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The theory of muonic atoms is a complex and highly developed combination of nuclear physics, atomic
physics, and quantum electrodynamics. Perhaps nowhere else in microscopic physics are such diverse
branches so intimately intertwined and yet readily available for precise experimental verification or rejection.
In the present review we summarize and discuss all of the most important components of muonic atom
theory, and show in selected cases how this theory meets experimental measurements.
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Perhaps the most interesting theoretical aspect of
muonic atoms is that their study provides one of the
most highly developed and complete theories of a com-
plex physical system which is amenable to both accurate
calculation and accurate experimental verification. There
are few serious outstanding difficulties in our present
understanding. This has not always been so. Each ad-
vance in experimental technique has opened new ques-
tions which were met with increasingly refined and com-
plicated theoretical calculations. Old effects have had to
be recalculated repeatedly to higher precision, and new
effects have been added periodically to the list of known
contributions. Meaningful calculations require that some
of these effects be recalculated every time comparison is
made with experiment. For other e6ects, such recalcula-
tion is impractical, owing to the complexity of the calcu-
lations, and in experimental comparisons one resorts ei-
ther to published numbers or to semiempirical approxi-
mations to the more laboriously calculated values.

The main intent of the present review is to collect in
one place in logical order all currently available methods,
formulas, and results which are necessary for the accu-
rate calculation of muonic atom energy levels throughout
the periodic table. Where possible, we either derive or
motivate the relevant expressions. Naturally, some omis-
sions must be made. We hope and believe that these
omissions will be unimportant for most cases of interest.
In selected cases we present experimental results which
bear directly upon the validity of the calculations, but we
do not attempt an exhaustive review of the present exper-
imental situation. For this the reader is referred to the
review by Engfer et al. (1974).

A number of excellent books and review articles have
appeared on this subject in the last 15 years (Devons and
Duerdoth, 1968; Wu and Wilets, 1969; Kim, 1971; Bar-
rett, 1974; Hufner et al. , 1977; Scheck, 1977; Hughes and
Wu, 1975), in which a wealth of information is con-
tained. An additional source of information, insight, and
inspiration is the classic paper of Wheeler (1949), which
marked the beginning of the theory of muonic atoms and
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we shall not discuss it here. For more information, see
the reviews by Mukhopadhyay (1977, 1980).

The principal quantities to be calculated for a muonic
atom are the energies and relative rates for various radia-
tive transitions. To our knowledge, no quantitative mea-
surements of Auger transitions exist. In view of the
known difficulties associated with the solution of the re-
lativistic bound-state problem, we depend in practice
upon a Hamiltonian formalism in which each physical
efFect is represented by an efFective potential, to be in-
cluded as desired in the Dirac equation or in a perturba-
tive treatment. The fact that this can be carried out to
sufficient accuracy in a systematic step-by-step manner is
due to a fortuitous combination of coupling constants
and masses. Otherwise one would be faced with solving
an extremely complicated many-body problem with
many degrees of freedom. For example, the fact that the
electromagnetic interaction is much weaker than the
strong interaction implies that the muon will not nor-
mally perturb the nucleus to any significant degree, so
that the nuclear degrees of freedom may be neglected as
a first approximation. The fact that the muon mass is
much smaller than the nuclear mass permits us to regard
the nucleus as a nearly static source of the Coulomb in-
teraction, and to treat the recoil correction as a perturba-
tion.

constants which reduce the dynamic and quantum in-
teractions among the diff'erent constituents to small per-
turbations and allow the approximate isolation of many
degrees of freedom. The time-averaged classical static
interactions determine nearly all of the basic structure of
a muonic atom, as well as a number of less important ef-
fects. This subject will be treated in detail in Sec. II.
Kinematic and dynamic corrections arise both from
translational nuclear (and electronic) motion and from
excitation of the internal degrees of freedom of the nu-
cleus and the atom. These will be treated in Sec. II.G
and II.H. Quantum corrections fall into three classes:
the vacuum polarization, which is the self-energy of the
electromagnetic field due to its coupling to all pairs of
charged particles; the muon self-energy, which arises
from its self-interaction with the electromagnetic field;
and the weak (or anomalous) interactions which couple
the various components of the system. These will be
treated in Sec. III. Naturally, such effects also appear
internally in the nuclear and atomic electron systems, but
we assume that they have been either included
phenomenologically or lost among the other uncertainties
therein.

C. Notation and numerical values

B. Principal kinematics and interactions

We shall begin the construction of our efFective Hamil-
tonian with the three primary constituents of a muonic
atom: the muon, the nucleus, and the atomic electrons,
each of which is assumed to obey a "free" Hamiltonian
in the absence of interactions with the others. Other ob-
jects, such as neighboring atoms, are either of negligible
importance or can be included as minor modifications to
this Hamiltonian. The Inuon Hamiltonian is the free
Dirac Hamiltonian a @+Pm, appropriate for a point
particle of spin —,. The nuclear Hamiltonian H~ appears
in a primarily formal way; although one could imagine it
to be an approximate Hartree-Fock Hamiltonian, for ex-
ample, we regard it here as an operator which produces
the nuclear mass, charge (including electric and magnetic
multipole) distributions, and excitation spectra. We
thereby avoid building into our calculation from the start
the uncertainties associated with any particular nuclear
theory. The Hamiltonian for the atomic electrons could
be treated similarly. However, the confidence with
which present-day atomic Hartree-Fock calculations are
carried out makes it practical to use this approximation
explicitly.

Interactions among these constituents of the system
will be taken in three classes: time-averaged (i.e., static)
classical electromagnetic interactions; kinematic and
dynamic corrections to these; and quantum (including
weak interaction) corrections to both. The fact that this
particular decomposition is useful arises, as mentioned
above, from the combinations of masses and coupling

In general, muon coordinates will be unsubscripted,
nuclear coordinates will carry a first subscript N, and
electron coordinates a first subscript e. Other quantities,
such as energies and quantum numbers, will be dis-
tinguished in the same way if there is any possibility of
confusion.

All formulas will be written in natural units such that
A=c=1. Conventional units may be resurrected with
the aid of the following table of definitions and numeri-
cal values (Kelly et al. , 1980):

Z= nuclear charge
2= nuclear mass number
mc =muon rest mass = 105.65946+0.00024 MeV
Ac/mc =muon Compton wavelength = 1.867 5903

+0.000 0064 fm

m, c = electron rest mass= 0.5110034 +0.0000014
MeV

Ac /m, c =electron Cornpton wavelength =386.15905
+0.0015 fm

~&c2=nuclear rest mass=(931. 5016+0.0026) A MeV
a = fine-structure constant = I/(137.03604+0.000 11)
e = square of electron charge =4ira
Ae = 197.32858+0.000 51 MeV fm

II. CLASSICAL INTERACTIONS
ANO KINEMATICS

A. Dirac equation

The Dirac equation for a muon moving in an external
classical electromagnetic field is (Schiff, 1968)
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[a.(p+eA)+pm E——ep]/=0 .

The use of fully relativistic muon kinematics is dictated
by the required computational accuracy. Even in heli-
um, the muon velocity near the nucleus is
=(2Za/IR~)' =0.2c, while it can be several times this
in heavy nuclei. The electromagnetic potentials A and
tl), which are in principle time dependent, are generated
both by the nucleus and by the atomic electrons. The
former source dominates due to its relative compactness
and hence determines the essential structure of any
muonic atom. The electrons are much less important for
n1ost 1nterest1ng muonic transitions because their orbits
are much larger than those of the muon, and we shall
neglect them until Sec. II.I (except for noting some obvi-
ous parallels to topics under discussion). The muon
mass m appearing in Eq. (1) is formally the mass of tile
free muon. We shall make extensive use of static ap-
proximations for A and P, in which they are replaced by
effective time-independent potentials and I is replaced
by the nonrelativistic reduced mass m, . These approxi-
mations are justified in Sec. II.H.

For computational convenience we shall work almost
entirely in the Coulomb gauge. Although it leads to a
noncovariant formulation, this gauge is useful because it
allows simplifying approximations which are quantita-
tively less severe than similar approximations made in
the Lorentz gauge (Breit and Brown, 1948; Grotch and
Yennie, 1969; Friar, 1977). The main reasons for this
are that the dominant scalar potential P is given in terms
of the instantaneous nuclear (and electron) charge distri-
butions and thus may be formulated simply; and that the
vector potential A, which will be neglected or only ap-
proximated, is smaller" in the sense that it depends only
upon the external transverse current. Although treating
these potentials unequally can lead to spurious eAects in
the completely relativistic regime (Brown and Ravenhall,
1951), such effects are unimportant for many applica-
tions because the sources (nucleus and electrons) are
largely nonrelativistic in the laboratory frame of refer-
ence. We shall generally refer to the scalar potential P as
a Coulomb interaction even though it is generated by a
nonpointlike distribution of charge.

B. Zero-order approximations

which represents a time-averaged electrostatic potential
generated by the nucleus and is intended to provide accu-
rate zero-order solutions for the muon wave functions.
We are free to construct and to interpret this potential as
we wish. In practice, we normally parametrize and ad-
just it to yield fits to measured transition energies. Pre-
cisely what the averaging means is a matter of choice.
Writing ~0) for the nuclear ground state in the absence
of the muon, the customary choice is

Vo(r) = —e (0
~ P ~

0)

where po(r&) = (0
~
p(rz) ~0) is the average nuclear

ground-state charge distribution in the absence of the
muon, normalized to I d rz po(r~) = 1. This choice has
the advantage of eliminating certain diagonal terms in
the dynamic corrections (to be discussed later) and, pro-
vided that the remaining corrections are carried out ap-
propriately, it admits to a straightforward interpretation
of any fitted function po(r). It is well known that po(r)
contains the charge distributions of all particles in the
nucleus folded over their point distributions. Less widely
appreciated is the fact that any fitted po(r) also includes
the folded classical muon charge distribution (if it is not
pointlike), a result obtained from the convolution
theorem and the Dirac equation (1). This is not to be
confused with the QED form factor of the muon arising
from the vertex corrections, which are well defined and
accounted for separately. Equation (2) is then rewritten
as

H~q H~+a p+——pm., + Vo(r)+ Vt,
where Vt ———eP —Vo(r) is the residual muon-nucleus in-
teraction, responsible for polarization effects. Neglecting
Vt (to be treated later as a perturbation) separates the
Hamiltonian into terms containing either muon or nu-
clear operators but not both, so that the eigenstates are
products of muon and nuclear states. Assuming that the
latter are given by other considerations, the problem thus
reduces in this approximation to finding the eigenfunc-
tions and eigenvalues of

H =a p+pm„+ Vo(r) .

Since we want to consider the nuclear degrees of free-
darn as well as those of the muon, we write the total
Hamiltonian of the muon-nucleus system as

H~~ H~+a p+ pm„+ea——.A. —ep,
where, as indicated above, A and P represent the poten-
tials generated by the nucleus and contain both muon
and nuclear operators. H& is the nuclear Hamiltonian in
the absence of the muon.

As a first approximation, we neglect the term ea.A
and separate the muon and nuclear degrees of freedom in
the following manner. We define a static potential Vo(r),

C. Decomposition in spherical coordinates

0 a. 1 0
o 0 ' 0 —1

(6)

The muon Dirac spinor is (McKinley, 1969a)

Solving Eq. (5) is most conveniently handled in spheri-
cal coordinates, by expanding Vo(t') in multipoles, and
constructing a set of basis states using only the monopole
term Vo(r). We use the representation (Schiff, 1968;
Merzbacher, 1970)
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—G«(r) (r
I I~p)

1

1tj„„(r)= —F„„(r) (r
I
—vp)

where the angular spinors
I sp) may be shown to be

eigenstates of the operators 1, o. , j, and j» with
j=l+o/2, so that

1.1IKp) =l(l+1) IKp), cr'cr
I
Icp) =3

I Kp),

]il~p&=j(J+» I
~s & j.I~s &=s

I
~p& .

An explicit construction which exhibits these required
properties is the Pauli spinor

K
G«(r) = — G—„„(r)+[m„+E«Vo(r)]F„„(r)

dr "" r
KF«(r) =—F„„(r)+[m„E—„„+Vo(r)]G„,(r) .

dr "" r

(13)

For electronic atoms, it is customary to make the further
approximation Vo(r)= Za—/r and treat the effects of
Gnite nuclear size in perturbation theory. For muonic
atoms, these effects can be estimated from

bE„„=I dr [F„(r)+G„„(r)]Vo(r)+

R~
=R~ [F„„(R~)+G„„(R~)]I dr r Vo(r)+

0 r

+ Ip ljp) 1I, u2(r—)

(rlsp)=
2 & 2 & &p+ 2 I J&p) I@+1/2(r)

[F„„(R~)+G„„(R~)],
10

(14)

One may also show from Eqs. (5)—(7), with the aid of
some commutator algebra and with Vo(r)~ Vo(r) as al-
ready noted, that

—(1+o"1
I

x.p ) =a.
I
~p ),

p

Since j commutes with the total muon Hamiltonian, the
same value of j is associated with both Pauli spinors in
Eq. (7). Two distinct values of I are involved, however.
These may be determined by observing from Eqs. (8) and
(10) that

where we have approximated the nucleus by a uniform
charge distribution of radius R~ and the muon wave
function inside the nucleus by the value of the point-
nucleus solution at the nuclear surface. This latter ap-
proximation was made to eliminate the unphysical singu-
larity in the relativistic point-nucleus wave functions for

1j=—,. For the 1s state in Fe, AF. =116 keV, about 6%
of the point-nucleus binding energy. Considering that
this energy is known experimentally to within about 0.5
keV, it is clear that more accurate calculations are need-
ed.

D. Numerical methods

~=I (1 +1) j(j +1)——,— 1. Eigenvalues

—(1+1), j=l+ —,

j=h ——,

so that ls.
l

=j+—, = 1,2. . . Thus the lower component
of Eq. (7) has associated orbital angular momentum l —1

if K ~ 0 and I + 1 if K &0. Even though the states
I~p ), I

—sp ) thus have opposite parities, the four-
component spinor 1t„„ is an eigenstate of the relativistic
parity operator constructed by combining space inversion
with multiplication by the Dirac matrix P. The parity is
thus determined by the I value associated with the large
component. Note the choice of phase for the
Pauli spinors (9). Use of Clebsch-Gordan coefficients

1 1 1

C(l,p+ —,, —,, + —,
Ij,p) results in no observable differences,

but would lead to different phase factors and coupling
coe6icients later. Another useful identity is

0"I
CT P= —l r —(1+o"1) (12)r2 Br

Solving the differential equations (13) and fmding the
eigenvalues normally involves making an initial guess for
the eigenvalue and then "shooting" by stepwise integra-
tion outward in r from a small radius and inward from a
large radius to a common matching point, where the
mismatch in the wave function is used to improve the
eigenvalue. Since with any reasonable numerical integra-
tion scheme, errors in the starting values at the small
and large radii propagate in the solutions without ampli-
fication, it is not necessary to have high relative accuracy
in these values. Common methods for calculating the
starting values are power series for sma11 r and asymptot-
.ic series for large r. Another method of comparable ac-
curacy is to consider the potential at the starting radii to
be locally constant, so that the required solutions are
spherical Bessel functions of appropriate angular momen-
tum.

One method for improving the eigenvalue is the secant
method

Assembling the above results gives in the usual way
the radial equations which are to be solved where DJ is some suitable measure of the mismatch upon
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and

F; +6; =F0+6,

I dr [F (r)+G (r)]=1 .

(19)

(2O)

The secant method converges almost quadratically, while
the variational method converges quadratically.

2. Solution of the radial Dirac equations

A variety of methods are in current use for the numer-
ical solution of the differential equations. Each has its
advocates; however, the present problem is so simple by
modern standards that almost any respectable method
will work. The primary pitfall is instability, which is a
generic term used to describe any phenomenon which
leads to uncontrolled error growth. Thus a method may
have a small truncation error at any given step, but if
successive truncation errors add constructively, the
method will be unstable. The instability may lie in the
original differential equation itself or in the finite-
di6erence approximation used to obtain the numerical
solution. The Dirac equation (13) exhibits the former, as
it generally admits a pair of complementary solutions.
In regions of negative kinetic energy, one of these de-
creases and the other increases at approximately the
same rate. If one attempts to obtain the decreasing solu-
tion numerically, it is inevitable that small components
of the increasing solution will get mixed in through trun-
cation errors. These can eventually dominate and render
meaningless the finite-diAerence solution actually ob-
tained. The usual way around this diAiculty is always to
integrate in the direction in which the desired solution is
either increasing or oscillating. This is always possible
for (13), as no more than two solutions ever exist for the
di6erential equation.

Other instabilities arise from the finite-diAerence ap-
proxirnations themselves. One can eliminate these by us-
ing low-order methods which admit no more than two
solutions (Blatt, 1967). Such extreme measures are not
necessary, however, as good high-order methods are
known in which all extraneous solutions decay in situa-
tions of present interest. Exceptionally stable in this

the jth iteration of the outer and inner wave functions
F„G„and F;,6; at the matching radius, e.g.,

D =F, /6 —F;/6; .

Another method is based upon a variational principle
(Blatt, 1967; Rinker, 1976). If Po is a wave function ob-
tained with the initial eigenvalue guess Eo, then an im-
proved eigenvalue estimate is

E =(QO, HQO) .
With t/ro obtained by shooting, the expectation value
gives Eo plus a contribution from the discontinuity

E =Eo+F)6o —F06

where

respect are the Adams methods (Shampine and Gordon,
1975), which will integrate even rapidly decreasing func-
tions properly if small enough steps are taken. Less effi-
cient are the widely used Runge-Kutta methods, which
are, however, simple to implement and sufficiently accu-
rate and stable. An example of a well known method
which is nearly always unstable is Milne's, which fails
even to integrate oscillating functions properly (Ham-
ming, 1962). Another widely used method which is
stable but asymptotically incorrect and therefore not
recommended is Hamming's method (Hamming, 1959;
Shampine, 1973). In any case, present-day experimental
accuracy dictates that computation must be made in
double precision if a computer with less than 12 decimal
digit accuracy is used.

A considerable literature now exists on the subject.
The reader who is tempted to devise his own method
would be well advised first to consult one of the excellent
introductory texts, such as Shampine and Gordon (1975)
or Hamming (1962).

E. "Model-independent" interpretation

In the earliest analyses, the nucleus was represented by
a static phenomenological charge-distribution function.
The Dirac equation for the muon was then solved, and
parameters such as the nuclear radius were adjusted to fit
measured transition energies. In this way it was first
determined that nuclear radii were approximately 1.2
A' fm rather than 1.4 A' fm as had been believed pre-
viously (Fitch and Rainwater, 1953). More recently, a
number of so-called "model-independent" methods have
been devised to interpret spectra in terms of constraints
upon ground-state nuclear charge distributions, in order
to avoid the unphysical constraints imposed by a specific
assumed functional form for the charge distribution.
Since this is a subject concerned primarily with the
analysis of data rather than the theoretical calculation of
energy levels, we shall only brieQy sketch it here. For
more details, the reader is referred to the reviews of Bar-
rett (1974) and Friar and Negele (1975).

These methods begin with some spherical, trial nuclear
charge distribution po(r&), and then investigate the effect
of an arbitrary variation 5p( r~ ) =p(r~ ) po( r& ). In-
lowest order one obtains

E„,=E +oZ I dr~ r~5p(r~) I dQ~ V„„(r~), (21)

where V„„(r&) is the potential generated by the average
muon charge distribution for the state or transition in
question, and Eo is the energy calculated using po(r~).
It should be emphasized that Eq. (21) is first order and
thus of use only if one starts with a trial distribution
which is already a good approximation to nature. In this
way one obtains a linear integral constraint on p(r~) [or
5p(r~)] for each transition, in terms of calculated and
measured energies Eo and E„. A similar set of con-
straints can be obtained for each cross section o(q) mea-
sured by scattering electrons from the same nucleus. In
general, one finds that the muon-derived constraints are
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very precise but are limited to slowly varying kernel
functions V„„(rtq ) = f d 0& V„,(r~ ), while the electron-
derived constraints are less precise but more rapidly
varying. The two types of measurement are thus com-
plementary. Csiven enough such constraints of sufhcient
accuracy, it would be possible to invert them to obtain a
unique, "measured" charge distribution within reasonable
error limits.

Such a procedure is clearly hopeless when the muonic
data alone are used. It has instead become customary to
express experimental results in terms of a moment-
transformed charge function R~(k) (Ford and Wills,
1969; Barrett, 1970; see also Ford and Rinker, 1973) de-
fined by

3 R (k)
2+@

R (k)

=4~ . «tq r~ e p(rw)0
(22)

V„„(r~)=C +Br' e (23)

so that Eq. (22) becomes an expression of the constraint
(21). With optimal fits, C, B, k, and a all vary from
transition to transition and element to element. In prac-
tice, one optimizes a for a given nucleus and compares
the transformed moment function R (k) to the values
measured for specific values of k. The same approach is
also useful for analyzing isotope and isomer shifts (Ford
and Rinker, 1974). A generalized form for deformed nu-
clei has been given by Wagner et al. (1977). Similar ap-
proaches have been taken to utilize the constraints ob-
tained from electron scattering. If the constraint corre-
sponding to (21) is written

With this definition, R~(k) is the radius of a uniform
distribution with the same expectation value of (r~
e ) as that of the model p(rz) under consideration.
This approach was initiated by Ford and Wills (1969)
and extended by Barrett (1970). Its significance arises
from the fact that the muon potential function for any
state or transition can be parametrized accurately by the
form

and assumptions about unmeasured coefficients. Under
the assumption of electron-muon universality (Rinker
and Wilets, 1973b; Barber et al. , 1979a, 1979b) at the re-
quired level of accuracy, the muonic data can also be in-
cluded with the primary eFect of normalizing the scatter-
ing data more precisely.

The first notable demonstration of the virtues of this
approach occurred in 1973 with the controversy over
whether the charge distribution of Pb had a depression
in its center. Model analyses (Heisenberg et al. , 1969) of
available electron scattering data and muonic atom tran-
sition energies indicated a depression, in serious contra-
diction to a number of theoretical calculations which
displayed the opposite. The issue was finally resolved by
an analysis along the above lines (Friar and Negele,
1973a), which showed that although a depression was
consistent with the data, charge distributions with in-
creased density near the origin were, too. These authors
also showed that if the overall normalization of the mea-
sured electron scattering cross sections were in error by
2 —3%, reasonable agreement with theoretical calcula-
tions could be obtained (see also Barrett, 1974; Friar and
Negele, 1975).

F. Corrections for static nuclear moments

In addition to the extended electric monopole charge
distribution, the nucleus may possess nonzero magnetic
and electric multipole moments in its ground or excited
states. The former may be treated with the previously
neglected vector potential A, while the latter are
represented by higher-order multipoles in the expansion
of Vo(r) or its generalization for excited nuclear states.
In cases where these moments are small, they merely
split the muon energy levels. To describe this splitting,
we need to construct a muon-nucleus basis coupled in
angular momentum. Denoting the nuclear states by
~IM), we have

(26)

5cr(q)=Z I d re 5p(r~)fq(r&),

then an expansion

(24)

i
~IAA ) = ( xp,IM

i

~IAA )
f
~p ) i

IM ), (27)

We couple these to the Pauli spinors
~
t~p) to give total

angular momentum A=j+I and projection Q

p(re)= g aqfq(rx)
q=0

(25)
so that

would yield Z5aq =5o(q) if th. e kernels fq(r~) were
orthonormal. In practice this is not the case, so that
correlations remain among the coefBcients aq no matter
how well the kernels fq(rtq) are approximated. In addi-
tion, practical limitations on momentum transfer in ex-
periments restricts the number of coefficients that can be
determined. Several prescriptions and iterative pro-
cedures have been devised to solve Eqs. (24) and (25)
(Lenz, 1969; Lenz and Rosenfelder, 1971; Friar and
Negele, 1973a; Borysowicz and Hetherington, 1973; Sick,
1973, 1974). For many nuclei the data are now sufficient
to complete the inversion with only modest uncertainties

A.A
i
aIAQ) =A(A+ 1)

i
ttIAQ)

A, i
vIAQ) =0

i
aIAQ) . (28)

(29)

Note that the Clebsch —Gordan series (27) is independent
of the sign of a., since it is j=

~

a.
~

——, which is coupled
to I. Using the shorthand

~
+g) =

~

+trIAfl), the cou-
pled muon-nuclear state is
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1. Electric multipole interactions

%'riting the muon-nucleus interaction as

p(riv )
V(r) = —Za f d r~

rx

the first-order perturbed energy shift due to higher multipoles in p(rz) is

b E„&——(4„~(r),[ V(r) —Vo(r) ]%„~(r))

(30)

Z& g ( 1)I+I+&—i/2 ' [1+( 1)L]
2L, +1

j I A j L
(2j+1)'. j 1

2

X f, dr [I" (r)+G' (r)]&II
I f d "~s(r~) 1'L(~~)".«', +'

I II & f—, «[I" (r)+G.'.(r)]VO(r) .

For the ground state, the monopole term is removed by
cancellation with Vo(r). For excited nuclear states and
L=O, (31) reduces to the so-called "isomer shift. " All of
the odd multipoles are zero.

The energy shift is proportional to a reduced matrix
element of the nuclear charge-density operator p(r&),
customarily reduced via

I L, I
&Illz f d'rue(rx»c(rx)r /r', +'III& I 0 I

=&»
I

Z f d"~p(r+)1'Lo(~+)r'&/r')+'
I
II&

g / L+i (32)

(33)

then the reduced nuclear matrix element in Eq. (31) be-
comes

&I I'IZ f d'r~p(r~)&~(r~)r /r& 'III&

I I I
=ZI3IL, o I 0 I fo «x red &«& pII. (rx)

Equation (31) can be written in terms of the "hyperfine-
structure constants" AL„~,

j I A
b,E„g=Za( —1 )

L=0

These quantities may sometimes be fitted to the mea-
sured energy spectrum. For muon states which do not
significantly penetrate the nucleus, the result is measure-
ment of the nuclear Lth multipole moment (see, e.g., Dey
etal. , 1979). For penetrating muon states, information

where QIL is the Lth multipole moment of nuclear state
I. If the following ansatz is made for the expectation
value of p(r&)

&II
I
p(r&)

I

II &
= g f31L'I'1L, 'M'(rm)prL, '("x)

about the radial distribution of multipole charge is ob-
tained. Using a "model-independent" analysis similar to
the monopole case (Wagner et al. , 1977), this information
can be formulated in terms of integral constraints on the
multipole charge distribution (see Sec. II.E).

2. Magnetic dipole interactions

In addition to even-L electric multipole moments, the
nucleus may possess nonzero magnetic moments for odd
L. We restrict consideration to L = 1 because of the
complicated nature of the higher-order terms and the
fact that they are quite small when compared to the in-
herent uncertainties in evaluating the I =1 contributions.
The Ml hfs may be obtained by evaluating ea.A in (1)
in perturbation theory. A nonrelativistic representation
of this operator may be obtained by iterating (1), giving a
Schrodinger-like equation for each spinor component
with a perturbation to order A

A-p+
7tlp 2&1~

cr V~A. (36)

Following convention, we write the magnetization in terms
of the nuclear Bohr magneton e/2Mp, with the proton mass
Mp 938 2796 MeV, whose units require e =a and not
e =4m' as used elsewhere in the present work.

The first term is the muon orbital interaction and the
second the muon spin-nuclear moment interaction. Al-
though one may proceed with a general nonrelativistic
reduction to evaluate these terms, the algebra is simpler
if one evaluates a A relativistically. The 6rst-order ener-

gy shift is given by

bE„~= &ng
I

ea.A
I
ng&

=2ie f dr F„(r)G„„(r)&g
I

o.A
I

—g&, (37)

where we have used &
—gln. A

I
g&= —&g I

o"Al —g&.
Assuming that the nuclear magnetization in state II&
is given by the distribution g (e/2M& )Ip(rz )
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[f d rN p(rz)=1], the dipole approximation gives

g~, IX(r—r~)
eA(r)= f d r~p(r~)

2M~ /r —r~
f

so that

ga 4mea A.= —
3

I o Xr dr~ r~p(r~) .
2M~ y3

(39)

%'irking out the angular momentum algebra eventually
yields the formula

FIG. 3. Nuclear-polarization correction.

bE„„=, [A(A+1) I(I +1—) j(j +—1)]
2M'

oo

X dr r F„(r)G„(r) drN r~p(r~ ) .
0 0

(40)

The form-factor integral is similar to that for an electric
moment, except of course, that there is no term
representing work done against the field in moving a
probe inside the distribution. Equation (40} is valid for
all muon states. Although it is not immediately obvious,
it includes both the r orbital terms and the Fermi con-
tact interaction. For the ls state, for example, it works
out in the point-nucleus limit to be

(2m„Za) 3
b E„= — [A(A+1) I(I +1)——,—],

(41)

which reduces to the correct nonrelativistic value in the
limit y=(1 —Z a )'~ ~l. It might perhaps be noted
that the point-nucleus expression diverges for y ~ —,

(Z) 118).
The above analysis does not take into account ~ass

corrections to the hyperfine structure, which arise from
Thomas precession and are of order (gz —2)m (AM&)
Although negligible for heavy elements, these can be im-
portant for states with 1+0 in light muonic atoms
(Boric, 1976b).

G. intrinsic nuclear dynamics

Next we discuss sects arising from the internal de-
grees of freedom of the nucleus. These effects are gen-
erally referred to by two names: nuclear polarization and
dynamic hyperfine structure. The first term is used to
describe e6ects which are calculated in first- or second-
order perturbation theory (see Fig. 3), leading to shifts in
energy (and transition rates) of the muon states. The
second describes those which split the coupled muon-
nuclear levels into various components and must be cal-
culated to all orders, e.g., by means of matrix diagonali-
zation. Nuclear polarization efFects were considered in
the earliest analyses of muonic atom data (Cooper and
Henley, 1953; Fitch and Rainwater, 1953). Estimates of
these sects were necessarily crude due to lack of de-

tailed information about nuclear excitation spectra, as
well as the inadequacy of analytic computational ap-
proaches. More sophisticated calculations were carried
out by Cole (1969) using better nuclear models. These
calculations, however had the drawback that they
depended upon closure over the intermediate muon
states. The first truly accurate calculations, which elim-
inated the dependence upon closure, were made in the
important papers of Chen (1970a) and of Skardhamar
(1970) for muonic lead. Significant refinements have
been made in calculations since that time; however, the
fundamental approach and ideas have not been altered
substantially. Dynamic hyperfine structure was first con-
sidered by Wilets (1954) and by Jacobsohn (1954). These
classic papers set forth all of the basic physical ideas ex-
ploited in subsequent work, even though the actual cal-
culations carried out were necessarily limited to simple
rotational nuclear models. Nuclear-polarization effects
were first combined with dynamic hyperfinc-structure
calculations by Chen (1970b). It is this generalized ap-
proach which we shall follow in the present treatment, as
adopted and extended by Rinker (1976) and Rinker and
Speth (1978a). Similar approaches have been used by
McLoughlin et al. (1976) and Vogel and Akylas (1977).

1. Formal description

with

~a&= ga; ~i&,
i=]

(43)

The problem may be described formally by writing the
Schrodinger equation for the muon-nucleus system as

(Hp+ Vp E, )
~

a ) =0, —

where
~

a) represents the complete muon-nucleus state.
Hp+ Vp is the zero-order Hamiltonian in Eq. (4). We
may assume in addition that the muonic part of Hp also
includes all of the small corrections not involving nuclear
excitations or static moments, e.g. , quantum electro-
dynamic (QED} corrections; we need note only that all of
these corrections known at present may be represented
adequately by effective potentials in the muon coordi-
nates, so that the appropriate matrix elements may be
computed as needed. The eigenvalue to be found is E~.
The complete state is expanded in eigenfunctions of H0..
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(Ho —e;) Ii)=0. (44) with

Our main task is to determine the coeNcients a;. We
shall follow a program in which all of these coeKcients
are determined implicitly at least to first order in Vz,
and some are determined explicitly to all orders.

To carry this out, we first de6ne projection operators
into a model space s and its complement as

P. = & Is &&s
I Q, =

p=1 q =s+1
(45)

The model space is assumed to include all those states
which are expected to have large coeAicients a;, so that
treatment to all orders in Vz is necessary. Inserting
1=P,+Q, into Eq. (42) and using standard projection
operator properties, one obtains

(Ho E, +P—,Vp)P,
I

a )+P, VpQ,
I
a ) =0,

Q, Ia)= —(Ho E, ) 'Q, vp—Ia),
which may be combined to yield the exact result

P, I (Ho E, + Vt )P, —
I
a ) —Vt (Ho E, ) 'Q,—VI,

I
a ) I =0 .

A�v——

pq�=s a q

(54)

&p I V, I~&&~
I v, Is' &

p,p'=1 q =s+1 Ea —q
(55)

If s= 1, this is just the standard second-order nuclear po-
larization energy shift, whereas if s & 1, it is a nuclear po-
larization correction to the hyperfine structure. If the
states in s were exactly degenerate, we would simply be
dealing with degenerate perturbation theory. Clearly, we
could continue the above development to higher orders,
but as a practical matter this is pointless, since one can
always choose a model space which insures that the
neglected higher-order corrections are smaller than the
other uncertainties in the calcuulation.

The infinite sum appearing in Eq. (55) can be evaluat-
ed in closed form. We first note that

To the order of accuracy so far retained, one may treat
6 Vz formally as a first-order perturbation upon the
lowest-order "model space" solutions, so that the result-
ing energy shift is

(48)
" (i IV, Ip)It&

E, —E;
(56)

This provides the framework for a sequence of approxi-
mations which are of successively higher order in the
quantity Q, I

a ), which must be small if the procedure is
to be useful. It should be noted that the inverse operator
(Ho —E, )

' always exists in Eq. (48), since

(p
I

v (50)

The lowest-order approximation to Eq. (48) which is
of interest consists of neglecting the term involving Q, .
If the model space s is chosen to include only one state,
the result is the simple static approximation in which no
nuclear excitation occurs. If s~ 1, the problem may be
solved by a straightforward finite-dimensional matrix di-
agonalization.

The next level of approximation is obtained by adding
P,

I
a ) to Eq. (47) to get

I

a ) =P,
I
a & (Ho E. ) 'Q, Vp—

I

a &— (51)

and then neglecting the second term, so that Eq. (48) be-
comes approximately

P, I (Ho Ea+ Vr) Vp(Ho E—a ) Qs —Vp I Ps
I
a & =0—

(52)

This is of the form

P, (Ho E.+ V~+aVP)P,
I
a—& =0,

(Ho Ea) 'Qs= —g (eq —E. ) 'I&&&&
I

q =s+1

and in the situation under discussion, E, is never one of
the E~. The requirement that Q, I

a ) be small is satisfied
if for all p, q

is essentially the standard first-order perturbation of the
state Ip) due to Vp. This function satisfies (Dalgarno
and Lewis, 1955; Schiff, 1968)

(Ho E, )
I ~p & +—( Vt —

&p I
Vt

I p & )
I p & =o . (57)

Rather than attempting to construct Eqs. (55) or (56)
term by term, we may solve Eq. (57) directly and use the
result in (55) to calculate the energy correction, with the
first s terms in the sum over i in (56) removed explicitly.
The only differences between (56) and (57) and normal
perturbation theory is that E,+ez. Here E, represents
any of the s eigenvalues obtained from a diagonalization
of the model space. The result is that Eq. (57) is to be
solved s times, once for each combination of basis func-
tion and eigenvalue.

A further approximation may be made which saves
considerable computational labor. Rather than solve Eq.
(57) s times for every basis function Ip ), we may instead
choose some average energy (E) and solve it only once,
so that (57) need be solved only s times altogether. This
approach introduces ambiguities into the procedure, but
the size of the additional errors may be checked by com-
paring results for difFerent choices of (E). These errors
are of relative order ((E) E,)l(c~ —E~). Tw—o choices
for (E) which have been used in previous work are (1)
to make a single average over the entire subspace (Chen,
1970b; Vogel and Akylas, 1977), or (2) to set (E)=e~
for the calculation of each

I
hp) (McLoughhn et al. ,

1976; Rinker and Speth, 1978a). The former gives a
more consistent treatment of the oA'-diagonal corrections
and retains the hermiticity of the perturbation matrix
{54). The latter gives a more accurate treatment of the
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diagonal corrections for states which are dominated by a
single coefficient a; but loses hermiticity for the off-
diagonal corrections. Which choice (if either) is ap-
propriate depends more upon the details of an individual
calculation than on any overall principle. With any such
choice, it is not necessary to have the eigenvalues E, in
order to compute the corrections, so that one may just as
well construct iI(, Vp first and then diagonalize the "renor-
malized" interaction Vz + 6Vp, so that the resulting
eigenvalues and eigenvectors include the corrections of
Eqs. (55) and (56). To the order of accuracy consistently
retained, this is equivalent to using (55) explicitly, but is
computationally more convenient. This procedure has
been used in all calculations to date.

—gg(r)
I

g')

fg (r)
I

——g')
T

(58)

necessary to project out and sum explicitly over all but
the muon radial coordinate. Such a treatment avoids the
complexities of solving partial differential equations nu-
merically. In addition, it allows one to treat the nucleus
semiempirically rather than through some approximate
model Hamiltonian.

The initial muon-nuclear spinor lp) is given by Eq.
(29). The general first-order correction is

2. Explicit formulas

Although Eq. (57) can be regarded as a differential
equation in any desired coordinates, in practice it is

with g~ (r) and f~ (r) to be determined. These functions
satisfy the inhomogeneous differential equations

K
g~ (r) = — g~ (—r)+ [m„Vo(r)+—E„~ EN r +E—N r]f~ (r) —V~r (r)F„„(r),(I.)

dr~ r
Kfr (r) = fr (r)—+ [m„+ Vo(r) E„r+E—N ~ EN ~]g~ (—r)+ V~~ (r)G„(r),(I ) (59)

where

v( )(L) (g I

v(L)( )rl g ) z~( 1)I+h+J +J+(/2 [1+( )1
+(L+(]

1/2
4m.(2J'+1)(2j'+1) l I A

2L, +1 I' J' L
J L J

&~~ &no2'2
&«I

I I I d'rN p(rN)~L(rN)r & I r)+'III'& (60)

is a reduced nuclear multipole matrix element, sometimes also referred to as a transition potential. To complete the
calculation we need the interaction matrix elements

(n
I

V~~'(r)
I

n') = dr V~~'(r)[F„„(r)F„„(r)+G„„G„„(r)].
0

Second-order perturbed energy shifts are given by

4E„g gb, E„~~ = g——I dr V&&''(r)[F„(r)f&.r +G„„(r)g&,(r)] .

(61)

(62)

The only numerical subtlety involved arises in solving
the imhomogeneous equations (59). These have three
solutions in general: two for the homogeneous parts and
a third for the complete equations. Unless E„r—E& ~ + E& ~ is an eigenvalue of the homogeneous
equations, only the third will be finite at both r=0 and
ao. One can solve these equations by shooting and ex-
tracting the unwanted contributions by imposing boun-
dary conditions. However, unwanted rapidly growing
solutions exist for both directions of integration in the
general case, so that such extraction can fail unless ex-
tremely high numerical precision is used. An alternate
method is to rewrite Eqs. (59) explicitly as low-order
difference equations (Rinker, 1976) and reassemble them

I

as a large but finite set of simultaneous algebraic equa-
tions for the function values f; =f (r =ih), etc. , with the
necessary boundary conditions built into the equations.
The result is a band matrix which may be inverted by
standard techniques. Both methods have drawbacks. If
E„~—E&~ + E&~ is far from any eigenvalue, the insta-
bility in the shooting method may make it impossible to
extract the desired perturbation. If E„~—E& & + E& &

is
close to an eigenvalue or the perturbation is very small,
truncation error in the low-order band matrix technique
may render the result meaningless, particularly if terms
must be removed explicitly to obtain the restricted sum
in Eqs. (54) or (55). The first problem is solved by com-
puting in multiple precision, while the second is solved
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by decreasing the radial increment h. Both require in-
creases in computation time and storage, although the
band matrix technique has usually proved easier in prac-
tice to adapt to diAicult problems. Improvement may
sometimes be obtained by scaling the perturbation by an
overall multiplicative factor greater than 1 before solving
(59) and then rescaling the final answer appropriately
downward, noting that the perturbative energy shifts are
quadratic in the scale of the perturbation.

At this point the physical problem has been reduced to
specifying the nuclear-transition potentials and excitation
energies appearing in Eqs. (59)—(61). In addition, one
needs to take care of the substantial bookkeeping details
involved in solving equations such as (53) and (54), as
well as finding numerical solutions to (59). Several com-
puter codes exist to solve this problem for various special
cases (Chen, 1970a, 1970b; McLoughlin et al. , 1976;
Vogel and Akylas, 1977; Rinker, 1979). At least one of
these (Rinker, 1979) has been published in general form
so that arbitrary nuclear models may be incorporated.

The connection of the transition potential to static nu-
I

(I Z f d'r ap(r a) Za( Pa)r/r, ,+' I')
[(2I+ 1)B(EL;I~I')]'~ Ir +' .

r~oo
(63)

For many transitions of interest, this quantity is known
experimentally and can be used to normalize the transi-
tion potential (Chen, 1970a), assuming that its sign and
radial form factor have been obtained from a theoretical
model or inelastic electron scattering. For other transi-
tions and for systematics of the nuclear spectrum in gen-
eral, however, one must resort to completely theoretical
calculations.

3. Radiative transition rates

Radiative transition rates for electric multipole transi-
tions between two states

I
a ) and

I
b ) are given in the

long-wavelenth approximation by

clear multipole moments was given for the diagonal case
in Eq. (32). For nuclear transitions, we have

00 L+1T( ba)= Q (Z —Ea) +
a (a Z f d ra rNZl (ra)p(ta)+r Y ( )ab)r(2A. +1), , ' I. [(2L +1)!!]'

If
I
a ) and

I
b ) are defined by

S S

I
& & = 2&

I J I A. II. &
I
I & = 2 bk IIkIkA»b &,

i=1 k=1

then the reduced matrix elements may be expressed in terms of basis-state matrix elements,

Jl~ Z d I'&I'&~L ~& P rW +I ~L r Ik&b
k

(64)

(65)

r

I; A, j;=(—() [(2A +))[2AI + ()] ( \) '
A I I '(I; Z f d rrrrNZL(pa)p(ra) Ik)AAA

, +r+~, j
+(—1) ' ' ' 'A, „L &i III'~(r)lilk')~I I„fo d" r [G (r)Gk(r)+F (r')I'k(r)] (66)

Both the nuclear and muon matrix elements appearing in (66) may be computed from quantities already involved in
the hfs calculation.

4. Examples

a. General case of nuclear polarization

Detailed information about the nuclear excitation spec-
trum is known experimentally in only a few cases with
sufhcient completeness to carry out a reliable calculation.
Even in these cases theoretical effort is required to fill in
the gaps in experimental knowledge. It i.s therefore
desirable to have a simple treatment based upon general
considerations. Because the polarization energy shift is
represented by a complete sum over the nuclear spec-
trum, one can hope to make use of the sum rules which
express related sums in terms of ground-state expectation
values. %'e illustrate this point with the following exam-
ple (Rinker and Speth, 1978b). Consider the monopole
part of the residual interaction, and consider only those

1

terms in the sum (55) in which the muon remains in its
initial state. Then the required matrix elements are

(n
I

Vrr'(r)
I

n') = Za I d—r~(IO
I p(r]v) I

I'0)

X I drr&'[F„„(r)+G„„(r)].

(67)

The second integral is just the muon-generated monopole
potential, parametrized by Ford and Wills (1969) in the
form C+Br~ (see Sec. II.E). The constant term does
not contribute because of the orthogonality of the nuclear
wave functions, so the energy shift becomes

~Eng=(z~) B g [E'~,I Ex,i]—
I'+I

&
I

&IOI I d'r]vr]vp(r]v) II'0& I'.
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This is a sum over only the nuclear excitations, and in
principle can be evaluated in closed form in terms of
ground-state expectation values of the operator r'". This
is, unfortunately, difficult to do reliably. In his analysis,
Chen (1970a) replaced a corresponding energy denomina-
tor by an average value and removed it from the sum.
The result in that case is

where a~,~(L) is the nuclear polarizability

~p i«)=, g«x, f E—~,o) 'B«L o f)
(2L +1)

2

dE+Ex' ~«Ew) .
0

bE„g—(Za ) B (E~ I E~—I )

)& (IO
~ fd r~ d r~r~r~p(r~, r~)

~
IO) . (69)

(73)

The second line is an alternate form written in terms of
the photoabsorption cross section

k=
2M

(IO
I fd'&~ &x p(rw )

I
IO& .

P
(70)

With the same average replacement of the excitation en-
ergies, the polarization shift is

hE„g (Za, ) B (E——N I E~ g ) S—. (71)

Since S depends only upon the ground-state expectation
value of a one-body operator, it can be evaluated much
more reliably. The price paid is a further departure from
the energy weighting of interest. This departure would
be unimportant if the nuclear excitations for a given
multipole were strongly peaked about one particular en-

ergy. However, this is often not the case.
The above discussion illustrates the connection be-

tween nuclear-polarization energy shifts and sum rules.
Things are more complicated in general because the ex-
cited muon states must be taken into account, introduc-
ing a complicated interdependence of solutions to Eqs.
(59)—(62) with explicit nuclear models for transition en-

ergies, strengths, and form factors. Because of these dif-
ficulties, Ericson and Hufner (1972) restricted considera-
tion to high-lying muon (more generally, exotic particle)
states and showed that the nuclear polarization energy
shift of a level nl due to excitations of multipolarity
L+0 is

To evaluate the integral, one needs to know two-body
correlations in the ground-state nuclear wave function.
At the present time, no microscopic nuclear theory can
produce such quantities reliably.

A sum which is simpler to evaluate (in the absence of
momentum and isospin-dependent nuclear forces) is ener-

gy weighted,

S= g [Ew,r Ex,s] ~

(I—O
~ f d r~ rap(rx) I

I'0)
~

(L +1)EP
o (L,E~ ) = (2~) a

L [(2L + 1)!!] dE&

Equation (72) was obtained from classical arguments for
I. =1 and from nonrelativistic quantum arguments for
L, &1 using closure over the intermediate muon states,
neglecting muonic excitation energies. It assumes the
asymptotic form (63) for the transition potential (60) and
this is valid only for states with / & L ~ 0, so that the ex-
pectation value in (72) does not diverge as R&~0. The
principal physical restriction is that muon excitation en-
ergies be small compared to nuclear excitation energies.
This condition is usually fulfilled for states with /&L,
but it can also hold in other cases [for example, / =L = 1

in light muonic atoms (Z (20), where L =1 is the dom-
inant contribution]. In such cases the muon orbit lies al-
most entirely outside the nucleus. For most states of in-
terest for tests of QED (see Sects. III.D.1 and III.D.2)
this condition is fulfilled, and (70)—(72) can be used to
give a reliable estimate of the nuclear-polarization correc-
tion. Similar formulas may be derived for I. =0 and
L ~ I, but these are quite inaccurate due to the short
range of the transition potential compared to the varia-
tion in the muon wave functions. This situation intro-
duces large errors in the closure and nonrelativistic ap-
proximations.

If the nuclear excitations for a given multipolarity L,

and isospin projection ~ are concentrated about some
average resonant energy (E~(Lr) ), one may make use of
the energy-weighted sum rules

S)(L,r) =g (E~f E~ p)B(ELr;O—~f)
f
L(2L+1) Z

( ~1. q~
Z

bE„iI = — ap„(L)(r— )„i,ll 2 Po (72)
to obtain the explicit formula

6a(Za) m 1 Z m

(E„(I.0) )
r

(n +/)! I (2/ 2I )! 2Z(xmR~

n (n —/ —1)![(2/+1)!] 2L +1 n

2I —1

(76)

We have used nonrelativistic point-nucleus muon wave functions and kept only the leading term in an expansion in
powers of the nuclear radius R~ ——(5(r&) l3)', where we have concentrated the transition charge density. This is a
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minor improvement over Eq. (72), which concentrates the transition charge density at the origin; however, the re-
striction I ~L, ~0 is still assumed in carrying out the integrals. This expansion is accurate for values of the parameter
(2ZamRN/n)(1. In general, L =1 excitations dominate for cases in which Eq. (76) is valid, in which case it takes
the especially simple form

2
4ma(Za) m X m (n + l)!(2l —2)!

M 2 (E (11)) ( I 1}.[(2I+1).]' '
(77)

These formulas can be quite accurate. For example, (77) gives —4.9 eV for the 4f states in lead, whereas a numeri-
cal calculation gives —5.0 and —4.6 eV for the 4f5&2 and 4f7/2 states, respectively. They can also be applied to other
exotic atoms for states in which the strong interaction can be neglected.

A further attempt at a general formulation was made by Rinker and Speth (1978b). Rather than avoid completely
the details of nuclear excitations, they constructed a semiempirical nuclear model intended to approximate the energies
and form factors of giant multipole resonances throughout the periodic table, as well as to satisfy identically the
energy-weighted sum rules (75) and the corresponding sum for L =0
~l(0r) g (+N f +No)

I
&0

I I
d'&~ &spiv«~)

I If &
If

2Z 2 Z
l

X
(78)

These sums wee concentrated in a single resonant state for each (Lr), with excitation energies

[100(1—r)+200&](1—A '~ )A '~, L =0
(E~(Lr)) = 95(1—A '

)A ', L =1
[75(1—r)+160'](1—A ' ')A '~', L &2

(79)

Energy shifts were obtained by solving Eqs. (59)—(62)
numerically, using simple analytic forms for the nuclear
form factors. Thus important errors in the closure and
nonrelativistic approximations were eliminated. These
shifts are plotted in Fig. 4. Values for states not shown
may be obtained by extrapolating the results of Fig. 4,
noting that the energy shift varies with n for constant I
mainly through the overall normalization of the muon
wave functions, i.e., n

The values in Fig. 4 agree essentially by construction
with more detailed calculations for Pb and are thus
probably reliable for other heavy nuclei as well, so long
as deformation (hfs) effects are either negligible or other-
wise accounted for. For light nuclei, however, additional
caution must be exercised. Here, the energy-weighted
sums (75) are exceeded experimentally by as much as a
factor of two (Ahrens et al. , 1975, 1976). Although the
model depends upon these sums, this fact does not imply
that the results in Fig. 4 are in error by the same factor.
More to the point is the ratio of the model polarizability
for the dominant multipole I. = 1,~=1

ap, I
' '(1)= —,SmaSi(11)j(E~(11)) (80)

to the measured value of the polarizability (73). This ra-
tio is 1.0+0.2 for all nuclei measured by Ahrens et al.
(1975,1976) except for Ca, where it is 0.7. The reason
that the energy-weighted sums diAer by larger factors is
that the excess transition strength comes at high excita-
tion energies, where they are exaggerated in Eq. (75) rela-
tive to the polarizability sum (73).

b. kelium

The first nuclear-polarization calculation for muonic
helium was carried out by Joachain (1961) for the 2si&2
state using the nonrelativistic closure approximation for
the sum over excited muon states, as later exploited by
Ericson and Hufner (1972). This calculation used experi-

I I I I I I

10.0 20.0 30.0 40.0 50.0 60.0 TO.O 80.0 90.0
z

FICx. 4. Nuclear-polarization binding energy shifts (Rinker
and Speth, 1978b).
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mental information to provide bounds on the nuclear
matrix elements. For the ns state and L+0, we may
write in analogy to Eq. (72)

r 3
2ZQPlR~

AE„,I ————
2 t1

(2L +1)
(2L +3)(2L —1)

XR~ ap, t(L) . (81)

LLI

CD
M

FICx. 5. Wave-function perturbations due to nuclear polariza-
tion for He {Rinker, 1976). 6 is the unperturbed 2s&~& wave
function {scaled smaller as shown), g is a typical first-order
p&q2 perturbation, and A is the perturbation calculated in the
closure approximation {82).

We have approximated the muon wave function by its
nonrelativistic point-nucleus value at the origin and con-
centrated the transition charge density in Eq. (60) at the
nuclear surface with radius R&.

The dominant multipole for very light nuclei is I. =1.
Inserting the measured value for He a~~-0.073 fm into
Eq. (81) gives 10 meV for the 2s~~2 state. As discussed
following Eq. (74), however, this procedure is not really
justified for 1 =0. The energy shift diverges as R~ as
R&~0 and so is quite sensitive to this parameter. In
addition, the L-dependent terms in Eqs. (73) and (74)
show an enhancement of higher multipoles, so that the
dipole approximation is not necessarily sufficient even if
it dominates the photoabsorption cross section. Finally,
the closure approximation itself greatly limits the accura-
cy of such a calculation. Nonrelativistically, this approx-
imation amounts to representing the true solutions of Eq.
(59) by

gg (r) = —&gg'(i )G,„(i')l(F~ g F~,g), —

fg (r)=0 .

The consequences of this are shown in Fig. 5 for a typi-
cal perturbation with I =1. It is clear that the result is
very poor in just the region where the integrand in (62) is
large.

An improved analysis for l =0 along the same lines,
but which avoids explicit use of the closure approxima-
tion and is convergent as R~~O, has been given by Er-
icson (1981).

More detailed calculations have since been carried out.
Bernabeau and Jarlskog (1974) used a covariant formula-
tion with the full electromagnetic interaction constrained,
where possible, by measured structure factors. The
muon states were also treated properly, except that the
spatial variation of the initial muon wave function was
neglected. The result was AE = —3.1 meV for the 2s&&2

state in He. Henley et aL (1976) computed and correct-
ed the closure approximation rather than the main result
directly. Such an approach would be particularly useful
if corrections to the closure approximation were small;
however, that turns out not to be the case here, as is seen
from Fig. 5. As a result, the corrections were diAicult to
calculate accurately. In addition, the polarizability sum
o. 2 for the model used was too large by a substantial
margin, aff'ecting the results adversely (Bernabeau and
Jarlskog, 1976; Rinker, 1976). Rinker (1976) followed
the methods outlined in Sec. II.G.2, using transition po-
tentials normalized by the measured photoabsorption
cross sections o(L,E) and .simple semiempirical radial
form factors. Results for the 2s state were —4.9 meV for
He and —3.1 meV for He, of which 60% and 80%,

respectively, arose from dipole excitations. These results
were in agreement with Bernabeau and Jarlskog. In both
cases, uncertainties were estimated to be 10—20%. The
entire subject was then re-examined by Friar (1977) with
general agreement as to the validity of the previously
made approximations.

c. Lead

The other classic simple system which has been the
subject of much study is muonic Pb, particularly the
low-lying states. Because of its size and high atomic
number, nuclear-polarization effects here take on an en-
tirely different character than in helium. The penetra-
tion of the muon wave function into the nuclear interior
substantially increases the importance of monopole exci-
tations and invalidates the approximations which have
proved useful for very light nuclei or for very high-lying
states.

Early estimates were made by Cooper and Henley
(1953), Lakin and Kohn (1954), Nuding (1957), Greiner
(1961), and Greiner and Marschall (1962). All of these
calculations depended upon closure or upon explicit con-
struction of the sums (55) or (56) rather than solution of
Eq. (57), thereby introducing substantial errors in the
treatment of the muon perturbations. The first calcula-
tions which avoided this problem were carried out by
Chen (1970a) and by Skardhamar (1970), both of whom
solved nonrelativistic versions of Eq. (59) and thereby
treated the sum over muon excitations with reasonable
accuracy. Chen actually made two separate calculations.
In one, he used the random-phase approximation to com-
pute the excited nuclear state energies and transition po-
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tentials. In the other, he used closure over the excited
nuclear states and evaluated the resulting non-energy-
weighted sums using shell-model wave functions in a
harmonic oscillator basis. Skardhamar constructed col-
lective, phenomenological excited states with macroscop-
ic transition form factors.

Attention focused upon the correction for the 1s state,
as this was the largest, and it was hoped that by fitting
nuclear charge distribution parameters to measured
higher-lying transitions, one could in some sense measure
the Is polarization energy shift (Anderson et a/. , 1969).
It was almost immediately found that the data suggested
the calculated shifts were too small by as much as
several keV. This seemed remarkable in view of the con-
fidence and agreement with which the theoretical results
were reported. Chen quoted AE &,

———6.0+0.6 keV,
while Skardhamar gave —6.8+2.0 keV. Nevertheless,
the disagreement persisted in further Ineasurements and
analyses (Jenkins et al. , 1971; see also Martin et al. ,
1973; Ford and Rinker, 1973; Kessler et al. , 1975). An
additional attempt was made to calculate the monopole
contribution using nuclear Hartree-Fock wave functions,
both with and without the muon present (Galonska
et a/. , 1973; Faessler et al. , 1975). Although conceptual-
ly straightforward, these calculations were technically
difficult and fundamentally incomplete, including only
rearrangement rather than true polarization eA'ects

(Rinker and Speth, 1978a). Rearrangement effects are
characteristic of Hartree —Pock, which includes only
one-particle —one-hole excitations. Not included are
those terms of order a in the polarization sum in which
both muon and nucleus are excited. Nevertheless, these
calculations provided a useful independent verification
that the results of Chen and Skardhamar were not wrong
by large amounts. In the meantime, peculiarities in the
p3&z —pi~2 splittings were noticed in all lead isotopes
(Ford and Rinker, 1973, 1974). Similar difHculties with
the 3d5~2 —3d3/2 splittings (Anderson et al. , 1969) were
explained by Shakin and Weiss (1973) as resulting from
mixing with the strong 3 state at 2.6 MeV. This state
was later observed and its isomer shift measured in the
muonic spectrum of Pb by Shera et al. (1977), with
good agreement with the predicted theoretical intensity
(Rinker and Speth, 1978a). Further work by the same
group (Hoehn et al. , 1980) produced similar results for
the 2+ state in Pb. It was conjectured (Ford and
Rinker, 1974) and later emphasized (Rinker and Speth,
1978a) that similar mixing with 1 states could alter the
2p splitting to the point of invalidating the earlier empir-
ical conclusions about the size of the ls correction (see
also Abela et al. , 1980). (The 2p3~2-2pi~2 and 2p —ls
energy di6'erences measure nearly the same radial mo-
ment of the nuclear charge distribution and thus provide
a strong internal consistency check. ) It was shown that
the data could be fit at least as well by postulating a shift
in the 2p splitting as by a shift in the 1s binding energy.
The claims by Rinker and Speth were coupled with a
new calculation of the corrections, using the formalism
presented here and highly detailed RPA calculations ad-

justed to reproduce a substantial body of experimental
excitation data. This new calculation, which was essen-
tially similar to Chen's but used relativistic muon
kinematics and a greatly refined nuclear model, gave an
even smaller value for the ls shift ( —3.9 keV). It should
perhaps be noted that the earlier calculations were less
reliable insofar as corrections to the 2p splitting were
concerned because important relativistic eQects on the
muon wave functions were neglected. A subsequent
simultaneous fit to both muonic-atom and electron
scattering data (Yamazaki et al. , 1979) supported the
idea that it was the calculated 2p splitting which was at
fault rather than the 1s energy. However, no appropriate
1 states have been found, and the discrepancy remains
unresolved.

From the earliest days, it was recognized that substan-
tial mixing could occur among the muon levels and those
of strongly deformed rotational nuclei. The first calcula-
tions of these effects were made by Wilets (1954) and by
Jacobsohn (1954), in which the nuclear ground-state rota-
tional band was coupled to the muon 2p levels and diag-
onalized [see the discussion immediately after Eq. (50)].
This procedure was used for a number of years to
analyze the dynamic hyperfine spectra of such muonic
atoms. However, Gtted quadrupole moments tended to
come out too large by a few percent as compared to
those obtained through other experiments, and other irre-
gularities in the spectra were observed. With this as
motivation, Chen (1970b) applied the analysis described
in Eqs. (53)—(57). He found that his numerical results
could roughly be summarized by a renormalization of
the intrinsic quadrupole moment of such a magnitude as
to bring the various experiments into agreement. This
work was later generalized by Vogel and Akylas (1977),
and numerous renormalization coefHcients were comput-
ed. Rotational model energy spectra and transition
charge densities, however, remained firmly embedded in
the analyses.

Additional contributions due to nuclear states outside
the rotational band have been considered by other au-
thors. Martorell and Scheck (1976) used sum rules to es-
timate the eA'ects of dipole polarization. Measurements
and more sophisticated calculations have been carried
out by Yamazaki et al. (1978) for isotopes of samarium
using the general computer code RURP (Rinker, 1979),
which allows states of arbitrary multipolarity, energy,
transition strength, and multipole moment to be used
(see Secs. G. l —3), thus removing the rotational model
restrictions. (See also Powers et al. , 1979; Missimer and
Simons, 1979; Powers, et al. , 1977).

e. Transi t/ onal nuclej

Between the region of strongly deformed rotating nu-
clei (A =150—170) and the heavy spherical nuclei
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(A=208} lies a transition region in which nuclei have
peculiar shapes and are capable of changing fmm prolate
to oblate with little provocation. An analysis in which
the simple rotational model is built in is therefore inap-
propriate, as is an approach based upon a spherical nu-
cleus approximation. For such nuclei it is necessary to
provide the nuclear spectrum as known, preferably, from
experiment. Calculations and experiments have been car-
ried out both with and without the corrections of Eq.
(54). The primary limitation has been that independent
experimental information concerning the spectra is in-
complete, while theoretical predictions are inaccurate or
nonexistent. The result is that, in general, too many
model assumptions are needed to analyze the muonic
atom data by itself, although in certain specific cases the
requirements of internal consistency have pointed out
some real discrepancies. A considerable amount of work
is being done at the present time (see, for example,
Hoehn et al. , 1977; Hoehn et al. , 1981},but further work
is needed, particularly in independent (e.g., inelastic elec-
tron scattering) measurements of nuclear spectra and ex-
citation strengths.

H. Translational nuclear motion

P1
Sm, = AM~,

(m +Mdiv )

so that the change in transition energy is

DE=6m, =Am„E+m„cdE dE

dpi d m„c
Since

dE 2 de.
dc " d(m„c)

(85)

(86)

(87)

we obtain

Am„ E+c
~r dc

(88)

Note that E is negative and dE/dc is positive in realistic
cases, so that the finite-size effect tends to reduce the iso-
tope mass shift from its point-nucleus value.

necessarily enter in a dimensionless combination with r,
i.e., r/c .Then the dimensionless eigenvalues will depend
in general upon the scaled parameter m, c, so that
c, =e(m„c) and E=m„e(m„c). As an example, consider
the shift in energy of a given transition between two iso-
topes of the same element, keeping the nuclear radius
fixed. The change in reduced mass is

Nonrelativistic corrections

The nonrelativistic two-body problem can always be
written in terms of relative and center-of-mass coordi-
nates such that, in the absence of external fields, one of
the objects is regarded as fixed in space (infinitely mas-
sive}, while the other acquires a reduced mass

For two point particles, the binding energies are simply
proportional to the mass of the moving particle, so that
the effect of a less than infinitely massive nucleus is sim-
ply to scale the muon binding energies by a factor
Mlv/(m +M&). If either particle has finite size, howev-
er, a rescaling of the lengths involved must be included
in addition. (It should perhaps be noted that both of
these eAects are included automatically when the
Schrodinger equation is solved numerically using the
muon-reduced mass. ) To see how this length rescaling
arises, consider the radial Schrodinger equation for a par-
ticle of reduced mass m„written in terms of the dimen-
sionless variable x =m„r,

d -P(x)+ v (x)+ 1(1+1)
P(x) =0 .

dX 2X2

(84)

In the above, P(x) is the scaled wave function, and v(x)
and e are the scaled potential and energy V(x/m„)/m„
and E/m„, respectively. The eigenvalues of (84) are pure
numbers, in terms of which dimensioned eigenvalues for
any given problem are obviously E =m„c. However,
suppose V(r) contains a length scale c, which must

2. Relativistic corrections

Relativistically, the center-of-mass motion cannot be
factored out rigorously due to the difFerence in time scale
associated with two particles moving at diFerent,
nonzero velocities (see, e.g., Breit, 1937). For example,
one might imagine a Dirac Hamiltonian for two interact-
ing fermions as

t 1 pl +Plm I +~2 p2+P2m2+ V( 1 r2) (89)

In the Dirac theory, however, Hg=iog/Bt, and it is not
clear what to use for t. The correct wave equation for
the problem is the much more complicated Bethe-
Salpeter equation, which is notoriously diNcult to solve
in practice. Since, for our problem, the nuclear mass is
much greater than the muon mass, it is possible to factor
out the nuclear degrees of freedom systematically from
the wave function and define an approximate Dirac equa-
tion for the muon, evaluating the mass corrections in
powers of m/M&. This we shall do in the scattering ap-
proximation rather than through the Bethe-Salpeter
equation, following the approach of Grotch and Yenme
(1969) and the analyses of Friar and Negele (1973b) and
Barrett et al. (1973). Using a different approach, Gross
(1969) has obtained essentially the same result to order
m/Mlv. See also Fricke (1973).

We First write down the Feynman amplitude for
lowest-order fermion-boson scattering (see Fig. 6 for
kinematical definitions)

S/; = —Ze u(p3)y"u(pi ) 2,&2, (90)
F(q2) p4+p2 1M.

qo —q2+iE (4E2E4)'~
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and qo~O as Mz~oo. Adopting this gauge, we note
the kinematical relations

p3=pi+q
2 2 2 2 2 2E3 ——p3+fP2 =Ei ——PI+tPl

which give

P3 —pi=q (p3+pi)=0.2 2

(96)

P

N

FIG. 6. Kinematics for the recoil correction.

a. q q (pi+p3)
q2 2M&

(98)

This term will be helpful later on, as it makes V,a expli-
citly dependent only upon the transverse muon current.
Thus we have for Vdr(q)

Thus any term proportional to q (p, +p3) may be added
to V,~ without changing the first-order scattering ampli-
tude. In particular, we can add inside the brackets of
Eq. (94) the term

Ze F(q )
Vdr(q) = — 1+ a-

q

a.q (Pi+P3)
q2 2M~

where q =p2 —p4 ——p3 —p ~ is the momentum transferred
to the muon and F(q ) is the nuclear form factor. The
electromagnetic current density of the nucleus is normal-
ized such that

p4 I J& lp2~ inF 'q p4+p2 p.
2 4

(91)

ln more detail, Eq. (90) is

—Z F(q )
f~ (4E E )in

X [Xo(E2+E4) 1' (P2—+P4) lu (pi ) . (92)

E2=M~+p, /2M~

E4—M~+p4/2M~ . (93)

Reverting to the notation y=yoa, using u+(p)=u(p)yo,
and evaluating Eq. (92) to order 1/M& in the CM sys-
tem (p2 ———pi, p4 ———p3), we have

If we regard the nucleus as a slowly moving object, we
have, to a good approximation,

(99)

V,a(q) = —Ze F(q ) F(q) a p
q2

'
2M~

It should be emphasized that the additional term propor-
tional to q. (pi+p3) does not vanish off shell, when

Ei+E3 or E +p +m . Thus iteration of V,fr(q) does
not give the correct second-order scattering. Further-
more, it leads to differences when evaluated in bound-
state perturbation theory. This illustrates a basic ambi-
guity of the scattering approximation. One may make
certain definitions in a given order (in this case to elim-
inate unwanted terms), but these definitions must be kept
track of and evaluated in higher order if necessary. Ac-
counting for these makes the mass corrections some of
the most confusing corrections to evaluate. Nevertheless,
it can be shown (Grotch and Yennie, 1969) that Eq. (99)
gives the total mass correction to order p/M&. For fur-
ther discussion of this point, see the review of Erickson
(1977).

We now need to evaluate Eq. (99) for a bound state in
configuration space. The first manipulation is to move
all momenta pi to the right and all p3 to the left, so that
when evaluated as u+(p3)Vdr(q)u (pi), they can be re-
placed by the operator p. Some algebra gives

Sf; ———u+(p3) 2 F(q ) 1+ u(pi) .

(94)

z F(q )a-p, p,
q

(100)

1 1 —1 9'o
2 2 2 2 29'o —q

(95)

This is of the form u+(p3) V,a-u (pi). &s
V,a~ Ze F(q )/q, which is a—static potential if writ-
ten in the Coulomb gauge q"=(O, q). We are motivated
to use the Coulomb gauge because

The first term is the static Coulomb potential, and the
second comes from the original term a.(pi+p3). The
third arises from the transverse current projection.

We Fourier transform q to configuration space and re-
tain p, which can be evaluated between muon spinors.
This gives
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V,it= V(r)+ I V(r), a pI — [a.p, [p', 1V(r)]]
2MN 2MN

= V(r)+ [EoV(r) —Pm V(r)
1

MN
V'(—r)+ 1V'( r) V'(r)], (101)

where we have anticipated expectation values and written

may be used to rewrite h (r) in the more compact form

h (r) = —V (r) —
2

V'(r) f dr~ r~ V(r&) . (112)

Next, we show that using the reduced mass m„=mM& /
(m +M~) =m (1—m /M~) cancels most of the remain-
ing perturbation. Define

Hog=Eog~ Ho=a P+Pm+ V(r), (102) H„itj= [a .p+ pm„+ V(r)]Q=E„Q, (113)

so that

a.pg= [Eo Pm ——V(r)]Q,

and where

(103)

so that E„Eo———p(m„—m)= —
& p)m IM~. Evaluating

the total energy given by Eq. (107) then yields

2
E = E„+ &p)+ (E,—m')

MN N

and

p(r~)
V(r)= —Za I d rz (104)

&pv(r))+ &h(r)) .
N N

(114)

8'(r)= I d r& p(r
2

Putting V,~ into a two-body Hamiltonian

H =a.p+pm +p /2M~+ V,ff,

(105)

(106)

H =Ho+ (Eo —m ) — PV(r)+ h (r),
2MN MN 2MN

(107}

in which we have treated the nucleus nonrelativistically
and used pN

———p because we are in the center-of-mass
frame, we get

The third and fourth terms may be manipulated to give

Bo Bo &"'"')
N N

(115)

where Bo——m —Eo, and we have used the identities
&P)Eo =m + &PV(r) ) and m &P) =m Bo+ &Pi(r—) ).
The first term in (115) cancels that arising from use of
the reduced mass in H„. The second is state independent
and may thus be discarded, since we are interested only
in computing transition energies. The final result for the
energy shift beyond that due to using the reduced mass is
thus

where

h (r) =2W'(r) V'(r) —V (r), (108)
~E =E —E,= — + & h (r)+2BoPi (r) ) .

Bo 1

2MN 2M„

and we have used &p ) =
& [Eo—V(r)] —m ). The

terms in MN
' will be treated as first-order perturbations.

We first note that the last term is diagonal with
respect to the muon spinors. It may be written in the
form (Friar and Negele, 1973b)

1 1 2 4h(r) = — P, (.)+ P, (r)Q, (r)
2MN 2MN 3T

+ 4 Q2(r)Q4(r)
1

3p'

where

(109)

r
Q„(r)=4m Za dr~ r~p(r~),

0

P„(r)=4mZa I dr~ r~p(r~) . (110)

We see from Eqs. (109) and (110) that h(r) has a long-
range part, behaving as Z a &r~)/3r outside the nu-

cleus. This is evidently a retardation eAect, as it depends
upon the nuclear size. The following identities

Pi(r) = rV'(r) —V(r), Qi—(r) =r V'(r),
r

Q4(r)=r V'(r) 2r V(r)+6 dr~r~—v(r&)
— 0

I

(116)

The bracketed terms vanish for a point nucleus. For a
finite nucleus, they behave as —(Za) &r~)I6M&r out-
side the nuclear charge distribution and thus dominate
the correction to this order for tests of QED in very light
muonic atoms.

The origin of the term —Bo/2M& is essentially
kinematic. It may be derived alternatively using the re-
lativistic generalization of the reduced mass (Todorov,
1973; Pilkuhn, 1979).

The relativistic recoil correction derived above still
does not contain all computationally significant terms.
Salpeter (1952) originally derived additional corrections
by using the Bethe-Salpeter equation; the presence of the
additional terms is associated with the use of hole theory
rather than single-particle theory. The contributions are
of three types: corrections to the exchange of two
Coulomb photons, recoil with transfer of one transverse
photon, and processes with two transverse photons. The
full calculation has been carried out only for point nuclei
and, for s states, only for n =2. For details see Fulton
and Martin (1954) or Grotch and Yennie (1969). The
result is

4(Za) m m (Za) m i 2 i 7 —io2 1 —5 )
hE=

3~n 3 MN 25En
2 ln + I —,in(za} ——„—a„] (117)
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with

n —1

a„=——ln —+1+g —+
2 n '=1 & 2n

(118)

It is easily seen that AE is of order Zm/Mz times the
self-energy correction (171). A calculation for the case of
muonic atoms, including the effects of finite nuc1ear size,
does not exist. The same diAiculties that arise in the cal-
culation of the self-energy correction (Sec. III.B) will

play a role in the calculation of these recoil corrections.

I. Electron screening

where p, (r, ) is the spherically averaged electron density.
It is normalized such that

OO

4m. dr, r,p, (r, ) =number of electrons . (120)

The electron density is usually calculated using a
Hartree-Pock (Mann and Rinker, 1975; von Egidy and
Desclaux, 1978) or Hartree-Fock-Slater approach (Vogel,
1973a). The electron screening correction is either calcu-
lated as a first-order perturbation or taken to be the
diAerence in binding energies computed with and
without the inclusion of V, (r). Since the muon is usually
found much closer to the nucleus than to the electrons
(see Fig. 1), one may assume, as a first approximation,
that it screens one unit of the nuclear charge. The elec-
tronic orbits are then simply the states of a normal atom

Particularly in the case of heavy elements, not all of
the atomic electrons are ejected by Auger transitions dur-
ing the muonic cascade. In addition, unoccupied elec-
tron states can be refilled during the cascade. The
remaining electrons interact with the muon and thus
have an eAect on the binding energy. In principle, this
eAect can be formulated in a manner entirely analogous
to the muon-nucleus interaction. In practice, the static
monopole effect is treated in the same way, but polariza-
tion efFects are treated as rearrangement effects in the
Hartree-Fock approximation. Justification for such a
separation and treatment is similar to that for the nu-
clear polarization: polarization effects are small because
the frequency of muon motion is substantially diFerent
from that of electron (nucleon) motion. In this case,
however, it is the electrons which move much faster,
rather than the muon. The limitation to rearrangement
eAects is probably less significant here than for the nu-
clear polarization due to the decreased importance of ex-
citation of the relatively heavy muon.

The predominant effect is calculated using the addi-
tional static potential V, (r) generated by the average
electron density p, (r, ). Traditionally, one regards the in-
fluence of the electrons as being smallest for the inner or-
bits (this is true in any case for transition energies), and
one therefore subtracts the constant V, (0) from the effec-
tive screening potential. We then have

4~a r
V, (r)= dr, p, (r, )(r, rr, ), —

r

with atomic number Z —1. This approximation is thus
known as the "Z-1 approximation. "

A more sophisticated calculation which includes rear-
rangement effects (Vogel, 1973b; Fricke, 1969a; Fricke
and Telegdi, 1975) treats the muon-electron system self-
consistently [compare to Faessler et al. (1975)]. One uses
a relativistic Hartree-Fock-Slater program and takes into
account the interaction between the muon and the elec-
trons when computing the electron density. In this case
the electron density depends upon the muonic quantum
numbers n, , l, and j. These rearrangement eAects were
estimated by Vogel (1973b) and Fricke and Telegdi
(1975). For states with n ) 8 in heavy elements these ef-
fects are non-negligible. In the states of interest for tests
of @ED the screening correction is reduced slightly with
respect to the Z-1 approximation.

A very simplified treatment (Tauscher et al. , 1978),
which computes p, (r, ) using unperturbed relativistic
wave functions for the electrons in Z-I approximation
for A" electrons, Z-3 approximation for I. electrons, and
so on, gives a screening correction that, for the 5g 4f-
transitions in lead, and other transitions useful in QED
tests, is nearly identical with the results of self-consistent
calculations, provided similar assumptions about the
electron populations are made. A polarization correction
is estimated as in the work of Ericson and Hiifner (1972).
This provides a crude estimate of rearrangement correc-
tions (which of course are automatically included in a
self-consistent calculation). One can expect that the sim-
plified approach mould break down for transitions in-
volving higher principal quantum numbers.

An important source of uncertainty in the calculation
of screening corrections is our lack of knowledge as to
the number of electrons present during the muonic cas-
cade. For heavy elements, such as lead, o~e finds from
energy conservation (Fricke and Telegdi, 1975; Vogel
et ah. , 1977; Vogel, 1973a; see also Vogel, Winther, and
Akylas, 1977) that at least 15 electrons must remain
when the muon has reached a state with n =8. The E
electrons can be ejected by an Auger transition (with
An =1) only when n &7. For such values of n, radiative
transitions dominate. The K electrons are responsible for
over 80%%uo of the effective electron density [i.e., contribu-
tion to p, (r, ) for which r is less than the appropriate
muonic Bohr radius] for all n &14. At least for heavy
elements it is thus extremely probable that all ten K and
L electrons are present during radiative transitions be-
tween states with n (8. These electrons are responsible
for more than 95% of the screening correction. A simi-
lar conclusion was reached by Bovet et al. (1980) in con-
nection with a study of pionic x rays. Recent experimen-
tal results on the electronic L x-ray energies in heavy
muonic atoms (Schneuwly and Vogel, 1980) also indicate
that the inner electronic shells are almost instantaneously
refilled during the muonic cascade.

These estimates have been experimentally tested by
measuring rnuonic x rays corresponding to transitions be-
tween states of higher principal quantum number n; their
energies are most sensitive to electron screening (Vogel
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et al. , 1977; Vuilleumier et al. , 1976). Some typical resu-
lts for Rh, Hg, and Pb are summarized in Table I. The
good agreement between theory and experiment for these
cases confirms that we understand the electron screening
correction to a level of a few percent of the correction, at
least for the transitions under discussion.

In the case of lighter elements (Z &20) the situation is
not so clear. The rates for refilling of electron vacancies
are uncertain, and as a result very little is known about
the electron population. Preliminary results (Ruckstuhl
et al. , 1979) indicate that the electron screening shift of
the 4f 3d tran-sitions in muonic Si is about half of that
expected if all Z-1 electrons were present, so that one K
electron is probably absent.

III. QUANTUM ELECTRODYNAMIC
(OED) CORRECTIONS

Additional contributions to the energy levels of muon-
ic atoms come about as a result of the interaction be-
tween the lepton field and the quantized electromagnetic
field. These include radiative corrections, due to the
emission and/or absorption of real or virtual photons,
and vacuum polarization. As a result of the radiative
corrections, the muon acquires form factors and no
longer behaves precisely as a point Dirac particle (the
anomalous magnetic moment is one experimental conse-
quence). Vacuum polarization results in a modification
of the photon propagator due to virtual pair production
and reannihilation; this leads to a modification of
Coulomb's law at distances small compared to the
electron's Compton wavelength and thus to numerically
important shifts of muonic energy levels. See Sec. III.D
for a detailed discussion of experimental tests; here we
discuss calculational methods.

A. Vacuum polarization

1. Order eZO.

a. e e pairs

The most important QED effect is the virtual produc-
tion and annihilation of a single e+e pair [Fig. 7(b)].
It has as a consequence an effective interaction of order
aZa, which is usually called the Uehling or Serber-
Uehling potential (Uehling, 1935; Serber, 1935). This in-
teraction describes the most important modification of
Coulomb's law. Numerically it is so important that one
cannot treat this eAect using perturbation theory, but
must add the Uehling potential to the nuclear electrostat-
ic potential before solving the Dirac equation in order to
obtain sufficient accuracy. Like most other QED correc-
tions, the Uehling potential is most conveniently derived
using the scattering approximation. The reason for this
is that Feynman diagrams deliver a prescription for com-
puting scattering amplitudes in momentum space, while
the computation of atomic energy levels is usually done
in configuration space using a static potential. The
scattering approximation provides a useful connection be-
tween the two pictures. One writes down the scattering
amplitude corresponding to the diagrams under con-
sideration, and tries to find a potential which reproduces
this scattering amplitude in Born approximation. (When
it exists, the Fourier transform of the scattering ampli-
tude satisfies this requirement). This potential is then
used to compute the energy-level shift.

We recall from the discussion of the recoil correction
that the amplitude for Coulomb scattering of a lepton by
a heavy nucleus is given by

TABLE I. Experimental transition energies E,„p, calculated transition energies E,h, screening
correction E„„all in eV.

Element Transition Eexp Eth Eth Eexp Escr

'03Rh
45

80

208pbb82

8h-5g
7h-5g
6g-4f
Sg4f-
8i-6h
6h l I /2-Sg9/2
6h9/2 Sg7/2
7h»/2-Sg9/2
6h ) )/2-Sg9/2
7h» /2-Sg9/2
7h9/2 Sg7/2
9l I 3/2 6h ) I /2

7& l3/2 6h»/2

138 966{34)
111786(35)
198 697(27)
129 010(33)
219609(32)
221 857(28)
223 418(28)
354 614(34)
233 199(12)
372 724( 16)
374 842( 36)
292 324(27)
140 138(13)

138968(3)
111795(3)
198708(3)
129015(3)
219633(5)
221 876(4)
223 433(4)
354 661(5)
233 196(5)
372 714(5)
374 828(5)
292 304(5)
140 148(5)

2(34)
9(35)

11(27)
5(33)

24(33)
19(29)
15{29)
47{35)

3(13)
—10(17)
—14(36)
—20(27)

10(14)

—189(2)
—98(2)

66(1)
20(1)

—406
—108{2)
—107(2)
—318
—115
—348
—348
—774
—153

'Vuilleumier et al. , 1976. "Vogel et a/. , 1977.

Rev. Mod. Phys. , Vol. 54, No. I, January 1982



88 E. Boric and G. A. Rinker: Energy levels of muonic atoms

We then have

Vvpi(q) =
2 eAo(q) = —4~Za, U, (q) .II(q ) F(q)

g

(125)
(a)
e*

(b)

(c)

+ 0 ~ ~

Sf; ——u(p')y u (p) V,ir(q}(2m) 5 (p' —p —q)

=u+(p')u (p)[ —eAo(q)](2ir) 5 (p' —p —q) .

FKJ. 7. Decomposition of the vacuum-polarization correction.

For numerical applications, it is (perhaps unfortunate-
ly) more convenient to work in configuration space. The
relatively simple expression (125) for the Uehling poten-
tial becomes a rather complicated convolution integral,
which is tedious to compute. The rather considerable
literature which has appeared on the subject of the
evaluation of vacuum polarization has been devoted al-
most exclusively to improved numerical methods which
permit the efficient evaluation of this potential (Fullerton
and Rinker, 1976; Klarsfeld, 1977b; Huang, 1976; Du-
bler, 1978).

From Eqs. (122) and (125) we obtain for the Uehling
potential

(121)

The quantity eAo(q) defined in Eq. (121) can be related
to the scattering potential by means of the relation

eAo(q) = 4~Za —2vr5(E' E)—F(q)
q

Za 3 3 tq .(~—~&) U2 (q)
Vvpi(r) = — d r~ p(re ) d q e

2~2 2

Using Eq. (124} for Uz(q) and

(126)

= Jd r V(r)e 'q'2n5(E' —E) . (122)
eiq r 2~2 —2m rz

4~ 2Z2
(127)

We shall now apply the above result to the derivation
of the Uehling potential. As is well known, the effect of
vacuum polarization is best described as a modification
of the photon propagator (Bjorken and Drell, 1964), as is
illustrated in Fig. 8, so that

q ~q +q II(q )q +. . .

This effect can be described roughly as an order-a
strengthening of the photon propagator, a description
which is sufhcient to estimate its quantitative importance
in many practical cases. To leading order in the fine-
structure constant a, we have (after renormalization)
(Jauch and Rohrlich, 1955; Akhiezer and Berestetskii,
1965)

II(q ) 2a q " 1 1 (z —1)'
dZ 2+qi 3n' 4m,z i z~ 2z z +q /4m,

[—,—(3—5')(1 —P5)]= Up(q) (124)
3m

with 5=cothg, sinh P =q /4m, .
From this we immediately obtain the corresponding

potential Vvpi(q) in momentum space. One simply re-
places q by q II(q ) in Eq. (121), where q =(o,q).

'XJ iJ~ +

FICi. 8. Vacuum-polarization insertion in the photon propaga-
tor.

we obtain

2aZa, P(rtv )
~vp& =- d 7~ Xi(2m,

I

r —r~
I

)
Ir —r~ I

2QZQ
drN rxp(rlv )[X2(2m.

I
r —tv I3m, r

—X2(2m,
I
r+r~

I )],

where the functions X„are defined by
(128)

(
2 1)1/2

X„(x)= f dz —XZ1

2z2
' (129)

(Several other notations for these functions appear in the
literature. )

The direct numerical evaluation of X2 from the in-
tegral representation requires too much computer time
for general use. A series expansion which is valid for
r (m, '=386 fm has been given by McKinley (1969b).
This was used by Vuilleumier et al. (1978) and by Engfer
et al. (1974) for the computation of the vacuum polariza-
tion (VP) corrections which appear in that work. Anoth-
er type of expansion in polynomials and exponential in-
tegrals was given by McKee (1968) and later extended to
higher order (Rinker and Wilets, 1975). Both series are
of comparable accuracy. Rational approximations,
which have been optimized in the Chebychev sense for
minimum computation time consistent with a given
upper bound for the (weighted) error, have been given by
Fullerton and Rinker (1976). Other approximations were

Rev. Mod. Phys. , Vol. 54, No. 'l, January 1982



E. Boric and G. A. Rinker: Energy levels of muonic atoms

given by Huang (1976) and Dubler (1978). In addition,
Klarsfeld (1977b) has exploited the fact that the func-
tions X„(z) can be expressed as linear combinations of the
modified Bessel functions (Abramowitz and Stegun,
1965) Ko(z), Ki(z), and

Ki, (z) = dx Ko(x) dx, Kii(0) =ri /2 . (130)
Z

These functions are frequently available in standard com-
puter program libraries.

A useful approximation which is valid for distances
large compared to the nuclear radius is given by Fuller-
ton and Rinker (1976; see also Blomqvist, 1972),

~vpl(&)= — P i{2m r)+ —,m, ( rx )g i(2m, r)
2cxZcx 2 2 2

3&T

d. Effect on the recoil correctjon

We observe that vacuum polarization also has an eAect
on the relativistic recoil correction discussed in Sec. II.H.
To the extent that the Uehling potential may be regarded
as static (e.g., the virtual electron-positron pairs respond
almost instantaneously to the motion of the nucleus), this
effect may be calculated from Eq. (116), adding the Uehl-
ing potential to the electrostatic potential due to the nu™
clear charge distribution. Vacuum polarization modifies
Bo, Ii (r), and I'{r) appearing in Eq. (116), providing the
usual order-o, strengthening of the photon propagator.
This results in an increase in the recoil correction of the
order of one percent.

+—„m, (r&)X 3(2m, r)+ . . ], (131) e. Hadronic vacuum polarizai ton

where the radial moments of the nuclear charge distribu-
tion are given by

(p~ ) = Jd p~ T~p(r'~) (132)

b. p p pairs

The VP correction due to a virtual p+p pair can be
treated exactly as described above, with the replacement
of the electron mass by the muon mass. Because the
muon mass is much larger, the e6ect is numerically
much smaller, and for practical calculations, the q =0
limit is usually taken in Eq. (124) before transforming to
configuration space. In this limit, the expression is
much simpler; Eqs. (124) and (126) become

U2(q)=, , I'vpi(~) —
2 p(~) .q 4aZa

15m' pyg
2 '

15m
(133)

The diAerence between this and the expectation value of
the exact Uehling potential is only 4 eV for the 1s state
in lead and is thus usually ignored.

c. Effect on higher nuclear multipoles

For nuclei which have a Inagnetic moment or an elec-
tric quadrupole moment, there is a corresponding mag-
netic or quadrupole component of the vacuum-
polarization potential. For the case of the quadrupole
component, this can be obtained easily from Eq. (126) or
from (128) if p(r~) is taken to be not spherically sym-
metric. The magnetic component is obtained analogous-
ly to (125) in momentum space by multiplying eA(q), the
Fourier transform of the vector potential A in (1) and
(2), by II(q )/q . The properties of the quadrupole com-
ponent have been discussed by Pearson (1963), McKee
(1968), and McKinley (1969b). The effect of the quadru-
pole Vp is to increase the spread among the hyperfine
states by a few tenths of a percent. The eA'ect is just
comparable to experimental uncertainties.

The contribution of virtual hadronic states (Fig. 9) is
obtained from the total cross section for e+e ~ ha-
drons by observing that

~q~ + hd
2

——UH(q )=,dt
q 4m a 4~' t+ ~q~'

Substitution in Eq. (125) gives

VHvp(q)= —4mZa UH(q ) .F(q ) 2

(134)

(135)

As was also observed by Gerdt et al. (1978), it is a good
approximation to take

UH(q )=
3'7T

(136)

with

3 oo

mH =,dro
h ~(r)/r .

4am 4~' (137)

FIG. 9. Hadronic vacuum-polarization correction of order
a(Za).

A recent calculation of mH by Boric (1981) is in fair
agreement with that of Gerdt et al. (1978) but uses a
better parametrization of the cross section for
e+e ~hadrons, particularly as regards the continuum
contribution. Boric (1981) also verified that the approxi-
mation (136) is valid by calculating the corrections to the
binding energies of a number of muonic atoms without
making use of it and obtaining agreement with results
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calculated with this approximation. She found mH
0.23 m . [Gerdt et al. (1978) have mH ——0.25 m ].
We observe that Eq. (136) is very similar in form to
(133). One might therefore expect that the contribution
of hadronic vacuum polarization can be very simply ob-
tained from that for muonic vacuum polarization by

px

5m
~+HvP — 2 ~EPVP ~0.666EPVP

mH
(138)

Boric's numerical results agree with this simple estimate
to within 0.1 eV. These results are not consistent with
those of Sundaresan and Watson (1975b); however, we
are unable to give a reason for the discrepancy.

2. Order o. Zn

a. e e pairs

The Kallen-Sabry correction (VP2) (Kallen and Sabry,
1955) corresponds to diagrams in which a virtual photon
appears in the VP loop ("cracked-egg" diagrams) and to
the "double-bubble" diagram containing two e+e pairs

FIG. 10. Vacuum-polarization corrections of order n (Za).

Vvp2(q) = —4irZa
z U4(q)

F(q) (139)

where (Kallen and Sabry, 1955; Barbieri and Remiddi,
1973; Boric, 1975a)

in the photon propagator (Fig. 10). These diagrams cor-
respond to an interaction of order a Zn. Their contribu-
tion can be evaluated in momentum space exactly as in
the derivation of the Uehling potential described above,
with the result

U4(q) = U2(q) —(a/m) ( —,——„ti —(5(5—36 )/8) lnS+ —, ln S[(33+225 —75 )/24 —5(3—52)]

—5(1—8 /3) IL2(O ) —L2(O)+lnOln[(1 —8 )(1+S)]J—[1—(1—8 ) /4]

X IL3(1)+L3(O ) —2L3(8)—4lnO[L2(8 ) —Lq(S)]/3

—1il O~ ln [( 1 —0" )( 1 +0" ) ]/3 j ) (140)

Here 0=exp( —2$), and

L2(O) = —I ln(1 —x) dx
x

t

with

3x —1
h i ln8x (x —1)x cosh x-

x (x —1) (x —1)'
(143)

dxL3(O) =I Lz(x) (141) The integral is equal to H/4 —81n 2, so that

are Spence functions (Grobner and Hofreiter, 1966).
A useful expression for Vvp2(r) was first given by

Blomqvist (1972), in terms of an integral representation
and as a power series in m, r. Other calculations were
made by Sundaresan and Watson, 1972. Numerical
values for large radii have been given by Vogel (1974).
Chebychev fits to these values and to the series of
Blomqvist have been given by Fullerton and Rinker
(1976) and by Fullerton (1981). These fits are more effi-
cient to evaluate numerically but are no more accurate
than the original representations. More recently,
Chlouber and Samuel (1978) and Huang (1976) have
given expansions useful in the computation of Vvp2(r).
Asymptotically, we have

r~co 7
ln 2 ——

2 (144)

b. Mixed p-e vacuum polarization

IIp(q ) II, (q )a V„,(q) =2 ", ', e~o(q)
q q

The mixed p. —e vacuum polarization (Fig. 11) is cal-
culated in momentum space analogously to the Uehling
and Kallen —Sabry corrections. From Eqs. (125) and
(133) we find

—2m~r
Zcx 0! e

Vvp2(r) ~— 4mZa
a F(q )

7T q
U2(q),

15m
(145)

X[I dx f(x)+O(m, r) '~ ], (142)

where U2(q) is defined in Eq. (125), and the approxima-
tion q ~&I is made. The contribution of such terms
is very small.
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positron charge induced in the vacuum

)o«) = —
2 I:X I A«)

I

' —g I
@E(r)

I
'j

OC UQ

(146)

FIG. 11. Mixed p-e vacuum-polarization correction of order
~~(Z~).

3. Orders ct{Zn}",ri = 3, 5, 7. . .

For heavy elements, modifications to the free-electron
propagator appearing in the calculation of the Uehling
e6'ect (Sec. III.A. 1) become important. These modifica-
tions may be regarded as Coulomb corrections to the
electron propagators in a generalized sense (e.g., correc-
tions due to multiple interactions with a not-necessarily-
pointlike electrostatic potential). As a result, one must
deal with vacuum polarization eQects which are non-
linear in the nuclear charge Z. The dominant diagrams
of this type ("Medusa" diagrams) are shown in Fig. 7.
Corresponding diagrams with an even number of nuclear
vertices vanish due to charge-conjugation in variance
(Furry's theorem). The diagram with a single nuclear
vertex (Fig. 7b) represents the previously discussed Uehl-
ing eKect. The higher-order diagrams are in principle re-
duced only by successive factors (Za), which is not
necessarily a small parameter; hence it is necessary to
perform a more complete calculation.

A straightforward application of the techniques of
Feynman graphs quickly encounters formidable compu-
tational diAiculties in higher orders. In an effort to cir-
cumvent these dif5culties, all successful calculations to
date have used the static bound-interaction picture, in
which electron-positron propagators are computed in the
external static nuclear field (Fig. 7a) and thus effectively
sum all powers of Za. In this picture, one computes the
electron-positron charge density induced in the vacuum
by the nuclear Geld, subtracts the Uehling contribution
(this is necessary in order to obtain a mathematically
well-defined induced charge density and take into ac-
count charge renormalization}, and treats the potential
arising from the resulting charge density as a perturba-
tion; energy-level shifts are then calculated using lowest-
order perturbation theory in the usual manner. The
price paid for this formal simplification is that one must
deal with exact Coulomb propagators, which are notori-
ously diAicult to work with, either numerically or analyt-
ically.

One begins with a formal expression for the electron-

Explicit calculation, however, shows that the (Za) diagram
is relatively much smaller than this. For example, the (Za)'
contribution to the Sg-4f transitions in lead (Za=0. 6) is only
about 2% of the order-Za contribution. The higher-order con-
tributions decrease in successive ratios closer to (Za) .

where the QE(r) are the electron wave functions of ener-

gy E calculated in the applied external electric potential
V(r) generated by the nucleus. (Note that in this section,
unlabeled coordinates refer to polarization electrons. )

The terminology "oc" and "un" mean occupied and
unoccupied electron states, respectively. Equation (146)
is charge-conjugation invariant and satisfies the physical
requirement that addition or removal of an electron
changes the total charge of the system by one unit. It
may be written in other (equivalent) ways which amount
only to relabeling of the particle states involved. One
usually takes the Dirac sea (E & —m, ) to be occupied
and the remaining states to be unoccupied. For normal
atoms, this results in a vacuum with zero net charge.
One may alternatively define the vacuum to have other
charge states. For example, treating certain bound atom-
ic states as occupied includes electron screening effects
within the same framework. As another example, for
very strong fields (Za~ 1 in the point-nucleus approxi-
mation), bound electron states leave the regime of
discrete energies ( —m, &E &m, ) and enter the negative-
energy continuum, yielding a vacuum with nonzero net
charge even if only those states with E & —m, are occu-
pied. Such situations have elicited substantial interest in
their own right (Pieper and Greiner, 1969; Rein, 1969;
Popov, 1971; Fulcher and Klein, 1973; Rafelski et al. ,
1974a, 1974b) but will not be discussed here further, as
they have no present practical relevance to muonic
atoms.

Equation (146) is neither convergent nor manifestly
gauge invariant as it stands. Furthermore, it contains
the linear (Uehling) contribution, which has already been
evaluated and must be removed if the higher-order effects
are to be identified. The most straightforward procedure
for regularizing Eq. (146) is due to Pauli and Villars
(1947). This method consists of subtracting from (146)
an identical expression calculated for a fictitious lepton
of arbitrary mass M, and at the end taking the limit
M~ ~. Such a procedure is manifestly gauge invariant
and clearly contributes nothing but a renormalization of
the induced charge, as the range of vacuum-polarization
effects due to a lepton of mass M is limited to r &M
This subtraction reduces the nominal quadratic diver-
gence of Eq. (146) to the well-known logarithmic diver-
gence of the term linear in Z, which is absorbed in
charge renormalization. The higher-order terms thus
regularized are finite and well defined, so long as care is
taken to evaluate each corresponding term consistently.
An illustration of this method is discussed below.

In principle one may solve Eq. (146) for any arbitrary
V(r). An assumption of spherical symmetry, however,
results in a substantial simplification of the calculation.
Such an assumption is not so severe as it might seem.
The Uehling term, already known for a point source,
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may be folded over any arbitrary nonspherical nuclear
charge distribution. Thus if spherical symmetry is as-
sumed in Eq. (146) and the Uehling term removed, devi-
ations from spherical symmetry cause errors only in the

higher-order terms, which are relatively small. Assum-
ing that V(r) —V(r) is spherically symmetric, Eq. (146)
may be rewritten in the notation of Rinker and %'ilets
(1975) as

4mr p(r)= ——g2 (
yc

~ I dE[F z„(r)+G z„(r) Fz—„(r)—Gz„(r)]+—g 2
~

ic
( [F„„(r)+G„„(r)],

2 Ptk

bound
states

(147)

where the continuum wave functions are normalized to

Gz„(r) ~ fE+m,
/

sin(pr +6),

[E—m,
Fz (r) ~

1/2

cos(pr +5),

and 6 is an appropriate phase shift of the potential V(r)
The bound-state wave functions are normalized to

I
V(r) Th. e complete result of Wichmann and Kroll is
quite complicated and will not be reproduced here. It
was 6rst put into computationally convenient form by
Blomqvist (1972) in terms of expansions in Za and r.
The order-(Za)3 potential was evaluated numerically for
large r by Vogel (1974). These results may be expressed
efficiently as (Rinker, 1979)

V3(r)=10 — f(m, r)4 (Za)

I dr [F„(r)+G„„(r)]=1. (149)

If V(r) is a simple enough function, Eq (14.7) can be
evaluated analytically, the various orders in V (r)
(equivalently, Za) isolated, and the divergences and am-
biguities removed. Such a program was 6rst carried out
by Wichmann and Kroll (1956) using the point-nucleus
approximation V(r) = Za/r. F—or computational pur-
poses they rewrote Eq. (147) in terms of the Dirac
Green's function

V~(r)=0. 340(Za) V3(r)

V7(r)=0. 176(Za) V3(r),

where

f(x) = .

1.528 —0.489x x&1
1+2.672x+ 1.410x +1.374x

—0.413+0.367x +0.207x x)1

(153)

(154)

~ ~rI ~E~r2K~ (r„r,)=
z z —E (150)

where wz„(r)=Fz„(r) and mz„(r)=Gz (r). Cauchy's in-
tegral then yields

4irr p(r)= ——g2 ~ir
~ . I dzTrIK, „(r,r)]

2 2&l

+ dzTr K, rr . 151

The contour c] encloses in the counterclockwise direction
all eigenvalues with E & —m„while c2 encloses in the
clockwise direction all those with E ~ —m, . In order to
evaluate Eq. (151), a limiting procedure must be defined
to extend the contours to infinity, as well as appropriate
regularization procedures to eliminate the divergences
and ambiguities.

With an explicit representation for the Laplace
transform of TrIK,„(r,r)} and a lengthy analysis based
primarily upon uniqueness and gauge invariance, Wich-
mann and Kroll showed that the only physical contribu-
tion to Eq. (151) arises from the integral along the imag-
inary energy axis, i.e.,

4~r p(r)= ——+2
~

~
~ I dz TrIK,„(r,r)] . (152)2. g~ —l oo

This useful result was obtained without using the Pauli-
Villars prescription. It was later shown by Cxyujiassy
(1974, 1975) to be valid for any spherically symmetric

Although formally valid for any Za &1, these results
suAer from the internal Qaw that just in the region of in-
terest (large Z) the e6'ects of finite nuclear size play an
important role (see Fig. 12). The nonlinearity of the
higher-order terms in Z precludes the possiblity of sim-
ple superposition (folding) of the result over the nuclear
charge distribution, in contrast to the applicability of
such a treatment for the term linear in Z. Thus an accu-
rate treatment requires building the eQects of finite nu-
clear size into the calculation from the start. The need
for such a treatment became acute in the early 1970s
when precision measurements of high-lying transition en-
ergies in heavy elements showed systematic discrepancies
from theory. Although it seemed unlikely that such ef-
fects could account for the discrepancies then believed to
exist, proof could come only from explicit calculations.
Even the sign of the eAect could not be deduced con-
clusively from simple arguments. The various calcula-
tions performed in connection with tests of QED will be
discussed in Sec. III.I3.1. Here we present an approach
which is valid for all muonic states.

This calculation (Rinker and Wilets, 1973a, 1975)
evaluated Eq. (147) directly by actually constructing nu-
merical electron wave functions in the potentials generat-
ed by realistic nuclear charge distributions. The term
linear in V(r) was removed numerically. This approach
also made use of the Pauli-Villars regularization. The
gauge invariance of this prescription and the necessity
for internal consistency can be seen from the following
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FIG. 12. Vacuum-polarization potentials of order o.(Za)"- for Z =82, calculated both for a reaiistic nuclear charge distribution
and in the point-nucleus approximation (Rinker and %'ilets, 1975).

simple argument (Rinker and Wilets, 1975). It can be
shown that as M~ m, the Fermi gas model provides the
solution to Eq. (147) for all terms nonlinear in Z. Intui-
tively, we expect the Fermi gas subtraction to produce
the proper gauge invariance, as for a static applied elec-
tric field, gauge invariance means that Eq. (147) should

be unaltered by the addition of any constant term to
V(r); and for a constant potential, the Fermi gas is the
exact result. Alternatively, one may say that the calcula-
tion must be arranged so that a constant (but nonzero)
potential produces no polarization of the vacuum. In a
plane-wave basis, the result is

, [3(E' M')' 'EV(r)+—V'(r)+0(V'(r)M'/E')],1

E~C0 3~ (155)

where V(r) is the electrostatic potential generated by the nucleus and Z is the maximum plane-wave energy to which
the sum (147) is carried. The ordering of limits to be taken is E~ ao and then M~ &x&. The quadratic divergence in
the term linear in V(r) is that expected from a non-gauge-invariant calculation. Along with the proper correction of
order V(r) to the Fermi gas model, it cancels the corresponding term in Eq. (147) for the physical mass, reducing the
divergence to the well-known logarithmic charge renormalization. The contact term V (r) 13m. is the only counter
term which survives in higher order to be subtracted from Eq. (147).

Another ordering of the limits in Eq. (147) may be used, however. If we instead carry out the limits E~oo and
M —+ ao in (147) before summing over ~, we find for any given i~

2 1/2

pM„(r)=, [E+V(r)]' M'—
4&r r

1+0
2 2 V(r)~0 V'(r)

E~~ 2m' r E r Q2
M~ oo

' 2 1/2

[E—V(r)]2 —M2-
r

j

(156)

Rev. Mod. Phys. , Vol. 64, No. 1, January 1982



E. Boric and G. A. Rinker: Energy levels of muonic atoms

There is no surviving V (r) term. If, however, we in-
tegrate Eq. (156) over all allowable

~

v +—
~

(r I [F.+ V(r)]
—M I

'~, where + refers to positive/negative energy
states, we regain Eq. (155). Thus internal consistency in
the counting of states and the ordering of limits

~

ir
~

~oo, E~ op is crucial, even though the sums are
separately convergent.

Figure 13 shows the net charge density induced in the
vacuum for

~

I~
~

=1 and 2, as calculated by Rinker and
Wilets for lead. For the high-lying muon states, the
results of all authors are in satisfactory agreement. For
the low-lying states, the only systematic calculations
which have been carried out are by Rinker and Wilets
(1975). Their results are plotted in Fig. 14. These may
be compared to the binding energy shifts of order a(Za)
plotted in Fig. 15 (note that the effects have opposite
sign). Although internal consistency checks suggest that
the numbers in Fig. 14 are accurate in spite of the for-
midable numerical diAiculties, the calculations have not
been independently repeated.

4. Order@ (Za)

The virtual Delbruck effect corresponds to the graphs
shown in Fig. 16. It can be interpreted in two ways: (a)
a virtual photon emitted by the muon is scattered by the
nuclear electrostatic potential (analogous to Delbriick

2.5
RN 4o 9p l6a 25a

I

2.0

I.5
V

0.5

0,
I

I

70200 lo 30 40 60
r (fm)

FIG. 13. Vacuum-polarization electron densities of order
a(Za)"- for both

~

a
~

=1 and 2.

50 80

scattering) and is then reabsorbed by the muon; (b) the
muon polarizes the vacuum linearly (to order e), the
electron-positron pair interacts with the nucleus, and the
muon interacts again with the polarization field (again to
order e). The former interpretation is more useful when
the methods of Feynman graphs are used to calculate the
shift in binding energy, since the results given in the
rather extensive literature on light-by-light scattering
(Karplus and Neumann, 1950; Costantini et al. , 1971;

1s
Pp
2s3d-
3p
3s
4f
5g

I I

20.0 30.0 40.0
I I I I I I I

50.0 60.0 70.0 80.0 90.0 100.0 110.0 120.0

FIG. 14. Order-cx(Zn)" — vacuum-polarization energy shifts (Rinker and filets, 1975).
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OO

dq qb V(q)
2& 2y(1+q /P )y

X sin [2@tan '(q /P) ], (157)

where F„„and G„„are the small and large components of
the wave function. The second part is obtained by using
relativistic point Coulomb wave functions with
n =j+1/2 (circular orbits), with y=(n aZ —)'~ and
/3= 2Zam /n.

We now proceed to justify the use of the scattering ap-
proximation for the virtual Delbruck efFect. In the pres-
ence of an external electromagnetic field, the propagator
SF(x,y) of a lepton is defined by (Furry, 1951)

[iy "r)&„—eg(x) —m]SP(x,y)

=SF(x,y) [ i y"d» —e—g(y) —m]

=5(x —y) .

Its Fourier transform is given by

S,(p, q)= fd x fd ye'&" 'ii'Sp(x, y)

and the free propagator by

SF(p) =+ m)—
(159)

(160)

Its Fourier transform is a solution to Eq. (158) when the
external field vanishes.

One can show (Jauch and Rohrlich, 1955) that

S,(p, q) = (2ir)'SF(p)&(p —q)

+ SF (p)M p —q)SF(q) +S~(p)

d'p' d'q'
e p —p' S, p', q'

(2ir) (2n. )

X A'e(q' q)S~(q) . —(161)

Fquation (161) can be represented graphically, as in Fig.
17, in which a single line represents a free propagator
and a double line represents a Coulomb propagator. A

give the correct sign and order of magnitude for the
correction, and will be suf6cient if the correction is not
too large.

The energy shift corresponding to the graphs of Fig.
16 is then simply the expectation value of the potential
obtained from the scattering amplitude. If we denote
this potential by AV(q) (in momentum space; i.e., the
Fourier transform of the physical potential), then the en-

ergy shift of the muonic level is given by

hE„„= f dq q b V(q)

~ f drj0(qr)[F„„(r)+G„„(r)]

(c)

FIG. 18. Vacuum-polarization corrections of order a (Zn) ".

photon line ending on X indicates an interaction with the
external field.

The VP corrections of order a (Za) ", n =1,2, . . . are
exhibited graphically in Fig. 18. On the right-hand side
we have inserted Eq. (161) for the muon propagator. In
contrast to the calculation of the self-energy, in which
infrared-divergent contributions to the various terms can-
cel each other, the contributions of diagrams 18(a), 18(b),
and 18(c) are separately infrared convergent since the
electron mass acts as a natural infrared cutoK The con-
tribution of diagram 18(b) has already been calculated
(with free-electron propagator) in connection with the
fourth-order muon Lamb shift (Boric, 1975b) and is
small; for the 5g 4f transitio-n in lead it results in a
change of 0.02 eV. Coulomb corrections to the electron
propagator are unlikely to change this result significant-
ly. Since diagrams 18(b) and 18(c) are separately infrared
convergent, the contribution from 18(c) is at least a fac-
tor Za smaller than that from 18(b) (see Erickson and
Yennie, 1965), and we have just seen that the contribu-
tion from 18b is too small to have a measurable effect on
the energy level. The only contribution which might be
important would then be that from 18(a), in which the
Coulomb propagator for the muon is replaced by the free
propagator. From the above discussion, this should be a
very good approximation.

As a next step, we decompose the electron propagators
according to Eq. (161). Only terms containing an even
number of vertices on the electron loop contribute ac-
cording to Furry's theorem (charge-conjugation invari-
ance). The diagrams in Fig. 19 remain. Figure 19(a)
corresponds to a radiative correction to the mass renor-
malization and does not contribute to the binding energy.
The contributions of Figs. 19(b), 19(c), and 19(d) are the
virtual l3elbruck graphs which must be calculated.

Our notation as to momenta is defined in Fig. 16. The
scattering amplitude corresponding to the first graph is
given by

{bj

FIG. 17. Graphical representation of Eq. 4,'161).
FIG. 19. Order-o. , u (Zo.), . . . vacuum-polarization correc-
tions to the binding energy of a muonic atom.
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~ ~dk dk dk4S=
4 4 &

u(Pz) ( —icy ) -( —icy&) u(Pi)
(2ir)~ (2m. ) (2~) (2ir) ~—Qz —m+ic.

x(2~}'5(p, +k, —p, +k, )5(k, +k, +k, +k, )
k)+lE z ( —1)(—ie) &z(k3)A (k4)

k2 +l E

Tr y" . y(2~)~ p —m, +i E p —+z —I,+i E ~ Pz ——Q3 —iiz, +« ~++& —inc+«
(162)

where eAz(q) = —Ze F(q )/q 2m5(qo)5zo (see Sec. III.A. l.a). In Eq. (162) we replace

1 4 1 „1fd'pT'y" . y" . y' . y
1 1

i~ ~—m, +is +—kz —m, +icP —gz —P3 —I,+iE ~~,—m, +iE

by G „zs(ki, kz, k3, k4) in order to take into account all three diagrams. Some properties of the fourth-order vacuum

polarization tensor and references are given in the Appendix. %'e let q =@2—p& and obtain

Z (4ma) 4 1 o F(k3 )F[(q+k3 } ]
J{} 2 2 d kz 5(kz)5(qo+k3)

(2m') (kz+ie)[(q —kz) +is]
~
g3

~ ~
q+gz

~

~z ~&+m
z y"(upi)imG„~(. q —kz, kz, kz, —q —k, ) .

(pz —kz)' —I +is (164)

If we neglect terms of relative order m(Za/n) in both numerator and denominator of the muon propagator, we obtain

Z ~ d kz 5(qo) d kzF(k&)F[(q+k3) ]S=i
~ z4n (kz+iE)[(q —kz) +iE] 2m'' i@

~

kz
~

—
~
q+k3

~

0 Eg
Xu(pz } '2my Goooo+ —,q'yo(Go oo G;ooo}+ (pi+pz) (I+y )+ qk (Gojoo+Gjooo) 'u(pi ) .

2
(165)

The arguments of the components of G„~o are, of course, the same as in Eq. (164). The first term of Eq. (165), in-

volving 60000, corresponds to the static-muon approximation. This approximation was made at the beginning by

Fujimoto (1975) and by Wilets and Rinker (1975). Its validity was verified explicitly by Boric (1976a); the contribution

of the other terms corresponding to muon recoil is a factor 50 less than the leading contribution in the case of levels of
interest for tests of QED, although these terms could become more important for the Is state in heavy elements. In ad-

dition, we set the nuclear form factors equal to unity; as a result, the potential which we shall obtain will riot be a use-

ful approximation at short distances (of the order of magnitude of the nuclear radius). This is unimportant for states

of interest in tests of QED. For more tightly bound states, our result will still give the correct order of magnitude for

this contribution.
The only vector quantity remaining after integration over kz and k3 is q. By symmetry, the last term in Eq. (165)

then vanishes. We finally obtain

O4Z2 1 d k3
i5(qo)u(P2)y u(P1) g f z z 2

~ f z z [2~G0000+ z q (Go'00 G'000}]
4ir k (q —kz) 2moi' —«

~
k3

~ ~
q+k3

(166)

A comparison with the amplitude for potential scattering in Born approximation (99), (122) indicates that the desired

Delbriick potential is given in momentum space by

iZ'c ' d'k2 d k3 Goooo q'(Go oo —G ooo}

g~' k,'(q —k, )'

Using the identity

(167)

CO —EE,
=p, +i ~5(co' )

1 (168)
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(I' denotes the principle value integral) and the fact that Goooo is an even function of co'=kqo ———kip(qp =k3p=0), one
finds

d k d k d4k

I

k31'
I
q+k31'

I
k21'

I q —k21' 4~m

q'(Go oo —G ooo)

CO

(169)

Retardation effects are thus seen to be unimportant in
the first term of Eq. (169), in agreement with the con-
clusions of other authors who have calculated this eAect.

In order to calculate EV(q), it is now necessary to in-
tegrate over the momenta k2 and k3. The components
of the fourth-order VP tensor are given, as in Papatzacos
and Mork (197S) and Boric (1976a), as integrals over the
Feynman parameters x, y, and z. The two k integrations
require the introduction of four further Feynman param-
eters. The resulting sevenfold integral had to be per-
formed numerically. Some details are given by Boric
(1979). Since the calculation is not particularly simpli-
fied by neglecting the electron mass, and since the value
of q=Zarn/n which is relevant for the transitions of in-
terest here is not really much larger than m„ the elec-
tron mass was not neglected.

Since the nuclear form factors were set equal to unity
in Eq. (167), the quantity b, V(q)/(Za) is independent of
atomic number. This quantity was computed numerical-
ly for several values of q between 10 fm ' and 1 fm
which is the appropriate range of momentum transfer for
a bound muon. Several different integration methods
were used, with the results shown in Table II. Many nu-
merical QED calculations use some version of the adap-
tive Monte Carlo routine RIWIAD (Lautrup, 1971) for
computing multiple integrals; however, this program re-
quired more computer time than was available to obtain
suf6ciently accurate results. Some results obtained in
tests, using three iterations and 128 points per iteration,
are given in the table. Another method which was used
consisted of doing five integrations using an iterated
Gaussian method [RCxAUSS; see Lautrup (1971)j, varying
the number of iterations along each of the five axes until
the results remained stable. The results of the fivefold
integration are estimated to be reliable to about 10%
(better for small q). The last two integrations were per-

formed using either Simpson's rule (10 points per axis) or
Gauss' method (12 points per axis). The numerical re-
sults obtained using these three different methods are
similar, as can be seen in Table II; the numerical uncer-
tainties can be estimated from the spread in the results.
Since the resulting energy shifts turned out to be small, it
did not seem to be worth the e6ort to improve on the
numerical accuracy. One also notes that the contribution
due to muon motion [from the second term of Eq. (167)]
is negligible for q &m=0. 53S fm '. For transitions of
interest in tests of QED, the momentum transfer of in-
terest is 0.1 —0.2 fm ' or less; the approximations used
in the calculation (neglect of nuclear form factors, nonre-
lativistic motion of the muon) break down for larger
values of q in any case.

For q && m, =2.6X10 fm ', the potential is given
approximately by

2

b, V(q)=- (Za) C, (170)

where C=0.10+0.03 was obtained from a weighted aver-
age of values of EV(q) for q =1 fm ' in Table II.
Fujimoto (1975) obtained a somewhat smaller value for
C. Deviations from the behavior (170) are noticeable for
q=0. 1 fm '=25am&, i.e., precisely the range of interest
for the calculation of muonic energy levels. For
q «m„b.V(q) approaches a constant. This means that
&V(r) & exp( —m, r) for r~~.

The behavior of EV(r) is shown (for Z=SO) in Fig.
20. The potential is attractive, leading to an increase in
binding energy. At small distances, b, V(r) is approxi-
mately proportional to r '; this behavior would of
course be modified if the nuclear form factors had been
correctly taken into account. A rough estimate of the ef-
fect can be obtained by multiplying b, V(q) by the nuclear
form factor (strictly speaking, this procedure is some-

TABLE II. Effective potential for the virtual Delbruck effect as a function of q; the results of
various integration methods are given in order to check the numerical accuracy. The displayed
quantity —q 6V(q)/(Za) is dimensionless.

Integration method

q (fm ')
5 G +

2 Simpson
RIWIAD

(3 iterations,
128 intervals)

10-'
10-'
10
10
10

1

—1.4X 10-"
—1.4X 10-'
—6.8 X 10-"

09X10
7.0X 10-'
8.0X 10-'

—0.6X10-"
—0.6X 10-'
—0.5 X 10—'

1.4X 10-'
4.0X 10
4.5 X 10—'

~ ~

( —8.0+4.0) X 10—'
{0.6+0.4) X 10-'
{4.9+1.3) X10 '
(5.6+2.3)X 10
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0
0
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I
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I

30 00 r (fm) TABLE III. Contribution of the virtual Delbruck effect to
various muonic transitions.
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Element Transition Contribution (eV)

-10—
4J

-20

FIG. 20. EVDd (eV) as a function of the muon-nuclear separa-
tion r, for mercury.

what inconsistent). The contribution to the binding ener-

gy of the 1s state of medium to heavy elements is thereby
reduced somewhat; there is almost no eAect on states
with high orbital angular momentum.

Table III shows the contribution of the virtual
Delbriick effect to several muonic transitions which are
of interest for tests of QED (see also Table VII below).
The estimated uncertainty of 20%%uo is due to the numeri-
cal uncertainty in the evaluation of b. V(q), and probably
overestimates the error in the transition energies, which
turned out to be far less sensitive to variations in b, V(q)
than the binding energies themselves.

Although the potential which has been derived cannot
be expected to give a reliable energy shiA for the ground
state of heavy muonic elements, it is still of interest to
apply the previous results to the 1s, 2s, and 2p states of
heavy elements, to get an idea of the size of the efFect in
this case. Some results for Nd (Z =60) and Hg (Z =80)
are given in Table IV, along with other corrections of or-
der a Za. Rinker and Steffen (1977) estimate an even
smaller value for the contribution. We observe that the
virtual Delbriick effect and the fourth-order muon Lamb
shift tend to cancel each other. In any case, both correc-
tions are much smaller than the theoretical uncertainties

2He

12Mg

14Si

45Rh

56Ba

2$-2p
4f 3d-
3d"2p
4f 3d-
3d-2p
Sg 4f-
4f-3d
Sg 4f-
4f-3d
7i-6h
7i-Sg
6h-Sg
Sg 4f-
6h-Sg
Sg 4f-

0.00002
0.002
0.013
0.003
0.027
0.1

04
0.3
1.0
0.2
0.5
04
1.1
0.4
1.2

B. Self-energy

1. Orders a(Za)", n ~~1

The muon Lamb shift takes into account the self-
energy of the muon (more precisely, the difference be-
tween the self-energy of a bound and a free muon), and
the muon anomalous magnetic moment. In principle,
this contribution to the binding energy should be calcu-
lated in the bound-interaction picture, taking into ac-
count the effect of the nuclear Coulomb field on the

arising from nuclear polarizability, two-photon recoil,
binding corrections to the self-energy, hadronic vacuum
polarization, and nuclear charge density.

TABLE IV. Contributions of various higher-order corrections to the binding energies of selected
states in some muonic atoms. hED, ~ is the virtual Delbriick effect [order a (Za) ]; bE'Ls is the
fourth-order Lamb shift [order a (Za)]; b,Evp is the fourth-order muonic vacuum polarization
[order a (Za)]; b,E„, is the mixed p-e vacuum polarization [order a'(Za)].

Element Level AED, ] ~ELS gE(4)

146Nd 1$1/2

2$1/2

2p 1/2

2p3/2

18.9+4.7
4.4+0.8
6.9+ 1.4
6.3+1.2

—16.3
—2.6
—0.7
—1.1

1.4
0.2
0.1

0.1

0.9
0.2
0.1

0.0

200H 1$1/2

2$1/2

2p 1/2

2p 3/2

2d3/2
2d 5/2

35.8+9.8
10.2+ 1.9
17.3+3.8
16.0+3.4
5.2+O.S
5.1+0.5

—23.7
—4.1
—3.0
—3.5

0.1
—0.2

2.1

0.4
0.4
0.3
0.0
0.0

1.4
0.2
0.2
0.1

0.0
0.0
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muon propagator. Figure 21 shows the reduction of the
self-energy graph in the bound-interaction picture to a
set of vertex graphs [here double lines represent lepton
wave functions or propagators in the presence of an
external field, single lines the corresponding quantities in
the absence of the external field (see Jauch and Rohrlich,
1955)]. In practice, this contribution is approximated by
the vertex correction [Fig. 21(b)]. However, this contri-
bution by itself contains infrared divergences arising from
low values of the photon momentum, which are compen-
sated by similar terms from diagram 21(c); this illustrates
the inapplicability of simple perturbation expansions in
bound-state problems. Here, the binding provides an in-
frared cutoff which is neglected when using free-lepton
propagators as in Fig. 21(b). The point is that, when one
continues the expansion in powers of V~ Zo. , one discov-
ers that the extra factors Za can be compensated by fac-
tors p ', where p=mZo. , in the momentum integrals. If

I

(b) (c)

the contribution of Fig. 21(b) is approximated by calcu-
lating the Coulomb propagator and muon form factors in
the nonrelativistic limit, one obtains the commonly used
result, namely,

FIG. 21. Contributions to lepton self-energy. See text for ex-
planation.

11
24 2 ( —ia VV(r)),

2&m
(171)

where b,E„t is Bethe's average excitation energy (Bethe, 1947), defined by

X I
&&l

I p I

&'1'&
I
'«'t E.t) ln—

V V(r) nt n''t 2 E„t E„t—
One arrives at more familiar forms for the last term of Eq. (171) by observing that

( ia VV(—r) t=. m, J dr G„,(r)F„„(r) = ——V' V(r)—dV(r) 1 2 1 dV(r) -")dr "" "" 4 2r dr
(173)

One sees that the Bethe sum involves terms of all orders
in the external potential, although terms of higher order
than Zo. are treated only approximately.

It does not make sense in this case to try to make an
order-by-order extraction of contributions. Methods for
a full calculation which avoids ihe pitfalls of perturba-
tion expansions have been given by Cheng et al. (1978),
Desiderio and Johnson (1971), Cheng and Johnson
(1976), Mohr (1974a, 1974b, 1975, and Brown et al.
(1959). These involve lengthy and difficult numerical
calculations which, for the case of muonic atoms, have
only been performed for the ground state of heavy ele-
ments, and therefore the approximation (171) due to Bar-
rett et al. (1968); Barrett, 1968 is used in most cases.
The main uncertainty (aside from relativistic contribu-
tions to the propagators in diagram 21(c), and the q
dependence of diagram 21(b), which are neglected) is the
appropriate value of the Bethe sum (172), which is com-
plicated by the effect of nuclear size. For the 1s state
one has used strict upper and lower bounds due to Bethe
and Negele (1968). More recently Klarsfeld (1977a,
1977b) calculated a number of values of Bethe logarithms
to use in this connection. The validity of this approxi-
mation for the 1s state was confirmed by the numerical
results of Cheng et al. (1978). It has been shown with
the aid of Klarsfeld's results that the mean of the Bethe-

1

Negele bounds provides a
proximation to ihe more
(Rinker and Steffen, 1977).

reasonable semiempirical ap-
laboriously calculated values
This mean value is given by

m

26E ' 4(d V/dr)')t

4a(Za )nl- m~
3&Sf

3 m

8 m (2l +1)~

(175)
with values of inK„t =ln[26E/(Za) m„] taken from the

with (li ) =(,[E—V(r)] —m, ). Equation (174) incor-
porates the high-energy cutoff of (172) due to the finite
nuclear size. This cutoff limits the momenta in inter-
mediate states to p &R~ ', where Rz is the nuclear ra-
dius. Where this momentum is smaller than that corre-
sponding to Bethe's average excitation energy for a point
nucleus, Eq. (174) provides a better estimate of the Bethe
sum than does the point-nucleus calculation. Otherwise,
the opposite is the case. This second situation occurs
when the muon overlap with the nucleus is small
((V V) =(4mp) ~

I
itj(0)

I
), i.e., for all non-s states in

very light muonic atoms, and for the high-lying states in
heavy muonic atoms. For l+0, the vertex correction is
then given by

2
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TABLE V. Point-nucleus Bethe sums lnK„~ for use with transitions between states having negligi-
ble overlap with the nucleus. Values are taken from Klarsfeld and Maquet (1973).

1

2.
3

5
6

2.98413
2.81177
2.76766
2.74982
2.74082
2.73566

—0.03002
—0.03819
—0.04195
—0.04403
—0.04531

—0.00523
—0.00674
—0.00760
—0.00815

—0.00173
—0.00220
—0.00250

—0.00077
—0.00096 —0.00041

work of Klarsfeld and Maquet (1973). These are given
in Table V. For such states (including most of those of
interest for tests of QED using muonic atoms), the vertex
correction is dominated by the spin-orbit part of the
muon's anomalous magnetic moment.

A rough estimate of neglected higher-order effects
(Fig. 21c) was given by Barrett et al. (1968). Compar-
ison of this estimate, along with Eqs. (171) and (174), to
the numerical calculations of Cheng et al. (1978) showed

thai if

(2) ~ dy(r) ln((p )/m, )

3mm„dr ((p2) —m, )
(176)

is added to Eq. (171), using Eq. (174), a slight improve-
ment with respect to the theoretical results is obtained in
all cases where comparison may be made.

2. Orders n (Za)", n ~~1

(g 2)(4)
+ 2

4m~

Higher-order self-energy corrections (of order a Za), corresponding to the diagrams in Fig. 22, have been calculated
by Boric (1975b). The contribution of diagrams 20a —e (with a p p pair in the VP loop) was calculated as in the
work of Appelquist and Brodsky (1970) and Barbieri et al. (1972a, 1972b). The contribution of diagram 20a, with an
e+e pair in the loop, was taken from the work of Barbieri et al. (1973). The result is

(v~v)+ — rr L) (177)
BQ' q2 —p r dr

with

g~(4)
1

mp
g q2 p

2
49

2 216
4819 3 ((3) 1

1
P mP

5184 4 9 m,

T

29 m p a 395
108 m 54 1296

ln

=2.69
2

(178)

and

'(g 2)( )

7T
+ ——ln2 + —g(3)+ —ln

197 m. 1 3 1

144 2 6 4 3 mp

25 me

36
=0.766

A
2

(179)

Note that (g —2)' )l2 is the fourth-order contribution to the anomalous magnetic moment of the muon (Bailey et al. ,
1979; Lautrup et al. , 1972).

C. Anomatous interactions

Any contribution to the energy levels of a muonic
atom whose source is a difference between the muon-
nucleus and the electron-nucleus interaction (other than
those due to mass di6erences) is called an anomalous in-
teraction. For example, such a difIerence could be
present if the muon were not pointlike; one consequence

I

of a 6nite radius for the muon would be a diQerence be-
tween the cross sections for ep and (Mp scattering (Hughes
and Kinoshita, 1977). A finite muon radius would also
result in a disagreement between nuclear radii deter-
mined by means of electron scattering and those deter-
mined from muonic atoms (Rinker and Wilets, 1973b;
Dubler et al. , 1974). From this work one can conclude
that
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E b3

FIG. 23. Muon-nuclear interaction mediated by a Higgs bo-
son.

(c) (cI j

D. Experimental tests of QED with muonic atoms

(e)

FIG. 22. Fourth-order Lamb shift diagrams. Diagram (a)

enters once with an e+e pair and once with a p+p pair.

(r )' —(r )' &0.17 fm . (180)

A tighter bound is obtained from the latest measurement
of g&

—2 (Bailey et al. , 1979), which gives

(181)

v~(r) =g~ (182)

with

The latest result from e+e ~p+ p, at PETRA is

(r& )'~ &0.01 fm (Barber et al. , 1979a, 1979b). Another
possible source of an anomalous interaction would be the
exchange of a scalar particle which couples differently to
the muon than to the electron. Such a particle, the
Higgs boson, is predicted to exist in unified gauge
theories of the weak and electromagnetic interactions
(Bernstein, 1974; Weinberg, 1974; Abers and Lee, 1973).
The exchange of a scalar particle results in a Yukawa in-
teraction between a lepton and a nucleus (Fig. 23). Ac-
cording to Jackiw and Weinberg (1972), this interaction
is given by

The predictions of QED have been verified to a very
high degree of accuracy. (See, e. g., Brodsky and Drell,
1970; Bailey and Picasso, 1970; Combley, Farley, and Pi-
casso, 1981; Van Dyck, Schwinberg, and Dehmelt, 1977;
Drell, 1979.) As a consequence, QED is regarded as the
most successful theory in physics, and is taken as the ex-

ample for all other theories, such as the presently popu-
lar QCD, which describes the interaction of quarks and
gluons. After a qualitative discussion of the physical ori-
gin of the effects whose computation was discussed in
Sec. III.A and III.B, we discuss in detail the more recent
experimental tests of QED with muonic atoms.

As first approximation, the motion of a muon or elec-
tron can be described by the Dirac equation. The lepton
is regarded as a pointlike particle with spin —,, which in-

teracts with a given (classical) electromagnetic field. The
quantization of the electromagnetic field results in depar-
tures from this simple picture, which are often known as
"radiative corrections" (although perhaps improperly so
for the case of vacuum polarization). These are due to
the interaction of the electron or muon with the elec-
tromagnetic Geld and involve the emission and/or ab-
sorption of photons. These photons may be real, as in
the well-known case of bremsstrahlung emission by an
accelerated charged particle, or virtual, in which case
they are reabsorbed, either by the lepton or by another
particle. The fact that these radiative effects have experi-
mentally measurable consequences accounts for the great
interest which has been devoted to the subject of QED,
since it is possible to test the theory to a high degree of
precision, providing a challenge both to theorists and to
experimentalists.

(183)

Here m~ is the lepton mass, rn~ the mass of the Higgs
boson, A the atomic mass number of the nucleus, 6 the
weak coupling constant, and g a dimensionless constant
of order unity. We shall discuss explicit bounds of g~ as
a function of the P mass in connection with particular
experiments later.

The concept of a virtual photon is useful for the application
of perturbation theory. Such photons have a "mass" due to
the fact that they do not obey the simple dispersion law co=ck.
In addition, and in contrast to real radiation, they are not in

general polarized perpendicular to their direction of propaga-
tion.
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It is well known that QED describes inany phenome-
na, such as the anomalous magnetic moment of the elec-
tron and muon, atomic energy levels (including the
Lamb shiA), the hyperfine structure of muonium and po-
sitronium, and the scattering of high-energy leptons
(e+e ~e+e,p+p, yy, . . .) with a remarkable pre-
cision. One might ask why one should study tests of
QED with muonic atoms when these other tests have al-
ready verified the essential correctness of QED. As we
shall see, the. tests with muonic atoms are complementa-
ry.

Another point of interest is that even if one believes in
QED, the question remains as to whether the muon
might have some sort of anomalous interaction with it-
self or with hadrons. As far as we know, the muon
behaves exactly like a heavy electron; the reason for this
is an as-yet-unexplained puzzle, which was made even
more interesting by the recent discovery of the ~ lepton.
A model for an anomalous muon-hadron interaction is
provided by the gauge theories which unify the weak and
electromagnetic interactions. In such theories there is
the possibility of exchanging a so-called "Higgs boson"
between a muon and a nucleus (Fig. 23), which would
result in an extra nonelectromagnetic contribution to the
binding energy. Muonic atoms can be used to shed light
on these questions, although at the moment there is no
evidence for such anomalous interactions.

Muonic atoms are particularly mell suited for the
study of vacuum polarization. This effect was investigat-
ed shortly after the discovery of the positron (Heisenberg,
1934; Furry and Oppenheirner, 1934; Serber, 1935; Uehl-
ing, 1935) and is thus one of the earliest-studied QED ef-
fects. It is due to the virtua1 production and reannihila-
tion of electron-positron (or p+p, m+m, pp, . . .) pairs.
The presence of these virtual pairs slightly modifies the
electric field produced by a given charge distribution.
The effect is analogous to classical electrostatics in a
medium; in that case the observed electric field is the su-
perposition of the fields produced by the "true" and "po-
larization" charges. In the case of vacuum polarization,
this separation is similar in principle, ' however, the anal-
ogy should not be pushed too far, since in this case the
induced "polarization charge" is mathematically not well
defined even though the resulting electric field is. The
result of a detailed calculation (including renormaliza-
tion) shows that at large distances (compared to the elec-
tron Compton wavelength m, =386 fm), the "true" nu-
clear charge is screened by the virtual electron charge.
By definition, the classical observed nuclear charge is the
charge which at macroscopic distances results in the ob-
served Coulomb interaction with a test charge. If the
test charge came closer to the nucleus, it would "feel"
the "bare" nuclear charge, which is larger than the clas-
sically defined charge Ze. %'e thus expect that vacuum
polarization results in a modification of Coulomb's law
at distances less than m, ', such that the electric field
strength is increased. Such a modification of the
Coulomb interaction between two charged particles
should result, among other things, in a shift of the ener-

gy levels of hydrogenlike atoms. One should expect in-
creased binding for all cases in which the radius of the
lepton orbit is less than, or comparable to, the electron
Compton wavelength.

In order to get a feeling for the magnitude of the ef-
fect, we consider the hydrogen atom. In the case of nor-
mal hydrogen the radius of the electron orbits is given by
the Bohr radius

ao ——(m, a) '=52 918 fm (184)

ao& —256 fm (185)

and are generally less than m, '. The effects of VP are
correspondingly much larger. In muonic hydrogen, the
2si&2 level lies 202.0 meV below the 2@i~2 level (Fig. 25).
The difference in binding energy due to VP is 206.4
meV, while that due to the self-energy and anomalous
magnetic moment is only 0.6 meV. Even higher-order
VP corrections are non-negligible in this case. Thus
muonic atoms can be used to test vacuum-polarization
eAects with minimal disturbance from other radiative
corrections.

Of course in order to test QED it is necessary to
choose transitions between orbits which are not signifi-
cantly affected by the eAects of nuclear structure or by
the remaining atomic electrons. However, if one is care-
ful about the choice of transition, it is possible to study a
nearly hydrogenlike system even in the limit of strong
fields (i.e., Za not small, as is the case for lead).

Heavy elements

With high-Z elements (Z ~ 40) one hopes to be able to
test QED in the case of strong electromagnetic fields. A

Self Energy+ I g- 2)
)&

1077.

1057,9
3(

—27.
V. P.

2s)]~

2p

FIG. 24. Lamb shift in hydrogen. Interva1s are given in Mhz.

and the momentum of the electron is approximately
given by cxm, c. The effects of vacuum polarization are
then small compared to those of other radiative correc-
tions, notably the self-energy and additional spin-orbit in-
teraction resulting from the anomalous magnetic moment
of the electron. For example, the 2s&~2 state lies 4.38
IMeV (1057.9 Mhz) above the 2pi~2 state (Fig. 24) (see
Lundeen and Pipkin, 1975; Andrews and Newton, 1976).
The contribution due to vacuum polarization is only
—0. 11 p eV ( —27 Mhz).

If we now replace the electron by a negatively charged
muon, the Bohr radii are reduced by a factor
m/m, =207 as compared to those for normal atoms
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FICi. 25. Lamb shift in muonic hydrogen. Intervals are given
in meV.
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FICx. 26. Theoretical contributions (eV) to the Sg9q2 —4f,q2

transition in muonic lead.

muon in the 4f level of muonic lead experiences an elec-
tric field strength of about 4.7X 10' V/m at a mean dis-
tance of 50 fm from the nucleus. In this case we are
dealing with a system in which one of the important ex-
pansion parameters, namely Zo. , is not small. We may
expect that effects such as Coulomb corrections to the
electron propagator in vacuum polarization are measur-
able in just such systems, and should attempt to look for
these effects by investigating transitions between hydro-
genlike states in heavy muonic atoms. These states are
chosen to have large orbital angular momentum, in order
to minimize uncertainties in the calculated transition en-
ergies which arise from uncertainties in nuclear proper-
ties. The states in question should also have Bohr radii
which are small in comparison to the radii of the elec-
tron orbits.

The theoretical contributions to the Sg9~2 —4f7/2 tran-
sition in muonic lead are shown schematically in Fig. 26.
The contributions to the theoretical transition energies
for other cases are summarized in Table VI.

Between 1970 and 1976 there were indications of a
discrepancy between theoretical and experimental transi-
tion energies for such transitions, hinting at a possible
breakdown in the validity of QED in the limit of strong
fields. This problem occupied a number of physicists
and stimulated considerable work during this time.

In 1970 a group from Karlsruhe and CERN measured
the 5g 4f tran-sitions in lead and bismuth (Backenstoss
et al. , 1970), finding agreement (within the experimental
uncertainties) with the results of a calculation by Fricke
(1969b) which included the VP corrections of order
a Za and a(Za) for the first time. However, a subse-
quent experiment by a group from Chicago and Ottawa
(Dixit et a/. , 1971), with better resolution and smaller er-
rors, indicated a systematic discrepancy between theory
and experiment. These data included several elements
throughout the periodic table. For the Sg 4f transitio-ns
in lead, the difIIerence between theory and experiment
amounted to 130+20 eV, which also was in contradic-
tion to the earlier result of Backenstoss et al.
(E,h —E,„p-—30+40 ev).

In 1972 several authors detected an error in the previ-
ous calculation of the order a(Za) corrections, as well
as the fact that the "double-bubble" diagram of order
a Za had been included twice (Blomqvist, 1972; Bell,
1973; Sundaresan and Watson, 1972). This substantially
reduced the discrepancy between the results of the Chi-
cago experiment and the theoretical predictions. Howev-
er, the discrepancy was not completely eliminated (it
amounted to 50+20 eV for lend), and this was ground
for concern.

In order to clarify the contradiction between the two
earlier experiments, another CERN group (Walter et al. ,
1972) undertook the measurement of similar transitions
in Rh, Hg, and Tl. In this experiment the calibration
procedure was somewhat improved by using ' Rh and

Tl as targets. For these elements it is possible to mea-
sure delayed gamma rays from the muon capture reac-
tions

Tl(p, nv) Hg*; Hg*~ Hg+y(439. 5 keV),

Rh(p, &&) Ru; Ru*~ Ru+y(474. 8 keV) (186)

in the muonic x-ray spectra. The same lines are also
measured as calibration lines, thus making it possible to
control possible systematic errors arising from differences
in the experimental geometry when the muonic x-ray
spectra and calibration spectra were taken, which could
cause a shift in the calibration line (within the statistical
uncertainty of +17 eV this effect was found to be zero).
The results of this experiment were consistent with those
of Dixit et al. (1971) and were taken as a confirmation of
those results. The situation at the end of 1972 is sum-
marized in Fig. 27; the difference between theory and ex-
periment (in eV) is shown as a function of transition en-
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ergy for all of the above-mentioned experiments. The
discrepancy for transition energies around 400 keV was
considered to be serious.

At this point most further work was coming from the
theoretical side. In 1973 a fully self-consistent calcula-
tion of the electron-screening effect for all of the relevant
transitions appeared (Vogel, 1973b; see also Fricke,
1969b). In any case this correction was too small to ex-
plain the discrepancy for the 4f 3d t-ransitions in barium
(M„„=—17 eV, E,h

—E,„~=81+21 eV). Transitions
among higher states (such as 7-6, 7-5, 6-5, 8-6 in Hg, Tl,
Pb), which are more sensitive to screening corrections,
were measured in order to check the validity of the cal-
culated screening correction (see Sec. II.I).

In addition, the Coulomb correction to the electron
propagator [the vacuum-polarization corrections of order
a(Zo. ), etc.], including the effect of finite nuclear size,
were more thoroughly investigated. Older calculations
(Fricke, 1969b; Blomqvist, 1972; Bell, 1973; Sundaresan
and Watson, 1972) were based on the work of Wichmann
and Kroll (1956), in which the Laplace transform of the
induced charge density for the case of pointlike sources
for the external field was calculated. From this it was
possible to determine an eAective potential, which was
used to calculate energy shifts. At small distances this
potential should be modified by the effect of finite nu-
clear size. One approach (Brown et al. , 1975a, 1975b,
1975c; Arafune, 1974) consisted of simplifying the calcu-
lation by setting the electron mass equal to zero and cal-
culating directly the long-range part of the finite-size ef-
fect. At first glance it would appear that setting m, =0
should not be a good approximation, as the bound elec-
tron states which enter importantly in Eq. (146) exist
only for m, +0. Nevertheless, it was shown analytically
by both groups that errors in such an approach are of or-
der m, and not m, . This conclusion was later supported
by numerical calculations (Rinker and Wilets, 1975), in
which it was shown that the charge contributed by the
bound states is very nearly canceled by the low-lying
continuum states for any mass (m, . These calculations
yielded a small shift (4—7 eV in barium and lead) of the
wrong sign to account for the discrepancies between
theory and experiment.

A further calculation was performed by Gyulassy
(1974, 1975) which essentially followed the approach of
Wichmann and Kroll except that the Pauli-Villars
method of regularization was used and the electron
Green's function was corrected for finite nuclear size by
the use of simple models for the nuclear charge distribu-
tion (uniformly charged sphere, shell of charge). It turns
out that the main modification is a change in the s-wave
contribution (j = —,, ~= —1) to the electron propagator.
Gyulassy (1975) showed that small differences (of about 1

eV) between his number (6 eV for the 5g-4f transitions in
lead) and those of Arafune (1974) and Brown et al.
(1974) could be accounted for by the approximation
made in taking the electron mass equal to zero, or in ex-
pansions in the ratio (R&/ao ). The work of these au-

thors removed this important source of theoretical uncer-

tainty and confirmed the theoretical values for the mea-
sured transitions, up to as yet uncalculated higher-order
QED corrections and contributions due to an anomalous
interaction. The situation as of 1974 was summarized in
two reviews of Watson and Sundaresan (1974) and of
Engfer et al. (1975).

The possible e6ects of an anomalous interaction were
investigated by several authors. If a light scalar boson
(m~ &20 MeV) with a muon-nucleus coupling of about

g~ —10 existed, the discrepancy could be explained
(Jackiw and Weinberg, 1972; Barshay, 1974; Adler, 1974;
Adler, Dashen, and Treiman, 1974). Such a scalar boson
would also have an effect on the anomalous magnetic
moment of the muon, at a level which would have been
observed (Aa&-7X 10 ). No such contribution has
been detected (Boric, 1979). The influence of a P boson
on the energy levels of light muonic atoms would also
have been observable (see next section), and measure-
ments in such atoms rule out the existence of a scalar bo-
son with mass & 10 MeV, with a muon-nucleus coupling
of the strength suggested by the Weinberg-Salam model.
Other anomalous contributions (Adler, 1974) could be
ruled out on similar grounds. The only remaining
theoretical explanation for the previously discussed
discrepancy is the uncalculated higher-order QED
corrections. The contribution of the fourth-order Lamb
shift was calculated by Boric (1975b). The leading con-
tribution for states of high orbital angular momentum is
due to the extra spin-orbit interaction arising from the
muon's anomalous magnetic moment. For the 5g 4f-
transitions in lead, this contribution is 0.02S eV, which is
much too small to explain the reported discrepancy.

At about this time Chen (1975) made the suggestion
that the virtual Delbriick diagrams of order u (Za)
(Fig. 16) might be responsible for the discrepancy, and
calculated a correction of —30 eV to the theoretical en-

ergy of the 5g 4f transitions in -lead. However, an ap-
proximate calculation by Wilets and Rinker (1975) indi-
cated that the correction was only + 1 eV, increasing the
discrepancy slightly. These calculations of the order-
a (Za) correction involved a number of approxima-
tions, and were carried out using a noncovariant formal-
ism (the central field problem is intrinsically noncovari-
ant); it thus seemed to be desirable to calculate the effect
of these diagrams using the methods of QED. The most
complete calculation, published by Boric (1976a), con-
firms the approximate calculation of filets and Rinker
and gives results for all measured transitions. This result
was also confirmed for the 5g-4f transitions in lead by
Fujimoto (1975). Thus no theoretical explanation for the
discrepancy could be found.

At this point some movement took place on the exper-
imental front. The problem was partially solved, also in
1975, when a group at the National Bureau of Standards
discovered that the energy of a nuclear gamma line in
gold (at =411 keV), which had been used for calibration
in the experiments, had been in error by 12 eV (Deslattes
et a/. , 1975). All of the experimental transition energies,
but especially those around 400 keV, had to be corrected
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TABLE VI. Comparison between theoretical and experimental energies of several muonic transitions which are sensitive to vacu-
um polarization. Only recent experiments (since 1974) are included. All energies are in H. EpT=transition energy frorr. Dirac
equation for a point nucleus; 5EFs ——correction due to finite nuclear size; 5Evp ——vacuum polarization corrections of order o.Za,
a Zo. , a(Za)"-, a (Za); 5ELs ——muon self-energy, anomalous magnetic moment, muonic vacuum polarization; 5ER ——relativistic
recoil correction; 5ENp ——nuclear polarization; 5EEs ——electron screening (self-consistent with Z —1 electrons); E,h ——total theoretical
energy; E,„„=measured energy.

Element Transition EPT QZcx
5Evp

o.(Zo.')"- n (Za)

i2Mg'

i4Si'

isP'

20Ca"

4sRh'

spSn b

s6sa b

s6sa d

s6Ba'

ssCe'

80Hg

si Tl'

81T1

81T1

82Pb

s2pb'

s2pb'

3d3/2 2p 1/2

3ds/2 2p3/2
3d3/2 2p1/2
3d s/2-2p

3d3/2 2p1/2
3d s/2-2p 3/2

3d3/2 2p1/2
3ds/2 2p3/2
4fs/2-3d s/2

4f7m-3d su
4fs/2 3ds/2-
4f7n-3ds/2
4f5/2 3d3/2
4f7/2 3ds/2
5g7n-4f sn
5g9n-4f 7/2

4fs/2-3ds/z

4f7/2 3ds/2-
4f5/2 3d3/2
4f7n 3ds/2-
4fs/2-3dsn
4f7/2 3ds/2
5g'7n-4f s/~

5g9n-4f 7n
5g 7n-4f sn
5g9/2 4f7/2
&g 7/2 4fs/2-
5g9n-4f7n
5g9/2 4f7/2
'5g 7/2-4f s/2

5g9n-4f 7n
5g7n 4fs/2-
5g 9n 4f7�-
n&g�-4fs/2

5g 9/2 4f7n-

56 213.9+0.2
56 038.9+0.2
76 670.7+0.2
76 345.5+0.3
88 117.2+0.3
87 688.1+0.3

157518 +1
156 152 +1
280984 +1
277 929 +1
348234 +2
343 554 +2
439 068 +2
431 652 +2
200 543 +1
199 193 +1
439068 +2
431 652 +2
439 068 +2
431 652 +2
471 845 +2
463 290 +2
414 181 +2
408 463 +2
424850 +2
418 837 +2
424 850 +2
418 837 +2
418 837 +2
435 664 +2
429 343 +2
435 664 +2
429 343 +2
435 664 +2
429 343 +2

—2.8+0.0
—0.9+0.0
—7.4+0.0
—2.6+0.0

—11.9+0.2
—4.1+0.2
—78+2
—28+1
—20+0
—7+1

—50+ 1

—19+1
—143+1
—55+1
—0+0
—0+0

—143+ 1

—55+1
—143+ 1

—55+1
—193+1
—74+ 1

—9+0
—3+0
—9+1
—3+0
—9+1
—3+0
—3+0

—10+1
—4+0

—10+1
—4+0

—10+ 1

—4+0

179.36+0.00
177.55+0.00
276.8+0.00
273.2+0.00
335.4+0.00

330.38+0.00
734+2
716+2

1350+3
1311+3
1795+3
1731+3
2434+ 1

2328+1
762+1
748+ 1

2434+1
2328+1
2434+1
2328+1
2665+ 1

2550+ 1

2046+3
1972+3
2116+1
2037+1
2116+1

2037+ 1

2037+ 1

2189+1
2105+1
2189+1
2105+ 1

2189+1
2105+ 1

1.26
1.24
1.94
1.91
2.34
2.30
5
5
9
9

12
12
17
16

5
5

17
16
17
16
19
18
14
14
15
14
15
14
14
16
15
16
15
16
15

—0.11+0.00
—0.11+0.00
—0.23+0.00
—0.23+0.00
—0.31+0.00
—0.30+0.00

—1+0.00
—1+0.00
—9+1
—9+1

—13+1
—13+1
—21+1
—19+1
—9+0
—9+0

—21+1
—19+1

21+ 1

—19+1
—24+ 1
—22+ 1

—40+2
—39+2
—42+2
—40+2
—42+2
—40+2
—40+2
—43+2
—42+2
—43+2
—42+2
—43+2
—42+2

0.01
0.01
0.03
0.03
0.03
0.03
0.0
0.0
0.4
0.4
0.7
0.7
1.0
1.0
0.3
0.3
1.0
1.0
1.0
1.0
1

1

1

1

1

1

1

1

1

I
1

1

1

1

1

for this calibration error. As a result, the experimental
energies increased somewhat and the discrepancy was re-
duced. The effect of this correction is indicated by the
dashed line in Fig. 27. After a more complete data
analysis and correction for the eAect of the gold line, the
experimental results of Vuilleumier et al. (1976) were al-
most in agreement with theory, even in the case of the
5g 4f transitions in Hg and-Tl. Only the Sg 4f transi--
tions in Pb and the 4f 3d transitions in Ba at aro-und 430
keV still indicated any significant departure from the
theoretical predictions.

At about the same time as these developments, new
experimental contributions appeared and were in agree-
ment with theory. The first came from CERN (Tausch-

er et al. , 1975); one advantage of this measurement was
that the transitions in barium and lead were measured
relative to each other, which provided a way of checking
some systematic errors. Shortly thereafter, new results
were also published by the Ottawa —Chicago group (Dix-
it et al. , 1975; Hargrove et al. , 1977) which also indicat-
ed agreement with theory and claimed smaller experi-
mental errors. No reason for the difference between
these new results and the previous experiment by this
group (Dixit et al. , 1971) has been given.

Measurements to test QED in heavy muonic atoms
have been continued at the meson factories. A group at
Fribourg (Dubler et al. , 1978) remeasured the relevant
transitions in Pb, Tl, and Ba, and also measured the 4f
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TABLE VI. (Continued)

5ELs ~ENP Eexp Eth Eexp
Eth Eexp

(ppm)

0.24+0.00
—0.15+0.00

0.42+0.00
—0.29+0.00

0.54+0.00
—0.51+0.00

1 +0
—1 +0

4 +0
—3 +0

6 +0
—4 +0

9 +1
—9 +1

2 +0
—1 +0

9 +1
—9 +1

9 +1
—9 +1

10 +1
—10 +1

7 +0
—7 +0

7 +0
—7 +0

7 +0
—7 +0
—7 +0

7 +0
—7 +0

7 +0
—7 +0

7 +0
—7 +0

0.18
0.18
0.29
0.29
0.34
0.34
1

1

1

1

2
2
4

1

1

4

4

4
2
2
2
2
2
2
2
2
2
2
2
2
2

0.03+0.00
0.03+0.00
0.1 +0.1

0.1 +0.1
0.2 +0.2
0.2 +0.2
3 +2
2 +1
4 +2
4 +2
6 +3
5 +3

10 +2
8 +2
1 +I
1 +1

10 +2
8 +2

10 +2
8 +2

10 +4
9 +4
6 +3
6 +3
6 +3
6 +3
6 +3
6 +3
6 +3
5 +2
5 +2
5 +2
5 +2
S +2
5 +2

—0.4+0.3
—0.4+0.3
—0.5+0.4
—0.5+0.4
—0.5+0.4
—0.5+0.4
—1 +0.5

+0.5
—12 +1
—12 +1
—13 +1
—13 +1
—17 +1
—17 +1
—31 +1
—31 +1
—17 +1
—17 +1
—17 +1
—17 +1
—18 +1
—18 +1
—75 +3

77 +3
—79 +3
—80 +3
—79 +3
—80 +3
—80 +3
—82 +4
—82 +4
—82 +4
—82 +4
—82 +4
—82 +4

56 391.7+0.6
56216.4+0.6
76 942.3+0.6
76 617.6+0.6
88 443.2+0.6
88 015.9+0.6
158182 +4
156845 +3
282311 +4
279223 +4
349980 +5
3452S6 +5
441362 +4
433909 +4
201274 +3
199907 +3
441362 +4
433909 +4
441362 +4
433909 +4
474329 +6
465748 +6
416132 +7
410331 +7
426868 +6
420767 +6
426868 +6
420767 +6
420767 +6
437749 +6
431336 +6
437749 +6
431336 +6
437749 +6
431 336 +6

56392.4+ 0.9
56216.2+ 0.6
76942.9+ 1.9
76617.2+ 1.1
88425.5+ 7.6
88016.3+ 2.5
1S8 172 + 7
156842 + 5
282 315 +27
279242 +27
349975 + 5

34S254 + 7
441362 + 5

433905 +10
201275 + 7
199917 + 5
441374 + 9
433926 + 8
441358 + 8
433897 + 8

474330 + 8
465754 + 8
416100 +28
410292 +28
426851 +29
420741 +29
426865 + 8
420763 + 8
420757 + 4
437749 +14
431328 + 4
437748 +12
431360 +11
437749 + 8
431331 + 8

—0.7+ 1.1
0.2+ 0.8

—0.6+ 2.0
0.4+ 1.2

17.7+ 7.6
—0.4+ 2.6

10 +8
3+6

—4 +28
—19 +28

5+7
2+9
0+ 7
4 +11

—1+8
—10+ 6
—12 +10
—17+ 9

4+ 9
12+9

—1 +10
—6 +10
32 +29
39 +29
17 +30
27 +30

3 +10
4 +10
10+7
0 +15
8+7
1 +14

—24 +13
0 +10
5 +10

—12+
4+
9+
5+

200+
—5+
63+
19+
14+

20
14
26
16
86
30
51
38
99

14+
6+
0+
9+
4+

—SO+
27+

—15+
9+

27+
—2+

—13+
76+
95+
39+
64+
7+

10+
24+
0+

19+
2+

—55+
0+

12+

20
26
16
25
40
30
23
21
20

9
21
21
70
71
70
71
23
24
17
34
16
32
30
23
23

—68+100

'Aas et al. , 1981.
Hargrove et al. , 1977.

'Vuilleumier et al. , 1976.
Tauscher et al. , 1978.

'Dubler et al. , 1978.

3d transitions in Ce. All of these transitions were mea-
sured relative to each other, providing a check on the
internal consistency of the experimental results. Their
work indicated good agreement between theory and ex-
periment.

These results are summarized in Table VI. Here the
various theoretical contributions to the transition ener-
gies are given for a number of elements in all regions of
the periodic table, as well as the measured transition en-

ergies for all experiments analyzed since 1974. In gen-
eral there is good agreement between theory and experi-
ment, which indicates that QED has been verified at the
level of 0.4%, even at large electric field strengths.

In comparison to the earlier work of 1971—72, all of
the more recent experiments are characterized by a more
careful treatment of possible systematic errors. In the
case of the experiments discussed here, the measurement
is, in principle, simple: muonic x-ray spectra are mea-

Rev. Mod. Phys. , Vol. 54, No. 1, January 1982



E. Boric and G. A. Rinker: Energy levels of muonic atoms

l00—

80—

60—

40—

20—

LaJ
I 0

Ul -20—

~ g ~ f ~~II(8

-60—

-100—

l

200 300
Transition energy

400 ke'I/t

FIG. 27. Comparison between theory and experiment in
several muonic atoms as a function of transition energy, at the
end of 1973. Solid dots: Walter et al. {1972);open circles: Dix-
it et al. (1971); squares: Backenstoss et al. (1970). The dashed
line shows the effect of the new gold standard (Deslattes et al. ,
1975). See Aas et ah. (1981) for a detailed explanation.

sured with high-resolution Ge(Li) detectors. Nuclear
gamma rays from calibration sources are simultaneously
measured. The x-ray energies for the interesting transi-
tions lie in the range 100—450 keV. At a photon energy
of 400 keV, even the best detectors have a resolution of
0.8 —1.0 keV. In order to attain an accuracy of 20 eV,
one must determine the center of the line to an accuracy
of 0.5% of its natural width. At this level of precision.
several possible sources of systematic error must be taken
into account:

(i) Uncertainties in the energies of the calibration lines
could have been underestimated. The most glaring ex-
ample is, of course, the gold line, which has been used as
a standard in determining the energies of other calibra-
tion lines. The most recent value (Kessler et a/. , 1978) is
411804.4+0.2 eV; before 1975, the accepted value was
411796+7 wV (Murray et a/. , 1963; Piller et a/. , 1973),
and the most successful recent reported value also
represents a slight change as compared to the value of
411 806.2+ 1.4 eV reported in 1975 (Deslattes et a/. ,
1975). Since some other calibration lines have been mea-
sured relative to the gold line, these are afFected also; un-
certainties in the relative measurements are also present.
The error in the gold line propagated as an error in the

Inuonic transition energies which was, of course, not tak-
en into account in the earlier experimental papers.

(ii) The fact that the configuration of the apparatus
differs if muonic x rays or calibration events are record-
ed, could lead to an electronic shift between the corre-
sponding spectra. The detector response typically
depends upon the direction of the incoming photon. The
size of this eAect could be estimated using delayed gam-
ma rays following muon capture as calibration lines
(Walter et a/. , 1972; Vuilleumier et a/. , 1976; Tauscher
et a/. , 1978; Dubler et a/. , 1978). "Known" muonic
transitions (5g 4f in —Ba, 4p —ls in C, etc.) were used
for calibration by Tauscher et a/. (1978). In addition,
one must take care that the muonic spectra and calibra-
tion spectra are recorded as nearly simultaneously as pos-
sible in order to avoid effects of electronic instability.

(iii) The nonlinearity (which can be time dependent) of
the detector response must be carefully measured.

(iv) The muonic x-ray peaks and the calibration
gamma-ray peaks do not have the same shape. Weak,
unresolved transitions will affect the muonic lines; their
effect on the line shape must be estimated from a cascade
calculation, whose reliability should be checked. The
line shape must be well known in order to determine its
position to within 0.5%%uo of the linewidth.

(v) Even the process of generating a muon stop signal
can produce electronic disturbances that will be correlat-
ed with the calibration event.

These effects have been considered in the more recent
experiments or analyses, at least by those groups who
have published detailed reports (Vuilleumier et a/. , 1976;
Tauscher et a/. , 1978; Dubler et a/. , 1978). The possible
systematic errors were clearly underestimated in the ear-
lier experimental work (Dixit et a/. , 1971; Walter et a/. ,
1972). One can see this most clearly by comparing the
results of a preliminary analysis of the data for Rh, Hg,
and Tl (Walter et a/. , 1972) with the results of the final
analysis (Vuilleumier et a/. , 1976), in which the above-
mentioned problems were taken into account more care-
fully. For the 5g 4f transitions in T—l, the estimated er-
ror is 6-eV larger in the final results than in the prelimi-
nary results. Since the quoted uncertainty is 29 eV, this
increase is significant. The problem of systematic errors
is also clear from the fact that the Ottawa —Chicago
group has measured the interesting transitions in Ba and
Pb twice using essentially the same method (Dixit et a/. ,
1971, 1975), and can give no explanation for the two-
standard-deviation discrepancy between the two measure-
ments (Hargrove et a/. , 1975).

4In addition to the previously mentioned reactions, the reac-
tion

Ba(p, n v)' Cs*; ' Cs~~' Cs+y(455. 5 keV)

was used.
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2. Experiments using crystal spectrometers

The calibration difhculties which are encountered
when using Ge(Li) detectors can be reduced with a crys-
tal spectrometer. The principal difnculty with Ge(Li)
detectors is that the diAerential nonlinearity in the spec-
trum must be obtained empirically. With crystal spec-
trometers, however, this is calculated from geometrical
considerations using Bragg s law. In addition, crystal
spectrometers provide better resolution for x rays below a
few hundred keV. This permits a rather precise mea-
surement of the wavelength of the muonic x rays relative
to a single standard wavelength.

Since a crystal spectrometer has a very small accep-
tance and solid angle, it is necessary to have a very-
high-intensity muon beam in order to obtain sufFicient
statistics for a precision experiment. Up to now experi-
mental tests of QED in muonic atoms have been per-
formed with the bent-crystal spectrometer at the SIN su-

perconducting muon channel. The experimental setup
has been described by Piller et al. (1973); Beer and Kern
(1974); Eichler et al. (1978); Aas, et al. , 1979; Leisi,
1977; and most recently in detail by Aas et al. (1981);
Aas, Eichler, and Leisi, (1981); and Weber, et al. (1981).
The Du Mond geometry of the spectrometer permits one
to place a thin target directly inside the muon channel,
thus obtaining a high muon stop rate. The Bragg angle
is measured to high precision (+0.02 are sec) with a laser
interferometer (Schwitz, 1978). The wavelength of
muonic x rays is measured relative to the wavelength of
the 84-keV gamma ray of ' Tm (Borchert et al. , 1975;
Kessler et al. , 1979),

——(14.715430+0.000013)X10 ' m (0.9 ppm) .

(187)

This setup permits the measurement of muonic x-ray
transitions in an energy range between 40 and 100 keV
with a precision of about 10 ppm. The 3d —2p transi-
tions in muonic atoms having Z in the range 12—16 lie
in this energy range and can thus be measured with this
precision. These transitions turn out to be particularly
favorable for an experimental test of QED in that the

contributions due to electron screening, nuclear hnite
size, and nuclear polarizability are very small relative to
the VP contribution (see Table VII). The theoretical un-

certainties can be further reduced if the 4f —3d transi-
tions are also measured; this permits a better determina-
tion of the electron-screening correction to the 3d —2p
transition energies (Ruckstuhl et al. , 1979). This mea-
surement gives information as to the electron population,
as discussed in Sec. II.I.

A typical angular spectrum (for Mg) is shown in Fig.
28. The line-6t procedure is described by Aas et al.
(1981). The measured transition energies are compared
with the theoretical values in Tables VI and VII. The
agreement is very good. Taking a weighted average of
all the crystal spectrometer results we 6nd (Aas et al. ,
1981)

&a —&-p = (2+8)X 10 (188)

This result corresponds to a test of the vacuum polariza-
tion at the level of 0.2%.

The excellent agreement with theory found in these ex-
periments leaves little room for a contribution from an
anomalous interaction. We consider the contribution due
to Higgs scalar exchange. As before,

e P" gi tv
vp(r) = —gp, gp ——A

r 4m

Then Iwith p=Zam„and y„=[n'—(Za) ]' I,

(189)

'Y2(1+my~p) 3y, (2+3m&lp) '

(190)

If, as in Jackiw and Weinberg (1972), we take

g4, =1.8X10 Ag, we obtain the values 5E& shown in

Table VIII as a function of the Higgs scalar mass.
If we require the energy shifts caused by Higgs ex-

change to be less than the experimental limits of the
difFerence between experiment and current theory, we ob-

TABLE VII. Theoretical and experimental energies (in eV) for the 3d5/Q 2p3/p transitions in

muonic Mg, Si, and P. Also given are the contributions due to QED effects and non-QED ef-

fects. The experimental energies are taken from Aas et al. (1981).

12Mg l4Si esp

QED contributions
Non-QED contributions
Total (theory)
Energy (experiment)
&th Eexp

178.7
—1.2+0.4

56 216.4+0.6
56216.2+0.6

0.2+0.8

274.9
—2.8+0.5

76 617.6+0.6
76 617.2+ 1.1

0.4+ 1.2

332.2
—4.5+0.5

88 015.9+0.7
88 016.3+2.5

—0.4+2.5
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FIG. 28. Reflex pair (angular spectrum) from the 3d-2p transitions of muonic "Mg (Aas et al. , 1981a).

tain a limit on the value of g~ (or equivalently g~//I) as
a function of m~ which is shown in Fig. 29. In either
case, a very light Higgs scalar (m~ (9 MeV) is practical-
ly ruled out.

3. Very light elements {Z= 1,2)

TABLE VIII. Values of 5E~/g (in eV) as a function of the
mass m~ of a Higgs boson for the 3d5/2 —2@3/2 transitions
which have been measured at the SIN crystal spectrometer
(Aas et a/. , 1981).

Mg 28S 31p
15

It is also possible to test QED using muonic atoms
having a small atomic number. The most important
QED corrections are due to the vacuum-polarization
corrections of order aZa and a Za. In the cases of 'H,
H, and He the hyperfine structure is also important

(Boric, 1980). However, the energies of muonic transi-
tions have not yet been measured for these nuclei.

Since 1975 the results of a precision measurement of
the 2s&/q —2@3/p splitting in the (@He)+ ion have been
available (Bertin et a/. , 1975). The experimental pre-
cision relative to the VP correction is, in fact, greater
than in the case of other such measurements. The prin-
ciple of the measurement is best understood by looking
at the energy-level scheme as shown in Fig. 30. During

2,„p——
2p

—E2, ——1527.5+0.3 meV

1 "~ E2p1/2 +2
1/2

= 1381.3+0.5 meV . (191)

4w
t10 ]

2""

0
0.2 0.5

-1--

/
-2-. /

t'

-3-- /

t

-4.t

= m [NeV]

the cascade, some muons reach the metastable 2s state.
These are then pumped into the 2p state, using a tunable
dye laser; the 2p state immediately decays to the ground
state. When the laser is tuned to the proper frequency,
the 8.2-keV K~ line is observed with higher probability
(see Fig. 31) and the energy difference between the 2s and

2p states can be determined from the resonance curve.
Experimental details are given by Carboni et al. (1976).
The results of a still more careful determination of the
2s ] /2 2+3/2 splitting (Carboni et al. , 1977) and the
2s&/2 —2p, /z splitting (Carboni et al. , 1978) are

1

10
20
50

4.8
0.5
0.2
0.01

6.8
1.0
0.2
0.01

8.1

1.3
0.3
0.02

FIG. 29. Limits on the coupling constant g~ for a muon-
nucleon interaction mediated by a boson of mass rn {Leisi,
1980). The solid curves are derived from crystal spectrometer
experiments, and the dashed curves are derived from the
muonic helium experiment. The straight line is the prediction
of the steinberg-Salam model.
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t» 0.«7eV
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FIG. 30. Energy-level scheme for the low-lying states of
muonic He.

In order to reach an accuracy in the theoretical predic-
tion which is comparable to the experimental uncertain-
ties, it is necessary to take into account a number of
small effects which are negligible in most of the other
transitions which have been considered. For example, it
is necessary to take into account the effect of finite nu-
clear size on the self-energy correction (and of course
also the effect on the Uehling potential, recoil correction,
etc.). The contribution of the Uehling potential cannot
be calculated using perturbation theory. Even small ef-
fects such as hadronic vacuum polarization (Sundaresan
and Watson, 1975b) and the two-photon recoil (Grotch

8116.8+ 1.5 A

90—

(r )'~ =1.674+0.012 fm, (192)

the efFect of finite nuclear size is —289.3+4.2 meV, of
which 0.4 meV is a result of the eAect of finite nuclear
size on the QED corrections.

In addition, determination of the nuclear-polarization
correction is limited by uncertainties in the nuclear-
excitation spectrum. As discussed in Sec. II.G.4.b, the
contribution of 3.1 meV is probably correct to within the
quoted uncertainty of 20%.

Since the nuclear physics parameters are the main
source of theoretical uncertainty, it is possible to reverse
the argument. If we assume that QED is correct, the
measurement of the Zavattini group (Carboni et al. ,
1977) can be regarded as an experimental determination
of the charge radius of He. In that case, we find (Boric
and Rinker, 1978; see also Friar, 1979a, 1979b)

and Yennie, 1969) contribute at the level of 0.1 meV.
These contributions were summarized and compared
with the results of previous calculations by Boric and
Rinker (1978). This work represents an improvement
over previous calculations (Boric, 1975a; Rinker, 1976)
by these authors, and over the earlier work of Campani
(1970). (See also Boric and Rinker, 1980.) The theoreti-
cal predictions are summarized in Table IX, which also
includes some minor corrections to the results reported
by Boric and Rinker (1978). The dependence of the vari-
ous QED effects on the nuclear radius is explicitly
displayed. Within the uncertainties, theory and experi-
ment are in excellent agreement.

Unfortunately, the theoretical predictions are far less
precise than the experiment, since the effects of nuclear
physics on the binding energy of the 2s state are not suf-
ficiently well known. The main source of uncertainty in
the transition energy is the experimental uncertainty in
the radius of He as determined by electron scattering
(Sick et al. , 1976). Using the radius given there,

80— (r') '"=1.673+0.001 fm . (193)

X
LJ) 70

The error on the radius determined by this method is a
factor of 10 less than the error estimated for electron
scattering experiments.

The eKect of Higgs scalar exchange on the transition
energy is easily computed. We have

60— gp(mp//3)«,=«, ),. (v, )„=—
2(1+my//3)"

(194)

50— where p=Zam„=1.50 MeV. We require that this con-
tribution be less than the uncertainty in the discrepancy
between theory and experiment

40—

X2

30
I

8105

Xl il

10 5 SMP
I i I I I I i i I I I I . I

I I I I I I

8110 8115 8120 8125 8130 8135 X (A)

hE~ &0.004 eV,

which implies

9 (1+my/P)
g4, &5.3&10

(mp/p)

(195)

(196)

FIG. 31. The 2s~/2 —2p3/2 resonance signal in muonic He as
a function of laser frequency A, (Carboni et al. , 1976, 1977). In Table X and Fig. 29 (Aas et al. , 1981) we show the
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I

TABLE IX. Theoretical contributions to the splittings S& ——E(2@3/2 2$ $/2) Sp —E(2p i/2 —2s i/2) in muonic helium. The rms
charge radii used are 1.674+0.012 fm for He, and 1.844+0.045 fm for He.

Splitting
He

Si

Electron VP
Uehling: first iteration
Higher iterations
Kallen —Sabry a Za
~(Z~ )lf )3

a (Za)
Muon VP
Muon-electron VP
Hadron VP
Total VP

1664.44
1.70

11.55
—0.02

0.02
0.33
0.02
0.15

1678.19

1664.17
1.70

11.55
—0.02

0.02
0.33
0.02
0.15

1677.92

1640.2
1.4

11.4
—0.02

0.02
0.33
0.02
0.14

1653.5

1639.9
1.4

11.4
—0.02

0.02
0.33
0.02
0.14

1653.2

Self-energy and (g —2)
HZ '
a(Zn)" ~

a Zo.
Total self-energy

—10.52
—0.16
—0.03

—10.71

—10.S5
—0.16
—0.93

—11.04

—10.33
—0.15
—0.03

—10.5

—10.65
—0.15
—0.03

—10.8

Recoil
Breit
2-photon
Total recoil

0.28
—0.44
—0.16

0.28
—0.44
—0.16

0.4
—0.6
—0.2

0.4
—0.6
—0.2

Point Coulomb
{Fine structure)
Total QED

145.70
1813.02

0
1666.72

144.4
1787.2

0
1642.2

Nuclear polarization
Finite nuclear size

3.1+0.6
—28S.9+4.1

3.1+0.6
—288.9+4.1

4.9+1.0
—340.0+ 16.6

4.9+1.0
—340.0+ 16.6

Total
Experiment

1527.2+4.2
1527.5+0.3

1380.9+4.2
1381.3+0.5

1452.1+16.6 1307.1+16.6

TABLE X. Bounds for the muon-helium coupling constant
g~(max) for scalar exchange, as a function of the P boson
mass m~.

maximum value of g~ as a function of the P mass m~.
A comparison with the estimate of g~ for He by Jackiw
and Weinberg (1972),

gp —7.2X 10

indicates that a P mass between 0.1 and 5 MeV is most
unlikely. We have also considered a P mass in the vicin-

m, {Mev)

0.15
0.45
1.5
4.5

15
450
600
750

7.8 &&
10-'

1.7 &&
10-'

0.85 X 10-'
1.5 &&

10-'
7.8 &&

10-'
4.8 X 10-'
8.6 &&

10-4
1.3 X 10-'

FIG. 32. Light-by-light scattering diagram.
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ity of known hadronic resonances which play a role in
NN scattering (e.g. , the e meson with mass = 600 MeV).
These limits are also shown in Table X.

The new limit on the coupling constant for the P mass
in the range 500—700 MeV is a factor of 10 smaller than
was given in an earlier determination (Rinker and Wilets,
1973b).
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APPENDIX

We present here some of the properties of the fourth-order vacuum-polarization tensor which were used in Boric s
(1976a) calculation of the virtual Delbriick effect. The amplitude corresponding to the light-by-light scattering dia-
gram (Fig. 32) is given by

4 ~+ tlute ~ —A2 +PPIe +—L2 —A3 + fPZ~

Tp 2 (ki, k2, k3, k4)= d p Tr yp 2
y„' y2le "p m, +iE (p ——k2) —m, +iE (p —k2 —k3} m, —+is

P +g 1 + tne
X g~ 2 2

(P +k1) —m, +iE
(198)

where

k)+k2+k3+k4 ——0 .

We then define the fourth-order vacuum polarization tensor by

(199)

Gl»v2. &r(kl&k2&k3&k4) Tpvl. cr(kl&k2&k3&k4)+T p v(2k&r2 kl&k3&k4&)+Tp cr2(vkl k3&k2&»k }4
We observe that this definition differs from that of Papatzacos and Mork (1975) by a factor im. We .also use a dif-
ferent metric and conventions for the gamma matrices.

Since the trace is invariant under cyclic permutations of the gamma matrices, it follows that

Tvl&2~(k2&ki, k3, k4}=T„v~2„(k1&k2,k4&k3), T„l„v~(ki,k3, k2, k4)=T24&~v(k3&ki, k4, k2), (201)

and so on. From this one can easily show that G&„2 (ki, k2, k3, k4) is symmetric under permutations of the variable
pairs (ski, vkz, kk3, crk4) and under the transformation k;~ —k;. Furthermore, although each of the T„„2 contains
an ultraviolet divergence, the full fourth-order vacuum-polarization tensor does not. The proof is well known and will
not be given here. It can also be shown, using dimensional regularization (Khare, 1977), that G„„2 as given in Eq.
(200) is gauge invariant and that it is therefore unnecessary to introduce subtraction constants.

Gauge invariance implies that

k 1 Gp k. r(vk&l k &k32&k }&4k2Gpv2.&r(k1&k2&k3&k4} k3Gl»v2. rr(kl &k2&k3&k4) k4Gl», vA&r(k1 &k2&k3&k4} (202)

This fact is used to express the divergent contributions to integrals like (198) in terms of convergent contributions, thus
analytically eliminating them before any numerical calculations are performed.

Using relativistic invariance and Eq. (199) to eliminate k4, we have (Karplus and Neumann, 1950; Costantini et al. ,
1971; Papatzacos and Mork, 1975)

3 3

G„„,.(k„k„k,,k, )= g Aij™k,„kjJc„k .+ g [g„.B1 k,„k .+g,,B2 ktp .+g„.B', k,p
ijlm =1 lm =1

lm lm lm
+gv24kll»km&r+. gv&rB5 kit»km2+g2&rB6 k, ll»kmv]+Clgl»vgrr2+C2gl»kgv»r+ 3.gl»&rgvX . (203)
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The A'~ ~ come from the most convergent contributions to the integral over p in (198) and they are not influenced by
possible (but unnecessary) subtraction terms. It is therefore convenient from a computational standpoint to use Eq.
(202) to express the 8 and C coe6icients in terms of the A' s. This method was used by Papatzacos and Mork (1975)
for real Delbruck scattering. For example, we obtain

Jm k2g11jm k .k g21jm k .g g 31jm j ~ =2 3

g22+~22+~22 k .k A 2122 k2A 2222 k .k A 2322 ~3m +g3m k .k A 331m k .k A 332m k2g 333~

and so on, and hence also

3

C, = g (k, k, k, k.A'-"+k, k, k, .k A '"+k,'k, .k.A-'"), (205)

and similarly for Cz and C3.
It remains to evaluate the A'J . The integration over the electron loop momentum has been given by Papatzacos

and Mork (1975). As in that calculation, we find that we can write

with

3
gijlm ~ gijlm

n
n=1

(206)

A„'J™=f dy f dz f dx
+D.

The index n refers to the different topologies of the graphs of Fig. 16 or, equivalently, to the permutations in (200).
The anj™are real polynomials in x, y, and z [those needed for the virtual Delbruck effect were calculated using
SCHOONSCHIP (Strubbe, 1974)], while the D„are functions of the momenta ki, k2, and k3, as well as of x, y, z. For
future reference we remark that D„can be written in the form [with k'=k2 —q/2=(k2 —k& )/2]

D„=a„k' +2@„k' (q+k3)+. 2y„k'.q+5„. (208)

The a„, P„, and y„are also polynomials in x, y, and z, while 5„depends also on the momenta q and k3. They are
given explicitly by

ai ——az ——z(1 —x)[1—z(1 —x)], Pi ———P2 ——xyz(1 —x), yi ———y2 ——a~/2 —xz(1 —x)

5i ——62 ——q +x (1—x)(1—z) —xy(1 —x)(2—z)q. (q +k3)+xy(1 —xy)(q +k3)
CK) 2

CX3

a3 ——x (1—x), Pg ——a3(y —z), y3 —— (2z —1),
2

6,=q' +z(1—z)(l —x)' —II3,+2z(1 —x)[1—xy —z(1 —x)]jq.(q+k3)

+(q+k3) [xy+z(1 —z)][1—xy —z(1 —x)] .
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