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The electronic properties of inversion and accumulation layers at semiconductor-insulator interfaces and of
other systems that exhibit two-dimensional or quasi-two-dimensional behavior, such as electrons in

semiconductor heterojunctions and superlattices and on liquid helium, are reviewed. Energy levels, transport
properties, and optical properties are considered in some detail, especially for electrons at the (100) silicon-

silicon dioxide interface. Other systems are discussed more briefly.
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LIST OF SYMBOLS

Two-dimensional vectors are usually indicated by bold-
face letters. When three-dimensional vectors appear at
the same time as two-dimensional vectors, the latter are
denoted by lower-case characters and the former by
upper-case characters. For example, K=(k,k,;) with
k=(k,,k,). Some of the symbols which frequently ap-
pear in the text are summarized as follows.

Symbol Meaning

Cins insulator capacitance per unit area

dins insulator thickness

D(E) density of states

e magnitude of electronic charge

E energy; electric field

Er Fermi energy

E, energy of bottom of nth subband

Ey energy of Nth Landau level given by (N +%)ﬁmc
E.m E,—E,

F field; envelope wave function

f(E) Fermi distribution function

g Landé g factor

&5 spin degeneracy factor

g valley degeneracy factor

H magnetic field

J current density per unit width

kg Boltzmann’s constant

kgp Fermi wave vector

) mean free path; radius of the ground cyclotron

orbit [radius of the Nth cyclotron orbit is given by
(2N + 1)
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m effective mass

mg free-electron mass

my longitudinal effective mass in the bulk

m, transverse effective mass in the bulk

m, effective mass perpendicular to the interface

m* dressed mass (modified by many-body interacions)

N Landau-level index (starting with O)

Ny concentration of acceptor impurities in the bulk

Np concentration of donor impurities in the bulk

N gep) concentration of fixed space charges in the deple-
tion layer

Nox density of charges per unit area in the oxide

that does not change with Vg; assumed to be at the
Si-Si0, interface

N; concentration of electrons in inversion or
accumulation layers

N density of fast surface states per unit area

Q charge per unit area

Qox eN ox

qs,qs effective screening parameter

st eNg

R resistance

Ry Hall coefficient

T temperature

Ve gate voltage

Vb substrate bias voltage

Vr threshold gate voltage

X x coordinate of center of cyclotron orbit

z distance from interface

Zay average position of electrons from interface

zg thickness of the depletion layer

average position of electrons in nth subband
Znz  from interface

A root-mean-square height of interface roughness;

spin-orbit splitting; gap parameter

€ energy; dielectric function normalized by ¥
En(z) envelope wave function of nth subband for
motion normal to- the interface

A lateral decay length of interface roughness

Kins static dielectric constant of insulator

Ksc static dielectric constant of semiconductor

K arithmetic average of k. and Ky

m mobility; chemical potential

Up Bohr magneton

et effective mobility

UFE field-effect mobility

Uy Hall mobility

p resistivity; mass density; charge density

o conductivity; spin index

O min minimum metallic conductivity

T relaxation time

¢ electrostatic potential; phonon field; azimuthal angle
- s surface potential

Dsub substrate bias voltage

1) angular frequency

W, cyclotron angular frequency

) plasma angular frequency

I. INTRODUCTION

In this article we review the properties of electrons in
semiconductor space-charge layers and touch briefly on
other systems which have dynamically two-dimensional
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character. By dynamically two-dimensional we mean
that the electrons or holes have quantized energy levels
for one spatial dimension, but are free to move in two
spatial dimensions. Thus the wave vector is a good
quantum number for two dimensions, but not for the
third. These systems are not two-dimensional in a strict
sense, both because wave functions have a finite spatial
extent in the third dimension and because electromagnet-
ic fields are not confined to a plane but spill out into the
third dimension. Theoretical predictions for idealized
two-dimensional systems must therefore be modified be-
fore they can be compared with experiment.

We shall generally confine our discussion to systems
for which parameters can be varied in a given sample,
usually by application of an electrical stress. Systems of
this sort generally occur in what may broadly be called
heterostructures. The best known examples are carriers
confined to the vicinity of junctions between insulators
and semiconductors, between layers of different semicon-
ductors, and between vacuum and liquid helium. For
most of these systems the carrier concentration can be
varied, so that a wealth of information can be obtained
from one sample. They all have at least one well-defined
interface which is usually sharp to a nanometer or less.
Several of these systems will be described in Sec. VIII.

Many other experimental systems show two-
dimensional character, including layer compounds, inter-
calated graphite, and thin films. These systems, which
have been widely studied, are discussed very briefly in
Sec. VIIIL.

In this chapter we describe some of the basic terms
and concepts as an introduction to the more detailed dis-
cussion of the following chapters.

A. Field effect

The effects of changes in surface conditions on the
conductance of a semiconductor sample have been stu-
died for many years. Such measurements are usually
called field-effect measurements because a major physical
variable is the electric field normal to the semiconductor
surface. One important way to change the surface condi-
tions, and therefore the surface electric field, is through
the control of gaseous ambients. A famous example is
the Brattain-Bardeen (1953) cycle, in which the surface
potential of germanium (the difference of potential be-
tween the surface and the interior) was varied by expos-
ing the sample to dry oxygen, wet oxygen or nitrogen,
and dry oxygen again. Gaseous ambients are still used
to control the surface charge of ZnO (see, for example,
Many, 1974), and are one basis of a growing class of am-
bient sensing devices (see, for instance, Zemel, 1979, and
Volume 1 of the new journal Sensors and Actuators). A
disadvantage of the early measurements was that the
conductance of the entire sample was measured, and the
surface effects were extracted by taking differences or
derivatives as the ambient was changed.

In conjunction with field-effect measurements, theories
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for the dependence of the mobility of carriers near the
surface on the surface conditions were developed and re-
fined. Most of the early work was based on the
phenomenological notion of diffuse and specular reflec-
tion at the surface, as first used by Fuchs (1938) in
studying transport in metal films.

The early work on semiconductor surfaces is reviewed
in the books by Many, Goldstein, and Grover (1965) and
by Frankl (1967), and provides the classical framework
on which the quantum models described below have been
built. The classical theory of surface transport has been
reviewed by Greene (1969a, 1969b, 1974).

B. Devices

Most of the discussion in this article will be about a
particular insulator-semiconductor heterojunction sys-
tem—the metal-insulator-semiconductor (MIS) and more
particularly the metal-oxide-semiconductor (MOS) struc-
ture. Most of the work on two-dimensional MIS systems
has been done on a technologically well developed exam-
ple, the metal-silicon dioxide-silicon structure, although
work on other materials, especially on compound sem-
iconductors, has been increasing. The silicon MOS
field-effect transistor was developed in the 1960s and
1970s as an amplifying and switching device used in in-
tegrated circuits (for reviews see, for example, Grove,
1967; Sze, 1969; Nicollian and Brews, 1982). It is the
most successful example of a device in which the charge
on the plates of a capacitor is changed by the application
of a voltage in order to modulate the conductance of one
of the plates, and is now one of the major electronic
components of memory and logic circuits used in com-
puters. The first proposals date from the 1930s
(Lilienfeld’s and Heil’s patents). Shockley and Pearson
(1948) studied an MIS structure which was the archetype
of the long series of devices made usually with a slightly
oxidized semiconductor, an organic insulating film, and a
metallic counter electrode. These structures were used in
most of the numerous studies of interface states and sur-
face transport through the 1950s and 1960s.

A related structure, the thin-film transistor (Weimer,
1962), used ohmic contacts to a thin film of highly resis-
tive polycrystalline semiconductor such as CdSe, CdTe,
CdS, Se, or Te. Because the properties of these systems
were not as favorable as those of the silicon-silicon diox-
ide system, they have not led to widely used devices and
have not proven as amenable to scientific investigation.

The metal-oxide-semiconductor field-effect transistor
(MOSFET) or insulated-gate field-effect transistor (IG-
FET) shown in Fig. 1 uses rectifying contacts to the
semiconductor, usually silicon. For the n-channel device
shown, no current can flow between the contacts—
usually called the source and the drain—unless an n-type
inversion layer is established near the silicon-silicon diox-
ide interface by imposing a positive voltage on the metal
electrode, called the gate. For the analogous p-channel
devices, voltages and majority carriers are reversed in
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FIG. 1. A cross section of a silicon n-channel metal-oxide-

semiconductor field-effect transistor (MOSFET). The n-type
contacts known as the source and drain are made by diffusion
or by ion implantation into the p-type substrate. The current
Ip between them is controlled by the voltage ¥V on the metal
electrode or gate. When a positive voltage is applied to the
gate, it can charge the channel region and control the current
between source and drain. An ohmic contact can also be made
to the substrate whereby a substrate bias Vg, can be applied
between the substrate and the normally grounded source.

sign. The MOSFET is a four-terminal device. The elec-
trons are drawn from the source, which is usually at
ground potential. They pass along the surface to the
drain through the n-type channel induced by a positive
voltage on the gate. The fourth terminal, attached to the
p-type bulk silicon, is called the substrate contact. The
gate, drain, and substrate voltages (with respect to the
grounded source) are labeled, respectively, Vg, Vp, and
Vsub-

Few carriers enter and fewer are trapped in the ther-
mally grown SiO, because it is a relatively trap-free insu-
lator with a high barrier to injection of both electrons
and holes. In addition, SiO, has a high electric break-
down field (~107 Vcm™!), which allows a large charge
density to be induced at the surface of the silicon. The
interface between silicon and the thermally grown oxide
also has a relatively low density of interface states if ap-
propriately treated, which allows most of the induced
charge to appear in the semiconductor space-charge layer
rather than as charge in interface states. Furthermore,
the oxide is quite stable if fast-diffusing species, particu-
larly sodium, are avoided during device preparation.
The massive effort in the technology of the silicon-silicon
dioxide interface that has been carried out during
development of MOSFET devices has made this system
particularly well suited to and available for scientific in-
vestigation.

Work on materials other than Si has been carried out
for many years, even though the interface properties are
usually not as desirable as those of the Si-SiO, interface.
For reports on recent work see, for example, Roberts and
Morant (1980), Schulz and Pensl (1981), or the Proceed-
ings of the Conferences on the Physics of Compound
Semiconductor Interfaces published annually in the Jour-
nal of Vacuum Science and Technology.

C. Space-charge layers

The physics of MOS structures begins with a classical
solution of Poisson’s equation in the direction perpendic-
ular to the surface or interface. The energy-band dia-
gram in the semiconductor is shown in Fig. 2. Here the
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FIG. 2. The energy bands at the surface of a p-type semicon-
ductor for (a) the flat-band case with no surface fields; (b) accu-
mulation of holes at the surface to form an accumulation layer;
(c) depletion of the holes or ionization of neutral acceptors near
the surface to form a depletion layer; and (d) band bending
strong enough to form an inversion layer of electrons at the
surface. E, and E, are the conduction- and valence-band
edges, respectively, Er is the Fermi energy, and E, is the ac-
ceptor energy. The surface potential ¢; measures the band
bending.

sample is p type. Figure 2(a) shows the case for zero
electric field, called the flat-band voltage condition. Ap-
plication of a negative bias to the' gate [Fig. 2(b)] induces
a positive charge in the semiconductor surface, which in
the absence of donor interface states can only occur by
the induction of excess holes in what is called an accu-
mulation layer. If instead a positive bias is placed on the
gate, the energy bands bend down at the surface [Fig.
2(c)]. Negative charge thus induced in the semiconduc-
tor is first formed by removing holes from the valence
band (or from neutral acceptors near the interface when
they are deionized), forming what is called a depletion
layer. As the positive gate bias is increased, the fixed
negative charge of the acceptor ions and the associated
downward band bending increase until the conduction-
band edge at the interface approaches the Fermi level
and electrons are induced near the interface. When the
surface electron density equals or exceeds the hole densi-
ty in the bulk [Fig. 2(d)], the surface is said to be invert-
ed. The layer of electrons at the surface is called the in-
version layer, and the region of fixed negative charge
separating this layer from the p-type bulk is called the
depletion layer. Another example, with straightforward
changes of sign, could also be given for a p-type inver-
sion layer on an n-type substrate.

A quantitative description of the space-charge layer is
easy to give, following Kingston and Neustadter (1955),
if we assume Boltzmann statistics, assume uniform bulk
doping, neglect interface states, and assume all impurities
to be ionized. Then the charge density p in the one-
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dimensional Poisson equation!

d’¢  4mp(2) 1.1
2 ks (1.1)

for the electrostatic potential ¢(z), which is assumed to
vanish in the bulk, i.e., for large values of z, is given by

p(z)=e(Np—N,)+epoe —ed(z)/kpT enoee¢(z)/kBT )
(1.2)
|
Kse | d K
0= |90 | =% |50 Nored, +pokaTie

The sign of Q is opposite to the sign of the surface po-
tential ¢;=¢(0). For positive ¢, the bands bend down
[remember that energy-band pictures are for electron en-
ergy, whose electrostatic component —e¢(z) has the op-
posite sign from that of the potential ¢] and negative
charges are drawn to the surface, while for negative ¢,
the bands bend up and positive charges are drawn to the
surface.

The first term in the square bracket in Eq. (1.3) arises
from the fixed charges, while the second and third terms
are the contributions of holes and electrons, respectively.

~For flat bands, with ¢,=0, the first term is exactly bal-
anced by the second and third. For negative gate bias,
with ¢; <0, the second term dominates and we have sur-
face accumulation. For positive gate bias, with ¢, >0,
the exponential in the second term is reduced. Then the
space charge is dominated by the fixed charge and varies
as ¢; /2. When ¢, is large enough, the third term, which
arises from electrons, will dominate, and at this extreme
the surface is inverted. Figure 3 shows the dependence
of Q on ¢; for an n-type, an intrinsic, and a p-type sam-
ple. The curves have been displaced by the difference of
the Fermi energies in the bulk.

In extreme inversion or at very low temperatures,
Boltzmann statistics are not accurate, and corrections
must be made to Eq. (1.3). For accumulation layers at
low temperatures, neglect of the impurity ionization en-
ergy is not valid.

D. Capacitance

One of the best measures of the response of an MOS
system to an applied voltage is its capacitance, or more
specifically its differential capacitance per unit area

_4d9
C“dV’

where Q is the semiconductor charge density per unit

(1.4)

'We use cgs units in most of this article, because most of the
existing literature, especially the theory, is written in cgs units.
Some representative results are given in both cgs and Systéme
International (SI) units in the Appendix.
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—eds/kgT

The first term is the net charge density of bulk donors
and acceptors, the second term is the density of holes,
with po~N, —Np for a p-type bulk, and the last term is
the density of electrons, with ny=n?/p,, where n; is the
intrinsic carrier concentration appropriate to the semi-
conductor and the temperature T. Because p depends ex-
plicitly only on ¢ and not on z one can multiply both
sides of Eq. (1.1) by d¢/dz and integrate to obtain Q, the
space-charge density per unit area as follows:

172
—D+nokpT(*™ ™ _1)1| . 1.3)

area and V is the applied gate voltage. The voltage drop
occurs in the insulator and in the space-charge layer, or,
said in another way, the capacitor can be considered to
be the insulator capacitance and the semiconductor capa-
citance in series. Thus the total capacitance per unit
area is given by

1 1 1
C N Cins + Csc ' (1.5
Here
Kins
C- =
ins = g d, (1.6)

is the capacitance per unit area of the insulator, whose
thickness is d;,, and

_do
Ce=ag,

is the capacitance per unit area of the semiconductor. If
interface charge can be neglected and if the other approx-
imations mentioned above are applicable, then C,, can be
obtained directly from Eq. (1.3).

(1.7)

| SPACE CHARGE

FIG. 3. Charge density versus surface potential. Space-charge
density as a function of Er—E;o+ed, where Er—E;, is the en-
ergy difference of the Fermi level and the intrinsic Fermi level

_in the bulk and ¢, is the surface potential. Curves are shown

for n-type, intrinsic, and p-type semiconductors. The charge
increases rapidly when the abscissa is close to either band edge.
The parabolic regime is dominated by the depletion charge.
The derivative of these curves gives the space-charge capaci-
tance.
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Figure 4 shows the capacitance as a function of gate
voltage for an MOS capacitor on p-type silicon. There
are three important regimes to note in such a plot. They
are strong accumulation, strong depletion, and flat bands.
The strong-accumulation capacitance and the strong-
inversion capacitance both correspond to very thin
space-charge layers, for which the space-charge capaci-
tance is usually much larger than the insulator capaci-
tance and can either be ignored or corrected for. Thus in
these two limits the measured capacitance is approxi-
mately equal to the insulator capacitance. The space-
charge capacitance per unit area at flat band is found
from Eqgs. (1.3) and (1.7) to be

172
(nO +DPo )eszc

C(flat band)= amkyT

(1.8)

More generally, the flat-band capacitance of the space-
charge layer is the capacitance of a layer of the semicon-
ductor whose thickness is the bulk screening length.

For a real device, the flat-band point is found by com-
bining the insulator capacitance, found as described
above, with the calculated space-charge capacitance.
This requires knowing the area of the capacitor, because
our expressions are all for unit area, as well as any
parasitic capacitances that may be present.

In strong inversion, where the capacitance approaches
the insulator capacitance, the charge induced by a fur-

ther increase of the gate voltage goes almost entirely into
the inversion layer. This is especially true at low tem-
peratures, where the depletion charge is essentially fixed
once the inversion layer is populated. This leads to the
very useful approximate relation

Cins
6N = 8Vs , (1.9)
e

o~

g T T T T T T T T T
—~ -
L
[eY
o & i
O o
o
Z -
Ll
O <+
Zz N i

o
=
) L Doy = 50 nm R N
e AREA = .0052 cm?
a
< o 4
O N

o

1 1 1 4 B
—4 -2 6

GATE VOLTAGE (V)

FIG. 4. Capacitance of a metal-insulator-semiconductor (MIS)
structure as a function of voltage on the metal. The example
shown is for p-type silicon. Curves are shown for samples
without ( ) and with (- - - .) surface states. The curves
with minima are measured at low frequency. At high frequen-
cy the electrons cannot be generated fast enough to respond,
and therefore only the depletion capacitance is measured. Fig-
ure courtesy of S. Lai.
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where N, is the density of inversion layer electrons per
unit area and Vj is the gate voltage. A similiar equation
applies to p-type channels.

Capacitance measurements are made by applying a
small ac voltage on the gate electrode in addition to the
dc gate bias, or by slowly ramping the gate voltage and
measuring the current into the capacitor. The minority
carriers (the electrons in this discussion) must be ther-
mally generated and therefore cannot follow the ac vol-
tage at high frequencies. Then the measured capacitance
does not show a minimum, as illustrated by two of the
curves in Fig. 4. The steady-state capacitance is ob-
tained by using low frequencies, a slow ramp, or an FET
structure in which the minority carriers can be supplied
from the source and drain contacts. Frequency-
dependent effects associated with the finite time required
to vary the charge in the inversion layer may complicate
capacitance measurements for high-resistance surface
channels, even if source and drain contacts are present,
as found, for example, in capacitance measurements in a
strong magnetic field (Kaplit and Zemel, 1968; Vosh-
chenkov and Zemel, 1974). At low temperatures long
times may also be required to develop accumulation and
depletion layers to equilibrium values (Fowler, 1975).

If interface states are present, the previous discussion
must be amended to allow for the charge in those states,
which will appear as an additional term in the relation
between the semiconductor charge Q and the surface po-
tential ¢,. If the interface states can fill and empty at
the measurement frequency, the capacitance will be al-
tered as shown by the dotted curves in Fig. 4. If the in-
terface charge does not follow the ac voltage, the states
are said to be “slow” as opposed to “fast” states. This
can lead to hysteresis if the capacitance curve is traced
by sweeping the dc component of the gate voltage up and
down through the values at ‘which the interface state
charge changes.

The fast states may arise from various sources. Imper-
fect matching of the SiO, to the silicon can result in dan-
gling bonds which may be saturated by hydrogen anneal-
ing. Ionic charges or dipoles in the oxide near the inter-
face can give rise to localized states [see, for example,
Goetzberger, Klausmann, and Schulz (1976) and Secs.
ILE and V.C below] which appear as bound surface
states near the band edges in a capacitance measurement.
Other interface states may be derived from impurities in
the silicon (Snel, 1981). Probably any microscopic defect
will appear as a surface state within or without the ener-
gy gap; macroscopic fluctuations in charge may appear
as inhomogeneities. It is not always easy to sort out
these effects, as the large literature bears witness.

One of the reasons that MOSFETs are useful techno-
logically is the same reason that they are useful for scien-
tific studies. That is the possibility, with appropriate
treatment, of reducing the number of fast interface states
to values (< 10'° cm~2) that are small compared to the
realizable free-carrier concentration (~10° to ~ 1013
cm™2). The carriers in these structures have high mobil-
ities at low temperatures. This is because the induced
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electrons are separated by a large distance from compen-
sating positive charge in the gate. The barrier between
the silicon conduction band and the silicon-dioxide con-
duction band is large (=~3.15 eV) so that instabilities due
to electrons tunneling into trap states are inhibited and
the samples are stable. They share with other insulated-
gate structures the major advantage that it is easily pos-
sible by application of a voltage to the gate to change the
number of induced carriers. Further, in MOSFET struc-
tures it is possible to change the electric field seen by a
given density N, of inversion-layer electrons by applying
a substrate bias V,;, between the substrate and the
source. Reverse substrate bias (¥, <0 for our example
with a p-type bulk) has the effect of increasing the
depletion-layer charge. Gauss’s law requires that the to-
tal space charge be proportional to the field at the sur-
face, F;, which in an MOS configuration is approximate-
ly proportional to the gate voltage V. If the depletion
charge is increased by applying reverse substrate bias, the
gate voltage must also be increased if the same number
of electrons is to be maintained. Thus the electron densi-
ty N, and the normal surface field F; can be varied in-
dependently.

E. Quantum effects

The interest in MOS structures is enhanced because
they show the electronic properties expected of a two-
dimensional electron gas. It was postulated by Schrieffer
(1957) that the electrons confined in the narrow potential
well of an inversion layer would not behave classically.
It is clear that if the carrier wavelength is comparable to
the distance from the interface to the classical turning
point (~kpT /eF; in the simplest approximation) then
the carrier motion in the direction perpendicular to the
interface cannot be treated classically. Quantization of
the motion in this direction into discrete levels is expect-
ed. When the free-electron behavior along the interface
is included, the energy levels take the form

7

-— 1.10
> (1.10

E=E,+-—(ki+k}),
where k, and k, are the wave-vector components for
motion parallel to the surface and the E, are the electric
quantum levels arising from confinement in the narrow
potential well. Each value of E, is the bottom of a two-
dimensional continuum called a subband.

Schrieffer felt that interface scattering would broaden
the energy levels and that discrete quantum levels would
not be observed. Nevertheless, many authors, including
Handler and Eisenhour (1964), Murphy (1964), Fang and
Triebwasser (1964a, 1964b), Greene (1964), Howard and
Fang (1965), Kawaji, Huff, and Gatos (1965), Kawaji and
Kawaguchi (1966), and Fang and Howard (1966),
searched for these effects, which were invoked to explain
anomalous results of field-effect experiments. In the dast
cited paper, Fang and Howard had observed a pro-
nounced decrease in the electron mobility at high surface
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fields on a (100) silicon surface at 4.2 K. They postulat-
ed that on a (100) surface the degeneracy of the six sil-
icon conduction-band energy minima located along the
[100] axes in the Brillouin zone (see Fig. 5) is removed
by quantization in the surface potential well. The four
valleys for which the effective mass for motion perpen-
dicular to the surface is the light mass m, are expected
to have higher values of the quantum levels E, of Eq.
(1.10) than the two valleys whose long axis, correspond-
ing to the heavy effective mass m,, is perpendicular to
the surface. They assumed that the decrease in mobility
appeared when the increasing carrier concentration car-
ried the Fermi level into the subband associated with the
higher energy levels, making scattering between the two
sets of valleys energetically possible. This explanation
was not a correct one for the decrease in mobility but it
gave the basis for models of quantization in these sur-
faces and its predictions as to the lifting of the degenera-
cy of the valleys and of the two-dimensional nature of
the electrons were soon borne out by magnetoconduc-
tance measurements of Fowler, Fang, Howard, and Stiles
(1966a, 1966b) and then by many other experiments.
Piezoresistance measurements (Dorda, 1973) have also
been valuable in demonstrating the quantum effects.

The experiments stimulated theoretical work on energy
levels in a surface electric field. Self-consistent one-
electron Hartree calculations were carried out for n-type
surface channels in Si by Duke (1967a), Stern and Ho-
ward (1967), and Stern (1972b), among others. Calcula-
tions for InAs electron accumulation layers by Appel-
baum and Baraff (1971b) and Baraff and Appelbaum
(1972) were stimulated by the tunneling measurements of
Tsui (1970b, 1971b). Pals (1972a, 1972b, 1972c, 1973)
carried out self-consistent calculations in connection with
his own capacitance measurements.

FIG. 5. Schematic constant-energy surfaces for the conduction
band of silicon, showing six conduction-band valleys in the
(100) direction of momentum space. The band minima, cor-
responding to the centers of the ellipsoids, are 85% of the way
to the Brillouin-zone boundaries. The long axis of an ellipsoid
corresponds to the longitudinal effective mass of electrons in
silicon, m;=0.916m,, while the short axes correspond to the
transverse effective mass, m, =0.190m,.
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F. Magnetoconductance

A two-dimensional conduction band without spin or
valley degeneracy has a constant density of states equal
to m /2?7, where m is the effective mass, assumed to be
isotropic. If a magnetic field H is perpendicular to the
surface, the two-dimensional free-electron motion is con-
verted to a set of quantized Landau levels with spacing
eH#/mc. The number of electrons per magnetic quan-
tum level is equal to the density of states times the
Landau-level splitting, or eH /hc, which equals 2.4 X 10"
cm™2 when H equals 10 T. For a Si(100) inversion layer
in the lowest subband (if spin and valley splitting are not
resolved) this value must be multiplied by a spin degen-
eracy factor 2 and by a valley degeneracy factor 2.

Magnetoconductance oscillations in inversion layers
are unique in that the number of electrons can be varied
and counted, as described above, by changing the gate
voltage. In the usual Shubnikov—de Haas experiments,
oscillatory magnetoconductance is measured by varying
the magnetic field with a fixed carrier concentration. In
the inversion layer case, variation of the gate voltage and
of the carrier concentration at fixed magnetic field leads
to periodic changes in conductance, as shown in Fig. 6.
The constant period was prima facie evidence of two-
dimensionality, and the measured number of electrons
per oscillation (Fowler et al., 1966a, 1966b) gave a valley
degeneracy which agreed within ~5% with the value 2
predicted by Fang and Howard (1966). Furthermore, the
prediction that the mass parallel to the surface should be
0.19m,, the transverse mass of electrons in silicon, was
roughly confirmed by analyzing the temperature depen-
dence of the oscillation amplitudes to find a value of
0.21m0.

The magnetoconductance experiment made a two-
dimensional model a necessity, at least at low tempera-

CONDUCTANCE

[0} 20 40 60 80 100
GATE VOLTAGE

FIG. 6. Conduction on a (100) surface of an n-channel MOS-
FET with a circular plan or Corbino-disk geometry in the
presence of a magnetic field perpendicular to the interface.
The oscillations are seen to be uniformly spaced as a function
of gate voltage. In this case the spin and valley splittings are
not resolved. After Fowler et al. (1966a).
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tures. Many of the screening and scattering properties
for such a model were investigated by Stern and Howard
(1967). In 1968, Fang and Fowler published an extensive
experimental study of the transport properties of surface
space-charge layers, for the first time couched entirely in
terms of a physical model that recognized the quantum
effects. Some aspects of the large body of work carried
out to understand mobilities and scattering mechanisms
both experimentally and theoretically are discussed in
Sec. IV.

An important next step was the recognition that tilting
the magnetic field would cause the spin magnetic mo-
ment to tilt, while the orbital moment of the Landau lev-
els is fixed in relation to the surface and would follow
only the normal component of the field. This difference
was used in experiments by Fang and Stiles (1968) to
measure the Landé g factor of the electrons, which was
found to vary with electron concentration, reaching
values larger than 3 for low electron concentrations.
This was a puzzle because the spin-orbit interaction, the
usual cause of deviations of the g factor from its free-
electron value 2.0023, is very weak in silicon. Janak
(1969) first recognized that many-body effects, i.e.,
electron-electron interactions, could account for a large
deviation of the g factor from its free-electron value.
Careful measurements of the amplitude of the magneto-
conductance oscillations by Smith and Stiles (1972, 1974)
showed that the effective mass also increases with de-
creasing carrier concentration, in qualitative agreement
with the theory developed by Lee, Ting, and Quinn
(1975a, 1975b, 1976), Vinter (1975a, 1976), Ando (1976a,
1976b), Ohkawa (1976a), and Quinn (1976). This subject
is discussed more fully in Secs. IL.F and VL.B.

The conductance peaks in strong magnetic fields were
found by Ando, Matsumoto, Uemura, Kobayashi, and

Komatsubara (1972b) to be approximately given by half-
integer multiples of e?/7*#, as discussed by Ando and
Uemura (1974a).

The Hall conductance measured at the resistance peak
between adjacent Landau levels was found by von Klitz-
ing, Dorda, and Pepper (1980) to be an integer multiple
of e2/h, independent of sample geometry, to such pre-
cision that it may help to improve the values of the fun-
damental constants and provide a precise, portable secon-
dary resistance standard. This rapidly developing field
has been reviewed by von Klitzing (1981) and is briefly
discussed in Sec. VL.B.1.

Reviews of magnetotransport properties have been
given by Sugano, Hoh, Sakaki, lizuka, Hirai, Kuroiwa,
and Kakemoto (1973) for low magnetic fields and by
Landwehr (1975) and Uemura (1974a, 1974b, 1976) for
higher fields.

G. Localization and impurity bands

Early transport measurements (Fang and Fowler,
1968) showed that the inversion layer conductivity had
an activated temperature dependence at low carrier den-
sities. This was orginally attributed to freeze-out on im-
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purity levels, but is now attributed to localization of the
states in band tails. Localized states are also seen in the
density-of-states minima between magnetic quantum lev-
els at large magnetic fields. Localization effects take on
special interest in inversion layers because the electron
concentration can be easily varied, making possible a
wider range of experiments than in bulk semiconductors.

Although Coulomb centers can never be completely
excluded from the vicinity of an electron or hole layer
(electrons on liquid helium are a notable exception), the
study of impurity levels in MOS structures is facilitated
if fixed charges are purposely introduced. Hartstein and
Fowler (1975b; see also Fowler and Hartstein, 1980b) did
this by diffusing sodium through the oxide to the
silicon-silicon dioxide interface. They showed that a dis-
tinct impurity band could be seen in conduction near
threshold, and studied the activation energy for motion
within the band and for activation to the conduction
band. Here also, the ability to change the electron densi-
ty separately from the impurity density makes possible a
new class of experiments.

If samples with activated conductivity are taken to
lower temperatures, the dependence of conductivity on
1/T often appears curved on a semilogarithmic plot, an
effect which is attributed to variable-range hopping, as
first proposed for two-dimensional systems by Mott
(1973). Other early evidence bearing on localization ef-
fects is described by Stern (1974b).

More recently, a new effect has been noted in the con-
ductance of inversion layers at low temperatures. Sam-
ples with seemingly metallic behavior, i.e., a weak in-
crease of resistance with increasing temperature at low
temperatures, show a weak increase of resistance with de-
creasing temperature at very low temperatures, as first
demonstrated for inversion layers by Bishop, Tsui, and
Dynes (1980) and Uren, Davies, and Pepper (1980).
Such a weak increase, logarithmic in T, has been predict-
ed for two-dimensional electron systems on the basis of
localization arguments by Abrahams, Anderson, Licciar-
dello, and Ramakrishnan (1979), who are dubbed the
“gang of four,” and on the basis of electron-electron in-
teractions by Altshuler, Aronov, and Lee (1980a). Nega-
tive magnetoresistance has been found by Kawaguchi
and Kawaji (1980b, 1980c) and Wheeler (1981), in good
agreement with predictions by Hikami, Larkin, and
Nagaoka (1980), Altshuler, Khmel’nitzkii, Larkin, and
Lee (1980b), and others. These effects are to be dis-
tinguished from the strong localization effects mentioned
above, which lead to an activated temperature depen-
dence. Work on weak localization and related effects is
progressing very rapidly.

Localization and impurity-band effects are considered
in detail in Sec. V.

H. Optical measurements
The early work on semiconductor inversion and accu-
mulation layers was limited to transport measurements

and was generally consistent with theoretical predictions
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of quantum levels. Direct optical measurements of
energy-level splitting were first made by Kamgar,
Kneschaurek, Koch, Dorda, and Beinvogl (Kamgar et
al,, 1974a, 1974b). It quickly became clear that energy-
level splittings could not be explained on the basis of
one-electron models but could be understood if many-
body effects were included in the theory, as had already
been found in connection with the effective mass and the
g factor. Because many-body effects in two-dimensional
electron systems are relatively large and because carrier
concentrations can be easily varied, inversion and accu-
mulation layers have served as model systems for testing
predictions of many-body theory.

Optical measurements have been reviewed by Koch
(1975, 1976a). The many-body theory has been described
by Ando (1976a, 1976b; 1977a, 1977c), Das Sarma and
Vinter (1981a), Jonson (1976), Kalia, Das Sarma, Nakay-
ama, and Quinn (1978, 1979), Nakamura, Ezawa, and
Watanabe (1980a), Ohkawa (1976a, 1976b), and Vinter
(1976, 1977), among others. Experimental and theoreti-
cal results for energy levels and optical transitions are
considered in Sec. III.

Because of the energy-level broadening produced by
scattering, cyclotron resonance measurements in inver-
sion and accumulation layers must be carried out at
magnetic fields high enough so that the Landau-level
splitting is comparable to or greater than the level
broadening. This pushes the energy range for cyclotron
resonance into the far infrared, where it was first detect-
ed by Abstreiter, Kneschaurek, Kotthaus, and Koch
(1974) and by Allen, Tsui, and Dalton (1974). Many-
body effects enter in this experiment in a rather subtle
way, as described by Ando (1976a) and Ting, Ying, and
Quinn (1976, 1977) and discussed in more detail in Sec.
VI.C.

Plasmons in a two-dimensional electron gas were first
seen for electrons on liquid helium by Grimes and
Adams (1976a, 1976b) and then in inversion layers by
Allen, Tsui, and Logan (1977). The plasma-shifted cy-
clotron resonance (magnetoplasmon effect) was con-
sidered theoretically by Horing and Yildiz (1973) and
Lee and Quinn (1975) and was observed by Theis,
Kotthaus, and Stiles (1977, 1978a, 1978b). This subject
was reviewed by Theis (1980) and is discussed in Secs.
II.D and VI.C.

I. Prospectus

In the remaining sections the properties of semicon-
ductor space-charge layers and of related two-
dimensional and quasi-two-dimensional electron systems
are considered in more detail. Section II discusses some
properties of ideal or nearly ideal two-dimensional elec-
tron systems. In Sec. III, the energy-level structure is
considered for realistic models. Section IV discusses
transport properties associated with extended states and
Sec. V discusses transport properties associated with lo-
calized states and impurity bands. Section VI deals
mainly with energy levels and transport properties in
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strong magnetic fields. Section VII considers some of
the more specialized aspects of two-dimensional electron
systems. The consequences of the multivalley
conduction-band structure of silicon, including valley
splitting and the effects of stress and of surfaces tilted
from (100), are considered in some detail. The two-
dimensional electron crystal is treated in general—both
with and without a magnetic field—and with reference to
electrons on liquid helium, for which the electron crystal
was first observed.

Inversion and accumulation layers at the Si-SiO, inter-
face are the most widely studied two-dimensional elec-
tron systems for reasons already discussed above. Most
of the work has been on n-type rather than on p-type
channels, both because electrons have higher mobility
and because the conduction-band structure of silicon
makes electrons easier to treat theoretically than holes.
The discussion in Secs. I— VII, therefore, deals primarily
with electrons in silicon, particularly inversion layers on
the (100) surface. In Sec. VIII we consider more briefly
a variety of other systems, including holes in silicon and
electrons and holes in other semiconductors. Heterojunc-
tions, quantum wells, and superlattices, which have been
receiving increasing attention in the last few years, are
also covered briefly. Some related systems with large
literatures of their own, sometimes predating the work
on silicon surface channels, are discussed very briefly.
These include thin films, magnetic-field-induced surface
states in metals, layer compounds, and intercalated gra-
phite. Section VIII briefly discusses two-dimensional
electron-hole systems, which have been treated more
often as theoretical constructs than in the laboratory.
Section VIII also describes some of the basic properties
of electrons on liquid helium and related substrates.
This system shares some common features with the other
two-dimensional electron systems we consider but has
special features of its own. The low densities make the
electrons on liquid helium classical (i.e, the kinetic ener-
gy exceeds the interelectron potential energy), and the ab-
sence of some scattering mechanisms leads to very high
mobilities at low temperatures and to sharper spectra
than for inversion and accumulation layers. This system
was the first in which an electron lattice was realized
(Grimes and Adams, 1979).

The Appendix gives algebraic expressions and numeri-
cal values for some commonly used quantities. The Bi-
bliography lists papers dealing with the subjects covered
herein. An attempt has been made to cover the literature
of semiconductor inversion and accumulation layers fair-
ly completely, and to list representative papers from the
other fields discussed in this article. Not all papers in
the bibliography are cited explicitly. We apologize to
authors whose work we have slighted either inadvertently
or because time and space did not allow coverage of their
work.

This article was submitted before the Fourth Interna-
tional Conference on Electronic Properties of Two-
Dimensional Systems, held in New London, New
Hampshire in August, 1981. Readers are encouraged to
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consult the Proceedings of that conference (published in
Surface Science, Vol. 113, 1982; not included in the bib-
liography) for recent developments.

11. PROPERTIES OF A TWO-DIMENSIONAL
ELECTRON GAS

A. Introduction

The two-dimensional electron systems we consider in
this article constitute only a part of the large class of
dynamically two-dimensional systems that have been
widely studied in recent years. By dynamically two-
dimensional we mean that the components of the system
are free to move in two spatial dimensions but have their
motion constrained in the third dimension. Our princi-
pal subject is the system of electrons in semiconductor
inversion and accumulation layers. We also consider
briefly the electrons in semiconductor heterojunctions,
quantum wells, and superlattices and electrons on the
surface of liquid helium. Related electron systems men-
tioned in Sec. VIII include thin films and layer com-
pounds. In addition to these electron systems a number
of other two-dimensional systems have received wide at-
tention, including atoms and molecules on graphite and
other substrates (Dash, 1975; McTague et al., 1980) and
two-dimensional magnetic systems (de Jongh and Miede-
ma, 1974; Pomerantz, 1978, 1980).

Among the properties of two-dimensional systems that
have attracted active theoretical and experimental in-
terest are phase transitions (see, for example, Barber,
1980) and long-range order (Imry, 1979). The Proceed-
ings of the Conference on Ordering in Two Dimensions
(Sinha, 1980) give a useful entry point to the very exten-
sive literature of this subject.

Transport and percolation properties of disordered
two-dimensional systems have been extensively studied
(see, for example, Last and Thouless, 1971; Kirkpatrick,
1973, 1979; Stauffer, 1979; Essam, 1980), but percolation
theories as such are not covered in this article. Percola-
tion concepts enter briefly in Sec. V.A.3. Transport
properties are covered in Sec. V, and recent work on
weak localization and electron-electron interactions in
two-dimensional systems which leads to the prediction
that such systems have vanishing conductivity at abso-
lute zero is discussed in Sec. V.B.

The two-dimensional Coulomb gas, a system of elec-
trons interacting in a strictly two-dimensional universe in
which electromagnetic fields are confined to a plane, has
been widely studied theoretically (see, for example, Baus
and Hansen, 1980). The electrons interact with a loga-
rithmic rather than a 1/r potential. While this system
does not have an exact physical analog [but see, for ex-
ample, Doniach and Huberman (1979), Fisher (1980a),
and Hebard and Fiory (1980) in connection with vortex-
pair interactions in thin-film superconductors] it is an
important model system for theoretical investigation.

A good overview of many aspects of the physics of



Ando, Fowler, and Stern: Electronic properties of 2D systems 447

two-dimensional systems is given by Kosterlitz and
Thouless (1978). Many of these aspects are not covered
in the present article. This chapter covers some formal
aspects of the physics of ideal two-dimensional systems.

B. Density of States

Before going on to a detailed discussion of the two-
dimensional electron gas let us recall a basic result for
two-dimensional systems, namely the density of states.
Because the density of states in n-dimensional wave-
vector space is (27)™", the two-dimensional density of
electron states per unit area and unit energy is

1, dk
@m)?"" dE’
where g, is a valley degeneracy factor which gives the
number of equivalent energy bands and where we have

included a factor 2 for spin degeneracy. If the electron
excitation spectrum is given by

#k?
2m
where m is the effective mass, here assumed to be iso-
tropic, we obtain

D(E)=2g, 2wk (2.1

E=E,+ 2.2)

pE)=2"  E-E
i 0

=0, E<E,. 2.3)

Note that the density of states rises abruptly at the ener-
gy Ey (in the absence of disorder or level broadening)
and is constant for higher energies. There will be addi-
tional step increases in the density of states if there are
two-dimensional bands at higher energies. When only
the lowest band is occupied, the number of electrons per
unit area at absolute zero is

g&m

T

where Ef is the Fermi energy. The Fermi surface for the
two-dimensional electron system is a curve, also called
the Fermi line. In the simplest case of isotropic effective
mass it is a circle whose radius is the Fermi wave vector

kp=(QmN,/g,)""? . 2.5)

Ns= (EF—E()) Iy (2~4)

For elliptical Fermi surfaces with a quadratic depen-
dence of E on k the effective mass in Eqs. (2.3) and (2.4)
must be replaced by density-of-states effective mass my
whose value is given in Eq. (3.6). For more complex en-
ergy spectra, such as those that obtain for electrons in
nonparabolic conduction bands or for holes in warped,
nonparabolic valence bands, the density of states must
generally be found numerically.

>The free-electron mass is called m, throughout this article.
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C. Polarizability and screening

The most important property of a two-dimensional
electron gas to be considered in this chapter is its
response to electromagnetic fields. The simplest example
of this kind is the response of the system to a weak, stat-
ic potential that is slowly varying in space. In addition,
we first assume that the electron gas is in a sheet of zero
thickness at z=0 surrounded by homogeneous media
with dielectric constants «;, for z <0 and «, for z > 0.

The additional electrostatic potential ¢ produced by an
external source is related to the charge density p by
Poisson’s equation

V- (kV¢)=—4mp , (2.6)

where p=pc+ping is the sum of the external charge
density and the induced charge density, and « is the
dielectric constant, which can be a function of position.
In the long-wavelength limit used here, the induced
charge density at a point r in the plane z =0 is a func-
tion only of the local potential seen by the electrons, as
in the three-dimensional Thomas-Fermi model, and we
have

Pina(t)=—e[N($)—N,(0)]8(z) , 2.7
where ¢=¢(r,0) is the value of the electrostatic potential
at r averaged over the electron distribution in z, which is
a delta function in the present simplified case. Equation
(2.7) is the two-dimensional analog of the Thomas-Fermi
approximation.

A potential ¢ changes the energy levels by —e¢ and
the separation of the Fermi energy Er from the bottom
of the conduction band by e$. Because we are assuming
a weak potential, we can linearize Eq. (2.7) and find

(r)=—ed( )dN’a( )
Pind(T)= —ed(r F
=—e2g( )dN’ 8(z) (2.8)
= —e“P(r dE; z) . .
Then Eq. (2.6) becomes
V- (kV¢)—2Kq,d(r)8(2) = — 4TPeys 2.9)

where g, is a screening parameter with dimensions of re-
ciprocal length, defined by

2me? dN;
q, = _, 2.
qs < dEp (2.10)
with
z:fﬁ% : 2.11)

Contrast Eq. (2.9) with the corresponding equation for
linear screening in a homogeneous three-dimensional sys-
tem:

V2¢—‘Qs2¢= —"47rpext/K ’

where Q; is the three-dimensional screening parameter,

(2.12)
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often called g7r. When the external charge is a point
charge Ze at the origin, the solution of Eq. (2.12) is the
familiar exponentially screened Coulomb potential
¢=(Ze /kR)exp(—Q;R).

To find the screened Coulomb potential for our two-
dimensional example, we use a Fourier-Bessel expansion
for the potential:

$(r.2)= [ " g4,(2)o(gr)dg , (2.13)

where J is the Bessel function of order zero and 4,(z) is
a function of ¢ and z, whose value averaged over the
delta-function electron distribution is /Tq =A4,(0).

The solution of Eq. (2.9) when the external charge is a
point charge is a point at r =0, z =27 <0 is easily ob-
tained. We give here only the value of the Fourier coeffi-
cient of the potential in the electron plane as follows:

—  Ze e™
A4,="=— (2.14)
K q+g;
For large values of r, where g;r >>0, the asymptotic
form of the average potential seen by the electrons is
(Stern, 1967):

Ze(14q,zp)

mjfr’

$(r)~ (2.15)
This inverse-cube dependence of the potential on distance
is much slower than the exponential decay found in the
three-dimensional case, and is one of the principal quali-
tative differences between two-dimensional and three-
dimensional screening.

The foregoing example assumed that all the electronic
charge was in a plane. Let us now consider the more
realistic case of nonzero thickness for the electron layer.
The simplest approximation for the charge distribution
of electrons is the one first made for inversion layers by
Fang and Howard (1966):

2,—bz

b3
g(z)=72 e (2.16)

This is also the appropriate charge density for electrons
in the lowest subband for the image potential outside
liquid helium (Cole, 1974) if the thickness of the
helium-vacuum interface is taken to be zero. Expres-
sions for the parameter b and a discussion of the validity
of this approximate charge distribution are given in the
following chapter. With this charge distribution, the
previous considerations are slightly modified: g(z) re-
places 8(z) in Eq. (2.9), and the average potential felt by
the electrons is

o(r)= fowg(z)d)(r,z)dz ,

whose Fourier-Bessel transform is again called /Tq.

Because of the form of Eq. (2.16), it is easy to solve
Eq. (2.9) to find the explicit results for the Fourier-Bessel
coefficients of the average potential seen by the electrons
in the inversion layer (Stern and Howard, 1967):

(2.17)

- Poe®®
i-=2 . 20<0

— 2 s (2183)
K q+gsPa+:8,P§
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1. — Ze P(z0)+3,Poe %o

= » Z2o>0 (2.18b)
e KSC q +quav +q88KP(2) 0
where
Ko —K; K. —K;
8 — SC ns — SC mns , 2.19
* Ksc+King 2K ( )
2me? dN;
gs= k. dEp ’ (2.20)
b3
Py=———= 2.21)
b 19? (
3 2 2
p,, =80 +9b7q13b (2.22)
. 8(b +4q)
3
Pl)=1— 5le™*~(ao+aiz +ayz%)e %], g£b
—q
2 2
g 2q(3b +3g )
(b+q)
__4bq(b—q)
ay= 2
(b +q)
_gq® —q)?
a b+gq , (2.23a)
P(z2)=+[1+2bz +2b%2%+ b*2%le %, g=b .
(2.23b)

Note that in the limit of large b the results in Eq. (2.18a)
reduce to those for the extreme two-dimensional limit
given in Eq. (2.14).

Equations (2.18) can be used to calculate the Born-
approximation cross section for scattering of electrons in
the lowest subband by charged centers in the oxide and
in the semiconductor, as discussed in Sec. II.G and Sec.
IV. Recently there have been calculations which treat
the scattering centers in a more sophisticated way by
taking into account the occupation of the bound state in
the presence of a screening charge distribution (Vinter,
1978; Takada, 1979). These results will be discussed in
the next section in relation to bound states and in Sec.
IV.C in relation to scattering. The results given above
are the two-dimensional analog of the conventional
Brooks-Herring treatment of ionized impurity scattering
in semiconductors (see, for example, Smith, 1978).

Let us now look more closely at the screening parame-
ter g, defined in Eq. (2.20), which gives the screening ef-
fects in the long-wavelength, static approximation, and
on the related parameter g, defined in Eq. (2.10), which
enters in the extreme two-dimensional limit. We have

gy =g, = 27N (2.24)
SC1s 5 Ed ’ ) .
where
E;= —Ns——-— (2.25)
' (st/dEp)
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is called the diffusion energy because it enters in the gen-
eralized Einstein relation (see, for example, Spenke, 1955)
D=—"pu (2.26)

e
connecting the diffusion coefficient D and the mobility u.

For the simple two-dimensional density of states given
by Eq. (2.3), we have (Stern and Howard, 1967)

E,; Ep—E,

Eo -—EF
kgT kgT

1
kpT ||

14+exp 1+exp

(2.27)

At low temperatures, when Ep—Ey>>kpT, the dif-
fusion energy is E; ~Er—E, and

Ko P
g,=2g,/a*, a*=—" (2.28a)
me
=2
7=2g,/a*, a*="" (2.28b)
’ me

where a* and a* are the effective Bohr radii using the
semiconductor dielectric constant and the average of the
semiconductor and insulator dielectric constants, respec-
tively. At high temperatures the diffusion energy is
Ey4~kpT and

2me®N,

Kqs =Kqs = _kﬁ-

(2.29)

Note, however, that at high temperatures more than one
subband will be populated with carriers, and the expres-
sions given here must be generalized. Such generaliza-
tions have been given by Stern and Howard (1967) and
more fully by Siggia and Kwok (1970), and have been
applied to mobility calculations by Stern (1978a) and by
Mori and Ando (1979). The mobility calculations are
discussed in Sec. IV.

The results given so far in this section have assumed
that the potentials being screened are very slowly varying
in space and static in time. In several kinds of problems,
including the calculation of bound states and the scatter-
ing of carriers at elevated temperatures or in more than
one subband, this approximation no longer suffices. The
simplest approximation that gives the response of the
system to shorter wavelengths and to time-varying poten-
tials is the self-consistent or random-phase approxima-
tion, in which each electron is assumed to move in the
external field plus the induced field of all electrons. This
is the model which leads to the famous Lindhard (1954)
dielectric function for a three-dimensional electron gas.
It ignores dynamical correlation effects and is known to
lead to errors in various quantities such as the pair
correlation function (see, for example, Jonson, 1976), but
it is nevertheless widely used because it gives the sim-
plest nontrivial result for the linear response of the sys-
tem to an external field.

The polarization induced by one component F(q,o)
=Fpexp(iq-t—iwt) of the total (external plus induced)
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electric field acting on the sheet of electrons at z =0 can
be written

P(q,0)=X(q,0)F(q,w)8(z) , (2.30)

where X is the polarizability of the layer, given by
Ehrenreich and Cohen (1959):

e? . SolEx) —fo(Eyyq)

)= 1 ’
X(q) q2L2 allﬂ) Ek+q—Ek——ﬁ(z)—iﬁa
(2.31)

fo is the Fermi-Dirac occupation probability, L? is the
normalization area, and the sum is over all one-electron
states of wave vector k and energy E,.

For an isotropic two-dimensional electron gas with en-
ergy levels Ey =#°k?/2m and Fermi wave vector kp, Eq.
(2.31) evaluated at absolute zero gives X =X +iX,, where
(Stern, 1967)

2me?2N, k 2 172
Xl=..___.._3i l__c_ L_m -1
#krq kg - 2kg #
mkpoq 2 1/2
=
(2.32a)
2 21172
— 2r:1e Ny b l1— |4 _mkpwq
hkpq3 2kF #
mkpoq 21172
—D —_ _.L _._F_ 2.3
+ |1 2kp+ 7 ], (2.32b)
C. —sgn | -9, krog
S P
— -9 _mk_F% 2.32
D,=0, szi 7 >1, (2.32¢)
C.=0, D =1, |4 +mkr2T] | 39
+ VY +=1, 2kF__ # <l. .

These results are best understood by looking at a
number of special cases. The simplest is the static,
long-wavelength limit considered above. Then we find,
for =0, g ~0, that

Pina= —iq"P=—qX(q)¢(r)5(z)

s

N,e? _
=— Ey o(r)d(z) ,

(2.33)

in agreement with Eq. (2.8). More generally, 8(z) is re-
placed by g(z).

The dielectric constant for the physical system we are
dealing with will be a nonlocal function in general (Dahl
and Sham, 1977; Eguiluz and Maradudin, 1978a, 1978b),
but can be expressed in a simple form when the inversion
layer is a sheet of charge in the plane z =0 embedded in
a homogeneous medium with dielectric constant k. Then
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one can define a dielectric constant for longitudinal exci-

tation within the plane of electrons to be (Stern, 1967)
k(q,0)=k+2mBX(q,») , (2.34)

where B?=g?—kw?/c?. For the corresponding results in
a more general case, see Dahl and Sham (1977).
For static fields Eqgs. (2.32) and (2.34) give

H qSZkFr

k(q,0)=k [1+-qi

2%ke |

172
]] s Q>2kF .

(2.35)

For small g, this dielectric constant leads to the same
results that we obtained in a different way above. For
q > 2kp, the screening effects fall off much more rapidly.
This removes a conceptual difficulty that arises when the
long-wavelength dielectric constant at absolute zero is
considered for an ideal two-dimensional electron gas of
very low density. The screening parameter, given by Eq.
(2.28), is independent of carrier concentration, and we
would have the unphysical result that a very low density
of carriers continues to screen as effectively as a higher
density. This difficulty is removed by Eq. (2.35), because
kr goes to zero as the density goes to zero, so that the
screening affects a smaller and smaller range of g¢. In a
real system, finite temperature and band tailing effects
will also limit the screening at low electron densities.

A more important effect of the cutoff of screening for
large wave vectors is the change of slope of the dielectric
function at ¢ =2kg. This change leads to Friedel oscilla-
tions in the response of the system to a localized distur-
bance, just as in three dimensions. The leading term in
the potential at large distances for a screened Coulomb
potential induced by a point charge Ze in the same plane
as the sheet of electrons is (Stern, 1967):

Zeq, 4k} sin(2kzr)
K (2kp+gs)* (2kgpr)?

(r)~— (2.36)

Similar results have been found for three-dimensional
semiconductors with cylindrical energy bands by Roth,
Zeiger, and Kaplan (1966; see also Gabovitch et al,
1978, for metals); for carrier-induced magnetic interac-
tions in two-dimensional systems by Fischer and Klein
(1975); and, apart from a phase difference, for the in-
teraction between adsorbed atoms induced by the
response of a partially filled band of surface states, by
Lau and Kohn (1978).

Maldague (1978a) showed how the temperature-
dependent static polarizability can be obtained from the
values at absolute zero. His results can be written

Xqo;Tp)= [°—X@0l) 40 (39)

0 —u
4 2H—H
kg T cosh 2y T

where T is the absolute temperate and p is the chemical
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potential. The high-temperature limit of the static
dielectric function was found by Fetter (1974b) to be

q:(q)

k(gq,0)=K |1+

b

27N, e?
qs(q)= — -'gl(q)») ’

KkBT
A 2 |
- kaT ’
172 x
g1(x)= P =y (2.38)
Here
o e_22
oy)=r"122 [ dz , (2.39)
P

where 7 denotes principal value, is the real part of the
plasma dispersion function as defined by Fetter and
Walecka (1971, p. 305), whose definition differs by a fac-
tor —1 from that of Fried and Conte (1961). Note that
g1(0)=1, and that Eq. (2.38) therefore reduces to (2.29)
for small q. At high temperatures for which more than
one subband is occupied Eq. (2.38) can give misleading
results unless the occupations and spatial extents of the
higher-lying subbands are taken into account. The
wave-vector dependence of the effective screening param-
eter in a single subband at absolute zero and at higher
temperatures as calculated by Stern (1980b) is illustrated
in Fig. 7.

The screening properties of electrons in coupled layers,
as in layer compounds or intercalated graphite, have
been discussed by Visscher and Falicov (1971), Fetter
(1974a), and Pietronero, Strassler, and Zeller (1979).

0.8

0.6

RELATIVE SCREENING PARAMETER

04 Si (001)
N =2x 107 em™
0.2 -
2ke
0.0 1 1 | 1 1
o 2 4 6 8 10

WAVE VECTOR (10° cm™)

FIG. 7. Wave-vector dependence of the effective screening
parameter g,(q, T) normalized to its value ¢,(0,0) at long wave-
lengths and absolute zero, for =0, 10, 20, 40, and 80 K. The
curves are calculated for a Si(001) inversion layer with 2 10
electrons per cm? for which the Fermi circle diameter is
2kp=5.01%x10° cm~!. After Stern (1980b).
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D. Plasmons

We next consider some dynamical consequences of the
dielectric constant Eq. (2.32). The simplest of these are
the longitudinal modes of the system, or plasmons,
which are solutions of

k(q,w)=0. (2.40)

For long wavelengths, for which me >> figkr, the polari-
zability reduces to the free-electron  value
X=—N,e?/mo? and the solution of Eq. (2.40) with the
dielectric constant (2.34) is

» Kk _
C2

cho2

3 (2.41)
27 Nge

For very long wavelengths, for which g <27N,e?/mc?,
the right side of Eq. (2.41) becomes negligible and
g~«'?w/c. A similar result obtains for bulk and sur-
face plasmons (Ferrell, 1958). Effects due to the finite
insulator thickness, discussed in the next paragraph, gen-
erally modify the effective dielectric constant and the
plasmon dispersion before these so-called retardation ef-
fects become operative.

The effective dielectric constant given in Eq. (2.34) is
valid when the sheet of carriers is embedded in a homo-
geneous medium. In the case of inversion layers, the in-
sulating layer is generally bounded by a metallic gate
electrode and the semiconductor space-charge layer is
bounded by the bulk. In the case of electrons on liquid
helium there are usually metal electrodes present. The
presence of conducting boundaries modifies the plasmon
dispersion relation. If retardation effects are neglected,
the plasma frequency is given by (Dahl and Sham, 1977)

e 47Ne’q
P m (ky.cothqdy, +Kipscothqd,ys)

(2.42)

where d;,, and d. are the insulator thickness and the ef-
fective thickness of the semiconductor, respectively. If
the semiconductor bulk can be considered to be metallic
for o ~w), as is likely to be the case if there is a substan-
tial density of free carriers in the bulk, then d. is equal
to the depletion layer thickness z;. If the semiconductor
bulk is effectively a dielectric near w), as is likely to be
the case at low temperatures if the free carriers are
frozen out, then d,. becomes the sample thickness if
there is a metallic substrate electrode or it becomes effec-
tively infinite if there is not.

If gz4 > 1, cothqzy; ~1, Eq. (2.42) reduces to one given
by Chaplik (1972a), Eguiluz, Lee, Quinn, and Chiu
(1975), and implicitly by Nakayama (1974a). If gd,. <1,
qdins <1, so that the hyperbolic cotangents can be re-
placed by the reciprocals of their arguments, we have

172

47Nye?/m (2.43)
“r=4 Ksc | Kins ’
dsc dins

At shorter wavelengths the corrections associated with
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finite insulator thickness become less important. If these
effects are neglected and the polarizability is expanded to
the next order in g/w, we find that the plasmon disper-
sion deduced from Egs. (2.32), (2.34), and (2.40) is

2 27Nze’q

3 5222
@p

29 VF - (2.44)

mk
The leading term in Eq. (2.44) leads to a square-root
dependence of plasmon energy on wave vector, a result
first given for two-dimensional systems by Ritchie (1957)
and by Ferrell (1958). Fetter (1973) used the hydro-
dynamic approximation, and found a result similar to
Eq. (2.44) but with the coefficient of the second term re-
placed by % Beck and Kumar (1976) calculated the
plasmon dispersion taking correlation effects and the fi-
nite spatial extent of the inversion layer into account.
They found that the leading term of Eq. (2.44) was not
affected but that the second term was significantly
changed both for degenerate and nondegenerate electron
gases. Rajagopal (1977a), in his paper on the longitudi-
nal and transverse dielectric functions of the degenerate
two-dimensional electron gas, pointed out a correction to
one term in the original result given by Beck and
Kumar. The effect of several different model dielectric
functions on plasmon dispersion has been considered by
Jonson (1976).

The predicted plasmon dispersion at long wavelengths
was first verified by Grimes and Adams (1976a, 1976b),
who measured radio-frequency standing-wave resonances
of electrons on liquid helium in a rectangular cell. It
was subsequently seen in inversion layers by Allen, Tsui,
and Logan (1977) and by Theis, Kotthaus, and Stiles
(1978a, 1978b), who measured far-infrared transmission.
Plasmon emission has been observed by Tsui, Gornik,
and Logan (1980) from inversion layers excited by pass-
ing an electric current through the source-drain contacts.
In all these experiments the wave vector is selected by
placing a grating of period a close to the electron layer,
so that plasmons with wave-vector components
g, =2mn /a along the surface can be coupled in or out of
the system. It has not been possible yet to achieve large
enough values of g to test higher-order terms in the
plasmon dispersion relation, because this requires rather
small values of the grating period. Such experiments
would be of considerable interest, however, because the
higher-order terms are sensitive to details of the physical
interactions in the system and because at large wave vec-
tors one will reach the regime where plasmon modes and
single-particle modes overlap.

Another interesting feature of the plasmon dispersion
arises if the insulator is bounded by another semiconduc-
tor layer or by a semimetal. Opposite charges will be in-
duced on opposite sides of the insulator and there will be
two coupled plasmon branches. This problem was con-
sidered by Eguiluz et al. (1975) and by Caillé and Ban-
ville (1976). The dispersion relation simplifies if the
bounding materials are semiconductors with the same
dielectric constant «, if the effects of finite depletion
layer thickness are ignored, and if qd;,; << 1. Then the
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two branches are given at long wavelengths by
2 41N, e?q%d;,
T (mg+my K

2 27NyeX(m, +my)gq
y 4= ’
mempKge

(2.45)

where m, and m,;, are the electron and hole masses of the
induced carriers on opposite sides of the insulator. The
two branches can be called the acoustic and optical cou-
pled plasmon modes. They have not yet been observed.
Acoustic plasmons can arise within a single space-charge
layer with one type of carrier if more than one subband
is occupied (Takada, 1977). Coupled plasmon modes
have also been considered by Das Sarma and Madhukar
(1980a, 1981a). Englert, Tsui, and Logan (1981) mea-
sured the plasmon resonance in (001) Si under stress, and
determined the conditions under which carriers transfer
to the Ey subband, which has a different optical effective
mass from that of the lowest subband for motion parallel
to the surface. Plasmon-phonon coupling has been treat-
ed by Caillé, Banville, and Zuckerman (1977), Gersten
(1980), Chaplik and Krasheninnikov (1980), and Tannous
and Caillé (1980).

Plasma oscillations in layered electron gases have been
considered by many authors, including Grecu (1973),
Fetter (1974a), Apostol (1975), Roberts (1975), and
Shmelev et al. (1977), and, for layers in a magnetic field,
by Kobayashi, Mizuno, and Yokota (1975). For a recent
experimental on intercalated graphite, see Mele and
Ritsko (1980). Systems in which layers of electrons and
holes are present have been widely studied theoretically.
They are discussed in Sec. VIIL.G.

The effects of magnetic fields on the dielectric proper-
ties of a two-dimensional electron gas have been con-
sidered theoretically by Chiu and Quinn (1974), Horing,
Orman, and Yildiz (1974), Horing and Yildiz (1976),
Nakayama (1974b), Lee and Quinn (1975, 1976), Horing,
Kamen, and Orman (1981), and Horing, Orman, Kamen,
and Glasser (1981), and have been studied experimentally
by Theis, Kotthaus, and Stiles (1977).

Plasmons have been considered as a possible source of
superconductivity in inversion layers by Takada and
Uemura (1976) and Takada (1977, 1978, 1980b). A brief
discussion of superconductivity in inversion layers is
given at the end of Sec. ILF.1 in connection with silicon
and in Sec. VIIL.B.3 in connection with InAs.

A good review of experimental and theoretical work
on plasmons and magnetoplasmons in inversion layers
has been given by Theis (1980); see also Litovchenko
(1978). Additional discussion of plasmon and magneto-
plasmon properties appears in Sec. VI.C.3.

E. Bound states

Bound states associated with impurities and defects
strongly affect the electrical and optical properties of
bulk semiconductors. We shall here explore some of the
effects associated with bound states in two-dimensional
systems, particularly inversion layer bound states induced
by charged impurities.
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The simplest bound states in bulk semiconductors are
those associated with singly charged attractive Coulomb
centers in a medium with dielectric constant k., and an
isotropic effective mass m. For a simple, parabolic band
these states have a hydrogenic spectrum with energy lev-
els

me4

2k #Pn?’

relative to the adjacent band edge.

If an impurity with charge e is placed at the semicon-
ductor surface, or at the boundary between the semicon-
ductor and an insulator, then the Coulomb potential en-
ergy of an electron is —e2/&kR. If there is a large poten-
tial barrier which keeps electrons out of the insulator,
then as a first approximation we can require that the en-
velope wave function of the electron goes to zero at the
interface. If we ignore the image potential and band
bending near the interface, the energy-level spectrum is
again hydrogenic:

E,= n=12,... (2.46)

me* Ry*

202 n?
where Ry* is the effective rydberg calculated with the
average dielectric constant. The boundary condition ex-
cludes s states, so the level index n begins with n =2.
This problem was first considered by Levine (1965).
Subsequent authors added polarization effects (Prokop’ev,
1966), mass anisotropy (Bell et al., 1967), the image po-
tential (Petukhov et al., 1967; Karpushin, 1969), and a
weak electric field (Karpushin, 1968). A qualitative dis-
cussion of binding to a surface dipole was given by Kar-
pushin and Chaplik (1967).

If we include the presence of a surface electric field
which induces electric subbands, and suppose that only
the lowest subband plays a role, we convert the problem
to a two-dimensional one. In the extreme two-
dimensional limit, in which the Coulomb center is locat-
ed in a sheet of electrons at z =0, the energy-level spec-
trum is (Fligge and Marschall, 1952)

me*

2R — P

E,=— , n=23,... (2.47)

= , n=12,.... (2.48)

This strict two-dimensional limit was considered further
by Stern and Howard (1967), who calculated the bound
states as the charge moved away from the sheet of elec-
trons, and who included screening effects of mobile elec-
trons. We do not consider their results here because the
strict two-dimensional limit is too unrealistic, as shown
by Martin and Wallis (1978). Also unrealistic is the
treatment by Goetzberger, Heine, and Nicollian (1968),
who did not include the requirement that the envelope
wave function go to zero in the oxide and therefore took
the ground state as n =1 in Eq. (2.47).

A more realistic treatment of bound states in the pres-
ence of an interface and an electric field is that of Martin
and Wallis (1976, 1978), who used a variational approxi-
mation to calculate binding energies associated with a
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single subband in a Si-SiO, inversion layer as a function
of electric field in the Si. They included the image po-
tential and calculated the binding energy of the ground
state and of the first excited state as well as the magni-
tude of the matrix element for optical transitions between
them. These states become the # =2 and n =3 states,
respectively, in Eq. (2.47) when the electric field vanishes
and the image potential and mass anisotropy are ignored,
and become the n =1 and n =2 states, respectively, in
the two-dimensional limit given in Eq. (2.48) as the elec-
tric field becomes infinite. The binding energy increases
by an order of magnitude as the electric field increases
from very small to very large values.

Lipari (1978) extended these calculations by using a
more complete basis set, and by allowing the Coulomb
center to lie in the insulator or in the semiconductor as
well as at the interface. He expanded the wave function
in spherical harmonics—taking full advantage of the
symmetry—each of which was multiplied by a radial
function taken to be a sum of exponentials. Enough
terms were taken in the sums to assure convergence.
Lipari studied the influence of the image potential and of
the mass anisotropy of the lowest conduction-band valley
on the calculated binding energy of the lowest bound
state. His results for silicon give binding energies some-
what larger than those of Martin and Wallis. Figure 8
gives the binding energy as a function of the distance of
the Coulomb center from the interface as calculated by
Lipari for the case of flat bands. Vinter (1978) expanded
the wave function of the bound states in a sum of prod-
ucts of functions z times functions of » and 6. The func-
tions of z were taken from the solution of the
Schrodinger equation with no impurity present, and the
radial functions were determined numerically. His calcu-
lated binding energies are also slightly larger than those
of Martin and Wallis.

Effects of screening by charges in the inversion layer
were included in the crude calculation by Stern and
Howard and in more realistic but still somewhat empiri-

o
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FIG. 8. Binding energy of an electron in silicon bound to a
positive charge e located a distance d from the Si-SiO, inter-
face, for the case of flat bands. The energy unit is the effective
rydberg, Ry* ~43 meV, and the distance unit is the effective
Bohr radius, @ ~2.2 nm. Note the change of slope as the
charge crosses the interface, which arises from the different
dielectric constants of the Si and the SiO,. After Lipari (1978).
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cal calculations by Hipdlito and Campos (1979), who
found that screening effects do lower the binding energy.

The experimental system with which these calculations
can be compared is the Si-SiO, system with sodium ions
at or near the interface, as studied by Hartstein, Fowler,
Ning, and Albert, which is described in detail in Sec.
V.C. The calculated binding energy is related—but prob-
ably not equal—to the measured activation energy E;,
attributed to activation of electrons from the impurity
band to the mobility edge. To minimize the complica-
tions of level broadening and of screening, which are not
included in the calculations, the experimental results
should be extrapolated to zero sodium concentration and
zero carrier concentration. Experimental and theoretical
results are compared in Fig. 100.

A more sophisticated calculation of states associated
with a Coulomb center in the presence of free carriers
was carried out by Vinter (1978), who treated the occu-
pation of the bound state and the screening of inversion
layer electrons in a self-consistent way using the Kohn-
Sham local density scheme, but without spin or valley
polarization. The levels are quite weakly bound, as
found in previous calculations that included screening ef-
fects (Stern and Howard, 1967; Martin and Wallis, 1976),
and are found to have fourfold degeneracy even when a
valley density formalism is used (Vinter, 1980) to try to
remove the degeneracy. The calculations for bound
states in the presence of free carriers have so far ignored
level broadening effects and effects of overlap of wave
functions of electrons from adjacent ions, and should
therefore be treated with considerable caution, as pointed
out by Vinter (1980). . Calculations of bound states in the
presence of free carriers were also carried out by Takada
(1979), who estimated the effect of the occupied bound
states on the mobility. This is discussed in more detail
in Sec. IV.C.

Kramer and Wallis (1979) made the first calculations
of bound states associated with higher subbands. They
used rather simple variational wave functions and calcu-
lated bound states attached to the lowest and the first
two excited subbands of the lowest valleys. They found
that the transitions between the bound states attached to
the two lowest subbands lie at higher energies than the
transitions between the subbands in the absence of im-
purities. This is in qualitative agreement with experi-
mental results of McCombe and Cole (1980), who found
that the presence of sodium ions broadens the intersub-
band transitions and shifts them to higher energies.
However, the experiments are done in the presence of
significant concentrations of free carriers, while the cal-
culation of Kramer and Wallis does not include screen-
ing effects. For additional details on the optical mea-
surements, see Sec. V.C.

We conclude this section with some general results
about bound states in two-dimensional systems. First we
note that an arbitrarily weak attractive potential can sup-
port a bound state although the binding energy for a very
weak potential ¢ is likely to be unobservably small (Lan-
dau and Lifshitz, 1977, p. 163). In three dimensions, on
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the other hand, a potential must have a minimum or for the weaker screening present at high temperatures,
strength before it will bind a state (see, for example, or in the presence of band tailing.
Bargmann, 1952). There are conditions on the strength

. . Many-
of the potential needed to bind states with angular F. Many-body effects

momentum quantum numbers / greater than 0 in two- 1. Quantum electron fluid
dimensional systems. Stern and Howard (1967) adapted In a two-dimensional system in which electrons are
a result of Bargmann (1952) to show that the number n; confined to move within a plane placed in vacuum, the
of bound states with / >0 obeys the inequality Fourier transform V(q) of the electron-electron interac-
tion is given by 2me?/q in contrast to 4me?/q” in three
nl < e f R |$(R)|dR . (2.49) dimensions. The extension to a more realistic system is
straightforward. Let us consider the model in which a
Stern and Howard (1967) showed that the model poten- semiconductor with dielectric constant k. fills the half

tial for which the Fourier-Bessel coefficients are given in space z >0 and the other z <O is filled with an insulat-
Eq. (2.18) is not strong enough to bind states with / >0 ing medium of dielectric constant kj,,. The electron

in an inversion layer if the long-wavelength, low- layer is placed on the semiconductor side near the
temperature screening approximation is used for all semiconductor-insulator interface. The Coulomb interac-
values of q. That conclusion would have to be reexam- tion between a pair of electrons located at (r,z) and
ined for the more accurate screening given by Eq. (2.35), (r',z’) is given by

2 (K5 —K;
Vir—r;z,z')=—[(r—1')?+(z _z,)z]_1/2+__59_1L[(r ') 4(z 42?12
KSC KSC( KSC + Klns)
— 2 2mre? elar(r—r) o4 |z—2' + Kse —Kins e—alz+7'] . (2.50)
g Kscd Ksc = King

This result is obtained from classical electrostatics by solving Poisson’s equation. The first term of (2.50) describes the
direct interaction, and the second arises from the interaction with an image of the other electron. The image term is
further modified when the thickness of the insulator is finite and a metallic plate is placed at z = —d,,,. However, the
condition gdi,s >>1 is usually satisfied, and the presence of the metallic electrode is neglected. Therefore, if the
nonzero thickness of the electron layer is included, the effective potential becomes V(q)=(2me?/kq)F(q) with
K=(Kg+Kins) /2, and

(2.51)

K; . K; .
. Kins ]e—q|2—2[+ 1 Kins | —g|z42]

SC

Flg)=7 fow dz fow dz'g(z)g(z') [

For the density distribution g (z) given by Eq. (2.16) the form factor F(q) is given by the following analytic expression:
-3 2 —6

1 q.3/4 11y Kins q
F(q)= 16 ll+ .. 1+4 b 8+9b +3 b =+ > 1— Py 1+ b (2.52)
I

In the limit of vanishing thickness (b —> oo ) the form fac- dau, 1956), in which the so-called f function plays a cen-

tor F(q) becomes unity and the Coulomb potential in the tral role. The object of a microscopic theory is to deter-

strict two-dimensional limit is recovered in case of k=1. mine from first principles the values of the f function as
The electron-electron interaction can affect various a function of the electron concentration. The random-

properties of the two-dimensional electron gas. Among phase approximation is most common and has been fully

them the quasiparticle properties such as the effective discussed by Rice (1965) in three dimensions. In this ap-

mass and the g factor first attracted much attention be- proximation the quasiparticle energy E,, (k) of an elec-

cause they are directly observable experimentally. The g tron with a spin o(+1) and a valley index v is obtained
factor was first obtained by Fang and Stiles (1968) in an from the total energy by taking a functional derivative
n-channel inversion layer on the Si(100) surface and with respect to the Fermi distribution function ng,(k).
found to be enhanced from the bulk value close to two. We have

Smith and Stiles (1972) determined the effective mass in

the same system and showed that it was again enhanced V(@) o

and decreased with the electron concentration. See Sec.  Lov(K)=e(k)— f 2mi < e(q va(k —q,e(k)—w),
VLB for more detailed discussion on various problems

related to these experiments. (2.53)

The most popular way to discuss such quasiparticle
properties is to use Landau’s Fermi liquid theory (Lan- where e(k)=#k%/2m,
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©) _ ngy(k) 1—ngu(k)
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and &(q,w) is the dielectric function, given by
e(q,0)=14+V(q)ll(q,0) , (2.55)

with
Mgo)=—3 [ 22 5 ¢UkEIGIUk+.E +0) .
ov k

(2.56)

This polarization part is related to the polarizability
X(q,0) given by Eq. (2.31) through Il(q,®)
=(q%/e?)X(q,w). The f function is obtained by further
taking the functional derivative of Eq. (2.53) with respect
to ny(k’). The result can be split into two parts:

fau;a'v’(k’k,)_—'fo(k,k,)+800'8uu'fe(kyk') .

Then we get

(2.57)

m m

=" ¢%%fau9f¢,v;¢,,,,,(e)cose (2.58)
and

g m*

£ _ dof.(0), 2.5

b IELTAC) (2.59)

where f(8)=f(k,k’) with k =k'=ky and k-k’=k2 cos6.
The effective mass m* and the effective g factor g* are
defined as usual by

1 _ 1t 3
m* kg ok

Egu(K) | k=k, (2.60)

and

E,o(kp)=E (kp)— 3g*oupH (2.61)

in a weak magnetic field H, where up is the Bohr mag-
neton. Such a scheme was first introduced in the two-
dimensional system by Suzuki and Kawamoto (1973) and
later by Ting, Lee and Quinn (1975).

Historically, various people calculated g* and m* in
different approximation schemes. Janak (1969) is the one
who first noted that the extraordinarily large g factor ob-
served experimentally in the n-channel inversion layer on
the Si(100) surface could be due to an exchange enhance-
ment. He treated the self-energy shift to the lowest order
in the statically screened Coulomb interaction and calcu-
lated g* His result is similar to Eq. (2.59) except that
m* is replaced by the bare mass m. As he erroneously
multiplied the second term of (2.59) by a factor of 2,
however, the resulting g value became extremely large.
The error in the calculation of Janak was first pointed
out by Suzuki and Kawamoto (1973), who showed that
the g factor was drastically reduced from the result of
Janak. However, there is a problem in their treatment of
the image effect in the electron-electron interaction.
They also calculated the effective mass, neglecting the
dynamical screening and replacing e(q,w) by €(q,0) in
Eq. (2.53). This static approximation is appropriate for
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the g factor, but inappropriate for the effective mass.
The g factor is essentially determined by the difference of
the exchange interactions of up- and down-spin electrons
in the vicinity of the Fermi line, whereas the effective
mass is determined by virtual excitations of electron-hole
pairs and plasmons with a wide range of energy. Ando
and Uemura (1974b, 1974c¢) corrected Janak’s calculation
and also investigated effects of the nonvanishing thick-
ness of the inversion layer. The thickness effect was
shown to reduce the Ag =g* —g by about 20% around
N;~5X%102 cm~2. It is Ting, Lee, and Quinn (1975)
who really followed the approximation scheme men-
tioned above. The effective-mass enhancement was
shown to make the N; dependence of the g factor steeper
than that obtained by Ando and Uemura, who neglected
the mass shift. Ting et al. considered also the Hubbard
approximation (Hubbard, 1957, 1958), which approxi-
mately includes effects of short-range correlation, and
found that the g factor increased with the concentration
in contrast to the behavior predicted in the random-
phase approximation. A similar behavior was also found
in a three-dimensional system at low concentrations
(Ando, 1976b). This strange behavior is thought to be a
result of insufficiencies of the Hubbard approximation.
A corresponding calculation for the quasi-two-
dimensional system was done by Lee, Ting, and Quinn
(1975a). Ohkawa (1976a) employed a similar approxima-
tion but included effects of the existence of several sub-
bands as well as the nonzero thickness. The effective
mass seems to become slightly larger if one includes in-
tersubband mixings.
Equation (2.53) is written as

E (k) =¢e(k)+Z(k,e(k)) , (2.62)
instead of the exact Dyson equation
E(k)=¢e(k)+2(k,E(k)) , (2.63)

where the self-energy 3(k,E) is evaluated to the lowest
order in the dynamically screened interaction. The
Green’s functions appearing in the self-energy and in the
dielectric function are taken to be free-particle Green’s
functions. Vinter (1975a, 1976) used a somewhat dif-
ferent approximation scheme. In this approach one uses
the exact Dyson equation (2.63) instead of (2.62). He in-
troduced a simplification in evaluating the self-energy.
The screened interaction can be separated as

V(gelg,0) ' =V(g)+V(g)elgw) ' —1]. (2.64)

Instead of the numerical integration of (2.53) over g and
o, the second term of (2.64) is replaced by coupling to

one effective plasmon as follows:
Im[z—:(q,w)”l-—l]=a8(a)—coq) . (2.65)

The energy of the plasmon w, and the coupling constant

a are determined by the requirement that the f sum rule
fow drocolm[ti(q,a))_’—1]:—%11'&),,2 (2.66)

and the zero-frequency Kramers-Kronig relation
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should be fulfilled, where w, is the plasma frequency, de-
fined by wpz =2mN,e?q/km. The validity of this plasmon
pole approximation for the dielectric function was dis-
cussed by Lundqvist (1967a, 1967b) and Overhauser
(1971) in three dimensions. Vinter calculated the effec-
tive mass using this scheme. The calculated mass
enhancement showed an N; dependence qualitatively the
same as that calculated by Lee, Ting, and Quinn (1975a)
and by others. However, the absolute value turned out
to be smaller than those of others.

There has been discussion whether one should use Eq.
(2.62) or (2.63) to evaluate the effective mass (Lee et al.,
1975b, 1976; Quinn, 1976). By differentiating (2.62) and
(2.63) with respect to k and evaluating on the Fermi line
one obtains

1— -7 :Z[l— L (2.68)
mp mpg

where the renormalization constant Z is the value of
[1—82(k,E)/dE]~! on the energy shell at the Fermi
line. The subscripts D and R refer to results obtained by
the Dyson equation (2.63) and Rice’s approximation
(2.62), respectively. Since Z varies from 0.3 to 0.8 in the
density range 10''—10'* cm~2 in an n-channel inversion
layer on the Si(100) surface, the difference between m},
and mp is an important one. Lee, Ting, and Quinn
(1975b, 1976) argued, following Rice (1965), that Rice’s
approach gives a more accurate result if the self-energy is
evaluated only to the lowest order in the effective
screened interaction. The reason for this is the partial
cancellation of higher terms in the self-energy with the
correction to the approximate equation (2.62) incorporat-
ed in the Dyson equation. As a matter of fact Eq. (2.63)
does not give a correct high-density expansion, whereas
(2.62) does in three dimensions (Rice, 1965). For actual
electron concentrations, however, this cancellation is not
complete, and it is not easy to tell which procedure gives
more accurate results.

A density-functional formulation has also been used to
calculate the effective mass and the g factor (Ando,
1976a, 1976b). Details will be discussed in Sec. IIL.B.
Some of the theoretical results for the effective mass are
plotted together with the experimental results of Smith
and Stiles (1972) in Fig. 9.

Various properties of a two-dimensional electron gas
other than those mentioned above have been studied. Zia
(1973) calculated a high-density expansion of the correla-
tion energy, evaluating the ring diagrams and the
second-order exchange diagram. Errors in his result
were pointed out and corrected by Rajagopal and Kim-
ball (1977) and by Isihara and Toyoda (1977a, 1977b).
The total energy per electron in rydberg units was ex-
pressed as
1.2

—0.38—0.172r Inrg + O (7y) ,
(2.69)

1
e(r)~——
s rsz :
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where 7, is defined by N, '=na}r? and ap=#/mye? is
the Bohr radius for free space, because we are here treat-
ing an ideal two-dimensional electron gas, without con-
sidering the effects of the medium via its dielectric con-
stant and effective mass. Jonson (1976) compared the
correlation energies and the pair correlation functions
calculated in the random-phase approximation, the Hub-
bard approximation, and the approximation proposed by
Singwi, Tosi, Land, and Sjolander (1968). He found that
both the random-phase and the Hubbard approximations
are less satisfactory in two dimensions than in three
dimensions, suggesting the importance of short-range
correlations not properly accounted for in these approxi-
mations. A similar conclusion was reached by Bose
(1976). The comparison was extended to the n-channel
inversion layer on Si(100). The finite thickness effect was
shown to improve the validity of the approximations
greatly, since the finite thickness makes the short-range
interaction weaker. There have been more investigations
on related properties (Isihara and Toyoda, 1976, 1980;
Glasser, 1977; Freedman, 1978; Toyoda et al, 1978;
Isihara and Ioriatti, 1980). A similar consideration was
extended to the case in the presence of a magnetic field
(Isihara and Toyoda, 1979; Isihara and Kojima, 1979; see
also Isihara, 1980; Glasser, 1980). The diamagnetic and
paramagnetic susceptibilities were calculated within the
random-phase approximation in weak and intermediate
fields. The weak-field orbital susceptibility was discussed
also by Rajagopal (1977a).

All the theoretical considerations mentioned above as-
sume that the ground state is a paramagnetic uniform
occupation of different spin (and also valley, if necessary)
states. It is well known that such a uniform distribution
becomes unstable against the formation of the Wigner
crystal at sufficiently low electron concentrations. This

T T T
026 - e Smith and Stiles
' A Fang et al.
_Lee et al. (z5=1954)
024 |- " _Ohkawa and Uemura-
o N\
£
*E 0.22 - °
\
AN
020F  yinter tTmmo T
1 | !
0185 1 2 3

Ns (10%cmi?)
FIG. 9. Calculated effective masses (Vinter, 1975a, 1976; Lee
et al., 1975a; Ohkawa, 1976a; Ando, 1976a, 1976b) and experi-
mental results of Smith and Stiles (1972) and of Fang et al.
(1977) in an n-channel inversion layer on a Si(100) surface.
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problem will be discussed in Sec. VII.C. Various kinds
of instabilities have been proposed in addition to the
Wigner crystallization. Rajagopal and coworkers (Ra-
jagopal, 1977b; Rajagopal et al., 1978a, 1978b) investigat-
ed ferromagnetic properties of the two-dimensional sys-
tem. They calculated the total energy as a function of
the spin polarization {=(n,—n;)/(n;4+n;) in the
random-phase approximation, where n, and n, specify
the density of up- and down-spin electrons, respectively.
The result shows an abrupt transition to the saturated
ferromagnetic state at r;=5.4 in the strict two-
dimensional system. In a quasi-two-dimensional system
the finite layer thickness was found to cause the transi-
tion to be gradual and reduce the critical electron con-
centration greatly. For Ngeg>7.6X10° cm™? the
paramagnetic state is stable above N, ~5X 101 cm~2,

In addition to the spin degeneracy, the valley
degeneracy—equal to two for the Si(100) surface—must
also be considered. As long as a weak valley coupling,
which will be discussed in Sec. VIL.A, is neglected, there
is theoretically no difference between the ferromagnetic
ground state and a single-valley occupancy state in
which only one valley is occupied by up-spin and down-
spin electrons. Other more complicated configurations
are also possible. The possibility of the single-valley oc-
cupancy state was studied in a density-functional formu-
lation by Bloss, Sham, and Vinter (1979), who predicted
an abrupt transition at much larger electron concentra-
tion (N;~2.3%x10"" cm~—2 for Ndep1=1><1011 cm™2).
Effects of the different occupation multiplicity on energy
separations between electric subbands were studied (Bloss
et al., 1980). Ceperly (1978) calculated the ground-state
energy of a strict two-dimensional system using a Monte
Carlo variational method and suggested that the spin-
polarized state is stable at densities below r; > 13. The
possibility of a spin-density wave or valley-density wave
was examined by Bergman and Rice (1977). In these
states, as originally suggested by Overhauser (1962) in
three dimensions, the occupation of the two spin states
or of the different valleys oscillates in space with a
characteristic wave vector Q with | Q| ~2kp, while the
total electronic charge density remains uniform. They
suggested that these states could be lower in energy than
the usual uniform state below N; ~8X%10'! cm~2 in the
n-channel layer on the Si(100). Kalia and Quinn (1978)
used a density-functional approach for a similar discus-
sion. Maldague (1978a, 1978b) calculated the first-order
exchange correction to the static polarizability and found
a sharp peak at ¢ =2kp. This behavior differs drastically
from that in three dimensions, where the exchange
correction does not give a peak structure although it
enhances the polarizability near ¢ =2kr. Although this
sharp peak becomes smaller if higher-order effects are in-
cluded, it suggests a pronounced tendency of the two-
dimensional system to instabilities toward a charge-
density or spin-density-wave ground state. A density-
functional approach has been used also to discuss the on-
set of charge-density-wave instability and has given
rs~17 as the critical electron concentration in exact two
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dimensions (Sander et al., 1980). Sato and Nagaoka
(1978) calculated the static polarizability in the direction
normal to the layer in a two-subband system and sug-
gested the possibility of an instability against a
polarization-wave state when the Fermi energy is close to
the bottom of the upper subband. In this state a polari-
zation wave with wave vector kr is spontaneously
formed.

The possibility of superconductivity was recently ex-
amined in inversion layers. Takada and Uemura (1976)
studied various possible mechanisms which can give rise
to superconductivity in inversion layers on InAs and sug-
gested acoustic plasmons as a candidate for systems in
which several subbands with different effective masses
were occupied (see also Sec. VIII.B.3). Takada (1978)
later showed that the plasmon itself can cause supercon-
ductivity in both two- and three-dimensional electron
gases. The theory was applied to the n-channel inversion
layer on the Si(100) surface under a uniaxial stress (Taka-
da, 1980b). Hanke and Kelly (1980a, 1980b; Kelly and
Hanke, 1981a) included electron-phonon interactions and
intersubband excitations in addition to the plasmon
mechanism and estimated the transition temperature on
the (111) Si-SiO, surface. In their theory the transition
temperature rises to a value of order 10 mK as N, in-
creases to ~10'* cm~2,

2. Classical electron fluid

So far we have considered two-dimensional electron
gases at low temperatures. There have been a number of
theoretical investigations of classical two-dimensional
systems in connection with the image-potential-induced
surface state on liquid helium. In the classical regime
the dimensionless coupling constant which characterizes
the importance of the Coulomb interaction is given by
C=7'"2N}"?2/kyT. The plasma parameter I' is de-
fined as the ratio of the mean potential energy e*(wN,)!/?
to the mean kinetic energy k7. For a dilute system at
high temperatures I'" is small (I’ <1) and the Coulomb
interaction is less important. At intermediate densities
(1<T <100) the motion of electrons becomes highly
correlated or liquidlike. At high densities and low tem-
peratures (I">100), the Coulomb potential energy
predominates and the electrons are expected to undergo a
phase transition to form a periodic crystalline array.
This electron solid will be discussed in detail in Sec.
VII.C. Here we confine ourselves to the case of relative-
ly small I'. In the electron system outside liquid helium
" varies from 1 to 95 for 10° cm™2 <N, <10’ cm™2 at 1
K.

We first study some properties of a two-dimensional
classical plasma in the random-phase approximation,
which is equivalent to the Debye-Hiickel approximation
and is known to be valid for a dilute plasma at high tem-
peratures (I'<1) in three dimensions. The dielectric
function in the classical regime becomes
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where ¢, is the two-dimensional Debye screening con-
stant defined by g, =2me?N, /kyT, and W (z), the deriva-
tive of the plasma dispersion function, is given by

1 +o xexp(—x2/2)
W=7 [P e @

x—z—i0
The real part of W(z) is equal to ®'(z/V2)/2, where ®
is given by Eq. (2.39). With the use of the fluctuation-
dissipation theorem the static form factor becomes
kT
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The pair correlation function is related to S(q) through
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The pair correlation function g(r) diverges as
g(r)~—(1/kgT)(e?/r) near the origin. The correlation
energy per electron, g,, and the equation of state are
given with the aid of the virial theorem by

|2
ksT NykgT
AG 82
= £ [g(n—1], 2.74
szderr[g(r) ] (2.74)

where p is the pressure. Because of the divergence of
g (r) near the origin, the correlation energy diverges loga-
rithmically, which is a direct manifestation of the inade-
quacy of the random-phase approximation. In three
dimensions, however, the integral of the right-hand side
of (2.74) does not diverge, fortunately, and gives a well-
known result of Debye and Hiickel. This strongly sug-
gests again the importance of short-range correlations in
the two-dimensional system. From the dielectric func-
tion (2.70) one can obtain the plasma frequency w, and
the Landau damping y; as

27N e? 12
w,= | s 4 1439, 2.75)
£ m 2 g
and
1/2 372 q 3
,}/L — % _q‘_g_ exp — 5‘—;— — 3 ]wp > (2.76)
for g <<g;.

Physically the divergence in Eq. (2.74) appears because
the linear screening approximation in the Debye-Hiickel
treatment is invalid in the vicinity of an electron where

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

induced charges exceed the background. density and one
must introduce a cutoff distance r,. The result of Fetter
(1974b) corresponds to putting r, =A,, with the thermal
wavelength Ay, =(27#/mkpT)"/?. Actually r, is given
by e2/kgT, which is roughly the classical distance of
closest approach of two electrons of energy kz7T. We
then have

€c

)4 2 2
=2 —1|=r2m2r?,
kT [NskBT In2

(2.77)

in the limit of small I. This expression is correct in the
dilute limit. An expansion of the equation of state with
respect to I' was obtained by Chalupa (1975) and Totsuji
(1975, 1976, 1979a). Effects of electron-electron col-
lisions on the damping of the plasma oscillation were
studied and the collisional damping was shown to be
more important than the Landau damping in the domain
where the plasma oscillation was a well-defined collective
mode (Totsuji, 1976; Onuki, 1977).

Recently various attempts have been made to extend
the study to the domain I'>1 (Totsuji, 1979b, 1979c;
Totsuji and Kakeya, 1979; Nagano et al, 1980). Numer-
ical experiments have also been used to determine ther-
modynamic quantities like the equation of state and the
pair correlation function (Hockney and Brown, 1975;
Totsuji, 1978; Gann et al, 1979; Itoh et al., 1978; Itoh
and Ichimaru, 1980) and to give dynamic properties such
as the dynamic structure factor and the plasmon disper-
sion (Totsuji, 1980; Totsuji and Kakeya, 1980). The
domain I' > 100 will be discussed in detail in Sec. VII.C.

G. General aspects of transport in two-dimensional systems

The basic machinery for discussing the transport prop-
erties of electrons in two dimensions, as considered for
silicon inversion and accumulation layers in Sec. IV, is
quite similar to that used for three dimensions, but some
of the details are different. Thus, for example, the cross
section for elastic scattering can be described by phase
shifts 7; for partial waves of angular momentum quan-
tum number /, and is given by (Stern and Howard, 1967)

2
i6+m;) .
e KA

inn; | , (2.78)

2 o0
ol0)= wk 2

I=—w

where 0 is the scattering angle, the angle between the
wave vectors k and k' of the incident and scattered
beams, given by

S=|k—k'| =2k sing : 2.79)
The phase shifts must satisfy a two-dimensional analog

of the Friedel phase-shift sum rule, given at absolute zero
for only one occupied band by (Stern and Howard, 1967)

2g, > m\Ep)=nZ,

l=—c

(2.80)



Ando, Fowler, and Stern: Electronic properties of 2D systems 459

to insure that a scattering center of charge Z is fully
screened at large distances.

The phase-shift analysis can be used to study the accu-
racy of the Born approximation

m

2 © 2
o(0)= 1 [ [ virusorar 2.81)

2m
7

applied to two-dimensional elastic scattering by a
screened Coulomb potential. Stern and Howard (1967)
found, for a simple screening model, that the Born ap-
proximation underestimates the scattering for an attrac-
tive potential and overestimates it for a repulsive poten-
tial. When the scattering center is far enough from the
electron plane the error made by the Born approximation
is small. That generally applies for scattering in semi-
conductor inversion and accumulation layers because of
the thickness of the electron layer.

A very instructive example of scattering in two dimen-
sions that can be solved exactly is the scattering of elec-
trons by an unscreened Coulomb potential energy
V(r)= —Ze?/kr produced by a charge Ze located in the
electron plane. The nonrelativistic Schrédinger equation
for this case can be solved (Stern and Howard, 1967) and
gives a scattering cross section

o(6)= G tanhwG ,

2k sin®>—
sin 5

(2.82)

where G =mZe?/kk#*=Z /a*k. The Born-approxi-
mation result is obtained from Eq. (2.81) using (2.14)
with zo=0 and g, =0, and gives
2 g \2
oe)= T2 LERY (2.83)
2k sin® -
sin”>
where v =%k /m, for the unscreened Coulomb potential.
The corresponding classical cross section is (Kawaji and
Kawaguchi, 1966)

2
olo)=—1Z1le (2.84)
— 2. ..2 (7
2Kmv~sin“—
2
The Born approximation is valid for a Coulomb poten-
tial when the scattering contribution to the wave func-
tion is small, which occurs when Ze?/kr <<#v /r (Lan-
dau and Lifshitz, 1977, p. 161), i.e.,, G << 1, and the clas-
sical approximation is valid when the electron wave-
length (divided by 2w) corresponding to energy E is
small compared to the radius corresponding to potential

energy of magnitude E, which occurs when
#/(2mE)"/? << Ze?/RE (Schiff, 1955, p. 120), i.e.,

G>> % The exact result (2.82) goes over to the Born-
approximation result (2.83) and to the classical result
(2.84) in the appropriate limits.

This example is especially instructive because the
corresponding comparison cannot be made for three-
dimensional Coulomb scattering. The Born-approx-
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imation, classical, and exact cross sections all agree in
that case.

111. ENERGY LEVELS AND WAVE FUNCTIONS
A. Subband structure

1. Hartree approximation for electrons in
silicon space-charge layers

In this section we describe the methods used to calcu-
late energy levels and wave functions of electrons in
semiconductor inversion and accumulation layers. The
simple Hartree approximation is described first, to give
the form of the self-consistent one-electron potential and
the Schrodinger equation in the presence of the
semiconductor-insulator interface. Later in the section
more realistic approximations are presented and their ef-
fect on energy levels and wave functions are described.

Electrons near semiconductor-insulator interfaces move
in a rather complex potential. On one side of the inter-
face they see the periodic potential of the semiconductor,
on which is superposed the relatively slowly varying elec-
tric field induced by the applied voltage, by the work-
function difference of the gate and the substrate, and by
any fixed charges which may be present. On the other
side they see the potential of the insulator, which is usu-
ally amorphous. There is usually a large potential bar-
rier which tends to keep electrons out of the insulator.
In addition, there may be a transition layer whose prop-
erties are different from those of the semiconductor or
the insulator.

A complete treatment of this system is beyond the
scope of present theories, although there has been pro-
gress on some aspects of the electronic structure of the
semiconductor-insulator interface [see, for example,
Laughlin, Joannopoulos, and Chadi (1978, 1980) and
Herman, Batra, and Kasowski (1978)]. There is also im-
proved understanding of the microscopic structure of the
interface, which will be discussed below.

We shall treat the energy levels in semiconductor
space-charge layers first by making all possible approxi-
mations- that do not do violence to the underlying physi-
cal system and then by examining the effects of these ap-
proximations. In particular, we start with the Hartree
approximation that each electron moves in the average
potential produced by all electrons, neglecting many-
body interactions. We use the effective-mass approxima-
tion to smooth out the microscopic structure of the
semiconductor. We also assume that the barrier which
keeps electrons out of the insulator is so large that the
electron envelope wave function can be assumed to van-
ish at the semiconductor-insulator interface, taken at
z=0. This approximation has been made in most calcu-
lations, although it was not made in Duke’s (1967a) ori-
ginal calculation. It is reasonably good for the silicon-
silicon dioxide interface, but is not valid for other inter-
faces, such as the GaAs-(Ga,Al)As interface or the sur-
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face of liquid helium. See Sec. IILE for additional dis-
cussion of the boundary condition.

Qur treatment is at first limited to electrons because of
the simpler structure of the conduction band and because
of the experimental importance of n-channel inversion
and accumulation layers in silicon.

One may well question the use of effective-mass ap-
proximation for electronic states whose spatial extent is,
in cases of confinement by strong surface electric fields,
limited to a few atomic layers. This problem has been
addressed by Schulte (1979, 1980a), and also arises in
connection with valley splitting, discussed in Sec. VILA,
and with heterojunctions and superlattices, discussed in
Sec. VIILD. A test with high precision cannot be made
without more detailed knowledge of the structure of the
interface. We expect, however, that in most cases it is
the lack of knowledge of physical parameters and uncer-
tainties in the many-body aspects of the problem, rather
than the effective-mass approximation itself, that limits
the accuracy of the calculations of interest here.

The simplest version of the effective-mass approxima-
tion treats the electrons as though they had masses
characteristic of a conduction-band minimum, neglecting
nonparabolicity and coupling to other band extrema.
The kinetic energy operator can be written

2
T=— ? 2 w,~j "—a“’_" N
ij

9x;0x; 3.1

where the w; are the elements of the reciprocal
effective-mass tensor for the particular conduction-band
minimum being considered. Since the potential energy is
taken to be a function of z only, the wave function can be
written as the product of a Bloch function, a z-dependent
factor, and a plane-wave factor representing free motion
in the xy plane. A simple transformation to remove the
first derivative in the Schrédinger equation leaves the
wave function in the form (Stern and Howard, 1967)
Y(x,y,2)=E;(z)e

ik x +ik,y
Wy

—i [—"’ﬁk,Jr—skz ]z]ua(R),
w3 3

X exp
3 w3

(3.2)

where u,(R) is the Bloch function for the bottom of the
conduction-band valley being considered, including both
the periodic part and the factor exp(ik,°r), where k, is
the wave vector at the energy minimum of the ath valley
and k, and k, are wave vectors in the k,-k, plane mea-
sured relative to the projection of k, on this plane. The
envelope function §;(z) satisfies
# d%

om, a2 TE—V(@6(2=0,
., dz

(3.3)

where m, =w3;!, subject to the boundary conditions that
&; go to zero for z=0 and z— . [This separation of
variables in the Schrédinger equation is not generally
valid if the boundary condition &;(0)=0 is relaxed.] The
§; are assumed to be normalized:
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[ cidz=1. (3.4)
The energy levels are given by
2 w2
Eky k) =E+ 2 |y — 22 |1}
2 Wiz
wiw
+2 |lwp— i kik,
+ wzz_—f—]kg , (3.5)

and lead to constant-energy parabolas above the level E;
which is the bottom of the ith subband. The principal
effective masses, m, and m,, of these parabolas depend
on the orientation of the constant-energy ellipsoids in the
bulk with respect to the surface. They are given in Table
I for the high-symmetry surfaces of semiconductors with
conduction-band minima along the (001) directions, like
those of silicon, and along the (111) directions, like
those of germanium, in terms of the transverse and longi-
tudinal effective masses of electrons in the bulk. If the
values m,=0.19m, and m;=0.916m, are used for sil-
icon (Hensel et al., 1965), we obtain the principal effec-
tive masses given in Table II.

By analogy with three-dimensional ellipsoidal energy
bands, we can also introduce two other important mass
parameters. One is the density-of-states effective mass

mg=(mymy,)"*, (3.6)
the other is the conductivity or optical mass
Mop = "‘1—2—1 , 3.7)
— + [———
my m,
which enters in transport properties (Smith, 1978).

Values of these masses for high-symmetry surfaces of sil-
icon are given in Table II.

The energy levels E; for a given value of m, constitute
a series of subband minima called a subband ladder. For
different orientations of the bulk constant-energy surfaces
with respect to the surface, there may be different values
of m,, and therefore different ladders. One way to name
these levels is to number the levels of the lowest ladder
0,1,2, . ..,those of the second ladder 0°,1,2), ...,the
third ladder 0",1”,2"”,...,and so on. If all
conduction-band valleys have the same orientation with
respect to the surface there will be only one ladder. Be-
cause of the kinetic energy term in the Schrddinger equa-
tion the valleys giving the largest effective mass m, for
motion perpendicular to the surface will have the lowest
energy. Corrections to the simple effective-mass approxi-
mation which take interactions between conduction-band
minima into account lead to changes in this simple pic-
ture, as will be discussed below.

The potential energy V(z) which enters in Eq. (3.3)
can be written as the sum of three terms as
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TABLE 1. Effective masses for three surface orientations, for semiconductors having band structures like those of the conduction
band of Si (six { 100} ellipsoids of revolution) or of Ge (four { 111} ellipsoids of revolution). The principal effective masses in the
ellipsoids are m;, m,, and m;. The derived values are m,, the effective mass perpendicular to the surface, and m, and my, the
principal effective masses of the constant-energy ellipse in the surface. The degeneracy of each set of ellipses is g,. After Stern and

Howard (1967).

Si Ge
Surface
Orientation my my, m, 8 my my, m; 8v
{100} "y my m 2 me (mer2m)/3 3memi/(mg42m) 4
m, my my 4
{110} m; (m,+m;)/2 2mmy/(m, +my) 4 m, (my+2m,)/3 3mmm;/(m;+2m,) 2
m; my m, 2 m; my m; 2
m, m, my 1
{1y e (me+2m) /3 3memy /(my +2m;) 6 m, (m,+8m;)/9  9mem;/(m,+8my)
172
V(2)=V4(2)+Vs(2)+V;(2) , (3.8) . Pakse ] 3.11)
d = R U— . .
which represent, respectively, the contributions from 2meN 4

fixed space charges, from induced charges in the space-
charge layer, and from image charges at the
semiconductor-insulator interface. In this section we as-
sume that the interface is sharp and that there is an in-
finite barrier which keeps electrons out of the insulator.
If the band bending ¢, associated with the depletion
layer is not too small, if the bulk is p type, and if the ac-
ceptor density N, is constant throughout the depletion
layer, then a good approximation for the potential energy
in the depletion layer is
z
[1 22d

4me®N depl ;

Vi(z)= , O<z<zy, (3.9)

sC

Ndepl=NAzd ’ (3.10)

Ngepi is the number of charges per unit area in the de-
pletion layer, whose thickness is z;. If compensating
donors are present, N4 should be replaced by N, —Np,.
As ¢, increases, z; and N both increase until the in-
version layer begins to form, at which point all three
quantities tend to saturate, especially at low tempera-
tures.

When an inversion layer has formed, the band bending
¢4 in (3.11) is given approximately at low temperatures
by

(3.12)

the energy difference between bottom of the conduction
band in the bulk and the Fermi level. There are several

e¢pq~E.—Er ,

TABLE II. Numerical values of effective masses for silicon inversion layers. After Stern (1972b).

Surface (001) (110) (111)
Valleys Lower Higher Lower Higher All
Degeneracy g 2 4 4 2 6
Normal mass?® m, 0.916 0.190 0.315 0.190 0.258
Principal

masses my 0:190 0.190 0.190 0.190 0.190

m, 0.190 0.916 0.553 0.916 0.674

Conductivity

mass® My 0.190 0.315 0.283 0.315 0.296
Density-of-

states mass

per valley® my 0.190 0.417 0.324 0.417 0.358

2All effective masses are in units of the free-electron mass; they are based on the conduction-band
masses m;=0.190mq and m;=0.916m, given by Hensel et al. (1965).

1 op =mymy /My +my); mg=(m,m,)'/2.
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corrections to this value. The first and most important
of these applies if there is a substrate bias ¢, applied
between the source or drain contacts at the semiconduc-
tor surface and the bulk of the semiconductor. This ex-
tra potential generally drops across the high-resistance
depletion layer. If the bulk is at a negative potential
with respect to the surface, corresponding to negative
dsub, the depletion layer width increases.

The second correction to ¢4 takes more careful ac-
count of the position of the band edge at the surface in
relation to the Fermi level, which lies at the same energy
in the bulk as at the surface in the absence of substrate
bias. The energies which enter in this correction are il-
lustrated in Fig. 10.

The third correction to ¢4, which takes into account
the gradual falloff of the potential at the interface be-
tween the depletion layer and the bulk, is —kpT /e [see,
for example, Eq. (1.3)] except at very low temperatures,
where it is determined by the acceptor level broadening
(Stern, 1972b).

When these three corrections are included, the band
bending e¢,; which enters in Eq. (3.11) is given by

e¢pg=(E.—Ep)+(Ep—Eo)+E,
4me®N,z,,

- +ebu—ksT,
Ksc

(3.13)

where the second term on the right is the separation of
the Fermi level from the bottom of the lowest subband at
the surface, E, is the energy of the bottom of the lowest
subband relative to the nominal conduction band edge at
the surface, as found from Eq. (3.3), N; is the total con-
centration of inversion layer electrons, and z,, is their
average distance from the semiconductor-insulator inter-
face. The fourth term on the right in Eq. (3.13) is the

E E
zd Ec ///
T z 7 E
e foe e e — F
by Ec-Ef i Eo
eds T
o 7 A - EF L zloV
0 z (o] z
(a) (b)
FIG. 10. Schematic band bending near a semiconductor-

insulator interface, showing the nominal conduction-band edge
(solid) and the corresponding band bending associated with the
fixed depletion layer charges only (dashed). The depletion
layer is shown in (b) for a case in which no substrate bias vol-
tage is applied. A negative substrate bias ¢, would raise the
Fermi level and the conduction-band edge in the bulk relative
to the values at the surface. An expanded view of the surface
region that contains the inversion layer is shown in (b), and il-
lustrates some of the terms that enter in Eq. (3.13) for the band
bending ¢4 in the depletion layer. In particular,
V;=4wN,e%z,,/k. is the contribution of inversion layer elec-
trons to the potential energy at z=0.
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potential drop associated with the inversion-layer charge.
Note that ¢4, which is the quantity that enters in (3.11),
is not the same as the surface potential ¢, as illustrated
in Fig. 10.

Finally, the depletion potential would have to be
corrected for any deviation of the acceptor doping from
homogeneity. Such deviations arise in some cases as the
impurities redistribute themselves during oxidation (see,
for example, Margalit et al., 1972, and references cited
therein) but have not usually been taken into account in
inversion layer calculations. The effect of nonuniform
bulk doping in the depletion layer can generally be
neglected provided that the value of N4 used in Egs.
(3.10) and (3.11) gives the depletion charge obtained from
a solution of Poisson’s equation for the actual doping
distribution.

In most cases of interest for silicon, the depletion layer
is much wider than the inversion layer, and it is usually
a good approximation to neglect the term quadratic in z
in Eq. (3.9). However, for heavily doped substrates, for
positive substrate bias voltages, or for semiconductors
with a small effective mass m, and a correspondingly
wide inversion layer, the term quadratic in z can be sig-
nificant. In numerical calculations there is no difficulty
in keeping both terms, but in some analytic or variation-
al treatments it is easier to keep only the linear term.
This is the frequently used triangular potential or tri-
angular well approximation, so called because the poten-
tial well is bounded on one side by the vertical barrier
that keeps electrons out of the insulator and on the other
side by the linearly rising potential given by the first
term in Eq. (3.9). The triangular approximation is dis-
cussed in more detail in Sec. IIL.A.3.

The preceding discussion applies to the depletion layer
potential when a positive gate voltage is applied to a
structure with a p-type substrate. Under a limited range
of conditions, the same treatment applies also to accumu-
lation layers which result when a positive gate voltage is
applied to a structure with an n-type substrate. If the
sample is at a low enough temperature so that the elec-
tron concentration in the bulk is negligible, then the
fixed charges are those of the minority acceptor impuri-
ties (Stern, 1974¢) and the potential due to fixed charges
is again given by Eqgs. (3.9)—(3.11), but ed, is now of or-
der 45 meV, the donor binding energy, rather than of or-
der 1.1 eV, the silicon band gap.

At higher temperatures, or at high bulk impurity con-
centrations for which the impurity binding energy goes
to zero, the model used here does not apply to accumula-
tion layers. A treatment that includes the contribution
of electrons in the bulk has been given by Appelbaum
and Baraff (1971b; see also Baraff and Appelbaum, 1972)
for n-type accumulation layers on InAs, and will not be
considered in detail here.

Vs(z), the second term in Eq. (3.8), is the contribution
to the potential energy from the charge distribution of
the electrons in the space-charge layer, and is given by
the solution of Poisson’s equation with the charge densi-
ty in all subbands as the source term. The result is
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4 2 z ’ ’ ’
Vi(z)= :: ;N,- [z+ fo (z'—z)EXz")dz' |,

(3.14)

where N; is the electron concentration in the ith subband
and §;(z) is the corresponding normalized envelope wave
function. The arbitrary constant of integration has been
chosen to make V;(0)=0. When z— o,

2 2
V()2 S Nz =2 N (3.15)
Kse 7 Ksc
where
5= [ 2tX2)dz (3.16)

is the average distance from the semiconductor-insulator
interface of the electrons in the ith subband and z,, is
the corresponding value for all surface electrons.

The last term in the potential energy (3.8) is the image
term

2
Ksc—Kins ez Sxe

= (3.17)
Ksc +Kins 4Kscz 4Kscz

Vi(z)=

which arises because of the different dielectric constants
of the semiconductor and the insulator. The semicon-
ductor has the higher dielectric constant in all cases of
interest here, so that this term is repulsive on the semi-
conductor side of the interface, where the electrons are.
(Note, however, that the sign is different for electrons on
liquid helium, considered in Secs. IILE and VIIL.H.)

We need to consider whether the appropriate dielectric
constant to be used in Eq. (3.17) is the optical or the
static dielectric constant. For Si these two values are the
same, but for SiO, they are different, and electrons cou-
ple to the electric fields of optical phonons. Such po-
laron effects were studied by Sak (1972; see also Mahan,
1974) for electrons bound to polar crystals by an image
potential, and by Pollmann and Biittner (1975, 1977; see
also Kane, 1978) for exciton binding in three dimensions.
Interface phonons are discussed in connection with trans-
port properties of inversion layers by Hess and Vogl
(1979).

There are two characteristic energies in the surface po-
laron problem. One is the surface binding energy E;.
The other is the surface optical-phonon energy 7wy,
where w; is the solution of ky(®)+kj,(w)=0, and is
given by

2 2 KO+Ksc

Wy =0r—— ,
Ko K

(3.18)

where k; and «, are the static and optical dielectric con-
stants of the insulator and #iwr is the transverse optical-
phonon energy at long wavelengths. For materials like
SiO, that have more than one transverse mode, there will
be a corresponding number of surface modes. It is main-
ly the surface optical phonons whose fields couple to the
electrons in the silicon inversion layer.

There are also two characteristic lengths, a polaron
length
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L , (3.19)

m,wg

rpol =

and z;, the average distance of the electrons in the ith
subband from the interface. If we take #iw; ~60 meV for
Si0,, we find 7, ~1 nm. For weakly bound electronic
states, with E; <fiw; and z; >r,,, we expect that Eq.
(3.17) will be a good approximation if the static dielectric
constant is used. For more strongly bound states, neither
of these inequalities is expected to hold, and more de-
tailed calculations are needed to find the polaron effects.
No simple local image potential expression is likely to be
applicable in that case. There has not been any quantita-
tive consideration of these questions for inversion layers.
Fortunately, the image potential generally has a rather
small effect on the electronic structure, as will be dis-
cussed below.

2. Self-consistent calculations and results

It is the V,(z) term in the effective one-electron poten-
tial of Eq. (3.8) that makes the Schrédinger equation a
nonlinear eigenvalue problem, because the potential
depends on the wave functions. Such equations are gen-
erally solved iteratively, with an assumed input potential
leading to output wave functions from which a potential
can again be derived using Eq. (3.14). The simplest
method is to use as the input potential for solving the
Schrédinger equation in the (n + 1)st iteration a linear
combination of the input and output potentials of the
previous iteration:

ViD=V @)+ X[V —VP()] . (3.20)

The output potential from the nth iteration cannot be
taken as the input for the (n 4+ 1)st iteration, which cor-
responds to f =1 in Eq. (3.20), because that process can
diverge. There are many methods, both empirical and
systematic, for dealing with this problem. A safe but
slow method is to use a small value of f and many itera-
tions. Methods to achieve faster convergence are dis-
cussed in the context of semiconductor space-charge
layers by Stern (1970a) and in the context of the surface
of the jellinm model of metals by Lang and Kohn (1970).
The interested reader is referred to those papers and the
papers cited therein for additional information on this
problem, which will not be discussed further here.

The first self-consistent solutions of Eq. (3.3) were
those of Howard (1966, unpublished), Stern and Howard
(1967), Duke (1967a), and Pals (1972b), and there have
been many others subsequently. We give here some re-
sults of numerical self-consistent calculations for specific
examples of inversion layers in (001) silicon, taken from
Stern (1972b). His calculations included neither the im-
age potential nor many-body effects and therefore have
only qualitative validity.

Figure 11 shows the energy levels of a Si(100) inver-
sion layer at absolute zero as the electron concentration
is increased. Several features should be noted because
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FIG. 11. Energy-level splittings and Fermi energy at O K for
a (100) inversion layer on p-type silicon with 10'* acceptors per
cm? in the bulk. All energies are measured from the bottom of
the lowest subband. After Stern (1972b).

they enter in the interpretation of many experimental
results. First, note that the Ey and E,; levels are very
close in energy and cross when N;/Ng.,=35.3. This
closeness in energy is a consequence of the ratio of
transverse and longitudinal electron effective masses in
silicon and the way in which they enter in the energy-
level spectrum, and is therefore specific to (100) silicon.
The actual ordering of these two levels has not
been definitively determined. Optical measurements
(Kneschaurek and Koch, 1977) suggest that E( is lower,
and analysis (Mori and Ando, 1979) of mobility results
when two bands are occupied would suggest that E; is
lower than, or at least very close to, Ey. See Sec. III.C
and Sec. IV.C for additional discussion.

The energy-level increase with increasing N shown in
Fig. 11 occurs because the average electric field in the in-
version layer increases as the total space charge in-
creases. Note that N, is essentially constant at low
temperatures once the inversion layer is occupied. At
higher temperature, say 300 K, N4, will continue to in-
crease as N; increases until the Fermi level has risen
above the bottom of the lowest subband.

Another important feature of Fig. 11 is the pinning of
the Fermi level to the bottom of the first excited subband
after they cross, accompanied by a discontinuity in their
variation with N;. The pinning is simply a consequence
of the increased density of states after the second sub-
band is occupied. The increase in the rate of change of
the energy of the excited subbands is a consequence of
their much more extended wave functions. The average
field seen by the electrons in the excited subband is much
more strongly affected by an increase in population of
that subband than by the same increase in population of
the lowest subband, and therefore changes slope when the
excited subband begins to be occupied. Because of the
increased density of states the Fermi level also changes
slope and increases less rapidly above the crossing than
below with increasing N,. All these changes in slope
will be more gradual when broadening of energy levels is
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FIG. 12. Average spatial extent of the inversion layer elec-
trons from the surface, z,,, as a function of the total density of
inversion and depletion charges for (a) (100) and (b) (111) sur-
faces on p-type silicon with 10'> acceptors per cm? in the bulk
at 2, 77, and 300 K. After Stern (1972b).

considered. They are also more gradual at elevated tem-
peratures.

Figure 12 shows the average spatial extent of the
charge distribution from the interface at 2, 77, and 300
K for (100) and (111) Si. The decrease of z,, with in-
creasing space charge is a reflection of the increasing
average field seen by the electrons, which pushes them
closer to the surface and overpowers the increase that
might have been expected when the higher subband is
occupied.

Figure 13 shows the temperature dependence of the en-
ergy levels and of z,, at a fixed value of inversion-layer
charge. The increase in z,, and in the energy levels oc-
curs because electrons are transferred from the lowest
subband to higher subbands as the temperature increases
and N is held constant. The more extended wave func-
tions of the higher subbands lead to the increase in z,,,
and that in turn increases the effective electric field seen
by electrons in the higher subbands, increasing their en-
ergy.

Quantum effects play an important role in the proper-
ties of the space-charge layer, especially at low tempera-
tures and high carrier concentrations. The charge densi-
ty, illustrated in Fig. 14, found quantum mechanically
goes essentially to zero in the oxide because of the high
barrier there, and has its peak well inside the silicon.
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FIG. 13. Temperature dependence of (a) zo and z,,, the aver-
age distance of inversion layer electrons in the lowest subband
and in all subbands, respectively, from the interface, and (b)
the energies of the seven lowest subbands, for a (100) surface
with 10'? electrons per cm?. The bulk acceptor concentration
is 10" cm~3. After Stern (1972b).

The classical Thomas-Fermi solution, in which the
charge density depends only on the local separation of
the band edge and the Fermi level, has a peak at the in-
terface. In addition, the average spatial extent of the
charge from the interface is greater when calculated
quantum mechanically than when calculated classically.
Another example of quantum effects is the difference in
z,, for different surface orientations shown in Fig. 12,
especially at low temperatures, which arises because of
the different effective masses for the two surfaces. The
classical solution is independent of surface orientation.

Another measure of the importance of quantum effects
is the population of subbands associated with the
conduction-band valleys. Classically, all six valleys are
equally occupied. The quantum model, on the other
hand, predicts that at low temperatures all the electrons
are in the subbands associated with the two valleys
whose heavy mass is perpendicular to the (100) surface,
provided N; is not too large. Figure 15 shows that the
fractional occupation of the subbands associated with
these two valleys is one at low temperatures but ap-
proaches the classical value % at 300 K for low electron
concentrations, for which the energy-level splittings are
smallest.

The specific numerical examples shown here are sub-
ject to error because they were calculated without includ-
ing many-body effects. These effects, as discussed in Sec.
IILB, increase the splitting between the lowest subband
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FIG. 14. Classical and quantum-mechanical charge density
for a (100)Si inversion layer at 150 K with 10'? electrons per
cm? and a bulk acceptor doping of 1.5X10'® cm=>. The
dashed curve shows the contribution of the lowest subband to

the quantum-mechanical charge density. After Stern (1974a).

and the higher subbands, and therefore enhance the im-
portance of quantum effects.

Determination of subband splittings by far-infared
spectroscopy is discussed in Sec. III.C. Another test of
the splittings is to look for a change in the period of
Shubnikov—de Haas oscillations at low temperatures as
the carrier concentration increases and the Fermi level
passes into a higher subband, as discussed in Sec. III.C.
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FIG. 15. Fraction of electrons in the lowest subband and in all
the subbands associated with the lowest valleys—those that
have the heavy mass perpendicular to the interface—for a
(100)Si inversion layer. The fraction in the lowest valleys is 1

3
when quantum effects are negligible. After Stern (1972b).
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3. Approximate energies and wave functions

In this section we describe a number of approximate
solutions that are helpful when full self-consistent solu-
tions cannot be conveniently obtained, or when estimates
of properties of inversion layers need to be made. We
first describe the triangular potential approximation, for
which an exact solution can be found. Then we describe
simple variational solutions.

a. Triangular potential approximation

If the image potential is excluded, the remaining terms
of the potential (3.8) increase linearly at the
semiconductor-insulator interface and then bend over to
approach a constant value. The inversion layer contribu-
tion becomes constant after a small multiple of the aver-
age inversion-layer penetration z,,, and the depletion-
layer contribution becomes constant at z;, the edge of the
depletion layer. Because z; is generally much larger than
z,,, the curvature of the depletion potential V;(z), given
in Eq. (3.9), can be neglected without substantial error in
many cases, especially when the depletion charge is small
compared to the inversion charge. However the
inversion-layer contribution V(z) to the potential varies
significantly in the inversion layer and can only be
neglected if N, is small compared to Ny or if the ad-
vantages of an exact solution outweigh the error made in
the potential.

In the triangular well approximation, the potential en-
ergy is given by an infinite barrier for z <0 and by

V(z)=eFz (3.21)
for z >0, where
47(N 4, N,
F= —(‘ﬂu (3.22)

KSC

is the effective field and f is a numerical coefficient
which is unrelated to the coefficient in (3.20). Choosing
f =1 gives the field at the interface, f =0 gives the de-
pletion layer contribution alone, and f =% gives the
average field in the inversion layer. The Schrédinger
equation is solved with the condition that the envelope
wave function go to zero at z=0 and at infinity. The
solutions are Airy functions (Abramowitz and Stegun,
1964),

ZmZeF Ei
z , (3.23)

# | eF
where the eigenvalues E; are given asymptotically for
large i by

é‘i(z):Ai l

3 2/3
i+—4—. , 1=0,1,2,....

# ' 3mer
2m, 2

E,.~[

(3.24)
The exact eigenvalues have i+% in Eq. (3.24) replaced
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by 0.7587, 1.7540, and 2.7575, respectively, for the three
lowest solutions. The normalization and some other
properties of the Airy functions are given in Appendix B
of Stern (1972b). We note here only that the average
value of z is z; =2F; /3eF, and that the average value of

z2 s %z,? for the ith subband.

b. Variational wave function for the lowest subband

Simple analytic wave functions make calculations of
properties of inversion layers much more convenient than
they would be if numerical self-consistent solutions or
cumbersome analytic solutions like the Airy functions
had to be used. For that reason approximate solutions
have been widely used in inversion layer calculations.
The simplest of these, first proposed for inversion layers
by Fang and Howard (1966), is
172

ze —(1/20bz (3.25)

2

3
Solz)= [b—

The average penetration of the charge into the semicon-
ductor for this wave function is
3

Zp= b . (3.26)
The same wave function also applies to the lowest sub-
band of electrons on liquid helium if the barrier for
entering the helium is infinite and the solid-vapor inter-
face is sharp (Cole, 1974).

The parameter b in Eq. (3.25) is determined by mini-
mizing the total energy of the system for given values of
the inversion- and depletion-layer charges. Because of
the simplicity of the wave function, it is easy to evaluate
the expectation values of all the terms in the Hamiltoni-
an. We find

2
<T>:f’2L ,
8m,
<V )_ 127re2Ndep] . 241T€2NA
¢ Kscb Kscb2 ’
33meN;
V,)=——=%
(Vy) b (3.27)

(IG): Ksc— Kins e2b = 5K82b
Kse+Kins 8K 8xkse

b

where the terms are the expectation values of the kinetic
energy, the potential energy of an electron interacting
with the depletion-layer charges, the potential energy of
an electron interacting with the other electrons in the in-
version layer, and the image potential, respectively. The
energy of the lowest subband is

Eo=AT)+{(Vy)+(V,)+{(V;) . (3.28)

However the total energy per electron, which is the
quantity to be minimized, is
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E/N=(T)+{(Vi)+3(V.)+{(V1), (3.29)

where the factor % prevents double counting of electron-
electron interactions.

If the image potential and the second term in (V)
are neglected the value of b that minimizes the total en-
ergy per electron is

487m,e’N*

Ko FP

1/3

b= , (3.30)

where

N* =Ny + 37 N5 (3.31)

a result first given by Stern and Howard (1967). Figure
16 shows that the values of E; and z, calculated for the
lowest subband from the variational wave function (3.25)
exceed the values found from a self-consistent Hartree
solution by less than 7% in the absence of the image po-
tential (Stern, 1972b).

If all the terms in Eq. (3.29) are to be retained, the
minimization must be done numerically, but is still very
easy. It is also possible to add the exchange energy
(Chaplik, 1971a), whose average value per electron when
the variational function (3.25) is used is

492kp b

3Ky

b

kg

X

G’ +8,G"” , (3.32)

kg

where kr is the Fermi wave vector, 8, is the coefficient
which appears in the image potential Eq. (3.17), and G’
and G" are functions whose values have been calculated
and plotted by Stern (1974d). The expressions for the ex-
change contribution to the one-electron energy of the
lowest subband have also been given there.

Figure 17 shows how the values of E, and z, change
as the image and exchange contributions to the energy
are included or omitted. The image term, which is
repulsive, tends to expand the wave function, while the
exchange term tends to contract it. At high densities it
is often better to omit both terms than to include either

Zo(VAR)/Zo(SC)

Eo(VAR)/E(SC)

1.021-
14 L | [ | TN R U NN Y N
000 | 2 3 4 5 20 50 80

Ns/ Ndepl

FIG. 16. Ratios of variational to self-consistent values of the
energy E, and the average spatial extent from the interface z,
of the lowest subband vs the ratio of the density of inversion
layer charges to the density of depletion layer charges. The
values are calculated without image or many-body effects.
Note the change of scale at N;/Nge=5. After Stern (1972b).
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FIG. 17. Effect of exchange and image potential on the varia-
tionally calculated energy and spatial extent of the lowest sub-
band. The dashed curve is calculated including the image con-
tribution to the energy, the dotted curve included the exchange
contribution, the full curve includes neither, and the chain
curve includes both. After Stern (unpublished).

term alone. This is an a posteriori justification of the
omission of the image term in the Hartree calculations
by Stern and Howard (1967). For low carrier densities,
on the other hand, the exchange term is negligible, and
the image term must be included.

The exchange energy is only the simplest term in the
many-body energy. A more detailed consideration of
many-body effects is given in Sec. II1.B.

Figure 18 compares the variational wave function
without image or exchange contributions to the corre-
sponding self-consistent Hartree wave function and com-

(I00)Si OK

9 s Na=7x10Mem™ |
D - =108 -2
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' e INCLUDED Kge=Il7 |
3 - \\\ Kins=3.9
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FIG. 18. Envelope wave functions calculated self-consistently
with (dashed curve) and without (full curve) including the im-
age potential, and the Fang-Howard variational wave function
(3.25) in which the parameter b is determined by minimizing
the total energy without including the image potential. Ex-
change and correlation effects are not included in any of the
curves. After Stern (unpublished).
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FIG. 19. Normalized average of various powers of z, the dis-
tance from the surface, evaluated using self-consistent Hartree
wave functions calculated with (dashed curves) and without
(full curves) including the image potential, are plotted against
the ratio of the densities of inversion-layer and depletion-layer
charges. The horizontal lines are calculated using the varia-
tional wave function (3.25), and show that it is a poor
representation of the shape of the more accurate wave func-
tions, especially at small values of N;/Ng.,. After Stern (un-
published).

pares self-consistent wave functions with and without the
image contribution to the potential. The differences are
seen to be substantial.

It is useful to have measures of the accuracy of the
wave function other than the energy itself, because rather
poor wave functions can give rather good energies. Fig-
ure 19 shows the normalized expectation values of some
powers of z for the variational wave function (3.25), and
for self-consistent Hartree solutions with and without the
image potential as functions of the ratio of inversion-
layer charge to depletion-layer charge. Note that the
Airy-function solution corresponds to the Hartree solu-
tion without an image term when that ratio equals zero.
The variational solution is seen to be very inaccurate at
small values of N;/Ng,, but to be somewhat better as
N, increases.

An even more dramatic example of the errors that can
result from use of the variational wave function (3.25)
was pointed out by Matsumoto and Uemura (1974) in
their paper on surface roughness scattering, which is dis-
cussed in more detail in Sec. IV.C.2. Prange and Nee
(1968) gave the relevant matrix element in terms of the
derivative of the wave function at the surface. Matsumo-
to and Uemura showed that it can also be written in
terms of the expectation value of the potential gradient.
The two formulations are equivalent, since for the exact
wave function one finds, by multiplying the Schrédinger
equation (3.3) by d{;/dz and integrating over all z, that

2
as;
dz

2m, pow dv
= fo EHz2)=—dz .

dz (3.33)

Matsumoto and Uemura showed that for a triangular po-
tential their formulation gives results independent of the
wave function used, while the formation in terms of the
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derivative of the wave function gives surface roughness
scattering too big by a factor of 9 when the variational
function (3.25) is used, because the left side of Eq. (3.33)
is three times as large as the right side. For larger
values of N;/Ngep the resulting error will be smaller, but
this example is a dramatic warning that the variational
wave function can lead to serious errors in some cases.

The variational wave function of Eq. (3.25) is by no
means the only one possible. It has been widely used be-
cause of its simplicity, but can lead to substantial errors,
as we have seen. Another one-parameter wave function
which is considerably closer to the self-consistent solu-
tion is

é-o(z)=(_z_b3)l/22e—-(1/2)(bz)3/2 , (3.34)

which has been proposed by Takada and Uemura (1977).
Many-parameter expansions can also be used (Ohkawa
and Uemura, 1976, 1977b).

c. Higher subbands

Variational functions have been used to give approxi-
mate wave functions and energy levels for higher-lying
subbands (Takada and Uemura, 1977; Kalia et al., 1978;
Das Sarma et al, 1979; Kramer and Wallis, 1979; Mori
and Ando, 1979). They provide an alternative to numer-
ical self-consistent calculations. The energy levels can
also be estimated by starting from the values in the de-
pletion potential alone, given approximately by Eq.
(3.24), and adding the effect of the additional inversion-
layer potential as a perturbation (Stern, 1972b). This ap-
proximation is reasonably good if the higher-lying levels
have wave functions which extend far beyond the region
where the inversion layer potential is strongest. These
methods are adequate if great accuracy is not essential.

B. Many-body effects

In the preceding section the subband structure was dis-
cussed within the Hartree approximation. This approxi-
mation is valid when the electron concentration is suffi-
ciently high, i.e., when the average kinetic energy of elec-
trons is much larger than the average interaction energy.
This condition is usually written as r; << 1, where the
parameter r; is defined in three dimensions as the radius
of a sphere containing one electron, in units of the effec-
tive Bohr radius a* given by Eq. (2.28a). A correspond-
ing result is expected to hold for two-dimensional sys-
tems. Therefore, the Hartree approximation is expected
to work quite well for two-dimensional systems in semi-
conductors with a small energy gap, like InSb and InAs,
because they have a small effective mass and a large
dielectric constant. For these materials, typical charge
densities like 10> cm~2 correspond to 7, << 1. In the
case of inversion layers on silicon surfaces, however, the
effective mass is larger, and r; then become comparable
to or larger than unity for typical values of N,. Many-
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body effects such as exchange and correlation can then
play an important role.

The exchange energy was briefly discussed by Chaplik
(1971a) and calculated explicitly by Stern (1973, 1974d).
Stern has shown that the exchange energy is comparable
to or even larger than the energy separations between
subbands calculated in the Hartree approximation, sug-
gesting the importance of the many-body effects. Insuffi-
ciencies of the Hartree results were pointed out also by
comparison with various experimental results, especially
infrared intersubband absorption. In this section we con-
sider such many-body effects on the subband structure in
the n-channel layer on the Si(100) surface. We confine
ourselves to the model of the abrupt interface and to the
case in which only the ground subband is occupied by
electrons, and treat the problem in the effective-mass ap-
proximation.

One way to study the many-body effects theoretically
is to treat the exchange and correlation perturbationally
using the subband structure calculated in the Hartree ap-
proximation as the unperturbed states. The Hamiltonian
is given by

K= 2 [Ei+€(k)]ait0'vaikav

ikov

+13 3 > Vipam (@)

ijlm kk'q oo'vv’

+ +
XaikovqUk'o'v'Amk’ —qa'v’ajk+qov >

(3.35)

where ajl,, and a;,, are the creation and annihilation
operators, respectively, of an electron of the ith subband
with the wave vector k, the spin o, and the valley v.
The electron-electron interaction is given by

2me?
Viiyam (@)= ~"——Fijum)q) , (3.36)
Kq

with

[} oo K; ’
F(,-j)(lm)(q):% fO dz fO dZ'[ I—f-fs' ]e‘qlz—z'

sC
+ 1— Kins e_q |z+2']
KSC

XEH (DT (2)8;(2)Em(2) -

(3.37)

The form factor F(q) of Eq. (2.51) corresponds to
F00)00)(g). The existence of the other sets of valleys is
neglected in the Hamiltonian for simplicity. The Hartree
treatment of Eq. (3.35) recovers the Hartree result as is
expected. The Green’s function becomes a matrix with
respect to the subband indices and satisfies the Dyson
equation

Gy(k,E)=G{(k,E)+ 21‘, G'Zy(k,EYG;(k,E), (3.38)
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where 2;;(k,E) is the self-energy matrix, and the unper-
turbed Green’s function is given by

0k —kg) Olkr —K)
(0) —
ook )= g ) —Eo+10 T E—eth)—Eq—i0 ’
8;
G{(k,E)= ’ (5,j0) (339

E —e(k)—E; +i0

with 6(x) being the step function defined by 0(x)=1 for
x>0 and O(x)=0 for x <0. The subband energy is
determined by

det[G;”(k,E)~'8; —2,;(k,E)]=0 . (3.40)

One has to introduce some approximations to evaluate
the self-energy explicitly. Vinter (1975b, 1977) neglected
contributions from scattering processes in which an elec-
tron changes subband. The self-energy becomes diagonal
in this approximation. He then calculated the self-energy
to the lowest order in the dynamically screened Coulomb
interaction and employed the plasmon pole approxima-
tion discussed in Sec. ILF. The self-energy is given by

SpkE)=— [ 425 V@ 6ok iqF +a),

2mi <7 e(q,0)
(3.41)
and
dw
Si(kE)=— — V
1n(k,E) f2m'§ anan(g)
q,0)
-V —2—y
a0 ) 00)11)(q)
XGQ(k+q,E +o), (3.42)

where V(q)="V(g)00)(q), and e(q,0) and Il(g,w) are
given in Egs. (2.55) and (2.56), respectively. Hedin
(1965) proposed an approximate procedure to include
higher-order effects which appear when one uses dressed
Green’s functions instead of unperturbed ones in the ex-
pression for the self-energy. In this scheme one assumes
a constant-energy shift in the Green’s functions appear-
ing in Eq. (3.41). The Dyson equation becomes

Eo(k)=Eo+e(k)+Zpo(k, Eo(k) —piy) ,

where the constant shift is taken to be the exchange-
correlation part of the chemical potential u,. and is
chosen to be

(3.43)

y.xc =200(kF,E0+E(kF)) . (3.44)
Vinter proposed similarly
El(k)zEl +E(k)+2]1(k,E1(k)~lJ»xc) (3.45)

for the excited subband. Equations (3.43) and (3.45) were
solved numerically. He showed that E (k) obtained
from (3.45) was quite different from the result of the ap-
proximation in which E;(k)—pu,. was replaced by
E, +¢€(k) in the self-energy of Eq. (3.45). The k depen-
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dence of the self-energy shift was small and similar for
the two subbands. An example of the calculated energy
shift at k =k is shown in Fig. 20 as a function of the
electron concentration for Ngep=1X 10! cm~2  The
shift of the ground subband is comparable to the unper-
turbed E, in the Hartree approximation. The same is
applicable to the excited subband. Figure 21 compares
the calculated subband energy separations averaged over
k with the corresponding Hartree result of Stern as a
function of N; for the same N, as in Fig. 20. One sees
that the many-body effects are considerable and extreme-
ly important in the n-channel inversion layer on the
Si(100) surface.

Ohkawa (1976a) extended Rice’s method discussed in
Sec. ILF to the many-subband case. The self-energy is
diagonal in this method and the subband energy shift is
given by

E;(k)=E;+¢elk)+Z2;(k,E; +e(k)) , (3.46)

where 3;(k,E) is calculated to the lowest order in the
dynamically screened Coulomb interaction. Taking into
account subband mixings among the lowest three sub-
bands (=0, 1, and 2), he calculated the self-energy shift.
The calculated shift turned out to be very close to that of
Vinter for the lowest subband, but 25% smaller than that
of Vinter for the first excited subband. A similar ap-
proach was used later by Kalia, Das Sarma, Nakayama,
and Quinn (Kalia et al., 1978, 1979; Das Sarma et al.,
1979) for the study of temperature and stress effects.
Since the k dependence of the energy shift is small and
unimportant, the energy shift of the ground subband is
given in Vinter’s scheme by Zqo(kp,e(kr)+E,), which is
the same as Eq. (3.46). Therefore the agreement between
the results of Vinter and Ohkawa is expected for the
ground subband. The discrepancy between the energy
shifts for the first excited subband mainly originates from
the difference between Egs. (3.45) and (3.46). Equation
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-Moo (ke)
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FIG. 20. Self energies at the Fermi wave vector in the ground
and the first excited subbands in the n-channel inversion layer
on a Si(100) surface. The electron concentration is denoted by
N and the self-energies are written as My and M, instead of
2 and = in the text. Nggp=1Xx10" cm~2 After Vinter
(1977).
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FIG. 21. An example of calculated energy separations from
the ground subband to the first excited subband for the doubly
degenerate set of valleys (E o) and to the lowest subband of the
fourfold-degenerate set (Eq), calculated by Vinter (1977). The
lower curves show the results in the Hartree approximation,
and in the upper curves exchange and correlation are included.
The Fermi energy (ef) is measured from the bottom of the
ground subband. N represents the electron concentration.
Naegpi=1x 10" cm—2. After Vinter (1977).

(3.45) seems rather inconsistent and its meaning is not
clear. One has introduced u,. in the energy variable of
the self-energy because one expects that the self-energy
which appears in = Gg(k+q,E +w) in place of
G (k+q,E +w) is roughly given by HUxe independent of
the momentum and the energy. If one follows the same
approximation scheme, one has to introduce some
constant-energy shift of the first excited subband in =;;
instead of p,., since the energy shift is expected to be
smaller for the excited subband. Vinter assumed it to be
HUxe>» Which seems to be the main origin of the larger en-
ergy shift of the first excited subband than that of
Ohkawa.

A disadvantage of the perturbation method is that it is
not applicable when the change in the subband structure
caused by the exchange and correlation is considerable,
since it is based on the Hartree result. The result is,
therefore, expected to be good in the inversion layer with
values of Ny, that give large subband energy separa-
tions in the Hartree approximation. It is especially not
applicable to accumulation or inversion layers with ex-
tremely small N4, for which subband separations are
very small. As a result of intersubband mixings the elec-
tron density distribution becomes narrower than that cal-
culated in the Hartree approximation. This is because
the Hartree approximation overestimates the Coulomb
repulsive force of other electrons. As will be shown in
the following, this change in the density distribution is
not negligible even in the inversion layer and can affect
the Hartree energy separation through the change in the
self-consistent potential. Vinter tried to take into ac-
count this effect using the wave function calculated by
neglecting the image potential, under the assumption
that the change of the density distribution caused by the
exchange and correlation cancels that caused by the im-
age potential. This cancellation had been demonstrated
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by Stern (1974d) with the use of a variational wave func-
tion in the Hartree-Fock approximation, as has been dis-
cussed in Sec. IIILA. The cancellation is not complete,
however, if one takes into account the correlation effect,
as will be shown later. In any case, the fact that the
density-distribution change due to the many-body effects
is not negligible suggests that the off-diagonal part of the
self-energy should give a sizable energy shift. Although
each off-diagonal matrix element is small (Stern, 1974d),
the total contribution from many subbands possibly be-
comes appreciable. Takada and Ando (1978) proposed a
method in which the change in the density distribution
can be included within a single-subband approximation.
See Sec. VILB for a more detailed discussion on this
method.

An alternative way to study the exchange-correlation
effect on the subband structure is to use the density-
functional method. Hohenberg, Kohn, and Sham
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965)
have shown that the density distribution of an interacting
electron gas under an external field can be obtained by a
one-body Schrodinger-type equation containing an ex-
change correlation potential v,. in addition to the usual
Hartree potential and the external potential. The
exchange-correlation potential is given by a functional
derivative of the exchange-correlation part of the
ground-state energy E,.[n(R)] with respect to the
number density n(R) of electrons. The functional
E,.[n(R)] is not known and is replaced by a product
n(R)e,(n(R)) in the usual local approximation, where
€xc(n) is the exchange-correlation energy per electron of
a uniform electron gas with the density »n. In this ap-
proximation v,.(R) becomes the exchange-correlation
part of the chemical potential .. of the uniform electron
gas. This theory has been used and known to be success-
ful in a number of different problems, although the
reason for the success has not been fully elucidated yet.
The density-functional formulation was first applied to
the space-charge layer by Ando (1976a, 1976b).

There are some problems in the choice of v,, in our
system. The conduction band of Si is anisotropic, and
one needs (. of anisotropic electron gas. Ando used u,,
of an electron gas characterized by isotropic mass m,,
defined by m;p1=(2m,_l+m1“1)/3. The neglect of the
anisotropy seems to be justified (Combescot and No-
zieres, 1972; Brinkman and Rice, 1973). Another prob-
lem arises because of the image effect caused by the insu-
lating layer. Considering the nature of the local approxi-
mation, Ando used u,.(n(z);z) of an electron gas where
the mutual interaction between electrons at (r;,z;) and
(rp,2,) is given by

2
V(r,z, —22;2) = [+ (z; —z,)*]'"2
KSC
M[r2+(2 2, +4z2]- 172
Ksc(Ksc+Kins) ! 2 ’

(3.47)
where r=r;—r,.
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Strictly speaking, the energy eigenvalue E;(k) obtained
from the Schrodinger-type equation does not necessarily
represent the quasiparticle energy. Sham and Kohn
(1966) proposed a local energy-dependent exchange-
correlation potential for calculating quasiparticle ener-
gies. The proposed v, (E) is given by Ae(K), which is
the quasiparticle energy shift in the uniform electron gas,
defined by

#K? #K7
Ae(K)+ ) =E —p+ 2

e > (3.48)

m op op

where K is the Fermi wave vector of a uniform three-
dimensional electron gas. The potential coincides with
Uxc(n(2);z) for E =p, with ¢ being the chemical poten-
tial. Using such a potential, one can calculate various
two-dimensional quasiparticle properties. For example,
the quasiparticle effective mass m* is given by

m* ©

m, 0

e NI

mep
(3.49)

where m*(n(z);z) is the effective mass of the homogene-
ous three-dimensional electron gas. The quasiparticle g
factor is also calculated if one extends the theory to in-
clude effects of spin interaction with an external magnet-
ic field (Kohn and Sham, 1965). It is given by

Mop o  m*(n(z);z)g*(n(z);z)
m* fﬂ dz 2mgp

X [~!1()‘,°¢zfzn(z)]—1 ,

where g*(n (z);z) is the effective g factor in three dimen-
sions. An example of the results calculated in this way
is given in Fig. 9. Actual evaluation of the energy-
dependent potential shows, however, that the energy
dependence is small, and one can regard the eigenvalues
of the Schrédinger-like equation as the subband energies
in a good accuracy. Finally, one has to use a different
exchange-correlation potential for an electron in sub-
bands associated with other sets of valleys. These
exchange-correlation potentials were calculated in the
Hubbard-like approximation in the case where the valley
degeneracy is two.

Figure 22 compares the electron density distribution
and the self-consistent potential with those calculated in
the Hartree approximation for the inversion layer
(N;=1x10" cm~2 and Nge, =1.55X 10" cm~?). Ener-
gies of the subbands are strongly lowered by the
exchange-correlation effect. The change in the density
distribution is also appreciable and responsible for the
shift of the Hartree part of the potential at large z. The
subband energies and the Fermi energy measured from
the bottom of the ground subband are shown in Fig. 23.
An example for an accumulation layer (N,=1x10"
cm~3, which corresponds to an inversion layer with
Naepp=7.7x10° cm™?) is given in Figs. 24 and 25. The
exchange-correlation effect modifies the subband struc-

g*
2_

(3.50)
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FIG. 22. An example of electron density distribution, self-
consistent potential, and bottoms of the subbands in the n-
channel inversion layer, calculated in the density-functional
formulation. Corresponding Hartree results are given by bro-
ken lines. The difference between Vg(z) and V(z) gives the
exchange-correlation potential. The electrostatic potential is
also modified if the exchange-correlation effect is included.
After Ando (1976a, 1976b).
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FIG. 23. Subband energies and the Fermi energy measured
from the bottom of the ground subband in the n-channel inver-
sion layer on a Si(100) surface. Ngep=1.55X10"" cm~2. The
corresponding results in the Hartree approximation are given
by broken lines. The dotted curve represents the Hartree result
obtained by neglecting the image effect. After Ando (1975b).
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FIG. 24. An example of electron density distribution, self-
consistent potential, and bottoms of the subbands for the n-
channel accumulation layer on a Si(100) surface, as in Fig. 22.
After Ando (1976b).

ture even qualitatively in an accumulation layer. In the
Hartree approximation, only the ground subband is
strongly localized in the interface region, and all the oth-
er subbands are much more extended, quasicontinuum
states. When the exchange-correlation effect is taken
into account, the first excited subband becomes localized
in the surface region. This is consistent with experimen-
tal results of intersubband optical absorption by Kamgar
and co-workers (Kamgar et al, 1974a, 1974b;
Kneschaurek et al., 1976), who observed a narrow
lineshape similar to that observed in the inversion layer.
The narrow lineshape cannot be explained by the Hartree
result.
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00 | 1 1 % 1 g i
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FIG. 25. An example of subband energies and the Fermi ener-
gy measured from the bottom of the ground subband for the
n-channel accumulation layer on a Si(100) surface, as in Fig.
23. After Ando (1976b).
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Kalia, Kawamoto, Quinn, and Ying (1980) have pro-
posed a simplified approach for calculating the subband
structure which in a way gives a connection between the
perturbation method and the density-functional ap-
proach. They introduce an effective one-body potential,
Vic(2z), similar to the exchange-correlation potential ap-
pearing in the density-functional theory, and calculate
the subband structure in the Hartree approximation in-
cluding V,.(z) as an external potential. Basing their
method on the calculated energy levels and wave func-
tions, they treat exchange-correlation effects and also
—V;.(z) perturbationally and calculate the self-energy
shifts. The effective potential V,.(z) is determined so as
to minimize the self-energy shift of the ground subband.
The resulting ¥V,.(z) has turned out to be close to the
exchange-correlation potential of the density-functional
theory. Further, the calculated subband energies are in
rather good agreement with those of the simple-minded
perturbation theory (Das Sarma et al, 1979) discussed
above.

The temperature dependence of many-body effects has
been studied by two groups. Nakamura and co-workers
(Nakamura et al.,, 1978, 1980a) extended the perturbation
scheme to the case of high temperatures, where the elec-
tron distribution is described by a classical Maxwell-
Boltzmann distribution. They considered the seven sub-
bands (Ej to E; and Ey to E,) obtained by Stern in the
Hartree approximation and tried to determine the self-
energy shift to the subbands at T'=200 and 300 K. It
has been shown that the imaginary part of the self-energy
is very large, even larger than subband energy separa-
tions. The real part seems to depend strongly on how
the imaginary part is treated. Further, this short elec-
tron lifetime caused by electron-electron collisions makes
the validity of the quasiparticle picture doubtful at high
temperatures. However, there seem to be no observable
phenomena in which the large imaginary part of the
self-energy plays a vital role. Especially it should be no-
ticed that it has no direct effect on the two-dimensional
conductivity and the broadening of intersubband optical
transitions. On the other hand, Kalia, Das Sarma,
Nakayama, and Quinn (Kalia et al., 1978, 1979; Das Sar-
ma et al,, 1979) considered the three subbands (E,, E,
and Ey) variationally in the Hartree approximation and
calculated the real part of the self-energy obtained to the
lowest order in the dynamically screened Coulomb in-
teraction for 0 < T <200 K. Changes in the Hartree po-
tential caused by exchange and correlation effects were
completely neglected. The shift of the E, subband shows
a monotonic decrease with temperature, whereas those of
other subbands exhibit a complicated behavior depending
on N; and the separation between the different sets of
valleys in the bulk, which can be controlled by stress. A
general feature found by them is that the subband separa-
tion is rather insensitive to the temperature up to
T ~200 K, in contrast to the prediction in the Hartree
approximation. In the Hartree approximation the occu-
pation of higher subbands having larger spatial extent
makes the density distribution wider. Consequently the
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effective potential becomes steeper, which increases the
subband energy separations. These authors claimed that
the imaginary part of the self-energy is not important, in
contrast to the conclusion of Nakamura et al. (1978,
1980a). A more elaborate calculation was reported quite
recently by Das Sarma and Vinter (1981), who showed
that the subband energy separation increased with tem-
perature.

C. Intersubband optical transitions

In addition to spectroscopic measurements of intersub-
band optical transitions, there is another way to get some
information on the subband energy separations. At-
tempts have been made to measure the electron concen-
tration at which a higher subband starts to be occupied
by electrons (Tsui and Kaminsky, 1975b; Howard and
Fang, 1976). In principle one can detect this threshold
concentration by careful examination of the period of the
Shubnikov—de Haas oscillation in magnetic fields per-
pendicular to the interface. Each period corresponds to
the filling of one Landau level in the ground subband.
When a higher subband starts to be populated, this
period is expected to change. Such a period change has
been observed experimentally, but results do not agree
with each other. Howard and Fang (1976) obtained

threshold concentrations for several samples with dif-
ferent Ng,. They obtained, for example, N, ~7.6 X 10"
cm™? for Ngep~3%10'" cm~2 The threshold N, was
found to decrease with decreasing Nge, consistent with
the theoretical expectation. These concentrations are,
however, substantially larger than the Hartree results but
substantially smaller than the results obtained by includ-
ing the exchange-correlation effect. On the other hand,
Tsui and Kaminsky (1975b) measured the threshold to be
7.4% 10" cm~? for Ngept ~1X 10! cm™2. This result is
closer to the theoretical results but disagrees with that of
Howard and Fang, who estimated it to be 4.7 10"
cm ™2 by interpolation for the same Ngepi- Tsui and Ka-
minsky (1975b) found also that the threshold is lowered
when stress is applied, and suggested that Ey is lower
than E; at the threshold concentration. Since Ey and
E, are very close to each other, it is difficult to tell
which is actually lower in energy from a purely theoreti-
cal point of view. As a matter of fact, both the Hartree
and the density-functional calculation predict Ey > E;
near the threshold concentration, whereas Vinter’s results
show Ey <E;. Various mechanisms that could give
values of Eyg=Ey—E, different from the results calcu-
lated in the ideal model have been suggested. Stern
(1977) considered effects of a thin transition layer at the
interface and showed that Ey, could become smaller, as
will be discussed in Sec. IIILE. Sham and Nakayama
(1978, 1979; see also Nakayama, 1980) suggested a possi-
bility of different effective boundary positions for Ey and
E, which can modify their relative energies. This will be
discussed in Sec. VILLA. The possible presence of inter-
nal stresses of various origins also affects the relative
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values of Ey and E;. See Secs. IV.B.3 and VIL.B.2 for
more discussion of related problems. Some of the experi-
ments on the stress effect suggest that Ey, can be dif-
ferent from the theoretical result, as will be discussed in
Sec. VIL.LB. The relative position of Ey and E,; also af-
fects the behavior of the mobility limited by interface
roughness, which will be discussed in Sec. IV.C.2. The
situation is further complicated because local strain ef-
fects at the Si-SiO, interface are difficult to measure and
control in real structures. More elaborate and systematic
experimental investigations are needed in order to clarify
these problems.

The best way to study the subband structure is to ob-
serve intersubband optical transitions. As a matter of
fact, there has been considerable progress in our under-
standing through such spectroscopic measurements.
However, various additional effects must be considered in

. optical transitions and these can shift the resonance ener-
gy from the corresponding subband separation. These
additional effects are called the depolarization effect and
its local field correction. In the early stages of spectro-
scopic study, the importance of these effects was not
realized, and one assumed implicitly that resonance oc-
curred when the energy of infrared light was equal to the
subband separation.

To illustrate the depolarization effect let us consider a
slab model introduced by Chen, Chen, and Burstein
(1976). In this model we replace the inversion layer by
an electron gas confined within a narrow slab of thick-
ness d.g and having a conductivity o,(®) in a unit area,
given by

Nsezflo —io (3.51)

oxplw)=
= wl—o?—=2iw/r’
where #iwoc=E| —Ey, f1o is the oscillator strength and 7
is a phenomenological relaxation time. The intersubband
transition is induced by an external field E..e ~'*' ap-
plied normal to the slab. The induced current in a unit

area is written as
J,=04(0)E , (3.52)

where the electric field inside the slab E is related to E.,;
through

E =t (0)E , (3.53)
with

En(w)=1+ :;) dleff oz(w) . (3.54)
Therefore, we have

Jo=0z(0)E: , (3.55)
with

Tplw)=04(0)ez(0) 1. (3.56)
The absorption in a unit area is

5 ReJ,E*=7 ReG,(0)E%, . (3.57)
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The resonance occurs at a pole of &,,(w) which describes
the response of current to the external field. If we substi-
tute Eq. (3.51) into (3.54) and (3.56), we have

Nsezfl()

—iw

Onplw)= ) PR , (3.58)
m d—°—2iw/T
with
Blo=0l+a; (3.59)
where
_, A4mNe%f,
Fp=—=21 (3.60)

Kscmdeﬂ’

The resonance energy is shifted from the subband energy
separation by an amount related to the effective plasma
frequency @,. For deg~50 A and f1,~0.5 the plasma
frequency is usually not small, and the depolarization ef-
fect is appreciable. In actual systems one can calculate
Gz(®) from the following two equations (Nakayama,
1977a, 1977b; Dahl and Sham, 1977):

j@)= [ dz'o,(2,2%0)E(2) (3.61)
and
Eou=E@)— 2" (2, (3.62)
K@

where 0,(z,z';0) can be constructed from the known
subband structure in the Hartree approximation. An al-
ternative way will be discussed below.

Strictly speaking, one has to derive dispersion relations
of waves propagating near the interface in various exter-
nal configurations used experimentally. Chen, Chen, and
Burstein (1976) have shown that poles of &, (w) can be
observed in an attenuated total reflection experiment in
which the Si is used as its own attenuated total reflection
prism. Nakayama (1977a) has calculated the dispersion
of a wave propagating along a strip transmission line
used in absorption experiments and has shown that the
change in the transmission is essentially given by
Red,,(w) under usual experimental conditions.

Physically the depolarization effect arises because each
electron feels a field which is different from the external
field by the mean Hartree field of other electrons polar-
ized by the external field. As has frequently been men-
tioned, however, the Hartree approximation overesti-
mates the Coulomb repulsive force of other electrons,
and the exchange-correlation effect greatly reduces the ef-
fective repulsive potential. Therefore we expect that the
exchange-correlation effect on the depolarization effect
greatly reduces the shift of the resonance energy. Dia-
grams for &,(w) are shown in Fig. 26. In the random-
phase approximation &, (w) is given by the sum of an in-
finite series of bubbles, each of which corresponds to
0,(w) calculated in the Hartree approximation. When
one inserts the dressed Green’s functions in the bubbles
one must take into account corresponding vertex correc-
tions, as is also shown in Fig. 26. In this sense the local
field correction to the depolarization effect is often called
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the excitonlike effect or the final-state interaction.

The proper inclusion of the exchange-correlation effect
on the optical transition is not a simple matter. Great
care must be taken in going beyond the random-phase
approximation (equivalent to the Hartree approximation)
in including the self-energy and the vertex correction.
Ando (1977a, 1977c) made a rather drastic assumption
that the same exchange-correlation potential v,.(n(z);z)
introduced in Sec. IIL.B can be used in the presence of a
dynamical external field. This cannot be justified on a
rigorous theoretical basis as in the case of a static field
(Hohenberg and Kohn, 1964), but has been expected to
give a reasonable magnitude for the local field effect. In
terms of diagrams this approximation corresponds to us-
ing the same proper vertex part, denoted by ¥ in Fig. 26,
for the dynamical response as that for the static response.
The neglect of the frequency dependence is consistent
with the small energy dependence of the exchange-
correlation potential, as has been mentioned in Sec. IILB.

Let An(z)e —*“* be the change in the density distribu-
tion in the presence of an external electric field E e ~'“".
The effective perturbation becomes

H'e ' =[eE z +AV,(2)+ AV, (2)]e "', (3.63)
where the change in the Hartree potential is
41T€2 z ’ z ” ”

AV, ()= —= [ dz [ dz"an(z"), (3.64)

and the change in the exchange-correlation potential is
I, (n(2);2)
on(z)

In Eq. (3.63), AV,(z) describes the depolarization effect
and AV,.(z) its local field correction. By the use of per-
turbation theory one gets

An(2)=—23 £, (2)6(2)
n£0

AV, (2)= An(z) . (3.65)

Fiwo o

(ﬁca,.o)2 (#i)?

(OO
DD
= >

FIG. 26. Diagrammatic representation of the dynamical con-
ductivity d,(w) which gives the intersubband optical absorp-
tion. (a) The Hartree approximation. (b) Exchange and corre-
lation are included. The shaded part represents an appropriate
vertex correction which should be consistent with an approxi-
mation for the dressed Green’s function.

(n|2#'|0),

(3.66)

C%
=
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where §,(z) is chosen to be real, #iw,o=E,, =E, —E,,
and only the ground subband is assumed to be occupied
by electrons initially. The induced current can be ob-
tained from Eq. (3.66) by the equation of continuity as

j@=— [ dz'(—eX—iw)An(z), (3.67)
and the desired conductivity becomes
Fal0)=Eg! [ dzj(). (3.68)

From Egs. (3.63) and (3 66) one gets the self-consistency
equation,

172
2 [Anm _(ﬁw)zanm ]um = _:—Tl'ﬁwno J 250 »
(3.69)
with
m= [, dzEa(2)26m(2) , (3.70)
Anm :(ﬁmno)zsnm "hwno(anm _Bnm )ﬁwmo ’ (3.71)
and
Uy =(eE ¢y )~! 3"—’% -
n— ext ﬁ2 n0
1
X x'0). .
G — iy " 1710 672
We have defined
12
41re 1 1
Ay = - NS, Iﬁwno T o l , (3.73)
and
172
1 1
—2
Fm = =20, lﬁw,.o oo
o 0v,.(n(2);z)
2 9Vxc ’
X [, d2 6 @m@olal =5 ==
(3.74)

where the length tensor S,,, introduced by Allen, Tsui,
and Vinter (1976) is defined by

Sum= [, 4262602 [ dz’ [ dz"Epm(z"E0lz")

2
__1 1 #
ﬁwno ﬁwmo 2ml

x [, dzl6 Do) —Ea (20 (2)]

X[Em(2)50(2) —Em (2)50(2)] . (3.75)

When we introduce a matrix U in such a way that
A=U"'4U is diagonal, we get
Niel(~iw) Fo

ﬁzz(w)= — >
m n=£0 (030——602—21'(0/1'

(3.76)
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with #@,o=(4,,)'”? and

2m 172 2
rd 1
f"(): 2 ﬁz ﬁwmol szUmn ] . (3.77)
m

A phenomenological relaxation time 7 has been intro-
duced in Eq. (3.76). The resonance occurs at @ =a,q
with its strength f, .

If o is close to w,o and contributions of other sub-
bands can be neglected one gets

2 .
Nse an —1l

T=l0)= m Bry—o’—2iw/r 3.78)
where
Bro=no( 1+ —Bun) » (3.79)
and
2my 2
fn0=—;2—ﬁwn02n0 . (3.80)

In the Hartree approximation (f3,,=0) the depolariza-
tion effect raises the resonance energy by an amount a,,.
Comparison with Eq. (3.60) gives

deiT:flo_ﬁz L (3.81)
2mS1, fiwyo
When the exchange-correlation effect is included

(Bun >0), the local field correction tends to decrease the
resonance energy, as expected.

Figure 27 shows an example of calculated resonance
energies in an n-channel inversion layer on the Si(100)
surface with Ngep=1X10'" cm~2. The resonance ener-
gies obtained by including the depolarization effect alone,
the excitonlike effect alone, and both effects combined
are compared with the subband energy for the 0—1 tran-
sition. At low electron concentrations the excitonlike ef-
fect is more important than the depolarization effect, and
the resonance energy becomes slightly smaller than the
subband separation. With increasing electron concentra-
tion the depolarization effect becomes stronger and the
resonance energy becomes larger than the subband
separation. Figure 28 compares the resonance lineshapes
calculated in the Hartree and density-functional approxi-
mations for an inversion layer (N, =1X10"? cm™?, N gepi
=1x10" cm~2, and #/7=1 meV). In the Hartree ap-
proximation couplings between different subbands are
important. They modify the intensity of transitions in
such a way that transitions with higher energies tend to
have large oscillator strengths. This is analogous to the
behavior in the usual uniform electron gas in which the
plasma oscillation has larger intensity than single-particle
excitations in the dynamical structure factor for large
wavelengths. Allen, Tsui, and Vinter (1976) calculated
the lineshape including only the three lowest subbands,
Ey, E|, and E,, and showed that the transition 0—2 has
much higher intensity than O—1. When the exchange-
correlation effect is included, couplings become weak. A
corresponding lineshape for extremely small Ny, (corre-
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FIG. 27. Calculated resonance energies (solid lines) as a func-
tion of the electron concentration N; in an n-channel inversion
layer on a Si(100) surface. Ngegn=1X10"" cm~2. The broken
lines represent corresponding subband energy separations. The
resonance energies calculated by including only the depolariza-
tion effect or the excitonlike effect are also shown for the tran-
sition 0—1. The dotted curve represents the resonance energy
for 0— 1 obtained by neglecting mixing effects of different sub-
bands. After Ando (1977c).

sponding to the accumulation layer) is given in Fig. 29
for N;y=1x10"? cm~2 As has been discussed in Sec.
II1I.B, only the ground subband is closely localized near
the interface, and all the excited subbands are nearly con-
tinuum states in the Hartree approximation. Conse-
quently the lineshape is so broad that one can hardly
identify its peaks. The sharp peak in Fig. 29 corre-
sponds to the transition between the ground and the first

06 _ .
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FIG. 28. Calculated real part of the dynamical conductivity
G(®) in an n-channel inversion layer on a Si(100) surface.
N,=1Xx10"? cm™?, Ngp=1x10" cm~2, #/7=1 meV. The
solid line represents the result calculated in the density-
functional formulation and the broken line the result in the
Hartree approximation. After Ando (1977c¢).
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FIG. 29. Calculated real part of the dynamical conductivity
7(w) in an n-channel accumulation layer on a Si(100) surface
for #i/r=1, 2, and 3 meV. N,=1Xx10"? cm~2. After Ando
(1977¢).

excited subband which becomes a “bound state” due to
the exchange-correlation effect. The broad absorption at
the higher energy side corresponds to transitions to
higher quasicontinuum states. Figure 30 shows the reso-
nance energy for the 0—1 transition for different values
of Ngepi- The curve for the smallest Ny, actually corre-
sponds to the accumulation layer. Results of infrared ab-
sorption measurements (Kamgar et al., 1974a, 1974b;
Kneschaurek et al., 1976) are also shown. The agree-
ment between theory and experiment is excellent. The
experimental results and also the theoretical results show
that the effect of Ny is relatively small at low concen-
trations and becomes more important with increasing
concentration. This is one of the direct manifestations of
the importance of the additional corrections in optical
transitions. The effect of N4, on the subband energy
separation is more important at low electron concentra-
tions and becomes less important at high concentrations
where the self-consistent potential is mainly determined
by the potential of electrons themselves.

Vinter (1977; see also Vinter and Stern, 1976) calculat-
ed the resonance energy for the transition 0—1 neglect-
ing the vertex correction. His result is essentially given
by Eq. (3.59), with #iwo being the energy separation cal-
culated by including the exchange-correlation effect in
his approximation as discussed in Sec. IILB. This ap-
proximation is, however, inconsistent with the impor-
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FIG. 30. Calculated resonance energy for the transition 0— 1
as a function of the electron concentration N; in n-channel
layers on a Si(100) surface. The curve for the smallest Ngep
corresponds to the accumulation case. Experimental results
(Kamgar et al., 1974a, 1974b; Kneschaurek et al, 1976) are
also shown. After Ando (1977c).

tance of the exchange-correlation effect in the subband
structure. He then tried to calculate the excitonlike ef-
fect to the lowest order in the statically screened
Coulomb interaction. The binding energy is found to
vary from 0.9 to 1.8 meV for the electron concentration
between 10'2 and 3 10'2 cm—2. Without calculating the
intensity of the transitions, he speculated that the transi-
tions to both the “bound exciton” state and the free state
were allowed and gave rise to the two-peak structure ob-
served by the early photoconductivity experiments of
Wheeler and Goldberg (1975). However, the above dis-
cussion shows that the transition to the exciton “bound
state” is allowed and others are essentially forbidden (see
also Ando, 1977c; Bloss and Sham, 1979). As will be
discussed below, the two-peak structure has turned out to
result from completely different origins.

Broadening of intersubband optical transitions caused
by elastic scatterers has been studied theoretically (Ando,
1976¢c, 1978c). The dynamical conductivity for o ~w is
written as

Reo,(w)=

e’f1o m; #l,p(E)
— (E)dE °" ,
2m, J 2t (#i> —#i019)* + Top( E)?

(3.82)

with
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where 57 represents potentials of scatterers and ( - - - )
means an average over all configurations of scatterers.
The broadening is not determined by the simple arith-
metic average of the broadenings #/7y and #/7; of the
two subbands, but contains a correction term —7#/7y.
The broadening vanishes when the effective potentials of
the scatterers are the same for both subbands and there is
no intersubband mixing. In the case of a model with
short-range surface roughness scattering (see Sec. IV.C),
for example, Ando (1976¢) obtained
3 # 1 #

o < opS_——

s 3.85
8 T0 2 To0 ( )

which shows that the broadening is less than that deter-
mined by the mobility. However, Eq. (3.84) shows that
the relation between the mobility and the broadening of
the intersubband transitions is not simple for realistic
scatterers. Effects of Na™t ions near the interface on the
broadening have been studied experimentally. McCombe
and Cole (1980) have demonstrated clearly that broaden-
ing increases with increasing Na* ion concentration but
is less than the width estimated from the corresponding
effective electron mobility. This is in qualitative agree-
ment with the theoretical prediction of the simple model
discussed above. On the other hand, Chang et al. (1980)
obtained a peculiar result for low concentrations of Na*t
ions: The subband linewidth was independent of the ion
concentration, while the mobility changed substantially.
Effects of electron-electron collisions on the broaden-
ing of optical transitions have been investigated by Ting
and Ganguly (1979). They included the imaginary part
of the self-energy of the first excited subband in addition
to the real part, and calculated the resonance lineshape.
The imaginary part was shown to have little effect on the
position of the resonance except at low electron concen-
trations, but to contribute to broadening. Broadening of
intersubband transitions caused by electron-electron in-
teractions seems to be a difficult problem, however. If
one employs the same approximation as for the calcula-
tion of the cyclotron resonance lineshape one gets the
wrong result that electron-electron interactions cause
broadening, contrary to Kohn’s theorem that they do not
affect the cyclotron resonance lineshape in translationally
invariant systems (Kohn, 1961). Further, if a similar ap-
proximation is applied to subband transitions in an elec-
tron system outside of liquid He, one has an extremely
large broadening of the resonance which has never been
observed (Ando, unpublished). Experimental results in
the inversion layer seem to show that the broadening
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(3.84)

comes from the same mechanisms as those limiting the
usual mobility (Neppl et al., 1977; McCombe and Cole,
1980), and electron-electron collisions seem to have little
influence.

Three different methods have been employed to ob-
serve intersubband optical transitions: infrared absorp-
tion, emission, and photoconductivity. Figure 31 gives a
schematic drawing of the experimental arrangement used
in absorption experiments (Kamgar et al., 1974a, 1974b;
Kamgar and Kneschaurek, 1976; Kneschaurek et al.,
1976; Koch, 1975, 1976a, 1976b). A molecular gas laser
is used as the source of far-infrared radiation. The
separation of the transmission-line plates is the sample
thickness, which ranges between 0.2 and 0.35 mm. Since
the effective spacing is of the order of 10 wavelengths,
many modes propagate in the sample instead of a pure
TEM mode. However, the presence of the thick con-
ducting plate close to the space-charge layer causes the rf
electric field to be predominantly perpendicular to the
Si-SiO, interface. The samples lack the source-drain
contacts of a regular MOSFET, and visible radiation
from a light-emitting diode is used to generate electrons
near the interface. In the course of such experiments it
has been found that at low temperatures the inversion
layer and the bulk behave as two nearly isolated electri-
cal systems because of the thick depletion layer, and
their quasi-Fermi levels are not necessarily the same.
Consequently the thickness of the depletion layer and the
value of N4 can be smaller than the equilibrium values.
These values have been determined from observed capaci-
tance versus gate voltage curves. The absorption of the
laser radiation at fixed energy #iw is measured as a func-
tion of the gate voltage Vz. An example is shown in
Fig. 32. Positive and negative gate voltages correspond
to electron inversion and hole accumulation, respectively.

Si0,
%ZJ AX\Gate
LED
FIR :
W Si AVAVS4
Radiation ﬁ/ 77777, 7 /|
Vg

%—

Transmission-Line Arrangement

FIG. 31. Sample and transmission-line assembly used for ab-
sorption experiments. After Kneschaurek et al. (1976).
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Si (100) p-Type
dP/dy,

_—_=/\/~,

Sample W10-1
hw =10.45 meV
T~4.2 K
Ilep =004 mA
P
2%
1%
T L4 T L] 1] T T I L]
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FIG. 32. Intersubband resonance signals observed as a power
absorption derivative dP/dVs and in differential absorption
with on-off modulation of V. P is given in terms of percent
of transmitted power at Ny=0 and for dimensions of the sam-
ple and transmission line as shown in Fig. 31. Positive and
negative gate voltages correspond to electron inversion and
hole accumulation, respectively. After Kneschaurek et al.
(1976).

Si(100) n-Type
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FIG. 33. Electron accumulation signals observed in samples
from different batches. After Kneschaurek et al. (1976).
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A sharp single resonance is observed for the inversion
layer. Figure 33 gives examples for the accumulation
layer. The sharp peak at higher gate voltages is the tran-
sition 0—1, and a weak and broad absorption at lower
gate voltages is considered to be due to transitions to
higher excited subbands which are extremely close to
each other in energy. The observed resonance energies
for the 0—1 transition are summarized in Fig. 30. Ef-
fects of negative substrate bias, i.e., the depletion field
proportional to Ng.,, have also been studied.
Kneschaurek, Kamgar, and Koch (1976) find a linear
dependence of the resonance energy on Ny, for N
values between 4.6 10! and 6 10! cm—2.

Resonant photoconductivity has also been used to ob-
serve intersubband transitions (Wheeler and Ralston,
1971; Wheeler and Goldberg, 1975). Wheeler and Gold-
berg (1975) observed negative photoconductivities in the
presence of far-infrared laser radiation. An example of
an observed change in the conductivity is given in Fig.
34. Both the sharp peak and the broad structure at
lower gate voltage move to higher N, with increase of
the laser energy and are identified as intersubband optical
transitions. However, the resonance energies obtained
are in disagreement with those of the absorption experi-
ments discussed above. The electron densities N, at
which the resonances occur are about 30% higher than
the corresponding N; values of Kneschaurek, Kamgar,
and Koch (1976), although the depletion charge N, if
estimated from the doping of the samples, is almost the
same. The position of the sharp peak is rather close to
that of the absorption in the accumulation layer. Fur-
thermore, the photoconductive effect exhibits a complete-
ly different lineshape. On the other hand, Gornik and
Tsui (1976) detected hot-electron-induced infrared emis-
sion caused by intersubband transitions. They populated
the excited subbands by heating up the electron distribu-
tion with an electric field along the surface. The energy
separations obtained were in agreement with the photo-
conductivity data of Wheeler and Goldberg (1975) and in
disagreement with the absorption results. The three ex-
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FIG. 34. Photo-induced response as a function of the gate vol-
tage Vi for the two wavelengths 118 um (#iwo =10.45 meV) and
78 pm (15.81 meV). After Wheeler and Goldberg (1975).
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periments were performed on different types of samples
fabricated in different laboratories. The discrepancy was
at first believed to arise from real effects such as inhomo-
geneity of the doping or the structure of the Si-SiO, tran-
sition layer. However, more recent observation of ab-
sorption and photoconductivity on the same samples has
revealed that both experiments give identical resonance
positions and similar lineshape (Neppl et al., 1977; Kam-
gar et al., 1977, 1978; Hu et al., 1978). Kamgar, Tsui,
and Sturge (1977; see also Kamgar et al., 1978) per-
formed time-resolved experiments and demonstrated that
the resonance position depends on the degree to which
electrostatic equilibrium is established in the Si substrate.
Actually, difficulties in achieving real electrostatic equi-
librium had long been anticipated (see, for example,
Fowler, 1975 and references therein). The absence of a
depletion layer in the experiments of Wheeler and Gold-
berg (1975) and of Gornik and Tsui (1976) was found to
be the main cause of the discrepancy, and all the later
experiments have confirmed the results of the absorption
experiments.

The mechanism of the intersubband resonant pho-
toresponse is not yet understood. Wheeler and Goldberg
(1975) and Hu, Pearse, Cham, and Wheeler (1978) re-
ported. that the response time of the photoconductivity is
very long (of the order of 1072 s) and that the signal am-
plitude is almost independent of temperature between 4.2
and 1.6 K. Neppl, Kotthaus, Koch, and Shiraki (1977),
on the other hand, observed a strong temperature depen-
dence. As the mechanism of the negative photoresponse,
Wheeler and Goldberg (1975) proposed that electrons
photoexcited to an upper level have lower mobilities,
which cause the decrease in surface conductivity. This is
the same as the model suggested earlier by Katayama,
Kotera, and Komatsubara (1970, 1971) for explaining a
negative photoconductivity observed on InSb surfaces.
Dohler (1976a, 1976b) suggested a model in which the
existence of the E, subband plays an important role.
Electrons excited into E; are scattered into E, by inter-
valley impurity scattering and stay there for a while. Al-
though this model seems to explain the long response
time, it cannot explain a strong temperature dependence.
Existence of a long-lived surface trap level has also been
proposed. Neppl, Kotthaus, and Koch (1979) proposed
that the increase of electron temperature relative to lat-
tice temperature caused by absorption is the main origin
of the photoresponse. They could not substantiate the
long response time observed previously, and showed that
the response time is shorter than 10> s. By applying a
magnetic field perpendicular to the surface they convinc-
ingly demonstrated that the photoresponse and do /0T
depend in the same way on magnetic field. However,
they have shown also that the heating mechanism cannot
explain all the different experimental results observed in
different kinds of samples.

Kneschaurek and Koch (1977) studied the temperature
dependence of intersubband optical transitions between
4.2 and 130 K. An example of the observed lineshapes is
given in Fig. 35. With rising temperature, the lines
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originating from the E, subband shift and diminish in
amplitude, as is shown in the inset of the figure. At the
same time a small extra peak appears at a low electron
concentration and grows in amplitude. The new peak is
considered to represent transitions from the thermally oc-
cupied lowest subband level of the fourfold-degenerate
valleys with light mass normal to the surface. The reso-
nance position seems to be consistent with E; —Ey es-
timated theoretically. One has to assume, however, a
value of Ey—E,, which is much smaller than the
theoretical prediction, to explain the observed tempera-
ture dependence of the relative amplitudes of the absorp-
tions. This problem will be discussed also in Sec. VII.B
in connection with stress effects. Temperature depen-
dence was also studied on the (111) and (110) surfaces of
Si (Kamgar, 1979). The width of the resonance line at
high temperatures presents a problem. The experiments
show that the increase in width is not appreciable, while
the mobility decreases and the broadening of the cylotron
resonance increases considerably with rising temperature
(see Secs. IV.C and VI.B). Therefore, the experiments

Si (100) n-inversion
sample p-K1 A(T)/A(0)
hw=15.81 meV 1 ---1!\
1 -2 N
NJop=11x10" cm RN
I\f\\ »\
o b f
dP/dvg 50 100 T[K]
J\f =NK
_,/\/__J\f T = 28K
‘,_J,V__/\K T=37K
._/\./_J\/ T=70K
_.,_ T=130K
VT
L 1 1 ! 1 1 1 1 1 (I | 1
0 2 4 6 8 Vg V)

FIG. 35. Intersubband resonance at different temperatures for
#io=15.81 meV. The inset shows the variation of the reso-
nance amplitude for the 0—1 transition with temperature.
Along with the decay of the 0— 1 amplitude a new resonance
associated with the thermally populated O’ level is observed.
After Kneschaurek and Koch (1977).
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show, somewhat surprisingly, that neither phonon
scattering nor electron collisions are effective in deter-
mining the broadening of intersubband optical transi-
tions. Quite recently experiments were extended even to
room temperature (Schiffler and Koch, 1981; Chang
et al., 1980). The resonance energy was found to in-
crease considerably, rather in agreement with a predic-
tion given in the Hartree approximation discussed in Sec.
IILA.

All the experiments mentioned above have been car-
ried out at discrete frequencies while sweeping the gate
voltage to tune the subband transitions into coincidence.
This approach possesses some inherent disadvantages.
Since N, and the self-consistent potential both change
during the gate voltage sweep, it is difficult to determine
the lineshape and the relative intensities of the various
transitions. Only in the last few years has Fourier
transform spectroscopy been applied to this system
(McCombe and Schafer, 1979; McCombe et al., 1979;
McCombe and Cole, 1980). McCombe, Holm, and
Schafer (1979) showed that the observed relative intensi-
ties of 0—1, 0—2, and 0—3 transitions cannot be ex-
plained by the Hartree result and are fully consistent
with the result of the density-functional calculation. As
has been discussed above, the Hartree calculation
predicts a large depolarization effect, which drastically
modifies the relative strengths of resonance intensities in
such a way that transitions to higher excited subbands
have larger intensities. On the other hand, the reduction
of the depolarization effect due to exchange and correla-
tion makes the O—1 transition the strongest, in agree-
ment with the experiments. McCombe, and co-workers
have carried out quite extensive and detailed subband
spectroscopy and have shown that there is excellent
agreement with calculations over a much wider range of
Ngept and frequency than is shown in Fig. 30. The study
has been extended to (110) and (111) surfaces (McCombe
and Cole, 1980; Cole and McCombe, 1980), where inter-
subband spectroscopy can provide information on valley
degeneracy and on the nature of the ground state. This
will be discussed in Sec. VIL.B. Effects of Nat ions near
the interface have also been studied using this technique,
as has already been mentioned above. They have also
observed transitions associated with bound states of Na™
ions. This was already mentioned in Sec. ILE and will
be more fully discussed in Sec. V.C.

Different methods have been employed to observe in-
tersubband transitions in space-charge layers on semicon-
ductors other than Si. A simple transmission configura-
tion in which light is incident normal to the surface can
excite subband transitions in narrow-gap semiconductors
because of the nonparabolic dispersion of the bulk band
structure (see Sec. VIII.B). Resonant light scattering can
also be used in III-V semiconductors. For example,
quite recent observations of spin-flip and non-spin-flip
excitations in GaAs-AlGaAs heterostructures have deter-
mined the subband energy separation and corresponding
resonance energy independently, as will be discussed
briefly in Sec. VIIL.D.
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D. Subbands and optical transitions in magnetic fields

Additional details of the subband structure and of the
depolarization effect and its local field correction appear-
ing in optical transitions can be obtained by studying ef-
fects of magnetic fields. When a magnetic field is ap-
plied in the y direction parallel to the surface, electrons
moving in the positive and negative x directions are af-
fected by different Lorentz forces and the subband struc-
ture is modified. Usually in the inversion layer the ra-
dius of the cyclotron motion (typically, 81 A in 100 kOe)
is much larger than the thickness of the inversion layer,
and the magnetic field is treated as a small perturbation.
When the magnetic field is tilted, the perpendicular com-
ponent of the field quantizes the electron motion parallel
to the surface into discrete Landau levels. Although a
parallel magnetic field usually has little effect on two-
dimensional properties, it can strongly affect the spec-
trum of intersubband optical transitions.

Let us assume that a magnetic field (0,H,,H,) is ap-
plied along the yz plane in the n-channel inversion layer
on the Si(001) surface. In the Hartree approximation the
subband dispersion is determined by the Hamiltonian

2
e
T 2m, Px+ cHyz
1 2 1
e 2
—_— —H, e (3.86)
+ am, Py + o Hzx + 2m) p,+V(z),

where we have chosen the gauge A=(H,z,H,x,0). To
lowest order in H, one immediately gets an effective
Hamiltonian for the electron motion parallel to the sur-
face in the nth subband (Stern and Howard, 1967),

2

2
1 e 1 e
7= 2m, Px*:Hyzfm] T om, Pt
+Ey+ = [@n — (2], (3.87)
2m,ly
where lf:cﬁ/eHy. The last term of Eq. (3.87)

represents a diamagnetic energy shift. This shift was
first observed by a tunneling experiment in an accumula-
tion layer on InAs by Tsui (1971a). In the case of a
purely parallel magnetic field (H,=0) the dispersion is
given by a parabola with its minimum position shifted by
—Zpy /lf in the k, direction. In the case of nonzero H,,
Eq. (3.87) gives the Landau level,

2
A~ P1+E, , (389)
m,l,

with w,=eH,/m,c which is determined by the perpen-
dicular component. The corresponding wave function is
given by

E.n=fw(N +5)+ 5

1 iXy .znn(x —X)
Yanx(02)="pexp | =55 —im

XXn(x —X)E,(2) , (3.89)
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where I?=c#/eH, and Xy(x) is the usual Landau-level
wave function. The factor exp[ —iz,,(x —X )/lyz] arises
because of the shift of the center of cyclotron motion in
k space.

The above results are valid to first order in H,. To
second order in H, one should add to Eq. (3.87) a term
given by (Stern, 1968)

gxi- h2 2 ! zmn | 2
l; m=£n En ‘"Em

(3.90)
m; m;

This term gives rise to an increase of the effective mass
in the x direction for the ground subband:

[ZmO'Z

m,l; m=£0 Em —EO

me 2%2
my(H,)

(3.91)

This amounts to an increase of only a few percent in the
effective mass for N, =1X10'> cm~? and Ngepr=1X 10!
cm~2 in H,=100 kOe. One sees, therefore, that the
lowest-order expressions (3.88) and (3.89) are usually
valid except in extremely strong magnetic fields. The
fact that the Landau level structure is determined only
by the perpendicular component has been utilized experi-
mentally for many purposes. Uemura and Matsumoto
(1971; see also Uemura, 1974b) discussed the effect of H,
using a variational wave function of the form given by
Eq. (3.25). They ascribed an anomalous magnetoresis-
tance observed by Tansal, Fowler, and Cotellessa (1969)
to the effect of deformed wave functions in a parallel
magnetic field. See Sec. IV.B for a more detailed discus-
sion of the experiments. Such a perturbation treatment
is not valid for higher subbands, especially in case of ac-
cumulation layers, since the spread of the wave functions
can be comparable to or larger than the radius of the cy-
clotron motion. A self-consistent calculation has been
performed in the Hartree approximation in strong paral-
lel magnetic fields (Ando, 1975b). The ground subband
was shown still to be described by the lowest-order per-
turbation, but excited subbands become magnetic surface
states perturbed by a weak surface potential, since they
are quite extended and nearly continuum states in the ab-
sence of H,. The corresponding calculation, including
exchange and correlation effects, has also been made in a
density-functional formulation (Ando, 1978a, 1978b). An
example of the results is given in Fig. 36. The subband
structure becomes a mixture of the electric subband and
the magnetic surface states.

Since the optical transition occurs vertically (k conser-
vation), the relative shift in k space of the energy minima
and the diamagnetic energy shift cause broadening and
shifting of intersubband absorption spectra in a parallel
magnetic field. In the simplest case, where one can
neglect couplings between different subbands and where
the magnetic field is sufficiently weak, one has

2 ,

- Nse“fno —iw

Oplo)=—""—""—
my @pno

Ly(@)[14+VmLy(@)]™",

(3.92)
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where V,, (=a,, —Ba.) represents the strength of the
depolarization effects and its local field correction,
fico,,o=E,, —Eo, and

88 1 @10

2 2 2
N, L occupiedkwno(kx) —o

with fiw,o(k,)=E,(k)—Ey(k). In the case of y,,=0,
this gives a semielliptic spectrum around
fiw,olky =—20/1;) with the width #kp(zn, —ze0)m,l}
proportional to H,. It should be noted that the reso-
nance peak is not given by Fiw, o(k,,
= —zoo/l,,z)x(1+y,,,, )1/2 in the presence of the depolari-
zation effect, but its shift is enhanced because of the de-
formed lineshape (Ando, 1977b). The broadening and
the shifts of the resonance have been observed experimen-
tally (Kamgar et al., 1974a; Beinvogl et al., 1976). An
example of the experimental results for the accumulation
layer on the Si(100) surface is plotted in Fig. 37. The
signal shifts to lower and lower gate voltages and the
linewidth shows an increase with increasing magnetic
field. The shift of the resonance peak is found to be
larger for high electron concentrations. This fact is a
direct consequence of the depolarization effect, and can-
not be explained by the diamagnetic shifts alone. If we
neglect the depolarization effect, the effect of the magnet-
ic field should be smaller with increasing electron con-
centration because the electrons become more closely
bound near the surface. Actually, however, both the
depolarization effect and the deformation of the lineshape
become stronger with N; and consequently the shift of
the peak increases with N,. Experiments have been ex-
tended to the inversion layer (Beinvogl et al., 1976), but

Ly(w)= , (3.93)
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FIG. 36. An example of the calculated subband dispersion re-
lation E vs k, in an n-channel accumulation layer on a Si(100)
surface in a magnetic field applied parallel to the surface (the y
direction). N;=2X10'2 cm~2. H=100 kOe. After Ando
(1978b).
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FIG. 37. Influence of a parallel magnetic field on the position
and line shape of the intersubband resonance in the accumula-
tion layer. After Beinvogl et al. (1976).

the magnetic field effect has turned out to be very small.
Figure 38 gives examples of absorption spectra for the
accumulation case calculated in a density-functional for-
mulation (Ando, 1978b) and shows the broadening and
shifting of the spectra. The overall asymmetry of the
lineshape is consistent with the experimental results.
Beinvogl et al. (1976) obtained the peak shift of AE ~2.8
meV near N, ~0.6X 102> cm~? and AE ~3.9 meV near
N, ~1x10"2 cm~? at H,=100 kOe. The corresponding
theoretical results are given by AE~2.3 meV at
N;=0.6X10"? cm~? and AE ~3.5 meV at N,=1x10"?
cm™2. The theoretical shifts are slightly smaller, but can
be said to be in good agreement with the experimental

results.
Figure 39 gives a schematic illustration of the subband

and Landau-level structure in a magnetic field tilted
from the z direction. Because of shifts of the center of
the Landau orbit in k.-k, space, combined
intersubband-cyclotron transitions become allowed in ad-
dition to the main transition. Such combined resonance
Si (160) n-Accumulation

N = 1x102 cm™2

/\ RIT=1meV
0.1

200 kOe
/| |
150 kOe / / ‘ 1
100 kOe /

50 kOe

0.2

Re &,,({w)

0 kOe L J

hw (meV)

FIG. 38. Calculated real part of the dynamical conductivity
Gz(w) at N;==1x10"? cm~? for H=0, 50, 100, 150, and 200
kOe in an n-channel accumulation layer on Si(100). #/7=1
meV. After Ando (1978b).
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was first observed in a system of electrons trapped out-
side of liquid helium by the image potential (Zipfel
et al., 1976a). A pair of satellite peaks, displaced
symmetrically by about the Landau-level separation from
the main intersubband transition, was observed. In in-
version and accumulation layers the existence of the
depolarization effect makes the spectrum much more
complicated, but the observation of the combined reso-
nances has been shown to provide important information
on the strength of the depolarization effect (Ando,
19770).

Let us first consider the simplest case discussed above
for the case of a parallel magnetic field. The dynamical
conductivity in a tilted magnetic field is given by Eq.
(3.92) with

8v8s
L _=— Eon)[1—f(E, N
n(@) 21rI,2Ns %%f( on) 1 —=f(Epn)]
ﬁzw:OJNN’(AnO)z
(EnN'_EON)2—(ﬁ(J))2 ’
(3.94)
where
L
Apm =5 (Zpn —Zmm) » (3.95)
Ly

and Jyy-(x) is the overlap integral of the Landau-level
wave functions whose centers are displaced by an amount
(Zpn ——zoo)/lf in k,-k, space, given by

\
\ -

y

FIG. 39. Schematic illustration of the subband and Landau-
level structure in an inversion layer in a tilted magnetic field.
The magnetic field is in the y-z plane, and the z direction has
been chosen in the direction normal to the surface. The two
parabolas represent the dispersion relation in the absence of
H,. Because of shifts of the center of the Landau orbit in k,-
k, space, combined intersubband-cyclotron transitions become
allowed in addition to the main transition. After Ando
(1979¢).
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with L§(x) being the associated Laguerre polynomial.
The intensity of the transition ON—nN' is determined
by Jyn{A,o)? which is easily understood from Fig. 39.
When A, (<< 1, we get

Tnn(Ano=1—(N +3)A%
lzz(z,,,, —Zop)?

b

=1—(N+7) , (3.97)
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Since the diamagnetic energy shift is usually not impor-
tant, the position of the combined resonances AN=40 is
given by E,;+ AN#iw. when the amplitude is sufficiently
small, while the main resonance is determined by
E,o=(14+%¥pn,)"?E,o, which is the resonance energy in
the absence of a magnetic field. Thus we can determine
the strength of the depolarization effect from the relative
shift of the combined and main resonances in such a
case. In the opposite limit H, >> H,, on the other hand,
the lineshape can be shown to approach that in the
parallel magnetic field except for the appearance of a
quantum structure caused by the nonzero H,.

The combined resonance was observed in the accumu-
lation layer by Beinvogl and Koch (1978; see also Koch,
1981), although a first attempt failed (Beinvogl et al.,
1976). An example of the experimental results is shown
in Fig. 40, where the absorption derivative dP/dN; is
plotted as a function of N; for #w=15.8 meV. The
main transition is at Ny~ 1.2 102 cm~2 in the absence
of H, and is shifted to higher N; with H,. We can see
at N;~1.05%x10 cm™2 a combined resonance for
AN =+1, which splits into two peaks above H,~50
kOe, and at N; ~1.7X10'? cm~2? a weak combined reso-
nance for AN = —1. The relative shift of the main reso-
nance from the center of the combined resonances shows
clearly the existence of the depolarization effect (positive
v11). Figure 41 gives experimental positions of the main
and combined resonances in H, =35 and 50 kOe for suf-
ficiently small H,, together with E o, Eo+#w,., and Eo,
where E o and E, are the subband energy separation
and the resonance energy calculated in the density-
functional formulation. The theoretical results for the
resonance energy in the absence of a magnetic field are
about 10% higher than the experiments. This slight
difference in the absolute values is within the accuracy of
the approximations employed in the theoretical calcula-
tion. A possible error might also exist on the experimen-
tal side because of uncertainties in determining exact
values of N;. The agreement on positions of the com-
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FIG. 40. Experimental results of absorption in an n-channel
accumulation layer on Si(100) in tilted magnetic fields observed
by Beinvogl and Koch (1978). The absorption derivative
dP/dN; is plotted as a function of N; for #iw=15.81 meV.
The main transition is at N;~1.2X 102 cm~2. We can see at
N;~1.05%x10” cm~2 a combined resonance for AN= + 1
which splits into two above H, ~50 kOe, and at N, ~ 1.7 10"
cm~? a weak combined resonance for AN=—1. After Ando
(1979c¢).
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FIG. 41. Comparison of the theoretical and experimental posi-
tions of the main and the combined transitions (AN =+1) in
n-channel accumulation layers on Si(100) in tilted magnetic
fields. H,=35 and 50 kOe. The solid line represents the cal-
culated resonance energy and the dotted line the subband ener-
gy separation for the transition from the ground to the first ex-
cited subband in the absence of a magnetic field. Expected po-
sitions of combined resonances are given by dashed and dot-
dashed lines. After Ando (1979c¢).
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bined resonances relative to the main resonances is suffi-
cient to allow us to conclude that the calculated strength
of the depolarization effect agrees with the experiments.
A self-consistent calculation in a density-functional ap-
proximation has been carried out by Ando (1979a, 1979c,
1980b) for inversion and accumulation layers in tilted
magnetic fields. Figure 42 shows an example of calculat-
ed optical spectra in an n-channel accumulation layer on
Si(100) for N, =1x 102 cm™2. A weak but distinct peak
at fiw~12.7 meV is the combined resonance AN = —1.
Around #iw~17 meV combined resonances AN =+1
can be seen. For small H,, the positions of these com-
bined resonances are given by Eo+#iw. and that of the
main resonance is at E 10, as expected. Although the
theoretical results explain general features of the experi-
ments, especially the splitting of the combined resonance
AN =+1 above H,~50 kOe, there are some disagree-
ments, especially concerning the strength of the com-
bined resonances relative to that of the main resonance.
Experimentally the combined resonances become stronger
at a smaller Hy, which seems to suggest that the actual
first excited subband is more loosely bound than theoreti-
cally predicted. This seems, however, to be inconsistent
with the absence of a diamagnetic energy shift in the ex-
periments. Perhaps one must include a change in the
exchange-correlation effect in the presence of a magnetic
field to explain such details of the subband structure.

E. Interface effects

In most calculations for inversion and accumulation
layers, it has been assumed that the semiconductor-

Si (100) n-Accumulation
N =1x10% cmi?

H, = 35 kOe
A/t =0.5 meV

100 kOe

Absorption (Arb. Unit )

10 15 20 25
hw (meV)

FIG. 42. Calculated optical spectra for different values of H,
in an n-channel accumulation layer on a Si(100) surface.
N,=1x10" cm~? and H,=35 kOe. The numbers appearing
in the figure represent values of H,. After Ando (1979c).
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insulator interface is sharp and that there is an infinite
barrier which keeps electrons out of the insulator. But
the barrier from the bottom of the conduction band in Si
to the bottom of the conduction band in SiO, is known
to be 3.1 to 3.2 eV (Williams, 1977), which will permit a
small amount of penetration of the wave function into
the insulator. In addition, the notion of a sharp barrier
must break down on an atomic scale. The proper way to
deal with this problem is to use the correct microscopic
structure of the interface to solve the problem without
use of the effective-mass approximation. Such an ap-
proach is not possible now because the interface structure
is not known precisely. It would be difficult in any case
because the interface between a crystal (the semiconduc-
tor) and an amorphous material (the insulator) can only
be dealt with approximately.

Within the spirit of the effective-mass approximation,
we can deal with this problem by modeling the interface
region in such a way that the atomic structure is
smoothed out, and by using appropriate effective masses
for the insulator. In this section we describe such an ap-
proach for the Si-SiO, interface and for the surface of
liquid helium. For interfaces with smaller barrier
heights, like those that enter in semiconductor hetero-
structures, the interface becomes a central part of the
problem of determining energy levels. That case is dis-
cussed briefly in Sec. VIIL.D.2.

Once electron penetration into the insulator is allowed,
a sharp interface can no longer be used because the
singularity in the image potential, Eq. (3.17), cannot be
handled where the wave function is nonzero. Fortunate-
ly, a smoothly graded interface removes the singularity
in the image potential.

Experimental evidence regarding the Si-SiO, interface
appears to be converging toward a model in which the Si
and the SiO, are separated by only one or two atomic
layers of intermediate stoichiometry. Earlier studies us-
ing Auger spectroscopy and argon ion sputtering (see, for
example, Johannessen et al., 1976) had indicated a tran-
sition region 2 to 3.5 nm wide, but other measurements
using photoemission (DiStefano, 1976; Raider and
Flitsch, 1976, 1978; Bauer et al., 1978, 1979; Ishizaka
et al., 1979; Ishizaka and Iwata, 1980), nuclear back-
scattering (Sigmon et al., 1974; Feldman et al., 1978a,
1978b; Jackman et al., 1980), and high-resolution elec-
tron microscopy (Krivanek et al., 1978a, 1978b;
Krivanek and Mazur, 1980) have reduced this value and
suggest an interface only one or two atomic layers thick.

There are several possible ways to define the interface
thickness, as pointed out by Pantelides and Long (1978)
and by Stern (1978b). One of these looks at the atomic
structure of the interface, and could lead to a zero nomi-
nal interface width for the structure in Fig. 43, in which
a plane separates the two materials. A second definition
considers the local environment of each atom, and de-
fines the transition layer as the region in which these en-
vironments differ from those in the bulk. For the case
shown in Fig. 43, the transition layer would be at least
two atomic layers wide. Finally, one could consider
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FIG. 43. Schematic picture of a transition from a crystalline
element 4 to a crystalline compound AB;. The line bb is the
nominal interface, but A atoms on this line have different
bonding than do A atoms on either side. The transition layer
can be considered to be bounded by the lines aa and cc, and
therefore has a finite width even though the crystallographic
interface is sharp.

properties that depend on excited states of the system,
such as energy gaps and dielectric properties. In that
case the transition layer could be wider than the one
given by the second definition, because the excited states
can be expected to spread out beyond the range of the
potential that is varying. It is the last of these defini-
tions that enters in our case, because the barrier height,
the effective mass, and the dielectric function all involve
conduction-band states.

We proceed by constructing a model for the transition
layer, calculating the image potential for this model, and
solving the Schrédinger equation for the envelope wave
function. The parameters that vary across the transition
layer are the effective mass m,, the barrier height Ejp,
and the dielectric constant. All of these quantities are
assumed to change with the same grading function S(z).
Thus we assume:

K(2) =Kips+ (Kse —Kins)S (2) ,

mz(z)=mz,ins+(mz,sc'_mz,ins)s (z), (3.99)

VB(Z)=EB ~EBS(Z) ’

where S =0 on the insulator side and S =1 on the sem-
iconductor side of the interface.

The simplest grading function is a linear dependence
through the transition layer. Such a dependence has
been found (Stern, 1978b) to lead to unphysical loga-
rithmic singularities in the image potential. To remove
these singularities, Stern used a linear grading with
rounded corners. The image potential is found by solv-
ing Poisson’s equation

V-k(z)Vp=—47Q8(r)d(z —z') , (3.100)

taking the potential at the position of the point charge Q
minus the potential

Q

K(zl)[(z __.zl)2+r2]1/2

that the same charge would give in a homogeneous medi-
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um whose dielectric constant has the local value k(z’),
and multiplying by a factor % to take into account the
fact that the image potential is a self-energy. The image
potential energy is obtained by multiplying the potential
by Q, and is independent of the sign of Q. It is a con-
tinuous function through the interface and becomes the
conventional image potential for distances more than a
few transition layer widths away. Note that the conven-
tional image potential is attractive on the low-dielectric-
constant side of the interface and repulsive on the high-
dielectric-constant side.

The potential energy in the Schrédinger equation can
be written

V(z)=Vy(2)+ Vs(2)+ Vi(2)+ Vp(2) , (3.101)

where V(z) must be determined from a solution of
Poisson’s equation with a spatially varying dielectric con-
stant, and can therefore no longer be found from Eq.
(3.14).

The spatially varying effective mass changes the form
of the Schrddinger equation, which must now be written

#d 1 d§

T2 4z m,(z) dz

+[V(2)—Et(z)=0  (3.102)

to conserve probability current through the transition
layer (Harrison, 1961; BenDaniel and Duke, 1966).

For the (001) Si-SiO, interface there are two ladders of
subbands, the twofold-degenerate lowest ladder with
m,=0.916m in silicon, and the fourfold upper ladder
with m,=0.19m in silicon. The corresponding masses in
SiO, are not universally agreed upon, even for energies
near the bottom of the conduction band, which is
thought to lie at k =0. Tunneling measurements have
given values of 0.42m (Lenzlinger and Snow, 1969),
0.48m (Weinberg et al., 1976), 0.65m (Kovchavtsev,
1979), and 0.85m (Maserjian, 1974; see also Lewicki and
Maserjian, 1975), among others. The situation is even
more difficult for the fourfold valleys, which lie away
from k =0 and therefore connect to points away from
the bottom of the conduction band in the SiO,. Calcula-
tions for the conduction bands of crystalline SiO, (Cala-
brese and Fowler, 1978; Schneider and Fowler, 1978; Ba-
tra, 1978) suggest that the barrier height is ~5 eV for
the energy levels connected with the fourfold valleys, i.e.,
~2 €V higher than for electrons from the twofold val-
leys, but tunneling measurements of Weinberg (1977) for
the (100), (110), and (111) surfaces do not appear to sup-
port such a large difference.

Stern (1977) originally used a graded interface model
as a possible alternative to interface roughness scattering.
He assumed that the penetration of the wave function
into the transition layer reduced the mobility in propor-
tion to the fraction of the total inversion-layer charge
density that was in the transition layer. He obtained
rough agreement with experimental results. A subse-
quent attempt (Stern, unpublished) to derive this mobility
reduction using the Born approximation led to a reduc-
tion proportional to the square of the charge penetration
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into the transition layer, with much too small a magni-
tude. There is now increasing evidence from work of
Krivanek and co-workers (Krivanek et al., 1978a, 1978b;
Krivanek and Mazur, 1980; Sugano, Chen, and Hamano,
1980; Hahn and Henzler, 1981) and others for interface
roughness of approximately the required magnitude, so
this alternative mechanism is neither needed nor theoreti-
cally well founded. We should add that the values of en-
ergy shifts calculated by Stern (1977) used an even more
primitive model than the one described here and are
therefore unreliable. He found that the presence of a
transition layer decreased the splitting Ey,, whereas
Nakayama (1980) finds an increase using a more detailed
model. Experimental evidence relating to this splitting is
discussed in Secs. III.C and IV.C.

Because of all the uncertainties in the model, and more
particularly because many of the material constants that
enter the model are not well known for the Si-SiO, inter-
face, we do not show any quantitative results for energy-
level shifts attributed to the interface transition layer.
Laughlin et al. (1978, 1980), Herman et al. (1978, 1980),
Schulte (1979), and Nakayama (1980) have all undertak-
en calculations which treat the interface microscopically.
Aside from the difficulty of characterizing the amor-
phous oxide, first-principles calculations like those of
Laughlin et al. and Herman et al. face the difficulty that
they must give the subband energies with a precision of
order 1 meV if they are to reproduce subband splittings
correctly, not an easy task when the subband splittings
are compared to energy gaps of order 1 eV or larger.

A guide to the behavior to be expected from a transi-
tion layer can be obtained by assuming that the layer
leads to a boundary condition on the logarithmic deriva-
tive of the envelope function at the interface. If we also
assume a simple triangular potential, we can use results
for the solution of the Airy equation (see, for example,
Stern, 1972b) to learn that for small enough values of
£(0)/£'(0) all the subbands of a given ladder will move
down in energy by about the same amount with respect
to the values obtained with the boundary condition
£(0)=0, as shown in Fig. 44. Numerical solutions of
Eq. (3.102) bear this out. However, different subband
ladders shift by different amounts because different
values of m, and Ep obtain for each ladder.

Electrons on liquid helium

For electrons on the surface of liquid helium (see Sec.
VIILH for a brief review of this two-dimensional electron
system) there are both theoretical reasons (Lekner and
Henderson, 1978; Mackie and Woo, 1978; see also the
earlier papers cited in Stern, 1978b) and reasons based on
analysis of experiments on reflection of “He atoms from
liquid “He (Echenique and Pendry, 1976a, 1976b; Ed-
wards and Saam, 1978; Edwards and Fatouros, 1978) to
believe that there is a gradually varying density at the
surface. Estimated interface widths are of order 0.3 to
0.8 nm. Thus this system should be a good candidate for
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the kind of analysis described above, without some of the
uncertainties that limit its application to the Si-SiO, in-
terface. Stern (1978b) used the same approach as above,
with one arbitrary parameter in the interface grading
function S(z). He used a barrier height Eg=1 eV and
an effective mass m,=1.1m (Springett et al., 1967) for
electrons in liquid helium, and obtained a good fit to the
energy splitting of the first two excited subbands from
the lowest subband (Grimes et al., 1976). The interface
width (10% to 90%) deduced from the fit is 0.57 nm,
which is within the range of previous estimates. The
same parameters also give a good fit to the recent results
of Lambert and Richards (1981), who extended the mea-
surements to higher electric fields. Calculated and mea-
sured results are shown in Sec. VIIL.H.

The model Stern used for the helium surface gives a
good fit to experiment, but it is by no means unique.
For example, the model potential

k—1 e?

Viz)=— k+1 4z+B)’°

z>0

=V z<0 (3.103)
also gives a good fit to experiment with f=0.108 nm
(Zipfel and Simons, 1976, unpublished) or 0.101 nm
(Hipdlito et al., 1978). Sanders and Weinreich (1976)
give analytic expressions for the level shifts for a number
of cases. Calculations with more realistic microscopic
surface models should be carried out for comparison with
the spectroscopic data.
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FIG. 44. Effect of boundary condition at the semiconductor-
insulator interface on the energies of a ladder of levels in a tri-
angular potential well. The abscissa is the scaled ratio of the
envelope wave function at the interface to its derivative there.
The scaling distance a is (#/2m.eF)'/?, where F is the electric
field in the semiconductor, and the scaling energy is E* =eFa.
The energies for vanishing derivative of the envelope wave
function at the interface are marked at the right. After Stern
(1972b).
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IV. TRANSPORT: EXTENDED STATES

A. Measurements

The purpose of this section is to give the reader some
idea about the nature of the transport measurements cit-
ed and some feeling for their accuracy. Low-frequency
transport measurements would seem to be amongst the
simplest. As in the case of solid semiconductor samples,
the accurate extraction of relevant information is more
difficult. The problem is to derive the fundamental
properties—free-carrier concentration, mobility, trap dis-
tributions, densities of states, etc.—from the measured
quantities—conductance, Hall effect, field-effect mobility,
magnetoresistance, capacitance, etc.

The simplest measurable quantity is the sheet conduc-
tivity,

o=eN,u=gpL/W , 4.1)

where e is the electronic charge, N, the areal free charge
density, u the mobility, gp the source-drain conductance,
L the length of a MOSFET structure as shown in Fig. 1,
and W its width. Even this measurement can be trouble-
some because of nonohmic effects (source-drain fields
must be kept to less than 1 Vem™! and sometimes 103
Vem™! at low temperatures), contact resistances com-
parable to the channel resistance, leakage currents, or
poorly defined channel lengths. Four-probe measure-
ments can be used to eliminate contact effects. If the
conductivity can be unambiguously measured, the prob-
lem is then to determine N; and u independently. For
some three-dimensional semiconductors at low carrier
concentration this has been achieved to reasonable accu-
racy by a combination of conductivity, Hall effect, drift
mobility, cyclotron resonance, and other measurements
as a function of temperature, which have been carefully
matched and iterated with theory (see Smith, 1978, for
instance). Probably only for germanium and silicon are
the detailed properties accurately known, and then only
for the lower carrier densities.

For inversion layers a drift mobility measurement can-
not be made, but there is additional information available
as compared to solids: the number of carriers can be es-
timated from the gate voltage dependence of the capaci-
tance and the conductance.

Several mobilities are used to characterize MOSFETs.
The effective mobility

g

= — 4.2
et = G Vo—V7) )

where o is the small signal conductivity, C,, is the ca-
pacitance per unit area across the oxide, V is the gate
voltage, and Vr is the threshold gate voltage, depends on
the somewhat arbitrary definition of the threshold vol-
tage or the turn-on voltage. ¥V is often defined as the
voltage where the Fermi level is as close to the conduc-
tion (or valence) band at the surface as to the valence (or
conduction) band in the bulk. Experimentally it is often
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determined by the straight-line extrapolation to zero con-
ductance of the turn-on region measured as a function of
gate voltage [see Fig. 45(a)]. Both thermal broadening
and trapping tend to obscure these definitions. An
overestimate of Vr results in low values for N; and high
values for p. as compared to u. The effective mobility
can also differ from the mobility u in the presence of
trapping at the interface. A simple model gives

.u'eﬂ‘zfﬂ ’ (4.3)

where f is the fraction of the induced electrons that are
free (i.e., not trapped or in depletion charge).
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FIG. 45. Typical plot of (a) conductance gp and (b) transcon-
ductance g,, as a function of gate voltage. Because of the tails
at low gate voltage, the threshold voltage V7 is taken from a
straight-line extrapolation of one or the other curve, but usual-
ly from g,. When looked at carefully even the transconduc-
tance curves show a tail near threshold, which is broadened by
increasing temperature or by interface states.
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The field-effect mobility is derived from the transcon-
ductance

8m=dlp/dVg |y, , 4.4)

where Ip is the drain current and V) the drain voltage,
and g, is normalized for geometric factors. Then (Fang
and Fowler, 1968)

8

_8m af | .du_
CorVs +f

MFE= fu+Veg—Vr) kave av,

b

(4.5)

which illustrates the hazards of extracting information
from the field-effect mobility. All voltages are referred
to the source. Because g,, goes to zero at threshold it
can be used to define V7, but again, because of broaden-
ing effects, only somewhat better than conductance can
[see Fig. 45(b)]. Many of the effective mobility data at
low temperatures discussed below were extracted by an
extrapolation of the transconductance at 77 K and by use

of the V; thus derived with the conductance data. For
conductance and transconductance measurements, closed
(typically circular) structures can be made to avoid leak-
age at the edges. If the drain voltages are kept low in ac
transconductance experiments, capacitive feedthrough
from the gate can add to the drain current significantly
and cause severe errors, particularly for W< L.

The Hall mobility pz also need not equal the mobility
u. We can write

ug=ru=Ryco , (4.6)

where r is the Hall ratio and Ry is the Hall constant.
The Hall ratio is discussed in Smith (1978), for instance,
and need not equal unity. It is expected to be unity for
circular Fermi surfaces at low temperatures. Hall-effect
measurements without an adequate theory of scattering
cannot unambiguously give either the mobility or the
carrier density. Thus the effects of trapping cannot be
separated from the effects of scattering on the Hall ratio
without a great deal of circular reasoning (Fowler et al.,
1964; Fang and Fowler, 1968; Sakaki et al., 1970). No
calculations of the Hall ratio except for some based on
rather simple assumptions (Sugano et al., 1973) have
been made, even at low temperatures where only one sub-
band is occupied, although Sakaki et al. (1970) inferred a
value of about 0.85 at 300 K. At higher temperatures
(greater than about 40 K) a multiple-band theory is need-
ed. In the absence of trapping the measured carrier con-
centration,
1 N

=—, 4.7

Nu= eRpyc ™ r

can reasonably be used to define a threshold by extrapo-
lation to zero carrier concentration. However Hall-effect
measurements are more difficult than conductance mea-
surements, and the samples are more complex and larger,
and without special precautions, open at the edges. As is
usual with Hall measurements, geometric effects must be
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accounted for properly. Contact resistance effects which
can be a problem in conductance geometry samples are
avoided, at least by open-circuit Hall voltage measure-
ments. The larger size increases the chances that the
sample may be macroscopically inhomogeneous (Fang
and Fowler, 1968; Thompson, 1978b). The open struc-
tures increase the chance that leakage currents around
the periphery can obscure results at low Nj, although it
is possible to make samples with guard electrodes.

At higher temperatures leakage currents through the
source diode into the substrate can result in errors which
are especially important at low carrier densities and espe-
cially when a substrate bias is applied.

The C-V curves—capacitance measured as a function
of gate voltage—can be used to measure free-carrier, de-
pletion, and surface trapped carrier densities near thresh-
old, at least above the temperature for freeze-out of the
bulk. Sze (1969) has presented an excellent overview.
Although there are many techniques for interpreting the
C-V data, they are far from trivial and not uncontrover-

sial. With few exceptions (Sakaki et al. 1970) careful
capacitance studies have not been combined with trans-
port measurements. Nicollian and Brews (1982) will ex-
tensively review these measurements.

The capacitance can be used to characterize the sur-
face because the charge is not induced within a few
angstroms of the silicon-insulator interface as it would be
in a metal-insulator interface. Fast interface states are
usually considered to be at the interface and are fast be-
cause they empty and fill faster than the measurement
frequency. Inversion-layer electrons are induced from
several to several hundred angstrom units away from the
surface, depending on field. The depletion charge can be
induced many thousands of angstroms from the surface.
In general one can write an expression (Kingston and
Neustadter, 1955) for the classically induced charge,

Kyc€ kT "‘e¢s
Q=x|+- [NA¢s+poe exp | — |1
172
kT ed
+no—— |exp | <o | —1 H +0u(9)

4.8)

where Q is the total induced charge and is positive when
¢s, the surface potential measured between the bulk and
the surface, is negative. N, is the acceptor density and
po and ny are the bulk hole and electron densities,
respectively. Some of these points have been addressed
in Sec. I. Q;(¢;) is the interface state charge density
and depends on whether the states are acceptors or
donors and on the position of the states in the gap.
When this expression is combined with

Vappl =E oxd oxt ¢s

and Gauss’s law at the interface is applied, an expression
relating the induced charge and the applied voltage is ob-
tained which can be differentiated to obtain the capaci-
tance. Many hundreds of papers have been published on

(4.9)
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this subject. Much of the literature is reviewed in Sze
(1969) and by Goetzberger, Klausmann, and Schulz
(1976), Schulz (1980), and Nicollian and Brews (1982).
The last especially consider the effects of inhomo-
geneities.

This classical model results in capacitance curves as
shown in Fig. 4, where the effects of interface states are
shown. Vg, the voltage for which the space charge is
zero, is determined if the substrate doping is known.
Work-function differences between the silicon and gate
metal and charge in the oxide or interface states can
result in displacement of Vg from zero—a built-in vol-
tage. For both accumulation and inversion, charge is in-
duced near the surface, and at least in thick (>500 A)
oxides the capacitance equals approximately the oxide
capacitance. In depletion the capacitance decreases as
the charge is induced farther into the silicon. Near the
minimum, inversion electrons are just beginning to be in-
duced with increased surface field.

The effect of reducing the temperature is to sharpen
the turn-on and also to change Vg because the Fermi
level in the bulk moves closer to the valence band, which
increases the work-function differences between the gate
and the silicon and therefore changes the built-in voltage
due to differences in the silicon and gate work functions.

The results must be modified to account for quantum
effects, which tend to result in the electrons being ex-
tended farther into the silicon and are important when
the oxide thickness is small (Pals, 1972b; Stern, 1972b,
1974a). The classical expressions derived in Sze (1969)
are not valid for oxide thicknesses less than 300 A, but
no complete set of curves based on a self-consistent quan-
tum theory has been published.

Another technique for counting the number of free
electrons as a function of gate voltage is to measure the
Shubnikov—de Haas oscillations in the magnetoresis-
tance at moderate fields as a function of V; and magnet-
ic field. Each oscillation contains the number of elec-
trons in a Landau level which fortunately is independent
of the mass (Fowler et al., 1966). Extrapolation of a fan
diagram of the location of the levels as a function of field
and gate voltage to zero magnetic field gives the effective
threshold, at least where band tailing effects are unim-
portant. This is illustrated in Fig. 46, where the posi-
tions of the peaks in the transconductance are shown.
Some spread in the extrapolated threshold determination
for different Landau levels can occur if there is a strong
dependence of mobility on carrier concentration. If the
average conductance increases rapidly at low voltages
and decreases at high voltages there is a displacement of
the peaks which can account for this spread. Usually
transconductance rather than conductance is used be-
cause the oscillations are more pronounced, so that mea-
surements can be made at the lowest magnetic fields to
reduce the extrapolation range. The spacing of the Lan-
dau levels gives a very accurate measurement of C,,.
For thin oxides the spacing should measure the variation
in z,,.

If trapping, band tailing, or depletion charge are im-
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portant (as they are near threshold) no single experiment
can unambiguously give the mobility and carrier concen-
trations. Most techniques are accurate to 5% or better
for carrier concentrations above 10'2/cm?. An exception
would be in samples with many interface states when
measured near and above room temperature (Sakaki
et al., 1970; Fang and Fowler, 1968). The interpretation
of the measurements is increasingly unreliable at carrier
concentrations below 10'2 cm~2 (Fowler and Hartstein,
1980a). A combination of Hall-effect, conductance,
Shubnikov—de Haas, and C-V measurements is really
needed (Sakaki er al., 1970). Capacitance, however, is
difficult to measure near threshold at 4.2 K and requires
large samples which may suffer from inhomogeneity
(Thompson, 1978b; Brews, 1972a, 1972b, 1975a, 1975b;
Ning and Sah, 1974) and is therefore useful on only rela-
tively ideal samples. Capacitance measurements are dif-
ficult to interpret at 4.2 K because the minority charge
must flow in along a distributed-resistance-capacitor net-
work from the source and drain (Voschchenkov and
Zemel, 1974), and because depletion charge is not readily
established when the majority carriers are frozen out.
Use of infrared light to supply mobile charge introduces
various photovoltages such as the surface photovoltage
and Dember effects. However, at higher temperatures a
combination of complex conductance measurements has
allowed accurate determination of mobility and carrier
concentration as low as 10° cm ™2 (Shiue and Sah, 1979;
Chen and Muller, 1974).

The measurement of threshold voltage or the flat-band
voltage Vgp is important to determine oxide charge. It
also measures the charge in fast states for flat bands, Qg
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FIG. 46. A fan diagram of the peaks in the transconductance
resulting from magnetoconductance oscillations. The threshold
voltage Vr is determined by extrapolation of the peaks for the
various Landau levels. The oxide capacitance C,, can also be
determined to high accuracy from such diagrams because when
the nth Landau level is filled, nfio,D(E)=N,=Cy,(Vg—Vy).
After Fowler et al. (1966b).
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(acceptor states below the Fermi level and donor states
above). The oxide charge is taken conventionally as an
equivalent oxide charge residing at the silicon-silicon
dioxide interface,

dox
eNox;—Qox:_l_ fo eny(z)dz ,

4.10
o (4.10)

where N, is the equivalent charge density at the inter-
face, d, is the oxide thickness, z is the distance from the
gate to the point in the oxide where the charge concen-
tration is n,,(z) measured away from the interface. Mea-
surement of the distribution of charge, which is needed
to calculate scattering, is difficult (DiMaria, 1978).

In general the flat-band voltage depends on the oxide
charge, the work function of the metal, and the work
function of the silicon (and therefore on the doping of the
silicon and the temperature) so that

[(Xsc+EF_Eu)_‘Xm] _ Qox _ st
e COX COX

Ve = , (4.11)
where X, and X,, are, respectively, the energy differences
between the valence band of the silicon and the Fermi
level of the metal and the conduction band of the silicon
dioxide, and Er—E, is the Fermi energy of the silicon
measured from the valence band. X, is 4.2+0.1 eV for
silicon and X,, is about 3.2—3.5 eV for an aluminum
gate, depending on processing (Solomon and DiMaria,
1981). Hickmott (1980) has summarized his results and
those of others and has concluded that X,, —X,. can vary
up to 0.15 V, depending on postmetallization annealing.
The values for other metals range from 2.2 to 4.2 eV and
have been determined by internal photoemission (see, for
instance, Goodman and O’Neill, 1966).
The threshold voltage is approximately given by

(4.12)

where Qe =(ksceNqdg/2m)'7%, ¢4 is the potential
across the depletion layer at the threshold for inversion
(see also Sec. III.A.1) and N, is the acceptor density in
the silicon. At low temperatures and for all but patho-
logically compensated doping, ¢, is approximately equal
to the energy gap (1.15 V) when the source is grounded
to the substrate at low temperature. However, Qgepl can
be varied by using a substrate bias, V..

If there are interface states that are filled as the surface
is depleted, their effect Q/C,, must be added. If the
fast states are normally neutral when filled (donors) then
Vep will be shifted but ¥ will not be, unless there are
states above the Fermi level at the surface at threshold.
As can be seen, the extraction of information about the
transport properties is easier in the absence of fast states
which by proper processing can be reduced below 10'°
cm™2 In general, the various techniques used for extra-
polation of thresholds—Hall measurements, Shub-
nikov—de Haas fan diagrams, capacitance and extrapola-
tion of nitrogen temperature transconductance—are in
good agreement for samples with low fast-interface-state
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density (~10'° cm—?) and oxides that are relatively thick
(>500 A). They are not for samples with high fast-
interface-state densities, as when sodium is introduced, so
that errors can be larger (10'! carriers/cm?) in such cases
(Fowler and Hartstein, 1980a).

B. Experimental results

1. Introduction

There is a large and confusing mass of data on trans-
port in inversion layers. Only a few papers have at-
tempted to survey the whole field: Fang and Fowler
(1968), Komatsubara, Narita, Katayama, Kotera, and
Kobayashi (1974), and a series of papers by Cheng (1971,
1972, 1973a, 1973b, 1974), Cheng and Sullivan (1973a,
1973b, 1973c, 1974), and Sah and associates (Sah et al.,
1972b; Shiue and Sah, 1976, 1979, 1980). Most papers
have attacked limited ranges of temperature or sample
characteristics, with the result that a coherent picture is
not obvious. Here we shall attempt to give some coher-
ence to the experimental results by examining primarily
conduction of electrons in the unactivated regime mainly
on the (100) silicon surface. (We ignore weak localiza-
tion here; it will be discussed in Sec. V.B) The (100) sur-
face has been studied most because it has the highest mo-
bility and the most nearly perfect oxides of any of the sil-
icon surfaces. It also leads to a simpler theory because it
is orthogonal or parallel to all the principal axes of the
conduction-band minima. Hole conduction has been
studied in far less detail and is discussed briefly in Sec.
VIILA.

In general at room temperature the electron mobility
in the surface is less than in the bulk because of in-
creased scattering. However, at low temperatures it is
higher, partly because the electrons are in the lowest sub-
band so that the effective mass parallel to the surface is
light and partly because they are separated from their
compensating positive charge in the gate, so that
Coulomb scattering is reduced.

The general characteristics are illustrated in Fig. 47,
where Hall-mobility data are shown as a function of
N;=(ecRy)™! for two samples, both with 2-ohm-cm p-
type substrates for Vg, =0. The high-mobility sample
had a 990 A oxide and was annealed at 1000°C i‘p N,
after oxidation; the low-mobility sample had a 500 A ox-
ide and was not annealed in N, at high temperature.
The first had an oxide charge of (6+2)X 10! cm~? and
the latter (13.4+4)x10'° cm—2,

The differences between these samples are most strik-
ing at 4.2 K, although the samples show the same gen-
eral variation of mobility with N; and 7. At 4.2 K there
is a smooth rise in mobility as N, increases, followed by
a decrease. At low N; the maximum mobility is 18 000
cm?V~1s~! for the low-oxide-charge samples. The
higher-oxide-charge sample had a maximum mobility of
only 4000 occuring at higher N;. At high values of N;
the mobilities approach the same values and decrease as
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FIG. 47. Hall mobility as a function of 1/ecRy =Ny for two
samples. The solid curves are for a sample where
Noyx=(6+2)x 10" cm~2. The dashed curves are for a sample
with N, =(13.4+4)%10° cm~2 Data are shown for 300,
77.3, 28, and 4.2 K. The overlap of the 77.3 K data for low
oxide charge and the 4.2 K data for high oxide charge over a
large part of the range is coincidental. All low-temperature
curves approximately coincide at high values of N,. After
Fowler (unpublished).

about N,~? to a value of about 1000 at N,=10'> cm~2.
Generally, this behavior can be ascribed to oxide charge
scattering, which decreases as N; increases, and surface
roughness scattering, which increases with N;, although
other mechanisms may affect the mobility to a lesser ex-
tent, especially near threshold.

The mobility is seen to decrease between 4.2 and 77 K
at low N; but is relatively temperature independent at
high N;. At low carrier concentrations depending on
N, the temperature dependence can reverse sign. The
77 K data also show some structure that will be dis-
cussed below.

At 300 K the mobility is lower than at lower tempera-
tures over most of the range of N, and is much less
dependent on N; or N,,. This is a range where oxide
charge scattering should be weak, the conduction-band
electrons are not degenerate, many subbands contribute
to the conduction, and phonon scattering should be
strong.

Representative plots of the temperature dependence as
a function of N; are shown for samples with high N,
(~2x10" cm~? in Fig. 48, taken from Fang and
Fowler (1968). Similar extensive data may be found in-
that paper—all for low-mobility samples—and in
Komatsubara et al. (1974). Generally there is a strong
increase in pu.p Wwith increasing temperature for
N; <2—10x10'"" cm~2 which can be activated (Fang
and Fowler, 1968). Above this N; range the mobility
varies weakly in high N, samples in complex fashion
until it decreases at high temperatures as about T—!-,
In high-mobility samples the temperature dependence of
resistance can be stronger and has been reported as high
as T*~% (Kawaguchi and Kawaji, 1980a) below 10 K.
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FIG. 48. Typical temperature dependence of the effective mo-
bility p 4 for an n-channel device. The carrier density N, in
units of cm~? is given by 2X10'" V;, and the value of
Vg =(Vg—V7) in volts is indicated for each curve. The oxide
charge N,, was about 2X 10!! cm~2 The upper and lower sets
of data are displaced. After Fang and Fowler (1968).

Below we shall discuss in more detail these and other
data, dividing the data generally into the ranges around
300 K, near 4.2 K, and 4.2—90 K for electrons on (100)
silicon samples. In Sec. IV.B.5 some other cases will be
discussed briefly.

2. 300 K range

As may be seen in Fig. 47, the mobility is nearly con-
stant or decreases slowly over the entire range of N, at
room temperature. This result differs from early results
of Fang and Fowler (1968), where an initial increase was
observed as shown in Fig. 49. The samples showing a

700
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SURFACE ELECTRON CONCENTRATION ~cm ™2
FIG. 49. Hall mobility uy for a sample with large oxide
charge (210" cm~?) as a function of (ecRy)~'~N; at 300°C.
Note the decrease in p g at low N;. After Fang and Fowler
(1968).
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decrease of u.g at low N, are characterized by oxide
changes of 2 10'! cm~2 or greater.

Brews (1972a, 1972b, 1975a, 1975b) has considered the
effect of spatial fluctuations in N; resulting from fluctua-
tions in N,, and has concluded that u~(1—5(o2)),
where (asz) is the variance of the surface potential. He
concludes that for N, less than 3% 10'° cm~2 no de-
crease in mobility with decreasing N, should be seen, at
least down to Ns=3><109 cm™2, whereas a maximum
should occur at N;~10!! cm~2 for N, =3Xx10!! cm~—2.
This is consistent with Fig. 49, where there are about
2% 10" cm~2 oxide charges, and Fig. 47, where the ox-
ide charge is low. Comparison with data of Chen and
Muller (1974) and with Shiue and Sah (1979) also bears
out his conclusion, although the latter have a somewhat
different explanation. The latter have carried out mea-
surements to values of N, as low as 108 cm~2 and do ob-
serve a small decrease in mobility below 10° cm~? in
samples with No,~1.4Xx10'"" cm~2 However, their
samples with Ny, =1.17X 102 cm~2 show only a slight-
ly greater decrease, even though fim.,~600 cm?V~ls™!
as compared to 1000 for the better samples.

In the now more generally studied samples with
Ny < 10" ecm™2 the mobility is quite flat versus N for
10° <N, <2Xx 10" cm™? with mobilities over 1000
cm?V~Is~! for the best samples. Figure 47 demon-
strates that the oxide charge contributes to the scattering
even at 300 K and that an oxide charge difference of
about 7.5 10'° cm~2 has reduced the maximum 300 K
mobility by about 30%. This is clearly shown in Fig.
50, taken from Sah et al. (1972b), where a mobility
dependence on N, was measured. The mobility did not
depend on crystal orientation. As N; increases, the mo-
bility decrease is initially weak but grows stronger as N
approaches the range where surface roughness scattering
may become important. No simple power law in N
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FIG. 50. Effective mobility at 298 K at low carrier density as
a function of total oxide charge. Note that the samples made
on the (100), (110), and (111) surface lie on the same curve.
After Sah et al. (1972b).
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describes the variation. For 102 <N, <5X 102 cm—2
again no power law seems to obtain in N, but the depen-
dence is roughly as (Ns+Ndep1)“'/ 3, Calculation of the
scattering in this range is very difficult because many
subbands are occupied and because inter- and intra-
subband scattering and optical- and acoustic-phonon
scattering are involved, as is surface roughness scattering
at high N;. Probably the best comparison with phonon
scattering theory could be made at N;=2-5X 10'?
cm ™2 in the cleanest samples.

In the 300 K range the mobility varies as about T3
(Leistiko et al., 1965; Fang and Fowler, 1968; Komatsu-
bara et al., 1974) although acoustic-phonon scattering for
one subband (which is not realized at high temperature)
should follow a T~! law (Kawaji, 1969). Sah et al.
(1972b) found somewhat weaker temperature dependence.
Phonon scattering is discussed theoretically in Sec. IV.D.

It should be noted that in this temperature range the
Fermi level is usually below the conduction-band edge,
so that interface states can change occupancy with sur-
face field and temperature as discussed by Fang and
Fowler (1968), Sakaki, Hoh, and Sugano (1970), and Sah
et al. (1972b). The surface state contribution to the
scattering can vary, depending on temperature and on
whether the states are donors or acceptors.

3. 4.2 K range

At 4.2 K the electrons are generally in the quantum
limit, in that only the lowest-energy E, subbands are oc-
cupied in a perfect unstrained sample. On the (100) sur-
face these have spin and twofold valley degeneracy.
Furthermore, as is well known, Matthiessen’s rule may
be applied with confidence at 4.2 K to separate the vari-
ous scattering mechanisms. As noted above, there is a
large body of experimental data for samples with dif-
ferent N,,. However, as noted in Sec. IV.A, the estimate
of N, is difficult for small values and for thin oxides.
Furthermore, the location of the charge in the oxide is
not usually known. The data are usually compared to
theory for the different scattering mechanisms added ap-
propriately. Another approach to the problem of
separating the contributions of the different scattering
mechanisms is to vary the oxide charge methodically.
Even though the absolute value of N, may not be
known, the change may be determined accurately. The
oxide charge can be varied by annealing as in Sah et al.
(1972b) and Tsui and Allen (1975). The position of this
oxide charge is not known precisely. Oxides can be
grown with known densities of neutral electron and/or
hole traps that can be filled by charge injection
(DiMaria, 1978). Even though the positions and densi-
ties of these charges have been measured, an experiment
using trapping in the oxide has not been done. Double-
insulator structures such as MNOS (metal-nitride-oxide-
silicon) devices may be used (Pepper, 1974a), but the
charge distribution again is not accurately known.
Another approach is to drift sodium ions from the metal
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FIG. 51. Some of the extensive measurements on a set of sam-
ples in which N, the oxide charge density, was varied by
drifting Na* ions through the SiO,. The effective mobility p
is plotted as a function of the carrier density N;. The mea-
surements were made at 4.2 K. After Hartstein er al. (1980).

to the silicon interface (Harstein and Fowler, 1976, 1978,
1980b). The Na* ions have been shown to reside very
near one or the other interface (DiMaria, Aitken, and
Young, 1976; DiMaria, 1978). Besides introducing fixed
oxide charge, the sodium also introduces acceptor surface
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FIG. 52. The intercept of u g, the reciprocal of mobility,
when extrapolated to N,,=0 from a plot against N, is plot-
ted versus (Nge + Ny)%. The mobility is in units of 10
cm?V-lg—l, Ngep1, the number of charges per unit area in the
depletion layer, and N; (called Ninv in the figure), the number
of electrons per unit area in the inversion layer, are in units of
10'2 cm~2. While it is assumed that the scattering for No=0
is primarily due to surface roughness scattering, the failure of
the curve to intercept the origin indicates an additional scatter-
ing mechanism. Data are for various values of substrate bias
voltage Vi, i.e., for different values of N as well as N;.
After Hartstein et al. (1980).
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states (Fowler and Hartstein, 1980a) which are neutral-
ized before the inversion electrons are induced. This ap-
proach was used methodically to vary the mobility with
Ng; Ngepi, and N, The mobility varied as a function of
N; and N,, at Vy,, equal to zero, as shown in Fig. 51.
At constant N; the data were fitted to

UaE =c +aNy+bN2, . (4.13)

The first term represents scattering that is not a function
of Ny and to first order was assumed to be primarily
isy', the reciprocal of the surface roughness scattering.
This amounts to an assumption that there is no interac-
tion between surface roughness scattering and oxide
charge scattering. Values of the intercept are shown in
Fig. 52 plotted versus (N g + Ny )? for different substrate
biases. This plot most nearly rectified the curve and was
far better than a plot versus (N gepi + N /2)%. Compar-
ison of these data with theory is made in Sec. IV.C.
Sugano et al. (1980) have reported significantly increased
surface roughness scattering on severely roughened sur-
faces. Earlier, Cheng and Sullivan (1973c) and more re-
cently Kohl er al. (1981) observed increased surface
roughness scattering as a result of treatments which
roughened the surface, although the latter ascribed the
effect in their treatment to an increase in neutral defects.
It should be noted that the failure of the curve in Fig. 52
to intersect the axis at O is an indication of an additional
scattering mechanism.

The reciprocal of the linear coefficient a in Eq. (4.13)
is shown in Fig. 53. As may be seen, this part of the
scattering decreases with N;. These results are compared
with theory in Sec. IV.C. The quadratic term presum-
ably arises from multiple scattering events. It is only
strong for low values of N; where k; ! is long as com-
pared to the (N, )~ '/2 It is shown for N,=2x10"
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FIG. 53. The reciprocal of the linear coefficient a, taken from
fitting u &' =c + aN + bN2, as a function of N, at 4.2 and
80 K. The data were taken from Fig. 51. After Hartstein
et al. (1980).



Ando, Fowler, and Stern: Electronic properties of 2D systems 495

cm™2 in Fig. 54 as a function of temperature for different
substrate biases. As may be seen, it decreases rapidly
with increasing temperature. It is only measured at low
N;. On the other hand, the temperature dependence of
the linear term a is much weaker and depends on N, as
may be seen in Fig. 55. At low carrier concentrations, a
increases with temperature. Unless this increase is taken
into account in analyzing the weak temperature depen-
dence of p from phonon scattering, for instance, errors
will result. Oxide charge scattering is compared to
theory in Sec. IV.C.1.

Other scattering may obtain at 4.2 K that may modify
the simple picture above. Below 30 K a negative magne-
toresistance has been reported (Eisele and Dorda, 1974a;
Kawaguchi ez al., 1978a, 1978b; Kawaguchi and Kawaji,
1980b, 1980c) that was at first attributed to the decrease
of some scattering mechanism in a magnetic field. It
varies as N,!. It depends only on the normal com-
ponent of magnetic field, in contrast to an effect in InAs
(Kawaji and Kawaguchi, 1966). Similar effects have
been seen on n-channel (111) samples and on p-channel
devices. The effect is quadratic at low fields and satu-
rates at about 1—1.5 T. The saturation value of the
magnetoconductivity change has a maximum value of
4% at 4.2 K, decreases with increasing temperature, and
vanishes at about 30 K. The quadratic dependence of
the magnetoconductivity on magnetic field follows a
Curie-Weiss law. Dorda found that the effect decreased
with large surface state density. Attempts to explain
these effects on the basis of spin-spin scattering seem fu-
tile because of the dependence on the direction of mag-
netic field. Recently this effect has been related to locali-
zation effects (Kawaguchi and Kawaji, 1980b; Hikami
et al., 1980) discussed in Sec. V.B.

Inability to fit experimental results, especially at low
N, with theories of the major scattering processes has
led to the postulate of an additional short-range scatter-
ing mechanism (Matsumoto and Uemura, 1974; Takada,

5 ™ T T T T T T T T T
= 15V
A -3V
4 x OV N
) A . e 5V
[
? L 4
> 3l “
§ . 1
&
e 2 ° b
° an
Q x a
17 e n
H
0 B S O N I | L ! N R B B U
10 100

TEMPERATURE (K)

FIG. 54. The coefficient b of the quadratic term, for the same
fit described in Fig: 53. These data are for N,=2X10'? cm~2.
After Hartstein et al. (1980).
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1979) sometimes called neutral impurity scattering.
Neutral impurities are difficult to detect except possibly
by trapping (DiMaria, 1978) or by electron spin reso-
nance; so are charge dipoles (Hess and Sah, 1975). The
nature of these scatterers is elusive but Yagi and Kawaji
(1978, 1979) associated them with growth parameters, as
have Kohl ez al. (1981). They found that the maximum
mobility decreased from 10* to 7.5x10° cm?2V—!s~! ag
the oxide thickness was reduced from 2700 to 910 A.
However, samples with different processing can show
mobilities of 2 10* cm?>V~'s~! for a thickness of 990
A (Fig. 47). These results may be related to surface
roughening results reported by Sugano et al. (1980) and
to the final oxidation rate and the oxygen defect gradient
at the silicon interface.

The temperature dependence of the mobility near 4.2
K has been the subject of extensive study and of some
controversy. As may be seen in Fig. 48, there is a signi-
ficant temperature dependence for high values of gate
voltage or carrier density above the activated regime. In
high-mobility (or low-oxide-charge) samples the mobility
shows a somewhat smaller decrease with increasing T,
but as in the low-mobility samples illustrated by Fig. 48
the effect decreases as N, increases. These effects have
been studied by Cham and Wheeler (1980b) as a function
of the maximum mobility, which is a measure of the ox-
ide charge scattering in the sample, by Kawaguchi and
Kawaji (1980a), and by Kawaguchi, Suzuki, and Kawaji
(1980). Earlier papers such as Fang and Fowler (1968)
or Komatsubara et al. (1974) contain some of the same
data, although they have not reduced the data in the
same way, nor gathered data with such care when the
variations with temperature were small. The more recent
papers have presented the data by extrapolating the re-
ciprocal mobility data to T =0 and subtracting the extra-
polated value of 1/7 from the value at any given tem-
perature. The difference is labeled 1/7. It is not clear
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FIG. 55. The temperature dependence of 1/a, the reciprocal of
the linear coefficient, as described in Fig. 53, for three values
of N;. After Hartstein et al. (1980).
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that this procedure has any simple physical meaning. It
may lead to erroneous conclusions if more than one
scattering mechanism is involved but, especially when
the temperature variations are small, it is convenient.
Some of the raw data of Kawaguchi and Kawaji (1980a)
are shown in Fig. 56. Kawaguchi and Kawaji (1980a)
have, in addition, corrected for the negative magne-
toresistance effect, although it is not clear what the justi-
fication for so doing is or at least how it should be done
properly. The extrapolation to T'=0 is also dangerous,
especially when the logarithmic effects arising from weak
localization are important (see Sec. V.B).

Kawaguchi and Kawaji (1980a), using these pro-
cedures, found a very strong dependence of 1/7 on tem-
perature, which they ascribed to phonon scattering al-
though they remarked that theory predicted a much
weaker magnitude of phonon scattering. Cham and
Wheeler (1980b) and Kawaguchi et al. (1981) found
much weaker temperature dependence (about T'!:8—20),
The former concluded that the effects arise primarily
from the temperature dependence of other mechanisms
such as oxide charge scattering and surface roughness
scattering. The temperature variation for these processes
arises primarily from the temperature dependence of the
screening and has been calculated in a simple approxima-
tion by Stern (1980b). Stern’s calculations for the tem-
perature dependence of impurity scattering have also
been compared with the results of Hartstein and Fowler
(1980) (see Fig. 55), and good agreement was found for
N;=3x%10" cm~2 All of the experiments discussed
above require extreme care in measurement because often
the changes with temperature are small. The extraction
of the data in terms of 1/7; is not straightforward, and
the interpretation involves at least oxide charge, surface
roughness, and phonon scattering and possibly other
scattering mechanisms, so that this problem remains
somewhat unresolved. This has a bearing on the weak
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FIG. 56. The temperature dependence of the resistivity of a

(100) silicon inversion layer. The parameters are the electron
densities N,. After Kawaguchi and Kawaji (1980a).
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localization effects discussed in Sec. V.B

Piezoresistance effects have proven a valuable tool for
the study of transport at 4.2 K. These have been studied
by applying stresses in various ways—most extensively
and controllably by bending bar samples (Colman et al.,
1968; Dorda, 1971a; Dorda and Eisele, 1973; Dorda
et al., 1972a; Eisele et al., 1976a; Eisele, 1978; Gesch
et al., 1978), by studying silicon on sapphire (Kawaji
et al., 1976), and by using epoxy cements (Fang, 1980).
The effects arise primarily because of the displacement of
the valleys lying along axes with different orientations to
the stress. For the (100) surface a compressive stress
along the [010] direction lowers the valleys in that direc-
tion relative to the (100) and (001) valleys. Enough
stress can lower the (010) and/or (001) valleys which are
the subbands with light mass perpendicular to the
surface—the primed subbands—below the (100) or
unprimed subbands, especially if the surface quantum
splittings, Eo—E, are small (N, and Ngepi small). An-
isotropy results from such stresses and has been studied
by Dorda (1973). Typical results are shown in Fig. 57.
The mobility decreases as the electrons transfer to the
primed valleys. Dorda and Eisele (1973) have concluded
that there may be an intrinsic stress of 80 Nmm ™2 on
the basis of other arguments (Eisele, 1978) they estimate
an average stress of 10—50 Nmm~2. Nicholas et al.
(1976) have estimated a stress of 30 N mm? using an op-
tical technique. These estimates are for the average mac-
roscopic stress. Local stresses may be higher. The local
and macroscopic stresses may vary depending on sample
size, oxide thickness, and on whether the sample is free-
standing or bonded to a metal or ceramic header. The
reader should refer to Sec. VIL.B for further relevant
comments.

Electron transfer effects are demonstrated if the field-
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FIG. 57. Relative change of conductivity Ao /o for a (100)
surface with current and strain in the {010} direction at 6.4 K.
After Dorda and Eisele (1973).
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effect mobility, a derivative, is plotted as a function of Nj
at different stresses (Eisele, 1978; Gesch et al., 1978) as
shown in Fig. 58 for the case where the current is in the
light-mass direction of the (001) subband. The authors
interpret the first peak under stress as resulting from
transfer of electrons from the (001) to the (100) subbands
as the electric field splitting, increasing with Ny, ap-
proaches the stress splitting. Presumably the minima oc-
cur when all of the electrons are transferred, and the
second maxima arise from the usual maxima in mobility
as a function of N; for a single set of subbands. The
subband splittings have been estimated from these mea-
surements and are reasonably in agreement with theory
(Eisele, 1978). Attempts to fit the transport theory (Ta-
kada, 1979), emphasizing the effects of screening, were
successful in giving the right shape of the curves, but
were badly off in magnitude. Stress effects will be dis-
cussed further in Sec. VIL.B.

4. 4.2-90 K

Figures 47 and 48 demonstrate some of the complexity
of the mobility variation with N; in the intermediate
temperature range. For low N; (< 10'2 cm™2, depending
on N,, and sample preparation) the conductance may in-
crease rapidly and is probably activated (Fang and
Fowler, 1968) (see Sec. V.A). As discussed above, the
scattering may increase with temperature in samples
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FIG. 58. Field-effect mobility upez as a function of N, under
compressive stress at 4.2 K. After Eisele (1978).
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with high oxide charge. At the higher temperatures of
this range the higher subbands can be occupied (Stern,
1972b). Hartstein, Fowler, and Albert (1980) have at-
tempted to resolve the temperature dependence of the
several scattering mechanisms by drifting Na* ions to
vary the oxide charge scattering and applying
Matthiessen’s rule, a questionable procedure above 10 K
(Stern, 1980b). A slight increase was seen in what they
have labeled the surface roughness scattering at high
temperatures, which may arise from phonon scattering.
The temperature dependence of the impurity scattering
coefficient is shown in Fig. 55. The reciprocal of this
scattering increases linearly at low N; and decreases at
high N;.

Figure 47 also shows an interesting feature of the mo-
bility above 4.2 K—an inflection in the mobility versus
N, curve at about 10'2 cm~2 electrons at 77 K. This is
most easily observed in the field-effect mobility in sam-
ples with low depletion charge, as reported by Fang and
Fowler (1968). The dependences on temperature and on
substrate bias are shown in Fig. 59 and Fig. 60, respec-
tively. A sharp peak may be seen near threshold at 77
K, which decreases rapidly as the temperature is re-
duced. This is in a range of N, where activated conduc-
tivity is often ascribed to Anderson localization. This
peak is strikingly similar to the peaks observed under
pressure by Eisele (1978) in Fig. 58 for samples where
stress was used to make Ey < E; at low N;. This peak
in the data in Fig. 59 may arise from phenomena similar
to the stress effects, as suggested by Brews (1975b) and
Gesch, Eisele, and Dorda (1978). At 77 K some elec-
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FIG. 59. Field-effect mobility at various temperatures on a
(100) surface. After Fang and Fowler (1968).
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trons can occupy the fourfold subbands even if they are
not lower than the twofold. Gesch et al. were able to af-
fect this structure at 77 K under stress. The peaks could
be enhanced if there were intrinsic strains in the surface.
The common appearance of two and sometimes more
peaks might arise from an inhomogeneous strain or from
splitting of the (010) and (001) subbands. These peaks
are suppressed with substrate bias or as the doping is in-
creased because both increase Ny, and therefore
Ey—E,. Komatsubara et al. (1974) have seen more
complex behavior that depends on the samples. They at-
tributed some of the structure to interface bound states.
This was later also suggested by Tidey and Stradling
(1974). As shown in Fang and Fowler (1968),
d(Ri")/dVg increases slowly and smoothly through this
range in samples where this structure appears, but the
Hall mobility shows the same structure as the effective
mobility. Trapped electrons would not give the high
mobility observed in the first peak. On the other hand,
these data could be consistent with a two-band model of
the Hall effect.

When these peaks are observed an anomalous magne-
toresistance is also seen (Tansal et al., 1969; Sakaki and
Sugano, 1969) when the magnetic field lies in the silicon
surface. It follows the law Ag/g=cHXI+BH2
Uemura and Matsumoto (1971) have ascribed the qua-
dratic effect to a diamagnetic shift in the ground-state
wave functions, but have not calculated the change in
Ey —E,. The direction of the Lorentz-force term is'in a
direction to increase this splitting and so to transfer elec-
trons to the low-mass valleys.

Clearly the behavior of the transport properties in this
range is complex. For a simple comparison with theory
it is probably best to work with a maximum subband
splitting, which corresponds to large N gep-
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FIG. 60. Field-effect mobility as a function of N, for varying
substrate bias at 77 K for different values of surface electric

field F, (proportional to N, + Nge). After Fang and Fowler
(1968).
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5. Other surfaces—n channel

We have concentrated on the (100) surface because
even with its complexity it is the simplest and the most
studied. This does not mean that the other primary
surfaces—(110) and (111)—have not received attention
and do not have many interesting phenomena associated
with them. Indeed, the apparent anomalies in valley de-
generacy have been of very great interest. In general, the
mobilities on surfaces other than the (100) are lower and,
except for the (111), are anisotropic. Sato et al. (1972),
Sah et al. (1972b), and Arnold and Abowitz (1966) have
shown that there is a strong correlation with the oxide
charge. The field-effect mobility dependence is shown in
Fig. 61. Results for planes vicinal to the (100) plane
generally show a peak in the field-effect mobility at low
N, at 77 K, but those for the (111) and (110) planes do
not. The temperature dependence of ugg for all planes is
similar to that of the (100) surfaces above 77 K. The an-
isotropies increase as the temperature is reduced (Sato
et al., 1971; Sah et al., 1969; Sakaki and Sugano, 1972a).

6. Noise

The subject of noise in metal-insulator-semiconductor
devices has a substantial literature that is only partially
represented in the bibliography (Abowitz et al., 1967;
Aoki et al., 1977; Berz, 1970a, 1975a; Berz and Prior,
1970; Broux et al., 1975; Das and Moore, 1974; Flinn
et al., 1967; Fu and Sah, 1972; Jindal and van der Ziel,
1978; Katto et al., 1977; Klaassen, 1971; Nougier et al.,
1978; Park et al., 1981; Sato et al., 1969; Vandamme,
1980; Voss, 1977, 1978). Many authors find a correla-
tion between the amount of 1/f noise and the density of
surface states, but there is no general agreement as to de-
tails of mechanisms. Noise is not discussed in any detail
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FIG. 61. Dependence of field-effect mobility on surface and
current direction at 77, 208, and 298 K for N,=3X 102 cm—2.
The mobility is highest on the (001) surface, for which -the ox-
ide charge is lowest. After Sato et al. (1971a).
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in this article.
(1981).

For a recent review, see Hooge et al.

C. Scattering mechanisms at low temperatures
1. Coulomb scattering

The scattering from charged centers in the electric
quantum limit has been formulated by Stern and Howard
(1967). We briefly review the theory in this section. We
confine ourselves to the n-channel inversion layer on the
Si(100) surface where the Fermi line is isotropic. Let us
first calculate the potential of a charged center located at
(r;,z;). This problem has been treated in Sec. II.C within
the Thomas-Fermi approximation. Here we shall discuss
it in a different way which allows the treatment to be
readily extended to many-subband cases. Using the usu-
al image method, we have

(n),2
V=2 (2 —2P] 7 @14)

for z; <0, and

o2
[(r—1;)2+(z —2z)?]~!/?

(Ksc — Kins )Z(”)ez

Ksc(Ksc+Kins)

vi(n=Z

[(r—r1;)2+(z +2)?]" 12

(4.15)

for z; >0. Here, K=(Ky+Kins)/2 and Z¥ is the charge
of the uth kind of charge center. The effective potential
for electrons in the inversion layer in the electric quan-
tum limit is given by

o!¥(r)= fo“’dz | Eo(2) | 2VI¥(r,2) . . (4.16)

This can be expressed in a more elegant form in terms of
the following two-dimensional Fourier transform. We
have

viP(r)= 3 vi#(z;)expliq-(r—r1;)] , 4.17)
q
with
() 21TZ('”82
v!(z;)==—"—"—"—F(q,z;), (4.18)
Ki
where for z; <0
F(g,z;)=e" fo‘” dze=%| (2|2, 4.19)

and for z; >0

Flgz)=7 [, dz 16(2)]|?

[l+£i—ni }e—qlz*z"
KSC

Kins —~q(z+z;)
- |e

KSC

+ |1-

(4.20)
The form factor F(q,z;) becomes unity in the limit of
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vanishing g. The screening effect can be included within
the linear approximation by dividing v{*(z;) by the
dielectric constant e(q) with
2
elq) =1+ 2T F(g)lI(g) , (4.21)
kq

where Il(g) is the static polarization part defined by Eq.
(2.56) and F(q) is the form factor for electron-electron
interactions given by Eq. (2.51).

In the Born approximation the transport relaxation
time is given by

ﬁ 22] NM(z2)dz [ v (2) |

T(E(k))
X (1 —cosOyy)8(e(k)—e(k’)) ,

(4.22)

where N¥(z)dx dy dz is the concentration of the pth
kind of charged center within the volume dx dy dz, 0y
is the angle between the vectors k and k', and
e(k)=#k?/2m,. We have assumed that the charged
centers are distributed completely at random in the plane
parallel to the surface. The mobility is given by

e
w= (r), (4.23)
with
%s(k)ﬂe(k))[ Belk) ]
(r)= (4.24)

_9of
28"‘)[ de(k) ]

where f(e(k)) is the Fermi distribution function. At suf-
ficiently low temperatures we have {7)=7(Ef), with Eg
being the Fermi energy.

There are two cases where we can get explicit expres-
sions of the form factors. The simplest case is the two-
dimensional limit, defined by

| Eo(2) | 2=8(2) . (4.25)
We have
F(q,z,~)=e_q12"‘ , (4.26)
corresponding to
(n),2
o (r)= 2 [(r 1P 4221172 . 427)

If we use the usual variational wave function (3.25), we
can express the form factor for z; <0 as

F(q,z;)=Pge* , (4.28)
and for z; >0 as
1 Kins 1 Kins —gz;
Flgz)=—~ |1+ -2 |P(z;)+— Poe %,
(g,z;) ) { + P (z,)+2 - o€
(4.29)
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where P, and P(z) are given by Egs. (2.21) and (2.23),
respectively.

The important length in the scattering is 1/kp. As is
clear from Egs. (4.19) and (4.20), charged centers which
contribute to scattering are limited by the condition
|zi| <1/kp. (f (z)>1/kg for z; >0, the thickness of
the inversion layer (z) determines the region of z; in-
stead of 1/kp. Usually, however, (z)<1/kp.) The
value of 1/kg is typically 100 A around N,=10"? cm~—2.
Many charged centers can contribute to scattering at low
electron concentrations, but only a small number of
centers, especially ones which are located near the inter-
face, contribute to it at high electron concentrations.
Usually the charged acceptors in the bulk silicon play lit-
tle role as scatterers except at extremely small electron
concentrations. For bulk doping of 10'® cm 3, for exam-
ple, there are only ~10'° cm~2 acceptors within 100 A
from the interface. This density is very small and there
are many more oxide charges at or near the interface in
most samples.

In the random-phase approximation we have (Stern,
1967)

172 ]

(4.30)

2u4p |

I(g)=

2g,m; 1—
2

P [l-@(q —2kp)

where 6(x) is the usual step function [6(x)=1 for x >0
and 6(x)=0 for x <0] and g, is the valley degeneracy
factor. Thus the effective potential becomes

27 ZWe?

————Flgz),
k(g 4+-q,F(q))

v z;) = 4.31)

where g, is the Thomas-Fermi screening constant given
by g,=2me’I1(0)/k =2g,me’/k#. We see that 1/g; is
of the order of 5 A and much smaller than 1/kp. There-
fore the screening dominates the strength of scattering,
and the ratio of the form factors F(q,z;)/F (q) determines
the dependence of the mobility limited by the Coulomb
scattering on the electron concentration. Since F(q,z;)
decreases much more rapidly than F(q) with increasing g
for z; <0, the net effective mobility increases with the in-
crease of the electron concentration at low temperatures.
Further, the actual mobility is sensitive to the distance of
the charged centers from the interface and decreases
rather rapidly with increasing distances. A possible dis-
tribution of charged centers in the z direction causes an
additional dependence.

As has been discussed in Sec. IV.B, Hartstein, Ning,
and Fowler (1976) and Hartstein, Fowler, and Albert
(1980) extensively studied the mobility limited by the
Coulomb scattering. They varied oxide charges controll-
ably by drifting sodium ions through the oxide to the in-
terface. The numbers of ions which were believed to be
just at the interface (within a few angstroms from the in-
terface) were counted by measuring the shift of the con-
duction threshold. Hartstein et al. determined the mo-
bility which depended on the concentration of the ions.

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

An example of their results is shown in Fig. 62, together
with theoretical results for two different values of Ngep.
The theoretical result has been obtained in the electric
quantum limit, i.e., by assuming that only the ground
electric subband is occupied by electrons. An example
calculated by Stern (1978a) is also shown. He considered
graded interface effects, which tend to shift the electrons
to the oxide more than in the case of a sharp interface
and give larger effects of scattering at high electron con-
centrations. The agreement is reasonable except for some
differences at low and extremely high electron concentra-
tions.

In spite of such good agreement there are several prob-
lems with the theory of the mobility mentioned above.
We have used the Born approximation for the calculation
of the scattering strength. Stern and Howard (1967) stu-
died higher-order effects in the simplest two-dimensional
limit, using the phase-shift method. Roughly speaking,
higher-order effects tend to increase the scattering in case
of attractive scatterers, since the wave function tends to
have a large amplitude around the position of charged
centers. Effects are opposite for repulsive scatterers.
There has been no such investigation for more realistic
potentials, but we expect that the Born approximation
works quite well actually because the effective scattering
potential becomes much smaller in actual inversion
layers than that in the two-dimensional limit.

The effects of exchange and correlation on the screen-
ing pose a problem. As has been shown in Sec. IILB,
the exchange-correlation effect is important in determin-
ing the subband structure. The same is expected to hold
for the screening effect. Maldague (1978a) studied the
exchange effect on the dielectric function and found an
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FIG. 62. Mobilities limited by charges at the Si-SiO, interface
(Nox=1%10'2 cm~?) calculated in the linear screening approxi-
mation. The solid lines represent the results calculated with
exchange-correlation effects included, the dashed lines those
calculated in the random-phase (Hartree) approximation, and
the dotted curve that of Stern (1978a), who took into account
effects of interface grading. Experimental results of Hartstein,
Ning, and Fowler (1976) are also shown.
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increase of the polarization part with g, in contrast to the
constant value in the random-phase approximation, and
sharp structure at ¢ =2kr. Such a sharp structure disap-
pears in actual systems because of the broadening effect
and higher-order correlation effects, but the increasing
polarization part and consequently the increasing dielec-
tric function remains valid. If we go beyond the
random-phase approximation, however, the simple re-
placement of the impurity potential by a screened poten-
tial is not sufficient, and we have to take into account
the so-called vertex correction. An example of mobilities
calculated in the density-functional formulation (Ando,
unpublished) is also shown in Fig. 62. If account is tak-
en of the exchange and the correlation, electrons do not
experience so much repulsive force due to other electrons
and consequently feel impurity potentials more strongly.
Thus the mobility decreases. The agreement seems to
become better.

There is a more serious question on the linear screen-
ing approximation. It is known that any attractive po-
tential has a bound state in two dimensions, in contrast
to three dimensions (see Sec. IL.LE). Thus the potential of
charged centers can have a bound state after being
screened by free electrons. In this case the linear screen-
ing might no longer be valid, and we have to calculate

the total potential self-consistently, although the differ-
ence in the effective potential and consequently in the
value of the mobility might be expected to be not so
large if the binding is weak. Takada (1979) calculated
the binding energy and effective potential assuming a
variational wave function of a bound electron and taking
into account the effect of other free electrons in the linear
screening approximation. This method is too crude and
tends to overestimate effects of screening, since orthogo-
nalization of the wave functions of extended states to
those of the localized states is completely neglected.
Therefore, it gives too large values of the mobility.
Vinter (1978, 1980) studied this problem in a density-
functional formulation. He calculated the energy for
cases of different numbers of bound electrons and showed
that the case in which four electrons are bound in a sin-
gle level is the only self-consistent solution. The binding
energy he obtained is less than 1 meV and slightly in-
creases with increasing electron concentration. The re-
sulting mobility has turned out to be very close to the
corresponding result of the linear screening approxima-
tion shown in Fig. 62. A plausible reason for the four-
fold occupancy of a single bound state is as follows: Be-
cause of the strong screening by free electrons, the poten-
tial due to a point charge near the interface has a short-
range attractive part and an additional oscillatory part at
large distances. The binding energy is small and the
wave function of the bound state is much extended. Sup-
pose that a single electron is bound in this bound state.
The bound charge gives only a slowly-varying repulsive
potential that can easily be screened out by other free
electrons. Therefore, the resulting potential has a large
short-range attractive part which can bind another elec-
tron of different spin or different valley. This continues
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until the bound state can contain no more electrons be-
cause of the Pauli exclusion principle.

At lower electron concentrations like Ny ~10'?2 cm~2,
the broadening 7/7 is rather comparable to the Fermi
energy; the simple Boltzmann transport equation is no
longer valid, and multiple-scattering effects become im-
portant. The experimental analysis by Hartstein et al.
(1976) assumed that the change in the inverse of the mo-
bility due to N, is linear in N,,. Subsequent more care-
ful analysis by Hartstein et al. (1980) seems to show that
the results deviate from the linear relationship at low
electron concentrations, where 1/kr becomes comparable
to distances between charged centers. At still lower con-
centrations the conductivity becomes activated and elec-
tronic states are believed to be localized. Therefore the
deviation from the above simple theory is not surprising.
At extremely high electron concentrations like N, > 10'3
cm ™2, higher electric subbands are occupied by electrons,
and we have to consider the problem of multisubband
transport. This problem will be discussed in Sec. IV.C.3.

There have been various investigations of the behavior
of the mobility with the increase of temperature. There
might be two different regions of temperature, where the
mobility shows different temperature dependence. At
sufficiently high temperatures, around room temperature,
the screening effect is already very small, and the mobili-
ty would be expected to increase roughly in proportion to
kgT (in the absence of phonon scattering) because of the
g-dependence of the Coulomb scattering matrix element.
There might also be additional temperature dependence
which arises from the form factor and distribution of
charges in the oxide. At lower temperatures, around ni-
trogen temperature, the screening effect is still appreci-
able and the dependence becomes complicated. The in-
crease of the kinetic energy of electrons tends to reduce
the scattering but at the same time reduces the screening
effect. Therefore the actual temperature dependence is
determined by the relative importance of these two ef-
fects. The original experiments of Fang and Fowler
(1968) showed that the mobility, except at low electron
concentrations, decreased with increasing temperature.
At low concentrations the mobility showed an increase
with temperature, but this was considered to be due to
thermal excitation of electrons from localized to extended
states. Sah, Ning, and Tschopp (1972b) argued that the
increase of the mobility observed by them at low electron
concentrations could be explained by the decrease in
Coulomb scattering with temperature. However, they
neglected the screening effect and the possibility of elec-
tron localization. Experiments of Komatsubara et al.
(1974) showed the decrease of the mobility except for a
very peculiar temperature dependence at extremely low
electron concentrations. More recently the temperature
dependence of the mobility at relatively low temperatures
has attracted much attention. Kawaguchi and Kawaji
(1980a; see also Kawaguchi et al., 1980) ascribed a part
of the observed resistivity dependence on temperature to
acoustic-phonon scattering (see Sec. IV.D for more dis-
cussion). Hartstein et al. (1980) separated contributions
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from controllable Na* ions and showed that the mobility
associated with scattering from the ions decreases with
increasing temperature at relatively low electron concen-
trations. Cham and Wheeler (1980a) also reported a de-
crease of the mobility. Stern (1978a) calculated the mo-
bility limited by the Coulomb scattering at 4.2 and 77 K
and demonstrated that the decrease of the screening ef-
fect is much more important and reduces the mobility
between these temperatures. A later more systematic
calculation (Stern, 1980b) showed that the reciprocal of
the mobility has a term roughly linear in T below 80 K.
This agrees with extensive measurements by Cham and
Wheeler (1980b) for samples containing a large number
of interface charges. The large change in the mobility
with temperature thus obtained roughly accounts for
most of the temperature dependence observed by
Kawaguchi and Kawaji (1980a) and by Hartstein et al.
(1980), although there remain disagreements concerning
detailed dependence on the temperature. Stern has
demonstrated further that a strong energy dependence of
the relaxation time makes simple separation of the resis-
tivity into different contributions no longer valid at
elevated temperatures (Fig. 63), as in three dimensions.

2. Surface roughness scattering

Surface asperities at the Si-SiO, interface are con-
sidered to be inherent to space-charge layers and are ex-
pected to constitute a major cause of scattering, especial-
ly at high electron concentrations. Since their exact na-
ture is not yet known, this surface roughness
scattering—also called interface roughness scattering or
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simply roughness scattering—has been studied theoreti-
cally within a simple model. This model assumes an in-
finite barrier at the interface, whose position z =A(r)
may have a small and slowly varying displacement.
Classically when quantization of the electron motion in
the z direction is not important, scattering due to the
surface has customarily been treated by a boundary con-
dition on the electron distribution function, following the
initial work of Schrieffer (1957). He assumed diffuse
scattering at the surface. More generally, the so-called
Fuchs (1938) parameter p phenomenologically describes
intermediate cases between diffuse scattering (p =0) and
specular reflection (p =1). This is defined by the boun-
dary condition for the electron distribution function at
z =0, through

fl(vz):pfl(_vz) ’

where f, is the nonequilibrium part of the electron dis-
tribution function and v, is the velocity component per-
pendicular to the surface (see, for example, review papers
by Greene, 1969a, 1969b, 1974, 1975). We do not go
into the discussion of this classical case but confine our-
selves to the case of the inversion layer at low tempera-
tures, where the electron motion is quantized. The
scattering of electrons from such roughness in quantized
subbands was first theoretically studied by Prange and
Nee (1968) for magnetic surface states in metals, and by
many people for thin films. Later many authors tried to
apply this model to the inversion layer problem (Cheng,
1971, 1972, 1973b, 1974; Cheng and Sullivan,
1973a—1973c; Matsumoto and Uemura, 1974), but a
more complete theory has appeared relatively recently,
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even within such a simple model (Ando, 1977d). In the
following a brief review of the theory is given. We again
restrict ourselves to the n-channel inversion layer on the
Si(100) surface.

When energy separations between different subbands
J

are sufficiently large and the change in the form of the
wave function can be neglected, the effect of surface
roughness is calculated to lowest order from the matrix
element as follows:

ViR = [ dz [ drL =172~ % (2 (z — AN Ho+ AV (£,2)]Eulz — M) — LR (D) H ol 2) )L~ 21T

= fdzfer‘lﬂe““‘" §,, A(r) p §n

where 7, is the Hamiltonian in the absence of surface
roughness and AV(r,z) describes the change in the poten-
tial energy due to surface roughness. For a matrix ele-
ment between states with the same energy, we have

PSR # déy déy
mrk = oy Kz dz

z=0
+ fdzfdre_i"‘—"""g:(z)AV(r,z)§,,r(z) ,
(4.34)

where

Alr)= 3 Age'ar, (4.35)
q9

and we have used the identity:

# dén dé, | .aV dgs
2m; dz dz |,_, fdz §,, Ex dz iz
dg,
+E, ¢ dgz , (4.36)

which can easily be proved by taking a matrix element of
the commutator:

g,’; p A(r)

§ +A(r )——é‘,,é‘,, +EX2)AV(1,2)E,(2) |L 12T |
(4.33)
T
(Matsumoto, unpublished)
sr(1)_ P d§o
= 4.38
ka 2m1 k- dZ ( )
_ ° 28V
=Ap_y fo dz | ol2) |2 (4.39)
YN ELcil RSV
= &k-k K 2 s depl
Kms
4KSC( KSC + KlﬂS < > (4.40)

Equations (4.38) and (4.39) are completely equivalent if
we use an exact self-consistent wave function. In the
case of variational wave functions, however, we should
use Eq. (4.39) rather than (4.38), since it gives the exact
result (4.40), while (4.38) does not. For example, if we
use the variational wave function (3.25) in Eq. (4.38), the
inadequate value of the derivative at z =0 gives a wrong
dependence on N; and Ny, as shown by Matsumoto
and Uemura (1974).

Next we consider the potential AV (r,z). We first as-
sume that A(r',z)>0 to calculate AV (r,z). The other
case can be treated in a similar manner. The change in
the electron density distribution,

[pz:%O]'—ﬁ ag;Z) (4.37) an (Z)
nl[z—A(r)]—n(z)=—A(r)———— (4.41)
The first term of Eq. (4.34) is the result of Prange and
Nee (1968). In the electric quantum limit we have gives the potential at (r,z) (z >O),
|
an (Z ) (Ksc_Kms an(z )
' 2 n21—1/72 "2 n211/2
[ a2’ [(r—r' 2+ (z —2)*]7 Al ) fdrfdz[(r 2+ (z +2212A(r)
2
= 277'8 elar f dz'e—912—7"] on(z’ ) 27(Kse —Kin)e A eiar f dz'e—9z+2) on(z’) . (4.42)
q Kscq oz’ q Ksc(Ksc+Kins)q 4 az’
The deformed Si-SiO, interface gives an effective dipole moment at z =0,
py(r) = — s Kins A€ (| N o) AR’ (4.43)

47 Kins

which gives the potential
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A BT s ()2 [(r—r 24222 (4.44)

Ksc Kgc T Kins
Thus we have the potential modification
41re Ky — Kins

) .
(Ng+Ngep1 )Age'Ve ~# . (4.45)
q Ksc( Ksc+ Kins) s depl 7

The image potential is also modified. An electron existing at (r,z) (z > 0) causes an extra polarization at the deformed
interface. The extra dipole moment is given by
e Ksc—Kings r—r’
(r)=———A(r')dr————=> . (4.46)
P 27 Ko+ Kins [(l‘—l")2+22]3/2
The dipole in the z direction, p,(r’), is obtained by replacing r—r’ by z in (4.46). This dipole moment gives rise to the
potential at (r,z)

1 p(r—r)+p,z 1 Ksc —Kins p(r—r')—p,z
(—e) 2, 29372 T 2, 21372 (4.47)
Kee [(r—1')"+27] Kse KsclKge+Kins) [(r—r')*+2z7]
Thus we have the modification of the potential energy,
(Ksc_Kins)e2 ; K, (qz) 1 Ksc—Kins
— S A7y —_— Ko(gz) |, (4.48)
4’Ksc(Ksc'*'Kins) ? 4 7 qz 2 Ksc+Kins ol

where Ky and K are the modified Bessel functions and we have multiplied by a factor of % in Eq. (4.48) because the

image potential is a self-energy. The final AV (r,z) can be obtained by adding all these terms. In the electric quantum
limit, we have

Vg =Vorow =M _wT( | k—Kk'| ), (4.49)
with
T(@)=Y(@) + Vimage(q) » (4.50)
where
47T€2 1 27rez(Ksc—'Kins) o 2
(@)= HTE N, + o) + e, (1 | [ "dz | 6o e ]
g % 24Vs depl + Ksc(Ksc+Kins) s fO l gO I
e X (Kg. —Kins) ®
— (N +Ngepi) [1—— d 2 "‘1’] , 4.51
Ksc(Ksc+Kins) s depl fO o l §0 l € ( )
and
(Ksc—Kins)e2 ®© Kl(qz) 1 1 Ksc—Kins
image(@)=———"———q° [ dz | {o(z)|? - —— Kolgz) | . 4.52)
'Vlmage q Ksc(Ksc+Kins) q fO lgo | gz (qz )2 2 Koo+ Kins o\q.
I
We have trons themselves vanishes because electron-electron in-
4o teractions are an internal force. Only the field due to
N@)=———(3N;+Ngep) (4.53) positive charges at the gate electrode contribute to the
K field, which gives the difference of the factor % from the
for g—0 and term proportional Ny, . The image term vanishes for
Ao small g, since a uniform displacement of the interface
Ng)=""—(3N,+N dept) (4.54) does not give rise to the change in the image potential
Ksc which an electron feels.
for sufficiently large . The factor 5 of the term includ- The relaxation time is given by
ing N; in Egs. (4.53) and (4.54), first derived by 5
Matsumoto and Uemura (1974), has a simple physical 1 _2m XA L I'k—k’)
meaning. This term describes the effective electric field Tsr(e(k)) i o k—k e(k—k')
which arises from N; positive charges at the gate elec-
trode and —N, negative charges of electrons in the in- ,
version layer. The average value of the field due to elec- X(1—cosby)8(e(k)—e(k") , (4.55)
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where we have included the screening effect in the linear
approximation. The mobility decreases in proportion to
N, % at high electron concentrations, which explains the
usual behavior of experimental mobilities. Although
there is no definite physical ground, we usually assume a
Gaussian form of the correlation of the surface rough-
ness:

(r—r')?

(A(I)A(r’)) =A2exp [ AZ N (456)

where A is the average displacement of the interface and
A is of the order of the range of its spatial variation in
the direction parallel to the surface. Then we have

B Z2 A2

4 4.57)

(| Aq|?*) =mA%A%xp

For values of parameters usually used, this Gaussian
form of the correlation is not important as long as A is
not so large, and the product AA is an important param-
eter which determines the value of the mobility. Since
the image effect is small, the dependence of 7gg' on N,
and Ng is determined by (N; 42Ny )?> and the form
factor F(q) of the screening function &(g). Since the
form factor becomes larger with increasing Nep, the ef-
fect of Ny, becomes smaller than that given by
(N5 +2N4ep1)” if we take into account the screening effect.
An example of the calculated mobility limited by the
surface roughness scattering is shown in Fig. 64 together
with experimental results of Hartstein et al. (1976). To
explain the experimental results we need roughness of the
order of A~4.3 A and A~15A. We cannot choose
larger values of A, because the scattering effect becomes
ineffective at high electron concentrations and the calcu-
lated N, dependence of the mobility deviates from experi-
mental N, dependence if A becomes comparable to 1/kp.
The existence of surface roughness of such magnitude is
considered to be reasonable. Hartstein et al. (1976) ex-

[~
-

A=43 A 7

e
1.92x102cm2”
| //
\//

1 / —

7/ .
/ Experiments
/ * Ngepi =3.63%10'" cm'?

© Ngept = 1.92x10% cm2

| ! | |
0 : 2 ' 3

1
(Ng+Ngept ) (10%8cm™)

3.63x10"cmi2

FIG. 64. Calculated mobility limited by surface roughness
scattering and examples of experimental results (Hartstein
et al., 1976) for two different values of depletion charges. The
latéral decay length (A in the text) is denoted as d in the fig-
ure. After Ando (1977d).
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perimentally subtracted the contribution of scattering
from charged centers and showed that the dependence of
the mobility on N; and Ny, was given by (N +Ngep)?
rather than (N;+2Ng.,)*. Because of the screening ef-
fect the theoretical result shows weaker dependence on
Ngepl» but seems to deviate from the experimental results
at very high electron concentrations above N, ~7X 10!2
cm~2. At higher electron concentrations, however,
higher subbands are occupied by electrons, and the above
simple result cannot directly be applicable. This problem
will be discussed in Sec. IV.C.3.

Although the simple theoretical model described above
seems to explain the experimental results reasonably well,
there are several problems on the theoretical side. The
validity of the expansion in terms of A is one of them
and has not been fully elucidated yet. The first term of
Eq. (4.34) can also be obtained more simply by treating
modification of the interface barrier as a perturbation
(Ando, 1977d). We assume a finite interface barrier
Vo6(—z 4 A(r)) and the same effective mass m; also for
z<0 for simplicity. The perturbation is given by
VoO(—z +A(r))—Vob(—2z)=V,A(r)8(z). For sufficient-
ly large ¥, the wave function near z =0 is given by
72 172 172

, 2m1 Vo
am v, | Sn0exp

ﬁZ

Z1,

Snl2)= ‘

(4.58)

where §,(0) is the derivative of the wave function in the
case of infinite V. Therefore we get

st([]),___ ﬁz dg: dé‘,,r
"'k omy dz  dz

Ay g, (4.59)

z=0

which is the same as the first term of Eq. (4.34). If we
calculate higher-order terms we see that the expansion
parameter in this formalism is given by 2m;V,/#)!/?A.
Therefore Eq. (4.59) is valid only if 2m,;Vy/#)!?A << 1.
Actually, however, A is comparable to or larger than
(#/2m;V,)!/2.  Although this derivation is different
from the previous one and the relationship between the
two derivations is not yet clear, this fact casts some
doubt on the expansion in terms of the surface rough-
ness. The parameters of the surface roughness obtained
above might have only a qualitative meaning. More
theoretical investigation is necessary to clarify the prob-
lem of the surface roughness scattering even within the
simple model.

All the above expressions have been obtained under
the assumption of slowly varying surface roughness, i.e.,
A << A. Actually, however, there can be roughness with
shorter ranges or of atomic scales. These might become
more and more important at high electron concentra-
tions. Such short-range roughness might be related to
the interface grading studied by Stern (1977). Stern
showed that the experimental behavior of the mobility at
high electron concentrations could also be explained by
assuming that the scattering due to the grading or to
scatterers in the oxide was proportional to the part of the
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density distribution of electrons within the transition
layer and the oxide. Microscopic formulation of this pic-
ture has not been successful.

As has been discussed in Sec. IILE., there have been
various experimental investigations on the structure of
the Si-SiO, interface. From these measurements one can
now obtain preliminary information on the nature of the
interface roughness. For example, Krivanek, Tsui,
Sheng, and Kamgar (Krivanek et al., 1978a, 19]8_b) stu-
died the interface using high-resolution (~3 A) cross-
sectional transmission electron microscopy. They found
that the interface is quite smooth, although it has a
long-range modulation of a height ~4 A with a wave-
length of 200—500 A. This is not inconsistent with the
model discussed above, since cross-sectional transmission
electron micrographs give the envelope of the asperities
projected to the plane normal to the interface, and
short-range roughness contributing to the electron mobil-
ity is averaged out. Sugano and associates (Sugano
et al., 1980; see also Sugano, 1980) used normal
transmission microscopy. They obtained values for the
correlation length and the root mean square of the inter-
face roughness which are consistent with the model dis-
cussed above.

If we include the two scattering mechanisms, charged
centers in the oxide and surface roughness, we can ex-
plain the overall behavior of experimental mobilities at
low temperatures. The mobility increases first, takes a
maximum value around N, ~102 cm~—2, and then de-
creases with increase of the electron concentration.
Quantitatively, however, the two mechanisms alone can-
not reproduce the experimental behavior, as first noted
by Matsumoto and Uemura (1974). An example of cal-
culated mobilities and unpublished experimental results
of Kawaji is given in Fig. 65. Matsumoto and Uemura

— | A oExp. 42K

o .o

@ 4 Kawaji

-—,>10 g

~

E -

L

>- -

= n¢: Insulator side

= —

g L(A) | AR) Indemd)[to(sec)

210F |a] 15 | 5.2 [35007 5
- 15 | 4.5 [34x107[5.640'2
L A
| 1 PO e | s PR P | "

10" 107 10°
Ninv(Cm )

FIG. 65. Calculated mobility vs electron concentration Nj,,.
Curve A is obtained by combining oxide charge scattering and
surface roughness scattering. Curve B is obtained by adding a
third relaxation process, independent of the electron concentra-
tion. The circles show experiments of Kawaji (unpublished).
The lateral decay length of the surface roughness is denoted
here as L. After Matsumoto and Uemura (1974).
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assumed a uniform distribution of charged centers in the
oxide and neglecting AV (r,z) for the surface roughness
scattering. The two mechanisms explain the behavior at
both low and high electron concentrations, but are insuf-
ficient near the electron concentration where the mobility
has a maximum. If we assume that charged centers are
located only at the interface, the agreement becomes
worse. The situation does not change even if the correc-
tion term AV (r,z) is included. The curve B was obtained
by adding a phenomenological relaxation time indepen-
dent of N;. The figure shows that there are other
scattering mechanisms which are important, especially
around N, =102 cm~2. These are expected to be of
short range (see also the discussion in Sec. VL.B).

Many people have proposed other scattering mechan-
isms in connection with various experimental results (see
also Sec. IV.B). Neumark (1968, 1969, 1970) has pro-
posed that misfit dislocations may form a network along
the interface and may contribute to scattering. Sakaki
and Sugano (1972a) argued that defects of gigantic cross
section (like cavities in Swiss cheese) could be important.
This model was originally suggested by Fang and Fowler
(1968). Hess and Sah (1975) and Pepper (1977a) argued
the existence of dipoles (positive and negative charges lo-
cated close to each other) in the oxide (see also Kar-
pushin and Chaplik, 1967), which would result in a
scattering with short range. Eisele and Dorda (1974b)
discussed scattering through surface states above the
conduction-band edge. This is in addition to scattering
by charges in surface states arising from dangling bonds
(Arnold and Abowitz, 1966). Two-electron localized
centers were proposed by Ngai and Reinecke (1976; see
also Ngai and White, 1978, 1980; White and Ngai,
1978a, 1978b). Takada (1979) argued that neutral
centers consisting of a charge near the interface and a
bound electron in the inversion layer could be possible
scatterers. Yagi and Nakai (1980) tried to explain the
strong N; dependence of observed mobilities below the
mobility maximum by assuming a reduced screening of
the Coulomb scattering due to smearing of the density of
states at low energies. One must assume extremely large
values of the level broadening to account for the experi-
mental N; dependence, however.

3. Multisubband transport

So far we have mainly been concerned with the trans-
port problem in the electric quantum limit, where only
the ground electric subband is occupied by electrons. At
high electron concentrations or at nonzero temperatures,
higher subbands can be populated, and we have to deal
with the problem of the multisubband transport even in
n-channel inversion layers on the Si surfaces. This is
also true in the presence of appropriate uniaxial stresses,
where subbands associated with other valleys can have
the same or lower energies and electrons are transferred
from the usual two valleys to other valleys in the n-
channel layers on the Si surfaces. In this section we
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briefly review the work on this multisubband transport in
the n-channel inversion layer on the Si(100) surface at
sufficiently low temperatures. The problem is also relat-
ed to the subband structure; the results of such investiga-
tion are expected to give further information on the sub-
band structure and scattering mechanisms in this system.

Occupation of higher subbands leads to several effects.
The transport now includes contributions from several
subbands, and we must also take into account intersub-
band scattering processes. Further, the screening effect
becomes larger, since all the subbands contribute to the
screening of scattering potentials. The polarization
caused by virtual intersubband transitions might also be
important.

The formal extension of the previous theory to the case
|

—e af;
de(k)

=3 —< | (ik | 7, | jK') | 2)8(E; +e(k)—E
J

of more than one occupied subband is straightforward
and has been done by Siggia and Kwok (1970). Howev-
er, actual calculations are very tedious and have been
performed only relatively recently. In general, the densi-
ty matrix has off-diagonal elements between different
subbands in the presence of intersubband scattering
processes. When the broadening of levels due to inter-
subband scattering is sufficiently small in comparison
with subband energy separations, we can neglect such
off-diagonal parts and use the usual Boltzmann transport
equation, which becomes a set of coupled equations for
distribution functions associated with each subband in
the presence of intersubband scattering processes. Let us
consider the case when the two-dimensional Fermi line is
isotropic. Then

i —e(k'NLf(K)—fi(K)] , (4.60)

where E is an electric field, f;(k) is the distribution function of the ith subband, m is the effective mass for the motion

parallel to the surface (m =m, for the subbands E,, E,,..

average over scatterers.

.), &, describes potentials of scatterers, and ( - - -
At low temperatures intervalley scattering is expected to be sufficiently weak and can be

) means

neglected. In this case electrons in the different valleys can be regarded as independent current carriers, and there is

no coupling between their distribution functions. The coupled Boltzmann equations can be solved exactly by introduc-

ing energy-dependent relaxation times associated with each subband. We have
) Af (E; +¢e(k))

7ik-E oe(k) ’

where f(E) is the Fermi-Dirac distribution function. The Boltzmann equation then leads to a system of linear simul-

[i(K)=f(E; +e(k))—T;(E; +e(k)) (4.61)

taneous equations for 7;(E) as follows:

E—E;= 3 K;(E)Tj(E), (4.62)
J
where
Kj(E)= 2:;'3 / (;:)2 (Z:;z 8 ; (|(ik |2, |IK') | 2)S(E; +e(k)—E)S(E; +e(k’)—E)k?
—{ | (ik |2, | jK') | *)8(E; +e(k)—E)8(E; + (k') — E)k-k’ (4.63)
[
The current can be calculated as i @) =838+ 2T 27e q Hu(q)F(u)(x @), @467

dk 7k
——fx )

I=(—e)2g, 2 (4.64)

(2m)* m

where g, is the valley degeneracy. The mobility of the
ith subband at zero temperature is given by

,lli=(e/m)Ti(EF) » (4.65)
The effective mobility is given by
N;
= ;m S (4.66)

s

where N; is the electron concentration in the ith sub-
band.

The screening effect can, in the random-phase approxi-
mation, be included in terms of a matrix dielectric func-
tion,
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where the form factor is defined by Eq. (3.37) and the
polarization part is given by

S(E;+e(k))—f(E;j+e(k+q))

My @=28 2 = p = )—E,—ek+q)
(4.68)
The effective potential becomes
V=3 V& plel@ ™ Ny » (4.69)
iy’

where (V',;are );; is the two-dimensional Fourier transform
of the matrix element of the bare scattering potential and
e(g)~! is the inverse of the matrix dielectric function.

So far we have assumed that there is only a single set
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of subbands associated with equivalent valleys. The ex-
tension of the above formalism to the case in which dif-
ferent sets of subbands are occupied by electrons is
straightforward. In this case the total current is a sum
of contributions of subbands of different valleys, since at
low temperatures intervalley scattering processes are ex-
pected to be sufficiently weak. As for the case of the
screening effect, we have a coupling of contributions of
different valleys, as has been discussed by Stern (1978a).
The polarization part is diagonal with respect to valley
indices but can be dependent on them. The same thing
applies to the form factor. There do not exist terms
which correspond to intervalley scattering, but we have
to take into account mutual interactions of electrons in
different valleys. Therefore the dielectric function also
has a matrix form.

The first actual calculation of the mobility in the mul-
tisubband system was done by Nelson and Brown (1974).
They assumed short-range scatterers which were distri-
buted near the interface to simulate the surface roughness
scattering and also uniformly throughout the bulk Si to
simulate bulk phonons. They used the triangular poten-
tial for the surface electric field and calculated mobilities
at room temperature. In spite of these ad hoc assump-
tions they demonstrated the importance of the intersub-
band scattering effects. Ezawa (1976) calculated
phonon-limited mobilities using Stern’s Hartree results.

At low temperatures under usual conditions there are
two possible ways the excited subbands can be occupied
when the electron concentration increases. The Hartree
calculation of Stern predicts that Ey > E; at sufficiently
high electron concentrations, and consequently the first
excited subband of the usual two valleys becomes occu-
pied by electrons first. Many-body effects such as ex-
change and correlation modify the subband structure, as
has been discussed in Sec. III.LB. A density-functional
calculation of Ando (1976a, 1976b) predicts a qualitative-
ly similar result to the Hartree calculation, while a per-
turbation calculation of Vinter (1977) showed that E is
lower. Stern (1977) studied effects of the grading of the
Si-SiO, interface and showed that the grading reduces
Ey, as has been discussed in Sec. IILE. Sham and
Nakayama (Sham and Nakayama, 1978, 1979; Nakaya-
ma, 1980) have suggested possible differences of effective
interface positions for different sets of valleys, which can
also affect the relative positions of Ey and E; subbands.
This theory will be discussed in Sec. VIL.A. Therefore,
the occupation of higher subbands includes rather a sub-
tle problem, and we have to consider the two cases
separately.

Stern (1978a) studied the case in which the subbands 0
and 0' were occupied by electrons, neglecting the aniso-
tropy of the Fermi line of the 0’ subband. In this case
intersubband scattering is absent and the problem is
slightly simpler. He employed a formulation which is an
extension of that described in Sec. II.C for the screening
effect and took into account the graded interface. As
long as the thickness of the graded region is sufficiently
small (~5 A), qualitative behavior of the results is the
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same as for the results obtained by the above formula-
tion. An example of his results for charged centers is
shown in Fig. 66. The charged centers were assumed to
be located on the semiconductor side of the graded re-
gion. This might be unreasonable if we consider the fact
that the potential for positive Na* ions has a very deep
minimum on the insulator side, as has later been shown
by Stern (1978b). Roughly speaking, the change in the
position of charged centers makes the absolute value of
the mobility larger or smaller but does not modify the
qualitative behavior. The mobility increases dramatically
when the subband 0’ becomes occupied. When the excit-
ed subband is occupied, electrons in the subband have
very high mobility values because effective potentials for
the electrons in the excited subband become very weak.
Further, the screening effect itself also becomes stronger,
since electrons in both subbands contribute to the screen-
ing of scattering potentials. These two effects cause the
abrupt increase of the mobility when the subband 0’ be-
comes occupied. Note that the position of the occupa-
tion of the excited subband occurs at higher electron con-
centrations than predicted in the Hartree approximation
because Stern has included an increase of the subband
separation due to many-body effects by phenomenologi-
cally adding an energy which is proportional to
(N 4N gepi )73, He obtained similar behavior for the mo-
bility limited by the surface roughness scattering, al-
though he did not take into account various corrections
discussed in Sec. IV.C.2.

Mori and Ando (1979) studied the case in which sub-
bands O and 1 are occupied by electrons. In this case we
have to treat the intersubband scattering properly. An
example of results for surface roughness scattering is
shown in Fig. 67 together with the experimental results

MOBILITY (.cm2/V sec)

N; (cm2)

FIG. 66. Measured and calculated mobilities resulting from
scattering by 10'2 charges per cm? at the semiconductor edge
of the transition layer between Si and SiO; vs the concentration
of inversion layer electrons (N;). The measured values are
from Harstein et al. (1976). The smooth curve is the calculat-
ed mobility with only the lowest subband occupied. The upper
branch is the calculated mobility with subbands E, and Ey oc-
cupied. After Stern (1978a).
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FIG. 67. Calculated and experimental mobilities limited by
surface roughness scattering for two different values of Ngep.
The solid lines are obtained with the two subbands, E, and E,,
included. The dotted line is the case in which only the lowest
subband is assumed to be occupied for Ngep=3.6Xx 10! cm~2
The dashed line is obtained if intersubband scattering is
neglected. Experimental results are from Hartstein ez al.
(1976). The lateral decay length of the surface roughness is
denoted as d in the figure. After Mori and Ando (1979).

of Hartstein et al. (1976) for Ngep=3.6X10" and
1.9%x10" cm™2 For Ngeg=3.6X10"" cm~2 the E,
subband becomes occupied around (N;+Ngep )?
=0.6X10*® cm~—* The mobility decreases discontinu-
ously at this concentration and becomes smaller than
that obtained by neglecting the occupation of the excited
subband. This is because the intersubband scattering is
crucial and reduces the mobility, especially of the excited
subband, considerably. The occupation of the excited
subband tends to make the mobility a function of
(Ng +N gepl )2. The mobility limited by charged centers
shows the same behavior, as is shown in Fig. 67.

As we have seen, the mobility behaves quite different-
ly, depending on which subband is occupied by electrons
first. Comparison with experimental results seems to
show that subband 1 is usually lower than the 0’ subband
at high electron concentrations (in the absence of
stresses). This supports the result of the Hartree and the
density-functional calculations.

The sharp drop or increase of the effective mobility
when higher subbands become occupied by electrons is
very sensitive to the level broadening effect, which has
not been included in the above formulation. Mori and
Ando (1979) studied this effect within a simple model of
surface roughness scattering for the case in which sub-
bands O and 1 are occupied by electrons. They have
shown that the density of states of subband 1 has a rela-
tively large low-energy tail and that the sharp drop of
the mobility can easily be smeared out. Therefore, it is
not possible to observe such a structure experimentally.
The existence of the low-energy tail of the density of
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states is more serious when the 0’ subband becomes oc-
cupied. Electronic states in the tail region are highly
likely to be localized, and results might be quite different
from the above, even qualitatively, when the Fermi level
lies in this tail region. Those problems have not been
worked out yet.

By applying an appropriate uniaxial stress we can
bring energies of the bottoms of different valleys down
and transfer electrons from the usual two valleys to other
sets of valleys. There have been a number of experiments
on the effects of uniaxial stress on various properties. A
humplike structure of the mobility has been observed by
Kawaji, Hatanaka, Nakamura, and Onga (1976) in an n-
channel inversion layer on (100) surface of Si on sap-
phire, where a large difference in the thermal expansion
coefficient of silicon and sapphire gives a large compres-
sive stress along the interface. Similar structure has also
been observed by Gesch, Eisele, and Dorda (1978; see
also Fang, 1980) on the Si(100) surface under applied
uniaxial stress. Those structures are believed to appear
when the Fermi level comes close to the bottom of sub-
band 0, which is higher in energy than the 0’ subband at
low electron concentrations under sufficiently large
stresses. So far experimental results seem to show that
the valley degeneracy remains two in spite of the electron
transfer effect. More detailed discussion of this problem
will be given in Sec. VIL.B.

Takada (1979) calculated the mobility in an n-channel
inversion layer on the Si(100) surface under stress. He
used the formulation described above and calculated the
mobility assuming two scattering mechanisms, charged
centers in the oxide, and surface roughness scattering.
He showed that the mobility increases by more than one
order of magnitude when the subbands of the different
valleys are occupied by electrons at the same time. This
is completely analogous to the result of Stern (1978a).
Experimentally such an anomalous increase of the mobil-
ity has not been observed, which seems to suggest the
importance of other kinds of scattering mechanisms at
relatively low electron concentrations where the mobility
has a maximum. Takada showed that neutral impurities,
which consist of positive charges near the interface on
the insulator side and a bound electron in the inversion
layer, could be a candidate for an additional scattering
mechanism. Vinter (1978, 1980) studied screening of a
positive charge in a density-functional formulation. He
investigated various possible configurations of numbers
of electrons in bound states and also calculated mobili-
ties. The self-consistent configuration of electrons seems
to be different from that assumed by Takada, as has been
discussed in Sec. IV.C.1.

D. Phonon scattering at high temperatures

Lattice vibrations are an inevitable source of scattering
and can dominate the scattering near room temperature.
In the range of electron concentrations N; =0.5—5 % 102

cm~2 and around room temperature, the mobility u is



510 Ando, Fowler, and Stern: Electronic properties of 2D systems

known to behave like p o N~ (1/6-1/3—0-15 ap4 to

have the magnitude 200—1000 cm?>V~'s~! depending
on the crystallographic orientation of the surface. This
behavior of the mobility has been discussed in Sec. IV.B
and is generally believed to be determined by phonon
scattering. In this section we shall review the theory of
phonon scattering in the inversion layer.

Scattering by lattice vibrations can be expected to
cause three different types of electronic transitions, i.e.,
transitions between states within a single valley via
acoustic phonons (called intravalley acoustic-phonon
scattering) and optical phonons (called intravalley
optical-phonon scattering), and transitions between dif-
ferent valleys (called intervalley scattering). The intra-
valley acoustic-phonon scattering involves phonons with
low energies and is almost an elastic process. The intra-
valley optical-phonon scattering is induced by optical
phonons of low momentum and high energy and is con-
sidered to be negligible in silicon. The intervalley
scattering can be induced by the emission and absorption
of high-momentum, high-energy phonons, which can be
of either acoustic- or optical-mode nature. Intervalley
scattering can therefore be important only for tempera-
tures high enough that an appreciable number of suitable
phonons is excited or for hot electrons which can emit
high-energy phonons. Hot-electron effects are discussed
in the following section.

Kawaji (1969) proposed a model of two-dimensional
phonons and calculated the electron mobility limited by
acoustic phonons. His argument was essentially a
dimensional analysis based on the Bardeen-Shockley
theory in the bulk (Bardeen and Shockley, 1950), and led
to an expression:
< N_rl / 3T s

= (4.70)
% # pcf(z) 2m#?

1 27
(e(k) A ‘e

(1 —cosBy)8(e(k)—e(k’))

x J,"dz [, d2'1602) |2 6ol | D s | k=K',

where p is the mass density, ¢; is the longitudinal sound
velocity, Z, is the deformation potential, m is an effec-
tive mass parallel to the surface, and {(z) ~z,, is the ef-
fective thickness of the inversion layer. This expression
explains the qualitative behavior of the mobility observed
experimentally at high temperatures. Acoustic-phonon
scattering was later studied extensively by Ezawa,
Kawaji, Nakamura, and co-workers (Ezawa et al., 1971a,
1971b; Ezawa, Kuroda, and Nakamura, 1971; Kawaji et
al, 1972; Ezawa et al., 1974; Ezawa, 1976). In the fol-
lowing we first derive the above formula based on a more
rigorous formulation.

Let us restrict ourselves to the ground subband in an
n-channel layer on the Si(100) surface. We usually re-
place the silicon by an isotropic elastic continuum, which
is known to be a good approximation in the bulk in deal-
ing with acoustic-phonon scattering. Define U=(u,u,)
as the displacement of the elastic medium. We have

Hel_phz.':_","cﬁ(r,z) N 4.71)

&(r,z2)=DV-(r,z)+ Eaz-uz(r,z) , (4.72)
where D =E;/E, is the ratio between deformation po-
tentials in the two different directions. It is known that
=,=9 eV and D =—0.67. Silicon is, however, anisotro-
pic, and one must modify these numbers so as to be con-
sistent with the isotropic phonon model. Ezawa et al.
(1974) chose =,=12 eV and D = —0.67. At sufficiently
high temperatures, around room temperature, a typical
phonon energy, given by ¢;q with g ~(2m, kT /#)'/? or
q~1/{z), is much smaller than a typical electron ener-
gy of the order of kT, and can be neglected. This
means that the scattering can be treated as an elastic
process. The transport relaxation time becomes

(4.73)

where D(z,z';q) is the phonon correlation function, defined by

D(r,z;r',z')= 3 expliq-(r—1')]1D(z,2";9)
q
Tr exp(

— B pn)d(x,2)p(r',2")

={(¢(r,2)p(r",2")) =

where 57, is the Hamiltonian for phonons and B=1/kpT.

Trexp(— B pn)

, (4.74)

For simplicity we neglect the existence of the Si-SiO, interface and use the bulk phonon spectrum. We have

172
#

2p0d”

Urz=33 3

q g; A

ed’[bg’ expliQr+ig,2)+H.c.],

(4.75)

where A denotes phonon modes (A=1,2 for transverse modes and A=3 for the longitudinal mode), Q=(q,q,), eg‘) is
the polarization vector, wé“:cQ with ¢ =¢, for A=1 and 2 and ¢ =¢; for A=3, bg“ is the phonon destruction opera-
tor, and H.c. denotes Hermitian conjugate. At sufficiently high temperatures we can use

Rev. Mod. Phys., Vol. 54, No. 2, April 1982



Ando, Fowler, and Stern: Electronic properties of 2D systems

511

. kT
(6" +b3") =8oaBrn (6§ +5¢") =Bogdiv 75 » “.79
0
and get
kpT o a |a @ || qe-o
D(z,z';q)= D242 4 22 — 9z 4.77)
cf qz Q> ot o |e* o
Therefore we have
TK vdo +w (z)dq, o 5 ,.qzzlz
ey = Jo 5 (eosd) [ 7 =5 | [T dz | 6o(2) | %
2 4 2 2 4
q: q; (4] q: q;
X |D*42-=D+ 2 — | = — (4.78)
Q? Q* |0 o

If we use the variational expression (3.25), it is easy to
perform the integration over g,. Since the right-hand
side of (4.78) is a slowly varying function of £(k) and Nj,
the main dependence of the mobility on the temperature
and the electron concentration is given by that of 7,
thus confirming Kawaji’s simple-minded result. Because
of the two-dimensional energy-independent density of
states, no additional T dependence appears in the mobili-
ty, in contrast to the usual result for three-dimensional
systems. As is clear from the above derivation, the 7!
behavior of the mobility reflects the number of phonons
excited at T. The phonon system is essentailly three-
dimensional, while the electron system is two-
dimensional. Momentum conservation gives a severe re-
striction only on the components of the phonon momen-
tum g in the direction parallel to the surface, and pho-
nons which have g, with |g, | <1/(z) contribute equal-
ly to the scattering. This gives the factor (z) « N,"!/? in
the expression for the mobility.

The existence of the interface affects the phonon
modes near the interface. The oxide is softer than silicon
and has lower sound velocities.> Thus the phonon am-
plitudes near the interface become larger than in the
bulk, and the electron-phonon scattering is expected to
be stronger. To investigate this effect, Ezawa, Kawaji,
Nakamura, and co-workers (Ezawa et al 1971a; Ezawa,
Kuroda, and Nakamura, 1971; Ezawa et al, 1974;
Kawaji et al., 1972) studied an extreme case by assuming
that the oxide was infinitely soft, i.e., the interface could
be replaced by a stress-free boundary. Ezawa (1971) ob-
tained a complete orthonormal set of eigenmodes of pho-
nons in an isotropic elastic continuum occupying a half-
space. Those modes are called surfons. The Rayleigh

3McSkimin (1953) measured the velocity in both Si and SiO,
at room temperature. According to him, for example,

=9.13X10°  cm/s, ¢,5y=4.67X10° cm/s, and
Ci(oo1)=5.84X10° cm/s for waves propagating in the {110)
direction in Si. For amorphous SiO, he obtained

¢1=5.97X10° cm/s and ¢, =4.76 X 10° cm/s.
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g =2ksin(6/2)

I
wave which is localized near the surface is one of the

surfons. We do not go into the problem of finding the
surfon modes, and those who are interested should refer
to Ezawa’s paper. Ezawa et al. (1974) calculated the
phonon correlation function (4.74) and mobilities in n-
channel layers on three major surfaces, (100), (110), and
(111). Their work is equivalent to a corresponding one
for the bulk by Herring and Vogt (1956). It is clear that
the temperature and electron concentration dependence
of the mobility is essentially given by that for the bulk
phonon scattering, and that only the absolute value can
be modified by the interface effect. Their results were
rather disappointing, however. The calculated mobility
was only 10—20 % smaller than that for the bulk pho-
non scattering, which indicates that the interface effect is
not important in determining the strength of scattering.
Further, the oxide is actually not infinitely soft, and the
situation is rather closer to the bulk phonon case than to
the case of the stress-free boundary. We can conclude,
therefore, that the existence of the interface does not play
an important role in electron-phonon scattering in actual
inversion layers, except that the electron motion is two-
dimensional.

Ezawa and co-workers calculated the mobility and
found that it was quite sensitive to D. Their assumed
value D = —0.67 roughly corresponded to a maximum
value of mobility. In general theoretical results have

turned out to be much larger than experimental ones.
For example, the calculated mobility on the (100) surface
is given by p=3500 cm?V~!s~! at N,=1x10'® cm—2
and T=300 K, and becomes larger roughly in propor-
tion to N, /% with decreasing electron concentration. In
contrast typical experimental values of the mobility at
room temperatures are between 300 and 400 cm?V 15!
at N; ~10'* cm~—2, one order of magnitude smaller than
the calculated values. There is, however, a possibility
that some other scattering mechanisms still contribute to
the mobility even at room temperatures for such high
electron concentrations.

So far we have assumed the electric quantum limit,
where only the ground subband is occupied by electrons.
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Actually this assumption may not be valid at room tem-
perature.  Stern’s self-consistent calculation (Stern,
1972b) shows that only 20% of the electrons are in the
ground subband on the (100) surface at N,;=1Xx 10"
cm~2. This occupation ratio increases with N,, but 40%
of the electrons are still in excited subbands even at
N,=1x10"® cm~2. The situation becomes slightly
better on other surfaces like (110) and (111), but the elec-
tric quantum limit does not apply to the room-
temperature case. When excited subbands are occupied,
intersubband scattering becomes very important and
should be taken into account properly. Ezawa (1976)
studied this effect on the (100) surface using Stern’s self-
consistent wave functions. Occupation of excited sub-
bands associated with the two valleys which are located
in the [100] and [100] directions and which give the
ground subband reduces the mobility because of impor-
tant intersubband scattering. This is completely analo-
gous to the case at low temperatures discussed previous-
ly. The mobility of electrons occupying subbands associ-
ated with the other four valleys becomes smaller than
that of electrons in the two valleys, because the decrease
of scattering caused by a larger (z) is cancelled by the
mass increase in the direction parallel to the surface.
Consequently the mobility decreases if we take into ac-
count the higher subband occupation. Ezawa showed
that the effect was substantial and reduced the mobility
to as low as half of the value in the electric quantum
limit at N, =1X10'® cm™2. It is easy to understand that
the temperature dependence becomes steeper than the
T—! dependence found for the electric quantum limit.
However, the agreement becomes worse for the N
dependence. With decreasing N; population of electrons
in higher subbands, and consequently the reduction of
the mobility, becomes more and more substantial. Thus
the electron concentration dependence becomes smaller.
As a matter of fact Ezawa’s numerical calculation gave
mobilities which were almost independent of N;, in con-
trast to the N,”!/3 dependence in the electric quantum
limit.

The theory of phonon scattering is, therefore, at an un-
satisfactory stage. The calculated mobility limited by
acoustic-phonon scattering is not only much larger than
experiments, but does not reproduce p < N, '/3 behavior.
The discrepancy-in the absolute value is easily reduced if
we assume a larger value of the deformation potential =,
near the interface. If we consider the fact that electrons
are far from the interface on an atomic scale, however, it
is highly unlikely that the value is different from that in
the bulk. The electron concentration dependence of the
mobility might become steeper if many-body effects on
the subband structure are included. Exchange and corre-
lation increase energy separations between subbands and
population of electrons in the ground subband. Further
the effect becomes larger at lower electron concentra-
tions. Calculations have shown that the exchange and
correlation are still substantial, even at room temperature
(Nakamura et al., 1978, 1980a; Kalia et al., 1978, 1979;
Das Sarma and Vinter, 1981). This means that the elec-
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tric quantum limit might still be a good approximation
and reduces the role of intersubband scattering. There-
fore the dependence of the mobility on the electron con-
centration becomes steeper, although its absolute value
becomes close to that for the electric quantum limit.
The calculation of Nakamura et al., (1978, 1980a)
showed that the quasiparticle energy of electrons had a
large imaginary part caused by electron-electron scatter-
ing at high temperatures. A preliminary investigation of
the effects of such short lifetimes by Nakamura et al.
(1980b) suggested an increase of the mobility of electrons
in the ground subband. This is because the large ima-
ginary part of the self-energy gives rise to a low-energy
tail of the density of states and consequently reduces the
strength of scattering through the reduction of the final-
state density of state.

Intervalley phonon scattering is known to be necessary
to account for mobilities in the bulk at room tempera-
ture. As a matter of fact intervalley scattering reduces
the mobility as much as a factor of 3 from the calculated
only for acoustic-phonon scattering in the bulk at
T =300 K (Long, 1960). This mechanism is also impor-
tant in the inversion layer and will reduce the discrepan-
cy between the theory and experiments discussed above.
There have been some investigations of intervalley pho-
non scattering effects on the mobility (Sah et al., 1972b;
Ezawa et al., 1974; Ferry, 1976a; Roychoudhury and
Basu, 1980), but they are still qualitative. This is be-
cause of the need to know the subband structure, espe-
cially the relative energies of subbands associated with
the different valleys.

Electrons in the inversion layer are coupled to polar
optical phonons of SiO, across the interface by the mac-
roscopic electrostatic fringe fields of these modes, as has
been discussed in Sec. III.LA. This remote polar phonon
has been suggested to be an effective scattering mechan-
ism, especially for energy loss of electrons in the
nonohmic (hot-electron) regime (Hess and Vogl, 1979).
However, since energies of optimal phonons in SiO, are
very large (> 670 K), this scattering mechanism is inef-
fective in determining the mobility at room temperature
in the ohmic regime (Moore and Ferry, 1980b, 1980c).

Experiments to study phonon scattering at lower tem-
peratures have also been carried out. Kawaguchi and
Kawaji (1980a; see also Kawaguchi et al., 1980) mea-
sured the mobility for temperatures between 4.2 and 50
K. The total resistivity p was assumed to consist of
three terms, p=py,+p, +p,, Where p, is residual resis-
tivity, assumed to be independent of temperature, and p,
is an “anomalous” term dependent on the temperature
logarithmically. By applying a weak magnetic field
Kawaguchi and Kawaji suppressed the anomalous term
and determined the temperature-dependent resistivity ppy,
which was ascribed to acoustic-phonon scattering. Al-
though the resulting temperature dependence of p,p,
seemed to agree with the calculation by Shinba and
Nakamura (1981), its absolute value has turned out to be
much larger. Hartstein, Fowler, and Albert (1980) made
similar but more extensive experiments for varying con-
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centrations of Na*t ions near the Si-SiO, interface. A
part of the resistivity independent of the concentration of
the charges was ascribed to acoustic-phonon scattering
and temperature-independent surface roughness scatter-
ing. The temperature dependence of the mobility was
also studied by Cham and Wheeler (1980a, 1980b), as has
been discussed in Secs. IV.B. and IV.C.1. Stern (1980b)
took into account the temperature dependence of the
screening effect and calculated the mobility limited by
charged centers and surface roughness. He demonstrated
that the charge and roughness scattering alone can ap-
proximately account for most of the observed tempera-
ture dependence. Further, Matthiessen’s rule is invalid
at elevated temperatures, which cast doubt on the separa-
tion of various scattering contributions at such high tem-
peratures.

E. Hot-electron effects

It was observed very early (Fowler et al., 1966a; Fang
and Fowler, 1968) that especially at low temperatures the
conductance of electrons depended on the source-drain
field Fp. This result of electron heating can be viewed
either as an annoyance or as an opportunity. Experi-
mentally, it adds to the difficulty of making conductivity
or mobility measurements. At very low temperatures
elaborate techniques are sometimes required to extract
the conductivities because fields as low as 10~3 Vcem™!
may be required to avoid significant electron heating
(see, for instance, Bishop et al., 1980). Generally, howev-
er, fields of the order of 0.1 Vcm™! are low enough to
avoid heating effects. Hot-electron effects represent an
opportunity in that they allow a study of phonon scatter-
ing in greater detail, especially at low temperatures
where elastic scattering dominates at low Fp. At very
high fields, even at 300 K, most of the electron energy is
transferred to the lattice through optical phonons; even-
tually the electron velocity saturates as in the bulk (Fang
and Fowler, 1970; Coen and Muller, 1980). This has
practical implications for device design (Das, 1969) and
also allows further study of intervalley and intersubband
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FIG. 68. Field dependence of the electron mobility at 4.2 K
for different electron densities. After Fang and Fowler (1970).
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for the same samples and electron densities as in Fig. 68.
These data can be used with those in Fig. 68 to infer the elec-
tron temperatures as a function of drain field. After Fang and
Fowler (1970).

scattering. Reviews have been written by Hess (1978a)
and by Ferry (1978a).

Hot-electron studies evolve naturally into two
regimes—low and high field. To understand the hot-
electron effects it is necessary to understand all of the
various scattering mechanisms—oxide charge, surface
roughness, and optical and acoustic phonon—for the in-
trasubband, intersubband-intravalley, and intervalley
cases. As discussed in Secs. IV.C and IV.D, the first
two cases are reasonably well understood, but the phonon
scattering is much less well understood and the fits to
data are largely empirical.

There are two primary ways of observing electron
heating. If the mobility is temperature dependent, then
it is relatively simple to measure a change of conduc-
tance with F, and relate it to a change of electron tem-
perature as illustrated in Figs. 68, 69, and 70. However,
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FIG. 70. Electron temperature rise as a function of drain field,
deduced from the data in the two previous figures showing
AT ~0.3F; 13,/ 2. In the range of these measurements, the conduc-
tivity is activated. After Fang and Fowler (1970).
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if the temperature dependence of the mobility is weak, as
it is at 4.2 K for N; > 10'> cm ™2, then measurements are
difficult. Then it is possible to use the temperature
dependence of the magneto-oscillations as a thermometer
in measuring the electron temperature as Fp increased.
Results of such measurements are shown in Fig. 71 from
Fang and Fowler (1970).

When the conductance is measured as a function of V),
at a constant lattice temprature, 7, the data can be fitted
at low values of F, with

p=po(1+BF3)

To first order the field dependence can be fitted to an
electron temperature by comparison with the temperature
dependence of the low field mobility at the same electron
concentration. The electron temperature must be a valid
concept as Fp approaches zero. Hess and Sah (1974a)
have argued that a Maxwellian distribution is more near-
ly valid for a two-dimensional than for a three-
dimensional gas when the electron distribution is per-
turbed by a field.

While there are different degrees of sophistication pos-
sible in discussing hot-electron effects (see Conwell, 1967;
Ferry, 1976c, 1978a, 1978b), we shall follow Hess and
Sah (1974a) by using a Boltzmann-equation approach.
First, the simplest expression for the acoustical- and
optical-mode phonon scattering is assumed to hold:

(4.79)

Tao' =BackpT(mem,) 5 3p e/ (z) !, (4.80)
(m m )1/2:‘2%
Tot= 3 KR (N 4+ 1)O(x —xg) +N&1,
R 27ipcy

(4.81)

where Z is the deformation potential for the appropriate
mode, p is an areal mass density in a layer of effective
thickness (z), ¢ is the appropriate sound velocity,
x=E/kpT, xg =fiwg/kgT, ® is a step function, wg are
the appropriate phonon frequencies, and N is the
number of phonons per mode. The effective thickness
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FIG. 71. Electron temperature rise as a function of electric

field, deduced from the dependence of magneto-oscillation am-
plitude on temperature and drain field. The ambient tempera-
tures were 2.4 and 3.0 K. The electron densities were not in
an activated range. AT ~F3/2. After Fang and Fowler (1970).
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(z) that enters in the areal density is not very well de-
fined, but is approximately equal to z,, (see also Sec.
IV.D). For the warm-electron case at low temperature,
where only acoustic and elastic scattering are important,
Hess and Sah (1974a) show that the distribution is ap-
proximately Maxwellian. At higher values of Fp, when
the electron temperature is such that many electrons
have energies greater than #iwg, there is a departure from
a Maxwellian distribution at E=#iwp. The mean energy
deviation A from kT is

A=(E—kgT)= TE< > (4.82)
where 75 is the energy relaxation time and
( >_epFD ~epoFs . (4.83)

The change in mobility is fitted by Eq. (4.79) above.
Then approximately

B=e(du/dA)rg .

This should hold in the limit as F, approaches zero.
From these arguments Hess and Sah (1974a) find that for
acoustic-mode scattering

<d_E _ 2(m,m,)1/2:':.'}

#p
Thus T, —T should be expected to vary as F, 5 in the lim-
it of small drain fields. For the optical modes

(4.84)

(kT —kpT,).  (4.85

2
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" kT,

(4.86)

They find that for the Maxwellian case on the (110) sur-
face B should decrease from a value of about 10~8
cm?V~—2 at 50 K to 10~ at 230 K. When optical-mode
scattering is important B is nearly constant at 10—’
cm?V~—2

Fang and Fowler (1970) have found results that seem
to be in contradiction to the above. At 4.2 K and low
values of N, (<10 cm~2) they found that B~10—2
cm~—2V~2 However, these data are in a range where lo-
calization phenomena (see Sec. V.A) occur, so that the
above arguments are not expected to be relevant. Fur-
ther, they found at all values of N, studied that (7, —T)
is proportional to F3/* (Figs. 70 and 71). Clearly, more
experimental and theoretlcal work is required.

Assuming 3 not to be a function of V,, Hess and Sah
(1974a) found experimentally that B on (110) surfaces
was proportional to the mobility u, as expected from Eq.

(4.84). They found at 77 K that B(g0)=(5+2)x107%
em?V?  and  B(y10)=(240.6)X107% cm?V~2, while
{100y =4000 cm?v—ls~! and (100 =2800

ecm?V~!sec™!. This is in reasonable agreement with the

predictions above. As they pointed out, repopulation of
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the higher subbands was not taken into account. To
have done so would have been a nontrival undertaking
because it would have had to be done self-consistently
and because the energy distribution would have been seri-
ously perturbed. They made a rough estimate of the ef-
fects of repopulation and concluded that in this case they
were small. Inherent in this approximation is a
knowledge of the Debye temperature @ =fiwg. For f-
type scattering (two valleys not on the same axes) Hess
and Sah used ®; =670 K and ®,=190 K (Norton et al.,
1973). They used £;=17.6 ¢V and =,=7.4 eV. There
is some uncertainty in these constants.

Fang and Fowler (1970) also measured the electron
velocities to very high fields (up to about 5x10°
Vem~™'). They used thick oxide films and relatively
small source-drain lengths to minimize the variation of
carrier density along the channel. Coen and Muller
(1980) used a resistive gate with the voltage drop along it
properly adjusted for the same purpose (but could not el-
iminate the effects of varying Ny ). Their results and
those of others are quite similar [Sugano et al., 1973;
Sato et al., 1971b (for holes)] and show saturation at the
highest fields to a velocity vg,. Typical results of Fowler
and Fang (1969) are shown in Fig. 72. These experi-
ments averaged the conductance over all directions on
the (100) surface. However there are quantitative differ-
ences between experiments. Recent results of Cooper and
Nelson (1981) give higher values of the saturation veloci-
ty. See also Muller and Eisele (1980). The differences
have not been resolved.

Hess and Sah (1974a) used the E, and E, subbands,
only f phonons, and the arguments above to fit the
high-field data of Fang and Fowler (1969) with reason-
able success, as shown in Fig. 73. Ferry (1976a) used the
E,, E;, and E,; subbands and six phonons. Nakamura
(1976) carried out a somewhat more elaborate calculation
and compared it to unpublished data of Namiki and
Kawaji (Fig. 74). Basu made a Monte Carlo calculation
(1978a). Theory and experiment are compared in Fig.
75. Experiment is somewhat lower than theory. Ferry
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FIG. 72. Typical drift velocity variation as a function of field
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and Fowler (1970).
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FIG. 73. Comparison of theoretical predictions of Hess and
Sah (1974) for electron velocity saturation for two directions in
the (001) surface with experiment. The ordinate is o/0( or
u/po. The data were taken from Fang and Fowler (1970).
After Hess and Sah (1974a, 1974b).

attained the closest fit to the data.

The saturation velocity (~6X10® cms™!) for the (100)
surface at 300 K is somewhat lower than the bulk value
of about 10’cms™! (Canali et al., 1975). At first glance,
this may seem surprising because at the high electron
temperatures (~1000 K) near saturation the electrons
might be expected to look almost bulklike, and they
would be so far from the surface that surface effects
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FIG. 74. Comparison of theoretical predictions of Nakamura
(1976) with unpublished data of Namiki and Kawaji for elec-
trons in the (100) surface. The dashed lines are for the one-
subband approximation; the solid lines take account of higher
subbands. After Nakamura (1976).
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FIG. 75. Drift velocity vs drain field for electrons in n-type
inversion layers. The calculated curves are from Hess and Sah
(HS) (1974a, 1974b) and the Monte Carlo calculations of Basu
(MC) (1978a). Experimental results are from Sato (S) et al.
(1971b) for two gate voltages, and from Fang and Fowler (FF)
(1970). After Basu (1978a).

should be minimal. Nonetheless, because of the varying
potential perpendicular to the surface, the electron energy
distribution averages perpendicular to the surface might
be expected to be different than it would be in a constant
potential.

There is a fascinating possibility that negative differen-
tial resistance similar to that seen in bulk GaAs could be
observed if the heated electrons in the E, subband were
transferred to the E, subband, which has greater mass
and lower mobility. Observations of such an effect were
first reported by Katayama et al. (1972) and were further
studied by Sugano et al. (1973), Hess et al. (1975), and
Neugebauer et al. (1978). Experiments were carried out
by pulsing the drain voltage and observing the drain
current at a given time for different ¥ as shown in Fig.
76, as an example. It is remarkable that for these data
and all others reported the relaxation times attributed to
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= g8l 75V glk-all0-0%10-2 Ve ]
= =V 20V
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DRAIN VOLTAGE (V) Vp(V)

FIG. 76. The drain current Ip vs the drain voltage V)p at 4.2
K on (100) Si sampled at 70 ns from the pulse front. After
Sugano et al. (1973).
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transfer are of the order of 10—50 ns. If the electron
transfer mechanism obtained, one would expect these
times to be much shorter—of the order 10 ps or less.
This intuition is supported by the calculations of Das
et al. (1978) and Moore and Das (1979). Sugano et al.
(1973), after an extensive series of measurements, con-
cluded that the relaxation was due to lattice heating.
Microwave measurements of hot-electron effects predict-
ed by Ferry and Das (1977) might show the transfer ef-
fects, but so far have not.

An interesting application of hot-electron effects has
been due to Gornik and Tsui (Gornik and Tsui, 1976,
1978a; Tsui 1978b; Gornik and Miiller 1979; Tsui and
Gornik, 1978; Gornik et al., 1980a, 1980b). They ob-
served light emission due to transitions of electrons heat-
ed to higher subbands or higher Landau levels, or by ex-
citing plasmons. Because the emission is weak, it is dif-
ficult to measure the spectra with high resolution, but
they correspond roughly to the expected transitions.

Thus hot-electron effects are approximately described
by simple theory. They offer the hope of better under-
standing of phonon scattering.

V. ACTIVATED TRANSPORT

A. Activated conductance near threshold

1. Introduction

In three-dimensional systems, the effects of disorder,
band tails, and metal-insulator transitions have long been
of interest. See Mott and Davis (1979) and Mott (1974b)
for reviews. Here we review evidence of similar effects at
the band edges in inversion layers. Again the ability to
vary Er and N; is used to advantage.

There are known to be charges in the oxide either near
to the Si-SiO, interface or spread throughout the oxide.
Such charges can cause discrete bound states (Stern and
Howard, 1967; Fang and Fowler, 1968; Goetzberger
et al., 1968) (see Sec. ILE and Sec. V.C below) or ran-
dom surface potential fluctuations, as shown graphically
in Fig. 77. If the potential fluctuations are mainly long
range it is possible for k to be a good quantum number
for the electrons within a potential minimum. Then it
might be expected that the electron will behave accord-
ing to a classical percolation theory if the voltage is such
that there are isolated ‘“lakes” or networks of electrons.
If short-range fluctuations dominate, the lowest-energy
electrons can be localized in the potential wells unless the
electron density is such that the Ioffe-Regel criterion (see
Mott, 1974a) that kpl <1/2m, where [ is the mean free
path, is exceeded. In the latter case, the electronic wave
functions are extended. In either case, the density of
states averaged over the surface no longer abruptly in-
creases to its constant value for two dimensions of
g,m /m#*, where g, is the valley degeneracy. Instead, as
shown graphically in Fig. 78, there is a band tail. Mott
(1966) has proposed that below some energy E., called
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(a)

(b)

FIG. 77. Fluctuations in the conduction- and valence-band
edges. (a) shows long-range fluctuations, whereas (b) shows
short-range fluctuations. The Fermi level is shown for a case
where the electrons might be expected to be localized.

the mobility edge, the electrons are localized; above they
are free or at least in extended states.

In this section, experimental evidence for strong locali-
zation will be reviewed. Here the conductivity is ther-
mally activated. The logarithmic regime of weak locali-
zation is discussed in Sec. V.B. It should be noted that
there are still many open questions both for weak (loga-
rithmic) and strong (activated) localization.

Mott (1973) and Stern (1974b, 1974c) had speculated
that the activated conductance reported by Fang and
Fowler (1968) was evidence of Anderson localization.
Several reviews of this subject have been written (Mott
et al., 1975; Pepper et al., 1975; Pepper, 1977a, 1978g;
Adkins, 1978a). There remains a lot of experimental
work to be done. Samples differ markedly, and no simi-
lar set of samples exists for which all of the various ex-
periments have been performed. Therefore it is not al-
ways possible to argue about the interrelationship of ex-
perimental results with confidence.

The conductance data are generally of two types, both
assumed to arise from fluctuations of the oxide charge
near the Si-SiO, interface. Both show thermally activat-

u
a
E Ec
(a)
u
o
1
E Ec

(b)

FIG. 78. The density of states D(E) for (a) an unperturbed
and (b) a perturbed band in two dimensions. The mobility
edge is shown at E,.
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ed currents for N; less than about 10'> cm~2 in the tem-
perature range from 2—4 K to 50 K, with the activation
energy decreasing as N, increases. The first case (some-
times referred to as ‘““ideal” below) generally seems to fit
the Mott model for transport for an Anderson transition
as modified by Pepper (Pepper et al., 1974c, 1975; Mott
et al., 1975) for two dimensions in the thermally activat-
ed range. They find

—~W/kgT
O =0nin® ’

(5.1

where o, is approximately the minimum metallic con-
ductivity predicted for two dimensions—O0.1 e2/#—W
decreases with increasing N; but o, is constant. In in-
version layers o, appears never to be much smaller
than 0.1 e%/7 but is often larger. This idealized behavior
is shown in Fig. 79(a). In the second case, shown in Fig.
79(b) (sometimes referred to as the “nonideal” case in
that it does not fit the Mott-Pepper model), the prefactor
oy increases with Ny and W decreases as in the other
case. This behavior has been ascribed to long-range fluc-
tuations in the oxide charge (Arnold, 1974, 1976), in
which conductance corresponds to classical percolation
either through metallic one- or two-dimensional paths
and/or by thermal activation over barriers.

Below we shall discuss the evidence from conductance
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FIG. 79. A graphic illustration of the two types of activated
conductivity. (a) demonstrates the “ideal” Anderson localiza-
tion, with the curves converging at oyi,=0.1e2/%. (b) is the
“nonideal” case, with oy increasing with N,. The intercepts

© are normally at values greater than 0.1e2/4.
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data for the short- and long-range fluctuation or alter-
nately the “ideal” and “nonideal” models, followed by
discussions of the effect of substrate bias, the Hall effect,
and miscellany. Very recently, Gold and Gotze (1981)
have analyzed the effects of long- and short-range fluc-
tuations. In general, their theory supports the idea that
the ideality is reduced as the range of the disorder in-
creases.

2. The Anderson transition

In 1958 Anderson argued that if fluctuations of
+Vy/2 were introduced in a tight binding model with
bandwidth B, all of the electrons would be localized if
Vo/B exceeded some critical value. Mott (1966, 1967)
argued that even if all of the electrons in the band were
not localized, those near the edges would be. He intro-
duced the idea of the mobility edge at E., an energy
marking the boundary between localized electrons with
wave functions decaying as exp(—ar) and electrons in
extended states with short mean free paths. Just above
E, the electrons diffuse, but below they can only move
by thermally activated tunneling to another site (Miller
and Abrahams, 1960) or by being thermally excited to
states above the mobility edge. Mott has proposed that
the conductivity decreases to zero discontinuously as Er
passes through E, at T=0. A so-called metal-insulator
transition takes place.

For two dimensions Pepper (Mott et al., 1975) modi-
fied Mott’s derivation of the minimum metallic conduc-
tivity omin, the conductivity at the mobility edge, to find
Z2

2
e F , (5.2)

O min= E

where z is the number of nearest neighbors. Thouless
(1974) found that V;/B at the mobility edge was % so
that o, is about 0.07 e2/% or 1.8 1073 S in this rela-
tively crude model. Computer models of Licciardello
and Thouless (1975a, 1975b, 1976a) predict that
Omin=0.12¢2/% or 2.9 1073 S.

Mott (1968) predicts that Eq. (5.1) holds at intermedi-
ate temperatures below the mobility edge. This isn’t ob-
vious if one approaches the problem by assuming that
the electrons have some fixed mobility at and near the
mobility edge and a density of states N(E.). Then

O=efminks TN (E,) exp[(Ep —E,)/k5T] . (5.3)

The derivation of o,,;, assumes a diffusive process at the
mobility edge, and it is then argued that the diffusion
constant kpTu is constant in analogy with metals, so
that oy, is not temperature dependent. This implies
that when (Ep —E_) <0 the number of carriers above the
mobility edge is activated and that the mobility decreases
as T~!. We shall return to this in a discussion of the
Hall effect. Experiments are not accurate enough to
determine any temperature dependence in o ;.

Figure 80 (Pollitt, 1976) shows one of the many exam-
ples of such behavior in the literature. Similar results
have been reported in n- and p-type inversion layers and
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FIG. 80. Logarithm of the conductance vs 1/7T. The carrier
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10" to 10" cm~2 The activation energies W(=EFE,—Ef) in
meV are indicated. After Pollitt (1976). '

in simple MOS structures and MNOS memory devices.
The values of o, measured range from 1.5 to 5x 103
S. This is certainly close to the expected value, although
Omin does not appear to be quite a universal constant.
Because the MOS structure is a capacitor, the number
of electrons is directly related to the gate voltage, so that
N; can be measured approximately and the change in N;
can be determined quite accurately. Therefore, if the
density of states and E, do not change as N, changes,
the density of states D(E,) in the tail of the conduction
band can be inferred from a measurement of the activa-
tion energy (E, —Er) as a function of N;. This was first
reported by Adkins, Pollitt, and Pepper (1976) and has
been applied by Pollitt (1976) to data for a device with
1.8 10" cm™2 localized electrons and o, =2X 107> S.
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FIG. 81. (a) Density of localized states N (E) plotted against
E.—Efr calculated from Fig. 80. (b) Logarithm of N(E) vs
E.—Er, the difference of energy between the mobility edge and
the Fermi level. After Pollitt (1976).
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The results are shown in Fig. 81. The density of states
decreases exponentially in the band tail as expected (Zit-
tartz and Langer, 1966; Thouless and Elzain, 1978).
D(Er) does not exceed the density of states in the unper-
turbed conduction band (1.6 10! cm~2meV~!). This
analysis may be too simple. D(E) may vary either be-
cause of correlation effects (Tsui and Allen, 1974) or in
samples with low Ny, because increasing N; decreases
z,, and could change the potential fluctuations. In some
cases D(E) varies significantly over kpT, although the
experiments discussed were carried out below 10 K. The
maximum measured value of D(E) seems to lie between
0.5 and 0.75 of 1.6X 10" cm—2meV~! so long as the
number of apparent localized states is less than about
3% 10" cm~2 (Pepper et al., 1976; Adkins et al., 1976).
In samples with a higher number of localized states,
however, the deduced D (E) can rise to values well above
1.6x10" cm™2meV~! (Tsui and Allen, 1975; Adkins
et al., 1976) by as much as a factor of 20. Correlation
effects have been invoked by Tsui and Allen (1975) but
no model exists. Mott ez al. (1975) have suggested that
electrons trapped on sites increase disorder—that is, the
increase in random potential due to the localized elec-
trons must dominate over the screening of the potential
fluctuations. It is not clear why this should happen. If
Ngepi is small, increasing N, should increase the depth of
the localized states just as reverse substrate bias does
(Pepper, 1977a and discussion below in Sec. V.A.4) be-
cause, for low Ngcp, changes in N, strongly affect z,,.
No correlation of this effect to N, has been made.

There are several arguments about the density of states
D(E,) where the transition occurs. Early arguments
(Mott et al., 1975) suggested that D(E.) was about %
the unperturbed band value. Thouless and Elzain (1978),
using a wh4ite-noise model, have estimated that the ratio
is nearer -, which is certainly more nearly consistent
with the measurements where the maximum ratio ob-
served in well behaved samples with a small number of
localized electrons was 0.7 (Adkins et al., 1976).

At both higher and lower temperatures there is a
departure from a simply activated dependence. At
higher temperatures other subbands may be involved (see
Sec. IV.B.4). At low temperatures, conduction is be-
lieved to proceed by variable-range hopping (Pepper
et al., 1974c; Tsui and Allen, 1974). The theory (Mott,
1968; Ambegaokar et al., 1971) for this process is
developed from the theory of Miller and Abrahams
(1960) for nearest-neighbor hopping within a band. Mill-
er and Abrahams found that nearest-neighbor hopping is
a simple activated process with an activation energy
comparable to the bandwidth. In the band tail, the
bandwidth has to be of the order of (E, —Ef) so that ac-
tivation to the mobility edge would always be expected
to dominate nearest-neighbor hopping. However, at low
enough temperatures, longer hops with lower activation
energy become favored and the expected dependence is a
modification of Mott’s theory for three dimensions
(Mott, 1968), as made by Pollack (1972) and Hamilton
(1972). They found
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In(o/0¢)= —3a?**[#D (Ep)ksT]~'/?, (5.4)

where 09=+D(Ep)[maD(Ep)ksT]~*"v, and D(Ef) is
assumed to be constant over a few k3T, a is the localiza-
tion factor in ¥ ~exp(—ar), and v, is a frequency factor
that depends on the electron-phonon interaction. The
condition that D(E) varies slowly as compared to kT
does not appear unreasonably violated in Fig. 81 (Mott
et al., 1975). Pollitt (1976; see also, Mott et al., 1975)
tested this relationship carefully for several samples and
found that Ino was proportional to —(1/7)%32+0.02
Typical data are shown in Fig. 82. No account was ap-
parently taken in these fits of any temperature depen-
dence in the prefactor.

From these data a can be calculated using the values
of D(E) as derived above from the activated regime. It
has been predicted that

a«(E,—Eg) . (5.5)

Early experiments on (111) surfaces well below the mo-
bility edge, where an overshoot of D(E) was seen,
showed s =0.73+0.07 (Pepper et al., 1974b). This was
close to a prediction of Abram (1973) that s ~0.75 for a
two-dimensional system. However, more extensive mea-
surements on better behaved samples with fewer localized
electrons (Pollitt, 1976) showed that s was not constant
with (E, —Ey) and increased from values of 0.6 deep in
the band tail to about one near the mobility edge. This
of course means that a is not described by a power-law
dependence in the energy difference. Mott (1976) has ar-
gued that s =1 for two dimensions as Er approaches E,
because values of s less than one are inconsistent with a
discontinuous change in o at T =0-—a metal-insulator
transition. Licciardello and Thouless (1975b) found even
higher values. At least some of Mott’s arguments have
been disputed by Licciardello and Thouless (1977). At
large values of (E, —Er) one might expect that s—0.5
(Adkins et al., 1976).
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FIG. 82. Logarithm of conductivity vs T~!/3, The data are
for two values of V. After Mott et al. (1975).



520

Many of the apparent anomalies in these “ideally” lo-
calized samples, such as the Hall effect and substrate bias
effects, are discussed below. It is not clear that other
supposedly anomalous effects, such as the observation of
magneto-oscillations or cyclotron resonance below the
mobility edge, have ever been studied in “ideal” samples.

3. “Nonideal’ activated conductance

As discussed in the introduction to this section, many
samples are not as “ideal” as those discussed above and
do not seem to conform to the Mott-Pepper model of
transport in a two-dimensional system experiencing An-
derson localization. Some data of this sort taken from
Allen, Tsui, and DeRosa (1975) are shown in Fig. 83;
they are similar to data from many sources (Fang and
Fowler, 1968; Fowler, 1975; Hartstein and Fowler, 1975;
Arnold, 1976; Cole, Sjostrand, and Stiles, 1976; Tsui
et al., 1974). As will be discussed below, application of
reverse substrate bias, resulting in a decrease in z,,, can
sometimes change samples from nonideal to nearly ideal
(Pepper, 1977a).

It can be seen in Fig. 83 that the prefactor of the ex-
ponential temperature dependence of conductivity in-
creases with N;. For the nonideal case it is much more
difficult to define a “o.;,” experimentally because o,
varies with N;. An approximate value is taken at the
lowest nonactivated conductivity. Values below 10~> S
up to close to 102 S have been reported. Furthermore,
there is usually strong curvature in these data, sometimes
approximating the law expected for variable-range hop-
ping at temperatures where variable-range hopping is not
likely to dominate (Hartstein and Fowler, 1975a). It is
in such samples that many of the apparently anomalous
effects have been observed and used as evidence against
an Anderson transition. Another mechanism may be at
work.

Arnold (1976) has attributed such “nonideal” results to
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FIG. 83. Logarithm of conductivity vs T~' for a nonideal
sample. After Allen et al. (1975).
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longer-range or macroscopic fluctuations in the oxide
charge and the surface potential. He has attempted to
explain his results in terms of a semiclassical percolation
theory, necessarily with many approximations and as-
sumptions. He assumes that near (or even below) current
threshold, pools or lakes of carriers form that are at first
not simply connected. They are below the percolation
threshold at O K, and conduction can only proceed by
tunneling through or by thermal excitation over the in-
tervening barriers. [He has suggested that resonant tun-
neling may give rise to the structure in the field-effect
mobility observed by Howard and Fang (1965), Pals and
van Heck (1973), Tidey et al., (1974), Voland and Pagnia
(1975), and Voss (1977, 1978).] Even for higher values of
the average N;, where there are percolation paths at
T =0, thermal excitation over the barriers could provide
current paths at finite temperatures. Arnold (1974, 1976)
supposes, as do Brews (1972a, 1972b, 1975a, 1975b) and
Stern (1974b, 1974c) that the oxide charges have a Pois-
son distribution across the surface which leads to pools
of the order of several hundred angstroms or more. This
assumption is questionable, but calculation of the con-
ductivity is mathematically tractable. Arnold finds that
if g (EFp) is the average conductance in the metallic re-
gions,

g(EF,V)zgl(EF)exp([EF—-V]/kBT), V>EF

~g(Ef), V<Ep (5.6)

where V is the energy of the local band edge. In the in-
sulating regions he finds a conductivity

o? Ep

o
2k2T? * kgT

=
V2o ' V2kT
(5.7)

rf
e erfc

82= €Xp

’

where o is the standard deviation of the potential and ¢
is the fraction of space occupied by the noninsulating re-
gions. He then uses the percolation theory of Kirkpa-
trick (1973) to determine the conductivity as a function
of temperature. At finite temperatures he finds that

g=502p—1)o1—0,)

+[5(2p —1)(g} —g3 +2182)1"2, (5.8)
where p(Er) is the fraction of the surface occupied by
metallic regions, which reduces to a constant at 7 =0.
He has fitted these expressions to experiment as shown in
Fig. 84 for a sample where the oxide charge was 6 10!!
cm ™2, apparently assuming a single constant mobility in
the conducting regions. It should be noted that he ob-
tained a reasonable fit and that there is a curvature in
the plots over the entire range, with decreasing activation
energy at lower temperatures. Sjostrand and Stiles (1975)
and Sjostrand et al. (1976) had observed a saturation
(below about 1 K), with the saturation conductance de-
creasing with N, of the conductance at a low tempera-
ture. This may represent the situation where conduction
by thermal excitation over the barriers is no longer im-
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parameter is N,. The solid curves are a fit from Arnold’s
effective-medium theory. After Arnold (1976).

portant. This would imply that the percolation thresh-
old occurs for N; well below the value reached at the ap-
parent minimum metallic conductivity. However, it is
not yet clear that this saturation of the conductance is
not an experimental artifact due to electron heating by
noise. An experimentally observed variable-range hop-
ping law is not predicted by Arnold’s theory, but he re-
marks that the fit may be fortuitous. '

Arnold’s model would seem to be reasonably successful
in fitting the conductance data for the nonideal samples.
However, there are serious problems in fitting the model
to other experiments, as discussed below. Practically, the
minimum metallic conductivity, a term which is only
broadly appropriate to this sort of sample, is not too well
defined even experimentally because there is no common
intercept for Ino as a function of T~! and because kzT
is much larger than the activation energy near the “mo-
bility edge.” This lack of precision in definition seems to
be reflected when the reported “minimum metallic con-
ductivities” are compared (Adkins, 1978a) for different
samples from different laboratories, as shown in Fig. 85.
Hartstein and Fowler (1975) had concluded from their
data that opi,~N5>> but Adkins (1978a) felt that the
exponent was closer to —0.85. Adkins also concluded
that for many samples oo~N_.’%. Pepper (1977a) found
that this result only obtained when the localized charge
exceeded the oxide charge. In general, increasing the ox-
ide charge for this type of sample decreases the depen-
dence of the intercept, 0o, on N,. That is, the samples
become more nearly ideal and o, approaches 0.1 /4.
The number of states that are localized, i.e., Ny at opip,
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tends to increase with N, ,. Hartstein and Fowler
(1975a) found that it was proportional to N3/%.

4. Substrate bias

Substrate bias can be applied so as to change the field
at the Si-SiO, interface, and therefore z,,, independently
of N, because the field is a function of both N, and
N;. Therefore, the electrons can be moved nearer or far-
ther from the oxide charge that causes the potential fluc-
tuations in the surface. Fowler (1975) and Lakhani and
Stiles (1976a) used substrate bias to study its effects in
the activated conductivity regime. Fowler found, unex-
pectedly, that the conductance increased rather than de-
creased as the electrons were forced closer to the surface.
As discussed in Sec. IV, the effect of forcing the elec-
trons closer to the surface is to increase all of the scatter-
ing mechanisms that are normally important when
Er>E,. These effects have received more study by Cole,
Sjostrand, and Stiles (1976) and especially by Pepper
(1977a, 1978h). In the nonideal samples, Fowler found
that the conductance increased with reverse substrate
bias before saturating, except at low N, (<10'' cm—32).
Furthermore, the activation energies for constant N; de-
creased with increasing reverse substrate bias. These
results are shown in Fig. 86. Cole, Sjostrand, and Stiles
(1976) observed similar results for electrons, but slightly
different results for holes in nonideal samples. Fowler
(1975) has suggested that this effect might be due to
band tails from the higher subbands that are split away
by reverse substrate bias.

Pepper (1977a) found that some samples that were
nonideal behaved very much like ideal samples when the
carriers were forced close to the interface, or alternately
ideal samples could become nonideal under the influence
of forward substrate bias which pulls the carriers away
from the interface, as shown for holes in Fig. 87 and for
electrons in Fig. 88. In the latter case, as the electrons
are pulled away from the surface, the apparent number of
localized electrons seems to increase. For Nge,~0 the
activated curves once again converge but at a value well
above 0.1 e2/#. Pepper (1977a) has found the effect of
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FIG. 85. Apparent minimum metallic conductivity Omin

against the net number of positive charges in the oxide N.
The gradient in the curve is —0.85. Data from Hartstein and
Fowler (1975), Tsui and Allen (1975), Pepper et al. (1974), and
Adkins (1978a). After Adkins (1978a).



522
]
3000
1000
& & /
E 3001 P / . 656-10 —
N
E ey
= / °
g i
S 100— [/. —
"
[ ]
30— / —
[ ]
| ® ] l | [
10 |O“ |o|2 '013

CARRIER CONCENTRATION, Ng, cm-2

FIG. 86. Electron effective mobility as a function of inversion
layer electron concentration at 4.2 K. The bulk doping level is
N,=136%10" cm~? and the density of oxide charges is
N, =9.1x10" cm~2 The curves, starting with the lowest,
are for substrate bias voltages V=1, 0, —1, —2, —4, —8,
—16, and —32 V. At high densities the curves coincide.
After Fowler (1975).

Ando, Fowler, and Stern: Electronic properties of 2D systems

substrate bias is strongest in samples that are not radia-
tion hard (Pepper, 1977e, 1978h). Samples that are not
radiation hard have large numbers of neutral traps near
the interface that trap positive charge when the samples
are exposed to radiation. Similar neutral traps have been
observed for electrons by Young (1980). They occur
after the same annealing treatment as in samples that are
not radiation hard. The electron and hole traps may be
the same, although no experiments have been done to
connect them. Furthermore, there is evidence of a neu-
tral short-range scatterer in the studies of metallic con-
ductance (Sec. IV). Pepper (1977a) supposes that these
centers are dipoles, probably short-range in potential.
They can easily exceed by an order of magnitude the net
number of positive charges in the oxide. He suggests
that when the electrons are far from the interface, the
fluctuations arise primarily from the longer-range mono-
poles, but that when the electrons are pushed close the
interface the dipoles dominate. Such an explanation
would predict long-range fluctuations and nonideal
behavior for moderate N, that changes to ideal
behavior either when the N, is much larger than the
number of neutral centers or when N, is smaller but
Ngepr is such that the dipoles contribute most of the fluc-
tuations. For very low doping in the substrate this tran-
sition could occur as N; increases because Ngep is small.
It is possible to trap either holes or electrons in these
neutral centers (DiMaria, 1978), and it would be interest-
ing to study the effect on transport in this range. One
effect of hole trapping is an observed increase of the ap-
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FIG. 87. The effects of substrate bias on a p-channel MOSFET. No,=10'"' cm~> The logarithm of conductance is shown for (a)
Vb= + 20 V and (b) V= —0.6 V. The curves are labeled with the values of Ny[cm~?] ~2X 10''V;[V] and the activation ener-

gy W. After Pepper (1977a).

Rev. Mod. Phys., Vol. 54, No. 2, April 1982



Ando, Fowler, and Stern: Electronic properties of 2D systems

1 L 1

(0) Vsup =0
-4 W=67,40,33,27,20,.7,.3,

Ng=09,11,1.3,15,1.8,2.3,27,

-

o OYom?
? 4 \\..‘.O‘. 5 ? x107¢c
Ne ¥\ 7]
.§ o\.. ...o\\4.4

\ \~ \0\ \0. 3.7
‘ 20 .\..\ 30
\ 1.6 AN 23

1.2

W=6.8,4.3,38,25,2.1,18,14,

3.4 x10'"Ycm? 105 meV
—~ r- B T
(7,) 1 1 | 1 | 1
b T T T T T T
g (c) Veup= +0.8 (a) Vaup = +1.1

-4
\ W=57,36,2.2,2.1meV
o,

.‘\ {.\% 48x10'Yem? |

523

RO NG RN
° S \ °o, ©40
6 \ “\'- 3.2x10"cm? .‘;" .'°‘°-
.. ‘O‘ AT ) 2.
\ . AN
- ‘ \. 2.' -
‘) 7 1.6 T
T 17
-8l \ 4L w=675,3,2.1,7,.imev  _|
o
°09 | B
1 i 1 1 |
0.l 0.2 03 Ol 0.2 03
I/T (k7N

FIG. 88. Progressive effects of forward substrate bias in an n-channel MOSFET. V,;=0, + 04, + 0.8, and + 1.1 V.
Ny=17X10" cm~2% N,=2X%10" cm—3. N,[cm~?]=7.5X10"°V;[V]. Values of N, and W are given. After Pepper (1977a).

parent density of surface states.

Pepper (1978h) has found also that if samples are
prepared so as to reduce the number of neutral states or
hole traps or dipoles at the interface, the usual
anomalous substrate bias effects are not seen. The con-
ductance decreases slightly as the electrons are forced
closer to the interface. He has not reported on the effect
on activation energies, density of states, or localization
constant.

The depletion charge itself is subject to fluctuation
that statistically might be expected to be fairly long
range. According to Keyes (1975a, 1975b), the range
might be expected to increase as Ng., increases, which
does not seem to be consistent with Pepper’s results.
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Keyes takes as his length scale the depletion depth. If
z,, were more appropriate this conclusion would be dif-
ferent.

Thus it appears that the substrate bias experiments are
not necessarily inconsistent with the discussion above of
the two general types of samples with long- and short-
range fluctuations. Arnold’s theory (1976) has not been
modified to consider the effects of substrate bias. The re-
cent calculations of Gold and Gétze (1981), in which ac-
count has been taken of the range of fluctuations to fit
various “ideal” and “nonideal” data, have not yet been
extended to the substrate bias data. It would be interest-
ing to see if the fluctuation parameter does in fact de-
crease with negative substrate bias.
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strating the activated Hall mobility in this nonideal sample.
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5. Hall effect

The Hall effect in the activated regime has been re-
garded as anomalous since Arnold (1974) reported that
the Hall mobility rather than the carrier concentration
derived from the Hall effect—(ecRy)~'—was thermally
activated as shown in Fig. 89. Arnold and Shannon
(1976) further found that there was an anomalous rise in
(ecRy)~! with decreasing N, somewhere close to the me-
tallic transition in these nonideal samples, as shown in
Fig. 90. In this range the Hall mobility goes to zero but
the conductance remains finite. A similar but weaker
structure was reported by Pollitt et al. (1976) for sup-
posedly ideal samples. Similar effects have been seen by
Pepper (1978f, 1978g) in samples where N, due in this
case to Na% ions, is relatively high (7X 10'! ecm™?%). He
found, as may be seen in Fig. 91, that this rise disap-
peared as the electrons were forced by substrate bias
closer to the surface and the samples became more nearly
ideal. Furthermore, with reverse substrate bias the
behavior that is intuitively expected for excitation to the
mobility edge was found. That is, (ecRy)~' was less
than N; for o <o, but equal for the metallic regime.
Further, the strong temperature dependence of the mobil-
ity decreased, so that most of the temperature depen-
dence in the activated regime was presumably in the car-
rier concentration. Thus these preliminary substrate bias
experiments would seem to eliminate the Hall-effect
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anomaly in ideal samples, but more data are needed to be
confident.

The case for long-range fluctuations would still seem
to be anomalous. At O K, (ecRg)~! should take on the
value for the metallic regions (Juretschke et al., 1956).
We believe that there is no theory of the Hall effect at
elevated temperatures where conductance is dominated
by excitation over barriers and especially none that yields
something like the experimental results.

It should be noted that Adkins (1978a, 1978b) has
come to very different conclusions.

6. Other experiments

It has been observed (Tsui and Allen, 1974) that
magneto-oscillations persist into the activated regime. It
should be remembered that these experiments were made
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FIG. 91. (ecRy)~' vs N, for two substrate biases at 4.2 K. (a)
Veb=0. (b) Vsuy=—15 V. The arrow marks a conductivity of
3X107° S (0.12¢2/#). After Pepper (19781).
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on nonideal samples. If they correspond to Arnold’s
long-range fluctuation model then it would not be
surprising that cyclotron orbits could exist in the pools
of metallic electrons. However, it might be expected that
oscillations would be considerably smeared because it
would be almost unbelievable if Ny were the same in
each pool. We have found no reference to measurement
of magneto-oscillations below o,;, for ideal samples.

The situation is similar for cyclotron resonance experi-
ments. It is not apparent that cyclotron resonance oc-
curs anomalously in ideal samples. Some workers have
not measured the temperature dependence of the conduc-
tance but have assumed an activated behavior. Further,
there are still differences in results between different
groups (Kennedy et al., 1977; Kotthaus et al., 1974b;
Abstreiter et al., 1976b; Wagner, 1976a, 1976b; Wagner
and Tsui, 1979, 1980; Wagner et al. 1980). Both of the
above experiments might be clarified with substrate bias.

Allen et al. (1975) carried out some very instructive
and difficult experiments on 25 Q cm samples for which
the conductance data are shown in Fig. 83. The conduc-
tance was measured from O to about 10'?> Hz and is
shown in Fig. 92. At high N, the data fit the Drude re-
lationship,

N,e?r

Vse'T (5.9)
m (1 + )

olw)=

The scattering time 7 can be determined at w=0, and
the curves are fit for this value of 7. When the conduc-
tance is activated in these nonideal samples 7 is deter-
mined from the intercept from Fig. 83 (for T~'=0 and
©=0). Apart from understandable scatter, the Drude
curves seem to fit the data at frequencies somewhat
above those corresponding to the relevant activation en-
ergies from the dc data. At lower frequencies they drop
precipitously to the dc value. Allen et al. (1975) believe
that these data cannot be explained in terms of a macro-
scopic fluctuation model because they believe the barriers
would be shorted out at the intermediate frequencies or
that the inhomogeneities would have to be unreasonably
large as compared to those in other smaller samples
showing similar conductance behavior. Thus this experi-
ment may contradict all of the arguments about non-
ideal samples above. One possibility is that these sam-
ples are well above the percolation threshold at T' =0, as
the samples of SjOstrand et al. (1974, 1976) may have
been. In that case, most of the samples would be con-
ducting, and large pools of metallic electrons might exist.
This seems to be the only experiment of this sort report-
ed, so that it is important that more be done taking ad-
vantage of newer insights gained since it was done.
Hoshino (1976) developed a theory of frequency-
dependent conductance for a microscopic localization
model that results in curves similar to those in to Fig.
92. One of his parameters is the power s by which the
localization factor a varies [see Eq. (5.5)]. He found the
best fit for s =0.75 in agreement with the early theory of
Abram (1973) and experiments of Pepper, Pollitt, and
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Adkins (1974b) but not with the later data of Pollitt
(1976).

It should be noted that nonohmic behavior can set in
at very low source-drain fields (as low as 1073 Vem ™! in
the activated regimes). Experimentally it must be avoid-
ed and/or studied. Pepper (1978g) has reviewed this sub-
ject.

7. Summary

With the exception of the frequency-dependent experi-
ments of Allen et al. (1975) there seems to be some order
to these disordered systems. The samples seem to fall
into two classes which have been labeled ideal or
nonideal, or alternatively microscopically or macroscopi-
cally disordered, or simply I or II.

I. o=o0mpnexpl— (Er —E,)/kgT], where opmin
~0.1e2/#i—the ideal Anderson-localization case in two
dimensions, with short-range fluctuations.
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II. o=opexp(— W /kgT), where o, increases with
N;—the nonideal, macroscopic case of classical percola-
tion, with long-range fluctuations.

However, as remarked at the beginning of this section,
the existing data are not much more than a framework.
Much experimental work has to be done, especially on
the Hall effect and on o(w). It would be interesting if
the theoretical work of Gold and Gotze (1981) could be
applied to Hall effect, substrate bias, and o(w).

Further, it has been long recognized (Allen and Tsui,
1974) that the correlation energies are comparable to the
size of the band tails and to the binding energies of elec-
trons to ions in the oxide, and evidence certainly exists
for strongly correlated states (Adkins, 1978a, 1978b; Wil-
son et al. 1980a, 1980b). These effects are discussed
below:

In all of the above discussions it has been assumed
that only one set of subbands is involved for electrons on
(100) surfaces. At higher temperatures (>30 K) this
may not be true, and if N, is low or there are signifi-
cant strains it may not be so at low N;, even at 0 K.
Peculiar activated and Hall-effect behavior might be ex-
pected if two sets of valleys were close together. No ex-
periments have been reported varying the stress in the
activated regime.

Note added in proof. Recently Kastalsky and Fang
(1982) have reported experimental results not inconsistent
with the suggestion (Fowler, 1975) that higher band tails
may play a role in activated processes.

Pepper (1978c) has observed a transition from three- to
two-dimensional minimum metallic conductance in an
impurity band in GaAs when the thickness was reduced
to several hundred angstroms. This case is more nearly
similar to that studied by Knotek, Pollak, Donovan, and
Kurtzman (1973) in thin amorphous Ge films than for
inversion layers. The value of o, observed in the pres-
ence of a magnetic field was 21076 S, or about 45 of
0.1 e%/#, in rough agreement with the suggestion of
Aoki and Kamimura (1977) that if E, is in a Landau
level 0., is decreased. With no magnetic field o, was
near 0.1 e2/4.

B. Logarithmic conductance at low temperatures

The experimental results on temperature dependence of
conductance generally allow an empirical division into
cases with activated conduction, as discussed in the
preceding section, and cases with nonactivated conduc-
tion, as discussed in Sec. IV. Within the last few years
there has been growing evidence, both experimental and
theoretical, that there is an increase in resistance at very
low temperatures for samples previously thought to be
nonactivated or quasimetallic. Because the resistance
changes are rather small—of order 10%—and because a
large body of theory attributes them to two-dimensional
localization in the limit of weak disorder, these effects
are sometimes called weak localization effects. In this
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section we briefly discuss the theoretical and experimen-
tal work that has led to this new state of affairs. No at-
tempt is made to give a definitive assessment of this rap-
idly developing field or to describe the theory in detail.

Localization effects are most pronounced in one-
dimensional systems [see, for example, Mott and Twose
(1961); Landauer (1970); Thouless and Kirkpatrick
(1981)], but determination of the dimensionality of a real
sample requires a careful analysis of the characteristic
scale lengths, as discussed by Adkins (1977), Thouless
(1977), and many later authors. A review of the status of
localization in thin wires is given by Giordano (1980).
Chaudbhari et al. (1980) point out that the magnitudes of
the inelastic scattering times required to account for the
temperature dependence of the resistance of metallic
wires at low temperatures are one or two orders of mag-
nitude smaller than theoretically estimated. They find,
however, that experiments which deduce the inelastic
scattering times from an analysis of the current-voltage
characteristics of superconducting wires in terms of
phase-slip centers give values in approximate agreement
with those deduced from the scaling theory, and there-
fore do not allow a definitive choice to be made between
the scaling theory and the electron-electron interaction
theory. Although the one-dimensional systems are of
great interest, we shall not pursue them here. Most of
the remaining discussion in this section will be limited to
two-dimensional systems.

Work on weak localization received a major impetus
from the paper of Abrahams, Anderson, Licciardello,
and Ramakrishnan (1979), who gave a general discussion
of localization effects for systems in one, two, and three
dimensions. Their model includes the conventional
strong, exponential localization, independent of dimen-
sionality, for systems with strong disorder and proposes
that two-dimensional systems will have a weak, loga-
rithmic decrease of conductance with increasing sample
length, even for weak disorder. This implies that there is
no insulator-metal transition in an infinite two-
dimensional sample. In contrast, three-dimensional sys-
tems exhibit a transition from activated conductivity to
metallic conductivity as the degree of disorder decreases.

Indications that two-dimensional systems of nonin-
teracting electrons have zero dc conductivity at absolute
zero had also been obtained in the theoretical work by
Wegner (1979) and Gotze, Preloviek, and Wolfle (1979).
Vollhardt and Wolfle (1980a, 1980b) calculated the
dynamical conductivity Reo(w)~w? for w—0 using a
diagrammatic self-consistent perturbation scheme for the
dielectric constant. A similar self-consistent scheme has
been used by Kawabata (1981a). Various numerical ex-
periments have been performed to study the validity of
the one-parameter scaling theory, but will not be dis-
cussed here.

Whether there is any connection between these results
and the result, mentioned in Sec. IL.E, that an arbitrarily
weak attractive potential has a bound state in two
dimensions, is not clear. Allen (1980) has drawn an
analogy between localization and random walks for sys-
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tems of one, two, and three dimensions.

The scaling theory of Abrahams et al. (1979) predicts
a logarithmic dependence of conductance on sample
length in two dimensions but does not explicitly discuss
the temperature dependence of the conductance. Such
discussions were given by Thouless (1977) and Anderson,
Abrahams, and Ramakrishnan (1979), who related the
characteristic length that appears in the scaling theory to
an inelastic scattering length. Related discussions have
also been given by Imry (1981). For two dimensions, the
acoustic-phonon scattering rate varies as TP, where the
value of p varies between 2 and 4 depending on the
dimensionality of the phonons that dominate the scatter-
ing and on the ratio of the thermal phonon wavelength
to the elastic mean free path / (Thouless, 1977; Anderson
et al., 1979). If electron-electron scattering is the dom-
inant inelastic process then p =2, but this value can be
modified if effects of disorder are taken into account in
the electron-electron collision process. The logarithmic
dependence of conductance on sample length in the scal-
ing theory is therefore converted to a logarithmic de-
crease of conductance with decreasing temperature, pro-
vided the sample length is larger than the distance a
wave packet diffuses between inelastic scattering events
(Thouless, 1977). This distance is of the order of the
geometric mean of the elastic and inelastic mean free
paths (Anderson et al., 1979).

An alternative to the scaling theory which also
predicts a logarithmic decrease of conductance with de-
creasing temperature at low temperatures was given by
Altshuler, Aronov, and Lee (1980a) and by Fukuyama
(1980b, 1981), who considered combined effects of
electron-electron interactions and disorder. Related work
has also been done by Maldague (1981). For a recent ex-
periment on a three-dimensional system (doped bulk Si)
which gives results that tend to support the prediction of
the electron-electron interaction theory that there should
be a conductance increase proportional to T'/? at low
temperatures, see Rosenbaum, Andres, Thomas, and Lee
(1981).

The predicted conductivity o for a two-dimensional
electron gas in the quasimetallic, nonactivated range has
the form

2
o=0o+ - In(T/Ty) .

(5.10)
h
For the scaling theory,
C=g,ap/2, (5.11)

with a=1 for spin-independent scattering and a=—;~ for
strong spin-flip scattering (Anderson et al., 1979; see also
Hikami et al., 1980); g, is the valley degeneracy, which
equals 2 for (100) silicon inversion layers. Fukuyama
(1980d) showed that if the intervalley scattering in such a
system exceeds the inelastic scattering rate, as is likely at
low enough temperatures in a silicon inversion layer,
then there is an additional factor % which cancels the
factor g, =2 for a (100) surface. The situation for other
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surfaces depends on the relative magnitudes of the vari-
ous intervalley scattering rates. The electron-electron in-
teraction theory (Altshuler et al., 1980a) gives

C=5(1-F), (5.12)

where F depends on the ratio of the Fermi wavelength to
the screening length. F approaches 1 for strong screen-
ing and O for weak screening. Fukuyama (1980b, 1981)
gives a slightly different coefficient because he includes
additional processes which were ignored by Altshuler
et al. In their theory, To=%#/kpt, where 7, the electron
scattering time, is generally dominated at low tempera-
tures by elastic scattering.

Experimental evidence in support of these theories was
first found for thin metal films. Dolan and Osheroff
(1979) found a logarithmic resistance increase with de-
creasing temperature in thin films of a gold-palladium al-
loy. The total resistance change in the logarithmic range
was ~ 10%. Corresponding results for silicon inversion
layers were reported by Bishop, Tsui, and Dynes (1980),
as shown in Fig. 93, and by Uren, Davies, and Pepper
(1980).

The experimental values of the coefficient C vary sig-
nificantly. Dolan and Osheroff (1979) found values be-
tween 0.36 and 0.84 for AuPd films with thicknesses of
2—4 nm and resistances of 1—5 kQ. Van den dries
et al. (1981) found values of order one for clean Cu films
with resistivities of 10—20 €, and values <0.5 for films
with resistivities above 100 . Markiewicz and Harris
(1981) measured thin, clean Pt films with thicknesses
from 0.1 to 10 nm deposited on clean Si substrates.
They found C =0.75+0.15, with the logarithmic tem-
perature dependence continuing up to room temperature
in the thinnest films, which were one monolayer thick.
For silicon inversion layers, Bishop et al. (1980) reported
C =0.52+0.05. Finally, for In,O; films, Ovadyahu and
Imry (1981) found C in the range 0.75 to 1. The cluster-
ing of these results within a factor ~3 for so many dif-
ferent systems, with electron densities and resistivities
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varying over several orders of magnitude, gives support
to the theories that lead to Eq. (5.10), but does not clear-
ly distinguish between the localization theory and the
electron-electron interaction theory.

The comparison of theory and experiment is somewhat
ambiguous when one tries to convert from conductance
to resistance if the value of T, is not known. Several
analyses appear to include an implicit assumption that
the T, which enters in Eq. (5.10) is close to the range of
the measurements. The theories presumably contain a
cutoff above which the logarithmic dependence no longer
holds, but this has not been spelled out clearly in relation
to experimental results.

The conductance of two-dimensional quasimetallic sys-
tems is also found to have a term logarithmic in electric
field F at low fields and low temperatures. Anderson
et al. (1979) propose that the effect is caused by simple
Joule heating of the electrons. Then the analog to Eq.
(5.10) in which the temperature 7T is replaced by the elec-
tric field F has a coefficient C'=2C/(p’'+2), where p’ is
the exponent in the temperature dependence of the rate
of electron energy loss to the lattice, which is not neces-
sarily the same as the inelastic scattering rate. Where
the terms logarithmic in temperature and in electric field
have both been measured, the comparison generally gives
physically reasonable values of p’, although there are ex-
ceptions (Uren et al., 1980).

Negative magnetoresistance at low temperatures which
depends only on the normal component of the magnetic
field and which has an approximately logarithmic tem-
perature dependence was observed in Si(111) inversion
layers by Kawaguchi, Kitahara, and Kawaji (1978a,
1978b) before recent ideas on weak localization had
developed. They attributed the effect to s-d scattering
(Kondo effect). The first measurements showing negative
magnetoresistance in inversion layers at low temperatures
were those of Eisele and Dorda (1974a) and Dorda and
Eisele (1974), who attributed it to interface effects (see
also Sec. IV.B.3).

More recently, detailed measurements of magnetocon-
ductance of electrons in Si inversion layers at low tem-
peratures and low magnetic fields have been carried out
by Kawaguchi and Kawaji (1980b, 1980c), as illustrated
in Fig. 94, and Wheeler (1981). They compared their
results with the theory of Hikami, Larkin, and Nagaoka
(1980) for weak localization, which predicts under some
simplifying but approximately valid conditions that

ae’® 1,1 1 1
O'(H)—O'o."\_'— 217-2ﬁ l/J 2 + Ta —¢ ) + Tid
(5.13)
where ¥ is the digamma function (Abramowitz and
Stegun, 1964, p. 258), with ¢(z) ~Inz —(2z)~!— - - - for

large z, 7 and 7;, are the elastic and inelastic scattering

times, respectively,
4DeH

= (5.14)
T
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D is the diffusion constant, and oo=e2DD (Er), where
the last factor is the density of states at the Fermi ener-
gy. If the elastic scattering rate is much larger than the
inelastic scattering rate, as is likely at low enough tem-
peratures, and if 7a << 1, then Eq. (5.13) leads to

1 1 1
Tin@ 2 Ta

ae2

2w 4

o(H)—0o(0)~— In

—¢

(5.15)

at constant temperature. Hikami et al. (1980) also con-
sidered magnetic scattering and spin-orbit interaction,
but we shall not consider those aspects of the problem
here.

Kawaguchi and Kawaji (1980b) find that the coeffi-
cient a in Eq. (5.13) is between 0.5 and 0.7 and that the
inelastic scattering rate is approximately given by
Tal=2x10"" s=! (T/4 K)'® for a sample with
N;=5X%10"? cm~2, Their second paper (1980c) shows
that the temperature dependence weakens to about the
1.3 power for N;=8X10!" cm~2, that the inelastic
scattering time increases with increasing N, as shown in
Fig. 95, and that the coefficient @ decreases from 1 for
N, ~10" cm~? to about 0.6 for N,=6Xx102 cm~2
smaller than the expected value one. The inelastic
scattering rate deduced by Wheeler (1981) from his data
varies approximately linearly with temperature, and de-
creases with increasing values of N,, reaching a
minimum near N; ~6X 102 cm~—2, where the next sub-
band begins to be occupied. Wheeler finds that a=1 in
Eq. (5.13) is consistent with his measurements.

There has been no quantitative analysis yet of the
mechanisms that lead to the temperature dependences
and magnitudes of the inelastic scattering rates in inver-
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FIG. 94. Magnetic field dependence of the conductance of a
Si(100) inversion layer with 1.9 102 electrons per cm? at tem-
peratures from 1.9 to 10.4 K. The experimental points have
been fitted to the expression of Hikami et al. (1980) given in
Eq. (5.15). After Kawaguchi and Kawaji (1980c).
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FIG. 95. Temperature dependence of the inelastic scattering
time obtained from fitting experimental magnetoconductance
results to the theory of Hikami et al. (1980). After Kawaguchi
and Kawaji (1980c).

sion layers deduced from analysis of the weak localiza-
tion effects. The inelastic scattering rate 1/7;, is expect-
ed in clean samples to vary with temperature as T2 if
bulk phonon scattering is the dominant mechanism and
.as T? if electron-electron scattering is the dominant
mechanism. However, strong elastic scattering can
modify these results, as shown, for example, by Schmid
(1974) for bulk systems. Abrahams, Anderson, Lee, and
Ramakrishnan (1981) and Uren et al. (1981) have shown
that under these circumstances the electron-electron
scattering rate at low temperatures is linear in 7. If the
resulting value p =1 is used in Eq. (5.11) with the indli-
cated value (Fukuyama, 1980b) g,a=1, then C~,
which is well within the range of experimental values re-
ferred to above.

Hall-effect results have been published by Uren, Davies
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FIG. 96. Hall-coefficient change divided by conductance

change vs resistance per square for silicon inversion layers.
The triangles are for a magnetic field of 0.4 T and for electron

concentrations of about 3 10" cm~2 and the squares are for a_

magnetic field of 1.3 T and for electron concentrations from
0.8 to 2X 102 cm~2. The solid symbols give changes with
variation of source-drain field, and the open symbols give
changes with variation of temperature. After Uren et al.
(1980).
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and Pepper (1980), as illustrated in Fig. 96, and by
Bishop, Tsui, and Dynes (1981). The ratio s of the frac-

tional change of the Hall coefficient to the fractional
change of the resistivity as the temperature is changed is

found to depend on the magnitude of the resistivity,
varying from a value near two at resistivities of order 1
kQ to a value approaching O at higher resistivities.
Fukuyama (1980c, 1980e) showed that this ratio should
be zero in the localization theory, for which the loga-
rithmic corrections arise in the mobility rather than in
the carrier concentration. Altshuler, Khmel’nitzkii, Lar-
kin, and Lee (1980b) showed that the ratio is two in the
electron-electron interaction model. Thus there is evi-
dence in the Hall-effect data for the presence of both
mechanisms. Kaveh and Mott (1981b) agree with the
finding of Uren et al. (1980) that their experimental re-
sults can be understood if the localization effects are
quenched at large enough magnetic fields, where the
electron-electron effects then dominate. This quenching
is implicit in the theory of Hikami et al.

Whether a magnetic field destroys the weak localiza-
tion or not is an interesting theoretical problem that has
not yet been fully understood. Yoshioka, Ono, and
Fukuyama (1981; see also Ono et al., 1981) extended the
self-consistent diagrammatic theory of Vollhardt and
Wolfle (1980a, 1980b) and studied this problem. They
showed that the magnetic field does not destroy the lo-
calization, although it tends to increase the spatial extent
of localized wave functions. It is known that all the
states cannot be localized in strong magnetic fields (see
Sec. VL.D).

The experiments are quite difficult because of the
small signal levels required, and consequently the experi-
mental error bars are quite large. The best data are ob-
tained from electron heating effects, in which the
source-drain field rather than the ambient temperature is
varied, because these are considerably less troublesome to
carry out with precision. The determination of the de-
tailed dependence of the Hall-effect ratio s on sample
parameters and on magnetic field requires additional
measurements.

The relation between localization and superconductivi-
ty is intriguing. Deutscher et al. (1980) found that su-
perconductivity appears in granular aluminum films
whose conductivity is in the weak localization regime,
where the resistance has a logarithmic temperature
dependence, but not in films whose conductivity is ac-
tivated at low temperatures. [For a review of granular
films, see Abeles et al. (1975).] Whether these results
have any bearing on silicon inversion layers, for which
superconductivity has been predicted (see Sec. IL.D) but
not yet observed, is not clear.

This sketchy account gives only a hint of the great in-
terest in these new developments in the low-temperature
conductance of quasimetallic two-dimensional systems.
Apart from resolution of some of the experimental prob-
lems that have been alluded to above, the principal need
is the development of a theory that includes both locali-
zation effects and electron-electron interaction. One ap-
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proach, based on additivity of the two effects, has recent-
ly been described by Kaveh and Mott (1981b). The sub-
ject is likely to see considerable progress in the near fu-
ture.

Note added in proof. After this manuscript was sub-
mitted, other theoretical treatments that include both lo-
calization effects and electron-electron interaction have
been published. See, for example, Fukuyama (1982) for a
more recent review.

C. Two-dimensional impurity bands

Silicon inversion layers afford a unique opportunity for
the study of impurity levels and impurity bands because
of the ease with which almost all of the relevant parame-
ters can be varied. The theory of bound states arising
from charges near the Si-SiO, interface was discussed in
Sec. ILE. The impurity bands may be created by drift-
ing sodium ions to the proximity of the silicon-silicon
dioxide interface where they give rise to bound states in
the silicon. At high enough concentrations the bound
states overlap and result in impurity bands (Hartstein
and Fowler, 1975b). In practice the sodium concentra-
tion that gives rise to such states may be varied between
about 10!! and 2% 10?2 cm™2 The electron concentra-
tion may be varied simply by changing the voltage on
the gate electrode of a metal-oxide-silicon (MOS) device.
The potential binding the electrons to the ions may be
varied independently of the electron concentration by
changing the potential well due to the depletion charge
(Fowler, 1975) using a substrate bias between the surface
contacts and the bulk of the silicon.

The existence of bound states due to ions in the SiO,
near the Si-SiO, interface was suggested by Stern and
Howard (1967) to explain the peaks in pugg observed by
Fang and Fowler (1968) discussed in Sec. IV.B. Many of
the groups who have studied these peaks since then
(Kotera et al., 1972b; Komatsubara et al., 1974; Tidey
and Stradling, 1974) have also suggested this explanation.
The last cited paper suggested that the ions were “field
deionized” as N, and the binding energy increased, giv-
ing rise to the minimum in pgpg. Whether these peaks
are due to impurity states or to higher subbands (see Sec.
IV.B) may still be an open question. Here we shall leave
this question to discuss a more fully characterized and
identified structure that is believed to arise from impuri-
ty bands resulting from electrons bound to sodium ions
near the Si-SiO, interface.

Sodium ions have long been known to be mobile in the
SiO, films on MOS structures. (See, for instance, out of
a large literature, Hickmott, 1975; Boudry and Stagg,
1979; Verwey, 1979). These tend to be located near one
or the other interface (DiMaria 1977, 1981; DiMaria
et al., 1976) and are easily drifted back and forth at or
above room temperature in an electric field across the
oxide, but are effectively frozen in position somewhere
below 300 K. These positive sodium ions can give rise
to fast states, a variety of traps in the oxide (DiMaria,
1981), macroscopic inhomogeneities giving rise to band
tails (Hartstein and Fowler, 1975a), and gross inhomo-
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geneities at least at high concentrations of about 10!3
cm~2 (DiStefano, 1971; Williams and Woods, 1973; Bot-
toms and Guterman, 1974; DiStefano and Lewis, 1974).
Evidence due to Fowler and Hartstein (1980a) implies
that at least at lower densities most of the sodium at the
Si-SiO, interface contributes fast interface donor states
well below the conduction-band edge. If these states
were acceptors they would dominate the scattering (Hart-
stein et al., 1980). If they were within about 40 meV of
the conduction-band edge the structure (as a function of
Vi) discussed below would shift with temperature. In
addition, there are bound states 15—30 meV below the
conduction-band edge resulting from electrons in the sil-
icon bound to Na™ ions in the SiO, quite close to the in-
terface. These ions cannot be neutralized by transfer of
electrons from the silicon presumably because they are
energetically inaccessible. In a sense, they are neutral-
ized, or at least screened when electrons are bound to
them but the SiO, barrier keeps most of the electronic
wave function in the silicon.

If the wave functions of such states overlap, tunneling
is possible between them. Thermal excitation to the mo-
bility edge is also possible at higher temperatures. The
bound states may be random in position along the sur-
face, and because of background surface potential fluc-
tuations or because of variation of the distance of the
ions from the interface may be random in energy. The
wells are shown in Fig. 97(a) with the wave functions de-
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FIG. 97. (a) The potentials due to the Na* ions at the Si-SiO,
interface are shown by the upper curves with wells. The over-
lapping wave functions which fall off as exp(—ar) are also
shown. (b) Density. of states averaged over the surface. The
impurity band is shown with a half width at half maximum of
I'. The mobility edge E, is shown in the band tail.
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caying as exp(—ar). Below, in Fig. 97(b), the expected
density of electron states averaged across the surface is
shown with a band tail due to other fluctuations and an
impurity band.

The sodium-derived impurity bands have been ob-
served primarily by the study of conductance in the (100)
surface of MOSFET devices (Hartstein and Fowler,
1975b, 1976; Hartstein et al., 1978a, 1978b; Fowler and
Hartstein, 1980b). Typical conductance curves as a func-
tion of gate voltage are shown in Fig. 98. The conduc-
tance peak has been reported only in the sodium-doped
samples and is believed to be due to an impurity band.
As may be seen, the impurity band peaks precede the on-
set of conduction in the first quasi-two-dimensional sub-
band as the gate voltage is increased and negative charge
is induced. At high enough Na* concentrations the
peak is washed out. Reverse substrate bias sharpens the
peak but decreases its amplitude.

The number of sodium ions has been determined in
different ways which give different results. Their number
and the carrier concentration remain the greatest uncer-
tainty in these measurements. It is now believed that the
best measure of their number is from the shift of thresh-
old (onset of inversion) determined from an extrapolation
of the magnetoconductance oscillations in the metallic
conduction region to zero magnetic field (Fang and
Fowler, 1968; Fowler and Hartstein, 1980a). This pro-
cedure results in lower values of sodium concentrations
than those reported earlier for some of the same data.

Nox =35 x 10" em2

Vg = OV

CURRENT (10" Amps)

| | | 1 1 |
04 06 08 10 1.2 14
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FIG. 98. Typical conductance curves near current threshold at
two temperatures. The impurity-band maximum is assumed to
occur at the conductance maximum. Note that the position of
the maximum conductance is temperature independent. After
Fowler and Hartstein (1980b).
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Therze could still be an error in N, of about 0.5 10!
cm™°.

The temperature dependence of the conductance has
been observed to exhibit three ranges; the two higher
ranges are thermally activated and are believed to corre-
spond to activation to the mobility edge (E;) and
nearest-neighbor hopping (E;), and the lowest appears to
be variable-range hopping (Mott, 1973). Early papers
(Hartstein and Fowler, 1976, 1978) gave approximate
values for E; and E;. A recent paper (Fowler and Hart-
stein, 1980b) reports values from least-squares fits to

__El
ksT

3
kT

o=0exp . (5.16)

] +o3exp

In Fig. 99 representative data are shown for the tempera-
ture dependence for a sample where the surface field, and
therefore the binding potential, has been increased by in-
creasing the negative substrate bias (V). In these mea-
surements the carrier concentrations have been fixed at
the conductance maxima, which presumably correspond
to the maxima of the density of states and to half-filled
impurity bands. The activation energies from these
curves have been widely compared (Martin and Wallis,
1976, 1978; Lipari, 1978; Vinter, 1978) with calculations
of the binding energies, even though E; is thought to
correspond to activation to the mobility edge, which does
not necessarily correspond to the unperturbed
conduction-band edge. These calculations are reviewed
in Sec. ILE. As expected, a higher surface field forces
the electrons closer to the ions in the oxide and increases
both E, and E;. In Fig. 100 these data are compared
with the theories of Martin and Wallis and of Lipari.
(Note that in both of these papers the determination of
the experimental values of electric field in electrostatic
units is wrong by an order of magnitude.) These theories
and that of Vinter, which agrees approximately with
Lipari, differ in the degree of sophistication of the trial
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FIG. 99. Temperature dependence of the conductance at the
conductance maxima for different values of substrate bias and
for a substrate doping N, =8.910'> cm~3. The values of E,
and E; given here are not from least-squares fits. After
Fowler and Hartstein (1980b).
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FIG. 100. Comparison of the values of E, from Fig. 99 with
the theories of Martin and Wallis (1978) and Lipari (1978).
The binding energies from theory and E, from experiment are
compared for different values of surface field corresponding to
different values of V. After Fowler and Hartstein (1980b).

wave functions. None take screening into account. The
earlier theory of Stern and Howard (1967) did, in a sim-
ple way, for strictly two-dimensional electrons. Hipdlito
and Campos (1979) calculated the effect of screening, but
fits to the data of Fig. 100 could not distinguish between
screening and displacement of the ion from the surface.
All of these theories give results that are higher than the
experimental results for E.

If screening is important, then an extrapolation of the
measured values of E; to zero sodium concentration, and
therefore Ny, =0, should be expected to be more nearly
comparable to the theory. Such data are shown in Table
III and plotted in Fig. 101 for the depletion charge
Nyep=3.63x 10" cm~2. It may be seen that the least-
squares fit to a linear curve gives a value of E; of
24.140.3 meV. An error in N, probably would not af-
fect this value by more than 1 meV. The calculated
values for the binding energy for this case are 28.1 meV
(Martin and Wallis, 1976, 1978), 29.3 meV (Vinter,
1978), and 29.8 meV (Lipari, 1978), where all theories as-
sume the ion is at the interface. According to Lipari, the

TABLE III. Constants for activated conductivity as a function of N,,.

binding would be about 24 meV if the ions were dis-
placed about 4 A into the oxide (see Fig. 8). Vinter’s
(1978) scattering theory puts the electrons at the interface
but would not be changed much by a displacement of 4
A. A dangerous extrapolation of E; in Fig. 101 to high
sodium concentration would result in E;=0 at
Nox~1.7xX10"2 cm~2 At this concentration the impuri-
ty band is observed to be merged with the band tail.

The extrapolation of the conductance in this range for
activation to a mobility edge to infinite temperature
should give the minimum metallic conductivity o, if
the fluctuations are mostly microscopic and if the values
given in Table III for the various sodium concentrations
are accurate. There is no strong dependence on N, and
the average value is (2.0+0.1)X10~* S. This is high
compared to 0.12¢%/# or 3X 10~ S. It is consistent
with the minimum temperature-independent conductivity
observed in the conduction band tail, which is not neces-
sarily a minimum metallic conductivity (see Sec. V.A).

Table III and Fig. 101 also show E;, which is related
to the bandwidth (Miller and Abrahams, 1960), as a
function of N,,. The bandwidth is strongly reduced as
the oxide charge is increased. It should be remembered
that these data are for half-filled bands, so that both the
density of states and the electron concentration increase
with N,,. One would expect that the effects of screening
should increase with N, and that the effects of the fluc-
tuations should be reduced by screening. The only esti-
mates of screening effects are due to Stern (1976) and to
Hipdlito and Campos (1979). Stern assumed that the
random potential arises from the sodium ions giving rise
to the bound states and that the screening is proportional
to the density of states and is equal to that of a two-
dimensional electron gas [2me2D (E)/k] [see Eq. (2.24)].
His iterated results do not give rise to an impurity band
for the values of N,, where one has been observed, so
that his treatment would seem to overestimate the level
broadening. The assumed screening which is possibly
appropriate for free electrons is probably not right. No
one has calculated the polarizability of the bound elec-
trons for the two-dimensional case appropriate here, so
that no better screening theory exists. Vinter (1978) has
a more nearly appropriate theory but has applied it only
to scattering in the metallic regime. The extrapolation of
E; from Fig. 101 to zero N, gives a value of about 5
meV. This may represent the intrinsic potential fluctua-

Here, N,, is the oxide

charge and E,, 0, E3, and o; are from a least-squares fit to Eq. (5.16).

Nox ) E, o E; g3
(10" cm™?) (meV) (10~* S) (meV) (S)
2.1 21.8 1.7 4.0 2.2x1077
2.9 19.9 24 3.5 1.6 106
42 17.1 1.8 1.9 4.4% 10~
4.9 16.6 1.9 1.6 4.8%x10~°
6.6 15.4 2.1 1.1 1.3x1073
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FIG. 101. The activation energies for excitation to the mobili-
ty edge, E|, and for nearest-neighbor hopping, E;, as functions
of Nox. Only the data (O) were used in the fit of the solid
lines. The two sets of data are for different samples. After
Fowler and Hartstein (1980b).

tions in the absence of both screening and sodium, or it
may represent fluctuations in the displacement of the
sodium ions from the interface.

The data for nearest-neighbor hopping can be com-
-pared to the two-dimensional hopping theory of Hayden
and Butcher (1979). They predict that

O3=0y€exXp , (5.17)

T 3kpT

where o, is proportional to N!/%2, a appears in
P=1poexp(—ar), the wave function of the bound states
parallel to the surface, and W is the bandwidth for a
band with a constant density of states. The extrapolation
of 03 to T=w, o0,, should be proportional to
N1/% exp(—2.39aN;;'/%). Figure 102 shows these data
in linearized form. A least-squares fit yields a~!=69+2
A, a much larger value than previously estimated (Hart-
stein and Fowler, 1978). It should be remembered that
this procedure assumes that a is not a function of N,
even though E, is.

Below the temperature regime for nearest-neighbor
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FIG. 102. Logarithm of the conductance o, from the extra-
polation of the nearest-neighbor hopping as (1/7) goes to 0, di-
vided by N!/?, as a function of N3/ A straight line is

predicted by Hayden and Butcher (1979). After Fowler and
Hartstein (1980b).
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hopping, variable-range hopping is observed. The best
data for this range are shown in Fig. 103. While these
data are not extensive, they reasonably fit the expected
variable-range hopping law [Eq. (5.4)], where

To=27a*/mkyD (Ef) (5.18)

and where D(Er) is the density of states at the Fermi
level. D(Efr) was taken as N, /E; in the past (Hartstein
and Fowler, 1978). More recently Hartstein et al. (1979)
and Fowler and Hartstein (1980b) assumed that for a
Gaussian  distribution of the form D(E)=D,,,
X exp(—E?/2I'?) one would have E;=2I"/3. This was
chosen in analogy with a result by Hayden and Butcher
(1979) that for a constant density of states with width W,
one has E;=W /3. More recently Al-Sadee, Butcher,
and Hayden (1981) have found that E;=1.2I" for a
Gaussian. The maximum density of states is related to
the total number of states by D ,, =N,/ l"\/fr, and it
was assumed that N,,,=N,,. If E;=2I"/3 was substi-
tuted in Eq. (5.18), iot was found for the data discussed
above that @~ !=42 A. If the relation between E; and T'
given by Al-Sadee et al. was used, then a—!=56 A. No
measurements of variable-range hopping have been made
as a function of substrate bias or N, so that the effects
of changing the surface field or N, are not known, un-
like the situation for E, and E;.

Some measurements have been made of E; and E; as
functions of N; (Hartstein et al., 1979; Fowler and Hart-
stein, 1980b). The dependence of E; and E; on N is
shown in Fig. 104 for different values of N,,. The varia-
tion of E; with N; was fitted with a Gaussian with
parameters N, and I'. The values of I', of the max-
imum density of states D.,,, and of the integrated
number of states in the Gaussian were calculated and are
shown in Table IV. This procedure assumed that the
bandwidth, binding energy, and mobility edge do not

& T | T I T
3 \\ —
1078 - ."o\\ —]
— .
g N\
E 3 N To=4.4 X103K
(5 8 .,
: |/3\'\
“pAa-(To/T) b
|o—9 | o =Ae ''0 \.\. —
3 ] \—‘
10710 Ly L | | | L | J
06 o7 0.8 0.9

(TEMPERATURE)™"/3 (k)~!/3

FIG. 103. Logarithm of current at the lowest temperatures vs
T-'3, Here Ny,=3.5%10" cm~2 and, at somewhat higher
temperatures, E;=3.3 meV. After Fowler and Hartstein
(1980b).
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FIG. 104. E; and E; for different values of N,, as functions
of N;. More accurate determination of the oxide charges gives
Ny=2.1, 3.4, and 4.5%x10'" cm™2 for the three samples
shown. The data for E; have been fitted using a Gaussian by
Hartstein et al. (1979) and using a constant density of states by
Hayden (1980). After Hartstein et al. (1979).

depend on the number of electrons in the band. The ef-
fects of motion of the Fermi level were not considered.
The least-squares fit was relatively insensitive to the
parameters. In the table, I' is compared to 3E;/2 at
the conductance maximum. Comparison with E;/1.2
would be consistent with Al-Sadee et al. (1981). The
data do not allow a clear choice between the two.

The dip in E; in the data of Fig. 104 could arise from
two causes. It may arise, as has been suggested (Hart-
stein et al., 1979), and as Hayden (1980) has confirmed
for his model, from the statistics of the hopping process.
In the experiments the carrier concentration rather than

the Fermi level is held constant. When the Fermi level
is above or below the center of the band there is a differ-
ence in the number of initial and final states, which leads
to an increase in the apparent activation energy as ob-
served. Hayden (1980) found that for a constant density
of states (finite rectangular band) of width W,

’ \2
Es= M%V—u W, 8 <W' (5.19)
Ei= | Ly wos (5.20)
FlawTe | T2 .

where 8'=8/kzT and W'=W /2kzT and & is the dis-
placement of the Fermi level from the center of the band.
Using these formulas and properly relating 8 to N,, he
was able to get a reasonable fit to the data of Fig. 104
both for E; and E;. There may in addition be a real
change in the bandwidth because the screening might be
expected to change as the electron density and the densi-
ty of states changes. There is no explicit dependence of
0., the infinite temperature extrapolation of the nearest-
neighbor hopping process, on electron concentration in
the theory of Hayden and Butcher (1979). This may
result from the constant density of states assumed. What
was observed experimentally was a monotonic increase of
0, as electron density increased, as shown in Fig. 105.
This is not in agreement with intuition, which would be
that o, ~N(No—N;). A decrease of a with increasing
N, and decreasing E| might explain the results.
Attempts have been made to observe a second conduc-
tance peak that might correspond to a second Hubbard
band, with no success. The sodium concentration has
been increased to a level where one might have expected
to observe metallic conduction at the maximum in the
impurity band, again with negative results. An attempt
to observe impurity-band conductance anisotropy in a
(110) sample was inconclusive (Fowler and Hartstein,
1980b). Measurements in a magnetic field (Fowler and
Hartstein, 1980b) showed the expected reduction in con-
ductivity, but not enough measurements were made to
determine the changes in the activated processes. Voss
(1977, 1978) has measured the noise in these impurity
bands. Good Hall-effect measurements are probably
needed for really accurate determination of N, and N,.
Pepper (1978b) has made preliminary measurements, but
has reported no results except when the peaks were

TABLE 1IV. Density of states in impurity bands. D (E)q,, is the maximum of the density of
states with a distribution exp(—E?/2T'? and N, is the integrated value. T" and D (E)py., were
determined by fitting to E(N,) in Fig. 104. The values of the activation energy E; used in the

last column are the minimum values from Fig. 104.

Nox D(E)max Nlot r 3E3/2
(10" cm—2) (10 cm—2%ev—1) (10" cm™?) (meV) (meV)
2.1 2.1 2.6 4.8 5.2
3.5 34 1.5 1.8 4.3
4.5 2.1 2.3 2.1 3.3
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FIG. 105. o, the extrapolation of the nearest-neighbor hop-
ping conductivity to 1/T=0, as a function of N,. After
Fowler and Hartstein (1980b).

smeared out. No evidence of these impurity bands has
been seen in the capacitance (Fowler and Hartstein,
1980a).

Even at this preliminary stage of investigation the
Na+-MOS structure has generally shown many proper-
ties expected of impurity bands. The impurity bands are
somewhat different from those in compensated three-
dimensional systems in that the fluctuations are not
caused by the compensating ions, but rather by variation
in the location of the Na* ions parallel and perpendicu-
lar to the surface. This system seems to offer a unique
opportunity to study impurity-band phenomena. It ap-
pears that in the range of temperatures studied (>1 K)
there has been no need to invoke a Coulomb gap or
cooperative hopping processes (Pollak, 1980).

The ac conductivity of these samples has not been
measured using the techniques of Allen et al. (1975).
However, McCombe and Schafer (1979) and McCombe
and Cole (1980) have made measurements studying the
effects of sodium ions on the far-infrared absorption
spectra with the field perpendicular to the surface.
While their data are somewhat scanty, there is evidence
of a shifted absorption peak as compared to the intersub-
band absorption (Ey—E;). See Fig. 106. Because the

Ng=6.2 x 10" cm-2 Ng=15.3 x10"em-2

F3
39
7]
59
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Log
w o
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FIG. 106. Spectra for differential transmission through MOS-
FET samples for two values of N; and three values of N,:
(1.6 10" cm=2); ----- (7.4x10"" cm™%); —.—.—.
(16.1x 10" cm~—2). After McCombe and Schafer (1979).
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bound state for the higher subband is expected to be less
tightly bound than the bound state for the lowest sub-
band, the shift in transition energy is expected to be posi-
tive, and a positive shift of about 5 meV was observed.
Kramer and Wallis (1979) have calculated a shift of
about 10 meV. A comparison has been made in Fig.
107. This measurement does not depend on the mobility
edge location as do the determinations of E; from con-
ductance as a function of temperature. It may depend on’
the sodium and electron concentrations. One interesting
result is that the impurity-band transition was observed
when the Fermi level was below the conduction band,
but merged with the intersubband transition when the
Fermi level was in the conduction band. As can be seen
in Fig. 107, the difference between the shifted and un-
shifted lines effectively disappears for N;~2N,, for
N ~7.4x10'" cm™2. This may mean that the impurity
bands merge with the conduction band in the presence of
large numbers of free electrons.

If measurements on the band tails, discussed in Sec.
V.A, are scanty, measurements on the impurity bands
are more so. As should be obvious, more data are need-
ed, especially relating to variable-range hopping as func-
tions of Ny, N;, and Vg, or Nge. Better data on
EI(NS’NOX’Ndep]) and E3(Nox’Ns9Ndep]) are needed.
Hall-effect data are needed. Additionally, surfaces under
strain where E, and E are interchanged have not been
studied. It is clear that the opportunities afforded by an
impurity-band system where so many variables may be
changed relatively easily have only begun to be explored.

VI. TRANSPORT IN STRONG MAGNETIC FIELDS

When a strong magnetic field is applied normal to the
inversion layer, the energy spectrum becomes discrete be-
cause the quantization of the orbital motion converts the
constant density of states connected with motion parallel
to the surface into a series of Landau levels. This system
provides an ideal tool for the study of quantum transport
phenomena, whose characteristics are not so clear in the

1.75 T T T T T
87
E :
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B _ —— Kramer and Wallis
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FIG. 107. Ratio of impurity-shifted transition to continuum

transition as a function of N; compared to the theoretical pre-
diction of Kramer and Wallis (1979). The experimental results
compare transition energies for samples with N, =7X10"!
cm™2 and Ny, ~10° cm—2 The calculations are for isolated
ions with no screening. After McCombe and Cole (1980).
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usual three-dimensional systems because of the existence
of the free motion in the direction parallel to magnetic
fields. There have been a number of theoretical and ex-
perimental investigations on phenomena such as magne-
totransport, cyclotron resonance, and magnetoplasmon
effect. Effects of electron-electron interactions which
play important roles in determining the subband struc-
ture and screening effects manifest themselves in various
properties because of the singular nature of the density of
states. The discrete density of states can also modify the
localization strongly. In this section we describe various
investigations related to the quantum transport phenome-
na mainly in the n-channel inversion layer on the silicon
(100) surface.

We briefly summarize theoretical results on the
broadening of Landau levels, the conductivity tensor, and
dynamical properties in Sec. VI.A. Transport properties
of actual inversion layers and their interpretations are
given in Sec. VLLB Section VI.C is devoted to the discus-
sion of cyclotron resonance and related dynamical prop-
erties. A rough sketch of various investigations on elec-
tron localization is given in Sec. VI.D.

A. Theory of quantum transport in a two-dimensional system

1. Static transport

Let us consider an isotropic two-dimensional system
characterized by an effective mass m. In the absence of
scatterers the density of states has a 8-function peak at
the position of each Landau level E =Epy, where
Ey=(N+1/2)w., o.,=eH/mc, and H is the strength
of a magnetic field applied normal to the system. The
degeneracy of each level is given by 1/271% in a unit
area, where [ is the radius of the ground cyclotron orbit,
given by [2=c#i/eH. For H =100 kOe, for example,
I=81 A and the degeneracy is 2.5X 10! cm™2. In the
presence of scatterers each Landau level is broadened.
So far many different approximations have been proposed
for the calculation of such level broadening and transport
properties. Among them the so-called self-consistent
Born approximation is known to be most established and
the simplest one free from various difficulties of diver-
gence caused by the singular nature of the density of
states. In the self-consistent Born approximation, effects
of scattering from each scatterer are taken into account
in the lowest Born approximation, while those of the lev-
el broadening are considered in a self-consistent way
within a framework of the Green’s-function formalism.
This becomes equivalent to the Boltzmann transport
theory in the absence of a magnetic field in the weak
scattering limit, and is sufficient to demonstrate charac-
teristics of the quantum transport in this system. In the
following we briefly review the theory and summarize
various characteristic results (Ando et al., 1972a, 1972b;
Ando and Uemura, 1974a; Ando, 1974a—1974c; Ando
et al., 1975).

The Hamiltonian is given by

H=K g+, (6.1)
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with

2

1 e
Fo=— |p+—A| , 6.2
" om c ] 6.2)

%1=22v(”)(r—r,~,zi) ) (6.3)
i

where v'®(r—r;,z;) is the effective two-dimensional po-

tential of the uth kind of scatterer located at (r;,z;). We

choose the symmetric gauge A=(—Hy/2,Hx/2). An

eigenfunction of 5 is given by

1 . . X5
Ynx()= 7 exp ,%_,7;1 Xy(x—X), (6.4)
with
2
XN(x)z(zNN!\/;’l)_l/zexp _-;1—2 HN %] s
(6.5)

where Hy(p) is Hermite’s polynomial and L? is the area
of the system. The Hamiltonian is rewritten as

%0=2EN01?/LX0NX » (6.6)
NX

%1=222 2 (NX |v(’”(r—r,-,z,~) IN'X')aﬁ'XaN:X' ’
i u NXN'X

(6.7)

where ayy and ayy are the creation and destruction
operator, respectively. We introduce the Green’s func-
tion

GN(E)8yn8xx={(0|anx(E —) lagx | 0)) 6.8)
where |0) represents the vacuum state and (- -- )
means an average over all configurations of scatterers.
The Green’s function is diagonal with respect to
Landau-level index N and center coordinate X and in-
dependent of X. The density of states D (E) is given by

D(E)= [—i S ImGy(E +i0)
T | NX
— L L S mGyE +i0). 6.9)
T 27le N

The Green’s function is calculated perturbationally, using
iteratively
(E—20)"'=(E —5,)"
HE -\ (E-5)"", (6.10)

and is usually written in terms of the self-energy =y (E)
as

GN(E)=G(E)+GW(E)SN(E)Gy(E) , 6.11)

with G¥(E)=(E —Ey)~".
The self-consistent Born approximation includes con-
tributions of the diagram shown in Fig. 108 and gives
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SNE)=3F I ((NX |v™ |N'X'YN'X'|v'™ | NX))GNAE) , (6.12)
p i NX
where
I3 S ((NX o™ | N'XNN'X'| v(’”lNX))
i p X

=3 [dazN" @) [dr [dr [ dr' S o0 (e —r1,z)0nx (DY (00 P — 13,2, e (r')
m X'

dr dr’ , r—r’ r—r
=21r12§ f dz N{¥(z) D 2‘”12v(”‘)(r,z)v"‘)(r,z)JNN I 1 I | ; | ] | (6.13)
Here we have used
’ 1 r— ! . X d
S a9 =y [T exp (X1 (6.14
X .
with
172 N-—N'
N N x | x? x?
Inn)=(=D¥ NIy (x)= | T i R z. )
wn(x)=(—1) v (x) N!] Ve Ly 5 |exp 7 |’ (6.15)

where L§(x) is the associated Laguerre polynomial. In sufficiently strong magnetic fields one can neglect couplings
between different Landau levels. When E ~ Ey, one gets

Sy(E)=+T}Gy(E), (6.16)

with
, 2

r,%,=4><2712 [ dzn®e) [ 25 - 12 2 12 O ] . (6.17)

The density of states becomes
21172
1 E—Ey
D(E)= ol % —‘-I:;’— (6.18)

The density of states for each Landau level has a semielliptic form with the width T'y.

The nature of the level broadening I'y depends strongly on the range of scattering potentials. In the case of short-
range scatterers (d <1/(2N +1)1/? where d is of the order of the range), one can replace v'*)(r,z) by V'*)(2)8(r) and get
I'y=T with

2
=43 [ dzN“"(z)JﬁL 2 o 2 (6.19)

C ’
T T f
where 7 is the relaxation time for H =0 obtained by assuming the same scatterers. The level broadening is essentially
the lifetime broadening and independent of the Landau level. However, it depends on the strength of the magnetic
field. In the case of long-range scatterers, on the other hand, one gets

2
F”~4X2”IzzdeN(")(2)f sv#)(r,2)? 2dl;2JNN 1r—l‘”| ]
T
=43 [@zNP) [ dro(n =4V D) — (V)P (6.20)
2 |

where V(r) is the local potential energy. Therefore, the level broadening is of the so-called inhomogeneous type and is
determined by the fluctuation of the local potential energy. If the range is comparable to the wavelength of electrons
given by 1/(2N +1)!/2, the width depends on N in a complicated manner. Figure 109 gives an example of the range
dependence of Iy for scatterers with a Gaussian potential,

V(u)(z)
wd?

r2

_?-

v ®)(r,z)= (6.21)

The width is independent of N for both short- and long-range limits and becomes smaller with increasing N for inter-
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mediate ranges. The effect of the range is more important for large N because the electron wavelength becomes small-

er.

The transverse conductivities o, and o, (=0, ) are most easily calculated with the center-migration theory (Kubo

et al., 1965). One has

1 1
0 X | Im———— — g
2< x| g o [ImE—yf+io aix 07 » (6.22)
where f(E) is the Fermi distribution function and
-1 M r—r;,z;)
X=—IX7]=7 ZZNZ 3 |NX |l IN'X |afany - (6.23)
i NXN'X'

The conductivity can also be calculated perturbationally.

One has to sum contributions of diagrams which are con-

sistent with those taken into account in the self-energy diagram. In the self-consistent Born approximation one should
include the diagram shown in Fig. 108, and one gets, in sufficiently strong magnetic fields,

2 2

_of E—Ey

dE 1— |————
7,2,, JaE|—35 Fr (6.24)

where N should be chosen in such a way that Ey is closest to E and
2
dr dr'  ov'"¥(r,z) av(‘”(r 2) r—r
(CFP=4x2ml? dz N¥(z)5 ! . . :

Fr=txar 3 [aeNt@3 [ o0r f 0mt T (629

In the case of short-range scatterers one can expand
Jyn(x) with respect to x and obtain

(CF)P=(N+7)T%. (6.26)

The peak value of o, at zero temperature is given by

2

e 1
(0 xx Ipeak = ?E(N +3), 6.27)
which depends only on the Landau-level index N and the
natural constants and is independent of the magnetic
field and the strength of scatterers. In the case of long-

range scatterers one has
(CRP=(UVV()?), (6.28)

which is just the fluctuation of the gradient of the local
potential energy. The transverse conductivity vanishes in

x X
i 7\
i /N
=y = e\
i A Y %
// \\
// \\
GN = - + Vi AN
FIG. 108. A diagrammatic representation of the self-

consistent Born approximation. The crosses denotes scatterers
and the dotted lines represent interactions with them. The
first term in the self-energy causes a trivial shift of the energy
origin and can be omitted. The terms other than the first in
the bottom figure do not contribute to the conductivity in
strong magnetic fields.
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T
the limit of long-range scatterers. Figure 110 shows
peak values of o,, for scatterers with the Gaussian po-
tential (6.21). The peak value decreases rapidly with in-
creasing range in proportion to (I /d).

The Hall conductivity oy, (= —ayx) can be calculated
similarly (Ando et al., 1975) and is given by
Ngec
Oy =—"p +Aogyy , (6.29)
1.0
N
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FIG. 109. The level broadening ratio T'y/T as a function of
the range a=d /I of the Gaussian potential. After Ando and
Uemura (1974a).
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FIG. 110. The peak value of the conductivity (I'¥/T )%/
(N + %) as a function of the range a=d /I of the Gaussian po-
tential. After Ando and Uemura (1974a).

with - 21372
Aaxy=:2—2ﬁ [ dE [-g_é ] ;Z:vylj% B E;:?n
(6.30)

In the case of short-range scatterers one gets

(TR =(N+5)T*. (6.31)
Thus we have a relation:

(A0 = o s (6.32)
In the case of long-range scatterers, one has

(TR =4N +3)UVV(D)?)?, (6.33)

which vanishes in the long-range limit.
The above results can physically be understood in
terms of a simple diffusion picture, as has been shown by
Uemura (1974a, 1974b). In strong magnetic fields the
conduction takes place because of jumps of the center
coordinates of a cyclotron orbit caused by scattering. In
the case of short-range scatterers the distance of each
jump is of the order of the radius of the cyclotron orbit,
and the diffusion constant D* of the center of the orbit is
given by
_eN+ne

D* S

. (6.34)

where 7 is a lifetime of the orbit. Further, the uncertain-
ty relation gives the density of states near the center of
each Landau level,

1

D(Ep)~ z.
(Er) 271% #i

(6.35)
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Thus the Einstein relation gives

2
(0xe peak ~€*D (Ep)D* ~ S (N + 7). (6.36)
This agrees with Eq. (6.27) within a numerical factor.
The above intuitive derivation of the peak value of the
transverse conductivity shows that its independence of
relevant quantities such as the level width and H is a
consequence of a cancellation of the two effects: The
probability of jumps of the center coordinate is propor-
tional to the scattering rate. When the scattering rate is
large, however, the level broadening becomes large, and
consequently the jump probability decreases because of
the decrease of the density of final states. A similar ar-
gument is applicable also to the case of slowly varying
scatterers (Ando and Uemura, 1974a). Since the center
coordinate moves according to

¥ 1% 3¥(r) ,
#i  Jy
the diffusion constant is proportional to the fluctuation
of the gradient of the local potential energy. Equation
(6.32) is the same as that which the classical phenomeno-
logical expressions of o,, and o,, satisfy, i.e.,

(6.37)

Nye’t; .14
Oxy = m 1+(wc7f)2
N,ec 1 Ne’r, 1
H @7 Mmoo 1(w7s)
Ngec 1 (6.38)
H + COCTf Txx - ’

This also has a simple meaning: When an electric field
E, is applied in the y direction, the center of the cyclo-
tron motion moves in the x direction with a drift veloci-
ty v, =cE, /H, which gives rise to the Hall conductivity
—Nec/H. Effects of scattering can be regarded as a
frictional force acting on each electron, whose strength is
given by F, = —mu, /7y=¢E,/w.7s. The current in the
x direction due to this force is given by
Fy 1

ij=0xx (—e) = m‘ cT_f-oxxEy =AaxyEy .

(6.39)

In magnetic fields of arbitrary strength, the problem
becomes difficult because scattering processes between
different Landau levels become important. Even in the
simplest self-consistent Born approximation it is very dif-
ficult to get explicit expressions of the conductivity ten-
sor, and so far only the case of short-range scatterers has
been studied in detail (Ando, 1974c). It has been shown
that the peak value of o, decreases and that of Ao, in-
creases rather slowly with decreasing magnetic field if
o7y is sufficiently larger than unity. The conductivities
and the density of states for arbitrary values of w.7,
have been calculated numerically. When w7, is less
than unity, the oscillation becomes sinusoidal and one
has
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B Ne’rs 1 (we7s)*  20%kpT

Oxx -

m 1+(a>c7'f)2 1+(wch)2 ﬁwc

where simple parabolic bands and evenly spaced Landau

levels are assumed and the chemical potential p is as-
sumed to be sufficiently larger than fiw,. This equation
enables us to extract the effective mass and the zero-field
relaxation time 7, from experimental data of the tem-
perature dependence and magnetic field dependence of
the oscillation amplitude. This will be discussed in detail
in Sec. VL.LB. It should be noticed that the oscillatory
part of the conductivity does not contain (#iw./u)'/?, in
contrast to the result in a three-dimensional system. In a
three-dimensional system the nonoscillatory part of the
density of states increases as E!/? with increasing E be-
cause of the overlapping of the density of states of lower
Landau levels corresponding to large momenta in the
direction of a magnetic field, which gives rise to the fac-
tor (#iw./n)'”?. In the two-dimensional system the
nonoscillatory part of the density of states is essentially
independent of E and such a factor does not exist.
Nevertheless many people have used a simple formula for
three dimensions containing this factor in analyzing ex-
perimental results (Niederer, 1974; Eisele et al., 1976a,
1976b; Fang et al., 1977). This factor does not influence
the effective-mass determination, which is usually based
on the temperature dependence alone.

To examine the validity of the self-consistent Born ap-
proximation, the Born series has been summed up to in-
finite order (the so-called single-site approximation)
(Ando, 1974a). The results approach those in the self-
consistent Born approximation for high concentrations of
weak scatterers, i.e., when an electron feels potentials of
many scatterers at the same time. In other cases we
have to use the higher-order approximation. Especially
when the strength of scatterers is weak enough to neglect
coupling with different Landau levels and their concen-
tration is small, the density of states associated with each
Landau level has structure because of the appearance of
so-called impurity bands. Such impurity bands can ap-
pear both at the low- and high-energy edges of the Lan-
dau level, depending on whether the potential is attrac-
tive or repulsive. When the potential is attractive and
strong, the impurity band can appear only below the bot-
tom of the ground Landau level. The Hall conductivity
has also been calculated in higher-order approximations
(Ando et al., 1975). It has been noted that when each
Landau level is filled at zero temperature o,, takes its
classical value — N ec/H, even in the presence of local-
ized impurity states in the strong-field limit. This prob-
lem has attracted considerable attention, as will be dis-
cussed in Sec. VI.LB. An early discussion of the level
broadening and transverse conductivities in a kind of
single-site approximation was given by Ohta (1971a,
1971b). The important self-consistency requirement was
neglected in this work, however.

The self-consistent Born approximation is not suffi-
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(0,_.'7"]

exp (6.40)

’

o, cos oo,

cient in the energy region close to the spectral edges,
which is clear if we consider the unphysical sharp cutoff
of the density of states. The results obtained in this ap-
proximation, especially in strong magnetic fields where
the density of states vanishes between adjacent Landau
levels, are therefore not suitable for a detailed analysis of
the line shape of the conductivity tensor. To get reason-
able results near the spectral edges, one has to take into
account effects of multiple scattering. This is difficult,
however, since the simple multiple-scattering correction
does not give physically reasonable results because of the
analyticity problem (Ando, 1974b). In the case of high
concentrations of weak short-range scatterers, infinite
series can be summed up to infinite order in an approxi-
mate manner. One replaces terms by a common expres-
sion for each order of the perturbation expansion and
sums up the resulting asymptotic expansion. The profile
of the resulting density of states is a kind of average of
the elliptic form and a Gaussian form, as is shown in
Fig. 111. With increasing Landau-level index N the pro-

1.0
| ——£=05 wm=125
.......... E=1.0 m=1.0 (Gaussian)
———E=0.0 m=00 (SCBA)
w
S 05|
[ .
=
el i
0.0
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E/T

FIG. 111. The density-of-states profile of the ground Landau
level calculated by approximately summing up infinite series of
a perturbation expansion (the solid line). The broken line and
the dotted line give the elliptic and Gaussian form, respective-
ly. After Ando (1974b).
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FIG. 112. The density-of-states profile of Landau levels calcu-
lated by approximately summing up infinite series of a pertur-
bation expansion. It approaches a semielliptic form with in-
creasing Landau-level index N. After Ando (1974b).

file approaches the result of the self-consistent Born ap-
proximation, although the density of states has low- and
high-energy tails, as is shown in Fig. 112. This depen-
dence on N is consistent with the fact that the Born ap-
proximation becomes sufficient for large kinetic energy.
A similar calculation for the conductivity is difficult and
has not yet been carried out.

Gerhardts (1975a, 1975b, 1976) used a method of cu-
mulant expansion (or path-integral method) in calculat-
ing the density of states. The Green’s function is written

with

k0= exp —%;m 5. (6.42)

In the interaction representation one gets

K(t)=K0(t)<Texp ——% fotd'rﬁfl('r) > , (6.43)
with T being a time-ordering operator,

7 (t)=exp é%ot H1exp | — %Z’ot , (6.44)
and

K%t)=exp |— %Z/Ot] . (6.45)

A cumulant expansion of the time-ordered exponential in
Eq. (6.43) gives

<Texp —% fotdfrz’l(‘r) >=exp éx —SI—CV .
(6.46)
The first-order term,
C1=——;i—t<9f1>«, (6.47)

is trivial and can be neglected. The second-order term is
nontrivial and is given by

2
: '
C,= -—é Tfo d'rfo dr'[{or (1)) — ()] .

as (6.48)
GyN(E)= f Ow dt exp(—iEt)(0 | ayxyK (H)agy | 0) , (6.41) If the lowest nontrivial term is retained one has
I
Ky(t)=(0 I aNxK(t)aﬁ'x I 0)
i 1 dr dr'
=exp |——Eyt |exp | — =5 dz N{#X(z)2ml? —
L Il e #%f RN e s
-7 —r Ey—E
X v®(r,z)0 B A, 2y _E'__I.LL Inn |r—r| o 7 Noill, (6.49)
T .
with Thus, the density of states takes on a Gaussian form,
t r . —172
X(o,t)= | dr | d7'exp[—io(r—7") (E —Ey)?
fo fo p[ ] D(E)= 2112 2 %F}%{ exp -——2—1:2L“ ’
T
=L L —exp(—ian] . (6.50) N N
io o (6.52)
In a sufficiently strong magnetic ficld, one gets which is shown by the dotted line in Fig. 111. This ap-
i r2:? proximation, called the lowest-order cumulant approxi-
Ky(t)=exp “EENt exp [— a7 | (6.51) mation, can take into account higher-order effects par-
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tially and does not cause the unphysical sharp cutoff of
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the density of states. It gives, therefore, a theoretical
basis, together with the calculation of Ando, for using
the Gaussian form of the density of states in qualitative
line-shape analysis. Figure 112 shows that the line shape
calculated by Ando in higher approximation resembles
the elliptic form more closely than the Gaussian for
higher Landau levels. Such a result can be obtained in
the present approximation only if higher-order terms in
the cumulant expansion are included. It is rather diffi-
cult to calculate the transport coefficients in a consistent
approximation with this method, and Gerhardts intro-
duced a simplified approximation. The peak value ob-
tained for the transverse conductivity is a factor 7/2 as
large as Eq. (6.27). The transverse conductivity remains
finite in the limit of long-range scatterers. This result is
unphysical, since the potentials are ineffective in this lim-
it, and might originate from the inconsistency of the ap-
proximation for the Green’s function and that for the
conductivity.

The theory mentioned above can easily be extended to
an anisotropic case with the electron dispersion given by
two different effective masses, especially in strong mag-
netic fields (Ando, 1976d). The density of states and the
conductivities are given by expressions similar to Egs.
(6.18), (6.24), (6.29), and (6.30), where x and y directions
are chosen in the symmetry directions. The nature of
the level broadening is essentially the same as in the iso-
tropic system, as is expected. In the case of short-range
scatterers the transverse conductivity is most anisotropic,
and one gets

Oxxs Oyy=""—0xx , (6.53)
where m, and m, are the effective masses in the x and y
direction, respectively, =(mxmy)1/ 2, and T,, is the
conductivity in the isotropic system characterized by the
mass /7 and the same scatterers. With an increase of the
range the anisotropy decreases and the conductivity be-
comes isotropic in the case of long-range scatterers. Fig-
ure 113 shows an example of the calculated range depen-
dence of the anisotropy for scatterers with a Gaussian
potential. We can see the range dependence clearly. One
can also calculate the Hall conductivity in the aniso-
tropic system. However, the anisotropy does not affect
the Hall conductivity strongly. When a magnetic field
becomes weaker and mixing between different Landau
levels is important, the problem becomes considerably
more difficult, except in case of short-range scatterers.
In the case of short-range scatterers Eq. (6.53) is valid in
magnetic fields of arbitrary strength. In the case of
scatterers with finite ranges, however, we cannot give any
definite answers. Even the Boltzmann equation in the
absence of a magnetic field can be solved only with tedi-
ous numerical calculation or only approximately.

2. Dynamical conductivity

Dynamical properties of the inversion layer are usually
studied by measuring the transmission of far-infrared
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light incident normal to the surface. Emission can also
be used (Gornik and Tsui, 1978a, 1978b; Gornik et al.,
1980a). Usually the wavelength of the light is much
larger than the thickness of the inversion layer. The
response of the system to an external electric field can be
calculated by regarding the inversion layer as a conduct-
ing sheet having a two-dimensional conductivity tensor
0, (w), defined by

J,6(z) exp( —iwt)
= 3 0u,(0)E,(2)8(z)exp(—iwt) ,

v=x,y

where E,(z) exp(—iwt) is the electric field, and the sheet
is assumed to be at z=0. Using this equation we can
calculate the transmission coefficient easily (Ando,
1975a; von Ortenberg, 1975; Abstreiter et al., 1976b;
Chiu et al.,, 1976; Kennedy et al., 1976a). When the
conductivity is not too large we can easily show that the
change of the transmission of light linearly polarized in
the x direction is proportional to the real part of o, ().
Thus the problem is reduced to the study of the dynami-
cal conductivity o, (®). Note that Fabry-Perot—type
multiple reflection effects due to finite layer thickness
should be avoided in experiments. Otherwise various
lineshape distortions can appear in the transmission (von
Ortenberg; 1975; Abstreiter et al., 1976b; Chiu et al.,
1976; Kennedy et al., 1976a). Note also that the conduc-
tivity can become large and the line shape of the
transmission can deviate from that of the real part of
oxx(w), especially at high electron concentrations. A full
transmission coefficient should be used in analyzing the
line shape in such cases.

The theory discussed in the previous section can be ex-
tended to the calculation of the dynamical conductivity
0. (w) (Ando and Uemura, 1974d; Ando, 1975a). Here
we present only some of the results obtained. In the case

(6.54)

i

Oxx Range Dependence of
Transverse Conductivity
my/my,=2.9

[ N+1/2)emh ]

Oxx, Oyy

d/l

FIG. 113. An example of the range dependence of the
transverse conductivity in an n-channel inversion layer on a
Si(110) surface. Scatterers with a Gaussian potential are as-
sumed. After Ando (1976d).
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of short-range scatterers optical transitions between all
states in adjacent Landau levels become allowed, since
the level broadening is essentially the lifetime broaden-
ing. Consequently the resonance width is determined by
the level width itself. In the case of long-range scatterers
only the transition between states with nearly the same
relative energy measured from the center of each
broadened Landau level is allowed, since those states cor-
respond to those with nearly the same position of the
center of the cyclotron motion in the case of inhomo-
geneous broadening. The width of the resonance I'cy is

1

determined by the fluctuation of the gradient of the local
potential V(r), i.e.,

____{avrm»®)
V() —(V(D)))})H172 -

It is rather difficult to give an explicit expression of the
width of the cyclotron resonance in general cases. Ando
(1975a) has obtained the second moment of the spectrum,
A(#iw)?, when the Fermi level lies midway between adja-
cent Landau levels in strong magnetic fields:

Cer (6.55)

2
dr dr’ |[r—r'] r—r
2_~n. 12 .
A#iw )2 =27l % [ azNiu)2 [ el Bl /0 ; + N 1N 41 ;
2
— 2NN 41 l‘—ll‘ v¥(r,z)0#(r',2)

=3 [ dzNP(2) 3 v (2 Iy —Iy 1 1n 10D,
17 q

with

v (r,2)=T v;")(z) expliq-r) . (6.57)
q

We have A(#iw)*=T?/2 in the case of short-range
scatterers. There is a possibility, however, that the actu-
al width can be smaller than the second moment in the
case of long-range scatterers. As a matter of fact Eq.
(6.56) gives

AlFiw)? ~ {(I*V*V(1))?) ,

which is shown to be larger than T'Z; with the aid of
Schwarz’s inequality. Examples of o,,(w) calculated in
the self-consistent Born approximation for scatterers with
a Gaussian potential are given in Fig. 114. With increas-
ing range the linewidth becomes narrower than the level
width. A part of this effect is the same as the difference
between the usual lifetime of states and the velocity re-
laxation time in the absence of a magnetic field. The
line shape is strongly dependent on the position of the
Fermi energy, especially in the case of short-range
scatterers. This is a result of the Pauli exclusion princi-
ple and the discrete nature of the density of states
characteristic of the two-dimensional system. Thus it is
rather difficult to define the exact width of the transition
in this system at low temperatures. This strong depen-
dence of the dynamical conductivity on the position of
the Fermi level causes the appearance of quantum oscil-
lation of the cyclotron resonance line shape at low tem-
peratures. Usually the cyclotron resonance is observed
by sweeping H at a constant #iw. With the change of H
the Fermi level passes through many different Landau
levels successively, and an oscillatory behavior appears in
the cyclotron resonance line shape. The dynamical con-
ductivity o,,(w) has a dip when w, is smaller than o
and a peak when o, is larger than », when the Fermi
level lies midway between adjacent Landau levels. The

(6.58)
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(6.56)

T
period of this quantum oscillation is determined only by
the electron concentration N, as for the usual
Shubnikov—de Haas oscillation of the static conductivi-
ty. Examples of the results of numerical calculation for
an n-channel inversion layer on the Si(100) surface are
shown in Fig. 115. Short-range scatterers are assumed.
We can clearly see the strong quantum oscillation below
10 K. The asymmetry of the line shape is a consequence
of the fact that the level width is proportional to H!/2
The structure around H =30 kOe and 20 kOe is a
subharmonic structure, which is again a direct conse-
quence of the discrete density of states of our system.
Because of a coupling of different Landau levels due to
scatterers, the profile of the density of states of each Lan-
dau level has a small peak at the position of other Lan-
dau levels. This structure of the density of states gives
rise to the subharmonic structure at o, /w=—2-,§, ... in
the two-dimensional system. In three-dimensional sys-
tems such structure might exist in the density profile, but
is not strong enough to cause the subharmonic structure
in the line shape since the singularity of the density of
states is much weaker than in the two-dimensional sys-
tem. Those are the main characteristics of the cyclotron
resonance line shape in the two-dimensional system.
Prasad and Fujita (1977a—1977c, 1978; see also Fujita
and Prasad, 1977; Prasad, 1978, 1980) calculated the
width of the resonance using a more simplified approxi-
mation scheme. In their formalism one starts from the
self-consistent Born approximation and introduces a fur-
ther approximation to get an explicit expression of the
dynamical conductivity. It cannot describe the detailed
structure of the resonance line shape, such as the quan-
tum oscillation and the subharmonic structure, although
it is quite useful for qualitative discussion of the
broadening. They obtained an expression for the width
which is the same as the second moment (6.56). A dif-
ferent approach was used by Gotze and Hajdu (1979) and
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FIG. 114. Dynamical conductivity in the case of scatterers with the Gaussian potential at zero temperature. Iy is the level width
of the Nth Landau level and a=d/l. (a) The Fermi level lies just at the middle of the gap between the Nth and (N + 1)th levels.
(b) 1t lies at the center of the Nth level. Note that the peak is shifted to the higher-energy side for the half-filled case (b), especially
in the case of short-range scatterers. This causes the quantum oscillation of the cyclotron resonance line shape. After Ando
(1975a).

gave similar results for the broadening. Effects of pho-  B. Magnetotransport in the silicon inversion layer
non scattering at higher temperatures have been con-

sidered (Prasad et al., 1977; Prasad, 1979). Electron- 1. Case of strong magnetic fields

phonon interactions were also discussed by Horovitz and

Madhukar (1979). Various theories have been proposed As we have seen in Sec. IV.C, the screening of scatter-
in connection with effects of electron-electron interac- ing potentials by free carriers in the inversion layer plays
tions. Those will be discussed in Sec. VI.C. an important role in determining the conductivity and
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FIG. 115. Dynamical conductivity as a function of applied magnetic field in an n-channel inversion layer on a Si(100) surface.
Short-range scatterers are assumed. The broken lines are obtained by the classical formula in which the Lorentzian line shape with
a single relaxation time 7, is assumed. In the calculation use has been made of m=0.195m, and g*=2, and the valley splitting is

ignored. #iw=3.68 meV. After Ando (1975a).

the mobility. Since the Thomas-Fermi screening con-
stant is given by the density of states at the Fermi energy
at zero temperature, the discrete density of states in
strong magnetic fields makes the screening quite different
from that in the absence of a magnetic field. Thus the
application of the theory discussed in the previous sec-
tion is not a simple problem in realistic inversion layers.
The dielectric function in magnetic fields depends strong-
ly on the broadening of Landau levels, which is deter-
mined by the strength of scatterers, i.e., by the screening.
We have to determine the broadening and the screening
in a self-consistent manner. Such a calculation has been
performed only for the case in which the strong magnetic
field limit is applicable, i.e., when interactions between
different Landau levels can be treated perturbationally
(Ando, 1977d). The assumed scatterers are charged
centers, which have been assumed to be distributed al-
most uniformly in the oxide, and surface roughness. An
example of the results for H =100 kOe is shown in Figs.
116 and 117. In Fig. 116 are shown the calculated mo-
bility in the absence of a magnetic field, the width ob-
tained from Eq. (6.19), the width T'y of the Landau level
N where the Fermi level lies, and the second moment of
cyclotron resonance. Two different moments are given,
corresponding to the fact that we have two transitions,
from N to N +1 and from N —1 to N. The actual width
is expected to be given by an average of the two mo-
ments and might be smaller in the case of long-range
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scatterers. The width I'y depends on the position of the
Fermi energy Er and becomes very large when Ef lies at
the tail region of each Landau level. The moments of
the cyclotron resonance do not vary so much with N;.

4 H=100kOe, N; =3x107cm™3
= A=3A, d=25A M _
[ n
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5% | 5
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FIG. 116. Various kinds of widths calculated in the self-
consistent Born approximation in an n-channel inversion layer
on Si(100) for H=100 kOe. Charged centers in the oxide and
surface roughness are assumed as dominant scatterers. The
mobility at H=0 and the corresponding I"' are shown by the
dotted lines. The level broadening I'y depends strongly on the
position of the Fermi level, whereas the broadening of the cy-
clotron resonance (SR, x 41, TS _.x) does not vary so much.
After Ando (19774).
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FIG. 117. Peak values of 0., and Ao, in units of e?/m %4 in
an n-channel inversion layer on a Si(100) surface at H=100
kOe. The corresponding results for short-range 8-pctential
scatterers are shown by the dotted lines. After Ando (1977d).

The scattering potentials become long range because of
the decrease of the screening effect when Ep lies near the
tails. Except for these cases, both I'y and the moments
are given rather well by I'. This is rather a surprising
result, but is true of a relatively wide range of parameters
which gives reasonable values of the mobility. In Fig.
117 the peak values of o, and Aoy, are shown together
with the results for short-range scatterers, which corre-
spond to the same value of the mobility in the absence of
a magnetic field. The peak values become very small
when Ep lies in the tail region, since the potentials be-
come long range. In other cases, however, the values are
again well given by the results for short-range scatterers.
In weaker magnetic fields the short-range scatterer model
becomes slightly worse and the finite range of scatterers
becomes important, especially at low N;. In any case,
one sees that the model of short-range scatterers, which
has frequently been used because of its simplicity, works
rather well in discussing various qualitative features of
transport in inversion layers in strong magnetic fields.
However, there are some cases in which this simple
model is not appropriate.

In 1966 Fowler, Fang, Howard, and Stiles (1966a,
1966b) first observed the Shubnikov—de Haas oscillation
in an n-channel inversion layer on the Si(100) surface.
Some of the observed results are given in Fig. 118. Al-
though the line shape of the oscillation does not look as
ideal as that subsequently observed for better samples
with lower oxide charge or higher mobility, it shows all
the characteristic behaviors which will be discussed later
in this section. From the constant period in N; of the
oscillation and the temperature dependence of its ampli-
tude, Fowler et al. confirmed that this system was a
two-dimensional electron system characterized by an ef-
fective mass which is close to the conduction-band mass
of Si. The spin and valley splittings were also observed
in strong magnetic fields. As has been discussed in Sec.
IIL.A, the ground electric subband in the r-channel in-
version layer on the silicon (100) surface is given by the
two valleys located in the [100] and [100] directions.
These are degenerate within the effective-mass approxi-
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FIG. 118. The magnetoconductivity for varying magnetic
fields as one crosses from the intermediate-field region to the
high-field region, observed by Fowler, Fang, Howard, and
Stiles (1966a, 1966b). After Stiles (1974b).

mation, but the degeneracy can be lifted. This problem
will be discussed in detail in Sec. VIL.A.

A detailed and systematic measurement of o,, for
samples having high mobility was made by Kobayashi
and Komatsubara (Ando et al., 1972b; Komatsubara
et al., 1974) after the theoretical prediction (Ando and
Uemura, 1974a) of the peak value of o,,; see Eq. (6.27).
An example of their results is shown in Fig. 119. The
lowest four peaks correspond to the ground (N =0) Lan-
dau level, the next four peaks to N =1, and so on. The
splitting of the peak into two, observed in N =2 and 3
Landau levels, is considered to be spin-Zeeman splitting,

15t

10

Hey (10° cm?IVs)

r (mev)

0 50 100 150 200
Gate Voltage (V)

FIG. 119. An example of the oscillation of the conductivity
observed by Kobayashi and Komatsubara (Ando et al., 1972a;
Komatsubara et al., 1974) in an n-channel inversion layer on a
Si(100) surface at H=95 kOe. The effective mobility and the
corresponding level width T are also shown. After Ando and
Uemura (1974a).
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FIG. 120. Magnetoconductivity oscillations for different fields
observed by Kobayashi and Komatsubara (Ando et al., 1972a;
Komatsubara et al., 1974). After Ando et al. (1972a).

and the additional splitting observed in N =0 and 1 is
considered to be valley splitting. In Fig. 120, o, is
shown for various strengths of H. It shows clearly that
the peak values are almost independent of H, which is
explained by dominant short-range scatterers. The ex-
perimental peak values are plotted as a function of N in
Fig. 121. If one takes into account the degree of the
splittings observed experimentally, one can conclude that
the theoretical peak values for short-range scatterers are
in semiquantitative agreement with the experiments.

Lakhani and Stiles (1976b) also made a systematic
study of the peak values of o,, for a wider range of H
and for different values of substrate bias. Their peak
values tend to decrease rather more rapidly with decreas-
ing H than the theoretical prediction for very short-range
scatterers. This can qualitatively be explained by the
result of the calculation for realistic scatterers discussed
above. Quantitatively, however, the calculated H depen-
dence of the peak values is too large in comparison with
the experiments. This suggests the existence of addition-
al and unknown scatterers in actual inversion layers. La-
khani and Stiles suggested that intervalley scattering
which couples different valleys might be important (see
Sec. IV.C for more detailed discussion of scattering
mechanisms). Peak values of o,, have also been studied
as functions of the source-drain electric field (Kawaji and
Wakabayashi, 1976; Kawaji, 1978).

As has been shown in Sec. VI.A, we can determine the
broadening of levels from the Hall conductivity o,,. A
measurement of the Hall conductivity o,, was first made
by Igarashi, Wakabayashi, and Kawaji (1975) in strong
magnetic fields. They used a wide rectangular sample
(length-to-width ratio —;—) and deduced o,, and o,, from
the measured source-drain current and Hall voltage.
Figure 122 gives an example of their results. The experi-
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FIG. 121. The peak values of the transverse conductivity

versus Landau level indices. Three broken lines represent
theoretical values of the peak heights of fourfold, twofold, and
no degeneracy cases, respectively. White and black circles are
experimental results for two different samples at 50 <H <95.5
kOe and at 1.4 K. After Ando et al. (1972a).

ments are qualitatively explained by the theory. For ex-
ample, the theory shows that the effective width of Aoy,
as a function of the Fermi energy is narrower than that
of o,,. This explains the experimental result that the
spin splitting is resolved in Ao,, but not in o,, for
N =3. Kawaji, Igarashi, and Wakabayashi (1975) made
a line-shape analysis of their results using a Gaussian
form of the density of states. The spin splitting and its
enhancement due to the exchange effect (see Sec. VI.B.3)
was taken into account, but the valley splitting was not
in the analysis. The calculated line shape is given by the
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FIG. 122. The conductivities 0. and o, measured by

Igarashi, Wakabayashi, and Kawaji (1975) together with a

theoretical prediction based on a line-shape analysis (Kawaji,

Igarashi, and Wakabayashi, 1975). After Kawaji, Igarashi,

and Wakabayashi (1975).
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solid lines. The agreement is satisfactory for o,, but not
so good for Ao,,, for which the absolute value is much
larger than the theoretical one. Various possible correc-
tions for Aoy, in higher-order approximations have
theoretically been considered, but are too small to ex-
plain this large disagreement (Ando et al., 1975). Waka-
bayashi and Kawaji (1978; see also Kawaji, 1978) have
shown that the observed oy, and o,, depend strongly on
the sample geometry and that the simple procedure for
determining o, and oy, from measured quantities does
not give correct values for the conductivity tensor. For
wide samples, the value obtained for o, is close to that
observed in circular samples (the Corbino geometry) and
is reasonable, but the Hall conductivity turns out to be
unreasonable. For long samples, on the other hand, the
transverse conductivity becomes completely different
from that of circular samples. It has been suggested that
a large electric field distortion near the edges of the sam-
ples is responsible. Because of these problems a direct
comparison between theory and experiment was not pos-
sible for the Hall conductivity. o,, has been successfully
obtained by measuring the Hall current instead of the
conventional Hall voltage for wide samples (Wakabayashi
and Kawaji, 1980a, 1980b). The electric field distortion
is not so serious in this method. Figure 123 shows an
example of the results obtained. A solid line in o, is
the result calculated from the measured o,, with
Ao,y ~Toy, /fiw,, where I' is obtained from the mea-
sured mobility through Eq. (6.19). One sees that the
theory explains the experimental results on the absolute
value of Ao, quite satisfactorily.
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FIG. 123. The conductivities o, and o,, (dotted curves) ob-
served by Wakabayashi and Kawaji (1980a, 1980b) in Hall-
current measurement. The solid line for the transverse conduc-
tivity represents that observed in the Corbino geometry (circu-
lar samples) giving purely o,. The solid line for the Hall con-
ductivity is calculated through Ao, =(I"/fiw.)o,, by using a
measured mobility in the absence of a magnetic field. After
Wakabayashi and Kawaji (1980b).
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The theory discussed in Sec. VLA predicts that
Oyxy=—Nsec/H =Ne?/2m# when the Fermi level lies
midway between adjacent Landau levels N and N +1 in
sufficiently strong magnetic fields. In 1980 von Klitzing,
Dorda, and Pepper (1980), Braun, Staben, and von Klitz-
ing (1980), and Kawaji and Wakabayashi (1981) mea-
sured oy, on the Si(100) surface and showed that oy, is
independent of N; in the range where o,, is extremely
small in comparison with its peak value. An example of
the experimental results is given in Fig. 124. Von Klitz-
ing, Dorda, and Pepper (1980) showed that the value of
oy, in the flat region is given by an integer multiple of
e?/2m#i to high accuracy (within a relative error of
~1.5X107°%). They suggested further that it is possible
to determine the fundamental constant e?/# more accu-
rately. This application, as well as the use of the quan-
tum Hall effect as a possible secondary resistance stand-
ard, has attracted considerable attention and is being ac-
tively pursued in the standards laboratories of several
countries (Taylor and Phillips, 1982). A review has been
given by von Klitzing (1981). The quantum Hall effect
has also been found in GaAs-(Al,Ga)As heterojunctions
(Tsui and Gossard, 1981; Narita et al., 1981a; Baraff and
Tsui, 1981). These interesting developments have raised
a fundamental problem on the validity of the theoretical
prediction obtained in the previous section within rather
simple approximations (Aoki and Ando, 1981; Prange,
1981; Laughlin, 1981).

The Hall conductivity oy, is given by Eq. (6.29). The
correction Ao,, arising from the presence of scatterers is
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FIG. 124. Recordings of the Hall voltage, Uy, and the voltage
drop between the potential probes, U,,, as a function of the
gate voltage at T'=1.5 K. The magnetic field is 18 T. The
oscillation up to the Landau level n =2 is shown. The Hall
voltage and Uy, are proportional to p,, and p,,, respectively,
where Py =0u/(0% + a,fy) and p,, = —0y, /(a,fx +cf,fy). The
inset shows a top view of the device with a length of L =400
pm, a width of W =50 um and a distance between the poten-
tial probes of L,,=130 um. After von Klitzing, Dorda, and
Pepper (1980).
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written as (Kubo et al., 1965) ‘

et f(Eq)
" iL? 54 (Eq—Eg+i0)?

X[(a|X|B(B|Y|a)

—(@|Y|BBIX|a)], (659
where |a) describes eigenstates and E, corresponding
energy. When the state | ) is localized, we have

(@] X | B):é(a X, B)

=71ﬁ—(EB_Ea>(a[X 8. (6.60)
With the aid of [X,Y]=il? we immediately see that the
contribution in Agy, of the state |a) is given by ec/H,
which exactly cancels the corresponding term in the first
term of (6.29). This means that o, becomes flat as a
function of N; as long as the Fermi level lies in the ener-
gy region of localized states. This agrees with an intui-
tive picture that localized states carry no current and ex-
plains the experimental results. It can immediately be
shown from Eq. (6.59) that o, vanishes when a Landau
level is completely occupied by electrons in a strong-field
limit where mixing between different Landau levels is not
important. Therefore, oy, is given by the same value (an
integer multiple of e2/27#) as in the absence of scatter-
ers, even in the case when some of the states are local-
ized. This has a simple physical meaning: The induced
current in the x direction in an infinitesimal electric field
E, in the y direction is written as

x=—e S fE )N | X |a)

a |— |a'

c
—-—Hgf(Ea')

—{—eEy] , (6.61)

where V(r) is the local potential energy and |a’) is the
eigenstate in the presence of E,. In the strong-field limit
we have

YD) = cRx¥nx(r), (6.62)
X
and
R4 14
18 e | = ~—5y=0, (6.63)
§ [“ 3y 27712< 3y )

where ( - -- ) means the spatial average and use has
been made of the orthogonality of cfy and Eq. (6.14).
Therefore, we have Ao,, =0 when each Landau level is
completely filled with electrons. In localized states wave
functions deform infinitesimally in the electric field in
such a way that the effective field of scatterers
(a'| 3V /3y |a’) exactly cancels the external field E,.
On the other hand, wave functions of some extended
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states deform in the opposite way because their wave
functions are orthogonal to localized wave functions, and
electrons move faster than —cE, /H by an amount given
by the effective field due to scatterers. This extra Hall
current compensates for that not carried by the localized
electrons. '

Under actual experimental conditions, mixing between
different Landau levels cannot be neglected completely
and might give rise to corrections to the value of Oxy-
This interesting problem has not been fully studied yet,
although there is some indication that higher-order mix-
ing effects are not important (Prange, 1981; Ando, un-
published). Laughlin (1981) has presented an argument
which shows that the Hall conductivity should be exactly
an integer multiple of e?/h in arbitrary magnetic fields
as long as the Fermi level lies in localized states and a
gap exists in the density of extended states. The problem
has also been studied by Thouless (1981).

There have been attempts to obtain the width of the
Landau levels by measuring the temperature dependence
of the minimum values of o, when the Fermi level lies
midway between two adjacent levels (Nicholas et al.,
1977, 1978; Englert and von Klitzing, 1978). If there is
no overlap of the density of states of adjacent levels, o,
is determined by thermal excitation of electrons to the
Landau levels and is expected to be given by

AE —2T
2kpT

(O xx Imin €Xp 5 (6.64)

where AE is the separation of the levels and I is their
width. Nelgecting valley splitting, Nicholas et al. and
Englert and von Klitzing determined I' from their exper-
imental results. The I'’s obtained in this way are consid-
erably smaller than the width obtained from zero-field
mobilities and have no simple relationship with them.
This is not surprising. As has been discussed above,
scattering when the Fermi level lies near the tail of Lan-
dau levels can be quite different from scattering in the
absence of a magnetic field, due to the difference of the
screening effect. Further, this determination of the width
is closely related to the localization in strong magnetic
fields (see Sec. VI.D).

Warm-electron effects in strong magnetic fields were
studied theoretically by Uchimura and Uemura (1979a,
1979b). They solved an energy-balance equation for the
gain from the applied electric field and the loss to the
phonon system and calculated the increase of the tem-
perature of the electron system. In spite of the discrete
density of states the temperature increase does not show
singular behavior as a function of the electron concentra-
tion. This is due to a cancellation of the density-of-states
function appearing in the expressions for the energy loss
and gain terms. The results were compared with experi-
mental results (Kawaji and Wakabayashi, unpublished),
which were estimated from comparison between the con-
ductivities for high fields at low temperatures and for
low fields at elevated temperatures. The calculated tem-
perature rise has turned out to be slightly smaller than
the experiments.
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2. Shubnikov-de Haas oscillation in weak magnetic fields

When the magnetic field becomes weaker, the conduc-
tivity exhibits a sinusoidal oscillation. In general we can
write it as

af
o= [ {_EE dE 0, (E) . (6.65)
In sufficiently weak magnetic fields we have
2nE (6.66)

axx(E)=F(°’(E)—cos—ﬁm—E“’(E) ,

c

where FI°E) and F'"(E) are slowly varying functions of

E. Thus we have at low temperatures
20%kg T " 2?ky T

T csc o, c

oS 277“ F(l)(,u,) ,

Ox ——"ZF(O)([.L) "
[4

(6.67)

where p is the chemical potential. Therefore we can
determine w, or the effective mass m defined by
o, =eH /mc from the temperature dependence of the os-
cillation amplitude of o, if F'® and F'" are indepen-
dent of temperature. Very early (Fowler et al.,, 1966b)
the mass was found to be (0.21+0.01)m, at low N;.
Smith and Stiles (1972, 1974; see also Stiles, 1974a,
1974b) made a systematic study of such temperature
dependence and determined the effective mass as a
function of N,. It is about 15% enhanced from the
conduction-band mass m,;=0.191m, around
Ny=1x10"” cm™? and decreases with increasing N;.
This N, dependence is in the opposite direction to that
expected from nonparabolicity and is considered to be a
result of electron-electron interactions. It has provoked a
lot of theoretical investigations. As has been discussed in
Sec. ILF, the theoretical calculation of the mass enhance-
ment due to electron-electron interactions explains the
experimental results reasonably well. Furthermore, the
enhancement has turned out to be in agreement with that
estimated from the so-called subharmonic structure of
the cyclotron resonance line shape (Kotthaus et al.,
1974a; Abstreiter et al., 1976b). The position of the
subharmonic structure has been shown by Ando (1976e)
to be determined by the effective mass enhanced by the
many-body effect. This will be discussed in more detail
in Sec. VI.C.1.

Many later experiments, however, cast some doubt on
the accuracy of the effective masses determined in this
way. Stiles (1974b) made similar experiments in tilted
magnetic fields, and obtained mass values strongly
dependent on the spin splitting, although the general ten-
dency of the mass to be enhanced, and decrease with N,
was the same as that determined by Smith and Stiles.
Lakhani, Lee, and Quinn (1976) studied effects of the
substrate bias and found that the mass increased when
electrons were brought close to the surface. However,
the mass obtained in the absence of the substrate bias
showed a completely opposite behavior to that observed
by Smith and Stiles, i.e.,, the mass increased with N,.
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Fang, Fowler, and Hartstein (1977, 1978) made a more
systematic study of the temperature dependence of the
Shubnikov—de Haas oscillation. They determined the
mass for different values of H, substrate bias, bulk dop-
ing, and concentrations of charges in the oxide. Their
conclusion is rather disappointing. According to them
the masses obtained from such an analysis do not behave
in a consistent way as a function of the doping and the
substrate bias. If the enhancement were caused by an in-
trinsic effect, such as electron-electron interactions, the
mass values obtained for the same Ny, should be the
same. Their results suggest that the masses derived from
an analysis of Shubnikov—de Haas oscillations depend
on the detailed nature of scatterers in the system. This
fact has been demonstrated by changing the concentra-
tion of charges in the oxide. For low concentrations of
the oxide charges the masses obtained show behavior
similar to that found by Smith and Stiles, but they show
opposite N; dependence when scattering due to the oxide
charges becomes important.

There might be several possible reasons for such a
strange behavior of the temperature dependence of the
Shubnikov —de Haas oscillations. As has been shown in
Sec. IV.C, the screening of scattering potentials by free
carriers in the inversion layer plays an important role in
determining the mobility. Thus the oscillatory behavior
of the screening effect can cause additional temperature
dependence of the term F® and F‘! when the oscillation
amplitude is not sufficiently small. As a matter of fact,
the Thomas-Fermi screening constant (g—0) is given by

2
4= [aE (6.68)
K

Sf
—oF ]D(E).

In the case of short-range scatterers we have the oscilla-
tion of g; in weak magnetic fields, given by

_ 2re m 2 21T2kB T 27Tsz T
s K 2w fiw, fiw,
X cos—z—w—-li exp | — T , (6.69)
1"i€0c T f
where use has been made of a result (Ando, 1974c¢):
m 27E T
D(E)= 1—2cos exp | — (6.70)
202 fiw, P O, Ty

The spin and valley degeneracies have been neglected, for
simplicity. There have been some theoretical investiga-
tions on the screening in magnetic fields (Lee and Quinn,
1976; Horing et al., 1974; Horing and Yildiz, 1976).
However, explicit expressions for the dielectric constant
cannot easily be obtained for nonzero values of g, espe-
cially in the presence of level broadening due to scatter-
ers. Further, so far there has not been any reliable
theory of the Shubnikov —de Haas oscillation for realistic
scatterers, and we can not rule out the possibility that
such a change in the screening is responsible for the
strange behavior of the effective mass. A possible tem-
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perature dependence of the spin and valley splittings due
to the change in the many-body effect (see Sec. VI.B.3)
also affects the temperature dependence of the oscillation
amplitude. Another possibility is a strong perturbation
of the energy spectrum due to the existence of scatterers.
In the presence of impurity-bound states, energy levels of
low-lying extended states are pushed up due to
quantum-mechanical interactions. Consequently the
separation between adjacent Landau levels becomes
smaller, causing an increase of the effective mass
(Overhauser, 1978). This model predicts that the effec-
tive mass increases with impurity concentrations, which
is, however, opposite to the behavior obtained by Fang,
Fowler, and Hartstein (1977, 1978). An effective-mass
modification caused by impurity scattering has been pro-
posed also by Sernelius and Berggren (1980). There is no
doubt that a large part of the mass enhancement and its
strong dependence on the electron concentration in
high-mobility samples is due to electron-electron interac-
tions discussed in Sec. ILF. At present, however, it is
hard to separate experimentally the exact contribution of
the electron-electron interaction from other kinds of ef-
fects.

As is clear from Eq. (6.40), the oscillation amplitude
decreases exponentially with decreasing H. This so-
called Dingle factor was used to determine the relaxation
time in this system. Fowler (1969, unpublished) obtained
relaxation times which were in reasonable agreement
with the values deduced from the mobility at high N
but which were much larger at low N,;. Niederer (1974)
made similar measurements and obtained results which
were in good agreement with the mobility around the
electron concentration where the mobility had a peak,
but became smaller at high N,. Lakhani, Lee, and
Quinn (1976) used this method to show that the relaxa-
tion time decreased with increasing negative substrate
bias. Experiments of Fang, Fowler, and Hartstein (Fang
et al., 1977, 1978; Hartstein and Fang, 1978) gave results
in good agreement with the mobility. Although there
still remain some disagreements between the experimen-
tal results, one can conclude that the relaxation time
determined from the oscillation amplitude is roughly
equal to the relaxation time which determines the mobili-
ty in the absence of a magnetic field. This fact is rather
surprising because there is no a priori reason that the
two kinds of relaxation times should be the same for ar-
bitrary scatterers. It might be related to the fact that the
short-range scatterer model works quite well in strong
magnetic fields. Hartstein and Fang (1978) investigated
the Dingle temperature (kpTp=7%/2m7s) for different
concentrations of charged centers in the oxide. They
have found that the oxide charge dependence of the Din-
gle temperature agrees quite well with the theoretical
prediction.

3. Spin and valley splittings

We have seen in the previous section that the observed
values of o,, are explained by the theory quite well.
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There remains the problem of explaining the line shape
of o,,, especially the observed degree of splitting for dif-
ferent Landau levels. The measured mobility and the
level width calculated from Eq. (6.19) are shown in Fig.
119. If one assumes a g factor of two, the spin-Zeeman
energy gupH (typically, 1.16 meV at H =100 kOe) is
smaller than the level width I', and one cannot expect to
see either the spin splitting or the valley splitting, which
is even smaller than the spin splitting for low-lying Lan-
dau levels (see Sec. VIL.A for a detailed discussion on the
valley splitting). Further, the width is a relatively slowly
varying function of N;, and one cannot expect a large
change of the degree of the splitting with increasing Lan-
dau levels observed experimentally.

In 1968 Fang and Stiles (1968) performed a celebrated
experiment. In the electric quantum limit the Landau-
level structure is determined by the component of a mag-
netic field normal to the surface, and the spin splitting is
given by the total magnetic field, when the magnetic
field is tilted from the normal direction (see Sec. IIL.D).
Thus the separation of Landau levels and that of dif-
ferent spin states can be controlled independently. An
example of observed oscillation of the transconductance
do,, /dN; in tilted magnetic fields is given in Fig. 125.
From the characteristic change of the line shape, Fang
and Stiles determined the tilt angle where the energy
separations between adjacent levels (N,?) and
(N,1), (N,!) and (N +1,1), are equal to each other.
From such a tilt angle one gets a relation between the g
factor (g5) when the Fermi level lies midway between
the (N,1) and (N, ) levels and the g factor (gf) when it
lies between the (N, !) and (N +1,1) levels,

' g20
po—ei
597°
=
[
=4
o
= —
@
@
< 575°
[
)
et
53°
1 1 1 1 1 1 1
o | 2 3 4 5 6 7
Ng(10'2cm~2)
FIG. 125. Transconductance oscillations with the surface-

electron concentrations at 90 kOe for different tilt angles 6.
The arrows identify the surface-electron concentration at which
the energy separations are equal. After Fang and Stiles (1968).



5562

gsupH = fieH cosO—grupgH . (6.71)
mc

Putting g/ =g§ and using m =m, =0.191m, they deter-
mined the g factor for various values of N;. The g factor
is strongly enhanced from the bulk value (~2) and in-
creases drastically with decreasing electron concentration.
Note, however, that the absolute value derived in this
way can be somewhat in error if the mass is different
from the bulk value.

The g-factor enhancement has been explained by the
exchange effect among electrons in the Landau level. Let
us assume that the number of electrons with 1 spin is
larger than that of electrons with | spin because of the
spin-Zeeman splitting. Electrons with | spin feel more
repulsive force than those with 1 spin, since electrons
with the same spin cannot be close to each other due to
the Pauli exclusion principle and electrons feel stronger
repulsive force from electrons with different spins. The
original splitting is therefore enhanced by electron-
electron interactions. Such enhancement of the g factor
has been calculated by a number of authors in the weak
magnetic field limit, as has been discussed in Sec. ILF.
The actual experiments were performed in strong mag-
netic fields, where the quantization into Landau levels is
appreciable. Thus the assumption that g/ =g5 is actual-
ly not so good, since the difference of the numbers of
electrons with 1 and | spins is different for the two cases
corresponding to g7 and g5. In strong magnetic fields
the density of states becomes discrete and the difference
in numbers of electrons with t and | spins, to which the
enhancement is proportional, depends strongly on the po-
sition of the Fermi level. When the Fermi level lies at
the middle of the gap between (N, 1) and (N, ) levels, the
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difference becomes maximum and the g factor has a cer-
tain maximum value larger than 2. When it lies midway
between the (N, !) and (N +1,1) levels, the difference be-
comes minimum and the g factor has a minimum value
close to 2. Therefore the g factor oscillates with the
change of Nj.

This oscillatory g factor has been calculated in the so-
called screened Hartree-Fock approximation (Ando and
Uemura, 1974b, 1974c; see also Uemura, 1974a, 1974b).
The effective g factor is defined by

g'uyH =gupH +2y,—Zy, . (6.72)
Here, we have
Vi(q)
Syi—Zh= § s(q,% )JNNuq)Z(nN,—nM) , (673

where ny, is the filling factor of the Landau level (N,o),
which equals one when the level is filled by electrons,
V(q) is the Fourier transform of the effective two-
dimensional electron-electron interaction given by
V(q)=(2me®/Rq)F(q) with F(q) being the form factor
given by Eq. (2.51), and €(q,0) is the static dielectric
function. The dielectric function is calculated within the
random-phase approximation in strong magnetic fields.
Since the difference of the occupations, ny,—ny,, and
the dielectric function depend on the energy separation of
the 1 and | spin levels, one has to determine the splitting
self-consistently. An example of the results is shown in
Fig. 126. The g factor oscillates with N, and peak
values increase with increasing magnetic fields. Figure
127 shows the ratio g*upH /Ty when the Fermi level
lies midway between t and | spin levels. The points
connected by the dashed lines are the values obtained by

Ns (102cm2)

FIG. 126. Calculated oscillatory g factor as a function of the electron concentration in magnetic fields. The solid and broken lines
represent the g factor for the level width I'y =T and 0.8T, respectively. After Ando and Uemura (1974b).
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Nipy (x10'2cm-2)

FIG. 127. The ratio of g*upH, when the Fermi level lies at
the middle point between t and | levels, to the level width I'y.
The points connected by broken lines are the values obtained
by neglecting the enhancement of the g factor (g*=2). Those
connected by solid lines are obtained by the values for
I'y=0.8T" in Fig. 126. After Ando and Uemura (1974b,
1974c).

neglecting the enhancement of the g factor. The points
connected by the solid lines are obtained by the enhanced
g factor (g*). When this ratio is larger than a certain
critical value, (g*ugH /T'y)., the spin splitting can be
resolved in the line shape of o,,. Although the critical
value depends on the actual form of the energy depen-
dence of o4, it is reasonable to assume that
(g*upH /Ty). ~1. Therefore the theory predicts that
the spin splitting should be seen in levels with N <2 in
accordance with the experimental results.

Because of such oscillatory behavior of g*, we cannot
determine the value of g* from Eq. (6.71) even if we
know the tilt angle 6. Kobayashi and Komatsubara
(1974) performed a tilted magnetic field experiment simi-
lar to that of Fang and Stiles (1968), and obtained the
upper and lower bounds of the actual values of g*. Since
g5 >gL we can get gm,, by putting g7 =2 and gmin bY
putting g7 =gg. Their values are given in Fig. 128 to-
gether with the results of Fang and Stiles. Calculated
values of g* for the tilted magnetic fields experimentally
found are also shown. The calculated g§ lies between
Zmin and g, except for low Landau levels N =0 and 1,
where the sharp cutoff of the density of states calculated
in the self-consistent Born approximation causes singular
results. One can conclude that the experiments are ex-
plained by the enhancement of the g factor rather well.

By further tilting magnetic fields one can bring about
a situation in which the levels of (N,!) and (N +1,1)
coincide with each other and can obtain the g factor.
From the above discussion it is clear that the g factor ob-
tained by this coincidence method can give different
values of the g factor from that of Fang and Stiles (1968).
Kobayashi and Komatsubara (1973; see also Komatsu-
bara et al., 1974) obtained a g factor which was very

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

M= Tscea
s ———— [ = 08T,

Hiotat = 95 kOe

\
gmax \ fl
4 |~ | |
:n | \\1' Kobayashi-Komatsubara
i N=:1 i Fang-Stiles
3 -,
2
0 2
Ns (10%cm 2)
FIG. 128. Oscillatory g factor under tilted magnetic fields

versus electron concentration Ni,,. Hioa is 95 kOe. H, (com-
ponent perpendicular to the surface) is shown in the figure.
The solid and broken lines represent the g factor for Cy=TI
and T['y=0.8T, respectively. The upper (gm.x) and lower
bounds (g,i,) obtained by Kobayashi and Komatsubara (1974)
and the value obtained by Fang and Stiles (1968) are also
shown.

close to the bulk value of 2. There seemed to be a prob-
lem, however, concerning the determination of the tilt
angle where the coincidence occurred. Landwehr,
Bangert, and von Klitzing (1975) made similar experi-
ments more carefully and showed that the g factor ob-
tained in this coincidence method was also enhanced.
The same result was obtained recently by Englert (1981).
Theoretical calculation for such a large tilt angle has not
yet been done, however.

Lakhani and Stiles (1973) proposed a method to mea-
sure g5 by considering the minimum value of o,, be-
tween adjacent levels. They assumed that all the quanti-
ties except the level separations remain unchanged with
the change of H and that the minimum values of o,,
depended only on the energy separation of the two adja-
cent levels. At a constant total magnetic field they
determined the tilt angle where the average of the
minimum values for the cases when the Fermi level lies
at the midpoint between (N,!) and (N, 1) levels and the
midpoint between (N, !) and (N +1,1) levels become the
same as the minimum value of o,, for the case when the
Fermi level lies midway between (N, 1) and (N,!) in the
magnetic field perpendicular to the surface. They ob-
tained experimental values of g§ using Eq. (6.72) assum-
ing gf =2. Although this seemed to be an excellent idea
to determine gg, the peak value of the oscillatory g fac-
tor, the basic assumption was not correct since the level
broadening depends on the normal component of the ap-
plied magnetic field and changes with the tilt angle.

Englert and von Klitzing (1978) proposed an ingenious
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way to determine g; and g& independently. They mea-
sured minimum values of o,, for different values of H at
a fixed Hcosf. In such a case all the quantities like
broadening and Landau-level separations are expected to
remain unchanged except the spin splitting. If the densi-
ties of states of adjacent levels do not overlap, the con-
ductivity can become nonzero due to thermal excitation
of electrons into adjacent levels. Thus the magnetic field
dependence of the minimum value of the o,, is given by

grmupgH

, (6.74)
2kyT

(axx )min o« eXp

for the case when the Fermi level lies midway between
the (N,t) and (N +1,1) levels. They have obtained
gf =2 for N=1 and 2. For the case when the Fermi
level lies midway between (N, 1) and (N, ) we expect

gsupH

— 6.75
2kpT (6.75)

(Uxx )min < exp

They obtained g& ~2.6 for N =1. Thus they have shown
that the enhancement is really caused by the exchange ef-
fect and demonstrated for the first time the oscillation of
the g factor as a function of N;. The actual values of g
obtained are not accurate enough, however, because the
overlapping of the densities of states of the two adjacent
spin levels is still appreciable. Stronger magnetic fields
will be necessary to obtain more accurate values.

At the early stages there was some controversy as to
whether the observed enhancement of the spin splitting is
a real one or an apparent enhancement originating from
the fact that the gate voltage is proportional to the elec-
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tron concentration rather than the Fermi energy (Narita
et al., 1973; Narita and Komatsubara, 1974; Komatsu-
bara et al., 1974; Niederer, 1974). There still seem to ex-
ist some controversies on the coincidence method for
determining the spin splitting. Ko6hler and Roos (1979¢)
have raised the question whether the valley splitting seri-
ously affects the experimental results on the spin split-
ting. Englert, von Klitzing, Nicholas, and Landwehr
(1980; see also Englert, 1981) have argued against it.

So far we have completely disregarded the existence of
the valley splitting, which plays an important role in
determining the actual line shape of o,,. As will be
shown in Sec. VILA, the calculated valley splitting is
roughly proportional to Nj, in contrast to the experimen-
tal results which seem to indicate that it decreases with
increasing N;. The valley splitting is enhanced in the
same manner as the spin splitting by the exchange effect
(Ando and Uemura 1974b), and the enhancement is
much more important than for the spin splitting.
Ohkawa and Uemura (1976, 1977c) took into account
this enhancement in the screened Hartree-Fock approxi-
mation, using the value of the bare valley splitting calcu-
lated by them. They assumed short-range scatterers and
a Gaussian form of the density of states, and calculated
the line shape of o,,. An example of the results is given
in Fig. 129. Characteristics of the degree of the splitting
observed experimentally are qualitatively reproduced if
we use widths slightly smaller than those obtained from
Eq. (6.19) with the experimental mobilities. Although
the assumption of short-range scatterers for the full N,
range is not realistic, one can conclude that the theory
explains the experiments quite well. A complete line-
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FIG. 129. Calculated transverse magnetoconductivity for several level widths as a function of electron concentration (N;,,). The

valley and spin splittings are resolved in the lower Landau levels.

“Cusps” can be seen in the Landau level N =4. T and I'scga in

the figure correspond to I'y and T, respectively, in the text. After Ohkawa and Uemura (1976, 1977c).
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shape analysis requires the self-consistent determination
of the broadening and screening and proper treatment of
the localization effect, in addition to the enhancement of
the spin and valley splittings. Such analysis is extremely
difficult, even if we know the precise nature of scatterers
in this system. A more detailed discussion of the valley
splitting is given in Sec. VIL.A.

C. Cyclotron resonance

A brief discussion of the theory of the dynamical con-
ductivity of a two-dimensional electron-impurity system
in strong magnetic fields has been given in Sec. VL.A.2.
This section deals with various problems related to cy-
clotron resonance in actual inversion layers.

1. Characteristics of the cyclotron resonance

Cyclotron resonance was observed for the first time in
an n-channel inversion layer on the silicon (100) surface
by Abstreiter, Kneschaurek, Kotthaus, and Koch (1974)
and by Allen, Tsui, and Dalton (1974) independently.
The quantum oscillation predicted theoretically (Ando
and Uemura, 1974d; Ando, 1975a) was first observed by
Abstreiter, Kotthaus, Koch, and Dorda (1976b). An ex-
ample of their results is shown in Fig. 130. The magnet-
ic fields where the Fermi level lies just at the midpoint
between adjacent Landau levels are denoted by black tri-
angles. One sees clearly that the absorption has a dip at
the low magnetic field side, i.e., below H ~60 kOe, and a
peak at the high magnetic field side, in agreement with
the theoretical prediction. An example of corresponding
theoretical line shapes is also shown. One sees the posi-
tion of the quantum oscillation is in excellent agreement
with the theory, although the theoretical line shape
shows slightly larger amplitude. This disagreement con-
cerning the amplitude of the quantum oscillation cannot
be explained by a possible difference of the real part of
0xx(w) and the transmission coefficient, which was men-
tioned in Sec. VILA.2. There are many possible reasons
for the disagreement. The self-consistent Born approxi-
mation used in the theoretical calculation is the simplest
approximation. If one considers higher-order effects, the
density of states has low- and high-energy tails, where
the broadening is expected to be inhomogeneous. There-
fore the energy region where our simple approximation
holds becomes effectively narrower, and consequently the
amplitude of the quantum oscillation becomes smaller.
Further, the short-range scatterer model is not strictly
applicable, and the quantum oscillation decreases with
increasing range of scattering potentials. Sample inho-
mogeneity, if present, could make the amplitude smaller.
In any case one can conclude that the agreement is satis-
factory.

Abstreiter, Kotthaus, Koch, and Dorda (1976b) ob-
tained the width of the cyclotron resonance by fitting
their results to a classical Lorentzian line shape and
compared it with the relaxation time at H =0. The
result is shown in Fig. 131. The width of the cyclotron
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FIG. 130. Examples of cylotron resonances observed in an n-
channel inversion layer on a Si(100) surface. #w=3.68 meV.
T=5 K. The magnetic fields where the Fermi level lies at the
center of each Landau level are denoted by downward pointing
arrows with corresponding Landau-level indices. The dotted
line represents a theoretical prediction by Ando (1975a). The
electron concentration is proportional to the gate voltage and is
given approximately by 0.9x10'? cm~2 at 10 V. After
Abstreiter et al. (1976b).

(0) T T T T T T T
ot T
51
~ _— - —_—— -— . - - = -
\4005_ ? + +* +- _+ -+
o] +
(b)
T2t
o
&
o
<
1
0 1 7 3
Ng (10'2 cri2)
FIG. 131. Comparison of the zero-field scattering rate 1/7¢

with the scattering rate at resonance 1/7,, The dashed line in
(a) (~0.65) is the value predicted for short-range scatterers in
the self-consistent Born approximation. Here, 77 corresponds
to 7 in the text. After Abstreiter et al. (1976b).
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resonance is larger than the level broadening #/7, at
H =0, which is consistent with the theoretical predic-
tion. In the upper part of the figure the ratio of the cy-
clotron width to the square root of #/7, is plotted.
Theoretically this ratio should be constant and is given
by the broken line if scatterers are of short range and the
same both at nonzero H and H =0. At high concentra-
tions (N; > 1.5% 10'2 cm—2) the agreement is satisfactory.
Near the electron concentration where the relaxation
time has a peak, the actual width becomes smaller than
the result for short-range scatterers. This suggests that
actual scatterers are different from complete short-range
scatterers. At very low concentrations (N, <0.5X 10'?
cm~2) the cyclotron width becomes very large because of
the inhomogeneous broadening. Abstreiter, Koch, Goy,
and Couder (1976a) studied the frequency dependence of
the cyclotron resonance line shape. At high N; the ex-
perimental results were consistent with the H!/? depen-
dence predicted theoretically, but they found a significant
deviation from the H!/? dependence at low N, i.e., the
width became almost independent of H. Wagner, Ken-
nedy, McCombe, and Tsui (1980; see also Kennedy et al.,
1975a) performed a much more extensive study of the
frequency dependence of the cyclotron resonance line
shape for wider ranges of external frequencies. The H!/?
dependence was found for high densities (N, > 13X 10'?
cm™?) and high fields, in agreement with the theoretical
prediction. Again very little dependence on magnetic
field was found at low electron concentrations. In order
to explain those detailed results we need accurate
knowledge of the nature of scatterers and theoretical cal-
culation of the actual line shape for realistic scatterers.
This is a very difficult task, however. Experiments with
controlled concentrations of scatterers like Na%t ions,
performed quite recently (Chang and Koch, 1981), can
give important information on the broadening.

Another interesting feature of the cyclotron resonance
line shape in the two-dimensional system predicted
theoretically (Ando, 1975a) is the appearance of the
subharmonic structure. The subharmonic structure was
experimentally observed by Kotthaus, Abstreiter, and
Koch (1974a; see also Abstreiter et al., 1976b). An ex-
ample of their results is shown in Fig. 132, where the ab-
sorption derivative is plotted against H. The existence of
such structure can be seen in Fig. 131, although the
structure is very small. The actual position of the
subharmonics is, however, shifted to the higher magnetic
field side. This shift has been explained by the mass
enhancement effect due to electron-electron interactions
(Ando, 1976e).

Kohn (1961) has proved that the position of the cyclo-
tron resonance is not affected by electron-electron in-
teractions in homogeneous systems (Kohn’s theorem).
Although Kohn’s proof is restricted only to short-range
mutual interactions, the theorem is a consequence of the
fact that electron-electron interactions are an internal
force. In inversion layers, the presence of scatterers
violates the translational invariance of the system and
the theorem is actually not applicable. It suggests, how-
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ever, that one should make a careful and consistent ap-
proximation in calculating dynamical conductivities
which include effects of electron-electron interactions. In
calculating the dynamical conductivity, one must consid-
er an important correction called the vertex correction,
which cancels the mass enhancement effect completely if
applied to a homogeneous system. Landau’s Fermi-
liquid theory is an example of such methods, but is not
adequate for the discussion of the subharmonic structure,
which is a direct consequence of the complete quantiza-
tion of the orbital motion.

Ando (1976e) considered a model two-dimensional sys-
tem in which electrons are interacting with each other
via a weak short-range potential. Within the simplest
approximation (essentially Hartree-Fock) we can calcu-
late the mass enhancement and the dynamical conduc-
tivity consistently. The resulting dynamical conductivity
is given by
-1
1+iw

m* m
— =1 |——0.(w) ,
m N,e? *

Ui(a))=5t(a))

(6.76)

where m and m* are the bare and dressed masses, respec-
tively, + (—) denotes the left (right) circularly polarized
wave, and 74 is the conductivity of a noninteracting sys-
tem characterized by the dressed mass m*. If we substi-
tute a simple classical Lorentzian line shape in the above
expression we immediately see that the resonance posi-
tion is determined by the bare mass m. If the line shape
is quite different from the Lorentzian, however, the peak
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FIG. 132. Subharmonic structure in the absorption derivative
for different gate voltages. #w=3.68 meV. The electron con-
centration is roughly proportional to the gate voltage and is
1X10" cm~? at 10 V. The position of the subharmonic struc-
ture is shifted to the higher magnetic field side corresponding
to the increase of the mass with decreasing electron concentra-
tion. After Abstreiter ez al. (1976b).
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position can be shifted. At the tails of the cyclotron res-
onance J.(w) is small and can be neglected in the
denominator of (6.76). Therefore the subharmonic struc-
ture is determined by that of 7, (w), i.e., by the condition
that w~nw! (n is an integer larger than 2), where
wF =eH /m*c. This model of electron-electron interac-
tions is too simple and not directly applicable to actual
inversion layers. However, the fact that the subharmonic
structure is essentially determined by the dressed mass
m* is true of actual systems. Since the vertex correction
is not important at tails, the position of the subharmonic
structure is given by the difference of the quasiparticle
energies of adjacent Landau levels, i.e., by m* Figure
133 shows an example of the line shape calculated in this
model together with an experimental result of Abstreiter,
Kotthaus, Koch, and Dorda (1976b). The peaks denoted
by arrows correspond to the subharmonics. If we assume
8% enhancement of the mass, the position is shifted to
the higher magnetic field side and agrees with the experi-
ment. Enhancement of this order is theoretically quite
reasonable. Figure 134 gives the comparison of three dif-
ferent experimental masses. The mass determined from
the main peak is essentially independent of N; except for
the strange behavior at low N;, while the masses deter-
mined from the temperature dependence of the amplitude
of the Shubnikov-de Haas oscillation of static conductivi-
ties and from the subharmonics are enhanced and show
the same N, dependence. Thus we can say that the mass
enhancement due to electron-electron interactions ex-
plains the shift of the subharmonic structure quite well.
Ting, Ying, and Quinn (1976) suggested a similar
mechanism of the shift of the subharmonic structure

--------------- Experiment (A1, V;=25V, T~4.5K)
—— Theory (Ng= 2.60x10% cm?)
————— Classical Lineshape

p=7000cmé/Vsec " ..
m=0197m, '

m*m=1.08
m*/m=1.00

20 30 40 50 60 70 80 90 100
Magnetic Field (kOe)

FIG. 133. An example of theoretical and experimental cyclo-
tron resonance line shapes in an n-channel inversion layer on a
Si(100) surface. The energy of the incident light is 3.68 meV.
The magnetic fields given by 0 =20 and w=3w} are shown
by the arrows. After Ando (1976e).
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based on a different formalism. We can generally express
the dynamical conductivity as
iNge?/m

o) = M (@)

(6.77)

where M (w) is called the memory function (Gotze and
Wolfle, 1972). If we expand M (w) in terms of the
strength of scattering we have, to the lowest order in the
strength of impurity scattering,

L_s [daNPe)
n

N;om
X3 [v#(2) | g e(g,0) !
q

M(w)=

—e(gq,0071].
(6.78)

If such an expansion to the lowest order in the impurity
concentration is meaningful, this is the exact expression
to this order. In our system, however, the validity of
such an expansion is highly doubtful because a self-
consistent treatment is essential, as has been discussed in
Sec. VI.LA. One might be able to use this expression only
for looking at the qualitative behavior of the conductivi-
ty. It is easy to see that the imaginary part of M (w) has
a peak near no; due to magnetoplasmon modes (Chiu
and Quinn, 1974; see also Horing and Yildiz, 1973, 1976;
Horing et al., 1974). Because of the dispersion of mag-
netoplasmon modes the actual subharmonic structure can
be shifted and broadened, depending on what wave vec-
tors g are important in scattering. In the case of short-
range scatterers a wide range of g contributes to the
structure, and the position of the subharmonic structure
is expected to be close to nw). A later numerical calcu-
lation of the line shape based on this method, however,
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FIG. 134. A comparison of various masses in an n-channel in-
version layer on a Si(100) surface. The mass obtained by put-
ting @ equal to 20w} from the position of the subharmonic
structure of the cyclotron resonance (Abstreiter et al., 1976b),
the mass measured by Smith and Stiles (1972) under 25.9 kOe,
and the mass deduced from the main peak position of the cy-
clotron resonance (Abstreiter et al., 1976b) are shown. After
Ando (1976e).
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failed to give a definite subharmonic structure (Ting
et al., 1977).

Many-body effects on the cyclotron resonance have
also been studied at high temperatures in high magnetic
fields (Fukuyama, Kuramoto, and Platzman, 1978;
Fukuyama, Platzman, and Anderson, 1978).

2. Cyclotron effective mass

The problem of the cyclotron mass m,, defined by the
position of the main cyclotron resonance, is in much
controversy. Kotthaus, Abstreiter, Koch, and Ranvaud
(1974b; see also Kotthaus, 1978, 1979, 1980; Abstreiter
et al., 1976b) observed an increase of m, with decreasing
N, at low N; (N, <0.8%x 102 cm~2) for the laser fre-
quency fiw=3.68 meV as is shown in Fig. 135. At still
lower N, (N, <0.4X 102 cm™2) m, decreases very rapid-
ly, depending on the samples. At higher N, the mass al-
most has a constant value close to m,=0.198m,. This
mass value is slightly larger than the bulk conduction-
band mass of m,=0.191m,, but has been shown to be
consistent with the bulk mass for the same laser frequen-
cy (Abstreiter et al., 1976b). Abstreiter et al. (1976a)
studied the frequency dependence of m, and found no
systematic variation outside experimental error for Nj
above 0.4 10'2 cm~2,

The reason for the increasing m, with decreasing N;
below N, <0.8% 102 cm~2 is totally unknown. The de-
crease of m, at even lower N; was attributed by
Kotthaus et al. (1974b) to perturbed cyclotron resonance
due to potential fluctuations. When a slowly varying po-
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FIG. 135. Resonance magnetic field and cyclotron effective
mass versus electron density (n;) for different samples at rela-
tively low electron concentrations. #w=3.68 meV. After
Abstreiter et al. (1976b).
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tential fluctuation V(r) exists, the change of the frequen-
cy of the cyclotron motion is given by the curvature of
the local potential, i.e., by

8(fiw, )= 5 (IV)?¥ (x) . (6.79)

When electrons occupy the ground Landau level com-
pletely, this shift vanishes because the curvature of the
potential becomes zero on the average. At low concen-
trations electrons are considered to be in local potential
minima where 8(#iw.) > 0, and the effective cyclotron en-
ergy becomes larger or m_ decreases. Such a shift should
become appreciable roughly below the electron concen-
tration where only the ground Landau level is occupied
by electrons. This simple consideration explains the
value of N; where the rapid decrease of m, occurs. A
similar shift of the peak can appear even for short-range
scatterers (Ando, 1975a). Mikeska and Schmidt (1975)
examined this effect theoretically by assuming an artifi-
cial potential fluctuation and showed that the abrupt de-
crease of m, observed experimentally could be explained
by such a mechanism. A later temperature dependence
study gave results consistent with such a model
(Kiiblbeck and Kotthaus, 1975; Kotthaus and Kiiblbeck,
1976).

Similar experiments at low electron concentrations
were also performed by Kennedy, Wagner, McCombe,
and Tsui (1977; see also Wagner et al., 1976a, 1976b,
1980; Wagner and Tsui, 1979, 1980). An example of
their results is shown in Fig. 136. They found a charac-
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FIG. 136. The density (n;) dependence of the cyclotron effec-
tive mass and scattering time 7 at four far-infrared radiation
frequencies. The lines connecting the mass data at a particular
frequency are drawn as aids to the eye. A dc scattering time
derived from the 4.5 K effective mobility and the band mass
m=0.19m, is shown as a solid line. After Kennedy et al.
(1977).



Ando, Fowler, and Stern: Electronic properties of 2D systems 559

teristic Ny dependence similar to that of Kotthaus et al.
(1974b), but their m. depended on the photon energy of
the laser light, in contrast to the results of Abstreiter
et al. (1976a). As is seen in the figure, the linewidth be-
comes narrower with decreasing N; at fiw=7.6 meV, in
contrast to the opposite behavior for lower magnetic
fields. They argued that this was inconsistent with the
perturbed cyclotron resonance and tried to attribute it to
some phase change of the two-dimensional electron gas.
Wilson, Allen, and Tsui (1980) measured the cyclotron
resonance at low concentrations with the use of a far-
infrared spectrometer. This technique enabled a direct
observation of the frequency dependence of the conduc-
tivity at a fixed magnetic field and electron concentra-
tion, when the usual magnetic field sweep at constant
frequency is not adequate for investigation of phenomena
strongly dependent on the field. Figure 137 gives an ex-
ample of observed resonances for v=0.43, with v being
the filling factor of the ground Landau level defined by
v=2mI?N,. The broken line shows the expected classical
line shape. The peak is shifted to the higher-frequency
side and the line shape is narrower than expected from
the zero-field mobility. They also showed that the line
shape exhibits a peculiar change as a function of the
filling factor. As a possible explanation they proposed a
highly correlated or crystalline ground state. As a
matter of fact, a pinned charge-density-wave model
(Fukuyama and Lee, 1978) gives the dotted line, which
explains the observed line shape. However, it is not
completely certain that the existence of a crystalline
ground state is the only explanation for the behavior in
the absence of any reliable theory of localization effects
for realistic scatterers and that of electron solids in
strong magnetic fields. The electron solid will be dis-
cussed in Sec. VII.C. A similar narrowing has also been
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FIG. 137. Cyclotron resonance in the extreme quantum limit.
The solid lines represent raw data; the structure is residual
noise. The expected classical line shape is shown as a dash
line. The dotted line is a theoretical calculation of the frequen-
cy response of a pinned charge-density wave with m=0.21m,
and a pinning frequency y=20.2 cm~!, following Fukuyama
and Lee (1978). The filling factor is 0.43. After Wilson et al.
(1980).
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observed under compressional stress (Stallhoffer et al.,
1976; Kotthaus, 1978, 1979).

Kennedy, Wagner, McCombe, and Tsui (1975b, 1976b;
see also Wagner et al., 1980) measured the frequency
dependence and observed that m, increased with decreas-
ing frequency except at low concentrations. They
showed that m, was a function of wr and proposed that
this was caused by a reintroduction of electron-electron
interactions caused by the presence of strong scattering.
To explain this anomalous frequency dependence, Tzoar,
Platzman, and Simons (1976) calculated a high-frequency
conductivity neglecting the presence of magnetic fields,
using the formula (6.77). They defined the mass shift by
comparing a high-frequency expansion of the phe-
nomenological expression:

iN,e?

_ 6.80
m*(w+i/7) ( )

olw)=

and that of Eq. (6.77). Naturally the calculated mass de-
creases with increasing frequency because such a correc-
tion should vanish in the limit of infinite @. A similar
calculation was also made by Ganguly and Ting (1977).
It is not clear, however, that this enhanced mass is relat-
ed to the actual resonance position. Actually what we
need is the dynamical conductivity at o ~w,, which cor-
responds to @=0 in the absence of a magnetic field in
Eq. (6.77) and has nothing to do with the calculated
mass shift in the high-frequency limit. Ting, Ying, and
Quinn (1977) calculated the dynamical conductivity, sub-
stituting £(q,) calculated in the random-phase approxi-
mation in the presence of magnetic fields. Because the
lowest-order expression has a difficulty with divergence,
as has been mentioned before, they calculated e(q,w) in
an approximation similar to the self-consistent Born ap-
proximation. Figure 138 gives an example of the com-
parison between observed and calculated line shapes.
They obtained a slight enhancement of m, (around 2%)
which is almost independent of the frequency. So far the
theories cannot give any definite conclusion on the effects
of electron-electron interactions on the cyclotron reso-
nance in this system. This is a very difficult theoretical
problem, and further study is needed. More experimen-
tal work is also necessary in order to clarify important
parameters which cause such differences of experimental
results.

Ngai and Reinecke (1976) proposed a new model of lo-
calization effects based on localized two-electron states
which have been proposed to exist in amorphous SiO,.
Using a very simplified model Hamiltonian, they claimed
that the increase of m, with decreasing N; below
0.8 102 cm~2 could be explained by such a model.
This and related models were further investigated (Ngai
and White, 1978, 1980; White and Ngai, 1978a, 1978b).

Theis (1978, unpublished) has carefully measured the
cyclotron resonance at high N; and observed an increase
of m, with increasing N;. This behavior is consistent
with the effect of the nonparabolicity of the silicon con-
duction band. Falicov (1976) calculated the nonparaboli-
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#iw=3.15 meV. The dotted curve is from Kennedy, Wagner,
McCombe, and Tsui (unpublished). After Ting et al. (1977).

city effect in an approximation similar to that employed
by Falicov and Garcia (1975) in calculating the effective
mass in p channels of silicon. He calculated the bulk
Fermi surface and then cut it at k, corresponding to the
conduction-band minimum. Although the qualitative
behavior of the calculated N, dependence of m, seems to
agree with the experiments, this method is known to be
inadequate in p channels (see Sec. VIII.A). More work is
necessary concerning such a nonparabolicity effect.

Kiiblbeck and Kotthaus (1975; see also Kotthaus and
Kiiblbeck, 1976) measured the cyclotron resonance as a
function of temperature. They found a surprising result
that m, increased considerably with temperature. Ken-
nedy, McCombe, Tsui and Wagner (1978) found no such
anomalous behavior. Stallhoffer, Kotthaus, and Koch
(1976) investigated the cyclotron resonance under uniaxi-
al stress and found an increase of m, similar to the tem-
perature effect. These strange behaviors are related to
the existence of another set of subbands associated with
valleys located in differect directions in the silicon Bril-
louin zone and will be discussed in Sec. VILB together
with more recent experimental results.

3. Plasmon and magnetoplasmon absorption

So far we have discussed a response of the system to
homogeneous external fields (¢ =0, where q is the two-
dimensional wave vector in the direction parallel to the
surface). A response to an external field with nonzero ¢’s
is also observable. Allen, Tsui, and Logan (1977; see
also Tsui, Allen, Logan, Kamgar, and Coppersmith,
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Semiconductor

FIG. 139. A schematic illustration of the grating structure for
observation of the two-dimensional plasmon in the inversion
layer.

1978) observed the two-dimensional plasmon in the in-
version layer. The two-dimensional plasmon was first
observed by Grimes and Adams (1976a, 1976b; see also
Grimes, 1978a) in the system of electrons trapped by the
image potential on the liquid-helium surface. Allen,
Tsui, and Logan made a grating structure on top of a
semitransparent gate electrode, as is shown in Fig. 139.
When far-infrared light is incident normal to the surface
with a polarization parallel to the grating periodicity
(say, x direction), the light is longitudinally modulated
with the wave vectors g, =2mn/a (n=1,2,...),

E,(x,z)= 2, E,(qy,2z) explig,x —iowt) , (6.81)
n=0

where a is the period of the grating. The strength of
each component of the electric field can easily be calcu-
lated. Roughly speaking, fields with high n become rela-
tively larger with decreasing width ¢ of the semitrans-
parent region of the gate, since the field is concentrated
across this part while being essentially zero over the
highly conductive part. Such modulation of the field is
appreciable within a distance of the order of the grating
period a from the gate electrode.

Usually the wavelength of such modulated far-infrared
radiation is much larger than the thickness of the inver-
sion layer, and we can still regard the layer as a conduct-
ing sheet having the two-dimensional conductivity tensor
0,,(q,®), defined by

Ju(Q)8(z) expliqr—iot)= ¥ 0,,(q,0)8(2)E,(q,z)

v=x,y

Xexpliq'r—iont) ,

(6.82)

where the sheet is assumed to be at z=0. Usually the
capacitive reactance of the grid is small compared to the
average resistive admittance of the metallization, and we
can calculate the response of the inversion layer to such
electric fields assuming the conductivity of the gate is in-
finite. Neglecting the retardation effect (infinite light
velocity) and solving Poisson’s equation by the image
method, we can calculate the induced electric field corre-
sponding to the induced current in the inversion layer.
We have for q=(q,0)
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Ami g
© Ke+Kins coth(gdy)

EFdg,z)= —

Xexp(—q |z | We(q), (6.83)

where d;, is the thickness of the insulator (SiO,).
Therefore we have

J(q) expligx —iwt)d(z) = G (q,w)Ex(q,2)0(2)

Xexpligx —iwt) ,  (6.84)
where
e (§,0) =04 (q,0)e(q,0) ", (6.85)
with
s(q,w):l-}—éﬂ g O (q,0) .
®  Kg.+Kins coth(gdyg)
(6.86)
Therefore the absorption is given by
P =7 Reo (o) | Ex(g =0,2=0) |2, (6.87)
with
oelw)= zob'xx(q,,,w)S,, , (6.88)
n—
where
| Ex(gn,z=0)|%=8, | E,(g =0,z=0)|2. (6.89)

Under the experimental conditions the period of the
grating is much larger than the length scale, and we can
replace 0,,(q,®) by 0, (). Further, if we substitute the
Drude expression o, (w)=iN;e?’/me into (6.85) and
(6.86) we have the resonance absorption at the position of
the two-dimensional plasmon

47N, e? q
T m Ke+Kigscoth(gdi)

o, (6.90)
with g =gq,. See Sec. ILD for some more discussion on
the plasmon.

An example of absorption observed by Allen et al.
(1977) is shown in Fig. 140. We can see the clear ab-
sorption due to the excitation of the plasmon (n =1) su-
perposed on the Drude background, corresponding to ab-
sorption of the spatially unmodulated (» =0) component
of the radiation field. They analyzed their data using the
simple Drude formula of the conductivity (6.80) and
determined the mass. They obtained a value close to
0.2m, almost independent of N, at high N, but found
an increase of the mass with decreasing N; at low N, a
result similar to that observed in the cyclotron resonance
(Kotthaus et al., 1974b; Kennedy et al., 1977). Theis,
Kotthaus, and Stiles (1978a, 1978b; see also Theis, 1980;
Kotthaus, 1980) observed resonances associated with
higher n for various energies of far-infrared light. They
analyzed their data using a mass value close to 0.2m, in-
dependent of N; and concluded that the theoretical
dispersion relation (6.90) explains their results quite well.
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The plasmon has also been observed in emission experi-
ments (Gornik et al., 1980a).

In the presence of a magnetic field perpendicular to
the surface, the plasmon resonance turns into the so-
called plasma-shifted cyclotron resonance or magneto-
plasmon. If we substitute o, (w)=iN;e’w/m(0*—w?2)
into Egs. (6.85) and (6.86) we have a resonance at
w2=cocz+wp2. Theis, Kotthaus, and Stiles (1977; see also
Theis, 1980) observed such a resonance. An example of
their results is given in Fig. 141. A plasma-shifted cy-
clotron resonance can be seen at the lower magnetic field
side of the usual cyclotron resonance, and its position is
shifted to lower H with increasing N;,. They found that
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FIG. 140. Fractional change in transmission caused by inver-
sion layer electrons at 1.2 K. Resolution is 1 cm~!. Solid
curves are theoretical results with indicated mass and relaxa-
tion time. The lower curve is the Drude part and the upper
curve contains the plasmon absorption. After Allen et al.
(1977).
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MAGNETIC INDUCTION (TESLA)

FIG. 141. Absorption as a function of magnetic field for dif-
ferent electron concentrations in an n-channel inversion layer
on a Si(100) surface. #iw=3.68 meV. The numbers in the first
row at the bottom represent electron concentration N; (called
ns in the figure) in units of 10'> cm~2 The inverted triangles
indicate the expected magnetoplasmon position. The dashed
curves have been generated with the use of a classical Lorent-
zian line shape of the cyclotron resonance. A coupling of the
magnetoplasmon with the subharmonic structure can be seen
around H ~35 kOe for N;=2.42X10'2 cm. After Theis et al.
(1977).

the position of the plasma-shifted cyclotron resonance
agreed reasonably well with the theoretical prediction
based on the simple Drude conductivity. However, they
observed additional effects, i.e., a coupling of the
plasma-shifted cyclotron resonance with the subharmonic
structure when their positions were close to each other,
i.e.,, for N;=1.95, 2.42, and 2.90% 10'2 cm~2 in Fig. 141.

A corresponding theoretical calculation of the magne-
toplasmon resonance line shape was performed by Ando
(1978d). An example of the results corresponding to the
experimental conditions is given in Fig. 142. The posi-
tion of the plasma-shifted cyclotron resonance is denoted
by downward-pointing arrows and the position of the
subharmonic structure by upward-pointing arrows.
When the two positions are close to each other as shown
in the figure, they repel each other, and the two peaks
appear in the plasma-shifted cyclotron resonance
O (q1,0) and also in the total absorption. If we take
account of the nonzero value of g (nonlocal effect), the
dynamical conductivity o,,(q,@) has a resonance struc-
ture at nw, (n > 1) because of the existence of the mag-
netoplasmon modes (Chiu and Quinn, 1974). The cou-
pling with such modes has been shown to be negligible
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FIG. 142. Calculated dynamical conductivities for

N;=3X10" cm~2 in an n-channel inversion layer on a Si(100)
surface as a function of the magnetic field normal to the sur-
face. #iw=3.68 meV. The solid lines represent the result of
the self-consistent Born approximation and the dotted lines the
classical. o,, gives the usual cyclotron resonance, G,, the
plasma-shifted cyclotron resonance, and o the total absorp-
tion. The positions of the plasma-shifted cyclotron resonance
and the subharmonic structure are denoted by the downward
and upward pointing arrows, respectively. The other struc-
tures denoted by triangles are the quantum oscillation. After
Ando (1978d).

under experimental conditions.

The technique of using a grating structure for the gate
electrode has made it possible to observe the two-
dimensional plasmon and magnetoplasmon. So far, how-
ever, we have not been able to get much new information
from such observations. As is clear from the above dis-
cussion, what we need to explain the experimental obser-
vations is a precise knowledge of the local two-
dimensional conductivity o,,(q¢ =0,0), which might as
well be obtained from the more usual transmission-type
experiments without a grating structure. Therefore a
technique to get much larger wave vectors is highly
desirable. At large wave vectors comparable to the Fer-
mi wave vectors or the inverse of the thickness of the in-
version layers, a variety of interesting physical effects
should become accessible, such as observation of various
magnetoplasmon modes (Chiu and Quinn, 1974), effects
of exchange and correlation on the plasmon dispersion
(Rajagopal, 1977a; Beck and Kumar, 1976), and mixing
of plasmon and intersubband resonances (Dahl and
Sham, 1977; Eguiluz and Maradudin, 1978a, 1978b).
Attempts in this direction have been made already
(Theis, 1980), and we may expect to see much more
work on inversion layer plasmons in the next few years.

D. Electron localization in strong magnetic fields

It has long been known that states are localized near
the edges of low-lying Landau levels in strong magnetic
fields. This fact can clearly be seen even in the first ex-
periments of Fowler, Fang, Howard, and Stiles (1966a,
1966b), where the conductance is very small for a consid-
erable range of gate voltages between the peaks for dif-



Ando, Fowler, and Stern: Electronic properties of 2D systems 563

ferent spin- and valley-split levels. This problem was left
untouched for a long while and then received consider-
able theoretical and experimental attention. Various ex-
perimental results and corresponding theoretical models
(sometimes rather speculative) have been reported.

Kawaji and Wakabayashi (1976; see also Kawaji, 1978)
made a careful study of the transverse conductivity o
in strong magnetic fields and observed the vanishing of
o, in several finite regions of N,, indicating the
existence of localized electrons at the edges of Landau
levels. They have shown that the concentration of local-
ized electrons associated with the tail of the Nth Landau
levels is approximately given by [(2N +1)27%]7}, as is
shown in Fig. 143. This roughly means that the electron
wave functions become extended when the cyclotron or-
bit covers the whole space. They suggested as a possible
explanation a two-dimensional Wigner crystal pinned by
random potential fluctuations. In this model, only elec-
trons in the Landau level where the Fermi level lies are
supposed to form an electron crystal, and it becomes un-
stable when the condition [(2N +1)2712]7'~1 is satis-
fied. This interesting experimental result has provoked
various theoretical investigations.

The possibility of two-dimensional Wigner crystalliza-
tion, with and without strong magnetic fields, has been
studied theoretically by a number of authors. Tsukada
(1976a, 1977a, 1977b) investigated the properties of the
electron crystal in strong magnetic fields, extending the
theory of Platzman and Fukuyama (1974) in the absence
of a magnetic field. He showed that the N dependence
and H dependence of the concentration of localized elec-
trons could be similar to that obtained in the experi-
ments of Kawaji and Wakabayashi (1976) discussed
above. To explain the actual experimental values he had
to assume large potential fluctuations, which he did only
to stablize the Wigner crystal. In the presence of large
potential fluctuations we must consider effects of the An-
derson localization, however, There have been various
theoretical estimates of critical concentrations in the case
when electrons occupy only the ground Landau level, as
will be discussed in Sec. VII.C. The results show essen-
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FIG. 143. Concentration of immobile electrons vs magnetic
field for different Landau-level indices N observed by Kawaji
and Wakabayashi (1976). The straight lines give
[2m%(2N +1)]7\.
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tially that the critical electron concentration increases
with the strength of a magentic field roughly in propor-
tion to H. However, if we consider the fact that Platz-
man and Fukuyama’s (1974) criterion for classical elec-
trons in the absence of a magnetic field is different by a
factor of about 50 from the results of various more recent
numerical experiments, those considerations can predict
only qualitative behaviors. The possibility of a charge-
density wave ground state originating from the mutual
Coulomb interaction has been discussed also (Fukuyama,
Platzman, and Anderson, 1978, 1979; Fukuyama, 1979;
Kuramoto, 1978a, 1978b; Kawabata, 1978; Yoshioka and
Fukuyama, 1979, 1980, 1981a, 1981b). A more detailed
discussion on the electron solid in the two-dimensional
system is given in Sec. VIL.C.

Another possible explanation of the observed localiza-
tion is the Anderson localization due to large potential
fluctuations analogous to that in the absence of a mag-
netic field. Tsukada (1976b) assumed slowly varying po-
tential fluctuations and calculated the density of states in
the tail region of Landau levels. In the case of slowly
varying potentials the center of the cyclotron motion
moves according to Eq. (6.37), and the percolation of
such loop orbitals around potential minima determines
the delocalization of electrons. Assuming simplified cir-
cular orbits, Tsukada obtained a condition for the locali-
zation which was very close to the experimental results
for the ground Landau level. For higher Landau levels
such a calculation does not predict the observed N
dependence, however. In actual inversion layers it is not
certain whether the slowly varying limit is applicable or
not, because different kinds of scatterers can contribute
to scattering and because the short-range scatterer model
works relatively well, as has been discussed in previous
sections.

Aoki and Kamimura (1977) proposed a condition for
the localization by a heuristic argument corresponding to
the Ioffe—Regel condition kpl/ ~1 where / is the mean
free path (see, for example, Mott and Davis, 1979).
Their argument is not so convincing, but leads to the ex-
istence of a minimum metallic conductivity independent
of the Landau-level index. Assuming a value for the
minimum metallic conductivity and using the result of
Oy in the self-consistent Born approximation, they
derived an expression for the concentration of localized
electrons similar to the experimental results. Aoki (1977,
1978b) made a numerical study of localization in strong
magnetic fields. He considered a finite system with ran-
dom short-range scatterers, and calculated the density of
states and electron wave functions for the ground Landau
level. The results demonstrated the localization of elec-
tronic states at the tail region in agreement with a simple
intuitive picture. He calculated the dynamical conduc-
tivity and showed that the conductivity became much
smaller than the result of the single-site approximation
when the Fermi level was in the tail region (Aoki,
1978b). The calculation was extended to the N =1 Lan-
dau level and showed that the region of the energy corre-
sponding to localized states became narrower than for
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N =0. However the calculation was not accurate enough
to conclude whether this was consistent with the
minimum metallic conductivity independent of N, as had
been proposed by Aoki and Kamimura (1977).

Wigner crystallization and Anderson localization cor-
respond to the two extreme limiting cases of strong
electron-electron interactions and large potential fluctua-
tions, respectively. In actual inversion layers we expect
that both random- potential fluctuations and electron-
electron interactions are important. The interplay of the
two mechanisms is one of the most difficult theoretical
problems. Aoki (1978a, 1979) tried to study this prob-
lem numerically. He considered a finite system confined
within a square, and calculated electronic states in the
Hartree-Fock approximation in the presence of both
electron-electron interactions and short-range scatterers.
His calculation demonstrated the change of the electronic
states from the Wigner crystal to the Anderson localiza-
tion with the change of their relative strengths. In the
intermediate cases the system can be regarded as a
Wigner glass. Although the results look very beautiful,
we could hardly say that we understand this difficult
problem, since the system size is too small and we can
not neglect important edge effects.

Kawaji and Wakabayashi (1977; see also Kawaji, 1978)
measured the activation-type temperature dependence of
the transverse conductivity when the Fermi level lies in
the low-energy part of the lowest Landau level. The
temperature dependence was shown to be given by a sum
of two activated conductivities and to be different from
the characteristic behavior of the Anderson localization:

kT |’ (6.91)

O xx = Omin €XP

where W is the energy separation between the mobility
edge and the Fermi level (see, for example, Mott and
Davis, 1979). They suggested that the temperature
dependence might be explained by a quantum diffusion
of Schottky defects in the Wigner crystal. Kawaji, Wak-
abayashi, Namiki, and Kusuda (1978) found that the
temperature dependence was strongly sample-dependent.
They showed that in samples with low mobilities, Eq.
(6.91) was consistent with their results, and they obtained
a minimum metallic conductivity which slightly depend-
ed on the strength of the magnetic field.

Nicholas, Stradling, and Tidey (1977) measured the
temperature dependence of minimum values of o, for
different H. They showed that the existence of the mo-
bility edge and the minimum metallic conductivity ex-
plained the behavior at sufficiently low temperatures.
They obtained values of minimum metallic conductivity
which are about the same as the minimum metallic con-
ductivity in the absence of a magnetic field for the
ground Landau level, but are one order of magnitude
smaller for higher Landau levels. Similar experiments
were extended to stronger magnetic fields and different
samples, and values of minimum metallic conductivity
strongly dependent on the samples were obtained (Nicho-
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las et al., 1978; see also, Nicholas, 1979). The existence
of sample dependence of the minimum metallic conduc-
tivity is analogous to that in the absence of a magnetic
field (see Sec. V.A), and its origin is not well understood.
Nicholas et al. suggested that the electron concentration
corresponding to the mobility edge was rather indepen-
dent of the strength of the magnetic field, in contrast to
the result of Kawaji and Wakabayashi (1976). This is in-
consistent with the Wigner crystal and possibly favors
Anderson localization. Work has been extended to lower
temperatures (Nicholas et al., 1979; Nicholas, Kress-
Rogers, Kuchar, Pepper, Portal, and Stradling, 1980).
At extremely low temperatures the dependence of o,, on
the temperature is shown to deviate from Eq. (6.91) and
obey

(6.92)

Oxx ~00€Xp 7173

This suggests that so-called variable-range hopping (see,
for example, Mott and Davis, 1979) is a dominant con-
duction process.

Similar experiments were performed by Pepper (1978b)
for the ground Landau level. He obtained results which
were similar to those obtained by him in the absence of a
magnetic field. Some samples show the beautiful charac-
teristic behavior (6.91) for the constant minimum metal-
lic conductivity and others do not. He could control
such behavior by either applying substrate bias or chang-
ing the surface conditions. The resulting value of the
minimum metallic conductivity for the ground Landau
level was close to those found in other work.

Tsui (1977) extended magnetoconductivity measure-
ments up to 220 kOe and found new fine structures re-
sulting from localized electrons at the high-energy side of
each Landau level. Those structures were very sensitive
to applied source-drain electric field and disappeared for
large fields.

At low concentrations, especially where only the
lowest Landau level is occupied by electrons, the cyclo-
tron resonance has been known to exhibit a peculiar
behavior, as has been discussed in Sec. VI.C. The line
narrowing and shifts of the peak -have been linked to the
existence of a highly correlated or crystalline ground
state.

We have given a rough sketch of recent investigations
on localization in strong magnetic fields. The present
understanding of the problem is very poor, especially
theoretically, and much more work is necessary in order
to clarify the situation. As discussed in Sec. VL.B, the
Hall conductivity has been shown experimentally to be
independent of N; in the region where o, vanishes and
given by an integer multiple of e?/27#. This experimen-
tal result and subsequent theoretical study (Aoki and
Ando, 1981) have shown that all the states in a Landau
level cannot be localized in the strong-field limit. This
shows that the theory of Abrahams, Anderson, Licciar-
dello, and Ramakrishnan (1979; see V.B above) does not
apply to two-dimensional systems in strong magnetic
fields.



Ando, Fowler, and Stern: Electronic properties of 2D systems

VIl. OTHER ELECTRONIC STRUCTURE PROBLEMS

A. Valley splittings—beyond the effective-mass
approximation

As has frequently been mentioned, the ground subband
in an n-channel inversion layer on the Si(100) surface is
formed from states associated with two conduction val-
leys located near X points in opposite (100) directions
in the Brillouin zone. It has long been known that this
valley degeneracy predicted in the effective-mass approxi-
mation is lifted in actual inversion layers, as observed in
the experiments of Fowler, Fang, Howard, and Stiles
(1966a, 1966b). Usually the valley splitting is observed
in the Shubnikov—de Haas oscillation in strong magnet-
ic fields and at relatively low electron concentrations, as
has been discussed in Sec. VI.B. Only relatively recently
have extensive investigations been performed on these in-
teresting old phenomena. A valley splitting has been ob-
served also on the (111) surface (Englert, Tsui, and
Landwehr, 1980; see also Landwehr, 1980). The valley
splitting attracted further attention in connection with
observation of minigaps in the electron dispersion rela-
tion in inversion layers on Si surfaces slightly tilted from
the (100). The minigaps on tilted surfaces are considered
to arise from the valley splitting. However, their actual
magnitudes are much larger than those predicted by
straightforward extension of the mechanisms of the split-
ting on the exact (100) surface and remain to be under-
stood in the future. In this section we discuss the valley
splitting and related phenomena. Various mechanisms
proposed theoretically and their mutual relations are
briefly discussed first, and experimental attempts to
determine values of the valley splitting are summarized
and results are compared with theoretical predictions.
Minigaps on tilted surfaces and related topics are dis-
cussed also.

1. Mechanisms of valley splittings

a. Ohkawa-Uemura theory—electric breakthrough

The problem of valley splittings in donor states of
semiconductors with multivalley structure like Si and Ge
was left controversial and unsolved after the formulation
of the effective-mass theory (Luttinger and Kohn, 1955)
and its success in explaining their excited states (Kohn
and Luttinger, 1955). Many attempts have been made to
explain the binding energy of the split levels originally
degenerate in the effective-mass theory. However, none
of them has been conclusive. Especially the so-called
multivalley effective-mass theory formulated by Twose
(see Appendix of Fritzsche, 1962) and its analogs have
been widely used and seemed to give values of valley
splittings in reasonable agreement with experiments on
donors in Si and Ge. The multivalley effective-mass
theory was criticized and shown to be inconsistent by a
number of authors independently (see, e.g., Ohkawa,
1979a; Pantelides, 1979, and references therein). The
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multivalley effective-mass equation, if treated correctly,
should give identical vanishing of the splitting, and vari-
ous nonzero values of the valley splittings calculated
based on it are incorrect. The first theoretical attempt to
obtain the valley splitting in the inversion layer was
made by Narita and Yamada (1974). Their method con-
tains an inconsistency similar to that appearing in the
multivalley effective-mass theory and gives an expression
which depends on the choice of the energy origin. They
obtained a relatively large value of the splitting which is
proportional to an applied electric field. However, this
result seems to originate from an artificially chosen ex-
tremely large value of the potential energy at the Si-SiO,
interface.

Ohkawa and Uemura (1976, 1977a, 1977b) calculated
the valley splitting on the Si(100) based on a naive gen-
eralization of the effective-mass formulation of Luttinger
and Kohn. They constructed a k-p effective Hamiltoni-
an which describes the lowest conduction band for
k,=k3=0, where k, and k; are [010] and [001] com-
ponents of the wave vector. Cardona and Pollak (1966)
obtained the energy bands across the entire zone by di-
agonalizing a 15X 15 k-p Hamiltonian. The 15 states
used correspond to free-electron states having wave vec-
tors (000), (111), and (200) in a unit of 2m/a, with a
being the lattice constant given by 5.43 A. The calculat-
ed energy bands of silicon in the (111) and (100) direc-
tions are shown in Fig. 144. Three bands of A; sym-
metry, which include the lowest conduction band A’f, are
obtained from the 3 X3 matrix,

# #
u 2
Tk 0
B+ 0 ki 2my
.h2 2 ) ﬁ2
Tk E(T k ' ,
2m0 ! ( 15)+ 2m0 ! 2m0 T kl
7 ! 72
0 Tk E(T k
2m0 ! ( 1)+ 2m0 !

(7.1)

K=2w/a(1/2 1/2 1/2)

k=(000)

k=2m/a(100)

FIG. 144. Energy bands of silicon in the [111] and [100]
directions of k space calculated in the k-p method by Cardona
and Pollak (1966).



566 Ando, Fowler, and Stern: Electronic properties of 2D systems

where mg is the free-electron mass, k; is the [100] com-
ponent, and E(T'5), E(T'Y), and E(T") are the energies of
the corresponding bands at the I point. Ohkawa and
Uemura have reduced (7.1) to the following 2 X2 matrix
by treating I'} perturbationally:

# #

u 2 Tk
ETN+ 2mg ki 2my !
(k)= > 2 ’
# # 2
1 k
2my Tk, E(T5)+ 2m0( +S)k1
(7.2)
with
_#T? 1

(7.3)

"~ 2my E(T';5)—E([T)

If we use E(I'{)—E(I';5)=0.268 Ry, T'=1.080 atomic
units (a.u.), and S =0.041, the two conduction-band
minima are at k; =4k, with ky=0.84(27/a), which is
very close to the known value of ky=0.85(27/a). The
effective mass at the minima is given by m;=1.035m, in
contrast to the known value of 0.916m,. These minor
insufficiencies cause no serious errors. The bands do not
have zero slope at an X point on the Brillouin-zone
boundary. This degeneracy is called “sticking together”
and is characteristic of the diamond structure. Because
of this fact one can partly include effects of the A, band
just above the lowest conduction band by extending (7.2)
to the second Brillouin zone, i.e., one uses (7.2) also for
—4m/a <k <4m/a. In the presence of an external po-
tential the effective-mass equation is shown to be given
by

k)AK)+—— [ ak vk, — kA
KA+ == [ dk; Vik,—kAK;)

=eA(k;)A(k,) , (7.4)

where A(k,) is a two-component envelope wave function
and V(k,—k,) is the Fourier transform of the external
potential ¥ (z). The above is approximately transformed
into a usual effective-mass equation in real space,

% l%% ]F(z)+ V(2)F(z)=¢F(z) , (7.5)

with

ikyz

1 p+e
Fo)=—— [ dkAlk;)e (7.6)

Ohkawa and Uemura expanded the envelope function
as

(+) 172

o
D(i)

n

b3
(n+1)n+2)

Fz)= 3 3,

n=0 +

X zL2(bz)exp(— %bz +ikoz) , 7.7
where
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bi= — (Ny+ 5 Naep) »
SC

(7.8)
and L,(x) is the associated Laguerre polynomial. The
term n=0 is the same as the usual variational wave
function (3.25). Instead of determining V(z) self-
consistently they used the Hartree potential correspond-
ing to the electron density distribution given by Eq.
(3.25). The valley splitting was calculated variationally
by a numerical diagonalization of a large matrix given by
truncating the sum over n in Eq. (7.7) at n =9. The
resulting valley splitting is shown in Fig. 145 and is ex-
pressed approximately by

32
Ns + TNdepl

AE, ~0.15X — 3

meV . (7.9
Since the above expression is essentially proportional to
the effective electric field an electron feels, this mechan-
ism has been called the electric breakthrough by Ohkawa
and Uemura.

An analytic expression for the valley splitting has been
obtained in a more simplified treatment of Eq. (7.5)
(Ando, 1979b). Assume a trial wave function

sinA .

(+) __ +
F='= cosA

&(z)exp(+ikgz) . (7.10)

The usual variational procedure in which (+ | #+V | +)
is minimized gives A, and £(z). One has
#  d?

o t—iz—zg(zH— V(2)§(z)=Ei(z) ,

(7.11)

where m, ~0.98m, is slightly different from the experi-
mental value m;=0.916m,. Since the overlap integral
(+ | ¥) is extremely small, the valley splitting is obtained
from the off-diagonal element (+ | # 4V —gy—E,| —),
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FIG. 145. The valley splitting calculated by Ohkawa and

Uemura (1976, 1977b) as a function of the inversion layer elec-
tron concentration. The broken line is calculated assuming a
triangular potential. The solid lines are calculated assuming
nearly self-consistent potentials for two different dopings.
After Ohkawa and Uemura (1977b).
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where g; is the energy of the bottom of the conduction
band. The resulting expression, in the limit that kg ! is
much smaller than the scale of the variation of £(z), is
given by

B ’ 2
AE,=——¢ 0)|~, (7.12)
v 4k8 T | g |
where B is a quantity close to unity, ep=E(I'{)—E(T;s),
and £'(0) is the derivative of the wave function at z =0.
Using an identity (3.33) it is written as

¥V (z)
= —_— 7.13
AE,=a( <25 ), (7.13)
with
1 o
~0.25 A . .14
B rhzkz r ~02 (7.14)

Since the potential is determined self-consistently, we
have in the electric quantum limit, where only the
ground subband is occupied,

<6V(z) >__ 41re? dme” 1 N +Noe)

(KSC Kms

_— (7.15)
4Ksc( Ksc _Kms

(L.

The last term represents a contribution from a classical
image force and has a relatively large contribution, as
will be discussed below. The factor - in the term pro-
portional to N; has an important meaning, as has been
discussed in Sec. IV.C.2, and is a result of the exact self-
consistency of §(z) and V(z). This result (7.13) is several
percent smaller than the numerical result (7.9) of
Ohkawa and Uemura. This difference partly originates
from the difference of m;=1.035m, and m,=0.98m,
and the neglect of the self-consistency by Ohkawa and
Uemura. However, such a discrepancy is -certainly
within the accuracy of the present approximate treatment
of the conduction band.

The essential part of Eq. (7.13) is reproduced by a
simpler argument. When we neglect small S in Eq. (7.2)
and change the representation, we can write (7.2) to
lowest order in €r as

#

1
P+ S €r
2m0

Ak, ~

+€o

(7.16)

The Hamiltonian gives two independent subbands when
er is zero. The valley splitting is given to lowest order
in ep by

—2ikgz

AE, ~¢r . [ dze ™™ g2 |2 (1.17)
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In the limit of large kg, the overlapping integral is deter-
mined by a region of z where £(z) spatially varies most
strongly, i.e., near z =0 where the wave function itself is
continuous but its derivative changes discontinuously
across z =0. We have

fowdz e-—2ikoz I g( ) I 2_ 11m f dze 2ikoz—ﬁzzz I é_,(o) I 2
(2k 3 [£(0)]2. (7.18)

Thus we obtain
AE, ~ ko —er|£(0) ]2, (7.19)

which is close to (7.12). Equation (7.19) means that the
overlapping integral, and consequently the valley-valley
interaction, is given by a portion of the electron density
distribution within a distance from the interface of the
order of the lattice constant (~2m/ky). Ohkawa and
Uemura used the variational wave function (3.25) in
evaluating the overlapping integral (7.18) and obtained
values almost three times as large as those given by Eq.
(7.9). Their elaborate numerical calculation was actually
necessary only to get accurate values of the derivative of
the wave function at z =0.

There are various insufficiencies in the Ohkawa-
Uemura theory. They treated the I'} band perturbation-
ally in Eq. (7.2). This approximation is valid near the I
point, but might break down near the conduction-band
minima. As a matter of fact, the energy separation be-
tween AY and A¥ has become smaller than that between
A% and A% around the X point. The analytic treatment
of the 2 X2 matrix Hamiltonian can easily be extended to
the original 3X3 matrix Hamiltonian (7.1), which is
shown to give about 20% larger splitting than Egs.
(7.13) and (7.14) (Ando, unpublished). As is clear from
the above discussion, the interaction of the two Alf bands
at the I' point and the resulting gap er are the main ori-
gin of the valley splitting obtained by Ohkawa and
Uemura. Figure 144 shows that A, bands which have
been included in the extended zone scheme should have
interactions at the I' point (or at k;=+4w/a in the ex-
tended zone scheme). The valley-valley coupling caused
by these interactions is completely neglected, but might
also give a significant contribution to the splitting be-
cause the distance from the band minimum
k,=0.85(2m/a) to the second edge k;=4w/a is compar-
able to that to the I" point (k; =0). There can be a prob-
lem concerning the boundary condition at the interface.
The barrier height at the Si-SiO, interface is believed to
be about 3 eV, while the gap between A and A¥ at the
conduction-band minima is of the order of 13 eV.
Therefore, the condition that the envelope functions for
both of these bands should vanish at z=0 may be un-
reasonable, and more realistic conditions should be em-
ployed. Ohkawa (1979a) later extended his theory to a
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case of finite barrier heights and showed within the two-
band model that the absolute value of the splitting is in-
dependent of the barrier height as long as it is much
larger than the subband energy E,. However, it is not

certain that this result is applicable to many-band cases.

Effects of nonzero values of wave vectors in the direc-
tion parallel to the interface have also been studied using
the k'p Hamiltonian near the X point,

ﬁZ
2m

2
Ak —kp P+
2m1
%(kl,kz,k:;): 2

2

(K2+k2)  —i T Lkoky—i= yen
t 2mg

, (7.20)

Lk2k3 +iEL823

2
(k2 4k?)
t

ekt
2m, 2m

)

obtained by Hensel, Hasegawa, and Nakayama (1965), where k; is measured from the X point, ko =0.15(27/a), E,, is
a deformation potential constant, and e,; is a shear strain. Ohkawa and Uemura (1977b) treated the off-diagonal part

of Eq. (7.20) perturbationally and claimed that the valley splitting for a Landau-level N was given by

2

Ni+ 1 Nat ||y | (N +3)io

172
2

p—
Sy Cxy

AE,=0.15%

102 cm ™2 8 10 meV

(in meV in strong magnetic fields. Here y, proportional
to L2 is a dimensionless quantity larger than unity.
Ohkawa (1978b) found later that the second term in the
curly bracket of (7.21) does not exist actually and that
the valley splitting should be almost independent of the
Landau level.

b. Sham-Nakayama theory—surface scattering

Sham and Nakayama (1978, 1979) have presented a
more elegant theory of the valley splitting which includes
the Ohkawa-Uemura theory as a special case. In this
theory we first solve a problem of the band structure in a
half-space and then construct an effective-mass equation
which includes the slowly varying potential ¥V (z) but
does not contain the potential of the abrupt interface.
Let us consider the vicinity of the conduction-band mini-
ma k;=+ky. In the presence of the interface the wave
function for the states with energy e+ #’«*/2m; is writ-
ten as

bre=e Py, —S11e" P, —Sne™Y_x,— 2 TuXa,
x

(7.22a)
dac=e _ikzdj—ko —SIZeiKz¢ko _Szzeikzd}"ko - 2 TraXa
Y

(7.22b)

where 1,biko is the Bloch wave function at k; = +k, and

k,=k3=0, k is the wave vector measured from +kg, X;
is an evanescent wave corresponding to the given energy,
and m;=0.916m,. The first term of the right-hand side
of Eq. (7.22a) represents an incoming wave with wave
vector ky—k propagating toward the interface, and the
second and third terms are scattered waves with kg4«
and —ko+k, respectively. The quantity S;; is called the

S matrix. If there is no intrinsic interface state around-
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10 meV

(7.21)

the conduction-band edge, the S matrix for sufficiently
small « is given by

1—2iagk —a*k

S = R (7.23)

ak 1—2iak

where a; is called the scattering length. In the interior
of the semiconductor where the evanescent waves have
died down, the asymptotic wave functions become

Wie=61c— 7oK
~2sink(z —ag )1/rk0 —iak cosk(z —ay )¢_k0 ,
(7.24a)
Vo=t 72 K1
~2sink(z —a, )y +ia*k cosk(z —a, )y -
(7.24b)

The effective position of the boundary for the asymptotic
wave functions is given by the scattering length a;.
These V,, and ¥,, for positive values of k form the basis
set in treating bound states due to an external potential.

Since electrons in the inversion layer exist in the inte-
rior, and the external potential V'(z) is sufficiently slowly
varying, the wave function can be expanded as

© dk
V= —A L N
vg,zfo 2r v(Z) vk

(7.25)

We choose the origin of z at z =ay, for simplicity. The
matrix elements of V(z) are evaluated in the approxima-
tion of the slowly varying potential and by neglecting in-
tervalley terms such as (¢ |V |¢_x). The diagonal
element becomes

(W | V | Woe) =V (k—K')— V(K +K') (7.26)

vi=f""dzv(|z e (7.27)



Ando, Fowler, and Stern: Electronic properties of 2D systems 569

The off-diagonal element becomes

(Vi | V | V) =W (k—k")— Wk +k') , (7.28)
where W (k) is the Fourier transform of W (z), defined by
o 3V(z)
2 9z
and W(—z)=W(z). If we define

W(z)= z>0 (7.29)

©dk .
A)(z)= fo - sinkzd, (k) , (7.30)
we have the coupled equations
# d? i 4, aV(z)
Im, d2? +V(z)dz — Xl 4,(2)
i dV(z) # d* A,(z)
a2 -ty
29 a2 amy a2 772
Al(Z)
=€ Ay(2) | - (7.31)

with the boundary condition that A4,(0)=A4,(0)=0.
When only the diagonal part is retained, the usual
single-valley effective-mass equation is recovered,

_# d

7.32)
2m, d22 (

§(2)+V(2)§(z)=E(2) ,

with A,(z)=A4,(z)=£(z). The lowest-order perturbation
gives the valley splitting,

aV(z)
az

Therefore, the problem has been reduced to that of ob-
taining the quantity a, i.e., the off-diagonal element of
the S matrix. This has been called the surface scattering
mechanism.

There have been controversies as to whether the elec-
tric breakthrough mechanism of Ohkawa and Uemura
and the surface scattering of Sham and Nakayama are
essentially equivalent or completely independent
(Ohkawa, 1978a, 1979a; Nakayama and Sham, 1978).
As can easily be understood from the derivation of (7.19),
the presence of the abrupt interface plays an important
role even in the electric breakthrough formalism. Fur-
ther, Eq. (7.33) is quite similar to (7.13). The similarity
of the expressions obtained in both theories suggests that
they are not independent of each other. Nakayama and
Sham (1978) have calculated a in the two-band model
(§' =0) considered by Ohkawa and Uemura as

AE,=|a|{ (7.33)

(7.34)

which agrees with Eq. (7.14) except for some minor
differences arising from terms with higher order in
2moep/#T?. Thus one can conclude that the Sham-
Nakayama theory contains the Ohkawa-Uemura theory
as a special case and that the electric breakthrough
mechanism is essentially equivalent to the surface

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

scattering mechanism.

Sham and Nakayama evaluated a for k, =k, =0 em-
ploying the k-p band structure model of Cardona and
Pollack (1966). They used a model for the interface of
an infinite barrier in a plane at a distance z, from a (100)
atomic plane and calculated a as a function of z,. For a
given energy just above the conduction-band edge, the
33 matrix associated with the A; symmetry (7.1) yields
four Bloch states +kg+k close to the minima. The 5X5
A, matrix yields four evanescent waves with wave vec-
tors +0.095/ a.u. and +0.835/ a.u., neglecting terms of
O(«?). Evanescent waves of symmetry other than A, and
A, are ignored since they are incompatible with the T,
symmetry in the plane parallel to the interface (Jones,
1966). We expand these Bloch and evanescent waves in
terms of the plane waves of symmetry T'; at z =z,:

&i(r)=1,

2

&(r)=2 cosZZx cos—z-ly cos——zp
a a a

. 2m . 2w . 27w
+sin— x sin—y sin—2z, | ,
a a a

(7.35)

2 27 . 2w
COS——X cos—y sin——z
a a a

£3(r)=2

. 2w . 2 2
—sin— x sin—y cos—z, | ,
a a a

4 41
§4(r)=cos7x +cosTy .

The Bloch waves ¥, of A; symmetry are expanded at
Z=2Zgy as

4
Ye(r,z =z0)= 3 ¢;(k)&i(r) , (7.36)

i=1

and the evanescent waves X, of Ay symmetry are given
by

4
X;L(r,z =Zo)= Zb,-lé‘,-(r) ’ (7.37)

i=1
where the coefficients c;(k) and b;, can be determined by

the original k-p Hamiltonian and its basis plane waves.
In particular, one has c4(k)=0. The S matrix can be ob-

tained by substituting Egs. (7.36) and (7.37) into the
right-hand side of (7.22) and imposing the condition that
the left-hand side should vanish. One gets

Ci(ko—K)-—SnC,'(ko +K)—S21(,',-( —k0+K)

2
— E TAlbiA.=0 , (7.38a)
A=1
Ci( —‘ko—'K)—SuC,'(ko +K)'—S22C,'( —ko +K)
2
— 2 T2bp=0, (7.38b)
A=1

for i =1~4. These constitute a set of eight equations



570 Ando, Fowler, and Stern: Electronic properties of 2D systems

which determine eight unknown S;; and T,;. In Fig.
146, the resulting || is plotted as a function of zo. We
have |a|=0.43 A except in the extreme neighborhood
of zp=0.047a, where the energy of an interface state
present in the model crosses the conduction-band minima
and a diverges due to a resonance scattering. We can
discard the possibility of such resonances in Si-SiO, sys-
tems, since it would be impossible to form an inversion
layer if there were intrinsic interface states near the
conduction-band edge. Sham and Nakayama have
chosen |a|=0.43 A. This value of a is almost twice as
large as that calculated in the two-band model of
Ohkawa and Uemura. This large enhancement is partly
due to the inclusion of additional couplings of the two
valleys neglected in the two-band model, as has been dis-
cussed previously, and due to intervalley interactions
through intrinsic interface states.

Schulte (1979, 1980a) calculated directly the energy
levels of the system described by the k-p Hamiltonian of
Cardona and Pollak within the model of a constant
external electric field (the triangular potential approxima-
tion) and the abrupt interface, which is the same as used
by Sham and Nakayama. He replaced the constant field
by a staircase potential and expanded the wave function
for each small interval of z in terms of four Bloch waves
and four evanescent waves obtained by Sham and Nakay-
ama. Those functions are joined smoothly at each step
edge. The resulting valley splitting or the value of |« |
is almost the same as that of Sham and Nakayama,
which confirms the validity of the effective-mass approx-
imation for the external potential ¥'(z). The k, and k,
dependence of a was studied within the same model and
shown to give very small distortion of the Fermi line
(Schulte, 1980b).

Within the model of the infinite potential at the inter-
face, the Sham-Nakayama theory is certainly more com-
plete and gives a more accurate value of the valley split-
ting. However, the validity of the model is highly doubt-
ful in actual inversion layers, especially if it is literally

lal (A)

-0 -0.047 o
zp/a
FIG. 146. The coefficient |a| of the intervalley scattering
matrix for the conduction-band edge on a Si(100) surface as a
function of the interface position, from a crystal plane at zy=0
to midway between two crystal planes, at zo=+a /8. After
Sham and Nakayama (1979).

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

extended to many-band Hamiltonians. The Si-SiO, in-
terface is not yet understood in detail, although various
experiments have already been started to investigate its
microscopic structure (see, for example, Pantelides,
1978b, and Sec. IILE). The interface is expected to be
sharp, but SiO, is known to be amorphous, and a thin
transition layer of several angstroms of SiO,, where x is
between O and 2, is thought to exist at the interface.
This has been discussed in Sec. IILLE. The wave function
in the vicinity of the interface, which determines the in-
tervalley couplings, is actually very sensitive to such mi-
croscopic structures. It is hardly possible to conclude,
therefore, that the value of a obtained by Sham and
Nakayama is more appropriate in actual inversion layers
than that of Ohkawa and Uemura. At present one can
discuss only the order of magnitude of the valley split-
ting. Further, there may well be a problem of misorien-
tation effects in actual systems, as will be discussed
below.

Nakayama (1980) has presented a calculation of a
based on an LCAO (linear combination of atomic orbi-
tals) version of the Sham-Nakayama theory. For bulk
silicon he has used a semiempirical LCAO model of
Pandey and Phillips (1976), which consists of 3s and 3p
atomic orbitals whose interaction parameters are deter-
mined so as to fit to known band energies. A very sim-
ple model is taken for the oxide and interface region: An
infinitely large diagonal atomic energy is assumed in the
oxide and a diagonal shift A is assumed for all atomic
orbitals for Si atoms in the interface layer. The values of
|| and a; are calculated as functions of A. Both ||
and a; are shown to vary strongly and exhibit resonance
behavior as A varies. Furthermore, the absolute values
of |a| and a, are quite sensitive to the choice of the
LCAO parameters. Although this model is much too
simplified, and its relation to the actual Si-SiO, system is
not clear, the results suggest that the valley splitting is
extremely sensitive to models of the interface, and its ac-
curate value could be obtained theoretically only if the
detailed structure of the interface were well understood.

There are some problems in estimation of
F.=(dV(2)/3z) in addition to that of |a|. As a
matter of fact, F.¢ is quite sensitive to treatment of the
image potential. Sham and Nakayama (1979) evaluated
F o assuming the image potential,

ez(Ksc "‘Kins)
4Ksc(Ksc +Kins)(z + d) ’

Vi(z)= (7.39)

where 8 is a cutoff distance of the order of the lattice
constant. They used the more accurate variational wave
function (3.34). Figure 147 shows the resulting N,
which is defined by Fegp=2me*Nyy/ks., as a function of
N; for N4, =0. The modification of the image potential
by a finite 8 of the order of the lattice constant a affects
the energy levels rather weakly but changes F.y drasti-
cally. This fact can be another source of uncertainty in
the exact theoretical estimation of the valley splitting.

As has been shown in Eq. (7.24), the effective interface
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N-2Njm (102 cm2)
N WD O N OO

FIG. 147. The effective electron concentration Ny —2N;,, de-
fined by Fey=2meXN;—2Nin)/ks, as a function of the elec-
tron concentration N, (called N in the figure) when Ny, =0
for various values of the distance parameter § which modifies
the denominator of the image potential. In the case of infinite
8 (no image force), one gets N;,=0. After Sham and Nakaya-
ma (1979).

for the envelope function should be placed at the scatter-
ing length z=a,, which can depend on the interface
boundary conditions. In the presence of a perturbing po-
tential V' (z) the effective-mass approximation gives an
energy shift of the subband by an amount

aV(z)

3z (7.40)

AE =a;,
z=0

with respect to that obtained under the condition that
the envelope function vanishes at z =0. This does not
affect the energy separations of the subbands associated
with the two valleys which we have considered and
which are assumed to be occupied by electrons. Howev-
er, this effect can shift the relative energies of the sub-
bands for different sets of valleys. We have

(7.41)

av(z)
azz >"

where a; is the scattering length for the four valleys
which present a lighter normal effective mass and
(V¥ (z)/3z )y is the average of the field for the O’ sub-
band. Sham and Nakayama (1979) have shown that ag
is rather sensitive to the position of the interface z, in
their k-p infinite-barrier model. Nakayama (1980) ob-
tained an interface-induced increase of Ey, of the order
of meV in his LCAO model. This behavior is opposite
to the result of Stern (1977), who found that effects of in-
terface grading make E(( smaller than in the case of an
abrupt interface, as has been discussed in Sec. IILE. The
possible existence of internal strains in the vicinity of the
interface affects the relative positions of E, and E, sub-
bands. In any case, the energy difference Ey, is quite
sensitive to the actual interface condition. Since SiO, is
amorphous, the scattering length a; can vary spatially.
This fluctuating a, can be another source of electron
scattering. The effect is similar to that of the interface
roughness considered in Sec. IV.C.

AEqo=(a; —a,){

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

c. Kiimmel’s theory—spin-orbit interaction

Kiimmel (1975) proposed a mechanism for the valley
splitting which is completely different from the two men-
tioned above, namely spin-orbit coupling. One may
write the wave function in the presence of an external
potential as

dk,
W(r,z)= [ > F k) (r,2)

where F(k,) is the envelope function and ¥ (1,2) is the

Bloch function of the conduction band for k,=k,=0.
In the presence of the potential ¥ (z)=eFz, the envelope
function satisfies

(7.42)

1.9
i ok,

s(k,)F(kz)+eF[ +X(k;) |F(k,)=¢eF(k,),

(7.43)

where the F before the bracket is the electric field, (k) is
the dispersion of the conduction band, and

L s ()=
X (k)= fndRukz(R)akz u (R), (7.44)

where (2 is the volume of a unit cell and u (R) is the

periodic part of the Bloch function. Assuming that
F(k;) has nonzero values only around the minima +k,
Kiimmel has obtained two series of subbands whose ener-
gies are shifted by eFX(+k() from the energy levels cal-
culated in the usual effective-mass equation. In the ab-
sence of a spin-orbit interaction uy, can be chosen as real

and X (+kg) can be set zero. In its presence, however,
X (+kp) can be nonzero and X (+ky)=—X(—kg). Thus
the spin-orbit coupling may give rise to a valley splitting

AE,=2|X(+ko)|eF

aV(z)
Bzz >

This is the spin-orbit mechanism proposed by Kiimmel.
Since the spin-orbit interaction is not important in the
conduction-band edge of silicon, it is not certain whether
such a mechanism really contributes a sizable amount to
the valley splitting in actual inversion layers. Estimation
of X(+k) requires understanding of the detailed band
structure and has not been done yet. Kiimmel claims
that | X(+kq)| takes a nonzero value which is one order
of magnitude smaller than the lattice constant. There
have been arguments as to whether a nonzero value of
| X(+ko)| can give the splitting given by (7.45) to
lowest order (Campo et al., 1978; Ando, unpublished).

=2|X(+ko)|{

(7.45)

2. Valley splittings on Si(100)

a. Many-body effects

A typical example of the Shubnikov—de Haas oscilla-
tion of the transverse conductivity in strong magnetic
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fields (Kawaji, Wakabayashi, and Kusuda, unpublished)
is given in Fig. 148. A similar figure has also been given
in Sec. VI.B. The lowest two Landau levels (N =0 and
1) show splitting of the peak into four. The larger split-
ting is the spin-Zeeman splitting and the additional one
is considered to be the valley splitting. The Landau level
N =2 exhibits a small valley splitting. For N =3, only
the spin splitting is resolved in magnetic fields below 150
kOe, and a characteristic structure called a cusp by
Ohkawa and Uemura (1976, 1977c) appears above
H ~150 kOe, as is denoted by an arrow. For higher
Landau levels no splittings are resolved. Therefore, the
valley splittings disappear at high concentrations. On
the other hand, calculated valley splittings, as discussed
in Sec. VII.A.1, are extremely small at low N; and in-
crease roughly in proportion to N;. Such characteristic
behavior of the line shape is closely related to the prob-
lem of the level broadening effect. As has been discussed
in Sec. VI.B estimated level widths of Landau levels are
typically 1.5~2 meV in H ~100 kOe and much larger
than the valley splitting predicted theoretically. Further,
the width does not increase so rapidly with N; as to ex-
plain the rapid change of the line shape of the
Shubnikov—de Haas oscillation. It is clear, therefore,
that simple inclusion of the bare valley splitting cannot
account for the experimental results and that the addi-
tional enhancement of the splitting, which is the same as
that of the spin splitting as discussed in detail in Sec.
VI1.B, is crucial.

A schematic illustration of the relative motions of
Landau levels with different spins and valleys is given in
Fig. 149, where the spin orientations are denoted by 1
and | and the valleys by + and —. The occupied levels
suffer a self-energy shift roughly proportional to their oc-
cupation and inversely proportional to the screening of
the system. Therefore, the enhancement oscillates as a
function of the electron occupation of the levels.
Ohkawa and Uemura (1976, 1977c) calculated the self-
energy shift in the screened Hartree-Fock approximation
used by Ando and Uemura (1974b, 1974c) for the ex-

w

Si (001) n-Inversion

~ H=110 kOe
H=150 kOe

~

Transverse Conductivity (107“mho)

Ng (10%cm™2)

FIG. 148. Examples of transverse conductivity observed by
Kawaji, Wakabayashi, and Kusuda (unpublished) in an n-
channel inversion layer on a Si(100) surface. The arrows indi-
cate positions of N=3 Landau levels. After Ando (1980a).
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planation of the spin splitting, using their value of the
bare valley splitting and taking a Gaussian form as the
density of states of each level. An example of calculated
line shapes of the Shubnikov—de Haas oscillation has
been given in Fig. 129, which explains the characteristic
feature of the experimental results. Although there
remain various problems in such a line-shape analysis
such as electron localization effects discussed in Sec.
VLD, they clearly demonstrated the importance of the
exchange enhancement effect in explaining the experi-
mental results.

Rauh and Kiimmel (1980a—1980c) extended the cal-
culation of Ohkawa and Uemura to nonzero tempera-
tures and calculated the maximum enhanced valley split-
ting when the position of the chemical potential is mid-
way between the valley energy levels (the cases 4 and F
in Fig. 149). They have demonstrated that with the in-
crease of temperature and enhanced splitting stays ap-
proximately constant at its zero temperature value and
then drastically drops down around a certain tempera-
ture of the order of the bare valley splitting. At higher
temperatures the valley splitting is not resolved. This ra-
pid decrease occurs due to a twofold positive feedback
mechanism: With increasing temperature the difference
in occupation numbers of the two valleys decreases and
the screening increases simultaneously.
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FIG. 149. A schematic sketch of the enhancement of the spin
and valley splittings. The occupied level suffers a self-energy
shift proportional to its occupation and inversely proportional
to the screening of the system. The enhancement is large in an
insulating situation, and small in a metallic situation. After
Ohkawa and Uemura (1977c¢).
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b. Experimental determination of the valley splitting

The line shape of the Shubnikov—de Haas oscillation
calculated by Ohkawa and Uemura does not necessarily
mean that their value of the bare valley splitting agrees
with experiments. This is because the actual splitting,
according to their calculation, is dominated by many-
body enhancement, especially at low electron concentra-
tions. It should be noticed that the enhancement due to
the exchange effect is still appreciable and cannot be
neglected even at higher electron concentrations where
the valley splitting is not resolved in the Shubnikov—de
Haas oscillations. This makes experimental determina-
tion of the valley splitting quite difficult and ambiguous,
although one can get some information on the splitting
from the experimental results.

Let us first focus our attention on the characteristic
difference of the line shape of the peak for N =3 (denot-
ed by arrows) in Fig. 148. At H =110 kOe the peak
shows only the spin splitting, which means that the ener-
gy separation of the levels N =(3,!,+4) and (3,1,—)
when the Fermi level lies midway between them is larger
than that of the levels (3,17,—) and (3,t,+) when the
Fermi level lies at the corresponding middle point. Al-
though this relation holds for the level separations modi-
fied by the strong many-body enhancement, one can safe-
ly assume that the same is applicable to the energy levels
in the absence of the enhancement effect. Therefore, one
can conclude that the valley splitting is smaller than half
of the spin splitting around the peak electron concentra-
tion, i.e., AE, <upH, with up being the Bohr magneton.
The line shape at H =150 kOe, on the other hand, shows
that the valley splitting is slightly larger than half of the
spin splitting. In this way one can obtain such upper
and lower bounds (sometimes the exact values) of the
bare valley splitting from line-shape analysis in different
magnetic fields. One can be more precise in the case of
tilted magnetic fields because the spin splitting is deter-
mined by the total magnetic field. Figure 150 gives an
example of results of the line-shape analysis done by
Kawaji, Wakabayashi, and Kusuda (unpublished), togeth-
er with the theoretical results of Ohkawa and Uemura
(1976, 1977b) and of Sham and Nakayama (1978, 1979),
in the case of no cutoff of the image potential. Both
theoretical results become about 10% larger than those
shown in the figure if one chooses 6 ~a /4 in Eq. (7.39).
The bare valley splitting for N =3 seems to lie between
the two theoretical curves. Note, however, that the
theoretical results are shown in the figure only for visual
aid and are not meant to be compared with the experi-
mental results because of various uncertainties originat-
ing from the model of the interface.

The most naive determination of the valley splitting
should be possible in lower magnetic fields where the
Landau-level separation #w, is comparable to the valley
splitting (Stiles, 1979; see also Ando, 1979b). An exam-
ple of the Landau-level structure for H =25 kOe is
shown in Fig. 151 together with a schematic illustration
of the Shubnikov—de Haas oscillation of the conductivi-

Rev. Mod. Phys., Vol. 54, No. 2, April 1982

ty. The result of Sham and Nakayama (1979) for §=0 is
assumed, and the many-body enhancement is completely
neglected for simplicity. Although the valley splitting is
small and not resolved, the Shubnikov—de Haas oscilla-
tion should show a characteristic phase change of 7 at
the electron concentration where the valley splitting is
half of the Landau-level separation (around N,=3.8X
102 cm~—2 in Fig. 151). Such a phase change did not at-
tract much attention until quite recently, and the experi-
mental situation is still unclear. This is mainly because
of its strong sample dependence. Some samples seem to
exhibit such a phase change at high electron concentra-
tions but others do not. Stiles (1979) reexamined earlier
experimental results of weak-field Shubnikov—de Haas
oscillations of various samples systematically. The phase
change does not happen in all samples, but the behavior
is nearly the same for all samples from a given wafer.
He has found also that such a phase change even occurs
twice or more in some samples for a certain range of ap-
plied magnetic fields, suggesting an oscillatory behavior
of the valley splitting as a function of N;. Figure 150
contains a single experimental result obtained by Kawaji,
Wakabayashi and Kusuda (unpublished). The valley
splitting is much smaller than those in strong magnetic
fields. Note that the splitting determined in this way
contains the exchange enhancement, which cannot be
neglected even at small magnetic fields, and that the bare
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FIG. 150. Upper and lower bounds (black dots with a down-
ward and upward pointing arrow, respectively) obtained from a
line-shape analysis of magnetoconductance oscillations in
strong magnetic fields by Kawaji, Wakabayashi, and Kusuda
(unpublished). Theoretical predictions by Ohkawa and Uemu-
ra (1977b) and by Sham and Nakayama (1979) for 8=0 are
also shown. A phase change of the Shubnikov—de Haas oscil-
lation in weak magnetic fields gives the data point shown by a
small circle. After Ando (1980).
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FIG. 151. Schematic illustration of the Landau-level energy

and the Shubnikov—de Haas oscillation of the conductivity as
a function of electron concentration Ny in H=25 kOe. The
thin solid lines and broken lines represent the bonding and an-
tibonding levels, respectively, and the dot-dot-dashed line the
position of the Fermi energy in the absence of magnetic field.
The vertical dot-dashed line at 3.8 10'2 cm ™2 shows the elec-
tron concentration where the valley splitting is one-half of the
Landau-level separation. The oscillation changes its phase at
this electron concentration. After Ando (1979b).

splitting is even smaller. One sees, therefore, that the
valley splitting depends on magnetic field rather strongly.

Actually there have been many other attempts to
determine the value of the valley splitting. Kohler and
co-workers (Kohler et al., 1978; Kohler and Roos, 1979a,
1979b; Kohler, 1980) tried to determine the valley split-
ting using a slightly different argument of the phase
change of the Shubnikov—de Haas oscillation in tilted
magnetic fields. Von Klitzing (1980) analyzed the
Fermi-energy dependence of the transverse conductivity
by tilting a magnetic field and keeping its normal com-
ponent fixed. He has obtained maximum allowed values
(upper bounds) of the valley splitting from such an
analysis. Oscillations in strong magnetic fields as a func-
tion of the substrate bias were studied by Nicholas et al.
(1980a), who demonstrated a strong sample dependence
of the absolute value of the splitting and an increase of
the splitting with increasing Ng.,. More recently Nicho-
las, von Klitzing, and Englert (1980) performed a line-
shape analysis of the conductivity in strong magnetic
fields in a way similar to that discussed above by varying
Ngyept and the tilt angle of the magnetic field. They
showed, for the first time, that the valley splitting in-
creases linearly as a function of Ny, in agreement with
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a theoretical prediction. In all these works, however, the
important many-body effect has not been considered ex-
plicitly. Therefore, the values of the valley splitting can-
not be compared directly with the theoretical values, al-
though their qualitative behavior is expected to be
correct. We do not give a detailed account of these ex-
periments here, since they require quite complicated ar-
guments on the level structure and the line shape of the
conductivity.

c. Misorientation effects

Ando (1979a) has suggested that crystallographic
misorientations of the surface can affect the valley split-
ting. Since the valley splitting is a result of coupling of
the two valleys located near the opposite ends of the
Brillouin zone, a slight tilt of the interface from the (100)
direction can give rise to a large change in the splitting.
Suppose that the interface is tilted by 0. The Fermi lines
associated with the two valleys projected to the interface
plane (k,=0) are separated by an amount of 2ksinf in
the k,-k, plane. Therefore, if we neglect coupling of dif-

ferent Landau levels of the two valleys, we get
AE, ~AE, | Jyy(2kol sind) | , (7.46)

where AE, is the valley splitting for 6=0, Jyy(x) is the
overlapping integral of the Landau levels, and />=c#/eH

is the radius of the ground cyclotron orbit. For suffi-
ciently large N,
I (2kol sin@) ~Jo[ (2N +1)1/22k 1 sinb]
~Jo[2koR, sinb] , (7.47)

where Jy(x) is the Bessel function of the zeroth order
and R, is the classical cyclotron radius. Since ko'~1 A
and [ ~100 A typically, very small values of 6 (of the or-
der of 0.5°) are sufficient to modify the splitting drasti-
cally. Further, the effect is larger for high Landau levels
and weak magnetic fields. Examples of results of numer-
ical calculations in which couplings between different
Landau levels are also included are given in Fig. 152,
where the valley splitting of the Landau level where the
Fermi level lies is plotted against N, for H =25 and 150
kOe. Effects are enormous, especially in weak magnetic
fields, and even give rise to an oscillatory behavior which
can be understood from Eq. (7.47). This can be a candi-
date to explain the experimental results of Stiles (1979)
mentioned above. Additional valley-valley interactions
through an X point are present for nonzero values of k,
and k, and can become important in the case of large
misorientations.

There can be various sources of nonzero values of 8 in
actual inversion layers. Since experimental accuracy of
the determination of the crystallographic orientation is
usually limited to ~0.5°, usual MOSFETs are believed
to have misorientations of the same order. Actual sam-
ples have the so-called interface roughness, whose exact
nature is not well known (see Secs. IV.B and IV.C) and
which can give rise to a large-scale (slowly varying) de-
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FIG. 152. Calculated valley splittings of the Landau level
where the Fermi level lies at zero temperature as a function of
the electron concentration N, for different values of the tilt an-
gle 6 in (a) H=25 kOe and (b) 150 kOe. Nge=0.1X10"
cm~2 After Ando (1979b).

formation of the interface similar to misorientations.
These are almost uncontrollable experimentally and can
cause valley splittings which are strongly sample depen-
dent, especially in lower magnetic fields. Therefore, the
misorientation effect can explain various strange
behaviors of the splitting which are observed experimen-
tally. There are some problems, however, in applying
the above simple-minded theory to actual systems. The
tilt angle of 0.5° corresponds to a distance of several hun-
dred angstroms along the surface for each lattice con-
stant step, which might cast some doubt on the meaning
of such a small tilt angle. The interface might locally be
flatter than expected and directed in the exact (100)
direction, which weakens the misorientation effect, espe-
cially in strong magnetic fields where the cyclotron ra-
dius is sufficiently small. Thus the effective tilt angle
can depend on the strength of the field through the ra-
dius of the cyclotron orbit.

3. Minigaps on vicinal planes of Si(100)

Cole, Lakhani, and Stiles (1977; see also Stiles et al.,
1977) have observed an anomalous structure in the elec-
tron concentration dependence of the conductivity in an
n-channel inversion layer on the Si(811) surface. The
(811) surface was tilted only 10° from the exact (100) sur-
face and both the subband structure and transport prop-
erties were expected to be almost the same as those on
(100). Examples of observed conductivities are given in
Fig. 153. Let us choose in the following the x and y
directions in [288] and [011], respectively, and the z
direction in [811]. The conductivities in the principal
directions, o,, and o,,, exhibit a double-dip (or W-
shape) and single-peak structure, respectively. Such
structures disappear at high temperatures and do not
seem to exist in p-channel layers. Figure 154 shows ob-
served Shubnikov—de Haas oscillations of the y com-
ponent conductivity (30, /0N;) as a function of the elec-
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FIG. 153. Observed conductivity on various tilted surfaces as
a function of the electron concentration n,. Curve A, 0,,;
curve B, 0, in n channel on a Si(811) surface at low tempera-
ture; curve C, oy, on a Si(811) surface at high temperature (77
K); curve D, p channel on a Si(811) surface. After Cole et al.
(1977).

tron concentration N;. An oscillation with large ampli-
tude appears above N, ~3.2X10'2 cm~2? in weak mag-
netic fields. This oscillation has longer period in Ny than
the usual one which can be seen at smaller concentra-
tions (N; <2.5X 102 cm~2). From the period and the
temperature dependence of the oscillation amplitude Cole
et al. have obtained the concentration of electrons parti-
cipating in the oscillation and their effective mass. The
results are given in Fig. 155. One sees that the electron
dispersion relation for high concentrations is highly non-
parabolic. Such anomalous behavior was explained by
assuming a minigap in the two-dimensional dispersion
relation caused by the existence of a one-dimensional su-
perlattice potential. A minigap which is about 4 meV at
N;=3X%10"? cm~2 and increases linearly with N, seems
to explain all the characteristics of the observed results.
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FIG. 154. Transconductance do,,/dn; on Si(811) at 1.5 K for
different magnetic fields. Curve A, H=0; curve B, H=3 kOe;
curve C, H=8 kOe. After Cole et al. (1977).
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FIG. 155. Measured effective masses as a function of the elec-
tron concentration on a Si(811) surface. The solid curve is the
measured number of carrier in the lens orbit. The dashed
curves are the expected values for the one-dimensional super-
lattice model. After Cole et al. (1977).

The structures of the conductivities are caused by the
change in the density of states and electron velocities
near the minigap. Electrons in the upper lens orbit cause
the Shubnikov—de Haas oscillation with a longer period
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and a larger amplitude. From the electron concentration
corresponding to the anomalous peak of o,,, one can
determme the period of the superlattice potential to be
104 A This is different from the expected step period
31.4 A at the Si- -SiO, interface. The origin of the as-
sumed superlattice potential has remained unknown.
Other surfaces have also been studied (Lakhani et al.,
1978). The (511) surface (tilted 16°) has been shown to
exhibit a similar expected behavior, whereas a striking
difference occurs on the (23 22) surface (tilted ~7°).

Sham, Allen, Kamgar, and Tsui (1978) have proposed
an alternative model in which minigaps result from the
removal, by valley-valley interactions, of the valley de-
generacies at crossings of the surface subbands obtained
by projecting the bulk dispersion to the plane parallel to
the interface (k,=0). This so-called valley projection
model predicts that the minigap occurs at the electron
concentration where the Fermi wave number measured
from the bottom reaches 0.15(27/a)sind, where 6 is the
surface tilt angle. This electron concentration explains
the position of the gap observed on the (811) and (911)
surfaces. Tsui, Sturge, Kamgar, and Allen (1978) later
made a systematic study of the tilt-angle dependence and
confirmed the valley projection model.

Although the position of the minigap can be explained,
the size of the observed minigaps is much larger than the
valley splitting on the exact (100) surface and is not un-
derstood yet. For tilt angles like 6 ~ 10° valley-valley in-
teractions through the X point are expected to be impor-
tant. One can estimate the value of the minigap from
Eq. (7.20) in a manner similar to that discussed previous-
ly (Sham, 1979a; Ohkawa, 1978b, 1979b, 1980). One ob-
tains

(7.48)

where ¢ is the azimuthal angle of the surface direction with respect to the [010] direction and the x direction has been
chosen in the direction of the tilt. In the absence of shear strains e,; the minigap at k, =k, =0 is given to the lowest

order in L and 6 as

7
AE, ~ |i
v ! 2m0

where (3V(z)/3z) is given by Eq. (7.15). This value
depends strongly on 6 and ¢. For the (911) surface, for
example, it gives 0.6 meV at N; ~3X 10?2 cm~2 by put-
ting 6~10° and ¢=m/4. This number is much smaller
than that observed by Cole et al. (1977). One can calcu-
late the gap for nonvanishing k, and k,, which shows
that the gap depends rather strongly on k, and k,.
Various experiments have been performed to obtain
the value of the minigap. Sham, Allen, Kamgar, and
Tsui (1978) observed far-infrared optical absorption
across the minigap on the (811) surface. Figure 156
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shows an example of observed dynamical conductivities,
Oxx(®) and o0y, (w), when the Fermi level lies at the
center of the minigap. The y component of conductivity
is close to the Drude conductivity given by the observed
mobility, while the x component exhibits a clear inter-
band transition. Since the largest valley-valley coupling
occurs at k, =0 where the two valleys are degenerate, the
predominant contribution to the optical transition comes
from regions of k,-k, space close to the points where the
two Fermi circles in the absence of a minigap cross each
other. One can expect, therefore, that such optical mea-
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FIG. 156. Optical conductivity vs frequency on a Si(911) sur-
face observed by Sham, Allen, Kamgar, and Tsui (1978). (a)
0y (b) 0x. The solid and dashed curves in (b) represent
theoretical predictions based on the superlattice model and the
valley projection model, respectively.

surements give the minigap at these points, while the
structure of the static conductivities gives the minigap at
ky=k,=0. Far-infrared absorption has also been ob-
served by other workers (Tsui, Allen, Logan, Kamgar,
and Coppersmith, 1978; Cole et al., 1978; Sesselmann
et al., 1979; see also Kotthaus, 1980) and has been inves-
tigated extensively on various surfaces with different tilt
angles by Sesselmann and Kotthaus (1979) and by Kam-
gar, Sturge, and Tsui (1980). The results show that the
minigap increases with the tilt angle and N, in qualita-
tive agreement with the theoretical prediction based on
Eq. (7.20). However, the absolute value is much larger
than the theoretical one. Far-infrared emission resulting
from radiative decay of electronic excitations across the
minigap has also been observed (Tsui and Gornik, 1978;
Tsui, Gornik, and Miiller, 1979; Gornik and Tsui, 1978a,
1978b; Gornik et al., 1980a) and used for the investiga-
tion of the N; and 0 dependence of the gap. The condi-
tion of the onset of the magnetic breakthrough in the
Shubnikov—de Haas oscillation (see, for example, Pip-
pard, 1962), AE, ~(#iw.Ep)!/?, has explicitly been em-
ployed by Kusuda and Kawajii (unpublished) and by
Okamoto, Muro, Narita, and Kawaji (1980). Roughly
speaking, the minigap obtained in this way is expected to
be the same as the optical minigap. Although this
method cannot determine the absolute value, it can
describe the qualitative behavior such as the Ny and 6
dependence. Effects of substrate bias have not been fully
studied yet. Cole, Lakhani, and Stiles (1977) have shown
that the minigap increases with increasing depletion field
proportional to Ng,, consistent with the theoretical pre-
diction given in Eq. (7.49). Gornik, Schawarz, Lin-
demann, and Tsui (1980a) have suggested from experi-
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ments on far-infrared emission that the minigap is a
function of (Ns+Ngep), in disagreement with Eq. (7.49).

All the experiments mentioned above indicate ex-
istence of a large 6-independent term in the expression of
the minigap. One possible candidate for this large term
is existence of large strains which might originate from
the tilting of the interface. In the presence of a strain
the off-diagonal term iE,e,; of Eq. (7.20) gives rise to a
6-independent valley splitting. Since the overlapping in-
tegral of the wave functions of the two valleys is dom-
inated by the region of z close to the interface, strains ex-
tremely localized in the vicinity of the interface are suffi-
cient. In this case, however, such localized strains can-
not be described by Eq. (7.20). The amount of strain can
depend on the tilt angle, which might cause additional 6
dependence of the minigap. A possible appearance of in-
terface states near the conduction-band edge on tilted
surfaces and resulting resonance interactions of the two
valleys, as demonstrated by Sham and Nakayama on the
exact (100) surface within a k-p infinite barrier model, is
another candidate. One needs experimental study of the
minigap on samples made by different preparation tech-
niques to give an answer.

Equation (7.49) suggests that the valley splitting can
strongly depend on the azimuthal angle ¢. Such a
dependence has been studied by several groups, but is
still in controversy. Sesselmann and co-workers (Sessel-
mann et al., 1979; Sesselmann and Kotthaus, 1979) have
suggested from measurements of optical absorptions and
static conductivities that the minigap on (n 10) surfaces
(¢=0) is much smaller than on the (n11), consistent
with the sin2¢ dependence of Eq. (7.49). Stiles (1979)
obtained a minigap on (n 10) surfaces similar to those on
the (n11) although the structure of the conductivity is
much weaker. Kusuda and Kawaji (unpublished) ob-
tained, from the condition for magnetic breakthrough,
minigaps on (n10) which are about half of the corre-
sponding gaps on (n11) with the same tilt angle. It is
not certain at present whether such contradictory results
originate from a large k, and k, dependence of the mini-
gap or are inherent in its strong dependence on interface
conditions.

The valley projection model predicts a possibility of
appearance of many other higher minigaps (Tsui, Sturge,
Kamgar, and Allen, 1978; Tsui, Kamgar, and Sturge,
1979). Figure 157 shows the E vs k, relation of inver-
sion layer electrons on surfaces tilted by 6 from (100). In
the extended zone scheme and if minigaps are neglected,
it consists of two parabolas centered at k,=+k,, with
ko=0.85(27/a), one from each of the two (100) valleys.
The model assumes that projection of the reciprocal lat-
tice vector, (47/a,0,0), onto the surface gives a surface
reciprocal lattice vector Q=(Q,0) with Q =(4m/a)sin@
in the tilting direction. Consequently minigaps in the
surface bands can appear whenever these bands cross
each other in the periodic zone scheme, as is illustrated
in Fig. 157. The minigaps occurring at k, =0, +Q/2,
+2Q/2, ... arise from valley-valley interactions, while
the interaction of degenerate states from the same valley
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FIG. 157. E vs k, relation of inversion layer electrons on sur-
faces tilted by an angle 0 from (100): (a) in the extended-zone
scheme in the absence of valley-valley interactions and (b) in
the periodic-zone scheme with degeneracies at band crossings
removed. Q =(47/a)sinf. After Tsui, Sturge, Kamgar, and
Allen (1978).

will result in the minigaps at k,=+(27/a —kg)sinb.
Therefore one can expect minigaps to appear with in-
creasing electron concentration N; at kp=(Q2w/
a —kg)sing, kgsinf, (27/a)sinb, (4m/a —kq) sinf, ... ,
where kp=(mN,)"”2. Tsui, Sturge, Kamgar, and Allen
(1978) observed at expected positions anomalies in the
second derivatives of conductivities with respect to N,
associated with those additional higher minigaps
[kFr=0.85(27/a)sinb, (27 /a)sinf, and 1.15(27r/a)sinf]
on (n11) surfaces with large n. Optical absorption was
observed across the second minigap 0.85(27/a)sin@ and
gave a gap which is similar in magnitude to the first
minigap corresponding to the same N; and tilt angle
(Tsui, Sturge, Kamgar, and Allen, 1978; Kamgar et al.,
1980). Far-infrared emission also gives some of these
higher minigaps (Gornik et al., 1980a).

When electrons are confined within an extremely nar-
row region close to the interface plane, and the momen-
tum #k, in the direction perpendicular to the interface
spreads out in the whole momentum space, the two-
dimensional reciprocal lattice vectors G can be obtained
by projecting the corresponding reciprocal lattice vectors
in three dimension onto the interface plane (Volkov and
Sandomirskii, 1978, 1979; Sham, 1979a). This projection
can give reciprocal lattice points in two dimensions
which are different from those obtained in the simple
valley projection model discussed above. One can show
that on the (n11) surface G, =m (27 /a) sinf for even n
and G, =m (47 /a)sind for odd n, where m is an integer.
The two-dimensional Brillouin zone becomes a half of
that obtained previously in the k, direction for even n.
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Although this does not affect the electron concentration
corresponding to the lowest minigap, it can give rise to
additional higher gaps on (n11) surfaces with even n.
Those new minigaps have not yet been observed, howev-
er. In the case of the (232 2) surface, the same argument
gives G, =m(wr/a)sin@, and even ky or the electron con-
centration corresponding to the lowest minigap can be
different from that predicted in the simple valley projec-
tion model (Volkov and Sandomirskii, 1978). It is not
certain whether this new gap explains the observed
anomalous behavior on the (2322) surface (Lakhani
et al., 1978). Such new minigaps can certainly exist in
principle. However, if we consider that couplings be-
tween bands which are quite far apart in momentum
space are needed, there might be some doubt as to
whether they have values big enough to be observable ex-
perimentally.

Although there is no doubt about the existence of a
minigap on tilted surfaces, there remains a problem as to
whether the minigap due to the valley splitting explains
details of the anomalous behavior of the transport ob-
served experimentally. Actually the inversion layer on
the tilted surfaces provides an ideal system where one
can study effects of nonparabolicity and band gaps in the
dispersion relation on transport phenomena. Transport
properties of such a system have been investigated
theoretically (Ando, 1979d; see also Ando, 1980a). The
model assumes a gap independent of k, and k, to
describe the dispersion around the lowest minigap on til-
ted surfaces and short-range scatterers as a main
mechanism which limits the electron mobility. The
model of short-range scatterers has been shown to ex-
plain various characteristics of the quantum transport in
the inversion layer, as has been discussed in Sec. VI.
The transport coefficients o,,(w) and o,,(w) have been
calculated within the model both in the presence and in
the absence of a magnetic field and both for =0 and
for w=£0. Figure 158 shows an example of calculated
density of states and static conductivities as a function of
the Fermi energy. The energy is measured from the bot-
tom of the subbands in the absence of their coupling and
is normalized by the Fermi energy corresponding to the
crossing of the two subbands. The scattering strength is
parametrized by the level broadening in the absence of a
minigap I'p, which is given for the present example by
0.15. The minigap lies between 0.7 and 1.3. The density
of states shows structure near the bottom and the top of
the gap, reflecting a logarithmic divergence and a step-
function—like increase, respectively. This sharp struc-
ture has been smoothed by the level broadening effect.
Both o, and oy, exhibit a small peak when the Fermi
level crosses the minigap, and o,, has a larger peak.
This is quite different from the characteristic feature of
the experiments shown in Fig. 153. Experimentally o,
has a peak, while o, has a W-shaped structure. Similar
disagreements have been shown to exist also in the
Shubnikov—de Haas oscillation and the dynamical con-
ductivities describing the minigap absorption. The vari-
ous anomalies in the transport coefficients associated
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FIG. 158. An example of the density of states D(E) and con-
ductivities 0. and oy, calculated in a model system. The
minigap lies between 0.7 and 1.3. A