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The effect of neutral nonresonant collisions on the shape, shift, and intensity of atomic spectral-line profiles
is reviewed. A general treatment for the study of an atomic spectral line is developed by establishing
reasonable assumptions about the relevant collision processes and by finding an expression for the Fourier
transform of the line profile. The authors look at parallel developments of other methods of calculation,
consider special limits of practical interest, and illustrate numerical evaluations of complete line profiles. In-
teratomic potentials for use in line-profile calculations are described, and the problems imposed by nonaddi-
tivity and nonadiabaticity are also noted. The observation of line profiles by both conventional and
tunable-laser techniques is surveyed. Representative experimental measurements of the widths and shifts of
collision-broadened spectral line cores are tabulated, and the phenomena of satellites, oscillations, and
power-law behavior of line wings are compared with theoretical expectations. The use of experimental re-
sults for the determination of excited atom-atom interactions, the prediction of collision broadening in stel-
lar atmospheres, and the effect of foreign gases on laboratory standard wavelengths are also discussed.
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I. INTRODUCTION

Atomic spectral lines as we actually observe them are
rarely sharp, symmetric, or centered on the exact
energy-level difference for the isolated atomic states.
The causes for the distribution of radiation in an atomic
transition have been a subject of study at least since
Michelson’s work before the turn of the century.
Through analyses of spectra of absorption cells, electrical
discharges, flames, and the sun and stars it has been pos-
sible to distinguish the effects of the Doppler shift due
to atomic motion relative to the observer, the influence
of external fields and local electric fields due to ions and
electrons, the resonant interaction of one atom with
another of the same kind, and the collisions with dis-
similar perturbers. This review is concerned primarily
with this last category: the effect of nonresonant neutral
collisions on atomic spectra.

Many reviews of the subject have appeared document-
ing the progress made since the early visual observations
and speculations about competing processes gave way to
progressively more elaborate measurements and precise
theoretical analyses. The first was written by Weisskopf

Rev. Mod. Phys., Vol. 54, No. 4, October 1982

N. Allard and J. Kielkopf: Effect of collisions on atomic spectral lines

(1933), and it was soon followed by the work of Mar-
genau and Watson (1936). Others of greater interest for
us now include the comprehensive treatment of experi-
mental and theoretical work due to Ch’en and Takeo
(1957), the theoretical reviews of Breene (1957, 1961), a
short book by Traving (1960), and the readable survey by
Hindmarsh and Farr (1972). Although recently articles
by Schuller and Behmenburg (1974) and Behmenburg
(1979) have appeared, the review of Ch’en and Takeo
(1957) provides the most thorough coverage of early ex-
perimental results. The substantial changes apparent in
both theoretical and experimental work of the last de-
cade are not at all completely described in the review
literature. We have written this article in order to fill
this void and to offer our own view of the present situa-
tion in neutral-atom line-broadening problems.

We have made no attempt here to include resonance
broadening, an area in which activity is not too great at
present, or Stark broadening. The latter is well treated
in Griem’s books (1964, 1974). Nor do we discuss
Doppler broadening except in the context of its com-
bined effect with collision broadening. Our primary em-
phasis is on the treatment of the complete line profile,
both from an experimental and from a theoretical
viewpoint. Consequently the subject of impact broaden-
ing and depolarization, as treated most recently by Lewis
(1980), is not isolated for special consideration.

Our treatment is in part intended to be pedagogical, so
that a student or someone who is not currently working
in the area can obtain a reasonable overview of recent ac-
complishments, while an experimentalist can turn to the
theoretical discussions to get some practical hints on the
comparison of his results with realistic calculations, and
the theoretician can get an exposure to interesting experi-
mental techniques and recent results. For more special-
ized treatments, particularly of the finer points of
theoretical discussions, we refer the reader to the original
literature. In this regard we point out the existence of a
very comprehensive bibliography (Fuhr, Wiese, and
Roszman, 1972 —1978) that is reasonably well indexed.

Because so many of the earlier reviews have gone
through extensive historical surveys [this is particularly
true of Breene, (1961)], we would rather begin by looking
at the broad interrelationships between the distinctly dif-
ferent ideas that have led to present-day efforts. In Fig.
1 we trace the development of unified line-profile
theories, their evaluation through numerical calculation,
analytical techniques as in the unified Franck-Condon
method, series expansions, or the special limits of the
impact core and statistical wing. There is a fairly new
technique of molecular dynamics simulation, and also re-
cent work in the closely related area of the collisional
redistribution of radiation, that shows some promise.
The old controversy between the JWKB methods of Jab-
lonski and the Fourier analyses of Lenz found common
ground first in the classical analysis of Anderson (1952)
and subsequently in the quantum treatment of Baranger
(1958a, 1958b, 1958c, 1962). Since then evaluations by
several methods have found general broad agreement
with experimental results, although the last step between
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FIG. 1. Historical connections between current trends in

‘theories of neutral-atom line broadening.

the formal theory and its comparison with observation
remains the most crucially difficult, with an imposing
blockade due to the uncertainty about neutral-atom in-
teraction potentials.

It is our viewpoint that from among the options that
are available, albeit some quite elegant, the most suitable
for a general treatment is a study of the spectral line
through its Fourier transform. So in the calculations of
the second section it will be our purpose to establish first
of all a set of reasonable assumptions about the collision
processes that determine the profile of an atomic line,
and from them to find an expression for the Fourier
transform of the line profile, that is for the correlation
function. Within the limits imposed by our assumptions,
the expression we obtain will be exact. With care it can
be evaluated in a number of cases of practical interest.
At the same time we shall look at parallel developments
of other methods of calculating line profiles and exam-
ples of some of the results.

In the third section we survey the recent developments
in experimental methods, including laser spectroscopy
and new technologies in classical spectroscopy. These
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methods have made possible the observation of a wealth
of phenomena from the line core to the far wing, at high
and low densities of foreign gas. In the final section we
look at the problems involved in the application of these
studies to the determination of interatomic potentials
from the observed profiles, and to the measurement of
abundances in stellar atmospheres.

In the theoretical discussion that follows we use angu-
lar frequency units (radianssec™!), but in the experimen-
tal work it is much more convenient to use a wave-
number scale (cm™!) for both frequency and potential
energy. The conversion factor is V=w/2mc. Atomic
densities n are usually given in units of atoms cm™3, but
some of the literature refers to units of relative density
(so-called r.d.). A conversion can be made through
Loschmidt’s number; one r.d. is 2.687 X 10! atoms cm 3.
A final problem with nomenclature is in the use of the
terms ‘half-width,” “half-width at half maximum,”
sometimes abbreviated HWHM, and “full width at half
maximum,” or FWHM. We shall always mean the full
width at half maximum intensity when we discuss the
linewidth, and the half-width at half maximum intensity
when we discuss the line half-width.

Il. THE THEORY OF THE BROADENING
OF ATOMIC SPECTRAL LINES
BY NEUTRAL-ATOM COLLISIONS

. experiment has shown that in every case thus far
examined the width of the spectral lines diminish[es]
with the pressure in an approximately linear proportion
towards a constant limiting value.

—Michelson, 1895

A. The development of statistical and impact theories

1. Wave trains of infinite extension

If we consider the picture of a simplified atom with
two levels E; and E; between which a radiative transi-
tion takes place, we would expect the emission spectrum
of this atom to have a single line with frequency w,
determined by the energy difference

wo=(E;—E;) /% . (1)

The radiation will be monochromatic if the radiative
process is not terminated, and the time dependence of
the emitted light will be given by an amplitude

f()=Re[foexp(—iwgt)] . (2)
The power spectrum
I « | [ ftlexpliondt |?, 3)

is the square of the Fourier transform of the amplitude,
and is sharply peaked at w=w, for the infinite wave
train of Eq. (2). This relationship between the time-
dependent amplitude and the spectrum is illustrated in
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Fig. 2. We never actually observe this behavior, of
course, because the wave train is interrupted by collisions
between the radiator and other atoms in its environment.
It is specifically the effect of these collisions on the time
dependence of the radiation and on the power spectrum
that is the subject of this review.

2. Wave trains of finite extension

One of the earliest contributions on the subject of line
broadening was written by Michelson (1985), and its ap-
pearance in the Astrophysical Journal illustrates that
studies of these processes have useful applications
beyond the bounds of fundamental physics. The ap-
proach outlined by Michelson also contains the essential
elements of most of the modern theories, for he recog-
nized the utility of describing the line profile in terms of
its Fourier transform.

Michelson’s model was of billiard ball atoms that en-
counter hard collisions: a collision between the radiator
and the perturber was assumed to have taken place when
the separation between them had become less than or
equal to the sum of their mean atomic diameters. If 7 is
the time between two collisions, then it is also the time
during which radiation continues. Thus we have a wave
train of finite length c¢7, where ¢ is the speed of light,
and the emitted radiation is now described by

f(t)=Re[ foexp( —iwet)O(T— |t/2])], (4)

where O(x) is a step function equal to unity for x >0,
and equal to zero otherwise. The power spectrum given
by the square of the Fourier transform is proportional to

sin[ (o —wg) /2] 2

I{w) < (@—w9)/2

(5)

The width of this spectral line is just proportional to the
inverse 1/7 of the time between collisions, but the line is
unshifted from its natural frequency.

TIME DEPENDENCE SPECTRUM

FIG. 2. Line profiles from different wave trains: (a) infinite
duration; (b) finite duration; (c) interruption with a Poisson
distribution of durations.
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3. Wave trains of finite but mixed extension

In this first simple approach all the wave trains had
the same length and phase, but Lorentz (1906) con-
sidered the atom as a classical charged oscillator in col-
lision with a perturber and investigated the probability
distribution for the times between collisions. He im-
posed a distribution with a mean time between collisions
7. such that

P(rYdr=exp(—1/71.)dT/7, (6)

is the probability that the time since the last collision is
between 7 and 7+d7. The spectrum of Eq. (5) is aver-
aged with the weighting probability of Eq. (6) to give an
integral proportional to

. 2
w | sin[T(w—wp]/2)
()« fo T o—wg/2 exp(—7/7.)dr  (7)
or the familiar Lorentzian profile
o)« ! . (8)

(@ —wo)?+(1/7,)?

4. Inclusion of the phase shift

The radiation emitted from an atom is changed by
the force field of a neighboring atom. Frequency and
amplitude are therefore no longer constant in time. ...
The change is so great, however, that the phase of the
vibration after the collision is no longer the same as it
would have been had there been no collision.

—Weisskopf, 1933

A different interpretation was introduced by Lenz
(1924, 1933) and by Weisskopf (1932a, 1932b, 1933)
when they recognized that a complete interruption of the
wave train was not necessary to produce a broadening of
the line. In earlier approaches the frequency of radiation
was considered constant and the collision terminated the
radiation process. Actually, the perturbers act over a
long distance, and the frequency of the emitted radiation
gradually changes with the approach of the perturber.
The instantaneous frequency may be described by

d
co(t)=a)o+7:L ©)

when wy is the frequency in the absence of any perturb-
ing forces, while the remaining term in 7 is due to the
change in phase of the oscillation from the interaction of
the radiator with its surroundings. For Weisskopf, the
collision starts when the phase of the emitted radiation
has changed by unity. This arbitrary definition forms
one of the bases for the interruption theory. The line in
this case also has a Lorentzian profile with a width
determined by 1/7,, but 7. is now the mean time be-
tween optical collisions, those for which the phase
change exceeds one radian.

Following Lenz, Lindholm (1945) took into account
the phase shifts in the initial state, considering them to
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be linearly increasing functions of time during the col-
lision. He neglected the radiation that occurred during
the collision, but included the effects of weak distant col-
lisions that produce a shift as well as broadening of the
line, assuming, moreover, that there is no phase correla-
tion before or after the collision. The profile found by
Lindholm was a shifted Lorentzian,

IHo)= vm (10)
(@ —wg—0) 492

where the shift o and the half-width y are determined
from the collisional phase shifts. In addition to this
dominant term, Lindholm confirmed the result of Lenz
that a dispersionlike asymmetry is also present. Such
asymmetries have been regarded until recently as of
secondary importance within the range of validity of the
impact theory.

5. The quasistatic approach

It should therefore be possible to investigate the po-
tential function of the interaction of two atoms (espe-
cially of the polarization forces) experimentally by
measuring the intensity curve towards the wings of the
broadened lines.

—Kuhn, 1934

A conceptually different approach to the problem of
the profile developed out of the work of Holtsmark
(1919) on Stark broadening, and the application of these
ideas to neutral-atom pressure broadening by Kuhn and
Margenau. Kuhn (1934, 1937a, 1937b) and Kuhn and
London (1934) based their development on the Franck-
Condon principle. To a first approximation, they re-
garded the radiating atom as at rest, emitting a frequen-
cy wo+Aw that was given by the energy difference be-
tween the states of the radiator perturbed by its interac-
tion with nearby atoms,

wo+Ao=(E; —Ey)/fi=wo+ AV /# (11

where AV is the total difference in perturbations of the
initial and final states. The intensity within a frequency
interval @ to w+dw should therefore be proportional to
the probability of finding an arrangement of perturbers
that would give the frequency specified by Eq. (11). The
radiation we observe in the line wing arises from the mo-
ment of the actual collision, during a time of the order
74 marking the duration of the collision, as illustrated by
Fig. 3, while the line core comes from the interrupted
periods of radiation between collisions.

Kuhn recognized that this result applied when the re-
lative motion in the system of the radiator and its per-
turbers was infinitely slow; that is, in the static limit.
For this reason, these theories are regarded as static
theories of line broadening, and perhaps less specifically
as statistical theories. With the same approach, Jablon-
ski (1945) was able to incorporate the effects of nuclear
motion, as we elaborate in Sec. I1.A.6.

Kuhn restricted his approach to single-encounter col-
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CORE WING CORE

~Td

FIG. 3. Radiation and the collision process. During the col-
lison, the emission is primarily in the line wing. The interrupt-
ed but otherwise unperturbed radiation is responsible for the
line core.

lisions, with the argument that if the probability of find-
ing one perturber near the radiator is small, then the
probability of finding more than one is negligible. This
means that the resulting line profile will only apply if
the perturber is much closer than the mean atomic
separation. With difference potentials

filw=AV(R), (12)

for example, C,R 7, this approach will work when R is
small, so that it should describe well the wing of the line.

The intensity of the line for large Aw is evidently pro-
portional to the probability of finding one perturber be-
tween R and R +dR,

I(Aw) |dw| =n47R?|dR | , (13)

where the number density of perturbers is n. If we re-
quire one and only one perturber near the radiator, the
probability factor on the right-hand side of Eq. (13) must
be multiplied by exp(—n47R3/3) in order to exclude the
possibility of multiple-perturber interactions (Chan-
drasekhar, 1943). The nearest-neighbor and binary in-
teraction theories will be equivalent for sufficiently small
n or R. This simple formula is the basis even today of
analyses of the wings of spectral lines, and in the form

—1 -1
do

I(Aw)=n4wR? IR ::n41rR2M % (14)

dR

it shows that in this approximation the intensity is deter-
mined by the slope of the difference potential. Figure 4
illustrates the mapping of a perturbation V(R) onto the
distribution of radiation about a spectral line.

If we substitute Eq. (12) for the potential into Eq. (14)
for the profile and assume a power-law interaction, then
we obtain

w (R) V(R)

\

W, I(w) R

FIG. 4. Mapping the difference potential into the spectrum.
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I(Aw)=(47/p)n(C, /H)*P(Ae) 1P +37P] (15)
which leads, for the van der Waals interaction (p =6), to
T(Aw) < Ao™372 . (16)

This calculation fails to describe the center of the line
because for large R the intensity is proportional to the
probability of the perturbation caused by many per-
turbers, and because perturber motion has been neglect-
ed. Margenau (1932, 1935, 1951) and Margenau and
Watson (1936) carried out a statistical calculation, in-
cluding multiple encounters, that is a generalization of
Kuhn’s (1934) work, extending slightly the validity of
the description of the line towards smaller Aw and pro-
viding the same limiting case for large Aw. Ch’en and
Takeo (1957) present a derivation of Margeneau’s statist-
ical line profiles for power-law potential differences, and
additional detail may be found there.

6. A molecular approach to line profiles:
statistics and quantum mechanics

(H. G. Kuhn) Does your treatment predict satellite
lines? (A. Jablonski) The theory does not predict this
mysterious effect.

—Jablonski, 1968

In a series of papers, Jablonski (1931, 1937, 1938,
1939, 1940, 1945, 1948, 1965, 1968) elaborated a
quantum-mechanical theory of pressure broadening that,
in contradistinction to the phase-shift theories we have
discussed so far, treats the intensity distribution in a
spectral line as if a radiator and N perturbers formed one
giant quasimolecule. This model is the basis of the re-
cently developed unified Franck-Condon theories (Szudy
and Baylis, 1975; Szudy, 1979) and of quasistatic
temperature-dependent wing-profile theories (Hedges,
Drummond, and Gallagher, 1972) that are particularly
useful for low foreign-gas densities, and which, in fact,
do predict satellites. In this section we shall outline
briefly the development of the Jablonski theory for a
one-perturber spectrum and show how it reduces to the
Kuhn-Margenau result for slow collisions. The use of
this to predict the temperature dependence of line wings
and its relationship to impact and unified theories will be
considered in Sec. ILF. Jablonski’s work underlies much
of the quantum-based theory of line broadening, having
influenced all recent efforts in the branches shown in
Fig. 1. The one-perturber approach illustrated here is
only given as a representative example.

For purposes of discussion we isolate a single radiator
and a single unstructured perturber in a spherical volume
of radius R;. The initial total energy of the perturber is
E;, and as it approaches an excited radiator with energy
fiw, at some point a photon of energy 7w is emitted.
The perturber leaves with a final translational energy Ef.
Equating initial and final energies, we obtain

oo+ Ey =+ Ey (17
Ao=E/# , (18)
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where £ is (E; —Ef) and Aw is (0 —wg). When the ener-
gy of the perturber increases, the emitted photon has a
lowered frequency. The intensity distribution as a func-
tion of Aw is determined by the probability distribution
for the required change in translational energy of the
perturber, which we call W(§).

This distribution is calculated by using the Born-
Oppenheimer model and decoupling the electronic and
nuclear motions of the molecule. The adiabatic hy-
pothesis in classical pressure-broadening theories results
from this picture, in that perturber-radiator collisions are
assumed not to induce transitions in the electronic states
of the radiator. The total wave functions of the quasi-
molecule in the one-perturber limit are constructed with
the products

[9)=1¢)|X), (19)

where | @) is the electronic wave function of the radia-
tor and | X ) describes the motion of the perturber.

The electric dipole transition probability of this system
is proportional to the square of the matrix element

Diyp=(¢; |d|¢y) (20)

of the electric dipole moment operator d, which acts
only on radiator wave functions. Consequently,

Dy =d;eA;f 21
where

dis={¢; |d| ¢, )=dipole transition moment , (22)
A,§~ =(X; | Xy )*=Franck-Condon factor . (23)

If diy remains fixed during the collision (refer to Sec.
IILF for a discussion of collision-induced transitions),
then the probability that the energy of the perturber will
change from E; to Ey, just A,-zf, determines the spectrum.

The perturber states are denoted with quantum num-
bers o, the number of nodes in the radial eigenfunction,
and /, the angular momentum or rotational quantum
number. If |X) is a product of radial and rotational
eigenfunctions, then the orthogonality of the rotational
eigenfunctions requires that only states of nuclear motion
|eil;) and |efle), for which l;=I;, have nonzero
Franck-Condon factors (Jablonski, 1937; Szudy and
Baylis, 1975). As a consequence, the probability of a
transition depends only on the quantum numbers »; and
o and the angular momentum / of the incoming per-
turber. ‘

The relative intensity distribution on an energy scale is
obtained for an incident perturber of energy E; by multi-
plying A,~2f by the density of final-state energy levels
(dvs/dEy) and the probability Q,d! that an incident per-
turber has an angular momentum between / and [ +dl.
The intensity is thus a function of / and §=E;—Ey.
The differential contribution, yet to be integrated over
angular momentum (or impact parameter) and the distri-
bution of collision energies, is
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Hw)do=WI(£)dE , (24)
2 Aoy
I(w)da)=A,-fd—Ef—Q1dl d§ . (25)

The Franck-Condon factor and the level density are
evaluated by using JWKB wave functions as solutions to
the Schrédinger equations for the initial and final states
of the perturbers. These wave functions are normalized
within a sphere of radius R; to give

2 k() |

RdeR o) 26)
X,1= R KR cos[fR' (R)YAR +6 |, (

approaching as a limit at large R (with another value of
8)

X,1=(2/R;)?cos[k ()R +8] . 27)

R, is the classical turning point for the state, and the re-
sults are valid only when the perturber is far from R,.
The phase constants 8 are determined by inspecting the
solution for R <R,. The wave number k(R) is p /#, de-
fined for the momentum p by

k(r)=[2u(E —V(R))—#1(1 +1)/R*|\? /% (28)
with asymptotic value
k()=(2uE)"*/# , 29)

where p is the reduced mass of the perturber-radiator
system.

In terms of these wave functions, the required overlap
integral is (Szudy and Baylis, 1975)

[ki(0)ke(0)]'? (R cos[D(R)]

i R, k(r) (30)

and
R R
o(r)= [, (AR ki(R)— [ dRKp(R) . (31)

The value of A4;; is determined for the most part near the
distances R, at which

ki(R;)=kg(R,) (32)
or in terms of total energy E and potential energy ¥V
E;—Vi(R)=E;—Vg(R,) . (33)

Together with Eq. (18) and the definition of &, Eq. (33)
yields

o =E=V;(R.)—V (R,) . (34)

The most probable frequency is the one corresponding to
the classical form of the Franck-Condon principle. The
integral for 4;; in Eq. (30) is evaluated by a quadratic
expansion of & about these points of stationary phase, so
that approximately

2 k,(oo)kf(oo) -2 ﬁ2
Y= k@R 7 (u|dé/dR |g=g,)

m(2 cos?p) .

(35)
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Because the phase ¢ in the interference term (2 cos?¢) is
sensitive to the angular momentum and collision energy,
this term averages to unity when the distribution of ini-
tial states is allowed for.

The density of translational energy levels des/dE; is
calculated from the condition that X is zero on the
spherical boundary surface. This gives, from Eq. (27),

kf(o0)R+8=[(2¢5+1)/2]r . (36)

Differentiation with respect to E, noting that k, de-
pends on Ej, yields
) uR, SR o) (37)
dE;, st
Since our interest centers on large values of /, the factor
Q; is evaluated classically. It is determined by the
chance that a classical value of the impact parameter
will correspond to angular momentum quantum numbers
in the range from / to ! +dl and is given by geometrical
arguments [Jablonski, 1945, Eq. (28)],

0=3(2l + D)[k;(0)R;]72. (38)

This is actually valid only when / <<k;( o0 )R;, the largest
possible /, but it can be used without error for all / since
only values in this range of validity contribute to the
profile (Szudy and Baylis, 1975).

The intensity distribution is then found by substituting
Egs. (35), (37), and (38) into Eq. (25) and summing over
the Condon points, to obtain

-1
4R}

3

Hw)do=3

c

m(21 +1)dI
k2

2dE
k(R.)/k;|dE/dR | g

X . (39)

The grouping of terms here, after Eq. (2) of Hedges,
Drummond, and Gallagher (1972), allows us to find a
classical analog easily. This equation is also identical
with the integrand of Eq. (39) of Jablonski (1945).

Since there is only one perturber in the sphere of ra-
dius R,, the perturber density » is equal to the first term
(417Rs3/3)_1. The second term is just 27b db, where the
impact parameter b is related to the angular momentum
I by b2=I(l +1)/k}. The derivative in the denominator
of the third term transforms d§ into a spatial derivative.
This term becomes v;( o0 )[2dR /v;(R.)], where v;(R,) is
the radial velocity at R.. The third term is thus v;( )
multiplied by the time spent in the increment dR..
When the variation of perturber velocity as a function of
internuclear separation is neglected (a reasonable assump-
tion so long as the perturbation is small compared to the
initial kinetic energy), then the right-hand side of Eq.
(39) is a differential volume. In spherical coordinates,
centered on the radiator, this equation becomes

I(0)dw=n347R2dR, , (40)
4

where w and R, are related through Eq. (34). This ex-
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pression, derived by Jablonski (1945) from quantum-
mechanical calculations, is equivalent to the expression
of Kuhn and Margenau, Eq. (13), that was arrived at by
statistical arguments.

The one-perturber spectrum of Eq. (39) also contains
information about the temperature dependence of spec-
tral line wings. That aspect of the theory is discussed in
Sec. IILF.4. Other general developments in the evalua-
tion of Eq. (35) are discussed in Sec. IL.F.1.

7. The synthesis of phase-shift and molecular theories

Jablonski considers that the fact that the intensity
distribution calculated by this method does not agree
with the Lorentz-Weisskopf formula indicates that the
Fourier integral method is fundamentally incorrect. . ..
The wave-mechanical treatment does, in fact, yield both
of these formulas under the assumption of physical con-
ditions proper for each

—Foley, 1946

Early line-broadening theories were characterized by
two distinct approaches. On the one hand, theories in
which the Fourier series was obviously asserted, what we
generally call phase-shift theories, predicted a Lorentzian
line core and said very little about the line wing. On the
other hand, statistical theories and calculations based on
molecular models, which led to quite different expres-
sions did not predict a Lorentzian core, and were diffi-
cult to reconcile with the phase-shift theories. Jablonski,
for example, offered the opinion that phase-shift theories
had not been shown to describe the phenomena rigorous-
ly enough, and he presented arguments against the treat-
ments of Weisskopf (1932a, 1932b, 1933) and Foley
(1946) [see particularly the exchange between Jablonski
(1948) and Foley (1948)].

Foley (1946) presented a proof that the Fourier in-
tegral expression for a line profile could be derived from
a quantum treatment of the broadening with the approx-
imation of adiabatic collisions, although he did not show
that the results of the static theory followed from the
Fourier analysis in a systematic way. An early attempt
in this direction by Lindholm (1946) had indicated that
there was a connection. Holstein (1950) showed how the
static theory of Kuhn could be obtained from the
Fourier analysis, and he also made an early “antistatic”
wing calculation which still stands as correct in the light
of more recent work by Szudy and Baylis (1975, 1977).
Other contributions by Jablonski (1968) and Szudy and
Baylis integrate the molecular method into this general
scheme.

B. General theory of line broadening
in the semiclassical model

The theory to be developed here is exact when its
basic assumptions about intermolecular forces are
correct, except insofar as the actual numerical calcula-
tions may involve approximations.

—Anderson and Talman, 1956
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We consider in this section the generalization by An-
derson (1952) and Anderson and Talman (1956) of the
line-shape theories developed by Lindholm (1945) and
Foley (1946). This theory provided the first unified
description of the profile of a pressure-broadened atomic
spectral line at any pressure, and for any spectral region
around the line. Even though one of the required as-
sumptions is that the interatomic forces are scalar and
additive, and there are better ways to treat far line wings
in the binary limit, evaluations of this theory to be dis-
cussed in Sec. ILE provide the best general interpreta-
tions of experimental results possible so far.

From Eq. (9) we describe the time-dependent wave
train for a single emitter as

f(t)=foexp( —iwgt)exp[ —in(t)] . 41)

Implicit in this description, in which the oscillator of
frequency wg has a time-dependent phase during the col-
lision 7(t), are two critical assumptions: the perturbers
are assumed to travel on classical trajectories, and the os-
cillator is assumed to be only adiabatically perturbed.
To evaluate the power spectrum we use the Wiener-
Khintchine theorem [for example, see Cowley (1970) or
Papoulis (1962)] and compute the Fourier transform of
the autocorrelation function.

The autocorrelation function ®(s) measures the aver-
age evolution of the wave train over a time interval s
from an initial time 7. In terms of the complex ampli-
tude f(2),

D(s)=(F(O*f (£t +5)), . (42)
The autocorrelation function is then proportional to
D(s) < expl —iw,s)
X (exp{ —i[n(t +s)—n()1}), . (43)

Accordingly, the Fourier transform of this function is
the emission line profile

I (w) < f:r:ds expli(w—awyg)s]
X {exp{ —i[n(t +s)—n()1} ), . (44)

When the spectrum is referred to the unperturbed fre-
quency wy, it is convenient to define the autocorrelation
of the phase all along the wave train as

D(s)=(exp{ —i[n(t +5)—n()]}), . (45)
Then, with frequency measured from the line center,
I« [ d(s)explios)ds (46)

gives the desired contour.

An assumption that the ergodic hypothesis is valid al-
lows us to replace the time average of Eq. (45) by an
average over different collisions. The phase shifts are
evaluated in terms of the potential due to all perturbers,

N
V(=3 VilRi(D], 47)
k=1

where the R;’s are the distances of the N different per-
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turbers from the radiator, while the V}’s are the binary
interaction potentials. Of course Eq. (47) is true only for
isolated s states; we shall encounter this difficulty again
in the quantum theories discussed in the following sec-
tion. As evidence that this assumption is a satisfactory
approximation, there have been theoretical analyses
(Baylis, 1977; Sando, Erickson, and Binning, 1979) and
observations that line-shape spectra appear to be insensi-
tive to nonadditivity. The phase difference is expressed
as

t+s N
n(t+)—n)= [ F AWV IR@ar, (48)
k=1
and the correlation function is given by

—i

d(s)= (exp

)

By replacing the average over initial times with an aver-
age over all collision geometries at the same initial time,
taken to be t =0, we obtain

<1>(s)=<[N[exp [-—ifosﬁ”‘Vk[R(t')]dt' ]>
k=1

N s
> ﬁ"‘Vk[Ru')]dz']
k=1 ’

(49)

collisions
(50)

Anderson assumed that the perturbers were independent
of one another, so that this average over a product could
be replaced by a product of averages,

D(s)= [(eXp [——ifosﬁ~lV[R(t')]dt' ]>collisions]N
(51)

To calculate the mean, we suppose that each perturber
follows a classical rectilinear trajectory, as illustrated in
Fig. 5. If b is the impact parameter, and if x =xo+t’
is the position of the perturber along its trajectory, then
the mean can be written in terms of the integral over

PERTURBER
TRAJECTORY

Final ¢------- K-~

Emitter

Initial

FIG. 5. Rectilinear trajectory of the classical perturber.
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possible initial positions of the perturbers within a
volume 7~

D(s)= [i—f [, 2mb db dx,

xexp | —i [ AVI(b?

N

+(xo+0t')?]1 2 ]dt’ (52)

We make use of the approximation (1—a)¥~exp(—Na),
that is valid when a <<1 and N >>1, to simplify this ex-
pression for the autocorrelation function. We obtain

D(s)= [1-%[ [, 2mb db dx,
—i [ 5

X V[(b2+x2)]/2] ’dtr

X [1—exp

B

Then for a fixed number density n given by the ratio of
the number of perturbers N to their occupied volume 77,
when 7~ becomes very large,

D(s)=exp[ —ng(s)] (54)

(53)

and

g(s)=217'f0wb db

X f_wwdxo [1 —exp

—i [V I(b2 X)) ) ”
(55)

Equations (54) and (55) are the basis for the Anderson-
Talman theory of spectral line broadening by collisions.

The “unified” nature of these equations becomes ap-
parent if we inspect the solutions in the limit of large s
and in the limit of zero velocity. As Anderson (1952)
showed for the limit s— o, we can write formally for
g(s)

g(s)=(ap+iBo)+(a;+iBy)s , (56)
alzafo‘”zarb db
+
> [l—cos [(ﬁﬁ)“f_w VI(b2+x2)?]dx H ,
(57)
Bi=0 ["2mb b sin [0~ [TV (624x7)2ax | .
(58)

The additive constant (ag+if3y) is usually taken as zero,
and the profile that results from the Fourier transform
of Eq. (54) is a Lorentzian with a half-width na; and a
shift np;, respectively, the real and the imaginary parts
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of the slope of g(s). Thus the assumption that g(s) has
the same behavior for all s that it has for s— « pro-
duces the usual impact-theory line profile.

To find an alternative limiting behavior of g(s), we in-
vestigate its value when 0—0. In this case the phase-
shift integral simplifies, and the volume integration
reduces to one variable. This so-called static limit is

go)=4r [ "RMR[1—exp(—i#i 'V (R)s], (59

which is in agreement with Margenau (1951) and pro-
duces a spectrum given by Kuhn’s result, Eq. (13). The
static limit is also the limit of g (s) for small s, as is ap-
parent from Eq. (55) and as has been demonstrated nu-
merically (Kielkopf, 1976a).

The general Anderson-Talman theory thus predicts a
wide range of observed effects. These include the
Lorentzian line core, the asymmetry of the core when
ap+ify is not zero, and the line wing. More recently,
we have shown that the numerical evaluation of this
theory for representative potentials gives a complete ex-
planation of the red satellites that appear in the near
wing of alkali lines perturbed by heavy noble gases (Al-
lard, Sahal-Brechot and Biraud, 1974; Kielkopf, 1976;
Kielkopf and Allard, 1980). These features were unex-
plained at the time of the Ch’en and Takeo review
(1957). The complete evolution of the line profile with
increasing foreign-gas density closely follows the predic-
tions of this theory.

This approach is obviously incomplete, for it allows
only for spherically symmetric, adiabatic interactions. A
calculation of the line profile through fully quantal treat-
ments of the radiation and collision process will be sur-
veyed in the following sections, where we extend the
Anderson-Talman method to include more realistic in-
teractions and nonadiabatic effects.

C. Quantum theories of line broadening
1. The classical path approximation

Our understanding of the role of quantum processes in
the broadening of atomic spectral lines by neutral-atom
collisions has developed considerably in the decades since
the unification by Anderson of impact and statistical
theories within a single classical framework. For in-
stance, Fig. 1 shows the many developments from the
work of Baranger (1958a, 1958b, 1958c) concerning the
quantum theory of collision broadening within the im-
pact approximation. Few papers, however, have dealt
with the problem of the complete profile of the line.
Only within the context of the assumption of classically
described paths for the perturbers has some progress
been made. Thus in this section we draw on Baranger
and on Smith, Vidal, and Cooper (1969a, 1969b), Smith,
Cooper, and Vidal (1969), Sahal-Brechot (1969), and Al-
lard, Sahal-Brechot, and Biraud (1974) to outline a uni-
fied generalization of the Anderson-Talman theory that
takes into account such important features as the aniso-
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tropy of the interaction and the contribution of inelastic
collisions. The procedure for computing the line profile
that we develop is completely equivalent to the classical
theories for a spherically symmetric potential.

Subsequently, we shall look at the relationship of this
theory to other recent theories of radiative redistribution,
and we shall also examine conditions for the validity of
the necessary classical path approximation and the ef-
fects that might be expected when this approximation
breaks down.

a. The spectrum and the correlation function

We consider a fixed radiating atom with an initial
state |i) and a final state |f), surrounded by moving
perturbers. The total power emitted in all directions for
a dipole transition of this atom is given by

400t
P(w)=§l(a)) , (60)

where wj is the frequency of the transition and

Hw)=8w—w;)(f|d]i))p; . (61)
if

The absorption spectrum can be obtained from the emis-
sion spectrum by application of the Einstein relations.
The summation extends over all atomic states, each term
weighted with a statistical intrinsic probability p; for the
initial state. Because we confine our interest to the line
spectrum of the radiating atom and exclude the continu-
um radiation attributable solely to the perturbers, d is
the dipole moment of the radiator and not of the entire
system.

This, of course, is the complete spectrum of the atom,
but often we are interested only in an isolated line. In
such a case the summation in Eq. (61) is omitted. Only
selected initial and final states enter. For overlapping
lines, the sum must extend over all contributing states
(Baranger, 1958b).

Although in the classical treatment we obtained the
correlation function from its definition, Eq. (42), here we
take the direct approach of Fourier-transforming Eq.
(61) to obtain

+ o0
<I>(s)=f_ I(w)exp(—iws)do , (62)
which, together with its converse, Eq. (46),

L) === [ " () explios)ds (63)
T ard-w P ’

describes the line profile. Since I (w) is real, the correla-
tion function must be computed only for positive s. We
have

D(—s5)=D*(s) (64)

and
1 o .
I(a))=;Re [fo D(s)explicws)ds | . (65)

For this reason the signs in the exponentials of Egs. (62)
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and (63) are immaterial. From Eq. (62) we obtain ® by
substituting Eq. (61). After integration over w, Eq. (62)
becomes

D(s)=Fexp(—iwys) | {f |d]i)|%p; . (66)
if

b. The calculation of the correlation function
with time-evolution and density operators

This fundamental expression for the correlation func-
tion can be written in terms of the time-evolution opera-
tor T'(s), which transforms a state at time O into a state
at time s. It is given in the Schrodinger representation
by

T (s)=exp[—i(H /#)s], (67)

where H is the Hamiltonian of the system of radiator
and perturbers,

H=H,+Hp+V . (68)

H, is the atomic Hamiltonian, Hp the Hamiltonian of
the perturbers, and V the total interaction potential (An-
derson, 1949; Baranger, 1962; Smith, Vidal, and Cooper,
1969; Allard, Sahal-Brechot, and Biraud, 1974). The
correlation function of Eq. (66) can be equivalently writ-
ten

@(s)=Tr[dT (s)dT (s)p] , (69)

where the trace operator Tr acts over all the states of the
entire system of the radiating atom and the assembly of
perturbers, and p is the Boltzmann-Gibbs density matrix
for the whole system. This is most readily shown by
substituting into Eq. (69) the appropriate matrix ele-
ments and explicitly evaluating Eq. (69) to reduce it to
Eq. (66). A general discussion of density matrices has
been given by Fano (1957). This form for ®(s) is useful
for separating the statistics of the perturber and emitter
spaces.

c. Separation of perturbers and the emitter

We now introduce a few assumptions about the densi-
ty matrix and the states that will allow a distinction be-
tween perturber and emitter statistics, thus making possi-
ble a significant reduction in the computation of the
correlation function. Following Baranger (1962) and
Cooper (1967), we construct the states of the system
from the direct product states

[¥(£)) = | (D)) | X(2)) , (70)

where the wave function of the radiator |¢) depends on
its coordinates, and the wave function |X) depends only
on the coordinates of the perturbers. The perturber
function is assumed to consist of wave packets and obeys
a Schrédinger equation which does not depend on the
state of the radiating atom. This means we neglect the
“back reaction” of the radiator on the perturbers (Smith,
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Vidal, and Cooper, 1969). In this approximation
[Baranger, 1962, Egs. (21 —22)], the radiator wave func-
tion evolves in a time-dependent potential, averaged over
the perturber wave packets. For the neutral-atom line-
broadening problem, these wave packets are sufficiently
small that we picture classical trajectories for the per-
turbers as they disturb the radiating atom.

The extent of the perturber wave packet is the smallest
interval over which the correlation function can be divid-
ed in the classical sense, a point we shall return to later.
With this understanding, we can adopt a theory of the
correlation function calculated with a classical path ap-
proximation, and use the factored states to compute
®(s). The density matrix also factors into two parts,
and for it we write (Fano, 1957)

P=pPaPp (71

with the inherent assumption that perturbers and radia-
tors move independently. This assumption requires that
we take a specific form for the density matrix of the ra-
diators. Approximately we have

1
pAzZ(T)

where Z(T) is the partition function, H, the radiator
free-atom Hamiltonian, and ¥ the statistical average of
the perturbation over the positions and speeds of the per-
turbers. Then, to assure separation of the density matrix
as in Eq. (71), we must let ¥ /kT approach zero in the
exponent.

The assumptions that allow the factorization of the
density matrix Eq. (71) do not hold rigorously in real
cases, but lead to negligible error except in the far line
wing, where frequencies are removed from the unper-
turbed line center by amounts of the order kT /%. The
inadequacy of Eq. (71) may be seen particulary in radia-
tive redistribution problems in this domain. In the
binary collision approximation, Burnett et al. (1980) have
presented a method for calculating the density operator
in the presence of a driving field and perturbers without
restriction to the factorized form. They also discuss
conditions under which the approach used here is valid.

We factor the time-evolution operator so that

T(S)=TA(S)TP(S) ) (73)

giexp[ —(H,+V)/kT] , (72)

where T, follows the perturbed atomic Hamiltonian
H,+V, and Tp follows the perturber Hamiltonian Hp.
With this factorization and a few manipulations it is
easy to see that the correlation function is given by
(Sahal-Brechot, 1969; Allard, Sahal-Brechot, and Biraud,
1974)

1
D(s)=2, | 5giexp( —E; /kT)
= z(T)
x| |G| . (74)

Av

Here g; is the degeneracy of the initial state, E; the
asymptotic initial-state energy, and the potential V is
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neglected in the exponent to allow the separation of per-
turber and emitter spaces. The average symbolized by
Av is over the ensemble of perturber states, now regard-
ed as classical particles. The operator d(s)=77dT is the
dipole moment of the radiator in the Heisenberg repre-
sentation.

d. The calculation of d(s)

To calculate the required matrix elements of d(s) from
d(s)=TT(t +5,0)dT (¢ +5,1) (75)

we introduce the time-evolution operator U(f +s,t),
which is related to T by

T(t+s,0)=T4(s)U(t +s,t), (76)
where T4(s) is the evolution operator of the unperturbed

system given by

T, (s)=exp P

—iHAS} . (77)

The evolution operator in the interaction representation,
U(t +s,1), is customarily defined by

Ult =1 Lf’“d 1%
+5,8)= —zJ. 9 7(ty)

1 t+s ~ L] ~
—?ft dthT(tl)ft dtzVT(t2)

+ o, (78)
where
VT(t]):eXp éHAtl VT(t] )exp _%HAtl (79)
with
S>t>th> " >ty . (80)

This expansion is symbolically a time-ordered exponen-
tial, in which the operator .7~ maintains the required or-
der. Its use in line-broadening theory is discussed exten-
sively by Smith, Cooper, and Roszman (1973), who
derive results similar to those that follow here. The evo-
lution operator becomes

(81)

1 t+s
Ul(t +s,)=Texp Zf' Vo(t)dt

These time-ordered integrals cannot, in general, be re-
duced to an unordered exponential because the terms
Vr(t;) and Vr(tj) do not always commute. But there
are circumstances under which they will; for instance, if
strong collisions do not overlap one another. We retain
the ordering operator implicitly in the following expres-
sions and consider in the next section criteria for
dispensing with this requirement. Then we write from
Eqgs. (74)— (77) and (81) the correlation function
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giexp(—E; /kT)
Z(T)

D(s)=2

if
X (i |d|f) | [d(s)]av | f) (82)

and for the elements of d(s)

[d(s)]ay= lU_l(t +s,t)exp éHAS]
X dexp -—L.HAS]U(I—I-S,I‘) (83)
#i Av
or
(f11d$)]ay 1) =F[UR (t+s,6){p |d|q)
Pq
X Uygi(t +s5,1)
Xexp(—iwg,s)]ay - (84)

From here on we restrict our consideration to lines
which are isolated, either degenerate and unresolved, or
well separated (Anderson, 1949). A general theory for
overlapping lines has not yet been applied to a neutral-
atom problem for which experimental data exist. A dis-
cussion of overlapping lines in the impact limit has been
given by Baranger (1958b). For an isolated line which is
a transition between states designated |jm ), we take
into account the degeneracy in m to obtain

Gpmp | [d($)]ay | jimi )

= 3 [exp(—iwys){jim; | U™! ljgmy)

mym,

X (pmy | d]|jimy) Gimy | U | jim; ) ]ay -

(85)

e. The angular average and the calculation of ®(s)

To obtain a workable form for the correlation function
we need to complete the averages in Eq. (85). This pro-
cess is divided into two parts, the first of which is the
problem of averaging over all orientations of a reference
frame chosen for the calculation of U by the collision
geometry, one in which one axis is along the impact
parameter for the collision trajectory (Cooper, 1967).
This angular average involves a superposition of all pos-
sible Euler angles representing the relative orientation of
the frame of the collision to that of the laboratory in
which the collision is observed.

It is convenient to regard d as a tensor operator of
rank 1 and to introduce its reduced matrix elements de-
fined by (Judd, 1963; Edmonds, 1968)
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Gpmy | d|jmy =(=D) ™™

Jjr U ji
—my 0 m;

X Crlld |1 - (86)

Then, by explicitly averaging over the Euler angles and
making use of the rotational transformation properties of
the atomic wave functions, we can express the angular
average by (Cooper, 1967; Sahal-Brechot, 1969)

Grllld () angllii Y = CGirlld||ji Yexp( —iw;ss)
Av

X [U!(t 45,0 Us(t +5,0)]ang »

Av
(87)
where
[Uf7'(t +5,0 Uyt +5,0)1ang
Av
R I P2 G
— 2 (_1)211+m,+m, i ’]
g mg M —my
mmg
M
jf 1 ji . ’ .
mg M —my Gimi | U, | jim;)
X {pmg | UZ | jemp) (88)

Here we have denoted by U, the operator U referring to
the axes of collision (Cooper, 1967). Only diagonal
terms in U (or S for the impact approximation) enter for
the angular average of an isolated line.

Deferring momentarily the completion of the averag-
ing process, let us consider the remaining problem, one
central to all unified theories of line broadening, namely,
to calculate U (¢ +s,t). It is given by Eq. (81), where the
total interaction V7 is equal to the sum of the interac-
tions 0i,0,...0;...0y due to the different perturbers
1,2,...i...N, which act during the correlation time s.
In terms of these individual interactions we obtain

1 t+s
U(t +s,t)=7 exp —éf: " [T7(¢")+05(¢")

4+ - 4 on(e)]de'| . (89)

If we suppose, for example, that the collisions are
separated in time so that ; is equal to zero when 7; is
not zero, and reciprocally that ; is equal to zero when ¥;
is not zero, then

[0:(2"),0;(¢")]=0 (90)

for every i, j, t', and ¢".
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With this hypothesis, which is central to unified
theories of line broadening (Smith, Cooper, and Rosz-
man, 1973), we can replace the time-ordered expression
Eq. (89) by a commutative product of the evolution
operators u;(t +s,t) which are solutions of the Hamil-
tonian of the atom in the presence of only one perturber.
The Hamiltonian in this case is H =H +;(t), the col-
lisions can be ordered as necessary because the operators
commute, and we write

U . iopt+s_ ar’
(t +s,t)=7 |exp —th U (¢")dt
1 t+s
X exp ——%—ft sz(t")dt”I s ] ,
91)
i ths_
Ult +5,0)=5 |exp —th o, (¢")dt
i t+s~ ” ”n
X7 |exp —th U, (t")dt H ,
(92)
N
Ut +s,6)=[Jui(t +s,0) . (93)

i=1

Now the calculation involves only the effect of one col-
lision,

i et
u;(t +s,t)=7" |exp —éft sﬁ',-(t’)dt’ (94)

Whether we can now remove the time-ordering con-
straint depends on validity conditions summarized in the
following section.

As a consequence of the commutator Eq. (90) and the
result Eq. (93), we need to calculate

(U7t +5,0U;(t +5,0]ay

=(u ,_f}ulﬁu{ffluzﬁ <o uif}uNﬁ)Av . (95)
We have separated the sequence of products from Eq.
(93) into one-perturber sets, which, for simplicity, we
have designated ufjlu,-,-. The perturbers are assumed to
move independently, and the average of the products in
Eq. (95) is replaced by the product of the averages to
yield

[UF'(t +5,00U;(t +5,01ay=[ (w7 ui)ar]¥ . (96)

When we evaluate the power in this expression by the
approximation used in the Anderson-Talman theory, that
(1—a)¥ ~exp(—Na) for small a and large N, we obtain

(UT'U)av=exp[ =N (1 —ugru;i)asl 5 ©7n

a workable expression for the average needed in the cal-
culation of the correlation function.

The angular average has been discussed and is given in
Eq. (88). The other average we need is over the initial-
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perturber velocity and position. As in Sec. ILB, this is
obtained by integration over a volume 7~ of space about
the radiator

(l_uf7luii)Av
:—;/—fowf(v)dvf fVZn'bdbvdt

X[l*(ﬂf?luﬁ)Ang] . (98)
Av

Here f(v) is the Maxwellian velocity distribution of mu-
tual perturber- radiator velocities, b is the impact param-

g)=["rwa [~ 21'rbdbf

In Eq. (100) ugs or uy refers to a single perturber, the
angular average is given by Eq. (88), and the profile for
an isolated line defined by this correlation function is
normalized to unit area on an angular frequency scale.

In the impact limit as s — o, Eq. (100) simplifies. All
collisions are completed, and the evolution operator ma-
trix for U is replaced by the S matrix. We obtain

g(s)=ag+iBo+(a;+iB)s (101)
and

a,+i3,:fo°°f(v)u dufo“’zwb db(1—S77'Sii ) ang -
Av

(102)

If the diagonal elements of the S matrix are written in
the form [Baranger, 1962, Eq. (59)]

—&+in), (103)
then the half-width na, and the shift n3; become
na;=n fowf(v)v dv
x [ “2mb db[1—exp(—&)cos()]

Sf}IS,-,- =exp(

(104)

nBi=n fowf(v)v dv

X f0w217'b db exp(—&)sin(n) . (105)

In the special case when ¢ is infinite, every collision is
inelastic, there is no shift, and the width is the collision
frequency. This is the Lorentz (1906) theory. On the
other hand, if & is zero, all collisions are elastic and we
obtain the adiabatic theory of Lindholm (1945) and Fo-
ley (1946).

These expressions are also equivalent to the formulas
given by Lewis (1980) for the impact limit. In the
quasistatic limit, Eq. (100) reduces to the results of Mar-
genau (1935, 1951), in just the same way that the Ander-
son theory reduced to corresponding phase-shift and stat-
ic theory results in similar limits. The expression given
here thus constitutes a generalization of the Anderson-
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eter, and ¢ is the time of the collision. The.integrals ex-
tend over the volume, which will become infinitely large
with constant number density n =N /%" of perturbers.
A more formal treatment of this average is given by Al-
lard (1973).

We now combine Eqgs. (86)—(97) and (98), delete fac-
tors constant through the line profile, and obtain for iso-
lated lines

D(s)= Y exp( —iw;rs)exp[ —ng (s)] (99)
if

with

(100)
Av

I
Talman theory, but as an extension of Baranger (1958) it

is a unified theory in the sense discussed by Smith,
Cooper, and Roszman (1973).

f. Conditions of validity for the unified theory

This theory, like others of the same sort (Smith, Coop-
er, and Vidal, 1969; Bezzerides, 1969a, 1969b; Bottcher,
1971; Lee, 1971; Smith, Cooper, and Roszman, 1973),
has a fundamental limitation imposed by the assumption
that perturbations by different perturbers acting at dif-
ferent times commute for all perturber pairs and all
times, as expressed by Eq. (90). There are several condi-
tions that would be sufficient to make this occur, and
since these are often satisfied in experimental studies of
neutral-atom broadening, the theory is generally quite
useful. The validity conditions are summarized as fol-
lows:

(1) Pairs of collisions are well separated in time, so
that, as explained prior to Eq. (90), only one v; is turned
on at a time. This condition is equivalent to requiring a
low density and, as an approximate criterion, if b is an
impact parameter which is preponderant in the collision,
we must have

b<<n—13, (106)

We shall see that this may be an important limitation on
the utility of the theory for the analysis of transitions in
highly excited atoms at high gas density. Time ordering
following Eq. (94) can be dropped in this case.

(2) The operators v; are diagonal, for then the poten-
tial is rigorously isotropic and Eq. (90) holds exactly.
Thus in the case of scalar additive interactions, the pro-
file given by Egs. (99) and (100) is correct at all densi-
ties, but time ordering should be retained in principle.
Its neglect, according to Smith et al. (1973), approxi-
mates the perturbers as statistically independent, ignoring
two-body and higher-order correlations that have an un-
certain effect on the neutral-atom line profile. Such
corrections should be small and are perhaps generally
negligible.
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(3) The collisions are weak and first-order perturbation
theory is valid for all events. If the duration of collision
is 74, then this condition may be written

V(b)
#

The limits of validity on the classical path approxima-
tion, required for these results to apply, will be discussed
in the following section. In addition, the condition for
the separation of density matrices of the radiator and the
perturber was that the term V /kT be negligible when the
radiator density matrix is computed. For consistency,
we must also not include V/kT in the velocity distribu-
tion f(v). This point has been discussed by Cooper
(1973) in detail, and it has particular bearing on the
works of several authors who retain the factor (Schuller
and Behmenburg, 1974; Atakan and Jacobson, 1972; Fox
and Jacobson, 1969). The errors in any case would not
be large unless ¥V were nearly k7. The distribution used
for the analysis of far-wing profiles in several experi-
ments (Hedges, Drummond, and Gallagher, 1972) can be
recovered from the unified theory in the limit of small
correlation time s only if f(v) does not include V/kT,
and if the proper perturber dynamics are included in the
average, which is to say that curvature of the classical
path must be allowed for. Averaging over a curved tra-
jectory in the unified approach would lead to an
exp(— V/kT) weighting in the line wings. In summary,
for straight perturber trajectories, f(v) must not include
the potential energy. The case of the static limit will be
considered in some detail later.

Td <<1 . (107)

g. Breakdown of the classical path approximation

The classical path approximation (Smith, Vidal, and
Cooper, 1969a) that is basic to these calculations is valid
under conditions of such wide range that with few ex-
ceptions it is used for almost all line-broadening calcula-
tions. The precise conditions of validity are, however, of
special interest because in unified theories the approxi-
mation fails under some conditions that may be of prac-
tical significance.

First of all, we restrict our attention here to the possi-
ble breakdown of the classical treatment of the wave
functions of the perturbers. Another source of difficul-
ty, the separation of perturber and emitted density ma-
trices, was addressed earlier when we imposed the re-
quirement that

V/kT << 1 (108)

for this treatment. When we identify a particular fre-
quency with a particular perturbation, as in the statisti-
cal theory, Eq. (108) translates into a frequency-
dependence condition fiw <<kT. Thus at 1000 K the
theory is valid only within a region of much less than
700 cm~! from the line center. More recent work on ra-
diative redistribution (Burnett et al., 1980) has dealt with
some situations in which this requirement may be re-
laxed.
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For the classical path approximation to be applicable,
it is necessary that the de Broglie wavelength of the per-
turber be smaller than a characteristic distance over
which the interatomic potential varies appreciably. A
measure of the order of size of this distance is an effec-
tive impact parameter b. For perturber momentum p we

have the condition
b>>A/2m=%#/p . (109)

We recognize that the angular momentum !/ for this im-
pact parameter is

#l=pb , (110)
from which we obtain the condition
I>1. (111)

For the line profile to be treated with a classical path,
the collisions of significance must have large angular
momentum. Such a condition is quite similar to that re-
quired to calculate scattering cross sections classically
(Mott and Massey, 1965, p. 111).

Another consideration is the assignment of a well-
defined position to the perturber, in order that the corre-
lation function may be calculated for different delays
along the perturber path. For instance, for a time inter-
val As the classical perturber will move a distance vAs.
The smallest time interval with meaning in the sense of
the classical path is one for which

V(AS)pin=A /27 =1/p (112)

or

(AS)min >>#/(pv) ~#/KT . (113)

Changes in the correlation function over time differences
of order As map into changes in the spectrum over fre-
quency intervals of order (As)~!. In terms of Aw

1/Aw >>#/kT (114)

or

#fidow << kT . (115)

This condition appeared earlier, Eq. (108), as a require-
ment for the separability of the density matrices.

In the far line wing, where spectral energy differences
are as great as thermal collisional energies or greater, we
see two disparate phenomena working together to alter
the classical path spectrum. The effects of deviations
from straight-line paths and of perturber wavelength ap-
pear under similar conditions. Of course, it is just as we
begin to worry about the curvature of the perturber tra-
jectory that we must also assign a particular state to the
system in order to define the interaction that determines
that trajectory. On the basis of JWKB results, Szudy
and Baylis (1975) recommend calculating the path from
an average of initial and final states as an adequate ap-
proximation to get out of this dilemma. Nevertheless,
when the straight-line classical path is invalid, it is sure-
ly best to pursue a fully quantal calculation.
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2. An alternative formulation

The unified Franck-Condon theory of Szudy and
Baylis (1975, 1977) is a molecular approach based on the
Franck-Condon principle and developed from the ideas
of Jablonski (1945), discussed in Sec. II.A.6, and the
work of Baranger (1958a, 1958b, 1962), discussed in the
previous section. It is a theory that is useful for the en-
tire line profile, particularly at low densities.

The starting point is Eq. (61) of Sec. II.C.1,

IHo)=3 8lw—w;){f|d]i))p;, (116)
if

where w;r is the frequency of the radiator in the presence

of all the perturbers, p; is the probability of the initial

state of the radiator and its perturbers, and the states of

the system are products of single-particle states

[i)=];) | X;(1)) | X;(2)) - - - | X;(N))

of the radiator (|¢)) and N perturbers (|X)). In using
the following approach we assume that the potentials are
adiabatic, and neglect transitions between different levels
of the radiating atoms induced by collisions. Since d
operates only on the radiator states, we can make the as-
sumption that its matrix elements are constant terms d;r
and Fourier-transform I (w) [see Eq. (62)] to obtain

O(s)= > dizp: [T | GG | X)) | 2] exp(—iwps)
if J

(117)

Xexp [— 3 Awir(j)s |, (118)
J

where o, is the unperturbed frequency, Aws(j) is the

perturbation due to the jth perturber, and dis is the di-

pole transition matrix element. Selecting an isolated line

for which all d;s contributing are equal and constant, we

obtain to within a constant factor

O(s)=exp(—iwgs)[#(s)]V, (119)

where ¢(s) is the single-perturber correlation function,

d(s)= 3 | X; | Xs) | exp(—iAwys)p; , (120)
if

so that the N-perturber correlation function is propor-
tional to the Nth power of a single-perturber correlation
function. The spectrum is given entirely in terms of
one-perturber quantities.

A more conventional form results by writing

d(s)=1—-g(s)/7", (121)

where 7~ is the volume in which the radiator is isolated.
Then as N is increased while N/7  is held constant, the
correlation function becomes the same as Eq. (99) of the

preceding section,
D(s)=exp(—iwys)exp[ —ng(s)], (122)

while g (s) is given by
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g&)=| X pi | (X5 |X5) | [1—exp(—iAwys)] | .
if

(123)

Notice that this form of g(s) neglects possible effects
of time ordering. A different normalization for the one-
perturber states |X“) is introduced explicitly here, to the
volume 2. This is common in scattering calculations
and is used by Baranger (1958a, Sec. 4).

This is the starting point for Szudy and Baylis [1975,
Eq. (2.5)], from which they construct their unified
Franck-Condon line shape. The line shape is determined
by the values of the free-free Franck-Condon factors
[{Xi|Xs)|?* along the lines drawn in our discussion of
Jablonski’s work. These integrals can be calculated if
certain assumptions about the wave functions are made,
and we shall consider those results in Sec. ILF.1. An
evaluation by these methods of the spectrum of the line
wing in the limit where only one perturber is significant
at a time, the nearest-neighbor approximation, has been
given recently by Herman and Sando (1977).

3. Nonadiabatic processes

As we saw in the previous sections, the quantum treat-
ment of line broadening depends on an evaluation of the
evolution operator U for the radiator-perturber system.
The problem is nontrivial in all but two-level atoms be-
cause of fine-structure transitions between excited states
that occur during the collision. The complete calcula-
tions of U thus depends upon the evolution of the com-
position of an atomic state, expressed mathematically as
a sequence of coupled differential equations. The exact
solution of these coupled equations is so time consuming,
even in high-speed numerical calculations, that it has not
been feasible to apply it to a complete unified-theory
profile calculation.

In 1965 Nikitin introduced the idea of using a molecu-
lar model of the collision itself, in such a way that each
stage of the collision could be described by the appropri-
ate Hund’s coupling case (Nikitin, 1965; Masnou-Seeuws
and McCarroll, 1974; Herzberg, 1950; Judd, 1975). This
approach has found recent application to line broaden-
ing, particularly in the impact region (Lewis,
McNamara, and Michels, 1971; Lewis and McNamara,
1972; Lwin, McCartan, and Lewis, 1976; Kielkopf and
Allard, 1980). A comparison of different methods of
calculating the broadening rate for the sodium D-line
core has shown that this method produces broadening
rates in agreement both with the solution of coupled
equations and with experimental observation (Kielkopf,
1980). In the following, we outline the use of Hund’s
cases in collision problems, using the treatment given by
Masnou-Seeuws and McCarroll (1974). In addition to
Nikitin’s (1965) original paper, there is also a good sur-
vey in a recent review by Nikitin and Smirnov (1978),
particularly their Sec. 4. The application of symmetry
considerations to the calculation of the S matrix, the



N. Allard and J. Kielkopf: Effect of collisions on atomic spectral lines 1119

evolution operator for a completed collision, is discussed
in a recent review of impact broadening by Lewis (1980).

a. Fine-structure mixing

We reconsider a radiating atom A4 in collision with a
perturber P, separated from A by the distance R, in order
to illustrate fine-structure mixing as an example of more
general inelastic transitions. The system Hamiltonian is
computed in a semiclassical treatment, with the
presumption that the trajectories of the atoms are
described classically. Usually these trajectories are also
assumed to be rectilinear, although this is not a neces-
sary constraint, since nonrectilinear trajectories are unim-
portant when |V(R)—V ()| <<kT. Then, in the usual
way, we separate the Hamiltonian into the free-atom
Hamiltonian H, and the perturber Hamiltonian Hp plus
the interaction V between the atoms,

H=H,+Hp+V . (124)

We assume that the perturber remains unexcited and that
the structure of the perturber is not a consideration in
the following calculations. The radiator Hamiltonian,
however, is divided into core (Hc) and spin-orbit (H,g)
parts. Then

H=Hc+H;s+Hp+V (125)

is the system Hamiltonian. The problem of calculating
the interaction ¥ will be considered in Sec. II.D. Since
the evolution operator U is the formal solution of the
Schrodinger equation in the interaction representation,
the problem is to solve

mia‘:’u —H|V). (126)

b. Symmetry properties of the Hamiltonian
and associated operators

To describe the collision, we introduce two reference
frames with common origin at the center of mass of
atom A, as illustrated in Fig. 6:

Tx

y

FIG. 6. Two coordinate systems for describing an atomic col-
lision. The OXYZ system has an internuclear Z axis that ro-
tates during the collision; the Oxyz system is fixed in space
with the z axis out of the collision plane (Masnou-Seeuws and
McCarroll, 1974).
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(i) A fixed-frame oxyz has the z axis perpendicular to
the collision plane.

(i) A rotating-frame OXYZ has an internuclear axis
OZ between A and B, with the y axis perpendicular to
the collision plane.

The passage from the fixed to the rotating frame is
described by the Euler angles (a,3,7)=(¢,7/2,7/2) and
can be carried through with the operators Z(a,f3,7), as
described by Edmonds (1968, Chap. 4).

We then introduce three possible bases:

(i) the atomic basis |Jm ) with quantization axis oz;

(ii) the atomic basis |[JM ) with quantization axis OZ;
and

(iii) the molecular basis |[AM} ) | SMs ).

In case (iii) the axis of quantization is also OZ, the rotat-
ing internuclear axis, and A= |[M; | is defined as in
molecular structure calculations (Judd, 1975; Herzberg,
1950).

For our purposes there are three useful symmetry
operations on the Hamiltonian:

(i) #,(a) defining rotation about the fixed axis oz;

(ii) #z(a) defining rotation about the internuclear axis
OZ; and

(iii) o, defining reflection through the collision plane.

The basis states are to be restricted to sets of a given
parity (— 1) with respect to an inversion through the
origin. The eigenstates of the reflection o, are con-
structed from (Masnou-Seeuws and McCarroll, 1974;
Shakeshaft, 1972)

|IM;+)=[ |IM)+(—1)M|J —M)]/V2

(M5£0), (127)
[JO;+)=|JO), (128)
o, |IM;+)=+(—DFPH+2M a1 1) (129)
o, |Jm;+)=(—1)exp(—imm)|Jm) . (130)

Because the interaction potential V is electrostatic in ori-
gin, it is cylindrically symmetric about the internuclear
axis. In a system that does not rotate, this will mean
that the potential will not depend on the sign of M, al-
though its effect may depend on the M value of the state
of the system. In the general case, ¥ commutes with o,.
The potential ¥ also commutes with $? and L, so con-
sequently it is diagonal in the molecular basis. However,
when a rotating axis is used as the axis of quantization,
off-diagonal elements in the Hamiltonian will appear due
to the time dependence of the basis set (Masnou-Seeuws,
1973; Allard, 1973).

The state |W(z +s)) is obtained from the earlier state
|W(¢)) through the evolution operator U(t +s,t). We
write the result in terms of |W(z)) as

| W(t+5))=Ul(t +s,0) | V(1)) (131)
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or in terms of the chosen basis states |®;(z)) as

| W(t+5))= D a;(t +5)| P;(0)) . (132)
j

The right-hand sides of these two equations must thus be

equal, that is,

zaj(t +S) l (DJ(O))'—:U(t +S,t)20j(t) I q)J(O)> . (133)
j ) j

From this we obtain a relationship between the matrix
elements of U and the coefficients a;,

ag(t +5)= 3 (k| U(t +s,0) | j a;(2) . (134)
j

Thus, if at the instant “¢” the state is | ®; ), then the ini-

tial conditions a;(¢)=1 and a,.;(¢t)=0 are sufficient to

define

Uij(t +s,t)=ai(t +s5,1) , (135)

which is quite enough to give us the required evolution-
operator matrix elements needed for a profile calculation
(Callaway and Bauer, 1961; Stacey and Cooper, 1971).
Consider, for example, the expansion of a state in
terms of the basis states |JM ) in the rotating frame.
These states have rotated an angle ¢ from the state at
the initiation of the collision for which t=—o. If
these initial states are denoted |JM ),, then the states
develop from the initial state according to the rotation

about the Y axis in Fig. 6,
| IM ) =exp(—i¢Jy) | IM ) . (136)

The implicit dependence on ¢(¢) for this basis means
that the expansion of a general state of the system

M
| WY= 3 apl|IM) (137)
M=—J
has a time derivative
M .
d|¥) > (ay |IM)—i¢Jyap |IM)) . (138)
ot Mty
Thus the Schrodinger equation [Eq. (126)] becomes
J J .
iy dy|IM)= 3 (H—#dJy)|IM)ay .
M=—J M=—J
(139)

The rotation of the basis states can be simulated by using
an effective Hamiltonian H'=H —#¢Jy for this choice
of initial basis. In the Schrddinger representation we ob-

TABLE 1. Symmetry properties of the collision Hamiltonian.?

tain a set of coupled equations for the coefficients a,y,

ifiay =
M

J
> (M |H'|IM')ay . (140)
=—J

Should the system Hamiltonian couple states of other J,
then the summation would be extended as necessary.
The solution of these equations, according to Eq. (135),
yields the time evolution of the system, and thereby the
required evolution-operator matrix elements. The effec-
tive Hamiltonian H' depends on the basis chosen, and
the matrix elements in these coupled equations are never
diagonal.

c. The choice of representation: Hund’s cases

As shown in Table I, the different terms of the Hamil-
tonian do not always commute. In order to resolve the
time evolution, it is often useful to choose a basis in
which the off-diagonal terms are the smallest. In this
optimal case, it is sometimes possible to neglect the off-
diagonal elements entirely. In such an instance we say
that the system is described by a Hund’s coupling case
(Hund, 1926, 1927; Herzberg, 1950; Roueff, 1972;
Masnou-Seeuws, 1973; Allard, 1973; Judd, 1975). The
different Hund’s cases are summarized in Table II, to-
gether with an approximate validity condition for the use
of that case.

d. An example: Hund’s case C applied
to the resonance lines of cesium perturbed by xenon

Although the appropriate Hund’s case may change
through a collision, or with impact parameter, in some
instances the solution for U can be exact, and in other
cases it may be well approximated by a single Hund’s
case for the entire calculation. An example of changing
Hund’s cases thorugh a collision trajectory was given by
Lewis, McNamara, and Michels (1971) in their calcula-
tion of impact broadening of the sodium D lines. Here
we consider the simpler example of the resonance lines
of cesium perturbed by xenon. The validity of our cal-
culation rests on assumptions of low density and pertur-
bations much less than k7. The treatment given here
was summarized briefly in Allard, Sahal-Brechot, and
Biraud (1974) and treated more completely in Allard
(1973).

We consider the solution of the problem in basis states

Terms in the collision Spin-orbit Electrostatic Rotation

Hamiltonian H'=H —#$J, His v o L, Jy

Symmetry Rz(a) R,(a) o, Rz(a) o, o, o,

Commuting operators Ji, JU, JY, L,S%S, S3S, L’L, J,

Diagonal representation [IM) |Jm) |Jm) |AM. ) |SMg) |AM;+)|Smg) |Lmy ) | Smy) | Jm)
| IM; +) [AMy;+) | SMs;+)

#Masnou-Seeuws and McCarroll (1974).
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TABLE II. Hund’s cases.?

Hund’s case Representation Validity®
A | AM.) | SMs) or Vo> Eps >>fig
|AMp;+) | SM;+)
B [AMp;+) [ Smy) V >>#ig >>ELs
C |JM) or |JM;+) ELS>>V>>iiéS
D |Lmy) | Sms) #ip >>Eps>>V
E | Jm ) Eps>>Hig>>V

*Masnou-Seeuws and McCarroll (1974).

The fine-structure separation is Es; the matrix element of the
perturbation responsible for recoupling the state in question is
V.

| JM ) for both initial and final states of the transition
65s2S,,2-6p *P1,,3,,. Except for very close collisions
that are not of interest for the optical problem, the
ground state remains very well isolated, and the potential
energy is diagonal in the basis |%i%). The coupling
coefficient in the interaction representation has the sim-
ple differential equation

that has the solution
t+s
aptt +sn=exp [—i [ W, e
=exp[ —i8(t +s,1)], (142)
Usr=exp(—3) (143)

for the final ground state.
For the initial state we need to distinguish diagonal
potential-energy matrix elements

VCIL )= 55|V ]5+3), (144)
Ve ) =(5+5 V]33, (145)
VO ) =(5+5 |V |3+5) (146)

The designations = and II refer to the molecular states

for which M} is O or +1, respectively, and the subscripts

refer to M;. We also need to consider the effect of off-

diagonal potential terms such as
3

VEI=(5+3|V|5+3) (147)

connecting states of different J with the same M. Al-
though V(ZII) may be as large as a diagonal term, for
this example we assume it to be small in comparison to
the spin-orbit interaction E; g that separates |2P;,,) and
|2P3 ).

H’' also included the rotational coupling operator
—7#igJy, which, for these basis states |JM ), has matrix
elements

(I'M'| —#dJy | IM)

_ <J,M, |_ ﬁz;fi(h —J_) ‘JM> , (148

where
J=Jx+iJy (149)
and
J_=Jy—ily . (150)
Thus, since
Jy |[IMY=[JJ +D)—MM+D]'?|IM+1) ,
(151

(I'M' | —#igJy | IM )

it
2

=4 ¢8]J'6M"M11[J(J+1)'—M(Mil)]1/2 .

(152)

So the complete matrix of H' for the six substates of the
2P multiplet is

M) 13-1) 3+3) 13- 7-3) 3 +3) 3 +3?
(-1 V(1) +,-ﬁ2¢_ V(ZI)
(141 —i—’?zi V(I ) V(=)
ELS y
3_3 79 /3
< 2 2 , +V(“3/2) +! 2
301 ﬁ‘/— Eps .
3_1 . 5
(-7 V(1) i=>V3 VL +ifip
E;s ;
3.1 _itd ﬂ\/g
(7+5| V(=) ifig V(S +i 5
; Ers
3,3 _iHb .3
(2+2 ' ! 2 3 + V(I1;3,,)
(153)

Rev. Mod. Phys., Vol. 54, No. 4, October 1982



1122 N. Allard and J. Kielkopf: Effect of collisions on atomic spectral lines

The term ¢ in the effective Hamiltonian introduces
off-diagonal contributions due to rotation into the time-
evolution equations. The 2P,,, and %P, states are not
coupled by rotation, but the substates of each level are
mixed. Whether the degree of nonadiabaticity intro-
duced in this way is significant for the line profile de-
pends on the relative magnitudes of #i¢ and the interac-
tion potential. We make the assumption that Hund’s
case C is valid throghout the collision, or, following
Table II, that E; 5 >>V >>#i$. This is reasonable for the
perturbation of a heavy alkali by a heavy noble gas at
typical laboratory temperatures of the order of 500 K.
For the resonance lines of Cs perturbed by Xe, the 6p
state has a spin-orbit interaction of 554 cm -1 Vis of
the order 100 cm~! at R=5 A, and #g is of the order
v/R, about 4 cm™!. Even for high doublets in Cs, the
approximation is still good because, as the fine structure
decreases with increasing excitation, so does the typical
perturbation, and the larger impact parameters of in-
terest yield smaller ¢ For the 9p state Erg is 45 cm™},
V is of the order 10 cm~! for R=25 A, and ﬁqb is less
than 1 cm~™!. This approximation would not be good,
however, for light alkalies with smaller fine structure.

An appropriate expansion including all the terms in
(JM |H'|J'M') is quite complex, but when Hund’s case
C is valid the terms in ¢ can be neglected. Furthermore,
the remaining off-diagonal potential terms V(ZII) cou-
ple 2P, ,, and *Ps,,, introducing a first-order correction
of magnitude [V(ZI1)]?/E.s to the zero-order result,
smaller by a factor V/E;g than the diagonal terms. It is
feasible then to regard the *P,,, and ?P;,, states as un-
coupled so long as only spectral regions for which
V(R) << Eg are considered. In the sense of the coupled
equations, the spin-orbit interaction is so large that the
terms linking 2P, ,, and 2P;,, oscillate strongly, making
the fine-structure cross section negligible compared to
the total one.

Appropriate expansions in terms of the |JM) basis
are

|2P1/2>=01|%+%>+02|%—%) (154)
and
|2P3 /) =b, | %+‘3‘>+b2|%+l)
by | 3—3)+bsl 3 —7) (155)

The coupled equations are found by application of Eq.
(140) explicitly, but as a consequence of the arguments
presented, no off-diagonal terms in H' appear. The cou-
pled equations then reduce to two simple soluble sys-
tems,

ifia =V (1, ))a (156)
for the J=1/2 state and

ifiby =V (213 ,)b, (157
and

ifiby=V(2S, )b, (158)
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for the J= —;—, M;= %, and M; :';' states, respectively.
In the J =% case the matrix element of U, as it was

for the ground state, is given by a single phase shift,
(6p Py ,M; | U(t +s5,0)| 6p *Py p M | )
=8MJMJ,exp( —in), (159)

with 7 given by

t+s

:% j: V(2H1/2)dt
Because this level is well isolated by the spin-orbit in-
teraction, it evolves as if the interaction were spherically
symmetric. It follows that the isolated transition
6s2S,,,-6p 2P1,, has a spectrum that can be accounted
for by a scalar phase-shift line-broadening theory.

The J == case has two noninteracting sublevels with

2
M; =% The evolution operator is given by

(160)

1
and 7.

(6p2P3,,M; | Ut +s5,1) | 6p°Py M )

exp(—iny) (M,-l_—%)

=d ,
e exp(—in,) (My=+7),

(161)
with 77, and 7, given by
t+s 2
m= [ [VCIp) /At (162)
and
t+s P
m= [ VO p) /At (163)

The final steps in the calculation of the correlation
consist of performing the angular average and the sum
in Eqgs. (99) and (100). In this case the angular average
in Eq. (100) reduces to a simple average on M, while
the sum adds the spectra of two doublet components,
which, since the fine structure has been regarded as large
in comparison to the perturbation on collision, behave as
if they were isolated. We obtain for J = %

g)=2r [“bdb [ war{1—expli3—m)]} ,

(164)

and for J=%

g)=2r ["bab [ rdr(1—1{expli(5—m)]

+exp[i(6—m3)1}) .
(165)

We shall see subsequently how these equations can be
used to interpret the observed spectra of the cesium prin-
cipal series perturbed by xenon.

Such models allow a determination of the profile
differences between the D; and D, lines of the alkalies to



N. Allard and J. Kielkopf: Effect of collisions on atomic spectral lines 1123

be made without having to resolve coupled equations. In
the case where the anisotropy is neglected, the potentials
for each of the states are the same and 7=m,=17,. Both
lines are broadened identically. The distinction in the
broadening of the two components of an alkali doublet
arises when the anisotropy is not neglected; that is, has
its physical basis in the different potentials of the 2P,
and %P, , states.

The impact broadening of the sodium D lines by heli-
um and atomic hydrogen has been calculated using this
approach (Lewis, McNamara, and Michels, 1971; Lewis
and McNamara, 1972). In those analyses the collisions
are divided into two regions. In the inner zone, near the
point of closest approach, Hund’s case B is assumed to
be valid, and electron spin and orbital angular momen-
tum of the sodium atom decouple, with the orbital angu-
lar momentum following the rotation of the molecular
axis. In the outer zone, Hund’s case C is assumed to be
valid, and rotation of the atomic system is neglected.
The results of these calculations for the Na-He case are
in good agreement with experiments (Kielkopf, 1980)
and with fully quantal calculations (Wilson and Shimoni,
1975).

4. Solutions to the general problem
of the frequency redistribution of radiation

The profile that we have been calculating gives the
frequency dependence of the absorption coefficient of an
atom exposed to a low-intensity radiation field, or of the
emission probability of a single photon. However, this is
only part of a much more complex problem of predicting
the probability of the emission of a photon of one fre-
quency and polarization, after the atom has absorbed a
photon of another frequency and polarization. The radi-
ative redistribution function F(w;,w,) describes this pro-
cess. This redistribution problem is central to the forma-
tion of spectral lines in optically thick sources, in the
sun, for instance, because a change in radiation frequen-
cy can effectively shift a photon from the optically thick
core of a spectral line to the optically thin line wing, al-
lowing it to escape from the source. Line-formation pro-
cesses as applied to stellar atmosphere have been re-
viewed by Hummer and Rybicki (1971). Here we survey
only what has been found out recently about the relation-
ship between the redistribution function and the unified-
theory profile, and about depolarization of line-wing
fluorescence. Experiments on redistribution are dis-
cussed more fully in Sec. IIL.G.

A typical radiative redistribution experiment would in-
troduce light of frequency w;, as shown in Fig. 7, excit-
ing an atom in state |i) to state |e). The atom subse-
quently undergoes a transition from |e) to |f), radiat-
ing at w,. Because of collisions and the Doppler effect,
®; is not necessarily equal to w,;, and similarly w, is not
necessarily w.r. The evaluation of the redistribution
function involves intricate considerations of the timing
of events that can contribute to the evolution operators,
as graphically illustrated by Omont, Smith, and Cooper
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FIG. 7. Radiative redistribution.

(1972). The redistribution of radiation in the limit of the
impact approximation near the center of the atomic line
was first studied by Huber (1969a, 1969b), who investi-
gated the dependence of the spectrum on the scattering
angle and the combined effect with Doppler broadening.
With the Baranger theory, Omont, Smith, and Cooper
(1972) subsequently extended this approach using tech-
niques similar to those we have applied here to line pro-
files. They concluded that redistribution near the line is
entirely due to elastic collisions because the inelastic col-
lisions cause fluorescence to appear out of the terminat-
ing level. Such transitions are usually far from the line
under study, particularly in the impact limit, so that in-
elastic effects are manifested only by a renormalization
of the frequency redistribution function. The work of
Omont et al. also included a consideration of degenerate
levels.

The general situation shown in Fig. 7 is simplified if
we assume that the initial and final states are the same,
so that wq is the frequency corresponding to the energy
difference between the two unperturbed levels. Then, if
we neglect inelastic collisions,

F(w,0,)=Cf (01)p(0,0,) , (166)
Ye Ye
(wp,0))= | ——8(w1—wy) + ——— ,
P (w,0,) ——y () —aw) et flws)
(167)
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and

(YC +7/e )/Tr

, (168)
(w_wO_Uc )2+(7/c +7/e )2

flo)=

where C is a normalization constant, ¥, is the collisional
broadening of the transition, 7, is the radiative width of
the intermediate level, and o, is the collisional shift.
Here we also neglect collisional and radiative broadening
of the lower state. The redistribution function is the
product of the probability of absorption of a photon of
frequency ®; and the probability of the emission of a
photon of frequency w,. The Rayleigh term given by the
delta function in Eq. (167) is a coherent effect that gives
the probability of radiation before a collision, while the
f(w,) term represents the effect of an elastic collision.
This result can also be given in more general form for
the impact limit [Eqgs. (45), (46), and (53) of Omont,
Smith, and Cooper, (1972)], including degeneracy and
polarization effects, although its basic physical interpre-
tation remains the same. In the impact region, where ra-
diation during the collision is neglected, the spectrum
and the polarization of fluorescence depend only on col-
lisional rates for the relevant atomic multipoles
(Thomann, Burnett, and Cooper, 1980).

Related studies of line broadening and collisional
depolarization in a magnetic field for the impact approx-
imation have also been reported (Omont, Smith, and
Cooper, 1973; Happer, 1972; House, 1970). In that case
the dependence of the scattered light intensity on mag-
netic field strength should allow a determination of both
inelastic and elastic cross sections.

The results achieved by these and other efforts (for ex-
ample, Yelnik and Voslamber, 1979) have given us a reli-
able understanding of collisional redistribution in the im-
pact limit for low-incident-light flux, but the more gen-
eral case, particularly for nonimpact regions of the pro-
file, is still a matter of theoretical investigation for
which there is a marked paucity of experimental data
(Cooper, 1979; Lewis, Salter, and Harris, 1981;
Thomann, Burnett, and Cooper, 1980; Burnett and
Cooper, 1980a, 1980b; Burnett et al., 1980). There is ex-
perimental evidence, however, that the polarization of
redistributed radiation in the far wing is high, of the or-
der of 50%, when the gas pressure is sufficiently low
that multiple depolarizing collisions are improbable. In
these experiments absorption occurs during a collision at
the frequency of the incident radiation. This absorption
must be correlated with the collision event, for which the
perturbation corresponds to @;. The fluorescence spec-
trum is then described by two components, as in Eq.
(167), with a Rayleigh peak at the incident frequency
and a fluorescence profile that is sensitive to the collision
dynamics. Cooper (1979) concludes that, for isolated
nonhydrogenic lines in the absence of inelastic collisions,
f(®) is just the unified-theory line profile. Burnett et al.
(1980) have looked into the use of density-matrix
methods to evaluate the correlation function and the
scattered spectrum when both initial and final levels in-
teract with the perturber. They give expressions [see, for
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example, Burnett and Cooper (1980b), Eq. (5.3)] that in-
clude corrections to our Egs. (166)—(168) evaluated in
the binary collision, i.e., low-density approximation.

An alternative description of the depolarizing process
has been formulated by Lewis, Salter, and Harris (1981)
in terms of a molecular coupling model of the sort used
to compute impact linewidths in sodium (Lewis and
McNamara, 1972). They assume that collisions for a 'P
state closer than a cutoff radius are coupled as a mole-
cule, so that the rotation of the molecular axis during
the collision for this part of the trajectory is responsible
for the observed depolarization. Straightforward geome-
trical calculation yields expressions that can be analyzed
once a potential is chosen. Thus, with a specific choice
of C¢R~° for the long-range interaction, they were able
to demonstrate a limiting far-wing polarization deter-
mined largely by the collision geometry. This type of in-
formation, while possibly present in features of exact
far-wing contours from absorption spectra, could be ex-
tracted directly only if a unified evaluation of the pro-
file, taking into account nonadiabatic processes, were
carried through. Thus the low-density limit of the polar-
ization in the fluorescence spectrum, analyzed with a
molecular collision model, complements the conventional
static analysis in the binary collision approximation to
the absorption spectrum.

D. Interatomic potentials for line-broadening
calculations

The concept that a perturber-emitter interaction, de-
fined as a function of their separation, could be related
directly to the shape of the emitter’s spectral lines was
introduced by Weisskopf (1932a, 1932b, 1933) into
phase-shift theories of the line core, and by Kuhn and
London (1934) and Kuhn (1934, 1937a, 1937b, 1937c)
into statistical theories of the line wing. Since those
developments, a part of the theory of line shapes has
been the determination of the potential, for the purpose
of predicting the broadening and shape of spectral lines.
Potentials also can be deduced from observed line shapes,
although the process is usually not unique and therefore
requires some knowledge beforehand of what interactions
to expect. This aspect of the problem, an area in which
statistical theories of line broadening have found consid-
erable use, will be treated in Sec. IV.A.

Early attempts at potential estimates to find a
Weisskopf radius or an optical collision diameter turned
to the van der Waals interactions. But even for simple
cases, there is no physical justification for the internu-
clear separations of optical interest. In the case of the
broadening of the sodium D lines, the impact width is
determined around separations of the order of 5 A, while
the excited-state valence-electron wave-function peaks
around 3 A from the nucleus and has a substantial value
out beyond 5 A. The van der Waals interaction, as the
first term of a multipole expansion, could hardly be ade-
quate in this case, and the situation is worse for higher
excited states. The purpose of this section is to deal
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with potentials that might be inferred from detailed con-
siderations of the atomic interactions. This is not to say
that other types, such as the square-well, Morse, Buck-
ingham, and Lennard-Jones potentials, would not be real-
istic estimates in some instances.

The ultimate problem is, however, to predict the ob-
servable effects on spectral lines with a small number of
a priori or systematic parameters. So we consider here
just those potentials that have been shown to be much
more useful in this regard than the simplest empirical
potentials. In the following sections we shall look at es-
timates of van der Waals interactions for long-range in-
teractions of low-lying states; scattering-length-type po-
tentials useful for the near-Rydberg states; pseudo,
model, and ab initio potentials that span a wide range of
excitations and internuclear separations with detail and
improving accuracy.

There have been several recent reviews of excited-state
potential calculations. Particularly useful ones are given
by Baylis (1978), Bardsley (1974), and Diiren (1980). A
discussion in Lewis (1980) is also concerned with poten-
tials for impact broadening.

1. Van der Waals interactions

. that force which gives rise to the constant a in
van der Waals’ equation. .
—Margenau, 1939

The van der Waals interaction between unexcited
atoms was introduced originally to account for the
behavior of compressed gases. London (1930a, 1930b)
evaluated the long-range interaction in the form

V(R)= CpRP (169)
p

with quantum-mechanical expressions for C,. Of special

interest to us is the behavior when the two interacting

atoms are not alike. In that case only the second- and

higher-order interactions are nonzero, and the first

nonzero term is

3e#t
Co=—21
2m
xS Srx'fLr
K2k (Ex—ExNEp —E; (Ex—Eg +E; —Ep)

L'£L
(170)

(Hindmarsh and Farr, 1972; Margenau and Watson,
1936; London, 1930a, 1930b). Here fxx: and f; ;- are the
oscillator strengths for transitions from the state K of
the perturbed atom to state K’ and from state L for the
perturber to state L’; the Ex are the energies of the
respective states. The sign of C¢ depends on the sign of
Ex.—Ex+E;.—E;. If the radiating atom is a metal
perturbed by a rare gas in the ground state, this term is
dominated by E;.—E;, which will always be positive.
Long-range alkali—rare-gas interactions are attractive.
In rare-gas—rare-gas or alkali-alkali interactions the sign
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of Cg is not obvious.

The case of interest is this one of the perturbation of
an excited metal atom by a noble-gas atom or by neutral
atomic hydrogen. Unsdld (1968) has given a simplifica-
tion that is very useful. Terms in this sum are identified
as the gas dipole polarizability ¢ and the expectation
value (r?) for the metal-atom valence electron. The
force constant then becomes

Ce=—ae?(r?) . (171)

This form of the van der Waals interaction can be inter-
preted physically as the self-energy of the gas-atom-
induced dipole moment in the instantaneous oscillating
electric field of the metal atom. Such an interaction is
given by

(V(R))=—5a(E(R)?), (172)

where E(R) is the total electric field at the gas atom due
both to the alkali valence electron and the ion core.
When R is the vector from the alkali nucleus to the per-
turbing gas atom, r the vector from the nucleus to the
valence electron, and r'=r—R the vector from the per-
turber to the alkali valence electron, the electric field is
given by

R r

E=e R}

(173)

Equation (172) for V(R) is crucial for the pseudopoten-
tial and model-potential methods to follow, but in the
limit R >>r the spherical average of E? given by Eq.
(173), reduces V(R) to a van der Waals interaction, with
Cg given by Eq. (171).

For excited states of alkalies, and possibly for iron and
other transition elements, the diagonal matrix element
(r?) can be calculated from (Condon and Shortley,
1964)

(r*y=5adn**[5n*>4+1-31(1 +1)] . (174)
An alternative expression is given by Hindmarsh, Du-
Plessis, and Farr (1970). Equation (174) is equivalent to
assuming Bates-Damgaard radial wave functions (Bates
and Damgaard, 1949). For reference we note that n* is
given by

»
*2 M
——M 175
"K=E__E¢’ (173)
Ry = = (176)
M=t im/M’

where E , is the ionization energy of the atom, % the
Rydberg constant, m the electron mass, and M the atom-
ic mass. The mass correction is not significant for most
uses of Cg in this context. Values of the dipole polariza-
bility are given in Table III.

Mahan (1968, 1969) has evaluted C¢ from these ex-
pressions for alkali—noble-gas ground states and the
first excited p states. His tabulations also include the an-
gular dependence of the interaction (Sec. ILLE.4), al-
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TABLE III. Dipole and quadrupole polarizabilities.

Dipole polarizability = Quadrupole polarizability

a

Noble gas (ad) (ad)
He 1.3842 2.4°
Ne 2.6632 6.3°
Ar 11.082 53.0°
Kr 16.732 101.0°
Xe 27.29% 205.0°¢

2Teachout and Pack (1971).
*Langhoff and Hurst (1965).
“Davison (1968).

though for line profiles, when such effects are signifi-
cant, more detailed calculations that use the full molecu-
lar potential should be pursued. Unsold (1968) applies
this form of C¢ to line-core shift and width for metal
atoms in an atomic hydrogen gas. A word of caution,
however, is in order. There is now ample evidence
(Hindmarsh, Petford, and Smith, 1967; Hindmarsh, Du-
plessis, and Farr, 1970) that C4 by itself does not
describe the potential adequately for atomic distances
that determine the line core. In view of the observations
of Baylis (1969) regarding his pseudopotential calcula-
tions that the term C¢R ~° does not represent the asymp-
totic interaction except when the potentials are less than
a few cm™! deep, it is doubtful that the near line wings
would be accurately given by this potential. Some mea-
surements do, however, show a dependence of intensity
on (Aw)~3?%, as expected for an R ~® interaction from
Eq. (16) (see Sec. IIL.E.l.a).

2. Analytic additions to the van der Waals term

Analyses of line-core shift and width, primarily by
Hindmarsh and colleagues at Oxford and Newcastle
(Hindmarsh, Petford, and Smith, 1967; Hindmarsh, Du-
Plessis, and Farr, 1970; Smith, 1972, 1975), have demon-
strated that the van der Waals term alone does not ac-
count for the observed effects. This was noticed most
markedly in observed shift-to-width ratios, which for an
R —% interaction should always be 0.73, but usually were
not. Of course, unfortunately, many transitions studied
involve degenerate levels for which nonadiabatic mixing
is not included in the shift and width calculations.
Nevertheless, an observation of line broadening and wing
spectra in Tl involving nondegenerate states
(6526p 2P, /,-65%7s %S ;) could not be accounted for sole-
ly by an R~° interaction (Cheron, Scheps, and Gal-
lagher, 1977). Hindmarsh (1963) and Behmenburg
(1964) were prompted to add a repulsive interaction to
make a Lennard-Jones potential,

V(R)=C¢R ~5+C;,R™12. (177)

Fits to observed shifts and widths with this potential
give values of C4 and C,, although not unambiguously.
Even the best values of C¢ determined in this way differ
from theoretical values by factors of 2 or more.
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The repulsive interactions of this scheme are, of
course, empirical. Nevertheless, Hindmarsh found a sys-
tematic behavior in C;, that showed an increase in repul-
sive interaction with excitation of the atom. He pro-
posed that C;, should be calculated by

Ci=q(|r|+|r'])?, (178)

where r and ' are the distances from the alkali and no-
ble gas, respectively, for which the probability density is
0.012 au., and g is a constant 0.9+0.3X107!6 erg.
Kielkopf (1972) showed that for Ar, Kr, and Xe per-
turbers C;, could be calculated from

C12 =An*B , (179)

where A is 8.6x 107105 erg cm!? and B is 10.2, with an
accuracy of about 25%.

Other important long-range effects should be added to
these empirical approximations. Several calculations
have included the next order in the multipole expansion,
a term CgR ~8, with C; given by

Cs=—~aeX(r*y — > Be*(r?) (180)
and with (7*) given by
(r*y=+aln**
X [63n**—35n*3(21> 421 —3)
+510+1)(3P4+31—10)+12],  (181)

where f3 is the foreign-gas-atom quadrupole polarizabili-
ty. The terms represent, respectively, the interaction of
the alkali quadrupole with the dipole of the gas induced
by the alkali quadrupole, and the interaction of the di-
pole of the alkali with the quadrupole of the gas induced
by the alkali dipole. Useful values for B are included in
Table III (Kielkopf, 1974; Hindmarsh, DuPlessis, and
Farr, 1970).
Finally, we note that a potential of the form

Cs n Cs +C10
RS+R®  R34+R® RM

V(R)= (182)

has been proposed as a reasonable estimate of the aver-
age long-range interaction of excited alkalies with noble
gases (Kielkopf, 1974). Here a cutoff parameter R, is
set equal to ((r2)/2)!/2, and C)q is given by the empiri-
cal formula

Ci0=2.8X10%m* 11345 RI0 (183)

where a repulsive scaling factor 7 is 1.0 for Ar, Kr, and
Xe and 0.3 for He and Ne. This potential was used to
calculate the impact broadening and shift of the first
three doublets of the alkali principal series pertubed by
noble gases (Kielkopf, 1976b). These broadening calcula-
tions seem to be accurate to about 20% (Lwin and
McCartan, 1978).
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3. The Fermi potential

As an example of the severe problems that can arise
with the use of a van der Waals or similar power-series
potential, consider an atom in a highly exicted state. For
foreign-gas densities of the order of 10'° atomscm™> or
greater, excited atoms with radii greater than 40 A have
a substantial probability of having a perturber within the
outer antinode of the valence-electron charge distribu-
tion. Clearly, the long-range multipole expansion will
not work for these states at all (see Fig. 37 below).

This difficulty was first encountered by Fermi (1934)
in his analysis of the pressure shifts on high series
members of alkali spectra. He proposed an interaction
between an excited alkali atom and a noble-gas perturber
that has the effective diagonal value

2
(V(R)):217%A\I/2(R) ,

(184)
where A is a parameter called the scattering length, and
WX(R) is the valence-electron probability density at R.
While W? is readily calculated with a Bates-Damgaard
wave function for excited alkalies at large R, the value of
A must either be derived from the line-shift measure-
ments, low-energy electron scattering, or a priori
electron —noble-gas scattering calculations. The sys-
tematic values tabulated by O’Malley (1963) for the limit
of zero kinetic energy of the valence electron are quoted
here for reference in Table IV. Negative values of the
scattering length mean that the interaction energy is at-
tractive and that the electron wave function near the
noble-gas atom is modified to increase the probability of
finding the valence electron there.

The use of this potential in line-shape studies, apart
from the application to transitions from very excited
states, is restricted by the dependence of electron scatter-
ing on the kinetic energy of the electron, and thereby on
n*, as well as by the fact that the very-long-range in-
teractions are not explicitly contained in Eq. (184). The
form of the variation of 4 with n* has been considered
by Roueff (1970), Smirnov (1967), and Nikitin (1965).
There does seem to be a discrepancy between various ex-
pressions in the literature, but the value (in atomic units)

4| L __ma__ 4afln(@'/4n*)] |7 ma
Ao 3n*43 3n*24, 5n*
(185)

adapted from Lewis (1980) gives fairly good agreement
between computed width and shift for K (4p-7s) lines

TABLE 1IV. Scattering lengths.?

Noble gas Ay (bohr)
He + 1.06
Ne + 0.18
Ar —1.86
Kr —3.8
Xe —6.9

20’Malley (1963).
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broadened by He and Ar and experimental measurements
(Kielkopf and Knollenberg, 1981). Although this poten-
tial may be useful for Rydberg atom transitions, and
perhaps other highly excited states, the scattering length
should be determined from independent calculations of
the electron—gas-atom collision process. Omont (1977)
has reviewed this potential for its application to neutral-
atom line broadening. A method of including the long-
range interactions in a flexible extension from this sort
of calculation is discussed in the following section.

4. Pseudopotentials

We have discussed the general problem of
alkali—noble-gas diatomic systems because, as we shall
see later, many line-shape experiments have been done
for these atoms. A major advance in the computation of
excited-state potentials on such systems came from the
application of pseudopotential methods (Bardsley, 1974)
to the problem by Baylis (1969). Here we outline the
method and give an example of the results. For other
detailed potentials in alkali—noble-gas systems, parame-
ters are given in Baylis (1969) or in the work of Pascale
and Vandeplanque (1974), an extension of Baylis’ calcu-
lations to higher excited states. There are also recent
calculations for some of the lower-lying alkali states us-
ing a different radial wave function (Czuchaj and Sienk-
iewicz, 1979) and a modified polarization cutoff without
approximation in the numerical integration (Diren and
Moritz, 1980).

The calculations are, first of all, done in an atomic
basis set |nl(SL)JM ). The value M is a good quantum
number for each resulting molecular state, and states
+M are not split by the interaction. The specification of
M and the parent atomic state of the separated alkali la-
bels any molecular level, although when alkali fine struc-
ture can be neglected, the projection of L on the internu-
clear axis allows states to be labeled 2,I1,A,.... The
molecular arrangement for 3 or II states has a simple
geometry illustrated in Fig. 8. Such labels are not

Q i
FIG. 8. Two geometries for an alkali p state—noble-gas col-
lision. The IT state, with electronic orbital angular momentum
along the internuclear axis, is not repulsive because there is no

valence-electron charge along the axis. The 3 state, by con-
trast, has a stronger repulsive contribution.

z

N,
N

z

Y
_/
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rigorous designations for real atoms and can be mislead-
ing. The basis |nl(SL)JM ) is expanded in terms of
one-electron states |nlm;smy ), and in that basis we actu-
ally calculate matrix elements of an effective Hamiltoni-
an,

Hiperaction =F (r,R)+ G (r,R)+ W(R) . (186)

The terms in the Hamiltonian are, respectively, the in-
teraction F of the valence electron and the ion core of
the alkali with the induced dipole moment of the noble-
gas atom, the pseudopotential G representing the Pauli
pressure of the valence electron interacting with the
noble-gas electrons, and the pseudopotential W for the
Pauli pressure in the core-core interaction.

a. The calculation of the valence-electron—noble-gas
electrostatic interaction F(r,R)

The interaction of a one-electron atom with a per-
turber of known dipole polarizability can be calculated
from Egs. (172) and (173) if we neglect high-order polar-
ization of the perturber. This electrostatic expression for
F would be valid as long as the valence electron of the
atom did not penetrate the perturber, for in that case the
polarizability of the perturber would no longer be
known, and the concept loses its physical justification.
We have to define a region about the perturber of radius
ro inside of which the electrostatic interaction is deter-
mined by some other method. Baylis (1969), for in-
stance, proposes that when the valence electron is within
ro the interaction is constant and equal to the average
value at ry. Otherwise, F is expressed in terms of
O(r’'—rg), a step function that is one when r'>r, and
zero otherwise. We expand © in terms of Legendre po-
lynomials so that the matrix elements can be easily
evaluated in the atomic basis states:

rue(r —ro)= 3 fiPP£) (187)

1=0

where £=cos(r,R), and the f; () are defined by (Baylis,
1969) the recursion relation

rgt
Xfe' =g Pra1tEo)—Pr_1(0)]
g+1+2 caen  I=g—1 u-n
4 - = —_— , 1
T St (188)

where the variable X =(r2+R?)/2rR, is the value of
cos(r,R) for r'=rq. Since f;O) and f,;” are defined by
the simple analytical integrals

0= f dE(r’+R*—2rREN (189)

and
D= f EdE(r*+R*—2rRE) (190)

[see Egs. (A8) and (A9) of Baylis, (1969) for evaluatlons],
we can use the recursion formulas to find any f .
So from Egs. (172) and (173) we write for F
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F=— ' 3E—2R3 '3
2 £—

+R"=HO(r' —ry) , (191)

or, with substitution for © and use of a recursion rela-
tion for Py,

2 o
ae
- X 1f&”—2R 3D+ R,
1=0

+2rR? | - —f U5
I+1
a3 3| PO
(192)

This is Baylis’ Eq. (A10) without the constant small 7’
interaction and corrected for a typographical error.
Clearly, the F(r,R) has a very simple expansion,
= Fi(r,R)P|(§), (193)
1=0
which greatly simplifies the calculation of matrix ele-
ments since it separates the angular and radial integra-
tions. Equation (183) for F is valid for all r and R, but
will give zero for r'<r,. We need to add to this F a
contribution from the region of small r’. Baylis, for in-
stance, includes a constant average interaction, zero for
r'>ro,

F(RE)=—2 2 [(1+R*3*)

2 4

X (8,0—fIPIE) , (194)

which allows the same general form for F to be used for
all r.

The eigenvalues of F are calculated from the series
equation (193), and the F; are taken from Eq. (192) or
the series expressions given by Baylis. Regardless of the
method used to evaluate the F; or the short-range elec-
trostatic interaction proposed, the parameter ry is empir-
ical and must be adjusted by some comparison with ex-
periment or a priori calculations. It can therefore be
used to compensate to some degree for the inadequacies
in the short-range interaction model and the extreme sen-
sitivity of the potential to computation errors in G. This
parameter may also be used to compensate for the ab-
sence of higher-order polarizabilities of the perturbing
gas atom in the assumed electrostatic interaction.

b. The calculation of the valence-electron— noble-gas
Pauli pressure repulsion G (r,R)

The subject of pseudopotentials in atomic systems has
been reviewed recently by Bardsley (1974). Here we con-
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sider a pseudopotential introduced by Gombas (1967) and
used by Baylis (1969) for the molecular problem to
represent the interaction that repels an alkali valence
electron from the noble-gas atom. We impose on the
state of a multielectron system the condition that, in ac-
cordance with the Pauli exclusion principle, it be
represented by a product of mutually orthogonal one-
electron states. Because of this condition, the last elec-
tron added to the system occupies a state of minimal en-
ergy above the ground state, spatially correlated with the
lower states. We represent this behavior with a pseudo-
potential in which the electron distribution is treated as a
free-electron gas, as in the Thomas-Fermi statistical
method. The total kinetic energy of this system of elec-
trons is

3 #

Ep=—="0r*? [drp*",

195
10 m ( )

where p is the electron number density. If we apply this
expression to the separated and combined systems con-
sisting of an atom A and perturber P, and then take a
difference to obtain an interaction energy, we obtain a
repulsive Pauli interaction

_iﬁ_z 2y2/3

deV[(pA +pp)P P —pP—p¥31.  (196)

In the limit that py <<pp this expression would represent
the valence-electron interaction with the high-density
portion of the perturbing gas electron density. The ex-
pression simplifies to

v (R)=ﬁ—2(3ﬂ'2)2/3dep (pp)*”?
P 2m A\PP

= [d»p,G, (197)
which gives us a pseudopotential operator
2
G(r,R)=—2“ﬂ;n—"(3ﬂ'2)2/3p§:/3 . (198)

This operator depends explicitly on the coordinates r’
centered on the perturber, but the integral can be cen-
tered on the atom and expanded so that, in analogy with
Eq. (193) for F(r,R),

G(r,R)= 3 G|(r,R)P/(§) . (199)
1=0
The terms of this Legendre series have coefficients
+1
GnR)=2E [lagcmrpe) . (200)

The two difficulties with this calculation are, first,
finding appropriate expressions for the perturber charge
density and, second, actually evaluating expressions for
G;. Once these expressions are known, the resulting nu-
merical integration on r required to evaluate a matrix
element of G has a sharply peaked integrand about the
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perturbing gas atom. Baylis (1969) suggested the use of
an expansion in derivatives of the three-dimensional del-
ta function as a possible simplification for this calcula-
tion, but Pascale and Vandeplanque (1974) and Czuchaj
and Sienkiewicz (1979) have suggested that this is not
sufficiently accurate. Indeed, the contribution from G in
the region r' <ry is very large and partially cancels the
attractive contribution from F. The choice of r is criti-
cal, for it governs a precise balance between attractive
and repulsive short-range interactions.

Vallée et al. (1977) point out the close relationship be-
tween this pseudopotential and the Fermi potential.
They demonstrate that the first term of the delta-
function expansion of Eq. (198) is of the same form as
the Fermi interaction, and they identify the relationship
between the coefficients in the two expressions. They do
not, however, consider the similar short-range polariza-
tion contribution of F to the potential of the Baylis
model, an interaction effectively included by the empiri-
cal adjustment of the scattering length in the Fermi
method. This separate treatment of the polarization ef-
fects in the Baylis model yields improved accuracies for
low-lying states.

c. The calculation of the core-core interaction W(R)

When the perturber and the atom are close there may
be a significant overlap of the core of the atom with the
perturber charge distribution that gives an interaction
W (R) analogous to G (r,R) for the valence-electron over-
lap. In many cases of spectroscopic interest W (R) is not
important, because the line broadening is determined at
such long range that W is negligible, and because W
makes identical contributions to initial and final states of
a transition. W is important in interpreting far wings of
resonance lines of alkalies perturbed by noble gases, how-
ever, because of the effect of initial-state potential on
perturber motion and bound-state formation rates.

W (R) is given by Eq. (196). This result may be reex-
pressed in terms of simple integrals, as discussed in Ap-
pendix B to Baylis (1969), although to preserve short-
range accuracy W should be evaluated numerically from
Eq. (196) whenever possible. This was the approach
used in the recent paper by Czuchaj and Sienkiewicz
(1979) and extensive calculations by Snow (1976).

d. Wave functions, basis states, and evaluation
of the potential

For the calculation of the interaction of alkali doublets
with noble-gas perturbers we use a basis

|(SLYJM)= 3 ((SL)JM |SMsLM;)|SMsLM, ) ,
Mg, M,

(201)

where the summation is performed over all Mg and M,
for which Mg+M; =M;. It then follows that a matrix
element of an operator A4 that commutes with J is given
by
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((SLY'M’' | A | (SLYIM.Y = 8(M,M")[(+,+~,L",M —+ | I'M)(5,+3,L,M — 5 |JM){L',M — 5 |4 |L,M — )

2

+(5,— 3 LM +5 | I'M) 5, — 5, LM +5 | JM){L',M +5 |4 |L,M +7)]

so that we must evaluate just two integrals in an | LM, )
basis, or, for a single valence electron, in the one-electron
states |nlm;). Whenever the operator A4 can be
represented as a Legendre series, this evaluation reduces
to a numerical integration on r and an angular integra-
tion that is given by a Gaunt factor.

We write, for example,

A= ApPp (203)
-
to reduce
Un"I'ym] ;n,Im))={n"l'm| | A|n,l,m;)
to v
U= 80mi,my) | [T F* 00 IO (n,DApdr
-
sc{I'my’ | Py | Imy ) (204)

(I'mj | Ppr | Imy) = 8(my,m{ )(— D" (Lmy,1",0 | I'my)
x(1',0,1",0]10) . (205)

The F(n,l) are radial wave functions. Although the nu-
merical integration is straightforward, in the region of
the noble-gas perturber the large contributions to G can
be troublesome and require special attention (Snow,
1976). Recent work by Diiren and Moritz (1980) has
shown conclusively that the radial integrals should be
evaluated exactly and not approximated by expansions.
A remaining problem is the selection of an appropriate
radial wave function.

The usual choice is the Bates-Damgaard (1949) wave
function, which is defined in terms of the effective prin-
cipal quantum number n* and the one-electron orbital
angular momentum /. The wave function has very good
asymptotic behavior, but at small r it diverges, and there
is also a question of its normalization. The divergence
problem is commonly solved by a truncation, and the
wave functions may be normalized with the method of
Seaton (1958). Czuchaj and Sienkiewicz (1979) have sug-
gested the use of wave functions of Simons (1974).
Their results show an improvement in the agreement of
the calculated potentials with available experiments when
Simons wave functions are used, but other modifications
may be responsible. Simons wave functions have in-
correct nodal positions outside the core, features to
which the potentials are quite sensitive. The noble-gas
wave functions required for the calculation of G and W
are usually taken to be analytical functions adjusted to
represent Thomas-Fermi or Hartree-Fock calculations of
the outer noble-gas shell. The parameters for such wave
functions are discussed by Gombas (1967), Baylis (1969),
and Pascale and Vandeplanque (1974).
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(202)

[
e. Results

In Fig. 9 we show the excited-state potentials for Na-
Ar, and in Fig. 10 the potentials for Cs-Xe found by
various authors. Ab initio results are discussed in the
following section and shown for comparison in Fig. 12.
Although there are some differences in the results of the
calculations, the basic features are uniformly reproduced.
Na-Ar shows a weak potential well in the ground state
that has been intentionally matched by the calculations
to adjust ro. This well is only 44-cm™! deep in the
Pascale-Vandeplanque calculation. The 3p2P,,, state
has a much deeper well, 276 cm™! that is at somewhat
shorter range. There are similar deep, short-range wells
for many excited states, particularly those for which the
corresponding spatial configuration allows penetration
along a node in the angular charge distribution of the al-
kali. The longer-range interaction of higher excited
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FIG. 9. Potentials for the 3p and 4s states of Na-Ar: ( )
from Pascale and Vandeplanque (1974); (— — —) from Baylis
(1969).
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FIG. 10. Potentials for the 6p and 7s states of Cs-Xe: (——)
calculated by Pascale and Vandeplanque (1974); (— — —) by
Baylis (1969); (---) from the experiment of Hedges et al.
(1972).

states often shows an undulation which follows the
valence-electron probability density, as is shown by the
7s %S, Cs-Xe state in Fig. 10.

The interactions in the Cs-Xe example are more prom-
inent than those in Cs-Ar, as a consequence of the larger
polarizability of Xe. Like the 7s state in the figure, the
9s state shows wells of depths 9 cm~! at 12 A and 765
cm~! at 4 ;\, separated by an undulation maximum at
10 A, at which the perturbation is nearly zero. This
complexity of a typical potential is what defeats attempts
to use simpler potentials such as power-law or Lennard-
Jones interactions to systematically explain all features in
a given spectrum. For this example, the long-range in-
teraction beyond the outer 9-cm~! minimum would in
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large part determine the broadening and shift of the line
core at low pressure, while the details of the short-range
interaction would determine the position and intensity of
features in the far line wings.

One result of the calculations, pointed out by Baylis
(1969) and illustrated in Fig. 37, is that the long-range
interaction approaches C¢R ~° only very slowly. Since
this might be simulated by taking an empirical C¢ larger
than the theoretical value, the line-core observations dis-
cussed by Hindmarsh, Petford, and Smith (1967) and
Unsold (1968) that point to a larger than expected empir-
ical C¢ find a natural explanation in the importance of
higher-order terms of the multipole expansion, included,
for example, in Eq. (192).

Both the power of the pseudopotential method and its
greatest weakness rest in the parameter r;, which con-
trols the short-range cutoff of F near the noble-gas atom.
While W and G are determined in principle for known
wave functions of the alkali and noble-gas atoms, the in-
teraction F would be infinite for constant polarizability
and small electron—noble-gas separations. At small 7’
the term F + G behaves like the Fermi potential, and the
net size of the interaction is governed by r,. Although it
is desirable to hold 7, constant, fixed by the ground-state
potential from scattering experiments or a priori calcula-
tions, the potentials that result often compare poorly to
excited-state measurements, while the forms of the po-
tentials are reasonable. The effect of changing the cutoff
function at small »’ and the choice of 7, were also inves-
tigated by Diiren and Moritz (1980). While we defer
general comparisons to experiments until later, note in
Fig. 10 that the resonance line measurements of Hedges,
Drummond, and Gallagher (1972) follow the theoretical
curves rather closely.

Line-profile observations by Kielkopf and Allard
(1980) probe the long-range interaction for excited Cs in
the region of the outermost antinode of the wave func-
tion, and line-core observations in K spectra by Spiel-
fiedel et al. (1979) are sensitive primarily to very-long-
range interactions. As a general rule the potentials that
have been derived experimentally for the interactions of
alkalies and heavy noble gases seem to be stronger at
long range than the calculations. For example, where a
10-cm ™! well is indicated by an experiment on Cs (9p)-
Xe, the pseudopotential might only show a dip of 1
cm™!. The valence-electron terms F and G are not bal-
anced exactly by fitting the short-range calculation to the
observed ground-state well. A remedy would be to make
ro adjustable as an independent parameter for each state,
but such parametrization reduces the predictive power of
the potentials, and the method would not be self-
consistent, since the conceptual model depends on the
physical interpretation of r, as a cutoff for any electron
near the noble-gas atom.

Bardsley (1974) and Masnou-Seeuws (1981) have point-
ed out that the Gombas pseudopotential employed in the
Baylis model is only one of several possible pseuodpoten-
tials. It is independent of [/ and strictly valid only for s-
wave scattering, although all partial waves in the Baylis
model use this same pseudopotential. Thus while some
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authors have advocated an /-dependent pseudopotential,
none have investigated systematically the benefits or dif-
ficulties such a treatment might introduce.

At this time pseudopotentials are accurate at long
range for the first excited p states of alkalies perturbed
by Ar, Kr, and Xe to about 10 cm~!. The short-range
behavior may be quantitatively in error to a much
greater degree, although the general behavior is expected
to be reliable. Error estimates of 30% in the well depths
with Ar, Kr, and Xe perturbers are given by Diiren and
Moritz (1980).

5. Model potentials

Another method of computing alkali—noble-gas po-
tentials was proposed by Bottcher (1973), Bottcher, Dal-
garno, and Wright (1973), and Bottcher and Dalgarno
(1974). It has been developed by Peach (1978) and
Masnou-Seeuws, Phillipe, and Valiron (1978) for exten-
sive application to alkali—noble-gas systems. Known
generically as a model potential method, this technique
differs from the pseudopotential method discussed in the
previous section through the choice of adjustable terms
included in the effective Hamiltonian and in the treat-
ment of the electronic wave functions. The general
methods are discussed by Bardsley (1974) and by Dalgar-
no (1975) as applied to many different calculations of
atomic and molecular properties. Phillipe, Masnou-
Seeuws, and Valiron (1979) and Masnou-Seeuws (1981)
exhibit detailed results for such systems as Na-He, Na-
Ne, K-Ne, and H-He, but other light-alkali—light-
noble-gas calculations are in progress.

The electronic energy of the alkali—noble-gas mole-
cule is computed by direct solution of the Schrodinger
equation,

(T+V1+V,+V3)¥(rr' ,R)=EV¥(r,r',R) . (206)

The interactions V,(r), V,(#'), and V;(r,r’,R) are de-
fined by semiempirical considerations. In order to ap-
preciate the structure of the calculation and its possible
accuracy we need to look at the origin of these terms, as
described by Masnou-Seeuws (1981).

The electron-alkali core ¥V, (r) is based on a mul-
tiparameter model potential of Klapisch (1969),

2
Vir)=[(z—1)exp(—ar)+br exp(—c,r)+1]gr— s

(207)

in which z is the nuclear charge and r the electron-
nucleus separation. This potential is Coulombic at large
¥ as required, but shows an interaction with a bare alkali
core at small r. The parameters are adjusted so that for
large R the Schrodinger equation has eigenvalues that
are close to the energies of the free alkali atom derived
from optical spectra. Of course these energies are known
to better than 0.01 cm ™!, but it is enough to have a fit-
ting accuracy of only about 10 cm~! because for poten-
tial calculations we are interested only in the change of
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energy as a function of R. One difficulty with this pro-
cedure is that the match in energy may not produce a
correct wave function; that is, the ground-state 3s wave
function of Na may be nodeless. Again, the correct am-
plitude and form of the valence-electron wave function is
important for the asymptotic behavior of the potential.

The electron—noble-gas interaction V,(r') is deter-
mined by studying the scattering of the electron by the
noble-gas atom. The potential is adjusted to fit experi-
mental low-energy phase shifts and dependable calculat-
ed phase shifts at specific selected kinetic energies corre-
sponding to the alkali states in question. The long-range
part of this interaction is

ae2

24’

where 7’ is the electron—noble-gas separation and a is
the noble-gas dipole polarizability that is either indepen-
dently computed or measured experimentally. Higher-
order terms of the induced multipole interaction are
negligible far from the noble-gas atom, but at short
range a screened Coulomb potential for the noble-gas nu-
clear charge z,,e is added,

Vo(r')=— (208)

2
Vz(r')=_—Cw—'4{l—exp[~(azr')6]}
2r
Z,ge’
- exp(—b,r'), (209)

with adjustable constants a, and b,. When the s-wave
phase shifts are computed with this local potential, the
parameters can be chosen to obtain agreement with
known values. The phase shifts are computed with the
constraint that the partial-wave radial wave function is
orthogonal to the outer rare-gas orbital of the same sym-
metry.

The three-body term V;(r,#'R) can be computed exact-
ly lonly at large R. It is effectively then the part of
— saE? that is not included in ¥,, and is given by

2 ’ 2 ’
' ae” | af ae at’
Vi(r,r',R)=— + o — -2V
3 2R* " p2R* 2R* 2 R?
(210)

where cos(r’,R)=¢£’. This last approximation is made to
provide a cutoff at small .

Finally, we add to the eigenvalues of E(R) a value
go(R) to take into account the exponential repulsion due
to the long-range overlap of the alkali core and the
noble-gas atom. For Na-Ne this function is simply

go(R)=agexp(—byR) . (211)

The parameters are chosen to give the alkali-ion —noble-
gas system selected properties in accord with available ab
initio or electron-gas calculations.

The final molecular energies are
e(R)=go(R)+E(R) . (212)

For the Na-Ne system the values E(R) were calculated
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using Slater orbitals on both centers in prolate spheroidal
coordinates. For the alkali valence electron, only orbitals
explicitly orthogonal to the rare-gas orbitals are included.
The potential curves for K-Ne and Na-Ne have been
compared with a number of experiments, many related
to line broadening (Phillipe, Masnou-Seeuws, and
Valiron, 1979). Comparisons with experimental spectra
(Delhoume et al., 1981) indicate a well-depth accuracy of
the order of 10 cm™!, an estimate dependent on the
line-shape analysis.

It does appear that where potentials of this sort are
available they may be a better option than currently
available pseudopotentials at small R for light perturbers.
For instance, in Fig. 11 the agreement of the model po-
tential for Na-Ne in the ground state is very good, espe-
cially considering that the plotted experimental result
was not a criterion for the adjustment of the model
parameters. We note, though, that these potentials are
not useful for large R (greater than about 7.5 A) because
the asymptotic atomic basis states are not used for the
calculation. This means that excited-state interactions
from model potentials may fail to give correct line-core
width and shift, or near line wings, particularly for tran-
sitions other than the resonance lines. Far-line-wing
spectra, however, should be calculable from such poten-
tials. In addition, these potentials may be added to more
satisfactory long-range calculations to provide a com-
plete interaction curve.

6. Ab initio potentials

All of the potentials described thus far are semiempiri-
cal and depend in the very least on known atomic energy
levels and perturber polarizabilities, and on experimental
electron —noble-gas scattering cross sections, or measured
alkali—noble-gas potential-well depths. The reason is
that the details of the interactions are extraordinarily
complex, and with current techniques it is unreasonable
to suppose we could calculate the energies of a molecule
such as Cs-Xe with its 111 electrons without some nor-
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FIG. 11. A potential calculation for Na (3s 2S,,,)-Ne from
Phillipe, Masnou-Seeuws, and Valiron (1979) compared with a
determination of the position of the well minimum in a
molecular-beam experiment (Ahmad-Bitar, Lapatovitch, and
Pritchard, 1977).
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malization to observations. The most complex system of
this sort for which a priori calculations of excited states
with 1-cm~! accuracy have been made is Na-Ar (Saxon,

Olson, and Liu, 1977).

These calculations were motivated primarily to com-
pare to Na-Ar pseudopotentials and experiments, in or-
der to see how much of an improvement could be made
with the more rigorous calculations. Quasistatic spectra
were computed from the calculated potentials and com-
pared to the experiments of York, Scheps, and Gallagher
(1975).

Such ab initio calculations assume the Born-
Oppenheimer approximation and separate nuclear and
electronic wave functions. They also neglect spin-
dependent interactions. The electronic wave functions
and energies were calculated with a configuration in-
teraction method. Each electronic-state wave function
was defined by a combination of Slater determinants so
that the symmetry and multiplicity of each wave func-
tion was properly represented. These Slater determinants
were themselves expanded in terms of a one-particle
basis set of Slater functions centered on the nuclei. The
details of this basis set and its construction are discussed
by Saxon, Olson, and Liu (1977), and we note here only
that the final calculations used over 7800 orthonormal
configuration-state functions!

For comparison we reproduce a sample of the results
for Na-Ar in Fig. 12, a potential derived from the Na
D-line profile, and a pseudopotential calculation. The
ground-state well depths (not shown) in the pseudopoten-
tial calculation are only about 15-cm~! shallower than
the configuration interaction calculation, but of course
the pseudopotential has been adjusted to fit a scattering
experiment (Diiren, Raabe, and Schlier, 1968). For the
211 state illustrated, the agreement with the experiment is
dramatically better than the pseudopotential. Potentials
such as these, although difficult to calculate, serve to ad-
just pseudopotential calculations that may be more readi-
ly applied to excited states.
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FIG. 12. The potential for Na (3p ?P,,,)-Ar determined by
ab initio methods (Saxon, Olson, and Liu, 1977) compared to a
pseudopotential calculation (Pascale and Vandeplanque, 1974)
and profile measurements (York, Scheps, and Gallagher, 1975).
Combpare with Fig. 43.
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E. Evaluation of general line-shape theories

Two obstacles have impeded our understanding of
collision-broadened  neutral atomic spectral line
profiles—the problems, first, of finding the correct in-
teratomic interaction and, second, of actually evaluating
the profile in a usable form. The latter has markedly in-
fluenced the way in which the theory has developed. Be-
fore large computers were applied to the problem, it was
necessary to reduce the formal theory to a practical
analytical expression. Such reduction was often accom-
plished by sacrificing exactness, so as a consequence we
had results that did not work very well, in spite of good
basic physics in the original theory. In this section,
then, we devote our attention to recent improvements in
this interface between the formal logic of the theory and
its application as a probe of the physical processes we
observe in the laboratory. Section ILF to follow will
deal with specific limiting cases that often can be applied
instead of the general evaluation.

1., Analytical methods and approximations

a. Anderson’s analytical formulas

The unpublished paper of Anderson and Talman
(1956) extends the synthesis of the impact and statistical
theories discussed in Anderson (1952) by extensively in-
vestigating analytical evaluations of the general scalar
theory we presented in Sec. II.B. That material is repro-
duced in large part in Ch’en and Takeo (1957, Sec. I11.D),
and here we indicate just the essential results of that
work.

First of all, Anderson and Talman assumed that the
correlation function could be approximated from two
calculations, one for small s, and the other in the limit of
large s. These were joined to produce an analytical ap-
proximation to the function. They found that for a van
der Waals interaction the integrals for these two limiting
cases could be reduced to one-dimensional numerical cal-
culations. They obtain functions

(213)
(214)

g(s)=As'24 Bs3/% (s—0),
g(s)=C+Ds (s—w),

where 4, B, C, and D are complex constants. Their re-
sults compare rather well with an approximation by
Lindholm (1945) in which the phase shift during the col-
lision was considered to be constant. This agreement
thus supports a subsequent approximate evaluation by
Behmenburg (Sec. II.1.b) for Lennard-Jones potentials
that uses the Lindholm method.

Anderson and Talman continued with an evaluation of
the Fourier transform for g(s) given by Egs. (213) and
(214), with specific limits on the value of density and
frequency. They obtained for high density a result ident-
ical with the statistical theory of Margenau (1935), and
showed that on the red wing for all densities the Aw 32
intensity law [Eq. (16)] is recovered as expected. They
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also investigated the validity conditions for the statistical
theory. While they found the results wuseful if
#fi|Aw | << | V(R,)| for the red wing of a van der Waals
interaction-broadened spectral line, where R; is the aver-
age atomic spacing n ~!/3, they also pointed out that the
full statistical profile, obtained by replacing g(s) by its
limit for small s, is valid only when the density is high.

For both low density and frequency they obtained a
Lorentzian line profile with an asymmetry factor, but
with the provision that the impact theory is valid only
when the asymmetry is small. We shall look at the
problem of core asymmetry in more detail in Sec.
IIL.D.1.b.

b. Approximate evaluation with the method
of Behmenburg

The difficulties of performing the numerical calcula-
tion and the favorable agreement of the Anderson-
Talman analytical methods for a van der Waals potential
with the method of Lindholm, prompted Behmenburg
(Behmenburg, 1968; Schuller and Behmenburg, 1974;
Behmenburg, 1979) to do a similar evaluation for a
Lennard-Jones potential.

In order to simplify the calculation, two assumptions
were made in addition to those of the general scalar
theory described in Sec. IL.LB. These new assumptions
were that the duration of collision is proportional to the
impact parameter, and that the phase change during a
collision is a linear function of time through the col-
lision; that is, that there is a constant frequency change
during the collision (Hindmarsh and Farr, 1972). The
important parameter introduced is the duration of col-
lision 7, which is written as equal to X(2b/7) for impact
parameter b, mean velocity 7, and an adjustable parame-
ter X selected so that the calculated profiles best match
the experiments. The advantage to this approach is that
the calculation of g(s) can be performed analytically for
all but a final one-dimensional integration. The spec-
trum is the Fourier transform of a numerical function
that can be computed rather quickly.

With this model Behmenburg investigated the effect of
adding the Cy, term to the interaction on the predicted
shift, width, and asymmetry of a line at high pressure.
With some adjustment of parameters he found that he
could obtain rather good agreement between the observa-
tions and his calculations, as shown in Fig. 13. In a
sense this result is surprising because for such high gas
densities the profile is determined in large part by the
behavior of g(s) for small s. This behavior in turn is
very sensitive to the two ad hoc assumptions introduced
to speed the calculation. The profiles of this model
should be reasonably good for the line core at low pres-
sure, but because of the assumption of constant frequen-
cy shift during the collision time, the theory will only be
an approximation to the spectral intensity distribution
radiated during the collision. At high pressure this radi-
ation dominates the line profile. Nevertheless, the work
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FIG. 13. Width and shift of the Cs (65 %S, ,,-6p 2P, ;) transi-
tion perturbed by Ar as calculated with a Lennard-Jones po-
tential by Behmenburg (Schuller and Behmenburg, 1974), com-
pared with data from Ch’en and Garrett (1966).

shows clearly the importance of including details of the
short-range potential when a profile is calculated.

c. Approximate evaluations by Hindmarsh and Farr

The quasistatic theory of Kuhn and Margenau (Sec.
II.A.5) was applied by Bergeon (1954), Bergeon, Robin,
and Vodar (1952), and Hindmarsh and Farr (1969) to the
case of a Lennard-Jones potential. The static-theory
spectra developed from these calculations displayed
enhancements in the low-frequency wing that are associ-
ated with the minimum of the potential, the so-called red
satellite bands. While the static-theory spectra are in
reasonable accord with the actual appearance of spectra
at high foreign-gas density, at low density the red satel-
lites are far too sharp, tending to an infinite singularity
in the limit of binary interactions and zero velocity.

In an effort to give a more realistic representation of
the low-density profiles, Hindmarsh and Farr (1969,
1972) proposed that

LM o e e M
gls)= XT fo R de_wdva_wdv¢exp ~ KT

1 s
n(s)=ZfO(V,~—Vf)dt.

These integrals are evaluated with a trajectory that is not
rectilinear, but is determined instead by the initial-state
interaction so that the actual orbit of the perturber is
correctly computed for the classical case. Cooper (1973)
has pointed out that V(R) cannot be included in the
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v o')/m
(0—0")+7(0'

Istatic(w’)dw’ ’ (215)

IHw)= f 0
where the half-width of the impact profile y(o’) is
dependent on the frequency of the corresponding static
profile I,;.. The effect of this integration is to remove
the singularity from the static spectrum. The calcula-
tions indicate that the finite duration of a collision might
smear the line-wing red satellites, and in this the model
provides valuable physical insight.

In the representative calculations reported by Hind-
marsh and Farr, ¥ was estimated on the basis of an ef-
fective lifetime appropriate for each frequency ’. The
method by which these lifetimes are calculated, however,
is not unlike the ad hoc assumption of the Weisskopf
theory that divides collisions into types, depending on
whether their phase shifts are greater or less than one ra-
dian. Consequently it is difficult to assess the accuracy
or applicability of a detailed profile of this type. Cooper
(1973) has noted that it is possible to write an expression
for the profile analogous to Eq. (215), but in which the
Lorentzian term is a much more complex function. Un-
fortunately, there is no rigorous mathematical justifica-
tion for Eq. (215), and there is no simple method by
which y(@’) can be defined to make Eq. (215) compar-
able in accuracy to an evaluation of the Anderson
theory, for example.

)2

2. Numerical methods

The analytical difficulties of completely evaluating a
profile without recourse to numerical calculations are
overwhelming, and in recent times most efforts have
concentrated on translating the formal theory into com-
puter programs with, in some cases, necessary approxi-
mations to maintain acceptable execution times. In this
section we look at the results of four such independent
evaluations.

a. Atakan, Fox, and Jacobson

Fox and Jacobson (1969) evaluated g(s) by averaging
in spherical coordinates over the initial radial separation
of the perturber and the radiator, and over the magni-
tude and direction of the initial velocity. They used for
g (s) the expressions

2V;(R)

1% (216)

[1—exp(—in)],

(217

Boltzmann factor when rectilinear trajectories of the per-
turbers are used. We have mentioned this problem in
Sec. II.C.1.f. It is not obvious that the inclusion of
V(R) in the velocity distribution and the use of curved
perturber paths is consistent with the factorization of the
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density matrix as required by the theory. For perturba-
tions much less than k7 for which the theory should be
valid, the inclusion of this term in the average will not
be significant anyway.

Fox and Jacobson proceeded by expanding the poten-
tials in a power series in time and integrating to obtain
the phase shift, term by term. The series was truncated
to include up to terms O (z3) in the phase shift, the angu-
lar integrations were done analytically, and the integral
on R was completed with ten-point Gaussian quadrature.
It is not possible to directly assess the truncation errors
in the series approximation to 7, but at high density, for
which the theory was particularly intended, only small
correlation times s are of interest, and the results should
be reasonably good. We illustrate in Fig. 14 a shift cal-
culated for Cs 65 2S, ,-6p 2p, ,2 perturbed by argon, and
reported by Fox and Jacobson (1969). The coefficients
of a Lennard-Jones potential were adjusted to fit the data
of Ch’en and Garrett (1966). Other calculations by
Atakan and Jacobson (1972), illustrated in Fig. 15, com-
pare computed and experimental spectra at high density.
While the calculated profile has about the same shape,
width, and shift as the line, the remaining disagreement
is significant and indicates a need for additional im-
provements in the calculations or in the assumed poten-
tials.

b. Takeo

Takeo (1970) reported an evaluation of the Anderson-
Talman theory with a Lennard-Jones potential. His
work differed from that of Atakan and Jacobson (1972)
and Fox and Jacobson (1969) in that he did not expand
the phase-shift integral in a truncated power series. He
also did net include the potential in the Boltzmann fac-
tor and, in fact, did not actually perform a velocity aver-
age, but rather substituted 7 instead. Except for the ap-
proximations he employed in order to compute the corre-
lation function in a reasonable time, his evaluation is the
first fully numerical calculation of the Anderson theory
as it was conceived for a potential that should approxi-
mately represent the interaction of an observable system.

SHIFT (cm™)

1 1 L 1
0 1 2 3 4 5

ARGON DENSITY
(102! atoms/cm3)

FIG. 14. Shift of the Cs (6s %S, ,,-6p 2P, ;) transition per-
turbed by Ar as calculated with a Lennard-Jones potential by
Fox and Jacobson (1969), compared with data from Ch’en and
Garrett (1966). Figure 13 shows an alternative calculation.
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FIG. 15. Profile of the transition for Fig. 14 at 1.6Xx10?!
atomscm™> and 410 K calculated by Atakan and Jacobson
(1972) with a Lennard-Jones potential having a well 48-cm~'
deep at 5.5 A, compared with an experimental profile from
Ch’en.

His calculations were to be compared with the obser-
vations of the resonance lines (6s2S;,,-6p 2P/, 3,,) of
cesium perturbed by xenon, as reported by Gilbert and
Ch’en (1969) and Ch’en, Gilbert, and Tan (1969). For
this purpose he chose a Lennard-Jones difference poten-
tial with a theoretical value of C¢ from Mahan (1969),
and calculated according to Eq. (171). He established a
value for C,, appropriate to a potential well 32-cm™!
deep, so that the red satellite that is found on the %P5,
component of the resonance line would be reproduced at
the correct frequency in a statistical-theory calculation.
For this potential he then computed profiles from Egs.
(46), (54), and (55) at the two experimental temperatures
666 and 800 K, and at several xenon gas densities.

The computational procedure he employed was to
evaluate the correlation function by averaging in spheri-
cal coordinates. The integrand for g (s) was expanded as
a series in terms of the variable s /R. For values of this
variable near unity the integration was performed numer-
ically, but for large or small values the integration was
performed analytically and simplified before the numeri-
cal integration in order to minimize possible numerical
error from subtracting two numbers of nearly equal mag-
nitude. There was no assessment of the overall errors of
this computational procedure.

The computed spectra show one red satellite and two
violet satellites, as experimentally observed by Gilbert
and Ch’en (1969). Figure 16 shows for comparison a
profile calculated for densities of 2.7 % 10%° atomscm—3
and 4.3Xx10% atomscm™3, and an experimental profile
at 3.1x10%° atomscm~3. The calculated red satellite
grows with increasing density, and at 1.1Xx10%
atomscm 3 most of the profile is in the red satellite re-
gion. The violet satellites are not obvious in these calcu-
lated profiles, and are much too weak compared to the
observed violet satellites. Takeo also notes that the
secondary satellite, thought to be due to interactions of
two perturbers with a cesium atom, was stronger in the
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FIG. 16. Profiles calculated by Takeo (1970 for a Lennard-
Jones potential: (— — —) for Xe density of 4.3x10%
atomscm™3; (- --) for Xe density of 2.7x10%° atomscm™3;
both at 666 K compared to experimental profile (—) at
3.0%x10%° atomscm™> and 418 K for Cs (6s 2S,,-6p 2P;,,)

(Gilbert and Ch’en, 1969).

experiment than in the calculation. Insofar as the poten-
tial is capable of representing the interactions responsible
for the red wing of the line, the agreement with experi-
ments is encouraging.

c. Allard

The unified theory described in Sec. II.C.1 has been
applied to the case of the cesium resonance lines per-
turbed by xenon (Allard, 1973; Allard, Sahal-Brechot,
and Biraud, 1974). Hund’s case C was shown to be valid
for this problem, so that the methods of Sec. IL.C.3.d
could be applied. This made it unnecessary to solve cou-
pled equations in order to describe the evolution opera-
tor. The potentials used for this calculation were a
Lennard-Jones potential for the molecular = state and a
van der Waals potential for the molecular Il, chosen in
such a way that the results of Sec. IL.C.3.d for the %P, ,,
line were identical to the scalar-theory formulation used
by Takeo (1970). In this example, a mean velocity was
introduced to avoid numerical integration over a
Maxwellian distribution.

As with other evaluations discussed here, this calcula-
tion involves first the computation of the autocorrelation
function, and then the Fourier transform in order to ob-
tain the spectrum. This evaluation was the first not to
rely in any way on series expansions or approximations
to speed the computation, but to follow an exact numeri-
cal evaluation. The method is potentially powerful, but
demands a detailed consideration of the Fourier
transform, with attention to the sampling theorem and
the use of apodization to extract poorly contrasted
features (Allard, Sahal-Brechot, and Biraud, 1974).

These theoretical calculations were performed for the
same conditions as the experiments of Gilbert and Ch’en
(1969). An example, presented in Fig. 17 for comparison
to Takeo’s calculation and an experiment, shows a series
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FIG. 17. (a) Unified-theory profiles calculated for the Cs
(65 S} /2-6p 2Py 3) (— — —) and (65 28 ,-6p %P3 ) ( ) tran-
sitions compared with an experimental profile (@) and a calcu-
lation by Takeo (—-—-) from Fig. 16. The xenon gas density
was 6X10%° atomscm™? and the temperature was 418 K. (b)
Densitometer tracing of a photographic spectrum (R. Granier,
unpublished) of the Cs (6s 2S,,-6p *P3,,) line with a xenon
density of 1.4x10% atomscm™—3 at 870 K shown filtered and
apodized for comparison to the calculation in (a) (Allard,
Sahal-Brechot, and Biraud, 1974).

of satellites all along the profile. A photographic spec-
trum, filtered to remove high-frequency noise present in
the background away from the line, shows features
analogous to the computed ones. These may originate in
interference effects, as discussed in Sec. IIL.E.3.

Calculations of the Anderson-Talman theory for a
square-well potential

V(R)=V (R<a), (218)
V(R)=0 (R >a) (219)

were reported by Allard (1978) and by Allard and Biraud
(1980). Perturbers were assumed to follow rectilinear
trajectories with a uniform velocity 7, and the autocorre-
lation function was completely analytical, resulting in a
fast and precise calculation. The dependence of the pro-
files on temperature, with a Maxwellian velocity distri-
bution explicitly included in the average, has also been
reported (Allard and Biraud, 1982).

Only two parameters, the range of the potential @ and
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the depth of the well V, are now required. Although this
model for a potential can be regarded as physically un-
realistic, its interpretation is clear. The profiles which
are obtained have a series of red satellites periodically
centered at multiples of the depth of the well, as shown
in Fig. 18. These are examples (Allard, 1978) with well
depths sufficiently large to give satellites well separated
from the main line. This allows a study of the proper-
ties of the satellites with different potential parameters
and perturber densities. It was shown that the number
of perturbers in the interaction volume

h=%ma’n (220)

is the determining parameter for the amplitude of the
satellites. For increasing A the satellites become more
and more important and can be stronger than the line, as
in Fig. 20. This is in agreement with experimental re-
sults of Gilbert and Ch’en (1969) and Kielkopf and Al-
lard (1980). In Fig. 19 the amplitudes of the first and
second satellites are plotted against foreign-gas density.
Both curves exhibit maxima at, respectively, A =1 and
h =2. Notice that when the peak of the first satellite be-
gins to decrease, the strengths of the other satellites are
still increasing. The shape of the curves plotted in Fig.
19 for the first and second satellites are similar, and the
same behavior will appear for sequential satellites, but at
higher densities. This general behavior is expected on
the basis of the Poisson distribution, which gives the
probability of finding a select number of perturbers
closer to the radiator than a, and it has been reported ex-
perimentally (Kielkopf and Allard, 1979). Observations
of the phenomena are discussed in Sec. IILE.1. Only the
analyticity of the square-well autocorrelation function,
which permits the calculation of a great number of pro-
files, allows the theoretical study of this interesting
phenomenon.

In addition to the satellite peaks, the profile for this
potential also shows oscillations due to the square-well
geometry. These oscillations are artifacts analogous to
optical diffraction, and they have a period that depends
on D. As a consequence they nearly disappear when the
correlation function is averaged over velocities.

These variations, established for large V with a

0.02 ) ' ' f '

INTENSITY
=3
=4

FIG. 18. The variation with density of line profiles and satel-
lites as calculated for a square-well potential of depth ¥V and
radius a, for different values of h =n(4ma>/3).
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ABSOLUTE INTENSITY

FIG. 19. The variation of the amplitude of satellites with den-
sity for a square-well potential: (a) the amplitude of the first
satellite relative to the main line; (b) the amplitude of the
second satellite relative to the main line; (A) the amplitude of
the first satellite on an absolute scale; (B) the amplitude of the
second satellite on an absolute scale (Allard, 1978).

resolved satellite, extrapolate well to small ¥V where the
satellite is embedded in the line center. A complete ex-
planation of the variation of width, shift, and asymmetry
with density is given by applying results established for
the case of well-resolved satellites to the case of un-
resolved satellites (Allard and Biraud, 1980; Gilbert, Al-
lard, and Ch’en, 1980). The apparent variations of the
parameters of the line have been studied for several dif-
ferent potential-well depths. These results can be subdi-
vided into three domains:

(i) The satellite is well separated from the line core, as
in Figs. 20 and 21(a). The width, shift, and asymmetry
of the computed profiles show discontinuities as a func-
tion of density similar to those known to appear in ex-

T T T T T
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-80 -60 -40 -20 0 20
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FIG. 20. The variation of the calculated profiles for a
square-well potential with density. All of the profiles have
their maxima set to one. These calculations and those of Figs.
18 and 19 are for a well 39.8-cm~! deep with a radius of 6 A
(Allard and Biraud, 1980).
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FIG. 21. The variation of width, shift, and asymmetry for a
square-well potential of radius 6 A with different depths:
(— — —) width; (- --) asymmetry; ( ) shift (Allard and
Biraud, 1980).

perimentally measured profiles. These features should be
compared with experiments discussed in Sec. IIL.D.2.

The origin of these discontinuities lies in the relative
positions and intensities of the satellites and the main
line. Figure 20 shows that the first satellite remains al-
most at the same frequency, but that its amplitude in-
creases with density. The discontinuity in shift and
asymmetry occurs when the satellite becomes stronger
than the line core. The linewidth is measured at half the
peak amplitude of the profile. The discontinuity in
width occurs when the dip between the line and the
satellite has an intensity greater than half the line-peak
intensity. This is illustrated in Fig. 20 by the horizontal
line BB’ACA’. When the dip rises above the half intensi-
ty point, the width is measured from B to A’, but when
the dip is less than half the line peak, the width is mea-
sured from A4 to A’. The discontinuity in the asymmetry
curve occurs for the same reason.

(ii) The satellite is no longer clearly resolved. With in-
creasing density the satellite becomes a shoulder which
climbs up along the red side of the main line and distorts
the line shape. A dip does not appear between the line
core and the satellite, and distinct discontinuities no
longer appear. The same phenomena do occur, but the
effects are smoothed as shown in Figs. 21(b) and 21(c).
This is a transition between cases (i) and (iii).

(iii) The satellite is completely blended into the line
core. The satellite does not cause a distinct red shoulder,
but instead sums with the line core to form an un-
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resolved contour. This gives rise to very smooth profiles
and prevents any discontinuity from appearing in the
plots of the width, shift, and asymmetry versus density,
as shown in Fig. 21(d).

When these curves are compared with the experimen-
tal results of high-density observations, to be discussed in
the following sections, it is apparent that they reproduce
well the S shape of the width curve, the Z shape of the
shift curve, and the bell shape of the asymmetry curve.
It is remarkable that the simple square-well potential
yields computed spectral line-profile characteristics that
are in satisfactory agreement with experimental data.

d. Kielkopf

With the view that the only way to test unified
theories of line broadening is to compare the computed
line shape for well-known interatomic potentials with a
wide range of experimental data on the same system at
different pressures and temperatures, Kielkopf (1976a,
1978, 1982) and Kielkopf and Allard (1980) studied the
problem of precise evaluation of the semiclassical line
profile for potentials somewhat more general than the
Lennard-Jones. The computed width, shift, asymmetry,
and profiles have been compared with principal series
transitions in cesium and barium perturbed by xenon,
and sharp series transitions in potassium.

The calculations reported in these papers evaluate the
Fourier transform I (%) for a frequency ¥ (cm™!) from
the unperturbed line center with the real integral

I(T/)=2£_ fow exp[ —na(u)]
o

X cos[2nvuc /T —nPB(u)ldu , (221)
where u =05 measures the distance along a rectilinear
trajectory instead of the time of travel. This form of Eq.
(65) is particularly convenient for numerical calculation.
The functions a(u) and B(u) are the real and imaginary
parts of g(s),

g(s)=alvs)+iB(s) , (222)

which are determined in cylindrical coordinates by Eq.
(55) or Egs. (99) and (100). In order to avoid the infinite
upper limit of the Fourier transform equation (221), the
calculation takes advantage of the fact that, for large u,
g(s) is a linear function of s. There exists some value u,
such that for u >u( both a(u) and B(u) can be described
by

alu)=ap+au , (223)

Blu)=PBo+Pu (224)

to an accuracy that exceeds the established accuracy of
the numerical calculation for smaller 4. In the computa-
tions reported in these papers, this accuracy is of the or-
der of 3 to 4 decimal places. Once this is recognized,
the integral from uy to « can be done analytically. The
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spectrum is first calculated as if Eqgs. (223) and (224)
were valid for all 4. This can be done exactly and gives
a Lorentzian plus an asymmetric dispersion term. The
difference between the real behavior for u <u, and the
linear terms is then added. The advantage of this pro-
cedure is that, once the linear region has been identified

na,

the correlation function does not need to be calculated
for u >uy, and as a consequence it is not necessary to

apodize the Fourier transform. The profile is given by

with

(226)

I (v)=2(c /v) exp( —nay) cos(n By)

27cv/U—nf3

(na)*+Qmev/b—npy)?

(227)

I,(v)=2(c/7) exp( —nay) sin(nBy)

(nay)*+Qmev/—npy)?

IW(T/)=2(c/tT)f0u0du { exp[ —na(u)] cos[2mcvu /T —nPB(u)]

—exp[ —n (ag+aju)] cos[2mevu /T—n (Bo+Piu)l} .

The asymmetric line-core character and its mathematical
origin as the nonzero intercept of the slope of the ima-
ginary part of g(s) is clear from this formalism.

The actual evaluation is of course speeded consider-
ably by choosing potentials for which the phase-shift in-
tegral can be analytically calculated. The choice in the
first paper (Kielkopf, 1976a) was a power series in R —%
with even p

12
V=3 C,R~".
p=6

(229)

But it is not possible to fit such a potential to the pseu-
dopotentials available for alkali—noble-gas interactions,
and spectra computed from Eq. (229) were found not to
agree very well with experiments that produced very
sharp satellites in the line wings. In later work, while
this form was used for large R, for small R another
power series,

6
V=3 B,R",
p=0

(230)

was introduced. The inner and outer regions were
matched in slope and magnitude at a suitable point.

The profiles from these calculations illustrate first of
all that satellites appear near the frequency from the line
center that corresponds to the difference-potential well
depth. The satellite may not be a distinct peak, but rath-
er a shoulder on the main line, as illustrated in Fig. 22.
The position of the edge of this shoulder is always closer
to the line than the well depth, and the shape of the
computed satellite is never as sharp as predicted by the
unified Franck-Condon theory or statistical theories.
The calculations demonstrate clearly that the position of
the satellite in the spectrum is determined by the
difference-potential well depth.

The computed spectra also show that the shape of the
satellite depends on the curvature of the potential. A po-
tential of low curvature around the extremum produces a
very sharp satellite, such as that shown for low density
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(228)

in Fig. 23. The overall strength of the satellite as a frac-
tion of the total energy in the line is a function of the in-
ternuclear separation corresponding to the formation of
the satellite feature. Thus larger separations with higher
probabilities of collision produce stronger satellites.

In the sequence of calculations shown here we see the
growth of an isolated line with increasing gas density for
a selected potential. Many of the features encountered in
other evaluations are found here: the intrinsic low-
pressure core asymmetry, a red satellite, and, with higher
densities, a very broad and shifted profile that includes
frequencies covered by the red satellite and core at lower
densities. The first satellite initially grows in strength,
but so do contributions at frequencies farther from the
line than the satellite. The calculations shown in Fig. 23
also display the development of higher-order satellites
that we interpret as satellites-on-satellites; that is, as

INTENSITY (10°3)
~n w - w (2]
T T T T T
1 1 1

T

-70 -60 —SlO -410 -310 —210 —IB (l)

FREQUENCY (cm™)
FIG. 22. An experimental profile for Cs (6s2S,,,-7p 2Py ,,)
perturbed by Xe at 1.1 10" atomscm~? at 546 K compared
to two unified-theory calculations: (a) a multiparameter poten-
tial with a well at 14.1 A and a depth of 46.0 cm~! with a re-
duced curvature of 30; (b) a 6—8 potential with a 47 cm™!
well at 11.2 A and a reduced curvature of 48. The sharper
well produces a less distinct satellite. All profiles are normal-
ized to unit area; the density for calculation (b) is 0.64 X 10'°
atomscm™> and the temperature is 500 K (Kielkopf and Al-
lard, 1980).
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1x10'8

2.5x10'8

INTENSITY

1 1 1 1
-46  -38 -30 -22 -14 -6  +2
FREQUENCY (cm™!)

FIG. 23. Calculated profiles for Cs (6s %S, ,,-9p 2P,,,) per-
turbed by Xe at 500 K and different densities.

satellites due to many-perturber interactions. At very
high density the profile assumes a Gaussian character,
with minor undulations corresponding to high-order
multiple-perturber interactions.

These illustrations show that the computed spectra
have an appearance very similar to those observed.
Analyses of the line core that allow for the asymmetry
shown are also in good agreement with recent experi-
ments of Kielkopf (1980) and Walkup, Spielfiedel, and
Pritchard (1980). While these predictions of the line-
shape theories have been observed, no calculated poten-
tials are as yet sufficiently accurate to predict spectra in
the near line wing. All the evaluation procedures we
have discussed use some type of semiempirical potential,
adjusted so that the computed and observed spectra have
some features in common, but the fact that the density
dependence of the spectral contours and width, shift, and
asymmetry are also accounted for without such fitting in
recent work (Kielkopf and Allard, 1980; Gilbert, Allard,
and Ch’en, 1980), lends support to the essential basis of
the line-shape theory.

In spite of the obvious successes of these methods in
explaining many features of observed profiles, we are
drawing comparisons between theories applicable to iso-
lated adiabatic levels and experiments that involve levels
that are not fully isolated and are described by potentials
more complex than a scalarly additive function of inter-
nuclear separation. Thus there is much yet to be done,
particularly along the lines of including nonadiabatic ef-
fects and nonadditivity at high density.

F. Special cases and useful limits

1. JWKB methods

In Sec. II.C.2 we showed how single-perturber wave
functions could be explicitly introduced into the calcula-
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tion of g(s) in such a way that the line shape is deter-
mined by the Franck-Condon factors |{X;|X,)|% A
low-density unified approximation to adiabatic, additive
line profiles has been derived from this result, which
contains only quantities already present in the impact
and one-perturber expansions, and yet describes the com-
plete frequency range with a single expression.

The unified Franck-Condon (UFC) line shape (Szudy
and Baylis, 1975, 1977; Szudy, 1979) can be written as

Ie)=1 Flx)

T (0—wo—0 )2+ (p)?

(231)

where ¥ and o are the impact line-shape width and shift
given by

wnﬁ( 1 i(21+1)

+io= -—
4 ki =6

X {1—exp[2i(8,-——8f)]}> . (232)
This expression is in the form given by Szudy (1979).
The calculation of the impact width and shift has been
discussed in Szudy and Baylis (1977). In Eq. (232) the
reduced mass of the binary system is u, the initial wave
number of the perturber is k;, the brackets { - - - ) indi-
cate an average over k;, the sum is on the quantum num-
ber [ of the relative angular momentum of the collision
pair, and 8; and 8 are the scattering phase shifts for the
initial and final levels of the radiating atom.

The line-shape function F(x) is defined in terms of the
variable x given as

X =CO——CL)0—M1 s (233)
where
+ o0
| Tw—w)l(0)do
M, === (234)

[ 1)

is the first moment of the line profile. It is given by

n + o
F(x)=5 f_w ds exp(ixs)g''(s) , (235)
where g(s) is calculated from Eq. (123). These expres-
sions would also be valid at low density for g(s) calculat-
ed from either a classical path unified theory or a scalar
phase-shift theory, with appropriate limitations for each
case.

The particularly useful result of this method arises if
JWKB wave functions are used to evaluate g(s) in Eq.
(123). Then in the notation of Szudy and Baylis (1977),
the line-shape function is given by

THY;

F_(x)=< 5 2(2l+1)(H,(x)|2) , (236)
2ki T

where v; is the initial relative velocity, v; =#k;/u, and

Hj is the reduced free-free Franck-Condon factor. This

overlap integral has the simple form

Hi(x)=2x fowds cos[sx —m(s)] . (237)
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The phase difference between initial and final states is
n(s). The low-density line core, which is often called the
impact limit, is recovered when x —0. In that case, to
lowest order in x,

Fix)=y, (238)

which gives a Lorentzian profile. The next-order term
adds a slight asymmetry.

To investigate the line shape in the wings, the overlap
integrals H;(x) have to be calculated at large x. In this
case it turns out that the main contribution comes from
the regions of stationary phase; that is, from the vicinity
of Condon points which are the solutions of

#ix =AV(R,) (239)
when AV =V;—V}, the difference between the interac-
tion potential for the initial and final states of the transi-
tion. If the solutions R, of this equation are real, then
they represent the transition points that obey the
Franck-Condon principle; that is, vertical transitions.
These real Condon points are the basis of the quasistatic
theory.

We can, on the other hand, have complex solutions to
Eq. (239). Frequency regions which correspond to such
complex Condon points are called antistatic regions. For
a line originating with a difference potential that has a
minimum, as in a Lennard-Jones type of curve, frequen-
cies farther removed from the line on the red side than
the well depth correspond to complex Condon points in-
terpreted with antistatic solutions for F(x).

The contributions to the integral for H;(x) have to be
evaluated for each possible Condon point. In the case of
isolated Condon points, the phase shift is expanded as a
quadratic function of s, and the resulting intensity is the
usual quasistatic line profile. When two Condon points
are close, it is necessary to expand the difference poten-
tial as a quadratic function so that the phase carries
terms of the order s®. With use of the method of
steepest descent (Holstein, 1950) the resulting integral
can be approximated with an Airy function. This is ex-
actly the procedure used in the work of Sando and
Wormhoudt (1973) and Sando (1974), in which observed
and calculated satellite band shapes were compared.
Szudy and Baylis (1975), however, expect the method to
wc . well only when the potential can be accurately
represented by a quadratic expansion.

In order to get a more satisfactory description of the
profile, they expand the phase shift as a cubic function
of a new variable chosen to give a profile that varies
smoothly from the Sando-Wormhoudt expression in
terms of an Airy function when the Condon points are
far apart. The method has the.advantage over other
techniques, in that it allows the explicit inclusion of an
average over initial energies and that it gives useful, easi-
ly evaluated expressions for line-wing profiles. Without
giving details of the calculations, we simply quote the
following results.

In the line wings when |x | >>y the UFC profile is
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|72, | '?RIL(z,)
| AV'(R,) |

I(w)=24mn#3 |D(R,)|?

Xexp[ —Vi(R.)/kT] . (240)

The reduced frequency z, is a dimensionless parameter
given by
2

1/3 —4/3

AV'(R,)
#

AV"(R,)
#

U
2kT

Z,=

1
2
(241)

and the primes indicate differentiation with respect to R.
L(z) is a “universal” line-shape function, in the sense
that the shape of the line wing is determined in large
part by this function, regardless of the line being con-
sidered. L (z) is the integral

L(z)= fO“’dyy—2 | o (—2p) | 2exp(—p3) , (242)

where . denotes the Airy function. The universal
line-shape function is illustrated by the solid line in Fig.
24. A tabulation is also given by Szudy and Baylis
(1975).

For large positive z., L (z) is approximated by

1
6V 1z,

and I(w) is given approximately by the quasistatic pro-
file

Liz,)~ (243)

, |7z |V?RZL(z,)
| V'(R,)|

I(w)~4mn#Y, | D(R,) |

Xexp[ — Vi (R, )/kT] . (244)

This expression is singular for Condon points R, corre-

0.100

0.050

T T

T

L(z) B

I

0.010

FIG. 24. The universal line-shape function L(z) ( ) and

asymptotic approximation (- - +) (Szudy and Baylis, 1975).
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sponding to extrema in the difference potential. These
singularities occur in the regions where potential curves
for the upper and lower states run parallel. The red sa-
tellites observed for years in alkali spectra perturbed by
noble gases (see Sec. IILLE.1) are interpreted as the real
manifestation of these theoretical singularities. These
classical satellites have a position given by

AV(Ry)
xsz—-ﬁ——q—=ws—w0—M1 (245)
that corresponds to the value z, =0 for the reduced fre-
quency.

Negative values of the reduced frequency correspond
to complex Condon points. For z, << —1 the asymptotic
form of L(z,) is given by

L(z.)~(1087 |z, | )~ 2exp(—12'3 |2, |) . (246)

The intensity in this far antistatic region decreases ex-
ponentially.

In a recent paper, Royer (1978) reports a numerical
test of the accuracy of the UFC formula and compares
the UFC profile with other approximations used in the
low-density regime. By reference to a numerical evalua-
tion of the Anderson theory, he concludes that the
Szudy-Baylis approximation is the most accurate, in ad-
dition to being the simplest, low-density approximation
available for an adiabatic, scalarly additive, line-
broadening theory. Because these theories are thus limit-
ed, agreement with the Anderson-Talman theory does
not necessarily indicate a best theory.

2. Molecular dynamics simulation

Rather than compute the autocorrelation function
from the formulas of Anderson and Talman or from one
of the other additive or unified theories, Erickson and
Sando (1979, 1980) have computed absorption line shapes
with numerical simulations of the molecular dynamics of
a system of an absorber and many perturbers. They
studied a particular system consisting of one sodium
atom and 255 argon atoms in a box with volume and ini-
tial velocities chosen to correspond to an argon density
of 2x10?! atomscm™3 and a temperature of 450 K.
They let the argon atoms move on classical paths deter-
mined by the Na-Ar ground-state potential, and comput-
ed the dipole autocorrelation function and its Fourier
transform to obtain the line shape. For a single excited-
state potential the molecular dynamics simulation spectra
are reported to be in remarkable agreement with
Anderson-theory calculations, but for multiple adiabatic
excited states the Anderson theory gave a narrower line,
and one less intense in the blue wing then the simulation.

A method such as this offers the interesting possibility
of testing the expressions developed for the autocorrela-
tion functions in the various unified theories. It also
offers means of taking into account effects such as
perturber-perturber correlations that seem to influence
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very-high-density spectra as deduced from analyses of
width, shift, and asymmetry by Royer (1980).

3. Density expansions

Clearly, unified theories, even the simplest ones such
as the Anderson-Talman theory with a square-well po-
tential, offer the best available method for understand-
ing, at least qualitatively, the full development of line
profiles with increasing gas density. But we have also
seen that in the low-density limit, a condition encoun-
tered most often experimentally, there are two extreme
approximations often used: the impact approximation
for the core of the line, and the statistical theory for the
wings. These approximations reproduce, often quantita-
tively, the observed behavior of line profiles. Some of
the features of these low-density approximations, as well
as characteristics of high-density spectra, can be treated
by expanding the spectrum in powers of the density
(Royer, 1971a, 1978).

Of course we deal with the Fourier transform of the
autocorrelation function discussed previously, with g(s)
given by Eq. (55), (100), or (123), depending on whether
the Anderson-Talman, unified, or Franck-Condon theory
is in use. The natural procedure is then to expand the
autocorrelation function in powers of n and Fourier
transform term by term, but this yields a divergent spec-
trum in the limit w—0 because g(s) is unbounded for
large s (Royer, 1978). Instead, it is necessary to separate
g(s) into a locally averaged part that gives an impact
line core and an oscillating part that produces the line
wing.

Following the discussion after Eq. (222), we separate
the correlation function into two parts,

g()=[(ap+iBy)+(a;+iB)s]+g(s) , (247)

the linear part of which we associate with the low-
density line core, and the second part g(s) with the line
wing. The correlation function with the g(s) can be
written
<I)(s)=exp{—n[(a0+iBo)+(a1+iB1)s]}
X[1+ng+n2/20g"+ - -+ 1. (248)

The Fourier transform of this series does not have diver-
gent terms if the constants in Eq. (247) are chosen to
reproduce the asymptotic behavior of g(s):

(249)
(250)

g(s)=(ap+iBy)+(a;+iBi)s (s— ),
g(0)=0.

As a consequence the term-by-term Fourier' transform
gives a density expansion for the spectrum, % symboliz-
ing convolution,

Iw)=I.(0)%[ 8w)+nl,(w)

+(n2/20I ()% () + - - - ],
(251)

where I, is the core distribution at low density. I, is in-
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terpreted as the wing of the one-perturber distribution
(Baranger, 1962; Royer, 1971a), although the intensity
distributions labeled I, and I,, are not normalized in the
sense that their frequency-integrated area is unity.
Royer introduces a normalization factor 7~ into the one-

perturber spectrum,
Inve)=2>""1,0), (252)

and a related factor exp(n ") into the core spectrum,

Iy(w)=exp(n?)], (w) , (253)
and rewrites Eq. (241) as
© k
I)=Ly(@)* 3 exp(—n7/')(—n~:—)1,2§(w) .
k=0 °
(254)

I*K is the intensity distribution due to the combined ef-
fects of k perturbers. It is weighted by the Poisson dis-
tribution, which is the probability that those perturbers
will be in a volume 7 if the number density is #.

The structure which we see in Egs. (251) and (254)
shows that. at low density the core distribution is most
important, and that as the density increases, higher-order
multiple-perturber effects become more prominent, just
as they show up in the numerical evaluations of the uni-
fied theories. The convolution theorem appears explicit-
ly here with the spectrum of N perturbers given by the
convolution of many one-perturber distributions. These
convolutions exhibit satellites at frequencies N (Awy) if
Aw is the satellite frequency for a single perturber. The
intensity of each of these multiple-perturber features is
determined by the corresponding Poisson distribution
factor in the series. This expansion is thus a very physi-
cal one, because it decomposes the spectrum into indivi-
dual spectra from elementary collision processes. Royer
(1978) cautions that this interpretation should not be tak-
en too literally, since the terms of the series are not al-
ways positive. The use of such expansions to explain
multiple-perturber spectra will be taken up in Sec.
IILE.1.c.

It may be worthwhile to compare Eq. (254) with the
Hindmarsh and Farr (1969) expression, Eq. (215), which
is rather similar. The two results would be equivalent if
I,n were evaluated as a static-theory spectrum, and if
Iy were a Lorentzian with frequency-dependent width,
but generally Eq. (254) cannot be taken as a basis for us-
ing the methods of Eq. (215).

4. The one-perturber spectrum and line-wing
temperature dependence

In many cases of experimental interest the foreign-gas
density is low enough that the one-perturber spectrum is
a useful approximation to the data. From Eq. (254) this
occurs when the probability of finding more than one
perturber near the radiator is negligible. Furthermore,
we have seen that when the initial-state potential is small
in comparison to thermal energies the Kuhn-Margenau
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statistical distribution of Eq. (14) describes this spectrum
if duration of collision effects are neglected. Experi-
ments have demonstrated, however, that in regions re-
moved from the center of the line strong dependence on
temperature is observed (Gallagher, 1968; Hedges, Drum-
mond, and Gallagher, 1972).

Let us look again at the spectrum derived by Jablonski
(1945) and given in Eq. (39),

21),'( o)
U,'(Rc )

dr
dg

where we have substituted for the terms given there as
discussed in the paragraph following that equation.
Here v;(R) is the radial velocity of the perturber for the
initial state of the system, b the impact parameter, R,
the internuclear separation at which the transition is
most probable according to Eq. (34), and f(v) the
Maxwellian velocity distribution. We have integrated
over allowed values of the impact parameter and aver-
aged over velocities in this expression. Notice that the
average is performed over velocities at infinity. The ra-
dial velocity is

I« [ fw)dv [ 2abdb , (255

E—Vi(R) p? 172

z — F (256)
i

U,'(R):U,‘( OO) l

The integral over b can extend only up to b,,,, for which
a particular R is accessible; that is, where v(R) is zero.
Thus

E;—Vi(R)
b, =R>*—"——77+—— . (257)
E;
The impact-parameter integration gives
b nax 2U,'( ) [El—I/t(Rc )]1/2
2 =47R]

f() b db vi(Rc) TR E,'I/Z

(258)

In terms of the total kinetic energy of the perturber at
infinity E;, the velocity distribution is

f(v)dv=2m(wkT)~ 3 exp(—E; /kT)E}"*dE; .

The velocity integral in-Eq. (245) becomes an energy in-
tegral, giving for I (w)

(259)

I(@) < 2m(mkT) 3"
x [ 7 exp(—E; /KT)[E;— Vi(R,)]'"?

R,

X47R2 dE

dE; (260)

with a lower limit € that depends on whether the poten-
tial ¥;(R) is repulsive or attractive. The limit for a posi-
tive, repulsive potential is just V(R.), since energies
lower than this cannot reach R.. For an attractive po-
tential, the lower limit is e=0. To evaluate the integral,
we substitute x =(E —V)/kT to obtain, in these two
cases,
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-1

,| dr,

Iw)=3 |47R; dE exp[ —V;(R.)/kT]
[Vi(R,)>0], (261)
and
R, |7

Ho)=73 |4mr? *‘é exp[ — Vi(R,)/kT]

12 .o

(”; f—V,./kT exp( —x)x /2dx

[Vi(R.)<0], (262)

where the sum is over all Condon points contributing to
the spectrum.

The differences in the temperature factors of these
equations are illustrated in Fig. 25. In the case of an at-
tractive potential this distribution corresponds only to
free particles. The portion of the momentum space cor-
responding to bound particles has been excluded (Hedges,
Drummond, and Gallagher, 1972). If both bound and
free perturbers are included, then the distribution is
given by exp(—V; /kT) even when the potential is attrac-
tive.

The results of this analysis in Eqgs. (261) and (262)
have been used in several instances for the determination
of interatomic potentials from spectral line-wing intensi-
ties. These results are discussed in Sec. IILE.2 and
IV.A. Here we point out the essential feature, that the
Boltzmann factor is used to obtain information about the
initial state, while the derivative dependence gives infor-
mation about the difference potential. Some problems
have been encountered with uniqueness in this inversion.
Other limitations to the validity of the treatment, depen-
dent ‘as it is on static line-broadening theory, are dis-
cussed in the following sections.

T T T
\\
3 —
B \
\\A
\
£ o\ 7
= N
= B >\
~
1= 4
| | I
-4 -2 0 2 4

AV/KT
FIG. 25. The distribution functions for an equilibrium ensem-
ble (a) including all states both bound and free, and (b) includ-
ing only free-particle collisions (Hedges, Drummond, and Gal-
lagher, 1972).
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5. Impact broadening: analytical and tabulated
calculations

It is believed that the ratio of shift to broadening is
sufficiently sensitive to the form of the force law to per-
mit its determination of the law by careful experiments.

—Foley, 1946
We return once again to the question of the central
core of the line at low density. This, we have seen from
the density expansion discussed in Sec. ILF.3, is deter-
mined for the most part by the asymptotic correlation
function for large s. The correlation function given by

D(s)=exp{ —n[(ao+iBo)+(a;+iB)s]} , (263)

as we have seen [Eqgs. (216)—(218)], yields for the area-
normalized Fourier transform

/T
I(w)= exp(—nag)cos(nBy)—LT—
)= exp(—nag)cos(n B, (w—0)2+72
. (w—0o)/m
(— ) ), 264
+exp( —nap)sin(n By @—0)1 7 (264)

where the half-width at half maximum intensity is
Y=na, and the shift is c=n;. When the constant in-
tercept of g(s) is neglected, I(w) is a Lorentzian. In
fact, in most cases the asymmetry is so small it is diffi-
cult to observe within a few half-widths of the line
center. The width and shift are given in terms of «; and
B, either by Eqgs. (57) and (58), for a scalar interaction in
the Anderson theory, or by Eq. (102) in the Baranger
theory. For spherically symmetric interactions in the
adiabatic approximation the results are equivalent. Re-
placing v with ¥ to perform the velocity average in the
unified theory, we obtain

y=no fo‘”znb db[1—cos()], (265)
o=nv [ * 2mb db sin(y) , (266)
n= [ dt AVIG 45 2 (267)

for a difference potential AV (R).

While the general problem of impact broadening has
recently been reviewed (Lewis, 1980), we want to summa-
rize here a few results in closed and graphical form that
have proven to be useful, particularly for simple analyses
of the relationship between linewidths and interatomic
difference potentials. For this purpose we consider first
the case where AV is a square well [Egs. (218) and (219)]
of depth ¥V and radius a. The half-width and shift
parameters are, respectively,

y=noma®{1+3x ~'[1—cos(x)—xsin(x)]}  (268)
and

1

o=nvma*[x ~'cos(x)—5x ~"Zsin(x)] , (269)

where x is the maximum phase shift for a central col-
lision 2aV /#iv (Allard, 1978). For a deep square well,
x—> o and the Lorentz result is obtained: a width pro-
portional to the collision cross section and no shift.
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The other case for which an analytical evaluation of
the width and shift is possible is a potential

V=1CR". (270)

The result has been given by several authors (Unsold,
1968; Szudy and Baylis, 1977; Hindmarsh and Farr,
1972) for p > 3:

y=nomall[(p —3)/(p —1)]cos[#/(p —1)] , (271)
o=+nmail[(p —3)/(p —)Isin[7/(p —1)], 272)
C I"[( 1)/2] 1/(p—1)
_ | P 172 y
W= |Tx () r'p/2) (273)

The quantity a,, is the Weisskopf radius, the impact
parameter for which the collisional phase shift is one ra-
dian. Its value determines the scale of the width and
shift, while the shift-to-width ratio is given by

o/y=+tan[w/(p —1)] . (274)

This ratio decreases with increasing p. An interaction
which sets in rapidly as a function of decreasing R gen-
erates a small line shift. Notice that in principle this po-
tential can be used to account for any shift-to-width ra-
tio, but that for fixed p the ratio can have only one
value. If p is 6, for instance, a van der Waals potential
yields o/y=—0.73. Historically, the observation that
many lines did not exhibit this ratio was one major
reason for incorporating other possible potentials into
neutral-atom line-broadening calculations.
The Lennard-Jones potential

V(R)=C¢R ~%+C,R~1? (275)

(Sec. II.D.1) was independently applied to line broaden-
ing by Hindmarsh, Petford, and Smith (1967) and
Behmenberg (1968). The methods were extended to in-
clude 6-8-12 potentials by Hindmarsh, DuPlessis, and
Farr (1970). Although the phase-shift integral for this
potential is in closed form, the width and shift have to
be computed numerically. The calculations yield tabular
or graphical data that can be used to predict or interpret
width and shift obervations. The half-width and shift
are shown to be given by

y=nva};B(a), (276)

o=nai;S(a), (277

apy =23 | Cq | /(8#5)]'/°, (278)
and

a=0.536(F7#)%°C,/ | Ce | 11/ . (279)

The functions S(a) and B(a) are displayed in Fig. 26
for negative Cg.

One thing that we can learn immediately from such
graphs is that the observed shift and width at a single
temperature do not always give a unique determination
of the interatomic potential. This is a consequence of
the oscillations in both S and B for small a. We might
conclude that, in general, the measurement of linewidth
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and shift in the impact limit is not a good method for
obtaining the interaction potentials. On the other hand,
in some cases the width and shift can be uniquely related
to the potential or the nonuniqueness can be overcome
by additional experimental data. Such data might come
from the line wing or from temperature dependence of
the line-core broadening. An example of the former pos-
sibility has been given by Kielkopf and Allard (1980).
Temperature dependence measurements have been report-
ed by Vaughan and Smith (1968) and Kreye (1982) for
this purpose. A further difficulty arises in that in many
cases the broadening yields potentials on the assumption
of adiabaticity, an assumption not necessarily valid. In
spite of these shortcomings, there is a large body of data
on potentials derived by these methods that we shall dis-
cuss in Sec. IV.A.

6. Comments on the validity of limiting approximations

At low pressures the statistical theory is certainly
valid on the wings of the line, the impact theory in the
center, while at high pressures the statistical theory is
valid if its fundamental assumption that the frequency
perturbation for a given atom is the sum of that due to
all others in the gas is not too seriously incorrect.

—Anderson, 1952

Both the impact and static approximations are useful
by themselves under certain conditions determined by
such factors as spectral resolution, gas density and tem-
perature, the difference potential for the interaction, and
the spectral region under study. Particularly for the case
of the impact approximation there are rather well-
defined limits of validity that are approximately comple-
mentary to the conditions for the one-perturber limit of
the static theory at low perturber density. In this section
we provide guidelines on the use of limiting cases of the
unified theory.
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FIG. 26. Shift and width integrals for a Lennard-Jones poten-
tial with an attractive R —% coefficient and a repulsive R ~12
coefficient (Hindmarsh, Petford, and Smith, 1967).
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a. On the use of the impact approximation

Baranger (1962, Sec. 5.1) has considered the validity
conditions for the impact approximation. Following his
discussion, and in reference to Fig. 3, we define 7, as a
representative duration of collision, and 7, as a mean
time between collisions. The impact approximation is
valid, according to Baranger, when 74 <<7., implying
that the total energy radiated comes mostly from the in-
tervals between collisions. For regions near the line
center this is actually a condition on perturber density n.
We estimate

Ta=b /v (280)

for impact parameter b and velocity v, and from Eq.
(271)

Te~1/nvmal , (281)
so that the Baranger criterion can be expressed as

n < 1/mba*~1/ma] , (282)

where typical impact parameters for emission in the line
core are of the order a,,.

Spitzer (1940) and Hindmarsh and Farr (1972) have
treated frequency-dependent criteria for the impact ap-
proximation. The latter authors find a frequency Aw
measured from the line center at which the Lorentzian
of the impact core is comparable in strength to the emis-
sion that occurs during the collision. Spitzer, on the
other hand, evaluates a correction to the impact approxi-
mation to find the frequency at which a preassigned rela-
tive error may occur. The results in both cases are the
same and depend on the potential chosen for the evalua-
tion. With a power potential such as Eq. (270), the va-
lidity condition is

Aa)<PL y

w

(283)

where P is the preassigned error and a,, is given by Eq.
(273). So Aw can be related to the line half-width, Eq.
(271), by

Aw <Y (P/{nmalT[(p —3)/(p —1)]

Xcos[m/(p —1)1}) . (284)

Thus under the Baranger criterion, Eq. (282), the impact
theory is useful within a few half-widths of the line
center.

b. On the use of the static theory

Baranger (1962) discusses the validity of the static
theory in terms of the correlation function, giving as a
condition the requirement that the correlation function
go to zero before a single collision is completed. A suf-
ficient condition for this has been given by Royer (1980,
Sec. V.B.2) in the context of the Anderson-Talman
theory,
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n>>1/(4nR3/3) , (285)

where R is the radius of an “interaction volume” about
the radiator.

A specific validity condition for the static theory in
the wing of a line broadened by a power-law interaction
[Eq. (270)] has also been given by Holstein (1950). It is
complementary to the condition for the validity of the
impact theory, Eq. (283),

Ao>1/74, (286)

where 1,~b /v, and b is found from Egs. (273) and (283)
to yield

Ao > PPV /(C, /)P (287)

Equations (286) and (287) are used to justify the applica-
tion of the static theory to far-line-wing analyses.

7. Collisional effects on high series members
and the effect of high gas density

Quite often nannies and kids are pastured separately
for reasons which need not concern us. In the evening
when the kids and their maternal ancestors are again
placed in the same corral it is most impressive to watch
a nanny rapidly and unerringly pick her offspring from
among hundreds of other and apparently identical kids
while refusing to be cozened by the younger members of
other families. Although impressive, we must admit
that this cannot hold a candle to the selectivity of the
electron and the nucleus to which we refer.

—Breene, 1961

In the survey of experimental results to follow we
shall see that the large body of data that line-shape
theories have been devised to treat is derived from mea-
surements of strong spectral lines which originate in
low-lying atomic transitions. Historically, however, one
of the first connections between spectral line broadening
and atomic collisions treated quantum-mechanically was
made by Fermi (1934) in his study of the broadening and
shift of high series members of alkali spectra, involving
the Rydberg states to which the above quotation refers.
In the light of the developments of the generalized
theories we have discussed here, we look again at this as-
pect of line broadening.

The distinguishing characteristic of high series
member transitions is that the excited valence electron
has a significant probability distribution encompassing a
very large volume. A state with n*=10, for example,
has an atomic volume more than 10* times larger than a
state with n*=2. This means that phenomena that are
important only at very high densities in transitions be-
tween low-lying states become equally important at rela-
tively low densities in transitions from a very excited
atomic state. Obviously, the condition for the validity of
the impact theory, Eq. (272), is satisfied only for low
densities in such cases, and whenever the interaction per-
turbations are significant, the statistical approach to line
shapes may well be adequate to describe the observations.
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We consider in the following only the case where the
probability of multiple-perturber interactions is very
high. Densities must be sufficiently great for several
perturbers to be simultaneously present within the radiat-
ing atom; in practice, for Rydberg atoms the required
densities are much less than one atmosphere.

Neutral-atom — Rydberg-atom collisions have been re-
viewed recently by Omont (1977), who surveyed shifts
and broadening in the impact approximations. Here we
look, instead, at behavior for higher densities, with con-
sideration of the correlation function in the limit of
small time delay.

The expansion in densities derived by Royer (1971a)
and discussed in Sec. IL.F.3 shows that the profile is sim-
ply related to the probability W (m,h) of finding m and
no more than m perturbers in a volume 7" near the per-
turbed atom. For a perturber density n, W(m,h) is
given by the Poisson distribution for h =n >~

W(m,h)= %h"’exp( —h). (288)
Some of the statistical properties of this distribution
have been described by Chandrasekhar (1943). The
changing form of W(m,h) is shown in Fig. 27. As ex-
pected, the probability of finding one perturber within
7, W(1,h), is maximum when A =1, and greater than
the probabilities of finding two or more perturbers
simultaneously within 2". Generally, the probability
W (m,h) is greatest when h =m. With increasing A there
is a steady movement of the maximum probability to-
ward larger numbers of perturbers within 7.

This changing distribution is reflected in the calculat-
ed profiles discussed in Sec. IL.LE.2. The effect of two or
more perturbers becomes quite significant at higher den-
sities, where the peak of the line profile corresponds to
the most intense satellite, and thereby to the most prob-
able distribution of perturbers. The peak comprising the
line core at low densities, a region usually described by
the impact approximation, disappears completely when
the probability of finding more than one perturber in-
teracting at a time is large. In that case the profile of

PROBABILITY OF m PERTURBERS IN VOLUME V
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FIG. 27. Poisson distribution W(m,h) of the probability of
finding m perturbers in a volume #” such that h=n7".
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the line shifts as its oscillator strength is redistributed
among higher-order satellites, a phenomenon quite dif-
ferent from the shift of the line core in the impact ap-
proximation. When the probability of finding m per-
turbers interacting with the atom is maximum, the corre-
sponding spectrum of m perturbers dominates the profile
and determines the linewidth and shift.

For a qualitative explanation of observed spectra, con-
sider an additive interaction yielding an angular frequen-
cy shift €, localized within a volume 2~ about the radia-
tor. The phenomena may be semiquantitatively
described by saying that the radiation is only at wy when
all perturbers are out of the volume, is wy+€ if one per-
turber is in the volume, and so on. For arbitrary o we
require m =(w—awy)/e perturbers in the volume. The
intensity is then proportional to the probability of find-
ing only this many perturbers in 7"

I o)=W[(o—wy)/e,n 7]

_ (n W)Am/e
—_(Aw/e)! exp(—n27) . (289)
For obvious reasons it is very convenient to define w,,
Wy =n7E+wg (290)

as the line center. Then, with substitutions §=Aw/e
and £,=n2", the intensity is given by
(£0)

&
This is of course discrete, defined only for the integral &,

but for £>>1, the limit of high density, it becomes prac-
tically continuous. Then, since

(&)= exp(—§o) . (291)

El~(2mE)2Eoexp(—£) , (292)
Eq. (291) can also be written
I(E)~(2mEN X Eo/E)5 1 PexplE—E,) . (293)

For large & it is not difficult to show that this expression
is approximately equivalent to

I(E)~(2m&y) exp[ —(E—£0)%/(2E0)] -

This is a Gaussian line profile with a peak at £=§&, or a
shift

(294)

o=n2'e (295)
and a half-width at half maximum intensity
[(21n2)&,]'/? or

y=n'[(2In2)7" 1'% . (296)

While the shift increases linearly as n at high density,
the width of the line grows only as n'/2.

The Gaussian profile in the high-density limit was
predicted for all lines, not just Rydberg series, by Royer
(1980), noting that, at high n, ®(s) must go to zero rap-
idly as s increases in Eq. (54). By expanding g(s) in
time and retaining lowest-order terms we are left with

lirr(x) Re g(s)~s?, (297)
s>
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.‘li_r’l‘(l) Im g(s)~s . (298)
The Fourier transform of such ®(s)=exp[ —ng(s)] is a
Gaussian line, as indicated by Egs. (294)—(296). This
result is not dependent on any particular potential model,
although actual values of widths and shifts are.

It is well known (Omont, 1977) that the impact-limit
shift of a Rydberg line is given by (in angular frequency
units)

tf=n2‘n-Ai ,
m

(299)
where A4 is the scattering length [see Eq. (184)] for the
valence electron on a foreign-gas atom. This result, first
derived by Fermi (1934; see also Massey and Burhop,
1952) without the use of line-broadening theory, explains
the observations of Amaldi and Segré (1934a, 1934b) and
others (Fuchtbauer and Géssler, 1935; Fichtbauer and
Reimers, 1935; Fuichtbauer and Schulz, 1935). It is from
such data that scattering lengths for low-energy electrons
have been extracted (O’Malley, 1963) that compare
favorably with values from other experiments. It is in-
teresting that this shift can also be obtained from the
considerations leading to Eq. (294).
The static approximation to g(s) is, from Eq. (59),

® i

g(s)=4‘n'f0 R?%dR [1—exp —%—V(R)s l, (300)
which, for

g(s)=als)+iB(s) , (301)
yields

als)=4r [” deRll—cos VR) ] (302)
and

2 V(R)
Bls)=4m [~ R%R sin - J (303)

Again we note that, when n is large, since ®(s)—0 for s
not near 0, we can expand a and B as functions of s and
retain just the leading terms:

P 2
als)~ [447 J7 ERAL pogg |52 (304)
B(s)= |4 f0°° —K%&deR s (305)

The shift term, given by the integral in B(s), is easily
evaluated for the Fermi potential of Eq. (174):

7

V(R)=27r7n—A\l/2(R) , (306)

Bs)1~2m g [am [ " WHRIR?R |5 . (307)
m 0
The bracketed term is just unity, yielding

Rev. Mod. Phys., Vol. 54, No. 4, October 1982

B(s)zz‘n'%As (308)

or

(r-—-n277'Ai ,
m

(309)
just the Fermi shift.

Consequently the shift of Rydberg transitions from the
low-density impact regime to the high-density limit fol-
lows the same linear relationship for all members of the
series. The width, evaluated similarly from a(s), is
172

y=n'”2 1/%—’ R%4R| (2m2)\2.

(310)

For V(R) given by the Fermi potential, the half-width at
half maximum of the Gaussian line is
—nl2

14 (311

211-;nh—A ](21112)‘/2(‘1’2)”2 ,

where (W?) is a mean value of the probability density
for finding the valence electron at R. A comparison of
Egs. (310) and (311) with Egs. (295) and (296) demon-
strates that the qualitative volume of interaction »” in
that discussion is actually (W2)~1. Further, the width-
to-shift ratio should depend on the gas density n and the
atomic state, but not on the properties of the foreign-gas
perturbers in this high-density limit.

Experimental profiles with reliable photometric quality
have not been explored systematically for high series
member spectra, but available results are discussed in
Sec. IIL.D.2.b. A recent experiment by Brillet and Gal-
lagher (1980) on rubidium 5s-ns and 5s-nd Doppler-free
spectra for noble-gas perturbers, for example, reports
that profiles from 0.2 to 30 torr were Lorentzian, but de-
tails of the analysis were not given. The shifts were
found to be independent of series member from n =15 to
35, while the broadening decreased by an order of mag-
nitude over the same range. The considerable body of
width, shift, and asymmetry measurements in the litera-
ture (Sec. III.D.3) has been used by Royer (1980) to con-
firm the anticipated dependence on density. His work
also includes the additional possibility of perturber-
perturber correlations at very high density; analyses of
resonance line spectra for pressures as great as 30 atmo-
spheres support the existence of such effects.

. EXPERIMENTS

But the last word belongs, of course, to experiment.
This word, however, seems not yet to have been pro-
nounced.

—Jablonski, 1945

A. Conventional spectroscopy

While the observation of pressure effects on spectral
lines is an old art, dating at least to Michelson’s visual
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measurements of line visibility (Michelson, 1895), the
considerable body of data accumlated prior to the review
of Ch’en and Takeo (1957) was derived from photo-
graphic observations of line shifts, positions of maxima,
and approximate widths. The development of precise
photoelectric photometry and the improvements in grat-
ing spectrometers and interferometers, as well as recent
developments in related electronic technology, have had
a substantial effect on the quality of available data and
on types of observations possible. In this section we pro-
vide a brief overview of the application of these by now
conventional techniques to the study of neutral-atom line
broadening and of new methods and devices that promise
future improvements.

1. Dispersive spectroscopy

As in most cases the width of the spectral lines at low
pressure is so small that it is usually masked by imper-
fections of the spectroscopes employed, this question
must be attacked by interference methods.

—Michelson, 1895

An impact-broadened spectral line core from a typical
light source or absorption cell at pressures less than an
atmosphere is usually less than 1 cm~! full width at half
maximum, with a broadening rate of the order of 103
cm™!Torr~! for noble-gas perturbations of the reso-
nance lines of the alkali metals. Thus, for spectral lines
in the visible and gas pressures of the order of 100 torr,
it is necessary to have an instrumental resolution in ex-
cess of 10° in order to resolve the line profile. Sufficient
resolution can be achieved with large-grating spectrome-
ters or with Fabry-Perot interferometers, and both types
of instrumentation have found wide use. The possibility
of using Fourier-transform spectroscopy (Thorne, 1974),
first introduced by Michelson (1895), which would yield
the spectral correlation function directly, does not seem
to have been considered since his time for broadening
studies in atomic spectra.

Recent developments in grating technology are re-
viewed by Palmer, et al., (1975). In order to achieve a
resolution of 500000, several laboratories have employed
echelle spectrometers with 20 cm or larger gratings,
ruled with approximately 300 groovesmm™'. Since
these instruments operate in high order, e.g., the 10th for
green light, predispersion or prefiltering is also necessary.
While ghost intensity from interferometrically ruled grat-
ings is of the order of 10™% of the line-peak intensity,
parasitic scattered light from unwanted orders can be a
problem, particularly in absorption spectroscopy, where
the scattered-light level may be several percent of the
continuum. An improvement of orders of magnitude in
scattered-light level with some increase in resolution is
possible  with  high-groove-density = holographically
manufactured gratings, particularly since these gratings
operate with high resolution in the first order. Dravins
(1978) has demonstrated how quantitative photometry in
absorption spectroscopy is improved with the use of
these gratings, which should therefore see considerable
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use in the future for observations in the ultraviolet; for
instance, in studies of highly excited states (Kielkopf,
1981a). The improvement in scattered-light level possi-
ble with a large holographic grating is illustrated in the
data from Dravins shown in Fig. 28. Other examples
are shown in Kielkopf (1981b).

Techniques of spectroscopy with large-grating instru-
ments have been discussed by de Sa and McCartan
(1972), Lorenzen and Niemax (1977), and Kielkopf
(1980, 1981b). Current instrumentation in this regard al-
most invariably features some type of scanned detector,
rather than rotation of the grating itself, which often im-
poses problems of stability. Indeed temperature stability
is an important consideration for line-shift measure-
ments, and use of fused silica or Zerodur for new grat-
ing blanks has improved these measurements markedly.
For studies of emission sources the scattered-light prob-
lem of single-grating instruments is overwhelming, be-
cause line-wing features of interest are often of the same
level of intensity as the unwanted background. A solu-
tion employed recently (Ottinger et al., 1975) has been to
use a double monochromator for observations far from
the line center. This allows the measurement of features
as weak as 10~° of the line peak, which is a practical
limit due solely to light flux anyway.

For line-core measurements, the single Fabry-Perot
etalon is often used. An example of its application to
emission spectra is given by Kielkopf and Knollenberg
(1981), and to absorption spectra by Deleage et al.,
(1973). The well-defined instrumental characteristics of
the Fabry-Perot interferometer are a practical advantage
for precise line-core shape measurements (Roesler, 1974;
Lewis, 1980). Improvements in active stabilization
(Ramsey, 1970) and the ease of implementing signal-
averaging techniques for piezoelectrically scanned instru-
ments could yield much-improved line-core shifts and
widths. The rather high off-band leakage of the single
Fabry-Perot can be reduced by triple passing, or by the
use of several interferometers in series (Drummond and
Gallagher, 1973). This type of instrument has been em-
ployed in an extensive set of line-wing measurements
(Sec. IILE) of the fluorescence of alkali resonance lines
perturbed by the noble gases. In this application the
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FIG. 28. Accumulated energy in the instrumental profile for
classically ruled and holographic gratings (Dravins, 1978).
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great luminosity advantage of the Fabry-Perot over a
grating instrument of comparable spectral resolution was
put to practical use (Jacquinot, 1960).

2. New developments in detectors

Just as the introduction of the photomultiplier revolu-
tionized the determination of line profiles in the 1950’s
and has been the experimental basis for most of the new
measurements reported in this article, new developements
in imaging detector technology promise equally impres-
sive gains in the future. These devices have been intro-
duced into very-low-light-level spectroscopy, particularly
for astronomical applications, but their use for studies of
weak far-line-wing fluorescence, rapid absorption spec-
troscopy, and measurements of transient profiles is a na-
tural extension of these early applications. Since a num-
ber of laboratories have such experiments underway, we
give a brief review of the essential information here.

A useful review of digital imaging detectors has been
given by Ford (1979). Digital imaging techniques are di-
vided there into four categories: television camera tubes,
silicon arrays, hybrid systems involving image intensifi-
ers, and digital image tubes. We shall look here at re-
cent applications of devices in these categories to low-
light-level or high-resolution spectroscopy as appropriate
for spectral line profile studies.

Television camera tubes have been commercially avail-
able for spectroscopic applications for a number of years,
and an example of their use is given by Speer et al.,
(1980). Particularly useful, because of their linear
response, are vidicons. These tubes have a photoconduc-
tive target, and the most useful in stability and sensitivi-
ty are silicon vidicons (Hunten, Nelson, and Stump,
1976; McCord and Frankston, 1975), which have a diode
array target. Improved low-light-level sensitivity is ob-
tained with tubes that have internal gain, either SEC vi-
dicons (Chiu, 1977) or SIT vidicons (Weller, Herbst, and
Jeffers, 1977). These devices are not completely satisfac-
tory for spectroscopy because of their physical bulk and
complexity, nonlinearity of response, and sensitivity to
microphonics. The electron-beam readout also results in
adjacency effect, making the determination of a weak
signal near a strong one difficult and introducing an un-
certainty in readout position on the photosensitive target.

Potentially more practical are silicon photodiode ar-
rays, solid-state detectors on a single substrate that are
read out electronically. Two principal advantages for
these devices are the high spatial stability, equivalent to
that of a photographic plate, and the high quantum effi-
ciency, which approaches 100% in some spectral regions.
For spectroscopy the most useful devices are self-scanned
photodiode arrays called “Reticons.” These are now
available with up to 2048 elements, typically 25 ym on a
side in a linear array. Cooled to liquid-nitrogen tempera-
tures, the arrays can be exposed for up to several hours
to accumulate signals and reduce the effect of readout
noise. Since saturation signals are typically of the order
of 107 photons pixel ™!, and readout noise is of the order
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of 10° photons pixel ~!, signal-to-noise ratios in excess of
100:1 have been reported (Vogt, Tull, and Kelton, 1978).
Two gains over the use of photomultipliers are signifi-
cant. The first is the advantage of multiplexity, since up
to 2048 spectral channels can be observed simultaneous-
ly. The second is the higher quantum efficiency, partic-
ularly in the red. Typically a few seconds of exposure
are equivalent to 30 min of scanned observation, as illus-
trated in Fig. 29. Improved sensitivity in the ultraviolet
is achieved by using fluorescent coatings such as
coronene (Blouke et al., (1980). For very-low-light-level
and transient signals, such as would be encountered in
shock-tube experiments, a combination of Reticon and
image intensifier may be useful (Lemaire, 1980). Integral
devices of this sort, known as Digicons (Tull, Choisser,
and Snow, 1975), that may be used for spectroscopy are
now commercially available. Laboratory use of uncooled
Reticons has been reported by Morris and Mcllrath
(1979) and, in line-shape measurements, by Harima, Ta-
chibana and Urano (1980).

Another form of silicon diode array, differing from
the Reticon in the method of charge readout, is the
charge-coupled device or CCD. In these detectors the
charge in each pixel is transferred from pixel to pixel un-
til it reaches a preamplifier on the chip. This allows the
construction of very large arrays, with sizes up to
800 800 elements available. Smaller-area arrays with
128X 128 pixels and a slightly different charge-injection
device (CID) construction have been available in com-
mercial cameras since 1978. Area arrays promise utility
in combination with Fabry-Perot interferometers
(Roesler, 1980) and echelle spectrographs.

As improvements in array detectors rapidly become
commonplace, we can expect applications to low-light-
level line-wing spectroscopy, which would benefit from
the advantage of multiplexity these detectors provide.
Similarly, measurements of small line shifts, limited in
the past by problems of grating rotation or slit scanning,
are now more feasible.

3. Sources for line-shape spectra

Specific sources of atomic spectra have found indivi-
dual applications in studies of neutral-atom line broaden-
ing dependent on the region of the line profile, the exci-
tation of the line, and the pressure and temperature
range required. A comparison of different examples will
illustrate these limitations on experimental line-profile
measurements.

a. Absorption spectroscopy

Except for laser-excited cells, absorption spectroscopy
is used to study transitions with an atomic ground state
for the lowest level. This complements emission spec-
troscopy, which cannot be used for such transitions be-
cause of problems with reversal and self-absorption.
There are practical limitations to absorption spectros-
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copy that are not easy to overcome. If low temperatures
are desired, then a very long path length is required for
weak transitions (Exton, 1976). On the other hand, if
high temperatures are required, then there are problems
with cell wall materials (Collins, Petford, and Blackwell,
1970). The maximum temperature range possible is
from about 300 K (long-path cesium) to 3000 K (carbon
tube furnace with iron) at cell pressures up to one atmo-
sphere. With reactive materials, alkali metals in particu-
lar, there are difficulties with window seals at high tem-
peratures (West, Shuker, and Gallagher, 1978), and with
reactivity with fused silica and glass wall and window
materials as well. Very-high-pressure cell designs have
been reported by Ch’en and Parker (1955) that allow cell
pressures of 10 atm or more, but at temperatures limited
to hot regions only in the center of the cell. The use of
heat-pipe absorption cells for pressure-broadening studies
is not recommended because of the metal —foreign-gas
separation produced by the diffusion of the metal. As a
result there are often problems with condensation on
windows due to nonuniform cell temperatures.

Absorption spectroscopy requires an intense flat-
background continuum. For wavelengths longer than
5000 A the tungsten-iodide lamp is usually employed.
For shorter wavelengths, down to 2000 A, the compact
xenon arc lamp is ideal. With an intense continuum,
high-resolution spectroscopy can still achieve signal-to-
noise ratios in excess of 100:1. These methods have been
used to measure small line asymmetries and deviations
from Lorentzian behavior in the impact region, to make
high-precision determinations of line shifts and widths,
and to observe quantum oscillations and multiple-
perturber effects in line-wing spectra (McCartan and
Farr, 1976; Spielfiedel et al., 1979; Kielkopf and Allard,
1980; Kielkopf, 1980; Chen and Phelps, 1973; Lorenzen
and Niemax, 1977).

b. Emission spectroscopy

Although electrical discharges introduce the additional
problem of broadening by electrons and ions and of self-
reversal and self-absorption of resonance lines, for stud-
ies of excited states they can be particularly useful.
Gwinn, Thomas, and Kielkopf (1968) have used elec-
trodeless microwave sources to survey the appearance of
satellites on cesium lines, and Tam and Moe (1976) have
made similar emission observations of excimer transi-
tions s-s and s-d in potassium— and sodium —noble-gas
spectra. High-current, high-gas-density discharges also
have been used by Schuhmann, Wildman, and Gallagher
(1980) for measurements of MgXe excimers. The tech-
nique appears particularly appropriate for studies of
high-gain laser transitions. Precise measurements of
line-core shift and width on excited states have been
made on specially designed alkali lamps in potassium —
and sodium —noble-gas broadening (Kielkopf and Knol-
lenberg, 1975; Kielkopf and Knollenberg, 1981). Even
hollow cathode discharges, which operate only at low
pressures, have been used to look for temperature depen-
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dence of satellite profiles (McCartan, Farr, and Hind-
marsh, 1974).

c. Fluorescence spectroscopy

The advantage of fluorescence is that the source is free
of significant electron broadening and that the conditions
can be controlled and measured exactly, so that profiles
can be normalized with precision. This is clearly illus-
trated in the measurements by Niemax (1980) of three-
body effects in cesium spectra. Further, it is often possi-
ble to identify particular far wings with the state excited,
without the disturbing influence of unwanted overlap-
ping radiation that would appear in a typical electrical
discharge. With resonance lamp excitation Gallagher
and co-workers (Sec. IIL.E) have studied far wings of al-
kali resonance lines broadened by noble gases. In con-
ventional use of fluorescence, only transitions directly
connected to the ground state can be studied this way.
Stepwise or multiphoton excitation with lasers is possible
for other transitions.

d. Shock-tube spectroscopy

Laboratory absorption and fluorescence sources are
limited significantly in temperature because of materials
problems. For many theoretical comparisons, one tem-
perature is as good as another, and this is not a serious
obstacle, but for the determination of line-broadening
rates for use in stellar atmosphere models, studies with
temperatures of the order of 5000 K or higher are
desired. Such extreme conditions are necessary both to
duplicate stellar atmosphere temperatures and to insure
dissociation of molecular hydrogen for the determination
of broadening by atomic hydrogen. These problems are
by no means unambiguously solved, but some recent re-
sults have been reported on shock-tube experiments that
reached densities of the order of 10?° atomscm 3 at tem-
peratures of 5000 — 10000 K in compressed-gas shocks.
Diagnostic problems remain in such devices, for the gas
temperature, pressure, and degree of dissociation must be
measured for each shock cycle, and the entire transient
profile must also be recorded. In spite of these difficul-
ties, devices of this sort are the only way now available
to simulate the conditions of stellar atmospheres in the
laboratory (Baird, Eckart, and Sandeman, 1979; Burgess
and Grindlay, 1970).

B. Laser spectroscopy and neutral collision broadening

In classical spectroscopy the use of large high-
resolution gratings, scanning multietalon Fabry-Perot in-
terferometers, improved absorption cells and emission
sources, and new families of detectors have led to stimu-
lating new measurements of collisional effects. On the
other hand, recent developments in the use of tunable
lasers have made possible both improved experimental
precision and the acquisition of information unobtainable
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by other methods. The basic techniques of high-
resolution laser spectroscopy have been reviewed recently
(Demtroder, 1973, 1981), and here we survey only their
application to line-shape problems.

The tuned nature of laser excitation is a powerful tool
for fluorescence studies; observations of time-resolved
near-line-wing fluorescence have been reported by Kiel-
kopf (1975a) and by Marek and Niemax (1976a, 1976b)
for cesium spectra perturbed by xenon. In these results,
which describe observations of radiation from excited p
states also accessible by conventional absorption spectros-
copy, the new information gained concerns primarily ex-
citation transfer processes in foreign-gas collisions.
West, Shuker, and Gallagher (1978) have used cw laser
excitation of pressure-shifted sodium resonance lines to
study the fluorescence spectrum of far-wing profiles at
densities in excess of 10 cm~3 In previous experi-
ments with Na fluorescence (York, Scheps, and Gal-
lagher, 1975) resonance lamp excitation was used, but at
high noble-gas pressures the absorption profiles of the
sodium D lines shifted compared to spectral lines of the
unperturbed resonance lamp. Tunable-laser techniques
can also be applied to higher states, and still develop
measurable signals. Marek and Niemax (1976a, 1976b)
and Niemax (1980) have observed spectra from states up
to 9p in cesium and from other nearby states that are
collisionally populated by excitation transfer. This offers
the possibility of studying near-wing and line-core
broadening in transitions from excited states that do not
connect directly with the ground state. The series of ns
states in cesium are populated by collisional transfer
from nearby np levels, and the 6p-ns transitions are ob-
servable in fluorescence, as are 6s-ns collision-induced
bands. The latter features were found to correspond to
electrical discharge emission studies of Tam and Moe
(1976) and laser fluorescence studies of Happer, Moe,
and Tam (1975). Of course multiphoton ionization pro-
cesses take hold rapidly for incident radiation with pho-
ton energy greater than half the ionization potential, so
that to obtain high-intensity fluorescence signals from
excited states not perturbed by ionization in the cell re-
quires control of incident laser intensity and stepwise ex-
citation. Sayer, Ferray, and Lozingot (1979) have ob-
served absorption spectra of Cs—noble-gas 6s-7s transi-
tions by tuning the laser through the transition and
detecting the infrared 6s-6p fluorescence resulting from
cascade decay. This method yields highly sensitive
detection of otherwise very weak effects. Webster and
Rostas (1978) and Delhoume et al., (1981) have studied
K —noble-gas 4s-5p line profiles both by observing the
spectrum of the fluorescence when the unperturbed lines
are pumped, and by observing the total fluorescence as
the laser is scanned through the profile. An example of
their observations for broadening by neon is shown in
Fig. 30.

A study of the sodium D-line cores broadened by no-
ble gases with laser fluorescence techniques has been
made by Chatham, Gallagher, and Lewis (1980). In
their investigation the line wings were measured by ob-
serving the total fluorescence from a cell with

Rev. Mod. Phys., Vol. 54, No. 4, October 1982

K (5s-5p)-Ne

INTENSITY

el

1 1
4020 4030 4040 4050 4060 4070
WAVELENGTH (A)

FIG. 30. Blue satellite on the K (5s-5p) transition perturbed

. by Ne at 700 torr and 508 K from Delhoume et al. (1981).

The feature is particularly interesting because it is predicted by
model potential calculations.

sodium —rare-gas mixtures as a dye laser was tuned
across the line profile. The method gave high signal-to-
noise ratio and linewidths with uncertainties of the order
of 2%. Corrections were necessary to compensate for
the attenuation of the laser in the line centers that were
not optically thin, and although the results compared
reasonably well with high-precision conventional absorp-
tion spectroscopy (Kielkopf, 1980), remaining discrepan-
cies exceeded the expected errors.

Doppler-free two-photon spectroscopy (Grynberg and
Cagnac, 1977) of the broadening of the Balmer-alpha
line by helium (Weber, 1979, 1981) has been used to
avoid the large thermal broadening in atomic hydrogen
spectra. The shift and broadening of individual fine-
structure transitions were measured in the very-low-
density range from 4% 10'° to 4X10'® atomscm ™3, and
the effect of inelastic fine-structure transfer collisions
could be seen in exceptionally large linewidths and shifts
of anomalous sign. Similar effects on the sodium D lines
have also recently been reported (Weber and Jungman,
1981).

The broadening and shift of ns and nd high Rydberg
states can also be measured by Doppler-free two-photon
spectroscopy in alkali metals; results on self-broadening
in Rb s-s transitions have been reported by Stoicheff and
Weinberger (1980). In their method the excited atom,
ionized in an axial electric field, neutralizes the space
charge in the detector and changes bias current to yield a
measurement. Reported results cover the density range
of 1x10"™ to 4X10'° atomscm™3, and measurements
beyond n =120 are given. As shown in Fig. 31, there is
a striking oscillation along the series that may mark the
influence of the detection process on the apparent widths
of the lines. Brillet and Gallagher (1980) have measured
broadening in Rydberg states of Rb caused by noble
gases by detecting the fluorescence after two-photon
Doppler-free excitation of Ss-ns and Ss-nd transitions.
Related experiments on lower-lying states are described
by Biraben et al. (1977).
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FIG. 31. Width of the Rb (5s-ns) transitions perturbed by
unexcited Rb at 0.060 torr, observed with Doppler-free two-
photon spectroscopy by Stoicheff and Weinberger (1980).

Trilevel echos provide another detection method for
the observation of broadening of excited ns and nd states
in alkalies. Flusberg et al., (1979) and Mossberg, Ka-
chru, and Hartmann (1981) report the broadening of d
states up to n =34 for foreign-gas pressures less than
4% 10'% atomscm™3. The technique effectively deter-
mines the correlation function for a macroscopic oscillat-
ing electric dipole moment in the sample through the ap-
pearance of a delayed coherent emission from an inter-
mediate state, in this case the 3s-3p resonance transition.
The intensity of this echo depends on the delay between
the initial two-step excitation pulses and an excitation
transfer pulse, and is directly a measure of the correla-
tion function in the sample. At low densities the
Lorentzian linewidths can be determined from the depen-
dence of the correlation function on time delay. Col-
lisional cross sections derived for broadening by argon
are illustrated in Fig. 32.

New techniques available through laser spectroscopy
thus correlate well with improvements in conventional
methods. Laser spectroscopy alone provides access to
the impact cores of excited ns and nd alkali states and to
Doppler-free impact broadening in atomic hydrogen. On
the other hand, it also provides a very efficient excitation
mechanism for studies of regions outside the impact pro-
file through tuned-laser absorption spectroscopy, with
detection of the fluorescence of excited atom —foreign-
gas mixtures. In this context, the radiative redistribution
experiments discussed in Sec. III.G are unique to laser
spectroscopy. In many respects, continued interest in
line-shape phenomena stems from this vital new technol-

ogy.
C. Deconvolution

To extract the effect of atomic collisions on spectral
lines from the observed spectra it is necessary to remove

the instrumental effects and any other causes of line
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FIG. 32. Collision cross sections for transitions from the Na
3s2S,,, state to ns2S,,, (+) and to nd?D;,,(®) perturbed by
noble gases, as determined with the trilevel echo technique
(Flusberg et al., 1979).

broadening from the measurements. In some cases, as a
practical matter, no corrections are necessary. This oc-
curs, for instance, if line wings are observed with an in-
strument of spectral passband so narrow that no appreci-
able change in wing strength occurs within the passband.
Even then, however, the extremely weak far wing of the
instrument, say 1075 of peak response for a typical
high-quality spectrometer, or even higher off-peak broad-
band fluorescence in tuned dye lasers, may overlap the
line peak and produce a signal just as strong as the line
wing being observed. The problem is most severe for
far-wing fluorescence observations, whether conventional
or with tuned lasers, and least significant for absorption
spectroscopy.

Corrections for instrumental response and Doppler
broadening are almost always necessary in measurements
of impact broadening and of small deviations from
Lorentzian profiles in the near line wing. Unless very-
narrow-band lasers are used in Doppler-free experiments,
the corrections can be a large fraction of the observed
linewidth, and it is not surprising that accurate results
depend sensitively on how the deconvolution is per-
formed. Here we consider techniques recently developed
for deconvolution, for the evaluation of Voigt profiles
and instrumental response of interferometers, and for the
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detection of small asymmetries and the removal of in-
herent instrumental asymmetry. Needless to say, these
methods have evolved significantly since the review of
Ch’en and Takeo (1957), when the only technique avail-
able required the comparison of measured strip-chart
records with tabulated profiles.

1. Methods of deconvolution

Suppose that the true profile is given by the function
f"(x), and the apparatus function is f'(x). Then the ob-
served distribution is given by the convolution

+ oo
fe= [T =y,

as all spectral elements in the true profile contribute to
any observed frequency with a weight given by the in-
strumental response. If we presume that the instrumen-
tal response is known, and this may not always be true,
then the problem is to determine the true distribution f’
from the apparent distribution f by solution of the in-
tegral equation.

General methods of solution have been discussed by
Jansson (1970), who studied iterative techniques, while
other authors have utilized the equivalence of this in-
tegral to the product of infinite-order square and column
matrices to seek solutions by matrix inversion (Herget
et al., 1962). The basic problem with these approaches is
the effect of errors in the experimental curve, because
such errors, if real, imply unresolved detail in the true
profile. Thus all deconvolution methods are basically
unstable and can lead to unreasonable errors in the
deduction of the true profile if some limits are not im-
posed in the deconvolution process. Deconvolution error
has been discussed by Jones and Misell (1970), who point
out that all methods in use involve some degree of ap-
proximation, not the least of which is that the experi-
ment can never determine the entire observed profile, but
only a section of it. In any case, the limiting factor in
general deconvolution is noise in the observed spectra
(Lorre, 1973).

One way to overcome these limitations is to presume
some form for the functions f, f’, and f", or their
Fourier transforms. For instance, Ottinger et al. (1975),
in observations of rubidium resonance line impact
broadening, assumed that the true profile f”’ was a
Lorentzian of unknown width. The instrumental profile
f' was taken from the observation of a Doppler-
broadened, but not collision-broadened, line of nearby
wavelength. Then the convolution calculated with Eq.
(312) was compared to the observed profile to select a
best value for the Lorentzian width. An advantage of
this technique is that is provides an immediate indication
of non-Lorentzian behavior in the impact core, although
it cannot provide a quantitative deconvoluted profile.

The most commonly used solution is to assume that
the functions f have Fourier transforms proportional to
(Unsdld, 1968)

(312)

d()=exp[ —(ag+ait +ast>+ - -+ )], (313)
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which means that they are themselves convolutions of
Gaussian and Lorentzian lines

1
fg(x)=mexp[—<x/a2)2] (314)
and
a1/1r
fl(x): 2+a2 » (315)
such that
+ o0
f@= [ filx —p)fgdy (316)

defines the instrumental, source, and observed profiles.
This convolution of Gaussian and Lorentzian functions
is known as a Voigt profile. If the parameters of the
Voigt profile describing the lines can be determined, then
convolution is achieved simply by multiplying the
Fourier transforms; that is, by adding the coefficients in
the exponent of Eq. (313):

(317)
(318)

a =a ’1 +ail ’
=ar’+ay?.

Although the method is restricted to symmetric instru-
mental functions and true profiles that are Doppler-
broadened Lorentzians, it provides a direct technique for
the determination of linewidths. In current use the actu-
al fitting of the Voigt function to the observed and in-
strumental profiles is achieved through least-squares
iterative procedures (Bevington, 1969) for which standard
programs are available. The possibility of fitting the
Fourier transform has also been considered by Ivanov
and Fishman (1973).

2. Calculation of the Voigt function

There has been considerable work in recent years on
the development of fast and accurate methods for com-
puting or approximating Voigt functions. Mathematical
properties of the function have been reviewed by
Armstrong (1967). Methods of computing the function
to accuracies exceeding one part in 10* are given there
and in several recent papers that are concerned particu-
larly with the problem of computational speed (Reichel,
1968; Drayson, 1976; Pierluissi, Vanderwood, and
Gomez, 1977; Hui, Armstrong, and Wray, 1978). All of
these papers report useful FORTRAN computer programs.

Several rapid approximative procedures have also been
proposed. Simple rational approximations that can be
implemented with limited computing power have been
given by Whiting (1968) and Kielkopf (1973). In the
latter, the Voigt function is represented by the sum of a
Gaussian and a Lorentzian function plus a correction
term. An accuracy of seven significant figures is
achieved for lines which deviate only slightly from pure
Gaussian or Lorentzian, and for intermediate values the
approximation is good to three figures within a few
half-widths of the line center (Hui, Armstrong, and
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Wray, 1978). Hui also gives a method of rapid computa-
tion that achieves accuracies of the order of ten signifi-
cant figures, with computation times as short as 10
msec, on an IBM S370/145. In any case, it is necessary
to have a rapidly computed function in order to proceed
with iterative, nonlinear, least-squares fitting. The avail-
ability of suitable codes for Voigt-function generation no
longer seems to be a problem.

3. Deconvolution of Fabry-Perot response

The response of a Fabry-Perot interferometer to a sin-
gle spectral line is a more difficult matter than the
evaluation of the convolution Eq. (316) with Voigt func-
tions. The complexity of the problem is increased by the
periodic apparatus response, which means that the in-
strument samples many frequencies in the line wing
simultaneously. Solutions for the convolution in this
case have been given graphically by Ballik (1966) and
Day (1970), and in tabular form by Hernandez (1966,
1970). More general solutions in terms of Fourier series
have been given by Larson and Andrew (1967) for a
multiple-etalon Fabry-Perot, and by Kielkopf (1979) for
the response to asymmetric lines.

4. Deconvolution of asymmetry

The general class of correlation functions

o(t)=exp{ —[a(t)+iB1®)]} , (319
alt)=ag+at +at’+ -+, (320)
B(t)=Bo+Bit +Bt>+ - - - (321)

includes Voigt profiles (ag=B,=,=0), the asymmetric
lines of impact line-broadening theory (8,=0), and the
general pressure-broadened line profiles of Eq. (99). The
intensity of the spectral line is given by the Fourier
transform

1 +
IHw)==— [~ ¢nexpliotdr . (322)
27 Y -

The ideal interferometer has the infinitely sharp but
periodic response

Fw= S Hot+mo) (323)

m=—o
for a free spectral range o. The function has the Fourier
series representation with ¢,, =27m /o (Kielkopf, 1979)

Flo)=0=%) 2
g

i exp[ —al(t,,)]

m=1
X cos[wt,,, —B(t,,)]

(324)

that can be rapidly evaluated numerically.
This function can be adapted to least-squares deconvo-
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lution in two ways. One is to assume that the instru-
mental response is given by a set of innate a@ and B
parameters. This is a good assumption for a Fabry-
Perot, since the reflectivity of the plates determines the
Lorentzian width of the profile, the plate defects deter-
mine the Gaussian width (Hernandez, 1966), and the ef-
fect of the scanning aperture can be approximated ade-
quately by additional Gaussian terms. This procedure is
also adequate for the representation of spectrometer
response by assuming that o is much larger than the
spectral region of interest. A second more general
method is to represent the instrumental response by a set
of empirically determined Fourier coefficients (Larson
and Andrew, 1967), a procedure useful for multiple-
etalon systems. In either case the actual evaluation of
the series is possible with fast Fourier-transform
methods (Cooley and Tukey, 1965; Brigham, 1974). An
example of the use of this function in line fitting is
shown in Fig. 33.

5. Problems concerning the cqrrelation of Doppler
and collision broadening

The motion of the radiator alters the spectrum we ob-
serve through the Doppler effect, but it also determines
the relative perturber-radiator velocity distribution, and
through that the collision broadening. Consequently,
Doppler and collisional effects on spectral lines are not
independent. Yet, the removal of thermal Doppler
broadening from an experimental observation of collision
broadening by deconvolution methods depends on the as-

0.35
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FIG. 33. The sodium (3s2S,,,-3p 2P, ;) line perturbed by
6.4%10'"® atomscm—> of xenon at 445 K and fitted with the
profile of Eq. (301), including the superposition of the two hy-
perfine components of the line. The bisector indicated by the
dashed line illustrates the inherent asymmetry of the line.
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sumption that collision broadening and Doppler broaden-
ing are not correlated. How significant is this correla-
tion, and how would it be manifested in an observable
spectrum?

Combined Doppler and collision broadening have been
investigated theoretically in many papers (Dicke, 1953;
Gersten and Foley, 1968; Berman, 1975; Ward, Cooper,
and Smith, 1974; Czuchaj, 1976) and experimentally for
alkali —noble-gas spectra in at least one instance (McCar-
tan and Lwin, 1977). The conclusion of all these studies
is qualitatively that, when the collisional mean-free path
and the wavelength of the radiation are of the same or-
der, the combined effect may be a purely Lorentzian pro-
file, and that under some circumstances the combined
linewidth may actually decrease with increasing pressure,
as the Doppler shift from one phase in the radiator cycle
is cancelled by the shift from another phase (Hindmarsh
and Farr, 1972).

The work of Ward, Cooper, and Smith (1974) is a
study of the impact core for the case of interaction in
only one level of the radiating system, within the context
of the Baranger (1958a) theory. The problem centers on
the calculation of the velocity average and the Doppler
shift simultaneously. With the equations we have used
before,

P(s)=(exp[ —i&(s)]) ,
L(s)=n(s)+x[R(s)—R(0)],

(325)
(326)

the usual phase shift 7(s) has been augmented with a
correction for the translation of the radiator that will
generate a Doppler shift in the nonrelativistic limit. The
average for ®(s) is evaluated with Poisson statistics, and
in the one-interacting-level approximation, the correla-
tion function is

D(s)= f d3v f(v)exp( —ik-vs)

Xexp{—[T'(v)+iAW)]} , (3.27)

where f(v) is a Maxwellian velocity distribution. I'(v)
and A(v) are the speed-dependent width and shift func-
tions. Consequently, Doppler broadening and pressure
broadening are not independent processes.

The Fourier transform of this correlation function is a
spectrum that is the average over a Maxwellian velocity
distribution of a Doppler-shifted pressure-broadened pro-
file. These functions are also described by Berman
(1975) as speed-dependent Voigt profiles. For power-law
potentials it is possible to do an evaluation of the speed-
dependent width and shift. The results are those given
by Egs. (271) and (272), but must be averaged over a
shifted Maxwellian, a calculation that is done numerical-
ly. In Fig. 34 we show two results from the paper of
Ward, Cooper, and Smith (1974) that illustrate how the
speed-dependent profiles depart from Voigt behavior.
The critical parameter is the ratio of perturber to emitter
mass, and when this value is large the Doppler Gaussian
component disappears completely, resulting in a Doppler
narrowing of the line at the appropriate pressure.

For a perturber-emitter mass ratio of 1.0, the reduc-
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FIG. 34. (a) An observation of the apparent reduction of the
Gaussian linewidth with increasing xenon density in the
broadening of the lithium (2s-2p) transition reported by
McCartan and Lwin (1977). (b) The predicted Doppler width
dependence as a function of collisional linewidth I" (for a Voigt
parameter @ =0.05) calculated by Ward, Cooper, and Smith
(1974). When the perturber is more massive than the emitter,
the apparent Doppler width decreases with increasing collision
broadening.

tion of the Gaussian component of a Voigt analysis is
about 10% in the region beyond the half-width of the
line; given typical measurement errors of the same order,
this is not a very large effect. The phenomenon has been
observed in lithium perturbed by xenon by McCartan
and Lwin (1977). They recorded the "Li resonance line
for a temperature of the order of 600 K and gas densities
less than 3% 10'® atomscm™3. Under these conditions
they could resolve the fine structure of the line and fit
the profile with a Voigt function. When helium was
used as the perturbing gas they found an excellent fit,
but when xenon was used the Gaussian component de-
duced from the fitting was dependent on pressure, de-
creasing with increasing pressure exactly as predicted.

In addition to these effects there should also be an
asymmetry of the line that comes about because, in the
Maxwellian average of the profile, the line shift is veloci-
ty dependent. The asymmetry will be small and will
correlate with the size of the shift. While asymmetries
have been observed in collision-broadened lines (Sec.
III.D.1.b), they have been attributed to the intrinsic
asymmetry of the impact line core, rather than to this
smaller velocity effect.

D. Line cores

Many experimental results are inconsistent even with
the linear dependence of half-width on density obtained
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by the phase-shift approximation. This discrepancy

seems to be more prominent at higher densities, where

multiple interactions may dominate binary ones.
—Ch’en and Takeo, 1957

For the purposes of summarizing and discussing the
body of recent experimental results, we divide available
measurements into two broad categories: line cores, the
region near the maximum in the line intensity, and line
wings, the regions removed from this maximum. Al-
though this division is somewhat artificial, it does allow
us to separate wing observations, conventionally inter-
preted with unified line-shape theories and with the sta-
tistical theory, from low-pressure line-center measure-
ments that are interpreted with the impact theory. But
we also include in this category of line cores the line-
center observations at high density that obviously cannot
be interpreted with impact theories, and recent deter-
minations of deviations of low-pressure profiles from the
expected Lorentzian form.

1. Observations for low foreign-gas density

a. Shift and width

This general subject is summarized in Lewis’ review of
impact broadening (Lewis, 1980). In Table V we list the
measurements of line half-widths and shifts known to us
without restriction on the combination of radiating atom
and foreign gas. The data given are selected from litera-
ture searches based on Lewis (1980) and on Fuhr, Wiese,
and Roszman (1972, 1973, 1975, and 1978) and recent
abstracting journals. For compactness, some restrictions
have been made, however. Only data for states with ef-
fective principal quantum numbers less than five are in-
cluded; only data of high photometric precision are in-
cluded, that is, no photographic measurements are listed;
only measurements for which instrumental effects and
other possible sources of broadening have been subtract-
ed are given. The table differs from Table 6.2 of Lewis
(1980) in that it includes transitions other than the reso-
nance lines, and perturbers other than noble gases, and
that it does not include calculated values.

With few exceptions the data presented are for alkali
and alkaline-earth transitions to the first few excited
states perturbed by noble gases. Only very few values
are known for transitions other than the resonance lines.
Values for line broadening due to relatively inert molecu-
lar gases such as N, and CO,, and for the astrophysical-
ly crucial atomic H and H, are rare. Almost all experi-
ments are restricted to temperatures less than 1000 K for
the reasons discussed in Sec. IILA.

b. Observations of line asymmetries at low density

As we have seen in Secs. IL.B and ILF.5, predictions
of an asymmetrizing dispersion component in the impact
line core can be made on the basis of simple arguments
about the correlation function, and must appear when
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the duration of atomic collisions is allowed for. Quanti-
tative methods of calculation have been presented by
Kielkopf (1976a) and by Szudy and Baylis (1977).

The first indication that such effects were experimen-
tally observable was seen by McCartan (1972) in the ab-
sorption and emission spectra of the potassium 4s-4p
doublet perturbed by argon and krypton. He reported
that the red wing was more intense than it should be if
the line core were a symmetric Lorentzian. Qualitative
estimates of the asymmetry in broadening of calcium
and cesium lines were given by Smith (1972, 1975), but
the exact shape of the asymmetry was not determined
because it was such a small effect (an increase in intensi-
ty of a few percent over the Lorentzian extrapolation)
and was influenced by instrumental asymmetries as well.

A quantitative determination of the nature and magni-
tude of these effects is dependent on fitting the observed
profiles with the expected form, and searching for evi-
dence that the inclusion of a dispersion-type asymmetry
reduces X? in the fit to the data. This has now been
done for the cesium 6s-7p and 6s-8p transitions perturbed
by xenon (Kielkopf and Allard, 1980) and the sodium
3s-3p transitions perturbed by He, Ne, Ar, Kr, and Xe
(Kielkopf, 1980; Walkup, Spielfiedel, and Pritchard,
1980). The most precise determination of the asymmetry
yet is the laser-fluorescence measurement by Walkup
et al., for which there are no significant instrumental
corrections, and for which estimated errors are less than
10%. A tabulation for the Na D lines is given in Table
VL

Clearly impact-broadened lines are asymmetric, and
the amount of asymmetry depends in some detail on the
interatomic potential. Asymmetries calculated with the
methods of Szudy and Baylis (1977) and Kielkopf
(1976a) are in agreement with each other and with the
observations for sodium (Walkup, Spielfiedel, and
Pritchard, 1980).

c. High series members

Until, recently, the broadening of high Rydberg states
has been measured under conditions of such high density
(Sec. II1.D.3) that the effect of overlapping multiple col-
lisions of the excited atom and perturbers is significant.
This occurs because of the extremely large size of such
excited atoms, as noted in Sec. IL.LF.7. These conditions
raise questions about the validity of line-broadening
theories intended, for instance, to explain impact
broadening of the resonance lines.

We have seen that recent Doppler-free laser experi-
ments by Stoicheff and Weinberger (1980), Flusberg
et al. (1979), and Brillet and Gallagher (1980) are yield-
ing data for highly excited states at low gas density (see
Figs. 31 and 32). The ionization or photon echo detec-
tion schemes involve processes in addition to the interac-
tion of radiation and collisionally perturbed atoms, al-
though Stoicheff’s ionization detection does provide a
direct measure of line profile and shift. Low-density
data represents only a small part of the overall behavior
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TABLE V. Observations of line cores at low densities.

Half-width Shift Temperature
y/n o/n
Transition Perturber (10 cm~'/cm~—?) (K) Reference
H (2p-3d) He 24 +0.5 0.12 +0.05 800 Kielkopf (1975b)
Ne 29 +0.6 —0.07 +0.50 800
Ar 56 +1.1 —2.70 +0.80 800
Li (2s-2p) He 1.1 +0.6 —0.08 +0.04 400 Gallagher (1975)
0.92 +0.05 0.00 +0.002 520 Smith and Collins (1976)
1.01 0.03 600 Lwin et al. (1977)
Ne 0.76 +0.04 —0.30 +0.06 400 Gallagher (1975)
0.80 —0.10 600 Lwin et al. (1977)
Ar 1.19 +0.62 —0.72 +0.08 400 Gallagher (1975)
1.10 —0.38 600 Lwin et al. (1977)
Kr 1.47 +0.08 —0.82 +0.08 400 Gallagher (1975)
1.45 —0.35 600 Lwin et al. (1977)
Xe 1.66 +0.08 —1.06 +0.12 : 400 Gallagher (1975)
1.65 —0.36 600 Lwin et al. (1977)
Na (35 2S,,,-3p 2P, 2) He 0.81 +0.05 0.00 +0.03 450 Deleage et al. (1973)
1.01 +0.05 0.00 +0.03 475 McCartan and Farr (1976)
0.94 +0.02 450 Chatham et al. (1980)
1.02 +0.01 0.16 +0.05 450 Kielkopf (1980)
Ne 0.60 +0.05 —0.33 +0.02 475 McCartan and Farr (1976)
0.74 +0.01 450 Chatham et al. (1980)
0.506+0.013 —0.267+0.023 450 Kielkopf (1980)
Ar 1.47 +0.10 —0.75 +0.02 475 McCartan and Farr (1976)
1.47 +0.01 450 Chatham et al. (1980)
1.29 +0.01 —0.603+0.040 450 Kielkopf (1980)
Kr 1.28 +0.02 450 Chatham et al. (1980)
1.44 +0.04 —0.625+0.031 450 Kielkopf (1980)
Xe 1.40 +0.11 —0.585+0.04 475 McCartan and Farr (1976)
1.55 +0.03 450 Chatham et al. (1980)
1.58 +0.07 —0.542+0.036 450 Kielkopf (1980)
Na (35 2S,,,-3p %P3 ) H 4.41 8100 Baird et al. (1979)
4.69 9800 Baird et al. (1979)
He 8.3 4000 Burgess and Grindlay (1970)
0.859+0.027 0.0 +0.027 450 Deleage et al. (1973)
1.16 +0.10 —0.037+0.035 475 McCartan and Farr (1976)
1.30 +0.52 7500 Baur and Cooper (1977)
2.22 5000 Baird et al. (1979)
5.50 10400 Baird et al. (1979)
1.14 +0.01 450 Chatham et al. (1980)
1.06 +0.02 0.059+0.045 450 Kielkopf (1980)
Ne 0.765+0.05 —0.34 +0.015 475 McCartan and Farr (1976)
3.05 9100 Baird et al. (1979)
2.53 10500 Baird et al. (1979)
0.671+0.016 450 Chatham et al. (1980)
0.565+0.092 —0.376+0.023 450 Kielkopf (1980)
Ar 1.20 +0.1 —0.805+0.04 475 McCartan and Farr (1976)
1.12 +0.03 450 Chatham et al. (1980)
1.18 +0.03 —0.698+0.064 450 Kielkopf (1980)
Kr 1.25 +0.03 450 Chatham et al. (1980)
1.33 +0.02 —0.698+0.018 450 Kielkopf (1980)
Xe 1.23 +0.12 —0.746+0.04 475 McCartan and Farr (1976)
1.31 +0.03 450 Chatham et al. (1980)
1.52 +0.05 —0.604+0.019 450 Kielkopf (1980)
Na (3s-4d) He 4.08 +0.48 0.90 +0.2 563 Biraben et al. (1977)
Ne 2.3 +0.16 —0.64 +0.11 563 Biraben et al. (1977)
Ar 5.1 +0.53 —3.1 +0.42 563 Biraben et al. (1977)
Kr 5.0 +0.69 —2.7 +0.16 563 Biraben et al. (1977)
Xe 5.1 +0.42 —32 +0.16 563 Biraben et al. (1977)
Na (3s-5s) He 7.27 +0.32 3.3 +0.48 563 Biraben et al. (1977)
Ne 2.8 +0.21 1.3 +0.21 563 Biraben et al. (1977)
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Half-width Shift Temperature
v/n o/n
Transition Perturber (107 cm~!/cm—3) (K) Reference
Ar 5.73 +0.42 —3.6 +0.32 563 Biraben et al. (1977)
Kr 5.1 +0.37 —2.6 +0.37 563 Biraben et al. (1977)
Xe 5.73 +0.58 —3.1 +0.21 563 Biraben et al.(1977)
Na (3p 2P, ,,-4d *D; ;) He 3.6 +0.2 04 +0.3 500 Kielkopf and Knollenberg (1975)
Ne 1.9 +0.2 —1.8 +0.2 500 Kielkopf and Knollenberg (1975)
Ar 43 0.3 —2.6 +0.3 500 Kielkopf and Knollenberg (1975)
Kr 46 +0.5 —3.0 +0.4 500 Kielkopf and Knollenberg (1975)
Xe 6.1 +0.6 —3.8 +0.3 500 Kielkopf and Knollenberg (1975)
Si (4s *P,-3p 1Sp) Ar 3.33 +0.35 —3.56 +0.95 6000 Evans and Cooper (1972)
Si (5p 'D,-4s'P;) Ar 6.65 +1.78 6000 Evans and Cooper (1972)
K (4s2S,,,-4p 2P, ») He 0.822+0.016 0.24 +0.02 410 Lwin and McCartan (1978)
Ne 0.45 +0.01 —0.22 +0.01 410 Lwin and McCartan (1978)
Ar 1.30 +0.02 —1.23 +0.03 410 Lwin and McCartan (1978)
Kr 1.23 +0.03 —0.875+0.546 410 Lwin and McCartan (1978)
Xe 1.47 +0.02 —0.950+0.032 410 Lwin and McCartan (1978)
N, 1.30 +0.02 —0.971+0.021 410 Lwin and McCartan (1978)
K (4s2S,,,-4p 2P3 ;) He 1.09 +0.02 0.13 +0.02 410 Lwin and McCartan (1978)
Ne 0.615+0.01 —0.33 +0.01 410 Lwin and McCartan (1978)
Ar 1.05 +0.02 —0.806+0.021 410 Lwin and McCartan (1978)
Kr 1.23 +0.03 —0.615+0.021 410 Lwin and McCartan (1978)
Xe 1.46 +0.02 —0.950+0.032 410 Lwin and McCartan (1978)
N, 1.30 +0.02 —0.700+40.021 410 Lwin and McCartan (1978)
K (45 S, ,,-5p Py 3) He 1.91 +0.21 0.74 +0.27 450 Spielfiedel et al. (1979)
Ne 0.80 +0.27 0.0 +0.5 450 Spielfiedel et al. (1979)
Ar 3.61 +0.32 —2.0 +0.05 450 Spielfiedel et al. (1979)
Kr 3.3 +0.1 —1.97 +0.05 474 McCartan and Hindmarsh (1969)
Xe 3.3 +0.3 450 Spielfiedel et al. (1979)
K (452S,,,-5p *P32) He 27 +0.3 1.06 +0.27 450 Spielfiedel et al. (1979)
Ne 1.3 +0.1 0.0 +0.5 450 Spielfiedel et al. (1979)
Ar 3.2 +0.3 —24 4+0.1 450 Spielfiedel et al. (1979)
Xe 3.7 +0.3 450 Spielfiedel et al. (1979)
K (4p 2P, -5 %S, ) He 11.9 +0.4 9.7 +1.4 450 Kielkopf and Knollenberg (1981)
Ar 9.0 +1.0 —6.4 +10.1 450 Kielkopf and Knollenberg (1981)
K (4p 2P3,,-752S1 ) He 1.1 +0.7 10.5 +0.5 450 Kielkopf and Knollenberg (1981)
Ar 9.1 0.7 —6.4 +0.1 450 Kielkopf and Knollenberg (1981)
9.5 +0.35 —7.4 +0.28 478 Kreye (1982)
11.1 +0.41 —8.4 +0.34 760 Kreye (1982)
Ca (4s%!Sy-4s4p 'P,) He 1.25 +0.03 —0.080+0.004 735 Smith (1972)
1.18 +0.03 —0.083+0.009 665 Bowman and Lewis (1978)
Ne 0.69 +0.03 —0.366+0.002 735 Smith (1972)
Ar 1.85 +0.20 —0.903+0.006 735 Smith (1972)
0.940+40.025 —0.44 10.2 640 Bowman and Lewis (1978)
1.98 +0.1 410 Myint et al. (1979)
Kr 1.45 +1.2 —0.83640.009 735 Smith (1972)
Xe 1.62 +0.15 —0.958+0.008 735 Smith (1972)
Ca (4s4p 3P,-4s5s 3S,) He 3.74 +0.11 1.1 +0.2 2080 O’Neill and Smith (1980a)
Ne 1.6 +0.2 —0.15 +0.16 2300 O’Neill and Smith (1980a)
Ar 3.58 +0.21 —2.1 +0.2 2700 O’Neill and Smith (1980a)
Ca (4s4p 3P;-4s5s 3S, He 3.74 +0.11 1.1 +0.2 1970 O’Neill and Smith (1980a)
Ne 1.60 +0.11 —0.24 1+0.16 2210 O’Neill and Smith (1980a)
Ar 3.31 +0.11 —2.1 +0.16 2530 O’Neill and Smith (1980a)
Ca (4s4p 3P,-4s5s °S,) He 3.71 +0.11 1.1 +0.16 1970 O’Neill and Smith (1980a)
Ne 1.70 +0.11 —0.34 +0.16 2180 O’Neill and Smith (1980a)
Ar 3.13 +0.11 —2.2 +0.16 2460 O’Neill and Smith (1980a)
Ca (3d4s>D-3d4p °F) He 1.66 +0.08? 2500 Smith and Raggett (1981)
Ca (3d4s *D-3d4p °D) 1.87 +0.09°
Ca (3d4s3D,-3d4p 'D,) 1.88 +0.09
Ca (3d4s 'D,-3d4p 'D,) 1.70 +0.08
Ca (3d4s 'D,-3d4p °P,) 3.18 +0.16
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TABLE V. (Continued.)
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Half-width Shift Temperature
v/n o/n
Transition Perturber (107 cm~1/cm—3) (K) Reference
Ca (3d4s >D;-4s5p °P,) 4.67 +0.21
Ca (3d4s 'D,-4s5p 'P;) 427 +0.11
Ca (3d4s 'D,-3d4p 'P) 6.79 +0.34
Ca (3d4s 'D,-4s6p 'P)) 7.61 +0.40
Ca (3d4s 'D,-4s4f 'F;) 5.73 +0.24
Ca (4s4p 'P,-4p*'D,) 4.14 +0.21
Ca (4s4p 'P,-4s5d 'D,) 8.51 +0.40
Ca II (45 2S,,,—4p P, ;) He 1.40 +0.38 7466 Baur and Cooper (1977)
0.55 +0.03 —0.19 +0.06 655 Bowman and Lewis (1978)
Ar 0.78 +0.02 —0.11 +0.02 765 Bowman and Lewis (1978)
Ca 1I (45 28 ,-4p 2P3 ;) He 0.78 +0.08 —0.06 +0.06 655 Bowman and Lewis (1978)
Ar 0.81 +0.04 —0.59 +0.02 765 Bowman and Lewis (1978)
Ca II (3d D3 ,-4p %P, ;) He 0.42 +0.05 655 Bowman and Lewis (1978)
Ar 0.75 +0.03 765 Bowman and Lewis (1978)
Ca 11 (3d *Ds5-4p °P3 ) He 0.68 +0.05 655 Bowman and Lewis (1978)
Ar 0.77 +0.04 765 Bowman and Lewis (1978)
Fe (a°D,-z’D5) He 1.04 2534 O’Neill and Smith (1980b)
Fe (a’D,-z"Fs) He 1.69 +0.25 573 Copley and Camm (1973)
Fe (@°D,-z'F5) He 1.15 2060 O’Neill and Smith (1980b)
Fe (a’D;-z°Ds) He 0.806 1631
Fe (a’D,-z°D;) He 0.838 1677
Fe (a°D;-z°D,) He 1.17 1882
Fe (a°F-z°D) He 0.976% 2072
Fe (a’D4-z3Fs) He 1.80 +0.27 573 Copley and Camm (1973)
1.38 +0.21 2.6 +0.6 4000 Driver and Lombardi (1977)
0.93 1466 O’Neill and Smith (1980b)
Fe (a’D;-z°P3) He 1.11 1659
Fe (a°D,-z°F;3) He 1.08 1755
Fe (a’D;-z°F5) He 1.02 1669
Fe (a’D,-z°F5) He 1.00 1575
Fe (a°D,-z°F;) He 1.03 1716
Fe (a@°D,-z°P;) He 1.16 1707
Fe (a’D,-z'Ps3) He 1.17 2379
Fe (a°D,-z°D3) He 1.11 2120
Fe (a°D,-z3D,) He 1.31 2431
Fe (a°D,-z’F;) He 1.12 1990
Fe (a°D,-z°F,) He 1.16 2123
Fe (a’D,-z°P;) He 1.24 1743
Fe (aF4-y°Fy) He 1.99 +0.29 573 Copley and Camm (1973)
Fe (a°F-y°D) He 1.142 2042 O’Neill and Smith (1980b)
Fe (z'F¢-e¢'Ds) He 2.80 +0.56 573 Copley and Camm (1973)
Fe (a’F4-2°Gs) He 1.88 +0.28 573
Kr (4p%P35)55[3/2] He 0.690 0.108 80 Vaughan and Smith (1968)
4p3(*P3,,)5p[3/2],) 1.29 0.283 295
Ne 0.342 —0.227 80
0.770 —0.211 295
Ar 0.590 —0.321 80
1.22 —0.735 295
Kr 0.652 —0.445 80
0.963 —0.652 295
Kr (4p5(2P3/2 )Ss [3/2]1- He 0.720 0.141 80
4p3(3P;3,,)5p [1/2]0) 1.37 0.350 295
Ne 0.368 —0.237 80
0.600 —0.226 295
Ar 0.623 —0.321 80
1.33 —0.755 295
Kr 6.40 0.200 90
6.55 0.200 90
Rb (5528, ,,-5p 2Py 1) He 1.02 +0.19 320 Ottinger et al. (1975)
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TABLE V. (Continued.)

Half-width Shift Temperature
v/n o/n
Transition Perturber (1072 cm—'/cm™3) (K) Reference
Ne 0.52 +0.07 —0.041+0.037 320
Ar 1.00 +0.13 —0.78 +0.07 320
Kr 1.00 +0.09 —0.800+0.056 320
Xe 1.15 +0.13 —0.836+0.074 320
Rb (55 2S,,,-5p P35 He 1.02 +0.19 —0.082+0.037 320
Ne 0.54 +0.09 —0.22 +0.037 320
Ar 1.02 +0.13 —0.89 +0.13 320
Kr 0.89 +0.07 —0.89 +0.06 320
Xe 1.17 —1.00 +0.07 320
Sr (55 'Sy-5p 'Py) He 1.31 +0.03 0.0 +0.03 700 Farr and Hindmarsh (1971)
Ar 1.30 +0.03 —0.76 +0.03 680
Cd (5s218,-5s5p °Py) He 0.498+0.034 —0.043+0.020 573 Schuessler et al. (1981)
Ar 0.405+0.067 —0.367+0.157 573
Cs (65 2S},,-6p 2Py 3) He 0.98 +0.07 0.67 +0.10 295 Bernabeu and Alvarez (1980)
Ne 0.51 +0.04 —0.29 +0.01
Ar 1.00 +0.11 —0.89 +0.04
Kr 1.01 +0.12 —0.27 +0.01
Xe 1.09 +0.13 —0.84 +0.11
H, 2.05 +0.32 0.23 +0.02
N, 1.55 +0.29 —0.74 +0.01
Cs (65 2S,,,-6p 2P3 ) He 1.36 +0.09 0.39 +0.17
Ne 0.53 +0.11 —0.43 +0.03
Ar 1.16 +0.01 —0.75 +0.03
Kr 0.55 +0.05 —0.81 +0.11
Xe 2.93 +0.31 —0.91 +0.08
H, 2.37 +0.41 0.18 +0.03
N, 1.97 +0.49 —0.73 +0.02
Cs (6s2S,,,-7p 2Py 2) He 41 +1.1 400 Evdokimov (1968)
44 10.25 1.5 +0.1 400 Rostas Lemaire (1971)
Ne 1.75 +0.10 0.0 +0.03 395 Smith (1975)
4.1 +0.8 4500 Evans and Cooper (1972)
Ar 4.3 +0.6 400 Evdokimov (1968)
3.35 +0.25 —1.63 +0.05 400 Rostas and Lemaire (1971)
4.74 +1.04 4500 Evans and Cooper (1972)
3.42 +0.15 —1.29 +0.04 395 Smith (1975)
Xe 3.14 +0.20 —1.66 +0.05 395 Smith (1975)
2.80 +0.10 —1.48 +0.05 380 Kielkopf and Allard (1980)
Cs (65 2S,,,-Tp *P3 ) He 2.97 +0.37 400 Evdokimov (1968)
3.45 +0.20 0.73 +0.05 400 Rostas and Lemaire (1971)
Ne 1.62 +0.10 —0.56 +0.07 380 Smith (1975)
Ar 3.3 +0.37 400 Evdokimov (1968)
2.8 +0.35 363 Ch’en et al. (1969)
29 +0.15 —1.55 +0.06 400 Rostas and Lemaire (1971)
3.18 +0.15 —1.46 +0.06 380 Smith (1975)
Xe 2.60 +0.05 —1.67 +0.07 380 Kielkopf and Allard (1980)
H, 33 +3 623 Ferray et al. (1981)
Cs (65 2S1,,-8p 2P1,2) Xe 543 +0.61 —1.80 +0.30 450
Cs (65 2S,,,-8p 2P3,5) Xe 541 +0.40 —2.56 +0.28 450
Hg (652'Sy-656p *Py) He 0.408+0.015 0.045+0.002 Butaux and Lennuier (1965)
Ne 0.260+0.015 —0.078+0.004
H, 0.836+0.019 —0.1494-0.006
Hg (652'S,-6s6p 'P;) He 0.632+0.074 —0.078+0.022 280 Bosquet and Bras (1977)
Ne 0.465+0.056 —0.342+0.048 280
Ar 0.669+0.074 —0.416+0.056 280
Kr 0.669+0.084 —0.416+0.048 280
Xe 0.654+0.056 —0.41340.045 280
T1 (65%6p 2P3,,-6575 %S} 2) He 1.69 +0.11 0.242+0.056 743 Cheron et al. (1977)
Ne 0.743+0.074 —0.316+0.074 743
Ar 1.56 +0.11 —1.00 +0.07 743
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TABLE V. (Continued.)

N. Allard and J. Kielkopf: Effect of collisions on atomic spectral lines

Half-width Shift Temperature
v/n o/n
Transition Perturber (10~ em~!'/cm—3) (K) Reference
Kr 1.34 +0.07 —0.93 +0.07 743
Xe 1.34 +0.04 —1.04 +0.07 743
T1 (65%6p %P, /,-65752S,,,) He 1.97 +0.19 0.48 +0.11 720
Ne 0.82 +0.09 —0.26 +0.07 720
Ar 1.88 +0.11 —1.00 +0.15 720
Kr 1.69 +0.13 —0.85 +0.19 720
Xe 1.82 +0.19 —1.00 +0.19 720

2Average for the multiplet. Consult the reference for a full list of lines.

pattern that is to be investigated, and most of the extant
information dates from the work of Fichtbauer and co-
workers (Fuchtbauer and Gossler, 1935; Flichtbauer and
Reimers, 1935; Fuchtbauer and Schulz, 1935) and Amal-
di and Segré (1934a, 1934b), which was done at high
density, i.e., where pressure broadening is much greater
than Doppler broadening. For a discussion of these and
related results, see Sec. II1.D.3.

Table VII summarizes measurements now available of
the broadening of transitions to excited states with an ef-
fective principal quantum number greater than 5. These
measurements were made under conditions of sufficiently
low density to insure the dominance of single encounters
in the determination of the line profile. In no case have
actual profiles been reported. Only derived parameters
such as shift and broadening cross sections are given in
the literature.

2. High-density measurements of line cores

a. Low-lying states

For observations of transitions to the first two excited
p states of cesium and rubidium, data on shift, width,
and asymmetry have been reported by Ch’en, Granier,
and co-workers, as indicated in Table VIII. The width
and asymmetry measurements of Ch’en are photoelectric,
but all other measurements are photographic. Densities
of up to 40 atm were used for some experiments. All of

TABLE VI. Asymmetry of the sodium D lines at atmospheric
pressure.?

35 2S1,2-3p *P1,2 35 2S12-3p *P3 2

D1 D2
He 1.002 1.01
Ne 1.01 1.02
Ar 1.11 1.12
Kr 1.12 1.14
Xe 1.16 1.20

?Given here is the ratio of half-width on the low-frequency
side to half-width on the high-frequency side, computed from
the data of Walkup, Spielfiedel, and Pritchard (1980) and of
Kielkopf (1980). The deviation from unity is proportional to
gas density.
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the data refer to high-pressure absorption measurements
for temperatures typically around 500 K. Normalized
core profiles have not been reported for densities above
one atmosphere, with the exception of the cesium reso-
nance doublet perturbed by xenon, for which limited
data appear in Gilbert and Ch’en (1969) and in Gilbert,
Allard, and Ch’en (1980).

Shift and width curves for the broadening of the cesi-
um 6s-6p transition by neon and by xenon are shown in
Fig. 35. Most of the qualitative features of these curves
were presented in the paper of Gilbert, Allard, and Ch’en
(1980) and explained by Allard and Biraud (1980) using
the Anderson-Talman theory and a square-well potential.
These characteristics were discussed at length in Sec.
IL.LE.2c. Royer (1980) has been able to fit the shift and
width curves with a parametrized correlation function,
and has deduced the appearance of perturber-perturber
correlations in the high-density data. The 6s-7p cesium
observations for densities of the order of one atmosphere
of xenon appear to be explained by unified-theory calcu-
lations based on potentials determined by fitting to low-
density observations of the core and near wings.
Nevertheless, complete calculations of the entire profile
from core to far wing that include high-density shifts
and widths are lacking (Kielkopf and Allard, 1980).

The most striking features in the curves are caused by
extrema in the interatomic difference potentials. These
produce resolvable shoulders or satellites on the lines at
low density. At higher densities, as the satellites grow in
strength to intensities comparable to the low-pressure
line core, the new line profile shifts suddenly to the satel-
lite peak. This behavior causes sudden dramatic changes
in the width and shift, as illustrated for xenon in Fig.
35(a). The experimental behavior with neon is not so
striking, presumably because the difference potentials for
the transition are less extreme, and the satellites are un-
resolved even at low density. The shift with neon is puz-
zling, because for the 2P;,, component it is first to the
red for densities less than about 24 atm, but for higher
densities it is to the blue. This would also indicate un-
resolved red and violet satellites on the line if the inter-
pretations applied to xenon are universal. Unified-theory
calculations for these cases, with good theoretical poten-
tials, would be very useful in the interpretation of these
results.
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States Width Shift Gases Reference
Na 3p-6d X He,Ne,Ar,Kr,Xe Kielkopf and Knollenberg (1975)
3s-7s to 20s He,Ne,Ar,Kr,Xe, Flusberg et al. (1979)
35-6d to 34d X CO,N,
K K Mazing and Serapinas (1971)
Rb 5s-11s to 60s X X Rb Weber and Niemax (1979b)
Rb 5s-10s to 50s X Rb Stoicheff and Weinberger (1980)
5s-10d to 50d X
5s-15s to 34s X X He,Ne,Ar,Kr,Xe Brillet and Gallagher (1980)
5s-19d X X He,Ne,Ar,Kr,Xe
Cs Ar Mazing and Vrublevskaya (1966)
Cs Cs Mazing and Serapinas (1971)
Cs 6s-11d to 40d X X Cs Weber and Niemax (1979a)
Cs 6s5-9p to 20p X Ne Garrett, Ch’en, and Looi (1967)
6s-9p X Ar Tan and Ch’en (1970)
6s-9p to 10p X Kr Ch’en, Looi, and Garrett (1967)
6s5-9p to 11p X Xe Ch’en, Gilbert, and Tan (1969)

2Only data with observations at pressures much less than one atmosphere (2.7 X 10'® cm—?) for states with #n* > 5 are included.

TABLE VIII. High-density observations of line cores.

Maximum density

States Width Shift Gases (rd) References
H 2p-3d X X He 63 Sidell and Ch’en (1977)
Ar 61
H 2p4d X X He 63
Li 2s-2p X X Ar 75 Ch’en and Henry (1973)
Li  2p-3d X X Ar 75
Al 2P 2P1/2-3d 2D3/2 X Ar 50 Holmes et al. (1969b)
Al 2p 2P1/2-4S 25"/2 X Ar 50
Na 3s-3p X Ar 100
X X Kr 11 West and Gallagher (1978)
X X Xe 11
Call 4s2S,,-4p %Py, X He 120 Ch’en and Henry (1973)
X Ar 75
Ca 452'Sy-4s4p 'P, X Ar 100
Cr a’S,y°pP; X He 100 Holmes et al. (1969a)
Cr a’S;z’Py e He 100
X Ar 100
Cr  a'S;y'P, X Ar 100
Mn a®Ss,-z°P, X He 10 Ch’en and Bennett (1960)
X X Ar 30 )
X Ar 75 Holmes et al. (1969b)
Fe (see footnote a) X He 102 Holmes, Ch’en, and Takeo (1969)
X Ar 108
Ni  a'D,-z'P, X Ar 100 Holmes et al. (1969a)
Ni  a’F,y’F, X Ar 100
Cu  4s2S,,-4p %P, X Ar 100 Holmes et al. (1969b)
Rb  5s52S,,,-5p %P, X Ne 40 Granier, Granier, and Vodar (1966)
X Ne 35 Granier and Granier (1966¢)
X X Ar 60 Granier, Granier, and DeCroutte (1963b)
X X Ar 30 Grainer and Granier (1966b)
X X Xe 3 Ch’en and Fountain (1964)
X H, 30 Granier, Granier, and Vodar (1966)
X D, 30
Rb  5s52S,,,-6p 2P, X Kr 7 Granier and Granier (1966a)
X X Xe 3 Ch’en and Fountain (1964)
Rb Ss 251/2-7p ZPJ X X Xe 1.5
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TABLE VIII. (Continued.)

Maximum density

States Width Shift Gases (rd) References
Rb Ss 2S]/2-8p ZPJ X X Xe 2.5
Sr 55218,-5s5p 'P, X X He 60 Wang and Ch’en (1979)
X X Xe 3.5
Srll 55 2S,,,-5p %P, X He 120 Ch’en and Henry (1973)
X X Ar 45
Mo a’D,;-y°F; X Ar 75 Holmes et al. (1969b)
In 5s5p 2P;-65%%S, ) X X He 26 Ch’en et al. (1960)
X X Ar 30
Cs  6s2S,,,-6p2P; X X He 200 Garrett and Ch’en (1966)
X X Ne 70 Garrett, Ch’en, and Looi (1967)
X X Ar 160 Ch’en and Garrett (1966)
X X Kr 58 Ch’en, Looi, and Garrett (1967)
X X Xe 47 Ch’en, Gilbert, and Tan (1969)
X X CF, 2.5
Cs  652%S,,-7p %P, X X He 11 Garrett and Ch’en (1966)
X X Ne 50 Garrett, Ch’en, and Looi (1967)
X X Ar 18 Ch’en and Garrett (1966)
X X Kr 11 Ch’en, Looi, and Garrett (1967)
X X Xe 5.5 Ch’en, Gilbert, and Tan (1969)
Cs 6s %S, ,,-8p 2P, X X Ne 24 Garrett, Ch’en,and Looi (1967)
X Ar 5.5 Tan and Ch’en (1970)
X X Kr 2 Ch’en, Looi, and Garrett (1967)
X Kr 5 Tan and Ch’en (1970)
X Xe 2.5
X Xe 5 Ch’en, Gilbert, and Tan (1969)
Ball 6s2S,,,-6p *P, X X He 120 Ch’en and Henry (1973)
X X Ar 45
Ball 6s 251/2-6‘[7 2P3/2 X X He 120
X X Ar 60
Hg 6s52'Sy-6s6p 3P, X He 580 Granier and Granier (1965a, 1965b)
X He 200 Granier, Granier, and Vodar (1966)
X H, 625 Granier, Granier, and DeCroutte (1963a)
X D, 625

#Consult the reference for a full list of lines.

b. High Rydberg states

Table IX summarizes currently available high-density
observations for large n*. As an example, we illustrate
in Fig. 36 the behavior, as a function of series member,
of cesium spectra broadened by noble gases (Tan and
Ch’en, 1970), The behavior is that predicted by the Fer-
mi theory: for highly excited states the shifts are in-
dependent of the state. Regrettably, similar results for
the widths are not available, and the expectation that the
widths should increase only as n!/? (see Sec. ILF.7) has
not been verified. Tan and Ch’en (1970) also feel that
the Fermi thoery does not correctly predict the behavior
of the shift with gas density for densities greater than 2
atm. Thus there is no question but that additional mea-
surements of widths, shifts, and indeed profiles of these
lines at high density would be very desirable.

The line-core profile for these transitions is expected
to be Gaussian for very high densities, but that expecta-
tion is contingent upon the absence of significant far-
wing satellite features on Rydberg series transitions, as
well as on the constancy of the oscillator strength during
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the collision (Royer, 1980). There have been no experi-
mental studies of either point as yet.

E. Line wings

Today nobody really worries about the spectra of al-
kali atoms.
—Parsons and Weisskopf, 1967

1. Frequencies near the unperturbed line center

a. The shape of the near wing

Among the earliest reported observations of near-wing
intensities were attempts to verify the predictions of Eq.
(16) that under the influence of van der Waals potentials
the red wing of collision-broadened lines would vary as
(Aw)™372. As described by Kuhn (1961), observations by
Minkowski (1935), Kuhn (1937a, 1937b), Ruhmkorf
(1938), Huldt and Knall (1954), and Robin and Robin
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FIG. 35. Shift and width of Cs (65 2S,,,-6p 2P, ;) perturbed
by xenon and neon as a function of gas density for tempera-
tures of about 400 K (Ch’en, Gilbert, and Tan, 1969; Garrett,
Ch’en, and Looi, 1967).

(1957a, 1957b) have all confirmed that, when the line
wing is no longer Lorentzian on the red side, it behaves
in agreement with this expectation over a range of a fac-
tor of 10 in intensity. In the light of current thinking
about the significance of higher-order multipole terms in
the interaction, and indeed of interactions that do not
resemble van der Waals potentials at all, the agreement
of these observations with simple static theory is more a
problem than a solution. For instance, in Fig. 37 we
show the potential of the 5p 2P, /,(*II, ,,) state of Rb per-
turbed by Xe from the tabulations of Pascale and Vande-
planque (1974), and compare that potential to the van
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FIG. 36. Shift of Cs (6s2S;,,-np 2Ps,,) transitions for the
series up to n =25 for different noble gases at the same densi-
ty, about 2.5% 10" atomscm~> and 550 K (Tan and Ch’en,
1970).

der Waals term CgR ~% expected for that state. The two
potentials, while of nearly the same form for weak in-
teractions of order 1 cm™!, are not at all of the same
magnitude.

Near wings have recently been remeasured for power-
law dependence, and high-resolution results of pho-

129 T T T T

1281 -

127+ /4 —

126 —

125+ ! ]
/~———van der Waals

VIR) (103cm™)

124

1231 Rb(5p%R,)

1
[
)
!
t
i
1
!
!
1
!
!

Pseudopotential
2.1+ -

| | 1 | 1
0 10 20 30 40 50 60

R (bohr)
FIG. 37. Comparison of the van der Waals and pseudopoten-
tial (Pascale and Vandeplanque, 1974) calculations for the Rb
(5p *P, ;) state perturbed by Xe, illustrating that the van der
Waals potential is weaker than the interaction at long range
where the near line wing is formed.
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TABLE IX. High-density observations of high series members.
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Element Foreign gases Reference

Na He,Ar,H,,N, Amaldi and Segre (1934a, 1934b)
He,Ne,Ar Filichtbauer (1934)
He,Ne,Ar,H,, N, Fuchtbauer and Schulz (1935)

K He,Ar,H,, N, Amaldi and Segré (1934a, 1934b)
He,Ne,Ar Flichtbauer (1934)

Rb "He,Ne,Ar Ny and Ch’en (1937a, 1937b)
H, Ny and Ch’en (1938)

Cs He,Ne,Ar,Hg Flichtbauer (1934)
Xe,Hg Fiuichtbauer (1934)
Kr Flichtbauer and Reimers (1935)
He,Ne,Ar,Kr,Xe Tan and Ch’en (1970)

tometric quality now are known for Li, Rb, and T1 lines
broadened by noble gases (Gallagher, 1975; Ottinger
et al., 1975; Cheron, Scheps, and Gallagher, 1977). In
Table X we summarize red-wing dependences from those
papers. For Ar, Kr, and Xe perturbers, all of which
have high polarizabilities and consequently large van der
Waals interactions, red wings vary in the range from
(Aw)~ '3 to (Aw)~!7 over an intensity change of about
20, but it seems safer to conclude that near line wings do
not vary as (Aw)™!% in general, and that the presence of
near-wing red satellites disturbs the monotonic behavior
of the wing in many cases. When (Aw)~ ! is observed
almost exactly, it is only over a limited intensity range.

b. Intense satellites in binary spectra

This work has removed any serious doubt as to the
nature of the alkali-rare-gas low-frequency bands.
—Hindmarsh and Farr, 1972

The existence of abnormally intense regions in spectral
line wings was first noted about 50 years ago (Oldenberg,

TABLE X. Power-law behavior of line wings.?

Transitions Gas Red wing® Range (cm™')
Li 2s 2S1/2-2p 2P1/2’3/2 He 2.0 2-22
Ne 2.0 2—15
Ar 2.1 3-33
Kr 2.35 4-33
Xe 2.4 4-33
Rb 552S,,,-5p *P1 He 2.0 2—19
Ne 2.5 2—-5
Ar 1.6 1—-4
Xe 1.5 2—11
Tl 656p 2P, ,,-657s %S\ 2 He 2.0 0-—-30
Ne 2.0 0—15
Ar 1.4 3—-10
Kr 1.3 3.5—-9
Xe 1.3 3.5—15

Data are from Li: Gallagher (1975); Rb: Ottinger et al.
(1975); and TI1: Cheron et al. (1977).
*The power dependence (Aw)~* is listed in this column.
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1928, 1929; Kuhn and Oldenberg, 1932; Ch’en and Tak-
eo, 1957). A summary of photographically discovered
features was given by Ch’en and Wilson (1961). It was
clear then that many satellites could be qualitatively
grouped, the simplest categories being red and violet sa-
tellites, with other classifications added to distinguish
shape and strength. The complexity of this categoriza-
tion, as well as the absence of reliable unified-theory
line-shape calculations, led to considerable speculation
about the origin of the features indexed in Table XI.

The problem of the origin and calculation of the shape
of satellites was surveyed most recently by Cooper
(1973). The unified-theory calculations (Sando, 1974;
Szudy and Baylis, 1975; Allard, Sahal-Brechot, and
Biruad, 1974; Kielkopf, 1976a, 1978; Kielkopf and Al-
lard, 1980) have all demonstrated by rather successful
comparison with available profiles that these satellites
originate in extrema on interatomic difference potentials,
and as such are very analogous to rainbow scattering in
atomic collision experiments (Royer, 1971b; Mott and
Massey, 1965). These satellites are essentially static phe-
nomena, and explanations in terms of the static theory
have been given by Hindmarsh and Farr (1969) and Kiel-
kopf and Gwinn (1968). The more recent, elaborate pro-
file calculations have served to demonstrate that collision
dynamics do not remove the expected intensity enhance-
ments. Thus we have no reason to think that any of the
satellite features listed here are due to anything but such
processes: for alkali—rare-gas spectra the near-red satel-
lites originate from distant difference-potential wells,
while the weaker violet satellites come from potential ex-
trema that, at closer separations, imply weaker features.
The varying probability that statistical equilibrium pro-
vides can also produce shoulders in the far-red wing, as
illustrated in the data shown in Fig. 39 of Sec. IIL.LE.2.
Changes in the transition probability may also affect
profiles, particularly for otherwise forbidden lines.

Although earlier we discussed the success of the uni-
fied theory in explaining the behavior of these features
(Secs. ILE and ILF), a glance again at Fig. 22 will illus-
trate the typical agreement that can be achieved at
present. Residual discrepancies might be due to the in-
flexibility of the fitting-potential function. Future calcu-
lations based upon accurate numerical potentials should
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TABLE XI. Intense binary satellites.?

Krytpon Xenon Krytpon Xenon
Transition (em™") (em™?) Transition (cm™Y) (em™!)
K 45s2S,, -4p?P,, —16 —31 -8d D, —11 —16
-4p 2P, —13 —29 Cs 6p2P3;, -1dDs,, —15 —26
5p 2Py, —24 —60 7d D5, —15 —37
-6p 2P1/2 —20 —41 -8d 2D5/2 -5 -7
-7p 2P1/2 —14 -8d 2D3/2 -7 —15
Rb 5s 2S1/2 ~5p 2P1/2 -7 —18 -9d2D3/2 —8
-5p 2Py, —18 -32 Cs 6p*Pi;, -85Sy, —13 —31
-6p 2P]/2 -20 —46 -Os 2S1/2 —8 —20
-6p 2P3/2 —28 —42 Cs 6p 2P3/2 -8s 2S1/2 —13 —-23
-7p 2P1/2 —18 -9s 2S1/2 -7 —23
-7p 2P3/2 —17 -10s 2S]/z -27
Rb 5p 2P]/2 -8s 2S1/2 -5 —10 Cs 6d 2D5/2 -Sf 2F5/2 —24 —48
-Os 2S|/2 —4 -6f2F5/2 —18 —50
Rb Sp 2P3/2 -8s 2S|/2 —5 —10 -7f2F5/2 —13 —40
-Os 2S1/2 —4 -8f2F5/2 -27
Rb Sp 2P1/2 -6d 2D3/2 —21 —45 '9f 2F5/2 -22
-7d 21)3/2 -9 Cs 6d 2D3/2 -Sf 2F5/2 —24 —49
-84 2D, -7 -6f 2Fs —18 —48
Rb Sp 2P3/2 -6d 2D5/2 —23 —47 -7f 2F5/2 —13 —37
-7d *Ds,, -8 —23 9f 2Fs) —18
-8d 2D5/2 -9 Cs 6s 2S1/2 -5d 2D3/2 —8 —14
Rb Sp 2P1/2 -8s 2S1/2 -5 —10 '5d2D5/2 —6 —13
-Os 2S1/2 —4 -6d 2D3/2 —18 —44
Rb 5p 2P3/2 -8s 2S1/2 -5 —10 -6d 2D5/2 —19 —44
-9s 2S1/2 —4 -7d 2D3/2 —14 —39
Sr 55%1S,  -5s5p 'P, —50 -7d ®Ds, —11 —24
Cs 6s 2S1/2 -6p 2P|/2 -5 —12 Cs 6s 2S|/2 -8d 2D3/2 -7 —18
-6p 2P3; —17 —40 | Ba 6s%'S, -6s7p'P, —29 _53
Cs 6s 2S1/2 "7p 2Pl/2 —19 -39 '638p 1P1 —12 —38
-7p *P3 ), —29 —55 -6s9p 'P, —8 —11
-8p %Py, —14 —29 -6s10p 'P, -3 -7
-8p 2Py, —17 —31 6s11p 'P, -2 -3
-9p 2P1/2 —6 —10 Hg 6S2]S0 -65'6}7 3P1 +70,+138 —18,+77
-9p *Ps,, —6 —13 | T 6s%p 2P, ,-65%7s %S\, —14,491 —48,+35
Cs 6p2P,,, -6d?Ds, —12 —35 | TI 6s%6p 2P;,,-65%75 %S, —21,435,4-84 —35,453
-7d*D; —19 37

*This table includes most known “‘red satellites” that appear close to the atomic line and that are easily recognized on photograph-
ic spectra for foreign-gas densities of the order 10'” cm~3. References for the entries given are: K: Jefimenko and Williams
(1965); Rb: Jefimenko and Curtis (1957); Sr: Wang and Ch’en (1979); Cs: Gwinn, Thomas, and Kielkopf (1968); Ba: Kielkopf
(1978); Hg: Kielkopf and Miller (1974); Tl: Cheron, Scheps, and Gallagher (1977). The values given in (cm~') are the displace-

-1

ments from the atomic lines. All values are rounded to the nearest (cm~!), but accuracies are typically not as good as +1 cm~,
since the features listed here are rather diffuse and sometimes do not show a pronounced maximum. However, in many cases
these satellites appear as distinct lines in photographic spectra near the unperturbed atomic transition.

eventually bring out problems in the line-shape theory it-
self.

c. Multiple-perturber spectra

The possibility that the effect of more than one simul-
taneously acting perturber would be uniquely discernable
in line-wing spectra was recognized by Hindmarsh and
Farr (1969) in their application of the static theory to sa-
tellite profiles. The effect may have been seen by
McCartan and Hindmarsh (1969) in the wing of the 4s-
S5p potassium transition perturbed by krypton. In that
case they reported a discontinuity in the monotonic de-
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crease of the absorption coefficient beyond the red satel-
lite that appeared 24 cm~! from the line. This unusual
region in the neighborhood of 50 cm~' may have indi-
cated the effect of two perturbers acting simultaneously
in the satellite-forming region of an additive potential.
There were, however, no observations of density depen-
dence for the profile to confirm the hypothesis, and the
possibility that it was due to a feature in the binary in-
teratomic potential cannot be discounted. A similar ef-
fect seen in Na (3s-3p)-Xe (McCartan and Farr, 1976) is
almost certainly part of the far-wing system reported by
West and Gallagher (1978).

Some evidence of two-perturber effects is apparent in
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the density dependence of wing intensities reported for
Cs (6s-7p,8p)-Xe by Lorenzen and Niemax (1977) and by
Exton and Snow (1978). West, Shuker, and Gallagher
(1978) studied the effect of multiple-perturber interac-
tions on the sodium —noble-gas excimer bands, and ob-
served a feature at about 3200 cm™!, twice the 1600
cm~! of the excimer band, that exhibited density depen-
dence evidently due to the presence of two xenon per-
turbers simultaneously. In addition, they verified that
the convolution character expected for line wings [Eq.
(254)] existed for their measurements when the identified
feature due to two xenon perturbers fit the convolution
of two one-perturber spectra.

Similar effects, but on forbidden transitions, were not-
ed by Yabuzaki et al. (1978) in K-Xe fluorescence excit-
ed by a krypton-ion laser. For their experiments potassi-
um spectra were measured in the region from 4500 to
6000 A, and the observed features were identified as the
45-5s transition of K-Xe, but the distribution of radiation
among the observed peaks and the development of the
spectra with density followed that expected for K-Xe,
polyatomic system with a bound excited state.

Observations of line broadening involving more than
two perturbers in the wing, but for which bound states
were not significant, were reported by Kielkopf and Al-
lard (1979, 1980) for Cs (6s5-9p)-Xe lines and by Kielkopf
(1981a) for Cs (6s-8p,9p,10p)-Kr and -Xe transitions. An
example is shown in Fig. 38. The observed development
of the profile is exactly that predicted in the calculations
discussed in Sec. ILE. It is apparent from this as yet
limited set of observational data that the presence of
identifiable multiple-perturber effects in line-wing spec-
tra is probably universal, dependent only on the existence
of difference-potential extrema at ranges suitable for the
chosen gas density. It is for this reason that, the higher
the excitation of the atomic state, the larger the effects
of multiple perturbers appear to be at a given gas densi-
ty.

Of course, on states which are not spherically
symmetric—indeed, all known examples are p states—
potentials depend on angle and are not exactly additive.
The observed spectra seem to be evidence that, averaged
over collisions, additivity of interactions is an adequate
approximation.

2. Frequencies far from the line center

In spite of these rather useful properties, we feel com-
pelled to add a warning that constructing and aligning
such an instrument is a job for patient men.

—Hedges, Drummond, and Gallagher, 1972

The far line wing is observable at densities less than
one atmosphere for the resonance lines only when the
line center is very saturated in optical absorption experi-
ments, because the wing absorption coefficient is of the
order of 1X 107 of the line-center strength. In fluores-
cence, special techniques, instruments, and perserverence
(as noted in the quotation above) are required to obtain
meaningful quantitative results. Ch’en and Takeo (1957)
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FIG. 38. Observation of the Cs (6s2S;,,-9p *P;,,) line per-
turbed by Xe for different densities at about 550 K, and the Cs
(65 28 ,,-10p 2P, ;) with Xe at about 575 K. Notice on the 9p
spectra the secondary satellite prominent at 1.4X 10"
atomscm ™3, while at much lower densities in the 10p spectra
the primary satellite overtakes the main line (Kielkopf, 1981a).

identify the far red wing and the violet satellites as
essentially high-temperature phenomena, although it is
apparent from the more recent fluorescence data that
temperature is not the controlling factor in their ex-
istence.

Table XII summarizes published observations of line-
wing spectra that extend more than 100 cm ™! from the
line center. Noble-gas broadening of Li, Na, Rb, Cs, and
TI has been reported in an extensive series of papers, the
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TABLE XII. Available data on far line wings.?

Range
Transitions Gases (ecm~1) Reference
Li 2s-2p He,Ne,Ar,Kr,Xe —3500—2000 Scheps et al. (1975)
Na 3s-3p He,Ne,Ar,Kr,Xe —3500—2000 York et al. (1975)
Rb 5s-5p He,Ne,Ar,Kr,Xe —1600— 500 Drummond and Gallagher (1974)
Rb 55 2S,,,-5p %P3 Ne,Ar,Kr,Xe 0—500 Carrington and Gallagher (1974)
Cs 6s-6p He,Ne,Ar,Kr,Xe —1000— 500 Hedges et al. (1972)
T1 6s-6p He,Ne,Ar,Kr,Xe —4500— 800 Cheron et al. (1977)
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?Only allowed transitions are included.

experimental basis of which is the observation of line-
wing fluorescence following resonance excitation. Figure
39 shows the typical behavior of the Rb (5s-6p) line
wings broadened by noble gases; on the 2P, ,, component
they have a red shoulder that progresses from about 600
cm~! from the line center, for neon, outward to about
1100 cm ™!, for xenon. There is a similar red shoulder
on the 2P;,, component. This component also shows a
blue satellite which is displaced about 400 cm~! from
the center of the line. Features such as these can be in-
terpreted by statistical theories to yield the interatomic
difference potentials for the systems, and with such anal-
yses these data provide the most extensive set of such
measurements available. The temperature dependence of
line-wing spectra was discussed in Sec. II.LF.4, and the
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various noble gases at low density (Drummond and Gallagher,

1974).
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determination of potentials from line-profile spectra is
reviewed in Sec. IV.A.

It is worthwhile noting that the 2P, ,, wings are attri-
buted to the X2Z, ,-4°I1, /, difference potential, and the
2P, red wing is similarly ascribed to the X2Z, ,-4°I1;,,
potential. The blue wing on this line is due to the other
state, B2X, ,, into which the atomic 2p,,, state proceeds
with equal probability upon collision. The 2P;,, red
wing is about half the comparable strength of the 2P, ,,
wing because of this splitting. The effect has also been
noticed in near wings on Cs lines (Kielkopf and Allard,
1980), and can be explained within the context of the
unified-theory profiles given by Egs. (164) and (165). In
the near line wing the 2P, »2 spectrum has the character
of the convolution of Il and = spectra, each at a density
of n/2. Consequently the red (II) wing on 2P;,, is half
the strength of the red wing on 2P ,,.

The distinction between “satellite” and “shoulder”
here is intentional. The far-wing red shoulders form
from an essentially monotonically decreasing difference
potential in the statistical interpretation. The shoulder
arises from the enhanced probability associated with the
excited-state potential well, and is very temperature sens-
itive in strength. This temperature dependence was used
whenever possible to extract the excited-state potential
from the difference potential. The violet satellite must
arise from a potential extremum, and it is a satellite in
the sense of the statistical theory we discussed earlier:
the slope of the difference potential goes through zero
near the peak of this feature. These satellites are also
sensitive to temperature because as the temperature in-
creases, the perturbers are more likely to climb the
excited-state potential barrier that generates the
difference-potential maximum.

An interesting and still puzzling feature of these far-
wing observations is the behavior of the line profiles
with helium. Drummond and Gallagher (1974) discuss
the problem extensively, and their analysis points out
that the helium results are affected experimentally both
by increased off-band leakage in the spectrometer and by
the need for excitation transfer corrections of greater im-
portance than for the data with other gases. In spite of
allowance for these factors, the helium data do not gen-
erally submit to statistical-theory analysis as it is used
for the other gases. For helium, such analyses lead to
unacceptable potentials.

The authors attribute this to the breakdown of semi-
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classical line-broadening theory due to the finite wave-
length of the perturber, an effect most prominent for the
lightest perturber, helium. The limitation of the classical
path approximation imposed by this effect was brought
out in Sec. II.C.1.g. Also seen are evidences of failure in
the far red wing, which are attributed to quantum-
mechanical barrier penetration that smears the classical
spectrum.

We note in the list of observations the absence of mea-
surements for potassium and for most of the alkaline
earths. There are also not any measurements for lines
other than the resonance transitions. Of course, there
are obvious problems for states of higher excitation, in-
cluding increased excitation transfer, interference from
other transitions, the influence of diatomic alkali molec-
ular lines, and rapidly declining oscillator strengths. We
have yet to see, however, a verification of the expecta-
tions that develop from the Pascale-Vandeplanque (1974)
potential calculations, which predict deep, short-range
wells on almost all the excited states analogous to the
potentials that produce the extreme-wing features on the
resonance lines. For these transitions the intense near-
wing satellites we discussed earlioer arise for internuclear
separations of the order of 20 A for the Cs (6s-9p)-Xe
line, for example. The potential calculations predict very
deep wells in the 3—4 A range, that should generate
features hundreds of cm~! from the line center, but be
weaker by several orders of magnitude than the near-
wing features that have already been observed. Studies
of the far line wing are an exciting domain in which line
broadening overlaps the physics of diatomic molecules,
and in which we can observe failures in line-broadening
theory as it is conventionally formulated.

3. Observations of oscillations

In photoelectric observations of the red wing of the Cs
(6528, /5-6p %P3 ;)-Ar transition, Chen and Phelps (1973)
observed a series of seven or more weak undulations that
had also been noticed photographically by Jefimenko and
Ch’en (1957). We show a section of that spectrum in
Fig. 40.

" These oscillations were interpreted by Carrington et al.
(1973) as due to contributions from bound-free transi-
tions in which excited-state vibrational levels provide an
oscillating component in the spectrum. Calculated spec-
tra produced features with about the same intensity and
spacing as those observed.
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FIG. 40. Oscillations in the red wing of Cs (6s %S /,-6p %P1 ,;)

perturbed by Ar (Chen and Phelps, 1973).
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Another type of oscillation shows up in some spectra
between a satellite and the central line. Such features
appear in the photographic data of Jefimenko and Curtis
(1957), and in the photometric measurements of Car-
rington and Gallagher (1974) on blue satellites in rubidi-
um spectra; we reproduce an example in Fig. 41. These
satellites seem to be interference features that are due to
the coherent addition of two contributions to the same
region of the profile during the course of collision. Such
oscillations also result from unified-theory calculations,
as we illustrated in Fig. 22, and as was reported by Al-
lard (1978), Kielkopf (1976a), and Kielkopf and Allard
(1980). One might expect that the calculated spectra
would show more interference than the experiments,
since such spectra do not involve a true velocity average.
Other calculations predicting these effects have been
given by Royer (1971b), Sando and Wormhoudt (1973),
Dalgarno and Sando (1973), Mies and Smith (1966), and
Mies (1968). As Royer points out, these interference
features may be very sensitive to the potential.

F. Collision-induced changes in transition probability

1. Effects on allowed transitions

. the amplitude [of vibration] is nearly independent
of the distance between the molecules; . . . such a [col-
lisional] variation of intensity is not an important factor
in broadening the spectral lines.

—Michelson, 1895

One of the fundamental suppositions that must be
made to do line-profile calculations as we have outlined

P |
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FIG. 41. Blue satellite on the Rb (55 2S,-5p ?P3,,) transition
perturbed by Ar as a function of cell temperature, illustrating
an interference oscillation between the satellite and the main

line (Carrington and Gallagher, 1974).
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is that the probability of a radiative transition is not a
function of the separation of the radiator and the per-
turber. This postulate may be traced back at least to the
reasoning of Michelson (1895), noted above. In this sec-
tion we want to review some of the evidence available
from experiments that defines the circumstances under
which collision-induced absorption or fluorescence might
produce measurable effects in line profiles.

For the most part, experimental spectroscopists usually
presume that there are no substantial effects of foreign-
gas pressure on the transition probabilities of allowed
lines, and it is very common to find high-precision f-
value measurements based on absorption spectroscopy of
the species of interest in the presence of some buffer gas.
Some early experiments on mercury resonance radiation
were discussed by Mitchell and Zemansky (1934), who
concluded that uncertainties regarding foreign-gas effects
on atomic vapor pressure complicate the interpretation
of results that may evidence a decrease in transition pro-
bability at high gas density for the integrated line profile.

Gilbert and Ch’en (1969) studied the total integrated
absorption intensity of the cesium resonance lines and all
satellites due to He, Ar, Kr, and Xe foreign gases at
temperatures of the order of 440 K and densities from
11 to 65 atm. Over this range for all gases they found a
very definite decrease in total integrated strength with
increase in density; for xenon, for instance, they observed
a factor of about 2 between 11 and 43 atm. Neverthe-
less, they also noted that the observed effect may well
have been due to a change in cesium vapor pressure.
This question is not resolved as yet, but it does point out
that comparisons of absolute measurements of profiles at
different foreign-gas densities that depend on the calcula-
tion of total integrated absorption from measured tem-
peratures, known oscillator strengths, and thermodynam-
ic formulas must be regarded with caution.

Recently, Exton and Snow (1978) studied absorption
coefficients of cesium principal-series lines broadened by
xenon and looked into the question of the total integrat-
ed absorption for several members of the series. They
report that, for the fourth member (6s-9p), the total ab-
sorption appeared to increase when the wings gained ap-
preciable strength relative to the central core. The ob-
served effect may be related to the instrument resolution.
Other measurements (Kielkopf and Allard, 1980) at
higher resolution do not confirm this behavior for the al-
lowed principal-series lines.

2. Effects on forbidden transitions

In contrast to the allowed lines, the forbidden or only
weakly allowed transitions appear to be very sensitive to
collision-induced effects. The first point of evidence is
in the extensive series of measurements reported by
Mack (1950, 1952) primarily of precise excited alkali s-
and d-state energy levels from forbidden s-s and s-d ab-
sorption transitions enhanced by foreign gases. Many
others have noticed that s-d transitions in particular
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show unusual satellites and line profiles; we give an ex-
ample in Fig. 42. Notice the very sharp lines at the 6s-
6d transitions frequencies, and the diffuse, almost uncon-
nected, underlying satellites centered at 8.4 A to the red
of each line. The satellite associated with 2Ds,, under-
lies the 2D;,, line. Such features were seen on the Cs
(65-6d)-Xe transitions (Lapp, 1966) and on 6s-6d, 7d, 8d
transitions perturbed by Xe and Kr (Gwinn, Thomas,
and Kielkopf, 1968). Similar effects have also been seen
in Rb spectra perturbed by Kr (Besombes, Granier, and
Granier, 1969). In a few cases precise measurements
have been made (Sayer, Ferray, and Lozingot, 1979;
Sayer et al.,, 1980; Niemax, 1977). The expected
collision-induced dipole transition probability is of the
same order as the experimentally observed intensities
(Granier, Granier, and Schuller, 1975). A calculation of
the profile of such transitions (Gallagher and Holstein,
1977; J. Pascale, 1977; Sayer, Visticot, and Pascale,
1978) that allows for collision-enforced phenomena pro-
duces profiles of about the right form. A detailed com-
parison of normalized profiles (such as those in Niemax,
1977) with calculations not restricted to the static limit,
and based on independently determined theoretical poten-
tials, seems to be needed.

Niemax (1977) does demonstrate that for the Cs
(6s-nd) transitions the oscillator strengths for the entire
integrated profiles do increase with xenon gas density if
the satellites (i.e., the “quasistatic” wing) are included in
the integration. Dakhil and Kielkopf (1977) found 6s-ns
transitions in absorption spectra of cesium with xenon at
densities of the order of 5Xx10'® atomscm~3 for
n=11—19. At these foreign-gas densities they noted
that the 6s-nd transitions occurred with most of the line
strength in identifiable features due to perturbations of
the nd levels by collisions when n was greater than ten.
The 6s-ns transitions disappeared when helium was sub-
stituted for xenon.

The available evidence is thus inconclusive about the
importance of collision-induced effects on allowed transi-
tions. On forbidden transitions the effects can be very
pronounced, so that at high gas density the entire s-s or
s-d transition is collision induced, with an oscillator
strength determined by the presence of the buffer gas, a
profile dependent on the changing dipole moment with
internuclear separation, and a line position strongly
dependent on the value of the difference potential for
which the transition probability is maximum.

4417.3 4425.7

Cs 6%S1,-6°Dy,

FIG. 42. Broad and unusually strong satellites on the forbid-
den Cs (6s-6d) multiplet perturbed by xenon (Lapp, 1966).
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G. Radiative redistribution experiments

In Sec. II.C.3 we discussed the redistribution by fre-
quency of radiation when it is absorbed and then reemit-
ted by collisionally perturbed atoms. There we showed
that recent theoretical developments conclude that the
absorption, emission, and radiative redistribution profiles
are closely related, but that the polarization of the redis-
tributed radiation may carry more information about the
transfer of excitation between excited-state sublevels than
we could obtain through more conventional experiments.
Although all of the experiments we have discussed that
involve fluorescence of optically excited vapors fall into
this category, we want to point out here those experi-
ments that were particularly designed to reveal informa-
tion about the redistribution process.

Carlsten, Szoke, and Raymer (1977) and Carlsten and
Szoke (1976a, 1976b) reported measurements of the spec-
trum of redistributed fluorescent radiation with nitrogen
laser-pumped dye laser excitation of Sr (\Sy-'P;) in Ar at
densities of the order of 4x 10!” atomscm™3 to 2x 10"’
atomscm 3. They observed that the Rayleigh fluores-
cence signal was Lorentzian as a function of detuning
from the unperturbed line frequency, and they were able
to measure the ratio of intensities of the total Rayleigh
and redistributed fluorescence.

Raymer and Carlsten (1977) observed Raman and
collision-induced fluorescence from TI (6p 2P, 3/:-
7s2S,,,) perturbed by Ar. In addition to detecting
stimulated emission in the forward direction, they also
measured the ratio of collision-induced fluorescence to
Raman scattering for a right-angle geometry. According
to the results we have discussed, in particular those of
Nienhuis and Schuller (1977), the ratio as a function of
detuning should be the same as the emission line shape,
yet they report a discrepancy in shape, increasing with
Av, in comparison to the conventional measurements of
Cheron, Scheps, and Gallagher (1976). The population
factors in these two experiments may be different, how-
ever.

Recently, a measurement of the -collision-induced
fluorescence spectrum for the TIl-Ar system was made by
Raymer, Carlsten, and Pichler (1979). They obtained the
total fluorescence intensity as a function of laser detun-
ing and used the ratio with the Raman intensity at each
frequency to compare with conventional Tl emission ex-
periments. The shape of the spectral distributions were
exactly identical except in the extreme red wing, where
population effects must be taken into account. The ab-
solute strength was uncertain, although apparently
within a factor of 2 of the absolute strength obtained
from the emission spectrum.

The degree of depolarization in the redistribution spec-
trum of TIl, as a function of Ar density, has been studied
by Thomann, Burnett, and Cooper (1980). They found
high polarization in the low-pressure limit for the line
wings, agreeing with the trend in the molecular collision
predictions of Lewis, Salter, and Harris (1981).
Comprehensive experimental studies for other transitions
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or atom pairs of the spectra and polarization of redistri-
buted radiation have not been reported.

IV. APPLICATIONS OF LINE-SHAPE STUDIES
TO SPECIFIC PROBLEMS

A. Determination of interatomic potentials

We cannot foresee any basic limitation which should
prevent major improvements of accuracy in the immedi-
ate future. If this can be realized we believe this will be
the most accurate method presently available for learn-
ing these interaction potentials and perhaps many others
as well.

—Hedges, Drummond, and Gallagher, 1972

On both empirical and theoretical grounds spectral
line broadening depends on the statistics of gaseous mix-
tures, the classical and quantum mechanics of atomic
collisions, and the interactions between the radiating
atom and one or more perturbers. When all other fac-
tors can be regarded as well understood, then experimen-
tal observations of width, shift, and asymmetry, or of
complete line profiles, can be used to determine the po-
tentials. The details of the analyses required were
presented in Sec. ILF.5 for impact broadening, and in
Sec. IL.LF.4 for line-wing spectra.

The use of impact broadening has had the widest ap-
plication, usually with an interpretation based on the as-
sumption of a Lennard-Jones differences potential. As
we noted, without temperature dependence or line-wing
spectra, such determinations are ambiguous and certainly
sensitive only to interactions at very long range.
Nevertheless, they produce for excited states additional
information about the interactions. Many of the papers
referred to in Table V provide Lennard-Jones potential
constants determined in this way.

An observation of the line wing is in principle a more
effective way of determining the interaction. For exam-
ple, the extensive measurements of Hedges, Drummond,
and Gallagher (1972) for Cs (6s-6p)-Xe illustrate how the
individual potentials can be traced without assumptions
on the analytic form of the potential. Again, we sum-
marize in Table XIII some systems for which wing spec-
tra have yielded molecular potentials. The measurements
are confined generally to interactions with noble gases.

There remains a question of the reliability of these
far-wing results. In the case of the sodium 3s-3p reso-
nance transition, York, Scheps, and Gallagher (1975)
have measured the fluorescence spectrum to determine
potentials for interactions with noble gases. The poten-
tials also have been determined from laser fluorescence
experiments by Smalley et al. (1977) for Na-Ar and by
Ahmad-Bitar, Lapatovich, and Pritchard (1977) for Na-
Ne in which molecular spectra of bound states for the
A?1-X%3 transitions were detected. The molecules were
created by supersonic expansion of the gas into sodium
vapor, which gives a molecular excitation temperature of
less than 1 K. In the Na-Ne case the line-wing spectra
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TABLE XIII. Potentials from line wings.

Separation

States Gases (A) Reference
Li 2s and 2p Ar,Kr,Xe 2-5 Scheps et al. (1975)
Na 3s and 3p Ar,Kr,Xe 2.6—-44 York, Scheps, and Gallagher (1975)
Rb 5s and Sp Ne,Ar,Kr,Xe 2.8-—5.5 Drummond and Gallagher (1974)
Sr 5p 'P, Ar,Xe 5—10 Harima et al. (1981)
Cs 6s and 6p He,Ne,Ar,Kr,Xe 3.5—6 Hedges, Drummond, and Gallagher (1972)
Cs Tp Py, Xe 7—-20 Kielkopf and Allard (1980)

Sp p 172 Xe 7—-30

9 2P, ), Xe 12—40
Ba 7p 'P; Xe 8—20 Kielkopf (1978)

8p 'P, Xe 12-25

9 'P, Xe 10—30

10p 'P, Xe 10-—-35

11p'P, Xe 10—40
Tl 7s and 7p He,Ne,Ar,Kr,Xe 2.8—5.2 Cheron, Scheps, and Gallagher (1976)

did not show pressure dependence other than linear scal-
ing, and there was no measurement of temperature
dependence. Consequently, no potential was deduced,
and no direct comparison can be drawn with the well
depth and radius found by Ahmad-Bitar, Lapatovich,
and Pritchard.

For argon broadening a more positive comparison can
be drawn. The molecular-beam observations of Smalley
et al. (1977) were fitted by Goble and Winn (1979) to ob-
tain an analytical potential as illustrated in Fig. 43 for
A%l ;,. The discrepancy is only of the order of 30
cm~! out of a well depth of about 572 cm™!, which is
within the expected error of the line-shape data due to
the validity limit of the statistical theory. The more re-
cent scattering measurements of Diiren and Groger
(1978, 1979) give excited-state well depth of 559 cm~™!,
in excellent concurrence with the other two measure-
ments.

The line-wing experiments also did not independently
determine the position of the potential-well minimum,
but rather fitted calculated ground-state potentials. So
the horizontal displacement in Fig. 43 might be attribut-
ed to an uncertainty in the calculated ground state.

It is probably safe to conclude that for broadening by
argon, krypton, and xenon the potentials derived from
analyses of far line wings are reliable within about 30
cm~!. For helium there are problems, which we have
already discussed in Sec. IIL.LE.2. Broadening by neon, as
an intermediate case, yields potentials of unproven relia-
bility.

Ahmad-Bitar, Lapatovich, and Pritchard draw a com-
parison between the molecular-beam results for Na-Ne
B?3, the analysis of sodium-neon line-core broadening
by Lwin, McCartan, and Lewis (1976), and the near-wing
and core observations of McCartan and Farr (1976). In
this case the beam experiment indicated a level bound by
2.44+0.8 cm~!. This observation was inconsistent with
the conclusion of Lwin and co-workers that the actual
potential is more repulsive than the calculated pseudopo-
tentials of Baylis (1969) and of Pascale and Vande-
planque (1974), and with the conclusion of McCartan
and Farr (1976) that the potential well was less than 0.5-
cm~! deep. If anything, these comparisons point out the
uncertainty involved in interpreting line-core observa-
tions in terms of interatomic potentials.

Spectroscopically determined potentials for diatomic
excimer molecules, systems such as Cs-Xe or Tl-Hg, are
useful for the determination of the properties of

2 — T T T T electrical-discharge excimer lasers. The subject is sur-
Te veyed by Rhodes (1979) and in the article by Gallagher
~; oF '70 T (1979) which deals specifically with the study of such ex-
= oo cimer system by line-shape spectroscopy. Rostas (1981)
€ oL Molecular beam 7168 S also presents a summary of work on alkali —rare-gas ex-
& & cimers in which almost all the physical information is
g 4k Profile 166 E derived from studies of the line profiles.
<t
-~
& -6 1 1 1 I 1 7164 |

5 6 7 8 9 10 ] B. Neutral-atom line broadening

R (bohr)
FIG. 43. Comparison of potentials for Na (3p 2P, ,)-Ar deter-
mined by molecular beam (Goble and Winn, 1979) and line
profile (York, Scheps, and Gallagher, 1975). Also compare to
Fig. 12.
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in stellar atmospheres

A strong metallic line in the solar spectrum will be sa-
turated at the center, and as a consequence the line wings
determine the apparent width of the absorption line,
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which also depends on the oscillator strength of the tran-
sition and the abundance of the element in the solar at-
mosphere. The line wings are determined in large part
by collision broadening by neutral hydrogen. In a typi-
cal solar-model atmosphere (Gingerich et al., 1971) at an
optical depth of 1.0, the temperature is 6390 K and the
gas density is 3.2X 1077 gmcm™3, or about 1.9x 107
atomscm 3. The effect of the relatively small density is
offset in large part by the high temperature. Similar
conditions occur in all late-type stars, and the analysis of
metallic element abundances in these stars depends on
knowledge of the collision broadening. Indeed, uncer-
tainty over the magnitude of the broadening is still a ma-
jor handicap for the use of stellar line profiles in the
study of physical processes in stellar atmospheres and
the determination of chemical abundances (O’Neill and
Smith, 1980a, 1980b; Cowley, 1970; Smith and Raggett,
1981).

In our discussion of shock tubes for neutral-atom
studies in Sec. III.A.4.d we saw how few measurements
there are under conditions that promote the total dissoci-
ation of molecular hydrogen and that maintain a high
gas temperature. As a consequence, our laboratory em-
pirical knowledge of the required line-broadening rates is
extremely limited. The problem has recently been sur-
veyed by Pagel (1971), who considers the general mea-
surement of stellar line profiles as a source of astrophysi-
cally significant information, and Lwin, McCartan, and
Lewis (1977), who consider the extrapolation of
temperature-dependent broadening by atomic hydrogen
from available data. Although, it is still not uncommon
to use some type of scaled van der Waal’s interaction to
predict broadening in the stellar case, both authors point
out that there is considerable evidence that this is simply
an unreliable approximation.

To offset this problem there have been a number of
theoretical efforts to calculate the broadening, particular-
ly of iron by atomic hydrogen. Some recent papers are
Brueckner’s (1971) theory and tables as a function of n*,
the extensive tabulations of Deridder and Rensbergen
(1974, 1976) based on the Fermi-Roueff potential, the
calculations of Roueff for sodium lines (1974, 1975), and
the analytical formulas given by Edmunds (1975) and by
Irwin (1979). The agreement of any of these theories
with empirically deduced damping constants for solar
iron lines does not seem to be exceptional, and errors of
an order of magnitude are possible.

There is certainly a very strong need for laboratory
measurements of some sort and for additional calcula-
tions, particularly with regard to the determination of
hydrogen-metal atom potentials. One possibility for the
near future is the systematic study of pressure broaden-
ing in hydrogen shock tubes with the assistance of array
detectors such as the Reticon. Recently, O’Neill and
Smith (1980a, 1980b) have looked into the usefulness of
an analogy between broadening by helium and broaden-
ing by hydrogen. Helium is of course much easier to
work with in the laboratory, and in appropriately
designed absorption cells adequately high temperatures
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can be obtained to simulate late-type stars. They use ob-
served helium broadening to deduce C;, for a Lennard-
Jones potential, which they then apply to hydrogen
broadening. For example, they predict a half-width of
the 6102 A calcium line broadened by hydrogen at 5000
K of 1.03x107" cm~!/cm™3, compared to O’Mara
(1976) with a value of 1.35X 107" cm?, and to Deridder
and Rensbergen (1976) with 0.80%10~!° cm?. The best
empirical solar value is 1.27X 107! cm? The O’Neill-
Smith semiempirical value and O’Mara’s calculation
both agree with the solar value, but the Deridder-
Rensbergen calculation does not. The van der Waal’s in-
teraction in this case predicts a broadening of only
0.56x 10~ 1° cm?, almost three times too small. In addi-
tion to obtaining reasonable scaled values of the broaden-
ing rates, they have been successful in recognizing cases
where impurities in configuration assignments lead to
unexpected broadening rates (Smith and Raggett, 1981).

Since observations of laboratory spectra, even for sys-
tems such as cesium-xenon that do not have direct astro-
physical application, can be used to perfect broadening
calculation methods and to study the process of radiative
redistribution, which is of even greater astrophysical use-
fulness, the solution of the hydrogen-broadening problem
would follow from reliable potential calculations such as
those of Lewis, McNamara, and Michels (1971) for Na-
H. Direct observation of hydrogen broadening in the
laboratory at temperatures of the order of 5000 K is still
needed.

C. The problem of practical wavelength standards
and pressure shifts

Practical light sources for wavelength standards, such
as the iron hollow cathode (Crosswhite, 1975), the urani-
um hollow cathode (Palmer, Keller, and Engleman,
1980), and the thorium electrodeless source (Giachetti,
Stanley, and Zalubas, 1970) must always contain some
buffer gas to carry the initial electrical discharge and to
insure stable operation. Filling pressures of helium,
neon, or argon at room temperature may be as low as 1
or 2 torr, or as high as 20 torr. Since these secondary
standards are referenced to the primary length standard,
they become effectively the tool by which wavelengths,
and hence energy levels and ionization potentials, are
measured in atomic spectra, and possible shifts in these
standard wavelengths due to foreign-gas pressure are
very important.

Some expected characteristics of the pressure shifts
can be gleaned from the known behavior of alkali-metal
lines. Sodium (for instance, the 3s2S;,,-3p *P,,, transi-
tion) shows shifts of + 0.0006, —0.0009, and + 0.0021
cm~! for helium, neon, and argon, respectively, at 450 K
and 10 torr. These would be small but significant effects
for standard lines, and similar shifts can be expected in
other atomic transitions between low-lying levels.
Giachetti, Stanley, and Zalubas found shifts in thorium
spectra of the order of 0.0025 cm~! between different
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light sources. They concluded that the effects were con-
sistent with different filling pressures. From the alkali
results in Table V we can see that shifts for argon are
often larger than shifts for helium and neon. Argon
shifts are also usually to lower energy, while helium
shifts are usually to higher energy. Of these gases, argon
with a large red shift is the worst choice, and neon is a
satisfactory compromise, but the sign of its shift is not
very predictable. For low-lying transitions we expect
that filling pressures less than 10 torr will produce line
shifts less than 0.001 cm~!. Nevertheless, there are no
studies of the effect of foreign-gas pressure on the most
commonly used wavelength standards.

The recent iodine atlas (Gerstenkorn and Luc, 1978)

reports standard spectra for I, with no filling gas at its
own very low vapor pressure. Although the determina-
tion of the reference wavelengths reported there depend-
ed on the transfer of standardization with a uranium
hollow-cathode source and krypton fill gas, no signifi-
cant systematic errors are expected above the +0.006
cm~! accuracy of the tables. The uranium standards,
now also of interest for laser spectroscopy because of
their use with optogalvanic detection, are based on com-
mercial uranium hollow-cathode lamps filled with about
5 torr of neon. With the possibility of different buffer
pressures caused, for instance, by cleanup as the lamps
age, or of different fill gases in lamps of other manufac-
ture, some dependence of the wavelengths may be expect-
ed. The upper levels in question are usually less than
halfway to the ionization limit, so the effects should
hardlly be larger than the quoted accuracy of +0.003
cm™ .
Pressure shifts are much more significant for higher
transitions. Highly excited atoms are more easily per-
turbed by collision, and when n* is ‘as large as five, the
shifts may be an order of magnitude larger than the ex-
ample given above (Kielkopf and Knollenberg, 1981).
Consequently wavelength measurements of transitions
for high series members must be made at very low pres-
sure. An example of the effect of 10 torr of helium on
the determination of np 2P, levels in cesium for n from
7 to 27 has been given by Lorenzen and Niemax (1979).
They compared their low-pressure spectra (referenced to
an iron hollow cathode) with those obtained by Kratz
(1949), who reported measurements at a pressure of 10
torr. Discrepancies as large as 0.2 cm~! were found,
large enough they felt to infer that Kratz’ absorption cell
was actually filled at 19 torr instead of 10. These
energy-level errors and corresponding ionization potential
discrepancies carry through to the 1971 revision of the
NBS Atomic Energy Levels (Moore, 1971), and probably
are also important for other alkali and alkaline-earth ele-
ments for which many excited energy levels have been
measured under similar conditions.
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