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This paper discusses the sense in which the large N limits of various quantum theories are equivalent to
classical limits. A general method for finding classical limits in arbitrary quantum theories is developed. The
method is based on certain assumptions which isolate the minimal structure any quantum theory should
possess if it is to have a classical limit. In any theory satisfying these assumptions, one can generate a natural
set of generalized coherent states. These coherent states may then be used to construct a classical phase space,
derive a classical Hamiltonian, and show that the resulting classical dynamics is equivalent to the limiting
form of the original quantum dynaxnics. This formalism is shown to be applicable to the large N limits of
vector models, matrix models, and gauge theories. In every case, one can explicitly derive a classical action
which contains the complete physics of the N = 00 theory. "Solving" the X = co theory requires minimizing
the classical Hamiltonian, and this has been possible only in simple theories. The relation between this
approach and other methods which have been proposed for deriving large % limits is discussed in detail.
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I. INTRODUCTION

Many quantum theories possess natural generalizations
in which the number of degrees of freedom is a free
parameter. If N is some measure of the number of
dynamical variables, 'then for a wide class of these
theories the N ~ ao limit is known to simplify the
dynamics dramatically. This is true in theories ranging
from the quantum mechanics of a point particle moving,
in an X-dimensional central potential, to quantum spin
models with spin N quantum spins, to quantum field
theories containing SU(N) gauge fields. If the N~go
limit of such a theory can be explicitly solved, then a
systematic expansion in powers of 1/N can provide a
very useful approach for studying the original finite N
theory. '

Much of the recent interest in large N expansions is
motivated by the desire to find reliable methods for
analyzing the dynamics of quantum chromodynamics
(QCD). One may introduce a parameter N into QCD by
replacing the SU(3) gauge group with SU(N) ('t Hooft,

1974). 1/N then provides the only known expansion
parameter which can be used in calculations of hadronic
properties. Qualitative arguments suggest that the
%=00 theory is surprisingly similar to the real world
(Veneziano, 1976; Witten, 1979a). (For example, for
large N one expects to see infinitely many narrow reso-
nances that are purely composed of valence quarks. Ex-
otics are absent, Zweig's rule is satisfied, and one-meson
exchange dominates scattering amplitudes. ) Therefore a
l/N expansion might be very reliable even at %=3. Un-
fortunately, the X= ao theory has not yet been explicitly
solved, and for this reason quantitative predictions are
totally lacking.

Because brute force methods for solving the X~ao
limit (such as summing the appropriate class of Feynman
diagrams) appear to be totally hopeless in theories like
QCD, there has been considerable effort directed toward
finding useful ways to reformulate the large N limit of
various theories. By now, quite a few difFerent methods
have been proposed [under trade names such as "collec-
tive field methods" (Jevicki and Sakita, 1980a), "string
equations" (Makeenko and Migdal, 1979), "master fields"
(Witten, 1979), "constrained classical solutions" (Jevicki
and Papanicolaou, 1980; Halpern, 1981a), etc.]. Each of
these methods is known to work in at least some specific
set of models. However, questions such as "Why does
the method work?" or "For what class of theories does
the method works" have not been fully answered. This
paper represents an attempt to answer some of these
questions.

Essentially every method developed for studying large
X limits has been based on the following fact. In every
theory known to have a sensible large % limit, the vacu-
um expectation of any product of (reasonable) operators,
AB, satisfies the factorization relation,

*Richard Chace Tolman Fellow in Theoretical Physics
'For a review of some of the applications of 1/N-expansions

to field theories, see, for example, Coleman {1980).
%'hat constitutes a "reasonable" operator will be discussed in

Sec. III.
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408 Yaffe: Large N limits as classical mechanics

(AB) =(A)(8)+0(1/N) .

Therefore, the variance of any (reasonable) operator van-
ishes as N~oo,

[One way to verify these statements, at least perturba-
tively, is to examine the set of Feynman diagrams which
survive in the N~oo limit. (1.1) is equivalent to the
statement that disconnected graphs always dominate, and
this may be verified on a graph-by-graph basis without
having to sum the whole series. ]

Equation (1.2) shows that fluctuations become ir-
relevant, at least for some set of operators, when N tends
to infinity. Therefore in some sense quantum theories
with large N behave like classical theories. It then seems
natural to ask the question, "Is the N~ oo limit a classi-
cal limit?" By this we mean the following. Can one find
a classical system (i.e., a classical phase space, Poisson
bracket, and classical Hamiltonian) whose dynamics is
equivalent to the N ~ oo limit of a given quantum
theory~ In this paper the following strategy will be used
to explore this question. First I present a general scheme
for finding classical limits in arbitrary quantum theories.
This formalism is based on a small set of assumptions
which explicitly isolate the minimal structure any quan-
tum theory should possess if it is to have a classical lirn-
it. Given any quantum theory satisfying these assump-
tions, an explicit algorithm may then be used to con-
struct the classical phase space, de6ne a consistent Pois-
son bracket, and 6nd a classical Hamiltonian, such that
the resulting classical dynamics agrees with the limiting
form of the original quantum dynamics. I then examine
various theories in order to see if their large N limits can
be understood as examples of this general formalism.
Speci6cally, I consider vector models, matrix models,
and gauge theories, and in every case 6nd that the large
N limit is a classical limit in the sense described above.
In fact, this Inethod for deriving classical limits is appli-
cable to every quantum theory known to me which, in
some limit, satisfies factorization (Eq. 1.1). Besides trivi-
al A—+0 limits, this includes all large N limits of the type
discussed here, where the invariance group of the theory
grows with N, as well as limits where the underlying
symmetry group is fixed, but where quantum operators
in larger and larger representations of the group appear.
This latter type of limit describes, for example, the large
spin limit of quantum spin models. In somewhat greater
detail, the outline of this paper is as follows.

Section II contains a brief discussion of the A~O limit
in quantum mechanics of point particles. I revie~ a few
of the standard properties of gaussian coherent states,
and show how they may be used to construct a very sim-
ple derivation of the A~O limit. The basic purpose of
this section is to provide a concrete example which will
be used to illustrate many of the features of the following
rather abstract discussion.

Section III presents a genera1 formalism for finding

classical limits in arbitrary quantum theories. To apply
this method one must (a) choose an appropriate group of
unitary transformations, (b) generate a set of coherent
states by applying elements of this group to a suitable in-
itial state, and (c) show that in some limit of the theory
difFerent coherent states become orthogonal. This struc-
ture then automatically allows one to construct a unique
classical phase space, de6ne classical dynamics on this
space, and show that the limit of the quantum dynamics
is equivalent to this classical dynamics. In particular,
one can form a classical action which contains all the
physics of the original quantum theory that survives in
the classical limit.

This formalism is applied to the large N limit of vec-
tor models in Sec. IV. This class of models includes
theories ranging from quantum mechanics of point parti-
cles in N dimensions to N component P field theories. I
show that aH the assumptions of the general formalism
are valid for these models, and explicitly derive the clas-
sical limit. All of the standard results concerning the
large N limit of these models (such as the ground state
energy, spectrum, etc.) may be obtained by minimizing
the classical Hamiltonian and expanding the classical ac-
tion about the minimum.

Section V discusses the large N limit of matrix models.
Such theories are much more complicated than simple
vector models. (For example, the large N limit of the
perturbation series contains all planar diagrams. )

Nevertheless, the general formalism is shown to be appli-
cable to these models, and the classical limit is derived.
However, only in the case of a single matrix has it been
possible to explicitly minimize the resulting classical
Hamiltonian and thereby "solve" the N= oo theory.

Lattice gauge theories are the subject of Sec. VI. The
analysis is essentially identical to the preceding treatment
of matrix models. The large N limit may be shown to be
a classical limit, and the classical Hamiltonian may be
derived. The resulting classical phase space is sufficient-
ly complicated that only the one plaquette model has
been explicitly solved.

Section VII discusses the relation between this ap-
proach for understanding the large N limit, and previous-
ly proposed methods. The advantages and disadvantages
of each approach, as well as their interrelationships, are
considered at some length. Various open problems are
mentioned.

Finally, the appendix contains a brief discussion of
several topics which are related to the general formalism
of Sec. III.

A few "historical" remarks are appropriate to end this
introduction. The method presented in Sec. III for deriv-
ing classical limits of general quantum theories was
motivated by two recent papers, one by Berezin (1978)
and the other by Simon (1980). Berezin considered the
large N limit of vector models and showed that the limit-
ing theory is a classical theory. In fact, he found that
vector models with 6nite N may be regarded as the
quantization of classical mechanics on Kahler rnanifolds.
Berezin used coherent state methods which are very
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Yaffe: Large N limits as classical mechanics 409

similar to those employed in Sec. IV. The treatment
here is somewhat simpler, but the results are equivalent.
Further comments on Berezin's work will be found in
Sec. VII. Simon discussed the classical limit of quantum
spin systems, extending previous work by Lich (1973).
His work includes a derivation of the classical phase
space for spin models whose spins represent the genera-
tors of any compact I ie group. This paper's treatment
of generalized coherent states, as well as the identifica-
tion of the classical phase space, is essentially patterned
after Simon's discussion. I do not discuss quantum spin
models in any detail in this paper simply because there
already exists an extensive literature on the application of
coherent state methods to spin models. [See Simon
(1980), Lieb (1973), Fuller and Lenard (1979), Gilmore
and Feng (1978), Gilmore (1979), Shankar (1980), and
references therein. ] However, it should be noted that the
classical limits of quantum spin models provide beautiful
examples of the general formalism described in Sec. III.

[(dp dq/2irfi) = Q," i dp; dq; /2vrIi)]. Consequently, any

quantum state Ip) may be represented by its projections
onto the difFerent coherent states, f(p, q) = (p, q I

f).
This is convenient representation regardless of the choice
of the Hamiltonian; the quantum dynamics is not re-
quired to preserve the form of the coherent states.

Similarly, any operator, A, may be represented by its
coherent state matrix elements, (p, qlAlp', q'). However,
to specify an operator uniquely it is not necessary to give
all possible matrix elements. Due to the overcomplete-
ness of the coherent state basis, an arbitrary operator A

may be reconstructed from just the diagonal expectation
values,

A(pq)—= (pq IA Ipq) .

[One way to see this is based on the observation that

(xlp, q)e'i ~" is an analytic function of (p iq) —The. re-
fore, for any (reasonable) operator A, (p, qlA lp', q') /
(p, q I

p', q') is an analytic function of (p + iq) and
(p' iq')— C.onsequently, one may recover arbitrary
coherent state matrix elements of A by analytic continua-
tion from the diagonal expectation values. ]

Now consider the diagonal matrix elements of a prod-
uct of two operators, AB. The completeness relation (2.4)
may be used to write this as

I I. THE f~ -+ 0 LIMIT

Quantum mechanics is generally said to reduce to clas-
sical mechanics in the A—+0 limit. However, this state-
ment really requires some qualification. The crucial fact
is that one may form states whose uncertainty in both
position and momentum vanishes as A' tends to zero. If
(and only ifl the quantum system is prepared in such a
state, then the quantum dynamics will reduce to classical
dynamics when Pi~0. A simple way formally to derive
this result is as follows.

Consider a quantum theory describing n degrees of
freedom, with basic position Ix; j and momentum Ip;I
operators obeying the canonical commutation relations,

(AB)(p,q)= f (dp'dq'/2nk)
I (p, q lp', q')

I

x &pq IA Ip'q'& &p', q'IB Ip, q&

&p q I

p' q'& &p', q'
I p q &

(2.6)

To study the classical limit, one must compute the small
fi asymptotics of this integral. The first factor,

i [pi,xj ]=f15ij. , i,j= 1, . . . p il

becomes arbitrarily highly peaked about p=p' and q=q'
as Pi~0. However, the remaining factors have a smooth
limit when Pi~0. Therefore one finds

Introduce a set of Gaussian coherent states, jlp, q) I,
with wave functions given by

(2.1)
I &p q I

p' q'&
I
'=expI —(I/2+)[(p —p')'+(q —q')'] I

(x
I p, q ) = (irfi) "~ exp I (I/fi) [ip.x ——,(x —q) ] I .

(2.2)

lim(AB)(p, q) =a (p, q)b (p,q),
fi~o

(2.7)

Note that difFerent coherent states are not orthogonal;
their overlaps are given by

(p, q I
p', q') =expI —(I/4iri)[(p —p') +(q —q')

where a(p, q)=lim& oA(p, q), etc. Similarly, one may
expand the integral (2.6) about p=p' and q=q' and easi-
ly 6nd that

+» (p —p') (q+q')] I .
(2.3)

lim —[A,B](p,q) =
OA

Ba (p, q) db (p, q)
Bp Bq

This set of coherent states forms an overcomplete basis
for the full Hilbert space. This is expressed by the com-
pleteness relation,

1 = f (dp dq/2rrfi)
I p, q ) (p, q I

(2.4)

Bb (p, q) t)a (p,q)
Bp Bq

= Ia(p, q)»(p q) I~a . (2.8)

The properties of Gaussian coherent states are discussed in
many textbooks; Klauder and Sudarshan (1968), for example,
contains a good discussion.

4 M
A and S must be "classical operators" as defined in Sec. III.

Such operators include arbitrary polynomials in x and p with
no explicit fi dependence.
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These results show how the quantum theory reduces to
classical mechanics when A'~0. Equation (2.7) implies
that quantum operators become ordinary functions on
the classical phase space, while Eq. (2.8) shows that
quantum commutators become classical Poisson brackets.
This implies that the quantum equations of motion,
BA/dr=(i/fi)[H, A], reduce to the classical Hamiltonian
equations, Ba (p, q)/Bt= I h (p, q),a (p, q)Ized. If the quan-
tum Hamiltonian is some given functions of x and p,
H=f (P,x), then the classical Hamiltonian h (p, q) equals

f (p, q) regardless of the ordering of the original quantum
operators.

The classical equations of motion follow from the clas-
sical action,

&,1[p(&),q(&)]= I «[p(t)q(t) h(p—(t),q(t))] . (2.9)

One may regard the classical action as containing the
complete physics of the theory in the A—+0 limit. For
example, the limiting behavior as fi—+0 of the ground-
state energy, the spectrum, or any correlation function
may be obtained from the classical action. This will be
discussed in more detail at the end of the next section.

III. COHERENT STATES AND COADJOINT ORBITS

an Hz, etc. [We speak of a one-parameter family of
theories, as opposed to a single theory depending on the
parameter 7, in order to emphasize that the basic struc-
ture of the theory (such as the Hilbert space, commuta-
tion relations, etc.) may vary with X. For example, the
number of basic degrees of freedom will diAer in theories
with difFerent values of N.]

Let there be given some Lie group g which, within
each theory, may be represented by a set of unitary
operators. In other words, acting on each Hilbert space
H& is a group of unitary operators, G& =—I U~ U=D&(u),
u KgI, which provides a representation of the abstract
group g. We will refer to g as the coherence group. This
coherence group has a Lie algebra g which may be
represented within each theory by a set of anithermitian
operators, Cxz= I A ~A =Dr(A, ), A, &g}, which generate
one-parameter subgroups of 6&, exp I;A H 6&. Note that
the abstract group g and its algebra g do not depend on
the parameter g.

Furthermore, within each theory let there be given
some chosen normalized state, ~0)x&Hr, which we will
call the base state. Consider the states which are gen-
erated by applying elements of the coherence group to
the base state,

The key ingredient in the preceding discussion of the
A~O limit was obviously the choice of coherent states.
They provided

(i) a convenient partition of unity requiring only diago-
nal projections onto the coherent states,

(ii) a basis sufaciently overcomplete that any operator
could be completely represented by its diagonal matrix
elements alone,

(iii) a simple derivation of factorization based on the
fact that diAerent coherent states become orthogonal in
the classical limit, and

(iv) an identi6cation of the classical phase space as the
manifold whose coordinates could be used to label dif-
ferent coherent states.

We will now see how each of these features may be na-
turally incorporated in a more general framework. The
resulting abstract formalism will be applicable to every
known theory possessing a factorizing limit.

Consider a family of quantum theories labeled by some
parameter X (such as A' or I/N). X is assumed to take
values in some set of positive real numbers whose limit
points include zero. We are intereseted in studying the
limit of these theories as 7 tends to zero. Each theory is
de6ned on some Hilbert space 8& with some Hamiltoni-

These are precisely the coherent states we will use.
Henceforth, we will occasionally drop the explicit sub-
script 7 if we do not need to emphasize which particular
theory we are working in.

We will use the previous A—+0 example to illustrate
each feature of the general discussion. For convenience,
I describe the case of just one degreee of freedom. In
this example X equals A, and the coherence group g may
be chosen to be the Heisenberg group. This may be re-

garded as a three-parameter group whose elements,
u (p, q, a), obey the muliplication rule

u (p, q, a) u (p', q', a') =u (p +p', q +q', a+a' qp') . —

This group may be represented by the set of operators

Gs ——I U(p, q, a)= pe(xia/h) exp(ipx/fi) exp( iqp/A')[ . —
Note that U(p, q, a) simply translates positions by q, and
momenta by p. If we choose the base state to be a sim-

ple Gaussian,

(x ~0)s——(n%) '~ exp —(x /2'),
then elements of the Heisenberg group precisely generate
our previous coherent states up to an overall phase fac-
tor,

Note that if the Hamiltonian H(p, x ) is replaced by

(1/g )A'(gp, gx ), and the rescaled operators P'=gj and x'=gx
are used in place of p and x, then every occurrence of A be-

comes (g A'). Therefore the classical (R—+0) limit is equivalent
to the weak coupling (g2~0) limit.

This method for generating generalized coherent states based
on arbitrary Lie groups was 6rst discussed by Klauder {1963)
and Perelomov (1972).
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The choice of the coherence group is restricted by the
following assumption. We require

Assumption 1. Each representation of the coherence
group, G&, acts irreducibly on the corresponding Hilbert
space 8&.

A = f (dA, )f(A, ) exp(XA) (3.3)

for some weight function f(A, ). [Here (di.) indicates uni-
form measure on the Lie algebra g. The factor of X is
inserted for later convenience. ]

Assumption 1 may be easily verified in our fi~O ex-
ample. To do so, first consider the subgroup of the
Heisenberg group which is generated by (ix/fi),

t U(p, 0,0)=exp(i'/iri)]. Qne may easily see that the
only operators which commute with all elements of this
subgroup are of the form a(x), that is, which are solely

All integrals over the coherence group need only be taken
over the coset space gz=g/hz, where hz is the isotropy sub-

group of' Io)&ol "x=t u&g
I I

u)&ul=lo)&OII. I wi11 not.

bother to indicate this explicitly in the notation here. The in-

tegral dpL (u) u 0 is assumed to converge.

This is a sloppy version of the Yon Neumann density
theorem, which implies that a group acts irreducibly if and

only if the algebra of operators generated by the group is
strongly dense in the set of all bounded. operators. For a
rigorous proof see, for example, Bratteli and Robinson (1979),
Sec. 2.4.2.

In other words, there must be no nontrivial subspace of
Hr which is left invariant under the action of all ele-
ments of the coherence group Gr. To test for irreduci-
bility one may use Schur's lemma, which states that a
group acts irreducibly if and only if the only operators
which commute with all elements of the group are pro-
portional to the identity —i.e., Gy acts irreducibly i6'
UAU =A for all UHG& implies A ~1.

This assumption has the following consequences. Con-
sider the operator J= f dpi (u)~u)&u~, where dpL, (u) is
the (left) invariant measure on the coherence group i.e.,
dpi. (u'u)=dpi (u) for any fixed u'Eg. Note that J
commutes with all elements of Gr,

U'JU' '= f dpL(u) i

u'u ) &u'u
i

=J
for all U'HG~, so that by Schur's lemma J is propor-
tional to 1. Therefore the irreducibility of G» automati-
cally provides us with a natural completeness relation,

1 = cr f dpL(u) i
u)&u

i
. (3.2)

The constant c& depends on the normalization of the
group measure and must be computed explicitly.

Assumption 1 has another important consequence. If
a group acts irreducibly, then any operator may be ex-
pressed as a linear combination of elements of the

8group. Therefore any operator A acting in 8& may be
written in the form

Ar(u)=&u ~A
~
u)r, uHg .

For each value of 7, we require

(3.4)

Assumption 2. Zero is the only operator whose symbol
identically vanishes.

In other words, if A&(u)=0 for all u Hg, then A must
equal zero. This assumption implies that two diferent
operators cannot have the same symbol. (Otherwise, the
difFerence of the two operators would violate the assump-
tion. ) Therefore any operator may be uniquely recovered
from its symbol. This means that it is sufficient to study
the behavior of the symbols of various operators in order
to characterize the theory completely.

Assumption 2 may be easily verified for the A—+0 ex-
ample. One method, based on the analyticity of
&p, q~A~p', q')/&p, q ~p', q') in (p+iq) and (p' iq'), w—as
discussed in the last section. The assumption may also
be proven in a more direct fashion using an argument
due to B. Sixnon. We will present this argument in some
detail, since the method naturally generalizes to later ex-
amples.

Suppose the symbol of some operator, A&(u), vaiushes

for all uHg. We may choose u=e ' 'e ' ' . . e" " for

What I am ca1ling the symbol of an operator is elsewhere re-
ferred to as the louver symbol (Simon, 1980) or the eovariant
symbol (Berezin, 1972). There is another natural association of
operators with functions on the coherence group which may be
used to define upper or contravariant symbols. These are
described in the appendix, but are not used in the bulk of this
paper.

constructed &om x. However, any operator of this form
which also commutes with the subgroup generated by
(iplfi), I U(O,q,O)=exp( —iqp/vari)], must simply be a con-
stant. Therefore the Heisenberg group acts irreducibly.
Invariant measure on the Heisenberg group is given by
dp(u (p,q, a))=dp dq da (dp is both left and right invari-
ant). Therefore (3.2) agrees with our previous complete-
ness relation (2.4). In this example, the operator
representation (3.3) becomes

2 = f dpdqdaf(p, q, a) expi(px qp—+a)
= f dp dq f(p, q) exp i (px qp—)

[f(p,q) = f da f(p, q, a)e' ]. This is simply the well-
known Weyl representation. Equation (3.3) js the natural
generalization of this representation to any group which
acts irreducibly.

Assumtpion 1 involves only the choice of the coher-
ence group g. It places no restriction on the base state
~04. In fact, (3.2) shows that a complete set of states
may be generated by applying elements of the coherence
group to any initial state in 8&. However, the choice of
base state will be restricted by our next assumption.

For any operator A acting in Hr, let us define the sym-
bo/ Ar(u) as the set of coherent-state expectation values, 9

Rev. Mod. Phys. , Vol. 54, No. 2, April 1982
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arbitrary A,; Hg, differentiate with respect to each t;, and
6nd

lim A»(u) = lim A»(u')
X—+0 X~O

(3.7)

8 A»(»
I ~,.=o

tn

=(0
[ [ . . [[A,Ai], Ap], . . . , A„] [0)» . (3.5)

Therefore expectations in the base state of multiple corn-
mutators of A with arbitrary generators of the coherence
group vanish. Now for the Heisenberg group each A; is
some linear combination of ip/fi, ix/5, and i I/A'. There-
fore we may choose each A; to be either a creation,
a = (p+ix)/~2', or annihilation, a = (p ix)I—v 2',
operator. %'e will prove inductively that

(O~a- . aAa . . 'a 10)=0 (3.6)

for any number of creation or annihilation operators.
Suppose (3.6) has been verified whenever the total
number of creation plus annihilation operators is less
than some number L. Consider a multiple commutator
of the form (3.5) with I. creation or annihilation opera-
tors. Expand the multiple commutator. One term has
all annihilation operators to the left, and all creation
operators to the right of A. Every other term contains at
least one annihilation operator which may be pushed
right until it annihilates the base state, or one creation
operator which may be pushed left. This process may
produce commutator terms (since [a,a ]=1); however,
each commutator reduces the number of a 's plus a 's by
two. Therefore the expectation of the multiple commuta-
tor contains one new term of the form in (3.6) with I.
creation and annihilation operators, plus lower-order
terms which have already been shown to vanish. There-
fore (3.6) holds for I. creation and annihilation operators,
and by induction holds for any number. This shows that
matrix elements of A between any two states formed by
applying polynomials of creation operators to the base
state vanish. But such states are known to be dense,
thereby implying that 2=0. This proves the assump-
tion.

Henceforth, whenever I speak of an "operator, " I will

actually mean some given family of operators consisting
of one operator acting in each Hilbert space H». X obvi-

ously determines which operator in a given family is ap-
propriate; normally I will not bother to add it as an ex-
plicit label.

Clearly, an arbitrary operator need not have a sensible
limit as /~0. In order to have some control over this
limit, we will introduce a restricted class of operators, K,
consisting of operators A whose coherent state matrix
elements, (u~A

~

u')»/(u
~

u')», have finite limits as
7~0 for all u, u'Hg. We will refer to such operators as
classical operators.

Since classical operators form only a subset of all op-
erators, it is possible that measurements with any class-
ical operator will fail to distinguish between different
coherent states. Therefore we will call two coherent
states, ~u ) and ~u'), classically equivalent if

for all AEK. We will write u-u' if ~u) and ~u') are
classically equivalent.

We may now formulate our third assumption, which
states that classically inequivalent coherent states become
orthogonal as X—+0. Speci6cally, we require

Assumption 3. p(u, u')—:—lim» oX ln(u
~

u')» exists
for all u, u'Hg, and satisfies

(i) if u+ u', Re/(u, u') )0, and
(ii) if u -u', Re/(u, u') =0, and

(u ~XA
~

u')»lim, „= P(u, e' u') ~,
X 0 (u u' jZ Bt

(3.8)

lim
g—+0

(u
~

e»A
~

u')»
=exp — P(u, e' u') ~,(Q 0 )~ Bt

(3.9)

Consequently, a general classical operator, 3 EK, may
be represented in the form (3.3) for some weight function
f(k) with compact support [and for which lim» of(A, )
exists as a distribution]. Note that

limA»(u)= J(dz) limf(X)exp ——y(u, e'"u) ~, oX~O J~O at

This shows that if lim» oXAX(u)=lim» oXA»(u') for
all ARCS», then ~u ) and ~u') are classically equivalent.
In other words, expectation values of the set of operators
IXA~AHCr»] are sufBcient to distinguish classically ine-
quivalent coherent states. Finally, note that (3.9) plus
the last part of Assumption 3 implies that if ~u) and
~u') are classically equivalent, then

(u iA iu')»lim, = limA»(u) for all A HK . (3.10)»~o u
~
u»»~o

Assumption 3 allows us to prove factorization for any
pair of operators AQ E K. We may use the completeness
relation (3.2) to write the symbol of the product AB as

[p(u, e'"u) —p(u, e' u')] ~, o
——0 for all A, Hg .

Bt

This shows that if ~u) and ~u') are classically ine-
quivalent, then their overlap (u

~

u') decreases exponen-
tially as 7~0. Therefore for any classical operator
A H K, ( u ~A

~

u ')» must become highly peaked about
u-u' as X—+0 (otherwise, (u ~A

~
u')»/(u

~

u')» will
have no limit). In other words, classical operators can-
not "move" the coherent states. This excludes any 6xed
element UHG» of the coherence group (except 1). How-
ever, Assumption 3 shows that (XA) and exp(XA) are ac-
ceptable classical operators, for any A H(x&, since
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Yaffe: Large N limits as classical mechanics 413

=A»(u)B»(u). c» f dp L(u')
~

(u
~

u')»
~

+o(1)

=A»(u)B»(u)+o (1),

since c» f dpi. (u')~(u
~

u')»~ =1. Consequently, the
factorization

lim [(AB)»(u) —A»(u)B»(u)] =0
X—+0

(3.12)

holds for any pair of classical operators.
This whole discussion is a simple generalization of the

i6~0 example. In that case classical operators obviously
include arbitrary fi independent polynomials in x and p.
Since measurements with classical operators can deter-
mine the mean position and momentum of a state, classi-
cally equivalent coherent states can difFer only in their
overall phase. To verify Assumption 3, one must simply
compute the overlap ( u

~

u ' )q, and check that

P(u (p, q, a), u'(p', q', a'))

= —,[(p —p') + (q —q') +2i(p —p')(q +q') +4i (a —a') ]

satis6es the stated conditions. The operators
I U(p, q, a) =e' "e'~ ~"e '+~") are not classical operators
and do not obey factorization. However, the rescaled
operators I exp(irtA) =exp i (a+px qp ) J tra—nslate posi-
tions and momenta only by O(iri) and are prefectly ac-
ceptable classical operators.

The previous assumptions have given us some control
over the structure of the theory as X~O, but have left
the quantum dynamics completely unrestricted. To con-
trol the X~O limit completely we need to place one con-
dition on the quantum Hamiltonian H&. We require'

' The quantum equations of motion are taken to be
dA/dt=i [II,A ], with no explicit factors of g appearing.

(AB) (u)=c f dp (u')
i
(u iu')»

iX, , (3 11)
(u iA iu')» (u'iB iu)»

(u ~u')» (u'(u)»
As /~0 the integral becomes highly peaked about
points which are equivalent to u. If we define the region
&» —= [u'&g~Rep(u, u') & v X] consisting of a small
neighborhood around each point u'-u, then Assumption
3 iinplies that the contribution from the region outside
R» is exponentially small. However, inside R», (3.10)
implies that

(u ~A
~

u')»/(u
~

u')» ——A»(u)+0(l) .

Therefore

(AB)»(u)=c» f dpL(u')
/
(u

f
u')»

i

(u [A /u')» (u'/B fu)»
(u

/

u')» (u'/ u)»

Assumption 4. (XH») is a classical operator.

This condition will ensure that the coupling constants in
the Hamiltonian are scaled in a manner that maintains
sensible dynamics as X~O.

These assumptions will sufBce to show that the com-
plete quantum theory reduces to classical mechanics as
X—+0. However, before this can be demonstrated the ap-
propriate classical phase space must first be described.
To facilitate this, .we first review certain aspects of the
structure of the coherence group. "

Consider the Lie algebra g. It is a linear space, and
therefore has a dual space g* consisting of linear func-
tionals acting on g. If we introduce a basis in g, Ie;),
and the corresponding biorthogonal basis in g*, Ie"I,
then the application of any element of the dual space,
g =g;e"H g*, on any element of the Lie algebra,
A, =A, 'e; Eg, is given by

Ad [u](A, )—:u A,u (3.14)

for any u Hg, A, Eg. This is simply the adjoint represen-
tation of g. There is a corresponding action of the group
on elements of the dual space given by

Ad*[u] =Ad [u ']' . (3.15)

This is the coadjoint representation. ' It is defined so
that (3.13) is invariant,

(Ad'[u](g), Ad [u](A, ) ) = (g,Ad [u ']Ad [u](A, ) )

One may now consider the set of points generated by the
action of Ad'[u] applied to any given element g, Hg*.
This is a coadjoint orbit,

"For more information on the following material see, for ex-

ample, Kirillov {1976).
' In any semisimple Lie group the Cartan-Killing form,

(A, ,p) = tr([A, ,e;][e;,p]), provides a nondegenerate invariant
scalar product for the Lie algebra. This then generates a na-
tural isomorphism between the algebra g and its dual space g .
Given any element of the dual space, g H g*, the corresponding
element of the Lie algebra, gHg, is uniquely defined by the re-

quirement that (g, A, ) =(g, A, ) for all A, &g. Consequently for
semisimple groups the adjoint and coadjoint representations are
equivalent. Unfortunately, none of the coherence groups con-
sidered in this paper is semisimple, and we are therefore forced
to distinguish between working on the Lie algebra g and on its
dual space g .

(3.13)

The communicator of any two elements, 1,,p HI, of the
Lie algebra may be represented as

[k,p] =A,~pj c;J~ ek,

where Ic;J I are the structure constants of g. There is a
natural action of elements of the coherence group on ele-
ments of the algebra g, given by
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414 Yaffe: Large N limits as classical mechanIcs

I = I Ad*[u](g, ) i
u &g j . (3.16)

These are simply the tangent vectors to the curves
Ad'[e'~](g) on I passing through g. We may regard ele-

ments of the Lie algebra g as linear functionals acting on
the tangent space T~(l ). However, we should then iden-

tify different elements of g if they yield the same value
when applied to any vector in Tc(I ). Therefore ele-
ments of the cotangent space T&(I ) ("one-forms") may
be regarded as equivalence classes of g. For each A, Hg,
the equivalence class [A,] is given by

[~]=I~'&gI &0 [~' pl&=&0 P p]& «r»1 p&g j .

Explicitly, the cotangent space T~(I') is given by the
quotient space

T*,(r) =gZh, , (3.18)

where h~=—I A eg
~
(g [Ap] ) =0 for all p Hg j is the Lie

algebra of the isotropy subgroup of g,

hg =—I u Hg
/
Ad*[u](g) =g j .

Note that the coadjoint orbit I is equivalent to the coset
space g/h~. We may now define a linear functional co~

acting on Tg(l ) S Tg(l ) by

We will later see that each set of classically equivalent
coherent states may be naturally associated with some
point on a single coadjoint orbit. In other words, the set
of these equivalence classes, [u]—:[ u'Eg~u -u'j, is iso-
morphic to a particular coadjoint orbit I E.g*. This is
important for the following reason. To define a classical
phase space one must not only specify the classical mani-
fold, but must also give a consistent definition of a Pois-
son bracket. This requires the existence of an invariant
symplectic structure on the classical manifold. Coadjoint
orbits provide a particularly natural setting for classical
mechanics, because they automatically possess the re-
quired syrnplectic structure. ' This may be described as
follows.

Consider an arbitrary point on some coadjoint orbit,
gEI . The tangent space to I at g, T~(l ), is a subspace
of g* given by

T&(l )= I g'eg*
~ (g, .) =(g, [1, ]) for some A Hg j .

(3.17)

I . Furthermore, co~ is nondegenerate, since if
co~([A,], [p])=0 for all [p], then [A,]=0 by our definition
of equivalence. ' Therefore ~& provides an invertible
mapping of the cotangent space T~(I ) onto the tangent
space T~(l ). The inverse mapping, cog, may be regarded
as a two-form on I . Fo~ is automatically closed, der~ ——0,
simply as a consequence of the definition (3.19). Conse-
quently co~ is the exterior derivative of some one-form on
I, co~

——d5~, 5~& T~(l ).' (This construction will be
described in more explicit terms later).

The bivector co~ may be used to de6ne a Poisson
bracket as follows. Given any function f(g) on the
coadjoint orbit, its gradient, df(g) HT~(I ), is one-form
on I . We define the Poisson bracket of two such func-
tions f(g) and g(g) by

I«&»g(k) jPB=~g(df(g), dg($)) (3.20)

d, f(P) =
I h.i(P» f(0) j ~a (3.22)

for any function f(g) defined on 1. These equations of
motion may be derived from the classical action,

$«[g(t)] = I dt I (g(t), 5&) —h, i(g—(t)) j . (3.23)

So far, we have not bothered to introduce independent
coordinates on I . In practice it will be useful to do so.
Let Iz j be an arbitrary set of coordinates on I, defined
as explicit functions of the natural coordinates in g*,z—:z (g; ). The components of an arbitrary vector
g&T~(I ), in the coordinate basis defined by Iz j, are
g = (Bz /Bg; )g;. Similarly, an arbitrary one-form,
o C T~(r), may be expressed as cr=cr dz The c.om-
ponents of the bivector co~ are

If f(g) and g(g) are defined in a neighborhood of I,
then one may use the component form

If(g), g(0) jpa — c;, g~ .af(g) ag(g), (3.21)
J

One may easily verify that this definition satisfies the
Jacobi identity and therefore yields a consistent definition
of the Poisson bracket.

We may now de6ne classical dynamics on the coad-
joint orbit I . The classical Hamiltonian, h, i(g), is some
given function on I . The classical equations of motion
are simply

~g([~l, lp]) =—&0 [~,p]), (3.19)

or in components, to~([A,],[p])=A,'p~c;~ gk. The value of
co~([A],[p]) is clearly independent of which representative
A, of the equivalence class [A,] is used. co~ is obviously
antisymmetric and so may be regarded as a bivector on

za ~zp
co p—— c,j gk(z),

and the Poisson bracket becomes

I f(z), g(z) jp~=
8 Bg

Bz~ clz p
(3.24)

' This fact has been extensively used in the theory of group
representations (Kirillov, 1962, 1976; Auslander and Kostant,
1967). It also underlies the method of "geometric quantiza-
tion" developed by Kostant (1970) and Souriau (1970).

This shows that coadjoint orbits are always even dimension-

al.
' 5~ need not be defined globally. This does not affect our

applications. Note that @~ is defined only up to the addition
of an arbitrary gradient df (g).
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The two-form co~ equals , c—o ~(z)dz hdzti, where (ei ~)

=(co p) '. (Hence, co ~cottr ——5&.) The closure of ro~
reads

(.tt r) aa t' an't" aa"
3 BZy BZ~ BZp

=0.

Consequently,

ti act' ay
BZ~ BZp

for some one-form 5(z) =5 (z) dz~. The classical action
becomes

wished to study. The basic connection is provided by
the following observation. For any A, H g, consider
lliily o( —i) (0 ~XA

~

0 )y. (Since XA is a classical opera-
tor, the limit exists. ) This expectation is a linear func-
tional of A, and therefore equals (g„A,) for some element

g, Hg* of the dual space. Arbitrary coherent state ex-
pectations are given by

»m(X/t)Ay(u)=»m(X/i)(0
~

U 'AU
~
0)

X—+0 X~O

= (g„Ad [u '](I,) )

S, t[ z(t)] = I dt I
—z (t) 5 (z(t)) —h„(z(t)) I . =(Ad*[u](g, ),A, ) . (3.28)

(3.25)

This construction of classical mechanics on coadjoint
orbits may be illustrated by considering the Heisenberg
group. The Lie algebra g is three dimensional, and we
may choose a basis Ie;I where the only nonzero struc-
ture constants are c&z———c2i ——1 (ei, e2, and ei may be3= 3=
represented by ip/iit', ix/fi, and i 1/fi, respectively) Th.e
action of the adjoint representation is given by

Ad [u (p, q, n)](A, 'e; ) =A,'e;,

Therefore each coherent state, ~u), may be associated
with some point, Ad*[u](g, ), on a single coadjoint orbit
I &g'. Since expectation values of IXA I distinguish
classically inequivalent states, the coherent states which
are mapped onto any given point /&I' are all classically
equivalent. In other words, each point on the coadjoint
orbit may be regarded as uniquely labeling a set of classi-
cally equivalent coherent states.

We will now show that for any classical operators,
AQ HK, the following statements hold for all u Hg:

where k =k, A, =A, , and A, =A, —pA,
' —qA, . Similarly,

the action of the coadjoint representation is

Ad'[u (p,q,a)](g;e")=g;e",

limey(u ) =a (g),
X~O

lim(AB)y(u) =a (g)b(g),
X~O

(3.29)

(3.30)

where g;=(g,Ad[u '](e;)), or, explicitly, gi ——gi+pgq,
gz —gQ+qg3, and gi ——gi. Therefore coadjoint orbits are
simply two-dimensional planes specified by gi ——constant
(provided g3 is nonzero; the gs

——0 orbits are single
points —we ignore this dull possibility in the following
discussion. ) Since the orbits are flat, all tangent spaces
equal to the g3 ——0 subspace, T~(I )=[pie' +gze'

~

The cotangent spaces are given by
Tg(I )=g/e3, since (g, ei) =0 for all g&Tg(I'). Let us
relabel gi as p and gz as q; (p, q) obviously provide natur-
al coordinates on a given orbit I. The bivector co~ is
given by m~([g], Lp]) =(A, 'p —A, p')gz, its inverse is
aug

——gi 'dq hdp, and 5=—gi 'pdq satisfies d5=m~.
Therefore (3.21) yields the standard Poisson bracket,

= I dt I g 'p (t)q(t) h, t(p (t),q (t—)) I . (3.27)

This shows that classical mechanics on the coadjoint or-
bits of the Heisenberg group essentially reproduces the
standard classical dynamics of a point particle.

We must now show what this discussion of coadjoint
orbits has to do with the original quantum theory we

I f (p»q» g (p»q) It a =4
a a

—
a a, (326)af ag af ag

Bp Bq Bq 3p

up to a constant overall factor of g3. Finally, the classi-
cal action (3.23), is simply

s„[p(t),q (t)]

lim —[2 B]y(u) = [ Q(g) b(g) I ps .
X~O X

(3.31)

Here /=Ad*[u](g, )CI.
The first relation (3.29) simply expresses the fact that

in the X~O limit, the symbol of a classical operator may
be regarded as a function on the coadjoint orbit 1. This
is just a restatement of the fact that points on I label
equivalence classes of coherent states.

The second relation (3.30) is a restatement of factoriza-
tion (3.12) and has already been established.

The last relation (3.31) could be verified by coinputing
the subleading terms in (3.11). Fortunately, we may
avoid this tedious computation by arguing as follows.
First, let A=(X/i)A and B=(X/t')A' be arbitrary ele-
ments of the Lie algebra (times X/i). Then a (g) = (g, A, ),
b (g) = (g, A, ') and, from (3.21) ta (g)b (g) I ps
=(g, [A.,A, ']). To evaluate the left-hand side of (3.31),
note that (i/X)[A, B]=(X/i)[A, A'] is again an element of
Cyy times (X/i). Therefore limy o (i/X)[A, B]y(u) also
equals (g, [A,,A, ']). Hence the set of operators I(X/i)AI
satisfies (3.31). Next, let A =exp(XA) and B=exp(XA').
Then from equation (3.9) we find a (g) =exp i ( g,A. ),
b (g) =exp i ( g,k' ), and

I a (g),b(g) fiick
——(g, [A,', A])expi (g, A, +A.') .

We may now evaluate (i/X)[AQ], dropping all terms
whose expectation values vanish as X~O. Using factori-
zation (3.30), one finds
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x
—[A,B]z(u) = —iX([A,A'] expX(A+A') )x(u)+o (1)

= (g, [A,', A] )expi (g,A+X') +o (1)

sical phase space.
(iii) Compute the classical Hamiltonian hd(g) and

minimize it, thereby "solving" the X= Qo theory.

in agreement with (3.31). The representation (3.3) may
then be used to extend this result to all classical opera-
tors. This proves the stated relation.

Finally, note that Assumption 4 plus equation (3.31)
implies that the quantum equations of motion,
c}A/Bt=i [H, A], reduce to the classical Hamilton equa-
tions, a (g)= Ih,I(g), a (g) jzz, where the classical Hamil-
tonian is given by

h, t(g) = lim XHx(u) .
X~0

(3.32)

These results show that in the X~O limit, the com-
plete quantum theory reduces to classical mechanics on
the coadjoint orbit I . We emphasize that all informa-
tion about the X~O theory is contained in the classical
action S,t [g(t)], (3.23). For example, the limiting
behavior of the ground state energy is given by
Eo-(I/X)eo, where eo is the minimum of the classical
Hamiltonian h, t(g) over the coadjoint orbit I . Expand-
ing the classical action about this minimum and di-
agonalizing the quadratic terms will yield the set of
small oscillation frequencies, [co; j. These frequencies
give the X—+0 limit of the spectrum, in the sense that the
excitation energy to a particular excited state is given by
b,E—g, n;to;, .for some set of non-negative integers I n; j.
Furthermore, the limiting behavior of the connected part
of any correlation function of time-ordered products of
classical operators may be computed from tree diagrams
generated by (I/X)S,t[g(t)]. [This implies that the con-
nected part of the vacuum expectation of any product of
n classical operators vanishes as (X)" '.] Finally, the
behavior of S,~[/(t)] away from the minimum determines
the dynamics of highly excited [b,E-O(1/X)] collective
excitations. These statements may be easily derived us-

ing functional integrals based on the coherent state com-
pleteness relation (3.2). This is discussed in further detail
in the appendix.

Naturally, the above results reproduce the expected
A' —+0 behavior. The particular coadjoint orbit which em-
erges in that case is the one with

iV. VECTOR MODELS

In this section we shall examine the large N limit of
O(N) vector models. ' These are O(N) invariant theories
whose fundamental degrees of freedom form O(N) vec-
tors. For convenience, we will look at only linear boson-
ic models [i.e., models where the O(N) symmetry is real-
ized linearly]; nonlinear models may always be reached
as limits of linear models. Identical methods may also
be applied to O(N) fermionic theories; see Berezin (1978)
and Papanicolaou (1981) for explicit discussions using
similar methods.

The basic operators in this set of theories are the posi-
tion, [x;(a)j, and conjugate momentum, Ip;(a) j, opera-
tors normalized so that

'[p;(a),x,.(p)]=—5;;5 &, i,j=l, . . . , N

a,P=l, . . . , n . (4.1)

A(a, P)—= —, g [x;(a)x;(P)], (4.2a)

N

B(a,p):——, g [x;(a)p;(p)+p;(p)x;(a)], (4.2b)

C(a,P)= —, g [p;(a)p;(P)] . (4.2c)

Here i and j are O(N) vector indices, a and p label the
different O(N) vectors, and n is the total number of vec-
tors. [I have included an unconventional factor of
I/v N in the definition of x;(a) and p;(a). This choice
will allow us to avoid explicit rescalings of the coupling
constants in the Hamiltonian as N~ ao.]

The Hamiltonian is assumed to be O(N) invariant.
Consequently we may completely restrict our attention to
the O(N) invariant sector of the theory. The Hilbert
space Hz is the space of O(N) invariant wave functions,
and all physical operators may be constructed from the
following basic invariants:

On this orbit (3.27) exactly reproduces the standard clas-
sical dynamics. The ground state corresponds to the
minimum of the Hamiltonian; expanding the classical ac-
tion about this point yields free propagators and bare
vertices, from which one can construct tree diagrams giv-
ing the leading Pi~0 behavior of any observable.

In the next few sections this formalism will be used to
study the X—+ ao limit of various theories. In every case
the procedure will be the same. One must

(i) Choose the coherence group g and the base state
~0)x, and construct the coherent states I ~u ) j.

(ii) Verify Assumptions 1 —4 thereby deriving the clas-

H~ =N h [A(a, P),B(a,P), C(a,P)] . (4.3)

To apply the previous formalism we choose 7=1/X.
The coherence group GN is de6ned as the group generat-
ed by the operators A(a, p) and B(a,p). In other words,
the Lie algebra GN is given by

' All results may be easily extended to U(N) or Sp(Ã) vector
models.

The Hamiltonian HN will be taken to be X times an
arbitrary polynomial in A(a, p), B(a,p), and C(a,p) with
no explicit X dependence,
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I.A(a] bl ) A(a2 b2)1 A(a]2 b]2) (4.5)

where a]2 ——(a2b] —a]bp) + (b] a2 b2—a]) and b]2 ——

(blab] —b]b2). (b' is the transpose of b.) Cx]v may be re-
garded as a representation of the 2n-dimensional matrix
algebra,

—b 0
g= IA(a, b)—: , l

a =a'],

since i],(a, b) Hg and A(a, b)HG& obey identical commu-
tation relations. Note that

(4.6)

r

A(a, b) = iN , ( —p,—x) A (a,b)
p

A~ ——I A(a, b) =iN +[a (a»)A (P,a)+b (a»)B(P,a)] I .
a,P

(4 4)

a=lla(a»)ll ]s an ar»«am n-dime»]onai re» sym-
metric inatrix, and b= lib(a, P)ll is an arbitrary n Xn
real matrix. These operators satisfy the commutation re-
lations

We will choose the base state, l0)]], to be the standard
Gaussian, given by

N

%0(x)=(x
l
0) =Cexp ——,N g x;(a)x,.(a) (4.10)

[C:(~—/N) " ]. Note that (p i—x)l0) =0. The co-
herent states lu )—:U

l
0) satisfy U(p —ix)U lu )

=
I (]t]') '(p P—x) i—Px] lu ) =0. Therefore the coherent

state wave functions are given by

%„(x)—:(x
l

u ) =C(z)exp —,—N gx;(a)z(a, f3)x;(P),
a, P

(4.11)

where C(z) =det[N(z+z)/2m. ] ~ and

z= z o., =— ' —i (4.12)

z is a complex symmetric matrix which Inay be used
uniquely to label the coherent states. Under the action
of the group, lz )~Ulz) = lad*[u](z) ), where

The algebra g generates the group g given by ad'[u (P,g)](z) =P'zP i P .— — (4.13)

14=4' I . (4.7)

Note that u (1(,p) '=u( (p') 'gp —', p ').
u (]tt, ])] ) =exp A(a, b), then P= epxb, and f= I dr
&e ae . The algebra 6& generates a group of unitary
transformations, G]v ——j U(g, P) —=exp A(a, b) I, which pro-
vides a faithful representation of g.

Elements of 6& act on x and p as

For future convenience, we define ]u—:(z+z) ', and
u=—i(z —z)/2; u is an arbitrary real symmetric matrix,
while m must also be positive definite.

Since the coherent states are all Gaussian, computing
their overlaps is trivial. One finds

( u ] l
u2 ) =exp —,N tr [ln(z] +z, )

+ ln(z2+z2) —2 ln(z] +z2)] .

[A(a, b), x;(a)]=g b(a, P)x;(P),
P

(4.8a) (4.14)

[A(a, b), p;(a)] = —g [b(P,a)p;(P)+a (a,13)x;(13)],
P

Finally, note that A, 8, and C are all classical opera-
tors. Let us compute their symbols. Consider the
2n &2n matrix,

or, equivalently,

[A, ]=—A,

p p

(4.8b)
x. aJ= g ' S [—p;(P),x;(P)]
pr a

—B 2A

—2C B'

5 p 0

0 5ap

X

p
X

p

Finite transformations, UH6]v, act as follows:
The symbol of J is given by

J(u)=(Ol U ' S(—Px)UlO)+ —1
p 2

or

U( —P,x)U '=( —p, 'x) u .

(4 9)
'-1

=(Ol u S(—px)u ' lO)+ —)(
p 2

This shows that the momenta transform into linear com-
binations of momentum and position vectors, but posi-
tion vectors only mix among themselves. The motiva-
tion behind this choice for the coherence group will be
discussed in Sec. VH.

where
=—uIu

1

2

0 1

—1 0
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418 Yaffe: Large N limits as classical mechanics

Using the definitions of u (P,g), w= —,((t'P) ', and v=f,
we find

1A(u)= —w,2

B(u)=u w,

(4.15a)

(4.15b)

C(u)= —,u w v+ —,w (4.15c)

p(u „uz)= ——,tr [ln(zi+z& )+ln(z2+z2) —2 ln(zi+z2)]

and satisfies Re(flu ~,uz) &0 if and only if z~&z2.
Last, any N-independent polynomial in A, B, and C is

clearly a classical operator. Therefore any Hamiltonian
of the form (4.3) satisfies assumption 4 (NHz classical).

Thus, all the assumptions of the general formalism are
satis6ed, and consequently in this set of models the
X~oo limit is a classical limit.

The classical phase space is a coadjoint orbit of the
coherence group g. The orbit, I, is specified by (3.28),
which yields

These results show that one may reconstruct
z= —,m —iU from the expectations of A and 8 in a
given coherent state. Since z uniquely labels the coherent
states, this shows that classically equivalent states must
in fact be equal.

The preliminaries are all we will need to derive the
N —&ac limit. To verify Assumption 1 (irreducibility of
G~), we first note that the only O{N) invariant operators
which commute with the set of transformations

I U= exp iN tr(aA ) E G& ] are those solely constructed
from the basic operators IA(a, p)J. However, the set of
transformations, I U=expiNtr(bB)HG~J dilate and ro-
tate the set of vectors [x{a)J by arbitrary amounts.
Therefore only constant operators commute with the full

group G~. This proves Assumption 1.
Assumption 2 (Z(u) =0 implies Z=O) may be verified

either by using analyticity in z=P'P ig o—r by a direct
argument analogous to the discussion following (3.5).
Suppose there exists some operator Z whose symbol
Z(u) is identically zero. Then expectations in the base
state of arbitrary multiple commutators of generators of
Ci~ with Z vanish, that is, Eq. (3.5) holds. By taking
linear combinations we may choose each generator to be
(any component of)

L =B 2iA =—x S (p ix ) i /—2, —

or L, . Using the commutation relations plus the fact
that L

~

0}=(l/2t)3. ~0}, one may show by a simple in-
duction that

A A A AS{OiL . L ZL - -. I.
i
0}=0

for any number of L's or L 's. However, polynomials in
L applied to the base state ~0} clearly form a dense set
of O(N) invariant states. Therefore Z equals zero.

Assumption 3 (coherent states orthogonal in the X~O
limit) follows from examining Eq. (4.14). P(u i,u 2) =
—limN (1/N ) ln {u i ~

u 2 } is given by

(g(z), A, }= lim —A~(u)

= —,tr(wa+2w vb), (4.16)

where A=A(a, b)HG~, u=u (f,P) Hg, and z = —,w

iv—=P'P if— T. he matrices v and w provide con-
venient independent coordinates on I . Equation (4.13)
shows how these coordinates transform under the action
of the coadjoint representation. The gradient of any
function f(u, w) on I may be given by'

df =A(f —, (uf, w—'+w 'f „v), ,f „w —') .

(4.17)

[We define the derivative with respect to any symmetric
matrix s by

(f, ) p [df/ds(a——,p) if a & p)+[Of/Bs(p, a) if p&a)
Therefore

—,tr(5s f,)= g 5s(a, p)[Bf/t)s(a, p)].

If z~z+5z, then f(z)~f (z) + 5f (z), where

5f(z) = , tr(5uf „+5w—f ) = {g'(z),df } .

The Poisson bracket may now be computed from the de-
finition (3.20). One finds that u and w are naturally
canonically conjugate,

[f(z»g(z)I~a= , «(f,.g,. f, —g,.) . — (4.18)

The classical Hamiltonian follows from Eqs. (3.32) and
(4.3). It is given by

1 1

h, t(u, w)=h( —,u, uw, —,uwu+ —,w ') . (4.19)

Finally, the classical action (3.23) becomes

5 t[u(t), w(t)]= I dtt —,tr[v(t)w(t) —h, t(u(t), w(t))] J .

(4.20)

' df(z) is an element of the cotangent space T,*(l ), which
consists of equivalence classes of elements of the Lie algebra g.
Equation (4.17) gives one representative of the appropriate
equivalence class.

This contains the complete physics of the theory in the
N~op limit.

Let us apply these formulas to two simple examples.
First, consider a theory describing a single-point particle
moving in an N-dimensional spherically symmetric po-
tential. The quantum Hamiltonian is H =N [ ,p-
+ V(x )]. [Remember that p and x have been scaled by1/~¹ In terms of unscaled operators,
II=

2 p + NV(x /N). This shows that the coefficient of
a term (x )" in the potential must be scaled by N
in order to obtain a smooth large N limit. ] The classical
phase space has just two coordinates, (u, w) and the clas-
sical Hamiltonian describing the X~ ao limit is simply
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Yaffe'. Large N limits as classical mechanics 419

&,t(p, r) =-,p'+ , r '-+ -V(r') . (4.21)

This is just the classical Hamiltonian of a particie with
angular momentum I. = 4. The minimum of the Ham-
iltonian is at (po, ro), where po ——0 and SroV'fro)=1.
The ground-state energy is Eo NEO——+O(1), where
ac= Ad (po, r o ) =r OV (r 0 ) + V(r 0 ). Expanding the classi-
cal action (4.20) around the point (po, ro) yields

~ct= f dt[ —so+p5 ——,(p +to, 5 )+O(5,p 5)],
where 5=r ro—and to, =SV'(ro) + 4roV"(ro). to, is the
energy gap to the lowest Q(N)-invariant excited state.
This is reflected, for example, in the ground-state expec-
tation

i ~o([x(t),x(0) ])= —— sinto, t+O(1/N ),
N a),

which reveals the presence of an intermediate state with

energy co, above the ground state. One may also probe
the O(N) noninvariant spectrum, even though we have
restricted the Hilbert space to be O(N) invariant. For
example, consider the vacuum expectation of the opera-

h, t(u, w) = —,u w + —,w '+ V(w) .

If we relabel w as r and v as p/r, then Ip, r]rs ——1, and
the Hamiltonian becomes

tor x(t}.x(0},

G(t)=—lim (x(t).x(0}) .

Using the quantum equation of motion,
x+ 2V'(x(t) )x(t)=0, plus factorization, one sees that
G(t) + to„G (t) =0, where c0„=2V'(r„). Since G (0)
=1/(2c0„), and G(0)= —i/2, one 6nds G(t)=(1/2'„)
X exp —iso„t. This reveals the presence of an Q(N)-
vector multiplet of excited states with energy co„above
the ground state. The large N limit of any other observ-
able may be computed in an analogous manner.

Finally, consider an ¹omponent P field theory in d
dimensions. The quantum Hamiltonian is

H=N f d xI —,&(x) + —,[V'P(x)]

+ , p'P(x —)'+, &(P(x—)')'],
i [&;(x),PJ(x')]=—515 (x —x') .

One may immediately apply the previous formula to 6nd
the N~oo limit of the theory. The "matrices" u(x, x')
and w (x,x') provide natural coordinates on the coadjoint
orbit I . Note that iv(x, x') is simply the equal time ex-
pectation (z~P(x).P(x') ~z ). The classical Hamiltonian
which generates the N= oo dynamics is

"~t= f d xd x d x [ , v(x, x )w(x—',x")u(x",x)]

+ f d x[—,w (x,x)+ —,( —V +p')w(x, x')+ —,A(w(x, x))']
~ „ (4.22)

The Hamiltonian is minimized when u=uo and m=wo,
where

the scattering amplitude of 2n particles is of order
N —(n —1) 18

and o—:wo(x, x) satis6es the standard gap equation,

2cr = f d (k +p +A,o )
ddk

(2m)"

The vacuum expectation

(4.24)

(P(x) P(x')) =wo(x, x') —exp —m
~

x —x'
~

as ~x —x'~~Do, where m =p + Ao. This shows that
the theory contains an Q(N)-vector multiplet of physical
particles with mass m. Expanding the classical action
about (uo, wo) and inverting the quadratic terms yields a
Green's function which describes the propagation of a
pair of physical particles, including their mutual interac-
tions. Higher terms in the expansion describe further
multibody interactions. In general, the connected part of

vo(x, x') =0,
d elk

wo(x, x')= —, f (k2+p +Ao) '~ expik (x —x'),.
V. MATRIX MODELS

The next set of models we consider is matrix models.
These are theories where the number of degrees of free-
dom grows like N as N tends to in6nity. Speci6cally, I
shall discuss U(N)-invariant models of Hermitian ma-
trices. A11 results may be easily extended to, for exam-
ple, O(N)-, Sp(N)-, or U(N} X U(N)-invariant models
which describe real symmetric, Hermitian self-dual
quaternionic, or arbitrary complex matrices, respectively.

Consider a theory where the basic degrees of freedom
are described by the set of operators, IM;J I, and their
conjugates, I E,

& I, normalized so that

' All these results for simple vector models have been previ-

ously derived using many different methods. See, for example,
Coleman, Jackiw, and Politzer (1974), Cornwall, Jackiw, and

Tomboulis (1974), Halpern (1980a), Jevicki and Papanicolaou
(1980), and Mlodinow and Papanicolaou (1980).
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~a ~pi [E;J,Mgj] = 5—gojk5 ~, i,j,k, 1=1, . . . , N

a,@=1, .n.. . (5.1)

(ij) and (kl) are to be regarded as matrix indices, while a
and P simply label the diff'erent matrices. We assume
that (M;J) =MJ, and (E;J) =EJ, , in other words,
M =

~
~M J [ [ and E =—

) ~E;1 ~ ~

form N-dimensional Hermi-
tian matrices.

The Hamiltonian is assumed to be invariant under the
transformation M —+ VM V~, E —+ VE Vt, for any
VHU(N). Hence, we may restrict our attention to the
U(N)-invariant sector of the theory. Physical operators
must have all the U(N) indices contracted. Typical ex-

amples are tr(E ) and tr(M 'M ' . . M ). tr stands
for a normalized trace over U(N)-indices, tr g
=(1/N)g, , Q;;. For any finite sequence of integers
between one and n, I—:Iai, a2, . . . , uk', let us define

M =M 'M ' . M . Note that (M") =M where
I:—Iak, . . . , a2, ai I is the reversed sequence.

The Hamiltonian will be taken to be % times an arbi-
trary U(N)-invariant polynomial in E and M with no
explicit X depenence. For example,

n

H =N g —,tr [(E ) +(M —M ')2
a=1

+co (M ) +g(M ) ] (5.2)

is an acceptable choice which we will use as an explicit
example in the following dicussion. (tr is considered to
have no N dependence).

To apply the previous formalism we must find a group
of unitary transformations which acts irreducibly. This
necessarily requires an infinite dimensional group. %'e
shall choose a group which involves arbitrary products of
the matrices IM I. Specifically, the I.ie algebra Cxz is
given by"

Giv ——I A(a, b)=iN tr(a[M]+ —,(E b [M)+b [M]E )) I,
(5.3)

where a[M]=+ra "M, b [M]=g„b '"M", »d g„
indicates for a sum over all sequences,

~ ~ e

g . The coefficient I a l and

Ib '
7 must satisfy a =(a )* and b "=(b ")* so that

a[M] and b [M] are Hermitian. Furthermore,
may be chosen to be cyclicaHy symmetric, so that

r)r2 I ~l )a =a for all sequences I „I2. Henceforth, to
avoid a proliferation of gr signs, we will treat I like

any other index and automatically sum over all se-
quences whenever repeated I 's appear. For example,
(Ba[M),J/BMk7) =a ' '(M ') k(M ')~J. . The commuta-
tion relations are

[A(a i,b 1 ),A(a2, b2)] =A(a 12,b 12), (5.4)
where

Ba2[M],J Ba 1 [M],Ja»[M) 1 =bi [M)ki - ' b—2[Mlki
BMkI BMkI

and
Bb2[M],) p Bb 1 [M],-.bi [M] =bi[M)ki- -~ " b~[—M]ki

aMkPI aMkP1

Equivalently,

+12 (bi u2 b2 u 1 ) ~r

,r p, r ri pr2 p, rb12 (b 1' ——b2 b2' b—1 ) 5r

Elements of D& act on E and M as follows:

[A(a, b), Mi ]=b [M. ](J.

, Bbj'[M]„Bb~[M)„,
[Ag(a, b), E;,]=——, Eik + Eik

BMJ, Bc%

(5.5)

where A~[M) =A [01[M)]
$12[M]=$2[/ 1[M)] + $1[M]. Consequently,

U(tt 0) '=U( —4[4'-1) 4' —i) .

These transformations act on E and M as follows:

(5.8)

Btr(a [M])
BMq,.

Finite transformations, U(1I(,p)HG~, may he labeled
by the functionals JIM]:PM" an—d P [M]:P'"M". —
If U(@,P) equals exp A(a, O) expA(O, b), then @[M)=a[M],
and

)~[M]=M~+b [M]+ , b~[M];~(B—b [M]/BMPj)+. . .

=exp I tr (b ~[M]B/BM~) IM

P [M] has an inverse,

,[M]—:exp I
—tr (b ~[M]B/BM~)

7 M

such that p 1[/[M]]=M . Elements of 6+ obey the
multiplication rule

U(el {t'1)U(t|2 42) U( f12 $12) (5.7)

UE,~ U

UM;J U =p [M];J,
w p~kl

Bp [M]J,.
~ p

By.[M],,

p B tr @[M)
~ p

s 8 ~~kr
2N BMg,g Bp [M)J,.

Eg + —( tr /[M]—+ ln J[M]) .
Bp [M]J,. 2W

(5.9)

(5.10)

' A precise definition of this infinite-dimensional Lie algebra requires more mathematical sophistication than I possess. Following
established tradition, we will dispense with excessive mathematical rigor and blindly proceed until confronted by obvious problems.
Questions concerning, for example, appropriate growth conditions for the coefficients Ia "J and Ib 7

will simply be ignored. If
only a single matrix is present, then a more precise definition may be given. See footnote 22.
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Here, J[M]=det [BP [M] J IBMg] is the Jacobian for the
change of variables from {MJI to {/~[M],J I.

Once again, the most convenient choice for the base
state, ~0)z, is given by a simple Gaussian,

e,[M]=(M
~
0) =C exp —j —,N'g t r(M )zj (5.11)

[C=(vr/N)" ] Th. e coherent states ~u ) = U~O) satisfy

U(E —iM )U ~u) =0. Using (5.8) and (5.9), one finds
that the coherent state wave functions are given by

%„[M]=(M
i

u ) (5.12)

=C(J[M])'~ exp —j N tr ( —,/~[M]2 —if[M]) I .

We shall need to compute the symbols, A(a, b)(u), of
elements. of the Lie algebra. Using (5.7) and (5.8), one
may evaluate U A(a, b)U, and find

(u
~

A(a, b)
~

u ) = (0
~

A(a [P i]+tr b'[P i] f[P i], «b [P i] P [P i]) I
0)ay,

a t.yl y, [M]]=iN (0~ tra[P i[M]]+b [P i[M]],J ~

0) .
ay, [M],

(5.13)

This expresses the symbol A(a, b)(u) as a Gaussian aver-
age of a functional of {M I. Except in the special case
of a single matrix (discussed below) it does not appear
possible to express the expectation in any more explicit
form. Fortunately, the representation above will be sufli-
cient for our purposes. Note that (5.13) implies that
classically equivalent states must give identical expecta-
tions (as N~00) to the operators jtr M I, for all se-
quences I . Since Gaussian expectations factorize,

lim (0
~

(tr M ')(tr M ')
~
0)

= lim (O~trM '~0)(o~trM '~0),

this implies that expectations of any product of such

operators, (tr M ') ~ (tr M '), must also be equal.
Furthermore, /[M] can at most differ by a constant be-
tween any two classically equivalent states.

We may now examine the various assumptions made
in Sec. III in order to see if the general formalism
described there is applicable to the X~ oo limit of these
models. We set X= 1/N .

Assumption 1 (irreducibility of Gz) follows from an
argument analogous to those used previously. Consider
the subgroup of G~ which is generated by
j A(a,O) H G~ I. Any U(N)-invariant operator which
commutes with this subgroup must be solely constructed
from the matrices {M I, i.e., must be a multiplication
operator in the representation where all {M;JI are diago-
nal. However, the subgroup of Gz generated by
{A(O,b)CG~I contains transformations which indepen-
dently translate each eigenvalue of each matrix M,
M~ +f (M~), where each f—(z) is an arbitrary monoton-
ically increasing function of a single variable. Conse-
quently, operators commuting with 6& cannot depend
on the eigenvalues of the matrices {M ]. Furthermore,
G& also contains transformations which mix the different
matrices, such as M ~c ~M~, where (~c ~~~ is an arbi-
trary invertible matrix. Such transformations completely
change the inner products between eigenvectors of the
diFerent matrices {M I. Therefore operators commut-
ing with G~ can depend on neither the eigenvalues nor

I

the eigenvectors of the matrices {M I, and so must be
constants. This proves Assumption 1.

Unlike our previous examples, simple analyticity argu-
inents are not sufficient to verify Assumption 2 (opera-
tors uniquely determined by their symbols). However, an
inductive proof similar to those used previously may be
constructed. Let

L+' N tr[M ——+ (E M"+—M"E )] .

and

L+ iO)= 5i (L+ +L )
a, l l ~] f ~2 2 ~1' 1 ~1' 1

8X

X(L+ +L ')
~

0) . (5.15)

Now suppose that Z is an operator whose symbol
Z(u) vanishes for all u Pg. Then (3.5) holds, and this
implies that expectations in the base state of multiple

a, r)cominutators of any number of L+' 's vanish,

[[»L+' '] L+' '], . . . ,L+"' '] lO) =0
(5.16)

Consider any particular multiple commutator of this
form, and let S be the length of the sequence
ail i a2I'2 . . ak I'k (in other words, S equals the total
number of matrices {M ] or {E ] in any term of the
multiple commutator). Apply the obvious procedure; ex-
pand the multiple commutator, push all L+'s to the

The following relations may be easily verified:

p, r. r,~r2 ~ 1 r2 r1~ 2 'rlr'r2[L+,L+ ]=5z-' 'L+ —5r' 'L+

(5.14a)

a r ~p r' rl~r2 ~~'rlrr2 rl~r2 ~a, I &r r2
[L ',L ' ]=—5i' 'L +5r' 'L

(5.14b)

a r pr r~«2[L+,L ' ]=5i' 'L +5r' 'L+

(5.14c)
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422 Yaffe.'Large N limits as classical mechanics

right of Z right, and all L 's to the left of Z left. Equa-
tion (5.14} shows that any commutator terms which arise
reduce S by two. Furthermore, (5.15) shows that any

L+ which is applied to ~0) (or L applied to (0
~

) also
drops S by two. This implies (by a trivial induction)
that

of coordinates for each cyclically identified sequence.
We will refer to these equivalence classes of sequences as
"loops" and will indicate the identification by enclosing
the label for the sequence in parentheses, as in g("). Let

{r){f") ~ I g ) 8tlM 3tIM= 11m —gD
~

~Q)
I I

(OiL+ L+ ZL . . L iO =0k' k pl rl p( rI

(5.17)

{r]r2r2'rl) rl i,'= 5r 8' 5r (5.19)

a,.l,. ~P.I .'
for all sets of operators tL+ 'j and tL ' ' j. However,
arbitrary products of L 's applied to ~0) clearly form a
dense set of U(N)-invariant states. Consequently (5.17)
implies that Z=O, and this proves Assumption 2.

Assumption 3 requires that classically inequivalent
coherent states become orthogonal as %~ oo. Classical-
ly inequivalent states must be sufficiently different so as
to give different expectation values for operators such as
trM" or trE M". That such states become orthogonal
as X~oo seems almost obvious due to the rapid growth
of the number of degrees of &eedom. Unfortunately, I
have been unable to express the overlap, (0

~

u )
=(0

~

U
~
0), in any form which is sufficiently explicit to

allow a completely rigorous proof of Assumption 3.
This appears to be a purely technical problem which we
will simply ignore.

Finally, matrix elements of operators such as tr(M")
or tr (E ) are easily seen to have finite limits as N —+ oo.

Therefore, Hamiltonians such as (5.2) satisfy Assump-
tion 4 [(1/N )H~ classical] and generate sensible dynam-

ics as N~oo.
We may now use the general formalism of Sec. III to

find the classical dynamics which describes the N~oo
limit of these models. The particular coadjoint orbit of g
which will provide the classical phase space is defined by

(g, A,(a,b)) = lim (1/iN )A(a, b)(u),

where /=Ad*[u](g, ). Equation (5.13) provides the "ex-
plicit" expression. We need to find a reasonably con-
venient set of coordinates for the coadjoint orbit; howev-

er, expressing (g, A,(a,b)) in terins of the original labels
(that is, IP j and If"j) is very difficult. We may
avoid this problem by simply choosing the set of expec-
tations

W"= lim (u
~

tr M"
~

u }%~ 00

(5.18)

plus [l( j as coordinates on the coadjoint orbit. Note
that Ig") and', I W"j are both cyclically symmetric (so

2 2'1 r, r, r,r,
that ttj

' '=g ' ' and W ' '=W ' ' for all sequences
I (,I z). Therefore the classical phase space has one pair

I

0 should be regarded as a matrix in the space of all
loops. 0 is Hermitian and positive definite and so has
an inverse, 0 &, such that

~ &{r){r'){r ){r-) ~{r){r-)—I
(r')

(5.20)

The gradient of any function on the coadjoint orbit,
f(IP(")j, I

W' 'j), may be represented by

df( I
g'") j, I

W' '
j ) =A(a, b}, (5.21)

where

ba, r g & )II ) & (df /dy(r )
)

(I") (gf /gW(I )) ba, r'q ) 2 g

Equivalently,

b [M]=(Bf/Bf'"')0', " '(BtrM~/BM ),

af ag
~~(r) ~W(r)

Bg Bf
~~(r) & W(r)

(5.22)

Thus I
g'"'j and I

W'"'j are naturally canonically conju-
gate.

Following the general formalism, the classical Hamil-
tonian, h,i(IQ'"'j, I W'"'j), is given by the N~oo limit
of the coherent. state expectation of the quantum Hamil-
tonian. For the choice of Hamiltonian in (5.2) this is
given by

2

a[M]=(Bf/BW("))M" b[Mj;/tt) —(BM /BMJ. ) .

Inserting these expressions into the definition of the Pois-
son bracket, (3.20), and using the commutation relations,
(5.4), we find

af ag ag af
gq(I ) gW( ') gy( ) g ( ')

AP
{r"){r'))( 11m —yQ

~
u)

h, i = lim —g — ( u
~

tr /[M ]+—tr(p [M])—8 g

w N
&

2
ln J[M]

2&

+(u ~trI(M M') +co (M ) —+g(M ) j ~u) '. (5.23)

One may verify that (()(O,u}—:—lim& „(1/X ) In(0
~

u }has strictly positive curvature about the point u=0 in all directions oth-

er than the one corresponding to constant phase rotations.
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(5.24)

We must express this expectation in terms of the classical coordinates IP' 'j and I 8'"'j. The following observation
will enable us to accomplish this. Iff [tr(M )) is any functional of I tr(M ) j, then

2 A ri up.f[tr(M")] lu&=&u
I - -. Iu&II'~i""'&u

I

BM', am, -, Bm,-,.
' Bm„em„

This follows from factorization plus the definition of 0' ""' in Eq. (5.19). Using this relation, one finds

([ ~(re j t
W(ri j) ~(r)&(r}ir i~(r'i+ (F)II(rwr') (r'i+~[W(r)]

where

(5.25)

co'"'= lim &u
~

—tr(/~[M])—a trm~ a

M,J QMJ, 2
ln J[M] ~

~

u &

= lim —&u~ tr(M ) ~u&
BM;- BM;.

~~~2~ ~[~3~~]~
F (5.26)

and

V[W'"']= lim —, g &u
~
trI (M —M ') +co (M ) +g(M ) j ~

u &N~ oo

I (1+ ~ ~2)W(aa) W(a(a —1))+ i W(aaaa) i
2 2 (5.27)

This is about as far as we can go in the discussion of
general matrix models. Equation (5.25) gives the explicit
form of the classical Hamiltonian. To "solve" the N= ao

theory completely, one must find the minimum of the
Ii,i(IP'"'j, I

W' 'j). This appears to be extremely diffi-
cult.

In the special case of a single matrix, one may com-
pletely solve the N= oo theory. ' Let us briefly see how
the preceding discussion simplifies in this case.

If only a single matrix is present, then the set of
sequential products of matrices, IM"j, reduces to a sin-
gle set of integer powers, IM"j, k=0, 1,2, . . . , ao.
Therefore elements of the Lie algebra, Gz ——IA(a, b) j,
may be labeled by two "arbitrary" real functions of a sin-

gle variable, a(z)=—gk oakz and b(z)—= gk Obkz .
This algebra generates a group of finite transformations
G~ ——I U(f, P) j, where g(z) is an arbitrary function, and
P(z) is necessarily monotonically increasing. If
U(g, g)=expA(a, O) expA(O, b), then the formal expres-

'In fact, the theory is exactly soluble for arbitrary N. See
Brezin et a1. (1978) and Marchesini and Onofri (1980).

Requiring a(z) and b(z) to be entire functions which are
bounded on the real axis, and whose derivatives (to all orders)
are bounded on the real axis, appears to be a sensible defini-
tion. Such functions include, for example, functions with
smooth Fourier transforms which decrease faster than any ex-
ponential (on the real axis). This set of functions is closed
under the commutation relations, generates a well-defined set
of one-parameter subgroups, exp t A, , A. H g, and leads to a
coherence group which acts irreducibly.

I

sion $(z)=exp[i(z)B/Bz]z may be solved by the implicit
definition,

Q(i)
dz' b z'=1.

The action of the coherence group is given by (5.9) and
(5.10). When only a single matrix is present, the Jacobi-
an J(M) =det[BQ(M),z/BMki] may be directly expressed
in terms of the eigenvalues Ip;j of the matrix M. One
finds (Mehta, 1967),

yg( ) 1I [4 Pl 0 PJ (5.28)

All expectations in the coherent states may now be re-
duced to averages over a single Gaussian random matrix.
Such averages may be computed explicitly for large N by
writing the integration measure in terms of the eigen-
values Ip; j and by using saddlepoint methods to evalu-
ate the resulting integrals. One finds that the Gaussian
measure dMexp —NtrM leads to a density of eigen-
values given by Wigner's semicircle distribution (Wigner,
1959),

dp(p)= —(2—p )'i O(2 —p )dp (5.29)

(0 is the step function; O(x)=1 if x )0, 0 otherwise).
This allows us to express the symbols of elements of the
Lie algebra, (5.13), in the form

A(a, b)(u)=iN f dp(P(p))I a(p)+b(p)P'(p) j+O(l) .

(5.30)
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424 Yaffe: Large N limits as classical mechanics

As usual, these expectations determine the appropriate
coadjoint orbit for the classical phase space. As shown
previously,

Wk=— lim (u
~

trM
~

u ) = J dp(P(p))p"N~ oo

(for k =1,2, ... )
1 a"~(z)=

kt (az)

provide canonically conjugate coordinates on the classical

phase space. However, these are not the most convenient
set of coordinates. If we define w(p)=dp(P(p))/dp and
u(p) =ttr(p), then one can show that u(p) and w(p) are
canonically conjugate, I u (p),w (p') j p~

——5(p —p'). [Al-
ternatively, p(x), defined on the interval 0&x&1 byI" dp(P(p))=x, and v(x)—=P'(p(x)), are also conju-
gate, t v(x), p(x') J~~ =5(x —x').j

Finally, the classical Hamiltonian may be expressed in
a very simple form. Using (5.28), the expectation of
tr E may be computed as follows:

(u
~

trE
~
u) =—(u

~
trg(M)+ trg—(M)

am, , 2
ln J(M)

i
u )

2

= I dp(p(p)) g(p)+ —p(p) —i f dp(p(p')) ln, +O(1/N2)a l 2 (p) —(p')
Bp 2 p p

= J dp(P(p)) I P'(p) +[fdp(P(p'))/p p'—j j+0(1/N )

2= I dpw(p, )Iu'(p) + w(p) j+.O(1/N ) .
3

Here we have used the defining relation for the Wigner distribution, p= fdp(p')/p —p', and the fact that
2f dp w(p)( fdp'w(p', )/p —p') = w(p)

3

This latter relation may be easily derived by writing the principal-value integrals as averages of contour integrals pass-
ing above and below the pole, and then symmetrizing over the ordering of the contours [see Mondello and Onofri
(1981) or Shapiro (1981) for more detailed discussion]. Therefore the final classical Hamiltonian is given by

h,I[u(p), w(p) j= —, I dp w(p)I u'(p)'+ w(p)'+~'p'+gp' J, (5.32)

Minimizing this Hamiltonian, subject to the constraint f dp w(p) =1, yields

uo(p) =0
and

wo(p)= —(2e —co p —gp ) O(2e —co p —gp ),1 2 2 4 1/2 2 2 4 (5.33)

where the Lagrange multiplier, e, is determined by the condition 1= I dpw(p). The N —+oo limit of the ground-
state energy is given by

lim Eo/N =hct[uo(p), wo(p)]

= —, f dp (pw)(~'p'+gp +e) .

The classical action is given by

(5.34)

S,t[u, w]= I dpIu(p)w(p) ——,w(p)[u'(p)'+ w(p)'+~'p'+gp ] I .
3

One may expand the classical action about the minimum to find the small oscillation frequencies. One finds

~,.=j~, for j =1,2, 3, . . . ,

(5.35)

(5.36)

3v(p) and w(p) are not strictly independent coordinates. w(p) must satisfy the constraint Jdpw(p)=1, and adding a constant
to U(p) does not a6ect the dynamics.
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where

dpu p 2e —u'p' —gp4 .

This is known to reproduce correctly the N —&oo limit of the U(N)-invariant spectrum of the theory (Shapiro, 1981;
Mondello and Onofri, 1981).

VI. GAUGE THEORIES

and

(6.1b)

As a final example, we will examine the N~oo limit
of U(N)-lattice gauge theories. [I choose to work on a
lattice in order to make the theory well defined. The
choice of a U(1V) instead of SU(N)-gauge theory is made
for convenience; the difference between the groups is ir-
relevant for large N. Furthermore, one may show that
U(N), O{N), and Sp{N) lattice gauge theories all have
equivalent large N limits (Lovelace, 1982). I will not in-

clude fermions in the following discussion, although they
may be easily inserted (Yaffe, 1982).] The analysis is
essentially identical to that presented in the preceeding
section on matrix models. Consequently, this treatment
will be as brief as possible.

Consider a U(N)-Hamiltonian lattice gauge theory.
The basic operators are the link variables, I VJ j, and
their conjugate momenta, [E~ij. a labels the links of lat-
tice. For each link n, V:—~)Vz~~ is an N-dimensional
unitary matrix& (V ) =(V ) ', and E = [[&,z ([ is H—ermi-
tian, (E )t=E . Each link a is assumed to have a
standard orientation. Links with orientation opposite to
the standard will be denoted by a, and V =(V )t. The
commutation relations are

[E, Vfi] = . & 4J.V.i2X
(6.1a)

which begins with the link a. (I ) will denote closed
curves irrespective of their starting point; in other words,
(I ) labels loops.

We will assume that the lattice is cubic and choose the
standard Kogut-Susskind Hamiltonian (Kogut and
Susskind, 1975),

H=—N'trI~Q(E )'—~-'g(V'~+V")j . (6.2)

[A(a&, b& ),A(a2, b2)] =A(a~2, big),
where

(6.4)

Bag[ V];~.
a 12[v], =i {bi [vl v )ki

~ ~kl

Here A, =gN an—d p(Bp) indicates (the boundary of) an
arbitrary plaquette. H is, of course, gauge invariant.

We will choose the Lie algebra of the coherence group
to be given by

G~ ——
I A(a, b)=iN tr(a [V]+E b [V]+b [V]E ) j,

(6.3)

where a [V]—:g, ,
a'"'V" and b~[V]—= g b '" V

a [V] and b [V] must be Hermitian. The commutation
relations are

A+ Ap l[Ei Ekt]= 5 (&kiEi &;tEki. ) . — (6.1c)
(b2[v]v—)ki

kl

EPz may be represented by (1/2N)Vk(i3/BVik). [Our con-
jugate momenta, IE& j, are related to the more con-
ventional generators I

E' j (which satisfy [E', E ]
if'+E ) by —E;~ =(1/1V)t JE'. Here If' j are the

structure constants of U(N), and the matrices I t ' j
represent the generators of U(N). They satisfy [t', t ]

Gauge transformations are specified by giving an arbi-
trary element of U(1V) for every site of the lattice,
Q'EU(N). If a denotes the link running from site s to
site s', then under a gauge transformation V ~(Q')
V (Q') and E ~(Q')E (Q') . For any ordered set of
links, I"=Iai, a2, . . . , ak j, which forms a single closed
curve beginning and ending at some site s, let us define

~g& wg2 ~gk ApV =—V V . . V . Note that V transforms covari-
antly under a gauge transformation, V ~(Q')V (Q') .
Henceforth, if a labels a particular link of the lattice,
then we will use I to denote an arbitrary closed curve

and

Bb2 [V];.
b &2[ V],z i(b i [V——l V )ia ttavk,

a
t(b~[v]v~) —

p
'+t& [b2[v]»1[v]]l, .

g p.P

UVJU =($ [V]V ) (6.5)

and

This algebra generates a coherence group which is very
similar to the group used for treating matrix models.
Elements of the group, U[g,P]E:Giv, are labeled by the
functionals /[V]= f'"'V" and P [V—]—=P ' V . /[V]
must be Hermitian and P [ V] unitary. The action of the
coherence group is given by
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~p

UE;JU '=(p [V]V );k
B(P [V]V ).„

+ 4~(0 [V]V )a' avp„a(
~p

=( VV)k
B((I) [V]V).

~pgp) i () tr@[V]
8 V~„

0 V~„

(( [V]V )ik ~

( VPg P)
2 ~(((l [V]V)ik

tr tt)[V] — ln J[V] (6.6)

J[V]=det [B(P [V]V );J/()Vg] is the Jacobian for the change of variables &om I V(J. ) to I((() [V]V ),J I. Note that

J[Vj*=J[Vj + I det( V ) /det((I) [V] V ) ]

The base state, ~0), will be chosen to be the state which is annihilated by all conjugate momenta, Z ~0) =0, for all
links a. Its wave function is simply a constant,

~,[V]=&V~0)=1.
This base state generates a set of coherent states whose wave functions are given by

4'„[V]—:(V
~

u) =(J[V])'~ exp' tr((t)[V]) . (6.7)

We may now apply the general formalism developed earlier. The arguments needed to verify the assumptions made
in Sec. III are essentially identical to those presented in the last section. I will not bother to repeat that discussion
here. Note that the coupling constant A, in the Hamiltonian (6.2) must remain fixed in order for the dynamics to have
a sensible limit as N —+ oo.

The coadjoint orbit which provides the appropriate classical phase space is speci6ed by

(g, A(a, b)) = lim (1/IX )(u
~

A(a, b)
~
u)

X—+oo

= »m (u~ tra[V] +i(b [V]V ); (u) .
1V~ (x) BV,~

(6.8)

Reasonably convenient coordinates on this coadjoint orbit are provided by the coef5cients tg'"'I plus the expectation
values of Wilson loops,

8"")= lim (u
~

trV'"'
~

u ) .
X~ (x)

(6.9)

By applying exactly the same procedure that was used in the last section, one may derive the Poisson bracket for the
classical phase space and compute the classical Hamiltonian. One finds that the coordinates I1()( )) and I

8"r)] are
naturally canonically conjugate,

()f ()g
I f g1P& X gy(I. ) g~(I. )(r]

df ~g
g IV(I') gy(I')

The classical Hamiltonian, h,i(I 1i( 'I, I
W(")I), is given by the expectation of (6.2),

&,)= »m (I/~ )(I( ~~&
~
ti)

(6.10)

= lim —' A. g —(u ( VJ tr /[V] — ln J[V] ~ ~u) ——g(u ~trI V +V I ~u) . .
~N 4 2N ~ p

Let us de6ne the following Hermitian, positive de6nite matrix in "loop space, "

~ The easiest way to verify Assumption 2 is to regard the gauge theory as the s~O limit of a theory in which the matrices I V ]
are arbitrary complex matrices and a term {1/2c)tr(V V —1) is added to the Hamiltonian. (This is completely analogous to the
construction of nonlinear sigma models from limits of linear sigma models. ) One may then use exactly the same procedure
developed earlier for matrix models.
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W(P)
II(rNr'& —I (

av, , av,,
(r,F,r,'r', )8' br (6.11)

I )ar2hr' ' is a "signed" delta function, defined to equal +5r' ', depending on the orientation of I (+ if I' traverses the
link a in the standard orientation, —otherwise). The classical Hamiltonian may then be expressed in the form,

(I ~(r&
I I

IV(r& I)
~ ~~{F&&(rnr &~(r &+~ (I'&O(rxr & (r & y (IV~a~&+IV~ap&) (6.12)

where ~'")&r') ~(r')(r") ~(r)(r ' an—1

8 t V(r)
n&'"&= lim (u

f
In J[V]

(
u)

aV,J 4N

= lim (u
~

[E~g [EJ,,tr V'"']]
~

u )
N~oo

= lim (u
~

Vg -Vz& tr(V'"')
~
u)4X '

ev,-, jav, ,

(6.13)

H««(l )—= VJ(a trV'"'/aVJ)/(trV'"') is the signed "length" of the loop (I ). [In deriving (6.13) we have used the fact
that (I/N )(ln J[V]—ln J[V]t)=O(1/N). ]

Equation (6.12) gives the explicit form of the classical Hamiltonian. Solving the N= oo theory requires finding the
minimum of hei(IP ]~[ W I). Regrettably, if the lattice contains more than one plaquette, this minimization ap-

(r) &r)

pmrs to be vs difficult The one plaquette theo~, however, may be completely solved. I will briefly summarize the
explicit results which may be obtained in that case.

If only a single plaquette is present, then the theory may be completely expressed in terms of a single u»tary ma-
A] A2 A3 Ag

trix, given by the product of the link variables around the plaquette, V—:V V V V, and its conjugate momentumE:E. Consequ—ently, elements of the coherence group may be labeled by two functions of a single variable, P(z) and
P(z), defined on the unit circle [f(z) must be real and P(z) must provide an invertible mapping of the unit circle onto
itself]. The Jacobian J[V] =det[a(/[V]V) J/aVki] may then be explicitly computed in terms of the eigenvalues Iv; I

of the matrix V. One finds (Mehta, 1967)

J[V]= /(0( )+;y'(;))g ~ [;y(;)—,.y(, )]/(; —J) ~

. (6.14)

Expectations such as (6.8) may be expressed in the form

(u
~
A(a, b)

~

u ) =iN fdp[vP(v)] I a(v)+ivb(v)g'(v) I, (6.15)

where dp(z) =dz/(2miz) is the density of eigenvalues for the base state and the integration is over the unit circle. The
set of Wilson loops reduces to simple powers of the matrix V, IV —= Iim~ (u~tr(V)

~
u), k=+1,+2, ... . Instead of

the coordinates jP I and I W I we may use the density of the eigenvalues, w(8)—= I dp(e'+P(e' ))/d@ I, and
v(5)—=@(e' ). One may easily show that v(5) and w(5) are canonically conjugate, I u(5), w(4') I =5(8—5'). Fi-
nally, the classical Hamiltonian may be expressed in terms of these variables. One finds

h, i A, gdp(vg(v)) —— i g(v) i fdp(v'P(v'))In— ,
- Avdp—(vP, (v))(v+v )

V v —v

=fdp(vP(v)) &~ f'(v)
~

+ —,& fdp(v'P(v'))(v+v')/v v' —A,—'(v+v ') .

2= I dew(5) A, v'(8) + A. w(5) —2A. 'cos5-—7r 3 12
(6.16)

This form of the classical Hamiltonian has been previously derived by Sakita (1980).
v(5) is real and w(5) is real and positive. v(5) and w(8) do not quite represent independent dynamical variables; w(5) must

satisfy Id& w(5)=1, and adding a constant v(8) does not affect the dynamics.
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and

wo(5)= —(e+2A, cos8)'~ O(e —2A, cos8),1

(6.17)

where the constant e is determined by the condition
1=J d5wo(5). Finally, the ground-state energy is

given by

lim (Eo~N ) =her [uo&wo]
N~oo

e ——,rr f d 5 wo(5) . (6.18)

Note that the structure of the original lattice appears
in the classical Hamiltonian {6.12) only indirectly
through the set of possible loops [I J. Suppose the ori-
ginal lattice, A, is invariant under some translation T If.
one identifies all loops in A which are equivalent under

T, then the resulting set of equivalence classes of loops is
isomorphic to the set of all topologically. trivial loops on
a smaller periodic lattice A, formed by identifying all
sites of A equivalent under T. Comparing the classical
Hamiltonians for the lattices A and A, one finds that the
two will be identical if (a) the expectations (and conju-
gate momenta) of all Wilson loops in A which are
equivalent under T are equal, and (b) the expectations
(and conjugate momenta) of all topologically nontrivial
loops in A vanish. The minimum of the classical Hamil-
tonian will automatically satisfy these conditions if ap-

propriate global symmetries remain unbroken. [Condi-

tion (a) requires unbroken translation invariance under T,
while (b) requires unbroken invariance under gauge
transformations which are only periodic up to elements

of the center of the U(N) gauge group. ] Repeating this

argument allows one to show that the large N limits of
gauge theoreis on all periodic sublattice of A are

equivalent, provided that all global symmetries remain

unbroken. In particular, the large N limit of a theory on

a d-dimensional cubic lattice should be equivalent to the

limit of a theory on a periodic lattice containing just one

site (i.e., a matrix model of d matrices). [Eguchi and

Kawai (1982) have recently discussed an analogous result

for Euclidean lattice gauge theories. ]

VI I. DISCUSSION

We have presented a general formalism for ending
classical limits in arbitrary quantum theories, based on

(Exactly the same contour integral tricks that were used
in the last section have been used here. ) Minimizing
(6.16) subject to the constraint J 1&w(5)=1 yields

u, (b)=O

certain assumptions shown to be suf.tjIcient to construct a
classical phase space and derive the appropriate classical
dynamics. These assumptions appear to isolate cleanly
the minimal structure required for any classical limit;
however, proving any form of necessity appears to be
very difficult. Using this formalism, it has been shown
that for a large class of theories the N~ae limit is a
classical limit. This class of theories (plus their obvious
generalizations) includes essentially all known theories
with sensible large N limits. In every case considered,
exactly the same procedure has worked. The only input
required is a suitable choice for the coherence group and
an appropriate base state.

In any theory where the fundamental quantum opera-
tors can be divided into "coordinates, " Ix(a)], and con-
jugate "momenta, " Ip(a)J, there is a natural choice for
the coherence group. If If~{x(a))j is a minimal set of
physical operators such that every physical operator con-
structed from the "coordinates" Ix(a) J can be expressed
as a function of the f 's and if Igj{x{a),p(P)) J is the set
of operators obtained from the set If; ] by replacing any
single coordinate, x(a), by the corresponding momen-
tum, P(a), then the group generated by the operators
If {x(a)}J and Igj(x(a), p(P)}J will act irreducibly on
the physical Hilbert space. Every one of the coherence
groups we have considered earlier may be regarded as an
example of this prescription. Note that the generators of
the coherence groups have always been at most linear in
the conjugate momenta. This feature ensures that one
can always exponentiate the generators, and thereby con-
struct the group of finite transformations, in a reasonably
explicit manner.

We have always used the simplest possible choice for
the base state. It turns out that only for these simple
choices is it easy to prove Assumption 2 (operators
uniquely specified by their symbols). It is not known
whether, in an arbitrary quantum theory, there necessari-
ly exists any choice for the base state which will satisfy
this assumption. Similarly, questions of uniqueness
(such as whether or not using a different coherence group
for gauge theories might allow one to avoid loop spaces)
have not been adequately answered. Different choices for
the coherence group or base state must give equivalent
results, and it seems very doubtful that there exist any
choices satisfying the required assumptions which are
more convenient than the choices we have made.

Next, we will discuss how the approach we have used
to derive large X limits relates to previously proposed
methods. We will begin by considering various methods
which have had limited applicability.

Large N limits were first studied in vector models, ori-
ginally in the context of statistical mechanics (Stanley,

The following results have been previously derived using dif-

ferent methods. See Jevicki and Sakita (1980b) and Wadia
(&980a).

2sNote that Assumption 2 was used only to justify restricting
attention to the symbols of physical operators. It is conceiv-
able that there exist theories for which a weaker form of the
assumption may be appropriate. See the appendix for further
consequences of this assumption.
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1968), and later from the viewpoint of particle physics
(Wilson, 1973). Certain specific models, such as P field
theories, are sufficiently tractable that one may simply
sum all Feynman diagrams that survive in the N~oo
limit (Dolan and Jackiw, 1974; Schnitzer, 1974; Cole-
man, Jackiw, and Politzer, 1974; Gross and Neveu,
1974). Equivalently, functional integral methods may be
used to compute directly the N= ao limit of the effective
action (Halpern, 1980). One finds an effective action
which is nonlocal in both space and time and not obvi-
ously equivalent to any classical action which is local in
time. However, minimizing the effective action in, for
examples, P theories, leads to exactly the same gap
equation as (4.24), and one may easily see that all other
results also agree. The classical action, (4.20), is in fact
closely related to the effective action one obtains from
the second Legendre transform of the generating func-
tional (Cornwall, Jackiw, and Tomboulis, 1974).

More recently, Berezin (1978) studied vector models
with the specific intention of understanding the classical
nature of the N~ao limit. His paper is somewhat ob-
scure and relies heavily on his earlier work on quantiza-
tion on Kahler manifolds (Berezin, 1974, 1975). Presum-
ably for this reason, it has received less attention than it
deserved. Berezin used coherent state methods similar to
those employed in Sec. IV. The major difFerence is that
he chose to include the operators C(a,P)= —,P;(a)p;(P)
among the generators of the coherence group. This en-
larged group actually leads to exactly the same set of
coherent states. However, including all bilinear opera-
tors in the Lie algebra G conveniently allows one to ex-
press the action of the coherence group in Fock space.
This makes it very easy to carry out the discussion for
both Bose and Fermi theories in parallel. 8erezin
expresses the resulting classical mechanics in a form
which appears quite different from (4.19) and (4.20);
however, this is simply a consequence of his choice of
coordinates on the classical phase space. [He uses com-
plex coordinates which reflect the curvature of the
Kahler manifold and are not naturally canonically conju-
gate. A stereographic projection linearizes the phase
space (Jevicki and Papanicolaou, 1980) and relates his
coordinates to those used in Sec. IV.]

Mlodinow and Papanicolaou (1980, 1981) have also
studied certain vector models using related techniques
termed "pseudospin" methods. Instead of employing
coherent states, they choose to work directly at the
operator level and study the algebra of the O(N)-
invariant bilinear operators, A(u, P), B(a,P), and C(a,P).
This algebra reQects the structure of the canonical com-
mutation relations and for Bose theories is equivalent to
Sp(2n, &) [n=1 or 2 is the number of O(N)-vectors in
their work]. They rewrite the operators A, B, and C in

This also produces a coherence group which is semisimple,
unlike all of the groups used in this paper. Consequently for
this group one need not distinguish between the Lie algebra
and its dual space. (See footnote 12 for further discussion. )

terms of a new set of elementary Bose creation and an-
nihilation operators (a generalized Holstein-P rim akoff
representation) and show that in the large N limit all of
these new operators may be treated classically. This then
leads to the same classical Hamiltonian as in (4.19). In
my opinion, this operator level approach is less con-
venient than the coherent state approach for deriving the
X~ oo limit. However, it appears to be more convenient
for deriving systematic corrections in 1/X, since one
need deal with only a finite number of O(N)-invariant
basis states, instead of with an overcom piete set of
coherent states. Mlodinow and Papanicolaou have corn-
puted the first three terms in the 1/N expansion for the
ground-state energy of systems such as helium, and hy-
drogen in a magnetic field, and obtained surprisingly
good results (N equals the dimension of space here). Re-
cently, Papanicolaou (1981) has also used this "pseudo-
spin" method to discuss the large N limit of the two-
dimensional (gP) model.

Berezin, Mlodinow, and Papanicolaou have all relied
heavily on the fact that for any vector model one can im-
mediately rewrite any physical operator, such as the
Hamiltonian, in terms of the bilocal "pseudospin" opera-
tors A, 8, and C. However, in order to understand the
generalization of these methods to more complicated
theories, it is important to realize that one need not in-
clude all three sets of operators in the Lie algebra of the
coherence group (:—"pseudospin" algebra). As shown in
Sec. IV, including only A and B (i.e., operators at most
linear in momenta) still produces a coherence group
which acts irreducibly. Furthermore, any physical
operator can be expressed as a linear combination of ele-
ments of the coherence group, or equivalently, as a func-
tion of just A(a, p) and 8(a,p). This was stated in equa-
tion (3.3), which follows from the Von Neumann density
theorem (see footnote 8). However, finding this represen-
tation can be very difficult. This problem is neatly
avoided in our discussion of the N~00 limit. All we
ever require is the symbol of an operator, and computing
this is a deductive operation.

Next, we turn to a discussion of methods which are, or
claim to be, applicable to a wider class of theories than
just vector models. %'e begin with the method which is,
in some ways, closest to the approach used in this paper.
This is the "collective field method" of Jevicki and Saki-
ta (1980a).

The collective field method is based on the idea of
directly rewriting a quantum theory in terms of an over-
complete set of commuting physical operators. Specifi-
cally, all wave functions are taken to be functionals of an
overcornplete set of physical variables, such as the set of
bilinears Ix(a).x(P)] for vector models or the set of
Wilson loops ItrV" ] for gauge theories; this set of vari-
ables is the "collective field. " Using the chain rule, one
then expresses the kinetic terms in the Schrodinger equa-
tion in terms of derivatives with respect to the collective
field variables. Massaging the resulting expression by
means of a similarity transformation then produces the
"collective field Hamiltonian. " Finally, it is argued that
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in the large N limit one may treat the collective field
variables and their conjugates as independent classical
variables. Therefore one 6nds a classical Hamiltonian
appropriate for studying the large N limit. (Infinite
terms formally suppressed by powers of 1/N are typcially
discarded at this stage ).The ground-state energy, for ex-
ample, may then be computed by minimizing this Ham-
iltonian.

In every example we have considered it turns out that
the coherent-state method used in this paper produces
exactly the same classical Hamiltonian as does the col-
lective field method. This was basically inevitable, since
both methods work entirely within the physical Hilbert
space and produce classical Hamiltonians which are ex-
pressed in terms of physical variables. Despite this
equivalence of the final results, the two methods of
derivation differ considerably. We would like to discuss
this difference in somewhat greater detail because it will
bring up an important point.

Consider, for example, a one-matrix model such as the
one described in Sec. V. The U(N)-invariant spectrum
consists of a set of modes whose frequencies increase
linearly, co~ =jco, . For finite %, there are % such modes.
Therefore the zero-point energy of these modes is of or-
der N and contributes to the leading large N behavior of
the ground-state energy. Consequently, any method for
deriving the large N limit of the model must correctly
account for this zero-point energy. If one simply
rewrites the Schrodinger equation for this model in terms .

of the eigenvalues of the original matrix and tries to
neglect the gradient terms, then this zero-point energy
will be missed and one will obtain the wrong answer.
The collective field method manages to avoid this prob-
lem. Instead of writing the theory in terms of the com-
plete set of N eigenvalues, I A,; I, it uses a continuous
function with a smooth large N limit, the density of
eigenvalues p(A, ). One might think that this would only
make the problem worse, since the collective 6eld Hamil-
tonian has no cutoff' on the number of modes and the
zero-point energy is now ao &&N instead of O(N ). How-
ever, it turns out that the correct answer is obtained by
simply dropping all such terms which are (formally)
suppressed by powers of 1/N. Understanding why this is
true, within the collective 6eld approach, is not easy.

The coherent-state formalism provides a much cleaner
method for deriving the large X classical Hamiltonian.
Instead of requiring operator level manipulations, one
simply computes the expectation of the quantum Hamil-
tonian in a specified set of (normalizable) coherent states.
The zero-point energy is automatically included correct-
ly.

Along this same line, I should mention the work of
Lovelace (1981). He considered the general problem of
changing variables to an independent set of gauge-

3 This has been discussed in detail in the context of a self-dual
quaternionic matrix model by Aragao de Carvalho and Fateev
(1981).

invariant coordinates and claimed that adding a simple
term based on the volume of a gauge orbit to the poten-
tial energy would reproduce the results of the collective
field method. This prescription amounts to simply
neglecting certain portions of the kinetic energy and does
not appear correctly to include zero-point energy contri-
butions.

The large X limit of many simple models can be
solved by formulating Schwinger-Dyson equations for
correlation functions of time-ordered products of physical
operators. Normally, such equations generate an infinite
hierarchy of relations involving arbitrarily complicated
correlation functions. However, in the large N limit fac-
torization [Eq. (1.1)] can be used to simplify the equa-
tions, and one can derive a closed set of nonlinear equa-
tions which specify the behavior of a minimal set of
physical observables. In a variety of simple models, one
can explicitly solve these equations, and thereby derive
the leading N mao behav—ior of physical correlation func-
tions (Paffuta and Rossi, 1980; Friedan, 1981; Brower,
Rossi, and Tan, 1981a, 1981b; Kazakov and Kostov,
1980; Wadia, 1981).

Many people have attempted to study gauge theories
by formulating Dyson equations for the vacuum expecta-
tions of Wilson loops (Gervais and Neveu, 1979; Nambu,
1979; Polyakov, 1979; Foerster, 1979; Eguchi, 1979;
Migdal, 1980). Makeenko and Migdal (1979, 1980) were
the first to emphasize that in the large N limit one can
derive a closed set of equations involving the expecta-
tions of single Wilson loops. Inevitably, these equations
are extremely difficult to solve.

A Hamiltonian approach, such as we have used leads
to an explicit minimization problem, and varying the
classical Hamiltonian (Eq. 6.12) generates a closed set of
equations for the expectations of equal-time Wilson
loops. In contrast, the Migdal-Makeenko equations re-
quire expectations of arbitrary space-time %'ilson loops
and do not follow from any explicit minimization prob-
lem. ' It is not clear if the equations have a unique solu-
tion. Furthermore, these equations actually contain
much less information than the large X classical Hamil-
tonian (6.12). An explict solution would at most deter-
mine the large N limit of the expectation of any single
Wilson loop. However, this is not sufficient information
to determine the large X behavior of all physical observ-
ables. In order to compute, for example, the gauge-
invariant spectrum (i.e., glueball states), one must be able
to determine the connected part of the expectation of a
product of two Wilson loops. This information is not
contained in the Migdal-Makeenko equations.

When applied to gauge theories, any method which

'Jevicki and Sakita (1981) have shown that the Migdal-
Makeenko equations follow from an effective action for loops
derived from the Euclidean functional integral. However,
evaluating the action requires computing a Jacobian which is
only implicitly defined through a functional differential equa-
tion.
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expI i (k x)—I
(2 )(d+1)/2(k2+m2)1/2

(7.2)

Replacing every occurrence of P(x).P(x') in any tiine-
ordered correlation function with I d +'keg(x) @g(x')
will then yield the correct large N limit. Obviously, this
construction simply reflects the fact that the large N lim-
it of the spectrum consists of a single particle of mass m.
Note that the master 6eld does not allow one to compute
the leading X~ oo behavior of one-particle irreducible
correlation functions, and that therefore one cannot ex-
tract, for example, the large N behavior of physical
scattering amplitudes from the master Geld. Because its
derivation was solely based on factorization, the master
6eld actually contains much less information than the
classical Hamiltonian (4.22)

Since there is no constructive approach for finding
such "master fields" without having first solved the
theory, it is obviously desirable to find an alternative ap-
proach which will have more predictive power. Such an
approach is potentially provided by the recently

works entirely within the physical (i.e., gauge-invariant)
Hilbert space seems inevitably to lead to some sort of
loop space. Because analysis in such a space is intract-
able, a number of people have recently investigated alter-
native approaches which might avoid this problem.

Witten (1979) [see also Coleman (1979)] argued on the
basis of factorization (Eq. 1.1) that the support of the
Euclidean functional integral must reduce to a single
gauge orbit when N~ao. This would imply that the
large N limit of the expectation of any time-ordered
product of physical operators could be computed by sim-

ply replacing all quantum gauge fields by a single classi-
cal field (unique up to gauge transformations). Such a
Geld configuration has been termed a "master Geld".
The major problem with this approach is that no con-
structive method for 6nding a suitable master field is
known. The basic idea of a "unique" gauge orbit at
N= 00 is somewhat ill-defined, and it is not always clear
how to define the in6nite-dimensional space in which the
master field is supposed to live. In some sense, one can
always package an arbitrarily large amount of informa-
tion into the "sum" over the group indices of the master
Geld. Consider, for example, a P field theory. The ori-
ginal configuration space consists of real fields, P;(x),
where the index i runs from 1 to N. The large N limit of
the two-point function is given by

d d + kg i (k.(r —r'))
lim (TI P;(x)P;(x') J }=I (2n')" +' (k +m )

(7.1)

where m =p +A,o and o. satisfies the gap equation
(4.24). Construction of a master field for this theory is
straightforward. One simply (a) allows the master field
to be complex instead of real, (b) interprets the index i as
the label for an arbitrary (d+ 1)-dimensional momentum
vector, and (c} chooses the master field Ni, (x) to be given
by (Levine, 1980; Halpern, 1981b)

(n, i ~x ~0}=5; q„/v N . (7.3)

Here, n labels the (unknown) number of O(N)-vector
eigenstates, i is an O(N) vector index labeling the states
within a multiplet, and q„ is a reduced matrix element.
Because we have taken matrix elements between quan-
turn eigenstates, the reduced matrix elements have a sim-

developed method of "constrained classical solutions. "
(Unlike the usage in the rest of this paper, in the follow-
ing discussion "classical solutions, " "classical hamiltoni-
ans, " etc., will be understood to refer speci6cally to the
A—+0 limit. } The first step in the development of this
method was provided by the observation by Jevicki and
Papanicolaou (1980) that the effective Hamiltonian
describing the N= ao dynamics of a point particle, (4.21),
is identical to the classical Hamiltonian of a point parti-
cle whose angular momentum (squared) is equal to 1/4.
(If we had not scaled out factors of A' and N, I. would
equal i' N /4). Minimizing the original classical Hamil-
tonian subject to this constraint does in fact lead to the
correct large N limit of the ground-state energy. A simi-
lar result was shown to hold in linear cr models. Subse-
quent work by Jevicki and Levine (1980, 1981), and
Kessler and Levine (1981) has extended this idea to gen-
eral vector models and to the single Herrnitian matrix
model. In every case, the equations of motion which fol-
low from the large N effective Hamiltonian may be
shown to be equivalent to the original classical equations
of motion subject to a suitable constraint. In the one-
matrix model, for example, the constraint may be written
as J,b

= i[M,M],b ——irt(1 5,b) —Barda. kci (1981a) has
also discussed one-vector and one-matrix models from a
somewhat different viewpoint and obtained equivalent
results. The clearest explanation about what's going on,
and why this approach works, has been given by Halpern
(1981a). A brief sketch of his argument follows.

Consider a theory which is known to satisfy factoriza-
tion in the large X limit, such as a one-vector model.
Imagine computing the vacuum expectation of any
"index-ordered" product of field operators. ["Index-
ordered" means that the quantum operators are ordered
in a way that allows a natural contraction of the group
indices. In vector models this means that neighboring
pairs of vectors are contracted, as in (0

~
x(t) x(t').

x (t).x (t")~0 }.) Consider inserting a complete set of
quantum eigenstates after each field operator. This obvi-
ously requires working in the full Hilbert space, which
contains states transforming under all possible irreducible
representations of the symmetry group. However, the re-
striction to index-ordered products of field operators sig-
nificantly restricts the types of intermediate states which
can contribute. In vector models each intermediate state
must transform either as an O(N) vector or O(N) singlet.
Furthermore, factorization implies that the only O(N)-
invariant state which can contribute to the leading
N~ oo behavior is the ground state. Therefore in order
to compute any ordered expectation in, for example, the
one-vector model, one requires only the following matrix
elements,
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pie time dependence,

q„(t)=e "q„(0), (7.4)

g(qnqn qnqn)=~ (7 6)

Assuming that the frequencies I co„ I are not degenerate
(7.5) —(7.6) have a unique solution (up to an overall
phase). This solution allows one to calculate the large N
limit of any ordered correlation functions in the one-
vector model. (It should be emphasized that the leading
behavior always comes from the maximally disconnected
part of the correlation function; the constrained classical
solution does not retain enough information to compute
the connected part).

Halpern has shown that the same approach works in
any vector model and in the one-matrix model. Extend-
ing the analysis to gauge theories appears to be straight-
forward (Bardakci, 1981b). In each case one isolates the
relevant set of transition matrix elements which can con-
tribute to the large X-limit of any ordered correlation
function. Next, one defines reduced matrix elements in
such a way that the quantum equations of motion are
equivalent to classical equations of motion for the re-
duced matrix elements. Matrix elements of the canonical
commutation relations then generate a set of constraints
which the reduced matrix elements must satisfy.

This approach of solving for constrained classical solu-
tions is complementary to the coherent-state or collective
field methods in the following sense. The latter methods
work entirely within the invariant sector of the Hilbert
space and generate an effective Hamiltonian describing
the X= Oc dynamics. Examining small oscillations
about the minimum of the eAective Hamiltonian allows
one to compute the X~ao limit of the spectrum of
gauge- [or O(N)-] invariant states. The constrained clas-
sical solution does not contain this information. Rather,
the time dependence of the constrained solution contains
information about the spectrum of noninvariant states.
(In gauge theories these would be static quark antiquark
states. ) In general, it is not at all clear that solving for
the appropriate constrained classical solution is any
easier than minimizing the large N eAective Hamiltoni-
an. [In the one-matrix model, solving for the con-
strained solution has only recently been accomplished

where co„=E—„—Eo is the (unknown) excitation energy of
the nth eigenstate. The quantum equation of motion is

simply x;+2V'(x )x; =0 [for the usual Hamiltonian
H=N I 2 p + V(x ) ]]. Taking matrix elements and us-

ing factorization yields

q„+2V'(q.q*)q„=0 . (7.5)

Therefore q„may be regarded as a complex vector satis-
fying the original classical equations of motion. Howev-
er, the "index" n has nothing to do with the original
O(N)-vector index; rather, it labels the set of vector
eigenstates which can couple to the ground state. The
relevant constraint arises from the vacuum expectation of
the commutation relations and reads

(Halpern and Schwartz, 1981).]
Note that methods which use factorization from the

outset, such as the Migdal-Makeenko derivation of loop
equations or the preceding constrained classical solution
approach, at most allow one to compute the vacuum ex-
pectation of any single physical operator. These methods
do not, in general, produce enough information to deter-
mine the large X limit of the invariant spectrum, scatter-
ing amplitudes, or other quantities which require
knowledge of the connected part of correlation functions
of products of physical operators. Only methods leading
to the complete large N efFective action retain enough in-
formation to allow one to compute such quantities.

The above arguments summarize why, at least in my
opinion, methods which derive the effective X= oo classi-
cal Hamiltonian appear to provide the most useful ap-
proach known for studying large N limits. It seems
doubtful that any significantly more convenient approach
can be developed. The problem of solving the large N
limit of gauge theories, for example, is reduced to a
minimization problem of an explicitly known functional
(6.12). The fact that the relevant variables are defined on
loops appears to be unavoidable. Although we lack an
analytic solution to this problem, minimizing (6.12) nu-
merically should be perfectly feasible. This appears to be
well worth the effort, since an explicit solution would al-
low one directly to compute the large N spectrum of
@CD.

Finally, we should say a few words about 1/X correc-
tions. In general, it is not sufficient simply to turn
around and try to quantize the large N classical Hamil-
tonian (Mondello and Onofri, 1981). Besides obvious
factor ordering problems, there can be explicit correc-
tions of order I/N in the Hamiltonian. Furthermore,
there can also be corrections coming from a nontrivial
measure for the classical variables. One can study these
problems by deriving functional integral representations
based on the overcomplete set of coherent states. This is
briefly discussed in the appendix. In principle, this
representation can be used to derive systematic correc-
tions in powers of 1/¹however, only in simple theories
has it been possible to carry out explicit calculations.
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APPENDIX

This appendix discusses some further applications of
coherent states, such as the representat @n of operators in
terms of diagonal projections onto coherent states and
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functional integral representations based on coherent
states.

In Sec. III we defined the symbol of any operator A as
the set of coherent state expectation values,

surprisingly simple. Suppose that Assumption 2 were
false. Then there would exist some nonzero operator Z
whose lower symbol Z(u) was identically zero. This
would imply that

A(u)=(u iA ) u), uHg . (Al) 8pI QAQZg =0 (A5)

Henceforth we will call A(u) the "lower symbol" (or
"covariant" symbol) of A. Lower symbols provide a na-
tural mapping of quantum operators into functions on
the coherence group. One may also de6ne a natural
mapping of functions into operators. If A(u) is some
function on the coherence group such that

f dpL(u)A(u)
i
u)(u i

=A,

0
then A(u) will be called an "upper symbol" (or "contra-
variant" symbol) of A. Upper symbols of a given opera-
tor need not be unique, and in general may not even ex-
ist. Only operators which can be expressed as weighted
sums of diagonal projections onto the coherent states will
have upper symbols.

The irreducibility of the coherence group led to the
completeness relation (3.2), and this implies that

f dpL(u)A(u)= Tr(A) = f dpL(u)A(u} . (A3)

[We have absorbed the constant cz in the completeness
relation into the measure dp. The second part of (A3)
obviously requires that A possess an upper symbol. ] One
may easily show that the norm of an operator is bounded
below by the maximum of its lower symbol and bounded
above by the maximum of any upper symbol (Simon,
1980; Berezin, 1972). Furthermore, if N(x) is any con-
vex function of a real variable [such as exp(x)] and if A

is a self-adjoint operator, then (Berezin, 1972; Lich,
1973),

f dpL(u) @(A(u) ) & Tr [N(A )]

( f dpL (u) @(A(u)) . (A4)

[These bounds follow from a simple argument based on
Jensen's inequality. See Simon (1980).] These relations
motivate the names "upper" and "lower" symbols.

A natural question to ask in a particular theory is
whether all operators have upper symbols. If they do,
then the set of coherent projections, [ ~u)(u

~ ~
uHg I,

will be said to be complete. (Completeness of the co-
herent projections in the space of all operators should not
be confused with completeness of the set of coherent
states in the Hilbert space. Completeness of the coherent
states is an immediate consequence of Assumption 1.) It
turns out that Assumption 2 [Z(u)=0 implies Z=O] is
equivalent to the requirement, that the coherent projec-
tions be complete (Simon, 1980). The basic argument is

for any function A(u}. Since Z(u)=(u ~Z
~
u), (AS)

may be rewritten as

Tr(AZ) =0,

where A= f dpI. (u)A(u) ~u)(u ~. Hence, the operator
Z would be orthogonal to all operators which possess
upper symbols. In other words, the set of operators with
upper symbols would have a nontrivial orthogonal com-
plement, thereby implying that the set of coherent pro-
jections was not complete. Therefore completeness of the
coherent projections implies the validity of Assumption
2. To prove the converse, one simply inverts the argu-
ment above.

This shows that in any theory satisfying Assumption
2, every operator has an upper symbol. However, the
preceding argument is about as nonconstructive as one
can get. Regrettably, no general constructive procedure
for 6nding the upper symbol of an arbitrary operator is
known. In specific cases, if an explicit upper symbol for
the Hamiltonian can be found, then the inequalities (A4)
can provide matched upper and lower bounds on the par-
tition function. This can yield detailed information on
the rate at which the classical limit is approached [in
contrast to Eq. (3.29) —(3.31), which simply show that
the limit exists. ] This procedure has been successfully
applied in a variety of quantum spin systems (Lieb, 1973;
Fuller and Lenard, 1979; Gilmore and Feng, 1978; Gil-
more, 1979; Shankar, 1980) and even in atomic physics
(Thirring, 1981). Unfortunately, constructing upper sym-
bols in more complicated theories appears to be very dif-
ficult.

Next, we discuss functional integrals based on coherent
states. The coherent-state representation will provide a
simple and direct method for showing that the tree dia-
grams generated from the large N classical action (3.23)
correctly reproduce the large N limit of any connected
correlation function of physical operators.

Consider, for example, computing the partition func-
tion Z=Tr(exp —PH). The basic ingredient needed to
derive any functional integral is a convenient complete-
ness relation. %e will use the coherent-state complete-
ness relation, (3.2). Repeatedly inserting this into the
trace leads to

The following sketch is quite sloppy. In particular, the
phrase all operators actually means a dense set of bounded.
operators in a particular topology. See Simon (1980) for de-
tails.
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Z = llm f / dpL(u;) (u/,
~

(1—EH)
~

u/, i} . (up
~

(1—EH)
~
ui }(ui

~

(1—EH)
~

u/ }
k

(A7)

(s=—P/k). Assumption 3 [(u
J

u') -exp —(I/X)cb(u, u')] and Assumption 4 [(1/X)H classical] imply that this integral
is highly peaked about u; -u; i. Therefore [using (3.10)] we may write (A7) as

k k
Z- lim f lldpL, (u;)exp ——g I p(u;, u/ i)+ &XHz(u;) I ~

k~ oo X
(A8)

Next, we may split each integral over the coherence group g into an integral over the coset space g/h times an integral
over the subgroup h, where h generates the set of coherent states which are classically equivalent to the base state. (In
other words, h= I u Hg

~

u —1 I). Recall that the coset space g/h is equivalent to the coadjoint orbit I which pro-

vides the classical phase space. If we write u;=e 'u; &, then it may be shown that

k k

g P(u;, u;, )= g i(g;,5g ')+O(5()

where g/ =Ad' [u; ](go) and g; =(Ad' [e ']—1)(g;). Finally, using the definition of the classical Hamiltonian,
lim XH/t(u) =h, /(g}, we find

X~ 00

k l k 1Z- »m f + d"p(g;)exp ——g I i(g';, @g }+a&„(g) I
—= f Dp[g(t)] exp ——S,&[/(t)],k~ oo x

(A9)

S,/[g(t)]= f, «I t—(g(t),@&}+&,/(g(t)) I

is the Euclidean classical action, and

d "i/(g) = f dpi (u) 5(g—Ad'[u](go))

is the invariant measure on the coadjoint orbit I . In a similar fashion, one may consider the expectation of any time-
ordered product of classical operators, and find

(A(t, ) . B(t~)):—Z 'Tr[TIA(t, ) . 8(t2)exp —PH I]

—Z ' Dp t a t) . . b t2 exp ——S,( t (A10)

Equations (A9) and (A10) have the standard form of any
semiclassical functional integral; all dependence on X is
isolated in a single factor of (1/X) multiplying the classi-
cal action. We emphasize that these expressions are
valid only as X~O. Small X is the only justification for
expanding P(u;, u; i) and (u;

~

H
~
u; &)/(u;

~
u; i)

about u; —u; ~. Nevertheless, one may see that the
terms we have neglected to not contribute to the leading
X~O behavior of the connected part of correlation func-
tions such as (A10). This limiting behavior may be com-
puted simply by expanding the classical action S, [g/(t)]
about the minimum of the classical Hamiltonian and
evaluating the lowest-order connected tree diagrams.
Corrections to this leading behavior can come from
several sources; explicit higher-order loop diagrams gen-
erated from the classical action, the nontrivial measure
Dl/, [g(t)], plus all the terms we have neglected in deriv-
ing equations (A9} and (A10).

See Klauder (1979) plus references therein for careful discus-
sion of some of the subtleties involved in deriving exact func-

tional integrals based on ordinary Gaussian coherent states.
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