background metric g„„appearing in Eq. (6.59). As a conse-
quence, the U and V terms in Eq. (6.S9) in general will each
be divergent, with the infinities cancelling only in their sum.

we learn from Eq. (6.60) that the condition for the
cosmological constant A;„q to vanish is the vanishing of
g" =J [g~~]. This is of course expected, since when

A;„z vanishes, the induced gravitational action I;„„[g~]
is stationary at a Minkowski background metric g p.
When g p is the stable ground state, the second-order
fluctuation operator around q~p has no negative eigen-
values, and the functional integral formula of Eq. (6.59)
is then guaranteed to give a real value for 6;„z.

Unlike the situation found in Sec. V.A, where
(U(0))0 vanished, the term (U(0))0 in Eq. (6.59) con-
tains nonvanishing contributions quadratic in the fluc-
tuation metric, such as ((Bh& /Bx") )o. Hence this
term in the formula for 6;„q is qualitatively similar to
the relation

transmutation, no free dimensionless coupling constants
remain.

Let us consider next the conditions under which the
induced cosmological constant A;„z vanishes, assuming
initially that W,«„+Wg„, has a unifying symmetry
which leaves only a single dimensionless coupling con-
stant, and which requires the vanishing of the bare
cosmologica1 constant. Then after dimensional transmu-
tation, A; g will be calculable in terms of the scale mass

(which is expected to be in the range 10' —10'9
GeV), but in general A;„z/~ will be a number of order
unity, in violent contradiction to Eq. (2.23). The only
way to save the situation is for the underlying theory to
have a "hidden" symmetry which guarantees the vanish-
ing of A;„z, as discussed recently by Pagels (1982). The
difficulty with implementing this mechanism is that in
order for the hidden symmetry to restrict A;„~ it must be
an unbroken symmetry, and no natural candidate for
such a symmetry is known.

An interesting alternative possibility is suggested by
recent work in which Ovrut and Wess (1982) use a
cosmological constant as a mechanism for breaking su-
persymmetry. Suppose that the unifying symmetry al-
lows only a single dimensionless coupling constant but
does not restrict the value of the bare cosmological con-
stant, so that we can freely add a term fd xv' gao t—o
the fundamental action. Because ao has dimension four,
any polynomial formed from Ko and the fields will have
dimension greater than or equal to four, and so the ad-
ded term does not require the introduction of any dimen-
sional renormalization constants with dimension sma11er
than four. After dynamical symmetry breaking, the
theory now has two dimensional parameters, Ko and ~,
or equivalently, A;„& and ~. We can then impose as a
renormalization condition the requirement that in the ab-
sence of real (as opposed to virtual) matter, the Min-
kowski metric q& be the stable background metric,
which will require

A;„g——O=g (6.63)

~This range extends from the so-called "grand unification
mass" of particle physics [see Weinberg (1980b) for a review]
to the Planck mass.

45An unbroken "hidden" symmetry is also required if the uni-

fying symmetry specifies a definite nonzero value for the bare
cosmological constant. For a recent survey of quantum gravi-

ty with a cosmological constant, see Christensen and Duff
(1980).

The fact that stability of the Minkowski metric requires the
vanishing of A;„q is noted and used as a renormalization condi-
tion in Brout et aI. (1980).

This leaves only one dimensional parameter ~, in terms
of which all particle masses and Newton's constant are
calculable.

In order to implement this alternative mechanism, we
must have justifications both for assuming that the bare
cosmological constant vo is nonzero, and for imposing
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D. StrUGtUre and properties
of the fundamental gravitational action

In this final section I will comment very briefly on the
structure and on some of the properties of the funda-
mental gravitational action. I have assumed in the
preceding discussion a general order-R gravitational ac-
tion density of the form

~,r- =~o++&o~+Co (6.64)

the renormalization condition that the induced (or renor-
malized) cosmological constant A;„d vanish. A possible
rationale for assuming that Ko is nonzero has been given
by Hawking (1979), who points out that in order to con-
struct a partition function Z for a fixed total space-time
volume one must include a I.agrange multiplier for this
volume, and this is formally equivalent to including a
bare cosmological term in the fundamental action. A
possible rationale for the renormalization condition
A;„d——0 could be provided by the observation that in a
two-parameter theory, the ratio A;„d/~ is not constant
in nonequilibrium situations. If one could show that
nonequilibrium processes in the early universe, such as
back-reaction effects from particle production, resulted
in the decay of A;„d towards an equilibrium value of
zero, then use of the renormalization condition A;„d——0
in the equilibrium analysis of Sec. VI.B would be justi-
fied.

with S,A, A defined in Eq. (2.35). The study of gravi-
tational actions of this type was initiated by Utiyama
and DeWitt (1962), and a proof that they lead to a renor-
malizable perturbation theory has been given by Stelle
(1977). When dimensional regularization is employed,
all three terms in Eq. (6.64) are in general needed, as
shown in detail for the case of a scalar field by Brown
(1977) and by Brown and Collins (1980). Even though
the action formed from S is a topological invariant in
four dimensions, it is not a topological invariant in 2'
dimensions, and so makes a nontrivial contribution when
multiplied by the power series in (co —2) ' contained in
the coefficient Ao. The only circumstance under which a
term u(=S, A, or A ) can be omitted from Eq. (6.64)
is when the theory with M deleted has special sym-
metries, which guarantee that no divergences with the
structure of u are encountered. Thus, for example, a re-
normalizable theory of matter and gravitation could be
formulated without including any order-R terms in the
fundamental action, only if W,«„ itself had enough
symmetry so that no divergences with the structure of
S, A, or A were encountered. %'hether such matter
actions can be constructed is not presently known. A
more realistic possibility for omitting terms from Eq.
(6.64) is afforded by the case of classically conformally
invariant theories, in which there are hints that the in-
duced M term may always have a finite coefficient, per-
mitting one to take Co ——0 in Eq. (6.64). It is possible to

The value of K'o would then presumably be a parameter characterizing the initial quantum fluctuation which led to the birth of
the universe.
48For a review of gravitational particle production, see Parker (1977), while for an effective action formalism for particle produc-

tion in the early universe, see Hartle (1977). In an earlier article, Parker (1969), p. 1066, postulated that "the reaction of the parti-
cle creation (or annihilation) back on the gravitational field will modify the expansion in such a way as to reduce the creation
rate. " Since A;„d & 0 corresponds to positive vacuum energy, a naive extension of this postulate suggests that a state of the early
universe with A;„d&0 will decay by gravitational particle production to an equilibrium with A;„d——0, at which point particle pro-
duction ceases. Variants of this idea have appeared in models for the creation of the universe through a quantum tunneling event
given by Brout et al. (1978), Brout et al. (1979), Guth (1981), Akatz and Pagels (1982), and Gott (1982). The models of Brout
et aI. and Gott postulate a transition from a particle producing de Sitter phase with A;„d——0, T"",«„———vg", ~-lp],„,], to a stand-
ard equation of state with I'= —p (P=pressure, p=density) as a result of back-reaction effects of particle production. When the

term —~g" is transposed to the G~ +A;„dgI' side of the Einstein equations, ~ is equivalent to an initially nonvanishing A;„d/G;„d.
Attempts to find an instability associated with A;„d+0, within the framework of the semiclassical approximation for the coupled

matter-metric system [cf. Eq. (6.51) of the text] have not been successful Abbott . and Deser (1982) have shown that the de Sitter
solutions obtained when the Einstein equations are solved with A;„d+O,T =0 are classically stable against small perturbations.
Particle production calculations in de Sitter spaces using the semiclassical formalism have not yielded an unambiguous answer; see
Parker (1977), p. 136, and Gibbons (1979), p. 666, for a discussion and references. Hence a dynamical argument to explain why
A;„d-0 would have to involve nonequilibrium phenomena and/or higher-loop quantum effects which are ignored in the semiclassi-
cal approximation.

4 For further references, see the review of Weinberg (1979).
There are two pieces of evidence that a bare A term may not be needed in conformally invariant theories, both coming from

the study of conformally invariant matter theories on an unquantized background manifold. The first is that apart from a total
divergence, the conformal trace anomaly has only 9' and A terms, which implies that the one-loop Lagrangian counterterm con-
tains no divergences proportional to M. [For a succinct discussion and references, see Tsao (1977).] The second is a general for-
mula which Zee {1982b) has recently derived for the coefficient C;„d of the induced A term,

d 4~ (~ 2 )2'�(~ 2
)

13 824

in the notation of Eq. (5.44). Since in an asymptotically free gauge theory one has 4-(x ) (logx ) for large x [cf. Eq. (5.50)),
the integral for C;„d is just barely convergent. Zee's formula also shows that C;„d is negative definite, and so the theory is free of
tachyons; in this connection see also Horowitz (1981) and Yamagishi (1982). Since the gravitational theory of Eq. (6.66) is asymp-
totically free, it seems a reasonable conjecture that Zee's results will generalize to the case in which the metric is also quantized.
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construct renormalizable order-R gravitational theories
of greater complexity than Eq. (6.64) by adding new field
degrees of &eedom in a number of ways (for example, by
including torsion ' or superfields ). A prime considera-
tion in searching for the correct gravitational action will
almost certainly be that it should unify in a natural way
with the fundamental matter action W,«,„, when that is
finally known; this may involve the introduction of "pre-
geometric" fundamental variables ' which are not
directly classifiable as "matter" or "metric. "

The momentum space graviton propagator calculated
from the fundamental action density of Eq. (6.64) con-
tains a term proportional to

1 . 1 1

(k) ' Om

1

k +en
(6.65)

9'=Gauss-Bonnet density [Eq. (2.35)],
pro'A =Cog C~ (6.66)

with the sign of Bo chosen to guarantee that the Euclide-
an continuation of the partition function is represented

Models with torsion have been discussed by Neville (1980)
and by Sezgin and van Nieuwenhuizen {1980),who give fur-
ther references.

52For a discussion of conform al supergravity see Kaku,
Townsend, and van Nieuwenhuizen (1978).
53For attempts at pregeometric theories of gravitation, see

Amati and Veneziano (1981), Terazawa and Akama (1980a,
1980b) and Terazawa {1981a,1981b).
54See Adler (1980b), Hasslacher and Mottola (1981), Tom-

boulis (1980), and also Salam and Strathdee (1978).

Since the second pole-term in Eq. (6.65) has an unphysi-
cal, negative residue, order-R theories do not satisfy
unitarity (with positive probabilities) at the tree level.
However, unitarity is a statement about the asymptotic
scattering states of a field theory and their S-matrix, and
hence unlike renormalizability, is a dynamical, rather
than a kinematic statement. Thus if radiative correc-
tions play an important role in the dynamics (and they
certainly do in theories with dynamical scale-invariance
breaking), violations of tree-level unitarity do not neces-
sarily imply violations of unitarity in the full theory.
This point was first made a decade ago by Lee and %'ick
(1969, 1970), who showed that if fields which have
negative-residue "ghost" propagators at the tree level be-
come unstable as a result of radiative corrections, then
the S matrix for the asymptotic scattering states can
obey unitarity with positive probabilities. The relevance
of the Lee-Wick mechanism for quantum gravity was
first pointed out by Tomboulis (1977) and has since been
discussed by a number of authors. As a concrete ex-
ample [see Hasslacher and Mottola (1981)],let us consid-
er a conformally invariant order-8 theory with the fun-
damental action

0++&0~ &0
1

2

(2)
~pvap 1 1

2(k2) k2 k2+g(k2)2~2(k2)
(6.67)

Here P&„'~& is a spin-2 projection matrix, m (k ) is the
amplitude [analogous to (d /dk )X(k ) of Eq. (5.30)]
which gives 6;„d in the zero-momentum limit,

m (0)=
1Qd

(6.68)

and g'(k ) is the (one-loop) running coupling constant for
the action of Eq. (6.66),

~(k 2)2 k(V')'

1+—,bg(p ) log(k /p )
(6.69)

In the timelike region, where k &0, both g(k ) and
m(k ) have imaginary parts, and consequently the pro-
pagator of Eq. (6.67) has two complex conjugate unstable
ghost poles rather than a single stable ghost pole. Thus
it appears that the I.ee-%'ick mechanisn1 is applicable to
order-R gravitational theories; more detailed checks on
this are now needed.

A further property of order-R gravitational theories,
which is illustrated by Eqs. (6.67) and (6.69), is that they
are asymptotically free. This follows from work of Julve
and Tonin (1978), as corrected and extended by Fradkin
and Tseytlin (1981) [see also Tomboulis (1980) and
Christensen (1982)], showing that b &0 in Eq. (6.69) and
in the analogous equation for the running coupling con-
stant associated with the A term in Eq. (6.64). The
scale mass ~ which characterizes the strong coupling
region for the fundamental theory is presumably the
Planck mass mp], „,k. At energies much higher than the
Planck mass, the theory becomes weakly coupled, and so
no singularities are expected. At energies much lower
than the Planck mass, the induced gravitational tern1
dominates,

g(k) k+m(k) ~ m(0)= 1

+0 16mG;„d
(6.70)

reflecting the presence of an extra power of k multiply-
ing g{k ) in Eqs. (6.67) and {6.70), and giving gravita-
tion the form seen in observational astronomy.

55For discussions of singularity avoidance - in order-E
theories, see Hu (1979), Tomboulis (1980), and Hasslacher and
Mottola {1981).

by a convergent functional integral. (The 9' term in the
action plays no role in the following discussion and in
general does not affect the field equations. ) Taking into
account the fact that radiative corrections induce an ef-
fective Newton's constant, and assuming that 6;„d has
the correct positive sign, a simple calculation shows that
the spin-2 part of the full graviton propagator has the
form

(2)
+pvaP

k [g(k') 'k +I (k')]
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.+P&+~ (A6)

with the gauge-fixing (GF) and Fadde'ev-Popov (FP) La-
grangian terms given by

cxo
B-Ap+ — -B.B

2

-(8"A„) + B+
2ao " 2

1
a~A, —a,(B A~),

ao

~Fp = —i B&c Dqc

D~ ——Bp —goA~ X, c =c, c =c ~ (A7)

product (.) and an outer product (X) to denote contrac-
tion of internal symmetry indices with SJ and f~",
respectively. In covariant gauge, we have

APPENDlX A: DETAlLS FOR THE BASlC
THEOREMS

Arguments excluding dimension-two
Lorentz-scalar operators

a. Pure non-Abelian gauge theories in axial
and covariant gauges

A,'=0 . (Al)

Since axial gauge is a canonical gauge (Hanson et al. ,
1976), no ghost fields are present. Hence invariance
under the subgroup of the Lorentz group which leaves
the z axis invariant and invariance under global internal
symmetry transformations restrict a candidate for 6'2 to
have the form

The necessity for gauge fixing and ghosts requires, in
the case of nonAbelian gauge theories, that we give a
somewhat more careful argument for the absence of
dimension-two Lorentz-scalar and internal symmetry-
invariant operators 6'2 than would be needed in the
Abelian case. Let me give first the argument working in
axial gauge

In Eqs. (A6) and (A7), B is an auxilliary scalar field, ao
is a gauge parameter, and c is the Fadde'ev-Popov ghost
field. The Lagrangian density of Eq. (A6) is invariant
under the Becchi-Rouet-Stora (BRS, 1976) transforma-
tion

6Ap ——A,ape,
5c =A,go(c Xc)/2,
6c =iAB,

6B=0, (AS)

d'2 A„.A"+poc——c . (A9)

Under the transformation of Eq. (AS), the change in 6'z
1s

5d'z 2A" AB„c+——po[i A. Bc+ , Agoc (c Xc—)]+0.,

(A10)

with A, an x-independent parameter which anticommutes
with c and c, and all physically observable operators
must be similarly invariant. In covariant gauge, Lorentz
invariance and invariance under global internal symme-
try transformations restrict a candidate for 6'2 to have
the form (for any constant po)

Consider now the local gauge transformation

5A„'=d„@' gof'J AJ 4~, —

with N =@ (x,y, t) independent of z, so that

6A,'=B,N' —gof'JkAJN"=0 .

Under the transformation of Eq. (A3) we have

S~;=A„'a„e'+A„'a,e'+A,'e, C '~0,

(A2)

(A3)

and so d'q is not a BRS invariant. Hence Eq. (A9) does
not give a physically observable dimension-two Lorentz-
scalar operator.

We have thus concluded, by working in either axial or
covariant gauge, that in a pure non-Abelian gauge theory
there are no Lorentz and internal symmetry-invariant
operators W2, and hence no action density terms d'28. in
curved space-time.

b. Massless supersymmetric theories with spin-0 fields
and so 6'z is not invariant under the subclass of local
gauge transformations which preserves the A,'=0 gauge
condition. Thus Eq. (A2) is not a physically observable
dimension-two Lorentz-scalar operator.

I give next a covariant gauge argument, following the
notation of Kugo and Ojima (1979), which uses an inner

An extension of the above argument excludes Lorentz-
and internal symmetry-invariant dimension-two opera-
tors 6'2 in massless supersymmetric theories with spin-0
fields. Let y be a massless spin-0 field which has a Ma-
jorana spinor supersymmetry partner g. Under super-
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symmetry transformations, cp transforms as

5y = i(i)'ja —ug), (A 1 1)

2 (A12)

but under supersymmetry transformations the change in
1S

5d'p ——2(p5q&+0 . (A13)

Hence Wz is not an internal symmetry invariant, and an
action density term 6'zR is excluded. (A dimension-two
supersymmetry invariant is readily constructed by adding
to 6'z a fermionic piece proportional to //Imp, but this
requires the introduction of a mass parameter mp. )

2. Extension to massive regulator schemes

When massive regulators are employed, we learn from
the enumeration of Sec. II.C that there are Lagrangian
density terms of the form

with n an x-independent parameter which anticommutes
with P. Lorentz invariance allows a candidate for d'2 of
the form

tion schemes. When there are no bare masses and no
scalar fields apart from members of massless supermul-
tiplets, no other dimension-four operator is present in
curved space-time, and 5W then vanishes. We conclude
that

5(A;„d/G;„d) =5(G;„d ) =0; (A16)

APPENDIX 8: DETAILS FGR THE CALCULATlGN
OF 8;„d )N SU(n) GAUGE THEORY

1. Transformation to one-loop exact
renorrnalization group

In an SU(n) gauge theory, the behavior of physical
parameters under changes in the renormalization sub-
traction point iu is governed [through Eq. (4.18)] by the
function p(g), which has the power-series expansion

that is, under the necessary conditions discussed in Sec.
II.D, the renormalized induced gravitational action cal-
culated using massive regulators is uniqu, and agrees
with that calculated by using the method of dimensional
regularization.

T'=M, O'=M R, (A14) P(g) = ( , bpg'+—bi—g'+»g'+ (81)

with M and M schematica11y indicating polynomials
which are, respectively, quartic and quadratic in the re-
gulator masses. The term T' contributes to the induced
cosmologica1 constant A;„d/6;„d through the operator
T(0) of Eq. (5.19a), while the term U' contributes to the
induced gravitational constant 6;„d through the operator
U(0) of Eq. (5.19b). The coefficients of T' and U'

(which in general depend logarithmically on the regula-
tor masses) are determined by the requirement that
Ajnd/6 jnd and 6 ind remain finite as the regulator masses
tend to infinity. Consider now the differences

5(Aind/Gind) (Aind/Gind) massive (Aind/Gind) dimensional
regulator regularization

—1
5(Gind ) =(Gind ) massive (Gind ) dimensional

regulator regularization

between the finite induced constants calculated using
massive regulators, and the finite values calculated using
dimensional regularization. According to the dimension-
al algorithm, differences such as these between the finite
values of connected, one-particle irreducible matrix ele-
ments evaluated in two different regularization schemes
must be representable as the corresponding matrix ele-
ments of a Lagrangian density polynomial 5W formed
from the bare masses, the bare fields, and 8/Bx". The
polynomial 6W cannot contain the terms T' and U' of
Eq. (A14), since any nonzero multiple of these bases is
necessarily at least quadratically divergent as the regula-
tor masses tend to infinity. The polynomial 5W also
cannot contain any field-dependent dimension-four La-
grangian terms which survive in the flat space-time lim-
it, since these mould give rise to differences in the flat
space-time S matrices calculated in the two regulariza-

Only the first two coefficients bo 1 are gauge invariant,
and only these coefficients are invariant under coupling
constant transformations g —+g' of the form

P(g) = —( —,bpg'+big') (83)

Following Adler (1981), let us now make a further, non-
analytic transformation to a new "reduced" running cou-
pling constant gz for which a one-loop renormalization
group structure is exact. (In the applications of the one-
loop exact running coupling constant in Sec. V.D of the
text, the subscript R is omitted. ) Writing a~ =g~,
cz=g, the transformation is simply

1 1 der'
— --= —-—bo

p(~')

P(a) =gP= —( —,
' bpa'+b, a'),

g =g(g') =g'+ g &.(g')'"+',
n=1

which are analytic in a neighborhood of g =0. 't Hooft
(1979) pointed out that the noninvariance of b2, . . .
under the transformation of Eq. (82) could be exploited
to define a transformation which, in a formal perturba-
tive sense, makes the transformed coefficients b2, . . .
vanish. Global conditions for the existence of a non-
singular 't Hooft transform were studied by Khuri and
McBryan (1979); if singular transformations are not ex-
cluded [see Frishman, Horsely, and Wolff (1981) for ar-
guments suggesting the physical relevance of singular
coupling constant transformations], then a transforina-
tion to a two-loop exact renormalization group can al-
ways be made, giving
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which is easily seen to give a nonsingular mapping from
the half-line 0&o. & oo to the half-line 0&aR & ao. The
renormalization group structure in the new variable czz

is determined by P~ (a~), given by

with F a shorthand for F~ F",and with the subscript
GE indicating the Euclidean vacuum expectation. In
lowest-order perturbation theory, the square bracket in
Eq. (89) is given by

l4(~~ ) =P(~) =P(~)( —~~ ) = —bo—~~
Bo.' Box

(» (r'(x)r'(0))), —{~'),',
=2[(» (E'i (x)FJp„(0)))og]

=2[(» (B(i A')(x)B(„&J)(0)))o~] (810)
and so has exactly a one-loop form.

Explicitly integrating Eq. (84) gives for the transfor-
mation

with [,] indicating antisymmetrization of indices. Sub-
stituting the Euclidean Feynman propagator

1=——a log
CX

1 +log(1+aa)
5'J6

{»(A' (x)AJ(y)))o~ ———
(2ir) (x —y)

(811)

=——a log +a g1 1 ( —aa)"
0! aux

(87)

Equation (87) can be inverted to give an expansion for a
in terms of a~ and log(aaii ),

~=~ii(1+~iif)

f= g rtzfk,k

k=0

fo =a log(aud )

fi =fo+ttfo rt'— (88)

Because fo contains a logarithm, the transformation is
nonanalytic at az ——0, which is why the coefficient b&

can be transformed to zero. Substituting Eq. (88) into a
perturbation series which has been brought to 't Hooft's
form yields a modified perturbation series in terms of the
new running coupling constant gz, for which the one-
loop renormalization group is exact. The modified ex-
pansion has the form of' a joint power series in a~ and
log(aait) in which, for a physical quantity with leading-
order contribution at order Kz, the general term has the
form aii [log(aaii )]~, with n &I. and with

p & n —max(1, L).

2. Leading short-distance contribution to %{t)

Asymptotic freedom implies that the leading short-
distance contribution to V(t) is obtained by doing a
lowest-order perturbation theory calculation, with the
coupling constant g replaced by the running coupling
constant g (t). Thus from Eqs. (5.43) and (5.49) we get

+(t)=—,, [ {~{+'(x)+'(0))),4 ( —log~ t)

—{+(x))oE],

2b)

bo

which for small aa can be developed into a series expan-
sion,

~4(t) = (n —1)—3X2 1

(2ir)' t'( log~—'t)'
yielding the value of C+ given in Eq. (5.52) of the text.

(812)

3. Dimensional contlnU8tlon evalUation
of comparison integrals

I give here two evaluations of the integral of Eq. (5.55)
by dimensional continuation. In the first calculation,
only the power of u in the integrand is dimensionally
continued, while the logarithms are kept in dimension
four. In the second calculation [restricted for simplicity
to the leading term in e(u)] both the power of u and the
logarithms are dimensionally continued, corresponding to
use of the 2'-dimensional vacuum expectation in Eq.
(5.22). The two calculations give the same answer, as ex-
pected where a finite radiative correction is evaluated by
different regularization methods. In the context of the
second calculation, we can compare the analyticity prop-
erties in co of the dimensional continuation of a finite
sum of Feynman diagrams, with the analyticity proper-
ties of the infinite sum of Feynman diagrams contained
in the running coupling constant factor g (t).

In 2' dimensions, the factor d "x in Eq. (5.22) is pro-
portional to dt t ', and since T(x) has canonical di-
mension 2m, the leading power behavior of the vacuum
expectation {»(T(x)T(0)))o is t . Hence when the
logarithmic sum B(u)/(logu) is kept in four dimensions
(and when a normalization factor of m /m is omitted),
the continuation of the integral of Eq. (5.55) is

f e(u) f "Od „e(u)
(logu ) (logu )

(813)

and is convergent at u =0 v hen Reer~ l. In order to
put Eq. (813) in a form where it can be analytically con-

and carrying out the differentiations and contractions, an
elementary calculation gives

[{»(a„~'.) (x)a,„~J, (0) ) ), ]'
3X2 2 1

(n —1)—
(2~)'
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tinued to co=2, let us first make the change of variable
u =e ", giving

(m —1)vf c&
10gQ p

6(e "),
U

(814)

(I 2)co—2 (k )" —1+counterterm =
co —2 co —2

(815)

and corresponding to this, a coordinate space factor
log( —x ) =logt continues into

(x 2)2—el) (x) "—1+counterterm =
2 —67 2 —co

Hence let us consider the integral

(816)

Qp

I(co,y)= f du u
0

' 2
0 —I

(817)

which when y=2 —co describes the continuation of the
leading logarithmic term in 8(u), and when y= 0
reduces to the integral, studied above, in which the loga-
rithmic factor is not continued,

Q(

I(co,O)= f du u
0 (logu )

(818)

with the contour of integration running along the posi-
tive real axis. When Race&1 and Imago&0, the integra-
tion contour can be deformed to the contour C of Fig. 5,
while when Rico & 1 and Imcu & 0, the contour can be de-
formed to a contour C*, obtained by reflecting C in the
real axis. Once the contour has been deformed to C or
C*, the integral of Eq. (814) converges for any value of
Redo, and we can continue Redo to 2. Since Hermiticity
of a quantum field theory requires that the regulariza-
tion prescription be manifestly real (contour prescriptions
can enter only through Feynman propagators), the limit
as co~2 must be defined as the average of dimensional
continuations to co=2+i@ and to co=2—ie. That is, we
must average the evaluations of Eq. (814) with co=2 on
the contours C and C*, or equivalently, take the real part
of the evaluation on the contour C alone, yielding the
formula given in Eq. (5.56) of the text. The in-
equivalence of the evaluations on C and C* implies that
the analytic continuation of Eq. (814) to Reco& 1 has a
branch cut running along the positive real axis from
co = 1 (space-time dimension two) to Oo.

To study the effect of dimensionally continuing the
logarithmic terms in Eq. (5.55), we note that a momen-
tum space factor logk continues into

1 —co 1 —67 1 —6)=(2—co)up gFi 2, ; +1;up
2—6) 2 —6)

(820)

with the hypergeometric function
c =6+ 1;z) defined by

Fz(i,2b; b + 1;z)= g (n +1)z"
b+n

2Ei (a =2,b;

(821)

The singularities of Eq. (821) are poles at b„= n, co—r-
responding to poles in co at m„given by

1(co~= &2 ~

271 +1
fl +1 (822)

and a cut along the real z axis from z =1 to z = Oo, cor-
responding to a cut along the real co axis from co=2 to
co= oo. Hence there is an infinite accumulation of poles
on the real axis to the left of co=2, and a branch cut on
the real axis to the right of ~=2. As a result, the limit
co~2 cannot be taken along the real axis, and instead
must be defined as the average of limits from above and
below the real axis, giving the real part prescription of'

Eq. (5.56). The fact that co=2 is a branch point is a
direct result of the fact that I(co,2 co) is the sum—of an
infinite number of Feynman diagrams. If the sum in
Eq. (820) is truncated at n =X, corresponding to retain-
ing only contributions to the running coupling constant
through X-loop order, one gets a meromorphic function
of m which is regular at co=2. This is the result expect-
ed from the discussion of the dimensional continuation
of individual Feynman diagrams given in Sec. III.

We must still show that, as co~2 in a real part or
principal value sense, I (co, 2 co) approaches —the leading
term of Eq. (5.56) of the text. To do this, let us again
make the change of variable u =e ", giving

When y is regarded as a parameter independent of co,

Eq. (819) shows that I(co,y) is a ineromorphic function
of co, with poles at co= 1+ny, n =0, 1, . . .. In the limit
as y~O for fixed co, these poles coalesce into a branch
cut running from co=i to co=+ ao, which is just the
analyticity structure of I(co,O) which was inferred from
the discussion following Eq. (814) above. When the
value y=2 —co, corresponding to continuation of the log-
arithm, is substituted into Eq. (819), we get

I(co,2 co)—
2n+1 —co(n+1)

=(2—co) g (n+1)
2n +1 co(—n + 1)

To study the co-plane analyticity of Eq. (817), we expand
the factor (1 —ur) into a power series in ur (since
up & 1, this is permitted for y) 0), and then do the g in-
tegrations assuming R~ & 1, giving

e(co—1)v

I(co,2 pi) =f,du—
10gQ p

1

e (a)—2)v

(2—co)U

(823)

Qp 00

I(co,y)=y f duu "g (n+1)u "i'
n=0

ltd+ 1 —co

=y g (n+1)
=0 ~@+I

(819)

For Reve&1, Imago&0, and v in the first quadrant, we
have

Re[(co—l)U]=Re(co —1)Reu —Im(co —1)Imu &0,
(824)

Re[(co—2)U] =Re[(co—1)U]—Reu &0,
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with F(u, e) given by

'2i'
l6v

F(u, e) =1+0(e'
i

u
i

'),

F(u, e)=
sinh —,

i
eu L

(1, u imaginary . (826)

Since the integral of Eq. (825) is absolutely and uniform-
ly convergent for all e &0, we can take the limit as @~0
inside the integral, giving

I(2,0)= lim Re[I(2+ie, i e)]—
e—+0

logu 0

The result of this rather tedious analysis thus reproduces
the leading, 8=1, term of Eq. (5.56).
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