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This is a tutorial review on the Potts model aimed at bringing out in an organized fashion the essential and
important properties of the standard Potts model. Emphasis is placed on exact and rigorous results, but other
aspects of the problem are also described to achieve a unified perspective. Topics reviewed include the mean-
field theory, duality relations, series expansions, critical properties, experimental realizations, and the
relationship of the Potts model with other lattice-statistical problems.
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I. INTRODUCTION

This is a tutorial review on the static properties of the
Potts model (Potts, 1952). The Potts model is a generali-
zation of the Ising model (Ising, 1925) to more-than-two
components, and has been a subject of increasingly in-
tense research interest in recent years. Historically, a
four-component version of the model was first studied by
Ashkin and Teller (1943). But the model of general g
components bears its current name after it was proposed
by Domb [see Domb (1974a)] three decades ago to his
then research student Potts as a thesis topic (Potts,
1951). The problem was also considered two years later
in an independent study by Kihara et al. (1954).

The problem attracted little attention in its early years.
But in the last ten years or so there has been a strong
surge of interest, largely because the model has proven to
be very rich in its contents.” It is now known that the
Potts model is related to a number of outstanding prob-
lems in lattice statistics; the critical behavior has also
been shown to be richer and more general than that of
the Ising model. In the ensuing efforts to explore its
properties, the Potts model has become an important
testing ground for the different methods and approaches
in the study of the critical point theory.

There is now a vast number of research papers pub-
lished on the subject; it has come to the point that it is
difficult for new students to grasp the problem. It is
with this intended readership in mind that the present
article is written.

The main aim of this review is to bring out the impor-
tant properties and results of the Potts model in a logical
order. Derivations will be given when they are simple
and illustrate a point, but these will be kept at a
minimum to preserve continuity in reading. As the fron-
tier of this active research field is fast advancing, it is not
possible to give an up-to-date account of every facet of it.
Instead, I shall concentrate on those aspects that are
least likely to change in time. Here the choice of materi-
als is to some extent arbitrary, and my emphasis will be
on exact and rigorous results. I shall, in particular, not
recount every development of the renormalization group
and numerical studies, although the relevant results will
be described in appropriate places as they arise in discus-
sions. Another topic not covered in this review is the
planar Potts model, a subject at the very frontier of
current research interest; several reviews already exist on
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this and the related planar rotator problem (Kosterlitz
and Thouless, 1978; Nelson, 1979; Barber, 1980; Frolich
and Spencer, 1981). Also, the topic of series expansions
will be discussed only to the extent of developing the ex-
pansions for the partition function and for finite graphs
(and lattices). Specific techniques for the more efficient
series generation for infinite lattices will not be discussed.

With these guidelines in mind, I have organized this
review as follows.

In Secs. I.A and I.B the various versions of the Potts
model are defined. Section I.C gives a mean-field solu-
tion of the (standard) Potts model including a discussion
on the critical dimensionality. Section LD reviews the
status on experimental realizations of the Potts model,
and Sec. LE gives the solution for the Bethe lattice.

Section II discusses the exact duality relation for the
various Potts model, with derivations given in some
cases. In Sec. III some graphical aspects of the series ex-
pansions are reviewed. Section IV discusses the relation-
ship of the Potts model with other lattice-statistical prob-
lems. These include the ice-rule model, the percolation
problem, and the resistor network.

The critical properties of the Potts model are reviewed
in Sec. V, where the exact as well as conjectured results
are presented. Results on numerical analyses and experi-
ments are also discussed to give a unified view on the
critical properties.

Section VI discusses the random-bond Potts model, a
problem that has been of very recent interest. A list of
unsolved problems suggested in the course of this review
is provided in Sec. VII.

A. The Potts model

The problem originally proposed by Domb was to re-
gard the Ising model as a system of interacting spins that
can be either parallel or antiparallel. Then an appropri-
ate generalization would be to consider a system of spins
confined in a plane, with each spin pointing to one of the
g equally spaced directions specified by the angles
(1.1)

0,=2mm/q, n=0,1,...,g—1.

In the most general form the nearest-neighbor interaction
depends only on the relative angle between the two vec-
tors. This is quite generally known as a system of Z(q)
symmetry whose Hamiltonian reads

—>J(6;),
ij)

function J(©) 1is 27 periodic and
is the angle between the two spins at

(1.2)

where the
e,.jze,,i—e,,j
neighboring sites i and j. The Z(q) model plays an im-
portant role in the lattice gauge theories and has attract-
ed a growing interest [see, for example, a review by Ko-
gut (1979)].

The model suggested by Domb (Potts, 1952) is to
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choose

J(O)=—g;cosO . (1.3)

Using a Kramer-Wannier (1941) type analysis, Potts was
able to determine the critical point of this model on the
square lattice for ¢ =2,3,4. While unable to extend this
finding to g >4, Potts reported as a remark at the end of
his paper (Potts, 1952) the critical point for all g of the
following model:

J(0;) =28k, (n;,n;) (1.4)

It is this version of a g-component model that has at-
tracted the most attention.

Following the suggestion of Domb (1974a), we shall
name the model (1.3) the planar Potts model and the
model (1.4) the standard Potts model, or simply the Potts
model. Other names of these models have also appeared
in the literature. The planar Potts model has been re-
ferred to as the vector Potts model and also as the clock
model in recent literature; the standard Potts model has
often been called the Ashkin-Teller-Potts model for his-
torical reasons. It appears that Domb’s suggestion is the
simplest, which should be adopted in conjunction with
using the name of the Ashkin-Teller model for the four-
component model with (and without) symmetry break-
ings.

The (standard) Potts model is ferromagnetic if £,>0
and antiferromagnetic if €, <0. The interaction (1.4) can
be alternately formulated to reflect its full symmetry in a
g —1 dimensional space. This is achieved by writing in
(1.4)

SK,(a,B)zi[H—(q —1)e*-ef], (1.5)
where €%, a=0,1,...,q9 —1 are g unit vectors pointing
in the ¢ symmetric directions of a hypertetrahedron in
g —1 dimensions. Examples of these vectors for
q =2,3,4 are shown in Fig. 1. The Hamiltonian in the
form of (1.4) and (1.5) has proven convenient to use in
the continuous-spin formulation of the Potts model [see,
for example, Zia and Wallace (1975)].

The planar and the standard models are identical for
g =2 (Ising) and g =3 with g,=2¢; and &,=3¢,/2,
respectively. Also, the four-state planar model is reduci-
ble to the ¢ =2 models (Betts, 1964) and this equivalence
is valid for arbitrary lattices (Kasteleyn, 1964). There

4

q=2 q=3

FIG. 1. The ¢ unit vectors pointing in the g symmetric direc-
tions of a hypertetrahedron in ¢ —1 dimensions.
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exist no apparent relations between the planar and stand-
ard models for g > 4.

In addition to the two-site interactions, there can also
be multisite interactions as well as external fields. For a
Potts model on a lattice G of N sites, the Hamiltonian
% generally takes the form

—B%= LZSKr(Ui’O)+K28Kr(Ui:Uj)
i (i)
+K3 2 SKr(Ui:Uj’Uk)+ T (1.6)
(i,4,k)
where B=1/kT, and 0;=0,1,...,q—1 specifies the
spin states at the ith site and

8xloy o .. o )=1, ifo;=...=0y

=0, otherwise .
Here K =pke,, K,, n >3, is the strength of the n-site in-
teractions, and L is an external field applied to the spin

state 0. [See Eqgs. (1.18) and (3.1) for further forms of the
Hamiltonian.] The partition function is

91 :
Zs(q;LK.K,)= 3 e P,

o;=0

(1.7

The physical properties of the system are derived in the
usual way by taking the thermodynamic limit. Relevant
thermodynamic quantities include the per site “free ener-

(1]

gy

f(q9;L’KaKn )=1}1m %lnz(;(q ;L,K,Kn) N (1.8)

the per site energy

E(q;L,K,K,,):-—S%f(q;L,K,K,,) , (1.9
and the per site “magnetization,”
M(g;LKK,) = —--f(g;LKK,) . (1.10)

oL

The order parameter m, which takes the values 0 and 1
for completely disordered and ordered systems, respec-
tively, is defined to be (Straley and Fisher, 1973; Binder,
1981)

m(q,L,K,K,)=(gM —1)/(q —1) . (L.11)

A ferromagnetic transition is then accompanied with the
onset of a spontaneous ordering

mo=m(q;0+,K,K,) . (1.12)

The critical exponents a, o', B, v, ¥, 8, . . . can be de-
fined in the usual fashion [see, for example, Fisher
(1967)] from the singular behavior of these thermo-
dynamic quantities near the critical temperature 7.

The two-point correlation function I,,(r;,r;) of the
zero-field Potts model is (Wang and Wu, 1976)

[ oo(r), 1) =Poo(r,1)—q 2, (1.13)
where P,,(1),1;) is the probability that the sites at r; and

r, are both in the same spin state a. Clearly, 'y, takes
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the respective values 0 and (¢ —1)/g? for completely
disordered and completely ordered systems. This then
suggests the following relation between the large distance
correlation and the spontaneous ordering:

lim  Tou(r,r)=(g —1)(my/q). (1.14)

|r—1| >

Indeed, the relation (1.14), which first appeared as a foot-
note in Potts and Ward (1955) for g =2, can be esta-
blished by a decomposition of the correlation function
into those of the extremum states (Kunz, 1981). It has
also been established rigorously that I',, decays exponen-
tially above the critical temperature T, (Hintermann
et al., 1978). The decay of I',, for T < T, is not known
except for g =2 (McCoy and Wu, 1973). Furthermore,
the surface tension for the generalized Potts model has
been discussed by Fontaine and Gruber (1979). It can be
shown that, in two dimensions, the surface tension is re-
lated to the two-point correlation function of the dual
model.

As we shall see, the analysis of the Potts model is
closely related to the problem of graph colorings, so it is
useful to introduce here the needed definitions.

Let Pg(q) be the number of ways that the vertices of a
graph G can be colored in g different colors such that no
two vertices connected by an edge bear the same color.
Then Pg(q) is a function of ¢ and is known as the
chromatic function for the graph G.

Consider next an antiferromagnetic Potts model on G
with pure two-site interactions K <0. Consider further
the zero-temperature limit of K— — o0. It is clear that
in this limit the partition function (1.7) reduces to

Z5(q;K=—)=Pglq) . (1.15a)

This simple connection between the Potts partition func-
tion and the chromatic function is valid for G in any
dimension. In addition, a graphical interpretation of
Pg(q) for g = —1 has been given by Stanley (1973).

For a lattice G of N sites, the free energy (1.8) in the
zero-temperature limit of K — — o becomes the ground-
state entropy

= lim L
WG(q)_Iél_lzlelnPG(q). (1.15b)

The existence of this limit has been discussed by Biggs
(1975).

There are three exact results on Wg(q) for ¢g>3.
These are the values for the ¢ =3 square lattice (Lieb,
1967a, 1967b), g =4 triangular lattice (Baxter, 1970), and
the g =3 Kagomé lattice (Baxter, 1970):

W (3)=(4/3)*"2
=1.53960...,
0 2
W,,.i(4)=”l'=[1 75(—:)':371_)5
=1.46099. ..,
Wiagome(3)=[ W5;(4)]'/3
=1.13470... .

(1.15¢)
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B. The dilute model

If vacancies can occur on the lattice, then we have a
site-diluted Potts model, or a Potts lattice gas (Berker
et al., 1978), for which the lattice sites are randomly oc-
cupied with Potts spins. Consideration of this dilute
Potts model has proven fruitful in the renormalization
group studies of the Potts model (Nienhuis et al., 1979);
it also generates other statistical mechanical models in-
cluding those of polymer gelation (Coniglio et al., 1979)
and the problem of site percolation in a lattice gas (Mu-
rata, 1979).

As in the usual consideration of random systems, the
dilution in the Potts model can be either quenched, in
which the vacancies are fixed in positions, or annealed,
in which the vacancies can move around and are in ther-
moequilibrium with the surroundings. Very little is
known about the quenched site-diluted system; it is the
annealed system that has received the most attention.

The Hamiltonian 5 for an annealed site-diluted model
reads

—Bx = Jt;t;[K'+ K8, (0;,0)]
hj
+3(1—¢)inz; , (1.16)
i
where z; is the fugacity of the vacancy at the ith site, and
t;=0(1) indicates that the ith site is vacant (occupied).
The partition function of the dilute model is

1 g-—1
zPg;,K'\Kz)=3 I e P¥, (1.17)

t,-=0 °i=0

where the summation over o; is for ;=1 only.

If the vacancies are considered as being a spin state,
then the dilute model can also be regarded as an (undi-
luted) Potts model of (¢ +1) components. The Hamil-
tonian of this (¢ + 1)-state model is

_B%q—{-l = KESKr(Uij)+2Li81(r(ai’0)
(8,4) i

+M 3 8¢,(07,008k,(,,0)
(i, )

(1.18)

where, in addition to the field L; at site i, an additional
field M is introduced which applies to neighboring sites
that are both in the spin state 0. Writing

$ o P
Z(g+LKML)= Y e 9, (1.19)
o;=0

we then have the identity

Z'Pq;K'K,z;)=e"X'Z(qg + K,M,L;) , (1.20)
with

M=K'—-K,

L; —v; K’
e "=ze .

" Here E is the total number of edges of the lattice and y;
is the valence of the ith site.
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For bipartite lattices it is possible to consider dilute
models in which the vacancies are restricted to occurring
at only one of the two sublattices. A special class of
such lattices is those with bond decorations with vacan-
cies restricted to the decorating sites. The critical prop-
erties of this diluted model can be derived from those of
the underlying undiluted model, and have led to some
unique features, including the existence of a two-phase
region for ¢ >4 (Wu, 1980). Similar results have also
been obtained for the regular (undecorated) honeycomb
lattice (Wu and Zia, 1981; Kondo and Temesvari, 1981).

C. The mean-field solution

It is well known that the mean-field description of the
Ising model gives a qualitatively correct picture of the
phase transition. In the absence of an exact solution, it
is therefore natural first to examine the g-component
Potts model in the mean-field approximation.

Such a study was first carried out by Kihara et al.
(1954) under the Bragg-Williams approximation (Bragg
and Williams, 1934). They found the transition to be of
first order for all ¢ > 2, and, apparently without realizing
the importance attached to this implication, dismissed
the result as “being far from reality.”

The mean-field theory was considered again by Mittag
and Stephen (1974) [see also Straley and Fisher (1973)].
With the guide of the known exact critical properties of
the two-dimensional model (Baxter, 1973a), they showed
that the mean-field result is exact to the leading order in
the large g expansion in d =2 dimensions. In fact, the
exact result in d =2 shows a first-order transition for
q >4 (Sec. V.B). We then expect, more generally, the ex-
istence of a critical value g.(d) such that, in d dimen-
sions, the mean-field theory is valid for ¢ >g.(d). We
shall look at this point briefly before going on to the
mean-field solution.

Regarding g and d as being both continuous, the criti-
cal value of ¢.(d) implies the existence of a critical
dimensionality d.(q) such that the mean-field behavior
prevails in d >d.(q). The known points are d,(2)=4
and ¢.(2)=4. It has also been suggested (Toulouse,
1974), and subsequently verified by Monte Carlo simula-
tion (Kirkpatrick, 1976) and by series analyses (Gaunt
et al., 1976; Gaunt and Ruskin, 1978), that the critical
dimensionality d (1) for the percolation process (see Sec.
IV.B) is 6. A schematic plot of g.(d) is thus made in
Fig. 2, where we have also incorporated the
renormalization-group results of g.(1+¢€)~exp(2/¢) for
small € (Andelman and Berker, 1981; Nienhuis et al.,
1981), ¢.(d)=2 for d >4 (Aharony and Pytte, 1981), and
assumed first-order transition at the point ¢ =3, d =3
(see Sec. V.B). A plot of the first-order region similar to
Fig. 2 can be found in Riedel (1981) and Nienhuis, et al.
(1981).

We now describe a mean-field theory of the Potts
model equivalent to that of Kihara et al. (1954).

We start from the mean-field Hamiltonian (Husimi,
1953; Temperley, 1954; Kac, 1968)
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Then, to the leading order in N, the energy and entropy
5 per spin are
E
Lk FIRST ORDER =" %Yﬁzzxiz )
t i
¢ 31 N
2k ‘ﬁ= ——'kzxilnx,' N (1.23)
CONTINUOUS i
11 2' :‘3 f IS R ,; ? and the free energy per spin, A4, is given by the expres-
sion
d— : .
2
FIG. 2. Schematic plot of g.(d), the critical value of ¢ beyond BA =2(x,~ Inx; — 3 vKx;) , (1.24)
]

which the transition is mean-field —like (first order for g >2
and continuous for g <2). The known points g.(2)=4, _
ge(4)=2, and g,(6)=1 are denoted by open circles. The black  here K =Bex.

circle indicates the assumed first-order transition for For ferromagnetic interactions (e;>0) we look for a

solution in the form of

d =3, q=3.
1
x0=;[1+(q—1)s] ,
ﬁ/:——%yazz&(,(oi,oj) (1.21)
<t . x;=(l—s), i=1,2...,q—1, (1.25)
for a system of N spins, each of which interacts with the q

other N —1 spins via an equal strength of ye,/N, ¥ being  (pere the order parameter 0 <s <1 is to take the value

the coordination nurr}ber of ﬂ?e lattice. . . so which minimizes the free energy. It follows that a
' Let x; be the fractlor.1 of spins that are in the spin state long-range order exists (xo>x;) in the system if 5o > 0.
1=0,1,...,9—1, subject to What actually happens can be readily seen from the
Sx=1. (1.22) expansion of A4 (s) for small s. Using (1.24) and (1.25),
r we find
]
14+(g —1)s q—1 q—1 2
BlA(s)—A(0)]= —q—ln[ 14+(g —Ds]+ T( 1—9)In(1—s5)— 2 vKs
:lil-(q YK — (g —1)g —2)s +. .. . (1.26)

I
It is the existence of a negative coefficient in the cubic _ 2(g—1)
term for g >2 which signifies the occurrence of a first- vKe= q—2 In(g—1), (1.29)

order transition (Harris et al., 1975; de Gennes, 1971).

The order parameter s, is to be determined as a func- se=(q—=2)/lg=1). .
tion of temperature T from A'(s¢)=0. It is seen that Using (1.23) we can also compute the latent heat per spin
so=0 is always a solution, but at sufficiently low tem- L, yielding the result
peratures other solutions of sy >0 emerge which may ac- )
tually yield a lower free energy. The critical point is L=ve)q—2)/29(q —1). (1.31)
then defined to be the temperature T, at which this shift  QOther critical parameters can be similarly obtained. As
of minimum fr.ee energy occurs. ) we have already remarked, these expressions agree with

_ For g =2 this leads to the usual mean-field considera- the exact results in d =2 dimensions (Sec. V.B) to the
tion of the Ising model, namely, leading order in the large g expansion.
In[(1+4s5)/(1—55)]=7Ks . (1.27)
From (1.27) we see that the critical point is D. Experimental realizations
YK, =2 . (1.28)

For many years the Potts model was considered a sys-
The transition is continuous since so=0 at T. tem exhibiting an order-disorder transition primarily of

The situation is different for g >2 because the order theoretical interest. However, it has been recognized in
parameter jumps from O to a value s. >0 discontinuously recent years that it is also possible to realize the Potts
at T,. In this case the critical parameters s, and T, are model in experiments. Substances and experimental sys-
solved jointly from A’(s,)=0 and A(s,)=A(0). One tems which can be regarded as realizations of the various
finds Potts models have been suggested and identified; relevant

Rev. Mod. Phys., Vol. 54, No. 1, January 1982
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experiments have been performed. It is through the
combined effort in both theory and experiments that.a
converging picture in understanding the Potts transition
has begun to emerge.

The underlying principle in the experimental realiza-
tion of a spin system is the principle of universality, from
which one is led to seek for real systems belonging to the
same universality class, i.e., having the same set of criti-
cal exponents, as the spin model in question. For the
Potts model one is guided by its Landau-Ginzburg-
Wilson (LGW) Hamiltonian [Zia and Wallace (1975) and
Amit (1976) for general g; Golner (1973) Amit and
Shcherbakov (1974) and Rudnick (1973) for ¢ =3]. An
example is the transition occurring in monolayers and
submonolayers adsorbed on crystal surfaces. The transi-
tions in these systems have long been known (Somorja,
1973). But Domany et al. (1977) showed that the ad-
sorbed systems can be classified and catalogorized using
the Landau theory and the LGW Hamiltonian of the
adatoms regarded as a lattice gas. It has since been
shown (Domany et al., 1978; Domany and Riedel, 1978;
Domany and Schick, 1979) that transitions belonging to
the various universality classes of the two-dimensional
spin models can be realized by appropriately choosing
the substrate array and the adatom coverage; some of
these suggestions have indeed been verified in experi-
ments.

1. g = 2 (Ising) systems

Magnetic substances that are well approximated by
simple Ising systems are numerous and well known (see,
for example, a review by de Jongh and Miedema (1974)].
We mention here only the most notable examples,
CoCs,Brs in d =2 (Wielinga et al., 1967; Mess et al.,
1967), CoCs3;Cls (Wielinga et al., 1967) and DyPO,
(Wright et al., 1971) in d =3.

The possibility of realizing the d =2 Ising model in
adsorbed systems was suggested by Domany and Schick
(1979), who showed that, at 1/2 coverage, an adsorbed
system on a substrate of honeycomb array should exhibit
an Ising-type behavior. This prediction has since been
confirmed by the careful specific heat measurement
(Tejwani et al., 1980) of the adsorbed “He atoms on
krypton preplated graphite.

2. g = 3 systems

The critical behavior of the three-state Potts model,
especially in d =3, provides a clear-cut test of the mean-
field prediction and has been a subject of considerable in-
terest. On the experimental side Mukamel et al. (1976)
have suggested that in a diagonal magnetic field a cubic
ferromagnet with three easy axes can be regarded as the
q =3 Potts model, thus providing an experimentally ac-
cessible realization in d =3. Experimental study on one
of such cubic ferromagnets, DyAl,, has since been car-
ried out (Barbara et al., 1978), and the finding of a first-
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order transition is consistent with current understanding
(see Sec. V.B). Other variants of the three-state model in
cubic rare-earth compounds have also been suggested
(Kim et al., 1975). In addition, the first-order structural
transition occurring in some substances such as the
stressed SrTiOj; is in the g =3 universality class (Aharo-
ny et al., 1977; Blankschtein and Aharony, 1980a, 1980b,
1981). It has also been shown that the phase diagram of
the structural transition in A15 compound in the pres-
ence of internal strain and external stress coincides with
that of the g =3 Potts model (Szabo, 1975; Weger and
Goldberg, 1973). A fluid mixture of five (suitably
chosen) components can also be regarded as a realization
of the g =3 system, and experiment on one such mixture,
ethylene glycol + water + lauryl alcohol + ni-
tromethane < nitroethane, also indicated a first-order
transition (Das and Griffiths, 1979).

The relevance of the adsorbed monolayers in the g =3,
d =2 Potts model was first pointed out by Alexander
(1975). Specifically, it was suggested that the adsorption
of *He atoms on graphite at 5 coverage provides a reali-
zation of the three-state model. Such adsorbed systems
have since been the subject of careful experimental stud-
ies (Bretz, 1977; Tejwani et al, 1980); the experimental
results are in agreement with the theoretical predictions
(see Sec. V.C). Other possible realizations of the g =3
systems in adsorptions have been discussed by Domany
and Riedel (1978), Domany et al. (1978), and Domany
and Schick (1979). The adsorption of krypton on gra-
phite as a three-component Potts model has also been
considered by Berker et al. (1978). It has also been sug-
gested that the structural ordering observed in silver B
alumina is a realization of the ¢ =3, d =2 Potts model
(Gouyet et al., 1980; Gouyet, 1980).

3. g = 4 systems

The general discussion on the classification scheme of
the adsorbed systems (Domany et al., 1978; Domany and
Schick, 1979; Domany and Riedel, 1978) has led to a
variety of possible realizations of the ¢ =4 model in
d =2. It was suggested, in particular, that N, adsorbed
on krypton-plated graphite should exhibit a critical
behavior as the ¢ =4 Potts model (Domany et al., 1977).
In addition, Park et al. (1980) have studied O, adsorbed
on the surface of nickel as a realization of the g =4
model. In three dimensions the realization of the g =4
(and g =3) model in type I fcc antiferromagnets (such as
CeAs) has been suggested recently by Domany et al.
(1981).

4, 0<<q < 1systems

It has been shown (Lubensky and Isaacon, 1978) that
transitions in the gelation and vulcanization processes in
branched polymers are in the same universality class of
the 0 < g <1 Potts model. This suggests that by properly
choosing the polyfunctional units which are allowed to
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interact in a polymeric solution, Potts models of different
values of g between zero and one may be realized in the
polymer systems.

E. The Bethe lattice

The Potts model is exactly soluble on the Bethe lattice.
As in the case of the Ising model (Eggarter, 1974; von
Heimburg and Thomas, 1974; Matsuda, 1974), one finds
a phase transition characterized by a diverging suscepti-
bility without a long-range order (Wang and Wu, 1976).

A Bethe lattice is a Cayley tree [for definitions of
graphical  terms see, for example, Essam and Fisher
(1970)] having the same valence y at all interior sites.
Then for the Potts model (1.4) the free energy (1.8) is
trivially evaluated to yield

f(g,K)=In(eX+q—1), (1.32)

which is analytic in the temperature 7. The correlation
function (1.13) can also be evaluated, yielding

[ry—r,|
ek 1

eX4q—1

—1

q2

L oalry,ry) =2 , (1.33)

where |r;—r,| is the distance between r; and r,. Con-
sequently, there exists no large distance correlation.

To compute the zero-field susceptibility X one explicit-
ly carries out the summation in the fluctuation relation

X(g;K)= lim N=!' T Doqlry,rs) (1.34)

I

and finds that X diverges for T <T.[V(y—1)], where
T.(x) is defined by

| K (x)| =In[(g +x —1)/(x —1)], £>0 (1.35)

=In[(x —1)/(x +1—q)], <0, g<x+1.

It is noteworthy that the critical behavior on the Bethe
lattice is different from that of the mean-field solution of
Sec. I.C, and that of the Bethe-Peierls approximation
[see, for example, Huang (1963)]. The latter solutions
yield a nonzero long-range order and corresponds to the
critical behavior occurring in the interior of a Bethe lat-
tice.

II. DUALITY RELATIONS

Duality relations are useful in obtaining exact informa-
tion on spin systems. For a review of duality in field
theory and in statistical systems in general see Savit
(1980). See also Gruber et al. (1977) for a discussion of
duality transformation for general g-component models.
Here we shall be concerned with the explicit formulation
of duality for Potts models in two dimensions. These are
relations connecting the partition functions in the high-
and low-temperature regions.
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A. Models with two-site interactions

A duality relation for the Potts model was first derived
for the square lattice with pure two-site interactions on
the basis of the transfer matrix approach [Potts (1952);
see also Kihara et al., (1954)]. The duality relation has
since been rederived from other considerations and gen-
eralized to all planar lattices [see, Mittag and Stephen
(1971); Wu and Wang (1976)]. The following derivation
is based on a simple theorem in graph theory known to
mathematicians for many years (Whitney, 1932).

Write the partition function (1.7) with pure two-site
interactions in the form of

g—1
ZG(q,K)= 2 I_I[1+U8Kr(0'i,0'j)] ,

(2.1)
o;=0 (ij)
where
v=eX—1. (2.2)

Next multiply out the product and represent the terms in
the product by the subgraphs G'CG whose edge sets
correspond to the v factors in the terms. Let b(G’) be
the number of edges (bonds) and #(G’) the number of
connected components (clusters), including isolated
points, in G'. The partition function then takes the fol-
lowing simple form after carrying out the spin summa-
tions (Baxter, 1973):

ZG(q;K): 2 vb(G')qn(G') .
G'CG

(2.3)

The expression (2.3) is the starting point of various
formulations of the Potts model (see Sec. V); it also
serves as a natural extension of the Potts model to nonin-
tegral values of g. The latter formulation [in the form of
(2.3)] leads to the random cluster model of Kasteleyn and
Fortuin (1969) and forms the basis of studying the Potts
model for general values of g (see, for example, Blote
et al., 1981). An immediate application of (2.3) is to
combine with (1.15a), yielding the chromatic function
P;(q) in the form of a polynomial in g:

Pglg)= 2 (__l)b(G')qn(G') X
G'CG
This is the well-known Birkhoff (1912) formula for the
chromatic function.
In a consideration of the problem of map colorings,

Whitney (1932) introduced the following Whitney rank
function:

WG(x,y):—- 2 xb(G’)(y/x)c(G’) ,
G'CG

(2.4)

(2.5)

where ¢(G’) is the number of independent circuits in G'.
Now c(G’) is related to b(G') and n(G’) through the
Euler relation (valid for any G’ not necessarily planar)

c(G')=b(G")+n(G')—N , (2.6)

where N is the number of vertices in G. Substituting
(2.6) into (2.5) and comparing with (2.3), we obtain the
identity
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LA 2.7)

Zs(q;K)=q"W¢ p,

The duality for Z; then follows from a similar relation
for Ws; (Whitney, 1932). We now cast Whitney’s deriva-
tion of this duality in the language of the Potts variables.

Let D be the dual of G, and to each G’ C G introduce a
D'C D whose edge set complements that of G'. For ex-
ample, if G is 4 X4 lattice of 16 sites, then D is a graph
having 16 faces and 10 sites, including one site residing
exterior to G. An example of the correspondence be-
tween a typical G’ and D’ for this G and D is shown in
Fig. 3. Since by construction each circuit of G’ encircles
a cluster of D’, and vice versa, we have

n(D')=c(G')+1,

n(G')=c(D')+1. (2.8)
We also have
b(G')+b(D")=E , (2.9)

where E is the total number of edges of G (or D). Com-
bining (2.3) with (2.6) and (2.8), we obtain

ZG(q;K)szql_ND 2 4q U(D')qn(D')
p'cp |V
—=vFq TPz (g%, (2.10)
where
(eX—1)eX* —1)=¢q, 2.11)

and Np=E +2—N is the number of sites of D. Thus
(2.10) relates the partition functions of the Potts models
on G and D and maps the high- and low-temperature
partition functions of the dual models onto each other.

M = == =

FIG. 3. Example of a mapping between a subgraph G’ on a
44 lattice G and subgraph D’ on D, the dual of G. The
N =16 sites of G are denoted by the dots and the N =10 sites
of D are denoted by the crosses. The single site of D residing
exterior to G is connected to eight other sites of D. The edges
in G'(D’) are denoted by the solid (broken) lines. In the confi-
guration shown we have b(G')=12, n(G')=6, c(G')=2,
b(D')=12, n(D')=3, c¢(D')=5.
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The duality relation (2.11) is a local property in the sense
that it also holds for edge-dependent interactions. A dis-
cussion of this generalization can be found in Wu (1978).

B. Models with multisite interactions

Essam (1979) has extended the duality relation to
Potts models with multisite interactions [see also Kasai
et al. (1980)]. For the purpose of discussing this general-
ization, it is convenient first to extend the definition of a
dual to a special class of lattices or graphs.

Consider a lattice G =(V,E) whose vertex set V is bi-
partite. That is, we can write V=(S,I) such that ver-
tices in S neighbor only vertices in I, and vice versa.
The edge set E consists of the lines connecting these
neighboring (S and I) vertices. Examples of such lattices
are shown in Fig. 4.

Let S* denote the set of vertices residing in the faces
of G. Then we define the dual of G, G*=(V*,E*), in a
similar way, i.e., the vertex set is V*=(S*,I) and the
edge set E* consists of the lines connecting the neighbor-
ing (S* and I) sites. Thus the lattice of Fig. 4(a) is self-
dual, while those of Fig. 4(b) and Fig. 4(c) are dual to
each other.

Now consider a Potts model on G with the spins locat-
ed at the vertices of S and interactions specified by the
vertices of I. Specifically, the ¥ spins surrounding a ver-
tex of I interact with a y-site interaction (of strength K,
say) of the form of (1.6). The dual model is similarly de-
fined with spins located at S* and interacting with y-site
interactions (of strength K}) surrounding the sites of I.
(Note that the I vertices serve no purpose in the two
models other than specifying the interactions.) The fol-
lowing duality relation exists between the two Potts
models (Essam, 1979):

14N
Zo(g:K) =" —1)"g ' Z_(g;k*),  (2.12)
where
*
X7 —1) "7 —1)=g7! 2.13)

(a) (b) (c)

FIG. 4. Examples of lattices G consisting of bipartite vertex
set V' =(S,I) and edge set (connecting S and I) denoted by the
solid lines. The S vertices are denoted by the black circles and
the I vertices by the open circles. The dual lattice G* consists
of the vertex set V*=(S*,I) and the edge set (connecting S*
and I) denoted by the broken lines. The S* vertices are denot-
ed by the crosses. The lattice (a) is self-dual, and the lattices
(b) and (c) are dual to each other.
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and Ny, N are, respectively, the numbers of vertices in

the sets I and S*.

For pure two-site interactions, i.e., y=2, (2.12) reduces
readily to (2.10). Here again the duality relation (2.13) is
valid more generally for position-dependent interactions
and nonuniform values of y. We now outline the proof
of (2.12) for the case of uniform values of K, and y.
Generalization to nonuniform values is immediate.

To facilitate the proof we define subgraphs G'CG as
the set consisting of the S vertices and randomly chosen
I(G') of the I vertices, together with the yI(G’) edges in-
cident to the I(G') vertices. A typical subgraph G’ ob-
tained in this fashion for the lattice G of Fig. 4(b) is
shown in Fig. 5. These subgraphs are useful in
representing terms in the expansion of the partition func-
tion Zg. As in (2.1) and (2.3), we obtain the expression

Zs(q;K)= 3, (X7 _1)1@gn(@)
G'cG

(2.14)

where n(G’) is the number of clusters, including isolated
S vertices, in G'.

Again, to each G'CG a dual subgraph G*' CG* is
constructed (and vice versa) by taking the complement of
G’ [i.e., G*' consists of the S* vertices and the remain-
ing N;—I(G')=I(G*') of the I vertices together with
their yI(G*') incident edges]. An example of this con-
struction is shown in Fig. 5.

It is now straightforward to proceed as in the case of
y=2 to obtain a duality relation. In place of (2.6) and
(2.9) we now have the Euler relation

n(G')=Ng—(y—1DI(G")+c(G") (2.15)

and

I(G)+I(G* )=N; , (2.16)

while relations (2.8) remain unchanged. Using these
identities and further the equality

Ns+Ns*=(7/“‘l)N1+2, (2.17)

one obtains (2.12) from (2.14).

As we have already remarked, the duality relation
(2.12) is more general, being valid for nonuniform in-
teractions and/or ¥’s. As an example, consider a Potts

N7 N N/ s
o e o e X Fe
N , N N ,

N s AN Vil N s
e x o x x

s N e
N N
o @ X
~ , ~
N N
X & X
\\ /,
N
O

FIG. 5. A subgraph G’ for the lattice G of Fig. 4(b) and the
associated subgraph G*' CG*. G’ is denoted by the solid cir-
cles and the solid lines, and G*’ consists of the vertices denot-
ed by the open circles and the crosses, and the broken lines. In
the configuration shown I(G')=5, I(G*')=17.
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model on the square lattice which, in addition to the
usual two-site interactions K,, also possesses four-site in-
teractions K, in every face of the square lattice. This
Potts model and the associated G lattice are shown in
Fig. 6. In Fig. 7 we see the lattice G* dual to G and the
associated dual Potts model. It is seen that the dual
Potts model has two-site interactions K% and four-site in-
teractions K with a different topology. The special case
of K;=0 (K3 =) of this relation has been considered
by Burkhardt (1979).

C. Other duality relations

In addition to the duality relations described above,
there exist other relations, notable for lattices with tri-
angular symmetry, which do not fall into the same
scheme. While these latter duality relations can be
derived from a number of different considerations (Baxter
et al.,, 1978; Wu and Lin, 1980), we describe here a
derivation using a method due to Burkhardt (1979),
which has the advantage of being easily adapted to other
lattices.

Consider a Potts model on a lattice G whose dual is
bipartite. The interactions, which may consist two-site
and multisite components, are restricted to spins sur-
rounding every other face of G. Then, by introducing
dual spins residing in the faces where there are no in-
teractions, a partial trace can be taken in the partition
function resulting in a Potts model represented by these
dual spins. This is the essential idea of Burkhardt
(1979).

Consider, for instance, a triangular Potts model which
has anisotropic two-site interactions K, K,, K3 and a
three-site interaction L in every up-pointing triangle.
The situation is shown in Fig. 8, where the shaded trian-
gles denote the Potts interactions. The partition function
takes the form

q—1
Zu(q;K Ky K3 L)= 3 [[e" 7%, (18
0;=0 A
where
H(01,02,03)=K833+K,831+K381,+L838,3 , (2.19)

8;; =8x.la;,0;) ,

and the product is taken over all up-pointing triangles.

“ A/m
/

FIG. 6. A square Potts lattice with two-site interactions K,
and four-site interactions K; the associate G =(S,I) lattice is
shown on the right. The solid circles denote the S vertices lo-
cating the spins; the open circles denote the I vertices defining
the interactions.
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FIG. 7. The dual lattice G* and its associated Potts lattice.

The Potts lattice has two-site interactions K3 and four-site in-
teractions K% as shown.

Since H(o,0,,03) depends only on the differences
O1p=01—0), 033=07—03, 031=03—0] (modq), it is
convenient to regard the variables o;; as being indepen-
dent. This is permitted if we introduce to each (up- and
down-pointing) triangular face a factor (hence a variable
)

> do+03+031,lq)

l=—o

q
(2.20)

-1 .
1 exp zﬂf(012+023+031) .
9 —0 q

With these factors in place, the o;; summations in the
partition function can now be carried out. If, in addi-
tion, we also take the partial trace over the r-variables
over the up-pointing triangles, we are then left with the
expression

qg—1

H*(‘r],'rz,'r3)
ZA(q;Kl,Kz,K:;,L): 2 He N (2.21)
;=0 V
where
eH*(TI,TZ,T3)__1_ eH(al,az,a3)e(21ri/q)(7‘1¢723+1'2zr3]+r3012)
=— .
q 00,03

(2.22)

The product in the right-hand side of (2.21) is taken over
every down-pointing triangle of a triangular lattice of the
same size. The evaluation of (2.22) is facilitated by writ-
ing

H(o,,0,5,04)
e P23

=14018,3+2831+03812+8128:3 ,
(2.23)

VY7,

FIG. 8. Triangular Potts model with two-site interactions
K, K,, K3, and three-site interactions L in alternate triangular
faces.
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where

K.
V; =e f—1

Y =010 +0y03+V301 +V;10,03

+(el—1)(14+v)(140)(14v3) (2.24)
ok +Kl+K2+K3_eK1_eK2_eK3+2 '
Thus we obtain from (2.22)
* 1) v
g ey Y 1+£523+g—2531
q y y
qu 2
+——3—812+q—812823] . (225
y y

and hence from (2.21) the duality relation
N

Z)(q;K,K3,K3,L)= Zy(q;K7,K5,K5,L*),

P
q

(2.26)
with
*
N —1=qu/y,
y*=q*ly,

where p* is defined in terms of K} and L* as in (2.24).
In (2.26), N is the number of sites of the triangular lat-
tice and Zy is the partition function of the same model
with interactions in every down-pointing triangle.

Since by symmetry Z,(q;K;,L)=Zy(q;K;,L), the par-
tition function (2.18) is self-dual about the point

y=q. (2.27)

The duality relation (2.26) was first observed by Kim and
Joseph (1974) in the special case of L =0. The full dual-
ity (2.26) was first derived by Baxter et al. (1978) using
an algebraic method, and later rederived by Enting
(1978¢c) and by Wu and Lin (1980) from graphical con-
siderations.

This method of taking partial traces can be readily
adapted to other lattices. Applications to the square lat-
tice, including a rederivation of the Essam duality (2.12)
for pure four-site interactions mentioned before, have al-
ready been given by Burkhardt (1979). Here we state the
result of another application (Enting and Wu, 1982).

Consider the triangular Potts model with two-site in-
teractions K{,K,,K3 and three-site interactions L now in
every triangular face. The method of partial trace then
relates this model to a Kagomé Potts model with two-
site interactions K3, K3, K% and three-site interactions
L* in the triangular faces of the Kagomé lattice. The
equivalence is best seen by starting from the Kagomé lat-
tice and taking the partial traces after introducing (2.20).
The result leads to

ZTriang]e(q ;KI)K29K3;L)
N
% ZKagomé(q;K'l(’ ;’K’S»L*)

(2.28)




F. Y. Wu: The Potts model 245

with
K*
e ' —1=qu;/y,

y*=q*/y, (2.29)
where y* is defined in terms of Kj*,L* as in (2.24), while
y is similarly defined in terms of K; /2 and L (Enting and
Wu, 1982).

Finally, it should be noted that Enting (1975c) has
considered a “quasi” g-state Potts model on the triangu-
lar lattice with three-site interactions. He showed that
this model, which is an extension of the g =2 three-spin
Ising model of Baxter and Wu (1973), possesses an exact
duality relation.

D. The Z(g) model

The Z(gq) model (1.2) plays an important role in the
lattice gauge theories, and has already been eloquently
reviewed in this perspective (Kogut, 1979; Einhorn et al.,
1980). Here we describe an exact duality relation valid
for the Z(g) model in two dimensions (Wu and Wang,
1976).

For the interaction
Boltzmann factor reads

(1.2) the nearest-neighbor

(2.30)

where the interaction J(©) is 27 periodic. Denote the
partition function with the nearest-neighbor Boltzmann
factor (2.30) by Z(u). It then follows from a simple
geometric consideration (Wu and Wang, 1976) that Z (u)
is related to a partition function Z'P(1) similarly defined
on the dual lattice. This exact duality reads

u(n; —n;)=exp{BJ[2m(n; —n;)/ql} ,

Z(w)=q' Pz, (2.31)

where N, is the number of sites of the dual lattice, and
the A’s are the nearest-neighbor Boltzmann factors of the
dual model given by

qg—1
Am)=3 exp(2mimn /q)u(n) ,

n=0

m=0,1, -+ ,g—1. (2.32)

[In fact, the g A’s are the eigenvalues of the ¢ X g cyclic
matrix whose elements are (2.30).] The duality relation
(2.31) has proven to be useful in constructing the phase
diagram of the Z(g) model [see, for example, Wu,
(1979a), Cardy, (1980), Alcaraz and Koberle, (1980)].
Note that the duality (2.31) includes the duality (2.10) of
the (standard) Potts model as a special case. Here again
the duality (2.31) is valid more generally for models with
edge-dependent interactions.

E. The dilute model
Extending the idea of duality in terms of graphical

representations as presented in Sec. IL.A, it is straightfor-
ward to derive a dual model for the dilute Potts model in
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the form of a graph-generating function. We refer to Wu
(1981) for details of this extension.

Of special interest is a constrained version of the dilute
model (1.16) whose parameters satisfy the relation

eX'=q/(eX+g—1). (2.33)

Under this constraint the dual of (1.16) is a Potts model
with two-site and multisite interactions. The exact
equivalence reads (Wu, 1981)

Z(q;K' K,z;))=q" e EK*ZDNg:K* L)), (2.34)
with

eK=(eX +q—1)/(e5" —1),

X =1—e K", (2.35)

zi:q(eLi—l) .

Heére Z and Z'P are, respectively, the partition functions
of the dilute and the dual models. The dual model has
nearest-neighbor interactions K* and multisite interac-
tions L; among the spins surrounding the ith site of the
original lattice.

I1l. SERIES EXPANSIONS

In the absence of an exact solution, series expansions
and analyses remain as one of the most useful tools in
the investigation of the critical properties of a model sys-
tem. We describe in this section the various series ex-
pansions that can be developed for the Potts partition
function. Specifically, we consider the Potts model de-
fined on a finite graph G, and study the various subgraph
expansions of the partition function. It should be point-
ed out that while one can always extract from these ex-
pansions the series for infinite lattices by taking G as a
lattice, as is done in Kihara et al. (1954) and Straley and
Fisher (1973), the use of sophisticated techniques is more
efficient in generating long series. We shall not discuss
the details of these developments. '

The techniques and methods for generating long series
are very much g-dependent. The ¢ =1 and g =2 systems
are special, and have been the subject of intense research
interests for many years. For reviews of these develop-
ments see Essam (1980) for the g =1 (percolation) model,
Domb (1974b) for the g =2 (Ising) model, and Gaunt
and Guttman (1974) for series analyses.

Development of expansions for the general g problem
was initiated by Kihara et al. (1954) from a “primitive”
consideration (as described in Domb, 1960) of the parti-
tion function series. Modern techniques applicable to the
general g problem have since been developed, largely due
to the effort of Enting. The low-temperature, high-field
series have been generated by the use of the methods of
partial generating functions of Sykes et al. (1965), the
linkage rule of Sykes and Gaunt (1973) (Enting, 1974a,
1974b, 1975b, 1978a), and more recently by the finite-
lattice methods (de Neef, 1975; de Neef and Enting,
1977; Enting, 1978a, 1978b, 1980b). The high-
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temperature series for the square lattice have been gen-
erated in a similar fashion (de Neef, 1975; de Neef and
Enting, 1977; Enting and Baxter, 1977; Enting, 1978a,
1978b). For specific values of g, the finite lattice
methods used in conjunction with a high-speed digital
computer have proven to be capable of producing series
of lengths otherwise difficult to achieve.

. In the following we consider a Potts model defined on
a finite graph G, which can also be a lattice, and study
the various subgraph expansions of the partition func-
tion. According to the expansion parameter to be used,
these expansions can be classified as the low- and high-
temperature series.

A. Low-temperature expansion

The low-temperature expansion for the Potts model
with ferromagnetic nearest-neighbor interactions (K > 0)
can be generated by explicitly enumerating the spin con-
figurations, and this can be done for any finite graph G.
Starting from a configuration in which all spins are in
the same state, one can generate other spin configura-
tions one at a time by considering states with one spin
different, two spins different, etc. This procedure also
has the advantage of including fugacities, or external
fields, to the different individual states. Thus one obtains
quite generally an expansion of the form

ZG(q;K’ZI;"')zn):eEK a(nl,...,n ,S)
q
nl...nq
n+ - +nq=N
™ g, —sK
Xz, - z,te ,

(3.1

where a(ny, ..., ng,s) is the number of spin configura-
tions in which there are n; spins in the state / and s
edges connecting neighboring spins in different states; z;
is the fugacity for the ith spin state. Terms in (3.1) can
be further grouped according to the relative importance
of the expansion parameters of interest, and this has led
to the various low-temperature series expansions.

In zero fields (z;= - =z,=1) the expansion (3.1)
simplifies to

E
1+ Y ae—k
s=v

Zs(q;K)=qe®X , (3.2)

where a;=Ya(ny,...,ng,s) and y is the coordination
n;
number of G.

Despite its simple form, the usefulness of (3.2) is limit-
ed by the extent to which the numbers a, can be comput-
ed. However, an alternate expression of (3.2) can be gen-
erated as follows: For planar G, introduce the dual lat-
tice D and draw bonds along the edges of D separating
spins in different states. It is clear that the bonds form
subgraphs D’'C D that are closed, i.e., without vertices of
degree 1. [I shall denote the summation over such sub-
graphs by the superscript (¢).] Furthermore, to each D’
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there exist precisely P§’(g) spin configurations, where
PY’(q) is the number of g-colorings of the faces of D'.
Thus (3.2) can be rewritten as

ZG(q;K):eEK 2 (c)Pl()If)(q)e—b(D')K ,
D'CD

(3.3)

where b(D’) is the number of bonds in D’. In this form
the low-temperature expansion can be more conveniently
enumerated.

The generalization of (3.3) to higher dimensions is
straightforward but more tedious. One needs to keep
track of the “partitions” separating regions of different
spin states as well as the number of g colorings of these
regions. In this way low-temperature expansion can be
in principle generated for any dimension d. [See Sykes
(1979) for ¢ =2, d =4, and Ditzian and Kadanoff (1979)
for ¢ =4, d =4 expansions].

B. High-temperature expansions

The expansion (2.3) for the Potts partition function is
already in the form of a high-temperature expansion.
[The corresponding expansion for models with multisite
interactions is (2.14).] Since in this form the partition
function is expanded over all subgraphs G'C G where G
is the lattice, the expansion is rather inefficient in gen-
erating high-order terms.

To remedy this situation, one can rewrite the partition
function (2.1) in the form of (Domb, 1974a)

qg—1
Zs(g;K)= E H[t(1+f,])] s

(3.4)
;=0 (ij) :
where
t=(q+v)/q, (3.5)

v
fij:m[“l+q5Kr(Ui’0'j)] )

and proceed to expand (3.4) graphically as in (2.1). It can
be readily verified that

qg—1
2 fi;=0,
o;=0

j

(3.6)

and, consequently, all subgraphs with one or more ver-
tices of degree 1 give rise to zero contributions. The
number of subgraphs that occur in the expansion is
therefore greatly reduced. Thus one obtains

Zs(g;K)=tF 3 “Yw(G"),
G'ce

(3.7)

where the superscript (c¢) has the same meaning as in
(3.3), i.e., summation over subgraphs without vertices of
degree 1. Also w(G")=2 [/ is a weight factor as-
sociated with the subgraph G'.

Domb (1974a) noticed that the weight factor w(G’)
depends essentially on the topology of G’ and, conse-
quently, it is necessary to consider only those subgraphs
of star topology. He then proceeded to determine w(G’)
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for the leading star graphs.

An expression of w(G’) for general G’ can be obtained
by further expanding in w(G’') the product []f; (Wu,
1978). This procedure leads to, as in Domb (1974a), the
consideration of Gy, the star graph which is topological-
ly isomorphic to G’. (G, is obtained from G’ by disre-
garding all vertices of degree 2.) This analysis (Wu,
1978) leads to the following general expression for w(G’):

b(G")
N-NG)H | v

w(G')=g¢q s

(=1 %Z,(gsek=1—¢) .

(3.8

Here b (G, ) and N(G; ) are, respectively, the numbers of
bonds and sites in Gy, and Z_, is the partition function

of a Potts model on G;. For example, the weight factor
for the G’ of © topology shown in Fig. 9 is [for a defini-
tion of graph topology see, for example, Domb (1974b)]
b(G")

w(G)=¢" ! (—1q[(1—¢)*+g —1]

v+q

b(G")

v+q

=qMg—1)g—2) (3.9)

The expression (3.7) with w(G') given by (3.8) is again-

a high-temperature expansion and is valid for arbitrary
G. Note that the terms in the expansion are of the form
of [v/(v 4+¢)1°'¢") with coefficients determined purely by
the topology of G’. This expansion also reveals a curious
“recursion” relation for the Potts partition function. The
expansion (3.7) was first used by Nagle (1971) in a com-
putation of the chromatic polynomial, the special case of
v=—1. However, his procedure was rather elaborate
and the explicit expression (3.8) for the graph weights
was not made apparent. The extension of Nagle’s pro-
cedure to general v was later pointed out by Temperley
(1976).

The expression (3.8) for w(G') can be further reduced
if G', hence Gy, is planar (G is not necessarily planar).
This is accomplished by introducing the duality relation
(2.10) to rewrite Z_,(g;e®=1—¢q). This leads to, upon
using (1.15a), :

b(G")

i (planar G') .

"y — N_IP(IT)
w(G)=¢" P |

(3.10)

S

© F

FIG. 9. Examples of star graph G,;. The numbers of sites and
bonds of the two graphs shown are N(©)=2, b(©)=3,
N(F)=5, b(F)=38.
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Furthermore, since G’ and G, are topologically iso-
morphic, we have Pg)(q)=P(GFr)(q) so that the coefficient

in (3.10) can be quite easily generated in practice. For
example, the numbers of face colorings of the subgraphs
G' represented by the © and F topologies shown in Fig.
9 are

P& (g)=q(g —1)(g —2)
and

P g)=q(g —1)[(g —3)*+q —2] (3.11)

=q(qg —1)g*=5g +7) .

Substitution of these numbers into (3.10) then leads to
the graph weights which have previously been obtained
by Domb (1974a) from a more elaborate procedure.

The high-temperature expansions (2.3) and (3.7) are
useful in that the subgraphs are on G and are valid for G
in any dimension. For planar G, subgraphs G'CG are
planar. Then we can always combine (3.10) with (3.7),
and this leads to

ZG(q:K)

1-N * N
=UEq DeEK 2 (C)P(Gf)(q)e —b(G"K (planar G) ,
G'CG

(3.12)

where e X" = /(v +¢q). We recognize that this is pre-
cisely the “low-temperature” expansion (3.3) on the dual
graph D. In fact, we could have derived (3.12) more
directly by combining the duality relation (2.10) with
(3.3), and it was using this procedure that Kihara et al.
(1954) first generated the high-temperature series for the
square lattice.

The high-temperature expansion (2.3) can also be ex-
tended to include external fields as in (3.1). We refer to
Kim and Joseph (1975) for a discussion on this formula-
tion.

C. Series developments

I summarize in this section the present status on series
developments for the g >2 Potts models on infinite lat-
tices. Description on the results of series analyses will be
found in Sec. V.

1. Square lattice

Series expansion for the g-dependent zero-field parti-
tion function was first developed by Kihara et al. (1954)
up to terms of u!S, where u can be either the low-
temperature variable e X or the high-temperature vari-
able e —X* related by the duality relation (2.11). Enting
(1977) has pointed out, however, that their coefficient of
1'% is in error [see also de Neef (1975)]. The series has
been extended to terms of u 3! for ¢ =3 by Enting (1980a)
using the finite lattice method. In addition, Enting
(1980a) has also generated the g =2 series for the order
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parameter to u>!

The g-dependent low-temperature expansion (3.1)
which includes external fields has been developed by
Straley and Fisher (1973) to the order of u!3. For specif-
ic values of g, the high-field low-temperature series have
been developed for ¢ =3 (Enting, 1974a) and for
qg=4,5,6 (Enting, 1974b). The zero-field low-
temperature series have also been obtained in various
lengths by Zwanzig and Ramshaw (1977) for ¢ =2,3,4,
and by de Neef and Enting (1977) for ¢ =3.

The g-dependent high-temperature series (2.3) includ-
ing an external field has been formulated by Kim and
Joseph (1975). From this formulation they obtained the
susceptibility series for g =3,4,5,6.

2. Triangular lattice

Series expansions for the triangular lattice have been
derived mostly for ¢ =3. The high-field expansion was
first studied by Enting (1974a). Series expansions for the
zero-field model with two-site and/or three-site interac-
tions in half of the triangles have been considered by
Enting (1978c, 1980c); Enting and Wu (1982) have gen-
erated series for models with pure three-site interactions
in every triangle and for the antiferromagnetic model.
The high-field low-temperature expansion for ¢ =4 has
been given by Enting (1975). In addition, the high-
temperature susceptibility series has been given by Kim
and Joseph (1975) for ¢ =3,4,. . .,8.

3. Honeycomb lattice

It is to be noted that some results of the honeycomb
lattice are related to those of the triangular lattice. The
only independent series for the honeycomb lattice ap-
pears to be the low-temperature, high-field series for the
q =3 model (Enting, 1974b).

4. Lattices in d > 2 dimensions

Series developments for three-dimensional lattices have
been generated mostly for the ¢ =3 models. The high-
temperature, low-field and the low-temperature, high-
field expansions for the simple cubic lattice have been
considered by Straley (1974). The high-field series have
been further extended by Enting (1974a) for the sc, fcc,
and bcc lattices; Ditzian and Oitmaa (1974) also con-
sidered the g =3 series for the fcc lattice. In addition,
the g =3 high-temperature susceptibility series for the
bee lattice has been given by Kim and Joseph (1975).
The most recent high-field expansions for the ¢ =3 sc
and bcc lattices have been given by Miyashita et al.
(1979).

For the g =4 model Ditzian and Kadanoff (1979) have
generated the high-temperature series for the hypercubic
lattices for d >2 up to d =10 dimensions. In addition,
they also obtained the low-temperature series for the
q =4, d =4 hypercubic lattice.
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IV. RELATION WITH OTHER PROBLEMS

The Potts model is related to a number of other out-
standing problems in lattice statistics. While most of
these other problems are also unsolved, the. connection
with the Potts model has made it possible to explore
their properties from the known information on the Potts
model or vice versa. It is from this consideration that
most of the known properties of the critical behavior of
the two-dimensional Potts model have been established.

A. Vertex model

The Potts model in two dimensions is equivalent to an
ice-rule vertex model. This representation of the Potts
model, first pointed out by Temperley and Lieb (1971)
for the square lattice, has been extended to arbitrary
planar lattices (Baxter et al., 1976). Here I shall state
only the result.

Consider a Potts model on a planar lattice (or graph)
& of N sites. Then this Potts model is related to an
ice-rule vertex model defined on a related lattice (or
graph) .’ through the simple relation

ZPotts :qN/zzvertex ’ (4.1)

where Zp, and Z ,..x are the respective partition func-
tions.

For a given .Z, the related lattice .#”’ is not necessarily
unique. The basic properties of .#’ are that (i) the faces
of .#’ are bipartite, and (ii) the lattice . can be embed-
ded in the faces of .’ such that the sites of . occupy
one set of the bipartite faces. For Potts models with
pure two-site interactions, one such construction of .#’ is
the surrounding lattice (or medial graph) of .#, obtained
by connecting the neighboring midpoints of the edges of
£ . For example, the surrounding lattice of a square lat-
tice is a square lattice, and that of a honeycomb (and tri-
angular) lattice is a Kagomé lattice. These situations are
shown in Fig. 10. Note that the coordination number of
the surrounding lattice .’ is always 4. Moreover, it
proves convenient to shade those faces of .#’ containing
sites of .# for the purpose of distinction (there are al-
ways two shaded and two unshaded faces intersecting at
a site of .&”).

The ice-rule vertex problem on ¢’ is defined as fol-
lows: Attach arrows to the edges of .#’ such that there

'//.
l
/. /)
) . .
/) £

FIG. 10. Examples of a planar lattice .# (open circles) and the
associated surrounding lattice .’ (solid circles).
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are always two arrows in and two arrows out at a site of
&' (the ice rule). The six ice-rule vertices are shown in
Fig. 11. Vertex weights are then assigned according to
the vertex arrow configurations. In the most general
case the weights depend on the angles between the four
incident edges relative to the face shading (Baxter et al.,

1976). For the square, triangular, and honeycomb lat-

tices the weights are given by
(wy,...,0¢)=(1,1,x,,x,,4,,B,) , (4.2)

where

(4,,B,)=(s "' +4x,5,s +x,5 1) square
=(t~'4x,t%,t+x,672) triangular (4.3)
=(t"24x,t,t>+x,t~!) honeycomb ,

with
s=e%7?, =973, ZCoshez\/a (4.4)

x, = -1 /7g .

Here we have allowed different Potts interactions along
the different lattice axes. It should be pointed out that
the equivalence (4.1) holds only for lattices . and .’
that are both planar with special boundary conditions. It
is not generally valid for lattices with toroidal periodic
boundary conditions (Baxter, 1982a, 1982b).

The vertex weights (4.2) can be transformed into a
more symmetric form (Hintermann ez al., 1978):

(4,,B,)=(c,z,c,z7 ), (4.5)
with

c,2=A,B,= 1 +x,2+\/5 X,

z=(A4,A4,/BB,)""? square (4.6)

=(A,1A4,A3/B,B,B3)!”* triangular and honeycomb .

In this form the variable Inz can be regarded as a stag-
gered field applied to the system.

For the Potts model on the triangular .#, another
choice of .’ is shown in Fig. 12, for which .#’ is again
a triangular lattice. One is thus led to the consideration
of a 20-vertex model on the triangular lattice. The
equivalence of the triangular Potts model with such an
(ice-rule) 20-vertex model was first established by Baxter
et al. (1978), and a graphical analysis was later given by
Wu and Lin (1980). One novel point of this choice of
&' is the possibility of including three-site interactions
in alternate triangles in the Potts model. Details of this
equivalence can be found in Baxter et al. (1978).

As in (2.3) the vertex-model representation also serves
as a natural continuation of the Potts model to continu-

ARAEARARAEA

FIG. 11. The six ice-rule configurations at a vertex of the sur-
rounding lattice and the associated vertex weights.
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ous values of ¢g. It is to be noted, however, that the ver-
tex weights (4.2) are real for ¢ >4 and complex for g < 4.

B. Percolation (g = 1 limit)

The percolation process provides a simple picture of a
critical point transition that has been of theoretical in-
terest for some years [see, for example, reviews by Essam
(1972, 1980)]. It was first pointed out by Kasteleyn and
Fortuin (1969) that the problem of the bond percolation
can be formulated in terms of the Potts model. This for-
mulation has been used in, for example, the renormaliza-
tion group studies of the percolation problem (Harris,
et al., 1975; Dasgupta, 1976). The method of Kasteleyn
and Fortuin has since been elucidated by Stephen (1977)
and by Wu (1978), and extended further to the problem
of site percolation (Giri et al., 1977, Kunz and Wu,
1978). Murata (1979) has similarly formulated the site
percolation in a lattice gas as a dilute Potts model.

1. Bond percolation

In a bond percolation process there is a probability p
for each edge of an (infinite) lattice G to be “occupied”
and a probability 1—p for it to be “vacant.” Two sites
that are connected through a chain of occupied edges are
said to be in the same cluster. Then various questions
can be asked concerning the clusters distribution (Essam,
1972). Among others, one is interested in the percolation
probability P(p) that a given point, say, the origin, of the
lattice belongs to an infinite cluster, and the mean size
S (p) of the finite cluster that contains the origin. In the
latter instance the cluster size can be measured by either
the site or the edge content.

Consider a nearest-neighbor g-component Potts model
whose Hamiltonian —B2, is given by (1.18). A
straightforward high-temperature expansion of its parti-
tion function as in (2.3) leads to the expression' (Wu,
1978)

G)+L b.(G")

Z(q :K,M,L)= 2 Ub(G’)I‘I(eLSc( +q —1),

G'CG c

4.7)

V.V

FIG. 12. Triangular .’ (solid circles) for the triangular lattice
&« (open circles).

IThe corresponding expression in Wu (1978) contains a mis-
print. The phase after Eq. (35) should read ‘“where e

=(eK+H1/kT~——1)/(eK— 1).”
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where

el =(eXHM_1) /(K1) 4.8)
and we have taken L;=L in the Hamiltonian (1.18).
The product in (4.7) is over all connected clusters of G,
including isolated sites, and s5.(G'), b.(G’) are respective-
ly the numbers of sites and occupied edges of a cluster.
Defining the per site free energy f(g;K,L,M) as in
(1.8), one then has

h(K,L,M)= [a%f(q;K,L,M)

g=1
(e ey, 4.9)
c
where
(4 >0=N1im N—4)
(4)=3 pb @1 —pE-tS4G") 4.10)
G'CG

p=1—e K+M

Now the right-hand side of (4.9) is precisely the generat-
ing function for quantities of interests in the percolation
problem. For example,

P(p)=1+4+h'(K,0+,0),

S(p)=h""(K,0+,0), (4.11)

where the derivatives of 4 (K,L,0) are with respect to L.
It is also clear that derivatives of 4 (K,L,M) with respect
to L, generate quantities involving the cluster bond con-
tents. Furthermore, by rearranging and carrying out a
partial summation of the terms in (4.9), the function
h(K,L,M) reduces to the bond-animal generating func-
tion for G as follows (Harris and Lubensky, 1981):

h(K,L,M)=3pbq'z*, (4.9
where ’

p=e M1—e—K),

g=e—(K+M)

z=e L

The summation in (4.9") is taken over all bond animals
that pass through a given point—say, the origin—of G,
and the symbols b,s,t denote, respectively, the numbers
of bonds, sites, and perimeter bonds. The bond percola-
tion is generated, as in (4.11), by taking p+g=1 or
M =0, and the pure animal problem is generated by
g=1or K+M =0.

One can show in a similar fashion (Wu, 1978) that the
connectivity c(r,p), defined to be the probability that the
sites at the origin and at r belong to the same cluster, is
given by

c(r,p)= (4.12)

dr.0n|
dq g=1
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where [,(r;,r;) is the two-point correlation function
(1.13) of the Potts model. Thus a knowledge of the Potts
model for general g will yield the solution of the bond
percolation problem. This is the result of Kasteleyn and
Fortuin (1969).

2. Site percolation

In a site percolation process each site of an infinite lat-
tice is occupied independently with a probability s. A
cluster is then a set of occupied sites connected by the
lattice edges. One can ask the same kind of questions re-
garding the cluster distributions as in the case of the
bond percolation (Essam, 1972).

The site percolation problem can be formulated as the
g =1 limit of a Potts model with multisite interactions
(Giri et al., 1977; Kunz and Wu, 1978). In addition to
the multisite interactions as given in (1.6), one also intro-
duces a multisite external field as in (1.6). Quite general-
ly, to describe site percolation on a lattice G of N sites
and coordination number ¥, one considers a Potts model
on the covering lattice G, defined with its %yN sites lo-
cated on the edges of G. The Potts model has the Ham-
iltonian

—B# = [KZ8,()-+M8i) | , 4.13)

1

where 8,(i)=1 if all y sites of G, surrounding the ith site
of G are in the same state a, a=0,1,...,q —1 and
8,(i)=0 otherwise. Let f(q;K,M) be the free energy
(1.8) for the Hamiltonian (4.13) and define

if(q;K,M) (4.14)

h(K,M)= 3

g=1

Then it is straightforward to show? (Kunz and Wu,
1978)

hEM=(b)o—(y—3s +{Ze "N, @15
c

where b is the number of pairs of neighboring occupied

sites and { ) is an average defined as in (4.10) over site

occupations. Additionally,

el=(eX+M_1)/(eX—1),

—K+LD) (4.16)

The function A (K,M) now generates the site percola-
tion on G. In particular, the percolation probability is

d
L h(K,M)

s=1—e

P(s)=1+ (4.17)

L=0+

with s =1—e "X, One can also establish that the connec-

2The corresponding expression in Kunz and Wu (1978) con-
tains a misprint. The last expression in the phrase after Eq.
(3) should read “ef=(eX+H/*T_1)/(eX—1).”
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tivity in the percolation problem is connected to the
Potts correlation function as in (4.12).

For site percolation on planar lattices, the generating
Potts model is not necessarily unique (Temperley and
Ashley, 1981). The situation parallels the formulation of
the Potts model as a vertex model described in Sec.
IV.A. Generally, the site percolation on any planar lat-
tice .£ can be formulated as a Potts model on the related
lattice .#’ as defined in Sec. IV.A. One observes that the
covering lattice G, is precisely the surrounding lattice of
Sec. IV.A. But other choices of .’ may also be possible.
Examples of pairs of .¥ and .¢’ have been given in Figs.
10 and 12.

3. Site-bond percolation

In a mixed site-bond percolation each site of a lattice
G is occupied with a probability s and each bond of G is
occupied with a probability p. Two sites are in the same
cluster if they are connected through a sequence of occu-
pied sites and edges. The pure bond and site percola-
tions are then recovered by taking the respective special
cases of s =1 and p =1.

For the mixed problem the percolation threshold is de-
fined to be the phase boundary

g(s,p)=0, (4.18)

beyond which there is a nonzero probability that a given
site belongs to an infinite cluster.

It is straightforward to generalize the previous con-
siderations to this site-bond percolation problem. Instead
of giving this formulation in its most general form, we
focus on the connection of the percolation boundary
(4.18) with the corresponding Potts critical point.

Consider, for example, the site-bond percolation on the
square lattice. The appropriate choice of the Potts lat-
tice is that of Fig. 7. Let

f(q;eﬁK;,e_K:
denote the critical point of this Potts model, and then
the previous considerations will lead to the following ex-
pression for the percolation threshold (4.18):

f(1;1—p,1—5)=0.

)=0 (4.19)

(4.20)

The extension of (4.20) to lattices in general is obvious.
Generally for the threshold of site-bond percolation on
any lattice G (or .¢), we consider in a similar way the
critical condition of the Potts model on the covering lat-
tice G, (or .#’) which has two sites on each edge of G.
The two spins on an edge interact with an interaction of
strength K%, while the y spins immediately surrounding
a vertex of G interact with an interaction of strength K.
The threshold percolation is then obtained from the Potts

" . . o —k%
critical condition with the substitution of e " 2=1—p.
*

e Fr—1_5 at q=1. This result is valid for G in any
dimension.
For planar G the duality relation (2.12) and (2.13) can
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be used at this point to yield valuable information. Par-
ticularly, the threshold for the site-bond percolation with
respective probabilities (s,p) can also be derived from the
critical condition of the Potts model on the dual lattice
G* (as defined in Sec. IL.B). [This result was first
derived for the honeycomb G by Kondor (1980), and the
generalization was later given by Wu (1981).] For pure
bond percolation (s =1) the resulting Potts model can
also be interpreted as generating a bond percolation on
the dual lattice D (as defined in Sec. II.A); (2.13) then re-
lates the critical probabilities p, and p} for a pair of dual
lattices by

Pe+pe=1. @.21)

For pure site percolation (p =1) a similar consideration
using (2.13) relates the critical probabilities s, and s) for
a pair of matching lattices by

Sc+sy=1. (4.22)

Both (4.21) and (4.22) are well-known results in percola-
tion processes [see Essam (1972, 1979)].

C. Resistor network (g = 0 limit)

1. Result of Fortuin and Kasteleyn

The problem of finding the effective resistance between
two node points of a network of linear resistors was
solved by Kirchhoff (1847) a century and a half ago. But
Fortuin and Kasteleyn (1972) showed that Kirchhoff's
solution can be expressed as a ¢ =0 limit of the Potts
partition function. Here we shall examine this connec-
tion.

The Potts model is defined on a lattice G whose sites
coincide the node points of the network and whose edges
coincide the resistors. Thus, the Potts spins at sites i
and j interact with an interaction of strength —k7Kj; if
the two nodes are connected via a resistor of resistance
7;j- A consistent picture is achieved if we take Kj; ~r,~j_1.

To obtain the effective resistance Ry between two
node points k and I, consider also the lattice G derived
from G by adding an edge connecting the sites k and I.
[G=G if the edge (kl) is already present in G.] Denote
the partition function of the Potts model on G by
Zs(q;v;), where v;;=exp(Kj;)—1, and similarly define
Z5(q;,v;). Then the result of Fortuin and Kasteleyn can
be stated simply as

tim | =2 Z5(q39%)/Za(a3a%) |,
where O <a < 1 and x,~j=r,~‘l.

Note that the value of Ry; in (4.23) is independent of
the value of O<a <1 (a=+ in Fortuin and Kasteleyn
1972). If the edge (kl) is already in G, then (4.23) be-
comes

Ry=lim=2—InZg(g;q%,), O<a<l,  (424)

q—0 axk,
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and is the nearest-neighbor correlation of the ¢g—0 Potts
model.

To prove (4.23) we first show that Z;(g;9%;;) gen-
erates spanning trees on G in the ¢—0 limit [Fortuin
and Kasteleyn (1972); see also Stephen (1976); Wu
(1977)].

In analogy to (2.3), we write

ZG(q;qaxij): 2 qn(G'H-ab(G') H x;j
G'CG E(G")

__aN c(G')+(1—a)n(G’)
=q*" X q° ¢ I =,
G'CG E(G")

(4.25)

where the product is over the edge set of G’, N is the to-
tal number of sites of G, and ¢(G’) is the number of in-
dependent circuits in G’ as defined by (2.6). For
O<a<1 and in the limit of ¢—0, the leading contribu-
tions in (4.25) are those terms represented by the span-
ning trees of G. A spanning tree T’ is a connected sub-
graph which covers all sites [#(7”)=1] and has no cir-
cuit [¢(7T")=0]. Equation (4.25) then leads to the fol-
lowing expression for the spanning tree polynomial:

TG(xij)E 2 I_Ixij
T'CGE(T")

a(l—N)—lZG(q;qaxij), O<ax<l.

(4.26)

The expression (4.23) now follows immediately from
(4.26) and the result established by Kirchhoff (1847)
which states, in present notation,

=limg
q—0

d
Ry= IMTG(XU) /TG(xij)- (4.27)

2. Result of Kirchhoff

For completeness, I outline a proof of the Kirchhoff
result (4.27) [see also den Nijs (1979¢)].

Let V; be the potential at the ith node. The well-
known Kirchoff's law states that there is a net current of
magnitude

Li=>x;(Vi—=V;)
JFEi

(4.28)

flowing into the network at the ith node.
Equation (4.28) can be written in the more revealing
form

N
L= A4,V;, i=1.2,. ..N 4.29)
j=1
where
A= X xp, i=]
ki
=—X;j, [F] (4.30)

are the elements of the tree matrix for G [see, for exam-
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ple Hararay (1969) p. 158]. Then
Ve—=Vi
-7
where V; and V; are obtained from the solution of (4.29),
with

L=I(8—8;) .

Ry= 4.31)

(4.32)

The tree matrix A has the property that the sum of
each row or each column is identically zero. This has
the consequence that all cofactors of 4 are identical and
are equal to the spanning tree polynomial Tg¢(x;;)
(Hararay, 1969).> It also implies that we need only to
consider the N —1 independent equations

N
I8y =X Ay(V;—V)), ij#l .
j=1

(4.33)

It follows that

Ry= A" /714D, (4.34)

where |4 | is the determinant of 4 with the /th row
and column removed, and |4*"| is the same deter-
minant but with the /th and the kth rows and columns
removed.

Now | 4" | =Tg(x;), since it is a cofactor of A. It is
also apparent upon a moment’s reflection that |4 *"| is
the coefficient of xy; in the cofactor |A®| (or | AP |) if
the nodes k and [ are connected by a resistor. If there is
no resistor between k and /, we simply add such a resis-
tor, and |A4'*"| is again the coefficient of x;; in | A* |
or |[AP|. Thus

d

(k) | _ __
|A 1 = anI T(';'(X"j) .

This reduces (4.34) to (4.27), thus completing the proof.

3. Remarks

The number of spanning trees on G can be obtained
from (4.26) at x;;=1. For a:% the right-hand side of
(4.26) can be exactly evaluated for the square, triangular,
and honeycomb lattices. Using this formulation, Wu
(1977) has computed the number of spanning trees for
these three lattices. The number of oriented spanning
trees (complete self-avoiding walks) for the square lattice
with a given orientation has been computed by Kasteleyn
(1963).

It has been pointed out to this author that the span-
ning trees can be counted more directly by evaluating the
infinite limit of the determinant |A(x;)| at x;=1, and
that this procedure is valid for lattices in any diniension.*

3This fact has been used by Temperley (1958) to obtain a nu-
merical estimate of T(1), the number of spanning trees, for
an infinite square lattice.

41 am indebted to P. W. Kasteleyn and H. Kunz for this
comment.
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Indeed, the correct values for Tg(1) are generated-from
this procedure for the three two-dimensional lattices con-
sidered by Wu (1977). However, it is to be noted that
the determinant |A4(x;)| =0 identically for G finite. If
we denote the eigenvalues of A(x;) by 0,4,
A3, ..., Ay, then for finite G we have

N
TG(x,-j)= II }\,n
n=2

It is only in the limit of infinite G that this result is
identical to that obtained by directly evaluating -the
determinant | A4(x;)|.

With the choice of a=1, Eq. (4.25) generates forests
on G (Stephen, 1976; Wu, 1977). A forest is a subgraph
F' without loops [¢(F’')=0]. This is described by

G(x,-j)= 2 H x,-j

F'CGE(F")

:;ir%q’NZG(q,qxij) . (4.35)
More generally, the Potts partition function (2.3) is pre-
cisely the dichromatic polynomial (Tutte, 1954) of G,
which generates forest weighted according to a specific
description. One such possible weighting has been
described by Temperley and Lieb (1971) [see also
description in Fortuin and Kasteleyn (1972)].

Finally we remark that the connection (4.23) of the
resistance Ry; with the Potts partition can be formally
extended to networks containing nonresistive impedi-
ments. If capacitances and inductances are present, the

_only complication in the formulation is that the corre-
sponding x;; will generally be complex. This does not
change the form of (4.23) and the result is valid in all
cases.

D. Dilute spin glass (g = ;— limit)
Consider a spin glass (Edwards and Anderson, 1975)
described by the Ising Hamiltonian

%2 - ZJ,jS,S] >
(4, )

(4.36)
where S;=+1, and each of the exchange interactions Jj;
has an independent probability distribution
P(J,'j )=p[8(-],] —J)+8(J,1 +J)] +r8(J,~j) 5
with

(4.37)

2p+r=1. (4.38)

This describes a dilute spin glass (Aharony, 1978) for
which a transition from a paramagnetic magnetic phase
to a spin glass phase is expected in the ground state.
Some aspects of this problem are related to the Potts

model in the g =-;— limit (Aharony, 1978; Aharony and

Pfeuty, 1979). In particular, an exact critical concentra-
tion can be deduced.
To begin with, we start from the Potts partition func-
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-after using (4.39) and the identity ..

tion (4.7) with M =0, which now reads
2 (6’ )H 5:(G")

where v =eX—1. The zero-field susceptibility of the
Potts model, X, can be obtained straightforwardly by fur-
ther differentiating the magnetization (1.10). This yields,
(G")=N

Z(q;K,L)= +g—1 (4.39)

X(g;K)=——% <Esc e s (4.40)
with

(4),= 2 wy(GNA(G) /3 w,(G"), (4.41)

G'CG
b(G")
w,(G')= | & PLCR (4.42)
] q

Here, as in Sec. II.A, b(G’) and c¢(G’') are, respectively,

the numbers of edges (bonds) and independent circuits
(plaquettes) in G’. We also obtain from (2.3) and (2.6)

Z(q;K,0)=¢" 3 w,(G"). (4.43)
G'CG
Now specialize these results to g = % Write
v=(1—=r)/r (4.44)

and identify 1—r as the probability that a given edge is
occupied (by either +J or —J) in the dilute spin glass.
Since the interactions +J occur with equal probabilities,
the probability that the sign of the product [],J;; over
the 1nteract10ns around any plaquette is positive is exact-
ly 5. It follows that r Ew, »,2(G’) is the probability that
the configuration G’ occurs with sgn(J]pJ;)=+
around all plaquettes.

Now we return to the spin glass problem and discuss
its ground-state properties. Toulouse (1977) has intro-
duced the idea of frustration which describes a plaquette
as being “frustrated” if sgn(]] pJ;;)=—. It is then clear
that if we retain only those configurations in the dilute
spin glass in which no plaquette is frustrated [the Mattis
(1976) spin glass], then the relevant configurations occur
with probabilities rFw,,,(G"), and ¢™r¥Z(5;K,0) gives
the overall probability that the system has only nonfrus-
trated graphs. Similarly, the susceptibility (4.40)
describes the “Mattis” spin glass ordering

< > SS]>1/2

(i, jlec

in an equivalent ferromagnetic ground state (Aharony
and Pfeuty, 1979).

From the above we see that the q=% Potts model
describes a dilute spin glass in which all frustrations are
excluded. The critical concentration at which the system
changes from a paramagnetic to a spin-glass phase is

now obtained from (4.44):

re=1/(e%_1), (4.45)
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where K, is the critical point of the corresponding q:%
Potts model. For two-dimensional lattices this value can
be obtained from the (presumed) exact g z% Potts criti-
cal condition (see Sec. V.A.1).

E. Classical spin systems

The Potts model can be formulated as a problem of
classical interacting spins. An example is the g =3
model described by the Hamiltonian [cf. (1.18)]:

—BI3= 3 [K8k0i,0;)+ M8k (0;,0)8k(0;,0)8k(0;},0)]
(i,)
+L 3 8k07,0) , (4.46)
i

where 0;=0,1,2. This Hamiltonian can be regarded as
that of a spin-1 system whose spin variables are
S;=—1,0,1. In terms of the new variables we write

8k:(S;,S;) =1+ 5S;S; + 7SS} —S}—S? (4.47)
and

8x.(S;,0)=1—S5? (4.48a)
or

8kl Si, 1) =55,(1+5;) , (4.48b)

depending on which S; value is to be identified as the
Potts spin state o;=0. If the state S; =0 is identified as
the Potts state o; =0, we use (4.48a) and obtain

~B# 3 =Ko+ 3,(JS;S;+K*S/S})—AS S, (4.49)
(i, /) i

with
Ko=K+2L+M ,
J=K/2,
K*=M+3K/2,
A=yK+L+yM ,

where y is the coordination number of the lattice. The
expression (4.49) is of the form of the Hamiltonian of the
Blume-Capel model (Blume, 1966; Capel, 1966) and has
been studied extensively [see, for example, Blume et al.,
1971; Berker and Wortis, 1976). In particular, the zero-
field (M =L =0) Potts model corresponds to a Blume-
Capel model with parameters satisfying J:K*:A =1:3:2y.

If the state S;=1 or S;= —1 is identified as the o;=0
Potts spin, then we use (4.48b) and the resulting Hamil-
tonian will take a different form containing terms pro-
portional to S;+S; and S,-sz +S,-ZSJ-. The equivalence of
these different forms of the Hamiltonian reflects a gen-
eral symmetry under the relabelling of the states (Berker
and Wortis, 1976).

More generally, any system of classical g-state spins,

the Potts models included, can be formulated as a spin

(g —1)/2 system. The spin Hamiltonian will generally
take the form
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) —ByquE 2 KaB(SthJp+SFSJq)+EELaS;I ’
a

(i,j)a>B i
(4.50)

where the powers a and 8 run from O to g —1, and
Si=—(@g—-1)/2, —(g—3)/2,...,(q—1)/2. Higher
powers of a,f3 do not appear in (4.50) due to the fact that
they can be eliminated using the identity

[Si+(g —1)/2][S;+(g —3)/2] - - -

X[S;—(g—1)/2]=0. (4.51)

There are q(g +1)/2 independent interactions in (4.50)
which, for a given spin model, can always be determined
arbitrary to the identification (permutation) of the spin
states (as in the example of g =3). This arbitrariness
again reflects a general symmetry of the spin Hamiltoni-
an (4.50).

V. CRITICAL PROPERTIES

The only exact solution of the Potts model known to
this date is the Onsager (1944) solution of the g =2 (Is-
ing) model in d =2 dimensions (McCoy and Wu, 1973).
However, a large body of information, in both exact as
well as numerical forms, has also been accumulated on
the critical properties of the various Potts models. These
results are surveyed in this section.

A. Location of the critical point

1. Two-dimensional lattices

The critical point of the ferromagnetic Potts model is
now rigorously known for the square, triangular, and
honeycomb lattices for all ¢ >4 (Hintermann et al., 1978)
and for g =2 (Onsager, 1944). The critical condition can
be stated simply as

z=1 N (5.1a)
where z is given by (4.6), or, more explicitly,
x1x,=1 square
Vg X1%3%34+X X0 +Xox3 +x3%, =1 triangular (5.1b)

Vg X1 +Xs+X3=%%,%3 honeycomb .

Here the variable x; is defined in (4.4).

The derivation of (5.1) (for g >4) follows essentially
from a circle theorem (Suzuki and Fisher, 1971) for the
vertex model equivalence (4.2) of the Potts model. The
theorem states that, for ¢ >4 and regarding Inz as an
external field, the zeros of the Potts partition can occur
only at zero external field. This then leads to (5.1).

Since the critical point (5.1) agrees with the exact Ising
q =2 result (Onsager, 1944), it is expected that (5.1) is
also exact for g =3, although a rigorous proof of this as-
sumption is still lacking. The expression (5.1b) for the
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critical point of the Potts model was first conjectured by
Potts (1952) for the square lattice [see also Kihara et al.
(1954)]. The conjecture makes use of the duality relation
(2.10) and is based on a Kramers-Wannier (1941) type ar-
gument, which determines the transition point at the
self-dual point x;x,=1. The extension of the conjecture
to isotropic triangular and honeycomb lattices was first
suggested by Kim and Joseph (1974), and later extended
to anisotropic lattices by Baxter et al. (1978) [see also
Burkhardt and Southern (1978)]. Baxter (1973a) and
Baxter et al. (1978) have shown that a first-order transi-
tion indeed occurs at the conjectured points for all g > 4;
and the uniqueness of this transition has subsequently
been established by Hintermann et al. (1978). There has
been no convincing proof of the validity of the critical
point (5.1b) for g <4, except in the isolated case of g =2.

The critical point of the generalized (checkerboard)
square lattice of Fig. 13 has been conjectured to be (Wu,
1979)

Vg X1 4%, +X3+X4= XXX +X,X3X 4 +X3X 4%,
+x4x1x2+\/5 X1 X2X3X4 .
(5.2)

The conjecture (Wu, 1979) on the critical point for the
Kagomé and diced lattices has since been shown to be
incorrect (Enting and Wu, 1982).

For the Potts model on the triangular lattice which
has two- and three-site interactions in half of the triangu-
lar faces (see Fig. 8), the partition function satisfies the
self-dual relation (2.26). On the basis of this duality
Baxter et al. (1978) proposed that the critical point is the
self-dual point

eL+K,+K2+K3_eK1_ekz_eK3+2:q . 5.3)
Wu and Zia (1981) have subsequently shown from a
rigorous continuity and uniqueness argument that the
transition point is indeed (5.3) for ¢ >4 in the ferromag-
netic region K;>0, L +K;+K,+K;3;>0. They also
showed that (5.3) is valid for ¢ =2, regardless of the na-
ture of the interactions. It is expected that (5.3) is also
valid for the ¢ =3 ferromagnetic transition.

For isotropic lattice (K; =K, =K3) and zero three-site
interactions (L =0), (5.3) can be solved giving explicitly

s 72
Ke //Kz

"

FIG. 13. Generalized (checkerboard) square lattice. Each
shaded square is bordered by interactions K, K,, K3, and K,.
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N

K, 2
e ©=2cos |scos™! <4

Q

>

—+

S o

=2cosh {%ln [

172
g
q_1 , g>4.
i) )

(5.4)

The exact critical point for the triangular model where
there is a three-site interaction L in every triangular face
remains unknown except for ¢ =2, for which the prob-
lem reduces to the nearest-neighbor Ising model, and for
L =0 and K; >0, for which the critical condition is (5.3).
However, Enting and Wu (1982) have shown that a spe-

cial limit of the isotropic model (K;=K,=K;=K)

reduces to the hard hexagon lattice gas solved by Baxter
(1980). This leads to the critical point

ze=75(1145V3) (5.5)

after first taking the K—ow, L—>— o limit with
eX+L=[(g —1)/2z]'/® held constant, followed with the
limit of ¢— o0.

Of special interest is the g =3 triangular model which,
with appropriate interactions, admits ferromagnetic
and/or antiferromagnetic ground-state orderings. Enting
and Wu (1982) have obtained a rigorous lower bound on
the critical point for this model from a Peierls-type argu-
ment. Numerical estimates of the critical point has been
obtained by position-space renormalization group (Schick
and Griffiths, 1977), series analysis (Enting and Wu,
1982), and Monte Carlo simulation (Saito, 1982). These
results are summarized in Table 1.

Finally, by summing over the spin states of the
decorating sites of a decorated lattice, the critical proper-
ties of a dilute Potts model on the decorated lattice can
be determined from those of the underlying lattice. This
is a generalization of the Syozi model (Syozi, 1965; Syozi
and Miyazima, 1966), and in this way the critical point
of the dilute decorated two-dimensional models can be
exactly determined (Wu, 1980).

TABLE 1. Numerical estimates of the critical point for the
three-state triangular Potts lattice with two- and three-site in-
teraction {K,L}. I. Three-site interactions (K =0,L >0). IIL
Coexistence line (K =-—2L/3<0). III. Antiferromagnetic
two-site interactions (L =0,K <0). IV. Ferromagnetic two-
site interactions (L =0,K > 0).

1 1I 111 v
Exact value e ~re eK‘ eK‘ e —Ke =0.53208...2
Renormalization
group® 0.55  0.066 0.210 0.59
Series analysis® 0.5038 0.137 0.204

Monte Carlo® 0.5058 0.1360 0.2050

2 "¢ =2 cos(/9) for model IV from (5.4).
®Schick and Griffiths (1977).

“Enting and Wu (1982).

9Saito (1982).
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2. Three-dimensional lattices

There is no exact result in three dimensions and the
critical point can be located only by numerical means.
The estimate of the transition temperature for the three-
dimensional Ising (¢ =2) model has long been known
[see, for example, Fisher (1967)]; recent investigation of
the three-dimensional Potts model has been mostly for
the ¢ =3 and ¢ =4 models. Table II lists the various es-
timates on the critical points for three-dimensional lat-
tices (series estimates are based on the assumption of a
continuous transition).

3. Lattices in d > 3 dimensions

For lattices in higher-than-three dimensions we are
again guided by numerical studies only. Besides the
Monte Carlo renormalization group study for d =4,
qg =3 (Blote and Swendsen, 1979), series expansion in
general d dimensions was first considered for the ¢ =2
(Ising) model by Fisher and Gaunt (1964). This line of
work has been extended further for d =4 (Sykes, 1979;
Gaunt et al., 1979) and for ¢ =4 (Ditzian and Kadanoff,
1979). Table III lists the estimates on the critical point
obtained in these studies [the Ising results are also in-
cluded for comparisons].

B. Nature of transition

The mean-field solution of the Potts model has been
discussed in Sec. I.C, where we have also examined the
question on the existence of the critical value g.(d) above

TABLE II. Numerical estimates of the critical point for
three-dimensional lattices.

sC bee

e Fe—0.7530
0.64816°
0.5784°
0.5769¢
0.577¢
0.571f
0.575"
0.523f
0.5248
0.532h
0.472"

[

0.72993°
0.6747¢
0.669f

QR
Il
W N -

I

0.625¢

q="6

*Series analyses (Gaunt and Ruskin, 1978). PSeries analyses
(Sykes et al., 1972). C‘Low-temperature series analysis (Mi-
yashita et al., 1979). ‘Monte Carlo (Hermann, 1979). Monte
Carlo renormalization group (Blote and Swendsen, 1979).
fHigh-temperature series analysis (Kim and Joseph, 1975).
tHigh-temperature series analysis (Ditzian and Xadanoff,
1979). "™™onte Carlo (Ono and Ito, 1982).
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which the transition is mean-field—like in d dimension.
We now turn to the question on the nature of transition
and critical properties at the transition point.

1. Two dimensions

It is very remarkable that one now knows quite pre-
cisely the behavior of the two-dimensional Potts model at
the critical point, even though there is no exact solution.
Specifically, exact information can be obtained for the
Potts model at the critical point for the square, triangu-
lar, and honeycomb lattices. One finds that the transi-
tion is of first order for g > 4, and is continuous for ¢ <4
(Baxter, 1973a; Baxter et al., 1978).

The analysis makes use of the ice-rule vertex model
formulation of the Potts model formulated in Sec. IV.A.
For the Potts model on the square, triangular, and
honeycomb lattices, the weights (4.2) of the ice-rule ver-
tex model take the simple form

(wb' . .,w6)=(1,1,x,,x,,c,,c,) (5.6)

at the critical point (5.1). Now this last vertex model is
exactly soluble (Lieb, 1967; Lieb and Wu, 1972; Kelland,
1974); therefore the Potts partition function can be
evaluated exactly at the critical point.

The exact solution of the vertex model (5.6) shows a
transition occurring at the point

c,=14x, (5.7)
or, upon using (4.4) and (4.6),
g=4, (5.8

with ¢ >4 corresponding to T <T,.(c,>1+x,) in the
vertex model. Now, regarding the vertex model (5.6) as
the Potts model at the critical point (for which g is free
to vary), the transition suggests that the critical proper-
ties of the Potts model will exhibit a change at g =4.

To see what kind of changes occurs in the critical
properties, one evaluates further the internal energy (1.9)
of the Potts model. From (4.2) and (4.5) it is clear that

TABLE III. Numerical estimates of the critical point for the
hypercubic lattice in d dimensions.

d= 4 5 6 7 8 10
g=1" ¢ "©=0.839 0882 09159 09214
q=2 0.74100° 0.79607° 0.83134°
0.74132°
g=3 0.6788¢ :
g =4° 0.620 0678 0721  0.754 0.781 0.821

Series analyses (Gaunt and Ruskin, 1978). °High-temperature
series analysis (Fisher and Gaunt, 1964). ‘High-temperature
series analysis (Gaunt et al., 1979). ‘Monte Carlo renormaliza-
tion group (Bldte and Swendsen, 1979). °Series analyses (Ditzi-
an and Kadanoff, 1979).
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the critical internal energy is related to the zero-field
(staggered) polarization induced by the external field Inz.
That is, expression of the Potts critical internal energy
will include a term proportional to the zero-field (stag-
gered) polarization.

For the vertex model (4.2) and (4.5) on the square lat-
tice, Baxter (1973b, 1973c) has shown that a spontaneous
(staggered) polarization exists for "< T,. Baxter further
argues that other terms occurring in the internal energy
are continuous at the critical point. It follows that the
g >4 Potts critical internal energy is discontinuous by an

(@ T)=Ing +0+2 3 n~'e"Ctanh(n0) , ¢4
=1

" (5.92)

=In2+4In[[(7)/2I()], g=4  (5.9b)

1 © dx sinh(7—u)x
=—1 ax sSininw —p)x
5 Ing f_w ; tanh(ux) sinh(m0)
<4 (5.9¢)

>

BN

where
cosh®@=Vq /2, ©>0, g>4

1
amount proportional to the zero-field (staggered) polari- cosu=Vg /2, O<p< 5™ 4<4. (5.10)
zation. This then implies the existence of a nonzero la- The i | . L
tent heat for ¢ >4, and that the transition at (5.1b), if e internal energy (1.9) at the critical point is
any, is continuous for ¢ <4. This line of analysis has E(q,T,+)=¢,(14g~1?)
been extended to the triangular and honeycomb lattices .
(Baxter et al., 1978), reaching the same conclusion re- X | —1+A(g)tanh [79 H ’ (5.11)
garding the nature of transition. where
For completeness and convenience for references, I
give the relevant results on the Potts model at the criti- A(q):O; g<4
cal point. =[] (tanhn©)?, g>4. (5.12)
For the isotropic square lattice, the free energy (1.8) at n=1
the critical temperature T, is given by the expression For the isotropic triangular lattice the results are
J
! <, —1,—nO; 2n
flg;T,)=5Ing+O+3 Y n~"'e " sinh —3—6 /cosh(ne), q>4 (5.13a)
n=1
D($)0(3)
=In2+3In |—5—5— |, g=4 (5.13b)
'($)I(5)
1 3~ sinh(7—p)x sinh(2ux /3)
—-— = dx, g<4 (5.13c)
71ng +3 f-co x sinh(mx)cosh(ux) 4=
E(q;T,+ )=352[sinh(%e)sinh(-i—e%inh(ze)] [¢ 1-2 3 e ~"0cosh(2n©) /cosh(n©) +A(g) |, g>4
n=1
(5.14a)
=—4g,[1—31n2], g=4 (5.14b)
. 2
4, w sinh[(7—p)x]cosh(5ux)
—— - = 2 dx, g<4 (5.14c¢)
3g,sin( 5 p)sin( 5 )esc( .“)f_w sinh(rx)cosh(ux) X s
r

Corresponding expressions for the honeycomb lattice can
be deduced from (5.13), (5.14), and the duality relation
(2.10). The latent heat in all cases is given by, for g >4,

L(q)=E(q,T.+)—E(q,T.—)
~(g —4)"%exp[—g(g —4)7'?], g=4+,
(5.15)

displaying an essential singularity at ¢ =4 (g is a con-
stant).

These results can be extended to the triangular lattice
with anisotropic interactions (Baxter et al., 1978). It is
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noteworthy that the general expressions of the relevant
quantities are of the form ¥(q,x,) + ¥(q,x,) + (g,x3),
where the x’s are defined in (4.4) and related by the criti-
cal condition (5.1b). The results (5.10)—(5.15) can then
be obtained from these general expressions by taking the
special cases of x;=x,,x3=0 (square) and x;=x,=x3
(triangular). For completeness I include in Table IV
results of numerical evaluations (Sarbach and Wu, 1981b)
of (5.11), (5.14) and (5.15) for ¢ =1,2, ... ., 10.

Owing to the very fact that the critical behavior is pre-
cisely known, the d=2 Potts model has become an im-
portant testing ground in the modern theory of the criti-
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TABLE IV. Numerical evaluations of the critical parameters.

q 1 2 3 4 5 6 7 8 9 10
K —
Square e ¢ 14+Vyg
1 1
E (q 3T, ) 3 14 T/j
L(q) 0 0 0 0 0.0265 0.1007 0.1766  0.2432 0.2998 0.3480
Triangular eK‘ 1.5321 1.7321 1.8794  2.0000 2.1038 2.1958  2.2790  2.3553  2.4260 2.4920
E(q;T,) 1.0000 0.8333 0.7603  0.7172 0.6881 0.6669 0.6506 0.6377 0.6271 0.6183
L(q) 0 0 0 0 0.0310 0.1172 0.2042 0.2795 0.3429 0.3962

cal point. For example, the success in predicting the
known first-order transition has been crucial to the test-
ing of the various approaches. The following develop-
ments are noted in this connection.

Renormalization group studies of the “e-expansion”
type, where ¢=4—d [see, for example, Golner (1973);
Rudnick (1975)] led to a first-order transition for small €.
But early attempts in the position space renormalization
group have invariably failed to yield the known first-
order transition [see, for example, Burkhardt et al. (1976);
Dasgupta (1977); den Nijs and Knops (1978); den Nijs
(1979)]. However, Nienhuis etal. (1979, 1980a) have
shown that, by including a dilution in the Potts model as
described in Sec. I.B., the first-order transition can be
seen in this enlarged parameter space as a crossover of
the critical behavior into tricritical (for g <gq.) at g.. In
this way, a variational renormalization group study
(Nienhuis et al., 1980a) has yielded the excellent value of
q.=4.08 versus the exact value g, =4. This renormaliza-
tion group description of the Potts (and the cubic) model
has been reviewed by Riedel (1981). The exact critical
free energy for the g=4 model has also been reproduced
quite accurately by a variational renormalization group
calculation (Ashley, 1978; Temperley and Ashley, 1979).

For the triangular Potts model with both two- and
three-site interactions, the position space renormalization
group calculation yielded a continuous transition in both
the ferromagnetic and antiferromagnetic models (Schick
and Griffiths, 1977), while the inclusion of a dilution into
this problem does not appear to lead to a consistent pre-
diction (Kinzel, 1981). However, both series analysis
(Enting and Wu, 1982) and Monte Carlo simulation (Sai-
to, 1982) indicate that the transitions along the ferro-
and antiferromagnetic coexistence line (Model II in Table
I) and the antiferromagnetic model (Model III in Table I)
are actually first order. This finding is in line with the
fact that the ground states of these two models have a
higher symmetry and are, respectively, ninefold and six-
fold degenerate.

The d=2 Potts model has also been studied in a
Monte Carlo simulation of its dynamic as well as static
properties (Binder, 1981). Excellent agreement with the
known exact results for ¢g=3,4,5,6 has been observed.
Some of the theoretical predictions have also been veri-
fied by the experimental investigations of systems realiz-
ing the d=2 Potts models (Sec. L.D).
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2. Three dimensions

No exact results are known for the Potts model in
three dimensions. Here, one is especially interested in
elucidating the nature of transition in the ¢=3 model
which resides close to the border of the validity of the
mean-field scheme (see Sec. 1.C).

Renormalization group studies in d=3 are incon-
clusive. While calculations of the “c-expansion” type
predicted a first-order transition for g=3 (see, for exam-
ple, Rudnick, 1975), the real space renormalization group
yielded a continuous transition [see, for example, Bur-
khardt et al. (1976)]. Series analyses did not fare much
better either: Miyashita eral. (1979) found the g=3
low-temperature series inadequate to identify the nature
of transition, although earlier work on the high-
temperature series has indicated that the transition is
first order for all ¢ >3 (Kim and Joseph, 1975). But a
recent (numerical) study using the variational renormali-
zation group has indicated that the transition in the
g=3, d=3 model is definitely first order (Nienhuis et al.,
1981).

A more positive identification of the nature of transi-
tion in d=3 is provided by Monte Carlo investigations.
Herrmann (1979) studied the ¢=3,4 models and Knak
Jensen and Mouritsen (1979) studied the g=3 model by
Monte Carlo simulations; Blote and Swendsen (1979) in-
vestigated the g=3 model by the Monte Carlo renormali-
zation group. In all cases, clear indications were ob-
tained that the transition is first order. The cluster vari-
ation method (Levy and Sudano, 1978) also predicted a
first-order transition. In addition, experiments on sys-
tems belonging to the same universality class as the g=3-
model indicated the transition being of first order (Sec.
I.D). The current belief based on these considerations is
that the g=3 Potts model in three dimensions posseses a
first-order transition, an assumption we have already tak-
en into account in constructing Fig. 2.

3. General d dimensions

Only a few results are available for the Potts model in
higher than three dimensions. The Monte Carlo renor-
malization group indicated that the transition in the
d=4, q=3 model is first order (Blote and Swendsen,
1979). Ditzian and Kadanoff reached the same con-
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clusion for the d=4, ¢g=4 model from analyzing the
high- and low-temperature series. Extending the con-
sideration of the dilute model of Nienhuis ez al. (1979) to
general d dimensions, Andelman and Berker (1981) ob-
tained from a simple variational renormalization group
analysis estimate on the value of ¢.(d) for continuous
values of d. Their finding is consistent with the picture
that the transition in higher dimensions is first order for
all g >2. The picture of the merging of the critical and
tricritical lines at g.(d) for general d has also been con-
firmed in an analysis of the differential renormalization
equation for the dilute Potts model by Nauenberg and
Scalapino (1980). Their analysis also led to an essential
singularity in (g —g,)'/? in the latent heat, thus extend-
ing (5.15) to all d, and a logarithmic correction to the
power-law behavior in the free energy near 7,. The di-
lute Potts model has also been studied by Berker et al.
(1980) in the infinite-state limit in one dimension. Using
a Migdal-Kadanoff renormalization scheme argued to be
exact in the limit of d -1+, ¢g— w0, with I=(d —1)Ilng
finite, they uncovered a variety of phase transitions and a
“singularity” in the critical properties at /=1n4.

C. Phase diagram

We are now in a position to discuss the structure of
the phase diagram of the Potts model in light of the fore-
going discussions. In this regard the ¢g=3 and g=4
models are special due to the fact that the phase diagram
is dimension-dependent. The situation for the g=3
model, which has been alluded to by Straley and Fisher
(1973), is as follows.

Consider the g=3 model described by the general par-
tition function (3.1) in which external fields H; =kT Inz;
are applied to spin state i (=0,1,2). The structure of the
phase diagram in the full (T,Hy,H,H,) space is best
seen in the subspace

Hy+H,+H,=0, (5.16)

which retains the full symmetry of the model. This leads
to the “triangle diagram” shown in Fig. 14 and 15.

Straley and Fisher (1973) argue that a planar coex-
istence surface, H,=H,, exists in the region where one
of the external fields, say, H,, is large and negative.
This coexistence surface is bound by a line of critical
point since the transition is essentially Ising-like. By
symmetry there exist two other similar coexistence
planes, and the three planes must meet at the line of
symmetry Hy=H,=H3=0, T < T, (a triple point line),
since the three ordered phases can coexist below the
zero-field transition temperature T,. The construction of
the remaining portion of the phase diagram is now dic-
tated by the nature of transition.

If the zero-field transition is critical (in the sense of
divergent fluctuations) as found in d=2, then the three
critical lines come in to meet at the zero-field transition
point, turning it into an “anomalous” tricritical point.
This situation is shown in Fig. 14. If the zero-field tran-
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CRITICAL LINE -

Hy=Hyg

\\ H,

Hi=H;

FIG. 14. Schematic phase diagram for the three-state Potts
model in two dimensions. The three coexistence planes meet
at the triple point line (solid line) and terminate at three criti-
cal lines (broken curves). The three critical lines meet at the
zero-field transition point at T, forming an ‘“‘anomalous” tri-
critical point.

sition is first order, as believed to be the case in d=3,
then the zero-field transition point is not “critical.” In-
stead, it is a quadruple point where the three ordered
phases and the disordered phase can coexist. Then the
full phase diagram is expected to be as shown in Fig. 15.
Note that there now exist three additional weblike first-
order surfaces, also terminating at lines of critical points.
The six critical lines now join at three tricritical points
of the “normal” type (in the sense that the three joining
critical lines meet tangentially).

The phase diagram of the g=4 model can be discussed
in a similar way by considereing a “tetrahedron dia-
gram” in a four-dimensional space, with a comparable
difference expected between the d=2 and d=3 models.

T
CRITICAL LINES

Hz =Hp

Hi=H;
FIG. 15. Schematic phase diagram for the three-state Potts

model in three dimensions. The three planar and the three
weblike coexistence planes meet at the triple point lines (solid
curves) and terminate at the critical lines (broken curves).
The zero-field transition point at T, is a quadrupole point,
and the critical lines meet at three ‘“ordinary” tricritical
points.
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D. Critical exponents

The critical exponents of the Potts model are well de-
fined for the d=2, q <4 system which exhibits a con-
tinuous transition. As in the usual description of the
thermodynamics near a critical point [see, for example,
Fisher (1967)], the critical behavior of the Potts free en-
ergy f(q;K,L) in d=2 is characterized by the “dom-
inant” singularities

2/y,

f(g;K,00~ | K —K. |, K~K, (5.17)

2/yh

f(q;K., L)~ |L | , L~0. (5.18)

These two expressions also serve to define the thermal
and magnetic exponents y, and y,. The critical ex-
ponents are then obtained from the relations

2—a=2/y,,
(5.19)
14+1/6=2/y ,

and the usual scalings and hyperscaling.

In order to obtain the explicit g dependences of y, and
yy for the two-dimensional model, it is necessary to solve
the vertex model (4.2), or any other equivalent formula-
tion of the Potts model, at temperatures slightly off the
critical point (5.1) or with a small field. This has not
been accomplished to this date. However, on the basis of
a consideration of the vertex model formulation and its
connection with the Baxter (1971) eight-vertex model and
the Ashkin-Teller (1943) model, den Nijs (1979b) has
made the following conjecture on the thermal exponent:

y:=3(1—u)/(2—u), g<4 (5.20)

with

O<u=(2/mcos™ (Vg /2)<1. (5.21)

Black and Emery (1981) have since given an argument
showing the conjecture to be asymptotically exact; the
conjecture has also been verified in a finite-size scaling
analysis to a high degree of numerical accuracy for a
wide range values of g (Nightingale and Blote, 1980;
BlGte et al., 1981). It now appears very likely that (5.20)
is, in fact, the exact expression.

In Sec. V.B.1 I described the occurrence of a tricritical
line in the enlarged parameter space of the Potts model
when a dilution is introduced (Nienhuis et al., 1979).
Nienhuis et al. (1979) suggested from a consideration of
the renormalization topology that a natural continuation
of the thermal exponent into the tricritical region is to
take y\ 7, the exponent along the tricritical branch, to be
given by (5.20), as well, provided that one takes
—1<u <0 in (5.21). This picture has been further sub-
stantiated by Kadanoff variational renormalization calcu-
lations (Nienhuis et al., 1980a; Burkhardt, 1980).

A conjecture similar to (5.20) has been made on the
critical and tricritical magnetic exponents y, and y;7.
The conjecture
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ioyi =3 —u)5—u)/4(2—u) , (5.22)
with O<u <1 for y, and —1<u <0 for y;7, is obtained
independently by Nienhuis etal. (1980b) from a con-
sideration of renormalization group results and by Pear-
son (1980) from a pure numeral fitting. But the validity
of (5.22) has again been verified numerically to a high
degree of accuracy (Nightingale and Blote, 1980; Blote
etal., 1981).

Using the conjectured expression for the temperature
and magnetic exponents, it is then a simple matter to
write down all critical and tricritical exponents of the
Potts model. One obtains

a—a'=2(1—2u)/3(1—u)
B=(1+u)/12,

y=y' =(T—4u +u?/6(1—u),
8=B—uw)5—u)/(1—u?),

v=v'=2—u)/3(1—u),
n=(1-u?/22—u),

(5.23)

where u >0 (1 <0) for the critical (tricritical) exponents.
For convenience we list in Table V the predicted critical
exponents for ¢=0,1,2,3,4.

First we compare the conjectured values in Table V
with the known exact results, which are unfortunately
limited in numbers.

The value of y,=2 for ¢g=0 agrees with the exact
value obtained by Kunz (1981).

The g=2 values in Table V are in agreement with the
known Ising results. In addition, the g=3 Potts model
is believed to be in the same universality class of the
hard hexagon lattice gas (Alexander, 1975), and the pre-
dicted values of a= %, B :% are confirmed by the exact
solution of the hard hexagon problem (Baxter, 1980).
The g=4 Potts model is considered in the same univer-
sality class of the Baxter-Wu model (Enting, 1975;
Dorr;any ang Riedel, 1978); the predicted values of
a=7, B=-; again agree with the exact exponents
(Baxter and Wu, 1973; Baxter et al., 1975). These exact
results lend firm support to the correctness of the conjec-
tures.

On the other hand, it is fruitful and illuminating to
compare the conjectured values with those obtained by
various numerical means. This comparison is done in
Table VI for g=1,3,4. [A more complete summary of
the numerical results for g=1 can be found in Essam
(1980).] It is seen that the agreement is generally good,
except that a consistent difference is found in the case of
g=4, the region where the finite-size scaling estimates
(Blote et al., 1981) and the Monte Carlo renormalization
group analysis (Rebbi and Swendsen, 1980) exhibit slow
convergence. Presumably, this difficulty is due to the
presence of a strong (logarithmic) confluent singularity
associated with a marginal exponent at g=4 (Nauenberg
and Scalapino, 1980; Cardy etal.,, 1981). It is
noteworthy that a finite-size analysis of an associated
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TABLE V. Critical exponents (5.23) for the Potts model in two dimensions.

q » Yh u a=a' B y=v 8 v Ui
0 0 2 1 — < ® o o 0
3 51 2 2 5 7 1 4 5

1 n a 3 -3 3 29% 185 B 2%
15 1 1 7 1

6 28 1 1 1 13 5 4

3 5 T 3 3 O 5 14 3 i
3 15 2 1 7 2 1

4 7 T 0 3 = s 15 3 7

one-dimensional quantum system (Hermann, 1981) leads
to evidence supporting this correction.

The three-state models on the triangular lattice with
pure three-site interactions have also been analyzed by
series studies. For the model where the three-site in-
teractions are present in half of the triangles (see Fig. 8),
series analysis based on the (presumed) exact critical
point (5.3) yielded the exponents azé, /3=—;— (Enting,

TABLE VI. Numerical estimates on the critical exponents of the

1980c). The same set of exponents is also indicated for
the model with three-site interactions in every triangle
(Enting and Wu, 1982). These findings are consistent
with the predictions of the universality argument.

Few results are available for the critical exponents of
Potts models in higher dimensions. However, both the
thermal and the magnetic exponents have been computed
numerically as functions of ¢ by Nienhuis ez al. (1981) at

g-state Potts model in two dimensions. Error bars in estima-

tions are not included in this table. LT is low temperature, HT is high temperature, RG is renormalization group.

q o Method a=21—y " B y 8=y /Q2—yy) v
1 Conjectured value —-i— —3% 217—8 18% %
Monte Carlo (Kirkpatrick, 1976) 0.136<B<0.152.3
Series expansion (Dunn et al., 1975) 0.15 2.38 1.34
Series expansion (Sykes et al., 1976b, 1976a; Gaunt and Sykes, 1976) 0.138 2.43 18.0
Series expansion (Domb and Pearse, 1976) —0.668
Real space RG (Reynolds et al., 1977, 1978) —0.712 0.138 2.435 18.6 1.356
Real space RG (Lobb and Karasek, 1980) —0.685
Kadanoff variational RG (Dasgupta, 1976) —0.686 0.140 2.406 18.25 1.343
Monte Carlo RG (Eschbach et al., 1981) —0.666
3 Conjectured value —;— % 191 14 —Z—
HT series expansion (Kim and Joseph, 1975) 1.42
Series expansion (Zwanzig and Ramshaw, 1977) 0.296
Series expansion (de Neef and Enting, 1977) 0.42
HT series expansion (Miyashita et al., 1979) 0.1064 1.50 15.5
Lt series expansion (Enting, 1980a) ~% 0.109
Kadanoff variational RG (Burkhardt et al., 1976) 0.3365 0.1061 1.451 14.68
Kadanoff variational RG (Dasgupta, 1977) 0.326 0.107 1.460 14.64 0.837
Cumulant and variational RG (Shenker et al., 1979) 0.210 0.895
Monte Carlo RG (Swendsen, 1979; Rebbi and Swendsen, 1980) 0.352 0.101 1.445 15.26 0.824
4 Conjectured value % _11{ % 15 %
HT series expansion (Kim and Joseph, 1975) 1.20
Series expansion (Zwanzig and Ramshaw, 1977) 0.45
LT series expansion (Enting, 1975a) 0.64 0.089
HT series expansion (Ditzian and Kadanoff, 1979) 0.5 1.17
Kadanoff variational RG (Dasgupta, 1977) 0.488 0.091 1.330 15.53 0.756
Cumulant and variational RG (Schenker et al., 1979) 0.358 0.821
Duality invariant RG (Hu, 1980) 0.4870 0.7565
Monte Carlo RG (Eschbach et al., 1981) 0.507
Analysis of one-dimensional quantum system (Herrmann, 1981) 0.649
Monte Carlo RG (Swendsen et al., 1982) 0.660
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d=1.58,2,2.32 (using the variational renormalization
group) and for continuous values of d in 1<d <5 (using
the Migdal bond-moving approximation). The more in-
teresting case is the g=1 (percolation) model for which
the transition is continuous for all d <d.(1)=6. There
have been a number of numerical estimates on the ex-
ponents for the g=1 model in d=34,5. For a
comprehensive summary of these results see Essam
(1980).

E. The antiferromagnetic model

In an antiferromagnetic Potts model (K <0) it is ener-
getically favorable for two neighboring spins to be in dis-
tinct spin states. As a consequence, the ground state of
the g >3 model on bipartite lattices (and the ¢g=2 model
if the lattice is not bipartite) has a nonzero entropy.
Then the argument can be made as in Wannier (1950)
that a transition of the usual type accompanying the on-
set of a long-range order will not arise.

However, Berker and Kadanoff (1980) have argued
from a rescaling argument that in such systems a distinc-
tive low-temperature phase in which correlations decay
algebraically can exist. For the g-state antiferromagnetic
Potts model this behavior is permitted when the spatial
dimensionality d is sufficiently high, or, for a fixed d,
when g is less than a cutoff value go(d). While it
remains to be seen whether such a phase indeed occurs in
such systems, it is noteworthy that an approximate
Migdal-Kadanoff renormalization carried out by Berker
and Kadanoff (1980) yields the cutoff values g4(2)=2.3
and q((3)=3.3, predicting the existence of such a phase
in the g=3 model in three dimensions. Monte Carlo
simulations, however, indicate the existence of an ordered
low-temperature phase in three dimensions for both g=3
and g=4 (Banavar etal., 1980). Monte Carlo simula-
tions have also been carried out for the square lattice
with antiferromagnetic nearest-neighbor coupling and
ferromagnetic next-nearest-coupling for ¢ >3 (Grest and
Banavar, 1981); the result shows a variety of unusual
transitions. )

For the square lattice it is known that the ¢g=2 anti-
ferromagnetic (Ising) system exhibits a transition at
ek"=\/§ —1. While this transition may be an isolated
singularity, more likely it is one point lying on a singular
trajectory (Kim and Enting, 1979). A good indication of
how this trajectory might behave can be inferred from
the exact result of the antiferromagnetic model on the
decorated lattice [Fig. 16(a)]. For antiferromagnetic in-
teractions (K <0) this decorated model should exhibit the
general features of a system with a nonzero entropy.

Taking the partial traces over the bond-decorating
sites leads to an effective square lattice, as shown in Fig.
16(b). This Potts lattice has ferromagnetic interactions
K* given by

eK*=(e2K+q—1)/(26K+q—2) . (5.24)

Using the exact critical point (5.1b), or
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K K*

(a) (b)

FIG. 16. (a) Decorated square lattice with interactions K. (b)
Equivalent lattice with interactions K*.

*
e =14vyg

for the square lattice, one obtains the following exact
critical point for the antiferromagnetic (K <0) decorated
model [see also Wu (1980)]:

eKc:l+‘/'q__\/a(1_+_\/E)l/2 .

‘The expression (5.26) is highly instructive, for it shows
e ¢ decreasing monotonically from 1 to O in the range
between g=0 and g =q¢= %(3 +1/5). This cutoff value
of g((2)=2.618 . . . is close to the value 2.3 of the rescal-
ing prediction. [It is noteworthy that the same
q0=2.618 . . . is found in a site-diluted antiferromagnetic
Potts model on the honeycomb lattice (Kondor and
Temesvari, 1981).] A similar behavior in the square-
lattice model is therefore also expected. Indeed, Kim
and Enting (1979) have analyzed the series expansion of
the chromatic function (1.15a) for the square lattice.
Their finding of a singularity at g=¢¢~2.22 on the line
eX=0 conforms with the above reasonings.

Putting these pieces of information together, we then
expect the line of singularity to behave in a fashion
shown schematically in Fig. 17. Whether K, jumps from
0 to a nonzero value at gy, as implied by the rescaling
argument, remains to be seen. But the general behavior
of the singularity trajectory should be as indicated. This
contrasts with the conjecture

(5.25)

(5.26)

ee=[g(g—1]"2+1—¢ (5.27)

made by Ramshaw (1979) shown by the thin broken line
in Fig. 17. Ramshaw’s conjecture permits a transition

1 s . .
=~
« SINGULARITY N
€ RAMSHAW )i—'—
N \

/ \

1 &
00 1 2 222

q

FIG. 17. Schematic plot of the singularity trajectory (heavy
broken line) of the antiferromagnetic Potts model on the
square lattice. The trajectory passes through the points (0,1),
(2,v2—1), (2.22,0), and may have a jump discontinuity at
q~2.22 as shown. The shaded region is self-dual with the
solid line denoting the self-dual point (5.28). The Ramshaw
conjecture is given by (5.27). [See note added in proof below:
The singularity trajectory should pass through the point (3,0),
instead of the point (2.22,0).]
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for all g>1. It should be noted that the antiferromag-
netic model on the square lattice is self-dual in the region
0<g <1, 0<eX<1—gq, indicated by the shaded area in
Fig. 17. If a unique transition exists in this region, then
it must occur at the self-dual point deduced from (2.11),
or

K,

e°=1-Vgq, 0<g<1. (5.28)

Clearly, our discussion precludes the existence of this
transition.

Also of interest is the square-lattice Potts model with
mixed ferromagnetic (K, >0) and antiferromagnetic
(K, <0) interactions considered by Kinzel etal. (1981).
The Monte Carlo simulation suggests that the transition
in this model, if any, is of an unconventional type, and a
Migdal-Kadanoff transformation determines this transi-
tion point at

( 1 +2K;C))( 1 _,eK(C)

? )=q, (5.29)

a result know to be exact at g=2.

Note added in proof: Baxter (1982b) has shown that
the g <4 antiferromagnetic model (K, <0, K, <0) on the
square lattice is soluble at

1™+ 1)=4—g. (5.30)

He also concluded that the antiferromagnetic model exhi-
bits a continuous transition at this point. This implies
that the singularity trajectory in Fig. 17 should cross the
q axis at g=3, instead of ¢g=2.22 as shown. This cross-
ing point is also predicted by a phenomenological renor-
malization group calculation (Nightingale and Schick,
1981).

Vi. RANDOM-BOND MODEL

A. Model definition

A random Potts model that has been of interest recent-
ly is the random-bond problem in which each interaction
takes on values subject to an uncorrelated probability dis-
tribution. Thus the Hamiltonian takes the form

H=— ZJijSKr(U.’,Uj) ’
(i, )

(6.1)

where J;; is a random variable governed by a distribution
P(J;;). As a realistic spin model the randomness is
quenched, or frozen, in positions. One would like to in-
vestigate the properties of this system as a function of
the parameters contained in P (J).

A simple choice of P(J) is the two-valued discrete dis-
tribution

P(J)=pdJ —J)+(1—=p)do(J —J;) , (6.2)

where O<p <1. For ¢g=2 and J;+J,=0, this becomes
the spin glass problem (Edwards and Anderson, 1975);
for J,=0 and general ¢, this defines the bond-diluted
Potts model (as versus the site-diluted model of Sec. 1.B)
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where each bond has a probability p of possessing an in-
teraction —J; and a probability 1—p of being vacant.
We shall consider this random-bond Potts model in this
section.

In a quenched system the thermodynamic quantities of
interest are computed for each random configuration;
only after this computation is the average over the ran-
dom bond distribution taken. As an example, the per
site free energy for a lattice G of N sites and E edges
(bonds) is taken to be

1 & _
fG(q;p,Kl,Kz)zjv— S pM(1—p)E—MFM(q;K |,K>)
M =0
(6.3)
where K; =fJ;, and

FM(g:K ,Ky)= 3 InZM N g;K,K,)
{M]

(6.4)

is a sum over all (f;) configurations { M} for which
there are M bonds of interaction —J; and E —M bonds
—Jy; ZEMN(q;K,,K,) is the partition function for a
fixed configuration { M }. :

Evaluation of averages of the type given by (6.3) is
often effected (and also compounded) by the use of the
n-replica trick (Emery, 1975). But as we shall see, it is
not always necessary to use this trick to extract the need-
ed information.

B. Duality relation

Following the route of our discussion of the regular
Potts model, we now derive a duality relation for the
random-bond model (6.1) on planar lattices.

As we have already pointed out in Sec. II.A, the duali-
ty relation (2.10) is valid quite generally for edge-
dependent interactions. This means that we can write
(2.10) for each of the partition functions Z;™} in (6.4).
This leads to

ziM l(q;Kl,Kz)=qI_ND(eK' M )E-M

xZh")(q;K},K3S) , 6.5)

where

1) —1)=¢ (6.6)

and ZhM} is the corresponding partition function on the
dual lattice D specified by the same bond configuration

It is now a simple matter to substitute (6.5) into (6.4)
and (6.3) to obtain the following duality relation:

1—Np
N

fela;p,K,K;)= Ing —+—p—1%1n(eK1—1)

+(1—p)—]€~ln(eKz—l) ©6.7)

N,
=+ ;fD(q;p’KTyK;) .
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The generalization of (6.7) which is valid for any finite
G, to arbitrary distributions P(J) has been given by Sar-
bach and Wu (1981a) and by Jauslin and Swendsen
(1981).

The duality relation (6.7) for the free energy f was first
given by Schwartz (1979) [see also Fisch (1978)] for the
g=2 random-bond Ising problem. The general q formu-
lation has since been discussed using the n-replica tech-
nique by Southern and Thorpe (1979), generalizing an
earlier g=2 result by Domany (1978), and by Aharony
and Stephen (1980).

C. Location of the critical point

For an infinite lattice G the free energy (6.7) will be-
come singular along a certain trajectory, T=T,(p), in the
(p,T) space. This trajectory then defines the critical
point in the random-bond model.

It is therefore pertinent to inquire whether the duality
relation (6.7) is useful in determining this critical point
in the case of planar lattices, especially for the square lat-
tice since it is self-dual.

The answer to this inquiry is negative, since, even in
the case of the square lattice, the duality (6.7) simply
describes a symmetry of the free energy about a point in
the (K,K,) space for fixed p. But the square-lattice free
energy possesses an additional symmetry

fsq(q;p’KhK2):fsq(q;1_p’KZ,Kl) . (6.8)

Therefore, at p=—;—, the singularity in the free energy is
preserved under the transformation (K,,K,)—(K,,K;)
—(K%,K1). Then, if a unique transition exists in this
system, it must occur at K;=K3}=K¢$, K,=K}=K}$, or

e o=g p=1). (6.9)

This exact critical point was first obtained by Fisch
(1978) for g=2 and extended to general ¢ by Kinzel and
Domany (1981).

There has been no exact result on the location of the
critical point for general p. The conjectured expressions
on the g=2 square lattice critical point for the bond-
diluted model (K| =K, K,=0) (Nishimori, 1979a) and
for the square-lattice model with arbitrary P(J) (Nishi-
mori, 1979b) have shown to be incorrect (Aharony and
Stephen, 1980). A similar determination of the general ¢
critical point for the bond-diluted model (Southern,

1980),
e fe=[g" PP _11/g —1), p>p., (6.10)

where p. is the bond percolation threshold, is presumably
also inexact, although it does give the correct limit for
g=1 (Yeomans and Stinchcombe, 1980):

—K
e ‘=1-p./p, p>p. - (6.11)

In the bond-diluted model (K;=K, K,=0), we gen-
erally expect T.(p) to vanish for p <p., since below p,
only finite clusters are present and there can be no fer-
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romagnetic ordering. For g=1 the model describes a
percolation process on the already diluted lattice with the
. . —K

exact critical point p(1—e ¢)=p, or (6.11). Therefore
we expect T,(p) to behave as shown schematically in Fig.
18. Note that increasing the value of g corresponds to
decreasing the “effective” ferromagnetic interactions;
T.(p) goes down as a consequence. In addition, the
behavior of T,(p) in the small dilution limit has been in-
vestigated in a cumulant expansion analysis for g=2
(Harris, 1974). The result is

T.p)=T.(1)[1—a(l—p)], ¢=2, p=1 (6.12)

with a=1.329 and 1.060, respectively, for the square and
the simple cubic lattices. [See also Sarbach and Wu
(1981a)].

D. Critical behavior

Consider the bond-diluted (K, =0) system whose phase
diagram is shown in Fig. 18. The behavior of such
(bond- or site-) diluted systems near the point Q (p=p,,
T=0) has been of considerable theoretical interests.
Stauffer (1975) has argued in the case of g=2 that the
point Q should be viewed as a type of higher-order criti-
cal point. The transition is percolationlike if approached
along the =0 path, and thermally driven if approached
along p=p. (Stanley et al., 1976). With the application
of scaling, a crossover from the percolation problem to
thermal ordering is then expected in the critical region
(the vicinity of the point Q). In particular, one is led to
consider the crossover exponents ¢ =v,/v,, where v, and
v, are the respective percolation and thermal correlation
exponents. This scaling argument has been extended to
spin systems of general g components (Lubensky, 1977).
Wallace and Young (1977) have shown rigorously that
¢=1 for the continuous Potts model in the limit of
g—1. Using a renormalization procedure which is exact
near T=0, Coniglio (1981) has been able to establish that
¢ =1 for any q and spatial dimensionality d.

The d=2 bond-diluted Potts model has been studied
by the position-space renormalization group (Yeomans
and Stinchcombe, 1980; Kinzel and Domany, 1981).

Te

0 1
Pc p
FIG. 18. Schematic plot of T.(p), the critical temperature as
a function of the bond concentration p, of the bond-diluted
model for different values of q. p. is the bond percolation
threshold.
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This has led to numerical results on phase diagrams and
thermodynamic functions. In particular, the prediction
of Harris (1974) that the critical behavior of the dilute
system deviates from that of the pure system only for
g >2 (when the specific heat of the pure system diverges)
is verified. The bond-diluted system has also been stu-
died under an “effective interaction approximation” (Tur-
ban, 1980).

VIl. UNSOLVED PROBLEMS

It is customary to include in an introductory review a
list of unsolved problems to exemplify topics for further
research. The following is a partial list of such problems
as suggested in the presentation of this review. Here,
again, emphasis has been placed on problems which re-
quire rigorous or exact treatments. But I have excluded
the obviously over-ambitious problems such as the exact
evaluation of the free energy (1.8).

1. Rigorous establishment of the validity of the critical
condition (5.1b) for the d=2, g<4, g2 models.
Among other implications, this would provide a rigorous
proof on the (g=1) bond percolation thresholds, which
has been lacking to this date.

2. Determination of the critical point for two-
dimensional lattices other than those described by (5.1b).
This includes the checkerboard lattice [conjecture (5.2)]
and the Kagomé lattice.

3. Decay of the correlation function at T=T, and for
T<T..

4. Exact or rigorous results on the dilute model with
quenched site dilution (Sec. I.B). In particular, one is in-
terested in the crossover behavior between the thermal
and percolation exponents near the percolation threshold
where the transition temperature vanishes.

5. Determination of the critical point for the triangular
lattice model with two- and three-site interactions. A
solution to this problem will lead to, among others, the
solution of two long outstanding unsolved problems: the
exact percolation threshold for site-percolation on the
honeycomb lattice and the Potts critical point for the
Kagomé lattice. It also leads to a direct determination
of the critical fugacity (5.5) for the hard hexagon lattice
gas.

6. The antiferromagnetic model requires further under-
standing including the nature of its transition for
q <qold).

7. Rigorous proof on the validity of the conjectures
(5.20) and (5.22) for the thermal and magnetic exponents
for the two-dimensional models.

8. A rigorous argument proving (or disproving) that
the d=3, ¢g=3 transition is first order.

9. Exact determination of the critical point for the
quenched bond-diluted model in two dimensions.
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