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A review is given of recent theoretical studies devoted to the problem of generating radiation fields that
exhibit the opposite of the well-known bunching of photons observed in light from thermal sources, the
so-called antibunching effect. It is made clear that this phenomenon reflects the corpuscular nature of
light and, hence, cannot be interpreted in terms of classical electrodynamics, needing, instead, the
quantum-mechanical formalism for its description. It is shown in some detail that nonlinear interaction
mechanisms like multiphoton absorption and parametric three-wave interaction are suited to change the
photon statistical properties of incident (in most cases coherent) light such that the output field will be
endowed with antibunching properties. Special emphasis is given to the problem of correctly specifying
the dimensions of the mode volume occurring in the usual single-mode treatment of the field, which is, in
fact, of great practical interest, since the magnitude of the antibunching effect is detern ined by the in-
verse average number of photons contained in that volume. In a later section it is pointed out that de-
structive interference with a coherent reference beam provides a means of (a) effectively enhancing pho-
ton antibunching that is already present in. a high-intensity field, through reduction of the intensity, and
(b) transforming phase fluctuations produced in a Kerr medium into antibunching-type intensity fluctua-
tions. On the other hand, there exists a way of directly generating light with antibunching properties,
the physical mechanism being resonance fluorescence from a single atom. The main features of this
technique, both theoretical and experimental, are outlined, including a discussion of the first experimental
results obtained a few years ago.
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I. INTRODUCTION

Without exaggeration, one can say that the advent of
fast photoelectric detectors opened a new area of experi-
mental optical research by making fluctuation phenome-
na occurring in optical fields accessible to observation.
The pioneering work in this field has been done by R.
Hanbury Brown and R. Q. Twiss (1956), who for the
first time measured intensity correlations in a light beam
originating from a thermal source, thus stimulating a
good deal not only of experimental but also of theoretical
progress in what is nowadays known as quantum optics.

By the way, it is interesting to note that the investiga-
tions of Brown and Twiss were motivated by a rather
practical need, their goal being an improved version of
Michelson s stellar interferometer, aimed at the elimina-
tion of the disturbing influence of atmospheric scintilla-
tions. While in Michelson's device light from a star is
impinging on two distant mirrors and the reflected
beams are made to interfere [for details see, e.g., Mandel
and Wolf (1965)], Brown and Twiss proposed to focus
the incident light, by means of two large reflectors, onto
two photomultiplier tubes and to measure correlations in
the output currents of the detectors as a physical
equivalent to the fringe visibility in Michelson s inter-
ferometer. In fact, the laboratory experiment of Brown
and Twiss (1956) mentioned above, which contributed so
much to an understanding of the quantum features of ra-
diation, was primarily intended to serve as a dernonstra-
tion of the feasibility of the novel astronomical observa-
tion technique they had in mind.

Later on, photodetectors counting single photons were
also employed in the study of the Brown and Twiss ef-
fect, and not only spatial but also temporal intensity
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correlations became a subject of investigations. Let us
briefly describe a typical experimental device which may
be viewed as the prototype of modern photon counting
techniques. A quasimonochromatic light beam from a
thermal source is divided by a beam splitter into two
mutually coherent parts, each of which is directed to a
separate detector (see Fig. I). What is measured is de-
layed coincidences in the counting rates for both detec-
tors, i.e., those events are recorded when the first detec-
tor counts a photon and the second detector does so ~
seconds later.

The experiment reveals the following feature charac-
teristic of thermal light: The coincidence counting rate,
as a function of the delay time r, exhibits a distinct peak
at v.=0, as shown in Fig. 2. This result indicates a ten-
dency of the photons to arrive in pairs; hence the
phenomenon has been termed "photon bunching. " Since
the coincidences at ~= oo will have a purely random
character, it follows from Fig. 2 that the (nondelayed)
coincidences are in excess of the random ones. It should
be emphasized that the bunching effect is by no means
peculiar from the viewpoint of classical electro-
dynamics —in fact, it reflects nothing else than the inten-
sity fluctuations that are normally present in light fields,
especially in those emitted by thermal sources.

The invention of the laser, which made it possible to
generate radiation fields with almost fantastic properties,
also stimulated renewed interest in photon statistical
studies. Viewed from the theoretical standpoint, the
most striking feature of laser light is its amplitude stabil-
ity (provided the laser is operated in a single-mode re-
gime not too close to threshold). In this respect, laser
radiation differs from thermal light not only quantita-
tively, but in principle. This characteristic property of
laser radiation is revealed in a Brown-and-Twiss —type
experiment which now yields a coincidence counting rate
practically not depending on the delay time. This means
the photon bunching effect has disappeared. Moreover,
one may observe the bunching phenomenon to decrease
more and Inore when, starting from laser operation

IC, (a)/ K t~i

lO'

02 04 = tbp06
FIG. 2. The coincidence counting rate K(~), relative to the
random coincidence counting rate K( oo ), vs delay time ~ for
thermal light of rms width Av. [Theoretical curve, after Man-
del (1963).]

II. PHYSICAI AND FORMAL ASPECTS
OF PHOTON BUNCHING AND ANTIBUNCHING

below threshold, one makes the laser pass the threshold
by continuously increasing the pump power.

One may ask whether those photon statistical proper-
ties exhaust all the possibilities offered, at least in princi-
ple, by nature. Specifically, the question is: May there
exist an effect opposite to the bunching phenomenon
which may be characterized as a deficit, rather than an
excess, of (nondelayed) coincidences with respect to the
random ones? In the framework of quantum electro-
dynamics, the answer is readily given, and it is confirma-
tive. In fact, a lot of quantum-mechanical states for the
radiation field can be specified which would exhibit such
an "antibunching" effect. In particular, the well-known
energy eigenstates for a single-mode field (Fock states),
corresponding to definite values of the photon number,
are of this type. The essential physical question, howev-
er, is how to produce such peculiar states of the field in
practice, or at least in a Gedankenexperiment. This
problem is of fundamental interest, since antibunching
has no analog in classical optics. Hence, this effect
shows up the intrinsic quantum nature of the radiation
field.

The aim of the present article is to review the main
features of recent theoretical studies devoted to the prob-
lem of generating electromagnetic fields with antibunch-
ing properties. Moreover, the feasibility of such experi-
ments will be discussed in some detail, and a brief ac-
count will be given of the first experimental efforts to
demonstrate the antibunching effect.

detector time delay coincidence counter
A. Intensity fluctuations

FIG. 1. Brown-and-Twiss —type arrangement for the observa-
tion of intensity correlations.

Before getting absorbed in the quantum mechanical
formalism needed for a correct description of the anti-
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bunching phenomenon, I shall look at a simplified ap-
proach to photon statistics based on the classical concept
of light waves and, alternatively, on a naive photon pic-
ture. It will provide some insight in the physical essence
of antibunching, and, moreover, suggest possible experi-
mental ways of producing light beams displaying this
phenomenon.

Basic to the description of photocounting in the wave
theory of light is the well-established fact that a photo-
detector responds to the instantaneous intensity I(t) of
the optical field acting on the detector surface. More
precisely speaking, since a finite response time r„» must
be ascribed to any detector, the probability of counting a
photon during a time interval of length ~ p is propor-
tional to the integral of I(t) over that interval. Assum-
ing ~, „to be short compared to the period characteristic
of the duration of individual intensity fluctuations (in
case of thermal light, this time scale is given, by order of
magnitude, by the coherence time, i.e., the coherence
length divided by the velocity of light), we may neglect
the difference between the instantaneous intensity and its
time average over the response time of the detector.

Let us first consider a stationary (however randomly
fluctuating!) field. What can be immediately measured
in this case is the time-averaged counting rate for a pho-
todetector

1 T/2
R =s lim —f I(t)Ct=sI,

T~ oo T —T/2
(2.1)

where $ characterizes the detector sensitivity. According
to the well-known ergodic theorem, the time-averaging
procedure indicated in Eq. (2.1) yields the same result as
averaging over the statistical ensemble representative of
the field.

It should be noted that the present analysis is easily
extended to fields which are periodic in time. Then, the
averages are to be taken over a period.

The experimental setup described in Sec. I (see Fig. 1}
allows one to measure coincidence counting rates for two
detectors. Since the effect of a beam splitter is to divide
the incident beam into two parts with half the (instan-
taneous. ) intensity, respectively, of the original beam,
I(t), we find the coincidence counting rate to be

sK(r) = r„,„ lim — I(t)I(t +r)Ct
4 "'"T T
$2 r„„I(t)I (t +r),
4 resp (2.2)

K (0))K(r) for all r . (2.3)

In fact, this statement immediately follows from the

where r denotes the delay time. [Since K(r) is an even
function of r, we shall confine r to non-negative values
in the following. ]

Now, it is well known in statistical communication
theory that the autocorrelation function I(t)I(t+r) has
an absolute maximum at v.=O; this means the coin-
cidence counting rate K(r) quite generally obeys the in-
equality

simple relation 0&[I(t) I—(t+r)] by time averaging
[cf., e.g., Middleton (1960)].

Separating the instantaneous intensity in its mean
value I and a fluctuating part i (t)

I (t) =I+i (t) (2.4)

and observing that i (t)=0, we may rewrite Eq. (2.2) in
the form

2

K(r)= r„,„[I +i(t}i(t+r)],
4 resp

from which it follows that

(2.5)

K(0)= r„,p(I +i ) ) r„,pI

K(0))K(co) (2.7)

for any stationary field displaying intensity fluctuations.
In particular, Eq. (2.3) predicts K(r) to have a peak at

r=0. Clearly, this behavior of the coincidence counting
rate deserves the name "photon bunching. " Hence it be-
comes evident that the classical wave theory very natur-
ally accounts for the bunching effect. It allows this
phenomenon to disappear only for light which is perfect-
ly stabilized in its amplitude, excluding categorically,
however, the possibility that the opposite effect, i.e., piio-
ton antibunching corresponding to a violation of the in-
equality (2.3), might occur.

When K(r) is a monotonically decreasing function of
r, as in the case of thermal light (see Fig. 2), it appears
natural to take the normalized quantity

K(0)—K( oo )

K(oo)
(2 &)

or, since K(oo)=R' r„» under stationary conditions,
the relative excess coincidence counting rate (with respect
to random coincidences)

K(0)—R' r„»""=r
& 2

+resp
(2.9)

as a convenient measure of the strength of the bunching
effect, the criterion for photon bunching to occur thus
being

=R' Z„,p, (2.6)

where R'= 2sI, according to Eq. (2.1), is the single-

counting rate for an individual detector in the Brown-
and- Twiss —type experiment. Obviously, R '

&resp de-
scribes the random coincidence counting rate.

Note that the more K(0) exceeds R' r„,~, the stronger
the intensity fluctuates. On the other hand, the equality
sign in (2.6) applies only for perfectly amplitude-
stabilized light. This explains why thermal light displays
a pronounced bunching effect, while light from a single-
mode laser does not.

Since we generally can expect that the fluctuations will
become statistically independent when ~ tends to infinity,
we may equate R' r„» and K( oo), which allows us to .

replace the inequality (2.6) by
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r)0. (2.10)

I2 I2I'=
I

~2
I 2

(2.11)

With the observation made above that the antibunch-
ing phenomenon is incompatible with the classical wave
picture, I am led to consider this effect as a manifesta-
tion of a typical corpuscular feature of the radiation
field. In fact, I will show in the following section that
antibunching is no matter of surprise in a classical parti-
cle model.

B. Fluctuating photon numbers

Let us adopt, for the moment, a very simple photon
picture, conceiving the photons to be somewhat like
point-shaped particles.

It appears natural to assume that the probability of a
detector's recording one photon during a time interval

1 1

t ——,~„,„ to t+ —,~„,„ is proportional to the number of
photons n (t) arriving during that interval at the detector
surface. Hence we may write the counting rate, for a
given response time ~„,~, as

R (t) =Pn (t),
where the constant P is the detector efficiency.

(2.12)

On the other hand, we will speak of photon antibunch-
ing when the inverse of (2.10) is true.

In accordance with the majority of workers in the
field of photon statistics, we consider the quantity (2.9)
as the basic one that characterizes the bunching, or anti-
bunching, properties of any radiation field. This conven-
tion is especially attractive for theorists, since it also
makes sense in case of single-mode fields that are the
preferred objects of theoretical studies concerned with
the antibunching phenomenon. Moreover, when based
on Eq. (2.9), the criterion (2.10) allows for a natural ex-
tension of the bunching/antibunching concept in that it
can be applied to an instantaneous state of a nonstation-
ary field, as well. To this end, one has to replace time
averaging by ensemble averaging. It should be noticed
that the averaged values in this case will vary in time.
From the experimental point of view it is worth men-
tioning that a measurement of ensemble averages re-
quires the field to be available in a large number of
"copies" produced by a generating mechanism. (An ex-
ample of such a mechanism is provided by the technique
of cw picosecond pulse generation. )

I should like to emphasize that the significant physical
quantities that can be determined experimentally with a
given degree of accuracy are just ratios of counting rates,
rather than their absolute values. Hence the quantity
(2.8) is closely connected with observation.

It is noteworthy that both the efficiency and the
response time of the detectors cancel out in Eqs. (2.8)
and (2.9); this means the quantity r represents a pure
property of the radiation field. In the classical wave pic-
ture adopted at present, by virtue of Eqs. (2.1) and (2.2),
r takes the form

In general, n (t) will vary in time following the intensi-
ty fluctuations of the field.

While the description of the effect the beam splitter
exerts on a light beam is a trivial matter in case of light
waves, it requires some more attention in the particle
picture. We start from the well-known fact that a beam
splitter either reflects or transmits, with equal probabili-
ty, any photon impinging on it. Hence, it splits a "pack-
et" of n incident photons into two packets (correspond-
ing to the reflected and the transmitted beam) which
contain k and n —k photons, respectively, where k is one
of the numbers 0, 1,2, . . .,n. Which value of k will be
observed in individual circumstances is a matter of
chance. We calculate the corresponding probability
mI, „~ in a purely classical manner, treating the photons
as distinguishable particles interacting independently
with the beam splitter. ' We thus obtain

n
~k, n —k

J

(2.13)

n 1/2

~n)p g p(l —p)" "
k ~k)) ~n —k)2,

k=o-

where p denotes the mirror reflectivity. [See also the review
article by Paul (1966).]

Specifying to a physical situation, where photons are count-
ed, by means of ideal photodetectors, in the reflected and the
transmitted beam, respectively, we immediately find from this
formula (putting p= 2 ) the expression (2.13) for the probabili-
ty of detecting k photons in the reflected and n —k photons in
the transmitted beam.

It should be emphasized, however, that the quanturn-
mechanical formula actually accounts for both the particle and
the wave aspects of light. In fact, since it ascribes a pure
quantum-mechanical state rather than a statistical mixture, to
the combined reflected and transmitted field, it predicts specif-
ic quantum-mechanical correlations to exist between those two
fields which manifest themselves in the capability of the two
waves to interfere. In this context, it is interesting to note that
the beam splitting experiment in question is of the type of the
famous Gedankenexperiment of Einstein, Podolsky, and Rosen
(1935), as recently has been pointed out by Paul (1981).

Moreover, it follows from the above quantum-mechanical
formula that it would be erroneous to suppose that the num-
bers of photons in the reflected and the transmitted beam,
respectively, have definite, though unknown, values in indivi-
dual instances. Instead, they must be considered as being int-
rinsically uncertain. It is the disregard of this specific
quantum-mechanical feature that makes the photon picture
used in Sec. II.B a classical or naive one.

'Since, de facto, photons are neither independent particles
nor distinguishable, one might question the validity of formula
(2.13)~ The latter, however, can in fact be substantiated more
thoroughly. Starting from a fully quantum-mechanical
analysis of light reflection from a plane surface (Brunner, Paul,
and Richter, 196S), Paul, Brunner, and Richter (1966) derived
the following formula that describes the splitting, due to a par-
tially reflecting mirror, of an incident beam (labeled 0) in an
n-photon state, into both a reflected (1) and a transmitted (2)
beam
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respr, p« n (t)[n (t) —I]», (2.14)

where the double brackets indicate averaging over the en-
semble. (When we are dealing with stationary fields, the
ensemble average equals the average over a long time. )

On the other hand, the single counting rate for any of
the two detectors is given by

&'(t) =p« y wk, . kk » =—« n (t) »,
2

(2.15)

and the delayed coincidence counting rate for r ~r„,
reads

K(t;r)=p r„,

«awk�

„(,) kwJ „(,+~) Jk(n j)&&—
k,j

. p2
1 „p«n(t)n (t +r) »resp (2.16)

For growing values of ~, the fluctuations in the photon
numbers at t and t+~ will become uncorrelated, i.e., the
following relation will hold:

K(t;r) =R'(t)R'(t+r)r„„ for r~ ~ . (2.17)

From Eqs. (2.14) and (2.15) we find the relative excess
coincidence counting rate (2.9) to be

( —1)» —«

or

b,n' —«n »
«n »'

where b.n = «n » —«n » is the mean-square deviation
of the photon number.

Adopting the criterion (2.10) we infer from Eq. (2.19)
that the field has bunching properties when

An'& «n », (2.20)

while in the opposite case it displays the antibunching ef-
fect.

Since it is well known that a Poisson distribution ful-
fills the relation (2.20) with the equality sign, we learn
that photon antibunching is an attribute of such fields
whose photon distribution is narrower than a Poissonian.

Moreover, it becomes obvious from Eq. (2.19) that the
antibunching effect will be most pronounced for a beam
with a fixed number of photons, An =0 (It should. be
remembered that the photon number, in the present con-
sideration, refers to a volume in the form of a cylinder
whose base is given by the detector surface and whose
height equals the product of the response time and the
velocity of light. )

An experimental realization of a nonfluctuating pho-

From Eqs. (2.12) and (2.13) follows the nondelayed coin-
cidence counting rate for the two photocounters in the
Brown-and- Twiss —type experiment to be

K(t;0)=p r, ~&&+ wk „kk(n —k) &&

k n —k
wk, —k=P (1 P)— (2.21)

from which it follows that

« k » =pn, « k (k —1)» =p'n (n —1), (2.22)

where k is the photon number in the reflected beam and
where it has been assumed that the original beam im-

pinging on the mirror contains precisely n photons.
When n itself is a fluctuating quantity, Eqs. (2.22)

have to be averaged once more to yield the result

« k(k —1)» =p'« ( —1)» . (2.23)

ton number might be provided by a train of pulses, well
separated in space by equal distances cT, each of which
contains precisely the same number of photons. The
response time of the detector ~, p should obey the in-
equality T)~„,p) Lakt where ht is the pulse duration. If
we measure the time-averaged coincidence counting rates
K(r) (the averaging procedure extending over a large
number of single pulses), the antibunching effect would
become manifest in a deficit of K (0) compared to
K(m T), where m is any positive integer.

Note that the nonavailability of ideal photocounters
(i.e., detectors with 100% detection efficiency) deprives
us of the opportunity of directly checking a statement of
the type "the photon number in either pulse has the
same sharp value. " Even when such a physical situation
might actually be realized, any realistic measurement will
yield a nonzero variance of the number of photons re-
gistered. Hence when speaking of fields that contain a
fixed number of photons, we either have in mind an
idealized situation, in the sense of a Cxedankenexperi-
ment, or are assumed to have gained this information
from a detailed knowledge of the physical mechanism
that generated the field.

It becomes obvious from Eq. (2.18) that the relative
excess coincidence counting rate r is independent of the
detector efficiency, as in the description of photodetec-
tion based on classical electrodynamics. Since a low-
efficiency detector might be thought of as being corn-
posed of an ideal detector and an absorbing material
placed before it, this result leads us to expect that one-
photon absorption leaves the characteristic quantity r in-
variant. In fact, this idea is quickly substantiated more
thoroughly by discussing the situation where, not the in-
cident field, but only part of it, separated from it by
means of a partly reflecting mirror, is directed to the
sensitive area of the photodetector. Actually, the reduc-
tion of intensity achieved in this way is physically
equivalent to that produced by a normal one-photon ab-
sorber. It should be noticed that an essential feature of
any attenuation process is that it introduces fluctuations
in the photon number when the photon number in the
incident field is well defined.

Extension of formula (2.13) valid for a half-silvered
mirror to the case of an arbitrary mirror reflectivity p
gives us the relation (cf. footnote 1)
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1066 H. Paul: Photon antibunching

Hence the photon statistical properties of a light beam,
as expressed by the quantity r, are identical in the in-
cident and the reflected beam. (The same holds, of
course, for the transmitted one. ) As a consequence, it
suffices to study a part of an original beam, taken from
the latter by means of a partly reflecting mirror, in order
to determine the photon statistics in the original beam.
In this context, it should be noted that the effect of an
aperture on a light beam is similar to that of a partly re-
flecting mirror. Our above result then ensures that pho-
ton statistical measurements using detectors with small
sensitive areas, in comparison to the beam cross section,
are representative for the entire beam, provided, of
course, the latter is coherent over its whole cross section.

The physical mechanism underlying the antibunching
phenomenon is most easily understood in the case
hn =0. For definiteness, we consider a train of equidis-
tant pulses with the same (sharp) photon number in each
pulse. Then the reduction of the nondelayed coincidence
counting rate X(0) compared to the coincidence count-
ing rate at a delay time ~=IT that is a multiple of the
difference of the times of arrival for subsequent pulses is
readily explained by the following argument: those spe-
cial events where all the photons contained in one pulse
impinging on the beam splitter arrive at one detector,
with no photons being left to the second detector, do not
contribute to K(0), while they, on the other hand, give
nonvanishing contributions to E(mT) in certain cases,
which makes the latter quantity greater than the former.
Since the events in question become less frequent when
the number of photons n per pulse increases, the anti-
bunching effect will decrease in its magnitude for grow-
ing n.

Most instructive is the special case n =1. Here it is
evident that no coincidences can occur for ~=0, while
some coincidences certainly will appear for r=mT

Comparing bunching and antibunching properties
quite generally, we discover a fundamental difference of
great physical relevance: photon bunching, as displayed,
for example, by thermal radiation, is an intrinsically
macroscopic phenomenon. It persists, as a handsome ef-
fect, in the limit of arbitrarily high intensities. In fact,
since the photons in a (single-mode) thermal radiation
field obey Bose-Einstein statistics [see, for example,
Cilauber (1963b)], b.n equals ((n)) +((n)), and hence
the relative excess coincidence counting rate (2.19) takes
the value r =1, irrespective of the mean intensity of the
field.

The antibunching effect, on the contrary, bears typical
microscopic features, since it disappears for large mean
photon numbers ((n)). Actually, taking into account
the fact that antibunching becomes most pronounced for
hn =0, we find from Eq. (2.19) the optimum value for r
to be

The disappearance of the antibunching effect for
((n })—+ oo is felt as satisfactory, on the other hand, from
a general point of view. Indeed, it is in accordance with
the correspondence principle, which demands that the
quantum-mechanical description of the radiation field
which gives proper account of the corpuscular nature of
light should agree with the classical one in the high-
intensity limit.

Certainly, one of the reasons classical electrodynamics
precludes the possibility of photon antibunching's occur-
ring is that the description of the detection process,
based on the assumption that a photodetector responds
to the instantaneous intensity (see Sec. II.A), becomes er-
roneous at very low intensities, since it conflicts with the
energy conservation law. Actually, the detection proba-
bility calculated in this way does not vanish for a field
that contains less energy than that of a single photon hv.
Specifically in the Brown and Twiss experiment the
beam splitter will divide a classical wave packet with en-

ergy hv into two equal parts, each of which, according
to the basic assumption mentioned, might trigger a pho-
tocount with a small but nonzero probability. Hence the
classical description of the photoelectric detection pro-
cess allows for coincidences in situations where the ener-

gy conservation law strictly forbids them. A theory
based on the photon concept, on the contrary, properly
accounts for energy conservation and, hence, provides a
correct description of photocounting measurements.

However, this is not the whole story. Even when the
description of the photoelectric detection process, in the
framework of classical electrodynamics, would be modi-
fied such as to take proper account of energy conserva-
tion, the wave picture would, nevertheless, be in irrecon-
cilable conflict with the photon concept. This is easily
seen by asking what will happen when a single photon
(in terms of the wave theory, a single pulse with energy
hv) impinges on a beam splitter. Since the wave theory
associates the energy with the electric and magnetic field
strengths, which involves the concept of the energy's be-
ing continuously distributed in space, it predicts that two
pulses with energy —,hv stored in each of them will

emerge from the beam splitter. In the particle picture,
on the contrary, the energy of a photon is an indivisible
quantity, which implies that the photon will be either re-
flected or transmitted as a whole. It then follows from
the mere fact that photodetectors respond to the field
only when they are supplied with the full energy of one
photon hv that such instruments intended to measure the
reflected and transmitted part, respectively, of the origi-
nal photon, according to the wave theory will never reg-
ister a count, whereas the particle theory predicts a sin-
gle count to be triggered, with a certain probability, at
either the first or the second detector. Hence, convincing

r = — (for hn =0) . (2.24)

Hence, any effort to measure the antibunching effect can
be successful at moderate photon numbers, say
((n )) & 100, only.

Of course this does not mean that classical wave theory is
actually ruled out, since the above-mentioned splitting of wave
packets (including those which contain only a single photon)
must be invoked, in any case, to explain the interference phe-
nomena.
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evidence against the wave picture is already provided by
detecting a photon at all in the circumstances under con-
sideration.

Actually, however, such an experiment is extremely
difficult to perform —in fact, it has not been realized
hitherto Due to the practical impossibility of generating
a light beam consisting of single photons well separated
from each other so that they will fall on the beam
splitter one after the other, but never two, or even more,
jointly (i.e., within the response time of the detector).
Neither light from a thermal source nor laser radiation
meets this requirement. Interestingly, light of the
desired type would very distinctly display the antibunch-
ing effect, since, obviously, the nondelayed coincidence
counting rate, unlike the delayed one, would vanish.

On the other hand, the antibunching effect observed in
those specific circumstances would confirm the particle
concept of light and contradict the classical wave theory
by the mere fact that delayed coincidences are observed
at all, since the latter clearly witnesses the triggering of
single counts, which contradicts the wave picture, as
pointed out above. The typical feature of the antibunch-
ing phenomenon as expressed by the inequality
X(0)(X(ao), however, will not be felt as surprising in
the ideal case under consideration, because it is a direct
consequence of the energy conservation law. Neverthe-
less, the present discussion underlines how intimately the
antibunching phenomenon is connected with the corpus-
cular aspect of light.

By the way, the above result that the bunching effect
strictly disappears, irrespective of the intensity, in case of
a Poisson-type photon distribution, leads us to associate
with a classical amplitude-stabilized wave a fluctuating
photon number governed by Poisson's distribution law.
In fact, this suggestion is fully confirmed in the
quantum-mechanical formalism, since the photon statist-
ical properties of Glauber states, being the quantum-
mechanical analogs of classical waves with fixed phases
and amplitudes, are precisely of this kind [cf. Glauber
(1963)].

After all, an experimental investigation of the anti-
bunching phenomenon will meet considerable obstacles,
the most serious being that none of the light fields gen-
erated by present-time sources (including lasers) displays
this effect. Hence it will be necessary either to change
the photon statistical properties of existing fields .g.,
laser beams —in a definite way, through an appropriate
interaction with matter, or to generate light of the
desired type directly by controlling the emission process.
The first possibility is provided, at least in principle, by
nonlinear processes like two-photon absorption or second
harmonic generation. In fact, one can expect that such
processes tend to smooth fluctuations in the photon
number even when the interaction starts from Poisson-
distributed photons. The discussion of this problem will
constitute one of the main parts of the present article.
The second possibility, radically different from the first,
utilizes the fact that a single atom being continuously
pumped (e.g., by electron colhsions or optically via an

excitation of higher-lying levels which relax to the upper
level of the atomic transition of interest) emits only one
photon in every transition. Since the pumping mechan-
ism needs a finite time to excite the atom again after an
emission has taken place, the nondelayed coincidence
counting rate must vanish, while the delayed one will be
different from zero. Indeed, the field generated by a sin-
gle atom would be a realization of the ideal light beam
which plays an essential role in the above-mentioned ex-
periment that would provide the most direct proof of the
corpuscular properties of light.

The problem of creating experimental conditions
which allow observance of light preferentially from a
single atom over a longer period of time has been solved
by Kimble, Dagenais, and Mandel (1977) [see also
Dagenais and Mandel (1978)] by utilizing an atomic
beam technique. Actually, they studied resonance
fluorescence rather than spontaneous emission. This
first experimental effort to demonstrate the antibunching
effect will be described in Sec. VII.B, while the theoreti-
cal background for the experiment is discussed in Sec.
VI.

Finally, it should be emphasized that the photon sta-
tistical analysis presented in this section, however crude
the adopted photon picture may appear, is in agreement
with a quantum electrodynamical treatment. This will
be shown in Sec. II.C.

Before we turn to that, let us observe that, since we
used a perfectly classical photon concept, our considera-
tions provide a model for the antibunching effect in the
framework of classical mechanics. Specifically, I should
like to propose the following realistic device. A "gun"
emits, at equidistant instants, packets containing always
the same number of balls which, however, differ a little
in their propagation direction, the latter being distributed
at random over a certain solid angle. The balls impinge
on a beam splitter .g., a wedge formed by two reflect-
ing plates and positioned such that on the average half
of the incident balls are reflected by the first plate, and
the other half by the second one. The measurement
would consist of counting the number of balls, n'P' and
ng', respectively, in the two packets into which the in-
cident packets labelled p are split (p=l, 2, . . .). From
these findings the averages (( n '('n P' )) and
({,n P'n'P+" )) are to be calculated. The former will be
smaller than the latter, and this outcome can be inter-
preted as a manifestation of the antibunching
phenomenon.

C. Quantum-mechanical description

The beam splitter employed by Brown and Twiss (see
Fig. 1) may be considered as an elegant experimental
solution to the problem of placing two detectors at prac-
tically the same position r within the original beam.
Hence the theoretical description of the Brown-and-
Twiss —type experiment described in Sec. I essentially
reduces to the determination of the probability that the
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first of two detectors situated at the same position will
count a photon during the time interval i to t+4t,
whereas the second detector will do the same during the
time interval I;+w to t+~+dt. Using lowest-order per-
turbation theory, Glauber (1965) has shown this proba-
bility, for ideal detectors, to be given by

dw' '=s (E' '(r t)E' '(r, t+r)

R '(t) =—G' "(t,t) .
2

(2.31)

From Eqs. (2.28) and (2.31) the relative excess coin-
cidence counting rate [cf. Eq. (2.9)] follows:

which implies that the single counting rate in the
Brown-and- Twiss —type experiment is

XE' +'(r, t+ r)E'+'(r, t) ) (dt) (2.25)

E' '(r, t) = g a~(r, t)qq (2.26)

where the function a~(r, t) is the (appropriately normal-
ized) classical vector potential for the mode labeled A, ,
and q~, q~ symbolize the familiar photon creation and
annihilation operators. The representation (2.26) corre-
sponds to the interaction picture; in particular, the
operators q~, q~ are time independent in the case of free
fields presently under consideration. For simplicity, we
have assumed the field to be linearly polarized.

The quantum-mechanical expectation value in Eq.
(2.25) represents a special case of the second-order corre-
lation function for the field, which is generally defined
as (Glauber, 1963a)

6 (r&, t&, r2, t2, r3, t3, r4, tz)(2)

=(E' '(r„t, )E' '(r2, tz)E'+'(r3 t3)E'+'(r&, t4))

(2.27)

Hence the delayed coincidence counting rate in the
Brown-and-Twiss —type experiment can be written as

SK(t;r) =— rG'"(t, t+r, t+r, t),

where the second-order correlation function refers to the
field impinging on the beam splitter.

It should be observed that the normal ordering of the
operators in Eq. (2.25) ensures the energy's being strictly
conserved. Specifically, dm' ' vanishes exactly for a field
containing precisely one photon. It is in this respect that
the quantum-mechanical formalism proves superior to
the classical wave theory.

The counting rate for one detector, on the other hand,
is determined by the first-order correlation function
which generally reads

In fact, the probability of a detector's registering a pho-
ton in the time interval t to t+dt is [cf Glauber (. 1965)]

du '"=s(E' —'(r, t)E'+'( r, t) )dt

=so"'(r, t;r, t)dt, (2.30)

Here, s characterizes the detector sensitivity, and E'+'
and E' ' denote the positive and negative frequency
part, respectively, of the operator for the electric field
strength

E'+'(r, t)= gag(r, t)qg,

p= I cx] A2, . . . cxi, tx2. . .

)c, (. . ., cKp, cx)
~

d cx)d Ap. . . (2.33)

with a non-negative I' function. Here,
~

a ~, az, . . . )
denotes a direct product of Glauber states

~
aq)q for the

modes labeled A, , and the integration runs over the com-
plex ca~ planes for, in principle, all modes of the radia-
tion field (A, =1,2, . . .).

The complex number ca~ corresponds to the complex
amplitude for the A,th mode in the classical description,
and the I' function can be interpreted as a classical dis-
tribution function (provided it is non-negative, which
therefore has been assumed above).

By virtue of the we11-known forrnal properties of the
Glauber states (Glauber, 1963b),

q ~a)=a ~a),
(a

i
q+ = (a

i

a*, (2.34)

we find from Eqs. (2.26) the relations

E'+'(r, t)
~
a„a2, . . . ) =8'(r, t)

~
a),ap, . . . )

(. . . ,az, a~
~

E' '(r, t)=(. . . ,a2, n&
~

g"(r, t), (2.35)

From the experimental point of view, an investigation per-
formed under nonstationary conditions would be rather trou-
blesome, since a great number of similar experiments, a11 start-
ing from the same initial conditions, would then be needed for
a measurefnent of the quantum-mechanical expectation values
occurring in Eq. {2.32). Moreover, the random coincidence
counting rate [ sG"'(t, t) j r, „could be —determined only in-

directly in this case, via a measurement of the single counting
rate —,

' sG"){t, t).

where the common argument r has been omitted for the
sake of simplicity. It should be observed that the general
expression (2.32) applies also to nonstationary condi-
tions.

As already mentioned in Sec. II.A, the sign of r indi-
cates whether the field has bunching (plus sign) or anti-
bunching (minus sign) properties.

In the framework of quantum electrodynamics, the
nonclassical character of the antibunching effect becomes
obvious from the fact that the latter does not appear in
those fields which possess classical analogs. Formally,
fields of such a type are characterized by the property of
their density operators p to allow for a I' representation
(Glauber, 1963b)
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where

where

I (t)=—
~

&(t)
~

(2.38)

and the symbol (( )) denotes averaging with the
weighting function I'. Obviously, we thus have
recovered our previous result (2.11), which relies on a
perfectly classical wave concept. Hence we arrive at the
conclusion that a field which is "classical, " in the sense
that it allows for a P representation with a non-negative
P function, cannot possess antibunching properties.

It should be noticed, however, that the quantum-
mechanical description of those fields differs basically
froin the classical one by predicting the photon numbers
to be fluctuating in any case. Even for a single-mode
field in a definite Glauber state, the photon number is
not sharp, but instead follows Poisson's distribution law.
It is just this property of "classical" fields which recon-
ciles the fact, expressed by Eq. (2.30), that a photodetec-
tor on the average responds to the mean intensity with
the energy conservation law. Indeed, however small the
mean intensity may be in a field characterized by a
Glauber state, there exists a nonzero probability that one
photon will be present; moreover, even the probability of
finding two, three, or more photons does not vanish ex-
actly.

D. Single-mode fields

It is always tempting for a theorist to restrict his
analysis to single-mode fields, since this idealization
drastically simplifies the theoretical description. Specifi-
cally, the relative excess coincidence counting rate (2.32)
takes in this case the form

(q+'q'& —(q+q &'

(q+q)'
(2.39)

This relation is formally identical to the previous formu-
la (2.18) obtained by rather intuitive arguments. There is
seemingly a difference in the physical interpretation,
since the operator q+q describes the number of photons
contained in the mode volume V, whereas the quantity n
in Eq. (2.18) is the photon number with respect to the
volume Vd„define by the detector parameters (the sen-
sitive area and the response tiine, see Sec. II.B). Howev-
er, we have seen in Sec. II.B that a measurement on a
"representative" part of the original beam (taken from
the latter, in the model calculation, by means of a partly
reflecting mirror) suffices to determine the quantity
(2.18), where n refers to the original beam. A similar

I'(r, t) = g aI„(r,t)aI„ (2.36)

has the meaning of the positive frequency part of the
corresponding classica1 electric field strength. Hence Eq.
(2.32), together with Eq. (2.33), gives us

((I'(t) )) —((I(t) ))' (2.37)

bI(r, t) = g 1 II,a I„(r,t) . (2.40)

Here the essential assumption was made that the yI~ are
elements of a unitary matrix. Note that, anyway, one
row of this matrix can be chosen arbitrarily (the only re-
striction being the normalization condition), i.e., we have
the freedom to give at least one of the wave packets a
form we like.

Introducing now operators Qi, Qi+ through the defini-
tions

QI = g 'YlkqA, ~ Ql = g Xikqi,
A, A,

(2.41)

one may decompose the positive and negative frequency
parts of the operator for the electric field strength (2.26)
in the form

E'+'(r, t) = g bIQI, E' '(r, t) =g bI"QI+ .
I l

(2.42)

Due to the unitarity of the matrix (yii), the operators
QI, QI have the same formal properties as qI„,q I+„.

Hence they can be interpreted as photon annihilation and
creation operators as well, the photons now being of non-
monochromatic type, however.

Specializing to the case of only one nonmonochromat-
ic mode being excited, we may disregard the remaining
(nonmonochromatic) modes, since they will not con-

separation is provided, when one is dealing with a
single-mode field, by using a detector with Vq,«V.
Indeed, in such a field any correlation, if present, extends
over the whole mode volume V, and hence the whole in-
formation on the photon statistics can be extracted from
a subvolume of V already. Thus we see that there is also
a perfect physical equivalence between Eqs. (2.18) and
(2.39), provided detectors are used for which Vd„& V. In
particular, Eq. (2.39) reproduces the result (2.24) indicat-
ing that antibunching is a 1/n effect, where n is the
mean number of photons in the mode volume.

The question arises as to the physical conditions under
which a single-mode description will be justified. Usual-
ly, one associates a single-mode excitation with a field
existing in a suitable cavity. Particularly, it is in this
sense that one speaks of single-mode laser operation.
However, in the physical processes we shall study later
on, we shall generally deal with fields traveling in space.
Nevertheless, a single-mode formalism might be em-

ployed in this case, too.
From the formal point of view, the situation becomes

most transparent when we consider trains of pulses
which do not overlap in space—as they are generated in
picosecond pulse lasers, for example. A very elegant
quantum-mechanical description of a coherent single
pulse is due to Titulaer and Glauber (1966), who intro-
duced the concept of nonmonochromatic modes. In the
following, I give a short account of their procedure.

Starting from the familiar decomposition of the radia-
tion field into monochromatic modes [see Eqs. (2.26)],
they defined nonmonochromatic classical wave packets
as superpositions of monochromatic waves ai (r, t)
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tribute to any measurable quantity which, as a general
rule, is represented by an expecta. ion value for normally
ordered products of photon creation and annihilation
operators. In perfect analogy to the familiar case of a
monochromatic mode, we find a complete system of
eigenstates for the photon number operator Q+Q by re-
peatedly applying the photon creation operator to the
vacuum state

~

n }= (g+)"
~

0} (n =0, 1,2, . . . ) .
1

n!
(2.43)

Thus the formal description of single-mode states of the
field is the same for both monochromatic and nonmono-
chromatic modes. In particular, Eq. (2.39) holds also in
case of a wave packet corresponding to a nonmono-
chromatic mode.

For the theorist, wave packets of rectangular shape (in
the direction of wave propagation) are of special conveni-
ence, since they correspond to a monochromatic oscilla-
tion of the field, which, however, lasts only a finite time,
when observed at a fixed position. It is in this way that
contact can be made between theoretical studies in which
the fields are idealized as monochromatic modes (and
most investigations are of this type. ) and realistic devices.

It should be emphasized, however, that the single-
mode treatment of physical processes relies on the as-
sumption that the single-mode description will apply to
the wave(s) involved not only at the beginning, but also
in the course of the interaction process. This means that
it is presupposed that the shape of the wave packet will
not change noticeably during the interaction. This is in
no way a trivial assumption. Consider, for example, the
parametric three-wave interaction that will be studied in
some detail in Sec. IV. When the bandwidth of the in-
cident signal (or idler) pulse exceeds that allowed by the
phase matching condition, the outer parts of the Fourier
spectrum for the pulse will not be affected by the in-
teraction, which gives rise to a change of the pulse
shape. In such a case, the single-mode formalism cer-
tainly does not apply.

A specific feature of the single-mode scheme is that
any correlation produced in the interaction process will
necessarily extend over the whole mode volume —i.e., the
formalism is not capable of accounting for an eventual
generation of temporal patterns on a time scale that is
shorter than the coherence time ~„h——l/c, where l is the
length of the mode volume and c the velocity of light.
Moreover, it should be kept in mind that the strength of
the antibunching effect, by order of magnitude, is given
by the inverse of the mean number of photons contained
in V, and hence critically depends on the dimensions of
V. Consequently, a proper choice of the mode volume,
in specific experimental conditions, is actually of physi-
cal relevance.

Gbviously, this problem lies outside the scope of the
single-mode formalism. It requires a multimode treat-
ment of the field, whose basic features will be described
in Sec. III.G for the case of two-photon absorption.
This analysis will enable us to determine the correlation
time for the antibunching effect and to specify the mode

volume in terms of physical parameters. In preparation,
the basic physical ideas underlying this specification will
be discussed in Sec. III.F.

III. MULTIPHOTON ABSORPTION

A. Remarks on one-photon absorption

In what follows, I shall study the effect two-photon,
or more generally multiphoton, absorption has on the
photon statistics of light, my goal being to demonstrate
that multiphoton absorption provides, at least in princi-
ple, a means of producing light beams with antibunching
properties.

Before that, however, let us briefly consider one-
photon absorption. Restricting ourselves to the linear
absorption regime —i.e., assuming that the number of
atoms that become excited in the course of the absorp-
tion process is small compared to the number of atoms
in the ground state, we may adopt a simple heat-bath
formalism to describe the evolution of the field. When
the latter is assumed to be in a single-mode state, the
problem thus reduces to that of a damped harmonic os-
cillator. Then the equation of motion, in the interaction
picture, reads [cf. Senitzky (1960, 1961), Lax (1966), or
Paul (1969)]

q+ +E+
2

(3.1)

Here ~ denotes the damping constant, and E+ is a fluc-
tuating force (often termed a Langevin force) with the
characteristic properties

(F+(t )F(t ))=0,
(F(t] )F+(t2) ) =K5(t] t2) . —

(3.2)

(3.3)

The expectation value for any product which contains
unequal numbers of operators F and E+, respectively,
vanishes. (In particular, (F) and (F+) are equal to
zero. ) Since the fluctuations are of Gaussian character,
correlation functions of higher order in E+,E can be ex-
pressed in a well-known manner in terms of products of
the first-order correlation functions (3.2) and (3.3) (Wang
and Uhlenbeck, 1945). Combined with Eq. (3.2), this
implies that the expectation value for any normally or-
dered product of operators E+,E vanishes.

Equation (3.1) is easily integrated to yield

q+(t) =e '" "q+(0)+ e '" "' ' 'F+(t')dt' .

(3.4)

It becomes obvious from Eq. (3.4), together with what
has been said about the Langevin forces, that the latter
do not contribute to the expectation value for any nor-
mally ordered product of photon creation and annihila-
tion operators. Moreover, it follows from Eq. (3.4) that
the relative excess coincidence counting rate r [see Eq.
(2.39)) remains invariant under one-photon absorption.
Note that this result is in perfect agreement with our
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previous conclusion inferred from a naive photon con-
cept that r is not changed in the process of partial reflec-
tion from a mirror.

Hence for a change of the photon statistical properties
of light, nonlinear interaction mechanisms will be re-
quired. As a first one, we investigate the multiphoton
absorption process under this aspect.

B. Basic equations for multiphoton absorption

i' = [H;„,(r),p(i)] .dp(t)
dt

(3.6)

From this equation we derive an equation of motion for
the density operator for the field, pz, which is defined as

Our primary goal is to eliminate the atomic variables.
We start from the equation of motion for the density
operator of the entire system p(t), which in the interac-
tion picture reads

pF(t) =Try I p(t) I, (3.7)
The first theorists to predict antibunching properties

to be generated in two-photon absorption were Chandra
and Prakash (1970), who evaluated the density operator
for the interacting field up to the lowest order in time-
dependent perturbation theory. In the following, I shall
outline the master equation approach, allowing, in addi-
tion, for more than two photons to be simultaneously ab-
sorbed.

For the sake of mathematical simplicity we assume
the field to be in a single-mode state corresponding to a
finite oscillation at circular frequency co (and to remain
so in the course of interaction), deferring the discussion
of the multimode case to Sec. III.G. For the description
of k-photon absorption (k =2,3, . . . ) we use an effective
interaction Hainiltonian of the form (Shen, 1967)

H~„, ——

iris'

(g*„a+q "+g'„a„q+") . (3.5)

Here a&,a& designate the raising and lowering operators
which connect the initial and the final states of the pth
atom, and g& is the coupling constant, which, in general,
depends on the position of the pth atom. In the case of
a running plane wave which we have in mind, this
dependence is contained in a phase factor, —i.e., ~ g„~ is
independent of p.

The advantage of choosing the interaction Hamiltoni-
an in the form (3.5) is, of course, that k-photon absorp-
tion associated with excitation of an atom being initially
in the ground state and, similarly, k-photon emission ac-
companied by deexcitation of an excited atom appear as
the fundamental processes. This drastically simplifies
the formalism compared to that starting from the con-
ventional interaction Hamiltonian, which is linear in q
and q+.

4This implies that the polarization of light is uniquely speci-
fied. The assumption that two equally polarized photons are
simultaneously absorbed becomes problematic for J=0 —+0
transitions, as has been pointed out by Ritze and Bandilla
(1980). In the case of circularly polarized light, the presence
of both a left- and a right-circularly polarized wave is needed
for two-photon absorption to take place, and when the incident
light is linearly polarized, a beam polarized in a perpendicular
direction will be generated in the course of interaction. The
single-mode treatment is correct, however, when at least one of
the spins associated with the upper and the lower level of the
two-photon transition is different from zero, since then two
photons in the same circular polarization state can be jointly
absorbed.

where the symbol Trz denotes the trace operation over
the atomic subsystem. This is achieved in the well-

known master equation formalism, which in its simplest
mathematical form proceeds as follows [cf. the treatment
of nuclear induction by Wangsness and Bloch (1953)]:
We assume that at time t =0, when the interaction is
switched on, the radiation field and the atomic system
are decoupled, —i.e., the density operator p(0) factorizes
ln the form

p(0) =pF(0) Xp~(0), (3.8)

—2q "(0)pp(0)q+ (0)

+pF(0)q+"(0)q"(0)] . (3.9)

In this calculation, strong inhomogeneous line broaden-

ing has been assumed to be present —i,e., the atomic fre-
quencies co~"' coP' co——I", wh—ere fico/' and fico'f"' denote
the energies of the excited and the ground state for the

pth atom, respectively, are supposed to be distributed,
with a large spread, around a central value ~2~, which

obeys the resonance condition ~2& ——k~. Strictly speak-

ing, the inhomogeneous linewidth A~z has been assumed
to satisfy the condition

AQ)g 7 Q) 2'IT . (3.10)

The effective coupling constant ak in Eq. (3.9) is propor-
tional to the spectral density of atoms o.(co~), taken at
the resonance value co&

——ken,

ak =2iro. (ken)
i g„ i

(3.11)

(Note that o refers to all the atoms contained in the
mode volume. )

Now, the same procedure is applied to all subsequent
time intervals of length ~, as well. This necessitates the
nontrivial assumption that decoupling in the form (3.8)
takes place at the beginning of every time interval. In
fact, this assumption, being incompatible with the
rigorous solution of Eq. (3.6), constitutes a specific ap-
proximation scheme which traces back to Pauli (1928).
It should be noted that more sophisticated treatments

where p~ (0) designates the density operator for the
atomic system at t =0. Moreover, we suppose the atoms
to be all in their ground states at t =0. For this initial
condition we solve Eq. (3.6) for a finite time interval r,
using standard perturbation theory up to second order, to
find the result

p+(r) —pF(0)= ——, rak[q "(0)q"(0)pF(O)
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based upon projector techniques are free from this unsa-
tisfactory feature. They lead to so-called generalized
master equations [cf., for instance, Haake (1973)],which,
however, can be solved only approximately. In this way,
our final result (3.12) (see below) can be substantiated
more thoroughly.

Restricting ourselves to the linear absorption
regime —i.e., supposing that the absorption process
causes only a negligible population of the upper level,
our treatment rests on the assumption that Eq. (3.9) is
valid not only for the first time interval but for all sub-
sequent ones, too. Replacing, formally, , the difference
quotient by the derivative, we finally, arrive at the fol-
lowing master equation for the density operator of the
field (Shen, 1967):

+k k k +k +k k+kqk 2qk +k+ q+kqk) (3 12)

by introducing a generating function defined as

G(s, t)= g (1 s—)"p„(t)
n=0

(3.16)

BG BG=az(2s —s } (3.17)
Bt BS

From G(s, t) one obtains both the probability distribution
and the factorial moments by differentiation:

p„(t)= l
(3.18)

a

(.!'!(t)) = (q+'q')

G(s, t),

(Agarwal, 1970; McNeil and Walls, 1974; Tornau and
Bach, 1974). The generating function obeys the follow-
ing partial differential equation:

where the argument common to all operators is t.
Using the photon number states

i
n ) (Fock states) as a

basis in the Hilbert space, one easily recognizes that the
evolution of the diagonal elements of the density opera-
tor

= g n(n —1) (n —I+1)p„(t)
n=0

G(s, t}, o .
, 3$

By virtue of the substitutions

(3.19)

(n=0, 1,2, . . . ) . (3.14)

Using the familiar transition probability concept, we
may readily interpret Eqs. (3.14) as rate equations
(Simaan and Loudon, 1975a; Mohr and Paul, 1978). In
fact, from standard perturbation theory one finds the
probability per unit time for a k-photon absorption pro-
cess to take place when initially n photons are present to
be given by

w„„k=ak
i
(n —k iq" in) i'=ak

(n —k)t
(3.15)

Now, the probability p„decreases due to a transition
from

i
n ) to

i
n —k), and it increases, on the other

hand, on account of a transition from
i
n +k) to

i
n ).

Utilizing Eq. (3.15), we thus immediately arrive at Eqs.
(3.14) valid in the linear absorption regime.

C. Rigorous solution

A rigorous solution to the coupled system of equations
(3.14) has been found in case of two-photon absorption

p (t)= (n
i
p~(t—)

i
n ) (3.13)

is governed by diagonal elements only, but is not affected
by off-diagonal elements. Since the quantities p„(t), be-

ing the probabilities of finding n photons in the field at
time t (by a suitable measurement) give a full account of
the photon statistical properties of the field, it becomes
obvious that coherence properties of the field of which
off-diagonal elements of the density operator are charac-
teristic, are irrelevant for the change of photon statistics
due to multiphoton absorption. Hence we may confine
our attention to the diagonal elements (3.13), the equa-
tions of motion for which follow from Eq. (3.12) to be

dpn n! (n +k)!
ak

( k)) pn
)

pn+k

x =1—s, T=azt, g(x, T)=G (s, t),
Eq. (3.17) transforms into

(3.20)

=(
Bx

(3.21)

bQ = —,[g( —1,0)+g(1,0)],
b&

———,[g ( —1,0)—g(1,0)),
b„=(n ——, ) f [g(x,0) bo+b~x]C„" z'—(x)dx

for n &2 . (3.23)

Making use of Eqs. (3.18) and (3.19), one finally obtains
the following expressions for the relevant physical quan-
tities p and ( n (!) (Tornau and Bach, 1974):

p (T)=
2 l(m ——,')

C(m —1/2)(0)
m!I ( ——, ) n =m

)& exp[ n(n —1)T]—
(m =0, 1,2, . . .), (3.24)

This equation can be solved, utilizing the method of
separation of variables, to yield

(1—x )C" "(x)
g(x, T)=bo b~x+ g b—„+z, "+ (n+1)(n+2)

&&exp[ (n +1)(n +—2)T] .

(3.22)

Here, the symbols Cn' ' denote ultraspherical polynomi-
als, and the expansion coefficients b„are determined by
the initial values for g(x, t) in the form (Tornau and
Bach, 1974)
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(n( '(T) }=, g b„C„, (1) exp[ —n(n —1}T] (1=1,2, ...),
21 (I——, )

I ( ——, ) n=t

where

(3.25)

) )(n —m)/2
C(m —1/2)(0)

m+n —1I

n —m+2
2 2

for n —m even (3.26)

0 for n —m odd,

C(I —1/2)( 1 )
n+l —2

n —l (3.27)

The symbol I stands for the gamma function.
Different analytical schemes that allowed derivation of

exact solutions of the master equation (3.12) have been
developed by Voigt, Bandilla, and Ritze (1980) and Zu-
bairy and Yeh (1980).

However satisfactory it may be from the mathematical
point of view to have constructed a rigorous solution, it
is still rather troublesome to evaluate formulas like (3.24)
and (3.25) in practical cases, the numerical effort drasti-
cally increasing with the initial mean photon number
n(0}. In fact, the calculations have been restricted most-
ly to rather small values of n(0), n(0) &20. As an im-
portant result, Tornau and Bach (1974) found photon an-
tibunching to be generated when the absorption process
starts from Poisson-distributed photons.

Since, on the other hand, multiphoton absorption pro-
duces an observable effect on the field only when its in-
tensity is very high, it is desirable to study the case of
large initial mean photon numbers in some detail. This
will be done in Sec. III.D by means of a simple approxi-
mation scheme which, nevertheless, yields the relevant
physical information on the photon statistical properties
of the field, as they vary in the course of k-photon ab-
sorption (k=2, 3, ... ).

higher than I (except in the case of one-photon absorp-
tion, k = 1), the hierarchy of equations (3.29) is, of
course, no less complicated than the original system
(3.14); Eqs. (3.29) allow, however, for a simple approxi-
mate solution in case of a photon distribution satisfying
the inequalities

and

n(t) && I

h(t)= «n(t) .b,n (t)
n(t)

(3.30)

(3.31)

dt 2kak[n"— k(k ——1—)n '], (3.32)

dt
kak[2n—"+' kn ] —. (3.33)

Moreover, the assumptions (3.30) and (3.31) justify the
following approximation:

This means the photon di.stribution is assumed to exhibit
a marked peak at a certain rather large photon
number —i.e., it is similar to a Poisson distribution but
quite different from the Bose-Einstein distribution
characteristic of chaotic light. This treatment especially
covers the most important practical case of a (realistic)
laser beam impinging on the attenuator.

Because of (3.30) we can approximate the equations of
motion for the first and the second xnoment by

D. Approximate solution

k
nk+ nk —2gn 2

2 (3.34)

Since the physical quantities in which we are immedi-
ately interested are the mean photon number n and its
variance An, it appears appropriate to pass from Eqs.
(3.14) to the equations of motion for the moments of the
photon nuxnber, defined as

n = gp„n (l=1,2, .. .), (3.28)
n

the result being

dn
akn(n —1) —. (n —k+1)[n —(n —k) ] .

(3.29)
Since the evolution of n depends on moments of order

2k akn (h ———,),

2k —1

h (t) = h (0)— k n(t)
n(0)

k+
2k —1

(3.37)

Retaining on the right-hand sides of Eqs. (3.32) and
(3.33) the terms of highest order in n only, we arrive at
the two equations

dn = —kakn (3.35)
dt
d(b, n ) (3.36)

dt
from which the quantitiy h is easily evaluated as a func-
tion of n(t) (Paul, Mohr, and Brunner, 1976a) in the
form
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Equation (3.37) indicates that for strong attenuation
(n(t)/n(0)~0) h approaches the asymptotic value

h,', '=k/(2k —1) (3.38)

(see Fig. 3), this result, for k=2, being in excellent
agreement with an exact (numerical) calculation by Tor-
nau and Bach (1974).

It is interesting to note that the asymptotic behavior in
question is independent of the initial value of h, ir-
respective of whether h (0) is greater or smaller than h„.
Moreover, one learns from Eq. (3.37) that, the higher
the number of simultaneously absorbed photons k, the
more rapidly the asymptotic value (3.38) is approached,
at a given degree of attenuation n(t)/n(0). This can also
be directly seen from Fig. 3.

The result (3.38) implies the relative excess coincidence
counting rate (2.39) to tend to the following asymptotic
value:

r„(t)=
n(t)

(3.39)

Obviously, Eq. (3.39) indicates that antibunching occurs
as a result of multiphoton absorption (k =2,3, ... ). The
coefficient (k —1)/(2k —1) in Eq. (3.39) takes the value

for k =2, and it grows only slowly with increasing k,
its upper bound being —,. Hence experiments, if feasible
at all, will certainly be confined to two-photon absorp-
tion. Note that in this case the magnitude of the anti-
bunching effect attains, nevertheless, one-third of the op-
timum value corresponding to a perfectly sharp photon
number [see Eq. (2.24)].

The approximation scheme leading to Eqs. (3.35) and
(3.36) has been extended (Mohr and Paul, 1978) to in-
clude the third and fourth order moments of the photon
number, n and n, too. Specifically, from n some in-
formation can be gained about the symmetry of the pho-
ton distribution curve with respect to the point n =n. In

fact, when the distribution is perfectly symmetric, the
value of (n n—) equals zero. From this reason the
quantity

g=(n n—) (bn ) (3.40)

p„(ao)= g p„+k.j(0) (n =0, 1,2, ...,k —1) . (3.41)
j=O

has been chosen as a convenient asymmetry parameter,
and it could be shown that the modulus of y decreases in
the course of interaction, i.e., for decreasing n. This
means there is a tendency to symmetrize a distribution
which is asymmetric in the initial state.

It should be remembered that the results (3.38) and
(3.39) have been obtained under the assumption that n is
large compared to unity even in the final state. When
the absorption process reaches its ultimate stage —i,e.,
when n becomes of order k—a new feature appears. In
fact, it is readily derived from the basic equations (3.14)
in a rigorous manner, that h will undergo a marked
change in this case, due to the fact that the field settles
down into a steady state [cf. Simaan and Loudon
(197Sa)]. This must happen, in any case, after a suffi-
ciently long period of time has elapsed, since the ab-
sorber ceases to act on the field when fewer than k pho-
tons are present. Hence the steady-state photon distribu-
tion is of the form p„&0 for n=0, 1,2, ...,k —1 and
p„=O for n )k.

Since in the hierarchy (3.14) p„couples to p„+k only,
the system (3.14) actually decomposes into k subsystems,
the first of which connects all the p„'s for which
n =Omod(k), while the second does the same for all the
p„'s for which n = 1 mod(k), and so forth. Evidently,
the final photon number corresponding to the first sub-
system is zero, the number for the second subsystem is
one, etc. Hence the initial probabilities will ultimately
"condense" into po(ao), p&(ao), ...,pk ~(00), whose values
are given by

1.0

ae

0.7

When the natural assumption is made that the initial
photon distribution is smooth, n(0) being large compared
to unity and An being subjected to the only condition
b,n ~&k, the right-hand side of Eq. (3.41) will, practi-
cally, be the same for all n This gives .us (Mohr and
Paul, 1978)

0.6 —k=3 h(ao)=(k+1)/6 (k =2,3, ... ) . (3.42)

k=5
k =10

I I I I

0.9 0.8 0.7 0.6
I

0.5
I

0.4
I I

0.3 0.2 0.1
ll

n(0)

FIG. 3. Change of photon statistics due to k-photon absorp-
tion, according to Eq. (3.37). [After Mohr and Paul {1978).]

This result, in particular, indicates that the quantity h, in
the course of two-photon absorption, falls from its

2
asymptotic value —, to its ultimate value —, when the
mean photon number approaches its steady-state value
n = —,, the relative excess coincidence counting rate thus
becoming r(ao)= —(2n) '= —1.

E. Asymptotic behavior of the field

5It should be remembered that our proof rests upon the as-
sumptions (3.30) and (3.31). The latter can actually be
dropped, however, as will be pointed out in Sec. III.E.

In the preceding section (III.D) the photon distribution
has been shown to display an asymptotic behavior which
is characterized by the existence of an asymptotic value
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where the prime symbolizes differentiation with respect
to x and P~ denotes a Legendre polynomial, they argue
as follows: assuming the initial mean photon number to
be large compared to unity and, moreover, the initial
photon distribution to be smooth, one concludes from
the explicit expression for g'(x, O) [cf. Eqs. (3.20) and
(3.16)],

g'(x, O) = g p„(0)nx"
n=1

(3.44)

that g'(x, O) is rather small compared to unity, in the in-
terval of interest, except in the neighborhood of x =1,
where it exhibits a marked peak. Hence, for not too
great values of n, n «n(0), it appears justified to replace
P„,(x), in the integrand in Eq. (3.43), by its value at
x =1,P„&(1)=1.This gives us, in the case of a smooth
initial photon distribution,

b„= n+ —, for—n=2, 3, ... «n(0) . (3.45)

Moreover, the latter relation holds also for n =0 and 1,
as follows from Eqs. (3.23), since g( —1,0)=0 under the
aforementioned condition, and g(1,0)= 1.

On the other hand, it becomes obvious from Eqs.
(3.22), (3.24), and (3.25) that, due to the appearance of
the damping factors exp[ n(n —1)T], the —coefficients
b„corresponding to small values of the subscript n be-
come more and more dominating in the course of in-
teraction. Hence, after strong attenuation of the field
due to two-photon absorption, the physical quantities of
interest are actually determined by coefficients of the
form (3 45) only. Since the latter are independent of the
specific initial photon distribution, one recognizes that at
this stage of the evolution the information on the initial
state of the field is completely lost and the field behaves
in a unique manner. This statement is true under the
above-mentioned assumptions on the initial photon dis-
tribution, which are very general. In fact, they imply
only the requirement hn (0)» 1 but not the more
stringent condition (3.31). Hence the present analysis ex-
tends the range of validity, as far as the initial state of
the field is concerned, of the results obtained in Sec.
III.D, which indicated the existence of an asymptotic
behavior of the field. In particular, the incident light

for the quantity h(t) [Eq. (3.31)]. This peculiar feature
of the k-photon absorption process has been studied, for
k=2, more thoroughly by Bandilla and Ritze (1975,
1976a). These authors started from the rigorous solution
presented in Sec. III.C. Noticing that the last of the
equations (3.23) can be rewritten, by means of partial in-
tegration, as

1

b„= (n———, ) f g'(x, O)P„&(x)dx for n &2,

(3.43)

Pn=
1/2

2k —1

k
(2mn) '~ exp

2k —1 (n —n )2

2n

(3.46)
to a good approximation fulfills the basic equations
(3.14).

Finally, I should like to mention that the inAuence of
two-photon absorption on the statistical properties of
light has been studied also under steady-state conditions.
Bandilla and Ritze (1976b) investigated the photon statis-
tics of a single-mode laser field, the laser being equipped
with an intracavity two-photon absorber. Chaturvedi,
Drummond, and Walls (1977) considered two-photon ab-
sorption from a single-mode field existing inside a cavity
and being pumped by an external driving field. In both
cases the field inside the cavity was shown to exhibit an-
tibunching properties under properly chosen experimen-
tal conditions.

field might as well be a chaotic one. In those cir-
cumstances and, more generally, in any situation where
b, n (0) »n(0), multiphoton absorption will, in the first
stage, reduce the intensity fluctuations of the field —this
effect being fully describable in terms of classical electro-
dynamics already (Weber, 1971)—until the width of the
photon distribution becomes small enough to satisfy the
relation An =n. It is only in the subsequent stage that
the field acquires antibunching properties and that the
quantum-mechanical formalism becomes indispensable.
This consideration may help us to understand why the
fields finally all behave in the same manner, irrespective
of their initial states. Of course, the time needed to at-
tain the second stage will be longer, the higher the initial
values of bn /n.

Bandilla and Ritze (1976a) calculated also b,n (t)/n(t)
by inserting into formulas (3.25), for 1=1 and 2, the
values (3.45) for the coefficients b„. Their result is in
excellent agreement with the approximate solution
described in Sec. III.D.

In a recent paper, Voigt, Bandilla, and Ritze (1980)
present an exact analytical solution to the master equa-
tion for the diagonal elements of the density matrix for
the k-photon absorbed field (k = 1,2, 3, ... ). Starting
from this solution they prove an asymptotic photon dis-
tribution, not depending on the initial distribution, to ex-
ist when the following conditions are fulfilled: (i) the in-
itial mean photon number n(0) is sufficiently large, and
(ii) the attenuation is so strong that the square of the re-
sulting mean photon number is small compared to n(0).

An approximate expression for the photon distribution
which applies to that stage of the evolution where the
asymptotic behavior of the field becomes manifest has
been given by Paul, Mohr, and Brunner (1976b) [for de-
tails see Mohr and Paul (1978)]. They showed that a
Gaussian distribution which takes proper account of the
relation (3.38),

6in deriving Eq. (3.43) it has been observed that the integralf ~(x)dx vanishes. Hence the term b&x in the integral
for b„[see Eq. (3.23)] gives no contribution in Eq. (3.43).

78oth this case and that of coherent incident light have been
analyzed in more detail by Bandilla and Ritze (1975, 1976a).
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F. Specification of the mode volume

The above analysis performed in the single-mode for-
malism indicated that multiphoton absorption, at least in
principle, provides a suitable mechanism of generating
light fields with antibunching properties. In order to
make contact with realistic experimental situations, we
still have to specify the dimensions of the mode volume.
For simplicity, we confine ourselves to the case of two-
photon absorption. As far as the length of the mode
volume (in the direction of light propagation) is con-
cerned, let us visualize the basic physical aspects of the
problem in our naive photon picture.

Consider a continuous flux of photons. All photons
are supposed to travel with the velocity of light c in the
same (x) direction. For definiteness, we assume that the
number of photons contained in any volume V (which
may be thought of as traveling along with the photons)
is governed by Poisson s distribution law. Actually, the
size of V can be chosen arbitrarily, since it is a specific
feature of the Poisson distribution that the photons con-
tained in any subvolume U of V follow Poissonian statis-
tics if the photons in V do. In fact, when the photons
are taken as independent (pointlike) particles, the proba-
bility of finding k of them in u when the whole volume
is filled with n photons is given by

k
U

Wk =
V

(3.47)

88esides, the two photons involved in an elementary absorp-
tion process are required to "hit" the same atom. (See the end
of this section. )

and with the help of this formula, which closely resem-
bles that describing the effect of a partly reflecting mir-
ror [see Eq. (2.21)], we can readily prove the above
statement. As mentioned in Sec. II.B, the situation en-

visaged corresponds to the presence of a classical wave
with fixed amplitude and phase whose quantum-
mechanical analog is a Glauber state.

What will happen, when the light beam passes through
a two-photon absorber? In the interaction that takes
place in this case, the basic event is the simultaneous ab-
sorption of two photons by one and the same atom. Of
course, it would be unrealistic to take the term "simul-
taneous" literally; actually, the atom will allow the
second photon to arrive with a certain delay, compared
to the first one. For the delay time, however, an upper
bound, say ~,„„will exist.

Hence the beam will be affected by the absorber in
such a way that certain photon pairs which meet the re-
quirement that the distance between the two partners, in
x direction, does not exceed the critical length l,„,=c~,„.,
are removed. Clearly, those elementary processes in-
directly give rise also to the disappearance of photon
pairs with a distance l greater than I,„,. However, while
all basic events that take place reduce the number of
photon pairs with I &I,„„their combined effect on the

number of photons pairs with l confined to a particular
interval Ii+I,„,) I & Ii ( & I,„,) will be less. Hence start-
ing from the above-mentioned initial state of the "pho-
ton gas" where, in fact, the probability of finding two
photons in a distance l is independent of I, the two-
photon absorber will change things such that the proba-
bility in question, as a function of l, will exhibit a dip at
I =0 whose half width roughly will equal I,„,. Due to
the uniform propagation of the photons, this spatial pat-
tern will be transformed into a similar temporal struc-
ture in a Brown-and-Twiss —type device.

Hence our consideration provides an intuitive under-
standing of how antibunching comes about in the process
of two-photon absorption. Moreover, it indicates that
the correlation time for the antibunching effect is inti-
mately connected with a memory mechanism in the
atoms that enables an individual atom to jointly absorb
two photons even when they arrive at different instants.
Of course, the determination of the memory time needs a
special investigation —which will be performed in Sec.
III.G. Evidently, in order to take proper account of the
correlation time in the single-mode formalism (in which
any correlation, if present, necessarily extends over the
whole mode volume), we have to identify the length of
the mode volume with the critical length I,„,.

Now, the question arises as to the cross-sectional area
of the mode volume. Before trying to give an answer, I
will make some general remarks. To begin with, we no-
tice that the interaction of a single atom with the field is
a local one. (Strictly speaking, the interaction extends
over the atomic dimensions, which, however, are negligi-
bly small in comparison to the wavelength at optical fre-
quencies. ) Hence two photons that become jointly ab-
sorbed in an elementary process are both required to ar-
rive at practically the same point in space where the ab-
sorbing atom is situated. Therefore, in case a mono-
chromatic plane wave with fixed amplitude and phase is
incident (quantum mechanically, such a field being
represented by a Glauber state), one might suspect that
short-range correlations of antibunching type are pro-
duced in the course of interaction with the atoms in a
lateral direction. It is a well-known consequence of the
wavelike nature of radiation, however, that transverse
field correlations quite generally tend to quickly spread
over larger and larger areas as the wave propagates far-
ther.

This effect plays an important role in stellar inter-
ferometry [see, for instance, Mandel and Wolf (1965)].
It gives rise to the fact that the stellar light, in a narrow
frequency band, when arriving on Earth exhibits spatial
correlations which extend on the Earth's surface over
tens or hundreds of meters, while the original correlation
produced on the surface of the star by the incoherent
emission process has an extremely short range. (In the
calculation, the spatial dependence of the first-order
correlation function on the star's surface is assumed to
be given by a delta function. ) Actually, the transverse
coherence length of the radiation, l„,„„on Earth sensi-
tively depends on the angular diameter a of the star.
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The technique of stellar interferometry, introduced by
Michelson and later on ingeniously improved by Brown
and Twiss, utilizes just this relationship, which approxi-
mately reads

A,R
Itrans

2p
(3.48)

R+3 X
2

R+ X

where A, is the wavelength, p the radius of the star (ideal-
ized as a uniformly radiating disk), and R the distance
from the star to the observer.

Turning now to the problem of how to specify the
cross-sectional area of the mode volume, we might use
the following argument. Clearly, in the single-mode
treatment any elementary absorption process affects the
electric field at every point within the mode volume in
the same manner. This idealization finds a certain justi-
fication, as far as the transverse dimensions of the mode
volume are concerned, when we determine the lateral di-
mensions of the mode volume by the following require-
ment: the area over which a distortion of the wave due
to an individual absorption process taking place near the
entrance surface of the absorber spreads on the exit sur-
face be equal to the cross section of the mode volume.
(In what follows, we assume the absorber length I. to
exceed that of the mode volume. ) Hence an estimate of
the magnitude of the spreading effect in question is
needed.

We find it in a simple way by utilizing the Huygens-
Fresnel priniciple. According to the latter, the field am-
plitude at a point Pi originates from the combined ac-
tion of all the elementary (spherical) waves which started
in forward direction, at properly retarded times, respec-
tively, from every point of a given wave front, which is a
plane F perpendicular to the direction of wave propaga-
tion in the case of an infinitely extended, monochromatic
plane wave. However, most of the elementary waves
mentioned will interfere destructively at P~. To see this
in more detail, it is useful to construct Fresnel zones in F
that are centered at the projection Pi of Pi on F (see
Fig. 4). Then it can be shown (Grimsehl, 1962; see also

Born and Wolf, 1964) that, for an ideal plane wave, the
contributions from the outer half of the nth zone, the to-
tal (n+1)th zone and the inner half of the (n+2)th
zone (n =1,2, ... ) add up to zero. Hence the amplitude
at P& can be supposed to be produced, through construc-
tive interference, by only those elementary waves whose
centers cover the inner half A i of the first Fresnel zone.

Obviously, this statement remains valid when the wave
amplitudes in F, which determine the amplitudes of the
respective elmentary waves starting from F, exhibit a lo-
calized distortion (produced, for example, by interaction
with matter), provided the area of distortion falls in A i.
%'hat can be concluded from this is the following: sup-
pose that the amplitude is distorted in the neighborhood
of P& and consider a second point P2 which has the
same distance from F as Pi. Then, the amplitudes at P1,
and P2 will practically be equal when the area of distor-
tion is contained in the inner half A2 of the first Fresnel
zone corresponding to P2, as well (see Fig. 5). other-
wise, the two amplitudes will be different. Hence, as-
suming the area of the distortion in F to be small corn-
pared to 3 i, we find the radius p of the area over which
the distortion spreads, due to wave propagation from P'&

to P&, to be approximately given by the distance between
Pi and P2 under the condition that the center of A2 falls
on the boundary of 3 &. This means that p equals the ra-
dius of A &. Utilizing the well-known formula for the ra-
dius of the first Fresnel zone, ri ——&Rk, where R is the
distance between P i and Pi, we obtain

1 1p= ~ ri = ~ VRA, . (3.49)

d ~ ——2p=(2LA, )'~ (3.50)

The dimension defined by Eq. (3.50) is a manifestly mac-
roscopic one; for example, d d takes the value 10 cm
for A, =5)&10 cm and 1.=1 cm. It should be noticed
that, in case one employs a light beam whose diameter d
at the entrance surface of the interaction volume is much
smaller than d ~, this beam will become drastically
widened, due to diffraction, while it travels through the

Thus, adopting the above reasoning concerning the trans-
verse dimensions of the mode volume, we find the latter
to be given by

3
FIG. 4. Fresnel zones {labeled 1,2,3) for a plane wave. The
amplitude at P ~ can be supposed to be due to the contributions
from the inner half of the first Fresnel zone (hatched area)
only.

p
&

1

FICi. 5. The inner halves of the first Fresnel zones corre-
sponding to the points P& and P2, respectively. The field is as-
sumed to be distorted in the hatched area.
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interaction volume. In fact, even for d =d,d, the beam
diameter at the exit surface of the interaction volume
will be enhanced by a factor of about 2 compared to its
value at the entrance surface d.

In the case d ~~d, d it must be ensured experimental-
ly that the detectors register only photons that for zero
delay time belong to a single-mode volume. This is
achieved by focusing only part of the beam cross section
at the exit surface of the interaction volume, namely, an
area whose linear dimensions equal d,d, on the sensitive
surfaces of the detectors.

The result (3.50) has the following implication for an
optimum choice of the experimental conditions. In order
to enhance the effectiveness of the two-photon absorp-
tion mechanism in producing antibunching properties, it
is more favorable to have a higher density of the atoms
rather than a greater length of the interaction volume,
since in the latter case one must put up with a larger
mode volume, which leads to a greater photon number
per mode volume at given intensity.

Finally, I should like to emphasize that the choice of
the transverse dimension of the mode volume as pro-
posed above is in no way specific to the interaction
mechanism; instead, the result (3.SO) applies equally well
to processes different from multiphoion absorption when
a single-mode formalism is used to describe them.

The length of the mode volume, in contrast, is clearly
determined by the specific physical features of the in-
teraction process. Hence, this problem must be treated
separately. In the following, we shall tackle it for the
case of two-photon absorption.

G. T~o-photon absorption of a nonmonochromatic field

In order to determine the correlation time for the anti-
bunching phenomenon, we must dispense with the
single-mode formalism. In the following, we will use the
electric field strength for the description of the field,
without decomposing it into contributions from different
modes. We consider a plane-wave —type light beam of
finite bandwidth which is coherent over its cross section
and travels in the x direction. The absorption cell is as-
sumed to be homogeneously filled with atoms capable of
two-photon absorption. (The generalization to k-photon
absorption is straightforward. ) Then the problem may
be idealized as one dimensional (with respect to space).

It is well known that the operator for the electric field
strength can be written as

E(x,t) =E' '(x, t)+E'+'(x, t), (3.51)

where the terms on the right-hand side are the negative
and positive frequency parts, respectively. For the fol-
lowing it will be convenient to separate from E' —+' the ra-
pid oscillation in space—i.e., to put

E' '(x, t)=e ' E' '(x, t),

frequency coo. The spatial dependence of E'+—' is then
due to the interaction only.

Generalization of Eq. (3.5) gives us the interaction
Hamiltonian in the form

II;„,=fig+E' ' (x„)a„+H.c. (3.53)

Allowing for both homogeneous and inhomogeneous line
broadening, we ascribe to the atoms a (common) homo-
geneous linewidth 2y and different resonance frequencies
Q&. Since arbitrary phase factors can be included in the
lowering and raising operators a& and az, we were free
to take the coupling constant g as a real quantity in-
dependent of p.

From the formal point of view, it is desirable to con-
sider the atomic operators —like the field operators —as
continuous functions in space. Doing so, we rewrite Eq.
(3.53) as

H~„&=A'ggpJ J dx E' ' (x)aj.(x)+ H. c.
J

(3.54)

Here, the subscript j has been used to label groups of
atoms which differ by their resonance frequencies QJ.
The factor pj denotes the number of atoms per unit
length in x direction in the jth group, and L, is the
length of the absorption cell.

The atomic operators aj(x),oj+(x) satisfy the anticom-
mutation relation

aj(x')aj+(x)+aj.+(x)aj(x') = — 5(x —x') .
I'i

Their commutator, on the other hand, reads

(3.55)

[E'+ '(x),E' '(x ') ]=2~rfia~05(x —x')

—2mific5'(x —x'), (3.57)

where 6' is the derivative of Dirac's delta function, and c
is the velocity of light.

From Eqs. (3.54), (3.56), and (3.57) we obtain the
equations of motion in the Heisenberg picture. After
separation of the high-frequency time dependence of the
operators and inclusion of damping terms characteristic
of homogeneous line broadening together with associated
Langevin forces f1+(x,t) [see, for instance, Lax (1966)],
they take the following form:

oi(x)
aj.+(x)aj(x') —aj.(x')aj+(x) = 5(x —x'), (3.56)

PJ

where the operator oj(x) represents the inversion associ-
ated with one atom. In what follows, we shall approxi-
mate oj(x) by —1, thus disregarding saturation effects.

Taking into account only those modes of the field
which propagate strictly in the (positive) x direction, we
find the commutator for the field operators E'+' andE'-' to be

E'+'(x, t)=e ' E'+'(x, t), (3.52)
g~ (x, t)=i(QJ 2coo)a~ (x, t) ya—~ (x,t)—

where ko is the wave number corresponding to the center +igE' ' (x, t)+f,+(x,t), .(3.58)
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+c E (x, t)
~( )

Bt Bx

where

=4ni Acro( g pj aj+(x, t)E' '(x, t ), (3.59)
J

E' '(x, t) =e 'E' '(x, t)

l{kox coPE )E—( )( ) (3.60)

aJ(x, t) =e 'aj(x, t) . (3.61)

The symbol y stands for the damping constant, which is
the inverse of the transverse relaxation time (or dephas-
ing time), and it has been assumed that the atomic line
center coincides with twice the midfrequency of the
field. In deriving Eq. (3.59) only the dominant first term
on the right-hand side of Eq. (3.57) has been taken into
account.

Integrating Eq. (3.58) and substituting the result into
Eq. (3.59), we obtain

+c E (x t)
Bt Bx

= —4&2ci)pg g p~
J

[((tij 2cop) ]y( t I )E( )2( f)d / E(+)(

where
+F+(x,t)E'+'(x, t),

)
.~ ~g f ~ [i(QJ 2coo) y](t —t )——'

J

(3.62)

4')r)yitoog p(o(
2

X f' . '" "" "-E' "(x-,t )dt-E'+'(x, t)

+F+(x,t)E'+'(x, t) . (3.64)

&&f+(x, t')dt' . (3.63)
Here we have assumed that the time which elapsed after
the beginning of the interaction is large compared to
y '. Hence the initial values of the operators
aj,aj.+,fj.,fj+ are damped out at time t, and the lower
limit of integration can be replaced by —oo, as has been
done above.

Supposing the inhomogeneous line to be of Lorentzian
shape (with linewidth

gp, . -p...l. -' f dnt(n —2~,)'+I-']-
1

where p„, is the total number of atoms per unit length.
The integration over Q is then easily performed to yield
(Mohr and Paul, 1979)

+c E (x t)
8 ( )

Bt 3x

This equation displays a typical memory effect. It indi-
cates that what happens with the field at a given point x
at time t is affected by the electric field strength which
existed, at the same point, at previous times I' satisfying
the inequality t t—'&(I"+y) '. The underlying physical
mechanism is that the field induces coherent atomic os-
cillations at the two-photon resonance frequency which
add up to a coherent macroscopic oscillation. Once ex-
cited, the latter persists for some time, and in this way
the field interacting with the oscillation at a given time
is influenced by its own behavior in the past.

Clearly, the effective memory time

1
+mern I +y

(3.65)

has to be identified with the critical time r,„., we intro-
duced in Sec. III.F—in our naive photon picture —as the
upper bound for the delay time between two photons
that must not be exceeded by them in order for them to
have a chance of getting jointly absorbed by one atom.
Hence the desired specification of the length of the mode
volume, l, is provided by the relation

l=c~, (3.66)mern I +
Strictly speaking, this result applies to the case that the
linewidth of the radiation Ace is shorter than I +y.
Hence, in those circumstances it is not the coherence
time r„h ——(2b,co) ', but the shorter atomic memory time
which determines what has to be taken as the mode
volume. In the opposite case Ace) I +y, the coherent
interaction between the atoms and the field will be con-
fined to time intervals whose duration is given by w, h,
due to the random changes the phase of the field under-
goes when a time of the order of the coherence time has
elapsed.

It seems worth noticing that subjecting Eq. (3.64) as a
whole to the temporal averaging procedure

tf dt'(I -+y)exp[ (I +y)(—t —t')]. . .

leads to an equation of motion that corresponds to a
single-mode treatment of the field (Mohr and Paul,
1979). In contrast to the conventional ab initio single-
mode formalism, however, this procedure yields a physi-
cal definition of the mode volume, as given by Eq. (3.66).

It can also be shown more directly that the correlation
time for the antibunching effect equals the memory time
(3.65). To this end, we make use of the fact that an
equation of motion can be derived from Eq. (3.64) for
any correlation function of interest. Fortunately, the
fluctuating forces Fg give only vanishing contribu-
tions in this case. Indeed, it has been shown by Mohr
(1981a) that this is a general rule valid for the evolution
of any normally ordered product of operators E' ',E'+'.

Specifically, from Eq. (3.64) we obtain

r

+c (E' '(t)E' +(t)) = —a e
—' +y"'-"(E' ' (t')E'+' (t))dt'+C. C. ,Bt Bx OO

(3.67)
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Bt Bx
+c (E' '(t)E' '(t+r)E'+'(t+r)E(+)(t))

= —~ f e ' +"" "(E' '(t')E'+'(t)E' )(t+y)E'+'(t+y)E'+'(t))dt
1+7

e
—(I'+y)(t+r t')—(E(—)(t)E(—) (t )E(+) (t + )E(+)(t))dt, + (3.68)

or, establishing normal order in the first term on the right-hand side of Eq. (3.68),

+c (E' '(t)E' '(t+y)E(+)(t+r)E(+)(t))
Bt Bx

~[E(+)(t) E( —
&(t +r)] f e —(I+y')(t t )—( 'E( —) (ti)E(+)(t+ )E(+)(t))dt's

—a f e-'"+y"'-"(E'-' (t')E'-'(t +r)E(+'(t)E(+)(t+ y)E'+'(t) )dt'

+ f ' +y"'+' ''(E' '(t)E' '(t')E'+'(t+ )E'+'(t))dt'+. . . (369)

Here, a stands for the positive constant

a =4trtiico, g pt.t,2 (3.70)

and the common argument x has been omitted in order to simplify the notation.
By virtue of Eqs. (3.67) and (3.69), the relative excess coincidence counting rate, which in case of delayed coin-

cidences reads

(E' '(x, t)E' '(x, t+r)E(+'(x, t+r)E(+'(x, t))
(E' '(x, t)E'+'(x, t))(E' '(x, t+r)E(+'(x, t+y))

is readily found to evolve according to

t) tl [E'+'(x, t),E' '(x, t+y)]+c r(x;t, t +r) = —a-
t3t t)x

' ' (E(-'(x, t)E(+'(x, t) ) (E' '(x, t+r)E'+'(x, t +r) )

(3.71)

)& f e (++y"' ' '(E' ' (x, t')E + (x,t+a)E + (x, t))dt'+& (3.72)

[cf. Mohr (1981a)], where the term abbreviated by A has
the important property that it vanishes precisely in case
the field is a wave packet with a coherence length greater
than ~, represented by a Glauber state.

Hence, it becomes evident that the generation of anti-
bunching properties which formally correspond to a neg-
ative value of r is intimately connected with the appear-
ance of the commutator in Eq. (3.72). The latter has its
root in the occurrence, in Eq. (3.68), of an expectation
value for a not normally ordered product of operators
E' ',E'+'. This result, in fact, does not come as a
surprise, but underlines once again the intrinsically
quantum-mechanical nature of the antibunching
phenomenon.

Since the ~ dependence of the commutator in Eq.
(3.72) determines the correlation time for the antibunch-
ing effect produced in two-photon absorption [when the
field is initially in a Glauber state, the quantity r will not
change, according to Eq. (3.72), for such values of y for
which the commutator has fallen to zero], the question

9We tacitly assume that the commutator [E (t),E (t+r)]
is a c number also in case of the interacting field under con-
sideration.

as to what explicit expression should be inserted for the
commutator is of physical relevance.

To take simply the free-field value for the commuta-
tor, which, in analogy to Eq. (3.57), displays a 5-
function —type singularity at ~=0, appears to be rather
unsatisfactory, since this would imply ascribing to the
antibunching effect an infinitely short correlation time.
In practice, this would mean the correlation time actual-
ly observed would be determined by the response time
y,~~ of the detectors used. In fact, due to the finite
value of y„,„, the delay time is specified with an uncer-
tainty of the order of ~, p only. Accordingly, the singu-
larity of the field commutator is "smeared out" over a
time interval of that length.

Physically, one will expect, however the correlation
time in question to be determined by parameters that are
associated with the interaction mechanism. There are
two time scales inherent in the physical problem under
consideration,

(a) the coherence time of the incident field y, h, and
(b) the memory time connected with the elementary

two-photon absorption process; and it has to be clarified
which of them defines the correlation time.
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Formally, a finite time constant comes into play when
the frequency integration in the evaluation of the (free-
field) commutator

[E + (x,t),E (x,t')]= —I roe des
c

(3.73)

is restricted to a finite interval centered at ~0—i.e., by
introducing a cutoff function of the type
exp( —T

~
co —coo

~
). In this way the commutator (3.73)

becomes a well-behaved function exhibiting a peak at
r=O of half width 2T. Note that the peak height varies
as T '. According to Eq. (3.72), this implies also that
the magnitude of the antibunching effect produced in the
interaction, for a given absorber and a fixed intensity of
the incident (coherent) light, depends sensitively on the
cutoff parameter T.

The essential question is how to choose the value of T
or, equivalently, of the effective bandwidth b,co=T
that defines the frequency range for the modes being ad-
mitted to contribute to the commutator (3.73). In my
opinion, this problem is resolved by the following argu-
ment: consider an incident light wave with a coherence
time much greater than the memory time ~, . Due to
the presence of the memory mechanism, the absorbing
material, at given x and t, is affected by the electric field
strength existing at x in the time interval t —~, to t.
Hence, the field appears to the medium as if it were a
pulse whose duration is of order r, Under .the above
assumption ~„h ~&v, , this means that what happens in
the absorber in an interval that is short compared to the
coherence time cannot depend on the latter. This reason-
ing rules out the possibility of putting T equal to ~„h.
Thus we are led to identify T with the memory time.
Since T defines, via Eq. (3.72), the correlation time for
the antibunching effect, this means that this correlation
time is given by the memory time. This result being pre-
cisely what has been suggested in Sec. III.F by rather in-
tuitive arguments, I have substantiated the latter discus-
sion more thoroughly; at least, I hope to have done so.

Needless to say, in order to actually measure the corre-
lation time in question, detectors are needed with a
response time shorter than this time. Otherwise, the ef-
fect under observation will be more or less wiped out.

Finally, I should like to mention that the analysis per-
formed in this section has been extended by Mohr
(1981a, b) to the k-photon case (k =3,4, . . . ). Moreover,
saturation effects have been discussed in those papers.
As a result, the latter have been found to tend to dimin-
ish the magnitude of the antibunching effect.

IV. PARAMETRIC THREE-WAVE INTERACTION

A. The degenerate process

q+ =ye.q . (4 2)

Recently it has been shown that antibunching-type correla-
tions are produced also in a laser field that undergoes spon-
taneous degenerate hyper-Raman scattering (Perinova et al. ,
1979b; Szlachetka et al. , 1980). Moreover, it has been pointed
out by Yuen and Shapiro (1979) that degenerate four-wave
mixing. is also suited to generate antibunching properties in
field modes that are proper combinations of the output object
and image waves.

dow light beams with antibunching properties' (Stoler,
1974; Kielich, Kozierowski, and Tanas, 1977; Ko-
zierowski and Tanas, 1977; Mista and Perina, 1978;
Mostowski and Rzq.zewski, 1978; Trung and Schiitte,
1978; Drummond, McNeil, and Walls, 1979; Neumann
and Haug, 1979). The main features of this type of
interaction s giving rise to changes in the photon statis-
tics become evident from the pioneering work of Stoler
(1974), who studied the degenerate parametric three-wave
process from the photon statistical point of view. In the
following, I present a simple theoretical analysis of this
problem.

We are concerned with the following physical situa-
tion. A weak optical field at the fundamental frequency
co is passed, together with an intense harmonic at fre-
quency 2~, through a suitable nonlinear crystal. We as-
sume the phase-matching condition to be fulfilled and
the relative phase yz —2y to be adjusted such that the
fundamental wave becomes attenuated, whereas the har-
monic undergoes amplification. Hence the process might
be termed "stimulated second harmonic generation. "
Since the basic event is the "fusion" of two photons
from the fundamental wave into one second harmonic
photon, this process closely resembles, as far as the fun-
damental wave is concerned, two-photon absorption, and
hence one will expect that the changes in the photon
statistics of the fundamental wave are of the antibunch-
ing type, too.

To make the formal treatment as simple as possible,
we idealize the fundamental 'wave by a single-mode state
of the (quantized) radiation field, deferring the problem
of specifying the longitudinal dimension of the mode
volume to Sec. IV.C. The harmonic, one the other hand,
is assumed to be so intense that a classical description
will apply, and, moreover, the relative increase of its in-
tensity due to the interaction process can be neglected.
This means we treat the harmonic as a given classical
plane-wave —type monochromatic wave.

The basic equations of motion for the degenerate
parametric process may be written, in the interaction pic-
ture, as [cf. Louisell, Yariv, and Siegman (1961), Mollow
and Glauber (1967), Brunner and Paul (1977)]"

(4.1)

It has been shown by several authors that optical
parametric three-wave processes in which the medium
plays only the role of a "catalyst, " are also suited to en-

The references mentioned are concerned with nondegenerate
parametric interaction. The specialization to the degenerate
case is a trivial matter.
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Here q+, q are the photon creation and annihilation
operators, respectively, for the fundamental wave. The
effective coupling constant y, taken as positive, is pro-
portional to both the nonlinear susceptibility of the
medium and the amplitude of the harmonic. The phase
factor c is defined by the phase qv2 of the harmonic
through the relation

Differentiating Eq. (4.1) once more and utilizing Eq.
(4.2), we find the second-order differential equation

which is easily solved to yield

q (t) =c (t)q +E~s (t)q+ (4.5)

Here, the following abbreviations have been introduced

c (t) =cosh(yt), s (t) =sinh(yt), (4.6)

and the upperscript zero refers to the initial state at
t =0.

With this solution in hand, it is a straightforward
matter to calculate the photon statistical properties of
the fundamental wave as a function of time. After some
algebra one obtains

q+(t)q(t)=c q+ q +mes(q ) +E*cs(q+ ) +s (1+q+ q ),
q+'(t)q'(t)=c (q+ )'(q )'+c s [4(q+ ) (q ) +&q q +1]+s [(q+ ) (q )'+4q+ q +2]

+Ec s[2q+ (q ) +(q ) ]+res [2q+ (q ) +5(q ) ]
+s*c s[2(q+ ) q +(q+ ) ]+E*cs [2(q+ ) q +5(q+ ) ]
+s2c2s2(qo)4 +&42c2s2(q+0)4

(4.7)

(4.8)

Supposing now the fundamental wave to be initially in a
Glauber state

~
a), we find the relevant physical quanti-

ty

b, = (q+'q') —(q+q )', (4.9)

whose sign indicates whether bunching ( + ) or anti-
bunching ( —) occurs [see Eq. (2.39)], to be given by

b(t) =A (t)+no[B (t)+C(t)cos8],

where

(4.10)

A(t)=c s +s
=—[cosh(4yt) —2 cosh(2yt) +1],

B(t)=6c s +2s
=cosh(4yt) —cosh(2yt),

C(t)=2c s+6cs
=sinh(4yt) —sinh(2yt) .

The angle 8 is defined as

(4.11)

02' ~@co (4.12)

where y is the initial phase of the fundamental wave,
i.e., the phase of the complex number u*, and np is the
mean photon number at t =0, no =

~

a
~

'.
The first term on the right-hand side of Eq. (4.10), be-

ing independent of the incident fundamental wave, has
its origin in spontaneous processes. In fact, it is well
known that photons from an intense wave split, via
parametric fluorescence, into photon pairs at lower fre-
quencies. Specifically, in this way the harmonic gives
rise to the emission of photon pairs into the fundamental
wave. This spontaneously produced radiation becomes

I

amplified in the course of interaction, and the first term
in Eq. (4.10) represents precisely this amplified noise.
In accordance with the bunching character of the latter,
the term in question is always positive for t & 0.

The second term in Eq. (4.10), on the contrary, may
take negative values and even overcompensate the first
one. In that case the fundamental wave will display the
antibunching phenomenon. Equation (4.10) indicates
that the antibunching effect will be most pronounced for
0=m.. Then the fundamental wave experiences max-
imum attenuation. This becomes evident from the ex-
pression for the mean photon number in the fundamental
wave

n(t)= (q+(t)q(—t)) =no(c +s +2cs cos8)+s

(4.13)

which follows from Eq. (4.7) under the above assumption
that the fundamental wave is initially in a Glauber state.

For a quantitative estimation of the relative magnitude
of the antibunching effect we consider the ratio
b, (t)/n(t), which, at best, equals —1 [see Eq. (2.24) and
the text subsequent to Eq. (2.39)].

When np is large in comparison to unity, the contribu-
ti.ons from the spontaneous processes will become notice-
able only after the fundamental wave has experienced
strong damping. It follows from Eqs. (4.10) and (4.13)
that in these circumstances the quantity b,(t)/n(t) will
only weakly depend on np in the early stage of the in-
teraction process. This becomes obvious also from Fig.
6, where the temporal variation of h(t)/n(t) in the case
0=~ is plotted for different values of np. One recog-
nizes that antibunching properties are in fact produced
in the course of interaction. However, at a certain in-
stant, which is attained. the earlier the smaller the n p, an-
tibunching is converted into bunching. Hence the anti-
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1.0

0.2

-0.2

50 1000 coupling constant y, which is proportional to the ampli-
tude of the harmonic, one can in fact adjust y such that,
given the length of the nonlinear crystal, the field exhi-
bits maximum antibunching properties when leaving the
crystal. Actually, the possibihty of varying and, in par-
ticular, of enhancing the coupling constant via the inten-
sity of the harmonic is a specific feature by which the
parametric interaction process differs favorably from
multiphoton absorption.

B. The nondegenerate case

FIQ. 6. The quantity 5/n =(An —n)/n characteristic of the
relative magnitude of the antibunching effect in the fundamen-
tal wave, vs time for different values of the initial mean pho-
ton number no as a parameter. (y is the effective coupling
constant. )

bunching phenomenon is a transient effect in parametric
interaction, in contrast to the situation envisaged in mul-
tiphoton absorption.

Physically, the qualitative change in the photon statis-
tical properties of the fundamental wave in the degen-
erate parametric process is easily understood from the
fact that in the course of interaction the coherent part of
this wave, which is a remnant of the initial state, be-
comes more and more attenuated. Hence the noise con-
tribution, which is permanently amplified, will dominate,
after sufficient time has elapsed, the length of this time
interval increasing with growing no.

One learns from Fig. 6 that the greater the no, the
longer the time needed to reach the respective minimum
of 6/n. Optimum conditions for the measurement of
the antibunching effect at given no, however, correspond
to the minimum of 5/n . Due to the decrease of the
mean photon number in time, the positions of those
minima are shifted towards larger values of yt, in com-
parison to the curves representing b, /n. Numerical re-
sults concerning the minima of b, /n are listed in Table
I. Obviously, the choice no ——5, yt=0. 44, for instance,
offers good prospects for an actual observation of anti-
bunching properties.

Since the time scale is determined by the inverse of the

Vs=T& 0t'

Vt =T 9s

(4.14)

(4.15)

where E is given by Eq. (4.3) with y2„replaced by yz.

In nondegenerate parametric interaction we are deal-
ing, in conventional terminology, with a signal wave at
frequency co„an idler wave at co;, and a pump wave at
co~=m, +co;. As before, we assume the phase-matching
condition to be fulfilled and the phases of the three
waves to be adjusted such that both the signal and the
idler wave are attenuated, whereas the intense pump
wave (in contrast to what the name suggests!) becomes
amplified.

Since the basic event, namely, the fusion of a signal
and an idler photon into a pump photon, has the charac-
ter of one-photon absorption for the signal and the idler
wave, respectively, we do not expect those waves to ac-
quire antibunching properties in the course of interac-
tion. The two photons, however, are simultaneously re-
moved from the respective waves; hence the intensities in
the signal and the idler wave will be correlated. As has
been shown by Trung and Schutte (1978) and by
Perinova and Perina (1978), it is just anticorrelations that
are generated between the two waves in the early stage of
interaction. In the following, a straightforward treat-
ment of this effect will be presented.

Similar to the degenerate case, we consider the pump
wave as a classical field which, practically, remains unaf-
fected by the interaction process. Then the equations of
motion read [see, for example, Brunner and Paul (1977)]

TABLE I. Minimum values of 6/n attainable in degenerate parametric three-wave interaction
for different values of the initial photon number in the fundamental wave no. In addition, the
corresponding values for yt (product of the coupling constant and the interaction time), the mean
photon number n, and the relative attenuation are listed.

no 2
n

1 —"
no

1

2.5
5

10
50

1000

0.24
0.35
0.44
0.54
0.78
1.29

0.68
1.37
2.28
3.72

11.25
78.59

—0.38
—0.25
—0.18
—0.12
—0.051
—0.0083

32%%uo

45%%uo

54%
63%
78%
92%
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1084 H. Paul: Photon antibunching

The solutions to Eqs. (4.14) and (4.15) are

q, (t)=c(t)q, +e~s(t)q~+

q;(t) =c(t)q; +E*s(t)q,+

(4.16)

(4.17)

Assuming the signal and the idler wave to be initially
in Glauber states ! a, ) and ! a;), respectively, one finds
from Eqs. (4.16) and (4.17) after some algebra (Paul and
Brunner, 1981)

n, (t)= (q,+(t)q, (t) )

=c ! a, ! 2+s2(!a;!2+1)

0.6

~c oss 02

mls

-0,2

- 0.6

-1.0

-1.4

np =1 50

1.
'6 Kt

+2cs!a, ! ! a;!cos8,

&,(t) =—(q,+'(t)q,'(t) ) —(q,+(t)q, (t) )'
(4.18)

-2.6

where

+2cs!a, ! ! a;!cos8+s'! ai! 'J+s~,
(4.19)

FIG. 7. The quantity b„,/n, =((q,+q;+q;q, } n, n—;)In, that
indicates the presence of cross correlations between the signal
and the idler wave, vs time for different values of the initial
mean photon number in the signal wave n, (0), in the special
case n;(0)=n, (0).

~=f'p 0's A (4.20)

+2(c's+cs')! a, !!a;!cos8 . (4.21)

Since the bracket on the right-hand side of Eq. (4.19)
is positive for t &0, the signal wave (and likewise the
idler wave), when investigated alone, displays bunching
properties, as we expected.

However, 6„, may take negative values —i.e., an-
ticorrelations between the two beams may be generated.
Obviously, the specification 0=~ will provide the best
opportunity to achieve this. This choice corresponds to
maximum attenuation of both the signal and the idler
wave, as is evident from Eq. (4.18). I.et us assume, for
the sake of simplicity, that the initial mean photon num-
bers are the same for the signal and the idler wave,

! a, ! =!a;! . Since the expression for n;(t) differs
from Eq. (4.18) only in that the subscripts s and i are in-
terchanged, this remains so for all times, n;(t)=n, (t).
Moreover, also the fluctuations are equal in both beams
b,,(t) =5;(t). In those circumstances, the quantity
b,„„,(t) for 8=ir is indeed negative for not too large
values of yt—i.e., the signal and the idler wave are an-
ticorrelated. This becomes obvious from Fig. 7, in
which the ratio b,„,(t)/n, (t) has been plotted versus
time for different values of n, (0).

As in the degenerate case, the contributions due to
spontaneous processes are of less importance in the early

(y, and y; being the phases of a,* and a';, respectively).
Similar relations hold for the idler wave, of course.

The quantity characteristic of cross correlations, on
the other hand, becomes

b,„„,(t)= (q,+(t—)q;+(t)q;(t)q, (t) )

—(q,+(t)q, (t) ) (q;+(t)q;(t) )

=2c's~(! a, ! +!a;!'+ —, )

i l ——Il —Il, i2 ——I2 —I2, (4.22)

we can write the classical analog of the quantity (4.21)
(the cross-variance function) as

~,", ;,(t) = ( ( t i (t)t2(t) ) ), (4.23)

where the double bracket denotes ensemble averaging.
Applying Schwarz's inequality, one obtains from Eq.

(4.23) the following bound for the modulus of b;d;,",„
which is well known in classical (statistical) communica-
tion theory [cf., for instance, Middleton (1960)]

(4.24)

where b,„""'=((i„)) (@=1,2) are the autovariances.
Now, what is really exciting from the classical point

of view is the fact that the anticorrelations produced in
nondegenerate parametric three-wave interaction are
stronger in the early stage of the interaction process than
those allowed in the framework of a classical

stage of the interaction process which makes the ratio
b,„,(t)/n, (t) only weakly depend on n, (0), for
n, (0) &&I, near yt=0, whereas they become dominant
after a certain time has elapsed that increases with grow-
ing n, (0), giving rise to a change of anticorrelations into
correlations.

Of course, the occurrence of anticorrelations between
two waves is no matter of surprise in classical wave
theory. For example, anticorrelations have recently been
observed in light scattering from nonspherical particles
in dilute solution by measuring the cross correlation of
signals from two spatially separated detectors, each of
which received light from the same small number of
scatterers (Griffin and Pusey, 1979).

Denoting the (fluctuating) deviation of the intensity in
the beam 1 or 2, respectively, from its mean value by
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H. Paul: Photon antibunching 1085

description, —i.e., they violate the inequality

I ~oross I &~s (4.25)

corresponding to (4.24) in the special case 6;=b,, This
feature is displayed in Fig. 8, where both the quantities
—5„,/n, and b„/n, are plotted for n, (0)=n;(0)=5.
Hence, the anticorrelations under discussion are in fact
of nonclassical character.

The nonclassical behavior becomes also apparent in an
antibunching effect exhibited by the superposition field
made up by the signal and the idler wave. Indeed, the
relative excess coincidence counting rate, in case the su-
perposition field falls on both detectors in the Brown-
and-Twiss —type setup and the detectors do not distin-
guish between the signal and the idler wave, takes the
simple form (Paul and Brunner, 1981)

A, (t)+h„,(r)r(t)=-
2n, (t)

(4.26)

[for n;(0)=n, (0)j, which clearly indicates that it is the
"abnormal" strength of the anticorrelations giving rise to
a violation of the classical inequality (4.25) that is re-
sponsible for the antibunching phenomenon.

Strictly speaking, in order to derive Eq. (4.26), the as-
sumption Ice, —u; I ~„,~) 1 (co„co; signal and idler fre-
quencies, respectively, and v,~p response time of the
detectors) had to be made. Physically, this means that
the detectors average out the short-time fluctuations due
to the beating of the two modes, which otherwise give

rise to strong bunching in the superposition field. Gn
the other hand, it has recently been shown by Bandilla
and Ritze (1980b) that the above restriction can be
avoided when the signal and the idler wave are linearly
polarized in mutually orthogonal directions, their fre-
quencies, however, being equal. Then the antibunching
effect is displayed by the interference field produced by
passing the two beams through an appropriately oriented
analyzer (cf. also Sec. V.B).

Making a quantitative comparison with the degenerate
process, one observes that Eq. (4.26), at given total
number of photons in the initial state, n, (0)
+n;(0)=2n, (0)=no, differs from the corresponding ex-
pression for the degenerate case only in that the noise
contributions are larger by a factor of 2. On the other
hand, the quantity (4.26) is easily proved to be half the
corresponding value for the relative excess coincidence
counting rate in the degenerate case, provided no is set
equal to n, (0)=n;(0). Hence we infer from Table I in
Sec. IV.A that for n, (0)=n;(0)=2 5th. e optimum value
of r(t) is —0. 12, appearing at yt =0.35.

The antibunching properties of the superposition field
have been extensively analyzed by Mista and Perina
(1978) via a calculation of the characteristic function in
the Fokker Planck description. Moreover, they included
lossy mechanisms for both the signal and the idler wave
in their treatment.

Finally, I should like to mention that anticorrelations
have also been studied theoretically in two-photon ab-
sorption from two different beams (Simaan and Loudon,

16

g.4

cross
As

n;(oj=5

0.6

0.4

0.2

0.1 02 0.3 0.4 0.5 0.7 0.8

nondegenerate parametric three-wave interaction.FKx. 8. Comparison between cross and autocorrelations in
2A„,=(q+q+q;q, ) n, [for n;(Q)=—n, (Q)] and 5,:hn, ' n, — —
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1086 H. Paul: Photon antibunching

1975b). Moreover, they have been shown to be generated
also in both Ram an and hyper-Raman scattering
(Szlachetka, Kielich, Perina, and Perinova, 1979;
Perinova. , Perina, Szlachetka, and Kielich, 1979a, b;
Szlachetka and Kielich, 1980; Szlachetka, Kielich,
Perina, and Perinova, 1980; Tanzler and Schiitte, 1981;
Germey, Schiitte, and Tiebel, 1981).

C. The mode volume

1 1=Lcrit
Vg Vg

(4.27)

L being the crystal length.
When the derivative of the index of refraction p with

respect to m varies slowly in the frequency range co, to
co;, we may write

Having thus shown parametric three-wave interaction
to be mell suited to produce fields with antibunching
properties, we are left with the problem of specifying the
longitudinal dimension of the mode volume. Similar to
the case of multiphoton absorption discussed in Sec.
III.F, the task is to determine the critical value for the
time delay r,„, between two photons (in the degenerate
case, these are two photons in the ground wave, and in
the nondegenerate case a signal and an idler photon)
which must not be exceeded by them in order to have a
chance to undergo "fusion" into a harmonic (or pump)
photon. Unlike the situation envisaged in multiphoton
absorption, however, the nonlinear material involved in
the parametric process does not provide a memory
mechanism defining ~,„„since the relaxation times are
extremely short, so that the interaction has simultaneous
character at a given position. However, a specific
mechanism which effectively produces a nonlocal cou-
pling either of the fundamental wave with itself or be-
tween the signal and the idler wave, has been found to
originate from the (linear) dispersion of the nonlinear
material (Paul and Brunner, 1980).

Let us first consider the nondegenerate case. Owing to
the dispersion, the signal and the idler wave propagate
with different group velocities v, and v;. This has the
consequence that a field amplitude in the signal wave
which begins to travel through the crystal —say, at an in-
stant t- during its passage experiences the effect of not
only the field amplitude in the idler wave which started
at the same time, but also of idler amplitudes with start-
ing times t'&t (for U, &U;) or t'~t (for U, &U;). The
maximum value for

~

t' t
~

is given by—the difference of
the transit times for the signal and the idler wave,
respectively,

linewidth becomes manifest in the spontaneous process
(parametric fluorescence); on the other hand, it charac-
terizes that part of the spectrum of a broad-band signal
(and, likewise, idler) wave that is actually affected in the
parametric interaction.

In the degenerate case the difference of the group ve-
1 1

locities at co+ —,4co and co ——,ha), instead of a), and co;,
comes into play, where ~ is the center frequency and hco
the bandwidth of the fundamental wave. (The pump
wave is still assumed to be monochromatic. ) The corre-
sponding difference in the transit times is

w=L 8 k=LAdo
Bco

ACO BV=I.
3 (degenerate case) .

V

(4.29)

&T Bp
+crit

p Bco
(degenerate case), (4.30)

T being the transit time as before.
Equations (4.28) and (4.30) indicate the time scale on

which the antibunching (or anticorrelation) phenomenon,
as predicted in the preceding sections in the single-mode
formalism, will actually show up. Accordingly, the lon-
gitudinal dimension of the mode volume is given by
~crit =&crit.

In practice, the critical time ~,„t proves to be extreme-
ly short. In fact, it follows from Eqs. (4.28) and (4.30)
or

~

&p/B~~ =10 " s, L =3 cm, and co, —co; =10" Hz
that ~,„t is of the order of a few picoseconds for the non-
degenerate case, while it is smaller still, by a factor of 10
or so, for the degenerate case.

Physically, it appears to be clear that the time con-
stants (4.28) and (4.30) are characteristic also of the pro-
cess which is inverse to that considered so far, namely,
the decay of a pump photon into both a signal and an
idler photon (parametric fluorescence). Then, r, , de-
scribes the maximum time delay between the two pho-
tons generated in the same elementary process. This
problem has been extensively studied by Mollow (1973).

V. ANTIBUNCHING AND INTERFERENCE

A. Introductory remarks

Assuming now the bandwidth Aco to coincide with that
allowed by the phase-matching condition, we can
equate' ~ and 2~/Ae. This gives us the value for z
which can occur, at maximum, in degenerate parametric
interaction

1/2

2T Bp
&crit= (~s ~i)

~p Bco
(4.28) In the preceding sections we have analyzed physical

processes which make it possible, at least in principle, to

(nondegenerate case), where T=l. /U, is the transit time.
In fact, the characteristic time (4.27) is nothing other

than the inverse of the linewidth as determined by the
phase-matching condition [see Kleinman (1968)]. This

In fact, replacing ~ in this way, one obtains from Eq. (4.29)
the formula for the linewidth in parametric fluorescence, as
derived by Kleinman (1968) (apart from a factor of 2).
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H. Paul: Photon antibunching 1087

change the photon statistics of light such that initial
bunching (or nonbunching corresponding to a Glauber
state) is converted into antibunching. A different ques-
tion we will be concerned with in what follows is how
antibunching properties thus produced will eventually
change in further interactions that the field may under-
go. This problem is of some practical interest particular-
ly in the case of two- (or multi-) photon absorbed light.
In fact, only high-intensity fields are appreciably affected
by multiphoton absorbers. Hence the mean photon num-
ber n,„, (per mode volume) in the outgoing field will
normally be very large, which practically precludes an
observation of the antibunching phenornerion, whose
magnitude is of the order of 1/n, „,.

Therefore, it would be desirable to have a physical
mechanism at hand that diminishes the field iritensity by
orders of magnitude, without, however, remarkably
reducing the quantity 6/n =((q+ q ) —(q+q) )/
(q+q), which measures, if negative, the magnitude of
the antibunching effect in comparison to the optimum
value —1, corresponding to a perfectly sharp photon
number.

First, we note that one-photon absorption (or any
equivalent process like beam splitting or the "dilution"
of the field due to spreading in space) certainly does not
work in the way required. In fact, we saw in Sec. III.A
that the relative excess coincidence counting rate 5/n is
conserved in this process. This means the quantity 6/n
varies as n/n(0), where n(0) is the mean photon number
at the beginning of the damping process, and hence be-
comes negligibly small for remarkable attenuation —say,
n/n(0)(10 —irrespective of its initial value. So we
have to look for different mechanisms.

In classical electrodynamics, there exists a well-known
method of reducing the mean intensity of a field whose
amplitude contains a fluctuating part, without affecting
the latter, thus indeed enhancing the relative intensity
fluctuations. It simply consists of making the field
under investigation interfere destructively with a non-
fluctuating coherent wave oscillating at the same fre-
quency with a properly chosen amplitude. We are thus
led to the idea [first suggested by Steudel (1977)] that in-

B. Enhancement of antibunching through destructive
interference

We study the interference of a field possessing anti-
bunching properties with a coherent reference beam. For
the sake of mathematical convenience we idealize both
waves as single-mode states of the field. Those two
plane-wave —type modes labeled A, =1 and A, =2, are as-
sumed to differ only by their directions of propagation. '

However, this difference can be so small that the spatial
variation of the interference pattern can be neglected in a
given domain in space. Since we are dealing with expec-
tation values for normally ordered field operators, no
contributions from vacuum fluctuations will enter our
calculations. Hence we need retain only the terms corre-
sponding to A, =1 and A, =2 in Eqs. (2.26). Introducing
the abbreviations

Ei+'(r, t) =a&(r, t)qi,
we thus cari write

E' +'(r, t) =E',+'(—r, t)+Ei+'(—r, t) . —

(5.1)

(5.2)

Since the two beams are generated by different sources,
they are statistically independent. Formally, this means
that expectation values for operator products related to
both beams factorize. Assuming the reference beam
A, =2 to be in a Glauber state

I P), we find after some
simple algebra the following results:

terference of a field exhibiting antibunching properties
with a reference beam being in a Glauber state might
provide a mechanism of reducing the intensity without
appreciably affecting the relative magnitude of the anti-
bunching effect, 5/n. Similar success might be achieved
by dividing the field in question into coherent parts and
inaking them interfere (destructively). Both possibilities
have been thoroughly investigated by Bandilla and Ritze
(1979, 1980a). [See also Ritze and Bandilla (1979a).] In
the following, I shall outline the main features of their
analysis.

&E' 'E'+'&=
I
a I'[&qi+qi &+2«(&qi &P)+ I&I']

(E' "E'+"&—&E' 'E'+'&'=
I
a I'I &qi+'qi &

—&qi+qi &'+4«[(&qi+'qi &
—&qi+ &&qi+qi &)&]

+2«[(&qi" &
—&qi' &'+']+2(&qi'qi &

—&qi' &&qi &)
I ~ I'i .

(5.3)

(5.4)

In accordance with the above assumption, we put
Iai(r, t)

I

= Ia2(r, t)
I

= Ia I
(independent of r and t)

and ai(r, t)a2(r, t)=
I
a

I
in a given domain in space.

One learns from Eq. (5.4) that the photon statistical
properties of the field resulting from interference are
determined not only by the intensity fluctuations in the
field A, =1, but also by the coherence properties of the
latter which are reflected by the combinations of expec-
tation values involved in the interference terms of Eq.
(5.4). To evaluate those quantities in case of two-photon

I

absorbed light is not at all a trivial matter. This prob-
lem has been treated by Simaan and Loudon (1978) and
by Bandilla and Ritze (1980a), the latter paper being in
fact devoted to a study of the interference effect with
which we are presently dealing.

On ihe contrary, the degenerate parametric interaction

~3The interference may be produced also with the help of po-
larizers. [For details see Ritze and Bandilla (1979a}.]
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1088 H. Paul: Photon antibunching

(qi+'q, ) —(q i+ &(q i+q, & = —s(c —s)'a,
(qi+') —(qi+ )2= —cs,

(5.5)

(5.6)

process allows for a simple analytic solution in the
Heisenberg picture [see Eq. (4.5)], with the help of which
the expectation values in question are easily calculated.
For this reason we confine our analysis to this case, the
results being indeed similar to those obtained by Bandilla
and Ritze (1980a) for two-photon absorbed light.

Under the assumption that the light in the fundamen-
tal wave traversing the nonlinear crystal is initially in a
Glauber state

~
a), where a is taken as a positive num-

ber for convenience, we find from Eq. (4.5) the quantities
of interest to be

Let us consider two special cases.

(i) The field intensity is reduced to its minimum value;
then 5 equals zero and Eq. (5.12) becomes

(E(—)2E(+)2) (E(—)E(+))2

~

2(E(—)E(+))

= 1+2$ (5.13)

Since the corresponding value for thermal (chaotic) light
is unity, Eq. (5.13) indicates "superbunching" to occur,
rather than antibunching.

(ii) The parameter 5 is chosen such that both the in-
equalities

(5.7} 5 ~~s (5.14)

=
~

(2
~ I b, (t; ) —4Re[s (c —s) ap]

—2Re(esp )+2s
~
p~2j (a~0), (5.8}

where b, is given by Eq. (4.10) for cos8= —l.
The mean intensity of the field produced by interfer-

ence follows from Eq. (S.3) to be

(E E + )= ~g
~

I(c —s) a

+s +2 Re[(c —s)ap]+
/
p

f I

(a & o), (5.9)

where the relations (4.13) and

(q+ ) =(c —s)a (a & 0) (5.10)

have been used.
As mentioned above, we are interested in destructive

interference. It becomes evident from Eq. (5.9) that the
intensity of the total field will attain its minimum value
(in the spatial domain considered) when P= —(c —s)a.
Allowing for a deviation from this special value, we put

p= —(c —s)a+6, (5.11)

where 5 is assumed to be a real quantity. A straightfor-
ward calculation then gives us the quantity which
characterizes the relative magnitude of the antibunching
effect for the total field (in comparison to the optimum
value —1)

(E(—)2E(+)2) (E(—)/(+))2
2(E(—)E(+))

s'(c'+s')+ [(e —s)' —1]5'
5+s

[cf. Ritze and Bandilla (1979a)].

(5.12)

Here, we put c, = —1, thus specifying the phase of the
pump wave such that the antibunching effect becomes
maximum. As before, c =c(t;) and s—:s(t;) are the ab-
breviations (4.6), where the duration of the interaction
has been denoted by t; in order to avoid confusion.

Insertion of the results (5.5) —(5.7) in Eq. (5.4) yields

(~(—)2~(+)2) (~(—)~(+) )2

and

s(c+s)
(c —s) —1

(5.15)

are fulfilled for given t;. [For example, when yt;=0. 4,
the right-hand sides in (5.14) and (5.15) are 0.17 and
0.41, respectively. ] Then the ratio (5.12) reduces to the
simple form

(E(—)2E(+)2) (E(—)E(+))2

(E —E+ )

=e ' —1 (= —0.55 for yt; =0.4) . (S.16)

Thus it has been demonstrated that the relative magni-
tude of the antibunching effect, in the above-mentioned
sense, is essentially preserved in destructive interference
under properly chosen experimental conditions. Since,
on the other hand, the mean intensity is drastically re-
duced in case of large values of (qi qi), the absolute
magnitude of the antibunching effect, as given by the re-
lative excess coincidence counting rate (2.32), is enhanced
in the same proportion.

Some remarks are appropriate. First, a similar
enhancement of the antibunching effect is accomplished
also by "interference of the photon with itself, " i.e., by a
conventional interference experiment, where the initial
light beam (which, in our case, is assumed to display the
antibunching phenomenon) is divided into two coherent
parts which are made to interfere. This has been shown
by Bandilla and Ritze (1979).

Second, it is also possible to produce low-intensity
fields with pronounced antibunching properties by des-
tructive interference of the signal and the idler wave in
nondegenerate parametric three-wave interaction (signal
and idler fields differing in their directions of polariza-
tion, but not in their frequencies), as has been pointed
out by Bandilla and Ritze (1980b).

Finally, one observes that the amplitude a of the fun-
damental wave entering the nonlinear crystal has com-
pletely disappeared from formula (5.12). This implies a
might as well be equal to zero. In this case, however,
the field emerging from the nonlinear crystal is nothing
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else than amplified noise (due to parametric
fluorescence —see Sec. IV.A), and hence certainly has no
antibunching properties. Nevertheless, the interference
with a properly chosen reference beam produces a field
that exhibits the antibunching effect. As pointed out by
Ritze and Bandilla (1979a), an explanation of this really
striking result can be found only in the fact that
parametric noise, in contrast to chaotic light generated
by spontaneous emission from excited atoms, has well-
defined coherence properties impressed on it by the
coherent pump wave.

Specifically, the sum of the phases of the signal and
the idler wave, respectively, which have been been initiat-
ed by parametric fluorescence, is strongly correlated with
the phase of the (coherent) pump wave [see, for example,
Paul (1973)]. For the degenerate parametric process this
implies that the phase of the amplified noise at the fun-
damental frequency is well defined in relation to the
phase of the incident harmonic.

Due to the assumed reality of b,co, this formula intro-
duced by Eimerl (1978) on the basis of a general argu-
ment, describes in fact a specific kind of phase fluctua-
tions. Strictly speaking, the n-dependent corrections to
the mode frequency cop in Eq. (5.17) give rise to a de-
phasing, in the Schrodinger picture, of the coefficients c„
in a single-mode field state of the general form

c„(t)=c„(0)e (5.18)

while the values for
~
c„~ obviously retain their initial

values. This means the photon statistics remain un-
changed in the temporal evolution. However, a Glauber
state will evolve into a state that differs from a Glauber
state. This implies that the phase of the field is no
longer so well deflned as in a Glauber state —i.e., phase
fluctuations are produced.

Formally, it is advantageous to rewrite Eq. (5.17) as

C. Transformation of phase fluctuations into intensity
fluctuations Pl+1 1

Ez =nA co + Eci) (cil =cop —
&

Eco) . (5.19)

IfE„=nfi cop+ —hen (b,co ((cop) .
2

(5.17)

The observation made at the end of the foregoing sec-
tion that coherence properties of a field will become
manifest in the photon statistics when the field is made
to interfere with an ideal reference beam, is of course no
matter of surprise in classical electrodynamics, when
considered from a general point of view, i.e., disregard-
ing the fact that it is just antibunching properties that
are acquired by the interference field in the above case.
In fact, it is well known that the position of interference
fringes is determined by the relative phase between the
two interfering beams. Hence when one of them under-
goes phase fluctuations, the intensity of the interference
field at a given point in space will exhibit intensity fluc-
tuations.

While in classical optics such a mechanism will cer-
tainly always lead to bunching, one might suspect that
the quantum-mechanical formalism, in specific cir-
cumstances, allows antibunching properties, also, to be
generated in this way. Indeed, Ritze and Bandilla
(1979b) succeeded in proving that phase fluctuations that
are produced by transmitting the light through a (tran-
sparent) medium with a nonlinear index of refraction can
be transformed in antibunching-type intensity fluctua-
tions through interference. In the following we will be
concerned with this problem.

As has been pointed out by Eimerl (1978), in the case
of a medium with a nonlinear index of refraction, the en-
ergy levels E„ofa particular mode of the radiation field
are no longer equally spaced; instead, the level difference
becomes dependent on the photon number n Confining.
oneself to the lowest-order correction in n which corre-
sponds to the Kerr effect, one can write

This form of the eigenvalues corresponds to the Ham-
iltonian

H =Hp+H;„, ,

where

Hp ——%co'q+q

(5.20)

(5.21)

H;„,= , fib, co(q+q) + ,—fib.coq+q . — (5.22)

In the interaction picture, the interaction Hamiltonian
(5.22) leads to the following equation of motion for the
photon creation operator:

q+ =i Acoq+qq+ (5.23)

[cf. also Ritze and Bandilla (1979b)].
Since q+q is a constant of motion, the solution to Eq.

(5.23) is simply given by

q + ( i ) e l hrutq +pq pq +p (5.24)

xg fq + e —xq +e —xQ—X (5.25)

where the upperscript zero refers to the initial state at
t=0.

For an analysis of the photon statistical properties of
the interference field we need the knowledge of the ex-
pectation values occurring on the right-hand side of Eqs.
(5.3) and (5.4). As previously, we assume that the light
beam which passes through the medium with a nonlinear
index of refraction is initially in a Glauber state

~

a).
Then the expectation values of interest can be calculated
from Eq. (5.24) in a straightforward manner. In the
evaluation the following auxiliary formulas are useful:
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and

~e
—xq q~a) (5.26)

(q+(t)q(t)&= ~a t',
( +(t)) immi (e'~~' 1) ~a—) ae

(5.28)

(5.29)
where x is a parameter. Both formulas are easily derived
by means of the following lemma proved by Louisell
(1973, p. 156)

( 42(t)) 3iheet (e ' 1—)~a~ ae2

( +2(t) (t)) = 2')cubi (e '—))~a)
~

a
~

ae
(5.30)

(5.31)

q+q ~ (e "—1)' +»e
1=0

After some algebra one obtains

(5.27)
With these results in hand, one finds from Eqs. (5.3) and
(5.4) the mean intensity and the intensity correlations for
the field produced by interference, with a reference beam
being in a Glauber state

~
p), to be given by

and

(E(—)E(+))
[
a

[

2[
(
a

/

2+2Re(e(e" 1) —/a/ algcp)+
/ p /

2]

(E(—)2E(+)2) (E(—)E(+))2 2
~

a
~

4I (1 e(e"—1) ~a~ e(e "—1) ~a) )
~

a
~

2
~ p )

2

+2 Re[e' "
~ ~ (e"—1)

)
a

(
a*P]

+Re[(e see
(e ' —1)

]
a

( e 2(e' —1)
( (a)ae 2P2] ]

(5.32)

(5.33)

where the following abbreviations have been introduced:

a=ac (5.34)

a=hut;

t; being the duration of the interaction with the medium that possesses a nonlinear index of refraction.
%'ithout loss of generality we can put

a= —Ae '~ (A &0),
P=B)0.

Then Eqs. (5.32) and (5.33) can be written more compactly as [cf. Ritze and Bandilla (1979b)]

(E' 'E'+') =
~

a
~

[A —2ABe'"" ""cos(A sine+/)+8 ]
(E( ' E'+' ) —(E( 'E'+') =2

~

a
~

"A BI 2Ae'"" " [cos(A sine+(()) —cos(A sine+P+e)]
+Be('~( ' '1 cos(A sin(2e)+2(t)+e)

—Be ""' "" [cos(2A sine, + 2P)+1]+BI .

(5.35)

(5.36)

(5.37)

(5.38)

In order to show that this rather involved expression ac-
tually predicts antibunching to occur in certain cir-
cumstances, we specialize to the following case:

I

and the relative difference in the initial amplitudes p are
properly adjusted. Choosing, for example, the parame-
ters as

el/2 2el/2 1

(
1/2 1) (5.42)

A sine+(t)=—ql=O(e'/ ), A e=—c =O(1),
A =(1+p)8, where p=0(e'/ ) . (5.39)

We then find by expansion [cf. Ritze and Bandilla
(1979b)]

(E' 'E' ') =
~

a
)
'8'(p'+q)'+«)

(E(—)2E(+ )2) (E(—)E(+ ) )2

(5.40)

=2
i
a

i
cB [2ipp+(c + —,)e+2cq)2] . (5.41)

One learns from Eq. (5.41) that the resulting field
displays the antibunching phenomenon when the phase y

and observing the relation cB =@A =c = —,, we obtain

&E(-)E(+)
& =2.75

~
a ~',

(E(—"E'+")—(E(—'E'+'&'= —1.125
~

a
~

'
(5.43)

= —0.41 .

This result indicates that it is indeed possible to

from which the quantity characteristic of the relative
magnitude of the antibunching effect follows to be

(E(—)2E(+)2) (E(—)E(+))2

(E —E+ )
(5.44)
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transform the phase fluctuations acquired by a beam
during its passage through a medium with a nonlinear
index of refraction in antibunching-type intensity Auc-
tuations of remarkable magnitude by destructive interfer-
ence with an ideal reference beam. From the experimen-
tal point of view this technique has the additional advan-
tage that the initial mean photon number 3 =c/E be-
comes drastically reduced in the process of interference.

It follows from Eq. (5.41) that the photon statistical
properties of the interference field very sensitively de-
pend on y (and similarly, on p). In fact, putting, for

(E' 'E'+' ) —(E' 'E'+') =0, while for y=0 bunch-
ing occurs. In the special case p =y =0, the mean inten-
sity takes its minimum value, and the relative coin-
cidence counting rate becomes

(E' —'zE'+' ) —(E' —'E'+')
~

g
~

(E(—)E(+ ) )2
=2+ (E(—)E(+))

(5.45)

Since the corresponding value for thermal radiation
equals unity, Eq. (5.45) indicates the presence of "super-
bunching. "

An experimental scheme similar to that considered in
the foregoing, which utilizes the effect of self-induced
gyrotropic birefringence, has been analyzed by Tanas and
Kielich (1979). Starting from a phenomenological in-
teraction Hamiltonian that contains the hyperpolarizibili-
ty tensors for the molecules, they investigated theoreti-
cally the interaction of an intense, elliptically polarized
light beam with an isotropic medium. They showed that
the outgoing light, after having passed an analyzer, exhi-
bits either bunching or antibunching properties, depen-
dent on the azimuth and the ellipticity of the incident
beam (for given orientation of the analyzer). This study
has been extended by Ritze (1980), who gave a micro-
scopic description of the interaction and avoided the
"short optical path approximation" used by Tanas and
Kielich (1979). Moreover, he pointed out that by inser-
tion of a birefringent plate between the sample cell and
the analyzer it becomes possible to produce a field that
displays the antibunching effect at drastically reduced in-
tensities, thus improving the prospects for an actual ob-
servation of this phenomenon.

It is interesting to note that the interaction of light
with a medium that possesses a nonlinear index of re-
fraction offers a novel technique of measuring the pho-
ton statistical properties of a light beam, as has been
pointed out by Ritze and Bandilla (1979c). The pro-
cedure is as follows. ' The initial beam whose photon
statistical properties will be determined is transmitted

through a Michelson-type interferometer with a Kerr cell
inserted in one of its arms. The reflectivity of the en-
trance mirror dividing the incident beam into two
coherent parts is R=cos 0. (For definiteness, assume
that the transmitted partial beam passes through the
nonlinear medium. ) The arm lengths of the interferome-
ter are to be adjusted such that the intensity of the out-
going field takes its minimum value. According to Ritze
and Bandilla (1979c), the corresponding mean photon
number is given by

yg p2Pf 2sin4g cos2g 1 + l sin2g

(5.46)

(hN is the variance of the photon number and N is the
mean photon number in the initial beam), provided the
conditions N &&1 and (N —N) ~&N are fulfilled.

It becomes obvious from Eq. (5.46) that the measure-
ment of the minimum intensity, in dependence on the
mirror reflectivity R=cos 0, suffices to determine the
ratio AN /N. In this way, the photon statistical proper-
ties of the incident light can be measured without any
coincidence counting technique being needed.

A variant of this detection scheme which makes use of
self-induced gyrotropic birefringence has been discussed
by Ritze (1980).

Vl. RESONANCE FLUORE3CENCE

A. Scattering by a single atom

In the preceding sections different interaction process-
es have been studied which have the common feature of
being suited to change the photon statistics such as to
endow fields that are initially in a coherent (Glauber)
state with antibunching properties. Resonance fluores-
cence radiation emitted by a single atom, on the other
hand, provides an opportunity to generate, from the very
beginning, fields that exhibit the antibunching
phenomenon, as has been predicted by Carmichael and
Walls (1976a, b) and Kimble and Mandel (1976, 1977).
[See also Cohen-Tannoudji (1977).] In the following I
will present the main features of the theoretical analysis.

Basic to the theoretical description of resonance
fluorescence is the complete determination of the scat-
tered field by the atomic variables. This reflects the fact
that what we call resonance fluorescence radiation is ir-
radiated by an oscillating atomic dipole moment which
itself is induced by the incident (coherent) field assumed

~4The authors also consider a different scheme, where only one of the two perpendicularly polarized components of an initially
linearly polarized light beam traversing the nonlinear medium feels a nonlinear index of refraction. (This is achieved by applying a
transverse magnetic field. ) Before falling on a detector, the light passes a Pockels cell and afterwards an analyzer which is precise-
ly crossed with respect to the initial polarization direction. The Pockels cell is used to produce a phase difference between the two
orthogonally polarized components which minimizes the intensity of the light transmitted through the analyzer. Formula (5.46)
applies to this case, too, 8 being now the angle between the magnetic field and the direction of transmission for the analyzer.
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to be resonant with a specific atomic transition. In the
quantum-mechanical formalism that electric field
strength (in the far-field zone) is related to the raising
and lowering operators a+ and a, respectively, of an
atom idealized as a two-level system, in the form (Mol-
low, 1969)

E'+'(r, t) =f(r)a t
C

elements read [Allen and Eberly (1975); see also Mollow
(1969)],

dpzi

dt 2 pz i +iga(pzz —pi i )

dP22

dt YI 22 ~$P12+e P21

(6.4)

(6.5)

the remaining matrix elements being determined by the
relations

E' '(r, t) =f*(r)a+ t ——
C

P12 P21~ P11+P22 (6.6)

Here f(r) is a well-known function that describes the
spatial distribution of a classical dipole field. It is, how-
ever, of no interest to us, since the factors f(r),f~(r)
will cancel in forming the relative excess coincidence
counting rate that characterizes the photon statistical
properties of the field. Hence the problem of calculating
correlation functions for the scattered field reduces to
the determination of the corresponding atomic correla-
tions.

From Eqs. (6.1), together with the familiar commuta-
tion relations for the atomic raising and lowering opera-
tors,

a =a+ =0, Ia,a+I—:aa++a+a =1,
we immediately derive the fundamental result

(E' ' (r t)E'+' (r t) &

(6.2)

= )f(r)) 4(a+~ ) ——a' t ——)=0. )63)
C C

This means the probability of simultaneously detecting
two photons vanishes exactly —i.e., the atom emits one
photon after the other, but never two photons at the
same instant. In other words, the (nondelayed) coin-
cidence counting rate is zero, while the individual count-
ing rates of the detectors are certainly not. Hence the
excess coincidence counting rate is negative, which, ac-
cording to the criterion established in Sec. II.A, indicates
antibunching to be present. Moreover, it immediately
follows from the complete absence of nondelayed coin-
cidences that the relative excess coincidence counting
rate (2.9) equals —1, corresponding to a one-photon
state, according to Eq. (2.24). Thus the principal capa-
bility of resonance fluorescence to generate fields with
antibunching properties has already been demonstrated.

To get information on the correlation time of the anti-
bunching effect thus produced, we follow an elegant
treatment of Loudon (1980).

The atom experiences both a coherent driving force
due to the incident field and the effect of radiation
damping. The latter process can be accounted for, in an
approximation based on a Markoff factorization assump-
tion, by simply supplementing the Schrodinger equation
for the atomic density operator p by phenomenological
damping terms, as has been shown by Mollow and Miller
(1969) [cf. also Mollow (1969)]. In the interaction repre-
sentation, the equations of motion for the density matrix

Here, g is the coupling constant, a stands for the (com-
plex) amplitude of the classical monochromatic driving
field, and y denotes the natural decay rate of the upper
atomic level 2. For simplicity, we assume the incident
field to be in exact resonance with the atomic transition.
Moreover, we disregard additional damping mechanisms
due to the environment of the atoms, e.g., collisions.

Now, we make use of the well-known fact that the ex-
pectation values for the operators a, a+, and a+a (in the
interaction representation) are related to the ptk in the
following simple manner:

&a+(t) & =piz(t), (a (t) & =p»(t),
&a+(t)a (t) & =pzz(t) .

(6.7)

(6.8)

From the linearity of the equations of motion (64) and
(6.5), we conclude that any density matrix element peak(t)
depends linearly on the initial values piz(0), pzi(0), and
pzz(0). [Note that by virtue of the second equation in
(6.6), pii(0) can be expressed through pzz(0).] Hence, ob-
serving the relationship (6.7) and (6.8), we are entitled to
write, in particular,

(a+(t)a (t) &
= ai(t)+az(t)(a (0) &+a3(t)(a+(0) &

+a (t)(a+(0)a(0)&, (6.9)

az( oo ) =a3( oo ) =a4( oo ) =0,
(a+a &„=a,( m ),

(6.10)

(6.11)

where the subscript st has been used to indicate the
steady-state value.

What we are ultimately interested in is not single-time
expectation values, but two-time correlation functions.
Fortunately, there exists a famous theorem, the so-called
quantum regression theorem proved by Lax (1966, 1967)
[cf. also Lax (1968)] for Markovian systems, which al-
lows one to express any two-time correlation function
through single-time expectation values. In explicit
terms, this theorem states the following: if M is a

where the functions a (t) (j=1,2,3,4) are found by solv-

ing the equations of motion (6.4) and (6.5).
Due to the presence of a damping mechanism, the sys-

tem will tend, after sufficient time has elapsed from the
interaction being "switched on, " to a steady state in
which all information about the initial state is "forgot-
ten. " Formally, this means that the following relations
hold.
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member (or a linear combination) of a complete set of
system Markovian operators M&, then the time evolution
of the expectation value of M can be written as

(E' '(r, t)E' '(r, t+r)E'+'(r, t+r)E'+'(r, t))„
(E' '(r, t)E'+ '(r, t) )„

(M(t) ) = y P„(t)(M„(0)) (t & 0), (6.12)
~i(r) p»(0 I

r)
(6.15)

~i( a ) p22( oo )

and the mean of a two-time operator L (t)M(t+r)N(t),
where I, and X are any system operators, is given by

(L (t)M(t +r)K(t) ) = g P&(r)(L (t)M(t)N(t) ) .

(6.13)

Using this theorem to evaluate the steady-state value of
the correlation function (a+(t)a+(t+r)a(t+r)a(t)),
we find from Eq. (6.9) the simple result

(a+(t)a+(t +r)a (t +r)a (t) )„=ai(r)(a+a )„.
(6.14)

[Note that the remaining terms in the sum on the right-
hand side of Eq. (6.13) vanish in the present case by vir-
tue of the commutation relations (6.2).]

It follows from Eq. (6.9), in combination with the rela-
tions (6.7) and (6.8), that ai(r) has a simple physical in-
terpretation: it describes the population of the upper lev-
el p22(0 I

r) at time r following the turn-on of the in-
teraction, when ihe atom starts in the lower state. In
other words, ai(r) is the conditional probability of find-
ing the atom in the upper level at time t =~, given that
it was in the lower level, with certainty, at t=0. On the
other hand, the second factor on the right-hand side of
Eq. (6.14) represents the steady-state value for the popu-
lation of the upper level.

In view of Eqs. (6.1), (2.27), and (2.28), the delayed
coincidence counting rate registered at a given point r is
proportional to the expression (6.14). Hence the
aforementioned physical interpretation of the two factors
appearing on the right-hand side of Eq. (6.14) suggests
the following picture for the emission process in reso-
nance fluorescence, with regard to photon counting ex-
periments: the emission of a photon is associated with
an atomic transition from the upper to the lower level.
Consequently, the probability of such an event happening
is proportional to the mean population of the upper level
p2'2 ——(a+a)„. Since the atom is in the lower state im-
mediately after an emission of a photon has taken place,
it is unable to emit a second photon at the same instant.
Instead, it needs some "recovery time, " during which the
driving field brings it back to the upper level from which
a new emission process may start. Et is just this repopu-
lation of the upper level that is described by the factor
ai(r)=p22(0

I
r) in Eq. (6.14).

Equations (6.1) imply the mean intensity of the
field —and hence the individual counting rate for a single
detector —to be proportional to (a+a). Therefore Eq.
(6.14) yields the following expression for the ratio of the
coincidence counting rate and the random coincidence
counting rate, in the steady state:

where p»(0 Ir)[:—ai(r)] is the conditional probability
mentioned above and where use has been made of Eq.
(6.11).

Equation (6.15) tells us that the r dependence of the
coincidence counting rate equals that of p22(OI r). The
latter quantity is readily derived from Eqs. (6.4) and (6.5)
to be [Carmichael and Walls (1976a,b); cf. also Loudon
(1980)]

p22(0 I
r) =p22( oo ) 1 — exp — r37+A 3y—k

2A, 4

3y—A 3y+A+ exp
4

(6.16)

where the abbreviation

X=(y' —16Q')'"

has been introduced, and

Q=2 Iga I

(6.17)

(6.18)

denotes the Rabi frequency.
Of interest are two limiting cases of formula (6.16):
(a) Weak driving field (Q«y). Then Eq. (6.16) takes

the simple form

p»(0l r) I= [1—exp( ——,yr)]
p22( a) )

(6.19)

(b) Strong driving field (Q»y). In this case Eq.
(6.16) reduces to

p»(0 I
r) 3=1—cosQt exp( —, yr) . —

p22( oo )
(6.20)

It becomes evident from Eq. (6.19) that the correlation
time for the antibunching effect is roughly given, in the
weak field case, by 2/y, i.e., twice the mean lifetime of
the upper level with respect to spontaneous decay. When
the driving field is very intense, one expects the
"recovery time" for the atom to become shorter. In fact,
this feature is expressed by Eq. (6.20), which indicates
that p22(0 I

r) rises monotonically from zero to about half
its maximum value during a time approximately given
by r=m/(2Q).

We thus have seen that resonance fluorescence radia-
tion emitted by a single atom clearly exhibits the anti-
bunching effect. This important feature is preserved,
when the above assumption of an exactly resonant mono-
chromatic exciting field is dropped, i.e., when allowance
is made for detuning (Kimble and Mandel, 1976) and for
the presence of a finite bandwidth associated with the
driving field (Kimble and Mandel, 1977; Agarwal, 1978).
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B. The effect of atomic nuraber fluctuations

It has been shown in the preceding section that reso-
nance fluorescence radiation from a single atom distinct-
ly displays the antibunching phenomenon. Crucial to the
generation of antibunching properties is the presence of
only one atom. (To put it in experimental terms, care
has to be taken that only light scattered by a single atom
is focused on the detectors. ) In fact, complete absence of
nondelayed coincidence counts, as predicted in Sec. VI.A
for the single-atom case, will no longer be observed when
two or more atoms happen to be in the field of view,
since two atoms will emit, with nonzero probability, a
photon each at the same instant. Actually, in a recent
experiment [Kimble, Dagenais, and Mandel (1977);
Dagenais and Mandel (1978); a short description will be
given in Sec. VII.B] the number of atoms in the observa-
tion volume could not be ensured to always be unity; in-
stead it was subjected to Auctuations.

Hence there is considerable practical interest in the
photon statistical properties of resonance radiation emit-
ted by several atoms. The first to treat this problem
were Agarwal et al. (1977), who analyzed collective
atomic effects in resonance fluorescence from a few
two-level atoms contained in a small volume. Theoreti-
cal studies closely connected with the experiment by
Kimble, Dagenais, and Mandel (1977) are due to Jake-
man et al. (1977), Carmichael et al. (1978), and Kimble,

where rq and r&& are the detector positions.
Let us first assume the number of atoms M in the

field of view to be fixed. The electric field at r(=ri, rii)
is the sum of contributions due to the individual atoms

M
E' +—'(r, t)= g Ek+'(r, t)—,

k=1
(6.22)

where the subscript k labels the atoms. Since we sup-
pose the latter to be localized at random positions that
are separated by many wavelengths in general, the opera-
tors Ek—+' involve phase factors with random phases, due
to the geometrical factor f(r) in Eqs. (6.1). Hence non-
vanishing contributions to G' '(ri, r», t, t+r) come only
from pairings of the fields associated with the same
atom. Thus insertion of Eq. (6.22) into Eq. (6.21) yields

Dagenais, and Mandel (1978). Following the reasoning
of the last group of authors (disregarding, however, the
presence of background radiation that has been taken
into account in all three references), we start from the
observation that the delayed coincidence counting rate
measured by means of two detectors with sufficiently
small cathode areas in a Brown-and- Twiss —type ar-
rangement equals, apart from a factor, the second-order
correlation function

G"'(r»rii, t, t+r)= {E' '(ri t)E' '{r»—, t +r)
&&E +~(r»t +r)E'+'(r, t) ), (6.21)

G"'(r„r„;t,t+r)= g «k '(ri, t)Ek '(r», t+r)Ek+'(r» t+r)Ek+ {ri t) &

k

+ g {Ek '(ri, t)Ek {ri t)) {Et '(rri t+&)Et (r» t+&))
k+1

+ g {Ek '(r»t)Eg', '{r»,t+r)){Et' '(r», t+r)Et'+'{ri, t)) .
k&1

(6.23)

GM (r„r», t,t+r)= MGp (r, r;t, t+r)
+M(M —1)I, . (6.24)

Here, the subscript (M or 1) indicates the number of
atoms contributing to the field, and I denotes the (mean)
intensity.

Here we have assumed that the emission processes at two
atoms are uncorrelated, which has allowed us to factor-
ize the terms in the double sums.

When the detectors are at different positions r,+r»
(experimentally, this means that the two detectors are
not perfectly aligned in conjugate position in a Brown-
and- Twiss —type arrangement), the expectation values

{Ek '(ri, t)Ek+'(rii, t +r) ) involve phase factors that
vary with the position of the kth atom. As a conse-
quence, the terms in the last sum in Eq. (6.23) will van-
ish on the statistical average. The terms in both the first
and the second sum, on the other hand, are virtually in-
dependent of k (or I) and the detector positions, since the
geometrical phase factors cancel. Hence, specializing to
steady-state conditions, we arrive at the result

GM (ririi, t, t+r)=MG, (r, r;t, t+r)+M I, .

(6.25)

Hence the relative coincidence counting rate reads

GM (r»r», t, t+r)
IM2

Xi(r)
I2M & )&resp

EM (r)
t2+ M+resp

(6.26)

(K being the coincidence counting rate and R' the single
counting rate). Here use has been made of the relation

IM ——MIg, (6.27)

which is valid for atoms located at random positions.
The result (6.26) makes clear that the antibunching ef-

fect exhibited by the field due to a single atom [X,(0)=0
according to Eq. (6.3)] is completely washed out by the

Atomic number fluctuations are now readily taken
into account by averaging Eq. (6.24) over M. In the case
of a Poisson distribution, M(M —1)=M, where the bar
denotes the averaging process, we thus obtain
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atomic number fluctuations, since the coincidence count-
ing rate equals the random coincidence counting rate at
&=0 and is even greater for ~~0. It should be noticed
that this holds true irrespective of the actual value of M.
Hence, in an experiment aimed to demonstrate photon
antibunching, it does not suffice to keep M in the order
of unity; it is the disturbance due to the fluctuations of
M that prevents the observation of the antibunching ef-
fect, in the sense of the definition given in Sec. II.A.

It should be emphasized, however, that Eq. (6.26),
anyway, describes a nonclassical photon statistical
feature: since Ki(r) has its absolute mininuin at r=0,
Eq. (6.26) predicts the rise of the coincidence counting
rate when ~ grows from zero also in the case of a fluc-
tuating number of atoms. In fact, such a behavior con-
tradicts the fundamental classical inequality (2.3). It ap-
pears natural that this effect becomes less pronounced
when I increases, as it is indicated by Eq. (6.26). Hence
in an actual experiment the requirement M ( 1 should be
met.

an atom will undergo two-photon absorption can be writ-
ten as

~ 2
M =0J (7.2)

L,Z=m —Xat
C

(7.3)

atoms, where N„de notes the number of atoms per mode
volume

&at =nat V (7.4)

n„b ei ng the density of atoms. [Note that formula (7.3)
actually overestimates Z when the photon number be-
comes considerably reduced in the course of interaction. ]

From Eqs. (7.1)—(7.4) we find the number of photons
5n that are absorbed from the mode volume while the
field passes through the absorbing medium, to be

Hence, during its passage through the absorption cell of
length I., the field contained in the mode volume will ex-
cite about

Vll. SOME EXPERIMENTAI ASPECTS
n L,

5n =2Z =2' —n, t V .f2',„, c
(7.5)

A. Feasibility of experiments
utilizing a nonlinear interaction

&crit
(7.1)

As is well known, the probability, per unit time, m that

Let us now look at the various interaction mechanisms
studied theoretically in Secs. III—V with an experi-
mentalist's eye. A natural question arises: which type
of experiments aimed to provide evidence of the anti-
bunching effect might really be feasible?

To begin with, we briefly discuss the suitability of
two-photon absorption for that purpose. Here a severe
obstacle is posed by the low-intensity requirement, which
is dictated by the fact that photon antibunching is a 1/iT
effect, where n denotes the mean number of photons
contained in the mode voluine [cf. Eq. (2.24)]. The
dilemma is that, on the one hand, a high intensity is
needed for the two-photon absorption process to take
place with appreciable efficiency, and, on the other hand,
one-photon absorption cannot be used for the required
reduction of the two-photon absorbed field, since the re-
lative excess coincidence counting rate remains invariant
under this type of attenuation, as has been outlined in
Sec. III.A.

It would be desirable to produce the low-intensity field
displaying antibunching by the two-photon absorption
process itself, but the corresponding cross sections in
known materials are far too small to allow for such a
possibility, as will be seen from the following simple esti-
mate.

When the mode volume V of cross-sectional area f
and length cr,„, (see Sec. III.F) is initially filled with n

photons, the photon Aux per unit area j equals

With the specification of the transverse dimension of the
mode volume as given by Eq. (3.49), we may put

f=2LA, , V=2Lkcr, „, .

Hence Eq. (7.5) can be rewritten as

(7 6)

n
5n =o n„.

Clif
(7.7)

Since a considerable attentuation is needed to generate
antibunching properties, we require the absorber to
reduce the photon number n from, say, 10 to 10 .
Equation (7.7) thus gives us the following lower bound
for the two-photon absorption cross section:

~+crit0)
10 nat

(7.8)

Putting here A, =5 X 10 cm, ~c„.t = 10 s, and n„
=10 cm, we find this bound to be about 5X10
cm4s. However, this figure is greater by many orders of
magnitude than that offered by nature. For rhodamine
6G, for example, o takes the value 3X10 " cm s [see
Hermann and Ducuing (1972)], the discrepancy thus
exceeding 10 orders of magnitude!

By the way, it should be noticed that the situation is
not improved when the absorption cell is made longer.
[Note that the cell length L has actually disappeared
from Eq. (7.8)]. This is due to the fact that an increase
in the cell length gives rise to a similar growth of the
cross-sectional area of the mode volume, as has been
pointed out in Sec. III.F.

Insertion of the two-photon absorber into a cavity
which either contains an amplifying (laser) medium
(Bandilla and Ritze, 1976b) or is pumped by an external
driving field (Chaturvedi, Drummond, and Walls, 1977)
provides also no practical means of demonstrating the
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antibunching phenomenon. This technique severely
suffers from the drawback that the process of coupling
out the field, being required for an actual observation,
has the character of an attenuation due to one-photon
absorption, and hence leaves invariant the relative excess
coincidence counting rate (see Sec. III.A), which is rather
small because of the high number of photons present in
the cavity.

A possible way out of the dilemma might be provided,
at least in principle, by utilizing the technique of des-
tructive interference for further attenuation of the two-
photon absorbed light. In fact, it has been shown in Sec.
V.B that the relative magnitude of the antibunching ef-
fect, as expressed by the quantity 5/n: (hn —n)/n—, is
essentially preserved in this process, under suitably
chosen experimental conditions. However, one cannot
expect that an attenuation by so many orders of magni-
tude as are needed in case of two-photon absorption
could be accomplished by means of any practical in-
terference device. The obstacles are inevitable imperfec-
tions of the optical elements (for instance, the maximum
and the minimum transmittances of a polarizer differ
from their ideal values 1 and 0, respectively) and limited
mechanical stability of the setup. Hence the extreme
precision needed in the proper adjustment of amplitudes
and (relative) phases in order to attain drastic attenuation
(by many orders of magnitude), due to interference, can-
not be achieved in practice. Moreover, in the theoretical
analysis we have idealized the light beams as mono-
chromatic plane waves, thus neglecting the finite beam
diameter, the angular spread in the direction of propaga-
tion, and the variation of the amplitude over the cross-
sectional area. A different problem is the generation of
strictly coherent light beams (being in Glauber states),
since laser light exhibits amplitude fluctuations, in addi-
tion to phase diffusion, which are smalll well above
threshold but nevertheless nonvanishing.

For all these reasons we can rule out two-photon (and
with still more justification three-photon, etc.) absorption
as a practical means of demonstrating the antibunching
effect.

Similarly, techniques that make use of the Kerr effect
are lacking practical relevance, since they also require
drastic attenuation by destructive interference. This be-
comes evident from the analysis in Sec. V.C, where ac-
count is taken of' the very weak coupling of the field to
the Kerr medium. In fact, according to Eimerl (1978), a
typical value for the coefficient Ace in Eq. (5.17) is
b,co= —, 10 s ' (for liquid CS2, the mode volume being
taken as 1 mm ).

With this figure, the quantity e defined by Eq. (5.35),
is about 10 ' for a cell length of 6 cm. It then follows
from Eqs. (5.39) that the mean initial photon number A
should be of the order of 10', and this value should be
reduced, after the beam has passed through the Kerr cell,
to only a few photons, by destructive interference with a
coherent reference beam, in order to obtain a field with
antibunching properties. Actually, this procedure is not
feasible, since according to Eqs. (5.42) it requires ex-

tremely small values (on the order of 10 ) for both the
relative phase and the deviation of the amplitude ratio
f'or the two interfering beams from 1 to be set.

En contrast to the physical mechanisms considered
thus far, parametric three-wave interaction has the ad-
vantage that the field that will acquire antibunching
properties might be chosen as weak, as it will be needed
for an actual observation of the antibunching
phenomenon. Formally, this is due to the fact that the
equations of motion, in the approximation of a
prescribed (very intense) harmonic or sum-frequency
wave, are linear in the photon creation and annihilation
operators, respectively, for the waves of interest [see Eqs.
(4.1), (4.2) and (4.14), (4.15)]. As a consequence, the
relevant physical quantities b, (t)/n(t) (in the degenerate
case) and b.„,(t)/n, (t) (in the nondegenerate case) are
practically independent of the mean photon number in
the initial field(s), provided this figure is high enough to
make the contributions originating from parametric
fluorescence negligibly small. This has been shown in
some detail in Secs. IV.A and B. Physically, the essen-
tial point is that in the presence of an intense pump
wave (second harmonic or sum-frequency field) the effec-
tive cross section for the process leading to antibunching
properties is drastically enhanced. In fact, the coupling
constant y in Eqs. (4.1), (4.2) or (4.14), (4.15) is propor-
tional to the amplitude of the pump field E&. For an es-
timate we may write [see, for example, Brunner and Paul
(1977)]

y=4mgcoE& jp (7.9)

' I/2
2m Pq

(7.10)

we can replace Eq. (7.9) by

y-2(2m. ) IJ, c ' Scag (7.11)

The numerical results presented in Sec. IV.A (see
Table I) indicate that favorable conditions for the genera-
tion of antibunching properties correspond to an interac-
tion time t; that satisfies the condition yt; =0.4. Hence,
for a crystal length of about 4 cm, y is required to be ap-
proximately 3X10 s '. Thus Eq. (7.11) gives us the
following estimate for P~

10' (in esu) .
4(2~) co X

(7.12)

Inserting here a realistic value for the nonlinear suscepti-
bility, say, X=10 esu [see for instance, Zernike and
Midwinter (1973)], we find, for co =4X 10' s ' and
p=1.5,

/~=10' ergcm s '=10 Wcm (7.13)

where P is the nonlinear susceptibility, co the circular fre-
quency in the pump wave, and p the linear index of re-
fraction.

Expressing E& through the energy flux per unit area
4'p

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982



H. Paul: Photon antibunching 1097

[A similar result has been obtained by Stoler (1974).]
Actually, such a figure can be attained by means of

existing laser technology without too much effort. A
specific difficulty, however, arises from the extremely
short correlation time r,„, for the parametric interaction
process, which has been estimated in Sec. IV.C to be on
the order of picoseconds or even shorter. In fact, an ob-
servation of the antibunching phenomenon becomes
feasible only when available detectors' response time does
not exceed r,„„since otherwise the effect under study
will be wiped out. However, detectors with a response
time as short as a few picoseconds do not exist.
Nevertheless, there is a way of overcoming this difficulty
afforded by modern laser technology which makes possi-
ble the generation of picosecond pulses in a cw regime.
In those circumstances the detectors are only required to
have a response time that is shorter than the time inter-
val At between two successive pulses. This condition be-
ing fulfilled, they actually integrate over one pulse only.
Since ht is typically of the order of nanoseconds, the
aforementioned requirement is easily met.

Specializing in the nondegenerate parametric process
which offers better prospects than the degenerate one,
owing to its longer correlation time, one might proceed
as follows [improved version, due to Chmela, Horak, and
Perina (1981),' of an experiment proposed by Paul and
Brunner (1980)]: two beams originating from two syn-
chronously pumped cw picosecond lasers emitting at co,
and co;, respectively, are made to generate an intense
sum-frequency (pump) wave in a nonlinear crystal (see
Fig. 9). The latter wave passes through a second non-
linear crystal siinilar to the first one, together with a sig-
nal and an idler wave that have been separated with the
help of a beam splitter from the original laser beams and
afterwards attenuated by means of a one-photon absorber
so that each single pulse, in both trains, contains, say,
about 2.5 photons on average, when entering the non-
linear crystal. Of course, the three pulse trains have to
be synchronized. Moreover, their phases have to be ad-
justed in such a way that maximum amplification of the
pump wave results. The experimental parameters should
be chosen such that the condition yt; =0.35 will be satis-
fied, ensuring that the antibunching effect displayed by
the combined signal and idler output field becomes as
large as possible for the initial photon numbers
n, (0)=n;(0) =2.5 (see Sec. IV.B). The pulse duration
should be adjusted to the length of the second crystal
such that it equals the correlation time given by Eq.
(4.28).

To provide experimental evidence of photon anti-
bunching, two techniques might be adopted. The first
would be to count the photons contained in both a signal
and a corresponding idler pulse. Then the antibunching
effect would show up in a distribution for the number of

~5Those authors have also suggested more sophisticated
schemes for the measurement of antibunching in nonlinear op-
tical processes.

photons thus registered that is narrower than a Poisson
distribution. The second method would utilize the
Brown-and- Twiss coincidence counting technique. The
coincidence counting rate should be determined both for
zero delay time and for a delay time corresponding to
the distance between two different pulses, the antibunch-
ing effect being demonstrated by an excess of delayed
coincidences.

It should be emphasized, however, that the feasibility
of the proposed demonstration of photon antibunching
critically relies upon the assumption that cw picosecond
pulse trains can be generated which are ideal in the sense
that the pulses are precise replica of each other. Formal-
ly, this means that a generalized Glauber state —i.e., a
Qlauber state with respect to a nonmonochromatic mode
[cf. Titulaer and Glauber (1966)]—can be ascribed to
the ensemble constituted by all the single pulses in the
train. Experimentally, the basic requirement is that the
photon statistics of the original cw picosecond pulse
trains, to be measured after sufficiently strong attenua-
tion through one-photon absorption using one of the
above-mentioned techniques, have Poissonian character
to a very good approximation.

Moreover, the requirement of preventing pump pho-
tons from reaching the detectors, i.e., of filtering out the
pump wave, poses a serious problem to the experimental-
ist, too, since the intensity of this wave exceeds that of
the waves that are ultimately of interest, by many orders
of magnitude.

Hence one should not be too optimistic with regard to
the prospects for the experiment under discussion.

B. Measurement of intensity correlations
in resonance fluorescence

Resonance fluorescence (from a single atom) differs
favorably from the nonlinear interaction mechanisms dis-
cussed in the foregoing in that the light thus generated is
already endowed with the desired antibunching proper-
ties, as has been pointed out in Sec. VI.A. Hence, from
the experimental point of view, this process appears to be
the most promising one. In fact, it has already been
studied experimentally by Kimble, Dagenais, and Mandel
(1977) and Dagenais and Mandel (1978). Moreover, the
results of a similar experiment by Leuchs, Rateike, and
Walther have recently been reported in a review article
by Walls (1979). In the following, I will briefly describe
the experiment of Mandel and his co-workers and dis-
cllss tlleli' flindlngs.

In order to keep the average number of atoms in the
field of view small (preferably below unity), the authors
used an atomic beam with the following physical param-
eters: width 100 pm, mean velocity about 10 cms
and flux density 10' to 10" atoms per cm and s. With
the help of a microscope objective they collected the
fluorescence radiation from a region whose linear dimen-
sion was about 100 pm, in a direction at right angles
both to the atomic beam and to the laser beam driving
the atoms. The collected light, after passing a beam
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FIG. 9. Proposed setup for the observation of photon antibunching in parametric three-wave interaction. 1, 2, cw picosecond
lasers emitting at co, and co;, respectively; 3, 9, 12, beam splitters; 4, 10, nonlinear crystals; 5, 11, filters; 6, 8, mirrors; 7, one-
photon absorber; 13, 14, detectors.

splitter, was focused on the entrance apertures of two
photon counters.

The atomic beam consisted of sodium atoms. Before
being subjected to the laser field that excited resonance
fluorescence, they were prepared in the 3 Si~2, F=2,
m~ ——2 magnetic sublevel by means of optical prepump-
ing, in a weak magnetic field, with a tunable dye laser,
followed by spontaneous downward transitions. From
this level only the transition to the 3 P3~2, F=3, m~ ——3
sublevel is allowed. Hence irradiating the atoms with a
laser beam that is resonant to this transition (and accu-
rately orthogonal to the atomic beam, in order to mini-
mize Doppler shifts as "seen" from an atom), the au-
thors ensured that the atoms behaved as two-level sys-
tems in the process of resonance fluorescence under ob-
servation.

From the above-mentioned figures for the atomic velo-
city and the dimensions of the observation region it fol-
lows that the transit time of an atom through this region
is about 100 ns. Hence transit-time corrections, as they
have been included in their analysis by Kimble,
Dagenais, and Mandel (1978), become important as the
delay time approaches 100 ns.

Photon counting has been performed by using the
time-to-digital-converter (TDC) technique. (The pulses
from the first detector are fed to the start input of the
converter, whereas the second detector sends its pulses to
the stop input. ) The TDC effectively digitized the time
intervals w between start and stop pulses in units of 0.5
ns.

It should be noticed that thy number of pulse pairs
thus recorded in a given delay channel ~ is not strictly a
measure of the second-order correlation function
G '(t, t+r). The point is that s G' (t, t+r), where s is
the detector sensitivity, describes the joint probability,
per (unit time), for the detection of two photons at time
t and t+~, respectively, irrespective of whether, in the

s I (E' '(t')E'+'(t') )dt'« I (7.14)

is fulfilled, which evidently means that the average num-
ber of photon counts during the interval t to t+~ should
be small in comparison to unity.

Fortunately, in the experiment under consideration the
mean counting rates of the two photodetectors were low
enough (about 2&&10 s ') to ensure the validity of the
inequality (7.14) even for values of r as large as 100 ns.
Hence it is justified, under those specific conditions, to
take the number of pulse pairs registered in the delay
channel ~ as a measure of the second-order correlation
function G~ '(t, t+r), as has actually been done by the
authors who performed the experiment.

Their experimental results are represented in Fig. 10.
Here the number of registered pulse pairs n (r) is plotted

meantime, counts are triggered on the detectors, whereas
the operational mode of a TDC makes sure that no pho-
ton is recorded by the stop detector in the time interval
between the two counts that are registered, with the help
of the TDC technique, as a delayed coincidence. Hence
the use of a TDC will lead to an underestimation of the
true coincidence counting rate for large values of r
and/or high intensities. In order to estimate this error
one has to compare the joint probability, per (unit time),
s G' '(t, t +r) with the probability, per (unit time),
W(A, B,C) that the following three events will occur: (a)
detection of one photon at time t, (b) detection of no
photon in the time interval t to t+r, (c) detection of
one photon at time t +w.

An explicit expression for W(A, B,C) has been derived
in case of a classical field (Troup, 1966), or, a little more
generally, a quantum field that allows for a P representa-
tion (Barakat and Blake, 1980). One easily infers from
those formulas that the deviation of W(A, B,C) from
s G' '(t, t +v.) is negligibly small when the condition
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FIG. 10. Measured number of photon coincidences n (r) vs delay time. The curve represents the theoretical predictions. [After
Dagenais and Mandel (1978).]

versus the delay time r The .characteristic feature
displayed by this curve is the pronounced positive slope
near v =O. As already mentioned in Sec. VI.B, this
behavior is nonclassical, since it is in contradiction to the
inequality (2.3) quite generally valid in classical wave
theory. The value of n(0) is greater, however, than that
characteristic of random coincidences. As has been
pointed out in Sec. VI.B, this result is easily understood
as a consequence of atomic number fiuctuations which,
in fact, cannot be excluded when an atomic beam tech-
nique is used.

Dagenais and Mandel (1978) inferred from their exper-
imental parameters that the average number of atoms in
the field of view was as low as 0.37. Moreover, they ex-
tracted from their data, by comparison with their
theoretical predictions (Kimble, Dagenais, and Mandel,
1978), the second-order correlation function for the reso-
nance radiation due to precisely one atom. They thus
obtained the values displayed in Fig. 11, which fit very
well to the theoretical curves.

Let us now turn to the somewhat delicate question of
whether convincing evidence of photon antibunching has
been provided in the experiment under consideration.
There is, of course, no doubt that this effect was ob-
served at least indirectly, as indicated by Fig. 11.
Adhering, however, as most workers in this field do, to
the definition of antibunching as a deficit of (nonde-

layed) coincidences in comparison to random coin-
cidences, one cannot take the above-mentioned experi-
mental results as a direct demonstration of the anti-
bunching phenomenon, since the measured excess coin-
cidence counting rate was actually positive, as it must be,
in the presence of atomic number fiuctuations, according
to the theoretical analysis given in Sec. VI.B. Only if
one is willing to interpret the mere occurrence of a dip at
r=0 in the curve displaying the number of coincidence
counts registered (see Fig. 10) as an indication of photon
antibunching (which, in fact, one is tempted to do when
visualizing the literal meaning of the term "antibunch-
ing"), will one agree with Kimble, Dagenais, and Mandel
(1977), who claimed to have provided "unmistakable evi-
dence" for photon antibunching. Anyway, however,
their experimental findings, contradicting, as they do, the
classical inequality (2.3), reflect a specific nonclassical
feature of the radiation field.

C. Time correlations and spectral features

There is a well-known complementarity between time
and frequency measurements: observing, with the help
of a photodetector, the emission times of photons (strict-
ly speaking, the times of arrival on the detector), one
deprives oneself, on principle, of gaining information on
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FIG. 11. The relative coincidence counting rate {with respe t to the random coincidences) E(~)/(R ~, ~) for a single atom, as de-
rived from the measurements, for two different values for the ratio of the Rabi frequency 0 and the spontaneous radiative decay
rate of the upper level y. [After Dagenais and Mandel (1978).]

the spectrum of those photons. On the other hand, the
accuracy in determining the spectral features of the emit-
ted light is bought with the loss of information on the
emission time of the photons that are registered in the
spectrometer. However, when lowering the precision re-
quirements on both the spectral and the temporal charac-
teristics, a compromise has been found in the case of res-
onance fluorescence which allows the analysis of time
correlations between photons belonging to different side-
bands in the emission spectrum. Although this problem
is only loosely connected with photon antibunching, I
shall include a brief description of the experiment in
question (Aspect et a/. , 1980), in view of its surprising
result and the general interest it deserves.

A dozen years ago, Mollow (1969} predicted that the
resonance fluorescence spectrum of a strongly driven
two-level atom would consist of three components, i.e.,
that it would constitute a triplet. Meanwhile, this
phenomenon has been observed by several authors, the
first to do so being Schuda, Stroud, and Hercher (1974).
The idea of the experiment under discussion [Cohen-
Tannoudji and Reynaud (1979};see also Apanasevich and
Kilin (1979)] is to equip the detectors in a coincidence
counting device with filters which select photons from
the higher-frequency and the lower-frequency sideband,
respectively. The experimental conditions were chosen

such that the frequency resolution of the filters Av
obeyed the inequalities y«hv«Q, where y is the
width of the sidebands and Q their separation. In order
to make 0 sufficiently large, the laser frequency rul was
detuned from the atomic frequency ~0 towards higher
frequencies by an amount much greater than the Rabi
notation frequency. In those circumstances, the emission
spectrum exhibited a pronounced peak at roL (Rayleigh
scattering) and two lower-intensity sidebands centered at
2coL —coo and coo, respectively. The widths of the side-
bands y are given by that of the upper atomic level.

In accordance with theoretical predictions (Cohen-
Tannoudji and Reynaud, 1979; Apanasevich and Kilin,
1979) the outcome of the experiment gave evidence of a
strong temporal correlation between the frequency-
selected photons, indicating that an atom, having emitted
a photon into the higher-frequency sideband, emits the
next photon into the lower-frequency sideband.

This interesting result is easily explained in a perturba-
tive approach (see Aspect et al. , 1980): the occurrence of
the two sidebands, in the off-resonance case studied ex-
perimentally, is due to a four-photon process with an in-
termediate resonance at the upper atomic level. In a
first step, two laser photons are absorbed, and one pho-
ton corresponding to the higher-frequency sideband is
emitted, the atomic system thus being brought into the
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D. Concluding remarks

It has been pointed out in Sec. VII.B that the actual
uncertainty, unavoidable in an atomic beam experiment,
of the number of atoms in the field of view prevents a
direct observation of photon antibunching, in the sense
that the (nondelayed) coincidence counting rate will be
found to be lower than the accidental one. However, in
the last few years techniques have been developed that
may allow researchers to overcome this specific difficul-
ty. In fact, recently Neuhauser et al. (1980) succeeded in
confining a single barium ion in a rf quadrupole trap
with a lifetime that could be made unlimitedly large by
means of optical sideband cooling. Even without cool-
ing, the ion could be held for times as long as 30 s.
Studying the resonance fluorescence radiation from such
a localized ion then should make possible a convincing
demonstration of the antibunching effect.

Finally, I should like to emphasize that nonclassical
behavior of light in the form of two beams has already
been observed in earlier experiments. Specifically, it has
been shown experimentally that the classical inequality

(IiI2) &IiI2 (7.15)

(Ii and I2 being the instantaneous intensities in the two
beams), which is similar' to (4.24), is violated in certain
circumstances when the cross and autocorrelation func-
tions are measured with the help of the coincidence
counting technique. [For inore details see the review ar-
ticle by London (1980).] In fact, observing double-beam
coincidence counts in two-photon cascade emission (the
two beams being generated in successive atomic transi-
tions, respectively, and hence differing in their frequen-

6Like {4.24), the inequality (7.15) is easily proved with the
help of Schwarz s inequality. Moreover, it is readily seen that
(7.15) is implied by (4.24).

upper level; and in a second step the atom spontaneously
emits a photon corresponding to the lower-frequency
sideband. It is interesting to note that in the present
case the registration of the higher-frequency photon
witnesses of the occurrence of a jurnp from the lower to
the upper atomic level through a three-photon process,
while, on the contrary, in the absence of filters (anti-
bunching experiment) the registration of a photon is al-
ways associated with a transition from the upper to the
lower level.

Theoretical studies (Cohen- Tannoudji and Reynaud,
1979; Apanasevich and Kilin, 1979) lead to the predic-
tion that in the resonance case, at high intensities of the
driving field, the above-mentioned temporal order of the
emitted photons disappears. In any case, however, the
correlations between photons emitted into dif-
ferent sidebands are of bunching type (the coincidence
counting rate is maximum at zero delay time), while
photons emitted into the same sideband will exhibit the
antibunching effect (Apanasevich and Kilin, 1979).

cies), Clauser (1974) arrived at the result that the left-
hand side of (7.15) was larger by a factor of about 5 at
maximum than the right-hand side. A really drastic
violation of (7.15) has been reported by Burnham and
Weinberg (1970), who studied parametric fluorescence
under such experimental conditions that only one ele-
mentary process producing both a single and an idler
photon took place, on average, during a detection period.
They found the left-hand side of (7.15) to exceed the
right-hand side by a factor of 10!

Physically, it is clear that the reason for those
discrepancies lies in the corpuscular nature of light emit-
ted in definite single events. Hence the above-mentioned
experiments add, as the demonstration of photon anti-
bunching will do, to the observations that confirm the
photon concept so ingeniously contrived by Einstein
(1905).

ACKNOWLEDGMENTS

It is a pleasure for me to express my gratitude to my
colleagues Dr. A. Bandilla, Prof. Dr. %'. Brunner, Dr. U.
Herzog, Dr. H.-H. Ritze, and Dr. H. Steudel for many
stimulating discussions. I am also indebted to Dr. P.
Chmela, Olomouc, for valuable hints.

REEERENCES

Agarwal, G. S., 1970, Phys. Rev. A 1, 1445.
Agarwal, G. S., 1978, Phys. Rev. A 18, 1490.
Agarwal, G. S., A. C. Brown, L. M. Narducci, and G. Vetri,

1977, Phys. Rev. A 15, 1613.
Allen, L., and J. H. Eberly, 1975, Optical Resonance and Tmo-
Level Atoms (Wiley, New York).

Apanasevich, P. A., and S. Ja. Kilin, 1979, J. Phys. B 12, L83.
Aspect, A., G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-

Tannoudji, 1980, Phys. Rev. Lett. 45, 617.
Bandilla, A., and H.-H. Ritze, 1975, Phys. Lett. A 55, 285.
Bandilla, A., and H.-H. Ritze, 1976a, Ann. Phys. (Leipzig) 33,
207.

Bandilla, A. , and H.-H. Ritze, 1976b, Opt. Commun. 19, 169.
Bandilla, A. , and H.-H. Ritze, 1979, Opt. Commun. 28, 126.
Bandilla, A. , and H.-H. Ritze, 1980a, Opt. Commun. 32, 195.
Bandilla, A., and H.-H. Ritze, 1980b, Opt. Commun. 34, 190.
Barakat, R., and J. Blake, 1980, Phys. Rep. 60, 226.
Born, M., and E. Wolf, 1964, in Principles of Optics, 2nd ed.

(Pergamon, Oxford), p. 370 ff.
Brown, R. Hanbury, and R. Q. Twiss, 1956, Nature 177, 27.
Brunner, W. , and H. Paul, 1977, in Progress in Optics, edited

by E. Wolf (North-Holland, Amsterdam), Vol. 15, p. 21.
Brunner, W., H. Paul, and G. Richter, 1965, Ann. Phys.

(Leipzig) 15, 17.
Burnham, D. C., and D. L. Weinberg, 1970, Phys. Rev. Lett.
25, 84.

Carmichael, H. J., P. Drummond, P. Meystre, and D. F.
Walls, 1978, J. Phys. A 11, L121.

Carmichael, H. J., and D. F. Walls, 1976a, J. Phys. B 9, L43.
Carmichael, H. J., and D. F. Walls, 1976b, J. Phys. 8 9, 1199.
Chandra, N. , and H. Prakash, 1970, Phys. Rev. A 1, 1696.
Chaturvedi, S., P. Drummond, and D. F. Walls, 1977, J. Phys.

A 10, L187.
Chmela, P., R. Horak, and J. Perina, 1981, Opt. Acta 28,

1209.
Clauser, J. F., 1974, Phys. Rev. D 9, 853.

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982



H. Paul: Photon antibunching

Cohen-Tannoudji, C., 1977, in Frontiers in Laser Spectroscopy,
edited by R. Balian, S. Haroche, and S. Liberrnan (North-
Holland, Amsterdam), Vol. 1, p. 3.

Cohen-Tannoudji, C., and S. Reynaud, 1979, Philos. Trans. R.
Soc. London, Ser. A 293, 223.

Dagenais, M. , and L. Mandel, 1978, Phys. Rev. A 18, 2217.
Drummond, P. D., K. J. McNeil, and D. F. Walls, 1979, Opt.

Commun. 28, 255.
Eimerl, D., 1978, Opt. Commun. 25, 277.
Einstein, A. , 1905, Ann. Phys. (Leipzig) 17, 132.
Einstein, A. , B. Podolsky, and N. Rosen, 1935, Phys. Rev. 47,

777.
Germey, K., F.-J. Schutte, and R. Tiebel, 1981, Ann. Phys.

(Leipzig) 38, 80.
Glauber, R. J., 1963a, Phys. Rev. 130, 2529.
Glauber, R. J., 1963b, Phys. Rev. 131, 2766.
Cxlauber, R. J., 196S, in Quantum Optics and Electronics, edit-

ed by C. DeWitt, A. Blandin, and C. Cohen-Tannoudji (Gor-
don and Breach, New York), p. 65.

Griffin, W. G., and P. N. Pusey, 1979, Phys. Rev. Lett. 43,
1100.

Grimsehl, 1962, Lehrbuch der Physik, Bd. 3 Optik (Teubner,
Leipzig) p. 160.

Haake, F., 1973, in Springer Tracts in Modern Physics, edited

by G. Hohler (Springer, Berlin), Vol. 66, p. 98.
Hermann, J. P., and J. Ducuing, 1972, Opt. Commun. 6, 101.
Jakeman, E., E. R. Pike, P. N. Pusey, and J. M. Vaughan,

1977, J. Phys. A 10, L257.
Kielich, S., M. Kozierowski, and R. Tanas, 1977, in Coherence

and Quantum Optics IV lProceedings of the Fourth Rochester
Conference on Coherence and Quantum Optics), edited by L.
Mandel and E. Wolf (Plenum, New York), p. 511.

Kimble, H. J., M. Dagenais, and L. Mandel, 1977, Phys. Rev.
Lett. 39, 691.

Kimble, H. J., M. Dagenais, and L. Mandel, 1978, Phys. Rev.
A 18, 201.

Kimble, H. J., and L. Mandel, 1976, Phys. Rev. A 13, 2123.
Kimble, H. J., and L. Mandel, 1977, Phys. Rev. A 15, 689.
Kleinman, D. A. , 1968, Phys. Rev. 174, 1027.
Kozierowski, M., and R. Tanas, 1977, Opt. Commun. 21, 229.
Lax, M., 1966, Phys. Rev. 145, 110.
Lax, M. , 1967, Phys. Rev. 157, 213.
Lax, M., 1968, Phys. Rev. 172, 350.
Loudon, R., 1980, Rep. Progr. Phys. 43, 913.
Louisell, W. H. , 1973, Quantum Statistical Properties of acadia

tion (Wiley, New York).
Louisell, W. H. , A. Yariv, and A. E. Siegman, 1961, Phys.
Rev. 124, 1646.

Mandel, L., 1963, in Progress in Optics, edited by E. Wolf
(North-Holland, Amsterdam), Vol. 2, p. 181.

Mandel, L., and E. %'olf, 1965, Rev. Mod. Phys. 37, 231.
McNeil, K. J., and D. F. Walls, 1974, J. Phys. A 7, 617.
Middleton, D., 1960, An Introduction to Statistical Comrnuni-
cation Theory (McGraw-Hill, New York).

Mista, L., and J. Perina, 1978, Czech. J. Phys. B 28, 392.
Mohr, U., 1981a, Ph. D. thesis (Humboldt-Universitat, Berlin)

(unpublished).
Mohr, U., 1981b, Ann. Phys. (Leipzig) 38, 143.
Mohr, U., and H. Paul, 1978, Ann. Phys. (Leipzig) 35, 461.
Mohr, U., and H. Paul, 1979, J. Phys. A 12, L43.
Mollow, B. R., 1969, Phys. Rev. 188, 1969.
Mollow, B. R., 1973, Phys. Rev. A 8, 2684.
Mollow, B. R., and R. J. Glauber, 1967, Phys. Rev. 160, 1076.
Mollow, B. R., and M. M. Miller, 1969, Ann. Phys. (N.Y.) 52,
464.

Mostowski, J., and K. Rzqzewski, 1978, Phys. Lett. A 66, 275.
Neuhauser, W. , M. Hohenstatt, P. E. Toschek, and H. Deh-

melt, 1980, Phys. Rev. A 22, 1137.
Neurnann, R., and H. Haug, 1979, Opt. Commun. 31, 267.
Paul, H. , 1966, Fortschr. Phys. 14, 141.
Paul, H. , 1969, Lasertheorie II (Akademie-Verlag, Berlin), pp.

16 ff. and 47 ff.
Paul, H. , 1973, Nichtli'neare Optik II (Akademie-Verlag, Ber-

lin) p. 91 ff.
Paul, H. , 1981, Opt. Acta 28, 1.
Paul, H. , and W. Brunner, 1980, Opt. Acta 27, 263.
Paul, H. , and W. Brunner, 1981, Ann. Phys. (Leipzig) 38, 89.
Paul, H. , W. Brunner, and G. Richter, 1966, Ann. Phys.

{Leipzig) 17, 262.
Paul, H. , U. Mohr, and W. Brunner, 1976a, Opt. Commun. 17,

145.
Paul, H. , U. Mohr, and W. Brunner, 1976b, Opt. Commun.

18, 74.
Pauli, W., 1928, Festschrift zum 60. Geburtstage von A. Som-

merfeld (Hirzel, Leipzig), p. 30.
Perinova, V., and J. Perina, 1978, Czech. J. Phys. B 28, 1183.
Perinova, V., J. Perina, P. Szlachetka, and S. Kielich, 1979a,
Acta Phys. Pol. A 56, 267.

Perinova, V., J. Perina, P. Szlachetka, and S. Kielich, 1979b,
Acta Phys. Pol. A 56, 275.

Ritze, H.-H. , 1980, Z. Phys. B 39, 353.
Ritze, H.-H. , and A. Bandilla, 1979a, Opt. Commun. 28, 241.
Ritze, H.-H. , and A. Bandilla, 1979b, Opt. Commun. 29, 126.
Ritze, H.-H. , and A. Bandilla, 1979c, Opt. Commun. 30, 125.
Ritze, H.-H. , and A. Bandilla, 1980, Phys. Lett. A 78, 447.
Schuda, F., C. R. Stroud, and M. Hercher, 1974, J. Phys. B 7,
L198.

Senitzky, I. R., 1960, Phys. Rev. 119, 670.
Senitzky, I. R., 1961, Phys. Rev. 124, 642.
Shen, Y. R., 1967, Phys. Rev. 155, 921.
Simaan, H. D., and R. Loudon, 1975a, J. Phys. A 8, 539.
Simaan, H. D., and R. Loudon, 1975b, J. Phys. A 8, 1140.
Simaan, H. D., and R. Loudon, 1978, J. Phys. A 11, 435.
Steudel, H. , 1977, private communication.
Stoler, D., 1974, Phys. Rev. Lett. 33, 1397.
Szlachetka, P., and S. Kielich, 1980, J. Mol. Struct. 61, 281.
Szlachetka, P., S. Kielich, J. Perina, and V. Perinova, 1979, J.

Phys. A 12, 1921.
Szlachetka, P., S. Kielich, J. Perina, and V. Perinova, 1980,
Opt. Acta. 27, 1609.

Tanas, R., and S. Kielich, 1979, Opt. Commun. 30, 443.
Tanzler, W., and F.-J. Schiitte, 1981, Ann. Phys. (Leipzig) 38,

73.
Titulaer, U. M. , and R. J. Glauber, 1966, Phys. Rev. 145,

1041.
Tornau, N. , and A. Bach, 1974, Opt. Commun. 11, 46.
Troup, G. J., 1966, Proc. Phys. Soc., London 87, 361.
Trung, T. V., and F.-J. Schutte, 1978, Ann. Phys. (Leipzig) 35,
216.

Voigt, H. , A. Bandilla, and H.-H. Ritze, 1980, Z. Phys. B 36,
295.

Walls, D. F., 1979, Nature 280, 451.
Wang, M. C., and G. E. Uhlenbeck, 1945, Rev. Mod. Phys.

17, 323.
Wangsness, R. K., and F. Bloch, 1953, Phys. Rev. 89, 728.
Weber, H. P. , 1971, IEEE J. Quantum Electron. QE-7, 189.
Yuen, H. P., and J. H. Shapiro, 1979, Opt. Lett. 4, 334.

. Zernike, F., and J. E. Midwinter, 1973, Applied Nonlinear Op-
tics (Wiley, New York).

Zubairy, M. S., and J. J. Yeh, 1980, Phys. Rev. A 21, 1624.

Rev. Mod. Phys. , Vol. 54, No. 4, October 1982


