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Diffusion processes are considered for one-dimensional stochastic Lorentz models, consisting of randomly
distributed fixed scatterers and one moving light particle. In waiting time Lorentz models the light particle
makes instantaneous jumps between scatterers after a stochastically distributed waiting time. In the stochastic
Lorentz gas the light particle moves at constant speed and is scattered stochastically at collisions with the
scatterers. For the waiting time Lorentz models the Green's function of the diffusion process is calculated
exactly. The diffusion coefficient is found to be the same as for a corresponding random walk on a regular
lattice, the velocity autocorrelation function exhibits a long-time tail proportional to t '" and super Burnett
and higher-order transport coefficients are found to diverge. For the stochastic Lorentz gas similar results are
found for the diffusion coefficient and the velocity autocorrelation function, but '.he generalized super Burnett
coefficient, as introduced by Alley and Alder, is convergent in this case. For a special case of the waiting time
Lorentz models some other aspects are considered, such as periodic boundary conditions, steady-state
diffusion and fluctuations of the velocity autocorrelation function about its average value, due to the initial
conditions and to the stochastic distribution of scatterers.
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I. DIFFUSION EQUATION AND TIME CORRELATION
FUNCTIONS

A. Introduction

The Lorentz gas, introduced by Lorentz (1905) to
describe the difFusion of conduction electrons in metals,
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has gained a great popularity in the past years as one of
the simplest nontrivial models on which the ideas
developed in kinetic theory could be tested. In this pa-
per I want to discuss certain classes of Inodels that may
be regarded as one-dimensional versions of the Lorentz
gas, and for which several equilibrium time correlation
functions may be calculated —if not completely then at
least in the low-frequency limit. This very limit, or
equivalently the long-time limit, will be our main con-
cern; we will see how the so-called long-time tails in
functions like the velocity autocorrelation function arise
for these models. As an introduction I want to present
simple phenomenological derivations of the long-time tail
in the velocity autocorrelation, both for fluids and for the
Lorentz gas, but as preliminaries we need some general
connections between quantities characterizing the process
of self-diffusion in a physical system and certain equili-
brium time correlation functions for the same system.

B. Fick's law

The process of self-difFusion is described by Pick s law

(1.2)

where d is the dimensionality of the system. From (1.2)
it follows immediately that the mean-square displace-
ment of a diffusing particle in, say, the x direction as a
function of time is given by

fdr G (r, t)x =2Dt . (1.3)

where p(r, t) is the density of diffusing particles at posi-
tion r and time t (or, if there is only one difFusing parti-
cle, the probability density to find this particle at r at
time t) and D is the coefficient of self-diffusion. The
Green s function of this equation, i.e., the solution with
initial condition p(r, 0)=5(r) is of the form

The brackets denote an average over an equilibrium
ensemble and ri(t) is the position of the tagged particle
at time t. The restriction to equilibrium implies that
P(r, t) does not depend on the initial time. Without loss
of generality k may be chosen to be parallel to the x
direction. Then F(k, t) can be expanded as

ao
( 1)n

F(k, t)= g k "([xi(t)—xi(0)] "&
(2n)! (1.5a)

aD
( 1)ll

=exp g k "([xi(t)—xi(0)] "&, .
(2n )!

(1.5b)

The odd moments in (1.5) vanish because of the isotro-
py of P(r, t) in equilibrium and ( &, denotes cumulant
moments (Cramer, 1951), viz. ,

([xi(t)—xi(0)] &, =([xi(t)—xi(0)] &

—(xi(t) —xi(0) &

=([xi(t)—xi(0)] &,

([xi(t)—xi(0)] &, =([xi(t) xi(0)—] &

(1.6a)

[8/Bt+k'D(k, t)]F(k, t) =0 . (1.6c)

This equation merely defines D(k, t), which is obtained
from (1.5) as

D(k t) y ( 1)nk2nD(2n)(t)
n=0

(1.7a)

d ( [x i (t)—x, (0)]2"+2
&,D""'(t)=, '

. (1.7b)
(2n +2)! dt

If P(r, t) satisfied Pick's law (1.1), one would simply have
D(k, t) =D. The requirement one has to impose in order
for P(r, t) to satisfy Fick's law asymptotically is that
D =lim, „limt, OD(k, t) exists. ' From (1.7b) an expli-
cit expression for D follows:

—3([xi(t)—x, (0)] &, (1.6b)

etc. One can write a generalized difFusion equation for
F(k, t) of the form

C. Generalized diffusion equations. Transport coefficients
of higher order

In real physical systems the probability density P(r, t)
to find a particle tagged 1 and starting ofF at the origin
at t =0, at position r at a time t, is never exactly of the
form (1.2); if P(r, t) satisfies the difFusion equation (1.1),
it does so only in an asymptotic sense, that is, only on a
macroscopic time and length scale. To be more specific,
I consider, following McLennan (1973), De Schepper
(1975), and De Schepper and Ernst (1979), the Fourier
transform of P(r, t) for a system in overall equilibrium,

F(k, t)= fdre '"'P(r, t)

/ —ik-(r)(t) —rl(0)) ~ (1.4)

D= lim ——([xi(t)—xi(0)] &

d
~ 2 dt

= lim ([xi(t) xi(0)]ui (t)&= hm —f dr(ui (r)vi (t)&
t —+ oo 0 X x

(1.8a)

= lim f dr(u, (0)u, (t —r)&= f dt&v, (0)u, (t)&,

(1.8b)

where ui (t) is the x component of the velocity vi(t) of
particle 1 at time I;, and one has to require that the limit
exists. In addition, the fact that in a stationary state the

]It is important that the limits are not interchanged (Zwan-
zig, 1964).
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Uelocity autocorrelation function (abbreviated vaf in the
sequel),

C(t)=(ui (ti)ui (ti+t))

(1.9)
or

P(r, t)=D' 'V P(r, t)+D' 'V V P(r, t)+

(1.15a)

depends only on the time diAerence t was employed. In
(1.8b) one recognizes the well-known Green-Kubo expres-
sion (Green, 1952, 1954; Kubo, 1957) for the self-
diffusion coefficient. However, from (1.8a) one also sees
that this is nothing but the famous Einstein relation
(Einstein, 1905)

([ (t) — (0)]')D= lim
&~ Co 2t

(1.10)

again, provided the limit exists.
An alternative but equivalent way to characterize the

diffusion process makes use of the Laplace transform of
F(k, t), that is,

G(k,z)= I dte "F(k,t) (1.1 la)

k "(xi"(z) ), (1.11b)
z „ i (2n)!

at
F(k, t) = —k'(D'" —D'"k'+ . )F(k, t) .

(1.15b)

These equations are to be understood again as asymptotic
equations that are valid for long times. Hence, on com-
paring with (1.6c)—(1.7), one can make the identifica-
tions

(1.16)

proUt'ded agai'n these limits exist.
A di6erent generalization of Fick s law takes into ac-

count the possibility of memory eAects in time by put-
ting (Alley and Alder, 1979),

F(k, r)= —k' y„(—1)"O'"I dry""'(~)F(k, t ~)
8t

(1.17a)
where (x i"(z) ) denotes the Laplace transform of
([xi(t)—xi(0)] "). Equation (l. lib) follows immediate-

ly from (1.5a). For G(k,z) one can again write a formal
diffusion equation, of the form

or

zG(k, z) = —k' g ( —1)"O'"U""'(z)G(k,z)+1
n=0

[z+O'U(k, z)]G(k,z) =1, (1.12) (1.17b)

with

U(k, z) =k-'[G-'(k, z) —z]

n=0

U' '(z)= —,'z'(x', (z)),
U' '(z)= —,', [z (x, (z)) —6z (x, (z)) ],

(1.13a)

(1.13b)

(1.14a)

(1.14b)

etc. Now the condition that Fick's law is asymptotically
valid can be formulated as the requirement that
D =lim, Olimk 0 U(k, z) exists.

Phenomenologically there exist difFerent ways to gen-
eralize Fick s law by incorporating higher-order deriva-
tives of the density. The simplest of these is of the form
(McLennan, 1973)

If the limit defined in (1.8a) exists, the limit defined in (1.10)
also exists and is equal to (1.8a). It is possible, however, that
the limit (1.10) does exist and the limit (1.8a) does not. Hence
the Einstein relation is slightly more general than the Green-
Kubo equation.

that defines the quantity U(k, z). If P(r, t) satisfied
Fick's law, one would have U(k, z) =D. Solving for
U(k, z) and expanding in powers of k with the aid of
(I.1 lb), one obtains

The U' "'(z) are the Laplace transforms of the p' "'(r),
and are identical to the quantities defined in (1.14).
Phenomenological coefficients can be defined as

U' "'=lim U' "'(z),
z~O

again, provided the limits exist.

(1.18)

D. Long-time behavior of correlation functions

It has been assumed for a long time that the velocity
autocorrelation function C(t) would be an exponentially
decaying function of time. The intuitive basis of this as-
sumption was the idea that through repeated collisions
any particle would rapidly "forget" its initial velocity.
This was supported by the explicit solutions of almost all
solvable models known by then, such as the linearized
Boltzmann equation (Chapman and Cowling, 1970) and
the Fokker-Planck equation (Chandrasekhar, 1943). So
it came as a great surprise when Alder and Wainwright
(1970) discovered in computer simulations that the vaf
for a system of moving hard spheres decays only with a
negative power of time. Their estimates indicated a
long-time behavior proportional to t " in d dimen-
sions. After their discovery theoretical explanations of
this phenomenon were rapidly produced, based on kinetic
theory (Dorfman and Cohen, 1970, 1972, 1975; Pomeau,
1971; Resibois, 1970; Resibois and Pomeau, 1976; Theo-
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198 Henk van Beijeren: Transport properties of stochastic Lorentz models

dosopulu and Resibois, 1976), mode-coupling theory
(Ernst et al. , 1970, 1971, 1976; Kawasaki, 1970), fluc-
tuating hydrodynamics (Zwanzig et al. , 1972; Bedeaux
and Mazur, 1974a, 1974b), Brownian motion theory
(Zwanzig and Bixon, 1970; Widom, 1970), and dynami-
cal renormalization group methods (Forster et al. , 1976).
A review of this subject has been given by Pomeau and
Resibois (1975).

1. The velocity autocorrelation function for fluids

Here I want to give a very simple intuitive explanation
that, in one form or another, can be recognized easily in
most of the above-mentioned more formal derivations.

Suppose a tagged particle in a system in equilibrium is
conditioned to be at the origin at t =0 with velocity v.
This corresponds to an initial nonequilibriurn situation
with a tagged-particle density and an average overall
velocity density given by

P (r,O) =5(r),
u(r, O) =v5(r) .

(1.19a)

(1.19b)

Since the initial deviation from equilibrium is only a
minor one, it seems fair to assume that for not too short
times, that is, for times much longer than the mean free
time between collisions, the time development of P(r, t)
and u(r, t) is described to a first approximation by the
solution of linearized hydrodynamic equations (Foch and
Ford, 1970). For P(r, t) this is the diffusion equation
(1.1), with the solution (1.2), or for its Fourier transform

F(k r) —e (1.20)

The hydrodynamic equations for the divergence free part
u„of the velocity density are

But

at
= —vVX(VXu„), (1.21a)

(1.2 lb)

where v is the kinematic viscosity, v=g/mn with g the
shear viscosity, m the mass of the particles, and n the
number density. The irrotational part u&,„g of the veloci-
ty density may just as well be obtained by solving the

I learned this argument from Knops (1970). Compare also
Alder and Wainwright (1970) and Pomeau and Resibois (1975).

4In fact, also the overall energy and particle density are dis-
turbed from equilibrium initially. However, the slow relaxa-
tion to equilibrium of these quantities does not inAuence the
leading term in the long-time behavior of the velocity auto-
correlation function.

~I assume here that fixing the initial velocity of the tagged
particle does not influence this solution. In fact, this causes a
shift of the solution in the direction of the initial velocity over
a distance on the order of the mean free path. This shift, how-
ever, has no influence on the leading long-time behavior of
C(~).

linearized hydrodynamic equations, but, since it does not
contribute to the leading long-time tail in the vaf, I will
not consider it here. Equations (1.21) are most easily
solved for the Fourier transform u„(k, t) of u, „(r,t) with
the result

u„(k, t) =(v —(v.k)k)e (1.22)

„fdk [v —(v.k)k]e ' +
(2n )"

d —1

d
[2vr(v+D)t] "~ v . (1.23)

The vaf is obtained from this by averaging v v(t)ld over
the equilibrium velocity distribution, with the result

d/2

C(t) = [2ir(v+D)t] ~ fdv U—
d d 2m

e
—Pmv ~/2

(1.24)

to leading order in t.
One may conclude that the vaf has a long-time tail,

due to the conservation of particle number and momen-
tum. Iri a time t the particle difFuses over a distance on
the order ~t from its initial position and there it picks
up a fraction of its initial momentum that has been dilut-
ed, also by a diffusion process, to a magnitude of order
t d~ . The result (1.24) agrees with that of the more so-
phisticated theories quoted before as well as the results
from computer simulations (Alder and Wainwright,
1970; Alder et aI , 1970; Woo. d, 1975)

2. The Lorentz gas

In solids the process of self-diAusion often takes the
form of repeated scattering of mobile particles by impuri-
ties. One of the simplest models in which this type of
process occurs is the Lorentz gas. In this model a
number of 6xed spherical scatterers are distributed com-
pletely at random over a d-dimensional volume (overlap-
ping Lorentz gas), or are distributed randomly under the

for the initial condition (1.19b). Here k is the unit vector
along k. Now assume that, if after a not too short time
t, the tagged particle is at a position r, its average veloci-
ty is given by u(r, t). In other words, assume that at
time t the tagged particle on the average has the same
velocity as the other particles in its neighborhood, and
that the average velocity u(r, t) to first approximation is
not inQuenced by the fact that the tagged particle is lo-
cated at r at time t. Then the average velocity of the
tagged particle to leading order is found as

v(t)= fdrP(r, t)u(r, t)

=drP(r, t)u, „(r,t)

1 fdkF(k, t) u( —k, t)
(2n )

Rev. Mod. Phys. , Vol. 54, No. 1,January 1982
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restriction that they may not overlap each other (non-
overlapping Lorentz gas). In addition, there is one light
point particle (or a number of mutually noninteracting
point particles) that has velocity of constant magnitude
(at least in the absence of external forces), and is reflected
specularly when hitting a scatterer.

Lorentz (1905) introduced this model to describe dif-
fusion of electrons in a metal. It is still used as a simpli-
fied model to describe the diffussion of electrons con-
trolled by scattering from impurities (Peierls, 1974).
Other applications are found in the theories of neutron
transport (Case and Zweifel, 1967) and of diffusion in a
binary mixture of species with disparate masses (Chap-
man and Cowling, 1970). The Lorentz gas combines a
relative simplicity with the characteristics of a genuine
many-particle system. For this reason it has served as a
theoretical test case already in several instances [see
Hauge (1974) for an excellent review]. Lorentz (1905),
elaborating on the work of Drude (1900), derived from it
the Wiedemann-Franz law describing the temperature
dependence of the ratio between thermal and electrical
conductivity of a metal. Much later Van Leeuwen and
Weyland [1967; see also Weyland and Van Leeuwen
(1968)] showed the occurrence of logarithmic terms in
the density expansion of the diffusion coefficient of the
Lorentz gas. Sinai and Bunimovich (Sinai, 1970, 1973,
1981; Bunimovich, 1972, 1974, 1979; Bunimovich and
Sinai, 1973, 1981, Gallavotti, 1975) performed a deep in-

vestigation of the ergodic properties of the Lorentz gas
and obtained a number of strong results. Spohn (1978)
and Lebowitz (Lebowitz and Spohn, 1978) considered the
so-called Boltzmann-Grad limit where the density of
scatterers goes to zero. Bruin (1974), Lewis and Tjon
(1978), and Alder and Alley (Alder and Alley, 1978; Al-
ley and Alder, 1979; Alley, 1979) performed computer
simulations of the Lorentz gas and so did Lagar'kov
et al. (1975, 1978)—however for the case of a soft poten-
tial between the scatterers and the light particle. Recent-
ly the model has been devoted new interest because of
the possibility of a percolation transition at high-scatterer
densities (Shante and Kirkpatrick, 1973; Haan and
Zwanzig, 1977) accompanied by the vanishing of the dif-
fusion coefficient (Alder and Alley, 1978; Alley, 1979;
Gotze et al. , 1981).

3. The velocity autocorrel ation function
for the Lorentz gas

The preceding intuitive argument to explain the oc-
currence of a long-time tail in the velocity autocorrela-
tion function clearly does not apply to the Lorentz gas,
because momentum is not conserved (it can be absorbed
by the scatterers). Yet, as Ernst and Weyland (1971)
showed with the aid of low-density kinetic theory, a
long-time tail arises but is proportional to t ' +". In
this case the long-time tail is entirely caused by the slow
decay of density fluctuations; that is, the initial density
profile of the light particle decays according to the dif-

(v(t)
~
vo, to) = f dr Jdvv 'vf(r, v, t)v .

0
(1.25)

This is to be understood as follows: vf(r, v, t)drdv, with
v equal to the collision frequency, and f(r,v, t), the dis-
tribution function for the light particle, is the missing
number of collisions per unit time in dr with velocity v
that would be needed to keep the average velocity equal
to zero. The mean free time v ' is the average time dur-
ing which the particles that missed a collision in Vo keep
their velocity before being isotropically scattered again.
At low scatterer density and for t && v ' the distribution
function may be approximated by the normal or
Chapman-Enskog solution (Chapman and Cowling,
1970) of the Boltzmann equation. As is shown in Ap-
pendix A this solution expanded up to first order in gra-
dients of the density, is of the form

Alley and Alder (1979) want to explain the long-time tail in
the vaf on the basis of a larger than average probability for a
return to the origin, due to repeated backscattering events. At
least for low densities, this explanation is not supported here.
The probability for a return to the origin is determined by a
diffusion process without memory, and only after such a return
is a correlation of the velocity to the initial velocity restored.

fusion equation and the positions of the scatterers are
constant in time. In the case of isotropic scattering (after
a collision the velocity of the light particle has equal pro-
bability to point into any direction) the origins of the
long-time tail can be clarified by a simple calculation.
Suppose the light particle starts off at t =0 with velocity
vo in the positive x direction and first hits a scatterer at
t =to at a point 0, which I will choose as the origin of
the coordinate system describing the model. The posi-
tion of the center of the scatterer is not specified, howev-
er. Because of the isotropy of the scattering mechanism
the velocity of the light particle, averaged over the spa-
tial distribution of the scatterers, becomes uncorrelated
from the initial velocity after the first collision, and in
general subsequent collisions will not change this situa-
tion. There is, however, an exception to this: Because
the first scattering occurred at the origin, the light parti-
cle "knows" that no scatterers are present within the
shaded volume Vo, as indicated in Fig. 1. Hence, if the
light particle returns within this volume, it maintains its
present velocity for a longer time than average. For
large t the average density P(r, t) of the hght particle
may be expected to be described by the solution (1.2) of
the diffusion equation, a Gaussian, which for reasons of
symmetry has to be centered at the origin. This implies
that the particle has a slightly larger probability to re-
turn to Vo from the right than from the left; hence it re-
stores a correlation between the velocity at time t and the
initial velocity. This can be quantified in the following
way: The average velocity at time t, given the initial
velocity vo and first-collision time to is approximately
given as

Rev. Mod. Phys. , Vol. 54, No. 1, January 1982



200 Henk van Beijeren: Transport properties of stochastic Lorentz models

FIG. 1. Initial track of the light particle. Within the shaded
area no scattering centers can be present.

—r 2/4aot

f(r, v, t)= 1 ——
2 (v &) &&2 4(v)

up (4mDpt).

(1.26a)

2tup (4~Dpt)"
(1.26b)

Here Dp is the Boltzmann diffusion coefficient,
Dp ——up(vd) ' [this value follows also very simply from
(1.8b)], and P(v) is the equilibrium velocity distribution,
i.e., P(v) is a constant times a 5 function 5(

~

v
~

—up).
Substituting (1.26) into (1.25), one finds

models at fairly low scatterer densities the decay of C(t)
as t ' ~ +" has been confirmed (Alder and Alley, 1978;
Lewis and Tjon, 1978; Alley, 1979). However, the coeffi-
cient calculated by Ernst and Weyland (1971) remains
valid only in a very small density regime (Alley, 1979).
Keyes and Mercer (1979) have proposed a generalization
of this theory to higher densities, but no comparison of
their theory with the most recent computer results has
been made.

It is of interest that the t ' +" long-time tail in the
vaf persists, even if the fluctuations of the scatterer densi-
ty, responsible for the long-time memory e6ects are not
constant in time, but decay diffusively. Notably, this
result has been found for one-dimensional systems of par-
ticles diffusing independently under the restriction that
they may not pass each other (Harris, 1965; Richards,
1977; Fedders, 1978; Kehr et al. , 1981). In higher
dimensions the vaf for such systems also exhibits the
same long-time behavior as for a Lorentz gas. Recently
the mean-square displacement for a particle in a sine-
Gordon chain at low concentrations of kink sites was
found to grow as t'~ with time (Gunther and Imry,
1980; Schneider and Stoll, 1980; Buttiker and Landauer,
1980). This again may be traced back to the same
mechanisms that are responsible for the long-time tails in
the models discussed above.

(v(t)
~
vp, tp) =I dr Jdv —

2
—

zi P(v)
0 2tu p (4m.D p t)" 4. Consequences of the long-time tails

Jrx
2t (4~Dpt)

2 2—Xupt pa.

4t (4irD pt)~~'
(1.27)

where o is the total cross section of a scatterer. In cal-
culating the integral over Vp, this volume was approxi-
mated by a cylinder of length Uptp, which is correct to
lowest order in the density. Next we have to average tp.
As the distribution of the first-collision time is purely ex-
ponential, this average produces (tp),„=2v . Further-
more, if one uses the expression given above for Dp and
the identity Upv 'o.=n ', he finds the following result
for the vaf:

—2map2—(v(0).v(t) ) =
n(4 D,t)'"+' (1.28)

in agreement with the result of Ernst and Weyland. Ba-
sically, my calculation is a special case of theirs, but the
formulation given here makes it easier to understand the
mechanisms responsible for the long-time taiII. It is of
some interest to consider the correction resulting from a
more precise evaluation of the integral over Vp occurring
in (1.27). The hemisphere to the left of the initial posi-
tion of the light particle produces a correction factor to
(1.28) of magnitude (1+nV„), where V„ is the volume
of a single scatterer.

In computer simulations of two-dimensional Lorentz

What are the physical consequences of the existence of
the long-time tails~ The most dramatic one certainly is
that in two-dimensional fluids the occurrence of a 1/t
tail in time correlation functions such as C(t) leads to
divergent integrals in the Green-Kubo formulas, such as
(1.8b), hence to nonexistence of the Navier-Stokes trans-
port coefficients. Now there is some inconsistency here,
because the derivations of the t " tails assume, expli-
citly or implicitly, the validity of the Navier-Stokes equa-
tions. This problem can be circumvented, however, e.g.,
by a self-consistent back-coupling of dynamical processes
responsible for the long-time tails to the hydrodynamic
equations (Wainwright, Alder, and Gass, 1971;
Kawasaki, 1971). One then obtains a long-time tail that
behaves asymptotically as ( t v'logt ) ', which is still
nonintegrable. The problem of divergent transport coef-
ficients can be resolved in certain cases by passing to hy-
drodynamic equations that cannot be linearized in
powers of gradients of the hydrodynamic fields (Onuki,
1975; Ernst et al. , 1978). In other cases, such as that of
self-diffusion in an equilibrium system, it looks as though
the effects of system size and shape come into play una-
voidably (Onuki, 1975; Wood, 1975). In three-
dimensional Quids the existence of Navier-Stokes trans-
port coef5cients is not threatened by the t tail.
There, however, higher-order transport coefficients, like
D' ', D' ', etc. , as introduced in (1.15), do not exist
(Keyes and Oppenheim, 1973; Dufty and Mc Lennan,
1974; De Schepper et ah. , 1974). Again, this problem
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can be solved in certain cases by introducing into the hy-
drodynamic equations some terms that are nonanalytic in
the gradients of hydrodynamic fields (Kawasaki and
Gunton, 1973; Yam ada and Kawasaki, 1975; Onuki,
1975; Ernst et al. , 1978).

In Lorentz models the t ' ~ +" tail occuring in C(t)
leads to an existing diffusion coefficient, even in d =1
(how to define sensible Lorentz models in one dimension
will be the subject of the next section). However, the
D' "' are expected to be divergent for n)d/2. An in-
teresting conjecture by Alder and Alley [(1979; see also
Alley (1979}]is that the U' "', introduced in (1.18), exist
for all n. At low density this conjecture seems to be sup-
ported by kinetic theory (Ernst and van Beijeren, 1981).
The calculations on one-dimensional models to be report-
ed here show that the conjecture is at least partially ful-
filled for one class of models, whereas for another class
of models it is not satisfied.

Another important aspect of the long-time tails is that
they may contribute appreciably to the transport coe8i-
cients, especially at high densities. In fact, this requires
a slight generalization of the long-time tail concept for
the Quid. Besides the t " contributions to the vaf,
which dominate in the asymptotic long-time regime,
there exist other contributions with a long-time decay
proportional to t '" +". De Schepper and Cohen
(1978) showed that at high densities the most important
of these contributions results from the decay of the initial
velocity through the product of a diffusive mode and a
heat mode, a process that is very similar to the one
responsible for the t ' +" tail in the Lorentz models.
From this process a (negative) contribution to the dif-
fusion coefficient may arise, amounting to something in
the order of 50% of the total difFusion coefficient (Alder
et al. , 1970).

Of course the existence of long-time tails in transport
kernels like P' '(t), defined in (1.17a), raises the question
whether one should not take these into account explicitly
in the hydrodynamic equations by introducing frequency
dependent transport coefficients, even at low frequencies.
Although it seems to me that in principle one should
certainly do so, I know of only one real experiment in
which the existence of a long-time tail allegedly has been
shown directly. This is an experiment by Fedele and
Kim (1980) on Brownian motion (where the long-time
tail effects should be most pronounced) and even there
the interpretation is hard and no complete agreement
with theory is found.

't. Hard spheres in one dimension

For the Jepsen gas, or one-dimensional hard-sphere
system with a Maxwellian velocity distribution, the velo-
city autocorrelation function decays asymptotically as
t for long times (Jepsen, 1965; Lebowitz and Percus,
1967}. Hence the difFusion coefficient exists. This sys-
tem is somewhat pathological, because it can be con-
sidered as an almost ideal gas in which colliding parti-
cles merely exchange their identities (at least if the diam-
eters of the spheres are set equal to zero). Therefore
self-diffusion is the only type of transport phenomenon
that is governed by an equation of hydrodynamic type.
The reason why C(t) does not decay in time as t '~ or
anything close to that, is the very absence of momentum
difFusion. The initial momentum of the tagged particle
just propagates through the system at constant speed.

2. Brownian motion

For a Brownian particle embedded in an ideal gas the
existence of the diffusion equation has been proven in the
limit where the mass ratio between Brownian particle
and bath particles goes to infinity. The velocity auto-
correlation function decays exponentially in this limit.
The one-dimensional case was treated by Holley (1969),
whereas Durr et al. (1981) gave a proof for higher
dimensions.

3. Harmonic lattices

For the vaf of a particle in an infinite harmonic lattice
Mazur and Montroll (1960) obtained a long-time
behavior proportional to sint lt ~ in d dimensions.
Hemmer (1959) and Rubin [(1960; see also Morita and
Mori (1976)] investigated the motion of a heavy particle
in a linear harmonic chain. They found that the dif-
fusion coefficient exists and is nonzero and that, under
an appropriate time-scaling, the vaf decays exponentially.
For a Brownian particle in a three-dimensional harmonic
lattice Rubin (1961) found that the vaf decays exponen-
tially in time, as well, whereas no diffusion occurs; in
two dimensions the vaf has a long-time tail proportional
to t, the diffusion coefficient is zero, and the mean-
square displacement grows proportionally to logt.

4. The Boltzmann-Grad limit

E. Rigorous results

From a more formal point of view the long-time tails
are definitely of interest. There are, however, hardly any
rigorous arguments available for their existence or nonex-
istence in nontrivial models. This in turn implies that
even the existence or nonexistence of transport coe%-
cients cannot be stated with rigor in most cases. Let me
list the few exceptions I know of below.

In the so-called Boltzmann-Conrad limit, where the den-
sity goes to zero, while length and time are usually
scaled by the mean free path and mean free time, respec-
tively, some rigorous results are availab1e, mainly based
on the methods of Lanford (1976a, 1976b). For the d-
dimensional Lorentz gas (d ~ 1), the vaf approaches the
Lorentz-Boltzmann result for all times (Gallavotti, 1969,
1972; Spohn, 1978}. The approach is nonuniform as
t~ oo, however; hence the existence of the diffusion coef-
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ficient for Gnite density has not been proven. For
steady-state diffusion between two parallel flat reservoirs
separated by a distance I„ the validity of Fick's law has
been proven (Lebowitz and Spohn, 1978) for the case
where one first takes the Boltzmann-Grad limit at fixed
L and next the limit L~oo. For fixed Rnite density,
however, the validity of Fick s law in the limit L~~
does not follow from this.

For a tagged particle in a system of identical moving
hard spheres in two or more dimensions the vaf ap-
proaches the Boltzmann value in the Boltzmann-Grad
limit for all times (van Beijeren, et al. , 1980). Again this
does not prove the existence of the difFusion coefficient
(actually, as stated before, D is expected to be divergent
in two dimensions). For a system of hard spheres in a
periodic box a steady state can be set up by coloring all
spheres entering from the right white and all spheres
entering from the left black (Wood, 1975). In the
Boltzmann-Grad limit the distribution functions for
spheres of either color approach the Lorentz-Boltzmann
value. This again implies the validity of Fick s law if
one takes the Boltzmann-Grad limit first and next lets L
go to infinity (Spohn, 1981).

5. Spin systems

For one-dimensional XF models several spin-spin
equilibrium time correlation functions have been calcu-
lated exactly (Niemeyer, 1967, 1968; McCoy et al. , 1971;
Brandt and Jacoby, 1976, 1977; Perk and Capel; 1977,
1978; Vaidya and Tracy, 1978). For the two-dimensional
quadratic nearest neighbor Ising model Allan and Betts
(1968, 1969) obtained the time correlation function be-
tween transverse spin components.

F. One-dimensional Lolentz models

In view of the considerations given above it seemed
fruitful to study certain one-dimensional Lorentz models,
some of which are exactly solvable, while others allow
for rigorous estimates of the low-frequency behavior of
correlation functions such as G(k, z), defined in (1.11).

For these models one can check the existence of the
diffusion coefficient, as well as the existence and the pre-
cise form of long-time tails in the vaf. Furthermore, one
can study in detail the time behavior of the D' "'(i), de-
fined in (1.7b). It is possible to test the validity of kinet-
ic theory and that of the assumptions made in the semi-
intuitive derivation of the long-time tail in the vaf,
sketched before. One can calculate for certain models
how the correlation functions approach their asymptotic
behavior, and how large the contributions from the
long-time tail to the diffusion coefficient are. It is clear
that the results obtained can serve as a guideline for in-
terpreting computer simulations (Cxrassberger, 1980). It
is possible to check specific conjectures like that of Alder
and Alley about the existence of the coefficients U' "'.
Perhaps the most useful property of these models is that

they make the mechanisms responsible for the occurrence
of long-time tails in systems like the Lorentz gas ex-

tremely transparent. From a purely mathematical
viewpoint it seems of interest to have some treatable ex-
amples of stochastic processes of a strongly non-
Markovian character. In addition, there are a few other
interesting aspects to those models, which I want to
sketch briefly below.

periodic boundary conditions

All the results concerning long-time tails in functions
such as the velocity autocorrelation function are strictly
taken true in the thermodynamic limit only, that is for
infinite systems. In systems with periodic boundary can-
ditions, as studied mostly in computer simulations, the
asymptotic long-time behavior of these functions changes
to an exponential decay (Wood, 1975). This is not hard
to understand: The solutions of diffusion equations that
govern the time evolution of the densities of conserved
quantities can be expanded in eigensolutions which for

gk 2]
periodic systems are typically of the form e 'e'"',
with k;=2mn;/L;; n; is an integer, and L; is the period
in the i direction. This means that the slowest decaying
contribution to u(r, t)P(r, t), as considered in (1.23), de-

cays in time as exp( 4n(v+D—)t/L. ). For times that
are short compared to the decay time L /4~ (v+D), but
long enough that for the infinite system the long-time
tails appear, the latter will show up also in the periodic
system. For Lorentz models similar arguments are valid,
because the probability for return of the light particle to
the neighborhood of its starting position is aJso governed
by the solution of the diffusion equation. For the exactly
solvable models the influence of periodic boundary condi-
tions can be studied in a simple way again.

If one replaces the periodic boundary conditions by
more general ones, the situation becomes somewhat less
transparent. However, one still expects an exponential
decay, because the eigenvalue spectrum for the difFusion

equation in a 6nite system is discrete under all boundary
conditions.

2. Fluctuating hydrodynamics

As mentioned before, the long-time tails can also be
explained with the aid of fluctuating hydrodynamics. In
the fluid case the most important fluctuating quantity is
the velocity density. In the case of the Lorentz gas this
does not enter the hydrodynamic equation. There the

7For fluids finite system effects appear already at times on the
order of the sound-mode traversal time I./c, where c is the
speed of sound, due to couplings between the tagged particle
density and the irrotational part of the velocity (Wood, 1975)
(although these do not contribute to the asymptotic long-time
tail).
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fluctuating quantity is the diffusion coefficient, which is
driven by spatial fluctuations in the density of scatterers
(Dorfman et al. , 1981). It is interesting to check also
this interpretation of the long-time tails against the ex-
actly solvable models.

3. Steady-state diffusion

A common way to define the diffusion coefficient is as
the ratio between density current and density gradient in
a steady state. Such a steady state can be set up, for in-

stance, by placing the system between an emitting plate
at x =0 and an absorbing plate at x =L,. Strictly taken,
one has to go to the limits L~ oo and dp/dx ~0, where

p is the density of diffusing particles. In Lorentz models,
which are strictly linear in p, the second limit need not
be taken. Now one can ask the question how the density
fluctuations, responsible for the long-time tails, influence
this ratio for finite L, as well as in the limit L —+ ao.

The next sections of the paper are organized as fol-
lows. In Sec. II I introduce waiting time Lorentz models
and the stochastic Lorentz gas and discuss some of their
properties. Section III contains a calculation of several
properties for a specific simple example. Different inter-
pretations of the long-time tail effects, the influence of
periodic boundary conditions and finite system effects,
steady-state diffusion, and Sinai s fluctuations (introduced
in Sec. II) are discussed in detail. In Sec. IV I calculate
the Green's function G(k,z) for a quite general class of
waiting time models, I consider the low-frequency and
high-frequency limits of this function and that of the
generalized transport coefficients U(k, z), U' "'(z), and
D' "'(t), and, in addition, I consider several special cases
that may be of interest. In Sec. V the Careen's function
for the stochastic Lorentz gas, which resembles the usual
Lorentz gas more closely than the waiting time Lorentz
models, is calculated in the form of an expansion in
powers of k and z. The first few terms in this expansion
are given explicitly and the results are compared to the
results for ihe waiting time Lorentz models and those
from kinetic theory. The last section finally contains a
summary and evaluation of the results and a review of
possible extensions of the theory developed here.

II. STOCHASTIC LORENTZ IVIODELS

A. Intl'oduction

The distinction between stochastic and deterministic
Lorentz models lies in the nature of the scattering
mechanism. In deterministic Lorentz models the veloci-
ty of the light particle after a collision with a scatterer is
uniquely defined; in stochastic Lorentz models this velo-
city follows some stochastic distribution, depending on
the precollisional velocity and the relative position of the
light particle with respect to the scatterer at the collision.
Certain two-dimensional stochastic Lorentz models have

been studied by Alder and Alley [(1978); see also Alley
and Alder (1979)]. They found qualitative agreement be-
tween the long-time behavior of time correlation func-
tions in stochastic and deterministic Lorentz models.
This is not surprising, as the explanation for the long-
time tail in the vaf of the Lorentz model does not depend
on the details of the scattering mechanism [Ernst and
Weyland (1971); see also Sec. I].

B. Lattice models

In certain cases one is forced to consider stochastic,
rather than deterministic, Lorentz models. One such
case consists of Lorentz models on d-dimensional lat-
tices. In these models a given fraction of the lattice sites
is occupied by scatterers and the light particle moves
along the lattice bonds. In those versions of the model
that are most analogous to the continuum Lorentz gas
the light particle moves at constant speed without chang-
ing direction until it hits a scatterer. Then it sufFers a
change of direction, according to some predescribed pro-
bability distribution (for example, on a simple two-
dimensional lattice it may have probability —, to be re-

Qected, —, to continue its course, and 4 to make a 90
angle in either possible direction). One reason to study
such lattice models is that one might hope these to be
mathematically simpler than the continuum models.
Another good reason is that some of these models may
give a fairly good picture of certain diffusion processes in
crystals. In that case one must identify the lattice points
of the Lorentz model with the interstitial positions of the
crystal. Instead of letting the light particle run along the
lattice bonds at constant speed, one must let it hop from
lattice site to lattice site with a stochastically distributed
waiting time between subsequent hoppings and possibly a
probability distribution for the different hopping direc-
tions, which may depend, for instance, on the direction
of the preceding jump. If all lattice points are equiva-
lent, this is nothing but some type of random walk pro-
cess. To introduce the character of a Lorentz model one
has to introduce randomly distributed inhomogeneities,
which are the equivalent of the scatterers in the continu-
um model. There are several ways to do this. For in-
stance, one can occupy a certain fraction of the lattice
sites with impurities that make these sites inadmissable
to the light particle. Or one may block a certain fraction
of the lattice bonds to the light particle by an impenetr-
able barrier. One could merge a certain fraction of
neighboring sites to mimic vacancies in the lattice. One
may consider a random A-8 alloy where sites are ine-
quivalent, depending on the configuration of surrounding
atoms, and where barriers between neighboring sites are
also inequivalent. The hopping probabilities may then be
chosen to depend on the types of neighboring sites
and/or barriers. Another variant is the model intro-
duced by Scher and Montroll [(1975); see also Pfister and
Scher (1978); Montroll and West (1979)]. They consider

a light particle hopping between traps that are distribut-
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ed randomly over a lattice. The hopping rate for a jump
between two given traps depends strongly on the distance
between them. They treat this model approximately by
dividing the lattice into equal cells each containing many
traps and assuming an effective waiting time distribution
for jumps between neighboring cells. A one-dimensional
version of this hopping model has been treated with ex-
act methods by Bernasconi et al. [Alexander et al. (1981)
and references quoted therej; and for a similar one-
dimensional model Anshelevich and Vologodskii (1981)
proved the validity of the diffusion equation in a certain
scaling limit.

C. Related models

The common feature of all these models is that they
contain randomly distributed spatial inhomogeneities on a
microscopic scale. Systems and models with this proper-
ty have been studied in a much wider context over the
past years. Perhaps the simplest example is a diffusion
process with a spatially fluctuating diffusion coef5cient.
For such a process Papanicolao and Varadhan (1980)
rigorously prove the approach to a normal diffusion pro-
cess in a certain scaling limit, and Dorfman et al. (1981)
treat the low-frequency behavior of the diffusion coef5-
cient. In a review paper Elliott et al. (1974) treat the
mathematically very similar problems of elastic and opti-
cal properties of disordered crystals. A vast body of
work has been done on the electrical conductivity of
disordered crystals and the closely related problem of
quantum-mechanical motion in a random potential,
where the problems of localization and the existence of
mobility edges play an important role. Recent reviews
have been given by Mott and Davis (1979), Landauer
(1978), and Thouless (1978). Another class of problems
that are closely related to hopping processes with ran-
dom barriers is the problem of conduction in random
resistor networks [Kirkpatrick (1973); see also Shklovskii
and Efros (1975)j.

D. One-dimensional Lorentz models

For one-dimensional systems drastic simplifications
arise and therefore I will concentrate my attention on
these from now on.

FIG. 2. A pseudo-one-dimensional deterministic Lorentz
model

The light particle makes specular collisions both with
the cylinder wall and the scatterers. Let n be the
number density of scatterers. If one passes to the limit

p ~0, keeping, np constant [this is the so-called
Boltzmann-Grad limit (Lanford, 1976; Spohn, 1980)j, the
probability of hitting the same scatterer twice within a
given time t will go to zero. Hence all collisions of the
light particle with a scatterer are independent of each
other. This implies that the time evolution of the distri-
bution function of the light particle is described exactly
by the Lorentz-Boltzmann equation (Spohn, 1978).

2. Strictly one-dimensional models

On the other hand, one may also consider a strictly
one-dimensional stochastic Lorentz model in which the
light particle moves with constant speed among random-
ly distributed point scatterers on the real axis. At a col-
lision the probability for a reversal of the velocity of the
light particle is p, and the probability that it continues
its course is (1—p). It is obvious that in the
Boltzmann-Grad limit this stochastic Lorentz model be-
comes equivalent to the deterministic model sketched
above. Therefore the parameter p may be considered to
play a role equivalent to that of the density in higher
dimensions, as has been noted by Spohn (1980) and
Grassberger (1980).

Unlike in higher dimensions the scatterers need not be
confined to lying on the sites of a periodic lattice, al-
though they may be. Additionally, the scatterers need
not be distributed independently over the real axis or
over the lattice sites. Generally the models I will con-
sider can be described in the following way, as shown in
Fig. 3: Fixed scatterers labeled (. . ., n, n+1, . .—. —
—1,0, 1,. . n, . . ) are lo.cat.ed in this sequence on the real
axis. the intervals x;, with x; ~0, between scatterers &

and i +1 are independently distributed random variables
with the same probability distribution p such that

1. A pseudo-one-dimensional deterministic Lorentz model

The deterministic Lorentz model in a strictly one-
dimensional system leads to a light particle that just
keeps running back and forth between two neighboring
scatterers and is not of great physical interest. One way
to improve on this would be to consider a pseudo —one-
dimensional system consisting of an infinitely long
cylinder of cross-section 1 containing randomly distribut-
ed infinitely thin scatterers of cross-section p, oriented
perpendicular to the cylinder axis (see Fig. 2).

f dx p(x)=1,

f dx xp(x) =I,
f dx(x —I) p(x) =-b

X X

-3 -2
X„XO X, X2 X3

0 1 2 3 4

FIG. 3. A configuration of scatterers on the real axis.

(2.1)

(2.3)
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Hence the average and the variance of the interval length
must exist.

3. The stochastic Lorentz gas

I wil1 now call the stochastic Lorentz gas the model in

which the light particle runs with constant speed U and
makes instantaneous collisions with the scatterers. The
probability for a reflection will be p, that for transmis-
sion (1—p). In the simplest case p is the same for all

scatterers. For the initial distribution of the position x
and velocity V of the light particle the simplest choice is

a uniform distribution over the interval xo with equal
probabilities for positive and negative velocity, viz. ,

f(x, V t =0)=(21) '[5( V —u)+5( V+ u)]

if x Hxo , (2.4)

=0 ifxExo.
When one calculates quantities that are averages over the
distribution of all intervals, this initial condition is
equivalent to distributing the light particle uniformly
over the real axis and subsequently relabeling the interval
where it happens to be as xo (and relabeling the other in-

tervals accordingly). Of course for a fixed configuration
of scatterers (2.4) is not equivalent to a uniform distribu-
tion of the light particle. In addition (21) must be re-

placed by (2xo) ' in this case to warrant a correct nor-
malization.

Further I will consider waiting time I.orentz models.
In these models the light particle sits on one of the
scatterers and jumps instantaneously to a neighboring
scatterer after a stochastically distributed waiting time.
The most general case I will consider is that where the
waiting time distribution for a jump in the direction op-
posite the previous one is given as p(t) and the waiting
time distribution for a jump in the same direction as
q(t) These di.stributions must be the same for all sites,
the time integral of p(t)+q(t) must be normalized to un-

ity (no emission or absportion of light particles occurs)
and the average waiting time ~ must be finite, or

f dt[p(r)+q(t)] =1, (2.5)

f, «r(p(r)+q(r))=r. (2.6)

As initial condition I will usually consider the situation
where the light particle sits on scatterer 0, with equal
probability that it came there from the left or from the
right.

4. Waiting time Lorentz models

Compared to the stochastic Lorentz gas the waiting
time Lorentz models show an enormous simplification:

8This distribution is normalized only in conjunction with the
distribution p(xo) for the interval xo.

In the case of a regular random walk (all intervals have the
same length) such models have been considered by Haus and
Kehr {1979)and by Zwerger and Kehr (1980).

The probabilaity to get from scatterer 0 to scatterer n in
a given time r is independent of the lengths of the inter-
vals x; and therefore can be simply calculated, just as for
a random walk on a regular one-dimensional lattice, or
for the generalized random walk with di6erent probabili-
ties p(t) and q(t), for backward and forward jumps,
respectively. The difference with the (generalized) regu-
lar random walk is that the position of the nth scatterer
is a stochastic variable, and it is precisely the fluctua-
tions of this quantity about its average that are responsi-
ble for long-time tails. On the other hand, although the
waiting time Lorentz models are much simpler to treat
mathematically than the stochastic Lorentz gas, the
physical behavior is not very different. This becomes
plausible immediately if one considers the intuitive ex-
planations for the occurrence of long-time tails. The
basic ingredients, like the existence of a diffusion equa-
tion and a memory of the positions of scatterers, apply to
both classes of models equally well. Explici. t calculations
will show that, although there are diFerences, those do
not show up in the form of the leading contribution to
the long-time tail in the velocity autocorrelation func-
tion.

5. Special interval and waiting time distributions

Although it is possible to treat general distributions
p(x) for the interval lengths and p(t), q(t) for the waiting
times, certain cases are of special interest. For the inter-
val distribution this is the exponential distribution, corre-
sponding to a Poisson distribution of scatterers,

p(x) =l —'e-"",
or its discrete counterpart,

(2.7)

p(x)=p g (1—p)" '5(x npl), —
n=1

0 &p & 1 (2.8)

In the limit p~0 (2.8) approaches (2.7). For the waiting
time distributions the most interesting special cases are
those where p(t) =q(t) and especially where both are ex-
ponential

iu(i) =q(r) =(2r) (2.9)

which corresponds to a Poisson distribution for the times
at which the light particle makes a jump.

E. Generalizations

In principle several generalizations of the models dis-
cussed above are possible. One could allow for correla-
tions between the interval lengths, such as would arise
from a long-range potential between the scatterers. One
could make the waiting time distribution dependent on
the con6guration of neighboring scatterers, but that
would go at the cost of the simplifications discussed
above. Another possibility still would be to consider a
mixture of diferent kinds of scatterers. For instance, if
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one would add to a system of scatterers with a small or
intermediate reAection coeAicient a small fraction of
scatterers with high reQection coefIicient, one might be
able to mimic the so-called cage effect occuring in higher
dimensions at high scatterer denisties (Alder and Alley,
1978). However, none of these generalizations will be
discussed here.

F. Sinai's fluctuations

A final remark to be made here is the following: Qw-

ing to the stochastic nature of the dynamics of the light
particle one may distinguish two types of averaging that
can be applied to a dynamical quantity. The first one is
an average over all paths of the light particle for a given
configuration of scatterers and given initial conditions on
position and velocity of the light particle (for example,
fixed initial position and equal probability for both velo-

city directions or fixed position and velocity). This aver-

age, if needed explicitly, will be denoted by j j. The
second average is over the distribution of the interval
lengths x; plus possibly a further average over the initial
conditions on the light particle. This average will be
denoted as ( ), but in many cases the same symbol will

be used instead of ( j j ). It was noted by Sinai that
averages of the first type may still be considered stochas-
tic quantities with respect to the second average (Sinai,
1980). Hence one may consider fluctuations of the type
( j j ) —( j j) . We will be especially interested in fluc-
tuations of the velocity autocorrelation function and the
mean-square displacement,

&C(r)=(j V(0)V(r)j') —(j V(0)V(r)j)',

5x'(r) = ( j [x(t)—x(0)]'j') —( j [x(t)—x(0)]'j )' .

(2.10a)

(2.10b)

These quantities are of interest for computer simulations
where one computes, say, ({V(0)V(t) j ) by calculating

j V(0)V(t)j for several configurations and initial condi-
tions and averaging subsequently. The magnitude of
6C(t) gives an indication of the amount of averaging
that will be needed for a given time t, and, in addition,
one may manage to reduce the amount of averaging
needed by a judicious choice of the initial conditions on

III. VELOCITY AUTOCORRELATION FUNCTION AND
MEAN-SQUARE l3ISPLACEMENT FOR THE SYMMETRIC
EXPONENTIAL WAITING TIME LORENTZ MGI3EL

A. The Green's function

p(m, t) =e '~'I (r/r), (3.2)

which holds for positive and negative m equally. From
this P(x, t) can be obtained as

00 m —1

P(x, t)=p(0, t)5(x)+ g p(m, t) 5 x —g x;
m=1 i=0

x)0 (3 3)

and the evenness of P(x, t) in x can be used to define this
function for negative x.

B. Velocity autocorrelation function and mean-square
displacement

To introduce the velocity autocorrelation function one
first has to say what is meant by the velocity. As the
light particle moves by making instantaneous jumps, it
does not have a velocity in the proper sense of this word.
However, it is possible to attribute to a jump from, say,
scatterer j to scatterer j+1 at a time to, a generalized
velocity

V(r) =xJ6(r r, ) . — (3.4)

With this definition in mind we can attribute to a parti-
cle that sits on scatterer 0 at t =0+ an "average initial
velocity" (x i

—xo)/2r One eas.ily convinces himself
that integration of this quantity from t = —e to t =0+
correctly yields the average displacement of the light par-
ticle during this small time interval. ' Likewise, if the
light particle is at scatterer m at time t, its "average
velocity" is (x —x &)/2r; The vaf now is obtained as

P(m, t) of finding the particle at scatterer I at time t
(Feller, 1971, Sec. II, 7). This quantity, which is obvi-
ously an even function in m, is obtained for non-negative
m as

m +2k

P(m, tj= (m +2k)! (~+2k) e '~' r

0 (m +k)!k! (m +2k)!

(3.1)

The factor [(I+2k).'/(I +K)!k!](2 ' + "') is the pro-
bability that the light particle arrives at scatterer m after
m+2k jumps, and e '~'(tlat) + "/(m+2k)! is the pro-
bability, according to the Poisson distribution, that the
light particle makes m+2k jumps during a time t. In
(3.1) one recognizes the series expansion of a Bessel func-
tion of imaginary argument (Gradshteyn and Ryzhik,
1965); hence

In this section I want to consider the waiting time
Lorentz model with isotropic scattering [i.e., p(t) =q(t)]
and an exponential distribution for the waiting times as
given by (2.9). Assume that initially the light particle is
located at scatterer 0 and that this position is chosen as
the origin on the real axis. The first quantity of interest
is the Green s function or probability density P(x, t), al-
ready introduced in Sec. I, to f]jnd the light particle at
position ~ at time t. First calculate the probability

oOnly those processes contribute to the velocity autocorrela-
tion function where the light particle jumps just at t =0. I
have chosen here the convention of labeling the particle on
which the jump ends as 0. I could also have chosen to label 0
the particle from which this initial jump starts. But then the
effective initial distribution for the light particle that contri-
butes to the vaf has a probability of —of sitting on scatterer 1,

with effective initial velocity xo/~, and a probability of —of
sitting on scatterer —jI, with effective velocity —x &/x.
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(3.5a)

Q2 I2=e "-[I,(t/r) I.—(t/r)] +n(t/r) +
22

(3.5b)

C(&)= y p(m, t)((x i
—xo)(x —x, ) )/(4r')

+[(x i +x0) /(2r') j5(t/r)

Here I used the property (x;xj ) =12 for i+j, as a result
of which the only remaining contributions come &om
m =0, +1. The initial 5 function accounts for the corre-
lation of a jump at t =0 to itself. " From the known
asymptotic expansion of I~ for large argument (Gradsh-
teyn and Ryzhik, 1965),

e "I~(x)=(2irx) ' 1—
2x

2m —1

2
2m +3

2
2m —1

2

2!(2x)

2m +1
2

2m —3
2

(3.6a)

ir2 — nx=(2+x) ' e " 1+—
x 8

m' m'
2g~ 2

(3.6b)

one readily obtains the long-time behavior of the vaf as

Q2
C(t) = (t/r)

4 2ir

The diffusion coefficient is found as

D =I dt C (t) =1'/2r,

(3 7)

(3.8)

The remainder of this section is devoted to a discus-
sion of certain aspects of the above results plus a con-
sideration of steady-state difFusion.

and the mean-square displacement as a function of time
is obtained by integrating (3.5b) twice with respect to
time, with the result, setting x(0)=0,

t/~
(x (t)) =1 t/r+6 I dx e "Io(x) (3.9a)

=1 t/r+b, (2t/mr)' for t/r. » 1 . (3.9b)

times. Figure 4 shows the vaf as a function of t/r to-
gether with the asymptotic approximation (3.7). One
sees that the asymptotic behavior sets in already surpris-
ingly early, say, around t/v=4. If b =1, the contribu-
tion to the diffusion coefftcient from the area of C(t) for
t/r between 4 and oo amounts to almost 30% (with neg-
ative sign. ) of the diffusion coefficient.

D. Connection between density fluctuations
and the long-time tails

00 )m
(x'(t)) = g p(mt) x;

),
rn = —oo i=a

(3.10a)

It is interesting to calculate the long-time behavior of
the mean-square displacement also from (3.3) and (3.2)
with the aid of the asymptotic expansion (3.6b). This
yields

C. Contribution of the long-time tail of the velocity
autocorrelation function to the diffusion coefficient

e ~ ~'(m 1+~m ~b. )
2trt/r

First, the diffusion coefficient exists, and it is the same
as for a random walk on a lattice with a fixed distance
between neighboring scatterers. This is certainly no
surprise; the probability p(m, t) is the same for the lat-
tices with fixed and with random intervals, the average
distance to the origin of the mth scatterer in the random
case is just m/, and the relative Auctuations of this dis-
tance are small for large m. Notice, however, that corre-
lations between the initial jump and jumps at later times
are of paramount importance in establishing this result!
If all jumps were uncorrelated, the diffusion coefficient
would be given by (1 +5 )/2r. For instance, in the case
of a Poisson distribution of scatterers, where A=I, this
would make a difference of a factor 2. Now it would be
unrealistic to attribute this diAerence entirely to the
long-time tail in the vaf because there are also memory
effects occurring on the time scale of a few mean jump

=1't/r+b, '(2t/~r)'" .

(3.10b)

(3.10c)

One sees again that the main contribution comes from
the average distance to the origin ml, of the mth scatter-
er, whereas the t/t term responsible for the long-time
tail in the vaf is due to the Quctuations in this distance
(or, equivalently, to fluctuations in the density of scatter-

~~To understand this contribution one may consider a model
in which the jumps are not instantaneous but instead require a
fixed time to&&r. In this case the self-correlation of a jump
starting between t = —to and t =0 on the average contributes
(1 +b, )

~
to t

~

~ 'to H(to —
(
t

~

) t—o C(t) In the .limit
to~0 this approaches the 6-function contribution in (3.5).
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N —1 N —1

p(xo, . . . , x~ i)= +p(x;)5 g xJ L—Z
i =0 j=O

(3.11)

where Z is a normalization constant.
The average length of an interval now is L/N, due to

the constraint, and the variance,

b,L~ ——((xo L/—N) ), (3.12)

0

FICx. 4. The normalized velocity autocorrelation function
2C(t)r /5 {solid line} for the symmetric, exponential awaiting
time model, and the asymptote —(1/2v 2'}(t/~} ~ (dashed
line) as a function of t/~.

ers). The latter are typicall'y of a magnitude ~m. An
equivalent interpretation is to attribute the ~t term to
spatial fluctuations of the diffusion coefficient. Spatial
fluctuations in the average length of the intervals directly
lead to spatial fluctuations in the diffusion coefficient, as
can be seen from (3.8). From these the correct long-time
behavior of (x (t) ) can also be obtained (Dorfman et al. ,
1981).

in general differs from b, . As a consequence of the con-
straint the lengths of different intervals are not uncorre-
lated any more. One has

N —1

(+o —(&0)) g (x —(x )))=0,
i=0

+(N —1)((xo—(x ) }(x,—(x, ) ) ) =0, (3.13)

((x,—(x, ) )(x, —(x, ) ) ) = —ag~/(N

provided X ~ 1. In the limit X—+ oo this correlation
disappears, and, if L /N =I, the quantity EL& approaches

The infinite periodic lattice can be related to the
periodic box in the usual way by imposing the conditions

x +kz ——x (0&m &N; k=+1,+2, . . . ) . (3.14)

The vaf still can be obtained from (3.5a), with b, replaced
by KL& and l by L/N but, as a result of the periodicity
conditions (3.14), Eq. (3.5b) is to be replaced by

E. Comparison with the theory of Ernst and Nfeyland C(t) = e ' ' g [INk+I(t/r) Ixk(t/r)—]btvr
k = —Do

X —1

From the calculation of the vaf given above one may
conclude that the picture for the origin of the long-time
tail, as sketched in Sec. I, applies also in the case of the
waiting time Lorentz models. The long-time tail is en-
tirely due to recurrences of the light particle to the inter-
val of its first jump, the probability of such a recurrence
is described to leading order by the solution of the dif-
fusion equation, and the slight difference between the
probabilities of returning from the right or from the left,
depending on the direction of the initial jump, introduces
a factor 1/t

In the case of a Poisson distribution of scatterers,
where l =6, (3.7) agrees entirely with the result of Ernst
and Weyland (1.28) if one uses instead of Do the com-
plete diffusion coefficient, given by (3.8).

+ 2 [(L/N) +h~L]('.)(t/~) . (3.15}

p(m, t) =e ' ' g I~k+~(t/v)
k = —00

1
' 2~imq
exp .

N
27rq

1 —cos

(3.16)

For large N and t/r (3.16) can be approximated as

For the periodic box the function p (m, t), with
0 & m &N, can be expanded in plane waves by means of
a discrete Fourier decomposition. The result reads

F. Periodic boondary conditions

Co

p(m, t)= —+—g cos 2&qx 2&q
exp —Dt

Periodic boundary conditions can be imposed in dif-
ferent ways. The most straightforward is to put a Gxed
number X of scatterers into a periodic box of length L
and to impose the distribution )M(x) on each of the inter-
val lengths, under the constraint that the total length
equals L,. This leads to a joint distribution for the X in-
tervals of the form

(3.17)

where we put mL/N=x. In (3.17) one recognizes the
decay of an initial 5 function through the eigenfunctions
of the diffusion equation for a periodic system. The ex-
act eigenfunctions for the time evolution of the random
walk process under consideration are of course given in
(3.16). Substitution of (3.16) into (3.15) leads to
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~NL -' '

Zmq
2

C(t) = —— g 1 —cos
2v (N —1)

2K/
exp &

— 1 —cos (L/N) +b,~L, 5(t/r) .1

7. 7

From (3.15) and (3.18) one can infer the behavior of the
vaf in different time regimes. For t/r &&N, that is, for
times in which the light particle has a very small proba-
bility to reach the boundary of the box, only the k =0
term in (3.15) contributes. Hence in this time regime the
infinite-system result (3.5b) is reproduced, except for a
change in the coefficients! For example, in the case that
the X scatterers are distributed independently over the
box I one finds

~NL
L (N —1)
N (N+1)

(3.19)

so, if one chooses L /N =l the coefficient of the apparent
long-time tail is reduced by a factor N/N+1. This is
typical for a finite size correction (Wood, 1975).

For t/r &)N the terms with q =1 and q =N —1 in

(3.18) become dominant. In this time regime the vaf de-

cays exponentially, due to the exponential decay of the
nonconstant eigenmodes of the diffusion equation. This
type of crossover from a power-law decay to an asymp-
totic exponential time decay is well known in computer
simulations (Wood, 1975).

The diffusion coefficient is readily obtained from
(3.18), with the aid of (1.8b), as

1 LD=
2w

2

(3.20)

This is the same again as the diffusion coefficient for a
random walk with constant lattice spacing L/N, as one
would expect.

It is interesting to consider also a diff'erent way of in-

troducing periodic boundary conditions, namely by dis-

tributing the intervals xo - - . xN ~ independently of each
other according to p(x) plus imposing the periodicity

I

condition (3.14). In this case the periodicity length L is
a fluctuating quantity. The coefficient of the apparent
long-time tail for t/w &&X now becomes the same as in
the nonperiodic infinite system, but the diffusion coeffi-
cient becomes a fluctuating quantity dependent on L, as
the average interval length is L/N. If one averages over
the distribution of the intervals, he obtains an average
diffusion constant

D,„=(l /2r)(l+b, /Nl ) . (3.21)

Finally, it is illuminating also to consider the mean-

square displacement. Owing to the periodicity condition
the fluctuation in the distance of the rnth scatterer to the
origin does not grow as i/m, but is bounded to be at
most of the order v N. Therefore the contributions to
the mean-square displacement from these fluctuations
saturate at a value proportional to N as soon as t/r be-
comes much larger than X .

G. Sinai's fluctuations

As discussed already in Sec. II, quantities such as the
vaf can be considered as resulting from a twofold averag-
ing procedure, namely, an average over random walks at
fixed scatterer configuration, indicated by I j, followed

by an average over scatterer confIgurations, indicated by
( ). The quantities resulting after the first averaging are
still stochastic variables with respect to the second
averaging. A typical measure for the degree of stochasti-
city of a variable is its variance. In the case of the vaf
for the waiting time Lorentz models I consider the quan-
tity (I V(0)V(ti)I I V(0)V(t2)I ) from which the vari-

ance of the vaf is readily obtained by putting ti t2 and-—
subtracting the square of the average vaf. A straightfor-
ward calculation, based on (3.5), yields

( I v(0) v(t, ) I I v(0) v(t, ) I )=-
16& m

XI,(t&/r)((x i
—xo) (x~ —x~ i)(xq —xq —i) )

e ' I~(t, /r)5(t2/r)((x i+xo)(x i
—xo)(x~ —x i))

8&

e ' I (t2/r)5(ti/r)((x i+xo) (x i
—xo)(x~ —x~ i)

q=——oo

, 5(t, /r)5(t, /r)((x', +x,')')
4~

(3.22a)

I (t, /~)I, (t&/r)

Q ((X i —XO) ) ({X~—Xor i)(xq Xq —1))+~corr t
(3.22b)
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the correction terms u„„resulting solely from I or q =0, +1. The only nonvanishing contributions to the leading
term come from q =m, m+1; hence (3.22b) can be reduced to

r

d —(t &+t2)/~
e ' ' I (t]jr)I (t2A)+~,.„,/

g4 —(t
&
+ t2)/v.

e ' ' I0((tl +t2)jr)+~,„d(t2/r)

( l V(0) V(t] ) j l V(0) V(t2) j = 4e y I (t]/&)[2I~(t2/&) —(I~+](t2/&)+I ](t2/r))]+~, o
8&

4

4 e [I 0((t ]+t2)/7) —I]((t]+t2)/7 )]+~
4~

The similarity of this result to Eq. (3.5b) for the vaf itself immediately strikes the eye; and, as a matter of fact, this
similarity is not incidental. Some refj, ection reveals that the two independent random walks, both starting at t =0, can
be linked together to one random walk, starting at t = —t& passing through scatterer 0 at t =0 and ending at I, =t2.
Indeed, if on the right-hand side of (3.22b) one takes out a factor —((x ] —x0) ) /4r, the remaining expression is just
the vaf for such a random walk. It is clear that the condition that the random walk must pass through scatterer 0 at
t =0 does not afFect the value of the vaf, as all scatterers are equivalent under the average ( ).

The correction terms resulting from m, q =0, +1 are easily expressed in terms of moments of the interval distribu-
tion function p(x). We have to require the existence of the third and fourth moments, denoted as (x ) and (x ),
respectively. The final form for the Auctuation formula becomes

(l V(0) V(tl) j l V(0) V(t2) j ) = e [IO((tl+t2)jr) I]((t]+t2)j—r)]-
4~4

+ 4
e ' ' [Il](t]/r) Il (t, /r)]—[I0(t2/r) —I](t2/r)]

Sw

~((x4) 4(x )I+(x } +4(x )I —21") + 45(t]/r)5(t2/r)((x )+(x ) )
2~4

+ (5(tl r' r)e [IO(t2/7 ) Il (t2/T)]+5(t2/r)8 [IO(tl / r) Il(tl /'r)])

X ( —(x'&+2(x'&I (x')') . — (3.24)

From this result one may immediately extract the long-

time behavior of the Quctuations. The variance

( l V(0) V(t) j ) —( l V(0) V(t) j ) decays asymptotically as

t /, just as the vaf itself does. This implies that the

stochastic variable l V(0)V(t) j is typically of magnitude

]—3])]'4 12
4

Hence, if one would like to extract the long-time

behavior of the vaf from a stochastic average applied on

l V(0) V(t) j (e.g. , by a Monte Carlo simulation on a com-

puter), one would have to average over extremely many

configurations of scatterers. One way to improve on this

situation is by considering each configuration of scatter-

I

ers together with the configuration that obtains by the
interchange of the intervals x ] and xo. One may then
define an average j j' consisting of both an average over
random walks and an average over the two selected con-
figurations of scatterers. In either configuration the light
particle starts oK at scatterer 0 at t =0+. The average
value lx ] —xoj' now is equal to zero. Hence in (3.24)
only the correction terms survive (they are not changed!),
and the stochastic vaf l V(0) V(t) j' is of order t ~ for
long times. This, in fact, can be seen directly from
(3 5a): l(x —1 x0)(x x —i) j' vanishes for

I
m

I
) 1

and one has

p(]]t, t) l(x ] —x0)(x —x, ) j'+ jx 1+x j'5(t jr)1 "™2r2

1

4w 2 [e ' [Il(t jr) —I0(t/r)](x ] x]]) +2(x ]+x0)5(tjr)] (3.25)

"»na] (1980) has obtained stronger results concerning the distribution of I V(0)V(t)j with respect to p(x;) in the case of
the stochastic I orentz gas.
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Of course there is no reason to compute the vaf for the waiting time Lorentz model by stochastic methods In more
complicated systems, however, for which the vaf cannot be calculated exactly, one may want to use computer simula-
tions for a calculation of the vaf. Then it will be very useful if the spread in the computed values can be reduced sub-

stantially by a judicious choice of the averaging procedure.
It is also of interest to calculate the variance of the mean-square displacement Ix (t) j. With the aid of (3.10) one

readily 6nds

(Ix'(r, ) j [x'(t, ) j ) —( Ix'(t, ) j )( Ix'(i, ) j )

=2 Q g e ' I (r)/r)I„(tp/r)
m =la =1

&&[min(m, n)((x ) —(x ) )+2 mi n(m, n)(m+n —2)((x )l —(x )l )

+2min(m, n)[min(m, n) —1]((x ) —i )+4min(m, n)(m —1)(n —2)5 1 ] . (3.26)

For t1 and t2 large the last term between square brackets
dominates. With the aid of (3.1), (3.2), and (3.6) the
asymptotic behavior of this term is found as

at scatterer i at time t, ' the steady state is characterized
by occupation numbers Ip; j averaged over the random
walk process that satisfy

a(X+ 1 i)—
fp j= (3.28)

8D t1t2
(3.27)

I mD(t)+t2) j
' l

This implies that Ix (r) j —( tx (t) j ) for long times is of
order t, whereas the long-time tail contribution to
(Ix (t)j ) was found in (3.9b) to be of order t'~ . This
may be an indication of why in computer simulations the
long-time tail in the vaf is usually observed with much
greater accuracy in the mean-square displacement than
in the vaf directly (Wood and Lado, 1971) (although the
averages performed for a 6xed configuration of scatterers
are usually different from the average considered here).
For long times also the spread in the mean-square dis-
placement becomes large compared to the long-time tail
contribution, but the ratio of the two increases much
more slowly with time than in the case of the vaf. On
the other hand, it does not seem possible to reduce the
variance of the mean-square displacement by a simple
change in the averaging procedure I j, as could be done
for the vaf.

H. Steady-state diffusion

As discussed already in Sec. I, a common way of de-
fining the difFusion constant is as the ratio between the
average values of current and density gradient of difFus-

ing particles in a steady state. In our one-dimensional
models we can set up such a steady state by placing a
source at the origin which emits particles to the right at
a constant rate o./2~ and which, in addition, absorbs all
particles hitting it, by placing % scatterers at positions
g~, g2, . . . , g~, such that 0&/, &$2 . . &g~, and by
putting a sink that absorbs all particles hitting it at
L &g~. If p;(t) is the number of light particles located

One simple way of seeing this is by noting that the
Ip;(r) j satisfy a master equation

IP (t)j=& ( 2 IP +~(r)j+ IP -~(t)j —(P (')j)

(1&i &X) (3.29)

dt I p, (t) j =r '( —,a+ —, Ip, (t) j —
I p, (r) j ),

Piv(t) j =r ( 2 IP~ i(t) j —IP~(t) j ) .

Equation (3.28) is just the steady solution to these equa-
tions. Notice that the density pro61e is linear in the la-
bel I,. The precise location of the scatterers is completely
immaterial, as was to be expected. The average current
is given as

A

2r(%+ 1)
(3.30)

The average gradient of the density of light particles is
—a(%+1)/L; hence the diffusion coeAicient as a func-
tion of X and L follows as

D(X,L)=
2r(%+1) 2m %+1 (3.31)

Although in this picture it is natural to consider systems
containing a large number of light particles, I maintain the re-
quirement that these do not interact with each other.

where n is the average density of scatterers.
It is worth noticing that the results obtained here

remain essentially unchanged for the steady states of the
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stochastic Lorentz gas with isotropic scattering. There
the densities of light particles moving away in either
direction from each scatterer take the role of the In; I,
but except for this trivial modification everything dis-
cussed here remains the same.

One must now ask the question how the stochastic dis-
tribution of the scatterers influences the average value of
the diffusion coefficient. The answer to this question
depends on the way in which the sources are added to
the system and on the constraints one wants to impose
on the distribution of scatterers. I want to consider three
different possibilities.

1. A given number of scatterers is distributed over an
interval of fixed length I.. Then the result (3.31) is valid
for each configuration of scatterers and the stochastic na-
ture of the distribution of scatterers does not appear.

2. The number of scatterers is fixed, but the length I.
of the total interval may Auctuate. The simplest possi-
bility for these Quctuations is the assumption that all
nearest-neighbor distances, including those between the
sources and the scatterers 1 and X, are distributed ac-

cording to p(x). Then the average of (3.31) over these
distribution yields

I2

2v

+2
1+

(%+1)l (3.32)

The correction to the infinite volume value of D is of or-
der 1/N, that is, of the same order of magnitude as
boundary effects [compare also (3.21)].

3. The length of the interval I. is kept fixed, but the
number of scatterers is allowed to fluctuate. The dif-
fusion coefficient for given I. is then determined by the
distribution of the number of scatterers on this interval.
The simplest choice is to neglect the influence of the
sources on this distribution and to consider the probabili-
ty of finding X scatterers on an arbitrary interval of
length I, if the nearest-neighbor distances are distributed
according to p(x). A fairly long but straightforward cal-
culation, which is given in Appendix 8, yields the fol-
lowing result for the distribution of X at given L, :

—(W —no)'I'/2d 'no

PL(X)=-l e

2irn p

1
1 +

no

(x'),
6IA

Q2

41

(x ),
12S2 8S4+

(x'),'
g6

X —no

no

l(x'), +0
25 no

L

(X np )—+--
no

17l(x'), t4 t'(x'), St'(x'),'
12g4 12g4 4g6

+O
8~

+

(X —no)'
+ 2

no

l'(x')
+0

26 64 no

(N —no)
+

no

5t'(x'), (x'), t~

4~
+

6~
+

242

5l'(x '),'
24k'

+O
no

(X np) (—x ),
no

l'(x'),
+O

126 no

(X —no)
+O

no
+ ~ e ~ (3.33)
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I
2v

1 6 13, —2+0
np p (3.34)

Again, the corrections to the infinite-system diffusion
coef5cient are of order 1/N, and the leading correction
can be separated into a term due to the length fluctua-
tions of the intervals [the term (1/no)3b, /l ] and a term
due to boundary effects (the term —2/no). For the case
of a Poisson distribution of the scatterers the calculation
simplifies enormously, and from (3.31) one obtains im-
mediately

$2 ao (I /l)N+2 LII-
D=

2r ~ 0 N!(N+. 1)

where no ——L/I and (x ), are the cumulant moments of
x with respect to the distribution p(x) (provided these
exist).

With the aid of this result and (3.31) one obtains for
the diffusion coefficient

I2 ND = g&L, (N)
(N+ 1)

Pf p
2

f dx I'L(x)
00 (no+1)

2(x no—) 3(x —no)x + +no+1 (no+1)

Kehr (1979) and by Zwerger and Kehr (1980).
From the Green's function G (k,z), as defined in (1.11),

all other quantities of interest may be obtained easily.
The calculation of this function is straightforward and
can be done by combining the following steps.

(i) Start from the situation where the light particle is
initially at the origin, at scatterer 0, with equal probabili-
ty to have arrived from either side. Then the probability
density for a first jump to the right, respectively to the
left, is given as (Feller, 1968 Sec. XIII, 5)

r+(t) =r (t) =r 'f d-t' , [p(t—')+q(t')], (4.1a)

or after a Laplace
f(z)= f dte f(t),

+ 1r+=r = (1—p —q),2Z7.

transform, defined by

(4.1b)

where the z dependence of p, q, and r+— is omitted.
Equation (4.1a) is easily understood by noting that the
unconditional probability density for arrival of the light
particle at scatterer 0 at time t —t' is just ~ ', and that
the probability density for a first jump to the right at
time t, after arrival at time t t', is —,.[p(t—')+q(t')] if the
previous jump had no preferred direction.

(ii) Similarly, after arrival of the light particle at a
given scatterer at time tp, -the probability to find it at the
same scatterer, without having jumped, at time tp+t is
given by

I2 (L /1)N +2

(N +2)!

I I I1+—
2~ L, 2w P1p

(3.35) s(t) = f dt'[p(t')+q(t')],

or, after a Laplace transform

s=(1—p —q)/z .

(4.2a)

(4.2b)
in agreement with (3.34).

Further quantities of interest are the Green's functions
F(k, t) and G(k, z) defined in (1.4) and (1.11), respective-
ly, and the higher-order diffusion coefficients D' "'(t) and
U' "'(z), defined in (1.7) and (1.13). Instead of discussing
these quantities for the special case treated above, I will

consider them for the general waiting time Lorentz
model, which will be the subject of the next section.

(iii) The probability of finding the light particle, sitting
originally at scatterer 0, still at scatterer 0, without hav-
ing jumped, at time t, is given as

s,(t) =r ' f dt' f dt "[p(t")+q(t")], (4.3a)

z —r (1—p —q)
—]

Sp=
Z2

(4.3b)

IV. THE GENERAL WAITING TIME LORENTZ MODEL

A. Calculation of the Green's function

As mentioned already in Sec. II, the most general
waiting time Lorentz model that can be solved by the
simple methods discussed here, is the one in which the
waiting time distribution p(t) for a backward jump is dif-
ferent from the distribution q(t) 'for a forward jump, but
p(t) and q(t) are the same for all scatterers. For the usu-
al random walk, with equal distances between the
scatterers, such models have been discussed by Haus and

X=p+ gq p" 'X'"=p+
1 —pX

(4.4)

The first term on the right-hand side of (4.4) gives the
probability that the particle jumps right back to the ori-
gin. The terms in the series describe the probability that
the particle jumps back to the origin after n returns from
the right to scatterer 1. The solution of (4.4) reads

(iv) The (Laplace-transformed) probability density X
for a first return to the origin (scatterer 0),just after the
light particle has jumped to the right (or to the left) from
the origin is obtained from the equation
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214 Henk van Bejjeren: Transport properties of stochastic Lorentz models

X= 1+p' —q' —v (1—p —q)(1+p +q)(1 —p +q)(1+p —q)
2p

(4.5)

(v) The probability density for an unconditioned return
to the origin just after the first jump, is given as

0,1,2,. . .subsequent returns to m from the right, followed
by a jump to m +1 is given as

R = g X"(p+q)"
1 —(p +q)X h=q g (Xp)"=

1 —pX
(4.&)

(vi) Combination of i —U yields for the total probabili-
ty of ending up at the origin

—1

P(0)= z —r (1—p —q)

1 —p —q X+ zr 1 —(p +q)X
(vii) Suppose the light particle arrives from the left at

scatterer m. Then the probability density for

Z+= g qX(pX)"-'=
1 —pX

(4.9)

(ix) The probability P(m) of ending up at scatterer m,
with

~

m
~

& 0, is obtained by combining (i), (v), (vii),
(viii), and (ii) into

(viii) The probability density for 1,2, . . .subsequent re-
turns from the right to a given scatterer, just after arrival
from the left is given as

P(m) = (1—p —q) —+R1 1 p+q
z~ 2 2

1 —p —g 1

2zr 1 —(p +q)X 1 —pX

Finally the Green's function is obtained as

00 m —1

G(k,z)=P(0)+ g P(m) Q f dx;e
m=1 i=0

/m
/

—1

1+(q —p)X 1 —p —q
1 —pX z

—ikx, ikx,.'p(x;)+P( —m) Q dx;e 'p(x;)
/ =1

(4.10a)

(4.10b)

=P(0)+ g P(m}[M (k)+M ( —k)j
m=1

z —v. '(1 —p —q} 1 —p —q 1 —p —q
Z2

+
z 2zr[1 —(p +q)X]

(4.11a)

X 2X+ g (M (k)+M ( —k)) 1+(q —p)X
1 —pX

(4.11b)

1 —p —q (1 —pX)[X+M(k)](1—p —q)1—
rz' 2[1—(p +q)X][1—pX —qM(k)]

(1—pX)[X+M( —k)](1—p —q)
2[1—(p +q)X][1—pX —qM( —k)]

(4.11c)

M(k)= f dxe-' p(x) .

As consequence of (2.1) one has

(4.12)

where I introduced the Fourier transform of the interval
distribution function,

B(k)=M(k)M( —k) —1 .

In the limit k~0 one finds for these

(4.15b)

the light particle. It is useful to introduce the quantities

~ (k}=M(k)+M( —k) —M(k)M( —k) —1, (4.15a)

limM(k) =1 .
k —+0

(4.13)

Substituting this result and (4.5) into (4.11) one easily
checks the relation,

limA(k)/k = —1
k —+0

limB(k)/k = —6
k~O

(4.16a)

(4.16b)

1limG(k, z)= —,
k~0 Z

(4.14) One may express G(k, z) in terms of these quantities by
means of some algebraic rearrangements on (4.11c), in

which 'is an obvious consequence of the conservation of w»ch Eq. (4.5) for X has to be used. The result reads
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1
G(k, z) =—1+

Z 27.Z
' 1/2

(1+p +q)(1 —p +q)
(1—p —q)(1+p —q)

1— q A(k)+—1
(1+p —q)(1 —p —q) 2

1/2
1 —p+q „(1—p —q)(1 —p+q)
1+p —q (1+p +q)(1+p —q)

r (4.17)

For the generalized diff sion coefficient U(k, z) defined in (113a) this yields
' 1/2

1 —p+q „(1—p —q)(1 —p+q)+ (1+p+q)(1+p q)—
P

1 —p +q 2qTz A(k)2'(1+p —q) (1—p+q)(1 —p —q)
(4.18)

1 — 1—1 1 —p —q
2 rz(1+p+q)

1/2
(1+p+q)(1—p+q)
(1—p —q)(1+p —q)

B(k)

It is interesting to consider the simplifications occurring in these expressions for certain special cases, but before do-
ing so I first want to consider certain general properties.

B. The coefficient of self-diffusion

The diffusion coef5cient is obtained from (1.13) and
(4.18). Let us assume the jump frequencies p and q can
be expanded as

I

This is the same again as the diffusion coefficient for the
corresponding random walk on a lattice with fixed
lattice-spacing l (Haus and Kehr, 1979).

The frequency-dependent (or z-dependent) diffusion
coefficient now follows from (1.13) and (4.18) as

p(z)=po —p, z+0(z ),
q(z)=1 —po —qiz+0(z ),

(4.19a)

(4.19b) U(o)( )
2v

1 —p+q I
1+p —q

P1+q1 =7 (4.20)

where (2.5) was used, and as a consequence of (2.6) one
has

+ (1—p —q)(1 —p+q)
(1+p +q)(1+p —q)

1/2

(4.22)

' —» 2D=lim lim U(k, z)= I
z —+0 k —+0 2ppv

(4.21)

In addition, it is assumed in (4.19) that the second mo-
ments of p and q exist. The difFusion coef5cient is then
found as The first term on the right-hand side again is the result

for the random walk with constant lattice spacing; obvi-
ously, the second term represents the effect of fluctua-
tions in the interval lengths.

C. Low-frequency and high-frequency behavior. Higher-order diffusion coefficients

Let us next consider the limiting behaviors for small and large frequencies. For rz « 1 one finds for G(k,z) and
U(k, z), respectively,

1/2

G(k, z) =—=

1+0(1)A(k)—
2 27zpo

r

1 —po +0(1) A (k)—
2vzp p

1/2
1 —pp
27 zpp

+0(1) B(k)

+0(1) B(k)
(4.23a)

U(k, z) =

1 —pp +0(z) A (k)+
po

1/2rz(1 —po)

2po
+0(z) B(k) .

1/2

+0(1) B(k)

T

1 1 —pp2rkz 1+0(1)A(k)—
2 2vzpo

(4.23b)
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Let us assume that all moments of p(x) exist. Then A (k) and 8 (k) can be expanded in powers of k, the first terms
in these expansions being given by (4.16). Expansion of G(k, z) and U(k, z) in powers of k yields

1
Qo

G(k,z)= — 1+ gz n=1

—(1—S o)l'k'
27 zpp

T

2&Wp
1+(n ——, )

1 —Pp

1/2

+O(z) ' (4.24a)

Dk-
n=1 z

1+(n ——, )b, (4.24b)

1/2

1 —pp1+ 1/2
2vzpp

6 +O(1) k

l'(1 —po) a' (1—S'o)z
+

2%pp 2 27p p

1/2 (4.25a)

Q2
U"'(z) =D+ &zD +O(z)

2I
1/2 n

U (z)=D — (1+Oyez) (n =1,2 . ) .(2n)

2I z (4.25c)

(4.26)

Here definition (1.13b) of the U' "'(z) was used.
Clearly the asymptotic small-frequency or long-time behavior of all these quantities is entirely determined by the dif-

fusion coefficient and the variance of the interval length. The Gner details of the waiting time distributions and the in-
terval distribution do not show up. From (4.25) it is obvious that all higher-order transport coefficients U' "'(z) with
n & 1 diverge as z " when z tends to zero. Hence the conjecture of Alley and Alder (1979) that these coef5cients
would have a Rnite limit as Z~O is not satisfied for the one-dimensional waiting time Lorentz models considered here.
Let us next consider the time-dependent transport coef5cients D' "'(t), defined in (1.7a). For the asymptotic long-time
behavior of the moments of displacement Eqs. (1.11) and (4.24b) yield

1(x "(t)) —(Dt)"(2n)!
n! (Dl2t)i/21 (n —

2 )

where I (x) is the gamma function. The cumulants of these moments are found from (1.5) as follows:

oo 1 Q2
logF(k, t)= log 1+ g ( Dtk )" +-

n=1 (Dl t)'/ I (n ——, )
(4.27a)

Dtk'+log 1+ g—eD'" ( —Dtk')"
n=1

Q2

(Dl t)'/ I (n ——)
(4.27b)

g2 ao n —i
( 1)mDtk'+ . . . g—( —Dtk')" g(Dl t)' „ i m=o m!1 (n —m ——, )

(4.27c)

Hence

( 2n(t) ) (Dt)n —1/&

~=o m!I (n —m ——, )

and (1.7b) yields for the time-dependent transport coeffi-
cients

D""'(t)= D6 + (Dt)" ' '(n+ —)
AD

pn l 2

+2Dt5„1, (4.28)
( —1)

=o m!I"(n —m+ —, )
(4.29)
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1 3 (k)+8(k)
(4.30a)

A (k)+8(k)
2' (4.30b)

as follows from (4.17) and (4.18). For the limiting
behavior of the coef6cient U' ' this leads to

This implies that for n ) 1 the coefficients D' "'(r)
diverge as t" '~ for taboo, although the coefficient of
this power decreases rapidly with increasing n. This cor-
responds to a divergence z' " as z~O for the Laplace
transform z dt e "D' "'(t). This at least seems to

0
lend some support to the statement (Alley and 'Alder,
1979) that the coef5cients U' "'(z) are more suited for a
description of the generalized diffusion process than the
coefficients D' "'(r). Notice also that within the theory
presented here the quantity U(k, z) is obtained much
more straightforwardly than D(k, t).

Consider next the high-frequency limit. Let us assume
that both p(z) and q(z) tend to zero in the limit z —+ oo.
Then the limiting behavior of G(k, z) and U(k, z) is given
by

lim U' '(z)=(l +b )/2r
Z~ 00

1 —po
(1+b, '/I')D . (4.31)

In a sense these results are an artifact of the model: The
existence of a nonzero limit as z~oo for (4.30b) and
(4.31) is a consequence of the assumption of instantane-
ous jumps [Compare Eqs. (3.5b) and (3.8)]. However,
under the condition that the average duration of a jump
~,„p is very much shorter than the average waiting time
(this condition must be satisfied anyhow for the waiting
time Lorentz model to be a good approximation), one
can find a frequency range such that the conditions
z~~~ 1 and z~&„mp&~1 are simultaneously satisfied. In
this frequency range (4.30) holds to a very good approxi-
mation and the ratio (po/1 —po)(1+5 /I ) between
U' '(z) and D is virtually exact. It is noteworthy that in
the high-frequency limit the Quctuations in the interval
lengths lead to a noticeable increase in the diffusion coef-
ficient in comparison to the case of constant lattice spac-
ing.

D. Special choices for waiting time and interval distributions

In a number of special cases for the waiting time distribution and/or the distribution of the interval lengths the ex-
pressions for G(k, z) and U(k, z) simplify considerably. We consider the following examples.

1. Fixed intervals

If the interval lengths have the fixed value I, one has 8(k)=0 and A(k)=2[cos(kl) —1]. For G(k, z) and U(k, z)
one obtains the known results (Haus and Kehr, 1979; Zwerger and Kehr, 1980)

G(k,z) = —1+1

1 — + cos(kl) —1
1+p —q

vz 1— 2q [cos(kl) —1](1+p —q)(1 —p —q)

(4.32a)

U(k, z) =
1 —p +q [cos(kl ) 1]/k-
1+p —q

1+ 1 — — [cos(kl) —1]rz(1+p —q) (1—p +q)(1 —p —q)

(4.32b)

2. The symmetric waiting time distribution

In this case p =q and we may put

p (z) =q (z) =v(z)/2 .

The resulting expressions for G(k, z) and U(k, z) are

(4.33)
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1/2
1+v(z)
1 —v(z)

8(k) .

' 1/2

U(k, z) = — A (k)+ 8 (k)1+v(z)

1 —v(z}(1+hz)
k

1
1

1 —rz —v(z)(1+hz)z= 1+ A k+ —1+2' [I—v(z) ] 2 rz [ I +v(z)]
1/2

v(z)
k

1
1

1 +v(z)
2[ 1 —v(z)] 2

~

1 —v(z)

8(k) .

(4.34a)

2r 1+ & (k)+ —1+1 —v(z)(1+hz) 1 1 —rz —v(z)(1+hz) 1+v(z)
2rz[1 —v(z)] 2 rz [1+v(z)] 1 —v(z)

(4.34b)
I

tion v(z) follows asFor the frequency-dependent difFusion coefficient U' '(z)
one obtains [2r—U'"(z) I']'—

v(z) = S'+ [2rU"&(z)—I']' (4.36)1/2
1 —v(z) 2

1+v(z)
U'"(z)= I'+ (4.35}

Also of interest is the quasisymmetric waiting time
distribution, by which I mean the case where the light
particle after arriving at a scatterer, has probability c to
jump immediately to the next scatterer and probability
density (1 c) v(t)—/2to jump in either direction after a
waiting time t. ' This corresponds to the following
values for p and q:

(4.37a)

(4.37b)

One sees immediately that for a fixed interval length
U' '(z) becomes frequency independent, as was noted by
Tunaley (1974). In general, there is an additional
frequency-dependent part that is proportional to the vari-
ance of the interval length and otherwise is determined
entirely by the waiting time distribution. If one knows
U' '(z) as a function of z, the constants I, b, , r and the

p z)= 1 —cvz/2,function v(z) can be calculated right away. The value of
U' '(co)/U' '(0) fixes b, /I, and from U' '(0) and the q (z) =c + (1—c)v(z)/2 .
coefficient of the square-root cusp in U'"'(z) as z tends to
zero one then finds the values of r, I, and A. The func-~ For G(k, z) and U(k, z) one obtains in this case

1+c (1+c)f 1 —v(z)]
1 —c 1+c+(1—c)v(z)

A k+ 8(k)
1G(k,z)= —1+-
z

1 —cc + —v(z) ' 1/2
2 1 (1+c)[1+c+(1—c)v(z)]2~' 1 —

2
-A k+ —1—

(1—c) [1—v(z)] 2 (1—c) [1—v(z)]
8(k)

1 1+c
k (1+c)[1—v(z)]

2&k2 1 —c [I+e+(1—c)v(z)]

1/2

(4.38a)

1+c [2c + (1 —c)v(z) ]rzX, 1+
2~z(1 —c) (1 —c )[1—v(z)]

1 — 1—1 (1—c)[1—v(z)]
2 rz [1+c + (1—c)v(z) ]

1/2(1+c)[1+c + (1—c)v(z) ]
(1—c) [1—v(z)]

The function U' '(z) has a similar structure as for the completely symmetric case.

(4.38b)

14Thjs may also be interpreted as a situation in which the probability for a jump to bring the light particle from the initial
scatterer —say, no—to scatterer no+m is equal to —'q t ~ '(1 —c) and the jump frequency as a function of time is v(t),
independent of the length and direction of the jump.
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3. The exponential waiting time distribution

If p(t) and q(t) are exponential with the same decay time r, their Laplace transforms are of the form

p(z) = po
1+~z ' (4.39a)

I —po
q(z) =

1+~z
(4.39b)

Putting 1+« =g and 2pp —1 =a, one obtains

G(k,z) =
a k

1
1 g (/+1)(g —a)

2(g+a) 2 1+/ (g—1)(/+a)

(1—a)g ~ k
1

1
(/+1)(g —a)

2(g —1)(/+a) 2 (g—1)(/+a)

r 1/2 (4.40a)

U(k, z) =
A(k)+ '~ '"~ ' B(k)

/+a (/+1)(/+a)
r

(&+'"&— '

2(/+a) 2 1+/ (g—1)((+a)

1/2 (4.40b)

1 —e
In the quasisymmetric case, with v(z)=,the functions G(k, z) and U(k, z) assume the forms

1 —c +7z

+c)« I+&
«[2(1—c)+«(1+c)]

1/2
(1+c)[2(1—c)+(1+c)«)]

(1—c) «
G(k, z) =

1
1 c+2c«—
2(1—c)«2

1 — A (k) —1—
(1—c) 2 1 —c

1/2

B(k) 'z

(4.41a)

U(k, z) =

1+c k
(1+c)«

2(1—c)+(1+c)«A k+

1+e
«[2(l —c)+«(1+c)]

1 1 —c +(1+c)«
(1—c)' 2 1 —c

1/2

B(k)
(4.4 lb)

he compi«eiy symmetric case, which was discussed to some extent in Sec. III, is recovered by putting a=() in (4 4())

or c =0 in (4.41).

4. The Poisson distribution of scatterers

If the scatterers are distributed independently over the real axis vnth density 1 /I, the interval lengths are distributed
according to (2.7). For M(k), A (k), and B(k) this results into

M(k) = 1

E.+i K

—KA(k)=B(k)=
1+K

with x =kl. Substitution of this into (4.17) and (4.18) yields

(4 42a)

(4.42b)

Rev. Mod. Phys. , Vol. 54, No. t, January 1982



Henk van Beijeren: Transport properties ot stochastic Lorentz models

G(k,z) =
1 —p+q 2q'Tz

rz(1+p —q) (1—p +q)(1 —p —q)

1 —p —q (1+p +q)(1 —p +q)
rz(1+p +q) (1—p —q)(1+p —q)

i/2

1 — 1
2q 1+p+q 1 —p+q

(1+p —q)(1 —p —q) (1—p —q)(1+p —q)

i /2

U(k, z) =

1/2,
1 2 1 —p+q (1 —p —q)(1 —p +q)I +2r 1+p —q (1+p +q)(1+p —q)

(4.43a)

l/2
1 —p —q (1+p +q)(1 —p +q)

rz(1+p+q)
~

(1—p —q)(1+p —q)

(4.43b)

1 —p +q ' 2q1z1— 1—
rz(1+p —q) (1—p +.q)(1 —p —q)

M(k) =pe '"t"[1—(1—p)e '"t' ]

A (k) = —2[1—cos(kpl)]

X I p +2(1—p)[l —cos(kpl)] J

(4.44a)

(4.44b)

(4.44c)

In this case the U' "'(z), defined in (1.13b), can be writ-
ten immediately for all n, but I will not bother to do so.
Similarly, one may consider the symmetric case, the ex-
ponential waiting time distribution, etc., in conjunction
with a Poisson distribution and write G(k, z) and U(k, z)
for those cases.

If the scatterers are constrained to occupy discrete lat-
tice sites with a lattice constant Io, and the lattice sites
have independent occupation probabilities p, p(z) is
described by (2.8), and one obtains for M(k), A (k), and
B(k) the following expressions:

tive results apply. The difFusion coefficient is the same
as for a random walk on a lattice with constant lattice
spacing. If all moments of the interval distribution exist,
the higher-order diffusion coefficients U' "'(z) diverge as
z" as z~O, with a coefficient proportional to the vari-
ance 6 of the interval length. The infinite-frequency
limit of the diffusion coefficient has the value
(po/1 —po)(1+6, /I )D [provided p(t) and q(t) contain
no contribution proportional to 5(t)]. For several specif-
ic choices of the waiting time distributions and/or the
interval distribution the expressions for G (k,z) and
U(k, z) simplify considerably.

V. THE STOCHASTIC LORENTZ GAS

A. Counting the walks

(k)
( )2 2+~Z

U(k, z) =
1+ a(k) 1 —(1+rz)

2

1/2

1 /2

From this result one sees that for this waiting time
Lorentz model the relative importance of the ~z term in
U' '(z) increases with decreasing p, or with increasing
density of vacancies on the lattice. If one passes to the
limit p~0, he recovers the results for the continuous
Poisson distribution.

In summary, one may conclude that for all waiting
time distributions satisfying (4.19), combined with inter-
val distributions satisfying (2.1)—(2.3) the same qualita-

where I used that for this model /=lo/p. With the aid
of these expressions one may consider again G(k, z) and
U(k, z) for several cases. As an example I consider
U(k, z) for the symmetric case with exponential waiting
time distribution. This is found as

In this section I want to consider the stochastic
I.orentz gas, as introduced in Sec. Il. As a reminder:
This is the model in which the light particle always runs
at velocity U or —U, and when it collides with a scatterer
it is reQected with probability p, or transmitted with pro-
bability 1 —p. For this model the probability density for
a light particle starting oF at scatterer 0 at t =0, of
reaching scatterer m at time t, cannot be calculated as
simply as for ihe waiting time Lorentz model. The
reason is that for a fixed configuration of scatterers this
probability density depends on the interval lengths x;.

Yet for small values of k and z the Green's function
can be obtained in the form of an asymptotic expansion
in these parameters by means of a calculation that I will
sketch below. A more detailed and rigorous account will
be given by Van Beijeren and Spohn (1981).

The first ingredient of the calculation of the Green's
function G(k, z) consists of finding the probability for a
light particle starting off with velocity Vo (restricted to
be +u) within the interval xo to end up with velocity VJ
within the interval x/ (I assume f&0, the results for
negative f follow by symmetry) after traversing each of
the intervals x; a given number of times n,; as specified
below:
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n;=2m;, m;=0, 1, . . . , for I '&0 or i &f,

n; =2m;+1, m;=0, 1, . . . , for 0&i &f,
II +(1—2II)x~tmnx ='

p 1 —px

m

(5.5)

np ——2mp+1, mp ——0, 1, . . . , if Vp ——u and f &0,

no=2rno+2, mo=0» . ~ If Vo= —u and f &0
smnx

1 —p II +(1—2p)x
1 —px 1 —px

m

(5.6)

nf =2mf+1, mf =0, 1, . . . , if Vf ——u and f &0,

nf =2mf+2, mf =0, 1, . . . , If Vf = —u and f &0,

np ——2mp+2, mp ——0, 1, . . . , iff=0 and Vp ———Vf,

np 2m——p+1, mp ——1,2, . . . , iff=0 and Vp ——Vf .

The numbers np and nf include the incomplete initial—
respectively, final —passage of the interval xp-
respectively, xf. This problem requires a combinatorial
analysis, enumerating all diAerent paths traversing the
intervals x; just n; times and attributing to each path
factors p for each reflection and factors (1—p) for each
transmission of the light particle at a collision with a
scatterer. This analysis is given in Appendix C. The
results read

P (xp, xf ~
Vp, Vf, rn )

00 f—1 OQ

=t t s
porn &

mm;
&

m m +& qfmf+& m&mI+&I'= —1 j=P l=f+1

(f & 1) (5.1a)

~(XO~X0
I

VO~ Vf ~mi ) IrOm
1 + Im, m, spm1 g m .m
i= —1 j=l

(5.1b)

with qp
——mp if Vp ——u and qo rn 0+ 1 if——Vp ———u;

qf —mf if Vf =u and qf =mf + 1 if Vf = —u' rp=mp+ 1

if Vp ———u and Vf ——u; ro ——mp otherwise; sp ——mp+1 if
Vp =u and Vf ———u; sp =Ip otherwise. For the quanti-
ties smn and tmn the following expressions are obtained:

B. The Green's function

The contribution to G(k, z) of a random walk starting
at, gp, ending between f and gf +dg aIld lastlllg between

—s (g' —g'0)
I and I+dr is e "e 'dt dg, times the probability

of this walk to occur. For the sets of walks considered
—zt

—ik( g'f go)
above, the quantity e 'e can be factorized into
a product of contributions from separate intervals. For a
given set of interval lengths x;, the intervals with i &0 or—2m;zx; /u
i &f contribute a factor e ' '; the intervals with
0&i &f contribute a factor expI [—(2m;+1)z/
u —ik]x; I; and the intervals xp and xf yield slightly dif-
ferent contributions depending on the initial and final po-
sition and velocity of the light particle. Next these fac-
tors must be averaged over the interval distributions
p(x;) and over the initial distribution (2.4) of the light
particle over xo, and summations over f and m; must be
performed. Introducing the mean free time between col-
lisions,

1 =I/O (5.7)

One may interpret smn and tmn as matrix elements of
transfer matrices describing the probability that an inter-
val with 2m +1—respectively, 2m —passages of the light
particle is followed by an interval with 2n + 1—
respectively, 2n p—assages In. the case of sm„ the neigh-
boring intervals must both lie on the line piece between
the scatterers 0 and f+1; in the case of tmn at least the
second interval (the one that is crossed 2n times) must lie
outside this line piece, and if both intervals lie outside
this line piece, the second interval must be farther away
from it than the first one.

n+m-2i 1 2i

(m —I)!I! (n —I)!(I—1)! and the generating function,

mI~(m, n)
n +m —21( 1 )21+1

(m —I)!I! (n —I)!I!

(5.2)
P(z) =M( iz/u) =—I dx II(x)e (5.8a)

(5.3)

with the convention tu!/( —1!)=5& 1. Hence one has

=e ' exp g ( —z/u)"(x"), /n!
n=2

(5.8b)

tpn ~pn (5.4)

Also in Appendix C the following properties are
derived:

with M(k) defined in (4.12), one may write down the fol-

lowing expression for the Green's function (Van Beijeren
and Spohn, 1981):
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G(k, z) = 1

27-
I = —1mh ——0 mo ——0

mom oo f oo oo

S
mf+) ——0

Qm 0
oo f oo+, „.gg g m, ,m, g Qmfm„)

mf+[

r T-, ,-,+ rr r T-,;,II r T-,-...
1=f+2mI ——0 j=—1m =0 1=1mI ——0J

mo ——1

(p++(m )+p (m })+ g (t,t. . .+t, ,
t )()()+ (mo) +G (k,z) .

mo ——0

(5.9)

Here I introduced the following symbols:

S~„=s „P((2 m+1) z+ikv),

T~„=t~„d(2mz),

(5.10a)

(5.10b)

P(2mz) —P((2m +1)z+ikv)
Z+ikV

$((2m + 1)z+ikv ) —())((2m +2)z)+~m +1n
Z —lkV

(5.10c)

r 2—(z +ikv)x lv
y++(~) ~

—(2 —li / e

)Z +lkV

G (k z)=
z +(kv)
[z' —(kv)'](1 —(e ~'cos(kx) ) )

r(z + (kv) }
(5.12)

(5.11a)

P--(m) =[/++(m)]*, (5.11b)

(( ~
—(*+ik l*/ )(( q

—t —ik ) /
)

)y+ —(m) e
—2m~/u

(z +ikv)(z ikv)—
(5.11c)

These results require some explanation. The first term
between square brackets contains the contributions from
all random walks starting and ending in different inter-
vals. Furthermore, this term was split up into the con-
tributions with f ~ 0 (the first term between curly brack-
ets} and f &0 [the second term between curly brackets;
for convenience f has been replaced by f in (5.9)]. —
These two terms obviously are each other's complex con-
jugate. The second term between square brackets con-
tains the contributions for which x0 and xf coincide, and
at least one collision occurs. The terms with (I)++ and

correspond to the cases that initial and final veloci-
ty are both positive —respectively, negative; the terms
with P+ correspond to the cases where these velocities
have opposite sign. The contribution G (k,z) finally
comes from those processes where the light particle en-
counters no scatterers at all between the initial and final
times.

The quantities S „and Tm„can be interpreted as ma-
trix elements of transfer matrices S and T again. S „
and T „are the Fourier and Laplace transforms of the
conditional probability density for a given interval hav-
ing length x and being traversed 2m+1—respectively,
2m —times during time t, conditioned on a neighboring
interval being traversed 2n + 1—respectively, 2n —times.
The matrix Q with matrix elements Q „may be inter-
preted similarly as a transfer matrix.

C. Further reductions and asymptotic expansions

(5.13)

The matrix T has one invariant vector, or eigenvector, with (maximal) eigenvalue 1, ()I)' . For small z (that is
zan&&1) and for m &(zr) '~ one can explicitly derive an asymptotic expansion in powers of zr for the components

(with m =0, 1,2, . . . ) of this invariant vector. The leading terms in this expansion can be arranged in the form
1/2

)II~=X 1+ z~m+ (zr) ~ m +O((zr) ~
m) +0(( z)rm )+ ~

1 —p
41' 2I' 2P

with
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1 —e "(1—2p) —[1—2e "(1—2p+2p )+e "(1—2p) ]'~

2p
(5.14a)

1/2

= 1 —2zr (1—p)
p

z~+0 (zr)'~' .(1—2p) (5.14b)

Notice that, but for a multiplicative factor e ', the
quantity Y is identical to X, defined in (4.5), for the case
of a fixed waiting time, i.e., p (z) =pe " and
q(z)=(1 —p)e ". It can be interpreted as the first-
return probability for a particle starting oft' at the origin
on a lattice with constant lattice spacing. Indeed, if we
set P(2mz)=e ", as one would find for such a lattice,
it is seen from (5.10b) and (5.4) that the invariant vector
of T is just given by 4 = P . The corrections to this
are found by treating the deviation of P(2mz) from
e "as a perturbation. In this perturbation expansion
each power of m is efFectively of order (zr) ' . To
understand this, notice that from (5.14b) one readily ob-

tains the property

g m Y / g Y -(zr) ~ (zr~0) . (5.15)
m=0

boundary at the origin. In the case of fixed lattice spac-
ing this probability is just F . Clearly, the corrections
due to the fluctuations of the interval lengths are of rela-
tive order (z r)'~ for small z. Similarly, the components
[(S) Q%' ] can be interpreted as the average probabili-
ties for the (m +1)th arrival at the origin of a similar
half-in6nite lattice of a light particle starting oF within
the interval xf with an initial distribution of the form
(2.4) (where xo must be replaced by xf ).

For z &0 the eigenvalues of S, denoted as s, all have
a norm

~

s
~

that is &1. There is one eigenvector iII

with an eigenvalue s of maximal norm. The leading
terms in the expansion of the components +m and of s
are given as

1/2
1 —pII = Y 1+ zrm + (zi)'~'m'

2I' 2l' 2p

Next introduce the inner product

m=0
(5.16)

' 1/2

(zr)' mikl +O(z~)1 —p
I2 2p

describing the probability for 2m traversals of the inter-
val. It can be proven (Van Beijeren and Spohn, 1981)
that the invariant vector 4 of T may be obtained as

eT= lim TNe'".
N —+ oo

(5.18)

With the aid of this relation an alternative useful
representation of 4 can be obtained in the form

+-'= X X X T-, IIT-,-„,
m&

——Om2 ——Om3 ——0 /=1

(5.19)

It then follows from (5.13) that the leading contribution
to (%,%' ) results from the terms Y in + . Indeed,
when additional contributions to this inner product are
calculated, each factor m results in a factor (zr)
With this convention for estimating the order of factors
m it follows that (5.13) contains all contributions to 4
up to corrections of order z~ relative to the leading term.

The situation where, with probability 1, a given inter-
val is never traversed by the light particle (e.g. , because it
is too far away from the origin to be reached with a
given time interval) may be characterized by a vector
4' ' with the components

(5.17)

+0 (kl (zr)'~')+0 (kl)' (5.20)

s =1—0
1/2

2p
( ) in+ p

1 —p 1 —p

Q2
1+ z~—I',kI

21

1 2 5 . 2p——,(kl)' 1+, +ikl
12 1 —p

1/2

(zr)1/2 1 +
Q2

2I

+O(zr)' '+O(kl)'+O((kl)'(zr)'~')+O(klz~) .
I

(5.21)

In estimating the neglected terms in (5.21) I used again
the convention that m —(zr) ' . The structure of s
can be understood as follows: The terms not containing
b, result from an expansion of e '"i "(1—p)/(I —pY),
which is the value of s for a lattice of constant lattice
spacing l, as follows from (5.10a), (5.6), and (5.8b). The
other terms are correction terms resulting again from a
perturbation expansion about the result for the regular
lattice. Notice further that 4' and 4' differ only by
terms of relative orders ~zr and k. In the case of the
regular lattice they are identical.

One may also construct the left eigenvector corre-
sponding to O' . For a general vector % I define a relat-
ed vector 4 with components given as

From (5.18) one may infer that the components %' can
be interpreted as the average z-dependent probabilities for
the mth return to the origin of a light particle starting
off at the origin on a half-infinite lattice with a reflecting

'((2m +1)z+iku)% (5.22)

Then the left eigenvector corresponding to % is just 'k

and, in general, if % is a right eigenvector of S, then %
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is the corresponding left eigenvector. '

Now (5.9), (5.18), and (5.22) may be combined to reex-
press the Green's function G(k, z) as

G(k,z) =
I [(QVT),S(1—S) 'Q%T]

2~

+[(Q%' ),S(1—S) 'Q%' ]*

+[+',(++++@--+@+-+c-+)e'] j

+G (k z),

ponents:

++

P (2mz)

—5„(1—5 0),
(() (2mz)

P+ (m)
P(2mz)P(2(m +1)z) +'" '

(t)+ (m)
$(2mz)$(2(m —1)z) "+' '

(5.24a)

(5.24b)

(5.24c)

(5.24d)

where I introduced the matrices @++,@,W+, and
+, which are defined below through their com-

For a further evaluation of (5.23) the explicit form of
Q%' is needed. Combining Eqs. (5.10c), (5.8b), (5.10b),
(5.13), and (5.14b), one obtains for this

2m' 1 Q2
(Q% )m =r Q . T~„ 1 — zr (zr+——ikl) 1+

12

' 1/2

+T +,„1—,zr — (zr—+ikl) 1+2(m +1)h 1 Q2

$2 I2

(5.25a)

1 —p
2p

1 —p
2I2 2p

=2wY 1— (zr) ~ —— zrm1/2
I2

3/2 2(zr) m ——1+ -- ikl+O(zr)+O(kl(zr)'~ )+O(kl)
I2

(5.25b)

Gbviously, (Q+ ) also differs from 4 only by terms of relative orders (zr)'~ and k. In general, the projection of a
vector 4 upon 4 can be de6ned as

2 2(1 —p)
(zv)

—1/2

p, 4='P (4,%)/(0', i'' ),
and from (5.16), (5.21), and (5.14b) one obtains

' 1/2 1/2
2(1 p) —in(zr)

(5.26)

+2 Q2
(zr).'" +ikl 1+ +O(zr)+O(kl(zr)'")+O(kl)'

12 2l
3 p
4 2(1 —p)

From (5.25) —(5.27) it follows that QV can be expressed as

(5.27)

QV =2r 1— (zr) ~ — —+—,iki 4 +b.%,1 3 6 . g

8 1 —p 2 4l2 (5.28)

' The inequality of left and right eigenvectors is due to the asymmetric definition of S. If one replaces S and I by S' and T',
with

S' „=P'~2[(2m +1)z +iku]s „P'~ [(2n + 1)z +iku]

and

'„T=P'~ (2m2z)t „P'~2(2nz),

respectively, right and left eigenvectors of S' become identical, e.g.,

'~'[(2m + 1)z +iku]%'

However, the physical interpretation of transfer matrices and vectors becomes less transparent this way.
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where h% is orthogonal to 4 and consists of contributions that are of O(zr)'~ or O(k) relative to 4, in the sense of
the norm (5.16).

The third term in (5.23) is readily estimated as

(e', (e+++e--+++-+e-+ )e') = 2p
1 —p

1/2

(zr) ''—1+ +O(zr)' '+O(k')Q2

12
(5.29)

and the contribution G (k,z) may be ignored to leading orders in k and z.

D. Low-frequency results

Now G(k, z) may be calculated, putting together (5.23), (5.28), (5.27), (5.22), and (5.29), with the result

1+(kl)'0 (1)+O((kl )'(zr) —'~')
jz 1/2

z 1+k' l'+ — 6'+O(1) +O((kl)'(zr) ') .2 1 —p 2 1 1 —p
2pz'T 2 2pz'T

(5.30)

(zr) '"6'+0 (zr)+ 0 (kl)'

For the generalized diffusion coefficient U(k, z) this leads to
1/2

1 —p 2 1 1 —pI +-
2p 2 2p

U(k, z) =
r[1+(kl) O(1)+O((kI) (zr) ' ')j (5.31)

Let us consider these results in some detail. First, the
diffusion coefficient takes the value r 'I (1—p)/2p
again, just as for the corresponding regular random walk,
or for the corresponding waiting time Lorentz models
with waiting time distributions of the form (4.19). Also
the small-z behavior of U' '(z) is the same as for the cor-
responding waiting time Lorentz models [compare Eq.
(4.25b)]. The higher-order diffusion coefficients are
surprisingly different, however. From (5.31) it follows
that the coefficient U' '(z) has a finite limit as z tends to
zero. This implies that the conjecture of Alley and Ald-
er (1979) is satisfied for the stochastic Lorentz model, at
least for the coef6cient U' '. Whether the conjecture is
also satis6ed for the coe%cients U' "' with n & 1 cannot
be concluded from the present calculation. However, an
extension of this calculation so as to uncover the asymp-
totic small-z behavior of the higher-order transport coef-
ficients seems straightforward and is currently under
way.

For a Poisson distribution of scatterers, and in the lim-
it p ~0, kinetic theory, based on Lorentz-Boltzmann
plus ring terms, also predicts convergence of U' ' in the
limit z~0 (Ernst and Van Beijeren, 1981). Perhaps the
methods developed by Grassberger (1980) will allow ex-
tension of this result to all values of p, maintaining the
Poisson distribution of scatterers. This is certain. nly no
simple task, however: It requires an estimate of the
small-k and z behavior of all contributing diagrams, and,
although Grassberger Inanaged to Gnd such estimates for
U' '(z), it remains to be seen if these can be generalized
so as to find estimates of U(k, z) for general k. A treat-
ment of general distributions p(x) for the interval lengths
seems to be somewhat outside the scope of kinetic
theory.

E. Comparison with waiting time Lorentz models

It is interesting to apply the method used in this sec-
tion also to the waiting time Lorentz models and to
make a comparison to the stochastic Lorentz gas. This
can be done very straightforwardly in the case that the
waiting time distributions are of the form p(z)=pv(z)
and q(z)=(1 —p)v(z) (although this restriction is by no
means necessary). In this case the functions P(2mz) and
P((2m + 1)z + ik ), as occurring in (5.10), (5.22), and
(5.24), inust be replaced by [v(z)] and [v(z)] +'M(k),
respectively, where M(k) is the Fourier transform of
p(x) as defined in (4.12). The eigenvectors %' and %
become identical, both having components
=[v(z)X]~, with X defined in (4.5). The action of the
matrices Q upon 4', as occurring in (5.23), reduces to a
multiplication by [X+M (k) ][ 1 —v(z) ]/z or by
[X+M(k)]v(z)[1—v(z)]/z for the matrices standing in
front of and behind S(1—S) ', respectively. The eigen-
value s reduces to

s =M(k)(1 —p)v(z)/[1 —pv(z)X] .
Instead of (5.11), one finds

P++(m)=[qb (m)]*=v '(z)[ [1—v(z)]/z I M(k)

(m) =v (z) [ [1—v(z) ]/z ]

quantity G (k,z) finally must be replaced by
~o+[M(k)+M( —k)][ [1—v(z)]/z ] /2r, where so is
defined in (4.3b) and the second term results from
processes in which precisely one jump occurs. If one in-
serts all this into (5.23), he recovers the result (4.11) for
G(k, z).
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A comparison between the analysis for the waiting
time Lorentz model and the stochastic Lorentz gas re-
veals that the difference in behavior of U' '(z) for the
two models is entirely due to the following feature: In
the stochastic Lorentz gas the probability for return to
the initial interval is on the average proportional to
(1+6, /l ), as can be seen from (5.9}, (5.23), and (5.29).
This is simply understood: At both the initial and final
times the unconditional probability of founding the light
particle on a given interval of length x is proportional to
x, and the probability of finding the light particle both
initially and finally on the same interval of length x is
therefore roughly proportional to x . In the waiting time
Lorentz models, on the other hand, the probability of a
return to the origin is completely independent of the in-
terval lengths. It is the appearance of the factor
(1+6, /l ) in a few places in the expression for G(k, z)
for the stochastic Lorentz gas that cancels the term pro-
portional to (zr)'~ in the numerator of (4.23a).

If one just looks at the mathematics, it even seems
surprising that the coefTicient of the (zr)'~ term in
U' '(z) is the same for both models. On physical
grounds, however, this is entirely plausible. Indeed, the
intuitive derivation of the long-time tail in the vaf given
in Sec. I has to be revised slightly for these one-dimen-
sional models: For a fixed configuration of scatterers it
is not true that the probability density P(x, t) of finding
the light particle at position x at time t is described even
on a microscopic scale by the solution of the diffusion
equation. Instead, one finds that the probability density
P(n, t) of arriving at scatterer n at time t is described to
leading order in t by the solution of the regular random
walk, or, alternatively, by the solution of a diffusion
equation as a function of the discrete variable n, both in
the waiting time Lorentz models and in the stochastic
Lorentz gas. For example, in the case of isotropic
scattering (p = —, ) one finds for a light particle starting
off' on the interval xo with positive velocity that asymp-
totically for large times

ulP(l, t) —P(O, t}= 8(at)'"
From this one readily obtains the asymptotic result (3.7)
or (4.25b) for the vaf.

pansion in powers of kl and (zr)' .Only the first few
terms in this expansion were obtained, but at least in
principle this expansion could be extended to any re-
quired order.

For both classes of models the diffusion coefficient was
proven to exist and to be equal to the diffusion coeffi-
cient for a random walk on the corresponding regular
lattice. For both classes of models, also, the velocity au-
tocorrelation function exhibits a long-time tail propor-
tional to t ~ with a coeKcient that in all cases is the
same function of the diffusion coefficient and the vari-
ance 6 of the interval length. The predictions for the
vaf from kinetic theory (Ernst and Weyland, 1971;
Grassberger, 1980) and fluctuating hydrodynamics (Dorf-
man et al. , 1981) were found to be correct. Further-
more, it was shown that the long-time tail indeed results
from those dynamical processes that one expects intui-
tively to be responsible for it (see Sec. I and the discus-
sion at the end of Sec. V).

A remarkable difference between the waiting time
Lorentz models and the stochastic Lorentz gas appears
in the low-frequency behavior of the higher-order trans-
port coefFicients. The coefficient U' '(z) diverges as
(zr) '~ as z~O for the waiting time models, it is con-
vergent in the same limit for the stochastic Lorentz gas.
The coefficients U' "'(z) with n ~ 1 diverge as (zr)
for the waiting time Lorentz models, for the stochastic
Lorentz gas their low-frequency behavior is yet to be cal-
culated, but it is at least less divergent than for the wait-
ing time Lorentz models and it may even be convergent
for all n. The convergence of U' '(z) provides a partial
confirmation in the case of the one-dimensional stochas-
tic Lorentz gas of the conjecture of Alley and Alder
(1979) that all coefficients U~ "'(z) are convergent in the
limit z~O. Alley and Alder base their conjecture on
computer evidence and on the assumption that the
Lorentz gas is efFectively equivalent to a Montroll-%'eiss
waiting time model (Montroll and Weiss, 1965) with a
waiting time distribution having a long-time tail. It can
be shown, however (Ernst and Van Beijeren, 1981), that
such a model cannot reproduce the long-time tail found
in the vaf for the Lorentz models. Furthermore, at least
at low densities no physical grounds seem to exist for an
equivalence of the Lorentz gas to a Montro11-Weiss wait-
ing time model.

V I. DI SCUSSI ON

A. Summary of results

In this paper I have investigated the transport proper-
ties of one-dimensional stochastic Lorentz models in fair-
ly large detail. For the waiting time Lorentz models dis-
cussed in Secs. III and IV the Green's function G(k, z)
was calculated explicitly, and from this all equilibrium
time correlation Rnctions and generalized transport coef-
ficients could be obtained. For the stochastic Lorentz
gas G(k,z) was obtained in Sec. V in the form of an ex-

B. Comparison smith kinetic theory

A comparison of the available results from kinetic
theory (Grassberger, 1980) for the stochastic Lorentz gas
with the rigorous results obtained in Sec. V is reassuring.
Both the diffusion coefficient and the long-time tail in
the vaf follow exactly from kinetic theory. In his
surprising calculations Grassberger shows that for a
Poisson distribution of scatterers the only nonvanishing
contributions to the diffusion coefficient are the Lorentz-
Boltzmann contribution and a simple-ring correction.
For the calculation of the long-time behavior of the vaf
the ring term must be renormalized, that is, the light-
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particle-propagator inside the ring operator may not be
approximated simply by the Lorentz-Boltzmann propa-
gator any more. It turns out to be suf6cient, however, to
use the simplest possible renormalization, i.e., adding to
the Boltzmann propagator a propagator containing one
simple-ring event. The assumption that is usually made
in kinetic theory (Dorfman and Cohen, 1970, 1972, 1975;
Pomeau, 1971; Resibois et al. , 1970, 1976; Ernst and
Weyland, 1971), that the dominant long-time behavior
of, e.g., the vaf is determined entirely by a single-ring
term, possibly containing renormalized one-particle pro-
pagators therefore is fully supported for the one-
dimensional stochastic Lorentz gas. For the higher-order
diffusion coefficients U' "'(z) the information available
from kinetic theory thus far is restricted. The contribu-
tions from the ring term to U' "'(z) can be shown to be
convergent in the limit z~0 (Ernst and Van Beijeren,
1981). This again is well in agreement with the rigorous
result for U' '. A comparison of the limiting value
U' '(z =0) as obtained from kinetic theory and from the
method described in Sec. V still is to be made.

C. Quantum-mechanical models

A remarkable difference seems to exist between the
character of the long-time tails for classical Lorentz
models and those for comparable quantum-mechanical
models. For the case of quantum-mechanical motion in
a random potential in d dimensions it is claimed by
several authors (Oppermann and Wegner, 1979; Cxotze

et al. , 1979; Prelovsek, 1981) that the velocity autocorre-
lation function decays as t "~ for long times, contrary
to the t ' +" behavior expected for the corresponding
classical systems. A simple explanation of this phe-
nomenon does not seem to be available.

On the other hand, Maleev and Toperverg (1975) ob-
tained for genuine quantum-mechanical Lorentz models
a long-time tail in the vaf proportional to t '" +", just
like in the classical case. Their methods do not allow for
a simple comparison of coefficients, however. Moreover,
they claim that these long-time tails are typically of a
quantum-mechanical nature and would vanish in the
classical limit.

D. The percolation transition

Another interesting statement, concerning the classical
Lorentz gas, is made by Gotze, Leutheuser, and Yip
(1981). They use a self-consistent mode-coupling theory
to calculate the vaf for a Lorentz gas with overlapping
scatterers. At the percolation density, where diffusion
gets blocked, they find an asymptotic long-time tail pro-
portional to t ~ in both two and three dimensions (no
other dimensions were considered), whereas for a density
range below the percolation density they find that the
asymptotic t ' +" behavior is preceded by a power-
law decay with a density dependent exponent. These
results are consistent with molecular dynamics results in

two dimensions (Alder and Alley, 1978; Alder, 1978; Al-
ley, 1979); for three dimensions no computer results are
available. An interesting thought is that the quasi-one-
dimensional result at the percolation density could be
due to the ramified structure of the available large open
spaces at this density (Domb and Stoll, 1977); on the
other hand, it is rather hard to imagine how the fairly
drastic approximations made by Cxotze et al. could in-
corporate the effects of such geometric subtleties.

E. Some special cases

For the waiting time Lorentz models I considered
several cases of special interest, such as the symmetric
case (equal waiting time distributions for forward and
backward jumps), exponential waiting time distributions,
Poisson distributions of scatterers, and combinations of
these possibilities. In the symmetric case it is of interest
that the spatial fluctuations of the interval lengths intro-
duce a frequency dependence into the z-dependent dif-
fusion coefficient U' '(z). This frequency dependence is
such that from U' '(z) the waiting time distribution can
be calculated directly. Furthermore the fluctuations in
the interval lengths enhance the high-frequency limit of
the diffusion coefficients by a factor (1+6, /1 ), but this
phenomenon is common to all waiting time Lorentz
models discussed here.

F. Computer results

Any real experiments to which the theory discussed
here may be compared are not available to my knowl-
edge. It may not be simple to find real systems that
behave suKciently one-dimensionally and which in addi-
tion may be represented by one of the models discussed
here. For the stochastic Lorentz gas some computer
simulations have been performed (Cxrassberger, 1980; Er-
penbeck, 1980; Dumcke, 1980). The results obtained for
diffusion coefficient, velocity autocorr elation function,
and mean-square displacement are generally in good
agreement with the theory of Sec. V. A somewhat unex-
pected result is the occurrence of oscillations in the vaf
that persist for fairly long times. The frequency of these
oscillations decreases with time and my expectation is
that for sufficiently long times the oscillations will disap-
pear. A theoretical explanation for them is lacking so
far, but it is noteworthy that Weyland (1974) obtained
similar oscillations in an approximate calculation for the
deterministic one-dimensional Lorentz gas.

G. Sinai's fluctuations

Another class of problems one may study in detail are
6nite-system e6ects, such as those occurring in systems
with periodic boundary conditions or in systems of finite
length supporting a steady diffusion current. In Sec. III
this was done for the special case of a symmetric ex-
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ponential waiting time Lorentz model. Another subject
of investigation, suggested by Sinai, are time correlation
functions in systems with a 6xed con6guration of scatter-
ers and given initial conditions on the light-particle dis-
tribution. For instance, the velocity autocorrelation
function in this case is a stochastic variable with respect
to the distribution of the intervals. Its typical magnitude
depends on the initial light-particle distribution. In the
worst case it is of order t for large t, e.g., for a fixed
initial position and velocity of the light particle. It may
simply be reduced to be of order t ~ by choosing the
initial distribution to be symmetric in the two velocity
directions. In the waiting time Lorentz models a simple
trick even allows for a reduction of the magnitude of the
fluctuating vaf to order t —that is, the same order as
was found for the average of the vaf—but whether a
similar trick for the stochastic Lorentz model will bring
an equally strong reduction of this order is not yet
known. From the viewpoint of computer simulations it
seems very interesting that a judicious choice of the ini-
tial light-particle distribution would allow for a strong
reduction of fiuctuations in the vaf.

H. Generalizations

In which directions could the results obtained in this
paper be generalized? In the one-dimensional case the
most interesting generalization seems to be that to ran-
dom mixtures of diAerent types of scatterers; this may
have a bearing on superionic conductors (Bernasconi
et a/. , 1979), and it may provide a means of studying the
cage effect (Alder and Alley, 1978) that appears to be
quite important in higher dimensions at high densities of
scatterers. For a study of these mixtures an extension of
the methods discussed in Sec. V seems to be the most ap-
propriate. Bernasconi and co-workers (Alexander et al. ,

1981) have developed closely related methods, but thus
far they have only discussed the leading low-frequency
behavior of U' '.

Most interesting from a physical point of view certain-
ly would be a generalization to higher-dimensional lat-
tices. However, the waiting time Lorentz models lose
their triviality in higher dimensions: Consider the case
that all lattice points have independent but equal proba-
bility to be occupied by a scatterer. Then, because it is
possible to return to the origin along a path that is dif-
ferent from the path along which one has left it, the
length of the jumps made is no longer irrelevant for the
probability of a return to the origin. For instance, a long
first jump will increase the average number of jumps re-
quired to return, and a short first jump will make this
number smaller. Similarly, for the stochastic Lorentz
gas the method sketched in Sec. V cannot be used any
more.

Furthermore, the diffusion coeAicient will no longer be
the same as that for a random walk on a regular lattice
with the same scattering probabilities and a Axed lattice
spacing, equal to the average jump length on the sto-

chastically occupied lattice. This is especially tran-
sparent in the case where the probability for occupation
of a lattice site by a scatterer is very small and back-
scattering of the light particle is not allowed. In this
case the diffusion process can be described by a lattice
Lorentz-Boltzmann equation (this may also be viewed as
a regular random walk with a stochastically distributed
jump length), and the diffusion coefficient becomes pro-
portional to I +b, . Of course, the opposite limit (occu-
pation probability = 1) is just the regular lattice.

For small —respectively, large —-occupation probability
one may attack the problem by means of perturbation ex-
pansions. In the first case one must expand about the
Lorentz-Boltzmann result in orders of the density of
scatterers. This may be considered a lattice version of
Ehrenfest's wind tree model (Hauge and Cohen, 1968,
1969; Gates, 1972). In the case that backscattering is al-
lowed the possibility of retracing events offers an extra
complication, which is well known for the wind tree
model. The complication looks less harmful here, how-
ever, because the probability for these events decreases
roughly exponentially with the length of the path re-
traced. In the case of large occupation probability one
may expand about the regular random walk in orders of
the density of vacancies. The first term in this expansion
can be related to a lattice with just one vacancy, and has
been investigated by Aizenman (1980, private communi-
cation). A classification of the next-order terms and of
the dynamical processes contributing to these is not yet
available. Work in both limiting areas is currently being
done, with emphasis on the density dependence of the
diffusion coe%cient and the long-time behavior of the
velocity autocorrelation function.

In the region of intermediate occupation probability at
present no systematic expansion parameter seems avail-
able. One may feel somewhat optimistic, however, that a
combination of the intuitive ideas developed in Sec.
with the known results for regular random walks may
provide a good approximation for the vaf in this regime.
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APPENDIX A: NORMAL SOLUTIONS OF THE LORENTZ-BOLTZMANN EQUATION

If the density of scatterers is suKciently low, the time evolution of the distribution function for the light particles in
a I.orentz model can be described by a Lorentz-Boltzmann equation (McKean, 1967; Hauge, 1970; 1974). For the case
of isotropic scattering in d dimensions this equation assumes the form

at f (r, v, t)+v.Vf (r, v, t)=B" f(r, v, t)

5(v —uo) dv'f (r,v', t) f (r—,v, t) ~

Q vo

=vI P(v)p(r, t) f (r,—v, t) I . (Al)

Here uo is the fixed speed of the light particles, v is the
collision frequency, p(r, t) is the number density of light
particles at time t, and Qd is the surface area of the d-
dimensional unit sphere. The Lorentz-Boltzmann opera-
tor 8" is linear. Its action upon f(r, v, t) is defined in
the last two lines of (Al}. The only collisional invariant
of this operator is the unit function, the average of which
is just p(r, t) Now. , applying the Chapman-Enskog
inethod (Chapman and Cowling, 1970), we may look for
normal solutions of the form

f(r, v, t) = f' '(r, v, t)+f"'(r,v, t)+ (A2)

where the ordering is in powers of the gradient of the
density field. The zeroth order contribution has to satis-
fy the equation

f"'(r,v, t) = v'tp—(v)(v V)p(r, t) .

The next-order equation becomes

g(2)8" f' '(r v t)= f' '(r, v, t)

(A8)

g(l)
+v V f"'(r, , t).

Bt
(A9)

Integration over the velocity and use of (A7) and (A8)
yields a second compatibility condition

g(2)
p(r, t) = V p(r, t) .

Bt vd
(A10)

If one truncates at this order, the compatibility condi-
tions (A6) and (A10) combine into Fick's law,

8 f' '(r, v, t)=0.
The only solutions to this are of the form

(A3)

Bt
p(r, t)=DV p(r, t), (Al 1)

f' '(r, v, t)=y(v)p(r, t) . (A4)

As usual, we impose the requirement that p(r, t) is the
actual light-particle density at position r and time t. The
next contribution has to be found from the equation

g(1)8" f'"(r,v, t)= +v.V f' '(r, v, t)
Bt

with D =uo/(vd). One may substitute the solution (1.2)
of this equation, for a density that starts off as a 5 func-
tion at the origin, into (A4) and (AS). The resulting dis-
tribution function is just the one given by (1.26).

APPENDIX B: DISTRIBUTION OF NUMBER
OF SCATTERERS IN AN INTERVAL

5(v —vo)
+v V p(rt).

Q&vo Bt

(A5)

Integration of both sides of this equation over the veloci-
ty yields the compatibility condition

g(1)

Bt
p(r, t) =0,

which can be interpreted as the diffusion equation to first
order in the gradient. Since p(r, t) is determined com-
pletely by f' '(r, v, t), one has

f dvf'"(r, v, t) =0, (A7)

and it follows from (Al} that the action of 8 on
f"'(r,v, t) simply amounts to a multiplication by —v.
Hence f'" takes the form

Let PL(N) denote the probability of finding N scatter-
ers on an interval of given length L; let P(n, x) denote
the probability density of finding scatterer n at position
x, given that scatterer 0 is located at the origin; and let
Q(x) denote the probability of finding no scatterer in the
interval (O,x), given that scatterer 0 sits at the origin.
Then Pt (N) can be expressed as

L
Pt (N) =—f dx P(N —1,L —x)

X f dy Q(y)Q(x —y)

Here I/I is the unconditional probability density of find-
ing a scatterer at position y; Q(y) is the probability that
this scatterer is the 6rst scatterer beyond x =0; then
P(N —1,L —x) is the probability density of finding the
Nth scatterer at L —x +y, and Q(x —y) is the probabili-
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ty of finding no scatterers between the Nth one and
x =L. The probability Q(y) can be expressed in terms
of p(x) as

Q(y)= f dx p(x) . (82

The Fourier transforms of Q(y) and P(N, x) are given as with

Pk(N) = [1—M(k)] M '(k)
Ik

Na
(e'+e '—2),

Ik

k)
1 —M(k)

ik

P(N, k)=M (k),
where M(k) is the Fourier transform of p(x). Hence a
Fourier transform of (81) with respect to L yields

a= g ', (x"), ,n!

provided all moments of x with respect to p, (x) exist.
Substituting (86) into (85) and expanding about a Crauss-
ian distribution in k, one obtains

P (N) ie ill ——%62k~/2

l
(x )—k

4I2

ik'N(x'), k4N &x'&, (x'), b.'
+

6 4 +

k N
72

(x'),'+O(k')+O(k'N)+O(k'N')+ . - . (87)

The inverse Fourier transform yields

P„(N)= 1 —. + + +
&&2~N

(x'),&'

dx'
d N d+ (x'&,', +. . . exp-
dx' 72 ' dx'

(x —Nl)

2Nd

l (x —Nl)
6v 2rrN 2Nd,

l' &x )
8S'

5(x'),' (x Ni) (x') i

24'' Nl

(x NL) —2—&x )ci 1

(NL ) 3b, 4 126,
+ +

( NI)' & &.i —( NL)'—
+ +

(NL ) 6b, (NL ) 246. 6b,

5(x'&,'i'
24'"

(x —Nl)' &x'&,'i'
(NL)4 72ai2 (88)

As a check on this equation we may consider the normalization. From (81) and (82) it follows that

f dx P„(N)=l .

One can easily check that (88) satisfies this relation through order 1/¹ Furthermore, one may check (88) fol tile
Poisson distribution, for which one has

Ne-"" xP„(N)= (810)N! l

A Taylor expansion of logP„(N) about the point x =Nl leads to
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P„(N) = exp
e N (x N—l) (x —Nl) (x N—l)

2Nl2 3N2l 3 4N3l4
(81 la)

1&2~N 1+

(x N—l)
2Nl

1+ (x —Nl) (x N—l) (x —N/)
3N2l3 4N3l4 1gN4l6

1 (x Nl—)
&2m.N 2N/

1 (x —N/) (x —Nl) (x Nl—)
12N 3N'l' 4N'l' 1gN'l' (Bl lb)

The cumulant moments for the Poisson distribution are found from

OC Oo

(e ' )=— dxe " 'e ' = . =exp g —( —ikl)"
l o 1+ikl „& n

(812)

Hence

(x"),=(n —1)!/" .

Substitution of this result into (88) reproduces (8 1 lb).
Next (88) must be expanded in powers of (N —no) about the Gaussian

1 (N —n—o)
(1/b. )(2n.no) '~ exp

2h np

(813)

where np ——x/l is the average number of scatterers on an interval of length x. The expansion is straightforward, and
the result reads

P„(N)=—exp
l

(N —no) 1

2A np

+2mno
1+ 1

np

(x'),
6l6

Q2

4I

(x4),
12g2 gg4

5(x'),'
24~

+
N —np

np

l(x'),
2 2h

(N —no)'

np

17/(x ), /4

122,4
+ 1264

(N no )—+ 2
np

1'(x'),

(N no )—+ 3
np

51'(x'), (x'), 1

4g2 6g6 24g8

51'(x') '
24'"

(N —no) (x ), /4

4 gg4

1'(x'),
12'' (814)

which is identical to (3.33). Again, one may check for the Poisson distribution. For the latter the expansion in powers
of (N no) about t—he Gaussian leads to

P„(N)= 1
exp

&2n.no

(N no)—1—
2np

1

12np

(N no) (N —n—o)
3 + 4 +

6np 72n p

(815)

(N —no) 3(N no) (N—no)—
+ 2 +

2np gnp 6np

This is reproduced if one substitutes (813) into (814).
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APPENDIX C: RANDOM WALK PROBABILITIES

What is the probability for a random walk with reAec-
tion probability p, starting on the interval xp with given
velocity Vo, to arrive in the interval xf with given velo-
city Vf, traversing each of the intervals x; just n; times
as specified in Sec. V'? This is equivalent to asking for
the weight of a linear multigraph (Essam and Fisher,
1970), where the vertices correspond to the scatterers, the
bonds correspond to traversals of an interval, and each
different way of traversing the graph, starting at the ver-
tex labeled —,[1—sg(Vp)] and ending at the vertex la-

beled {f+2 [1+sg(Vf)]), contributes p '(1 —Ii) '", with

n, the number of reAections and n« the number of
transmissions at a vertex. The total weight of a given
graph can be found as a product of weight factors for all
the vertices. The weight factor of a single vertex j, with
nj. i and nj bonds to the left and to the right of it,
respectively, is found by enumerating all allowed ways of
traversing these bonds and by then. attributing the proper
weight factors to them.

Consider 6rst the case j~f, with nJ. t
——2m and

nj- ——2n. In the language of the random walk the first
time the light particle reaches scatterer j it comes from
the left, and the last time it leaves scatterer j it goes off
to the left. Now, how many ways does this leave to the
light particle to traverse the two intervals with a number
of transmissions equal to 2l? First note that the number
of transmissions from left to right and from right to left
must be equal to I, because in both intervals the number
of passages of the light particle to the right equals the
number of passages to the left (reflections automatically
respect this property). Each time the light particle ap-
proaches scatterer j from the left it is free to choose be-
tween a transmission or a reQection until it has reached
the maximal number of either one. This provides a total
number of possibilities m!/I!(m —I)!. When the particle
approaches scatterer j from the right for the last time, it
must be transmitted, because it has to end up at the left
{unless n =0, when no approach from the right ever oc-
curs). The other n —1 times it approaches scatterer j
from the right it is free to choose again, as long as both
options are available. This provides a number of possi-
bilities (n —1)!/(I —1)!(n —I)!, with I & 1, provided n & 0.
With the convention p!/( —1)!=5& i, this describes also
the case n =0 correctly if one allows for the value l =0.
Multiplying by the weight factor (1—Ii) p" + ', and
summing over I, one obtains the result (5.2) for t „. The
same result is obtained for j&0. For 0&j&f one must
consider a vertex with Zm+ j. bonds to the left and
2n+1 bonds to the right. Now there are 2m+1 ap-
proaches of the vertex from the leIIt, the last one of which
must result in a transmission, and there are 2n ap-
proaches from the right, all of which are in principle free
to choose between a transmission or a reflection. For
2I +1 transmissions this yields a combinatorial factor

nf m!
(n —I)!I! (m —I)!I!

and multiplication by the weight factor
(1—p) +'p" +~ and summation over I leads to (5.3).

Equation (5.5) may be derived as follows:

g tmnx"
m=0

min(ng, pg) (n —1)! +n+m —2l(1 +)21xn
(m —I)!I! (n —I)!(I—1)!

Nl

(1—px) 'p '[(1—p) x]'

Ii + (1—2p)x
1 —PX

where I put n —I =j. Equation (5.6) follows in a similar
way.
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