Strongly coupled plasmas: high-density classical plasmas

and degenerate electron liquids
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Classical and degenerate, strongly coupled plasmas are approached by computer simulations, analytic
theories, and variational methods. Thermodynamic properties predicted in those various approaches are
compared and examined; possibilities of Wigner crystallization and other instabilities are investigated.
Salient features in the static and dynamic correlations are reviewed. Screening effects are analyzed and ap-
plied to calculations of the enhancement factor of the thermonuclear reaction rate and the electric resistivi-
ty in dense plasmas. Theoretical predictions on the dynamic properties are compared with the x ray and

electron scattering data for the metallic electrons.

CONTENTS
1. Introduction

A.
B.
C.

What is a strongly coupled plasma?
Approach
Scope

II. Classical Plasmas

A.
B.

Description of static properties

Equation of state

1. Internal energy formula

2. Ion-sphere model

3. Hard-sphere variational calculation

4. Wigner crystallization

5. Stability criterion for the OCP fluid

6. Possibility of a charge-density-wave instability
Screening potential

1. Short-range behavior

2. Lattice model

3. Enhancement of thermonuclear reaction rate
Analytic treatments of static correlations
Density-functional approach
Expressions for the local-field correction
The hypernetted chain equation
Modifications of the HNC scheme
Possibility of an amorphous glassy state
Dynamic properties

1. Velocity autocorrelation function

2. Dynamic structure factor

3. Dielectric response function

4. Long-wavelength excitations

LW -

III. Degenerate Electron Liquids

A.

Dielectric formulation
1. Basic relations
2. Polarization potential approach
3. Self-consistency conditions
a. Compressibility sum rule
b. Frequency-moment sum rules
c. Positivity of the radial distribution function
d. Short-range correlation
Theoretical approaches
1. Equation-of-motion approach
2. Diagrammatic approach
3. Memory function approach
4. Variational calculations
Static local-field correction
1. Exchange and correlation contributions
2. Parametrized expression
Static properties
1. Radial distribution function
2. Correlation energy
3. Wigner crystallization
4. Instabilities in low-density electron liquids

Reviews of Modern Physics, Vol. 54, No. 4, October 1982

1017
1017
1018
1019
1019
1019
1020
1020
1021
1022
1023
1023
1023
1024
1024
1025
1026
1027
1027
1028
1030
1031
1034
1034
1034
1035
1036
1037
1038
1038
1038
1039
1040
1040
1040
1041
1041
1041
1041
1043
1043
1043
1043
1044

1046
1046
1046
1047
1048

E. Application of the static screening function 1049

1. High-density plasmas 1049

2. Thermodynamic properties 1050

3. Electric resistivity 1051

F. Dynamic properties 1052

1. General survey 1052

2. Coefficient of plasmon dispersion 1053

3. Plasmon linewidth 1054

4. Plasmon dispersion curve 1055

5. Asymmetry in the peak structure of S(q,0) 1055

6. Fine structures in S(q,0) 1055

Acknowledgments 1056

References 1056
I. INTRODUCTION

A. What is a strongly coupled plasma?

The plasma is a statistical system of mobile charged
particles. The charged particles interact with each other
via the electromagnetic forces. To answer what a strongly
coupled plasma is, we might as well begin with a specifi-
cation of the strong-coupling concept in the plasma.

For simplicity, we consider a spatially homogeneous
one-component plasma (OCP). It is a system consisting of
a single species of charged particles embedded in a uni-
form background of neutralizing charges. Such an OCP
is a substantially idealized model for real plasmas; some
plasmas in nature, as we shall see, do indeed satisfy the
conditions for such idealization.

Let us define the coupling constant of the plasma as the
ratio of the average Coulomb energy to the average kinet-
ic energy. One is thus concerned with the strength of
coupling due to the Coulomb interaction. Those plasmas
with values of the coupling constant greater than unity
may be called the strongly coupled plasmas.

For a system of charged particles obeying the classical
statistics, the kinetic energy per particle may be estimated
approximately as kT, the temperature T in energy units
(kp is the Boltzmann constant). For a degenerate electron
system with the number density n, one instead uses the
Fermi energy,

hZ
Ep=—(3mn)*"3, (1.1
2m
where m is the mass of an electron.
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1018 Ichimaru: Strongly coupled plasmas

The Coulomb energy per particle of an OCP containing
N particles with electric charge Ze in a volume V may
also be estimated as (Ze)?/a, where

a=(3V/47N)'"3 (1.2)

is the radius of a sphere with the characteristic volume
V /N; this radius is usually referred to as the ion-sphere
radius or the Wigner-Seitz radius.

For the system of degenerate electrons the coupling
constant may be calculated as

2
e/a_ 0 543r, , (1.3)
F .
where
3 1/3 )
me
= |— 1.4
rS 47Tn ﬁz ( )

is the Wigner-Seitz radius of the electrons in units of the
Bohr radius. For the valence electrons in metals
rg=2—6, so that the coupling constant (1.3) is greater
than unity. The system of valence electrons in the metal
is a typical example of a degenerate, strongly coupled
plasma.

The coupling constant of a plasma obeying the classical
statistics is

2
r={%eL
akBT
173 T —1
=2.69x107°22 | —"—— -
10“em™ 10° K

(1.5)

This expression indicates that for a plasma with Z~1 and
T~10° K, the density n (=N /V) must become as high
as ~10% cm ™3 to make I'~1.

.Most of the classical plasmas that we ordinarily en-
counter are, however, characterized by I" << 1. For exam-
ple, we may assume n~10! cm—3, T'~10* K for a
gaseous-discharge plasma in laboratory, n~10'® cm~—3,
T~10% K for a plasma in a controlled thermonuclear ex-
periment, and n~10°% cm~3, T~10° K for a plasma in the
solar corona. For those plasmas, respectively, we find
I'~10"3, 1073, and 10~". They are thus weakly coupled
plasmas, so to speak; their thermodynamic properties are
analogous to those of an ideal gas.

A most typical example of a strongly coupled classical
plasma may be seen in the system of ions inside a highly
evolved star (e.g., Salpeter and Van Horn, 1969; Schatz-
man, 1978, 1980). The interior of such a star is in a
compressed, high-density state. The Fermi energy of the
electron system takes on a value much greater than the
binding energy of an electron around an atomic nucleus;
all the atoms are thus in ionized states (pressure ioniza-
tion). The electron system constitutes a weakly coupled
(ry << 1) degenerate plasma with an immensely large Fer-
mi energy (Ep~mc?. It makes an ideal neutralizing
background of negative charges to the ion system; since
ry << 1, the polarizability of the background may be negli-
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gible. Those atomic nuclei stripped of the electrons form
an ion plasma obeying the classical statistics; their de
Broglie wavelengths are much smaller on the average than
the interparticle spacing; that is, #MkzT)~? «a,
where M is the ionic mass. In the interior of a highly
evolved star, the coupling constant I" for such an ion plas-
ma is usually greater than unity; in a white dwarf one es-
timates that '=10—200 (e.g., Schatzman, 1958; Van
Horn, 1980).

As an example of a strongly coupled plasma closer to
the earth, we may take the Jovian interior (e.g., Salpeter,
1973; Graboske, Pollack, Grossman, and Olness, 1975;
Stevenson and Salpeter, 1977; Stevenson, 1980) which
consists mostly of hydrogen and a small fraction of heli-
um. Its electron system is characterized by r,=0.6—1;
its ion system, I'=20—50. The Jovian interior thus ap-
pears to offer a complex system of a strongly coupled
classical plasma immersed in a polarizable background of
degenerate electrons. In addition, the ion plasma may
have to be looked upon as a binary ion mixture of hydro-
gen and helium.

As the example of a strongly coupled plasma in labora-
tory, one may think of the plasmas produced in the laser
implosion experiments (e.g., Brueckner and Jorna, 1974;
Grandey, 1978), whose densities will eventually reach a
value as high as I'=1—100. It has been reported
(Ivanov, Mintsev, Fortov, and Dremin, 1976) that
I'=1—5 has been realized in transient plasmas produced
in explosive shock tubes. In addition, as a purest example
of the strongly coupled classical OCP realized in the labo-
ratory, we have the two-dimensional system of electrons
trapped in the surface states of liquid helium (e.g., Cole
and Cohen, 1969; Cole, 1974; Grimes, 1978; Ichimaru,
1978).

B. Approach

As the aforementioned definition of a strongly coupled
plasma may suggest, the Coulomb interaction between
particles plays the essential role in determining the physi-
cal properties of such a plasma. In a theoretical treat-
ment of the strongly coupled plasma, one cannot resort to
a usual expansion scheme in which the Coulomb interac-
tion is regarded as a weak perturbation. We may also
note that the interaction potential adopted in the OCP
problem has a simple and unique character: Among the
repulsive potentials expressible as inverse power r~" of
the distance 7, the OCP problem constitutes a typical ex-
ample (v=1) of the soft cases, while the hard-core poten-
tial corresponds to the other extreme case of v=c0. It
may therefore be said that we are here faced with a
charged liquid problem. It is nevertheless of interest that
the strongly coupled plasmas exhibit a remarkable simi-
larity to hard-sphere systems in a number of significant
aspects, as we shall see in the subsequent analyses.

The strongly coupled OCP problem has been ap-
proached by various methods. Computer experiments
based on the Monte Carlo simulation (Metropolis et al.,
1953) and the molecular dynamics method (Alder and
Wainwright, 1959) have provided certain vital informa-
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tion on the static and dynamic properties of the strongly
coupled classical plasmas.

Analytic theories are usually directed to derivation of a
set of nonlinear integral equations for the correlation
functions, which may then be solved numerically.
Theoretical schemes developed in the treatment of liquids,
such as the hypernetted chain (HNC) equations and the
Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) hier-
archy (e.g., Rice and Gray, 1965; Hansen and McDonald,
1976), provide useful tools in such an analysis.

Dielectric formulation (e.g., Pines and Nozieres, 1966)
has been pursued extensively to account for the static and
dynamic properties of strongly coupled plasmas. It is
developed in the general framework of the linear-response
formalism in the statistical mechanics, where the strong-
coupling effects are taken into consideration through a
number of characteristic functions.

Variational methods on the basis of the Gibbs-
Bogoliubov inequality (e.g., Feynman, 1972; Hansen and
McDonald, 1976) have been used quite successfully when
an appropriate choice of the reference system can be
made. For the analysis of a degenerate electron system,
computer techniques have make it possible to carry out
variational calculations in terms of trial wave functions of
the Bijl-Dingle-Jastrow type (e.g., Ceperley, 1978). Those
variational calculations have been refined recently by in-
corporating the Fermi hypernetted chain (FHNC) method
(Fantoni and Rosati, 1975) or the Green’s function Monte
Carlo (GFMC) method (Ceperley and Kalos, 1979).

C. Scope

In this article I wish to review the current status of our
knowledge on various aspects of the strongly coupled
plasmas, which has been accumulated through application
of the methods mentioned above. I classify the topics
roughly in two groups: the strongly coupled classical plas-
mas (Sec. II) and the degenerate electron liquids (Sec. III).
Certain problems associated with the binary ion mixtures
are described in Sec. I1.D.3; screening effects of the de-
generate electrons on the properties of the high-density
two-component (electrons and ions) plasmas are treated in
Sec. IIL.E.

We shall begin with description of basic quantities such
as the radial distribution function, the static structure fac-
tor, and the local-field correction (Sec. II.A, III.C, and
III.D.1). Thermodynamic quantities such as the internal
or correlation energy are then calculated (Sec. II.B.1 and
II1.D.2); conditions for the Wigner crystallization and
possibilities of the charge-density wave (CDW) instability
are investigated (Sec. I11.B.4—1I1.B.6, I11.D.3, and II1.D.4).
Physical models to account for such static properties are
described (Sec. I1.B.2 and I1.C.2).

Dielectric formulation of strongly coupled plasmas
(Sec. ILE.3 and IILLA) and analytic treatments of the
correlational properties (Sec. IL.D, IIL.B, and III.C) are
presented. Applications of the static screening properties
to the enhancement of the thermonuclear reaction rate
(Sec. II.C.3) and to the modification of the ionic correla-
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tions in dense plasmas (Sec. III.E) are described.

Dynamic properties such as the velocity autocorrelation
function (Sec. II.LE.1), the plasmon dispersion (Sec. IL.E.4
and IIL.F.2) and the spectra of density fluctuation excita-
tions (Sec. ILLE.2 and IIL.F.3 —IIL.F.6) are discussed and
compared with experimental data.

The subjects covered in this review are confined, more
or less, to those areas where my collaborators and I have
been able to make some contact, directly or indirectly,
through the course of our study on strongly coupled plas-
mas. Thus there are a number of important topics on the
strongly coupled plasmas that are not adequately treated
here; examples include the ionization equilibrium of
high-density plasmas (e.g., Norman and Starostin, 1970;
Ebeling, Kraeft, and Kremp, 1977) and the spin-
dependent properties of the degenerate electron liquids
such as a transition into a ferromagnetic state and the
possibility of the spin-density-wave (SDW) instability (for
example, Overhauser, 1968). The reader is referred also
to other review articles on strongly coupled plasmas (e.g.,
Baus and Hansen, 1980; Raether, 1980; Singwi and Tosi,
1981; Deutsch, Furutani, and Gombert, 1981), which were
prepared from somewhat different points of view.

Il. CLASSICAL PLASMAS

A. Description of static properties

In their pioneering work, Brush, Sahlin, and Teller
(1966) performed numerical experiments on OCP by the
Monte Carlo method. A few years later, Hansen (1973)
carried out similar experiments with improved accuracy.
Recently, Slattery, Doolen, and DeWitt (1980) obtained
the Monte Carlo data with further improvement of the
accuracy.

Figure 1 shows the radial distribution function g(r)
computed through these experiments for various values of
the OCP coupling constant I". The radial distribution
function represents the probability of finding another par-
ticle at a distance r away from a given particle; it is nor-
malized so that g (r) approaches unity as r— oo.

The static structure factor S(q) is related to the radial

T T
140
2+ ’ 100 J
50
9(x) J
L =01
|
5
10
1 L 1
0 | 2 3
X=r/0

FIG. 1. The radial distribution function at various values of
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distribution function via the Fourier transformation as
(e.g., Ichimaru, 1973; Hansen and McDonald, 1976)

S(q)—1=n [ dr[g(r)—1]exp(—iq-T) . @.1)

In Fig. 2 the values of S(g) as compiled by Galam and
Hansen (1976) are plotted for various I'.

For a weakly coupled OCP (I" <<1), the linearized
Debye-Hiickel approximation (Debye and Hiickel, 1923)
is applicable, so that one finds

2

Spulg)=—1—, (2.2)
PR 14
where
gp=4mn(Ze)*/kyT (2.3)

is the square of the Debye wave number. Since Eq. (2.2)
can also be obtained from the linearized Vlasov equation
(e.g., Ichimaru, 1973), which is equivalent to application
of the random-phase approximation (RPA), it will be re-
ferred to as the RPA values of the static structure factor
for the OCP.

Departure of the static structure factor from its RPA
values is measured by the local-field correction G(q); it is
defined for the OCP as

2
- (2.4)

a5

1

{— —

=1
G(g)=1+ 5(9)

The values of G (gq) have been computed (Tago, Utsumi,
and Ichimaru, 1981) by substituting the Monte Carlo data
of S(q) in (2.4); results are shown in Fig. 3. The long-
wavelength behavior of the local-field correction is related
to the isothermal compressibility of the OCP as (e.g.,
Pines and Noziéres, 1966)
2

Glg)=1——1

kT

4p

ap
on

, (2.5)
T

lim
q—0

where P is the pressure.
The static dielectric function &(g,0) is then given by
(e.g., Ichimaru, 1973)
2

q
e(q,0)=—5——
q’—q5S(q)
2
dp
1422 2.6)
9’—q5G(q)
3 T T T T T T T T
2
S(q)
1
(o]

FIG. 2. The static structure factor at various values of I.
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FIG. 3. The local-field correction at various values of T.

Monte Carlo values of Eq. (2.6) have been computed (e.g.,
Fasolino, Parrinello, and Tosi, 1978; Baus and Hansen,
1980; Ichimaru and Tago, 1981); results are shown in Fig.
4.

The classical system of electrons in a two-dimensional
surface layer has been studied by using the Monte Carlo
simulation (Totsuji, 1978; Gann, Chakravarty, and Ches-
ter, 1979) and the molecular dynamics method (Hockney
and Brown, 1975; Hansen, Levesque, and Weis, 1979;
Morf, 1979; Totsuji and Kakeya, 1980; Kalia, Vashishta,
and de Leeuw, 1981).

B. Equation of state

1. Internal energy formula

With the knowledge of the radial distribution function
or the static structure factor, the excess internal energy
U of the OCP is calculated according to

Uex _ n (Ze)2
NkBT_2kBder , 8=l
1 (Ze)?
= d —1]. .
41r2kBTf a” s Is@-1] 2.7

Since the total internal energy U of the system is given by

U=3NkgT+U, , 2.8)

-0zl 160
-04 70

-06
-0.8}-

-10 /\r‘=1o

FIG. 4. The static dielectric function at various values of T.
Note the difference in scales above and below the abscissa.
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and the pressure by
P=nkyT+ U, /3V, 2.9

various thermodynamic functions of the OCP can be
determined once Eq. (2.7) is evaluated as a function of T".

Analyzing the Monte Carlo data obtained by Hansen
(1973), DeWitt (1976) found that a fitting formula,

U.,/NkyT = —(0.894 61+0.00003)
+(0.8165+0.0008)"174

—(0.5012+0.0016) , (2.10a)

reproduced the data with good accuracy in the region,
1<T <40. He proposed also a slightly modified formula,

U.,/NkgT = —(0.8966+0.0001)T"
+(0.874+0.009)1/4

—(0.568+0.023) , (2.10b)

for 50 < T < 140; the agreement of this formula with the
Monte Carlo data was, however, less accurate than that of
Eq. (2.10a). This fact led DeWitt to question the accura-
cy of Hansen’s data for large values of I' (e,
40 <T < 160).

Slattery, Doolen, and DeWitt (1980) fitted their liquid
Ue/NkpT data (1 <T < 160) for 128 particle Monte Car-
lo runs to the form

Uy /NkgT=aU+bT'* e~V 4d (2.11)

by minimizing the sum of the squares of the relative er-
rors using a, b, ¢, and d as parameters. The values of the
parameters so determined were

a=—0.89752, b=0.94544 ,

¢=0.17954, d =—0.80049 . (2.12)
Accuracy of this fit was excellent; the relative rms error
was 3 1077,

The Helmholtz free energy F of the OCP could then be
calculated from the formula

_F
fD= NkzT
r Uy dI
=T T +£(T) . (2.13)

The normalized free energy f(T";) at I’y =1 was evaluated
through integration of U, /NkpT with the Abe (1959)
formula (0.0<T <0.1), the hypernetted chain (HNC) re-
sults (0.1<I'<0.6), and the Monte Carlo values
(0.6 <T" <1.0). Slattery, Doolen, and DeWitt (1980) thus
found

f(D)=aT+4(bT*—cT~ 1) 4 (d +3)InT

—(a +4b—4c+1.135) . (2.14)

2. lon-sphere model

The leading term in Eq. (2.11) or (2.14) for ' > 1 is the
first term on its right-hand side. For the interpretation of
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this term and more generally for the understanding of the
properties of the strongly coupled plasma, it is instructive
to introduce the ion-sphere model as illustrated in Fig. 5.
We construct an ion sphere by picking a particle (an ion
with the electric charge Ze) in the plasma and by associat-
ing with it a sphere of neutralizing charges that would ex-
actly cancel the point charge of the ion. This sphere has
the radius as given by Eq. (1.2) and the electric charge
density —3Ze/4ma>. It is the same as the Wigner-Seitz
sphere in solid-state physics (e.g., Pines, 1964).

Let us calculate the electrostatic energy Eg of the ion
sphere consisting of the ion and the negative charge
sphere. The electrostatic potential produced by the nega-
tive charge sphere at r from its center is given by
—(%)(Ze /a)+(Ze/2a)(r /a)*. Since the electrostatic en-
ergy of the negative charge sphere itself is (% N(Ze)/a, we
find

Es/kgT=—[(3/2)—(3/5) T +(T'/2)(r /a)?
=—0.9T+0.5I(r /a)* . (2.15)

The first term on the right-hand side of Eq. (2.15)
represents the electrostatic energy of the ion sphere when
the ion is located at the site » =0 of the lowest energy. It
has been proved by Lieb and Narnhofer (1975, 1976) that
this term, —0.9T", gives a lower bound to the estimate of
the excess internal energy for the OCP.

Since the last term of Eq. (2.15) is proportional to r2, it
may induce a motion of the harmonic-oscillator type to
the ion. The potential energy of a harmonic oscillator is
(1/2)kpT per degree of freedom; an average of Eq. (2.15)
thus yields

(Exg)/kpT=—0.9T+1.5 . (2.16)

This estimate in fact gives a fairly close approximation to
the excess internal energy of the OCP for I" >> 1.

On the suggestion of this observation, Itoh and
Ichimaru (1980a) proposed an internal energy formula on
the basis of a harmonic lattice model. Analyzing the nu-
merical results of Slattery, Doolen, and DeWitt (1980),
they found that

Ue/NkpT=—0.8903T +1.500 (70 <T < 160)
(2.17)
adequately represents the Monte Carlo data. The coeffi-

FIG. 5. Ion-sphere model. p, refers to the average charge
density in the sphere.
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cient of the first term in Eq. (2.17), —0.8903, is greater
than both the ion-sphere value (i.e., —0.9) and the
Madelung value (i.e., —0.895929) for the bcc Coulomb
lattice. We may interpret the difference as reflecting the
extent to which the long-range translational order of the
crystalline lattice is destroyed in the strongly coupled
OCP fluid.

Analogously, analyzing the Monte Carlo results (Gann
et al., 1979) for the two-dimensional classical OCP fluid,
Itoh and Ichimaru (1980b) proposed an analyic formula
based on the harmonic lattice model

U /NkgT=—1.103I"4+1.000 (50<TI <120)
(2.18)

which accurately represents the numerical data. For such
a two-dimensional system the Coulomb coupling constant
T is given by

I=(Ze)*(wn)"?/kyT , (2.19)

where n is the areal number density of the charged parti-
cles. Here again, the coefficient of the first term in Eq.
(2.18), —1.103, takes on a value slightly greater than the
Madelung value, —1.106 103, for the triangular close-
packed ‘Coulomb lattice. The validity and accuracy of
Eq. (2.18) have been reconfirmed in a recent molecular-
dynamics experiment by Kalia et al. (1981).

The existence of the dominant Madelung-like contribu-
tion to the internal energy formulas as evidenced in Egs.
(2.11), (2.17), and (2.18) points to applicability of the ion-
sphere model for a strongly coupled OCP fluid. The
internal structure of such an OCP may be characterized
by a latticelike short-range order. We shall return to this
consideration later in Sec. I1.C.2.

3. Hard-sphere variational calculation

As explained above, the interpretation of the first term
of Eq. (2.11) is relatively straightforward in terms of the
latticelike short-range order in the strongly coupled OCP
fluid. The remaining terms, which are sometimes called
the “thermal energy,” have yet to be satisfactorily ac-
counted for, however. It remains to be confirmed if the
specific form of expansion in powers of I''/# that those
thermal-energy terms assume has any physical signifi-
cance; in the case of the two-dimensional classical OCP
(Totsuji, 1978), such a ris dependence has not yet been
confirmed.

An interesting and suggestive argument has been
presented by DeWitt and Rosenfeld (1979) on the form of
Eq. (2.11). The argument is based on a hard-sphere varia-
tional calculation stemming from the Gibbs-Bogoliubov
inequality (e.g., Feynman, 1972; Hansen and McDonald,
1976).

The Gibbs-Bogoliubov inequality on the Helmholtz free
energy F of the many-particle system with the Hamiltoni-

an H reads
F<Fy+(H—Hy)y, (2.20)

where F; is the free energy of the reference system with

Rev. Mod. Phys., Vol. 54, No. 4, October 1982

the Hamiltonian H, and { - - - ), denotes the statistical
average over this reference system. One may thus choose
a variational reference system with a well-known solution;
an upper bound of F may then be obtained by minimizing
the right-hand side of Eq. (2.20) with respect to a varia-
tional parameter.

DeWitt and Rosenfeld (1979) chose a hard-sphere sys-
tem with an effective hard-sphere diameter o as the refer-
ence system and regarded the hard-sphere packing frac-
tion,

n=(wn/6)o>, (2.21)

as the variational parameter. As an analytic solution to
the hard-sphere problem, they adopted the Percus-Yevick
virial equation of state (e.g., Hansen and McDonald,
1976),

p(u) _ 1+277+3772
nkgT — (1—-m)*

The minimization of Eq. (2.20) for the OCP then yields
the relation

r=2n"3(1429)%/(1—n)*.

(2.22)

(2.23)

Expanding the Percus-Yevick internal energy and Eq.
(2.23) around n=1, they finally found a variational ex-
pression,

1/4

Uex
e 9 (80 1
NkgT 10 9 2
7 18 1/4
8—0 ? _tc . (2.24)

The first term on the right-hand side of Eq. (2.24) corre-
sponds to the ion-sphere evaluation (2.16); it agrees well
with the first term of Eq. (2.11). The remaining terms in
Eq. (2.24) are expanded in powers of I''/# and are thus
consistent with the indication of Eq. (2.11).

Although instructive, the argument cited above does
not constitute a rigorous proof on the form of the thermal
energy. For one thing, an exact solution for the hard-
sphere system is not used in Eq. (2.20), since the Percus-
Yevick equation itself is an approximation. As a conse-
quence, equations of state different from Eq. (2.22), such
as the compressibility equation of state and the
Carnahan-Starling formula (Carnahan and Starling, 1969;
Hansen and McDonald, 1976), do exist. Use of such an
equation of state would lead to a form of the thermal en-
ergy different from Eq. (2.24). Nonetheless, the existence
of a correspondence such as Eq. (2.23) suggests the physi-
cal relevance of considering a hard-sphere system
“equivalent” to the strongly coupled OCP for I'>>1. It
has been noted (Nagano and Ichimaru, 1980) that the
values of the friction coefficient 1/7 in the strongly cou-
pled OCP evaluated through molecular dynamics experi-
ments (Hansen, 1978) approximately satisfy the Stokes re-
lation (M: the mass of a particle),

1 3mnso

TS M

(2.25)
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with the effective diameter o as determined from Egs.
(2.21) and (2.23), when the molecular dynamics values of
the shear viscosity 7, (Bernu, Vieillefosse, and Hansen,
1977; Bernu and Vieillefosse, 1978) are substituted in Eq.
(2.25).

4. Wigner crystallization

Pollock and Hansen (1973) carried out extensive Monte
Carlo computations for the OCP in a perfect bee lattice
configuration and found that the numerical data for the
excess internal energy are well represented by the formula

Ue 3500

=—-0.895929T" + 1.5 .
NkpT oA r2

(2.26)

Comparing the Helmholtz free energy in this lattice phase
and that in the fluid phase (Hansen, 1973), they deter-
mined the critical value T',,, of the Coulomb coupling con-
stant at which the liquid-solid phase transition or the
Wigner crystallization takes place to be

I',=155+10. (2.27)

Subsequently, Slattery, Doolen, and DeWitt (1980) per-
formed improved Monte Carlo computations and fitted
their 128-ion bec lattice data for 160<T <300 to the
form '

Uex 2980

=—0.895929T"+1.5 .
NikyT 0.89 + 1.0+ 2

(2.28)

The normalized Helmholtz free energy [see Eq. (2.13)]
was then derived from Eq. (2.28) as

f(I)=—0.895929256T + > Inl"

1490
FZ

—1.8856— (2.29)
The transition point determined from the intersection of
Egs. (2.14) and (2.29) was

T, =168+4 . (2.30)

They further added a note that the most recent I, using
their new results is 171+3.

Wigner crystallization in a two-dimensional classical
OCP has been studied through computer simulations by a
number of investigators (Hockney and Brown, 1975;
Gann, Chakravarty, and Chester, 1979; Morf, 1979;
Kalia, Vashishta, and de Leeuw, 1981). According to
Gann et al. (1979), the transition occurs at

I, =125+15. 2.31)

Kalia et al. (1981) find that the system undergoes a first-
order phase transition between I' =118 — 130, exhibiting
hysteresis in the temperature dependence of such a quan-
tity as total energy.

Experimentally, Grimes and Adams (1979) first ob-
served the existence of an electron solid on a liquid-
helium surface. Fisher, Halperin, and Platzman (1979)
analyzed the experiment and found that the results can be
explained on the basis of the electrons forming a triangu-
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lar lattice below the transition temperature. The transi-
tion point found in the experiment was I',,, =137+15, in
good agreement with the simulation results.

5. Stability criterion for the OCP fluid

As an application of the Gibbs-Bogoliubov inequality,
one can derive a necessary condition for stability of the
homogeneous fluid phase of the OCP (Ichimaru, Iyetomi,
and Utsumi, 1982). It is a generalization to a classical
OCP of Ferrell’s validity criterion (Ferrell, 1958) for test-
ing approximations to the degenerate electron-gas correla-
tion energy.

Let the Hamiltonian of the classical OCP be expressed
as a sum of the kinetic energy %" and the interaction en-
ergy '7". We substitute

Hy=%+T7r",
H=X%+4+(+A)7 ,

in Eq. (2.20) and expand the result with respect to AT.
The zeroth- and first-order terms vanish identically by
virtue of Eq. (2.13), or equivalently,

df(T) _ {7
dr ~ NkgT (2.32)
The second-order terms of Eq. (2.20) then yield
2
4 . 2.33)
dar

This condition thus makes a stability criterion for the
classical OCP fluid.

Since the excess specific heat ¢, per particle at constant
volume is given by

d*f(T)
dr?

the criterion (2.33) may be reexpressed as

¢, =—TI? , (2.34)

,>0. (2.35)

Thus the condition (2.35) is more restrictive than the ordi-
nary criterion for thermodynamic stability that requires
positivity of the total specific heat, (% )+E,. ‘

One easily finds that the internal energy formulas such
as Eqgs. (2.14) and (2.17) satisfy the criterion (2.33) or
(2.35) in their ranges of validity below the crystallization
point at I',,,. This finding is consistent with the statement
that the criterion (2.33) and (2.35) is a necessary condition
for stability of the homogeneous liquid state.

6. Possibility of a charge-density-wave instability

In the study of the phase properties of plasmas, it has
been conjectured by some investigators (Schneider, Brout,
Thomas, and Feder, 1970; Totsuji and Ichimaru, 1974;
Sander, Rose, and Shore, 1980) that the onset of a “soft-
mode” instability associated with transition into a
charge-density-wave (CDW) state (Overhauser, 1968)
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might be connected with the Wigner crystallization. The
possibility of such a CDW instability rests on the observa-
tion that the negative sign of the static dielectric function
€(q,0) not only is permitted theoretically (Martin, 1967;
Dolgov, Kirzhnits, and Maksimov, 1981) but also has
been realized in various systems such as a strongly cou-
pled OCP (cf. Fig. 4). The onset condition (see Sec. I1.D.1
below for derivation)

£(q,0)=0 (2.36)

for the CDW instability may then be approached from
below as the coupling constant I" is increased; Eq. (2.36)
may thus determine the critical values, I', and q.,.

For the classical OCP, the use of the fluctuation-
dissipation theorem enables one to evaluate £(q,0) with
the knowledge of S'(q) as in Eq. (2.6); Monte Carlo results
are shown in Fig. 4. It would appear that with a further
increase of T, the vertex point, £(g,0),.x, may soon reach
zero with g, ~4.3/a.

To see the general trend of approach to the critical con-
dition (2.36), we plot in Fig. 6 the peak value €(q,0),.x as
a function of T', both on the logarithmic scales. The tri-
angular points have been obtained by Ichimaru and Tago
(1981) on the basis of the static structure factor evaluated
by Galam and Hansen (1976). As we here observe, the
three points are aligned almost on a straight line. Al-
though not shown in the figure, this trend in fact contin-
ues down to I'=10. If this trend should also continue
into the supercooled domain, I'>T,,, then the plasma
would not be able to attain the critical condition (2.36) at
a finite value of T, although the peak value £(g,0),,,, at
I'=160 is extremely close to zero. We may therefore con-
clude tentatively that if an instability of the homogeneous
fluid phase should take place at all, its critical " value
would be much greater than that associated with the
first-order Wigner transition, i.e., [, >T,,.

Recently, Iyetomi and Ichimaru (1982a) developed a
theoretical scheme in which the hypernetted-chain ap-
proximation is systematically improved for the strongly
coupled plasmas (see Sec. I1.D.4 for details). It has been
confirmed that the correlation functions computed in this
improved scheme almost identically reproduce all the

-£@,0
0.05[ 2"“
’ 2
001} .
0,005 )
L I r 1 | :
100 200 400

FIG. 6. The peak value €(q,0),,., of the static dielectric func-
tion versus the coupling constant I'. From Iyetomi and
Ichimaru (1982b).
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published data of the latest Monte Carlo simulations car-
ried out by Slattery et al. (1980); the case with I"'=160
will be shown later in Fig. 13(a). This scheme also en-
ables one to extend the calculation of S(g) into the super-
cooled domain, I"' > T',,; the values of &(q,0),,,, computed
from such a calculation are shown in Fig. 6 by filled cir-
cles (Iyetomi and Ichimaru, 1982b). We again observe
that the points are aligned almost on a straight line. It is
thus expected that the metastability of the fluid phase
may persist well beyond I'=500. Later, in Sec. I1.D.5, we
shall see a microscopic evidence that such a metastable
supercooled OCP fluid may in fact assume an amorphous
glassy state.

C. Screening potential

1. Short-range behavior

Since the radial distribution function g (#) describes the
spatial correlation between two particles, the potential of
average force w(r) may be defined through the equation

g(r)=expl —w(r)/kpT] . (2.37)

In a weakly coupled plasma it is sufficient to take the
bare Coulomb interaction, w(r)=(Ze)?/r. In a strongly
coupled plasma, however, w(r) deviates significantly
away from (Ze)?/r due to the effects of many-particle
correlations. To single out such a deviation, we introduce
a function

H(r)=[(Ze)*/r]—w(r), (2.38)

which will be referred to as the screening potential. This
function measures the extent to which the effective poten-
tial w(r) between two particles is lowered from the bare
Coulomb value (Ze)?/r.

By substituting in Eq. (2.37) the values of g (#) such as
shown in Fig. 1 and with the aid of Eq. (2.38), one may
compute the screening potential H(r) evaluated on the
basis of the Monte Carlo experiments. The result of such
a computation has revealed an interesting feature. Figure
7 plots the values of H(r)/[(Ze)?/a] as a function of r /a

T 1 T
Hix) 2
(Ze)® [~~o_ Hoo= 2 (125 039x)
a N 7
1.0+ \\Q’\\ i
e r=5 e
a I =10
L ]
05 « T =50
o T =100
& T =140
| | 1
0 0.5 i.0 5
xX=r/a

FIG. 7. Linearity of the screening potential derived from the
Monte Carlo simulation data.
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for various I'; here we clearly observe that the data follow

a straight line in the interval, 0.4 <r/a <1.8. This
straight line may be expressed as
2
H(r)="%) [co—c, r (2.39)
for 4<T <160. The choice of the coefficients, cy=1.25

and ¢, =0.39, reproduces the Monte Carlo data of Han-
sen (1973) within errors less than 4% (Itoh, Totsuji, and
Ichimaru, 1977). The coefficients are then mutually con-
nected via

c1=(co/2)%. (2.40)

The linear relationship (2.39) and the connecting for-
mula (2.40) were discovered by DeWitt, Graboske, and
Cooper (1973) through the analysis of the Monte Carlo
data of Brush et al. (1966). Such relations have been
found to apply not only in the OCP but also in the binary
mixtures of ions (Itoh, Totsuji, Ichimaru, and DeWitt,
1979) and in the two-dimensional electron layers (Itoh,
Ichimaru, and Nagano, 1978; Totsuji, 1978). As we shall
discuss in the next section, those features are directly re-
lated to the existence of a latticelike short-range order in
the strongly coupled plasma.

In the vicinity of » =0, (Ze)?/r is predominantly large
in w(r) so that g(r) vanishes; one cannot deduce H(r)
from the Monte Carlo data. Instead, one may adopt the
ion-sphere model to evaluate the screening potential in the
following way (Salpeter, 1954): When two ions are close
to each other, a complex ion sphere is constructed with a
negative charge sphere of radius 2!”%z and charge —2Ze
(see Fig. 8). The screening potential in the vicinity of
r =0 is then calculated from the energy difference be-
tween such a complex ion sphere and two ion spheres of
charge Ze. With the aid of Eq. (2.15), one finds

H(r)=(2°3-2)x0.9-""~ _2x0.5-==-

2
r
a

It has been shown (Widom, 1963) that H (#) is expressed
in a power series of 72 near r =0; Eq. (2.41) gives the first
two terms of such an expansion. Instead of Eq. (2.15),

(Ze)? (Ze)?
a 2a

2
_{Ze) 2.41)
a

1
1.057——
4

FIG. 8. Calculation scheme of the short-range screening po-
tential based on the ion-sphere model.
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one can alternatively use an expression of the free energy
such as Eq. (2.14) for the calculation of H (r) (Jancovici,
1977).

The short-range screening potential in the two-
dimensional electron layer has also been computed (Itoh
et al., 1978).

2. Lattice model

For a calculation of the screening potential in connec-
tion with an estimation of the nuclear reaction rate in a
compressed star, Salpeter and Van Horn (1969) intro-
duced the following model: Suppose that the strongly
coupled plasma in a liquid state has a short-range order of
a crystalline system, so that one may assume a bcc struc-
ture with the lattice constant b corresponding to the plas-
ma density n (see Fig. 9). One then picks a pair of adja-
cent ions (the filled spheres in Fig. 9) and calculates the
electrostatic energy as a function of the interparticle
separation r with the center of mass fixed. When the in-
terparticle separation is close to the nearest-neighbor dis-
tance, d, one assumes that the screening potential is given
by this calculation based on what may be called a lattice
model.

When the two particles approach close to each other
(r <<d), Eq. (2.41) based on the ion-sphere model is as-
sumed to be valid. When the results of those two calcula-
tions, valid at r~d and r~0, are fitted by a polynomial,
one finds the screening potential according to the lattice
model as (Itoh and Ichimaru, 1977, 1979)

H; (r)=[(Ze)*/b][ 1.1547+1.1547(1 —p)
—0.9935(1—y)?+4.3385(1 —y)?
—5.3868(1—y)*+1.8728(1—y)°] ,

‘ (2.42)

where y =r/d. Figure 10 compares this result with Eq.
(2.39), showing that the linearity of the screening poten-
tial can be reproduced by taking account of the latticelike
order in the vicinity of r =

Although Eq. (2.42) is successful in reproducing the
linearity of the screening potential, it does not accurately
predict the magnitudes of the two coefficients, ¢, and ¢,

~——
b

FIG. 9. Calculation of the screening potential on the basis of
the bee lattice model. Distance between the two particles de-
picted by the filled circles is varied, with their center of mass
(X) fixed. d=0.8660b=1.7589.
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FIG. 10. Screening potential H as functions of y, the interpar-
ticle distance r measured in units of the nearest-neighbor dis-
tance d for the bec lattice. I represents the lattice model for-
mula, Eq. (2.42); II, the Monte Carlo result, Eq. (2.39). The
dashed line of II for 0<y <0.2 is an extrapolation.

of Eq. (2.39). To determine those coefficients more accu-
rately in connection with the lattice model, we proceed
one step further and assume an effective potential of the
harmonic-oscillator type near the nearest-neighbor separa-
tion (Itoh and Ichimaru, 1977). That is, the potential of
average force is assumed to satisfy

w(d)=0, 2| 4.

2.43
ar |, _4 ( )

The first relation assumes that the electrostatic potential
of an ion is completely screened at r =d; the second rela-
tion implies that w(r) takes on a minimum value there.
Use of Eq. (2.39) in Eq. (2.43) leads to

c1=(co/2)% co=2a/d . (2.44)

The former is identical to Eq. (2.40). Evaluation of the
latter for the bcc lattice yields ¢o=1.137; for the sc lat-
tice, co=1.241. These values are reasonably close to the
Monte Carlo value, ¢y =1.25.

The observation that the assumptions introduced in Eq.
(2.43) actually correspond to the correlational behavior
obtained in the computer experiments reveals a number of
salient properties of the strongly coupled plasma. The
first relation of Eq. (2.43), in particular, indicates that the
screening distance in a strongly coupled plasma is deter-
mined solely by the number density of the particles and
that the temperature or the thermal effect plays a negligi-
ble part in such an act of screening. In the case of a
weakly coupled plasma (I' << 1), on the contrary, the De-
bye length Ap=[kpT /47n(Ze)*]'/? gives the effective
screening distance (e.g., Ichimaru, 1973), which is deter-
mined through balance between the thermal and electro-
static effects.

3. Enhancement of thermonuclear reaction rate
Enhancement of thermonuclear reaction rate arising
from Coulomb correlations in strongly coupled plasmas

has important consequences in various aspects of stellar
evolution such as carbon ignition in degenerate cores.
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Salpeter (1954) originally presented an analytic treatment
of such an effect in a low-density, high-temperature plas-
ma such that " < 1, and introduced the ion sphere model
to describe the effects of interparticle correlations in the
strongly coupled regime, I" > 1. Later, Salpeter and Van
Horn (1969) carried out detailed calculations based on the
ion-sphere model.

As we noted earlier, the Monte Carlo simulation has
been a powerful tool in the study of Coulomb correlations
in strongly coupled plasmas. DeWitt, Graboske, and
Cooper (1973) developed a generalized statistical-
mechanical theory to describe the effects of plasma
screening on nuclear reactions.

Both sets of calculations of the enhancement factor cit-
ed above are based on evaluation of the screening poten-
tial at zero separation. For justification of this procedure,
it may be argued that the classical turning radii for those
particles with relative velocities in the vicinity of the
Gamow peak are much smaller than the mean ionic dis-
tance; hence, the screening potential may be replaced ef-
fectively by its value at zero separation.

Basically, however, the nuclear reaction rate depends on
the probability of particles tunneling through the repul-
sive Coulomb barrier; to evaluate the latter probability
one must carry out a relevant WKB integration inside the
turning radius. It is therefore expected that the spatial
dependence of the screening potential will play a crucial
part in such an integration.

Mitler (1977) treated the enhancement factor through
considering a spatially dependent screening potential ob-
tained in the ion-sphere model; his work thus represents a
significant improvement upon the original ion-sphere
model of Salpeter (1954). The use of the ion-sphere
model, however, is in a way a retreat from the line gained
by DeWitt et al. (1973), who made use of the results of
the Monte Carlo computations on the classical OCP; the
screening potential at intermediate distances (r~a) can be
obtained accurately only by using the results of such nu-
merical experiments. Itoh, Totsuji, and Ichimaru (1977)
thus calculated the enhancement factor by taking explicit
account of the Monte Carlo results for the screening po-
tential as parametrized in Eq. (2.39). Subsequently, Alas-
tuey and Jancovici (1978) carried out an independent cal-
culation of the enhancement factor by taking into account
the spatial dependence of the screening potential, and ob-
tained a result which is in essential agreement with that of
Itoh et al. (1977).

The penetration probability p(v) of the Coulomb bar-
rier for the reacting nuclei with the relative velocity v and
the reduced mass M /2 may be given by the WKB integral
(Van Horn and Salpeter, 1967) as

1/2‘

(2.45)

2VM 7, . My?
- fodr ‘w(r)— n

p(v)=exp

where w(r') is the potential of average force [cf. Eq.
(2.37)] and r is the classical turning radius determined
from
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w(r)=Mv2/4 . (2.46)

Separating the strongly v-dependent part, we may write
the nuclear reaction rate R as

R= [ "dv Flwlexp(—Q) (2.47)
where exp(—Q) is the product between p(v) and the
Boltzmann factor exp(—Mv?/4kgT). On account of the
strong v dependence of exp(—Q), the integral Eq. (2.47)
may be evaluated through expansion of Q around its
minimum value Q(vg) at vy, where dQ(vg)/dvy=0 (the
Gamow peak); we thus have

v * 1 2 d2
RzF\vo)f~ dvexp |[—Q(vy)— 5 (v —vg) ;,U—ZQ(vo) .
® 0

(2.48)

Since the relative velocity v is connected with the classi-
cal turning radius r via Eq. (2.46), one finds it convenient
to regard Q as a function of #, i.e.,

Q=20 22M. [ or)—w )2,
B (2.49)

and thereby to carry out a statistical average with respect
to the distribution of r. The latter distribution can be
evaluated by substituting Egs. (2.38) and (2.39) in Eq.
(2.37). Introducing a normalized distance

2
o/

and the dimensionless temperature parameter

1/3
2772
n , (2.51)

ﬁ2

_# |2
M(Ze)?

by , (2.50)

M(Ze)*
#kyT

one expresses the result with good accuracy as (Itoh et al.,
1977)
2

1 ar 3r
Q(P)Z‘g’ ;+2P1/2‘“Tco+ — |cwp
R cp*”? (2.52)

The enhancement factor is the ratio of Eq. (2.48) calcu-
lated with the screening potential to that without it [i.e.,
w(r)=(Ze)*/r]. The enhancement factor due to strong
screening is thus given by exp[T—Q (py)], where py is the
value of p at which Q(p) in Eq. (2.52) is minimized;
(3T /7)poa then represents the classical turning radius at
the Gamow peak. The values of 7—Q(py) so computed
can be reproduced by the following formula within errors
less than 1%:

T—Q(po)=1.25T —0.0957(3T /7)* . (2.53)

The effects of possible deviation of H (r) from Eq. (2.39)
in the vicinity of »=0 [cf. Eq. (2.41)] have also been in-
vestigated (Itoh et al., 1979) and found to induce a negli-
gible correction to Eq. (2.53). For a carbon plasma
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(Z =6) at T=10% K with mass density 10° g/cm™3, the
resulting enhancement factor turns out to be ~6x 10'6; at
T=5%10" K with the same mass density it becomes
~3x10%.

An enhancement factor in dense, binary mixture of ions
has been calculated by Itoh et al. (1979).

D. Analytic treatments of static correlations

1. Density-functional approach

Analytic theories accounting for the static properties of
a strongly coupled plasma have been concerned, to a cer-
tain degree, with a derivation of a relevant expression for
the local-field correction G(q); as explained in Sec. ILA,
this function measures the extent to which the particle in-
teractions affect the static correlational properties in such
a plasma. In the polarization potential model of con-
densed matter, proposed by Pines (1966), the local-field
correction enters the expression for the scalar polarization
potential characterizing that portion of the restoring
forces responsible for the collisionless part of the excita-
tion spectrum which couples directly to the density fluc-
tuations in the system.

The local-field correction can be described in terms of
the density-functional formalism due originally to Hohen-
berg, Kohn, and Sham (Hohenberg and Kohn, 1964;
Kohn and Sham, 1965; see also Mermin, 1965; Schneider,
1971; Singwi, 1976; Chihaia, 1978). In this section I
briefly review this formalism as applied to the OCP prob-
lems.

The free energy of an interacting inhomogeneous plas-
ma in a static external potential v (r) may be expressed
as

Fn(r)]= fdrvc,“(r)n (r)

(Ze)? ,n(r)n(r')
+5 fdrfdr————|r_r,|

+F0[n(r)]+Fxc[n (r)] .

(2.54)

Here, Fo[n(r)] denotes the free energy of a free-particle
system with density n(r); Fyc[n(r)] then refers to the
remaining exchange and correlation energy of the in-
teracting system.

Assuming that the plasma density has the form

n(r)=n +6n(r),

with |8n(r)| /n <<1 and

Jdrén(n=0, (2.55)

one finds a basic equation of the density-functional for-
malism through minimization of F[n (r)] with respect to
variations of n (r), that is,
8Fo[n(r)] =~ 8Fxc[n(r)]
én(r) on(r)

+vg(r)=0, (2.56)

where
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(Ze)?

V(D) =ve (D) + [ dr’ P (2.57)

is the Hartree field.

To the lowest order in &n (r) the first two terms in Eq.
(2.56) should be linear in 6x(r) on account of Eq. (2.55),
so that one writes

(Ze)?

f dr’ |[Ko(r—r';n)+Kyc(r—r';n)+ —{—r—_rT

XOn(r') 4 vey(r)=0 . (2.58)

The kernels, Ky and Ky, introduced in Eq. (2.58) as the
second functional derivatives of Fy[n(r)] and Fyc[n(r)]
around n (r)=n, depend only on |r—r’| and n, the aver-
age number density. The spatial Fourier transformation
of Eq. (2.58) yields

[Ko(g;n)+Kxc(g;n)+v(qg)187(q) + ey (q)=0 .

(2.59)
Here, for example,

I?o(q;n):fdrKo(r;n)exp(—iq-r) s (2.60)

and v (q) =4m(Ze)*/q>.

Equation (2.59) is a relation describing the linear static
dielectric response of the plasma. A direct calculation
yields

Kolg;n)=—1/Xy(q,0) (2.61)

(Hohenberg and Kohn, 1964; Mermin, 1965), where
Xo(g,0) is the static polarizability of a free-particle sys-
tem; for the classical OCP, X((q,0)= —n /kgT. The stat-
ic dielectric function is then obtained from Eq. (2.59) as

U(Q)X()((],O)
=1— , 2.62
g0 =1— 4 G (@Xo2,0) 2.62)
where we have set
Kxclg;n)=—v(g)G(q) . (2.63)

On comparing Egs. (2.6) and (2.62), one finds that the
function G(q) introduced via Eq. (2.63) corresponds to
the local-field correction.

The condition for the onset of a soft-mode CDW insta-
bility is obtained from the second functional derivative of
F[n(r)], that is,

8°F[n(r)]/8n(r)*=0 . (2.64)

One thus finds from Egs. (2.59) and (2.62) the critical
condition for a CDW instability at the wave number g as

Eq. (2.36) or equivalently,
v(q)+Ko(@)+Kxc(g)=0. (2.65)

A similar criterion for the instability has been obtained
also by Chan and Heine (1973).

2. Expressions for the local-field correction

For a classical OCP, the principal effect that goes into
determination of the local-field correction is the interpar-
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ticle correlation brought about by the Coulomb repulsion;
no exchange effects need to be taken into consideration.
A self-consistent formulation of such a Coulomb-induced
local-field effect was proposed by Hubbard (1967) for de-
generate electron liquids at metallic densities.

Independently, Singwi, Tosi, Land, and Sjolander
(STLS) (1968) advanced a detailed theory of electron
correlations at metallic densities, in which a semiclassical
calculation of G(gq) was given as a functional of S(gq).
These authors truncated the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy of the kinetic equa-
tions (e.g., Ichimaru, 1973; Hansen and McDonald, 1976)
by assuming that the two-particle distribution function
folr,p;r’,p’ | 1) was expressed in terms of the single-
particle distribution function f(r,p|?) as

far,pr,p’ | O=f1(r,p | )f (r',p' | g (r—1') ,
(2.66)

where g (r) was taken to be the equilibrium, radial distri-
bution function. Solving a linear density-response prob-
lem in the first equation of the BBGKY hierarchy, they
derived the expression

1 dk
Gstis(q)=— n f

2wy’

k
—‘}(T[S( lq—k|)—1]

(2.67)

for the local-field correction. A combination of Egs. (2.4)
and (2.67) then makes a self-consistent integral equation
for determination of S(q) or G(q) in the classical OCP;
numerical solution to this equation was carried out by
Berggren (1970).

The STLS scheme provided a substantially improved
prediction over the RPA scheme on the short-range corre-
lation in the OCP. At the same time a number of
shortcomings were noted: When the STLS theory was ap-
plied to a weakly coupled OCP (I" << 1), it failed to repro-
duce the known I' expansion of the excess internal energy
beyond the Debye-Hiickel term. According to Abe
(1959), the excess internal energy for I <<1 is expressed
as

U V3
NkzT ~—~ 2

3
230 $In(30)+ 37— +1,

3

(2.68)

where y=0.57721... is Euler’s constant; the first term
on the right-hand side is the Debye-Hiickel term. Some
terms of expansion beyond Eq. (2.68) have also been cal-
culated (Cohen and Murphy, 1969).

A second problem noted on the STLS scheme concerns
the compressibility sum rule. This sum rule is the re-
quirement that the isothermal compressibility calculated
from the evaluation of thermodynamic functions such as
Eq. (2.9) be equal to that obtained from the long-
wavelength behavior of S(g) as illustrated in Egs. (2.4)
and (2.5). This imposes a structural constraint on S(g), in
that the integrated strength of Eq. (2.7) over the entire g
domain should be consistent with the limiting values of
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S(q) at ¢g—0 determined from Eqgs. (2.4) and (2.5). The
STLS theory exhibited a substantial discrepancy between
the values of the compressibility calculated in those two
different ways.

A couple of proposals were put forward on the expres-
sion for G(gq) to improve on the points remarked above.
Singwi, Sjolander, Tosi, and Land (1970) thus suggested

1 dk qk
G =——
sstL(q) o f 2rP Koe(k.0)
X[S(|q—k|)—1], (2.69)
which was capable of reproducing Eq. (2.68). Subse-

quently, through investigation of the compressibility,
Schneider (1971) and Vashishta and Singwi (1972) pro-

posed the form

J
14agn an
The parameter a, is to be chosen in such a way that the
resulting formulation satisfies the compressibility sum
rule; for the classical OCP, a0=%. This formulation,
however, fails to reproduce Eq. (2.68) beyond the Debye-
Hiickel term.

The local-field correction can also be obtained directly
from a solution of the second member of the BBGKY
hierarchy; the Born-Green equation (e.g., Feynman,
1972) relating between the pair and ternary correlation
functions can be transformed in a form (Tago, Utsumi,
and Ichimaru, 1981)

Gys(q)= Gstis(q) . (2.70)

1 dk 7(3)
=— ———K(q,k)[S —k|)—14++R) k)1, (2.71)
Gl@=—150) J Gk @blIs(la—k—1+5A"(q—-q,k)]
where
K(q,k)= +‘|‘—(“;T—; : (2.72)
hm(kl,kz):nzfdrnfdr23h‘3’(r,2,r23,r31)exp(—ikl-r13—ik2-r23) ’ (2.73)
r,-j=r,-—rj y (2.74)

and h®(r5,753,73;) refers to the radial part of the ternary correlation function (e.g., Ichimaru, 1973). The hierarchy
can be terminated if the ternary correlation function is expressed in terms of the pair correlation function in Eq.
(2.71); a self-consistent integral equation will result through a combination with Eq. (2.4).

Ichimaru (1970, 1978) introduced the convolution approximation in Eq. (2.71), so that the ternary correlation func-

tion is expressed as

hg)(rlz,rn,ru)=h(r12)h(r23)+h(r23)h(r31)+h(r31)h(r12)+n fdr4h(r14)h(r24)h(r34) ’

where

h(r)=g(r)—1 (2.76)

is the radial part of the pair correlation function.
Graphically Eq. (2.75) may be represented as in Fig. 11.
It was in fact shown by O’Neil and Rostoker (1965) that
the BBGKY long-range solution of the ternary correla-
tion function for an OCP in the weak-coupling limit
(I’ << 1) takes the form Eq. (2.75), where the pair corre-
lation function is given by the Debye-Hiickel formula,

(Ze)? ex
kB Tr

r

_KD

h(r)=— 2.77)

By adopting the convolution approximation (2.75) in the
second BBGKY solution (2.71), one thus automatically
guarantees accuracy of the resulting long-range solution

s/ . 1

FIG. 11. Convolution approximation for the ternary correla-
tion function.
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(2.75)

[

of the pair correlation function to the first two terms in
the I' expansion. Abramo and Tosi (1972, 1974) also in-
vestigated certain aspects of the convolution approxima-
tion.

Substitution of Eq. (2.75) in Eq. (2.71) yields

Gelg)= f dk 9—S(k>

X[S(|q—k|)—1]. (2.78)
Analytic structures of and numerical solution to the re-
sulting integral equation were subsequently studied by
Totsuji and Ichimaru (1973, 1974). It was shown expli-
citly that Eq. (2.78) reproduces the Abe formula, Eq.
(2.68); the isothermal compressibility calculated from the
long-wavelength expression Eq. (2.5) agrees with the ex-
act result up to the term proportional to I'*InI’ in Eq.
(2.68). The convolution scheme, Eq. (2.78), thus offers a
description of static properties in the classical OCP supe-
rior to the STLS scheme, Eq. (2.67). Numerical solu-
tions for the excess internal energy in those various
schemes are compared with the Monte Carlo data in the
domain I'" <3 in Fig. 12.
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FIG. 12. The excess internal energy versus V'3 T/ the cou-
pling constant appropriate to a weakly coupled plasma. The
solid curve depicts the theoretical result on the basis of the
convolution approximation, Eq. (2.78); the dotted curve, the
cluster-expansion result, Eq. (2.68). The filled circles represent
the Monte Carlo data of Brush et al. (1966); the crosses, solu-
tion to the STLS scheme, Eq. (2.67), obtained by Berggren
(1970). From Totsuji and Ichimaru (1974).

3. The hypernetted chain equation

For the classical OCP, the hypernetted chain (HNC)
equation developed in the theory of liquids (e.g., van
Leeuwen, Groeneveld, and De Boer, 1959; Morita, 1960)
is known to provide a theoretical description much more
accurate than the Percus-Yevick equation (Percus and
Yevick, 1958) or the integral equations discussed in the
preceding section. We thus begin this section with a
brief introduction of the HNC approximation.

In terms of the Mayer cluster expansion (e.g., Rice and
Gray, 1965; Hansen and McDonald, 1976), the radial
distribution function may be exactly expressed as

g(r)=exp{—[¢(r)/kgT}+N(r)+B(r)} .

Here ¢(r) represents the interparticle potential [for the
OCP, ¢(r)=(Ze)*/r]; N(r) refers to the sum of the no-
dal diagrams; and B(r), that of all bridge diagrams. The
nodal function N () can then be written as

N(r)=h(r)—c(r),

(2.79)

(2.80)

where c(r) is the direct correlation function; this func-
tion is connected to the pair correlation function 4 (r) via
the Ornstein-Zernike relation,

h(r)=c(r+n [drc(|t—r'|)h(r). (2.81)

The HNC approximation corresponds to assuming
B(r)=0 in Eq. (2.79). One then has a closed set of
equations, so that A (#) and c(r) may be calculated from
a solution of Eq. (2.81) and the HNC equation,

gr)=14+h(r)
=exp{ —[¢(r)/kgT]+h(r)—c(r)} .

In the HNC approximation the local-field correction
takes the form

(2.82)
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dk_ak g g k|)—1]

1
Glg)=—+
@==f 2n) k2

X{1+[1—-G(k)][S(k)—11} . (2.83)
We note here that the STLS scheme Eq. (2.67) may be
obtained by setting G (k)=1 on the right-hand side of
Eq. (2.83); the convolution formula, Eq. (2.78), can be
derived by assuming G(k)=0 there. Interrelationship
and comparison between the HNC, the STLS, the convo-
lution, and other theoretical schemes have been examined
and discussed in the literature (e.g., Chihara, 1973; Cho-
quard, 1978; Chihara and Sasaki, 1979).

The numerical solution to the HNC equation for the
OCP was carried out by Springer, Pokrant, and Stevens
(1973) for the radial distribution function and the excess
internal energy in the domain 0.05 < T < 50; this solution
was subsequently extended more accurately by Ng (1974)
in the domain 20 < T" < 7000.

Those HNC data for the excess internal energy were
fitted by DeWitt (1976) with the result

U /NkpgT = —0.900470I" +0.268 826 3I"1/2

+0.071999251nI"4+0.0537919 (2.84)
for I'>1. Quantitatively the HNC internal energy
agrees with the Monte Carlo data over the entire fluid
range I' <T',, with discrepancies of less than 19%. The
main reason for the apparent good agreement of the
HNC and Monte Carlo results is that the static
Madelung-like term in the HNC energy is very close to
that for the Monte Carlo fluid energy, Eq. (2.11). The
static term from HNC is nearly identical to the ion-
sphere result (—0.9T") and is 0.5% below the bcc lattice
value (—0.895929T"), whereas the static term in Eq.
(2.11) is 0.18% below the bcc lattice value. The remain-
ing thermal energy from HNC is significantly different
from the Monte Carlo form, I'/? vs I''/4, and the HNC
thermal-energy function is numerically larger than the
Monte Carlo thermal-energy function; this difference is
about 45% at I'=150.

This relative inaccuracy of HNC in reproducing the
Monte Carlo thermal energy poses a certain problem par-
ticularly in the treatment of miscibility in the classical
binary mixtures of ions. The study of thermodynamic
properties of such a binary ion mixture thus far has been
based on the solution of the coupled HNC equations sup-
plemented by a few runs of the Monte Carlo simulation
(Hansen and Vieillefosse, 1976; Hansen, Torrie, and
Vieillefosse, 1977, Brami, Hansen, and Joly, 1979). It
has been found (Hansen ef al., 1977) that the Monte Car-
lo energies are systematically lower than their HNC
counterparts, though the relative difference is always less
than 1%, a situation quite similar to the OCP. Accord-
ing to these analyses, the excess internal energy of a
two-component system with number densities n; and n,
(n =n;+n,) for charges Z, and Z, appears to satisfy a
linear relation (DeWitt, 1978; Brami et al., 1979),
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U
Nk—;*T ~xu(Z3T,) +x,u(Z3°T,),
BIM

(2.85)

where
x1=1—x,=n,/n, (2.86)
I,=e%/a,kpT , (2.87)
a,=[4m(Zn,+Z,n,)/3]" 13, (2.88)

and u (T") refers to the OCP values of U, /NkpT.

A linear relation such as Eq. (2.85) follows directly
from the ion-sphere model described in Sec. II.B.2. Ac-
cording to the ion-sphere prescription, the static energy
for the binary ion mixture is calculated as

(Uey /NkpT)is=—0.9(x,Z7"> +x,Z5")

xe?/a,kgT . (2.89)

When the negative-charge density or a, is kept constant,
this expression depends linearly on the composition x; or
X,, as Eq. (2.85) does. Since both the Monte Carlo and
HNC internal energies in the strong coupling domain [cf.
Egs. (2.11) and (2.84)] are dominated by the Madelung-
like contributions proportional to I', it is naturally ex-
pected that a linear relation such as Eq. (2.85) will hold
to a good degree of accuracy and that the Monte Carlo
and HNC values will closely agree with each other for
the binary ion mixtures, as well.

To the extent that Eq. (2.85) or (2.89) is applicable,
one can thus define and calculate an “effective” electric
charge Z ¢ by setting the right-hand side of Eq. (2.89)
equal to —0.9Z%e?/akyT [cf. Eq. (1.5)]. This is thus
an average charge in the ion-sphere scaling (Salpeter,
1954), and is given by

Zeff=(ZS/SZ_1/3)1/2 i (2'90)
Here the averages of charges are defined as
ZV=x,ZY+x,Z} . (2.91)

Validity of such an ion-sphere scaling has also been
demonstrated in the behavior of screening functions for
the binary ion mixtures (Itoh et al, 1979).

If a linear relation such as Eq. (2.85) holds exactly,
there will be no difference in the excess free energy be-
tween the mixed phase and the separated phase of the
binary ion mixture so long as the density of the
negative-charge background is kept constant. Since there
additionally exists the ideal entropy of mixing, which
acts to lower the free energy in the mixed phase, this
would imply that the different ions could mix at any ra-
tio. In order to treat the problem of miscibility, one
must therefore have a reliable knowledge on the extent of
deviation from Eq. (2.85), which should stem from the
thermal energy contributions. Here the HNC approach
is not sufficiently accurate, as we have seen; indications
from the Monte Carlo simulations are not conclusive yet,
since the deviations are close to the Monte Carlo noise
level (DeWitt, 1978).
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4. Modifications of the HNC scheme

The HNC approximation, though superior to all the
analytic schemes proposed thus far for the treatment of
the OCP, still exhibits a systematic departure from the
Monte Carlo results in the strong-coupling domain I'" > 1.
We have noted its relative inaccuracy in predicting the
thermal energy part of the excess internal energy. As we
observe in Figs. 13(a) and 14, the behaviors of the HNC
radial distribution function and screening potential differ
somewhat from those indicated in the Monte Carlo
simulation; the amplitudes of the oscillations in g(r) are
usually underestimated in HNC. The compressibility
sum rule is violated significantly in the HNC equation
(Baus and Hansen, 1980). It is therefore meaningful to
attempt a further improvement of the HNC scheme for
the analytic treatment of the OCP.

Obviously from the derivation of the HNC equation
(2.82), a possible area of improvement lies in the treat-
ment of the bridge functions B(r). Through investiga-
tion of the Monte Carlo simulation data on fluids with a
wide class of different interparticle potentials, Rosenfeld
and Ashcroft (1979) advanced the following ansatz of
universality: To within the accuracy of present-day
computer-simulation studies [usually about 2% for g(r)]
the bridge functions constitute the same family of

30r
r=160

r /.a 30 I 40

1
!I.

fl 1l ]
10 20 /5 30 a0

FIG. 13. (a) The radial distribution function at I'=160. The
filled circles represent the Monte Carlo results due to Slattery
et al. (1980); the crosses, the HNC results. The solid curve de-
picts an improved HNC calculation, on the basis of Eq.
(2.102). From Iyetomi and Ichimaru (1982a). (b) The radial
distribution function computed in the improved HNC scheme
(solid curve) and that in the simple HNC scheme (crosses) for
the OCP with I'=500. The vertical solid and dashed lines are
proportional to the numbers of the particles located in the
neighboring bce and fec lattice sites divided by the square of
the interparticle separation. From Iyetomi and Ichimaru
(1982b).
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FIG. 14. Screening potential at T =80 and 160. The solid
curves refer to the HNC results; the dashed curves, Eq. (2.39).
The filled circles represent Monte Carlo data; the open circles,
the results of the modified HNC calculation due to Rosenfeld
and Ashcroft (1979). From Rosenfeld and Ashcroft (1979).

curves, irrespective of the assumed pair potential. In
view of the known parametrized results for hard spheres
(cf. Sec. I1.B.3), this ansatz then leads to an improved
HNC theory applicable to any potential: One chooses
the hard-sphere bridge functions Byg(r;71) and replaces

¢(r) in Eq. (2.82) by ¢(r)—kpTBys(r;7n); the only free
parameter 7—the packing fraction for the hard-sphere
system—may be determined by requiring thermodynamic
consistency, such as the compressibility sum rule. As
the comparison in Fig. 14 illustrates, the thermodynam-
ics and radial distribution resulting from this modified
HNC scheme are nearly indistinguishable from the exact
Monte Carlo results.

Another possibility of improvement on the HNC equa-
tion stems from application of the density-functional ap-
proach described in Sec. IL.D.1 (Iyetomi and Ichimaru,
1982a). One here begins by placing a test particle of the
same kind as the plasma particles at r=0, and regards
its Coulomb potential as v (7) in Eq. (2.54). The result-
ing density variation, n(r)=n +8n (r), then gives the ra-
dial distribution function as (e.g., Percus, 1964)

g(rn=n(r/n,
or (2.92)
h(r)=6n(r)/n .

The function Fy[n (r)] will be treated exactly according
to

Foln(n]=Uo+kpT [ dr'n(r){In[n(r)]—1},
(2.93)

where the internal energy U, is independent of &n(r).
The exchange and correlation part is expanded with
respect to 8n (r), so that

FXC[n(r)]=FXC[n]+% fdrfdr'KXC(r—r')Sn(r)Sn(r')

+% fdrfdr'fdr" R r—r,r—1")8n (r)8n (r')n (")

+% fdrfdr’fdr"fdr”’K)((‘?(r—r’,r-r”,r—r"')Sn(r)8n(r’)8n(r”)8n(r”’) + .

The function Kyc(r—r') has been introduced in Eq.
(2.58); relations such as Eq. (2.63) are to be noted on this
function. The kernels, K\¢,Kye, .. ., basically corre-
spond to nonlinear density-response functions of the sys-
tem. In a different context, some formal aspect of such
nonlinear response has been.studied by Kalman and his
collaborators (e.g., Kalman, 1978; Golden, 1978).

A solution of Eq. (2.56) with the aid of Egs. (2.4),
(2.57), and (2.81) then yields Eq. (2.37), with

(Ze)?
r

w(r)= —kpT[h(r)—c(r)]

(>3)

2 () (2.95)

" l%FXC[n ("]

Here the last term represents the sum of the contribu-
tions from those terms containing K2 and higher in the
expansion (2.94) (Iyetomi and Ichimaru, 1982a). In view
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(2.94)
I
of Egs. (2.79) and (2.80), one thus finds
(>3)
1 8 -
B(r)=— kBT on (r) Fxc[n (r)] (2.96)

The bridge functions therefore correspond to that part of
the screening potential involving the nonlinear density-
response kernels in the expansion of Eq. (2.94).

Salient features of the HNC equation may be illustrat-
ed through examination of those terms neglected in it.
The double Fourier transformation of K{¥ is explicitly
calculated as

3)
Kxd(qnq) = kaT — S(q‘SIY)S(((;:)qS;’Z()qQ , (2.97)
where q;=q;+q,, and
5%q1,q0)=—2+5(g))+S(g;)
+8(g3)+h(q1,q2) - (2.98)
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This function represents the double Fourier transforma-
tion of the radial part of the ternary distribution func-
tion.

Let us note that Eq. (2.97) contains a product of three
static structure factors in its denominator. As a com-
bination of Egs. (2.4) and (2.5) indicates, the static struc-
ture factor vanishes in the long-wavelength limit for the
system with long-range Coulomb interaction. Unless due
care is taken in the evaluation of S®*X(q,,q,), therefore,
Eq. (2.97) will retain a divergent behavior as g, g,, or g3
approaches zero. Higher-order kernels such as
K X‘g(q,,qz,qﬁ involve terms containing correspondingly
higher-order products of the structure factors in their
denominators.

When the convolution approximation Eq. (2.75) is
adopted in the calculation of Eq. (2.98), one finds that
K{2(qy,q,) of Eq. (2.97) identically vanishes. Similarly,
one can show that K. )((Ig(ql,Qb‘]g) likewise vanishes when
the quaternary correlation function is expressed in the
convolution approximation. One may thus conclude that
the HNC equation is obtained in the density-functional
formalism if the convolution approximation is adopted
in the calculation of the functional derivatives of
Fxcln(r)] in Eq. (2.94). Here one sees the reason why
the HNC scheme has been so successful in describing the
static properties of the classical OCP: The convolution
approximation on which the HNC equation is based
guarantees convergence of the functional derivatives of
Fxc[n(r)] in the long-wavelength domain for the
Coulomb interacting system. Relation between the HNC
equation and the convolution approximation has been
elucidated also through the technique of the nodal ex-
pansion of the potential of average force (del Rio and
DeWitt, 1969; Deutsch, Furutani, and Gombert, 1976).

Since the convolution approximation accurately takes
account of long-range correlation in the Coulomb sys-
tem, the area where one seeks to improve the HNC ap-
proximation is the short-range correlation. We thus
write the ternary correlation function as a sum of the
convolution expression Eq. (2.75) and a correction there-
to,

(3) (3) !
héx(ria,ra3,731) =he (r12,723,731)

+5h(3)(r12,r23,r31) . (2.99)

A simple and typical correlation term describing the
short-range effect is the Kirkwood superposition-
approximation term as depicted in the first, triangular
diagram on the right-hand side of Fig. 15. Substitution
of this Kirkwood term alone in Eq. (2.97) would, howev-
er, lead to a divergent expression in the long-wavelength
domain, as it cannot cancel the structure factors in the
denominator. To avoid such a divergence one must con-
volute each interacting vertex and collect all the dia-
grams as depicted in Fig. 15. We then find

[K2(r—r,r—1r")]ex = —kpTh(|t—1'|)
Xh(|¥'—=1"Dh(|r"—1]),
(2.100)
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FIG. 15. Kirkwood superposition approximation and its con-
voluted terms.

whence the Bridge functions, Eq. (2.96), are obtained as

2
n ’ " ! ’ '
Bex(n="- [dr [dr"h(|x—r' Dh(|r'—r"])

Xh(|t"—r DA (r R (") .

(2.101)

It turns out that the bridge function (2.101) corresponds
to the simplest elementary bridge diagram shown in Fig.
16.

On the basis of those calculations one now has a sys-
tematic scheme of improving the HNC equation in the
framework of the OCP theory (Iyetomi and Ichimaru,
1982a): One first solves the HNC equation Eq. (2.82)
and writes the resulting correlation functions as hAync(7)
and cync(r). The bridge function is then evaluated by
stretching the short-range part to approximate ion-sphere

values as
2
_ |-
{5‘1 y

where Bcg(r) is calculated by substituting Aync(r) on
the right-hand side of Eq. (2.101). The stretching coeffi-
cient C is determined with the aid of Egs. (2.38), (2.41),
and (2.95) as

C :[1-057F+CHNC(O)+ 1]/BCK(0) 5

B(r)= {(C—1)exp +1 Bek(r),

(2.102)

the other parameter takes on the value £=1.6, reflecting
the condition Bcg(£a)~O0. Finally, one replaces ¢(r) in
Eq. (2.82) by ¢(r)—kpTB(r), and thereby solves the re-
sulting HNC equation together with Eq. (2.81). A result
computed according to this scheme is also shown in Fig.
13(a); a significant improvement over the original HNC
result is clearly observed. The excess internal energy ob-
tained in the improved scheme now agrees with the
Monte Carlo data with digression less than 0.15%.

FIG. 16. Bridge diagram for Eq. (2.101).
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5. Possibility of an amorphous glassy state

Iyetomi and Ichimaru (1982b) extended the solution of
the improved HNC equation into the supercooled
domain, I'>T,,. In this domain it has been observed
that the modification over the simple HNC scheme is
substantial and that the difference widens as I increases.
At the moment we have no published Monte Carlo data
with which to compare the results to assure accuracy.
[Unpublished Monte Carlo data for g(r) obtained at
I'=180 and 200 by Slattery et al. (1980) agree excellent-
ly with the improved HNC results.] The improved HNC
results are presented here as a microscopic solution to
the OCP correlation function in the supercooled domain,
in the expectation that their accuracy, established in the
subcritical domain (I" < 160), may be carried over in this
domain, as well.

The most striking features in the improved HNC solu-
tion are the broadening (at I'=200), and the subsequent
splitting into two parts (for " > 300), of the second peak
in g (r); the case with I'=>500 is shown in Fig. 13(b). We
may interpret this splitting as an indication of the short-
range crystalline order extended to the third and fourth
nearest-neighbor particles. In the simple HNC scheme,
analogous splitting of the second peak has been observed
for I' > 5000 (Ng, 1974). To guide the eye we show by
vertical solid or dashed lines in Fig. 13(b) the numbers of
the particles located in the neighborhood bce or fec lat-
tice sites divided by the square of the interparticle
separation. Since the numbers of the second nearest-
neighbor particles are relatively small in the bcec and fec
lattices, they would not contribute to creation of substan-
tial peak structures.

It has been argued in Sec. II.C.2 that the characteristic
feature in the short-range correlation up to the first peak
of g(r) may be accounted for in terms of a harmonic lat-
tice model even in the subcritical domain (4 <T" < 160).
We now find that such a crystalline order extends itself
to the third and fourth nearest-neighbor particles for
I'>300. This observation may suggest an amorphous
glassy state of the OCP in which minicrystals with inter-
nal crystalline order developed over several lattice con-
stants are randomly distributed. A way to confirm for-
mation of such a glassy state would be to monitor an
abrupt decrease in the coefficient of self-diffusion; a pre-
liminary indication from the Monte Carlo runs at
I'=500 appears to sustain such a picture (DeWitt,
private communication).

For the classical OCP, the knowledge on g(r) can be
transformed into the static dielectric function &(g,0) via
Egs. (2.1) and (2.6); the condition for the onset of a soft-
mode CDW instability is given by Eq. (2.36). Such a
criterion has been examined in Fig. 6; as we see here, we
may expect that the metastability of the fluid phase will
persist well beyond I"=500.

It has been stated in Sec. I.A that the I'" parameters of
the white dwarfs may range 10—200; some of them have
thus passed through the crystallization point T',, in their
processes of cooling. If a supercooled OCP is difficult
to freeze, as has been indicated, the interior of such a
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white dwarf may remain in an amorphous glassy state,
whose thermodynamic functions are continuations of
those in the subcritical fluid phase.

E. Dynamic properties

1. Velocity autocorrelation function

The velocity autocorrelation function (VAF) offers one
of the simplest physical quantities revealing the dynamic
properties of a many-particle system. The VAF is the
correlation function for the velocity v,(z) of a tagged
particle “1” at time ¢ with its initial velocity v,(0), that
is,

Z(t)=5{v{(1)v;(0))

= (v (v 1,(0)) . (2.103)

In Eq. (2.103), { - - - ) denotes a statistical average over
an equilibrium ensemble; isotropy of the system is as-
sumed, so that a Cartesian component v,(t) of the velo-
city suffices for a description of Z(z).

The long-time behavior of the VAF is related to the
coefficients of self-diffusion and friction, D, and 1/7;
these are calculated through the Kubo formula and the
Einstein relation as

w kpT
fo dtZ(t)=Ds=7's—M ,

(2.104)
where M is the particle mass.

The short-time behavior of the VAF reveals the extent
of local-field effects via the frequency-moment sum rules
(e.g., Ichimaru, Totsuji, Tange, and Pines, 1975). Ex-
panding the VAF as

A, A,

Z(l)_ 24 4
zo) Tttt

one finds that the coefficients, 4,,4,, . . ., can be calcu-
lated with the knowledge of static correlation functions.
In particular, 4, is expressed as (de Gennes, 1959)

AZ:%I‘“ aair)

where ¢(r) is the interparticle potential.

(2.105)

ag (r)

3x ) (2.106)

For a three-

" dimensional OCP one simply has Azz—w;/3 on ac-

count of h(0)=g(0)—1=—1, where

wp =4m(Ze)’n /M (2.107)

is the square of the plasma frequency. For a two-
dimensional layer of electrons, 4, has been computed
directly from Eq. (2.106) (Itoh et al., 1978). The expres-
sion for A, involves the ternary correlation function
(Ichimaru et al, 1975; Hansen, 1978; Nagano and
Ichimaru, 1980).

The VAF for a three-dimensional, strongly coupled
OCP has been extensively measured by Hansen and his
collaborators (Hansen, Pollock, and McDonald, 1974;
Hansen, McDonald, and Pollock, 1975) through the tech-
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nique of molecular dynamics simulation over a wide
range of the ' values. One may classify the VAF so
computed into three types as illustrated in Fig. 17: At
I'=0.993, the VAF exhibits a behavior of the simple de-
cay type; at I'=9.7 and 19.7, the VAF turns into the os-
cillatory decay type; and finally at I'=59.1, 110.4, and
152.4, the VAF shows the damped oscillatory behavior.
The distinction between the oscillatory decay type and
the damped oscillatory type may be made in relation to
the possibility of the VAF’s moving into negative
domain, indicating a reversal of the tagged-particle velo-
city. Those qualitative changes in the VAF may point to
essential differences in the internal structure of the
strongly coupled OCP.

A theoretical investigation of the VAF was carried out
by Gould and Mazenko (1975, 1977) on the basis of the
fully renormalized kinetic theory formalism (e.g., Mazen-
ko, 1974). They introduced an effective interaction ap-
proximation for a reduced two-body problem and calcu-
lated the memory function of the VAF, incorporating
the hydrodynamic modes for the long-time behavior.
The diffusion coefficient and the memory function com-
puted in this scheme showed a semiquantitative agree-
ment with the results of the molecular dynamics simula-
tion.

Sjodin and Mitra (1977; see also, Mitra and Sjodin,
1978; Sjolander, 1978) investigated the self- and collec-
tive motion of the OCP with the aid of a kinetic theory
of classical fluids developed by Sjogren and Sjolander
(1978). The memory function of the VAF was expressed
in terms of the propagator for the density fluctuations
and its self part, in a way analogous to the Gould and
Mazenko theory. They adopted a Gaussian approxima-
tion for the self part, and thereby computed the VAF at
I'=1 and 10.

Nagano and Ichimaru (1980) analyzed the memory
function of the VAF separately in the short-time and
long-time domains, with the aid of the frequency mo-
ment sum rules and a hydrodynamic consideration. For
the hydrodynamic analysis they evoked the idea of an
equivalent hard-sphere system (cf. Sec. II.B.3), and em-
ployed the calculation of a frequency-dependent friction
coefficient for the vibrational motion of a spherical body
in a Navier-Stokes fluid (e.g., Zwanzig and Bixon, 1970;
Landau and Lifshitz, 1959). Through interpolation of
those two calculations of the memory function, they at-
tempted to explain the physical origin of the three dif-
ferent types of the observed VAF in the following way:

When I'~1, the interparticle correlation is relatively
weak, so that the tagged particle readily loses the
memory of its initial state after collisions with mutually
independent, surrounding particles; the simple decay type
is expected for the VAF.

As T increases, the short-range order evidenced by the
oscillatory behavior in the radial distribution function

begins to appear (cf. Fig. 1); it is known from the Monte
|

S(q,co):L fw d(tl—tz)fd(rl—r2)<n(rl,tl)n(rz,tz))exp[—iq-(rl—r2)+ico(t1——t2)] ,
27 Y -
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Z(t)/z(0)
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/\ X
v v
FIG. 17. Schematic drawing of three types of the velocity au-
tocorrelation function observed in the molecular dynamics
simulation of Hansen et al. (1974, 1975): (A) depicts the sim-

ple decay type; (B), the oscillatory decay type; (C), the damped
oscillatory type.

Carlo simulation that the onset of such a short-range or-
der takes place at I'~3. The mean potential field
around the tagged particle now acts to induce an oscilla-
tory motion superposed on the predominantly decay
behavior. The correlation effect is not so strong yet as
to produce the reversal of the initial velocity; the oscilla-
tory decay type may result.

As T approaches the crystallization point, the short-
range order becomes so pronounced that the harmonic
lattice model (see Sec. II.B.2) starts to apply; it was
shown in Eq. (2.17) that the harmonic lattice model pro-
vides an accurate account of the excess internal energy
for 70<T <160. In the harmonic lattice model the
short-range order is described by that of an equivalent
crystalline lattice; the particles perform vibrational
motion around their equilibrium positions. The reversal
of the tagged particle velocity from its initial value is
naturally expected in these circumstances; the damped
oscillatory behavior of the VAF may result. The same
effect can also be accounted for in relation to the
penetration depth term in the generalized hydrodynamic
friction.

Molecular dynamics simulation of the VAF for the
two-dimensional classical layer of electrons on a spheri-
cal surface was carried out by Hansen, Lebesque, and
Weis (1979). A theoretical account of this experiment
was offered by Baus (1980).

2. Dynamic structure factor

The dynamic structure factor S(q,w) represents the
wave number and frequency spectrum of density fluctua-
tion excitations in a many-particle system. It is defined
and calculated as the space-time Fourier transform of
the density-density correlation function (e.g., Ichimaru,
1973),

@

(2.108)
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where n(r,t) refers to the number density at space-time,
r and z. The static structure factor introduced in Eq.
(2.1) then derives from Eq. (2.108) as
1 ©
Sig)=~ [ doS(ge). (2.109)
Spectral functions for current fluctuations can be defined
and calculated analogously to Eq. (2.108).

Molecular dynamics computations of the dynamic
structure factor were carried out by Hansen et al. (1974,
1975) for three-dimensional OCP systems, and by Totsuji
and Kakeya (1980) for two-dimensional systems of sur-
face electrons. In the long-wavelength domain the fre-
quency spectra of density fluctuations exhibited sharp
peak structures, indicating existence of a well-defined
plasma-wave mode; the characteristic dispersion of the
plasma wave was determined from such an observation.
The frequency spectra of transverse current fluctuations
were also measured; existence of a well-defined shear
mode was thereby suggested in those strongly coupled
states near the crystallization points.

A number of investigators (e.g., Hansen et al, 1975;
Abramo and Parrinello, 1975; Sjodin and Mitra, 1977;
Bosse and Kubo, 1978a, 1978b; Takeno and Yoshida,
1979; Cauble and Duderstadt, 1981) have attempted to
reproduce those experimental values of the dynamic
structure factor for three-dimensional OCP by theoretical
means. All of those theories rely on the memory-
function formalism or the projection-operator method
(Mori, 1965a, 1965b; Zwanzig, 1961). Some quantities
characterizing those memory functions are determined
with the aid of the frequency-moment sum rules applica-
ble to the longitudinal and transverse fluctuation spectra.
The relaxation processes are treated phenomenologically
(e.g., Cauble and Duderstadt, 1981) by choosing ap-
propriate values for the transport coefficients. Bosse and
Kubo (1978a, 1978b), on the other hand, have used a
mode-coupling approximation for the longitudinal and
transverse memory functions; this theory thus takes ac-
count of those decay processes of current fluctuations
into pairs of current and density fluctuations due to in-
terparticle interactions. Theoretical spectra quite analo-
gous to the experimental ones have been obtained by
these methods.

Kinetic theory for density and current fluctuations in
a strongly coupled OCP has been developed and applied
for the calculation of the shear viscosity by Wallenborn
and Baus (1978; see also, Baus, 1978). It has been specu-
lated that the discovery of well-defined shear modes in
the molecular dynamics simulations may offer another
demonstration for the latticelike short-range order in the
three- and two-dimensional OCP near the crystallization
points (Itoh and Ichimaru, 1980a, 1980b).

3. Dielectric response function
The dynamic structure factor of the plasma can be

calculated with the knowledge of the dielectric response
function e(g,w) via the fluctuation-dissipation theorem
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(Callen and Welton, 1951; Kubo, 1957); for the classical
OCP, this theorem relates (e.g., Ichimaru, 1973)

VkpTq? 1
— Im .
413 Ze)w e(q,0)
A combination of Egs. (2.109) and (2.110) yields the first
equality of Eq. (2.6).
The dielectric response function may be defined as the
ratio between the externally applied potential field

dext(q,@) with wave vector q and frequency w and the
resulting total field ¢,,,(q,w) in the plasma, that is,

(2.111)

S(g,0)= (2.110)

10, @) = Peyy(q,0) /e(q,0) .

It is therefore a kind of linear-response function. A
dielectric formulation or a description of the plasma
properties in terms of the dielectric response function
will be treated in more detail later in Sec. IIL.A.

For a weakly coupled OCP (I" <<1), the dielectric
response function may be calculated from a solution of
the linearized Vlasov equation (Vlasov, 1938; Ichimaru,
1973); it is expressed in the RPA formula as

(&)

~q—q(k3 /M) (2.112)

gb
E(q,w)=1+—2W
q

Here gp refers to the Debye wave number given by Eq.
(2.3), and the W function is defined by

: v
fo dy exp 2

_z
~

This function, sometimes called the plasma dispersion
function (Fried and Conte, 1961), is closely related to the
error function of a complex argument z. Substitution of
Eq. (2.112) in Eq. (2.6) reproduces Eq. (2.2).

For a theoretical treatment of a strongly coupled plas-
ma, one must take account of the essential correlation ef-
fects, which are neglected in Eq. (2.112). The local-field
corrections in Sec. IL.D.2, such as Egs. (2.67), (2.69),
(2.70), and (2.78), were originally formulated in connec-
tion with the dielectric response function expressed as

(qp/q)*Ww/q kg T /M)"?]
1—(gp /@G (W [w/q (ks T /M)/?]
(2.114)

22
W(z)=1—zexp |— >

172

+i Z exp (2.113)

w
2

e(q0)=1+

Since those expressions for the local-field correction ac-
count only for static effects independent of w, a theory
based on Eq. (2.114) is applicable to a description of the
static properties such as Eq. (2.6). It has been used,
however, for an approximate calculation of the plasma-
wave dispersion relation.

To go beyond the RPA description, one may attempt
to include the nonlinear polarizabilities in perturbation
expansions with respect to the external disturbance.
Some formal structures of such a nonlinear polarizability
have been investigated (e.g., Golden, Kalman, and Silev-
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itch, 1974; Golden and Kalman, 1979).

Ichimaru (1977) carried out a systematic renormaliza-
tion of the single-particle propagators and took account
of the strong correlations through diagrammatic resum-
mation of polarization processes and vertex corrections.
The dielectric response function is written in a form of
Eq. (2.114) where G(gq) is replaced by the dynamic
local-field correction G (g,w); this function is formulated
as a functional of e(q,0), S(q,0), and the single-particle
distribution function. The system of equations is then
closed by another relation stemming from the
fluctuation-dissipation theorem. The resulting theory
has been examined to conform with a number of
rigorous boundary conditions, such as dynamic modifica-
tion of effective particle interactions brought about by
strong correlations, frequency-moment sum rules, and
reproduction of exact results known in the static proper-
ties of the OCP. Numerical solution to the set of non-
linear integral equations has not been obtained, however.

4. Long-wavelength excitations

In the limit of long wavelengths, the plasma consists
essentially of sets of elementary excitations, weakly in-
teracting with each other. The properties of those ele-
mentary excitations can then be analyzed in terms of the
moment sum rules in the frequency domain of the
dynamic structure factor to various orders of approxima-
tion (Ichimaru, Totsuji, Tange, and Pines, 1975). The
sum rules are evaluated exactly with the knowledge of
the static correlation functions of the system (e.g., de
Gennes, 1959; Puff, 1965; Forster, Martin, and Yip,
1968). We may thus employ the results of investigations
such as those described in Sec. IL.D, for the examination
of the elementary excitations in the long-wavelength lim-
it.

To investigate the properties of the long-wavelength
excitations in the OCP, we express the dynamic structure
factor in that domain as a superposition of the contribu-
tions from the plasma oscillations, the single-particle ex-
citations, and the collisional excitations (Ichimaru et al.,
1975):

S(g,0)= I—J-Sp(q)[ﬁ(w—wq )+ +awy)]

+Ss(q,0)+S.(q,0) . (2.115)
Here w, represents the characteristic frequency of the
plasma oscillation with the wave number g; the frequen-
cies of the single-particle and collisional excitations,
Ss(¢q,0) and S.(q,w), are measured in units of their
characteristic frequencies, g (k3 T/M)'/? and @. The col-
lisional excitations are the classical counterpart to the
multipair excitations in the degenerate electron liquid
(Pines and Noziéres, 1966). It is important to recognize
that the characteristic frequency @ remains finite in the
long-wavelength limit, g —0.

The frequency moments of the dynamic structure fac-
tor are defined and calculated according to
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n_1 r= 1
(Y= [ doo'Sigw). (2.116)
The moment at / =0 is the same as Eq. (2.109), giving
rise to the static structure factor. The / =2 term yields
the f-sum rule; the evaluation of the /! =4 moment in-
volves the pair correlation function; the / =6 moment in-
volves the ternary correlation function.

Various functions in Eq. (2.115) may be expanded in
power series of (q/gqp)* in the long-wavelength domain.
The frequency of the plasma oscillation is thus written
as

w,=w,[1+8(g/qp)*+ -], 2.117)

where the coefficient 8 characterizes the plasma-wave
dispersion. One can define the static structure factors,
S;(g) and S.(q), associated with S;(q,w) and S,(gq,®) in
accord with Eq. (2.109); those structure factors, as well
as S,(q), are likewise expanded in powers of (¢/qp )2,

Comparing the terms proportional to (g/qp)? in the
sum rules (2.116), we find that S,(¢) begins with
(q/qp)?, while the first nonvanishing terms in S;(g) and
S.(q) are proportional to (g/gp)*. The contributions of
the plasma oscillations thus exhaust the entire strength
of the dynamic structure factor in the long-wavelength
limit.

The dispersion & in the plasma-wave frequency may be
analyzed directly from a sum-rule analysis of the dielec-
tric response function. If the existence of the collisional
excitations is totally neglected, one can complete the
sum-rule analysis up to the / =4 term in Eq. (2.116); the
result is (Ichimaru and Tange, 1974; Abramo and Tosi,
1974)

3,2 U
2 " 15 NkgT

(2.118)

The first term on the right-hand side is the RPA contri-
bution stemming from Eq. (2.112). The second term
representing a correlational contribution takes on nega-
tive values as Eqs. (2.11) and (2.12) illustrate; the disper-
sion coefficient as evaluated in Eq. (2.118) becomes nega-
tive for a strongly coupled OCP with I" >> 1.

The presence of collisional excitations becomes signifi-
cant as we proceed to take into account the next / =6
term, as well, in Eq. (2.116); we then obtain

8:%+%T(r)—72§NZ:T , (2.119)
where
T(r)z——?%:); [ ar [ arn®e,r)
(r-r’)3__Lr_’_}
(rr'>  (rr')?
(2.120)

and A¥(r,r') is the same ternary correlation function as
introduced in connection with Eq. (2.73); here we use
r=r;; and r'=r,;. Numerical values of 7(I") have been



1038 Ichimaru: Strongly coupled plasmas

computed with the aid of the convolution approximation,
Eq. (2.75) (Ichimaru et al., 1975).

Contrary to Eq. (2.118), the dispersion coefficient
computed according to Eq. (2.119) takes on values
slightly above the RPA value % in the weak coupling re-
gime I' < 1. As I' exceeds a critical value around unity,
Eq. (2.119) moves into the domain below % and then
goes over to negative domain with further increase of T,
following the trend of Eq. (2.118) in the strong-coupling
regime. Qualitatively analogous prediction on the disper-
sion coefficient has been obtained by Baus (1977)
through a different approach.

The negative dispersion of the plasma wave in the
strongly coupled OCP has been clearly observed in the
molecular dynamics simulation experiments (Hansen et
al., 1974, 1975). The experimental results, however, are
not sufficiently accurate that one can distinguish between
the predictions of Egs. (2.118) and (2.119) in the weak-
coupling regime.

Ill. DEGENERATE ELECTRON LIQUIDS
A. Dielectric formulation

1. Basic relations

The wave number and frequency dependent, longitudi-
nal dielectric function &(g,w), defined through Eq.
(2.111) in Sec. ILE.3, is an essential quantity for descrip-
tion of the properties of the degenerate electron liquids;
these may be found in metals and related substances,
such as the laser-compressed plasmas and the interiors of
heavy planets. Here again, the dynamic structure factor
S(q,w) defined by Eq. (2.108), portraying the spectrum
of density-fluctuation excitations, is related directly to
£(g,) via the fluctuation-dissipation theorem. In the
description of the long-wavelength and low-frequency ex-
citations, the Landau-Silin theory of the charged Fermi
liquid has been useful (e.g., Pines and Noziéres, 1966).

Experimentally, the dynamic structure factor of elec-
trons in metal has been measured through the technique
of x-ray scattering spectroscopy or electron energy-loss
spectroscopy (e.g., Raether, 1980). The static properties,
such as the static structure factor, the radial distribution
function, and the ground-state energy, may then be in-
vestigated with the knowledge of the integrated values of
S(g,w) over the frequencies. This section contains
descriptions of some of those fundamental relations (see
e.g., Pines and Noziéres, 1966, for details), which will be
of use in later sections.

The fluctuation-dissipation theorem as applied to the
degenerate electron plasma at T =0 yields the relation

#Vq? 1
I >0).
47%? me(q,w) (@>0)

S(g0)=— (3.1a)

The static structure factor S(q) is calculated in accord
with Eq. (2.109), which now reads
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2 o
Sig)=— ﬁqez [ doim (3.1b)

47°n
The radial distribution function is then obtained from
the inverse Fourier transform of Eq. (2.1).

For calculation of the ground-state energy it is con-
venient to define an integral,

elg,0)

1 ©
Valr) =7 - [, dal1—s@1, (3.2)
where
qr=3m%n)'"3 (3.3)

is the Fermi wave number of a paramagnetic electron
system with the number density n. The integral (3.2) is
proportional to the excess internal energy treated in Eq.
(2.7); it is a function of r; alone for the degenerate elec-
tron system under consideration. The- ground-state ener-
gy E(r;) per electron in Rydbergs (Ry=me?/2#*=13.6
eV) is then calculated as

10 s
E(rs)zEO(rs)—W [ dxrv.0, (3.4)

where A=(4/97)/*=0.521. .. and

3221
5)\2rs2 rs2

Ey(rs)= (Ry) (3.5)
is the kinetic-energy contribution of the electrons occu-
pying the Fermi sphere.

In the high-density limit »,—0, the major source of
interparticle correlation is the exchange effect brought
about by the Pauli principle between those particles with
parallel spin. The Hartree-Fock approximation applies,
and the resulting structure factor is

39 1 |4
S|, g<2q
Suplg)= 14 ar 16 |gr F (3.6)
1, ¢>2g5.
Substitution of this expression in Eq. (3.2) yields
Y= 3.7
so that the ground-state energy, Eq. (3.4), in the
Hartree-Fock approximation is
3 3
E =
ur(7s) S22 3w,
— 221 0916 Ry, (3.8)
rg s

The correlation energy E (r;) is defined as the differ-
ence between the ground-state energy (3.4) and that in
the Hartree-Fock approximation, Eq. (3.8), that is,

Ec(rs)zE(rs)—EHF(rs)

10 %
i Sy dx s —va(0]. (3.9)

For a degenerate electron gas in the weak-coupling re-
gime (r; << 1), it is known that the RPA gives an ade-
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quate description; the dielectric function takes the Lind-
hard expression (Lindhard, 1954), :

go(q,0)=1—v(q)Xo(q,®) , (3.10)
with
v(g)=4me?/q?, (3.11)
2 Sop)=follp+al)
Xolg,0)=—— - (3.12)
114 > ©—wpg+i0
Here f(q) is the unit step function,
1, g<
folp=1| > 1= (3.13)
0, g>¢qr

representing the Fermi distribution at zero temperature,

wpq=(#/2m)(2p-q+q?) , (3.14)

and the positive infinitesimal O in the denominator of
Eq. (3.12) serves to indicate that the response function is
evaluated with the retarded boundary conditions. The
static values of the polarizability, Eq. (3.12), are given by

3n |1, ar
2Ep |2 2q

q +2gr
q—2qr

14

In
4q

Xo(q,0)= —

(3.15)

The static screening function g4(g,0) in the RPA is then
obtained from Egs. (3.10) and (3.15).

The ground-state energy in the RPA can be evaluated
by substituting Eq. (3.10) in Eq. (3.1a) and then by fol-
lowing the steps of Egs. (3.1b), (3.2), and (3.4). Gell-
Mann and Brueckner (1957) carried out a resummation
of the ring diagrams, the result of which is equivalent to
the RPA treatment. Adding to this an explicit Monte
Carlo evaluation of the second-order exchange diagram
contributions, they rigorously determined the first few
terms of the ground-state energy in the high-density r,
expansion as

Eop(ry)= 221 _ 0916
re rg

+0.0621nr,—0.096 (Ry) . (3.16)

Theoretical predictions on the basis of the RPA, while
adequate for a description of an electron gas in weak-
coupling regime, have failed to account for salient
features observed experimentally in the electron liquids
at metallic densities. For a treatment of the degenerate
electron liquid in the strong-coupling regime (r; > 1), one
must find a way to go beyond such an RPA description.
In the following sections we shall review some of those
methods hitherto proposed.

2. Polarization potential approach

As we have briefly noted in Sec. ILE.3, it is always
possible to write the dielectric response function in a
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form

v(g)Xolg,w)
14+v(q)G(g,0)Xo(q, @)

elq,0)=1 (3.17)
Since the RPA expression (3.10) is recovered simply by
setting G (q,0)=0 in Eq. (3.17), the dynamic local-field
correction G(g,0) measures the extent to which non-
RPA effects are involved in the description of the system
properties. Earlier theories on such local-field functions
were reviewed by Kugler (1975).

The polarization potential approach to condensed
matter, proposed originally by Pines (1966), is closely re-
lated to the formulation of dielectric function as in Eq.
(3.17). This approach has been applied successfully to
the description of elementary excitations and transport
properties in Hell and in liquid helium-3 (Aldrich, Peth-
ick, and Pines, 1976a , 1976b; Aldrich and Pines, 1976;
Bedell and Pines, 1980a, 1980b). We now examine the
polarization potential approach applied to the degenerate
electron liquid.

Let ¢,0(q,0) be the effective potential of interaction
produced by the presence of density fluctuations 8p(q,w)
in the plasma, which may be expressed as

?pol(q,0) =1(q,0)8p(g,m) . (3.18)
The function ¥(q,w) introduced here generally differs
from the bare Coulomb potential, Eq. (3.11), due to the
exchange and correlation effects between electrons. We
next introduce the screened density response function
Xs.(g,w) against the electrostatic potential ¢y (q,w)

+pail @) via
8p(g,0) =X1o(4,0) [ fext(3:0) + Gyl @] . (3.19)

The dielectric response function is then calculated in ac-
cord with Eq. (2.111), which in the present case reads

—14v(q) Splg,0)

(3.20)

E(q,w) ¢ext(q’w) ’
The result takes the form
(@)X (g, 0)
elg0)=1 b KLl Lhud (3.21)

C1-[¢(g,0)—v(@ W lgo)

The essence of this approach thus lies in the introduction
of an effective interaction potential (¢g,w) between mi-
croscopic density fluctuations and the consideration of a
screened density response against a renormalized poten-
tial field in the plasma.

In the original treatment of Pines (1966), the restoring
forces (3.18) responsible for the collisionless part of the
excitation spectrum are described by two kinds of self-
consistent fields: a scalar polarization potential which
couples directly to the density fluctuations, and a vector
polarization potential which couples to the particle-
current density. In terms of the present notation, this
model then yields
2

Yg0)=v(g) [1—G()— |2 | G|, (3.22)
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where G(q) is the (static) local-field correction [cf. Eq.
(2.63)] and G;(q) characterizes the vector-potential
response related to the backflow effect.

Since the exchange and correlation effects have already
been renormalized in the polarization potential Eq.
(3.18), one may argue that the screened response function
Xs(q,®) is given approximately by a free-electron polari-
zability, such as Eq. (3.12). Comparing Eq. (3.21) with
Eq. (3.17), one then finds a correspondence,

Y(g,0)=v(q)[1-G(q,0)] .

In the formulation of the static theory, one may further
argue that the most important effect of the local-field
correction stems from its static evaluation at =0, i.e.,
G (q,0=0)=G(q). Equation (3.17) can then be approxi-
mated as

(3.23)

v(g)Xolq,®)
14+v(g)G(@)Xo(q,0) *
The dielectric response function of this form has been
frequently derived in the literature (see, e.g., Kugler,
1975); it is valid for only an approximate treatment of
the static properties.

(3.24)

elgq,w)=1

3. Self-consistency conditions

A number of exact boundary conditions have been de-
rived for the dielectric response function of the electron
liquid. Those may be used as criteria by which internal
consistency of a given dielectric formulation may be
judged. This section lists some of those conditions.

a. Compressibility sum rule
In the long wavelength limit, the local-field correction
G(q) is expressed in a form proportional to g2, so that

lin%)G(q)zyo(rs)(q/qp)z . (3.25)
q—>

The coefficient yy(r;) is connected with the compressibil-
ity

-1
oP
=— V= (3.26)
1%
via the compressibility sum rule (e.g., Pines and
Noziéres, 1966) as
K 4Ar
20— s Yolrs) , (3.27)
K o

where ko=3/2Ern is the compressibility of the nonin-
teracting Fermi system.

The compressibility, on the other hand, can be evaluat-
ed directly from the ground-state energy (3.4) or the
correlation energy (3.9), according to the definition
(3.26), as

Ko 1— Arg A2 ¢ d

= —rs

K T 6 ° dr,

-2 d
s dr,

E.(r,) ] . (3.28)
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The compressibility sum rule thus imposes a self-
consistency condition that Egs. (3.27) and (3.28) be equal.
In the present notation this condition reads (Utsumi and
Ichimaru, 1980b)
dy(rs)

dr

25 Ts
—|—as— fO dx yw(x) .

YO(rs)z_%yw(rs)'i'%rs

(3.29)

The left-hand side of this equation involves the long-
wavelength behavior of the dielectric function via Eq.
(3.25), while the right-hand side depends on integrated
values of 1—S(g) over the entire wave number space.
Combination of Egs. (3.9) and (3.29) yields

(7. )~-l A r3d2E°‘(rs) , AE.(15)
Yolrs)= 4 24 s drs2 —aFg —drs ,
(3.30a)
3  wA| ,dE.(ry)
Volrs) =2 — = |r2——"" L 2r E(r,) |. (3.300)
20 10 dr, sEe(ry

The first terms on the right-hand side of Egs. (3.30) are
the Hartree-Fock values, correct in the weak-coupling
limit, r;—O0.

b. Frequency-moment sum rules
The high-frequency expansion of 1/e(q,w) takes the
form

Ml(q)
CD2

(3.31)

M;(q)
=1+4v(g) +=2

(g, o)

The coefficients, M(q),M;(q), . ..,are evaluated in
terms of the statistical averages of the equal-time com-
mutators:

1
1 |.0 t
Ml(q)zﬁ i ([pg(1),pg(0]1) | s =0 » (3.32)
where
N
pg(t)= 3 exp[ —iq-r;(1)] (3.33)

i=1

is the Heisenberg operator representing the Fourier com-
ponent of the density fluctuations. Explicitly, one finds
(Puff, 1965; Pathak and Vashishta, 1973)

M (q)=nq*/m ,
M(q)=(ng*/m){4{K Ywo(q) /#i+wd(q)
+ap[1—I(g)]} -

Here (K ) represents the average kinetic energy per elec-
tron,

(3.34)

(3.35)

wlg)=%g2/2m , (3.36)
1 dk kq
Ig)=—— | ——=K(q,k
(g " 2m)? (q,k) e
X[S(|q—k|)—1], (3.37)
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and K (q,k) has been defined in Eq. (2.72).

Equation (3.34) represents the f-sum rule; Eq. (3.35)
will be referred to as the third frequency-moment sum
rule. The fifth frequency-moment sum rule Ms(q) is the
quantum-mechanical counterpart to the classical calcula-
tion, such as the one leading to Eq. (2.119); it involves
the ternary correlation function. The function I(g) in
Eq. (3.37) corresponds to the high-frequency limit of the
dynamic local-field correction in Eq. (3.17), that is,

I(g)= lim G(q,0) .

w—> o

(3.38)

In the long-wavelength limit, it is proportional to g2 and
takes the form

lin%)I(q)-——‘yw(rs)(q/qp)z , (3.39)
q—>

where v (r;) is given by Eq. (3.2) or (3.30b).

c. Positivity of the radial distribution function
The positivity of the radial distribution function is ex-
pressed as
g(r)>0. (3.40)

This condition follows because g (r) is a probability.

d. Short-range correlation

Kimball (1973, 1976) has obtained a self-consistency
relation between the large g limit of S(q) and g (0) as
map

3
g(0)=—=lim {g*[1-S(9)]} ,
SqF q—

(3.41)

where ag =#?/me? is the Bohr radius. In the derivation
of Eq. (3.41), he observes that the radial distribution
function at short distances may be determined by the
solution to the two-particle Schrédinger equation, which
yields the expansion

g(r)=g(0)+[g(0)/aglr+ - - - (3.42)

On the other hand, a direct analysis of the inverse
Fourier transform of Eq. (2.1) indicates

whence Eq. (3.41) follows.

When the dielectric function is written in the form

(3.24), the frequency integration of Eq. (3.1b) pertaining

to the evaluation of the right-hand side of Eq. (3.41) can

be explicitly carried out (Kimball, 1973). Equation (3.41)

then relates the large g limit of G (g) with g(0) as
lim G(g)=1-—g(0) .

g—

(3.44)

This is therefore the self-consistency condition for the
dielectric function (3.24) in the short-range correlation.
Condition (3.44) was obtained earlier by Shaw (1970).

If one stays with the frequency-dependent local-field
correction as in Eq. (3.17), however, Niklasson (1974) has
shown that

lim G(g,0)==[1—g(0)] .

g— o

B. Theoretical approaches

Various theoretical approaches have been used for the
calculation of the dielectric function and correlation
functions in the degenerate electron liquids; some of
them are summarized in this section. Predictions of the
theories will be described in the following sections.

1. Equation-of-motion approach

Let the Hamiltonian of the electron system be

ﬁZ 2 1
H=3 |ZE C,T,gcp,, +o= 3 (q)c;r,+qac;._qa,cp,a,cpa ,
2m 2V <~
po pPP'q
oo’
(3.45)
where C;r,a and cp, are the creation and annihilation

operators for an electron with momentum #p and spin o.
The Heisenberg equation of motion for the Wigner dis-
tribution,

¥
=c , (3.46)
o] =T tim (g 1-S(@)]] , (3.43) Prao=Cpolptas
dr r=0 8qra—e of an electron-hole pair is then calculated as
520 oo (1) =[ppao s H
i7i2 Ppat 1) =[Ppao» H]
=7id pq Ppqo(?) (3.47a)
20 (90— g0 o) (3.47b)
1
+5 > v k—p (ke — Mgy g0 )Ppaot®) — (Rpy —Npy 40 )Pkgo(D)] (3.47¢)
k(s4p)
+_1[}_ z v(k) 2 [pp,q—k,a(t)pp'——k,k,o’(t)’—pp'kv’(t)pp—'»k,q—k,a(t)] . (3.47d)
k p'o’
(0,q) [#(p,0)(p+q,0)]
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Here wpq has been defined by Eq. (3.14),

+

Mpo =CpoCpo >

Pq=2Ppqo -
po

(3.48a)
(3.48b)

In the RPA, only the terms (3.47a) and (3.47b) are re-
tained in the equation of motion. The term (3.47c) stems
from the exchange effect alone, as may be clear from its
involvement of v(|k—p|). The remaining term (3.47d)
represents those nonlinear contributions arising from
Coulomb coupling. The last two terms, therefore,
describe those non-RPA effects which need to be taken
into consideration in the treatment of a degenerate elec-
tron liquid in the strong-coupling regime.

There have been advanced various theoretical propo-
sals to take account of such a non-RPA effect. For ex-
ample, Toigo and Woodruff (1970, 1971) calculated the
dynamic local-field correction G(q,) arising from the
exchange term (3.47c), in an approximation which would
conserve a frequency moment of the nonlinear density
response. Dynamical exchange effects were also con-
sidered by Devreese, Brosens, and Lemmens [(1980); see

also, Brosens, Devresse, and Lemmens (1980) and earlier’

publications cited in these papers)] through a
perturbation-theoretical method; detailed numerical com-
putations were carried out.

Niklasson (1974) formulated the dielectric response of
the electron system with inclusion of the non-RPA terms
such as (3.47¢c) and (3.47d), through a study of the equa-
tion of motion for the two-particle distribution in the
presence of the external field. Limiting behavior of the
resulting G (g,») at large g or » was investigated expli-
citly in connection with relations such as Egs.
(3.41)—(3.44). The equation-of-motion approach to the
dielectric function was pursued further by Dharma-
wardana (1976). The mass operator and the dynamic
local-field correction were formulated with successive ap-
proximations in the interaction potential; contacts with
the compressibility sum rule and the frequency moment
sum rules were thereby made. Subsequently, Tripathy
and Mandal (1977) and Mandal, Rao, and Tripathy
(1978) treated a similar problem with a perturbation-
theoretical approximation.

Utsumi and Ichimaru (1980a) started with the exact
equation of motion (3.47) and projected it onto a model
equation as follows:

iﬁ%pm(t)=ﬁwmpm<t)+i,,v(q)[l—a(q>]<np—n,,+q Ypg(2)

ifh - )
where
qu=2qu0 ’ np=2npa » (3.50)
o o
0(gw) == Snp—fpa) (3.51)

AV 5 0—wpg+i0 )

This function reduces to the Lindhard polarizability
(3.12) when the expectation value (n,) is approximated
by fo(p) defined by Eq. (3.13). Single-particle spectrum
in the degenerate electron system has been treated by
Hedin (1965), Lundqvist (1968), and others.

The RPA contributions in Eq. (3.47) correspond to the
first term on the right-hand side of Eq. (3.49) and that
part of the second term independent of G(q). The rest
of the terms are an approximate representation of the
non-RPA terms, (3.47c) and (3.47d). Those terms
describing the exchange and Coulomb coupling effects
are characterized by three functions: the static local-
field correction, G(q); the relaxation rate in the long-
time response, 1/7(q); and the relaxation frequency in
the short-time response, Q(q). The functions G(q) and

172
1] 2D [ sexp(— 102g)s?) |ppalt —s)+

Mp (t—s)|,

3.49
Vw0 (¢,0) q ( )

I
1/7(q) are calculated from the first two terms in the

- small w expansion of the nonlinear density response

stemming from (3.47c) and (3.47d). The characteristic
frequency Q(g) is then determined from the frequency-
moment sum rules (cf. Sec. II1.A.3.b).
By its construction, Eq. (3.49) conserves the local
number of particles, as it readily reduces to
., 0
lﬁapq(l‘)=2ﬁwmpm(r) , (3.52)
P
which is a continuity equation. Mermin (1970) showed a
way to secure such a conservation law within a relaxa-

tion time approximation; his treatment corresponds to
taking the limit, G(¢)—0 and Q(q)—0, in Fig. (3.49).

| Similarly, the static local-field correction theories [e.g.,

Singwi et al. (1968, 1970); Vashishta and Singwi (1972);
Utsumi and Ichimaru (1980b); see Kugler (1975) and Sec.
II1.C below for many others] may be recovered by letting
1/7(g)—0 in Eq. (3.49).

Once Eq. (3.49) is established, the dielectric response
function can be calculated as (Utsumi and Ichimaru,
1980a)

elg0)=1— _ v(q)(&?/a:)Q(q,a) —, (3.53)
14+ {v(g)@/w0)G () +[(6—w)/0Q(g,0)]1}Q (¢,d)
where
) 172 )
~_ 2 q o |_,4
o=+ 1710 wng |7 @ ] (354
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and the W function has been defined by Eq. (2.113). In-
volvement of this function in Eq. (3.53) is a consequence
of a Gaussian approximation adopted in Eq. (3.49) for
the description of the short-time relaxation behavior.
Clearly, Eq. (3.53) can be rewritten in the form (3.17), so
that the static and dynamic local-field corrections are
taken into account. It has been shown that Eq. (3.53)
provides a description of the long-wavelength excitations
with inclusion of multipair excitations.

In the equation-of-motion approach summarized
above, the exchange and correlation effects beyond the
RPA have been singled out by the terms (3.47c) and
(3.47d). Such effects have been investigated also with
the aid of other theoretical techniques such as resumma-
tion of various diagrams and memory-function formal-
ism. In the following sections we take up some of those
theories.

2. Diagrammatic approach

Exchange and correlation effects in the degenerate
electron system beyond the RPA have been studied in-
tensively through investigation and partial summation of
contributions stemming from various diagrams. In this
section, we briefly look at theoretical work in these areas,
although such a classification is by no means unique.

Hubbard (1958) and Geldart and Vosko (1966)
analyzed the exchange effects and thereby advanced ex-
plicit expressions for the local-field correction (see Sec.
III.C below). Kleinman (1967, 1968) and Langreth
(1969) considered derivation of approximate screening
functions using many-body techniques.

Yasuhara (1972, 1974) treated the short-range correla-
tion through a summation of the electron-electron ladder
diagrams. Lowy and Brown (1975) also considered the
ladder sum of unscreened Coulomb interactions to
describe the short-range part of the effective interaction,
which was then smoothly interpolated to the long-range
RPA effective interaction. Bedell and Brown (1978) re-
phrased the same physical concept in the polarization-
potential language (cf. Sec. III.A.2), and constructed a
density-density response function in which the bare
Coulomb interaction is replaced by a local average of the
ladder diagrams, including both direct and exchange
terms.

Geldart and Taylor (1970a) calculated the lowest-order
Hartree-Fock corrections to the wave number depen-
dence of the static screening function; higher-order ex-
change and correlation effects were investigated subse-
quently (Geldart and Taylor, 1970b). Holas, Aravind,
and Singwi (1979) explicitly evaluated those polarization
diagrams, first order in the electron-electron interaction,
beyond the RPA at arbitrary wave number and frequen-
cy; the plasmon dispersion and the shape of S(q,w)
predicted in this calculation were compared with experi-
mental data for Al. Dharma-wardana and Taylor (1980)
considered an approximation scheme to the Hartree-Fock
ladder series in the treatment of the dielectric function.

The effects of the electron-electron interaction on the
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dynamic properties of the plasmons and other elementa-
ry excitations were investigated through diagrammatic
techniques by DuBois and Kivelson (1969) and
Hasegawa and Watabe (1969). Damping rate of high-
frequency excitations was evaluated by Glick and Long
(1971).

3. Memory function approach

The dynamic properties of the electron system have
been investigated also in the general framework of the
memory function formalism (Mori, 1965a, 1965b).
Theories in this category include Jindal, Singh, and
Pathak (1977); Mukhopadhyay and Sj6lander (1978); De
Raedt and De Raedt (1978); and Yoshida, Takeno, and
Yasuhara (1980). In these theories one readily takes ac-
count of high-frequency requirements, such as the
frequency-moment sum rules. Low-frequency properties,
such as those described by the static local-field correc-
tion and the long-time relaxation rate, on the other hand,
are usually taken from other sources or are not adequate-
ly taken into consideration.

4. Variational calculations

On the side of numerical evaluations of the basic
quantities for the degenerate electron liquids, we note the
development in variational calculations performed with
various trial functions. Earlier work in these directions
includes Monnier (1972), Lee and Ree (1972), Keiser and
Wu (1972), Stevens and Pokrant (1973), and Chakravarty
and Woo (1976).

Ceperley (1978) performed fermion Monte Carlo varia-
tional calculations assuming the trial function of the
Bijl-Dingle-Jastrow type, and thereby determined the
equation of state of the uniform electron one-component
plasma in two and three dimensions. Phase properties of
the Wigner crystal and of the spin-polarized and unpo-
larized fluids were investigated.

Lantto (1980) and Zabolitzky (1980) carried out varia-
tional calculations of the electron-gas correlations, where
the Jastrow trial function is chosen to minimize the
ground-state energy in the Fermi hypernetted-chain
(FHNC) approximation by solving the corresponding
Euler-Lagrange equation for the pair correlation func-
tion. Ceperley and Alder (1980) performed an exact sto-
chastic simulation of the Schrddinger equation for
charged bosons and fermions by the Green’s function
Monte Carlo (GFMC) method (e.g., Ceperley and Kalos,
1979). Numerical data obtained through those
computer-simulation studies provide not only accurate
information but also useful boundary conditions for the
development of an analytic theory. In the subsequent
sections we shall compare predictions in various theoreti-
cal schemes with those computer-simulation data.

C. Static local-field correction

The dielectric function of the form Eq. (3.24) has been
studied frequently because of its relative simplicity as
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compared with Eq. (3.17). It involves only the static
local-field correction G(gq) to characterize the strong-
coupling effect. Once G(q) is known, various thermo-
dynamic quantities and correlational properties can be
calculated through the procedures outlined in Sec.
IILA.1. In this section we shall examine some of the ex-
plicit expressions proposed for G (q).

1. Exchange and correlation contributions

Taking account of the exchange contributions, Hub-
bard (1958) first proposed
2

q9

Gyl(q) 2P tad) (3.55)
This expression satisfies the short-range boundary condi-
tion (3.44) at ;=0 [i.e, g(0)=%]; it does not, however,
agree with the long-wavelength boundary condition (3.25)
as 'yoz% at r,=0 [cf. Eq. (3.30a)]. Geldart and Vosko
(1966) modified Eq. (3.55) so that the condition (3.25) at
r, =0 is also satisfied:

2
9 ) (3.56)

Govlg)=—1——
V= g 242)

At a nonzero value of 7, however, neither Eq. (3.55) nor
(3.56) satisfies the conditions (3.25) and (3.44).

Toigo and Woodruff (1970, 1971) carried out a micro-
scopic calculation of the exchange effect to obtain a
dynamic local-field correction, G(q,w); the resulting
values of G(q,0) are consistent with Eq. (3.25) at r,=0.
Condition (3.44) does not follow in this case, however,
since the dielectric function now takes the form Eq.
(3.17) (Niklasson, 1974). The function G(q,0) obtained
by Toigo and Woodruff involves a logarithmic singulari-
ty at ¢ =2qr accompanied by a mild peak at g~1.95¢p;
these features are consequences of discontinuity in the
Fermi distribution (3.13) at g =gp.

Singwi et al. (1968) advanced a theoretical scheme in
which the effects of Coulomb repulsion between elec-
trons may be self-consistently taken account of in the
calculation of G(g). This scheme was later modified by
Vashishta and Singwi (1972), to improve on the situation
with the compressibility sum rule. We have already tak-
en up those schemes in Sec. II.D.2, with the expressions
for G(q) given by Egs. (2.67) and (2.70). For the degen-
erate electron liquids at metallic densities, Vashishta and
Singwi chose ay= % in Eq. (2.70), by which the compres-
sibility sum rule was almost identically satisfied. The
local-field correction G(q) and the screening function
[e(q,0]7! calculated in the Vashishta-Singwi scheme are
plotted in Figs. 18 and 19 at r;=1 and 4. In subsequent
sections, we will look at implications of those theoretical
schemes, through numerical comparison of ground-state
energy and correlation function calculations with those
of other theories.

Utsumi and Ichimaru (1980b) split the calculation of
the static local-field correction into two separate contri-
butions, namely, the exchange and nonlinear Coulomb
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FIG. 18. Static local-field correction G(q) at r¢=1, 4, and 10
evaluated in various theoretical schemes. VS refers to Eq.
(2.70) with a0=%; UI-II is the result of Utsumi and Ichimaru
(1980b); “present” depicts the parametrization of Eq. (3.65).
The chain curves represent parametrization of the Hubbard
type based on Eq. (3.63).

coupling terms, stemming, respectively, from (3.47c) and
(3.47d):
G(q)=G(q)+G.(q) .

Since the exchange term G,(q) represents the local-field
correction in the Hartree-Fock limit, r,—0, they were
led to adopt the expression

(3.57)

L . Vs
(~1.0/—— ! : :

FIG. 19. Screening function [e(g,0)]"! at r,=1, 4, and 10
evaluated in various theoretical schemes. VS refers to Egs.

(3.24) and (2.70), with aoz%; UI-II is the result of Utsumi

and Ichimaru (1980b); “present” depicts Eq. (3.24) with Eq.
(3.65); and RPA corresponds to Eq. (3.10).
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2 2 3(4gE—q*)(28¢%+5¢%)
q 1 15¢ 497 —q°)(28gr +5¢ In
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29r+9q

Ge(q)=

128¢7 4q7 16grq

(3.58)
29r—q

through considerations of the limiting behaviors, Egs. (3.25) and (3.44), together with the logarithlhic singularity at

q =2qr.

The local-field correction G.(q) arising from the Coulomb correlations can likewise be calculated from the low-
frequency response in (3.47d), as (Utsumi and Ichimaru, 1980b)

dk
r)?

1
Gc(q)=—;—f

Here K(q,k) and Sygr(q) have been defined by Egs.
(2.72) and (3.6);

Sws(@)=¢%/(g*+q%s) (3.60)

is a screening factor in accord with the Wigner-Seitz
sphere model, with the characteristic wave number gws
defined as

9ws 3 d
PP i LI B

7 - (3.61)
F

a relation derived from Egs. (3.2) and (3.9).

To the lowest order in the structure factor, a direct
calculation from (3.47d) would have given an expression
for G.(q) which involves the RPA screening factor,
[eo(k,0017Y, in place of Sws(k) in Eq. (3.59). The
screening length associated with [g4(k,0)]™! is the in-
verse of the Fermi-Thomas wave number,

qﬂz\/?ma)p/ﬁqp .

As we enter the strongly coupled regime 7, > 1, however,
this length loses its meaning as a screening length; the
average number of particles involved in the sphere of ra-
dius gfr soon becomes less than unity. The screening
factor [g4(k,0)]~! thus fails to take account of the im-
portant correlational effects in the strongly coupled elec-
tron liquid with ;> 1. An improved calculation scheme
may be obtained through an appropriate renormalization

of the screening factor in such a way as to incorporate’

the actual screening properties of the system, as in Egs.
(3.60) and (3.61).

For degenerate electron liquids at metallic and lower
densities, Eq. (3.61) turns out to be almost independent
of rg, so that the effective screening radius of Eq. (3.60)
obeys the Wigner-Seitz sphere scaling, that is, gws~gr.
The use of Eq. (3.60) in place of the RPA. screening
function [gy(g,0]"! represents an essential renormaliza-
tion of screening in Eq. (3.59). [Significance of such a
renormalization in a strongly coupled classical plasma
has been elucidated numerically by Tago et al. (1981)].
As we observe in Eq. (3.59), the extent of the Coulombic
local-field correction is measured by the departure of
S(q) from its Hartree-Fock value, Sygp(q); in the
Hartree-Fock limit (r,—0), G.(q) naturally vanishes.

The values of G(q) and [e(q,0)]”! computed with
Egs. (3.57)—(3.59) are plotted in Figs. 18 and 19 at
re=1, 4, and 10. Consequences of this theoretical
scheme will also be examined numerically in later sec-
tions.

Rev. Mod. Phys., Vol. 54, No. 4, October 1982

K(q,k)Sws(k)[S( |q—k| )_SHF( lq—k| )] .

(3.59)

2. Parametrized expression

In the self-consistent formulation (e.g., Singwi et al.,
1968; Vashishta and Singwi, 1972; Utsumi and Ichimaru,
1980b) of the dielectric function, essential quantities such
as the local-field correction are obtained through a nu-
merical solution to a complex set of nonlinear integral
equations; the result is usually presented in the form of a
numerical table at discrete r; values. The situation is
quite similar in the cases of the computer simulation
study based on variational principles; the result is avail-
able only for a few discrete 7, values where the simula-
tion was carried out. For the numerical studies of
strong-coupling effects in degenerate electron liquids it
will be useful to derive a parametrized expression for the
local-field correction which accurately fits the results of
the self-consistent formulation as well as those of the
variational calculations.

To achieve this end, Taylor (1978) proposed a simple
formula,

G(@)=70(r)q/qr) (3.62)
emphasizing the long-wavelength behavior, Eq. (3.25).
He argues that apparent inaccuracy of Eq. (3.62) in the
short-wavelength domain may be inconsequential, since
the polarizability Xo(g,0) quickly vanishes there. A close
examination reveals, however, that its divergent behavior
at large g leads to fatal predictions. One can in fact
show (Ichimaru and Utsumi, 1981) that even with a
modification of Eq. (3.62) into a form of Hubbard type,

G(g)=aoq’/(q*+a,qF) , (3.63)
so that both Egs. (3.25) and (3.44) are accommodated by
the choice of

ap= 1 —8 (0) 5
(3.64)

a;=[1-g(0)]/y(rs),

the self-consistency conditions in the compressibility sum
rule and the short-range correlation cannot be adequately
satisfied.

On the suggestion of the results of their microscopic
calculations, Ichimaru and Utsumi (1981) adopted the
formula
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4 2
Gg)=4|L | +B|L | +C
F qr
4 2
+la| L] +B+3a | L | —cC
F qr
42 —q* | 2gp+
ar—4q . |29rT4 | (3.65)
4q9rq 2qr—q

Essential ingredients that go into determination of the
parameters A, B, and C, are the Monte Carlo data of
Ceperley and Alder (1980) for E.(7,), the ladder diagram
calculation of g(0) by Yasuhara (1972), and the dielectric
formulation of Utsumi and Ichimaru (1980b).

As noted in Sec. II1.B.4, Ceperley and Alder carried
out GFMC computations for E.(r;) at r,=1, 2, 5, 10,
20, 50, and 100. Vosko, Wilk, and Nusair (1980) then
derived an interpolation formula of those data through a
Padé approximant technique. The formula so fitted for
the paramagnetic fluid phase reads

dE_(ry) 1+bx
ry————=bo —, (3.66)
drs 1+b1x+b2x +b3x
where x=v'rg, by=0.0621814, b;=9.81379,

b,=2.82224, and b3=0.736411. We use Eq. (3.66) via
Egs. (3.30a) and (3.25) to determine the long-wavelength
behavior of Eq. (3.65). Earlier, Isihara and Montroll
(1971; Isihara, 1972) interpolated the Gell-Mann and
Brueckner high-density formula (3.16) and the low-
density formula of Carr, Coldwell-Horsfall, and Fein
(1961) through an analogous method of Padé approxi-
mants.

Through a resummation of the electron-electron ladder
diagrams, Yasuhara (1972) obtained the expression
2

1, 3.67)

I](Z)

1
g(0)= 3

where z =4(Ar,/m)'%, A=(4/qm)!'/3, and I,(z) is the
modified Bessel function of the first kind and of the first
order. We use Eq. (3.67) via Eq. (3.44) to determine the
short-range behavior of Eq. (3.65).

The parameters in Eq. (3.65) are consequently deter-
mined as

A=0.029 (0<r, <15) (3.68)
B=55volr)— 5 [1-g(0]— 554 , (3.69)
C=—37r)+ 1 [1-g(0)]— 54 . (3.70)

The particular value of 4 in Eq. (3.68) is adopted so that
Eq. (3.65) closely simulates the results of the microscopic
calculation (Utsumi and Ichimaru, 1980b) and so that
the positivity condition (3.40) is secured. Figures 18 and
19 show the resulting values of Egs. (3.65) and (3.24) at
ry=1, 4, and 10. As we shall see in the subsequent sec-
tions, the detailed features of the theory represented by
the fitting formula (3.65) agree well with those of the
variational calculations; the parametrized dielectric func-
tion satisfies the self-consistency conditions in the
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compressibility sum rule and the short-range correlation
to a good degree of accuracy.

D. Static properties

1. Radial distribution function

With the dielectric function (3.24), one calculates the
radial distribution function via Egs. (3.1a), (3.1b), and
(2.1). Figure 20 shows the values of g(7) at r;,=1, 4, and
10, computed in the Vashishta-Singwi scheme, Eq. (2.70)
(at r;=1 and 4 only); in the Utsumi-Ichimaru scheme,
Eq. (3.57); with the parametrized expression (3.65); and
by the FHNC method (Lantto, 1980 and private com-
munication). Figure 21 also exhibits the g () values com-
puted in other schemes at different r; values.

To examine accuracy in the description of the short-
range correlation, I have prepared Table I, which lists
the values of g(0) computed in various theoretical
schemes as well as in the FHNC variational method.
We find that the recent results in the dielectric formula-
tion converge well with those of the variational calcula-
tion; the positivity condition (3.40) is maintained.

2. Correlation energy

The correlation energy E.(r;) per electron in Rydbergs
is calculated from Eq. (3.9) with the aid of Eq. (3.2).
Table II lists the values of —E_(r;) obtained in various
dielectric formulations, variational calculations, and in-
terpolation procedures. Here again we observe that the
results of recent dielectric formulations converge well
with those of the latest variational calculations. Agree-
ment between the interpolated values of Vosko et al.

1.0 -

(1.0)[

= 05 _
. [1.0] 7 1
o)
(0.5) .
o present
08\ # 7 |- ul-1 .
(0)——se ,":;'/ ______ Lantto
p * Vs
f:-’/ L 1 !
(0] : 3 1 5

FIG. 20. Radial distribution function g(r) at r;=1, 4, and 10
evaluated in various methods. VS is based on Egs. (3.24) and
(2.70), with a¢=2/3; UI-Il is the result of Utsumi and
Ichimaru (1980b); “present” is derived from Egs. (3.24) and
(3.65); and “Lantto” refers to the FHNC calculation by Lantto
(to be published). At ry=1, Lantto’s data coincide with the
solid curve.
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2 (T 3 4 s

FIG. 21. Radial distribution function g(r) calculated by Ut-
sumi and Ichimaru (1980b) at various values of r,. In the in-
sert, the predictions of various theories on the short-range
behavior of g(r) are compared at r;=5: RPA refers to the
theory based on Eq. (3.10); H is based on Egs. (3.24) and
(3.55); STLS, Egs. (3.24) and (2.67); VS, Egs. (3.24) and (2.70);
and Ul, Egs. (3.24) and (3.57)—(3.59). From Utsumi and
Ichimaru (1980b).

(1980) and the results with the parametrized local-field
correction (3.65) indicates that the latter scheme satisfies
the compressibility sum rule to a good degree of accura-
cy.

We next take up the correlation energy contributions
E.(g;r;) from different regions of momentum transfer
(e.g., Pines and Noziéres, 1966). This quantity is directly
related to the static structure factor,
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contribution of Syp(q) in Eq. (3.71); the second term
stems from the long-wavelength plasmon contribution
(e.g., Pines and Noziéres, 1966)

Sig——E |4 2, (3.74)
ﬁa)p qr
where
cu,,=(47rne2/m)“2 . (3.75)
The numerical results for E,(q;r;) predicted in the

dielectric formulations with Eqs. (3.57) and (3.65) are
compared in Fig. 22 with those of the FHNC calculation
by Zabolitzky (1980, and private communication) at
rs=1, 4, and 10. The interpolation scheme of Noziéres
and Pines (1958) at ;=4 is also included in the figure,
together with the RPA values at r;=1. We find a
reasonably good agreement between those recent results,
with a notable exception in the appearance of mild
bumps around g =2qy in the dielectric formulations. As
Eq. (3.71) indicates, a bump in E.(q;r;) reflects the ex-
istence of an analogous bump in S(q).

3. Wigner crystallization

Since Wigner’s pioneering work (Wigner, 1934, 1938)
on the possibility of crystallization of the electron gas at
sufficiently low densities, much effort has been devoted
toward theoretical understanding of the phase properties
of such an electron system in its ground state. The criti-
cal r; value at which the electron gas turns into the

1 p’s
Ec(g;rs)= - fo drs[S(q)—Sur(q)] , (3.71) Wigner solid has been estimated by many investigators in
g various methods.
so that the correlation energy is calculated as On the basis of Lindemann’s melting criterion, which
2 ® states that the Wigner solid will melt when the mean
Ec(rs)=m f 0 dq E.(q;rs) . (3.72) vibrational amplitude of a particle about its lattice posi-

In the long-wavelength limit, Eq (3.71) is expanded as

tion reaches a certain fraction 8 of the interparticle spac-
ing, Noziéres and Pines (1958) proposed the critical value

3 3 1/2 2 rs=~20; in this estimation 8= was assumed. Later,
Ec(q;rs)=——4~ 4 ﬁ 4|4 Coldwell-Horsfall and Maradudin (1960) calculated the
qr s qr mean vibrational amplitude and thereby pointed out that

(3.73)
The first term on the right-hand side of Eq. (3.73) is the

the numerical estimate of the critical »; value is very
sensitive to the choice of §; their result, r, =0.40548"4,
would predict r,=104 for 8=+ but 7,=6.5 for §=-.

TABLE 1. Values of g(0) in various calculations. RPA refers to the calculation based on Eqg.
(3.10); H, Eqgs. (3.24) and (3.55); STLS, Singwi et al. (1968); VS, Vashishta and Singwi (1972); Y,
Yasuhara (1972); L, Lantto (1980 and private communication); Z. Zabolitzky (1980); UI, Utsumi

and Ichimaru (1980b); IU, Ichimaru and Utsumi (1981).

re=1 rg=2 re=3 re=4 re=>5 re=6 rg=10
RPA —0.12 —0.65 —1.13 —1.57 —2.00 —2.60
H 0.08 —0.28 —0.61 —0.91 —1.21 —1.49
STLS 0.24 0.11 0.04 0.006 —0.02 —0.03
\'A 0.19 0.034 —0.04 —0.07 —0.075 —0.08
Y 0.266 0.150 0.088 0.053 0.033 0.021
L 0.269 0.163 0.102 0.065 0.042 0.028 0.006
V4 0.302 0.202 0.143 0.105 0.081 0.032
Ul 0.276 0.168 0.107 0.070 0.046 0.031 0.005
1U 0.279 0.181 0.128 0.094 0.070 0.052 0.011

Rev. Mod. Phys., Vol. 54, No. 4, October 1982



1048 Ichimaru: Strongly coupled plasmas

TABLE II. Values of —E_.(r;) mRy in various calculations. RPA refers to the calculation based on Eq. (3.10); H, Egs. (3.24) and
(3.55); STLS, Singwi et al. (1968); TW, Toigo and Woodruff (1970, 1971); VS, Vashishta and Singwi (1972); L. Lantto (1980 and
private communication); Z, Zabolitzky (1980); CA, Ceperley and Alder (1980); VWN, Vosko et al. (1980); UI, Utsumi and

Ichimaru (1980b); IU, Ichimaru and Utsumi (1981).

re=1 ry=2 ry=3 re=4 re=5 ry=6 rg=10 ry=15 ry=20
RPA 157 124 105 94 85 78
H 131 102 86 76 69 64
STLS 124 92 75 64 56 50 36 22
™ 134 95 79 68 61
Vs 112 89 75 65 58 52
L 118 86.5 70.9 61.0 54.0 35.5 22.1
Z 114.1 85.9 71.0 61.2 54.1 35.5 21.8
CA 119 90.2 56.3 37.22 23.00
VWN 120.0 89.6 73.8 63.6 56.3 50.7 37.09 28.30 23.10
Ul 115.7 85.0 69.2 59.2 52.0 46.6 335 25.1 20.3
U 117.4 86.9 71.1 61.0 53.8 48.3 35.0 26.5 21.3

To avoid such an uncertainty, de Wette (1964) formulat-
ed a stability criterion for the Wigner lattice, stating that
in order for a solid structure to exist the single-particle
potential should exhibit a localized well with at least one
bound state. An upper and a lower limit for the melting
density thereby estimated corresponded to r;~47 and
rs~100. Van Horn (1967) then attempted to improve on
the criterion of de Wette by taking into account the pos-
sibility of electrons occupying interstitial positions. As-
suming that a half of the electrons were at interstitial
positions, he found the melting condition, r,~27.

The critical density for the melting transition may be
evaluated directly through comparison of energies be-
tween the liquid and crystalline states. Glyde, Keech,
Mazighi and Hansen (1976) computed the fluid ground-
state energy by using a variational Jastrow wave func-
tion, and the energy in the solid phase by using a self-
consistent harmonic lattice theory; they thereby found
the critical value r,~70. Ceperley (1978) performed fer-

(0)

-0.1

qsrs)

(ol
S
5 (-0.1)

[-0.1]}
(-0.2)

(-0.2]

FIG. 22. Correlation energy contributions E.(q;r,) from dif-
ferent regions of momentum transfer at »,=1, 4, and 10:
RPA refers to the calculation based on Eq. (3.10); NP, the in-
terpolation of Noziéres and Pines (1958); “Zabolitzky”, the
FHNC calculation by Zabolitzky (private communication);
UL-II, the result of Utsumi and Ichimaru (1980b); “present” is
derived from Egs. (3.24) and (3.65).
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mion Monte Carlo variational calculations of the
ground-state energies for three phases, namely, the
Wigner crystal, the normal or unpolarized fluid, and the
polarized or ferromagnetic fluid. The results of such
calculations indicated that the Wigner crystal had the
lowest energy for r, > 67; the totally polarized fluid was
the ground state for 26 <r; <67; and the unpolarized
fluid was stable at high densities, 7; <26. Recently
Ceperley and Adler (1980) calculated those energies by a
stochastic simulation of the Schrddinger equation and
obtained somewhat different numerical results for the
critical conditions.

On the basis of the dielectric formulation with Eqg.
(3.57), Utsumi and Ichimaru (1981b) computed the
ground-state energy of low-density electron fluids; com-
paring this result with the energies in the bcc crystalline
state evaluated by Carr et al. (1961), Glyde et al. (1976),
and Ceperley (1978), they estimated the transition density
to be r,=12—27. It was also noted that those estimates
are quite sensitive to small variations in the fluid and
crystalline energies; those energy curves are almost paral-
lel to each other near the point of intersection. Deter-
mination of the transition density is a delicate affair re-
quiring extremely accurate evaluations of the energies of
both the crystalline solid and the strongly coupled liquid.

4. Instabilities in low-density electron liquids

Static properties of degenerate electron liquids at me-
tallic and lower densities have been extensively investi-
gated in the dielectric formulation by Utsumi and
Ichimaru (1981b) and Iyetomi, Utsumi, and Ichimaru
(1981a). In this section I briefly summarize their find-
ings.

(a) The electronic pressure,

nry dE(rg)

_ abirs) -3
T3 dr, (Ryem™)

(3.76)

becomes negative for »;>4.2. Analogous negative pres-
sure is found in a strongly coupled classical OCP when
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Eq. (2.11) is substituted in Eq. (2.9). This does not im-
mediately imply a thermodynamic instability of the sys-
tem, however, since the rigid background of neutralizing
charge usually assumed can make an infinite reservoir of
positive pressure.

(b) The compressibility (3.26) and the static dielectric
function €(g,0) become negative for r,>5.3. An exam-
ple for the latter function has been shown in Fig. 19, and
its classical counterpart in Fig. 4. Again, this negative
compressibility does not imply an instability of the sys-
tem, when a rigid background of compensating charge is
assumed.

(c) Ferrell’s condition (Ferrell, 1958)

d2 8ﬁ}\,EF © dx ®©
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d2

02 [r2E(r;)]<0

(3.77)

for stability of the electron-liquid ground state (cf. Sec.
I1.B.5 for discussion) breaks down when 7, exceeds ~ 65.
Violation of condition (3.77) means existence of a state
other than the homogeneous liquid state that would
lower the system energy. It thus follows that the critical
rs value for the Wigner transition should be smaller than
65.

When the dielectric function is expressed in the form
(3.24), the left-hand side of (3.77) may be calculated as
(Ichimaru et al., 1982)

Xolxqp,iy)

5 [r2E(r)]=—

d
dr? Y

3rin? Jo x2J-w

3mnx

In the RPA, G(q)=0, so that Misawa (1968) showed
d’[r’Egpa(r,)]/dr <0.

As we observe—for example in Fig. 18—the local-field
correction arising from the exchange and correlation ef-
fects has the property

9

.79
arg (3.79)

[rG(g)]>0,
giving rise to a positive contribution on the right-hand
side of Eq. (3.78); inclusion of the local-field correction
thus has a destabilizing effect in the Ferrell criterion
(3.77).

(d) The onset condition for a CDW instability has
been given by Eq. (2.36). Extrapolating the plots of
€(¢,0)max for the degenerate electron liquids into low-
density regime, analogously to Fig. 6, Iyetomi et al.
(1981a) infer that condition (2.36) may be reached at
rg=~85 with the critical wave number ¢q.=1.875¢.
Here again it has been shown that the local-field correc-
tion arising from the exchange and correlation effects
has a tendency to induce an inhomogeneous state. The
use of local approximation for exchange and correlation,
which depends only on the information contained in the
limit (3.25), can thus lead to manifestly inaccurate pre-
dictions on the onset of the CDW instability.

If the spin dependence of the polarizabilities is taken
into account, one can analogously analyze the onset con-
dition for a spin-density-wave (SDW) instability (e.g.,
Overhauser, 1968).

Various instabilities noted in this section may lead to
interesting physical consequences if they are coupled
with finiteness of the pressure or the compressibility of
the ionic background. These problems, however, have
not been investigated in sufficient detail.
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G(xqp) | , (3.78)

dr

I
E. Application of the static screening function

1. High-density plasmas

The properties of high-density plasmas, consisting of
ions obeying the classical statistics and electrons forming
degenerate quantum liquids, have been the subjects of in-
tensive study lately, because they make practical models
for laser-compressed plasmas, the interiors of heavy
planets and of degenerate stars, and the outer crusts of
the neutron stars. A most simplified treatment of such a
high-density plasma consists in consideration of a classi-
cal OCP, as in Sec. II, where the electrons are assumed
to form a rigid, uniform background neutralizing the
average space-charge field of the ions. Such a model
provides a rigorous description of the system in the
high-density limit of the electrons.

For the description of actual high-density plasma sys-
tems, however, the OCP model amounts to something of
an oversimplification, since the electrons do form a po-
larizable medium. The Coulomb potential between the
ions is screened by the electrons, turning thereby into an
effective short-range potential. In the framework of the
linear-response theory, the screening action may general-
ly be described in terms of the dielectric function &(g,w)
of the degenerate electron liquid, in which the ions are
now assumed to form a uniform positive-charge back-
ground. Since the Fermi energy of the electrons is much
greater than the thermal energy of the ions in many of
the practical cases, one may evoke the adiabatic approxi-
mation for the motion of the electrons, so that only the
static part £(q,0) of the dielectric function enters the
screening of the interionic potentials.

In the following two sections we shall look at some of
the theoretical treatments on the thermodynamic and
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transport properties of high density plasmas, based on a trons are nonrelativistic, so that Er <<mec? or ry >>1072,
composite model where the ions are treated as a classical Those conditions are satisfied in many cases of practical

OCP and the electrons as a degenerate quantum liquid. interest.

In the numerical computations, Z =1 is assumed so that Eliminating the electronic coordinates by the adiabatic

the results are valid to hydrogen plasmas; the methods approximation, one writes the Hamiltonian of the system

are equally applicable to other kinds of plasmas, howev- as

er, as far as the effects of the Coulomb correlations are 1

concerned. H=E,+K+—-— 3 v(g)f{[pgp_q/e(q,00]—N} .
2V o)

2. Thermodynamic properties (3.80)

Here E, represents the ground-state energy of the elec-

A number of investigators have treated the thermo-  tron liquid; K refers to the kinetic energy of the ions,
dynamic properties of high-density plasmas: Hubbard  ,pg pq are the Fourier components of the ion-density
and Slattery (1971) carried out a Monte Carlo simulation  flyctuations. In Eq. (3.80), the electron-ion interaction is
of such a system with the Lindhard screening function. assumed to be weak; only the linear response term is re-
Ross and Seale (1974) employed a hard-sphere variation-  (ained (Galam and Hansen, 1976). The terms E, and K,
al calculation also with the Lindhard screening function; being simply additive in Eq. (3.80), will be omitted here-

Stevenson (1975) likewise carried out a hard-sphere vari- after. Thus the problem effectively turns into one of a
ational calculation for hydrogen-helium fluid mixtures.  gingle-component ionic fluid.
DeWitt and Hubbard (1976) performed an improved The thermodynamic properties may be analyzed by the

Monte Carlo study for such a mixed system with the  yariational method with the aid of the Gibbs-Bogoliubov
Lindhard screening function. Galam and Hansen (1976) inequality (2.20). It has been shown numerically by
carried out an extensive study of the thermodynamic  Galam and Hansen (1976) that the OCP reference system
properties on the basis of an OCP variational principle  gives Jower estimates of the free energy than the hard-
coupled with the screening functions of Lindhard (1954), sphere system; OCP makes a reference system superior
of Geldart and Vosko (1966), and of T01'go and Wood- {5 the hard-sphere system. In the OCP reference system,
ruff (1970, 1971). Very recently, Iyetomi et al. (1981b)  one regards its “effective charge” e’ as the variational
investigated the screening effects of the degenerate elec- parameter. The effective charge physically describes the

tron liquid on the thermodynamic properties of dense  extent to which the ionic charge e is reduced due to the
plasmas, using the improved screening function proposed  ejectron screening.

by Utsumi and Ichimaru (1980b).
For a treatment of dense plasmas, the following condi-
tions are assumed: The thermal de Broglie wavelength of ~

The Gibbs-Bogoliubov inequality (2.20) now reads

the ions is much smaller than the average interionic (T,rs) < F (r',r,rg) , (3.81)
spacing; the ions may be regarded as classical particles. NkpT NkpT
The electrons are degenerate, so that kT /Er << 1; more
precisely, it suffices to assume kzT/Er <0.1. The elec- where
J
F FOCP al = 1 r—r’ yoc
I, L,r)= I+— [ dqS°PFg;I’ - r, 3.82
N1 LT = e (T Jy das°igsr) P R R Y (3.82)
I=(e')*/akyT (3.83)
r

is the effective coupling constant; FOCP(I), UCCP(I”),  function derived by Utsumi and Ichimaru (1980b). We
and SOCP(g;T) refer to the excess free energy, the excess  here observe that the variational I'" with the UI screen-
internal energy, and the static structure factor of the ing function lies systematically smaller than that with

OCP with I (cf. Secs. ILA and ILB.1). The variational  the Lindhard screening function. This implies that the
parameter I'' is then determined from the minimization exchange and Coulomb local-field corrections between

condition: electrons act further to reduce the ionic correlations.
This reduction can be accounted for in the following

F F (I T.r.) -0 (3.84) way: When ele.ctrc')ns are attracted to the vicinity of an

ar’ NkzT oTs or =Y~ : ion, both the kinetic energy of, and Coulomb energy be-

gy tween, those electrons generally increase. The screening

The use of I'’ both as the variational parameter in gen- action and thereby the effective reduction of the ionic
eral and as the specific solution to Eq. (3.84) should not charge will be completed when those energy increments
cause any confusion. are balanced by the energy decrement due to the

Table III lists the values of I'' so computed with the electron-ion attraction. In the Lindhard screening func-
Lindhard screening function and with the UI screening tion, where no effects of microscopic exchange and

Rev. Mod. Phys., Vol. 54, No. 4, October 1982
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TABLE III. The I'" values in the OCP variational method with the Lindhard [Eq. (3.10)] and Ul
[Utsumi and Ichimaru (1980b)] screening functions. From Iyetomi et al. (1981c).

r Lindhard Ul Lindhard Ul Lindhard Ul
6 3.97 3.84 2.89 2.47

10 6.67 6.45 4.94 4.36 3.83 2.69

20 13.26 12.78 9.59 8.34 7.33 5.46

40 26.34 25.30 18.36 15.50 13.34 9.24

70 45.73 43.82 31.12 25.64 21.65 13.66
100 64.71 61.86 43.34 35.26 29.50 17.43
120 77.23 73.70 51.12 41.32 34.46 19.72
140 89.84 85.57 58.66 47.12 39.18 21.87
160 102.73 97.65 66.00 52.66 43.67 23.89
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Coulomb holes around an electron are taken into ac-
count, the magnitude of the Coulomb energy between
electrons tends to be overestimated. The screening action
and the effective reduction in the ionic charge are thus
underestimated in the case of the Lindhard screening
function.

The variational estimates of the free energy may then
be obtained by substituting the solution I'’ to Eq. (3.84)
in Eq. (3.82). Other thermodynamic quantities, such as
the pressure P, may likewise be calculated, as (Galam
and Hansen; 1976)

P 1 U
Tr)=——o—
weyT LTS 3 NkpT

(Tys)

_all p= ocp(, .1y 0
3, 445 (¢T3,

1
e(q,0)

(3.85)

Figures 23 and 24 exhibit the calculated deviations of the
thermodynamic quantities from the OCP values due to
the screening effect of the electrons with r,=1.5. The
deviations are defined as the differences between the
thermodynamic quantities with the electron screening
and the corresponding OCP values; thus for the free en-
ergy

ﬁ FOcCP

F ,
= N7 LD T N T

M N T

(), (3.86)

where the variational I’ determined from Eq. (3.84) is to
be used in the first term. The entries with the UI
screening function are the results of Iyetomi et al.
(1981b); the others are taken from Galam and Hansen
(1976). We observe in those figures that the screening
corrections to the thermodynamic quantities are rather
insensitive to the choice of the screening function, except
perhaps for the case of A(P/nkpT).

3. Electric resistivity

In a high-density plasma where the Fermi energy of
the electrons is large, coupling between the electrons and
the ions is correspondingly weak; the Ziman formula (Zi-
man, 1961) is thus applicable to the calculation of the
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scattering rate between them. Several investigators in
the past computed the electric resistivity on the basis of
the Ziman formula; they include Hubbard and Lampe
(1969), Stevenson and Ashcroft (1974), Flowers and Itoh
(1976), Minoo, Deutsch, and Hansen (1976), and Iyetomi,
Utsumi, and Ichimaru (1981c). All of those calculations
took account of the electron screening effect on the ef-
fective electron-ion interaction via an appropriate dielec-
tric screening function of the electrons. Iyetomi et al.
(1981c) took additional account of the reduction in the
ionic correlations brought about by the screening action
of the electrons, which had been expressed in terms of
the I'" values of Table IIL

According to the Ziman formula, the electric resistivi-
ty may be calculated as

2 2q
Pe i 2y fo "dgq* | @) |2Si(q) (3.87)

T 1207

where ®(q) is the Fourier transform of the effective in-
teraction potential between the electrons and the ions,
and S;(q) refers to the ionic structure factor. Other

30
&Eo 5 | N j
AN(IO) .
20 . ]
10| Cin
1 10 T 100

FIG. 23. Deviation of the Helmholtz free energy from its
OCP value due to the electron screening at r,=1.5. The
points with closed squares refer to those obtained with the
Lindhard screening function (3.10); open circles, with the
Geldart-Vosko screening function Eqgs. (3.24) and (3.56); closed
triangles, with the screening function due to Toigo and Wood-
ruff (1970); and closed circles, with the Utsumi-Ichimaru
screening function Egs. (3.24) and (3.57)—(3.59). B=1/kpT.
From Iyetomi et al. (1981b).
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FIG. 24. Deviation of the pressure from its OCP value due to
the electron screening at rs=1.5. Designation of points is the
same as Fig. 23. B=1/kgT. From lIyetomi et al. (1981b).

transport coefficients, such as the electronic thermal con-
ductivity, may be treated analogously (e.g., Minoo et al.,
1976).

The screening function €(g,0) of the electrons has in-
fluences on the two terms ®(g) and S;(g) in the in-
tegrand of Eq. (3.87). First, the Coulomb interaction
between the electrons and the ions turns into a short-
range one:

D(g)= —4me?/q%(q,0) . (3.88)

Since this effect acts to decrease the scattering cross sec-
tion, it has a tendency also to decrease the magnitude of
the electric resistivity.

The other effect refers to the effective reduction in the
ionic correlations, described by S;(g), which stems from
the electron screening of the ionic charges. This effect
acts to enhance the density fluctuations of the ions in the
intermediate wave number domain just below 2gp, and
thereby to increase the electric resistivity.

In Fig. 25, the numerical values of the normalized
resistivity,

0.3
0.2
N
N
0.1 \
N\

1 10 100 -
FIG. 25. Normalized electric resistivity, Eq. (3.89), versus I’
at rs=1.0. The dotted curve refers to the values obtained in
the approximation scheme (a) of Sec. IIL.LE.3; the thin dashed
curve, (b) with the Lindhard screening function (3.10); the thin
solid curve, (b) with the UI screening function, Eqgs. (3.24) and
(3.57)—(3.59); the thick dashed curve, (c) with the Lindhard
screening function; the thick solid curve, (c) with the UI
screening function. From Iyetomi et al. (1981c).
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P¥*=p./Peo ;s (3.89)

are plotted for r;=1.0, computed in various approxima-
tion schemes, where
_ 16 ap#i_,
Pe0= 9 ez Fs
=38.6r) (uQ cm). (3.90)
In scheme (a), ®(q)=—4mwe?/q? and S;(q)=S°P(q;I")
are taken, so that the screening effects of the electrons
are ignored in the evaluations of both the effective po-
tential ®(g) and the ionic structure factor S;(g). In
scheme (b), Eq. (3.88) and S;(g)=S°%(g;T") are as-
sumed, so that the effective interaction is now screened.
Finally, in scheme (c), the structure factor is also renor-
malized according to the OCP variational principle,

Si(q)=8°F(g;T), 3.91)

where I'’ is the variational value listed in Table III. The
features exhibited in Fig. 25 may be understood in terms
of competition between the screening effect on ®(q) and
the renormalization effect on S;(g), as remarked earlier.

F. Dynamic properties
1. General survey

During the past decades, a substantial amount of ef-
fort has been expended on the experimental study of the
dynamic structure factor S(q,w) associated with the
valence electrons in metals, through the techniques of x-
ray scattering spectroscopy and electron energy-loss spec-
troscopy [see, e.g., Raether (1980) for a review and fur-
ther references]. The dynamic structure factor refers to
the spectral function of the density fluctuation excita-
tions in such an electron system (Pines and Noziéres,
1966). The experiments have revealed the frequency
dispersion, the linewidth, and the spectral shape of the
plasmon excitations, as well as the detailed features of
the contributions coming from other elementary excita-
tions.

In various instances, the theory on the basis of the
RPA has failed to account for salient features observed
in experiments. Such a discord has been anticipated,
however, since the RPA is basically a weak-coupling
theory. The electrons in metal are, on the contrary, a
strongly Coulomb-coupled system, for which the cou-
pling constant r;=2—6. As noted in Secs. IILA and
IIL.B, many investigators have attempted to go beyond
the RPA description, by taking account of certain non-
RPA effects arising from the exchange and Coulomb
correlations. Those theories have achieved only limited
success in comparing their numerical predictions with
the experimental data.

In the following sections, we shall take up certain as-
pects of those comparisons in some detail. In so doing
we particularly refer to the theoretical model (3.53) pro-
posed by Utsumi and Ichimaru (1980a, 1981a), since it
encompasses many of the existing theories as its limiting
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cases; their calculations were compared rather extensively
with various scattering data.

In the dielectric response function (3.53), the strong-
coupling effects were described by three characteristic
functions: G(q), 1/7(q), and Q(q). The forms of the

static local-field correction G(q) proposed by variousI

1 1 dk - Tma,6(2qp —
wpT(q) n f (21r)3K(q’k) 2figrk
Here 6(x) is the unit step function, and Egs. (2.72), (3.6),
and (3.60) have been used. Clearly, 1/7(q) is proportion-
al to g2 in the long-wavelength domain, reflecting the
conservation of the total momentum in the electron sys-
tem. Quantities related to 1/7(q) have also been formu-
lated by DuBois and Kivelson (1969) and by Hasegawa
and Watabe (1969).

The characteristic frequency Q(q) for short-time relax-
ation has been determined in accord with the third
frequency-moment sum rule (3.35) as

Ug) /0, =(1/2)"?w,T(q)[G(q)—1(g)], (3.93)

where I(q) has been defined by Eq. (3.37); hence, Q(q) is
proportional to the difference between the low- and
high-frequency limits of the frequency-dependent local-
field correction G (q,®). It has been argued (Utsumi and
Ichimaru, 1980a) that the frequency Q(q) should corre-
spond to a characteristic frequency of the multipair exci-
tations: Clearly, ((q) remains finite in the long-
wavelength limit; no Pauli principle restrictions are ap-
parently involved in the calculation of Eq. (3.93).

2. Coefficient of plasmon dispersion

The plasmon pole w=w(q) of the dynamic structure
factor may be determined from

e(q,w(q))=0. (3.94)
We set its long-wavelength solution as
wlg)=w,+2awr(q/qr)*, (3.95)

with wp=Er/#; this equation defines the coefficient a
of the plasmon dispersion.

Assuming that the electron-liquid model may provide
a good description of the electrons in metal, one com-
putes the dispersion coefficient from Eq. (3.53) as

(0]
a=anps— 2 |V alr )+ o) = 7a(r)]

@p

XReW 1 50)

’ (3.96)

where

aRpA=3wp/5wp (3.97)

is the dispersion coefficient evaluated in the RPA.
Equation (3.96) thus takes account of both static and
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k)
[Sws(K)PLS(|k—q|)—Sur( |k—q|)] .

theories were reviewed in Sec. IIL.C; in the formulation
of Utsumi and Ichimaru (1980b) G(q) was determined
according to Egs. (3.57)—(3.59).

The long-time relaxation rate 1/7(q) has been calculat- -
ed, in a way analogous to Eq. (3.59), as (Utsumi and
Ichimaru, 1981a)

(3.92)

r
dynamic strong-coupling effects in the dispersion coeffi-
cient, arising from the exchange and Coulomb correla-
tions. As Egs. (3.25) and (3.39) indicate, the quantities
Yolrs) and y,(r;) stem from the static and high-
frequency limits of the local-field correction; Eq. (3.96)
then mixes those two contributions in the way deter-
mined by the frequency ratio w, /Q(0).

The expressions for a obtained in various theories may
be regarded as certain limiting cases of Eq. (3.96). For
instance, if one disregards the relaxation effect in the
short-time domain and thereby lets 2(0)— oo, then Eq.
(3.96) reduces to

ao:aRpA—(wp/4wF)'yo(rs) . (3.98)

This expression corresponds to those obtained by Singwi
et al. (1968, 1970), by Vashishta and Singwi (1972), and
by Lowy and Brown (1975), although the schemes of
evaluation for y,(r,) differ from one theory to the other.
Basically, these are static theories and thus involve the
static local-field correction represented by (7).

In the weak-coupling limit of r,—0, one retains the
lowest-order contributions of the exchange effects only,
and finds 7o(0)=+ [cf. Eq. (3.30a)]. In this limit, Eq.
(3.98) becomes

aTwzaRpA—~a)p/16wF s (3.99)

the expression derived by Toigo and Woodruff (1970,
1971).

If, on the other hand, one assumes that the plasmon
has a sufficiently high energy that an approximation
©,/Q0)— oo is applicable, then Eq. (3.69) reduces to

Qo =0aRrpa— (@, /40p)Y (1) . (3.100)

This is the expression obtained by Pathak and Vashishta
(1973) and by Jindal, Singh, and Pathak (1977). These
authors took account of the third frequency-moment
sum rule, which is reflected in the involvement of
VeoZ5).

Finally, one notes that the lowest-order exchange con-
tributions to ¥ (r;) may be evaluated by going over to
the weak-coupling limit, »,—0, so that 7/”(0):23—0 [cf.
Eq. (3:30b)]. In this limit, one finds from Eq. (3.100)

aNp=aRpA—3wp/80coF . (3.101)

This expression was obtained by Noziéres and Pines
(1958) and by DuBois (1959).

For comparison the values of a/agps as computed ac-
cording to Egs. (3.96) and (3.98)—(3.101) are shown in
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Fig. 26. In the computations of Egs. (3.98) and (3.100),
the values of y(7;) and ¥, (7;) obtained by Utsumi and
Ichimaru (1980b) have been used. In Fig. 26 the experi-
mental data on various metals as compiled by Raether
(1980) are also plotted. We may interpret those data as
indicating collectively that the experimental values for a
are significantly different from the RPA prediction
(3.97) and that the discrepancies widen as r, increases.
Since the measured values are rather widely scattered
and are attached with large error bars, it does not appear
feasible to draw a quantitative conclusion from the com-
parison in Fig. 26.

3. Plasmon linewidth

The critical wave number ¢, is defined as that wave
number at which the plasmon dispersion merges into the
continuum of the single-pair excitations (e.g., Pines and
Noziéres, 1966). In the long-wavelength domain such
that g <g., the plasmon suffers no Landau damping; it
decays only through collisional processes. In the
electron-liquid calculations as exemplified in Sec. IILF.1,
the decay rate of plasmon would vanish in the long-
wavelength limit since 1/7(q) is proportional to g2. In
actual metals, however, the linewidths of the plasmon
spectra observed by. scattering experiments (e.g., Kloos,
1973; Zacharias, 1975; Gibbons, Schnatterly, Ritsko, and
Fields, 1976; Krane, 1978) take on nonvanishing, finite
values in the limit of g—0. This observation clearly in-
dicates the necessity of considering those additional
scattering processes of electrons which would not con-
serve the total momentum of the electrons; examples of
such metallic effects are the interband transitions, and
scattering with phonons, impurities, and so on (Noziéres
and Pines, 1959).

General expressions for the dielectric tensor associated
with the Bloch electrons in real crystals were derived
long ago (Noziéres and Pines, 1959; Ehrenreich and
Cohen, 1959; Adler, 1962). Subsequently, Hasegawa
(1971) and Sturm (1976) developed a pseudopotential

Mg Ba K
\Y vV \Y
Be Li Na
10—V 3 VYV
oSy
3 N
N R S NIV
3 R NI
0.5 RN
DS N E
~J;

o 1 2 3_4 5
Iy 6

FIG. 26. Plasmon dispersion coefficient a divided by the RPA
value agpa Vs 75 in various approximations. Solid curve corre-
sponds to Eq. (3.96). Dashed curves I-IV correspond to ay,
arw, 0y, and axp in Egs. (3.98)—(3.101), respectively. The ex-
perimental results for Be, Mg, Li, Ba, Na, and K are taken
from Raether (1980). From Utsumi and Ichimaru (1981a).
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theory of the linewidth of the long-wavelength plasmon
in simple metals, and thereby explained its wave number
dependence (Sturm, 1977, 1978a) on the nearly free elec-
tron approximation. Bross (1978) carried out analogous
investigations by taking account of certain band-
structure effects.

The extra scattering processes arising from the metal-
lic effects may be included phenomenologically in the
dielectric formulation (3.53) by modifying the definition
(3.54) of @ into the form

1/2
Q(q)

wT(q)

2 i

t )
(3.102)

(2]

Q(q)

D=0+

where 1/7y(q) describes the decay rate of the density
fluctuation excitations due to those nonconserving
scattering processes. The full width at half maximum
w(q) of the plasmon peak in S(g,w) measures the decay
rate of the plasmon, which is calculated from the ima-
ginary part of w(q) in the solution to Eq. (3.94). Figure
27 shows the numerical results so computed for r;=2 in
various approximations and the experimental values (Za-
charias, 1975; Gibbons et al., 1976) for Al. The approxi-
mations adopted are

(a) Constant relaxation time approximation. This cor-
responds to the wuse of the dielectric function
(3.53) with @ defined as Eq. (3.102). For r,=2,
l/w,79(q)=1/w,75(0)=0.03 is assumed, appropriate to
Al (e.g., Kloos, 1973; Gibbons et al., 1976; Krane, 1978).

(b) Electron liquid model. This amounts to assuming
1/w,79(q)=0 in (a) or using Eq. (3.54) in Eq. (3.53).

(c) Static approximation to the local-field correction.
This further takes 1/7(q)=0 in (b) or assumes Eq. (3.24)
for the dielectric function.

4
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FIG. 27. Full width at half maximum, w(q) vs (g/qF)* for
rs=2 in schemes (a)—(d) of Sec. IIL.F.3. Experimental results
for Al are taken from Zacharias (1975)—solid squares; and
Gibbons et al. (1976)—open squares. From Utsumi and
Ichimaru (1981a).
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(d) RPA. This is approached by letting G (g)=0 in (c)
or by adopting Eq. (3.10).

The major cause of the discrepancy between calcula-
tion (a) and the experimental data in Fig. 27 may be at-
tributed to the adopted assumption 1/74(q)=1/7((0),
which fails to account for the g dependence inherent in
those scattering processes contributing to 1/7y(q). We
may conclude from such a comparison that the electron-
electron interaction in the electron liquid provides only a
minor contribution to the plasmon decay processes in ac-
tual crystalline metals.

4. Plasmon dispersion curve

It has been observed experimentally that the plasmon
dispersion curve flattens as the wave number increases
into the short-wavelength domain ¢>g,.. This is a
strong-coupling effect in the electron liquid, since a cal-
culation based on the RPA theory does not account for
such a flattening. Computed results of the dispersion
curve in the short-wavelength domain are shown in Fig.
28 for ry=2 (Utsumi and Ichimaru, 1981a); the four
curves correspond to the four approximation schemes,
(a)—(d), introduced in the preceding section. Experimen-
tal values for Al obtained by various investigators
(Hohberger, Otto, and Petri, 1975; Zacharias, 1975; Gib-
bons et al., 1976; Batson, Chen, and Silcox, 1976) are
also plotted in Fig. 28. An analogous experiment has
been carried out recently by Priftis and Boviatsis (1981).

The local-field correction arising from the short-range
static correlations, which is included in scheme (c), al-

3.0

15

1.00

Yasa? ®
FIG. 28. Plasmon dispersion curves versus (g./q)? in approxi-
mations (a)—(d) of Sec. IIL.F.3 for r,=2. Experimental results
for Al are taken from Hohberger et al. (1975)—solid circles;
Zacharias (1975)—solid squares; Gibbons et al. (1976)—open
squares; Batson e al. (1976)—open circles. The line A
represents the boundary of the single-pair-excitation continu-
um, o/0r=2(q/qr)+(q/qr)’, and the line B refers to the
peak frequency of the dynamic structure factor in the nonin-
teracting case, @/wr=(q/qr)’>. From Utsumi and Ichimaru
(1981a).
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ready shows a substantial effect in lowering the plasmon
energy and flattening its dispersion over the RPA values
in Fig. 28. This tendency becomes more pronounced as
we proceed to include the dynamic local-field effects in
(a) and (b). Improved agreement with the experimental
indications appears to be obtained when those dynamic
effects are taken into account.

Gupta, Aravind, and Singwi (1978) calculated the den-
sity fluctuation spectrum of an electron liquid including
the local-field correction and the back flow of the quasi-
particles, along the scheme of Eq. (3.22). They thereby
obtained an excitation spectrum, showing a certain de-
gree of flattening over the RPA spectrum for Al.

Dynamic correlations in an electron liquid were inves-
tigated by taking account of the first few exchange terms
in the perturbation series expansion (Holas et al., 1979;
Brosens et al., 1980). Dispersion curves at r,=2 were
calculated and compared with the experimental data for
Al

Band-structure effects on the plasmon dispersion in
simple metals were studied by Sturm (1978b) and Bross
(1978).

5. Asymmetry in the peak structure of S(q,»)

In the short-wavelength domain such that ¢ >gq., the
plasmon peak merges into the continuum of the single-
pair excitations; the peak structure of S(q,w) exhibits an
asymmetric character. Such an asymmetric behavior has
been specifically monitored for Al in the experiment car-
ried out by Gibbons et al. (1976). They measured the
average frequency between the two half-maximum fre-
quencies of S(g,0) and compared it with the peak fre-
quency.

Figure 29 shows those two—average and peak—
frequencies obtained for Al, together with the theoretical
values for ;=2 computed in scheme (a) of Sec. IIL.F.3
(Utsumi and Ichimaru, 1981a). Although the absolute
values of those frequencies show definite discrepancies
between the experiment and the theory as in the compar-
ison of Fig. 28, the ratio between the two frequencies ap-
pears to be well described by the theory.

6. Fine structures in S(q,0)

Platzman and Eisenberger (1974) reported an experi-
mental observation of double-peak or peak-and-shoulder
structures in the excitation spectra of the electron liquids
in Be, Al, and C over the wave number domain of
1.13<q/qr <2.10. Theoretical efforts are directed to-
ward accounting for such fine structures in the excitation
spectra (e.g., Mukhopadhyay, Kalia, and Singwi, 1975;
De Raedt and De Raedt, 1978; Barnea, 1979; Awa,
Yasuhara, and Asahi, 1981). The basic idea evoked in
some of those theories is to consider the lifetime effects
arising from higher-order coupling between plasmons
and single-pair excitations.

As may be clear from comparisons between experi-
ments and theories described in the foregoing sections,
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FIG. 29. Peak frequency and the average frequency between
two half-maximum frequencies of S(q,w) vs (q/qF)* for ry=2
in scheme (a) of Sec. IIL.LF.3. The solid curve represents the
peak frequency; the dashed curve, the average frequency. Ex-
perimental results for Al are taken from Gibbons et al. (1976):
open circles represent the peak frequency; crosses, the average
frequency. Line A refers to the boundary of the single-pair-
excitation continuum. From Utsumi and Ichimaru (1981a).

certain features of the excitation spectra are rather
strongly influenced by the metallic effects, as well as by
the electron-liquid effects. In addition, even for a
dynamic theory attempting to account for fine structures
in the frequency spectra, one must make sure that the
spectral function so obtained be consistent with various
sum-rule requirements, such as reproduction of known
results in the correlation function (cf. Sec. IIL.D.1) and
in the correlation energy (cf. Sec. III.D.2), and fulfill-
ment of the self-consistency conditions mentioned in Sec.
III.LA.3. Some of the theories cited above have ignored
those requirements. It is still an open problem to
develop a dynamic theory of S(q,w) in metals account-
ing for those observed fine structures in a way consistent
with the fundamental sum-rule requirements.
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